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ERNST MACH’S PRINCIPLES OF THE THEORY
OF HEAT

Introduction by Martin J. Klein

Ernst Mach, whose “incorruptible skepticism and independence”
Einstein never stopped admiring,! chose to describe himself as simply a
scientist and not as philosopher or historian of science. In contrast to
most of our contemporary philosophers and historians of science, Mach
had every right to choose that name. He was, after all, Professor of
Experimental Physics at the University of Prague for almost thirty
years,? and his historically oriented, philosophically critical books on the
principles of mechanics, optics, and theory of heat had their origins in
his regular duties as a teacher of physics. Mach’s renunciation of the title
of philosopher was explicit and repeated, despite his evident concern
with philosophical issues.® Even in the Preface to his book, Knowledge
and Error, written in 1905, Mach referred to himself as only a
“weekend sportsman” when it came to hunting in philosophical
preserves, and denied the existence of a “Machian philosophy.” He said
again that he was “not a philosopher, but only a scientist,” and declared:
“If nevertheless I am at times somewhat obtrusively counted amongst
philosophers, the fault is not mine.”* Mach’s refusal to claim to be a
historian is less explicit but no less definite. Despite his hope that in his
book on optics, for example, he had “laid bare ... the origin of the
general concepts of optics and the historical threads in their develop-
ment,” Mach hastened to add that “results of historical research have
not been accumulated here.”®> And in the book before us Mach warns
his readers not to expect the results of “archival research,” and goes on
to say in the same sentence that he has been more concerned with “the
connection and growth of ideas than with interesting curiosities.”® This
remarkable conjunction, implying that archival research could unearth
only matters of antiquarian interest, is calculated to shock historians of
all persuasions.

If Mach did not think of his books as professional contributions to
either the history or the philosophy of science, how did he view them?
The goals of his work are announced most explicitly in the Preface to
his Mechanics, and they do not sound very different from those of many
authors writing treatises on the fundamentals of one or another of the

ix



X MARTIN J. KLEIN

branches of physics. Mach wants to “clear up ideas,” to bring out “the
positive and physical essence of mechanics,” so often “completely
buried and concealed beneath a mass of technical considerations.”” He
wants to “lay bare the gist and kernel” of his subject. Only when he adds
that he wants to “get rid of metaphysical obscurities” does Mach use
language noticeably different from that commonly employed by scien-
tific authors. And even here he is dealing with something that every
conscientious teacher of physics will recognize: the experience of
lecturing “with a certain amount of enthusiasm” on some familiar,
generally accepted set of ideas and then suddenly realizing that
something is not clear, not only for the lecturer (and his audience!) but
also for those writers who have long been repeating these ideas.’ Some
fundamental obscurity has been allowed to persist, perhaps for decades
or even centuries. Such obscurities and the problems they concealed
were often the stimulus for Mach’s historical studies and philosophical
critiques.

Mach’s younger contemporary, Heinrich Hertz, commented on
something very similar when he described the difficulty of introducing
mechanics to a thoughtful audience, “without being occasionally
embarrassed, without feeling tempted now and again to apologize,
without wishing to get as quickly as possible over the rudiments, and on
to examples which speak for themselves.” Hertz was concerned with the
problematic status of the concepts of force and mass, and imagined “that
Newton himself must have felt this embarrassment,” and that “Lagrange,
too, must have felt this embarrassment and the wish to get on at all
costs.”® Hertz’s reaction to the obscurities he found in all existing
treatments of the subject was to attempt the creation of a new and more
abstract system of mechanics, one whose “logical purity” could be
proven “in all its details.”!® Mach did not share Hertz’s desire for a
logically tight system; neither abstract theory nor system building
appealed to him. He sought the solution to these difficulties by other
means, believing that in such cases there was “only one way to
enlightenment: historical studies.” Obscure concepts, concepts that had
acquired the name “metaphysical,” could only have gotten that way “if
we have forgotten how we reached them.” Historical study of the origin
and development of scientific ideas would eliminate the obscurities and
lead to genuine understanding. “History has made all; history can alter
all. Let us expect from history all,” wrote Mach. But this elevated
utterance did not suit his usual plain style and so he added that what we
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should hope for “first and foremost” from any historical investigation,
including his own, was that “it may not be too tedious.”!!

That hope is generally realized in Mach’s historical writings, most of
which are as lively and interesting now as they were when they
appeared. Mach did not follow any existing model of historical or
philosophical or scientific exposition, but went at things his own way
combining the various approaches as needed to reach the goals he set
for himself. When he is at his best we get a sense of the Mach whom
William James met on a visit to Prague, the Mach whose four hours of
“unforgettable conversation” gave the forty year old, well traveled James
the strongest “impression of pure intellectual genius” he had yet
received, and whose “absolute simplicity of manner and winningness of
smile” captivated him completely.!?

Consider, for example, the first few chapters of this book, Principles
of the Theory of Heat, which Mach devotes to the notion of temperature,
that most fundamental of all thermal concepts. He begins by trying to
trace the path that leads from our sensations of hot and cold to a
numerical temperature scale. He proceeds from the early use in the
seventeenth century of the variable volume of a fluid (gas or liquid) as
an indicator of the thermal state of a body, an indicator more sensitive
and more reliable than our sensations, to the introduction of numerical
scales based on the volume of the thermometric substance to denote
these thermal states. But when more extensive and more careful
measurements were made early in the nineteenth century by Dulong and
Petit, it became clear that every temperature scale depended in an
essential way on the particular properties of the thermometric substance
that had been chosen. This historical discussion is actually the
preliminary to a critical analysis of the temperature concept, but along
the way Mach takes the opportunity to describe some of the historical
experimental arrangements with the kind of loving attention to nice
points that only a genuine experimenter could provide.'* When he does
turn to a critical analysis based on his historical sketch of thermometry,
Mach argues that the numerical value of the temperature of a body in
thermal equilibrium, measured on any empirical scale, is only an
“inventory-number, by means of which the same thermal state can again
be recognized, and if necessary sought for and reproduced.” * There is,
however, no basis for introducing the idea of the “true” or “actual”
temperature of a body as a property more or less imperfectly deter-
mined by the thermometers one can actually use. Mach dismisses the
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“actual” temperature as an illusion comparable to Newton’s absolute
space and time, other illusions that he considered he had dispelled in a
well-known section of his book on mechanics a decade earlier.!> Having
shown that a temperature scale is, in effect, a numerical way of denoting
or naming the thermal states of bodies, Mach goes on to devote a
chapter to philosophical reflections on names in general, and on
numbers as particular kinds of names. This short chapter is followed by
another in which Mach discusses the concept of the continuum, again
with special reference to temperature but in a way that indicates how
little he was at home with the concepts of pure mathematics.'¢

Mach can be seen at his best in his historical and critical treatment of
calorimetry (in Chapters X and XI). Joseph Black, the principal figure in
this development, was one of Mach’s heroes, and he writes about Black
and his work with an insight born of admiration. Mach appreciated “the
certainty and clearness” with which Black introduced the concepts of
quantity of heat, of heat capacity, and of the latent heats of fusion and
vaporization, but he also appreciated Black’s general attitudes to
science. He saw Black as “a worthy successor of Newton,” thinking
especially of the way Black “was at pains to dismiss arbitrary fancies,
whether they originated from the heads of others or from his own head;
to explain facts by facts; to adjust his own conceptual constructions to
the facts; and to limit himself to the narrow and indispensable expres-
sion of what is actual.”!” This was Black’s ideas of the Newtonian
approach to science, and it was also Mach’s."® (Mach wrote that
Newton’s “reiterated and emphatic protestations” that he was concerned
not with hypotheses about causes, but simply with the “actual facts,”
were clear proof that he was “a philosopher of the highest rank.”'?)
Mach evidently enjoyed recounting Black’s arguments and pointing out
the far-reaching conclusions he had been able to draw — as in his
analysis of the implications of the slow rate at which snow and ice
melt when the air temperature rises above the freezing point — “by
simple attention to unremarkable experiences which are accessible to
everybody.” When Mach goes on to comment on Black’s “glance, so
susceptible to the events in our daily surroundings” and his “clear-
sighted analysis of particular experiments,”?’ we cannot help thinking
how aptly these words apply to Mach himself. It was Einstein who
emphasized Mach’s “immediate joy in seeing and understanding,” and
pointed out that even in his old age Mach looked at the world “with
the inquisitive eyes of a child, delighting in the understanding of
connections.”?!
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Mach was not a theoretical physicist. He saw theories as merely
economical ways of condensing the relationships among natural phe-
nomena that are discovered by experiment. If some theories claimed to
be more, then they were surely hypothetically based like the atomic
theory that Mach rejected. Such schemes might be heuristically valuable
for a time but they could be expected to wither away as science
progressed. “The object of natural science,” Mach wrote in the con-
cluding sentence of his first historical work, “is the connection of
phenomena; but the theories are like dry leaves which fall away when
they have long ceased to be the lungs of the tree of science.”?? With this
rather negative and restrictive attitude to theory, it is not surprising that
Mach omitted major aspects of the fields he wrote about. It is a serious
limitation in a critic of science that he fails to appreciate the beauty and
the power of highly developed theoretical systems.?

One is aware of that limitation of Mach’s in his book on mechanics,
where the keen critical analysis of concepts is not extended to the
systematic developments of Euler, Lagrange, and their successors. The
same limitation affects the Theory of Heat, especially in Mach’s
treatment of that remarkable conceptual structure, thermodynamics. He
does give a sound, interesting, and even dramatic account of the way a
situation arose in which “truth and error were in a confusing state of
mixture,”?* and of the resolution of the difficulties in the early 1850’
through the work of Rudolf Clausius and William Thomson. But Mach,
writing in 1896, gives his readers no sense of the significant new insight
into thermodynamics and the vast extension of its scope to be found in
the work of Josiah Willard Gibbs in the 1870’s. This omission was
properly called “indefensible” by Joseph E. Trevor, when he reviewed
Mach’s book on its appearance, but it is matched by analogous omis-
sions in what Trevor called “his justly famous treatise on mechanics,”?’
as I have already suggested.

Mach’s books attracted many readers. Their author, who had felt utterly
alone when he set forth on his course of historical-critical studies in
science, was gratified by the worldwide response his writings eventually
received.?® He took special pleasure in the recognition accorded his
work by colleagues in physics, in philosophy, and in the history of
science — recognition from those who were in a position to appreciate
the value of what he had done. Mach never forgot, however, that he had
written his books as introductions to the subjects they treated, and that
he had intended them for an audience much broader than that made up
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by his professional colleagues. What sort of ideal reader might a teacher
like Mach have had in mind?

Considering his general approach and the subjects he chose to
emphasize, Mach was presumably addressing himself to a student
keenly interested in physics and particularly attracted by its fundamental
ideas and problems. This student was tacitly expected to share Mach’s
responsiveness to the natural world around him, and his readiness to
ask a child’s naive and all but unanswerable questions about that world.
He should be as critical as Mach about the generally received concepts
and theories that purport to account for natural phenomena. Mach
would have expected that his ideal student did not especially care for the
mental gymnastics of problem solving or the polished elegance of
mathematical theories. If this student were to be most receptive to what
Mach could provide, it would be best if he were not already sitting at the
feet of some great teacher. And finally, if Mach were faithful to his
own deepest principles, he would have wanted his ideal reader to be as
independent and as skeptical of authority as Mach himself, and there-
fore ready to subject Mach’s views and arguments to the same sharp
scrutiny he would give to those of others.

Did Mach hope his books would find such readers? We cannot say,
but we do know that they found at least one. That ideal reader was
Albert Einstein, who was a young student at the Ziirich Polytechnic at
the time of his first encounter with Mach’s writings in 1897. Einstein
recalled that event fifty years later in a letter to Michele Besso, the old
friend who had arranged that first encounter.?’” “I remember very well
that you referred me to his Mechanics and his Theory of Heat during
my first year as a student, and that both books made a great impression
on me.” Einstein recognized that Mach’s influence on his intellectual
development was “certainly great,” though he found it hard to say just
how great it had been or to indicate where it could be seen. “The extent
to which they [Mach’s books]| affected my own work is, to tell the truth,
not clear to me.” Einstein was less conscious of Mach’s influence than
that of others when he wrote to Besso, but he recognized that he might
not be aware of the full impact Mach had had on him. “As I said, I am
not in a position to analyze whatever may be anchored in my uncon-
scious thought.” The traces of Mach’s influence on Einstein are worth
looking for. If we can see what his ideal reader found in Mach’s books,
we may learn something more about both the books and their reader.

The FEinstein who began to read Mach in 1897 was that very
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unorthodox student who spent most of his time in his room “studying
the masters of theoretical physics with sacred passion,” instead of
attending the regular lectures.?® From those masters — Kirchhoff,
Helmholtz, Boltzmann, and Hertz, among others — he learned to
appreciate the power and the appeal of a unified physics that would
explain all of nature on the basis of mechanics. “What made the greatest
impression upon the student,” he wrote in his “Autobiographical Notes,”
“was less the technical construction of mechanics and the solution of
complicated problems than the achievements of mechanics in areas that
apparently had nothing to do with mechanics: the mechanical theory of
light . . . and above all the kinetic theory of gases.”?* The successes of
this latter theory “supported mechanics as the foundation of physics.”
This vision of a mechanical physics, first formulated in the middle of the
seventeenth century, expanded and deepened when Newton added the
concept of force to the basic categories of matter and motion, had
dominated the thinking of physicists for over two hundred years. Even
though many reasons for doubting that this vision could ever be realized
accumulated during the nineteenth century, it was still possible at the
end of the century for a thoughtful physicist like Hertz to write (with
some exaggeration): “All physicists agree that the problem of physics
consists in tracing the phenomena of nature back to the simple laws of
mechanics.” 30

What Einstein found in Mach, above all else, was a critical examina-
tion of this belief in mechanics as the fundamental science and an
explicit skepticism about mechanical physics. In his Mechanics Mach
writes: “The view that makes mechanics the basis of the remaining
branches of physics, and explains all physical phenomena by mechanical
ideas, is in our judgment a prejudice. Knowledge which is historically
first is not necessarily the foundation of all that is subsequently gained.
... We have no means of knowing, as yet, which of the physical
phenomena go deepest, whether the mechanical phenomena are perhaps
not the most superficial of all, or whether all do not go equally deep.”*!
Mach’s doubts about mechanical physics and his view that it “suffers
from being a doubtful anticipation and from one-sidedness,”3? go back
to his earliest historical work, and are restated more than once in his
Theory of Heat.

Finstein recognized that it was Mach who “shook this dogmatic faith”
in the mechanical world view.3* He considered it Mach’s “great merit”
that he had “loosened up the dogmatism that reigned over the founda-
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tions of physics during the 18th and 19th centuries.”?* But the
conclusions Einstein drew from Mach’s successful attack on mechanical
physics were very different from Mach’s own. In rejecting the attempt to
explain all phenomena in mechanical terms, Mach argued for a strictly
phenomenological physics. “One thing we maintain, and that is that in
the investigation of nature we have to deal only with knowledge of the
connection of appearances with one another. What we represent to
ourselves behind the phenomena exists only in our understanding.” 33
He saw the mechanical conception of physics as “a hindrance to us in
the knowledge of phenomena.” Giving up the idea that mechanics was
the basic science meant to Mach freeing oneself from the arbitrary and
unjustified attempt to find a common theoretical foundation for all of
physics. Einstein saw things very differently. He, too, was convinced that
mechanics could not provide a basis for physics, but he would not
retreat to Mach’s position of phenomenalism. That mechanics was not
the foundation for all of physics did not necessarily mean there was no
such common foundation. Einstein made it his life’s task to construct a
new unified foundation for his science. It was a task he could not
complete, but he never gave up the vision of a unified physics that the
mechanical world view had inspired.

In Mach’s opinion the idea “that all physical phenomena reduce to the
equilibrium and movement of molecules and atoms” was a prime
example of the way in which mechanical explanation could become a
“hindrance.”* Throughout his writings he argued against taking atoms
seriously. “It is a bad sign for the mechanical view of the world that it
wishes to support itself on such preposterous things, which are
thousands of years old,” he wrote in 1872.37 He had not changed his
opinicn a quarter of a century later when the Theory of Heat appeared:
“Modern atomism is an attempt to make the idea of substance in its
most naive and crudest form . . . into the basic concept of physics.”3® He
thought that these “childish and superfluous” pictures made a “peculiar
contrast” to the real spirit of contemporary physics. The useful analogies
that atomistic thinking might supply must never be confused with
physical reality.

Mach’s youthful reader in Ziirich could not have ignored this opposi-
tion to atomic theories. Since Einstein was also an ardent reader of
Boltzmann’s book on the kinetic theory of gases, he would not have
overlooked Mach’s criticism of a key point in Boltzmann’s work: “The
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mechanical interpretation of the second law, by making a distinction
between ordered and disordered motions, by drawing a parallel between
the increase of entropy and the increase of the disordered motion at the
expense of the ordered, seems to be really artificial”3® Mach also
quoted approvingly a remark made by his former student Frantisek
Wald: “In my opinion the roots of this entropy law lie much deeper, and
if the attempt to bring the molecular hypothesis and the entropy law into
agreement succeeds, then this would be fortunate for the hypothesis, but
not for the entropy law.”

Once again Einstein’s response was to take due note of Mach’s
critical position, and then to proceed quite differently from Mach. If
Mach (and others) were still skeptical about the existence of atoms, this
meant that the evidence in favor of their existence was not conclusive.
And Mach was quite right in pointing out that because the second law of
thermodynamics could be derived from statistical mechanics, it did not
follow that the second law had to be derived on that basis; sufficient
conditions need not be necessary ones. Mach’s cogent criticisms did not,
however, make FEinstein reject atomism and statistical mechanics. In-
stead they may well have spurred his efforts to probe these subjects
more deeply than anyone had yet done. This probing of the fluctuation
phenomena that are necessary consequences of statistical mechanics led
Einstein in 1905 to the Brownian motion and a crucial test of “the
kinetic-molecular conception of heat.”* In Einstein’s first letter to
Mach in 1909, he wrote that he was sending several reprints and
referred specifically to one of them in his letter: “I should like to ask you
particularly to look briefly at the one on Brownian motion, because that
paper discusses a motion that, I believe, has to be interpreted as
‘thermal motion’.”*' (Einstein actually forgot to include the reprints, but
when he did forward them to Mach a week later he signed the accom-
panying note “Your admiring student.”*?) It is too bad that Mach,
already past seventy, did not allow himself to be persuaded by the
Brownian motion or any of the other new evidence available by then.
He never accepted the reality of atoms.*

One of the lessons Mach taught in his books was that the structure of a
developed science may owe quite a bit to the accidental circumstances
of its history. Mechanics, for example, might now look quite different if
it had been developed along the lines suggested by Huygens’s work,
which would have been a logical possibility, rather than along the
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Newtonian line that was actually followed.** Statements now considered
to be basic laws would then be derived theorems, and vice versa. Mach
went even further when he emphasized that a principle like that of the
impossibility of perpetual motion cannot be thought of as merely a
theorem of mechanics, “since its validity was felt long before the edifice
of mechanics was raised.”* The roots of such a principle “are to be
sought in more general and deeper convictions.”*6 All of this suggests a
flexible approach to physics in which the status of a particular result
need not be the status it has acquired in the theoretical formulation
which happens to have developed historically. Some general principles
may well be more significant and even more reliable than the logical
structures on which they now seem to be based.

This is certainly a lesson Einstein learned remarkably early in his
career, although we cannot prove that he learned it from Mach. Even in
his first papers on statistical mechanics, Einstein repeatedly draws his
reader’s attention to results that in no way “suggest the assumptions
underlying the theory from which they were derived.”*’ He evidently
felt free to use such results even when that supposedly underlying
theory no longer applied. He did so in 1904 when he applied the
equation for energy fluctuations, derived from statistical mechanics, to
blackbody radiation, evidently not a mechanical system. And Einstein
argued in 1911 that Boltzmann’s principle relating entropy and prob-
ability could be relied on completely — “We should admit its validity
without any reservations”*® — even when exploring the treacherous
domain of quantum phenomena where there was “no firm foundation on
which to build.”

The most striking instance in which Einstein seized upon a principle
that seemed to be firmly embedded in a particular theory, and recog-
nized that it must hold under circumstances to which that theory did not
apply, is his special theory of relativity. It was well-known and
universally accepted since the seventeenth century that the same laws of
mechanics hold for all observers moving uniformly with respect to each
other, that one cannot distinguish the state of rest from a state of
uniform motion.’® This was a principle in mechanics, however, and it
was not consistent with the electrodynamic theory developed by James
Clerk Maxwell and clarified by his successors, particularly H. A.
Lorentz.>! Einstein pointed out that a variety of considerations, both
theoretical and experimental, suggested, nevertheless, “that there is no
property of the phenomena that corresponds to the idea of absolute
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rest, not only in mechanics but also in electrodynamics, and furthermore
that the same electrodynamic and optical laws are valid in all frames of
reference for which the equations of mechanics are valid ....”32
Einstein made this suggestion into one of the postulates of his theory,
extending the “principle of relativity,” as he called it, from mechanics to
all of physics.

Einstein wrestled for many years with the problem of reconciling the
contradictory claims of the relativity principle and the Maxwell-Lorentz
electrodynamics. It was not until 1905 that he realized that the
“apparent incompatibility” of these two was indeed only apparent: “at
last it came to me that time was suspect.”>* Or, as he put it in 1907: “It
turned out, most unexpectedly, that it was only necessary to understand
the concept of time sufficiently sharply in order to get over this
difficulty.”>* (This must be the most extraordinary use of the word
“only” in the history of science.)

This all seems very far away from Mach, and especially far from the
book before us. But perhaps there is a connection after all. In his
discussion of the development of thermodynamics Mach emphasized
the conflict, apparently irreconcilable, that William Thomson saw in
1849 between Carnot’s principle and the then recent experiments of
Joule.>®> Carnot had introduced his principle by an argument that made
explicit and apparently unavoidable use of the caloric theory of heat, in
which the quantity of heat was conserved. Thomson had just made
two new and unexpected applications of Carnot’s principle, and was
convinced that was “still the most probable basis for an investigation of
the motive power of heat.” Joule’s impressive experiments, on the other
hand, seemed “to overturn the opinion commonly held that heat cannot
be generated.” Thomson saw no way out for the moment; there were
“innumerable difficulties — insuperable without farther experimental
investigation and an entire reconstruction of the theory of heat from its
foundation.” Yet, as Mach described, the very next year Rudolf Clausius
showed that the conflict in the principles was not irreconcilable.
Carnot’s principle need not be abandoned in order to accept Joule’s
result that heat and work were equivalent and interconvertible. The
conservation of heat was not, in fact, a necessary basis for Carnot’s
principle, as Clausius showed by providing a new basis — what we now
know as the second law of thermodynamics.

Is it possible that Mach’s ideal reader remembered this story as
he struggled to reconcile the seemingly irreconcilable — relativity and
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electrodynamics? We do not know, but there is no doubt that Einstein
often pointed out the analogies between his special theory of relativity
and thermodynamics. Both were what he called “theories of principle”
rather than “constructive theories.”*® Perhaps some features of Mach’s
discussion of the way the laws of thermodynamics were developed
remained “anchored in [Einstein’s| unconscious thought.”

In any event this sketch of what Einstein found in Mach’s writings and
put to use in his own work may suggest the rich variety of ideas Mach

offered — and still offers — to his readers.

Yale University



EDITOR’S NOTE TO THE ENGLISH EDITION

The original of this work was published in some haste, in order to
controvert the views of Boltzmann. Its Englishing has been a more
leisurely process. Mach’s Introduction and eight other sections (those
here styled Chapters I—V, XXIV, and XXVIII—-XXIX) were translated
by T. J. McCormack and published between 1900 and 1904 in The
Open Court, the house journal of the distinguished publishing company
of that name. In 1912 or 1913 P. E. B. Jourdain, the historian of
mathematics, undertook to revise and complete the translation. He also
corrected and amplified many of Mach’s references and footnotes and
added further footnotes and even some text material of his own. Such
revision, correction, and amplification (but not, I think, addition) was
continued after Jourdain’s death in 1919, principally by A. E. Heath. It
was judged complete in 1942 and a typescript with manuscript correc-
tions was delivered to Miss Elizabeth Carus, then head of the Open
Court Publishing Company. For all that it was cast up in hundreds of
words and otherwise marked, the typescript, by some oversight was
never published, although, or perhaps because, Miss Carus was at one
point convinced that it had been.

A remark by Mr. Rush Rhees, who gave Heath some assistance
(which he characteristically minimizes) with the translation, enabled me
to infer its existence and to institute inquiries, which eventually led to
Professor Elizabeth M. Eames’s finding the relevant typescript, untitled,
in the Open Court Archives or that part of them held in the Morris
Library of Southern Illinois University, Carbondale, Hlinois.

This long history (and I must confess that seven years have now
passed since the translation was discovered) has been partly due to the
laboriousness of all translation (no doubt T. J. McCormack’s motive for
returning to his own career), partly to the sad coincidence of Jourdain’s
and Paul Carus’s deaths in 1919, but chiefly to the nature of Mach’s text
with its encyclopaedic profusion of references to men of science and
their writings, references often given with the cursory brevity of one
who expects the reader to come half way to meet him. The attempt to
render all these precise and still more the attempt to take the reader by
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the hand and explain to him the significance of what Mach is saying and
the advances made since Mach’s time were bound to founder, since the
volume of new work, and even of new publications of old work, would
outstrip the diligence of the most assiduous editor. Nor am I sure (if the
attempts could be successful) that the book would quite be Mach’s. At
all events, and despite the interest of the typescript to the historian of
science, I have cut the Gordian knot by restoring the notes, to what I
hope to be an intelligible version of their original form. Some further
comments thought now necessary are enclosed in square brackets and
should be attributed to Jourdain or Heath or (when signed Ed) to
myself.

Additions to the text I have likewise removed, except that Jourdain’s
(as I judge) expansion of Mach’s summary of the work of the Thomsons
in Chapter XIV could not be excised without major surgery. I have let it
stand as a piece of harmless partiality. En revanche 1 have not included
Jourdain’s translation of a paper by Gay-Lussac which Mach only
printed (and in French) because it was then not available elsewhere. The
translations of Mach’s Prefaces are my own.

It is a pleasure to thank Professor Eames and Mr. Rhees, also
Professors Paul Schilpp and Eugene Freeman, for help in finding the
translation. The Morris Library of Southern Illinois University, Carbon-
dale, and its Librarian have been most forthcoming. Fullest acknowl-
edgement is due to them and, above all, to the Open Court Publishing
Company for permitting the publication in the present series of a work
originally commissioned by them.

Oxford, October 1985 BMcG



AUTHOR’S PREFACE TO THE FIRST EDITION

The present work sets itself a similar task to that confronted in my
Mechanics.! Tt aims to give a critical epistemological elucidation of the
foundations of the theory of heat, to lay out for inspection the facts that
influenced the formation of the relevant concepts, and to show why and
to what extent the former are to be understood in the light of the latter.
That such a point of view is applicable in this area as well as in others
has been indicated in previous works of mine.

Like my Mechanics again, the work is from one point of view the
outcome, from another the basis, of my lecture courses. Many a teacher
will have had a similar experience: to be engaged in the exposition, not
without enthusiasm, of generally received views and suddenly to notice
that his words no longer come from the heart. Subsequent reflection in
private usually leads, after no great interval, to the discovery of logical
anomalies, which, once recognized, become intolerable. Such was the
origin of many of the individual discussions here collected, and by
means of them I have some hopes of fulfilling my general aim: to
eliminate idle and superfluous notions and unwarranted metaphysical
assumptions from this branch of physics also.

Very many sources have been laid under contribution, but the reader
should not expect to find here the results of a search through the
archives. My concern is not with the curious and entertaining detail but
with the growth and interconnexion of ideas. Biographical particulars
are rarely given. Individuals are regarded as intellectual, or at most
ethical, personalities, which in my view can only benefit the historical
picture here developed.

To keep the size of the book within reasonable bounds, I have had to
restrict myself to fundamentals. Subjects that others have treated in
detail and where I have nothing material to add, I have passed over or
touched on only briefly. The dynamic theory of gases and thermo-
chemistry both fall under this head. It will be understood that I had to
leave very recent publications undiscussed. In particular Maneuvrier’s
history of the C/c ratio appeared too late for me to use it. Yet I find that

my account of the development of this subject agrees essentially with
his.
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Those chapters that are of an historical or critical nature I have
arranged in the order that, in my judgement, best brings out the complex
and changing interrelationship of the questions treated. There are,
however, a number of chapters whose content is of a more general and
abstract epistemological nature. They belong together as essays in
cognitive psychology and I have placed them at the end for the peace of
mind of those physicists who find such reading-matter not to their taste.
In these chapters coherence demands that I touch again on some topics
from my Popular Scientific Lectures,® the published form of which was
not available, nor was publication even envisaged, when I wrote. It
will be found that the treatment of problems in the two works is
complementary.

Vienna, August 1896 ERNST MACH



AUTHOR’S PREFACE TO THE SECOND EDITION
(EXCERPT)

A reference in The foundations of geometry by B. A. W. Russell alerted
me to The Concepts of Modern Physics by J. B. Stallo, a work I have
since come to know.! I should not like to let slip an opportunity to
recommend as most relevant this rich and illuminating work. I am
wholly at one with the author in his efforts “to eliminate from science its
latent metaphysical elements”. The first edition of Stallo’s work is dated
November 1881, but it is partly a reworking of articles published in
1873 and 1874, which in turn go back to public lectures delivered in
1859. It would have been very helpful and encouraging for me, had I
known of Stallo’s investigations in the Middle Sixties, when I began to
work along the same lines.

Vienna, August 1899 ERNST MACH



INTRODUCTION

It is a commonplace of history that the modes of thought current in a
given period and acquired by the labors of generations past are not
always conducive to the advancement of science, but frequently act as a
clog on its progress. Time and again inquirers who stood aloof from —
and even in opposition to — the schools, such as Black, Faraday, and
Julius Robert Mayer, have been the originators of great scientific
advances — such as could only have sprung from their lack of bias and
their freedom from traditional professional views. Though the intellec-
tual vigor and unconstraint demanded by such performances are not the
outcome of either art or education, but are distinctively a product of
nature and the exclusive gift of individuals, nevertheless the mobility
and untrammelled play of our thoughts may be greatly enhanced by
scientific education, at least if it looks beyond the fostering of talents
requisite merely for the mastery of the problems of the day. Historical
studies are a very essential part of a scientific education. They acquaint
us with other problems, other hypotheses, and other modes of viewing
things, as well as with the facts and conditions of their origin, growth,
and eventual decay. Under the pressure of other facts which formerly
stood in the foreground other notions than those obtaining to-day were
formed, other problems arose and found their solution, only to make
way in their turn for the new ones that were to come after them. Once
we have accustomed ourselves to regard our conceptions as merely a
means for the attainment of definite ends, we shall not find it difficult to
perform, in the given case, the necessary transformations in our own
thought.

A view, of which the origin and development lie bare before us, ranks
in familiarity with one that we have personally and consciously acquired
and of whose growth we posses a very distinct memory. It is never
invested with that immobility and authority which those ideas possess
that are imparted to us ready formed. We change our personally
acquired views far more easily.

Historical study affords still another advantage. A consideration of
the development, mutations, and decay of ideas leads directly to the

5
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discovery, scrutiny, and criticism of the developmental process of our
own unconsciously formed views. When the process of growth of these
views is not understood, they confront us with all the insuperable might
of some alien power.

The purpose of the present book, like that of my Mechanics is to
trace the evolution of the conceptions of the theory of heat. This task
has been facilitated somewhat by some preliminary researches, but the
undertaking is, upon the whole, a far more complicated one than that of
my earlier work. Whereas the development of the fundamental prin-
ciples of mechanics was accomplished by three men within the brief
space of about a century, the growth of the theory of heat took an
entirely different course. Many investigators took part in the building up
of this department of physics. Slowly and tentatively, by trial and error,
one little advance after another was made, and only very gradually did
our knowledge of these phenomena attain to its present magnitude and
relative fixedness.

The reason is not far to seek. The motions of bodies are immediately
accessible to the senses of sight and touch, and the whole course of
events can be observed. Phenomena of heat, on the other hand, lend
themselves far less readily to observation. They are directly accessible to
one sense only, and are perceptible only discontinuously, in special
cases, and usually only when observed intentionally; they therefore play
a far more subordinate part both in our intellectual and our perceptual
life. They can be brought within range of the dominant senses of sight
and touch only indirectly and intricately. The devices for their investiga-
tion therefore were, from the very outset, of a predominantly intellectual
character, and there were thus insinuated into the very first observations
of the subject much subconscious bias and many obscure metaphysical
conceptions which seem to be prior to experience and to extend beyond
it.



CHAPTER 1

HISTORICAL SURVEY OF THE DEVELOPMENT
OF THERMOMETRY

1. Of the sensations which we assume to be provoked in us by
surrounding bodies, the sensations of heat (cold, cool, tepid, warm, hot)
form a distinct series or a particular class of elements bearing a definite
relationship to one another. The bodies which produce these sensations
likewise exhibit, both as to themselves and as to other objects, a
distinctive physical behavior definitely associated with these sense
marks. A very hot body glows, gives forth light, melts, evaporates, or
burns away; a cold body congeals. A drop of water on a hot plate
evaporates with a hissing noise: on a cold plate it freezes, and so on.
The collection of these instances of the physical behavior of a body,
which are connected with the mark of our sensations of heat — the
collection of reactions — is termed its thermal state or state with
respect to heat.

2. We should be unable to follow the physical processes here involved
with anything like readiness and completeness if we were restricted to
sensations of heat as our criteria of thermal states. Pour cold water
from A (Fig. 1) and hot water from C into a third vessel B, and, after

Fig. 1.

holding the left hand for a few seconds in A and the right hand for the
same length of time in C, plunge both hands into B; the same water will
feel warm to the left hand and cold to the right. The air of a deep cellar
feels cold in summer and warm in winter, although it can be definitely
shown that its physical thermal reaction remains approximately the
same the year round’.
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As a matter of fact, the sensation is determined not alone by the
body producing it, but partly also by the condition of the perceiving
sensory organ, the susceptibility of which is always appreciably affected
by its antecedent states. In the same way the light of a lamp seems
bright on coming from a dark room, but dull on coming from the
sunlight. The sensory organs have, in fact, been biologically adapted not
for the advancement of science, but for the maintenance of favorable
conditions of life.

Where sensation alone is concerned, sensation alone is decisive, It is,
then, an indisputable fact that a body reacting physically in exactly the
same way does feel at one time warm to us and at another time cold. It
would be utterly unmeaning to say that a body that we feel to be hot is
“really cold”. But, where the physical behavior of a body with respect to
other bodies is concerned, we are obliged to look about us for some
distinguishing characteristic of this behavior which shall be independent
of the variable and intricate constitution of our senses which is difficult
to control; and such a distinguishing characteristic has been found.

3. It has long been known that the volumes of substances increase or
diminish, other circumstances remaining the same, according as the
sensations of heat produced by them are greater or less. In the case of
air, this alteration of volume is striking in the extreme. It was familiar
even to Hero of Alexandria®. It was Galileo, however, the great founder
of dynamics, who appears to have first conceived the happy thought of
employing the volume of air as a mark of the thermal state, and of
constructing on the basis of this idea a thermoscope or thermometer. It
was taken for granted that an instrument of this kind would indicate the
thermal condition of the bodies with which it was in contact, on the
principle that bodies which are unequally warm soon provoke exactly
the same feeling of warmth when brought into contact.

4. The dilatation of air by heat was employed by Hero mainly for
the performance of conjuring-tricks. Figure 2, taken from the 1680
Amsterdam edition of his work? illustrates one of these devices. A fire
being kindled on a hollow altar, the heated air in the enclosure expands,
and, pressing against the water in the globe beneath, forces the water
through a tube into a pail which, by its descending weight, opens the
door of the temple. When the fire is extinguished, the door closes.
Experiments of this character were very much to the liking of
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Fig. 2.

Cornelius van Drebbel, of Alkmaar in Holland, who enjoyed in his day
the reputation of a magician. In his book of which a translation of the
title is: Treatise on the Nature of the Elements, Winds, Rain, and so
on*, published in 1608, the experiment illustrated in Figure 3 is
described. From a heated retort, the neck and orifice of which are
plunged under water, air is expelled in bubbles, and is replaced, after
the retort cools, by the inrushing water. The same experiment was
described earlier by Porta’ who went so far even as to determine the
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amount of expansion of the air by marking the limits of the occupied
space before heating and after cooling. But Porta did not hit on the idea
of making a thermoscope. In a translation by Ensl® of the Recréations
mathématiques’, the invention of the thermometer is ascribed to
Drebbel, in the description appended to the cut reproduced in Figure 4.
But it appears from the researches of E. Wohlwill® and F. Burckhardt
that this supposition is entirely groundless. Neither is Santorio of
Padua, to whom important applications of the thermoscope are rightly
credited, the inventor of this instrument.” Viviani stated in his bio-
graphy of Galileo that the latter invented the thermometer in 1592.
Galileo himself claimed the invention, and this opinion was shared by
Sagredo (who knew Santorio) in a letter to Galileo of March 15th,
1615.

PROBLEMA LXXXIIL
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Fig. 4. De Thermometro, fine instrumento Drebiliano, quo gradus caloris frigoris 2 aera
occupantis explorantur.

5. From Burckhardt’s investigations, which we are here following in
the main, it appears indisputable that Galileo was the first to employ
the dilatation of air for registering states of heat, and that he therefore
is the inventor of the thermometer.!” The form of this thermometer, as
well as of those patterned after it, is given in its essential features in
Figure 5. The chief inconvenience of the instrument was that its indica-
tions depend on the pressure of the atmosphere, for which reason only
observations made in immediate succession furnished comparable
results. The division of the scale was mostly quite arbitrary. Here begins
the real history of the development of scientific thermometry, of which
it is our purpose to give a sketch in the following pages. In doing this
we shall try to order the facts so that the way in which each idea
provoked its successor, and each step prepared for the one that came
after it, is apparent.
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Fig. 5.

The form of the air thermometer has undergone many modifica-
tions. Guericke’s!! thermometer differs from the original type, above
described, only in externals and in more elaborate mechanical con-
struction.

The instrument described by Sturm'2, on the other hand, is a closed
differential thermometer and is independent of the pressure of the
atmosphere. The air in the bulb (Fig. 6a) is confined by a column of
liquid, which, on the temperature’s rising, is forced into the longer tube,
the air-space of which is shut off from the outside atmosphere.

A siphon-shaped air thermometer closed at both ends and similar in
form to the differential thermometer, but having only orne bulb filled
with air, the other containing a vacuum, was invented by the French-
man Hubin'? (Fig. 6b). A similar but less perfect arrangement we owe
to Dalencé !4,

Entirely novel ideas were introduced into thermometry by Amon-
tons.!> His thermometers consisted of a glass ball A about eight
centimeters in diameter (Fig. 7), almost filled with air. This air was shut
off from the atmosphere by a column of mercury, which partly filled the
ball A and the thin vertical tube BC (1 mm wide). When the ball was
heated, the volume of the air contained in it was only very slightly
altered, while its tension increased greatly and, by it, the height of the
column of mercury, mn, which it bore.

Amontons, who was acquainted with the works of Mariotte and
referred to them, discovered that the total pressure, including that of
the atmosphere, which a quantity of air in A will bear when immersed
in cold water is increased by one-third of its amount when A is plunged
into boiling water. This increase of pressure always amounted to exactly
one third of the total initial pressure, whatever the latter might be and
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Fig. 6.

Fig. 7.
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whatever the quantity of air in the ball. On the strength of this experi-
ment Amontons concluded that the temperature of boiling was con-
stant.!> To obtain a greater range of pressure, he filled the ball with air
by a simple contrivance until it bore at the boiling temperature the total
pressure of a column of mercury 73 inches in height. With the air
“tempered”, as he phrased it, the column was some 19 inches shorter.

These air thermometers are not independent of the pressure of the
atmosphere, but its influence can be calculatent by taking into account
the barometer reading. Amontons discussed the great lack of con-
formity in the readings of the spirit thermometers then in use, and made
the attempt to graduate them more accurately by comparison with his
own. He also endeavored to make determinations of higher tempera-
tures, by heating one extremity of an iron bar to white heat and
ascertaining by the air thermometer the temperature of the point at
which tallow just begins to melt, the temperatures of the remaining
points being determined by methods of intrapolation and extrapolation
not entirely beyond criticism.

In one of his memoirs ! Amontons actually declared the expansive
force of the air to be the measure of the thermal state (temperature),
and advanced the idea that the lowest possible degree of cold cor-
responds to zero tension. In his view, accordingly, the greatest summer
heat was to the greatest winter cold, in Paris, only as 6 to 5 approxi-
mately.

A remarkable instance of prejudice was exhibited by Amontons in
his practice of using, in addition to the boiling point of water, and in the
face of his brilliant idea of an absolute zero-point of temperature, the
totally unreliable and unnecessary test of “cold” water for indicating a
second fundamental point.

Amontons also gave expression to interesting subsidiary views.
Having observed that the increase in the tension on a rise of tem-
perature is proportional to the density of the air, he suggested an
explanation of earthquakes by assuming very dense and heated layers of
air in the interior of the earth. He computed that air at 18 leagues
depth would have the density of mercury. Nevertheless, the compres-
sibility of air has in his opinion a limit, and cannot possibly extend
beyond the point where the “springs” of which the air consists come
into contact. Heat consists of “particles in motion.”

It will be seen that the ideas of Amontons constitute a decided step
in advance in so far as they permit of the construction of genuinely
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comparable thermometers. Subsequently Lambert actively espoused
them. And the scale of temperature at present in use coincides with that
of Amontons in its essentials.

Lambert!” made considerable use of the air thermometer. Like
Amontons he regarded the tension of the air as the measure of the
temperature, and he also assumed a point of absolute cold to cor-
respond to zero tension. But, following Renaldini, he selected the
melting point of ice and the boiling point of water as the fundamental
points of his scale, fixed the tension of the air at the first point at 1000
and found it at the latter to be 1417, from which follows a coefficient of
expansion of 0.417, in contrast to the 0.375 of Gay-Lussac. In a later
experiment, Lambert!'® got 0.375. Lambert also graduated spirit ther-
mometers by his air thermometer, and attached to the air thermometer,
in view of the variations of barometric pressure, a moveable scale.

More than a century after Amontons, in the year 1819, two investi-
gators, Clément and Desormes, without a knowledge of Amontons’s
researches, hit upon exactly the same idea of an absolute zero of
temperature '°.

In recent times very perfect air thermometers have been constructed
by Jolly and others. The most ingenious and original forms are those
devised by Pfaundler. The description of them, however, does not fall
within the scope of the present work, which is restricted to con-
siderations of principle.

8. It is not surprising that the pronounced alterations of the volume of
air when heated should have attracted attention first, and that the less
conspicuous alterations of the volumes of liquids should not have been
noticed until later. The difficulty of handling the first air thermometers
and their dependence on the pressure of the atmosphere naturally led
to the desire for some more convenient instrument. The philosophical
impulse to extend the results of single observations to new cases, the
impulse to generalize, was never wanting. Said Galileo®®: “In the
opinion of the schools of the philosophers it has been proved a true
principle that the property of cold is to contract and the property of
heat to expand.” Reflections of this character must have prompted
investigators to inquire whether the property observed in connection
with the air could not be demonstrated also in connection with liquids.
Possibly a French physician, Jean Rey (1631), was the inventor of the
liquid thermometer?!. Viviani attributed the invention to Ferdinand II,
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Grand Duke of Tuscany, who in 1641 constructed sealed spirit ther-
mometers. The oldest of these instruments registered twenty degrees in
snow and eighty degrees at the greatest heat of summer. The degrees
were marked with beads of enamel fused on the glass stem. The form is
given in Figure 8.

Fig. 8.

The shape and mode of division of these thermometers underwent
considerable modification at the hands of the Florentine Academy.
Sealed thermometers were first recommended in England by Robert
Boyle??, who also called attention to the importance of a comparable
thermometic scale and to the constancy of the freezing point of water.
As a fundamental point of reference, however, Boyle gave preference
to the congealing point of aniseed oil, of which Halley seems to have
made extensive use. The most rational division of the scale, in Boyle’s
opinion, is that which directly indicates the fractional increment of
volume by which the spirit expands from the fixed point — a con-
vention which dispenses with a second fundamental point.

In France, de la Hire (1670) conducted observations with a sealed
thermometer constructed by Hubin. Dalencé (1688) selected two points
of reference, to the importance of which attention had been called by
Fabri. Dalencé’s fixed points were the melting point of ice and the
melting point of butter, the distance between which he divided into
twenty equal parts.
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Halley?® determined the amounts of expansion of water, mercury,
and air between the points of intense winter cold and the boiling of
water. He observed on this occasion that the temperature of the boiling
point was constant, and recommended mercury as a thermometric sub-
stance . Simultaneous use of both the freezing and the boiling points
for the graduation of thermometers was first made by Renaldini®. He
also proposed the taking of mixtures of definite weights of ice-cold and
boiling water as standards for the graduation of thermometers.

9. The first really good comparable spirit thermometers were con-
structed, according to Christian Wolff?¢, in the year 1714, by Fahren-
heit, who soon after also adopted mercury as his thermometric sub-
stance, and in 1724 made his method public.?’ Fahrenheit denoted the
temperature of a mixture of water, ice, and salammoniac by 0, that of
melting ice by 32, and that of the blood by 96. He probably kept silent
about the use of constant boiling point of water.

Réaumur?® chose the freezing and boiling points for the construction
of his spirit thermometers, and divided the distance between them,
which on the Fahrenheit scale occupies 180 divisions, into 80 divisions.
Deluc retained Réaumur’s scale, but substituted mercury for spirits.
Celsius (1742) divided the interval between the fundamental points of
the mercury thermometer into 100 parts, calling the boiling point 0 and
the freezing point 100. Stromer subsequently reversed this order, and
produced the scale now in common use.

10. It is most difficult to observe the expansion of solid bodies by heat.
The first experiments in this direction were apparently conducted by
the Accademia del Cimento?. It was found that bodies which fitted
exactly in orifices before heating could not be passed through them at
all after heating. The difficulty of determining linear expansion by the
measuring rod was known to Dalencé (1688), Richer (1672), and
others. Musschenbroek devised for this purpose in 1729 the well-
known quadrant pyrometer, and ’sGravesande put the experiments of
the Florentine Academy (the sphere and ring) into the form in which
we now have them. Lowitz, in 1753, measured in a very crude manner
the elongation of a twenty-foot iron bar exposed to the noonday sun,
and found its expansion to be the 1/2500th part of its length®°. In the
case of solid bodies it was most natural to determine the linear
expansion, whereas with liquids and gases the cubical expansion was
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that most easily ascertained — this being equal, for slight expansions, to
three times the linear.

11. A comparison of the volume expansion, which alone has meaning
when applied to all bodies, brings out the wide differences in the
behavior of bodies. From the thermal state of melting ice to that of
boiling water, air (and gases generally) expand in round numbers 1/3rd
of their bulk, water about 4/100ths, mercury about 2/100ths, lead not
quite 1/100th, glass approximately 2/1000ths. It is thus intelligible why
first the dilatation of air, then that of liquids, and lastly that of solids
was more exactly investigated.

12. The researches above cited show distinctly the devious, laborious,
and very gradual manner in which the fundamental facts of thermo-
metry were reached. One inquirer discerns one important aspect, and a
second only another aspect. Things discovered were forgotten and had
to be rediscovered in order that they might become permanent acquisi-
tions. With the researches mentioned, the period of preliminary tenta-
tive investigation ceases, and there succeeds a series of critical works, to
which we shall next give our attention.

13. Boyle in 1662, and Mariotte in 1679, enunciated the experimental
law that the product of the volume of a given mass of gas at constant
temperature by the pressure which it exerts on unit of surface is
constant. If a mass of air of volume v be subjected to a pressure p, it
will assume, on the pressure’s increasing to p° = np, the volume v" =
v/n; whence

pov = np 2 =p'v.
n

If we represent the »’s as abscissae and the corresponding p’s as
ordinates, the areas of the rectangles formed by the p’s and 2’s will in
all cases be equal. The equation

pv = constant

gives as its graph an equilateral hyperbola, which is the visualization of
Boyle’s law (Fig. 9.)

The experiments which led to this law are very simple. In a glass
siphon-tube having a closed limb at a and an open limb at b (Fig. 10), a
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quantity of air v is introduced and shut off from the outside air by
mercury. The pressure on the enclosed air is given by the height of the
mercury-barometer plus the difference of level mn of the two surfaces
of the liquid, and can be altered at will by adding or removing mercury.

14. Experiments in the testing of Boyle’s law (which Boyle himself did
not regard as absolutely accurate) were carried out through a wide
range of pressures and for many different gases by Oerstedt and
Schwendsen, Despretz, Pouillet, Arago and Dulong, and Mendelejeff —
but most accurately by Regnault3!, and through the widest range of
pressures by E. M. Amagat32.

If the pressure in the apparatus represented in Figure 10 be doubled,
the volume v of the gas will be diminished one half; if it be doubled
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again, it will be diminished one fourth. The errors in the readings in-
crease greatly as the volume decreases, and to eliminate them Regnault
resorted to an ingenious expedient. At a he attached a stop-cock through
which air could be introduced under varying pressure; the volume of
the enclosed air » could thus be always kept the same and subsequently
compressed to v/2 by lengthening the column of mercury mn. With
such an arrangement the measurements were always of like exactitude.

It appears that, to reduce a unit of volume under a pressure of one
meter of mercury to 1/20th of its bulk, it is requisite in the case of air,
carbonic acid gas, and hydrogen to increase the pressure to 19.7198,
16.7054, and 20.2687 meters of mercury respectively. The product po,
therefore, for high pressures, decreases for air and carbonic acid gas
and increases for hydrogen. The two first-named gases are therefore
more compressible and the last-named less compressible than the law
of Boyle and Mariotte requires.

Amagat conducted his experiments in a shaft 400 m deep and
increased the pressure to 327 meters of mercury. He found that as the
pressure increases the product pv first decreases, and after passing
through a minimum again increases. With nitrogen, for p = 20.740
meters of mercury, pp = 50989; for p = 50 m, pv = 50800, approxi-
mately a minimum; and for p = 327.388 m, pv = 65428. Similar
minima are furnished by other gases. Hydrogen showed no minimum,
although Amagat suspected the existence of one at a slight pressure.

We shall not discuss here the attempts that have been made by Van
der Waals, E. and U. Diihring, and others to explain these phenomena
by the molecular theory. It will be sufficient for us to remark that while
the law of Boyle and Mariotte is not absolutely exact, it nevertheless
holds very approximately through a wide range of pressures for many
gases.

15. It was necessary to adduce the foregoing facts for the reason that
the behavior of gases with respect to pressure is of importance in the
consideration of their behavior with respect to heat — a subject which
was first more minutely investigated by Gay-Lussac??. This inquirer
made mention of the researches of Amontons, and also used the
observations of Lahire (1708) and Stancari, from which the necessity of
drying the gases clearly appeared. Gay-Lussac’s procedure was as
follows. A perfectly dry cylinder closed by a stop-cock is filled with gas
and plunged into a bath of boiling water. After the superfluous gas has
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been expelled, the cock is closed and the cylinder cooled in melting ice.
On opening the cock under water, a part of the cylinder fills with water.
By weighing the cylinder thus partly filled with water, afterwards
completely filled with water, and again when empty, we obtain the
coefficient of expansion of the gas from the melting point of ice to the
boiling point of water. 100 volumes at 0 ° temperature of air, hydrogen,
and nitrogen gave respectively 137.5, 137.48, 137.49 volumes at
100 °C. Also for other gases, and even for vapor of ether, Gay-Lussac
obtained approximately the same coefficient of expansion, viz., 0.375.
He stated that, fifteen years before, Charles (1787) knew of the equality
of the thermal expansion of gases; but Charles had published nothing
on the subject. Dalton>* likewise had occupied himself with this ques-
tion earlier than Gay-Lussac, and had both observed the equality of
the thermal expansion of gases and given 0.376 as the coefficient of
expansion.

For the comparison of different gases, Gay-Lussac also used two
perfectly similar graduated glass receivers dipped a slight distance apart
in mercury (Fig. 11). When like volumes of different gases were
introduced into these receivers under like pressures and at like tem-

peratures, both always appeared to be filled to the same marks of
division.

Fig. 11.

In another investigation, Gay-Lussac®® employed a vessel shaped
somewhat like a thermometer and having a horizontal tube in which the
air was shut off from the atmosphere by a drop of mercury, the vessel
being heated simultaneously with mercury thermometers. Between the
melting point of ice and the boiling point of water the expansion of

the air is very nearly proportional to the indications of the mercury
thermometer.
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16. The experiments above described were subsequently performed on
a larger scale and with closer attention to sources of error, by
Rudberg?*, Magnus®’, Regnault®, Jolly*°, and others. Two methods
were principally employed. The first consists (Fig. 12) in heating a glass
vessel A to the temperature of boiling, repeatedly exhausting it, and
then filling it with air that has passed over chloride of calcium. While
still at boiling temperature, the tip S is hermetically sealed, the baro-
meter noted, the vessel inverted and encased (B) in melting ice, with
‘the tip under mercury. When cool, the tip is broken off, and the
mercury rises into the vessel; the difference of level of the mercury
within and without the tube is then noted, and the necessary weighing
is carried out. It is the method .of Gay-Lussac with the requisite
refinements.

Fig. 12.

The second method (Fig. 13) consists in plunging a vessel A full of
dry gas as far as the bend a of the tube first in a bath of melting ice and
then in steam from boiling water, while simultaneously so regulating the
height of the mercury column at » that the inside surface of the
mercury constantly grazes the glass spicule s. The volume of the air is
thus kept constant, and what is really measured is the increment of the
tension of the gas when heated.

If a volume of gas » under a constant pressure p be raised from 0° to
100 °C, it will expand to the volume v(1 + a), where a is called the
“coefficient of expansion”. If that gas as it now is at 100°C were
compressed back to its original volume, it would exert, according to the
law of Boyle and Mariotte, a pressure p’, where

op’=v(1+ a)p.
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Whence it follows that
p'=p(l+a)

If Boyle’s law held exactly, a would likewise be the coefficient of the
increment of tension, or, more, briefly, the “coefficient of tension”. But,
as the law in question is not absolutely exact, the two coefficients are
not identical. Calling the coefficient of expansion o and the coefficient
of tension B, the values of these coefficients for the interval from 0° to
100°C for a pressure of about one atmosphere are, according to
Regnault:

a B
Hydrogen 0.36613 0.36678
Air 0.36706 0.36645
Carbonic acid gas 0.37099 0.36871

The coefficients of expansion increase slightly, according to Regnault,
with the increase of the density of the gas. It further appears that the
coefficients of expansion of gases which deviate widely from Boyle’s
Law decrease slightly as the temperature measured by the air thermo-
meter rises.

Gay-Lussac showed that between 0° and 100 °C the expansion of
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gases is proportional to the indications of the mercury thermometer.
Designating the degrees of the mercury thermometer by ¢ and the
1/100th part of the coefficient of expansion as above determined by a,
we shall have, at constant pressure,

v=1,(1+ ar),
and at constant volume

p=py(1+ ar),

where v, py, v, p, respectively represent the volume and pressure of the
gases at 0° and ¢°, and where the coefficients of expansion and tension
are assumed to be the same. Each of these equations expresses Gay-
Lussac’s law *°.

17. Mariotte’s law and Gay-Lussac’s law are usually combined. For a
given mass of gas the product p,z, at the definite temperature 0° has a
constant value. If the temperature be increased to ¢°C and the volume
kept constant, the pressure will increase to

P = p(1+at);

wherefore

P'vy = pyvy(1 + ar).

And if the pressure p and the volume v at ¢° be altered at will, the
product will be pv = p’v,,.

Whence
Pv = pyvy(1 + ar).

This last law is called the combined law of Mariotte and Gay-Lussac.
Mariotte’s law was represented by an equilateral hyperbola. The
proportional increase of the volume or the pressure of a gas with its
temperature may be represented, conformably to Gay-Lussac’s law, by
a straight line (Fig. 14). Remembering that a is very nearly equal to
1/273, we may say that for every increase of 1°C the volume or
expansive force increases 1/273rd of its value at 0°, and the that there
is likewise a corresponding decrease for every decrease of 1°C. This
increase may be conceived without limit. By taking 1/273rd away 273
times, we reach the expansive force, 0 or the volume 0. If therefore the
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o
Fig. 14.

gas acted in strict conformity with the law of Mariotie and Gay-Lussac
without limit, then at —273°C of the mercury thermometer it would
show no expansive force whatever and would present Amontons’s
“degree of greatest cold”. The temperature —273 °C has accordingly
been called the “absolute zero”, and the temperature reckoned from
this point in degrees Celsius viz., T = 273 + ¢ the “absolute tem-
perature”.

Even if this view of the matter is not taken seriously — and we shall
see later that there are grave objections to it — still the presentation of
the facts is simplified by it. Writing the law of Mariotte and Gay-Lussac
as:

pv = pyvy(1l + at) = pyvya = pyv,aT,

1
—+t
a

and considering that p,v, a is a constant, we have

pv ¢
—~—— = const.,
T

the simplified expression of the law.

18. The law of Mariotte and Gay-Lussac likewise admits of geometric
representation. Conceive that there be laid (Fig. 15) in the plane of the
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paper, a large number of long, similar, slender tubes filled with equal
quantities of the same kind of gas. These tubes are made fast at one
extremity to OT and closed at the other by moveable pistons. The first
tube, at OV, has a temperature 0 °C, the next a temperature of 1 °C, the
next 2 °C, etc., so that the temperature increases uniformly from O to T.
We now conceive the pistons to be all gradually pushed inwards,
mercury columns measuring the pressure p erected over each position
of the pistons at right angles to the plane of their action, and through
the upper extremities of these columns a surface drawn. The surface so
obtained is imaged in Figure 16, and is merely a synthesis of the graphs
of Figure 9 and Figure 14. Every section of the surface parallel to the
plane TOP is a straight line, conforming to Gay-Lussac’s law. Every
section parallel to POV is an equilateral hyperbola, conforming to the
law of Boyle and Mariotte. The surface as an aggregate furnishes a
complete synoptic view of the tensions exerted by the same gaseous
mass at any volume and at any temperature whatsoever.

Fig. 16.

19. The laws in question are in part also applicable to vapors. Accord-
ing to Biot*!, J. A. Deluc*? appears to have been the first to frame
anything like a correct view of the behavior of vapors. H. B. de
Saussure*® knew from observation that the maximum quantity of vapor
which a given space can contain depends not on the nature or density
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of the gas filling the space, but solely on the temperature. Doubtless this
suggested to Dalton** the idea of inquiring whether water really was
absorbed by gases, as was then generally supposed. He caused the
liquid to be vaporised in the Torricellian vacuum, and obtained for a
given temperature the same tension as in air. Air, therefore, played no
part in vaporisation. Priestley’s discovery, that gases of widely differing
specific gravities diffused into one another uniformly, combined with
that just mentioned, led Dalton to the view that in a mixture of gases
and vapors occupying a given space each component behaved as if it
alone were present. Dalton’s way of expressing this fact was by saying
that the particles of a gas or vapor could exert pressure only on
particles of its own kind.

The discovery that gases behave toward one another precisely as
void spaces,*® is one of the most important and fruitful that Dalton ever
made. The way to it had been prepared by the observations above
mentioned, and it really only furnishes a clear conceptual expression of
the facts, such as science in the Newtonian sense requires. But the
preponderance of the speculative element and of a bent for arbitrary
constructions in Dalton, which became so fateful in the researches to be
discussed farther on, made its appearance even here. Dalton could not
refrain from introducing, together with his statement of the facts, an
entirely redundant notion which impairs the clearness of his ideas and
diverts attention from the main point. This is the “pressure of the
particles of different gases on one another.”*¢ This hypothetical notion,
which can never be made the subject of experimental verification,
certainly does not impart clearness to the directly observable fact; on
the contrary, it involved its author in unnecessary controversies.

20. Gay-Lussac*’ showed, by the experiment represented in Figure 11,
that vapor of ether at a temperature above the boiling point of ether
behaved exactly as air did on changes of temperature. The observations
of de Saussure and Dalton mentioned in the preceding paragraphs,
together with that just mentioned, indicate that vapors may occur in two
states, viz., as “saturated” and as “non-saturated” or “superheated”
vapors.

The conditions involved may be clearly illustrated by an experiment
which presents in rapid and lucid succession the different cases before
considered separately. We perform (Fig. 17) the Torricellian experi-
ment, and introduce into the vacuum of the Torricellian tube a small
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John Dalton.
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Fig. 17.

quantity of ether by means of a small curved tube. A portion of the
ether vaporises immediately, and the mercury column is depressed by
the pressure of the vapor, say, at 20 °C, a distance of 435 mm. If the
temperature in the barometer tube be raised by a water bath, say to
30 °C, the column will show a depression of 637 mm; whilst in a bath
of melting ice it will show only 182 mm. The pressure of vapors,
therefore, increases with the temperature. If the tube containing the
ether be plunged more deeply into the mercury, so as to diminish the
space occupied by the vapor, the height of the surface of the mercury in
the tube will still not be altered. The pressure of the vapor, therefore,
remains the same. But it will be noticed that the quantity of liquid ether
has slightly increased and that therefore a portion of the vapor has
been liquefied. As the tube is withdrawn the quantity of liquid ether
diminishes and the pressure again is the same.

A small quantity of air introduced into the Torricellian vacuum also
causes a depression of the barometer column — say 200 mm. If the
tube be now plunged in until the air space is reduced one half, the
depression according to Boyle’s law will be 400 mm. In precisely the
same manner vapor of ether behaves conformably to Gay-Lussac’s
observation, provided the quantity of ether introduced into the tube is
so small that all the ether vaporises and a still greater quantity could
vaporise. For example, when at 20 °C a depression of only 200 mm is
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generated by the enclosed ether, the tube contains no liquid ether.
Diminishing the Torricellian vacuum one half doubles the depression.
The depression may be increased by further immersion to 435 mm. But
still further immersion of the tube no longer augments the depression,
and liquid ether now makes its appearance.

21. The preceding observations relative to vapors may be epitomized
by a simple illustration. A long tube closed at O contains an adequate

7 i
K

quantity of rarefied vapor. If the piston K be gradually pushed in and
mercury columns measuring the pressures be erected at every point
over which the piston passes, the extremities of these columns will all
lie in the hyperbola POR. But from a definite position M of the piston
on, the increase of pressure ceases, and liquefaction takes place. If at
the position T of the piston nothing but liquid remains in the tube, then
a very great increase of pressure follows on the slightest further move-
ment of the piston. Repeating this experiment at a higher temperature,
we obtain increases of pressure corresponding to Gay-Lussac’s law and
the coefficient of tension (0.00367), as the curve P'Q’R’ indicates. The
liquefaction of vapors begins only at higher pressures and greater
densities.

Vapors of sufficiently small density thus approximately conform to
the law of Mariotte and Gay-Lussac. Such vapors are called “non-
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Fig. 19.

saturated” or “superheated” vapors. If the concentration of the vapors is
continued, they reach a maximum of tension and density which cannot
be exceeded for any given temperature, as every further diminution of
the vapor space causes a partial liquefaction of the vapor. Vapors at the
maximum of tension are called “saturated” vapors. Given enough liquid
and sufficient time, this maximum of tension will always establish itself
in a closed space.

22. The relationship between temperature and the tension of saturated
vapors or between temperature and maximum tension has been inves-
tigated for different vapors by many inquirers. The methods they
employed are reducible to two fundamental types. The first consists in
introducing the liquid to be investigated into the Torricellian vacuum
and in placing the latter in a bath of definite temperature. The amount
of depression as contrasted with the barometer column gives the
tension of the vapor. If the open end of a siphon barometer, which has
been exhausted and charged with the liquid, be hermetically sealed and
placed in a bath of given temperature, the mercury column will indicate
the tension of the vapor independently of that of the atmosphere. This
procedure is only a modification of the preceding one. The method
here employed is commonly called the statical method.

Vapors are being constantly generated at the free surface of liquids.
For a liquid to boil, that is, for bubbles of the vapor to form in its
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interior, expand, rise to the surface and burst, it is necessary that
the tension of the hot vapor in these bubbles should at least be in
equilibrium with that of the atmosphere. The temperature of boiling is
therefore that temperature at which the tension of the saturated vapor
— the maximum tension — is equal to the pressure of the atmosphere.
If a liquid, therefore, be boiled under the receiver of an air pump, by
means of which the air pressure can be raised or lowered at will (being
kept constant by the cooling and re-liquefaction of the generated
vapors) the temperature at which the liquid boils will give the tem-
perature for which the air pressure produced is the maximum tension of
the vapor. Thus in Figure 20, B is a large glass flask connected with an
air pump, by which the air pressures are regulated. In G the liquid is
boiled and the vapors generated; they are re-liquefied by cooling the
bent tube R. This method is commonly called the dynamical method.

L r__

B

Fig. 20.

Experiments were conducted according to these methods by Ziegler
(1759), Bétancourt (1792), G. G. Schmidt (1797), Watt*%, Dalton*’
(1801), Noe (1818), Gay-Lussac*® (1816), Dulong and Arago (1830),
Magnus>! (1844), Regnault>? (1847), and others.

For the same temperature the maximum tension varies greatly with
the liquid, and it also increases rapidly with the temperature. Dalton
had already sought a universal law for the dependence of maximum
tensions on temperature, and his investigations were continued in
recent times by E. and U. Diihring and others. The purpose and scope
of our work preclude our discussing these researches. It was the
investigations into water vapour, owing to their practical importance for
the operation of steam engines, that were the most extensive. Regnault
found the following relationship between temperatures and maximum
tensions, expressed in millimeters of mercury:



32 CHAPTER I

°C mm °C mm
0.00 4.54 111.74 1131.60
52.16 102.82 131.35 2094.69
100.74 777.09 148.26 3359.54

It will be seen from this extract from Regnault’s table that the tension
of water vapor from 0° to 100 °C increases by about one atmosphere;
while from 100° to 150° it increases by more than three atmospheres.
The rapid rise of the curve of tensions on increase of temperature, as
represented in the graph of Regnault, renders this relationship even
clearer.

A more extensive extract from this table in the vicinity of the vapor
pressure of 760 mm is of value in ascertaining the influence of
atmospheric pressure in the determination of the boiling point on
thermometers.

23. The rapid increase of the tension and density of saturated vapors
suggested to Cagniard de Latour?? the idea that at high pressures and
temperatures vapors could be produced the density of which varied
only slightly from that of their liquids. He filled a portion of a musket-
barrel nearly half full of alcohol put a flint ball in it and closed it. As
the barrel was raised to higher and higher temperatures, the sound
which the ball produced when shaken against the sides of the barrel
suddenly changed. In a glass tube from which the air had been expelled
a quantity of liquid alcohol nearly half filling the tube was rendered
entirely invisible by heating. When the tube was cooled, it again made
its appearance as a dense shower. The experiments were then continued
with the tube shown in Figure 21. Ether was introduced at a and
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separated from the air in b by mercury. The compression of the air
gave the pressure of the liquid, the thermometer of the bath in which
the tube was immersed gave its temperature. Ether disappeared at 38
atmospheres and 160 °C, alcohol at 119 atmospheres and 207 °C, their
vapors occupying something more than twice the space taken up by the
liquid. Water disappeared at the temperature of melting zinc, and took
up four times the space occupied by the liquid. Since the tubes when
too small for the expansion did not burst immediately, Latour correctly
concluded that the liquids were extremely compressible in this state and
had very large coefficients of expansion.

Prompted by Davy, and perhaps also by the researches of Latour,
Faraday>* endeavored to liquefy chemically prepared gases confined in
closed spaces — an undertaking in which he was in several instances
successful. The idea of these experiments had, indeed, been clearly
suggested by the proof which Gay-Lussac had furnished of the like
behavior of gases and non-saturated vapors, as well as by Latour’s
experiment, showing that vapors at high pressure were liquefied by a
slight diminution of temperature and revaporised by a slight increase of
temperature. A simple example is that of the liquefaction of cyanogen,
which occurs when mercuric cyanide is heated in one end a of a glass
tube (Fig. 22), and the other end b of the tube is cooled in water. The

Fig. 22.

generated gas is liquefied at b. These experiments were continued on a
larger scale with carbonic acid gas by Thilorier and Natterer>®, the
latter of whom especially was successful in liquefying large quantities of
carbonic acid gas by means of an appropriately constructed force
pump. However, many gases — the so-called permanent gases —
remained unliquefied.

24. The experiments of Andrews>® first indicated the mode of proce-
dure by which finally Cailletet and Pictet (1877) were enabled to
liquefy all gases. Andrews compressed dried and de-aerated carbonic
acid gas by means of mercury forced with a screw into a glass tube
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G ending in a capillary prolongation g (Fig. 23). The phenomena
occurring in g, which was plunged in a bath of any temperature, could
thus be observed conveniently, whilst air confined in a similar tube and
subjected to the same pressure served as a manometer. It was found
that carbonic acid gas could not possibly be liquefied by any pressure at
a temperature above 30.92 °C, whereas it was possible to liquefy it at
temperatures below this point. Andrews called this temperature the
“critical temperature”, and it was demonstrated that every vapor and
every gas possessed such a critical point, the sole difference being that
the point in question was high for the so-called vapors and easily
condensable gases, and very low for the so-called permanent gases.
Utilising the results of Andrew’s researches and employing extreme
degrees of cold, Cailletet and Pictet succeeded in liquefying all gases.

A

Fig. 23.

Aeriform bodies above the critical temperature are, accordingly, in
Andrews’s conception, gases, and those under the critical temperature
vapors. The very rapidity of the augmentation of the curve of maximum
tension suggests that above a certain temperature this maximum tension
will transcend all limits or become infinitely great. This limiting point
actually exists; it is Andrews’s critical temperature.

Mendelejeff called the critical temperature the “absolute boiling
point.” As the pressure increases, the temperature of boiling rises until
the maximum tension of the liquid equals the pressure to which it is
subjected. But at the critical temperature the pressure that could
prevent the liquid from boiling is infinitely great; it boils under every
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pressure. Mendelejeff also showed that the surface tension of the liquid,
which decreases as the temperature rises, disappears at the critical
temperature.

The behavior of carbonic acid gas as shown by Andrews, and its
deviations from the law of Mariotte and Gay-Lussac, are graphically
represented in Figure 24. The curves correspond to those of Figure 18.

+100

T50ATM

Fig. 24.
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The abscissae represent the volumes. The curves of the figure extend
from the second to the fourteen thousandth part of the volume of
carbonic acid gas at 1 atmosphere of pressure and 0 °C. The dotted line
bounds the region within which the carbonic acid gas can exist partly in
a liquid and partly in a gaseous form.

25. Figure 16 may, by a slight modification, be made to represent the
behavior of gases and vapors. This modification is shown in Figure 25.
The pressure of the vapor at a given temperature ascends in the curve
mn; but at n liquefaction begins. The pressure of the vapor at a higher
temperature ascends by the curve pg to the greater maximum g; and so
with the rest. To the right of the curve ngrs, the vapors behave as gases;
to the left, liquefaction sets in. Conceiving a distant light with rays
parallel to VO to cast a shadow of the curve ngrs on the plane POT, we
should obtain Regnault’s curve representing the increase of the maxi-
mum tension of the vapor with the temperature. The lowest tempera-
ture at which the curve uf, by which the rise of the pressure with
diminishing volume is indicated, no longer cuts the curve ngrs, is the
critical temperature. Accurately viewed, the sections of the surface of
Figure 25 parallel to POV are not exact hyperbolas for either gases or
vapors. This is approximately true only of the sections to the right of
ngrs at some distance from this curve. In the vicinity of the curve and to
the left of it, the forms appear which the graphs of Andrews in Figure
24 show.

26. Although the investigation of liquids furnished no such general
results as that of gases, yet a few observations in connection with them
must be mentioned. Even the Accademia del Cimento is said to have
been familiar with the fact that water heated from the freezing point
contracted at first and only later expanded.’” Deluc® observed that
the peculiar behavior of water thermometers was attributable to an
anomaly of the water itself, and, without taking account of the expan-
sion of the glass walls, fixed its point of greatest density at +5 °C.
C. G. G. Hallstrom>® was the first to examine this phenomenon more
minutely by determining the loss of weight of a glass body of known
coefficient of expansion in water at different temperatures. Hagen and
Matthiessen followed the same method. Despretz®® observed the tem-
perature of the different layers of water when cooled in a vessel. The
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Fig. 25.

water of least density formed the uppermost layer, and consequently
when the water first began to cool has the highest temperature. On
passing through the temperature of the maximum density, this relation
of things was reversed. F. Exner6! augmented the delicacy of this
method by using thermo elements instead of thermometers. Pliicker and
Geissler used a thermometer-like vessel partly filled with water. The
most accurate determination of the temperature of the maximum
density of water was in all probability that made by F. Exner, who
found it to be +3.945°C. The investigations just mentioned are of
fundamental importance, since they overthrew the very natural belief in
the uniform and parallel behavior of all bodies expanding under the
action of heat.

There still remain to be mentioned, for the methods involved, the
measurements of the expansion of solids which Lavoisier and Laplace
jointly conducted, and which Roy completed after the manner of
Ramsden. Lavoisier and Laplace? combined the quadrant pyrometer
of Musschenbroek, which was rotated by the expanding rod, with a
telescope set to a distant scale. The reading was considerably magnified,
but every inaccuracy of the apparatus was also reproduced on an
enlarged scale. Roy®* employed three bars, all in ice (Fig. 26). The first
carries two illuminated cross-threads, F, F’; the second, the one to be
investigated, carries two microscopic objectives, A, A’; the third two
eye-pieces with cross-threads, B and B’. The images of the cross-
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F 7’

A <A’

BX fp’
Fig. 26.

threads F, I’ are aligned with the cross-threads of the eye-pieces. If the
bar in the middle is now plunged in a bath of higher temperature, the
distance between A and A’ will be increased. By moving the bar in the
direction A, A’, the image of F can again be aligned with the cross-
thread of the eye-piece B, and, by a micrometric displacement of A’
along the bar, the image of F” can also be aligned with the cross-thread
of eye-piece B’. This last displacement measures the linear dilatation of
the middle bar.

28. Dulong and Petit enriched the thermometric knowledge of their
predecessors by a number of careful experiments, and set forth the
entire thermometry of their time in a classical work which was given a
prize by the Paris Academy®*. The labors of these physicists consist
essentially in having made an accurate comparison of different thermo-
meter scales within wide ranges of temperature. The thermal conditions
being the same, the comparative behavior of mercury thermometers
and air thermometers corrected with regard to the expansion of the
glass is as follow:

‘When the mercury thermometer The air thermometer
indicates indicates
—36 -36
0 0
100 100
360 350

For reducing the indications of the mercury thermometer to those of
the air thermometer, the foregoing table would be sufficient. But to
compare the real expansions of air and mercury, additional experiments
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had to be made. A siphon tube AB (Fig. 27) was filled with mercury,
and one of the arms B was plunged in a bath of melting ice, whilst the
other A was immersed in a bath of oil and brought to higher tempera-

Fig. 27.

tures. The heights of the two columns of mercury, as measured by the
cathetometer, were to each other directly as the volumes of the same
mass of mercury at the two temperatures in question. The temperatures
of the oil bath were determined by means of an air thermometer and a
mercurial weight thermometer. This latter consisted of a vessel filled
with mercury at 0 °C and terminating in a bent capillary prolongation,
from which quantities of mercury determinable by weight were expelled
as the temperature rose. The amount of mercury expelled, like the
apparent cubical expansion of the ordinary mercury thermometer, was
determined by the difference of the expansion of the mercury and the
glass. Column A of the following table gives the temperature derived
from the absolute expansion of the air, C that derived from the
apparent expansion of the mercury (as determined by the weight
thermometer), and B the mean absolute coefficient of expansion of the
mercury between 0° and the temperature recorded.

A B C
0 0 0
100 ﬁ 100
1
200 S425 204.61
300 L 313.15
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Designating the absolute cubical expansion of the mercury by a, that
of the glass by B, and the apparent expansion of the mercury in the
glass vessel by v, we have ¥ = a — f. So the table gives us the expan-
sion of glass as well. Calling the temperature derived from the expan-
sion of air A, that derived from the expansion of glass at the same
thermal state D, and supposing the scales to be coincident at 0° and
100°, we would obtain:

A D
100 100
200 2132
300 352.0

Knowing the expansion of mercury and glass, there is nothing to
prevent our inserting a small rod of iron in a glass thermometer and
filling the remainder of the tube with mercury. Treating this arrange-
ment as a weight thermometer and rendering the surfaces of the
enclosed substances proof against amalgamation by oxidising, we obtain
in a perfectly obvious manner the cubical expansion of iron or of any
other metal. If » is the volume of the glass tube and », the volume of
the metallic rod at 0°C and if a, §, y be the coefficients of expansion
respectively of mercury, glass, and the metal between 0° and #°, then the
total volume of the mercury expelled at the temperature ¢ will be

w=ova— v+,

from which v is determinable.
From experiments like the foregoing, Dulong and Petit reached the
following conclusions:

1. Deriving the temperatures from the indications of the air-thermo-
meters, the coefficients of expansion of all other bodies are found
to increase with the temperature.

2. Determining the temperatures by the indications of an iron
thermometer, the coefficients of expansion of all other bodies are
found to diminish as the temperature increases.
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3. Measuring the temperatures by the absolute cubical expansion
of mercury, the coefficients of expansion of iron and copper
increase, while those of platinum and air decrease, as the tem-
perature increases.

The expansion of air, iron, copper, and platinum corresponding to
the same thermal states are given by the following table:

Air Iron Copper Platinum
100 100 100 100
300 372.6 328.8 311.6

Hence, if several different bodies are subjected to the same thermal
changes, their variations of volume are by no means proportional to
one another, but each body exhibits an individual behavior peculiar to
itself. Only gases, as Gay-Lussac showed, obey the same law of expan-
sion. This result of the work of Dulong and Petit is fundamental
importance for the theory of thermometry.

29. Deluc and Crawford early sought for a body whose expansions
should be proportional to the quantities of heat®® it absorbed. Dulong
and Petit likewise granted the rationality of a temperature scale whose
degrees would also measure the quantities of heat absorbed by the
thermometric substance; and the same idea occurred, as we have seen,
in a slightly different form to Renaldini®. But Dulong and Petit saw
clearly that such a scale would be of value only if the heat capacity was
independent of this temperature scale for other bodies as well; or, what
comes to the same thing, only provided that the variations of the
thermal capacities of all bodies for the same variations of thermal state
were proportional to one another. This question, accordingly, was
attacked experimentally.

. The heat capacities of bodies were now investigated with greater
accuracy and throughout wider ranges of temperature than ever before.
Boiling water and boiling mercury were employed to raise the bodies to
a definite temperature. Accurately weighed quantities of the different
substances were then immersed in an equally accurately determined
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large body of water, the rise of the temperature of which indicated the
quantities of heat given off by the bodies. The following table gives the
results of these experiments:

Mean capacity between Mean capacity between
0°and 100° 0° and 300°

Mercury 0.0330 0.0350

Zinc 0.0927 0.1015

Antimony 0.0507 0.0549

Silver 0.0557 0.0611

Copper 0.0949 0.1013

Platinum 0.0355 0.0355

Iron 0.1098 0.1218

Glass 0.177 0.190

As will be seen not only do the capacities for heat increase with the
temperature as recorded by the air thermometer, but they also increase
in different proportions with different substances, and would also
increase in like manner were the temperature recorded by the mercury
thermometer. The law of the variation of capacity for heat is therefore
peculiar to each substance.

Dalton imagined himself justified by the state of research of his time
in formulating the following singular laws of temperature (“four most
remarkable analogies”):

All pure homogeneous liquids, as water and mercury, expand from the point of their
congelation, or greatest density, a quantity as the square of the temperature from that
point.

The force of steam from pure liquids, as water, ether, etc., consititutes a geometrical
progression to increments of temperature in arithmetical progression.

The expansion of permanent elastic fluids is in geometrical progression to equal
increments of temperature.

The refrigeration of bodies is in geometrical progression in equal increments of time.*’

Consonantly with these views, Dalton proposed a new scale of tempera-
ture, the degrees of which increased in length with the temperature. The
mean between freezing and boiling water, or 122° on the new scale,
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corresponds to 110° on the Fahrenheit scale. If a quantity of air
expands on being heated, in the ration of 1 to 1.0179, Dalton added
10° on his new scale; and when its volume diminishes in the ration of
1.0179 to 1, he subtracted 10°. The points 32 and 212 coincide on
Dalton’s and Fahrenheit’s scale.

Studying in an unbiassed manner the portion of Dalton’s treatise
with which we are here concerned, one is struck by the irresponsible
caprice with which he framed his assumptions and constructions. The
clearness and precision of his exposition has suffered so much by the
introduction of superfluous hypothetical elements that it is by no means
easy at times to grasp clearly his meaning. He compared the heated
body to a vessel, the heat it contains to the liquid the vessel holds, the
temperature to the height at which the fluid stands. It was an indisput-
able fact for him that equal increments of the quantity of heat in any
body correspond to equal increments of temperature. Since, however,
according to his views the capacity increases with the volume, this view
is again untenable. No precise definition of what he understood by
temperature is found anywhere in the text. The properties of his new
scale are determinable from his tables alone.

The following illustrates the way in which Dalton would adopt most
hazardous constructions. The higher and more rarefied layers of the
atmosphere are colder. On rarefaction, the air cools, and consequently
gains, according to Dalton’s opinion in capacity for heat. Dalton, in
explanation of the coldness of the higher regions of the atmosphere,
then calmly assumed that layers of air in contact tend, not towards
equality of temperature, but towards equality of content of heat®, per
unit of volume.

As a matter of fact, Dulong and Petit®, in consequence of their
investigations, which showed the behavior of bodies to be in each case
peculiar to themselves, and so subject to no general law, found them-
selves obliged to repudiate utterly the above-mentioned laws of Dalton.
Even Dalton himself subsequently became convinced of the unten-
ability of his laws.”®

The researches of Dulong and Petit thus indisputably demonstrated,
as these authors in their conclusion claimed, that all thermometric
scales were dependent on the particular thermometric substance
selected. Universal comparability was, they found, the property of gas
thermometers only; and, without condemning all others, they recom-
mended these thermometers as the best. We have now substantially
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reached the point of view which we shall assume in the following
discussion. It is unnecessary for our purpose, which is the discussion of
principle, and it would be quite pointless, to consider here the recent
and more refined investigations in thermometry which Pernet and
others have conducted.

33. The development of thermometry from the use of the first air
thermometer (probably in 1592) to the attainment of considerable
clarity in points of principle in this domain (1817) covered an interval
of some 225 years. Manifold were the paths entered upon, and again
and again were they forsaken and re-trodden before the fragments of
our knowledge were all gathered and united into a comprehensive view
of the whole. The air thermometer was invented. Its defects led to the
employment of liquid thermometers, the insufficient comparability of
which provoked new efforts and thus ultimately threw into full con-
sciousness and light the quest for a rational scale of temperature. The
search for fixed points and for a rational scale required much time and
experimentation, the upshot of which was the reinstatement of the
improved air thermometer as a standard instrument. We are now in a
position to consider critically the results of our historical survey, which
we shall next proceed to do.



CHAPTER II

CRITICAL DISCUSSION OF THE CONCEPTION
OF TEMPERATURE

1. It appears from what has preceded that the volume of a body
may be employed as a mark or index of its thermal state, and that
consequently change of volume may be looked upon as indicating a
change of thermal state. It is understood that the changes of volume
here involved are not such as are determined by alterations of pressure
or electric force, or by any other circumstances inducing change of
volume known from experience to be independent of the thermal state.
Concomitantly with the heat sensation which a body provokes in us,
other properties of the body also undergo alteration — as, for example,
its electric resistance, its dielectric constant, its thermoelectric motive
force, its index of refraction, and so on. And not only might these
properties be employed as indicators of the thermal state, but they
actually have occasionally been so used. In preference for volume, as a
measure of states of heat, therefore, there is involved, despite the
manifest practical advantages of the choice, a certain arbitrariness; and
in the general adoption of this choice, a convention.

2. A body employed as a thermoscope initially indicates only its own
state of heat. But rough observation informs us that two bodies, A and
B, which at first provoke in us unlike sensations of heat, after prolonged
mutual contact excite in us precisely the same sensations; that is, they
equalize the difference of their thermal states. Transferring this empiri-
cal discovery by analogy to volumes as indices of thermal states, we
assume that a thermoscopic body indicates not only its own state but
also that of any other body with which it has been sufficiently long in
contact. But in so summarily proceeding we are acting without warrant.
For sensation of heat and volume are two entirely disparate elements of
observation. The fact of their connection has been learnt by experience;
the manner and extent of their connection it also remains for experi-
ence to teach.

3. We may convince ourselves easily that volume and sensation of heat
are indices of widely different sensitiveness and generally of different

45
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character. By means of volume we can perceive changes of state that
utterly escape our sensations of heat. And because of their dissimilar
properties the thermoscope and the sensory organ of heat may give not
only different but even diametrically opposed results. The examples
quoted in §2 of Chapter I amply illustrate this fact. But the indications
may also be different with respect to equalized thermal states. Two
pieces of iron, after long contact, give the same sensations of heat. A
piece of wood and a piece of iron after long enough contact also show
on the thermoscope the same indications. But if both feel warm, the
iron will feel the warmer of the two, no matter how long they have been
in contact; and if both feel cold, it will feel the colder. This, as is well
known, is due to the greater conductivity of iron, which imparts its
thermal state to the hand more rapidly than wood.

Volume being a more sensitive index of the thermal state than sensa-
tions of heat, it is more advantageous and rational for us to resort
for our empirical results to observations of volume, and to base all
definitions on these. Observations based on sensations of heat may
serve us for guidance, but to employ them outright and uncritically is,
as we have seen inadmissible. We assume with this perception an
entirely new point of view, and one which is essentially different from
that occupied by the original founders of thermometry. The imperfect
separation of these two points of view, which owing to the gradual
transition of the one into the other was unavoidable, became, as we
shall see, the occasion of many obscurities in the theory of heat.

The fact that a thermoscope shows an increase of volume when in
contact with a body that is perceptibly warmer, and a diminution of
volume when in contact with one that is perceptibly colder, is
indisputable. But it is not within the power of our sensations of heat to
inform us whether this continues to be so until the thermal states are
completely equalized. On the other hand, we can, consonantly with our
new point of view, arbitrarily lay down the following definition: Those
thermal states are to be regarded as the same in which bodies produce in
one another no alterations of volume (mechanical pressures, electric
forces, and so on, excluded). This definition may be applied imme-
diately to the thermoscope, which indicates the thermal state of the
body it touches the moment mutual alteration of volume by contact
ceases.

If two bodies A and B are, as the common phraseology goes, both as
warm as, or both provoke the same sensations of heat as, a third body
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C, then A is, in the same sense, just as warm as the body B. This is a
logical necessity, and we are incapable of thinking it otherwise. The
contrary would involve our holding two sensations to be at the same
time alike and different. But we are not permitted by our definition to
assume outright that if A and B both do not produce alterations of
volume in C, A likewise will produce none in B. For this last result is
an experience, whose outcome we have to await, and which is not
involved in the two first-mentioned experiences. This is a simple
consequence of the position above assumed.

But experience shows that if there be a series of bodies A, B, C, D
... each of which has been sufficiently long in contact with that which
follows, the thermoscope will give the same indication for each body.
And, furthermore, we should be led into singular contradictions with
our daily experience of heat were we to assume that the equality of the
physical condition of A and B, and B and C, according to the above
definition, did not likewise determine the equality of the physical
condition of A and C. Inverting the order of the bodies, which now do
not induce alterations of volume in one another, would result in new
alterations of volume. But as far as our thermoscopic experience
extends, this nowhere occurs.

To my knowledge, Maxwell is the first who drew attention to this
point, and it may not be amiss to mention that Maxwell’s considerations
are quite similar to those which I advanced respecting the concept of
mass.! It is extremely important to note that, whenever we impose a
definition on Nature, we must wait and see whether she will accord
with it. We may indeed frame our conceptions arbitrarily; but with the
exception of pure mathematics we are bound, even in geometry and far
more so in physics, to investigate minutely the extent to which realily
conforms to our conceptions.

Any conception, therefore, of the experiences familiar to us, if it is to
be free from contradiction, demands the assumption that two bodies A
and B which are in the same thermal state as regards a third body C are
in the same thermal state as regards each other.

4. The stronger the thermal sensation, the greater the volume of the
thermoscopic substance. Hence again, by analogy, the following arbi-
trary definition may be set up: Those thermal states are to be regarded
as the more intense in which bodies produce in the thermoscope greater
augmentations of volume. By analogy with the thermal processes
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observable by sensation, we should then expect that of two bodies A
and B the one which produced in the thermoscope the greater
augmentation of volume would on contact also induce, in the other, an
augmentation of volume and, in itself, a diminution. But, while the
analogy holds generally, it may lead us astray in special cases. Water
furnishes an example of this. Two masses of water at +3 °C and +5 °C
both show a diminution of volume on contact. Two masses of water at
10°C and 15 °C present the normal case. Two masses at 1 °C and 3 °C
present a case diametrically opposed to the analogy.

It will be seen from the foregoing that water as a thermoscopic
substance could, under certain circumstances, give the same indication
for two thermal states for which other thermoscopes would give
different indications. The use of water as a thermoscopic substance, at
least in the thermal field under consideration, is accordingly to be
avoided. ‘

5. Our sensations of heat, like thermoscopic volumes, form a simple
series, a simple continuous manifold; but it does not follow from this
that states of heat also form such a manifold. The properties of the
system of symbols we employ are not decisive of the properties of the
states symbolized. If we were to take, for example, as our criterion of
the state of a body K the pull exerted by K on an iron ball E suspended
from a balance, these pulls, the aggregate of which as symbols likewise
constitute a simple manifold, could be determined indifferently by the
electric, magnetic, and gravitational properties of K, and would be the
symbolic correspondent of a threefold manifold. Investigation must
determine in each case whether the symbolic system chosen is the
appropriate one.

Let A, B, C, D, E be a series of bodies, of which each exhibits a
lesser thermal state than that which follows (Fig. 28). As far as our
experience goes, a body can be transported from the state of A to that
of E only by way of the states B, C, D and the states intermediate to
them. There is nothing in the domain of experience to suggest that this

M N
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could also be effected through a succession of conditions MN situated
outside the series B, C, D. The assumption of a simple continuous
manifold of thermal states is sufficient.

6. It was remarked above that there was an arbitrary convention
involved in the choice of volume as a thermoscopic index. There is a
further arbitrary choice involved in adopting a thermoscopic substance.
Yet if the substance selected were universally accepted, the resulting
thermoscope would substantially accomplish everything that could be
demanded of it. The thermoscope would be exposed to the greatest
possible number of thermal states, established as invariable by cessation
of change on the part of the thermoscope, and these points of cessation
would be distinguished by marks and names; such as the freezing point
of mercury, the melting point of ice, the congealing point of linseed-oil
and aniseed-oil, the melting point of butter, blood-heat, the boiling
point of water, the boiling point of mercury, and so on. These marks
would then enable us not only to recognize a recurring state of heat, but
also to reproduce a state already known to us. But in accomplishing
this, the essential function of the thermoscope is achieved.

Fig. 29.

7. The inconveniences of such a system, which as a matter of fact long
prevailed, would soon be manifest. The more delicate the inquiry, the
more fixed points of this sort would be necessary; and ultimately they
would no longer be attainable. Furthermore, the number of the names

to be marked would be annoyingly augmented, and it would be
impossible to discover from these names the order in which the thermal
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states under consideration succeeded one another. This order would
needs have to be specially noted.

But there exists a system of names which is at the same time a
system of ordinal symbols, permitting of indefinite extension and
refinement, viz, numbers. Substituting numbers for names as our
designations of thermoscopic marks, all the inconveniences in question
are eliminated. Numbers may be continued to infinity without effort;
between two numbers any number of other numbers may be inter-
polated in an existing system; it is apparent immediately from the very
nature of a number between what other numbers it lies. This could not
escape the notice of the inventors of the early thermoscopes; and the
idea was actually applied, though to varying extent and with varying
appropriateness.

8. For the introduction of this more appropriate system, a new
convention was necessary — a convention respecting the principle of
coordination of numbers with the thermoscopic marks. And here new
difficulties arise.

One of the methods used consisted in marking on the capillary tube
of the thermoscopic container two fixed points (the melting point of ice
and boiling point of water). The apparent voluminal increment of the
thermometric substance (neglecting the dilatation of the vessel) was
next divided into 100 parts (degrees), and this division was then
continued beyond the boiling and melting points. By means of these
fixed points and the principle of coordination referred to, every number
appeared to be uniquely connected with a physically determined
thermal state.

9. But this connection is immediately disturbed when some other
thermoscopic substance or some other enclosing material is chosen.
Laying off the volumes of any given substance as abscissae and erecting
those of another in the same thermal states as ordinates, we obtain,
according to Dulong and Petit, by joining the extremities of the
ordinates, not a straight line but a curve similar to that pictured in
Figure 30, and differing for every pair of substances. In point of
fact, substances do not expand proportionally to one another when
subjected to the same thermal changes, as we have already learned.
Hence, on the same principle of coordination, sensibly different
numbers are assigned to the same thermal states for each and every
thermoscopic substance.
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Fig. 30.

Even adopting mercury exclusively as our thermoscopic substance,
the expansion of the glass of the containing vessel, which is not
comparatively a vanishing quantity, exercises an appreciable influence
upon the process of the apparent expansion; and this influence is
peculiar to every different kind of glass. Therefore, even though the
same principle of coordination be employed, strictly speaking the
connection between numbers and thermal states is again peculiar to
each thermoscope.

10. When attention was directed to the like behavior of gases under
the same thermal conditions, the choice of a gas as a standard
thermoscopic substance was, by reason of this property, regarded as
less conventional and as having roots in the nature of things. But while
it will appear that this opinion is erroneous, yet there are other reasons
which make for this choice, which was a felicitous one though at the
time it was made no one could have been aware of the fact.

One of the greatest advantages that gases offer is their remarkable
expansibility and the consequent enhanced sensitiveness of the thermo-
scopes. Furthermore, the disturbing effect of the variable envelopes is
very considerably reduced by this great expansibility. The expansion of
mercury is only about seven times as great as that of glass. The
expansion of the glass and the variation of this material find, therefore,
very perceptible expression in the apparent expansion of the mercury.
But the expansion of a gas is 146 times as great as that of glass.> Hence
the expansion of the glass has only a very slight effect upon the
apparent expansion of the gas, and the variations in the different kinds
of glass a negligible effect. In the case of gas thermometers, therefore,
when the fixed points and the principle of coordination have been
determined, the connection between the numbers and the thermal states
is far more exact than with any other thermoscope. The material of the
container selected, or more briefly the individuality of the thermoscope,
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can have only a very inconsiderable influence upon this relationship;
the thermoscopes are rendered in high degree comparable — a point
which confirms the judgment of Dulong and Petit. We shall in what
follows take an air-thermoscope as the basis of our inquiry.

11. That number which, conformably to any chosen principle of
coordination, is coordinated with a volume indication of the thermo-
scope, and consequently uniquely with a state of heat, is called the
temperature of that state. It will be usually denoted in what follows by .
The temperature numbers are dependent on the principle of coordina-
tion, ¢ = f(v), where v is the thermoscopic volume, and, consequently,
for the same state of heat they will vary greatly according to the
principle adopted.

12. Tt is instructive to note that different principles of coordination
actually have been propounded, although only one has proved of actual
practical scientific value and hence remained in use. One of these
principles may be termed the Galilean. It makes the temperature
numbers proportional to the real or apparent voluminal increments
from a definite initial volume u,, corresponding to a definite thermal
state.

To the volume: vy, vy(1 + @), y(1 + 2a),. . ., (1 + @),
corresponds
the temperature: 0, 1, 2,..., t,

For a here we take the hundredth part of the coefficient of the
volume increment from the melting point of ice to the boiling point of
water (viz.,, 1/273), the temperature number 100 falling to the last-
named point. The same principle admits of extension beyond the
boiling and melting points, the temperature numbers in the latter case
being reckoned negatively.

An entirely different principle of coordination is that of Dalton. It is
as follows:

Yo

Yo
(1.0179)° * 1.0179°

To the volume: 20, 0o X 1.0179, 1, X (1.0179)’,

corresponds

the temperature: —20, —10, 0, +10, +20
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If we take, with Amontons and Lambert, the pressure of a mass of
gas of constant volume as our thermoscopic index, and make the
temperature number proportional to the pressure of the gas, we shall
again have, strictly speaking, a different principle. But owing to the
validity of the law of Mariotte and Gay-Lussac within wide limits, and
the slight deviation of the pressure coefficient from the coefficient of
volume expansion — facts which at the time this scale was proposed
were only imperfectly known — it happens that the properties of
Amontons’s scale are not markedly different from those of Galileo’s
scale.

Calling p the pressure of a mass of gas of constant volume, p, the
pressure at the melting point of ice, and k a constant, Amontons’s
principle of coordination is expressed by the equation ¢ = kp/p,. A
second fundamental point is unnecessary on this scale.? Since p and p,
depend in the same manner on the thermal states that » and », do, the
new scale has precisely the same properties as the old one. For p= 0,
t= 0. Putting k= 273, the degrees assume their customary magnitude:
for the melting point ¢ = 273, for the boiling point #= 373. The new
scale coincides absolutely with the old scale, if the zero point be placed
on the melting point, and the temperature numbers downward be
reckoned negatively.

13. The employment of the air thermometer involves, whether volumes
or pressures be taken as the thermoscopic indicators, a definition of
temperature. Starting from the equations p= py(1 + aif), or v=
v9(1 + ar), we arbitrarily posit that the temperature ¢ shall be given by
the equation

_ P~ D _ VT

=—— or t=——

apy avy

t

Amontons’s temperature, which is called by way of distinction the
“absolute temperature,” and denoted by 7, is defined by the equation

_273p,
P ’
and its relation with that first defined is indicated above.

T

14. 1t is remarkable how long a period elapsed before it definitely
dawned upon inquirers that the designation of thermal states by
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numbers rests on a convention. Thermal states exist in nature, but the
conception of temperature exists only by virtue of our arbitrary
definition, which might very well have taken another form. Yet until
very recently inquirers in this field appear more or less unconsciously
to have sought after a natural measure of temperature, a real tempera-
ture, a sort of Platonic Idea of temperature, of which the temperatures
read from the thermometric scales were only the imperfect and inexact
expression.

The conceptions temperature and quantity of heat were never kept
clearly apart before Black and Lambert, and for both these ideas,
between which we now distinguish, Richmann used the same word,
“calor”. At this stage, therefore, we cannot expect clearness. But the
obscurity extends farther than we should have thought. Let us look at
the facts.

Lambert* well characterized the state of opinion of his contem-
poraries when he said: “Inquirers doubted whether the actual degrees
of heat were in reality proportional to the degrees of the expansion.
And even granting that this were so, the further question arose as to
the degree at which the counting should begin.” He then discussed
Renaldini’s proposal to graduate thermometers by means of water
mixtures, and he appears to have regarded this last scale as a natural
one.

Dalton had the following passage:> “Liquids have been tried, and
found to expand unequally, all of them expanding more in the higher
temperatures than in the lower, but no two exactly alike. Mercury has
appeared to have the least variation, or approach nearest to uniform
expansion.”

Gay-Lussac said:

The thermometer, as it exists to-day, cannot indicate the exact relationships of heat, for
we do not yet know what connection there is between the degrees of the thermometer
and the quantities of heat which these degrees may indicate. It is generally believed,
indeed, that the equal divisions of this scale represent equal tensions of the caloric; but
this opinion is based on no very positive fact.®

Manifestly Gay-Lussac was in a fair way to overcome the obscurity of
his contemporaries on this point, but he was nevertheless unsuccessful.

It is very singular that inquirers of the exactness of Dulong and Petit,
who were the first to introduce clearness into this field, continually
lapsed, in their expressions at least, to the old points of view. We read
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in one place:” “It will be seen, from the deviation that occurs at so low a
temperature as 300°, how greatly the expansion of glass departs from
uniformity.” We ask in astonishment: “By what criterion is the ‘uniform-
ity’ or ‘lack of uniformity’ of the expansion of glass to be estimated and
measured?” The following passage is also characteristic:®

We are constrained to say, nevertheless, that the well-known uniformity in the principal
physical properties of all gases, and especially the identity of their laws of dilatation,
render it very probable that in this class of bodies the disturbing causes do not produce
the same effects as in solids and liquids; and that consequently the changes of volume
produced by the action of the heat are in the present instance more immediately
dependent on the force that produces them.

This vacillation between a physical and a metaphysical point of view
has not been entirely overcome, even to-day. In an excellent modern
textbook by a distinguished inquirer in this field, we read: “The
indications of the air thermometer are comparable. But it by no means
follows from this that the air thermometer actually measures that which
we conceive as temperature; it has, in fact, never been proved that the
increase of the pressure of gases is proportional to the increase of the
temperature, for hitherto we have only assumed this.”

No less a man than Clausius has expressed himself as follows:

We may infer from certain properties of gases that the mutual attraction of their
molecules is very weak at their mean distances and hence offers a very slight resistance
to the expanson of the gases, so that it is the walls of the containing vessel that have to
offset by their resistance nearly the entire effect of the action of the heat. The outward,
sensible pressure of the gas, accordingly, forms an approximate measure of the
dispersive force of the heat contained in the gas; and, therefore, conformably to the
preceding law, this pressure must be approximately proportional to the absolute
temperature. The correctness of this inference has, indeed, so much intrinsic prob-
ability that many physicists since Gay-Lussac and Dalton have assumed it outright, and
based upon it their calculations (!) of the absolute temperature.’

In a valuable treatise on pyrometry we find the following: '?

In view of Gay-Lussac’s discovery, made as early as 1802, that all gases suffer, under
the action of heat, like expansions for like increases of temperature, the hypothesis is
well justified that the expansion in question is uniform for all degrees of temperature,
inasmuch as it is more probable that the expansion should be uniform than that all
gases should exhibit the same variability.

On the other hand, it is to be particularly noted, that W. Thomson,
as early as 1848, in propounding his absolute thermodynamic scale of
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temperature, was very clear on this matter and went critically to the
bottom of it, as we shall see in detail in a later chapter.

After these examples, the preceding exposition, however obvious it
may appear to individual physicists, will not I trust be regarded as
altogether redundant. We repeat, the question is always one of a scale
of temperature that shall be universally comparable and that can be
constructed with accuracy and certainty, and never one of a “real” or
“natural” scale.

15. It could be easily shown, by analogous examples from other
departments of physics, that men generally are inclined to hypostatise
their abstract ideas, and to ascribe to them a reality outside conscious-
ness. Plato, in his doctrine of Ideas, only made a somewhat free use of
this tendency. Even inquirers of the rank of Newton, despite their
principles, were not always careful enough in this respect; it will
therefore repay the trouble to inquire upon what the procedure rests in
the present case. We start in our investigations from the sensation of
heat, and find ourselves later obliged to substitute for this original
property of the behavior of bodies other properties. But between
these properties, which differ according to circumstances, no exact
parallelism obtains. For this very reason, latently and unconsciously, the
original sensation of heat, which was replaced by these not exactly
conforming properties, remains the nucleus about which our ideas
cluster. Then, on our discovering that this sensation of heat is, in its
turn, nothing but a symbol for the collective behavior of the body,
which we already know and shall later know better,'! our thinking
compels us to group these varying phases of collective behavior under
some single head and to designate them by a single symbol called
state of heat. Scrutinising our procedure closely, we again discover as
shadowy nucleus of the symbol this same sensation of heat, which is the
initial and the most natural representative of the whole group of
conceptions. And to this symbol, which is after all not entirely our
arbitrary creation, we appear to be forced to attribute reality. Thus, the
impression arises of an “actual temperature,” of which that read from
the thermoscope is only a more or less inexact expression.

Newton’s ideas of “absolute time,” “absolute space,” etc., which I
have discussed in another place,!? originated in a quite similar manner.
In our ideas of time the sensation of duration plays the same part with
regard to the various measures of time as the sensation of heat played
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in the instance just mentioned.!® The case is similar with respect to our
ideas of space.

16. Once we have clearly comprehended that by the adoption of a
new, arbitrarily fixed, more sensitive and more delicate criterion of the
thermal state an entirely new point of view has been assumed, and that
henceforward the new criterion alone is the basis of our investigations,
the entire illusion will be dispelled. This new criterion, or mark, of the
thermal state is the temperature number, or more briefly, the tempera-
ture, which reposes on an arbitrary convention in three respects — first
with regard to the selection of volume as the indicator, secondly with
regard to the thermoscopic substance employed, and thirdly with
regard to the principle by which the numbers are coordinated with the
volume.

17. An illusion of another sort is involved in a peculiar and almost
universally accepted process of reasoning which we will now discuss.
Taking the temperature-numbers as proportional to the pressure of a
mass of gas at constant volume, it will be seen that while the pressures
and the temperatures may increase without limit, they can never fall
below zero.

The equation

p=pyl + ar)

asserts that for every degree increase of temperature the pressure
increases by 1/273 of its amount at the point of melting ice; or rather,
contrariwise, that when the pressure increases 1/273rd, we reckon the
temperature one degree higher. For temperatures below the point of
melting ice, we should have

b=p 0(1 - at)7
from which it will be apparent that, if 1/273rds of the pressure p, be
deducted 273 times, and the temperature —273°C attained, the
pressure will be zero. And one is inclined to think that when a gas has
been cooled to this point it no longer contains any “heat”; that
consequently any further cooling below this temperature is impossible;
that, in other words, the thermal states have apparently no upper limit,

but possess a lower limit at —273 °C.
The principle of coordination employed by Dalton ' did not remain
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in use, but not the slightest objection can be made to its admissibility.
On this principle, when the pressure of the gas increases by 1.0179,
the temperature increases ten Daltonian degrees. When the pressure
diminishes by 1.0179, the temperature sinks ten degrees. We can repeat
this last operation as often as we wish without ever reaching a pressure
zero. If Dalton’s scale were used, the idea need never have occurred to
us that a thermal state could exist which had the gas pressure zero —
that the series of thermal states had a lower limit. The possibility of a gas
pressure zero would not, indeed, have been affected by this fact, for the
reason why Dalton does not reach the lower limit is that he moves
toward it, like Achilles toward his tortoise in the famous paradox, with
steps of diminishing magnitude. The essential point to be emphasized
here is the precariousness of regarding outright the properties of a
system of symbols as the properties of the things symbolized by them.

18. Amontons, in propounding his scale of temperature, started from
the idea that the pressure of a gas is produced by “heat”. But his
absolute zero-point is not the only one that has been proposed, nor is it
the only one that could be proposed on the ground of equally sound
ideas. Taking the coefficient of expansion of mercury, and pursuing the
same train of reasoning as with air, we should obtain —5000 °C as our
absolute zero. As with air and with every other body, so likewise here
with mercury, the coefficient of pressure might be employed instead of
the coefficient of expansion, in order to eliminate the distressing idea of
a body losing its volume when it loses its heat.

Dalton’s ¥ idea was that a body contains a certain quantity of caloric.
Increasing the caloric raises the temperature; withdrawing it altogether
reduces the body to the absolute zero-point. This idea of heat as a
substance (caloric) was derived from Black, although Black was no
friend of such conjectures as we are now discussing. If ice at 0°C is
converted into water at 0°C, and for every kilogram in this process
eighty kilogram-calories are absorbed, Gadolin!¢ and Dalton contended
that, owing to the doubling of the capacity for heat by the liquefaction
of the water, the entire loss of caloric from the absolute zero-point to
0 °C is compensated for by the eighty thermal units in question. Whence
it follows that the absolute zero-point lies at 2 X 80 = 160 °C below the
melting point of ice. The same zero-point is obtained, by the same
reasoning, for many other bodies. But for mercury, which has a low
melting point and which exhibits a very slight difference of specific heat
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in its solid and liquid conditions, 2021 °C below the melting point of ice
is obtained as the absolute zero. If two bodies, A and B, of like
temperature be mixed together, and the mixture A + B shows an
alteration of temperature, we can in an analogous manner, after
determining the specific heats of A and B and A + B, deduce the
absolute zero-point from the change in the temperature. By mixing
water and sulphuric acid, Gadolin found the absolute zero-point to lie
between —830°C and —1720 °C. Other mixtures, and also chemical
combinations, have been similarly treated, and have again yielded
different results.

19. We have thus a multitude of different absolute zeros. To-day only
one of these is in use, that of Amontons which, in accordance with the
dynamic theory of gases, has been connected with the nullified velocity
of the gas molecules. But all these deductions alike rest on hypotheses
regarding the processes by which we imagine the phenomena of heat to
be produced. Whatever value we may attribute to these hypothetical
ideas, we must yet admit that they are unproved and unprovable, and
cannot antecedently determine facts which may at some time be
rendered amenable to observation.

20. We now revert to the point which we were discussing. The
pressure of gases are signs of the thermal states. When the pressures
vanish, the signs likewise vanish; our gas is rendered unserviceable
as a thermoscope and we must seek another. That the thing symbolized
also disappears does not at all follow. For example, if a thermo-
electromotive force, on approaching a certain high temperature, should
diminish or become zero, it would doubtless be thought extremely rash
were this temperature to be regarded as indicating an upper limit of the
states of heat.

The temperature numbers, again, are symbols of the symbols. From
the fact that our fortuitously chosen system of symbols has a limit,
nothing whatever follows as to the limits of the thing symbolized. I may
represent sensations of tone by rates of vibration. These rates as
positive numbers, have a lower limit at zero, but no upper limit. I may
also represent sensations of tone by the logarithms of the rates of
vibration, and obtain a much better image of the musical intervals. In
which case, my system of symbols (running, as they do, from — to
+) has neither a lower nor an upper limit. But the system of
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tone-sensations is not a whit disturbed by this: it has both an upper and
a lower limit. I may define an infinitely high or an infinitely low tone by
my system of symbols, but it in no wise follows from this that such a
tone exists.

The entire train of reasoning reminds one vividly of the so-called
ontological proof of the existence of God, it is scholastic to a degree. A
concept is defined, and existence is among its attributes; whence follows
forthwith the existence of what has been defined. It will scarcely be
gainsaid that a similar logical looseness is not permissible in modern
physics.

We may accordingly assert that, even granting that it were possible
by cooling a gas to reduce its pressure to zero, this result would simply
prove the unfitness of gases as thermoscopic substances from this point
downward. But that the thermal states have or have not a lower limit
would in no wise follow from it.

And, similarly, nothing follows as to an upper limit for thermal states
from the fact that the pressure of a gas may be imagined to increase
without limit, or from the fact that the numbers expressing the tempera-
tures have no upper limit. A body melts and boils at certain tempera-
tures. And the question arises whether a gas can attain indefinitely high
temperatures without suffering important alterations of character.

21. Experience alone can determine whether the series of thermal states
has a lower or an upper limit. Given a body of definite thermal
conditions and supposing no other can be produced that is hotter or
colder than it, then and then only can such a limit be established.

The view here taken does not exclude our conceding to Amontons’s
zero the role of a fiction, or our investing the law of Mariotte and
Gay-Lussac with the simple expression before referred to,!” whereby
many discussions to be later developed are very materially simplified.

22. From the foregoing it will be readily seen that temperature is
nothing but the characterization or designation of a thermal state by a
number. This temperature number has exclusively the properties of an
inventory number, by means of which the same thermal state can again
be recognized, and if necessary sought for and reproduced. This
number likewise informs us in what order the designated thermal states
succeed one another and between what other states a given state is
situated. In the investigations to follow, it will appear that the tempera-
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ture number fulfils still other, and indeed extremely comprehensive
functions. But this was not due to the acumen of the physicists who
propounded the system of temperature numbers, but was the outcome
of several fortunate circumstances which no one could foresee and no
one control.

23. The conception of temperature is a conception of level, like the
height of a heavy body, the velocity of a moving mass, electric and
magnetic potential, and chemical difference. Thermal action takes place
between bodies of different temperature, as electric action does
between bodies of different potential. But, whilst the conception of
potential was deliberately framed in perfect consciousness of its advan-
tages, in the case of the conception of temperature these advantages
were a matter of good luck and accident.

In most departments of physics the differences alone of the level
values play a determinative part. But temperature appears to share, in
common with chemical level, the property that its level values are per se
determinative. The fixed melting points, boiling points, critical tempera-
tures, temperatures of combustion and dissociation, are obvious
instances.



CHAPTER III

ON THE DETERMINATION OF
HIGH TEMPERATURES

1. Reference must here be made, in connection with our discussions of
the conception of temperature, to “pyrometric” methods or means of
determining high temperatures. Newton' was the first to devise a
method of this kind, and we shall simply state his ideas without at
present making any critical comment.

Newton observed, by the aid of a linseed-oil thermometer, that the
loss of temperature of a hot body exposed to a uniform current of air
was, for the same interval of time, proportional to the difference of
temperature between the body and the air; and he assumed that this
relation held universally for all temperatures, however high. Imagine
two bodies, A and A’, alike in all respects, save that the difference
between the temperature of the air and that of A’ is twice the cor-
responding difference for the air and A. Allowing these bodies to cool
during the same element of time 7;, A" will lose twice as much as A,
and the excess of its temperature above that of the air will, at the end of
time 7, be again twice that of A. The same reasoning holds true for the
succeeding element 7,, and so for the rest. Hence, in the process of
cooling during any interval of time #, A" will lose twice as much as A.
The generalization is obvious.

Now let a body A at a very high temperature cool, and call the equal
intervals into which the total time of cooling is divided, ¢, 4, ... #,_,
t,. Suppose the excess of temperature of the body at the beginning of
the last interval ¢, is 2u, but at the end of it is u, then, on the preceding
assumption, it follows that, at the beginning of the equal intervals ¢,_,
t,—s t,—3 ..., 1t would show respectively the excesses of temperature,
4u = 2%u, 8u = 23u, 16u = 2*u. Newton ascertained the time ¢, and
the value of u by means of a linseed-oil thermometer, and was thus able
to assign the temperature at every other prior period of the cooling.

The body A was a red-hot mass of iron exposed to a current of air.
On it particles of different metals and their alloys were placed and the
time noted at which they congealed, the idea being to determine the
temperatures of congelation. From the melting point of tin downwards
the process of cooling could be following with a linseed-oil thermo-
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meter. Newton made the temperature numbers of this thermometer
proportional to the volume increment of the linseed-oil above the
melting point of ice.

According to Newton, the temperature of boiling water is not quite
three times (2.83) that of the human blood (37 °C), whence 104 °C
would follow for the temperature of boiling. For the melting point of tin
(5.83 X 37) he obtained 215°C (new researches give 230°); for the
temperature of lead (8 X 37) he got 296° (new determinations give
326°), and for the temperature of red-heat (16.25 X 37), 600 °C.

At the conclusion of his paper Newton remarked that, owing to the
uniformity of the air current, the same number of air particles was
heated in equal intervals of time, by an amount proportional to the heat
of the iron, and that therefore the losses of heat suffered by the iron
must be proportional to its heat. But, since these losses are in point of
fact also proportional to the indications of the linseed-oil thermometer,
therefore we are justified in assuming that the heat of a body is propor-
tional to the increase of volume of the linseed-oil thermometer.>? From
this reasoning, in which by the way no distinction was made between
the conceptions “temperature” and “quantity of heat,” it would appear
that Newton, here as elsewhere, is guided in his enunciations party by
instinct and partly by observation, making the suggestions of the one
correct those of the other. It appeared to him antecedently obvious that
the “losses of the heat” should be proportional to the “heat”, and
likewise that the “expansion” should be proportional to the “heat.”
Observation tallied with these views, and so the conceptions were
retained.

2. Critically viewed, matters stand as follows. The temperature num-
bers are based on an arbitrary convention. They may be taken propor-
tional to the volume increments or they may not. But after a decision
regarding them has been reached, observation alone can decide
whether the losses are proportional to the temperatures. On the other
hand, the temperature numbers could be so chosen that the losses
would be proportional to the temperatures, even on the assumption of
some different law of cooling from that actually obtaining.

There is thus no necessary connection between Newton’s proposi-
tions. Nothing whatever follows from his observations regarding the
correctness or incorrectness of his scale of temperature. Dulong and
Petit have in fact shown, as we shall see later, that the harmony between
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Newton’s assertions is immediately ruptured if the observations on
cooling are made with a thermometer within somewhat wider limits of
temperature and with greater precision than Newton bestowed upon
them. Newton’s two assumptions contain, so to speak, two different
scales of temperature.

But nothing would prevent our employing Newton’s pyrometric
principle as a definition of a scale of temperature, by considering on
some principle of co-ordination the times counted backwards as inven-
torial numbers of the corresponding thermal states of the cooling body.
Whether this definition is or is not independent of the nature of the
bodies, and what is the relation of the this scale to any other now in
common use, could be ascertained only by special experiments and
only to the extent to which the two scales under comparison were actu-
ally and simultaneously accessible (without extrapolation) to experiment.

3. Another pyrometric method, early devised by Amontons® in im-
perfect form, was employed by Biot. Biot* showed, by experiment and
by theoretical considerations, that in a very long metal bar one end of
which has been exposed sufficiently long to a constant source of heat,
the excesses of the temperature of the bar over that of the air decrease
in geometrical progression as we move away in arithmetical progression
from the heated end — as far at least as the process can be followed
with a thermometer. Ascertaining the ratio of the progression at the
colder end and assuming that the law holds without limit for all
temperatures, however high, we can infer the temperatures of the places
which, by reason of their great heat, are inaccessible to direct thermo-
metric examination. Amontons had assumed that the temperatures
increased from the cold to the hot end according to the law of a straight
line. But, since the ratio of the above-mentioned progression depends
on the dimensions and the material of the bar, it will be seen that the
temperature numbers obtained by Amontons’ principle would depart
very considerably from those obtained by Biot’s. Examining Biot’s case
in wider ranges of temperature and with greater exactness, as Forbes®
has recently done, it appears that even within the limits accessible to a
thermometer the ratio of the geometrical progression depends on the
temperature. Thus Biot’s pyrometric principle also, if it is to be con-
sistently maintained, involves a new definition of temperature; and what
was said regarding Newton’s principle holds true substantially regarding
Biot’s. As for the rest, the relation between the two methods is simple.



ON THE DETERMINATION OF HIGH TEMPERATURES 65

In Newton’s method the temperatures to be determined succeed one
another, in Biot’s they occur side by side. The temperature numbers
employed as inventorial numbers are obtained in the first instance as
measures of time and in the second as measures of length. Newton’s
idea may have suggested Biot’s. Lambert® had already corrected
Amontons’ principle after the manner of Biot’.

4. Black also devised a pyrometric method, based on his researches in
calorimetry. If a body of mass m be cooled in a quantity of water M
from the temperature u,; to the temperature u, then, as thermometric
observation shows, the water M will be heated by an amount propor-
tional to the product ms(u; — u), where s is a constant peculiar to the
cooled body (viz., its specific heat). If M be the mass of the water and
u, its initial temperature, the equation

ms(u; — u)= M(u— u,)
subsists, and from this follows, for the initial temperature u; of the
cooled body,
M(u — u,)

ms

u=u-t

If m and s be small and M large, u and u, will remain within reach of
the ordinary thermometric scale, even when the body to be cooled has
been heated to a degree far beyond it. Assuming with Black the
unlimited validity of the principle, the initial temperature u; can still as
ascertained from the above equation. For example, we can cool in a
large mass of water a piece of iron of known weight and specific heat
which has been taken from a furnace, and ascertain in this way the
temperature of the furnace. Inasmuch as the careful inquiries of Dulong
and Petit have demonstrated that s depends on the temperature even
within the limits of the ordinary scale, and since any investigation of s
outside the limits of this scale is impossible, it will be seen that Black’s
pyrometric principle also involves a new definition of temperature.
Substantially the same remarks may be made with respect to this
method as were advanced regarding the methods discussed above.

5. A pyrometric method can be constructed on the basic of any
physical property which varies with the thermal state. Pyrometers have
been devised that rest on variations of volume or pressure; and others
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have been conceived which indicate the thermal state by melting,
boiling, dissociation, and alterations of viscosity. The spectral photo-
meter and the polaristrobometer have also been put to pyrometric use.
Acoustic pyrometers are based on the changes in the pitch and the
wavelength of a note with the temperature. Finally, change of magnetic
moment has been thought of in connection with temperature, and
attempts have been made to put to pyrometric use the dependence
of electric resistance on the temperature, as well as the alteration
of thermo-electromotive force with the temperature. The writings of
Weinhold?, Bolz®, Holborn and Wien!?, as well as the more recent
work of Barus'!, contain explicit information on all these points,
including a full bibliography.

After the foregoing, there will be no doubt that each individual
pyrometric method simply furnishes an indication of a thermal state by
means of which that state can again be recognized and reproduced. For
many practical purposes this is in itself very valuable and is often quite
sufficient. The number which is the result of any pyrometric observa-
tion has no other significance than that of an inventorial number. If
from three observations we obtain three numbers, a < b < ¢, all the
information that these numbers furnish is that the thermal state to
which b belongs lies between the two states to which a and ¢ belong. It
is antecedently unreasonable to expect any agreement between the
numbers obtained by the different pyrometric methods, for the reason
that in general every pyrometric method involves a special definition of
temperature. The reduction of pyrometric numbers to the Celsius scale
can only be performed to the extent within which this method can be
employed simultaneously with the air thermometer. Reductions of this
kind have been attempted by Weinhold, Holborn and Wien, to mention
only the most important.'? Sir William Siemens'? spoke of the calcula-
tions of the temperature of the sun which were made by Secchi,
Zolner, and others, and which amounted respectively to 10,000,000 °C
and 27,700 °C. Apart from the objections which may be raised against
the premisses of this calculation and the methods of computation, it is
to be remarked that indications in degrees Celsius far outside the
possible limits of employing the air thermometer have absolutely no
meaning whatever.



CHAPTER IV

NAMES AND NUMBERS

1. A domain of knowledge like physics is possessed, in its control of
experiences, of a constant and efficacious means of refining its doc-
trines. After the results of the foregoing investigations psychological
analyses, and logical analyses which are founded on them, will not be
considered as quite superfluous even in this domain. We will, then, now
discuss some questions particularly of the latter kind which, treated at
length, would have only disturbed the connection of the previous
inquiry. The significance of names and numbers — what they have in
common, and in what way they differ from one another — has made
itself felt in our consideration of thermometric scales. What are names?
What are numbers?

2. A name is an acoustic attribute, which I add to the other sensory
attributes of a thing or complex of phenomena, and which I engrave in
my memory. Even in themselves alone, names are important. Of all the
attributes of a complex of phenomena, they are the most invariable.
They constitute thus the most convenient representative of that com-
plex as an entirety, and around them the remaining and more or less
variable attributes cluster in memory as around a nucleus.

But the facility with which these attributes called names permit of
being transferred and communicated is more important still. Each
observer may discover different attributes in a thing; one person will
notice this, another will notice that — with the result that they will not
necessarily come to an understanding regarding the thing, or for that
matter even be capable of coming to an understanding. But the name,
which always remains the same, is imprinted as a common attribute in
the memories of all persons. It is like a label that has been attached to a
thing and is understood by all. It is not only attached to things; it is
preserved in the memories of men and leaps forth at the sight of these
things, of its own accord.

3. The importance of names in technical fields has never been a
subject of doubt. The possibility of procuring things which are not
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within our immediate reach, and of producing effects at a distance
through a chain of human beings, is attributable to names. The ethical
achievements of names are perhaps even more important still. Names
particularize individuals; they create personalities. Without names there
is neither glory nor disgrace; neither defensible personal rights, nor
prosecutable crime. And, by the use of written names, all this has been
enhanced to a stupendous degree.

When two persons part company, each soon shrinks for the other to
a mere perspective point. Without names it would be almost impossible
for the one to find the other. The fact that we know more of some men
than of others, that some men mean more to us than others, is owing to
names. Without names we should be strangers to one another, as are
animals.

Fancy for a moment how I should be obliged to mimic, caricature,
and portray a person whom I was seeking, in order that some small
group of people, who were perfectly familiar with my methods, could
assist me in my search. But if I know that the name of the person I am
seeking is F.M. and he lives in France, and in addition in Paris, at No.
45, Rue S., then I am always in a position to find him by means of these
names — names which countless numbers of different individuals
associate with the same objects, although they may know these objects
under entirely different aspects and in greatly varying degree, some-
times by name only. I can thoroughly appreciate the marvelous achieve-
ment involved in these performances by imagining myself making such
a search without a knowledge of names. I should then have to travel
from country to country and from city to city, like the people in the
Arabian Nights, until I found by accident the person whom I was
seeking — which happens only in fairy tales. I should be in the situation
of the lost child who could tell no more than that she belonged to
“Mother” who “lived at home”.

A name is the product of a convention, reached without our volition
under the favoring influence of accident, by a limited circle of people
having common interests, and gradually communicated by that circle to
wider groups.

This significance of names in the narrowest professional domain is
point by point illustrated by what we have said about the establishment
of the thermometric scale.

4. What are numbers? Numbers are also names. Numbers would never
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have originated had we possessed the capability of picturing with
absolute distinctness to ourselves the members of a set of like objects as
different. We count where we desire to make a distinction between a set
of homogeneous things; in doing so, we assign to each of the like things
a name, a distinguishing sign. If the distinction to be made between the
things is not effected, we have “miscounted”. To accomplish our
purpose, the signs employed must be better known and must admit
more readily of distinction than the things to be designated. Counting,
accordingly, begins with the corrclation of the familiar objects known as
fingers, the names of which have in this manner gradually come to be
the names of numbers.! The correspondence of the fingers with the
things is accomplished, without effort or design, in a definite order. In
this manner, numbers are transformed quite without our volition into
ordinal symbols? As a consequence of this invariable order, and as a
consequence of it alone, the last sign associated with the things comes
to represent all the previous correspondences; this last sign is the
number (Anzahl), of the things counted.?

If there are not enough fingers to associate with the things, the
original series of correspondences is simply repeated, and the several
series of correspondences so obtained are then themselves supplied
with ordinal symbols, as before. Our system of numbers becomes in this
manner a system a purely ordinal signs, which can be extended at
pleasure. If the objects counted have distinguishable homogeneous
parts, and in each of these parts there be discovered parts which again
are alike, and so on, the same principle may be employed for the
enumeration of these parts of parts. Our system of ordinal signs,
accordingly, admits of indefinite refinement. Numbers are an orderly
system of names which admit directly and readily of indefinite exten-
sion and refinement.

5. Where a few objects only are to be designated, and these are readily
distinguished from one another by salient attributes, proper names as a
rule are preferred; countries, cities, friends, are not numbered. But
objects that are numerous and which constitute in any way a system in
which the properties of the individual things forming the system con-
stitute a gradation, are always numbered. Thus numbers and not names
are given to the houses of a street; and, in regularly laid out cities, also
to the streets themselves. Degrees on a thermometer are numbered, and
proper names are given to the freezing and boiling points only. The
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advantage here, in addition to the mnemotechnic feature of the plan,
consists in the fact that one can easily discover by the sign of the thing
the position which it occupies in the system — an advantage not
appreciated by the inhabitants of small towns, where the houses are un-
numbered and where there are consequently no municipal coordinates
to assists a stranger in finding his way.

6. The operation of counting may again be applied to the numbers
themselves; in this manner, not only is the development of the number
system carried to a point considerably beyond that of its original
simplicity, as by the formation of the decimal system of writing and of
performing operations with numbers, but the entire science of arith-
metic, even the entire science of mathematics, arises from this applica-
tion. The perception, for example, that 4+ 3 =7, arises from the
application of the ordinal signs or numbers of the upper horizontal row
of the following diagram to the numbers of the row which is beneath:

1

2 3 4 5 6 7

1 2 3 4 1 2 3

I regard the truths of arithmetic to be propositions that have been
reached by experience, understanding by experience here inner experi-
ence; and I long ago characterized mathematics as a system of econom-
ically ordered experience of counting, made ready for immediate use,
and designed to replace direct counting, which is frequently impossible,
by operations previously performed, and hence accomplishing a great
saving of time and trouble.* My views are here substantially in accord
with those which Helmholtz expressed in 1887.5 This is of course not
as yet a theory of mathematics, but merely a program of such a theory.
What interesting psychological question are presented here may be seen
from the work of E. Schréder® who was the first to inquire why the
number of the objects is independent of the order in which they are
counted. As Helmholtz remarked’, in any succession of objects that
have been counted in a definite order any two adjacent objects may be
interchanged, whereby ultimately any order of succession whatever of
the objects may be produced without changing the succession of the
numbers, or causing either objects or numbers to be dropped. The non-
dependence of the sum on the order of the things added follows from

this consideration. But this inquiry cannot be pursued further here.
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7. Although, in the first instance, counting supplies the necessary
means of distinguishing objects which are in themselves difficult to
distinguish, it is nevertheless afterwards applied to objects which, while
clearly distinguishable, are yet in some certain respect regarded by us as
the same, and so are interchangeable in this respect. The properties
with respect to which objects may be considered to be the same differ
greatly, and vary almost from mere existence at a given point of space
or moment of time to absolute undistinguishability. We count different
objects as the same only in so far as they are like; francs, marks, and
gulden are counted, not as such, but as coins. Thermometers and
induction coils are counted as physical apparatus, or as items of an
inventory, but not together as thermometers and induction coils.

8. Objects counted, which are alike in some particular respect, and
which may replace one another in this respect®, are called units. What
is it that is counted, for example, by the number representing a tem-
perature? In the first place it is the divisions of the scale, the real or
apparent increments of volume or of tension of the thermometric
substance. Geometrically or dynamically regarded, the objects here
counted may be substituted for one another indifferently; but with
reference to the thermal state these object are signs or indices merely of
that state, and not equivalent, enumerable parts of a universal property
of the thermal state itself.

This becomes clear at once when we consider that the number
measuring a potential, for example, does quantitatively determine a
universal property of the potential. If I cause the electric potential of a
charged body to sink from 51 to 50 or from 31 to 30, I am able by so
doing to raise the charge of any other having the same capacity one
degree, indifferently whether it be from 10 to 11 or from 24 to 25.
Different single degrees of potential may be substituted for one another.

A relation of like simplicity does not exist for scales of temperature.
A thermometer is raised approximately one degree of temperature
when some other thermometer of the same capacity is lowered one
degree of temperature in some other part of the scale. But this relation
is not exact; the deviations vary with the thermometric substance
selected for either one or both thermometers, and with the position of
the degrees in the scale; the deviations are furthermore individual in
character, according to the substance and to the position in the thermo-
metric scale; they are vanishingly small only in the gas scale. We may
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say that by cooling off a gas thermometer one degree in any part of the
scale, any other body may be made to receive always the same altera-
tion of thermal state. This property might have served as a definition of
equal degrees of temperature. Yet it is worthy of remark that this
property is not shared by all bodies whatsoever that pass through the
course of temperature changes indicated by the gas thermometer, for
the reason that their specific heat is in general dependent upon the
temperature. It should also be noted that this principle was not inten-
tionally embodied in the construction of the temperature scale, but was
shown incidentally later to be approximately fulfilled. The conscious
and rational introduction of a scale of temperature having universal
validity analogous to the potential scale was first made by Sir William
Thomson (Lord Kelvin): of this we shall speak later. The temperature
numbers of the common scale are virtually inventorial numbers of the
thermal states.



CHAPTER V

THE CONTINUUM

By a “continuum” is understood a system or manifold of terms pos-
sessed in varying degree of one or many properties A in such a way
that, between any two terms which show a finite difference with respect
to A, an infinite number of other terms may be interpolated, of which
those that are immediately adjacent to one another exhibit only in-
finitely small differences with respect to the property A.

There can be no objection to such a system, considered as a fiction
merely, or as a purely arbitrary ideal construct. But the natural scientist,
who is not exclusively concerned with the purely mathematical point of
view, is compelled to inquire whether there is anything in nature that
corresponds to such a fiction. Space, viewed in its simplest form as a
succession of points in a straight line; time; the succession of the
elements of a uniformly sounding musical note; and the succession of
colors shown by the spectrum with the Fraunhofer lines blotted out, are
typical instances of the continua presented in nature. If we consider
such a “continuum” without prejudice, it will be seen that there is
nothing perceptible by the senses corresponding to an infinite number
of terms or to infinitely minute differences. All we may say is that, in
traversing such a succession, the distinguishability between the terms
increases, as the terms move away from each other, until ultimately this
distinguishability admits of not the slightest doubt; and again, that,
as the terms approach each other, the distinguishability decreases, it
becomes alternately possible and impossible to distinguish them, accord-
ing to chance and circumstances; and finally it is altogether impossible
to do so. Points of space and time do not exist for sense-perception; for
there exist only spaces and times so small as not to admit of more
minute division perceptible to the senses, or so small that we volun-
tarily neglect their size, although on increased attention they might
admit of resolution into component elements. The possibility of a
property A passing imperceptibly and uninterruptedly to a property A’
clearly distinguishable from A is the important point. The fact is that
any two terms, on a given trial, are either distinguishable or indis-
tinguishable.
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It is possible to remove a large number of terms from a given
sensory continuum and the system will still give the impression of a
continuum. If we imagine a large number of narrow equidistant bands
of color cut out of a spectrum, and the remainder pushed together until
the parts touch, the spectrum will still give the impression of a color
continuum, in spite of the interruption of continuity in the wave-lengths
of the lines. In like manner, an ascending musical note, if the intervals
between the rates of vibration be sufficiently small, may be regarded as
a continuum, and the jolting movement produced by a sufficiently large
number of successive but detached stroboscopic or kinematographic
pictures may also be made to appear as a continuous movement.

If the terms of a sensory continuum stood forth as individual entities
and were distinguishable with absolute clearness, the employment of
artificial expedients, such as the use of measuring rods for comparing
homogeneous continua of the same kind and the use of dividing lines
for rendering imperceptible differences of space distinct by means of
conspicuous differences in color, and so on, would be superfluous. But
the moment we introduce such artifices as being superior physically for
the indication of the differences, we abandon the domain of immediate
sense-perception, and pursue a course in every respect similar to that of
substituting the thermometer for the sensation of heat. All the observa-
tions made there for the special case can be applied here to the general
one. A distance in which the measure is contained twice or three times,
is then twice or three times that in which it is contained once; and the
hundredth part of the measure corresponds to a hundredth part of the
difference, although it may not be said that this holds good for direct
perception. With the introduction of the measure, a new definition of
distance or difference has been introduced. Judgments of difference are
now no longer formed from simple sense-perception, but are reached by
the more complex reaction involved in the application of the measure;
and the result depends upon the issue of the experiential test. The
attention of that still large body of learned people who refuse to admit
that the fundamental propositions of geometry are the results of
experience — results not given by direct perception when metrical
conceptions are introduced — may profitably be called to the con-
sideration last mentioned.

The employment of measures suggests the employment of numbers,
but the use of numbers is not necessarily entailed until it is resolved to
employ only one measure, which is multiplied or subdivided according
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as the necessity arises for a larger or smaller continuum of comparison.
In using a measure divided into absolutely equal parts, we are im-
mediately enabled to employ all the numerical experiences of counting
which we have gained from our study of discrete objects. This is not the
place for a detailed discussion of the manner in which operations of
counting themselves gave rise to the necessity of new numerical con-
ceptions far transcending the bounds of the original system of integral
positive numbers, and of the gradual manner in which negative and
fractional numbers, and finally the entire system of rational numbers,
came into being.

If a unit is to be divided, it must either exhibit natural parts for such
a division, as for example many fruits do, or it must at least permit of
being conceived as made up of perfectly homogeneous equivalent parts.
The early appearance of unit fractions is a probable indication that
division was learned by experiences of the first-mentioned kind, and
that the skill acquired in that field was carried over to cases of the
second class, namely, to the division of continua. It is here apparent
from the simplest instances that the number system which originated
from the consideration of discrete objects is inadequate for the repre-
sentation of fluent or continuous states. For instance, the common
fraction 1/3 is equal to 0.333333... A point of trisection, in other
words, can never be found exactly by decimal subdivision, however
minute. The ratios of certain line segments, as that of the diagonal to
the side of the square, are absolutely unrepresentable by rational
numbers, as Pythagoras long ago discovered,! and lead immediately to
the concept of the irrational.?

The cases of this are innumerable. It may be expressed by saying that
“the straight line is infinitely richer in point individuals than the domain
of rational members is in number individuals.”® But the remark is
applicable, as the illustration given above of the point of trisection
shows, quite irrespective of the irrational feature, to every special
number system. We might say 1/3 is a relative irrational number, as
compared with the decimal system.

Numbers, which were originally created for dealing with discrete
objects, accordingly prove themselves to be inadequate for treating
continua which are conceived as inexhaustible, be these real or ficti-
tious. Zeno’s assertion of the impossibility of motion on account of the
infinite number of the points that had to be traversed between the
initial and terminal stations, was admirably refuted in this sense by
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Aristotle, who remarked that “a moving object does not count as it
moves”.* The idea that we are obliged to exhaust all things by counting
is due to the inappropriate employment of a method which, for a great
many cases, is quite appropriate. A pathological phenomenon of what
might be called the count-mania actually makes its appearance here. No
one will be inclined to discover a problem in the fact that the series of
natural numbers can be continued upwards as far as we please, and
consequently can never by completed; and it is not a whit more
necessary to discover a problem in the fact that the division of a
number into smaller and smaller parts can be continued ad libitum and
consequently never completed.

At the time of the founding of the infinitesimal calculus, and even in
the subsequent period, people were much occupied with paradoxes of
this character. A difficulty was found in the fact that the expression for
a differential was never exact, save when the differential had become
infinitely small — a limit which could never be reached. The sum of
non-infinitely small elements, it was thus thought, could give only an
approximately correct result. It was sought to resolve this difficulty in
all sorts of ways. But the actual practical uses to which the infinitesimal
calculus is put are totally different from what is here assumed, as the
simplest example will show, and are affected in no wise whatever by the
imaginary difficulty in question.

If y = x™, I find for an increment dx of x the increment

_1 _
dy =mx"""- dx+%x’” 2odd’ +
4 ZDORZ2) s ey

1-2-3

Having this result, it will be seen that the function x™ reacts in a definite
manner in response to a definite operation, namely, that of differentia-
tion. This reaction is a characteristic mark of x™, and stands on
precisely the same footing as the bluish-green coloring which arises
from dissolving copper in sulphuric acid. The number of terms that
remain in the series is in itself indifferent. But the reaction is simplified
by taking dx so small that the subsequent terms vanish in comparison
with the first. It is on account of this simplification only that dx is
considered very small.

In a curve with the ordinate z = mx™~1, it is seen that on increasing
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x by dx, the quadrature of the curve is increased by a small amount of
surface, the expression for which, when dx is very small, is simplified by
reduction to the form mx™~1 dx. In response to the same operation as
before, and under the same simplifying circumstances, the quadrature
reacts as the familiar function x™ reacts. We recognize the function,
thus, by its reaction.

i x1n-1

ax

Fig. 31.

If the mode in which the quadrature reacted did not accord with the
mode of reaction of any function known to us, the entire method would
leave us in the lurch. We should then have to resort to mechanical
quadratures; we should actually be compelled to put up with finite
elements; we should have to sum up finite numbers of these elements,
and in such an event the result would be really inexact.

The twofold salto mortale from the finite to the infinitely small, and
back again from this to the finite, is accordingly nowhere actually
performed; on the contrary, the situation here is quite similar to that in
every other domain of research. Acquaintance with mathematical and
geometrical facts is acquired by actual working with those facts. These
facts, on making their appearance again, are recognized; and, when they
appear in part only, they are completed in thought, in so far as they are
uniquely determined.’

The manner in which the conception of a continuum has arisen will
now be clear. In a sensory system, the parts of which exhibit flowing
characteristics not readily admitting of distinction, we cannot retain the
single parts either in the senses or in the imagination with any certainty.
To be able to recognize definitely, therefore, the relations obtaining
between the parts of such systems, we have to employ artificial devices
such as measures. The mode of action of the measures is then sub-
stituted for the mode of action of the senses. Immediate contact with
the system is lost by this procedure; and, furthermore, since the
technique of measurement is founded on the technique of counting,
numbers are substituted for the measures precisely as the measures
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were substituted for direct sense-perception. After we have once
performed the operation of dividing a unit into component parts, and
after we have once noticed that the parts exhibit the same properties as
the original unit, then no obstacle presents itself to our continuing in
thought to infinity the subdivision of the number which stands for the
measure. But in doing so, we imagine that we have also divided both
the measure and system that is measured to infinity. And this leads us
to the notion of a continuum having the properties which we specified
at the beginning of this chapter.

But it is not permissible to assume that everything that can be done
with a sign or a number can also be done with the thing designated by
that sign or number. Think of the considerations advanced in the above
criticism of the conception of temperature. Admitting that the number
which is employed to specify a distance can be divided to infinity
without any possibility whatever of meeting with obstacles, still the
possibility of such division by no means necessarily applies to the
distance itself. There is nothing that presents the appearance of a
continuum but may still be composed of discrete elements, provided
only those elements be sufficiently small as compared with out smallest
practically applicable measures, or provided only they be sufficiently
numerous.

Wherever we imagine we discover a continuum, all we can say is that
we can institute the same observations with respect to the smallest
observable parts of the system in question as we can in the case of
larger systems, and that we observe that the behavior of those parts is
quite similar to that of the parts of larger systems. The length to which
these observations may be carried can be decided by experience only.
Where experience raises no protest, we may hold fast to the convenient
fiction of a continuum, which is in no wise injurious. In this sense we
term the thermal state a continuum.



CHAPTER VI

HISTORICAL SURVEY OF THE THEORY OF
CONDUCTION OF HEAT

1. The fact of the conduction of heat, or the reciprocal effect of the
temperatures of the parts of a body on one another, presents itself to
observation as it were of its own accord. But the clarification of the
quantitative ideas concerned proceeded very slowly. Amontons' heated
one end of a thick iron bar red-hot and determined the temperatures of
various points in the neighborhood of the other end with the air
thermometer. Assuming that the temperature increases proportionally
to the distance from the colder toward the hotter end, he found the
places where tin, lead, and so on just melt, computed the melting
temperatures from this principle, and, on the basis of this experiment,
disputed the correctness of Newton’s assertions respecting the melting
points in question. Similarly, Amontons inferred the temperature of the
heated end. Here was expressed the first quantitative but, as it proved,
incorrect conception with regard to the process of conduction.

2. Lambert? had an idea, clear in principle, concerning the state of
things in the same case of a bar lying with one end in the fire.

This rod is therefore heated at on'y one end. The heat, however, penetrates by degrees
into the more remote parts, and ultimately passes away out of every part into the air. If,
now, the fire burns long enough and is maintained with the same intensity, every part of
the bar finally acquires a definite degree of heat, since each part continually receives as
much heat from the end lying nearer the fire as it communicates to the more remote
end and to the air. This constant state I shall now examine.

In the calculation which followed this, Lambert no longer expressed
himself with the same clearness. The decrease of temperature, du,
which corresponds to the length dx of the rod was taken for the loss of
heat of this portion of the rod to the air and was put proportional to
the temperature-excess u above the air. Indeed, it follows, from the
equation

ou/dx=xu,
that u diminishes according to an exponential law — and Lambert
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u

dx
Fig. 32.

found this confirmed by experiment. The result is thus correct but not
the method of deriving it, since the temperature gradient at a point
determines only the intensity of the current of heat through the cross-
section of the bar.

3. Franklin? suggested measuring the conductivity of bars of different
metals, heated in the same way at one end, by the distance in which the
melting temperature of wax advanced in a certain time. Ingenhousz*
carried out the experiment. J. T. Mayer,’ regarding that body as the
best conductor which gave up its excess of heat to the air most quickly,
drew from the above-mentioned experiments the opposite conclusion
from that deduced by Ingenhouss. This is attributable to the fact that
the two conceptions “internal conductivity” and “external conductivity”
were not yet separated from one another.

4. The stationary state in a bar heated at one end was first correctly
treated, experimentally and theoretically, by Biot.® He used Newton’s
law of cooling as a starting point.

In order to set up calculation according to this law, it is necessary to consider that
every point of the bar receives heat from the one preceding and communicates it to the
following one. The difference is what remains to it according to its distance from the
source of heat; and, of this, a part disappears in the air, either by immediate contact
with this fluid or by radiation . . .. Thus, in the state of equilibrium, when the tempera-
ture of the bar has become stationary, the increment of heat which each point of the bar
receives by virtue of its position is equal to that lost by contact with the air and by
radiation, the loss being proportional to its temperature.”

On the basis of this proposition, said Biot, a differential equation may
be formed whose integral gives information concerning all relations
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subsisting in this case. In the article just referred to, Biot did not
produce this equation, but confined himself to the reporting of experi-
ments, and merely remarked that, in this whole investigation, he had
been helped by Laplace. But, in another place,® Biot said that, accord-
ing to an observation of Laplace’s, the differential equation can be
obtained only if we suppose a communication of heat between points in
the bar of finite (though very small) distance from one another. In
considering infinitely near points, it is evident that their differences of
temperature and the quantity of heat interchanged between them are
infinitely small, while the quantity of heat given up to the next colder
layer must be equal to the entire finite quantity which all the succeeding
colder parts of the bar lose to the air. For support of this assumption,
Laplace referred to the translucency (previously observed by Newton)
and hence the penetrability to heat-rays, of very thin metal leaves.
Later, Fourier® continued these investigations further.

In the case of an iron bar which had been kept with one end in a
bath of water of mercury at a definite temperature (60° or 82 °C) for
ten hours, Biot proved that to steps proceeding in arithmetical pro-
gression toward the cold end of the bar correspond decreases in
geometrical progression of the excesses of temperature above the
surroundings. Like Amontons and Lambert, Biot utilised this principle
for pyrometric purposes, and determined in this way the melting-point
of lead, for example, as 210 °C.

5. We easily see how the law formulated by Biot can be arrived at by
very simple considerations — like those undoubtedly employed by
Fourier in his first attempts to establish the theory of the conduction of
heat.!° Imagine a succession of equal small particles (for example
elements of a bar) whose excesses of temperature above the surround-
ings diminish according to the law of a geometrical progression. Let

u, au, o’u, a’u, ... a"u

be the sequence of these excesses of temperature, where u denotes the
‘temperature excess of the first particle above the surroundings and a a
constant proper fraction. Consider any three consecutive particles, for
example, those with the temperature excesses

a™ ley a™ u, a™t ey
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then the middle particle gains from the one on the left a quantity of
heat proportional to

dA—-—a)am ' u
and suffers a loss proportional to

I—-—a)a™ ' u
to the particle on the right. Its total gain is thus proportional to the
difference

l1—ayam ' u
For the particle with the excess a”+ u there is the analogous total gain
(1 — @)*a?~ ! - u. The ratio of the total gain is thus

(1—a)2am_1-u a" - u

1—a)ya’ 'u o u’

the same, therefore, as that of the temperature-excesses. But the losses
to the surrounding air bear the same ratio to one another. Consequently
the temperatures will rise until the total gains are just balanced by the
losses to the air, and then the law of the geometrical progression of the
temperature excesses will be satisfied. The law of the geometrical
progression is not, of course, affected by the size of the intervals. Leave
out, for example, two particles for each one taken: then the series
becomes

u, Bu, B*u, B’u, . . .,

where = a®.
If / be the distance between the middle points of each two adjacent
particles, the temperature gradients between each pair of particles:

(1—a)u a(l-—a)u o (1—a)u

l b l > l Pttt
again from a geometrical series with the same exponent. Denoting the
terms of the above series by u;, u,, u;, ..., and forming the expres-

sions

U — Uy Uy — U
e
[ )

which measure the velocities of the decrement of the gradient, these
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velocities again form a geometrical series:

1 — 2
PGl

(11— a)zu
2 ’ ]

1_ 2
l az( 20‘)”

’ l

g v e e

with the same exponent. The properties of Biot’s stationary state are,
thus, very easily derived.

6. Fourier’s contributions to the theory of the conduction of heat began
in 1807 and ended, in essentials, with the publication in 1822 of his
chief work already mentioned. In this work, the phenomena of the
conduction of heat were deduced from the assumption that the parts in
the interior of a conducting body which lie very near one another
interchange quantities of heat proportional to their differences of
temperature. This proposition is easily obtained from observations on
the communication of heat; and, conversely, it may be regarded as
established by the quantitative agreement of the results derived from it
with experience. The entire theory of Fourier is, then, merely a com-
prehensive mathematical presentation of the facts of conduction of
heat.

7. Fourier started from a very simple idea.!’ Let a heat conducting
body (such as copper) completely fill the space between two infinite
parallel planes (I, II). Plane I is supposed to be bathed constantly with
the steam of boiling water and kept at the invariable temperature
1;(100 °C), while plane II remains continually in contact with melting
ice and at the temperature u,(0 °C). It is assumed that a distribution of
temperature has established itself in the conducting plate, in virtue of
which the temperature decreases proportionally to the distance from I
to II according to the law of a straight line, and thus diminishes from u,
to u,; then this state remains stationary as long as I is maintained at u,
and II at u,. For, imagine a thin layer M, parallel to I and II, singled out
of the conducting body and in this layer a particle m; then, for every
warmer particle, m’ lying to the left there exists a particle m” lying to
the right, symmetrically placed with respect to m and just so much
colder than it as m is than m’. Thus m receives from m’, in the same
time, the same quantity of heat that it yields to m”. Therefore the
temperature of m and of the whole layer M — and so too of any other
layer — cannot change. In this investigation, only those particles are
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M
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M
Fig. 33. Fig. 34.

considered which lie near enough to m to enter into an exchange to
heat with it.

But though the temperature of the particles lying in the plane M does
not change, yet heat traverses the plane. The quantity w of heat which
flows through the area g of the plane M in the time ¢is

e kg Tt
/

That is to say, were the difference u, — u, doubled, the thickness / of
the plate (I, II) remaining the same, then all differences of temperature
of the particles taking part in the interchange would be doubled. The
doubling of / would have the opposite effect. Obviously, the quantity of
heat traversing the plane increases with ¢ and g, and is, under otherwise
similar conditions, dependent upon the material of the plate (copper,
iron). This is indicated by the coefficient k, called by Fourier the
“internal conductivity”. The expression (u; — u,)/! is called the “tem-
perature-gradient”. Fourier rightly laid great stress on this idea of the
flow of heat, upon which all further developments were founded.

8. In order to make clear the significance of k, we get from the above
equation

k= >

ul - u2
— t
N

It we put =1, (u; — u,)// =1, and ¢ = 1, then k signifies the quantity
of heat which, in the material with which we are concerned, flows
through the unit of surface in the unit of time, provided the temperature
gradient is unity and is perpendicular to this surface.
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9. It follows also from the idea of the flow of heat that the above-
mentioned stationary distribution of temperature actually establishes
itself if only I and II are maintained at constant temperatures. Should
the temperature gradient not be the same throughout but less on the left
of M (Fig. 35), then less heat flows to M than flows away from it in the

M M

T q\ I\\

Fig. 35.

same time, so that the temperature of M sinks. The opposite occurs
when the gradient on the left of M is greater than that on the right. It is
evident, now, that if the temperature distribution is represented by any
curve (Fig. 36) at all parts of the curve convex towards the axis of
abscissae the temperature increases, and at all parts concave to the axis
it decreases; so that the curve levels itself of its own accord and passes
into a straight line. The above-mentioned stationary state is then
attained. We may also say that, in this, every part assumes the mean
temperature of the surroundings; and this is to be expected from the
known properties of heat.

Suppose there is so slight a curvature of the temperature curve that
the part of the curve which belongs to a part of the conducting medium

P

Fig. 36.
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which is still just penetrable by heat-rays may be regarded as straight,
the expression for the flow of heat referred to the unit of time may be
written

where k and g have the foregoing significations, x indicates the direc-
tion in which the temperature varies, and du/dx is the temperature-
gradient at the point question. The sign (—) shows that the stream of
heat flows in the sense of diminishing temperatures.

10. We will now proceed to examine a variable (not stationary state of
temperature. The temperature varies in the x-direction (perpendicular
to I, IT) according to some law not that of a straight line. We fix our
attention upon some layer M (parallel to I, IT) of the thickness dx (Fig.
37). From the left there enters through the surface g in the time df the
quantity of heat —kq(du/0x) dt, while on the right, since du/0x varies
with x, the quantity

ou 0’u
—kqg| — + —=dx | dt
7 ( ox ox’ x)

of heat flows away.'? The quantity of heat that accrues to M in the time
dt is therefore kq(0?u/0x?) dx dt. The volume of the layer lying upon
the surface g is g db, its density is o and its specific heat c; accordingly
its capacity for heat is q dx oc. If (0u/0r) dt be the increase of tempera-
ture in the time df, the accrued quantity of heat is also

0
q-c-dx-pldt

ot
Therefore the equation
ou 0’u
verdiro—dit=k-a- dx+d
q ¢ /O at q ax2 l’
or
ou  k 0’u

At o x’’
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subsists, in which, therefore, u is a function of x and ¢, whose properties
are expressed by this partial differential equation.

11. If the temperature in an infinite heat-conducting body is supposed
to be different from point to point and thus, in general varying in all
three coordinate directions x, y, z, the corresponding equation follows

M

\H\

Fig. 37.

quite analogously. We consider an infinitely small parallelepiped of
sides dx, dy, dz. In each coordinate direction a current goes in and out.
For the currents in the x-direction dy dz replaces g. In consequence of
these currents, the increase in the quantity of heat in the time dr in the
volume-element dx dy dz is

2

3
k-dy-dz—s dx - dt;
ox

and similarly for the other two directions of the current,

’u

k-dx-dz——= dy-dt,
ay

and

du

k-dy-dx —s dz - dt.
0z

On the other hand, the increase in the quantity of heat in the volume
element is

Qu

or dt.

dx-dy-dz- pc
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Hence we get the equation

ou k

+
ox’ 9y’ 9z°

d’u + ’u o’u )’
ot o

in which u is therefore a function of x, y, z, and ¢, whose properties are
determined by this equation.

For a sphere, whose temperature u varies only with the distance
r from the center, this equation takes the form

du k

ot co

ar’ r Oor

o%u + 2 au)_

and for a cylinder, whose temperature u depends upon the distance r
from the axis, it is

Bu_ k (@u, 1 du
at co \ or r o or |’

Both of these equations may easily be derived immediately from the

general equation as well as analogously to this general equation.

12. In reality, we do not have to do with bodies unbounded upon one
or all sides. On the contrary, the conducting bodies are bounded and
usually immersed in another conducting medium (the air). Con-
sequently, the processes at the surfact of a heat conducting body
require special investigation. The quantity of heat w which a body loses
through a surface area w, maintained at the temperature excess u above
the surroundings (the air), in the time ¢, is

w = hout,

and therefore proportional to w, u, and ¢ The factor /# depends upon
the conducting body and the surrounding medium and was called by
Fourier the “external conductivity”. If we write the above equation in
the form;

w

wut ’

and put w, u, and ¢ equal to unity, then we see that the external
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conductivity is determined by the quantity of heat which is lost to the
surroundings with the unity of temperature excess through the unit of
surface in the unit of time.

13. In order to represent the conduction of heat in a bounded body,
Fourier employed a highly ingenious method of investigation. Instead of
the bounded body, he imagined first an unbounded one in which the
boundary surface of the former is drawn. Since the temperature can
vary from point to point, the temperature gradient at any point can also
have any value whatever in orne direction. Fourier now supposed the
temperature gradient at any point of this boundary surface so chosen in
a normal direction outwards (into the unbounded body) that the same
heat-currents flow through the elements to the surface as would
correspond to the coolings by the surrounding medium. Then the same
processes take place in the part of the unbounded body imagined to be
enclosed as in the corresponding bounded body. This consideration
leads to the equation

du
—kw — = hou,
w n ou
or
du h
— + —u=
dn kK 0,

in which n denotes the normal direction of the surface element. Here
_dl Jdu ix_ Ju _@1_ du dz

— S
dn ox dn dy dn 0z dn
or

d 0 0 0

—;i% = a—Zcosa + —%cosﬂ+ —écosy.
The angles between the normal and coordinate axes are here denoted
by a, B, y. If the equation of the surface, F(x,y,z) = 0, is given,
the cosines may be expressed at once in the usual way by 0F/0x,
OF/0y, 0F/0z. This concludes the fundamental part of Fourier’s work.

14. Fourier was the first the point out that, if an equation be not
merely a numerical contingency, but expresses an actual geometrical or
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physical relation, its terms must be magnitudes of the same kind, or as
he said, magnitudes of the same dimension.'*> Only then is the sub-
sistence of the equation independent of the fortuitous choice of the
units. I have elsewhere presented the theory of dimensions, and shall
not discuss it here again.!*

15. After clearly defining the conception “internal conductivity”, the
determination in a rational way of the constant k relating to it may be
proceeded with. This has been attempted by Fourier!> and Péclet.!®
Both methods are based upon the experimental ascertainment of the
quantity of heat which traverses a plate of given thickness and surface
in a definite time, a definite difference of temperature between the two
surfaces being maintained. Imagine two large and known masses of
water of different temperatures well protected against outward loss of
heat separated by a metal plate of given dimensions. The quantity of
heat which has traversed the plate is given immediately by the changes
of temperature which take place. Into the details of this experiment,
simple in principle but difficult of accomplishment and therefore
defective, we shall not enter.

On the other hand, Biot’s case, which is at the same time a good
example of Fourier’s theory, will be discussed more closely. For a plate
(I, Iy in which the temperature varies in only one direction (x) the
equation

Ju k 9%u

ot co ox’

holds. When the stationary state is reached 0u/d¢ = 0, and therefore
also

0%u/0x?>=0
The integral of this equation:
u=ax-+b,

gives the already known temperature distribution according to the law
of a straight line. The constants of integration, a and b, are determined
by the conditions u = u, for x =0 and u = u, for x = [ (the thickness
of the plate); whence

—u,
u=—lx+u1.
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The same law of stationary temperature distribution as that errone-
ously assumed by Amontons for any bar would hold for a bar heated at
one end and protected from loss outwards.

A more detailed examination is necessary for Biot’s case even if, for
the sake of simplicity, we regard the temperature as the same through-
out the section of the bar, supposed to be thin. From Fourier’s
fundamental formulae there follows the equation

ou 0’u

o # =k

q-dx - pc dx-dt —h-p-dx-u-dt,

or

where p denotes the perimeter of the section of the bar, and all the
other letters have the known signification. For the stationary state
du/ot=0,or
0’u hp
———u=0.
ox’ kq “
The general integral of this is

u=Ae"* + Be ¥

in which A and B are the constants of integration, and, for brevity, x is
put for Ap/kq. From the conditions that 4 = 0 for x = o and u = U
— the temperature of the bath — for x = 0, the integral takes the form

u="Ue™*¥

which gives the geometrical progression of the temperature-excesses.
For steps of length x = 1, we have (1/e)¥* as the ratio of the pro-
gression. If we determine this by trial, we get —x = hp/kq. If we take
bars of different materials but of the same dimensions and with the
same covering (varnish or silver-plating) in order to make 4 the same,
as C. Despretz!7 has done then for different materials x/x’ = k' / k.

17. J. D. Forbes'® carried out an absolute determination of k by a
method suggested by Fourier's!® derivation of it. This derivation is
based upon the following idea. If the exponent for the stationary state
has been determined, the temperature at all points of the bar and also
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the temperature gradient are known. Let the temperature gradient at
any point be 0u/0x, then there flows through the section ¢ in the unit of
time the quantity of heat kq(0u/dx). This is just as great as the loss of
heat of the entire bar lying behind (in the sense of flow) the section
considered.

This loss of heat is directly determined by a second special distinct
experiment. The entire bar is heated to u and afterwards allowed to
cool. If the decrease of temperature is observed from minute to minute,
the loss of temperature u” belonging to each temperature u in the unit
of time is known. Here u’ is proportional to u. If [ is the very small
length of a portion of the bar, then glcou’ is the quantity of heat lost by
it in the unit of time. Since the distribution of temperature in the whole
bar is given, the quantity of heat lost by any portion of the bar in the
unit of time may easily be specified for the observed stationary state.

By the process of Forbes, a somewhat different value for k is
obtained according as the section is taken through a place of higher
or lower temperature. Consequently k, instead of being a constant,
depends in a slight degree upon the temperature, as Fourier?® regarded
as possible.

The theory, therefore, requires modification with respect to this
circumstance.

If 1 cm is chosen as unit of length, 1°C as unit of temperature, 1
minute as unit of time, and a gram-calorie as unit of quantity of heat,
then, according to Forbes, k = 12.42 for iron at 0 °C but k = 7.44 for
iron at 275 °C.

F. Neumann,?! also in continuation of Fourier’s work, has found,
with the same units,

k
Copper 66.47
Zinc 18.42
Iron 9.82

18. Important as was the clarification of the ideas of the conduction of
heat and the solution of a wide range of problems which resulted from
Fourier’s works, yet vastly more important was the development and
transformation of the methods of mathematical physics which was
caused by them. In order to describe this transformation, the way for
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which was already to some extent prepared, we must go back somewhat
in our account.

19. Through various investigations concerning the vibrations of cords,
clearer ideas of the nature of partial differential equations had been
gained, and mathematical experience, which Fourier knew how to
utilise in the most fruitful way, accumulated. The first attempt to treat
the vibrations of cords mathematically was made by Brook Taylor?2.
Taylor considered a stretched string to which the very feeble bending

. TX

u=asn—

)

is given.?®> All elements of the string then receive accelerations towards
the position of equilibrium, which are proportional to their distance
from it, with the same factor of the proportion for all elements. Thus all
elements perform pendulum-like and synchronous oscillations, simul-
taneously pass the position of equilibrium, and simultaneously reach the
maximum of their displacements. If the acceleration belonging to a
definite displacement is determined for one element, then the time of
vibration of the string can be found.

Fig. 38.

In order to make the problem definite, we will consider an element
of the string, ds, which may be assumed equal to dx. If p (in absolute
measure) is the tension of the string, then, from the left, the element is
subject to the pull p, whose vertical component downward, since u is
diminished thereby, is —p(du/ds) or —p(du/dx). On the right, the pull p
likewise operates, but its vertical component is

ou ’u
+p (g + ax2 dX) .
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Therefore the vertical component affecting the element ds (or dx) is
p(0*u/0x?) dx or, since u = asin(zx/l) and

9’u 7’a sin 7% 7’

= — = —— U,

ax’* I? ! I’
the force becomes —dx p(7?/1*)u, and is, accordingly, proportional to
the displacement. If /2 is the mass of the whole string, and, consequently,
m dx/l that of the element, then for the unit displacement, the accelera-
tion (force divided by mass) of any element is pzr?/ml = f2* The time of
a complete oscillation is >

/1 /
Te2n |~ o T=2/"
f P

Taylor regarded the motion of the string described above as the only
one. Were the initial form of the string different, Taylor erroneously
believed — he even produced a proof for it — that the sine-form would
immediately establish itself and the form of oscillation described above
would be set up.26 D’Alembert?’ was not under this delusion: he knew
that, on the contrary, the motion of a string can be just as infinitely
diversified as the initial form given to it. Since, from what precedes, the
force affecting an element of the string is p dx(d?u/0x?), and, as it can
also be represented by (m dx/[)(0?u/0t*), where 0?u/dt* denotes the
acceleration, d’Alembert found the equations

9’u _pl 0’u
o’ m 0x’
in which Euler?® wrote, more briefly, p//m = ¢2.

It is even possible, by suitable choice of the units of measurement, to
put ¢ = 1. This latter case is the one which d’Alembert actually
investigated. The displacement u of a point of the string depends both
upon the distance x of the point from the end of the string and upon
the time #: it is a function of both variables. By particular considerations
d’Alembert gained the insight?’ that

u=¢x+1+ypx-—r1
represents the general integral of the equation

d’u ’u

orr ox’
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where ¢ and y are undetermined functions of x + ¢ and x — «. Euler
afterwards gave for the more general equation the integral u = ¢(x +
ct) + (x — ct), and deduced it by his method.*® Thus there are
therefore infinitely many states of motion of the string conceivable.

21. Daniel Bernoulli believed that he could harmonize the conceptions
of Taylor and d’Alembert in a simple way. Sauveur?!' had already
shown experimentally that a string can move not only as a whole,
vibrating its fundamental tone, but also when divided into 2, 3, 4, ...
equal parts, vibrating with a 2, 3, 4, . . . fold number of oscillations, and
that, furthermore, all these motions may take place simultaneously.
Theoretical difficulties did not stand in the way of the elucidation of
Sauveur’s phenomena. It was seen that the nodes (k), if the string

Xk EZTN
N~——~

Fig. 39.

receives sine-shaped bendings, were continually acted upon by equal
and opposite tensions, and so behaved as fixed points. If a very feeble
and sine-shaped bending of the fundamental tone is imagined, scarcely
anything is changed by it in the relations of the tensions of the string.
The sine-shaped bending of the octave appears as a deviation from that
of the fundamental tone and it might be conceived to carry out its
motion about this as about a (variable) form of equilibrium. In this way,
Bernoulli imagined to be situated in the string a whole series of sine-
bendings of which 1, 2, 3, 4, ... half-periods left no remainder in the
length of the string, so that the initial bending u was represented by

u=alsinn—lx+azsin%c+a3sin ad +...,

and he thought any initial bending whatever of the string could be
represented in this way. Thus, in his opinion, Taylor had the correct
solution, and the infinite multiplicity of the solution of d’Alembert was
explained mathematically and physically by the simultaneous occur-
rence of such motions as Taylor described.’? Euler3? admitted the value
of Bernoulli’s view, but denied the possibility of representing by
periodic series every initial form of the string, for example one com-
posed of broken straight lines. Accordingly d’Alembert’s solution,
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which admitted such initial forms, still seemed to him the more general.
In the discussion alluded to there lay, as we shall see, all the germs of
Fourier’s developments.

22. Having now discussed the circumstances under which such ques-
tions arose, we propose to examine these questions more closely; and in
the first place to inquire into the essential difference between the
integrals of an ordinary and a partial differential equation.

An ordinary differential equation dy/dx = f(x), in which we imagine
the variables separated, gives the law of growth of y for variations of x.
The integration consists in the reconstruction of the function from this
law of growth. But the law of growth, by its very nature, contains
nothing about the initial value of the function; and, for this reason, the
“constants of integration” remain undetermined. For example, if the
gradient of a railway is known from meter to meter of horizontal
projection, the contour can be reconstructed from this, but not the
absolute height of the initial point (or of any other point).

A partial differential equation gives, in the simplest case, the depen-
dence of the two first partial differential quotients of a function of fwo
variables upon one another. If, for example, u = f(x, y), and we put

ou Ou

— =g

ox oy
then du/Ox is determined by du/dy or vice versa, but the values of the
one or the other remain wholly undetermined. And so the manner of
dependence of u upon x or upon y, as the case may be, remains wholly
undetermined. There is merely a relation between the law of dependence
of u upon x and that of « upon y, and this relation is that expressed by
the equation.

This will be made still clearer by examining particular examples
which lead to partial differential equations. Referred to a system of
rectangular coordinates, y = b — ax is the equation of a straight line in
the xy-plane, or, in three dimensions, the equation of a plane per-
pendicular to this xy-plane which passes through the above line (where
b = OM), while u = ¢ (where ¢ = OR) is the equation of a plane
perpendicular to the wu-axis. Both equations together represent a
straight line (M’N’) parallel to the first (MN). If a remains constant,
while b and ¢ vary according to a certain law ¢ = ¢(b), the line moves
parallel to itself and describes a cylindrical surface. If we regard b =
OM and c = OR as coordinates of a directrix ¢ = ¢(b) lying in the yu-
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plane, we obtain, by substituting u for c and y + ax for b in the above
equation,

u=¢(y+ ax).

as the equation of the cylindrical surface (in the yu-plane) with the
wholly arbitrary directrix u = ¢(y). Everywhere that y + ax has the
same value, u has the same value; and in this lies the character of this
cylindrical surface. If we form the expressions du/0x = a. ¢’ and ou/dy
= ¢’, it is evident that between the two the relation

ou _ du

ox dy
holds, and this represents the (partial) differential equation of the
cylindrical surface, from which the function which determines the form
of the directrix has entirely vanished, nor can it be derived from the
differential equation.

The function ¢ of the integral equation u = ¢(y + ax) is thus
undetermined; nevertheless, if the differential equation is to be satisfied,
it cannot involve x and y in any manner, but only in the combination y
+ ax. Thus the peculiarity of such integrals is that they present them-
selves in the form u = ¢[f(x,y)] as undetermined functions ¢ of
determined functions f of x and y. The two differential quotients are

u _9f B _ o

and —2% — )
ox ox oy dy ¢

The fixed relation between these partial differential quotients is given

by the determined function fand its partial differential quotients 0f/0x,
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0f/0y, which do not disappear. The differential equation of the fore-
going example says that at every point 0u/Ox is a times greater than
du/dy. With regard to the course of the surface in the section XU or
YU, nothing is determined by this. Only if one is chosen, then the other
is also subject to a condition.

For the total change of u, we find

ou ou ou
du O dax + 3 dy 3 (a-dx + dy).

Thus du = 0if a - dx + dy = 0 or dy = —a dx; that is, if dy always
moves with a times greater steps than dx and in the opposite sense.
In this consists the character of the cylindrical surface with this axial
direction.

A surface of rotation which has the wu-axis as axis will serve as a
second example. Let the meridian section be u = ¢(r?); then the
equation of the surface of rotation is

u=g(x*+ y*).
and, since
ou

du
—_— = '2 T = /2
. ¢'2x and 3y ?'2y,

we have

ou ou

==

ox G)Y
as the (partial) differential equation of the surface of rotation of which
the above is the integral equation. Here ¢ is an undetermined function
of the determined function x? + y? of x and y. The meridian section is
wholly undetermined. But the character of the surface consists in that u

remains unchanged so long as x? + y? is constant, or x *dx + y-dy =
0.

23. The general integral of the partial differential equation
0’u , 0%u
ar
is, as already stated,
u=g¢(x +ct)+ ¢(x — ct).
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This contains two undetermined functions ¢ and ¥ each of a deter-
mined function (x + ¢t or x — ct) of the two variables x and ¢ Sub-
stitution or the working out of the differentiation shows at once that
this integral satisfies the equation. If x, ¢ and u are regarded as geo-
metrical coordinates, then u = ¢ and u = y are two cylindrical surfaces
of different axial directions which are parallel to the xt-plane and
symmetrical about the t-axis, but of undetermined directrices. In them,
u remains unchanged as long as x + ¢z and x — cf respectively remain
unchanged, or as long as dx + c-dt =0 and dx — ¢+ dt = 0, respec-
tively. If, then dx and dt are put in the relation dx/dt = —c or dx/dt = ¢
respectively; that is to say, if we move in the physical sense upon x with
the velocity —c (or +c respectively), we keep the same values of w.
Thus, physically speaking, ¢, 9 are waves of any form whatever, which
proceed along the x-axis with the velocities —c (or +c). For a string
with fixed points, ¢ and y satisfy special and easily assignable condi-
tions which will not be further investigated here.

A more careful consideration of the foregoing differential equation
explains why its integral contains two undetermined functions. Since
02u/0¢* is determined by 9%u/0x?, the latter, and therefore also du/dx
and u = F(x) remains undetermined for all values of x. If 0%u/d¢* is
indirectly determined (by 02u/0x?), the general expression for du/0t
can be derived, but not the initial value of du/dr = f(x) for the whole
range of x. In order to be able to make provision both for F and f,
the integral must contain two functions ¢ and . Physically, the neces-
sity of two undetermined functions results from the fact that we can
give to the whole series of points of the string both any initial dis-
placements and also initial velocities altogether independent of these
displacements.
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24. A special function which satisfies a differential equation — a
so-called particular integral — is comparatively easy to find. The
exponential has the known property of giving, by differentiation, the
original function multiplied by a constant. Thus the idea of substituting
u= e®*#in the equation readily suggests itself. In fact, the equation is
seen to be satisfied for @ = * fc. Thus it is satisfied by u = ef*+
and u = e/~ If B is chosen imaginary, it is seen that both
u = cos B(x + ct) and u = sin f(x * cr) and also the expressions
sin Bx + cos PBct, cos Bx - sin fct, cos Bx + cos Bet, and sin Sx - sin Set,
into which they decompose, satisfy the equation. As Euler3* observed,
the expression

aurau,tau;+ ...,

where u,, u,, us, . . . are particular integrals and a,, a,, a5, . . . arbitrary
constants, also satisfies the differential equation if it is linear. Because
of this property, we can construct more general integrals, in numerous
ways, from particular integrals. The consideration just mentioned leads
also to the above most general form of the integral.

25. The general integral of the equation
0’u o’u

T+t 53
ox dy

which forms the basis of important investigations, is
u=¢@x+y—1)+ ¢(x — yJ—1),

which is derived from the former one if we substitute y for £ and —1 for

ct

=0,

26. The ideas just explained were combined, developed, and turned to
good account by Fourier. Fourier observed, in the first place, that
simple relations such as those upon which Taylor had based his
examination of the motion of strings are also imaginable in the domain
of the conduction of heat. In an infinitely extended heat-conducting
body, let the temperature u vary only in the one direction x, and
according to the law

U= asin rx.

Then it is easily proved that the velocity of variation of temperatures is
throughout proportional to the temperatures themselves and according
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to the same coefficient of the proportion throughout. It is true that the
temperatures will become equalized, yet the distribution will always
remain sine-shaped and retain its period, just as the analogue holds for
the displacements of the string in Taylor’s investigations. But while the
string, since accelerations are determined by the differences of the
displacements of neighboring points, enters into vibrations, the tem-
peratures — since velocities of equalization which diminish propor-
tionally to the temperatures are determined by the differences — tend
by the law of a geometrical progression to the mean final temperature
which is reached only after an infinite time.
In fact, if

U= asin rx,

we have, by Fourier’s equation
du o’u
o o
where k¥ = k/co,
ou/dot = —xr?asin rx,
or
ou/ot = —r*xu,

the velocity of change thus being proportional to the temperature.
Integration with respect to ¢ gives, for a definite point,

—_— —2
u=~Aer,
where A denotes the initial value of u, therefore
u = e—r’xig sin rx

represents the entire course of the phenomenon as it was described
above in words. We may verify that the last expression satisfies the
differential equation, whatever values a and r may assume.

27. If we imagine an infinitely long thin bar protected from outward



102 CHAPTER VI

conduction of heat, the temperature follows the same law if we assume
the same variation in the direction of length. If the bar is taken of finite
length and bent into a ring, the phenomenon still remains the same if
only a number of periods of the sine — for example, one period —
divides into the circumference of the ring without remainder. In the
latter case, if the temperature ordinates are erected perpendicularly to
the plane of the ring, their ends lie in a plane drawn through that
diameter of the ring which contains the point of zero temperature; this
plane, during the equalization of temperatures, gradually diminishes its
angle with the plane of the ring and finally, after an infinite time,
coincides with it (Fig. 43).

Fig. 43.

If the temperature of the surrounding medium is taken as zero, the
interchange of heat with it cannot change the form of the foregoing
process, since the velocities of equalization are proportional to the
temperatures. The only difference is that the fall of the geometrical
progression will be greater. The same is true for a bar which is not
protected from external conduction of heat.

28. We will leave the consideration of the external loss of heat, and
turn back to the variation of temperature in the x-direction in a con-
ducting body of infinite extension. When Fourier took up the idea of
putting together the solution of a differential equation from particular
integrals, after the precedent of Daniel Bernoulli and Euler, he arrived
at a very manifold distribution of temperature. That is, if we put

—r121ct ,22 —r32xt

u=e a,sinrx +e " “a,sinrx +e a;sinrmx+ ...,



ON THE THEORY OF CONDUCTION OF HEAT, I 103

where a,, a,, a5, ... and r,, r,, 15, ... have any values whatever, and
the number of terms can be as large as we please, then this expression
also satisfies the above differential equation, and represents the whole
process which begins with the initial distribution

u=a.sinrx +a,sinr,x +a,sinr;x+...

But Bernoulli had not yet succeeded in representing an arbitrary func-
tion; he had not yet been able to attain to the complete generality of
d’Alembert’s solution, which appeared to Euler also unattainable by
this method. However Fourier accomplished this by using infinite peri-
odic series. In order not to interrupt the discussion of the main subject,
we will postpone the consideration of the method adopted by Fourier
for this purpose. We will now illustrate Fourier’s treatment of the sub-
ject by examples, the results of his work.

29. Fourier attempted so to determine the coefficients a, b, ¢, d, . . . in
the infinite series

l1=acosx+bcos3x+ccosS5x+dcosTx+ ...

that the foregoing equation is satisfied. Fourier® succeeded in doing
this through the successive addition of terms by induction, and obtained
the equation

4
1=-—(cosx —3cos3x+3icos5x—zcos7x +...)
7T

which is correct for values of x between 7/2 and —m/2.

By reason of the periodic nature of the terms the value of the right-
hand side of the equation changes in the manner indicated in the figure
between +1 and —1. If both sides of the equation are multiplied by u,
an oscillation between the values u and —u is represented. If the
variation is to occur, not in periods of the length & but of the length /,
then zx/l is to be substituted in the place of x. Paying attention to the
foregoing *® consideration, we see that the equation

_ 4u — i/ X | — 3ax
u=——1_e¢e coOs—— — —e¢ cos———+ ...
4 l 3 )

which, for ¢ = 0, represents a variation of temperature (corresponding
to Fig. 44) in the x-direction with jumps between u, and —u,, and in
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periods of length /, gives the entire course of the equalization of
temperature for increasing ¢’s. Nothing now interferes with our imagin-
ing an infinite plate of thickness / and included between parallel planes
perpendicular to x, being cut out of the conducting body. If this plate is
heated to the initial temperature u,;, and immersed in melting ice, the
equation represents the whole process of the conduction of heat (or the
process of cooling) in it. That the equation beyond x = +//2 has an
analytical significance need not perplex us. The process takes place in
the same way in the plate, whether we regard this plate as part of an
infinite body or as isolated and immersed in ice, just as an oscillating
part of a string behaves as if its ends were fixed.

30. If the curve corresponding to the series is constructed by adding
one term after another, (Fig. 45) the curves 1, 2, 3, ..., in turn, are
formed and they approach, as we see, the curve in Fig. 46, 1, about
which they play, so to speak, in oscillations of diminishing amplitude
and period. If now, the exponentials are added, it is seen that the terms
of shorter period vanish much more rapidly than those of longer
period, so that, as the time increases, the term of longest period takes
on a predominating importance. This is shown in Figure 46, 2. This
results in a rounding of the corners of the curve. This behavior cor-
responds exactly to that in the case of the vibrating strings whose higher
partial tones have a shorter time of vibration than the lower. Fourier,
following the example of Galileo, endeavored to separate the process
into component processes which can immediately be grasped.

31. As a second example a stationary distribution of temperature may
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Fig. 46.

be discussed. We imagine a conducting body bounded by three planes
perpendicular to the XY-plane. Of these, two are parallel to the X-axis
(these represented in section by AC and BD) and unbounded in the
X-direction; the third (AB) goes through the Y-axis. The whole plane
AB is bathed by steam of boiling water, while AC and BD remain in
contact with melting ice. The stationary state of temperatures must
satisfy the equation

*u d’u
- + -
ox’ 9y’

A particular integral is

= 0.

u = e*cos uy,
and therefore a more general integral is

u=ae " cospuy+ ae " cos u,y+ ase “cosusy+. ...

c X

Y™ o0 8 Y
Fig. 47.
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By referring to the previous example, we see that this integral may be
adapted to the conditions of the problem by putting

4 - 1 _ 3
w= B[ gmtoos TV o g 9T
n [ 3 l

1 _ 5
4 S ny
5

e cos —— — ...
l

In this AB = [/ and the temperature on AB is put equal to u,. Here also
the stationary state of flow can be resolved into several parts which
allow of an easy survey; and observations which are similar to those in
the previous case may be made.

32. It is not necessary here to go into the particulars of all the
problems that Fourier solved. The examples given suffice to show
the character of these researches. Throughout, it is Fourier’s plainly
expressed aim>’ not only to represent the phenomena in formulas, but
in such formulas as permit an insight into, and numerical calculation of,
the processes. Formulas which do not afford these advantages appeared
to him to be idle transformations under which the processes remain no
less hidden than under the differential equations from which we started.

33. But we must mention the propositions which make the convenient
handling of periodic series possible. The ideas underlying them are as
follows. It is required so to determine the coefficients in the series

a,sinx +a,sin2x +a;sin3x+ ...

that its sum is equal to a given function f(x). If we have n terms of the
series, we can so choose the n coefficients a,, a,, a;, ... that, for n
values of x, the value of the series actually represents the respective
values of f(x). But it is clear that, for x = 0 and x = =z, the value of the
series is necessarily zero. If the series, for values of x which increase
from 0 to 7, assumes in succession the values +p, +¢q, +r, . .., then,
from 7 to 27, by virtue of the periodic nature of the terms, the values

., —F, —q, —p, with contrary signs and in reverse order, must be
taken; and this entire succession of values repeats itself as often as x
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increases by 2. Thus, by choice of the coefficients a,, a,, a;, ..., we
are able to assign values only between x=0and x = 7.

If we divide the interval s into n parts, we have for the n — 1 points
of division:

2
f(l)=a1sin£+a2sin—n—+---+an_lsin(n—l)i,
n n n n
2 2 2 2
f(—n)=a1 sini+azsin2—n+---+an_lsin(n—l)—n,
n n n n

f(i(n_l)ﬂ )=alsin—(n—_~9£+azsin2M+---+

n n n
. n—1n
+a,_,sin(n—1) (—w)w
« n
From these n — 1 equations, n — 1 of the coefficients a,, a,, a;, . . . can

be determined. This is done most conveniently according to the method
of Lagrange®, that is, by multiplying each equation by one of the
coefficients 4, 4,, ..., 4,_,, adding all the equations, and afterwards
by so choosing the coefficients that all factors of a;, a,, ... a"~ ! with
the single exception of a,,, for example, vanish. In this way a,, is deter-
mined. Lagrange found that a,, is determined by putting

Al=23in(mj—),

n

Ap—1 =2 sin((n — 1)mma/n);
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so that every equation is multiplied by twice the coefficient which a,,

already has in that equation. In fact, a computation which is rather

lengthy but simple in principle* shows that all the coefficients of a,, a,,
.., a,_ vanish with the exception of that of a,,. Then obviously

am=~2——[f(—£)sin o +f( 2”)sm L
n n n n n

+f(3—:-) sin~3—r;m—+--~+f( (n=m ) sin ("_1)"’”]

n n

34. Fourier*® was the first to think of carrying out this process for an
infinite number of terms of a series; by this means an infinite number
of values of f(x) can be represented by the series, even though the
curve representing f(x) be composed by broken lines. In this case, if
27t/7n is written before the bracket instead of the factor 2/n, and we
put w/n = dx, 2a/n = 2 dx, and so on, the whole expression on the
right becomes a definite integral and we have

am=3J f(x) sin mx dx.
T Jo

If, in the interval from O to &, f(x) is discontinuous, the integral must,
of course, be separated into several parts.
In a similar way we find the development

f(x) =by/2 + b, cos x + b, cos 2x + by cos 3x + . ..

where

b, = 2 r f(x) cos mx dx.

T Jo
A still more general expression is*!

f(x)=15by/2 + by cosx + b, cos2x + by cos 3x + - -+

4+ a,sinx +a,sin2x +a;sin3x+...,
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in which
1 (+7
b,=—1 f(x)cosmx-dx
Y -
1 (+n
a,=—1 f(x)sin mx - dx.
b

If the function f(x) is such that f(—x) = f(x), the coefficients a
vanish; if, on the other hand, f{(—x) = —f(x), the coefficients b vanish;
so that this last series contains the two previous ones as special cases.

The series can only, in the first instance, be used within the limits
x=—m to x = +m. If f(x) is to be represented within a wider interval
of values of x, a variable u, connected with x by the equation x = cu/x,
is introduced: then u varies only from —m to 4+ while x varies from
—c to +c. For u = —n to u = +u, the equations

f(cw/n) = by/2 + b, cosu + b, cos 2u + by cos3u+---+
+a sinu+a,sin2u +aysin3ut...,

1 +n
b,=— J f(cwm) cos mu du,
1

s

1 +a
b= J f(cw/m) sin mu du,

hold. Hence, for x = —c to x = -+, the equation

f(x) = by/2 + b, cos (wx/c) + b, cos 2axic) + -- -+
+ a, sin (wx/c) + a, sin 2axic) + . ..
holds.
The names of the variables in the definite integrals a and b do not

matter, but if cw/mr = A is put in then as a new variable, they take the
form
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.

1™ maA
b,=—1 f(A)cos da,
c ). ¢
1 (+e
4= | ) sinT g
c ). c

v

35. Extension in this way of the limits of validity of the development
easily gives rise to the idea of extending these limits to infinity. Fourier,
indeed, succeeded in representing by periodic functions a function f{x)
whose values are arbitrarily given from x = — to x = +. If the
coefficients a and b are substituted in the above series, we see, when we
consider the well-known development of cos (a — B), that the series
can be written in the following way:

1 mm

fx) = —1C [ - r f(A) da + v r fd) cos == (1 = x) dl}

or, if we take m in the limits m=0to m=

fx) = lc [ - —%— rf(/l) A+ L r f(h) cos - (2 = x) di}

- m=1 J—c

If ¢ becomes very large, ;/c becomes very small. If, then, m
increases by one unit, we can regard ms/c = p as continuously increas-
ing and can put 7/c = dp. If the first integral on the right hand side is
finite, it vanishes on account of being multiplied by 1/2c. For 1/c we
write (1/) (w/c) = (1/7) dp, and get, in place of the sum the definite
integral

oy =~ f v f (A cos p(A — x) i

0

The more detailed mathematical investigation of Fourier’s expres-
sions and also further examples which would require somewhat exten-
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sive calculations must be examined elsewhere.*> Here we have been
mainly concerned with showing in what manner Fourier’s works were
joined to the works of his predecessors and what important points of
view he gained from them for his own investigations.



CHAPTER VII

THE DEVELOPMENT OF THE THEORY OF
CONDUCTION OF HEAT

1. Fourier’s theory of the conduction of heat may be characterized as
an ideal physical theory. It is founded, not upon a hypothesis but upon
an observable fact according to which the velocity of equalization of
small differences of temperature is proportional to these differences
themselves. Such a fact can be more precisely established or corrected
by finer observations; but it can, as such, enter neither directly nor in its
correct mathematical deductions into conflict with other facts. This
foundation of the theory, with the entire structure supported by it,
remains secure — while a hypothesis like that of the kinetic theory of
gases, for example, which assumes molecules with evanescent reciprocal
action and moved with great velocities in all directions, must be
prepared at any moment for contradiction by new facts, no matter how
much it may have contributed to the survey of the properties of gases
up to that time.

2. The entire theory of Fourier really consists only in a consistent,
quantitatively exact, abstract conception of the facts of conduction of
heat — in an easily surveyed and systematically arranged inventory of
facts, or rather in an introduction to the developing of this inventory
from the above fundamental property, and to the fitting into it of each
fact.!

Galileo reduced the entire mechanics of heavy bodies to the fact of
constant acceleration of falling, and Newton recognized this accelera-
tion as dependent upon the mutual distances of the bodies. Analogously,
Fourier’s theory is based upon the Newtonian principle of propor-
tionality between difference of temperature and velocity of equalization.
The conducting powers and capacities for heat determined the factors
in the proportions, just as the masses do in the mechanical case.
Distances with bodies gravitating toward one another, and temperatures
with bodies of unequal temperatures tend to become equalized; only, in
the former case, accelerations of equalization are determined by the
differences of distance, in the latter, velocities of equalization are
determined by the differences of temperature.?

113
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3. In saying that every material point tends to the mean temperature of
the surrounding points, the result of Fourier’s theory is so expressed
that it appears almost self-evident, and very close to our instinctive
perception. It lies as close as the observation that all heavy bodies left
to themselves sink. Science confirms, in both cases, an obvious fact,
only more exactly and completely in all respects than involuntary and
undisciplined observation is able to do. In mechanics and in the theory
of conduction of heat it is, really, only one great fact in each domain
which is ascertained.

Two contiguous bodies of unequal temperatures tend to their mean
temperature which is determined by their capacities for heat. The
velocity of change, 0u/0¢, of the temperature u of the point of a body
whose temperature varies only in the x direction, is determined by

8u=( k)azu

3 co | ax*’

and thus by its deviation from the mean temperature of the surround-
ings.®> According as the temperature u lies above or below this mean
temperature, it sinks or rises proportionally to its deviation from this
mean. For the case of temperature varying in any manner from point to
point in space, we imagine three straight lines drawn parallel to the
coordinate axes through the point (x, y, z), and erect the temperature-
ordinates perpendicular to each. The values 0%u/dx?, 32u/0y?, 0%u/dz?,
correspond to the curvatures of the three curves of temperature, or to
the deviation of the temperature u of the point (x, y, z) from the mean
temperature, in the three directions. The equation

du  k 0’u " 0’u + o’u

ot co \ ax® oy’

thus only repeats that u tends to the mean temperature of the surround-
ings with a velocity which is proportional to the deviation from this
mean. For the stationary state

du | u | du

+ + =0,

ox’ 0y’ 0z’
that is to say, this state occurs if the above deviation from the mean
is zero, or if every point has attained the mean temperature of the
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surroundings. The stationary (dynamical) state passes into a complete
(statical) state of equilibrium if the flow of heat vanishes, so that

ﬂ Ju du
ox ay 0z

or u is constant.

4. The last equation but one, which bears the name of ‘Laplace’s
equation’ is, as is well-known, of great importance not only in the
domain of the conduction of heat but in almost all domains of physics.
This is due to the following circumstance. If we conceive u as the
characteristic of a physical state of a material point (such as tem-
perature, potential, concentration of a solution, velocity-potential, etc.),
then every change of state, the continuance of a stationary process,
equilibrium, is determined by the differences of values of u at the point
(x, y, z) and the neighboring points. In a physical continuum, the
behavior of every point is determined by the deviation of the values of
its physical characteristic from a certain mean value of the charac-
teristic of the neighboring points.

5. Let, in general, u = f(x, y, z). For a neighboring point of the point
(x,y,2), uis given by f(x + h, y + k, z + 1). If ¢(Jh?> + k2 + [?)

denotes a function of the distance, to be ascertained in any particular
case, which determines the weight of the neighboring points in mean
value, and which, in general, diminishes, very rapidly with increasing
distance, then the determining mean value takes the form

[[[(2fx+hy+kz+Do(h +K+1")dh-dk-dl
([ o(JI® + I+ I°) dh - dk - dl

If we develop f by Taylor’s series up to the second powers of 4, k, [,
and integrate through all eight octants about the point (x, y, z), then, on
account of the alternate signs, all terms affected with odd powers of
h, k, I drop out, and there remains as the expression of the mean value,

- m ’u %u d%u
2 dx’
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Here m has the value

_ I e(B+ R+ D) I~ ah-dk-dl
([ oK+ K+ 1) -an-dk-dl ’

which depends solely upon the behavior of @. For the case of the
conduction of heat we have m = 2k/co. The deviation of u at the point
(%, ¥, z) from the mean value of the surrounding is, as we see, given by
the second part of the last equation but one. We notice at the same time
that the employment of the form just referred to depends upon an
approximation. If the value of ¢ diminishes more slowly with increasing
distance, then the development up to the second differential quotients is
not sufficient; it must be continued further. Further complications arise
if the values of u itself have an influence upon those of ¢, as Fourier
considered possible and Forbes experimentally proved.* This explains
the general phenomenological signification of Laplace’s equation. That
this equation is not confined to the narrower domain of physics I have
elsewhere briefly shown.’

6. A scientific theory like the theory of the conduction of heat just
considered, results from a double process: from the receiving of sense-
perceptions by observation and experiment and from the independent
reproduction of the facts of perception in thought. This reproduction, if
it is to have a scientific character, must be communicable. But thoughts
are only transferable when they are expressed in speech as images of
generally known facts. We have, then, always to reproduce the results
of observation, generally known facts of perception, by means of
generally known and readily performed activities. Only seldom can this
process be enacted entirely in the imagination; it is, for example, when
we imagine the cooling of a hot body in cold surroundings or the
formation of red cinnabar from metallic mercury and yellow sulphur. In
the determination of the refraction of light by a geometrical construc-
tion, we imitate the physical fact by geometrical ones, which emerge
when a readily performed muscular activity is exercised on known
geometrical objects. Likewise, the representation of the cooling process
by a geometrical progression is based ultimately upon a readily per-
formed reckoning or counting operation which is undertaken with the
degrees of the thermometer; thus it also is based upon a muscular
activity (a directing of the eyes, marking, naming of the degree, etc.).
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7. Our behavior in the domain of science is merely a copy of our
behavior in organic life generally. We react to qualitatively different,
definite stimuli with qualitatively different sensations and movements;
the latter are partly organically formed in advance (motions of tasting
and swallowing), partly acquired by personal experience (and here
memory comes in) — as when we shrink back from a red-hot body. In
the association and conflict of such reactions, which in their elements
are reflex actions organically formed beforehand, consist organic and
intellectual life. The nature of the process is not changed if the images
we form of the reactions are converted into movements; only the
intensity and the scope of the process has been augmented.

In the simplest organisms, all reactions serve directly the preserva-
tion of favorable conditions of life; what excites the corresponding
sensation of taste is swallowed. With fuller development, a reaction may
serve as means to a further end. The sight of an object recalls its taste;
the taste gives rise to the desire to seize the object. But this end is often
only attainable by a series of intermediate reactions.

All processes by which scientific results are gained have the nature
of such (intellectual) intermediate terms necessary for the attainment of
an (intellectual) end in life. In the simplest cases, we have to do with
this state of things: by the property A of a sensuous fact, the idea or
expectation of another property B is aroused, which determines our
further practical or intellectual behavior. Mental development consists
in the progressive association in memory of such connected properties.
In many cases this association, on account of the complication of
circumstances, cannot take place of itself involuntarily, but the dis-
covery of the (sensuous) properties that belong together is itself the
result of a reaction which is discharged by interest in the end; the
properties are sought.

Those sensuous properties which make their appearance through
such an intellectual or practical reaction are the properties of a concept.
The testing or constructive employment of the concept consists in the
performance of that wholly concrete reaction by which the properties
concerned become manifest in a given fact, or by which a fact with
those properties is represented. The concept “statical moment” may
serve as an example of this.’

8. In regard to isolated facts, there is nothing to do but to retain them
simply in memory. If entire groups of interrelated facts are known such
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that the two connected propeties A and B belonging to them each form
a series whose terms differ only in the number of equal parts into which
they may be resolved, then a more convenient survey and notional
representation may be obtained. The angles of incidence (A) as well as
the angles of refraction (B) of a series of incident rays; the temperature-
excesses (A) as well as the temperature-losses per minute (B) of cooling
bodies may be resolved into equal parts; and to every term of series A
corresponds a term of series B. A systematically arranged table can
now facilitate the survey by assisting or replacing the memory. Quanti-
tative investigation begins here; and it is, as we see, a special case of
qualitative research, applicable only to series of facts of a particular
kind of relationship.

9. We gain a new facility if the entire table can be replaced by a
compendious rule for reconstruction: if we can say, for instance:
multiply the temperature excess u of the cooling body by the coefficient
u and you obtain the temperature loss per minute (uu). If such a rule
or formula of reproduction is closely examined, it is seen to contain
merely an impulse to a concrete reaction which, stimulated by A,
produces B whose quality is always the same but whose extension is
determined by A, so that the reactions themselves also form a series
(well-known and practised) analogous to A and B. The formula a + b
produces the impulse to the concrete further counting from a on, and
only the extent of this activity is determined by b. The case is analogous
and not essentially different with complicated formulas.

10. After the above explanation, it cannot seem strange that apparently
remote facts and thoughts which were familiar from use in other
investigations were drawn upon for the representation in thought of the
phenomena of the conduction of heat. Here the ideas gained by con-
siderations of the vibrations of strings play the most important role. The
observation of a rope swinging slowly in the simplest manner must have
suggested to Taylor the idea of considering the separate points of the
rope as synchronous pendulums and of determining a feeble sine-
bending as the condition of this behavior. The accelerations and
velocities of each of two points of the rope then stand in the same ratio
as the displacements belonging to them; and all displacements change,
therefore proportionally to one another. For a sine-form distribution of
temperature an analogous simple relation holds: here all temperatures
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also change proportionally to one another. But in this Fourier intro-
duced a clear, and to him already thoroughly familiar state of affairs,
into the theory of heat.

Sauveur examined the distribution of nodes on the string; Daniel
Bernoulli represented the case analytically as a combination of Taylor’s
vibrations, and recognized the variety of form of the motions which are
produced in this way. Fourier also utilised this knowledge and treated
more complicated distributions of temperature as constructed — out of
simple (Taylorian) components — and their behavior now becomes just
as clear as in the more simple case.

Only the study of vibrating strings could suggest the idea of repre-
senting the form of the string between two nodes of distance / by a
series of the form

alsinn—lx+azsin x+a3sin x+...

where the same form must be exactly repeated between the Oth and 1st,
2nd and 3rd, 4th and 5th, . . . nodes, and between the 1st and 2nd, 3rd
and 4th ..., nodes in centrally symmetrical reversion. Fourier availed
himself of such series, with an infinite number of terms, for the repre-
sentation of any function whatever. Functions with the same value for
equal positive and negative values of the argument are naturally
represented by cosine series and functions with more general properties
by the sum of sine series and cosine series. By conceiving the distance
between two nodes as increasing up to infinity Fourier was able to
represent any function whatever, throughout any range, by the double
integrals into which his series are then converted.

11. By the conception of any of the more complicated distributions
of temperature as the algebraic sum of more simple distributions,
Fourier’s representation gains an extraordinary clearness upon which
Fourier himself laid the greatest value. With this is bound up his con-
viction that the method is generally applicable to the treatment of any
possible case with sufficient accuracy. All this is attained when we allow
the facts of conduction of heat to be represented in thought by a
function better known to us than these facts, and exhibiting the essential
properties of them.

Fourier followed the method which led Galileo to the understanding
of the motion of projectiles. He attempted to understand a process
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which cannot be grasped at a glance by resolving it step by step into
more easily surveyed component parts.

12. The favorable influence which investigations in different fields
exert upon one another stands out with particular clearness in the
theories considered here. Physical observations stimulate mathematical
investigations, and these latter again react upon the former. The theory
of heat is promoted by the theory of vibrating strings. The concep-
tions of electric current by Ohm and of diffusion of liquids by Fick
are imitative of the theory of conduction of heat; so that we can,
to-day, develop an entirely general theory of currents, in which hydro-
dynamical, thermal, electrical, diffusion and other processes, are
included as special cases.

13. To any one who has come thoroughly to know Fourier’s theory, it
appears as a great achievement. But if we remember of what simple
elements it is constructed, and how these elements have been accumu-
lated, laboriously and with many errors by different distinguished men
during an interval of more than a hundred years, we can well believe
that this edifice, under more favorable outer and psychological circum-
stances, could certainly have been erected in a very short time. From
this, we see that even the eminent intellect is more adapted to living
conditions than to research.



CHAPTER VIII

HISTORICAL SURVEY OF THE THEORY
OF RADIATION OF HEAT

1. The observation that there is a reciprocal action between the
temperatures of neighboring bodies is so immediate and so evident that
information as to when and where it was first made is scarcely
conceivable. Warmer bodies cool by communicating “heat” to cooler
surroundings; and Newton was the first to formulate a law to be
discussed later on concerning this communication. It was only gradually
discerned that, in it several very different kinds of process are
combined. Contiguous bodies mutually change their temperatures; this
process, in particular, we will call “communication”. If differently
heated parts of one and the same homogeneous body are involved, we
will call this communication “conduction”, and we may remark that an
accurate investigation of this process took place comparatively late. If
the warmer body is immersed in a liquid of which the parts in contact
with the body are heated by communication, their density and specific
gravity alter, and currents appear in the fluid, owing to the disturbance
of the equilibrium of gravity, which promote the reciprocal action of the
temperatures. This process is called propagation of heat by “convec-
tion”. J. Black! treated convection in a perfectly clear manner.

2. But that mode of propagation of heat which must have struck
people first of all is what we call “radiation”. The instantaneous heating
by the sun when it comes out from behind a cloud, as well as the
equally rapid cooling when a cloud passes before its face, leaves no
doubt as to the great velocity of heat propagation of this kind. In
addition to this, the properties of burning mirror and burning glass,
which undoubtedly were accidentally observed, show the inherent
connection between heat and light so clearly that knowledge of it can
only be obscured by later theoretical prejudices. Kircher? mentioned
the ancient burning mirror and recounted the well-known tradition of
the burning mirror of Archimedes.

3. Systematic experiments which are worthy of mention were made
with large burning mirrors and burning glasses by Tschirnhausen.? The
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lenses, which he made for these experiments by moulding them, were
100 to 130 cm in diameter. The concentration of the sun’s rays was
increased by the employment of two lenses, one behind the other. At
the focus, wet wood was burnt up, water in a small vessel was brought
to boiling point, lead and iron were melted, minerals were vitrified.
Sulphur and pitch melted under water; wood under water became
charred inside; and bodies inserted in coal were much more intensely
affected, and metals were successfully volatilized in this way. This
showed the greater absorption of heat by black bodies. Copper melted
in this way and thrown into water burst the earthen vessel by the
resulting explosion. Colored glass fluxes were made by means of the
burning glass; and finally, proof was furnished that moonlight produces,
in the focus, no perceptible heat.

The name “radiant heat” appears to be due to Carl Wilhelm
Scheele.* He observed that smoke rises to a distance of ten feet from a
fire; but that the radiation, felt at this distance from the open door of a
stove, is not affected by a current of air passing between. A glass plate
set up between keeps off the heat but not the light. The burning mirror
burns without itself becoming heated; but if it is covered with soot,
heating does occur. The heat rising through the chimney is to be
distinguished from that issuing from the door of the stove, and the
former is contained in the air quite differently from the latter. Air
irradiated by heat shows no shadow-marks (Schlieren) even in the sun,
as heated air does.’

5. Lambert® made many experiments on heating bodies at the fire, and
the effect of “fire rays”, and the sun’s rays; and to his mathematical
treatment of the process we will return. The laws of the propagation
and reflexion of fire rays, are, in his view, the same as those for light
rays.” Accordingly, he developed his propositions concerning the effect
of the burning mirror from the fundamental principles of optics.?
Lambert expressly remarked that “dark heat” also can be reflected. He
employed two coaxial concave mirrors for experiments on radiation.
The influence of black color upon radiation was known to him.’

6. Marc Auguste Pictet'® placed two large concave tin mirrors
coaxially opposite one another and introduced into the focus of the one
a hot body and into the focus of the other a thermometer with the bulb
sooted. Even at a distance of 23 m between the two mirrors, the
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thermometer immediately began to rise without a time that would be
necessary for propagation being perceptible. He therefore distinguished
radiant (rayonnante) heat from propagated (propagée) heat, and was of
the opinion that only the latter proceeds slowly from particle to
particle, while the former, which traverses the space between the
particles, travels in straight lines and in every case with considerable
velocity, perhaps as quickly as sound or even as light.

But Pictet did not reach a clear idea on the distinction between
radiation and conduction. Since he was not successful in collecting, with
a glass lens, the heat of a vessel filled with boiling water, he hoped to
succeed with a metal lens. Thus, he believed that good conductors were
good transmitters of heat-rays.

Fig. 48.

7. Through a conversation with Bertrand, Pictet!! was induced to
undertake an experiment on the radiation of cold. The hot body of the
above experiment was merely replaced by a vessel with snow or a
freezing mixture of snow and saltpeter; whereupon, to the surprise of
Pictet, the thermometer suddenly fell. Yet Pictet soon explained the
occurrence and recognized that here the thermometer is the warmer
body and loses its heat to the colder body — the freezing mixture. A
similar experiment had been performed by the Accademia del Cimento,
but the authors themselves regarded it as indecisive. The experiment is
historically important, because it suggested to Prévost an entirely new
conception of the equilibrium of heat which we shall have to discuss
later on. By the experiments of James Hutton (1794) Rumford (1796),
Leslie (1799), Herschel (1800), Nobili (1830), Melloni (1831), Forbes
(1835), Knoblauch (1847), and others, the identity of the rays of light
and heat and their agreement in all physical properties was gradually
more clearly and more completely established.

8. Pictet was of the opinion that fire behaves very similarly to light, yet
light may be present alone, as is the case with moonlight, and also heat
alone, as is the case with the “dark heat” of Lambert. Bodies of higher
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temperature contain the heat in a “higher state of tension”. The
equalization by radiation is an equalization of the tensions of heat.
According to Prévost’s hypothesis, of which we shall speak again, warm
bodies throw off warm particles with great velocity in straight lines to
one another. According to Hutton,'? radiant heat does not differ from
light. He knew that a red-hot body heats a thermometer more intensely
than the white light of a candle flame; and according to him, a dark
body continues to radiate even when the radiation is not perceptible to
the eyes. The hot body transforms its heat into light; and the light, by
absorption, can again become heat. Hutton’s investigation is very
clearly expressed. For Rumford!® heat consists in vibrations; he
compared the radiating body with a bell, and — but in a way difficult to
understand — the warmer body with a more quickly vibrating body the
colder with a more slowly vibrating body. The temperature would,
accordingly, be dependent upon the time of vibration. Sir John Leslie '
reduced radiant heat to pulsations of the air. The layer of air in contact
with the body take up the heat and give it by impacts to the successive
layers. This idea is surprising because Boyle had already observed in
1680 that the burning glass acts in the vacuum produced by an air
pump. Leslie was led to this view by the circumstance that he was able
to keep off the radiant heat by a thin metal screen, and this seemed to
him inconsistent with a more subtle nature of heat. Herschel'®
discovered thermal activity in the infrared part of the spectrum of the
sun by allowing this spectrum to fall upon a lens, shutting off the visible
part by a diaphragm, and introducing a thermometer into the focus.
Since, therefore, the optical action and the thermal action do not run
parallel, the thought occurred to Herschel that every ray is composed
of a luminous ray and a calorific ray. Gradually Nobili, Melloni,'® and
their successors proved the complete agreement of the rays of heat and
light with respect to reflexion, refraction, interference, and polarization.
There are, accordingly, only rays of one kind, which may be of different
wavelength and intensity, and merely on account of this appear more
prominently sometimes in optical and sometimes in thermal or
chemical action, and also have definite physiological properties.

9. The general views which the investigators mentioned reached have
just been set forth. But now we must pass in review the more important
particulars of the experience which they gained by means of their
researches. Rumford!” worked, as he stated, and as is indeed likely
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from his achievements, at about the same time as Leslie and indepen-
dently of him."® Rumford!® [with the object of determining whether the
invisible heating rays which a warmer body — such as a heated stove —
gives out are not of the same character as those coming from the sun|,
procured boxes of the same size, open at the top; fitted thermometers
in the boxes through cork stopppers in the centers of the bottoms; and
filled the boxes in exactly the same way with silver wire, to secure
uniformity of heating. The tops were formed of metal discs of brass,
tinned iron, and ordinary sheet-iron respectively. Rumford was not at
all surprised to find that the rays of the sun excited more heat in a given
time on the black and unpolished iron disc than on the other two bright
and polished discs, but was astonished to find that the box with the iron
disc cooled the most quickly of all.?° The experiments were repeated
before a stove instead of the sun, and they gave the same results. After
several modifications of the experiments with improved apparatus,
among which was the differential air thermometer,”’ Rumford remained
of the opinion that there are not only heating rays which accelerate the
vibrations, but also cooling ones which retard the vibrations.”? The
results may be summarized in the following propositions.® (1) All
bodies radiate at every temperature; (2) The intensity of radiation is
different at the same temperature (for example, it varies as 1:4:5 for
bright, oxidized, and sooted brass); (3) At the same temperature, bodies
are not influenced by the mutual radiations.

10. Leslie performed a great number of good experiments. He con-
structed the cube named after him, a tin vessel covered on three vertical
faces with soot, paper, and glass, respectively, while only one was left
bright. He used large parabolic tin mirrors for the reflexion of heat,
and different screens for its interception. With a differential air
thermometer, one of whose bulbs was placed in the focus of the heat
rays, he observed the rise of temperature. The irradiated bulb was
sometimes wrapped in tin-foil or blackened with indian ink. Enclosed
in a glass tube, this air thermometer served also as a photometer. The
rays emanating from a surface of the cube fell upon the concave tin
mirror and converged after reflexion upon the bulb of the thermometer.
The effects of the heat emanating from the surfaces of the cube which
were respectively covered with soot, paper, glass, and tin, when the
cube was filled with hot water, were as 100:98:90:12. Analogous

experiments succeeded with cold, and the radiations of cold were found
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to stand in the same relation. From this Leslie?* concluded that
absorption and emission of heat increase and decrease together. If a
surface of the cube was placed obliquely to the axis of the concave
mirror and allowed to radiate through the openings of a screen of
tin-plate, the action was found to be independent of the obliquity.*®
Since, now, with a given breadth of opening, the radiating surface
coming into consideration is greater in the oblique position, the
intensity of the rays leaving obliquely must be less. Later on, Leslie?®
mentioned that the luminosity of a shining surface is not altered by a
position which is oblique to the line of vision, just as a red-hot ball does
not appear brighter at the edge than at the middle; and he concluded
from this that the intensity of the rays of light is proportional to the
cosines of the angles the lines of departure make with the perpendicular
to the radiating surface. These are the views set forth by Lambert in his
Photometria a work known to Leslie.”” Leslie further remarked that
reflexion and emission of heat mutually supplement one another, as
strongly reflecting surfaces showed a feeble emission of heat. Some
interesting observations were concerned with the strong diminution of
the mobility of the air in thin layers,”® between cylinders placed in one
another, and the resulting small permeability for heat; and with the
special conductive power of hydrogen which is shown by the rapid
cooling in this gas.?® Prévost did not make many observations of his
own; but, in the essay to be spoken of later, he utilised in an admirable
theoretical manner the knowledge gained up to his time. A considerable
part of his book consists of translations and summaries of the works of
Rumford, Leslie, and others.

11. Newton was the first to express a theoretical view of the process of
communication of heat, on the occasion of his attempt to compute high
temperatures. He said: “For the heat which the heated iron communi-
cates in a given time to the cold bodies in contact with it, that is, the
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heat which the iron Joses in the given time, behaves like the entire heat
of the iron. Hence, if the periods of cooling are taken equal, the
amounts of heat will stand in geometrical ratio and are, therefore, easy
to find with the help of a table of logarithms.*® This passage can only be
understood from the whole context in the following way. Newton put
the temperature losses in equal times proportional to temperature
excesses of the hot body above the surroundings. No indication is yet to
be found of a separation of the ideas temperature and quantity of heat,
radiation and conduction. The correction which Dulong and Petit have
applied to the law will be discussed later.

12. Lambert?! attempted to solve various problems according to the
Newtonian principle. If u is the temperature excess of a body above the
surroundings, ¢ the time, then he put

du=—a * u - dt,
from which follows by integration
u=Ue™,

where U is the (initial) temperature-excess corresponding to the limit ¢
= (. The quantity 1/a was called by Lambert, from its geometrical
significance, the “subtangent of cooling”. It is inversely proportional to
the velocity of cooling and represents the time in which the body would
lose its entire temperature excess, if the velocity of cooling of the first
diminutive portion of time were retained throughout. Lambert knew
that a depends upon the capacity for heat, the surrounding medium,
and the nature of the surface of the body.*?

For a body which is exposed to heating by an invariable source of
heat and, at the same time, to cooling by the surrounding medium,
there obtains according to Lambert the easily comprehensible equation

du=k - dt—a - u - dt,
which, by integration, gives

u=£— (i—U) e

a a

in which U again denotes the initial difference of temperature of the
body considered, as compared with the surroundings.
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By means of this equation, the maximum value of u may also be
found. In an analogous way, the course of the variations of temperature
arising from the reciprocal action of several bodies was examined. Such
an example will be mentioned later. From the formula here considered
it results that an equalization of temperature is, strictly speaking, only
attained after an infinitely long time.

13. Lambert had a very lively constructive imagination, and gave a
stimulus to all domains by his ingenious treatment of the subject-matter.
He always endeavored to reconstruct all phenomena by mathematical
conceptions. As an example it may be mentioned that he tried to
determine the resistance of strings to rupture from the sound which
they gave immediately before the breaking. In this, he calculated from
the formula p = ¢ln?/2g, in which p denotes the tension, g the weight
of the string, / the length of the string, # the number of oscillations, and
gthe acceleration of falling.3

In another place,® he compared melting with breaking, and, from
the loading necessary for breaking, the extension corresponding to it,
and the known lengthening from known increase of temperature, he
inferred the melting temperature — a temperature which would
produce the extension of breaking. Lambert’s inclination to schematize
sometimes led him astray. Thus he assumed, for example, that sound
behaves exactly like light with regard to refraction and reflexion, based
upon it a false theory of the speaking tube, and in so doing effaced
a distinction already clearly recognized by Newton. While Leslie
recognized Lambert’s happy gift, yet he? regretted that Lambert so
often built far-reaching conclusions upon inadequate observations.
Lambert’s universality led him also into the field of philosophical
investigations,3® where his wish to solve everything by mere reflection
operated still more detrimentally. He believed it possible, for instance,
to deduce the impenetrability of matter from the principle of contra-
diction alone, whereupon Kant?’ remarked: “But the principle of
contradiction does not preclude any matter from advancing in order to
penetrate into a space in which another body exists”. In fact, we can
drive ideas from the head with this principle but not bodies from space.
This will serve for the purpose of a characterization of Lambert, and we
may add that we shall meet him yet again in the following pages as a
contributor to the theory of heat.
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14. Pierre Prévost clearly distinguished radiation from conduction of
heat. After a short discussion of the material and kinetic theories of
heat in general, and of the emission and wave theories of radiant heat in
particular, he declared that he did not wish to occupy himself with the
discussion of these systems; what concerned him was the elucidation of
the facts, in so far as this was possible. He preferred for his own use the
manner of expression of the emission theory; and formed his ideas of
particles of material of heat thrown off from hot bodies in imitation of
the kinetic theory of gases of Daniel Bernoulli and G. L. le Sage. Led by
Végobre’s remark that Pictet’s experiment on the radiation of cold was
not sufficiently explained, he attempted to apply his mode of concep-
tion to this case, and thus arrived at his idea of mobile equilibrium of
heat which he expounded in three different publications.>

He imagined that heat is composed of discrete particles, which are
very small compared with the distance between them, moving with
great velocity in different directions and very seldom colliding. Every
point of space or of the surface of a hot body may be regarded as a
center from which particles of heat proceed in all directions, and to
which they come from all directions. Thus threads (filets) or rays of
particles of the material of heat cross at every point.** Two portions of
space are in thermal equilibrium if they send each other an equal
number of particles of heat in equal times. If the state with respect to
heat of a body does not change, this is due, according to Prévost, to the
fact that it receives just as many particles of heat as it gives out in the
same time. “It is like a lake into which rain falls while, at the same time,
an equal quantity of water evaporates.*!

The double mirror experiment of Pictet was explained by Prévost
both for the case of heat rays and for that of cold rays in an equally
simple manner. Two equally hot bodies in the two foci exchange equal
quantities of heat. If one of the two is warmer than the other, the one
sends a greater quantity of heat to the other than it receives from it, and
the latter continues to radiate its previously emitted heat.*?

Thus, it is not necessary to imagine now one and now the other body
as radiating, but both may be conceived as radiating continually
whether they are equally or unequally hot. Moreover, on this point,
Hutton*® had directed attention to the fact that the assumption of a
single radiation is not sufficient, as it would have to be thought of as
depending on the state of the irradiated body.
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Prévost attempted to apply this view to all the facts ascertained
by Pictet, Rumford, Leslie, and others. He brought the parallelism
between emission and absorption into connection with reflexion; and he
regarded all unabsorbed heat as reflected. Good reflectors, that is to
say bodies which absorb little, also retain their own heat well by
reflexion on their surface, and thus are the kind of bodies that emit heat
feebly.*

As glass keeps off dark heat but allows light to pass through, Prévost
supposed that there are two or more kinds of heat particles, and thus
suspected the facts ascertained later by Melloni and others.*’

15. The principles discovered may be summarized in the following
way.*6

(1) Every point of the surface of a body is a center of rays
emanating from it and meeting in it;

(2) Thermal equilibrium consists in equality of the exchanges of
heat;

(3) If the time increases in arithmetical progression, the differences
of temperature vary in geometrical progression;

(4) In a portion of space of uniform temperature, a reflecting surface
— since it reflects only surface elements of the same temperature — has
no influence in changing the temperature;

(5) But if a warmer or colder body is introduced, the temperature of
those bodies upon which the rays emanating from the first body are
directed by the reflecting surface is changed;

(6) A body which reflects well assumes more slowly the temperature
of the surroundings;

(7) A warm or cold body which reflects well influences less another
neighboring body.

A part of Prévost’s book is devoted to meteorological and climato-
logical investigations which we shall not consider here.

16. Fourier, the founder of the theory of conduction of heat, seems to
have been the first to give the different special experiments on radiant
heat into a stronger theoretical connection, by recognizing them as
necessary conditions of the equilibrium of radiation.’” Without going
into all the particulars of Fourier’s extensive investigations, this connec-
tion may be explained in the following way.

The equilibrium of radiation of neighboring bodies of equal tempera-
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ture is a fact abundantly verified. If the temperature of one of the
bodies is raised in any way, the temperatures of the other bodies also
gradually rise. The radiation thus increases with the temperature of the
radiating bodies. This is a result of the work of Pictet and Prévost.

Since the unit of surface of different bodies of the same temperature
has a very different intensity of radiation (Lambert, Leslie, Rumford),
actual equality of temperature between two different bodies — for
instance, of two with parallel plane surfaces — could not subsist unless
the body with half the intensity of radiation were to absorb only half the
heat falling upon it in the same time and at the same temperature. The
proportionality of emission and absorption is thus a necessary condi-
tion of equilibrium of radiation with equality of temperature.

17. This relation was demonstrated by an experiment of Ritchie.*®
Between two equal vessels A, B, which are connected with one and the
same differential air thermometer, stands a third vessel C filled with hot
water. The surfaces turned towards one another are, as is indicated in
Fig. 50, of bright metal ( ) or covered with soot (————).
The thermometer shows no difference, from which it follows that the
stronger radiation from C to B is compensated by a more feeble
absorption of B, the more feeble radiation from C to A by a stronger
absorption of A.

Fig. 50.

18. The law (Lambert, Leslie) according to which the intensity of
radiation of a surface is proportional to the cosine of the angle that the
direction of departure of the rays makes with the normal to the surface
or to the sine of the angle of inclination of the ray towards the surface
— of the angle of emission —, likewise appears as a necessary condition
of the equilibrium of radiation. Imagine that two homogeneous bodies
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Fig. 51.

of the same temperature irradiate one another solely through the two
small portions of the surfaces, f, f’, from a great distance, where the
whole section of the bundle of rays proceeding normally from f must be
exactly filled up by f°. If the law mentioned did not hold, then, if the
intensity of the radiation in all directions were equal, f must receive
more heat than it gives up to f in the same time, and the thermal
equilibrium would instantly be disturbed. But this equilibrium continues
in force if f° radiates just as much in the oblique direction as its
projection upon the plane perpendicular to the direction of the rays —
that is f* sin — does in the normal direction. The intensity of the bundle
emanating from a surface-element of a definite body of given tempera-
ture in any direction is then determined solely by the cross-section of
this bundle. It is then clear that the irradiation of a small sphere K,
which is contained in an enclosure H of given temperature and given
material, may be replaced by the radiation of a hollow sphere SS
concentric with K and of the same temperature and the same material
as H. The sphere K, accordingly, is irradiated in the same way at every

Fig. 52.

place in the hollow space. If, on the contrary, we assume that the
intensity of radiation of the points of the surface of H is independent of
the direction, then, as we easily find with Fourier, the intensity of the
irradiation which K experiences, and therefore its temperature of
equilibrium, is dependent upon the position of K inside the space H.
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19. Fourier also attempted to explain physically why the intensity of
radiation is proportional to the sine of the angle of radiation. He
assumed that the rays from a certain depth penetrate the surface. But,
at a given depth of the radiating particle, its rays have to penetrate a
thicker absorbing layer the more obliquely toward the normal they are
emitted. This point will not be discussed further here. As Zollner* has
remarked, the milk-glass (porcelain) globe surrounding a gas flame,
which appears equally bright over its entire expanse, is a good
illustration of Fourier's view. The equally irradiated particles at the
same depth under the surface here also radiate through an absorbing
medium.

20. A more pronounced development of the ideas concerning the
equilibrium of radiation was brought about by a series of peculiar
observations. Fraunhofer® discovered the lines in the solar spectrum
named after him. Brewster>! discovered the monochromatic nature of
the light of the flame in which common salt is placed and the absorp-
tion bands of vapor of nitrous acid gas, and, briefly, the selective
emission and absorption with respect to light of different colors. By the
investigations of Angstrom, Pliicker, and others, observations relating
to this subject were greatly multiplied. To the older observations
concerning the impermeability of glass to “dark” heat were added the
later experiments of Melloni®? on the perviousness of bodies for
different “heat colors.” It could no longer be doubted that every body
behaves individually with regard to every wavelength of radiation.

21. Foucault had observed that the electric arc light sends out light
corresponding to the Fraunhofer D-line and also absorbs chiefly the
same light. Kirchhoff,® as he was examining more closely the coin-
cidence of the dark D-line of the solar spectrum with the clear line of
the sodium flame by pushing the latter flame before the slit of the
spectroscope, noticed a marked strengthening and darkening of the
D-line of the solar spectrum. Thus the fact again emerged that a body
absorbs chiefly the same light that it emits in radiation. But while
different investigators connected their researches with some of Euler’s,
and endeavored to explain this and similar facts according to the
principle of resonance (Stokes, Angstrom), Kirchhoff divined in it the
trace of a general and important law of the theory of heat. This is, apart
from the application of the principle recognized to the analysis of the
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light of the stars, the essential distinction between his intellectual
attitude and that of his predecessors. Kirchhoff in fact ascertained that
the proportionality between absorption and emission must hold with
respect to each particular wavelength if the equilibrium of radiation of
bodies of equal temperature is to subsist.

22. Without entering into too many details, we can acquaint ourselves
with Kirchhoff's manner of thinking by the following considerations.’*
A body M is supposed to stand opposite to a body N of the same
temperature, so that the two infinite, parallel boundary planes are
turned towards one another. Let the surfaces of the bodies which are
turned away from one another be covered with reflectors S and S’

Fig.53.

which throw back all rays. The total amount of heat which the unit of
surface of M radiates in the unit of time is called the “emissive power”
of M and denoted by e. That fraction of the radiant heat falling upon M
which is absorbed is called the “absorption power” of M and denoted
by a. The analogous quantities for Vmay be called € and a.

The body M emits e from the unit of surface, and of it the quantity
ea is absorbed by N, and e(1 — a) sent back to m. Of this M absorbs
e( — a)a and sends back e(l1 — a)(1 — a) to N. From
Ne(1—a)(1—a)(1 —a) is returned to m, and of it M absorbs
e(1 — a)a(l — a)(1 — a). If we continue the process and denote the
factor (1 — a) (1 — a) by k, then it appears, that M keeps back of its
own radiation the amount

_ e(l—a)a
1—k

The emission of N is &, of which m takes up the amount &a and returns

el—a)ya(l+k+kK+E+...)
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to N the amount ¢(1 — a); of this N absorbs ¢(1 — a)a, and sends ¢(1
— a)(1 — a) back to m, and M keeps ea(l — a)(1 — a) of it. The
continuation of the process shows that M receives, in all, from N

_ &a
C1-k
If the temperature of M is to remain unchanged, the total amount
received must be equal to its own radiation, that is
e(l—a)at ea
1-K

If we substitute the above value of k, we get

ea(l+k+ K+ K +...)

ea=-eq,ore/e=a/a,ore/a=¢g/a.

The same condition follows obviously if we start from the assump-
tion of the invariability of the temperature of n. If the radiant heat is
considered as a whole, then, for the preservation of the equilibrium of
radiation, it follows that the absorption power must be proportional to
the emission power.

We will now suppose that the body M is perfectly transparent for all
wavelengths with the exception of A’. On the other hand, 1’ is
supposed to be absorbed and radiated by it. Experience teaches that
bodies with such properties exists. In this case, N, on account of the
reflectors § and S” will receive back entirely its own radiation with the
exception of that of wavelength A’. But for M only the wavelength 1’
comes into consideration. Thus, if the equilibrium of temperature
between M and N is to continue to subsist, the above developed
condition must hold for the radiation of wavelength A’ in particular.
We see that each particular kind of radiation could destroy the
temperature equilibrium if the proportionality between absorptive
power and emissive power for all bodies (of the same temperature) did
not subsist for every simple kind of radiation. Thus, if a series of bodies
with the emissive powers e, e, €”, . .. and the absorptive powers a, a’,
a”,...is given, then, for the same wavelength and temperature,

e/a=¢e'/a =e/a"=....

The theorem of Kirchhoff was derived under the supposition of
complete equilibrium of temperature, and is valid only under this
condition. E. Wiedemann>® has investigated the deviations which occur
when this condition does not hold.
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23. Kirchhoff specialized his observations still further. Since the
absorptive power for polarized rays depends, in many bodies, upon the
position of the plane of polarization, a disturbance of the equilibrium of
temperatures by polarized rays could occur if the emissive power were
not dependent in the same way upon the azimuth of polarization.
Kirchhoff and Stewart® have independently demonstrated by experi-
ment that a tourmaline plate which absorbs rays polarized perpen-
dicularly to the axis also emits them in the same plane when it is in a
red-hot state.

24. If the temperature of a body K, which up to this time was in
equilibrium of radiation with other bodies, is increased, the tempera-
tures of the neighboring bodies also rise. According to the theory of
mobile equilibrium, this is comprehensible by the assumption that the
emissive power (and therefore also the absorptive power) of K
increases with the temperature.

If, with Kirchhoff, we imagine a “perfectly black body”, that is, one
that absorbs all light falling upon it, as soot nearly does, and call the
emissive power and absorptive power for it e and a respectively, and
for any other body (K) respectively E and A, then, for the same
wavelength and temperature the equation

E/A=c¢/a=e,

holds, since, for the black body, a is to be put equal to unity. We will
write this in the form

E/e=A.

If we take e as unit of measure and call E/e the “relative emissive
power” of the body K, referred to that of a black body for the same
wavelength and temperature, then this power is always equal to the
absorptive power of the body K. Since e = F(u, 4), the emission of the
black body depending upon the temperature u and the wavelength A,
we have, for any other body,

E=Fu,A) * A.

As observation of the absorption spectra shows, A depends upon the
wavelength. On the other hand, the temperature seems to have only a
slight influence upon A. Transparent colorless bodies retain this
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property, as a rule, even at high temperatures, colored bodies remain
colored, opaque bodies remain opaque. In general, therefore,

A=q@(u, ),

where changes of u involve only slight changes of A, which we will for
the present neglect. If we heat a piece of platinum gradually, it first
sends out dark and then red rays. With further increase in the tempera-
ture, the spectrum of the emitted light increases towards the violet side;
shorter and shorter wavelengths become noticeable in the radiation.
Since platinum, like soot, is opaque for all wavelengths at every
temperature, that is to say, since its A is throughout different from zero
and comparatively large, the values of £ and e must both, under the
same circumstances, be different from zero. If the heated soot begins to
send out a wavelength, then platinum must also do the same, and just so
all other equally heated opaque bodies.

25. This conclusion is also confirmed by an observation of Draper.>’
The most diverse bodies, enclosed in the barrel of a gun and gradually
heated, send out at first only dark heat. By sufficiently raising the
temperature, all simultaneously begin to shine (to glow). Under
continuously increasing temperature, the spectrum of their light
extends, for all the bodies, towards the violet side.

For transpareni bodies, A is either zero or very small. Hence they
glow at the same temperature more feebly than opaque bodies. Glass
and iron come to red-heat at the same temperature, yet glass shines
much more feebly.

A black body has, for visible light, a much higher absorptive power
than a white body. If this property continues at higher temperatures, the
black body must glow more intensely than the white. An ink-spot upon
a sheet of platinum glows more brightly than the platinum, a chalk-spot
upon a black poker glows less brightly than the poker. If a common
earthenware plate with a black and white pattern on it is made white-
hot (Figs. 54 and 55), we see, instead of a dark pattern on a white
ground, a white pattern on a dark ground; the negative of the pattern
appears.>®

26. Should the emissive power rise proportionally to the temperature,
Newton’s law of cooling mentioned above*® would follow from it. But
according to the experiments of Dulong and Petit,5? it is only for small
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Fig. 54. Fig. 55.

temperature excesses that the velocity of cooling is proportional to the
excesses, while for greater temperature excesses it increases more
rapidly than they. From this, Dulong and Petit concluded that the
intensity of radiation is another function F(u) of the temperature u. If
the temperature of an airless, hollow spherical enclosure is 6, and 7 is
the temperature excess of an enclosed thermometer above 6, the veloc-
ity V of cooling of the thermometer is given by

V=F(0+t)— F(6).
There was to be expected, therefore, a dependence of the velocity of

cooling upon 6 and ¢, and this indeed proved to be the case, as the
following table shows

t 60=0°C, 6=20°C, 0=40°C, 0=60°C, 6=80°C,
240 10.69 12.40 14.35 — —
220 8.81 1041 11.93 — -
200 7.40 8.58 10.01 11.64 13.45
180 6.10 7.04 8.20 9.55 11.05
160 4.89 5.67 6.61 7.68 8.95
140 3.88 4.57 5.32 6.14 7.19
120 3.02 3.56 4.15 4.84 5.64
100 2.30 274 3.16 3.68 429
80 1.74 1.99 2.30 2.73 3.18

60 — 1.40 1.62 1.88 217
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This table exhibits the property that, from the velocity of cooling
corresponding to a definite ¢ and 6, the velocity of cooling corre-
sponding to the same ¢ but to a 6 higher by 20° can be derived by
multiplication by 1.165. If 0 increases in arithmetical progression, ¢
remaining the same, V increases in geometrical progression. This
property is represented by putting

()= ma
Thus
V=F(0+t)— F(0)=ma®’(a’'— 1),

where m and a are constant coefficients.

If we consider not only the fall of temperature but also the amount
of heat lost by the cooling body, it is possible not only to compare the
radiations, but also to determine them in absolute measure, as
Hopkins®! attempted to do.

27. Clausius®? discovered a peculiar dependence of radiation of heat
upon the medium in which the radiation takes place. This dependence
results if we assume that two bodies of the same temperature, each
being in a different medium which transmits rays of heat, do not change
their temperature through mutual irradiation. Apart from the fact that
this is in itself probable, since the disturbance of the equilibrium of
temperature in such cases would certainly have been noticed, the
assumption of the contrary would contradict a well-tested fundamental
principle of thermodynamics.

In a simple case, the considerations which lead to Clausius’s theorem
are easily shown. Two hemispheres A and B which are perfectly
reflecting on the inside and are filled with different media touch so that
the line joining the centers is perpendicular to the section planes of the
hemispheres. At the point of contact, there are small parts cut away so
that the two media are contiguous to one another in a small plane
surface-element S perpendicular to the above line. Near the center of A
is a small portion f of a perfectly black body, from which rays which
form at most a small angle a with the normal radiate nearly perpen-
dicularly towards S and in a pencil whose aperture is of angle f arrive
at the portion f’, of a perfectly black body. Rays of other directions are
thrown back upon for f°, and again absorbed by them. Thus, only the
mutual radiation of fand f* remains to be considered.
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f‘

r!
Fig. 56.

Since, for a small angle of incidence, the index of refraction can be
represented by n = a/f, the ratio of the areas of the surfaces is ff’ =
n?. If e denotes the quantity of heat radiated perpendicularly from the
unit of surface into the medium of A, and e, has the same significance
for the medium of B, then, taking into account the fact that, of the
radiation falling upon § in one or the other sense, the fraction u is let
through but (1 — u) is reflected back, for the maintenance of the
equilibrium of radiation between f and f, the quantities of heat
interchanged must be equal, that is to say,

efu= e fiu,or efff = en>= e, or ev* = e,

where v and v; denote the velocities of propagation in the media of A
and B respectively. In this consists the theorem of Clausius which G.
von Quintus-Icilius has verified by direct experiment.®®

28. Moreover, the concentration of rays by reflecting or refracting
surfaces changes nothing in this behavior, as Clausius showed. We will
limit ourselves here to proving that two surface elements f and f*, of
which the one is the optical image of the other, at equal temperature
mutually radiate equally much heat. The surface element fof a perfectly
black body in a medium A sends its rays upon its image f” in a medium
B. The two media A and B are supposed to bound one another in a

Fig. 57.
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small circular portion of a spherical surface, which is pierced by the
rays in almost a normal direction. The aperture of the bundle of rays is
but small. If 2 and o are the distances of f and f’ from the boundary
surface, r is the radius of the spherical surface, m is the radius of the
circle bounding the surface, and # is the index of refraction for A into
B, then the apertures of the outgoing bundles from fand f” are as

(m/ay*: (m/a),
and the radiating surfaces as
(a+r(a—ry

Since an equal amount is lost in both directions by reflexion, and
therefore the radiation which penetrates is diminished to the fractionary
part u, the equation

2 2
a—r
a2,
a
holds for the equilibrium of radiation.
If in this equation the value of a is substituted from the well-known
dioptric equation
1 n n—1

__+_= R
a a ¥

a+r
a

e

we get
en’= e, or ev* = ¢,03,

where the above significance of the letters is retained. The theorem of
Clausius is also in harmony with the results of the electro-magnetic
theory of light.



CHAPTER IX

REVIEW OF THE DEVELOPMENT OF THE THEORY
OF RADIATION OF HEAT

1. Researches concerning the radiation of heat began with the obser-
vation that there is an action at a distance with states of heat. Many
investigators attributed such weight to the physiological distinction of
quality of the sensation of heat and that of cold that they regarded heat
and cold not as different degrees of homogeneous states but as opposite
states of different kinds. Thus, in addition to rays which transfer heat
were assumed rays which transfer cold.

2. Even one who does not yield to the physiological impression dis-
covers at once a simple physical contrast in which, at least in many
cases, it is entirely arbitrary which side he regards as positive and which
as negative. It is indeed true, as Black remarked, that the sun impresses
us as that from which all heat and, with it, all motion and all life
proceeds, so that it seems natural to consider cold as the absence of
heat. But if we imagine ourselves on a celestial body with a luminous
atmosphere a dark body which traverses this atmosphere might be
regarded as the surprising source of cold and of all variation connected
with it.

3. In fact, in all events in which only the differences of temperature are
the deciding factors, it is indifferent whether we say that heat is
transferred from A to B or inversely that cold is transferred from B to
A. But, with the more exact knowledge of facts, the conclusion emerges
more and more clearly that the contrast between heat and cold is not a
symmetrical one. Neither, indeed, does a complete symmetry, in which
specific differences, like the Lichtenberg figures and so on, do not
appear, correspond to the contrast of positive and negative electricity.
Imagine two equal bodies A, and A, of the same temperature. Equali-
zation of radiation takes place, according to Dulong and Petit, with
greater velocity if the temperature of the one is increased by a number
of degrees 7, than if it is reduced by the same number of degrees.
However the subject may be viewed, there always results an asymmetry
of the contrast of heat and cold.

142
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4. This becomes still clearer by the proof, which gradually advanced
towards completion, of the identity of light and radiant heat. Light is
manifestly a process which emanates from the luminous body A. If an
opaque body C is brought between the luminous body A and the
illuminated one B, the latter is darkened. Another body K can still be
illuminated between A and C, but not in the line AC on the side of C
remote from A. The luminous process at places nearer to A is the
condition for the luminous process at more distant places. Interference
phenomena cause the spatial and temporal periodicity of the process to
be recognized.

Any luminous process proceeding from A to B may be proved to be
a heat-transferring process from A to B. An analogous cold-transferring
process proceeding from A to B is not to be found. By this the
asymmetry of the contrast between heat and cold is put beyond doubt.

5. A fact which naturally presents itself to the open-minded observer is
the equilibrium of radiation of any system of bodies of the same
temperature throughout. This equilibrium is disturbed by the changing
of the temperature of any one body of the system. Upon the basis of
some few observation with small differences of temperature, Newton
laid down the hypothesis that the velocity of equalization is universally
proportional to the difference of temperatures. But Dulong and Petit
were the first to prove experimentally the dependence of this velocity
on the temperatures of both of the bodies taking part in the equaliza-
tion and to determine the mode of this dependence more accurately.

6. Before Prévost, of two bodies mutually reacting upon one another,
the warmer was imagined to give up heat and the colder to receive heat.
If the bodies exchange the parts that they play, the observer too must
alter his view. Prévost put an end to this intellectual clumsiness when he
succeeded in making the same general view do for all cases. The
generalization of the idea is accomplished by seeking to retain, con-
formably to the principle of continuity,' the once conceived idea that
the warmer body A gives up heat to the colder B, even when the
temperature of the two bodies are equalized, and then beyond this
point, up to the reversal of the differences of temperature; and by
applying this view to other bodies as well. Prévost imagined the dif-
ferent processes of radiation to be simultaneous and independent of
one another, just as Galileo? imagined several motions to be simul-
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taneous and independent of one another. Prévost’s idea also plays a
part quite analogous to that of Galileo as a means of facilitating the
survey and resolving complicated processes into simpler parts.

7. The perception of the equilibrium of the radiations of a system of
bodies of equal temperature forces itself upon us unsought and instinc-
tively, somewhat like the conviction of the equilibrium of Stevinus’s
chain.? Just as, from the chain, far-reaching conclusions can be drawn
which reveal themselves as conditions of this equilibrium, the same
thing may happen in regard to the equilibrium of temperatures. In both
cases, the conclusions drawn have been verified by special observations
before and afterwards.

Thus, an attempt was already made by Prévost to conceive the
observed connection of more feeble radiation with more powerful
reflexion in the same body as the condition of the equilibrium of
temperatures. Fourier was perfectly clear about the fact that both (1)
the proportionality between emission and absorption, and (2) the
intensity of radiation being proportional to the sine of the angle of
radiation, are such conditions for the equilibrium of temperature.
Kirchhoff, added, as further conditions, the proportionality of the
power of emission and the power of absorption for every particular
wavelength and kind of polarization. Finally, Clausius recognized the
dependence of the emissive power upon the velocity of propagation of
the medium in which the radiation takes place as such a postulate of the
equilibrium of temperature.

8. It is certainly surprising that such a multiplicity of conclusions can
be drawn from the subsistence of equilibrium between temperatures,
while the analogous case of Stevinus’s chain yields only a single result.
But the former fact, as we easily discern, is much more comprehensive.
The intensity of the radiation of different bodies of the same tempera-
ture may be very different without the equilibrium being disturbed. The
surface elements may have the most various orientation. Selective
absorption is different for different bodies and different wavelengths. It
is likewise different in regard to the kinds of polarization. It does not
matter if the bodies taking part in the equilibrium of temperatures are
immersed in different media. From each of these facts, discovered by a
particular observation, together with the continuance of the equilibrium
of temperatures, arises a particular inference, which appears as a
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postulate of the supposed equilibrium and renders this equilibrium
intelligible.

Perhaps in no other so small a domain may the adaptation of ideas
to the facts which they represent?, and the adaptation of ideas to one
another, be so beautifully observed as in the one just considered>.



CHAPTER X

HISTORICAL SURVEY OF THE DEVELOPMENT
OF CALORIMETRY

1. Investigations concerning the reciprocal action of states of heat led
quite gradually to a series of new conceptions whose employment
brought the domain just mentioned into a clear order. We will here
consider the development of these conceptions.

2. According to the view which Newton! had put forward as a hypoth-
esis, the velocity of cooling of a body is proportional to the excess of its
temperature above the surrounding medium, and, under circumstances
otherwise the same, is proportional to the surface of the body. Later
physicists, like Boerhaave,> were of the opinion that the velocity of
cooling depends also upon the material and is diminished by the
density of the body. Richmann’s experiments® refuted this view and
proved that mercury, under otherwise similar circumstances, cools
more quickly and heats more quickly than lighter fluids. Moreover,
balls of the same size of copper, brass, tin and lead cool, according to
Richmann,* under circumstances otherwise the same, unequally quickly,
but there is in this no appreciable influence of density or hardness. It
first became evident later on that the undoubted influence of the
material could only be correctly expressed by new conceptions. Dif-
ferent paths led to this: we shall examine one of these first.

3. Krafft® tried to represent the temperature U which results from
mixing two masses of water m and m’ of temperatures u and u’ by the
empirical formula

11mu+ 8m'y
11m + 8m’

The asymmetry of the formula with respect to the two terms sufficiently
shows that it can have only chance, and no general, validity. On the
other hand, Richmann,® on the basis of theoretical considerations,
produced a correct formula which gave the results of his m<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>