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FOREWORD

If ever a major study of the history of science should have acted like a
sudden revolution it is this book, published in two volumes in 1905 and
1906 under the title, Les origines de la statique. Paris, the place of
publication, and the Librairie scientifique A. Hermann that brought it
out, could seem to be enough of a guarantee to prevent a very different
outcome. Without prompting anyone, for some years yet, to follow up
the revolutionary vistas which it opened up, Les origines de la statique
certainly revolutionized Duhem's remaining ten or so years. He became
the single-handed discoverer of a vast new land of Western intellectual
history. Half a century later it could still be stated about the suddenly
proliferating studies in medieval science that they were so many
commentaries on Duhem's countless findings and observations.
Of course, in 1906, Paris and the intellectual world in general were

mesmerized by Bergson's Evolution creatrice, freshly off the press. It
was meant to bring about a revolution. Bergson challenged head-on the
leading dogma of the times, the idea of mechanistic evolution. He did
so by noting, among other things, that to speak of vitalism was at least a
roundabout recognition of scientific ignorance about a large number of
facts concerning life-processes. He held high the idea of a "vital impetus
passing through matter," and indeed through all matter or the universe,
an impetus that could be detected only through intuitive knowledge.
Bergson was fully conscious of the challenge he posed to the

rationalist heritage of the French Revolution as hatched by the Enlight
enment. He was strangely unaware of a far more reliable and truly
epoch-making meaning of the word impetus which was being brought
back to light just at the time when the Evolution creatrice saw print.
Bergson served thereby a proof of being a true child of the Enlighten
ment. Its champions were chiefly responsible for banishing from intel
lectual sight the light that invested, half a millennium earlier, the word
impetus with a meaning that signalled a new epoch in science, in fact,
its first genuine epoch.
A pivotal claim of the Enlightenment was dressed in glittering garb

when, in the Evolution creatrice, Bergson spoke of Galileo's inclined

ix



x FOREWORD

plane as the very instrument on which science descended from heaven
to earth. Rarely was a secularist enshrinement more ill-timed. Worse,
Bergson might have suspected the irony. He lived in that City of Light
where literary and cultural news spread, then as now, with almost the
speed of light. Bergson could hardly have failed to learn about the
publication of Duhem's Les origines de la statique in which the first
appearance of a viable science on earth was tied to a means very
different from Galileo's inclined plane, whatever its great importance in
the rise of modern physics.
Duhem's name was not at all an unknown quantity to Bergson.

Duhem is one of the very few modern authors quoted in Chapter 3 of
the Evolution creatrice. Even more importantly, Bergson, in order to
strengthen a principal strategy of his, referred there to Duhem's Evolu
tion de la mecanique, published in 1905. The strategy aimed at
discrediting the mechanistic world view in which the world of matter,
the only world, is a strictly determined machine with a fixed amount of
energy. That Duhem had insisted on the various meanings of the word
energy as used in physics was seized upon by Bergson as a scientific
evidence that "the universe is not made, but is being made continually.
It is growing, perhaps indefinitely, by the addition of new worlds."
Logic exacted its due when Bergson concluded in 1932 his other
widely read work, Les deux sources de la morale et de la religion, with
the definition of the universe as a "machine for the making of gods."
Duhem could have hardly seen any profit in protesting Bergson's use

of his analysis of the notion of energy. There was little if any common
ground between Duhem and Bergson, apart from their respective
dislike, very different in nature and motivation, of mechanism as an all
purpose explanation. For Bergson the ultimate ground was an evolving
universe as a supreme being. The author of Evolution creatrice
denounced the idea of nothing and therefore had no use for the tenet,
so dear to Duhem, of a creation out of nothing and in time. For
Bergson, who took conscious time for the primary datum of knowledge,
consciousness had to be eternal in a form however impersonal.
By 1906 Duhem had made a very different profession of faith in a

classic essay of his, "Physique de croyant."l Had he known something
of Thomist realism, Duhem would not have misunderstood Abel Rey's
charge that his philosophy of physics - being neither mechanistic, nor
conceptualist - had to be the physics of a believer. For Rey, a
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positivist, it was inconceivable that direct knowledge of the reality of
plain objects was plain knowledge, fully diffused with reason. Rey
called that knowledge an act of faith.
Duhem, partly because of some fideistic touch in the French

Catholic thought of his time, failed to see the danger latent in Rey's use
of the words, faith and believer, to his own theory of knowledge.
Moreover, Duhem had interest in epistemology only inasmuch as he
needed it for his theory of physics. Duhem took plain knowledge of
plain facts for the very starting point of physics as well as of meta
physics already in 1894 when he began to reflect on the aim and
structure of physical theory. But, so Duhem argued, since both physics
and metaphysics made different uses of that very same basic knowl
edge, there could arise no real opposition between the two, let alone
between physics and the tenets of Christian faith about supernatural
realities and destiny. Such was the gist of Duhem's essay, "Physique de
croyant," which, apart from containing Duhem's ringing profession of
his Catholic faith, would by its general content have made useless any
debate with the author of the Evolution creatrice. Much less would have
it allowed for any meaningful debate with die-hard mechanists, positiv
ists, and rationalists who set the intellectual tone in Duhem's France.
At any rate, in 1906, Duhem had already been for two years in the

grip of unsuspected cultural vistas of which he had caught the first
glimpses in the Fall of 1903. Duhem himself tells the story, very briefly,
in the introduction he wrote in 1905 to the first volume of this work.
His original plan was to write in regular installments the history of
statics for the Revue des questions scientifiques, the quarterly journal of
Catholic scientists with headquarters in Brussels. They counted among
their numbers dozens of members of the Academie des Sciences of
Paris who found it most difficult to oppose the juggernaut of secularism
in their own land.
Duhem conceived the plan of that history as a true child of the

second part of the 19th century. There no one would have dreamt that
there could be any science to look for between Archimedes and the
immediate predecessors of Galileo. But unlike professional historians of
the science of mechanics among his contemporaries, Duhem read with
the truly meticulous eyes of a scientist the writings of those predeces
sors of Galileo as he jumped, in telling his story, from Archimedes to
the second part of the 16th-century with some references to Leonardo
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at its beginning. Duhem was in for the greatest surprise of his intel
lectual life which resulted in a delay of his sending the third installment
of his essays.

It was a sign of awareness of Duhem's thorough scholarship that the
delay was taken in the editorial offices of the Revue des questions
scientifiques for an indication that Duhem might be on the track of
some important finding. In fact, something of the nature of that finding
was correctly guessed by the Pere Bosmans, who happened to visit the
Pere Thirion, editor of the Revue, and wanted to see Duhem's latest
contribution. "I do not have it," the Pere Thirion replied, "Duhem has
not finished it yet. He still has lots of reading to do. He promised me
further chapters at the rate at which he writes them." "In that case," the
Pere Bosmans replied, "I would not be surprised if his new readings
would not convince Duhem to add complementary chapters to the
period," whose history, the Pere Bosmans remarked (so it was reported
by the Pere Thirion a few years after Duhem's death in 1916), related
to his own extensive studies of Stevin. The Pere Bosmans found that
Stevin attributed great importance to Archimedes and Cardan, but
ignored Leonardo in whom Duhem saw an important link in the story
he was studying. But the Pere Bosmans also took the view that "if
Stevin underwent Leonardo's influence, he did so in any case only very
indirectly. On the other hand I know of two small treatises 'de pon
deribus', both attributed to Jordanus de Nemore. Duhem will end by
finding them and I would be surprised if he were not to attribute some
importance to them."
Jordanus de Nemore was indeed quickly found by Duhem, though

not because during the preceding decade or so several historians of
mathematics had noticed those treatises. Duhem's lead to Jordanus de
Nemore was his critical sense which prevented him from dismissing the
charge of Ferrari, a contemporary of Tartaglia, that the latter was a
plagiarizer in proposing the law of virtual velocities. Duhem then
resolutely followed up some innocuous looking leads which, as he
learned to read medieval Latin manuscripts, let him catch a glimpse not
only of Jordanus but also of other members of the 14th-century
Sorbonne, even more important for the history of science.
Fully aware of the fundamental importance of the law of virtual work

in mechanics, Duhem quickly placed the remote origin of Newtonian
physics in the Middle Ages. One could therefore only wish that Duhem
had taken up Bergson's use of his analysis of the notion of energy. In
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that case, he could have given a most revolutionary twist to Bergson's
reference to Galileo's inclined plane as if that latter had been a
secularist Jacob's ladder from the scientific heaven and back. For by
1906, the year which also saw the publication of the first volume of
Duhem's Leonardo studies (Etudes sur Leonard de Vinci: Ceux qu'il a
Ius et ceux qui font Iu) Duhem had even discovered the impetus theory
of Buridan. That theory, a substantial anticipation of Newton's first law
of inertial motion, was conceived by Buridan in an orthodox theological
matrix. Buridan saw the instantaneous beginning of any inertial motion
against the broader background of the impetus which the celestial
bodies had received from the Creator "in the beginning" and is kept by
them undiminished because they move in a frictionless space. In a
sense, which Bergson and countless contemporaries of his would not
have suspected, the science of Copernicus and later of Galileo and
Newton was the fruit of contact, through Buridan's vision, with the
Heaven of biblical revelation.
In the history of the historiography of science - a history full of

amateurism during the 19th century and professionally not robust until
the mid-20th century - no discovery has more right to be called
revolutionary than the one made and fully elaborated by Duhem. His
discovery represented the strongest conceivable challenge to the
broader ideology of the French Revolution. Its champions - purely
intellectual as well as violently activist - never failed to claim that the
Age of Reason, which they fondly equated with the age of Newtonian
physics, could not have arisen had the Christian past of Europe, as
epitomized in the Middle Ages, not first been thoroughly discredited.
Duhem was fully aware of the impact which that claim exercized on

the higher instructional levels. It is still a basic claim of all those, and
their number is legion in the academia, who resolutely try to shore up
their scepticism, agnosticism, or plain materialism, with untiring refer
ences to exact science and its history. By taking a recourse to science,
they run counter to the incisive analysis Duhem made of the aim and
structure of physical theory. As to the facts of scientific history, it is no
less true about them what a Baconian, if not Bacon himself, stated
about empirical facts in general: Facts will ultimately prevail and we
must be careful not to be found in opposition to them.
Those facts will not go away by the erection of specious stage

screens. And most fashionable among them has been the idea of intel
lectual mutations. Originally a device proposed by Gaston Bachelard, it
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was made much of by Alexandre Koyre. The essence of that device as
articulated by him is not so much to deny the facts discovered by
Duhem (although their slighting may be useful), but to claim that they
were suddenly seen differently from the early 17th century on. Then the
astronomical revolution running from Copernicus to Galileo would be
realigned once more with the broader ideology of the French Revolu
tion. This would also secure the role of science as the supreme
safeguard of modern scientistic rationalism.
Had Koyre not been blinded by his Boehmean and Spinozean

pantheism, he might have perceived that if there was an intellectual
mutation in the history of science, it took place at its very medieval
birth. Undoubtedly the shift is great from circular inertial motion (in
which Galileo still fully believed) to a linear one as proposed by
Descartes and later by Newton. Incomparably more fundamental and
radical was the shift that involved as its starting and terminal points the
following two ideas of motion: One was the idea of non-inertial motion
(invariably held in all ancient cultures, including classical and Hellenis
tic Greece) in which there had to be continuous contact between the
mover and the moved. The other rested on the concept of an impetus
given in a single instantaneous act with no need for further contact
between the mover and the moved. This latter kind of motion, fully
inertial (be it still circular), originated, so the great medieval physico
theological breakthrough stated, in an initial impetus tied to the
creation of all out of nothing and in time. About this point, amply
documented by Duhem, Koyre and his many admirers, pantheists or
not, tried to be as taciturn as possible and in the name of scholarship.
In late October 1905, when Duhem wrote the preface to the second

volume of this work, he had already on hand substantial evidence about
the Christian theological matrix of the birth of modern science. Only
with this in mind will one understand the unabashed homage he paid,
as a historian of scientific ideas, to the guidance which a truly divine
Providence exercises even in scientific history.
These are facts and indeed most crucial facts of intellectual history,

represented by Duhem's findings and by their reception, a rather
reluctant one, to put it mildly. Those who want, in the name of
"objective scholarship" to stay with the less crucial facts of that history,
simply honor it in the breach. To recount them here would be super
fluous. They can be found in my accounf of the background, the origin,
and reception of this book of Duhem in particular and of his work as a
historian of science in general.
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Here let emphasis be put once more on the revolutionary character
of this work. It is revolutionary not in the trite sense given to that word,
a sense unerringly perceived in the French phrase, plus {:a change, plus
{:a reste la meme chose. Today when an era of drastic political revolu
tions reveals the triviality of once great revolutionary slogans, that
French phrase should show an eery relevance. Academic circles still
have to perceive the contradictory character of intricate discourses
about scientific revolutions with an overarching structure to them. This
they cannot possess if they are truly incommensurable.
With an eye on scientific history, Duhem held high in this book and

elsewhere, the idea of a slow and continuous development. He did so in
a manner very nuanced from the logical viewpoint and also very
graphic at times. The opening paragraphs of the conclusion of the
second volume of this book are more than a literary masterpiece. They
also witness Duhem's keen observation of nature. The scene, the
apparent discontinuity of a river in the Larzac, which he painted with a
marvelous choice of words, he also drew as a landscape painter.3 At
any rate, Duhem as a logician had as little use for scientific revolutions
as he, as a French patriot, had for the French Revolution. Not that he
had not spoken of revolutions in science. But he never meant by them
the kind of radical discontinuity which they are meant to convey for
most historians and philosophers of science today, invariably forgetful
of the duty to give precise definitions of the basic terms they use.
Duhem, who did not consider himself a historian of science, was one

of the greatest of them ever. He studied the history of physics only
because he wanted to achieve a better grasp of the conceptual founda
tions of theoretical mechanics. "I am a theoretical physicist and I will
return to Paris only as such," he told his daughter around 1903 when
some friends of his in Paris tried to obtain for him the chair of the
history of science in the College de France. By then Duhem had been in
exile from Paris for more than a decade and was to stay in exile, that is,
in a provincial university (Bordeaux), until his untimely death in 1916
at the age of fifty-six.
The immediate cause of his death was the pain that seized him on

hearing a defeatist note as France had just made her heroic stand at
Verdun. His heart had for long been taxed by great personal and
professional setbacks. His much beloved wife died in the summer of
1892 in trying to give birth to a son who had to be buried with her.
During his first ten years in Bordeaux, where he arrived in 1894, after
teaching for six years in Lille and one year in Rennes, he had been
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most unfairly treated by local agents of the Ministry of Public Instruc
tion in Paris that faithfully observed the ukaze Marcelin Berthelot had
issued in 1885: "This young man shall never teach in Paris." It was at
Berthelot's instigation that Duhem's brilliant doctoral thesis, today a
classic, on potential thermodynamics (which refuted a favorite brain
child of Berthelot) was rejected by the Sorbonne on rather flimsy
grounds.
By September 14, 1916, when he collapsed, Duhem's energies had

been strained to the utmost by what may easily qualify as the greatest
individual scholarly effort of modem times. In March 1913 he signed
an extraordinary contract with Hermann in Paris. The contract called
for the delivery by Duhem during each of the next ten years of about
800 handwritten pages, full of important historic texts to see print for
the first time. By early September 1916 Duhem was proofreading the
fourth volume of his famous Systeme du monde. The material of the
fifth volume had already been sent to the publisher.
Duhem left behind, in fully publishable form, the material for

another five volumes. They did not see print until the 1950s. In fact
they almost failed to see print at all.4 That this translation appears in
English almost a full century after its publication is part of much the
same discouraging story, a story that should make not a few heads hang
in shame. Why, one may ask, have professional historians of science not
seized long ago the opportunity of making this great book available
to the English speaking academic world? Has not that world been all
too eager to have many and far less important foreign books available
in English?
Tellingly, the translators of this book are not professional historians

of science. Indeed, it reflects the universality of Duhem's mind that the
three translators were attracted to him from diverse fields of speciality,
one a classicist, one a scientist, one a Gallicist. Historians of science
stand to them in great debt and should appreciate their thorough
competence both in respect to the subject and the fine quality of
Duhem's style.
The appearance of this book in English translation almost a hundred

years after the publication of the original is a witness to a more
encouraging story as well. It is the story of the lasting value of genuine
scholarly research and of historical truth. No one had a greater
confidence in that story than Duhem did. To his researches in the
history of physics one can apply with equal justification his motto,
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"being eternal, logic can be patient," expressive of his trust in the
ultimate victory of a strictly logical physical theory. He used that motto
with an eye on the momentary success of partly illogical physical
theories. The fashionability of contempt for logic in trend-setting inter
pretations of the history of science would leave him undisturbed. The
wealth of evidence set forth in this book is another proof of a point
repeatedly noted about the rise of the idea of progress, be it scientific,
and its prospects. If it is to be diffused with genuine confidence, it
demands eyes focused on eternity.

STANLEY L. JAKI



TRANSLATORS' INTRODUCTION

We might venture the remark that the history of science is science
itself. We cannot really know what we possess until we have
learned what others have possessed before us.

Goethe, On the Theory ofColor (1810)

GENERAL COMMENTS

The completion of this critically annotated translation of Pierre
Duhem's now classic depiction of the origins of statics is long overdue
in the English speaking world. This delay is largely due to the formid
able obstacles presented to any prospective translator by this monu
mental work. Duhem was himself an exemplar of a now endangered or
perhaps already extinct species produced occasionally by the 19th
century European educational system and even more rarely by our
own, i.e., an extraordinary polymath and polyglot who knew thoroughly
the major Western European languages from Classical antiquity to his
own time and assumed the same thorough knowledge by his readers.
He had a complete grasp not only of the inner logic of the scientific
arguments of Western tradition, but also of the grammars those
arguments were expressed in. He quotes his sources in the original, be
it Classical Greek; Classical, Ecclesiastical, or Renaissance Latin; Early
Renaissance French; Italian; German; or even the Flemish of Simon
Stevin. In our own age of ever increasing specialization, such universal
scholarship is scarcely possible. Thus a triumvirate of collaborators was
necessary to produce the present critical translation. .
All three collaborators on this translation hold the PhD. and teach

at the university level. Guy Wagener is a native speaker of French and
teaches that language and literature at the University of Nevada, Reno.
Grant Leneaux is fluent in French and teaches Classical languages as
well as German at the University of Nevada, Reno. Victor Vagliente
teaches applied mechanics at San Jose State University and is well
versed in the history of science. By combining the linguistic talents of
Wagener and Leneaux with the technical and scientific expertise of

XIX
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Vagliente, we believe that we have produced a reliable and readable
translation of a work of singular importance.
Although we have retained almost all of Duhem's foreign language

quotes and footnotes in the original languages, we have translated them
all either in the main body of the text or in our own Translators' Notes.
These Translators' Notes also provide valuable critical and interpretive
comments and clarifications.

It is our conviction that engineers and technical specialists in our era
need a much broader education, including training in the history of
their particular discipline and in the humanities. This conviction stems
from two very important facts. First of all, no longer can major
engineering projects be carried out without considering their economic,
social and environmental impact. Many such projects are initiated to
solve a particular technical problem but they often create additional
non-technical problems. This appears to be due in part to the narrow
perspective presented in the typical engineering curriculum by engi
neering educators who are themselves usually very specialized in
training and able to teach only the technical aspects of a subject. In
addition, the lack of any historical perspective in many engineering
programs contributes further to a very narrow view of an engineering
problem. Concepts which took centuries to develop are often presented
as barren mathematical formulas. The full understanding of these
formulas is impossible without some knowledge of their historical
context. For to understand the history of any intellectual field is to see
it develop logically and with this understanding the weakness in the
theory and the areas where further development is required become
obvious. Finally, training in the humanities would produce an integrated
engineering effort which would address all aspects of the project.
By translating Pierre Duhem's Origins of Statics we support our

belief that his contribution to statics has been more that the discovery
of a filiation between the various principles of statics reaching back to
antiquity. In our opinion, he has presented the origins of statics as an
integrated whole and given it a humanistic coloring which makes it an
excellent reference for the teaching of statics. His work demonstrates
that the major contributors to the theory of statics were not geniuses
working alone but researchers working within a tradition. The point has
been made many times in the past but it is still relevant: in order to
understand any intellectual endeavor in depth, the origins and develop
ment of the discipline must be understood.
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Since Duhem's effort many research papers have been published on
various aspects of the origins of statics. These papers have amplified or
in some cases modified in some fashion, the results of Duhem's original
research. But for a critical account of the filiation of the fundamental
principles from their origins in antiquity to their modern formulations
in a language comprehensible to engineers, physicists and historians of
science, Duhem's Origins of Statics remains the best source available. It
must be the starting point for research into the origins of mechanics.
Duhem began his research into the origins of statics with the intention
of developing a better understanding of physics by writing a history of
this subject. He planned on doing the same thing for dynamics,
hydrostatics, hydrodynamics, etc. This was a grandiose but not unrealis
tic plan for he had the language skills and mental acumen to read and
understand the ancient manuscripts deposited in National Libraries
throughout Europe. Unfortunately, he did not live long enough to carry
out his plan. In his Etudes sur Leonard de Vinci, Duhem attemped to
do for kinematics and dynamics in general what he had done for statics.
But he was less successful. In fact, most of the criticism of Duhem's
historical enterprise has to do with his presentation of the development
of the principles of dynamics in this latter work.
Progress in the sciences takes place gradually and does not come in

an instant. For example, the concepts used in the 16th and 17th
centuries, namely by Galileo, Descartes, and even Newton, had to be
conditioned by the knowledge which existed prior to that time. Duhem
firmly believed in this assertion even before he began his research into
the origins of statics. As his research progressed, he demonstrated this
continuity and filiation which is evident after a chronological perusal of
the available sources beginning with the Ancient Greeks through
Medieval and Renaissance treatises. This slow evolution came about, he
shows, through criticism of older works which made way for the new.
In Volume I of the Origins of Statics, he shows the relation between
ancient and modern statics. It turns out to be far greater than most
investigators thought. The details and knowledge are wonderfully
condensed in this volume. We would otherwise have to search through
many books and journals to obtain as much as we have here. Volume II
chronicles the development of the basic principles. It describes the
difficulty which most investigators had in accepting the Principle of
Virtual Work.
The order of presentation in the Origins ofStatics can at times cause
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confusion for the reader. Duhem himself admitted that he wasn't
pleased with this aspect of the treatise. But this state developed from
the order in which he made his discoveries. Duhem was learning and
changing his views as his research progressed. In fact, evidence of this
assertion is obvious from Duhem's comment at the beginning of
Chapter II, where he says

The commentaries of the Scholastics dealing with the Mechanical Problems of Aristotle
added nothing essential to the ideas of the Stagirite.

This statement came before he learned of the contributions of Medieval
mechanicians. He will later amend this comment when he discovers the
works of Jordanus and Albert of Saxony.
Duhem began the Origins of Statics as a series of articles on the

origins of statics for the periodical Revue des questions scientifiques.
The editor, Father Julien Thirion, himself a notable historian of mathe
matics and professor of physics at the University in Louvain, granted
him the freedom he felt he needed to develop his ideas.
He teIIs us that at the outset he began writing with the accepted view

in mind which held that modern science began with Galileo. This is
understandable. Duhem relied on the authoritative texts of his time
which were Libri, Montucla and Mach. The knowledge accumulated up
to this time indicated that the origin of mechanics began with Aristotle
and Archimedes, and that Greek knowledge was transmitted by Arab
intermediaries to Leonardo and, finally, to Galileo, from whom the
modern period is reckoned. But as he continued his research, he found
that many of the concepts of mechanics which were transmitted to the
Renaissance were too developed in the form in which they were
transmitted. He looked for antecedents and so began a study of the
sources. This led him to entirely rethink the entire history ofmechanics.
The study of history in Duhem's day was much as it is today. The

historian paid utmost respect to the facts and viewed the succession of
facts as presenting an organic succession. There is nothing new in this.
But a vast erudition and mental capacity is required of the investigator
who is to fit the known facts into a whole. This is basicaIIy Duhem's
accomplishment.
The first installment to the periodical covered Aristotle and Archi

medes, and Leonardo da Vinci. In this installment, Duhem shows that a
link exists between Leonardo and his foIIowers, Cardan and Benedetti,
which was not known. There was no indication in the notebooks of
Leonardo as edited by Ravaisson-MolIien that such a link existed.
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Duhem emphasized the importance of the manuscripts of Leonardo
da Vinci because he saw in these manuscripts the convergence of the
science of Antiquity and its dissemination to the 16th century. He
presents convincing evidence in support of his view. For example, the
analysis of various problems by Cardan are almost identical to the
analyses of the same problems by Leonardo. Historians have main
tained that researchers working independently starting from the same
foundation could arrive at the same result. This may be true but the
presentation of their results would not be identical. Duhem has shown
that in many cases the presentation is identical. This fact makes it
difficult to reject Duhem's claim that Leonardo's manuscripts were
studied and used during the 16th century.

It is after the first installment had been submitted to the Revue des
questions scientifique that Duhem "chanced upon a text by Tartaglia."
This text proved to be the link between Leonardo and Alexandrian and
Greek mechanics.
Tartaglia had a copy of the Liber Jordani de ratione ponderis in his

possession. This work is modelled on the Elementa of Jordanus de
Nemore but deletes the three references to Jordanus. It was generally
attributed to Jordanus nonetheless. He published this work twice. The
first publication was of the theorems without the demonstrations in his
Quesiti. Later, he bequeathed a copy of this work to Curtius Trojanus,
a Venetian publisher, with the charge to publish it. Trojanus did so in
1565, under the title Jordani Opusculum de ponderositate. It is this
latter publication which prompts Duhem to rethink all that he has done.
Many scholars knew of these works attributed to Jordanus but did

not recognize their significance. It is Duhem who recognizes and
understands that they represent a link between Greek and Alexandrian
sources and the beginnings of modeJ;'n sicence. Hence, one could assert
that modern science has its beginnings in the Middle Ages.
This discovery was truly fortunate. There was an ongoing debate in

France during the 19th century over the assertion that Scholasticism
smothered empirical research in the Middle Ages. While the discovery
of the Liber Jordani de ratione ponderis had little to do with empiric
ism, it demonstrated a very vigorous intellectual activity during the
Middle Ages in mechanics. Although Duhem was careful not to allow
his personal sentiments to influence his thinking, this discovery was
especially satisfying to him.
No one has disagreed with Duhem over the importance of the works

attributed to Jordanus, but Duhem's presentation of the chronology of
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the works has been disputed. Recent scholarship shows in opposition to
Duhem that the chronology is as follows.
In 1533, Peter Apian published a text in Nuremberg entitled Liber

Jordani de ponderibus [1). This text applies Aristotelian concepts of
mechanics to demonstrate the set of theorems which Jordanus also tries
to prove in the Elementa super demonstrationem ponderum. Duhem
characterized this text as a "Peripatetic Commentary" on the Elementa
of Jordanus and, consequently, as useless in the attempt to understand
Jordanus. However, a critical examination of this text indicates that this
characterization by Duhem is untenable. In fact, it appears that the
Liber Jordani de ponderibus preceded the work of Jordanus and that
Jordanus was offering a new set of demonstrations for its theorems.
The basis of this claim is as follows: The Liber Jordani de ponderi

bus consists of a Prologue, 7 postulates and 13 theorems. The last 4 of
the 13 theorems are from the De canonio but their demonstrations are
not from this text. Nowhere in the Liber Jordani is there any trace of
Jordanus. But more important, in the Prologue there is a definition of
positional gravity which does not occur in the work of Jordanus. The
referenced quote follows [2):

Since it is apparent that in the descent [along the arc] there is more impediment
acquired, it is clear that gravity is diminished on this account. But because this comes
about by reason of the position of heavy bodies, let it be called a positional gravity [i.e.
gravitas secundum situmJin what follows.

If Jordanus had invented the concept of positional gravity, it is very
likely that the definition of the concept would be found in his work.
Thus it is very likely that Jordanus in his Elementa was commenting on
this work.
In addition, Apian gave additional demonstrations for the theorems

in the Liber Jordani. The first is the actual text and the second he
introduced as "another commentary". Duhem thought that the latter
demonstrations were an elaboration of Apian on a text known as the
Liber Euclidis de ponderibus, but it is not from this text at all. In fact, it
is a separate commentary written much later in the 14th or 15th
century. Its importance lies in the fact that this commentator recognized
that the Law of the Lever should rest on the Principle of Virtual Work.
There is a third interpretation by Duhem of the works of this period

which has often been criticized. Duhem attributed the authorship of the
most important of the medieval manuscripts - the Liber Jordani de
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ratione ponderis - to a gifted but unknown disciple of Jordanus whom
he called the Precursor of Leonardo da Vinci. His attribution goes
against the testimony of the manuscripts which declare Jordanus to be
the author. However, the de ratione ponderis is so superior to the
Elementa that it is difficult to believe that both treatises issued from a
single mind. Not only were the two erroneous theorems on the bent
lever replaced with a single correct theorem but the problem of the
inclined plane was also solved correctly in the de ratione ponderis. Due
to the vast difference between the two works attributed to Jordanus, it
seems reasonable to accept Duhem's claim that the latter was not by
Jordanus but by a gifted disciple whom Duhem called the Precursor of
Leonardo da Vinci. Later, Duhem changed his mind somewhat about
this claim and coined the appellation of the Precursor to Simon Stevin
but retained his assertion that the same author could not have authored
the various texts attributed to Jordanus.

TECHNICAL COMMENTS

There are some technical comments which we would like to make at
this point which perhaps might make Duhem's treatise easier to follow.
Some are necessary due to omissions by Duhem and others are the
result of recent scholarship.
Throughout the Origins of Statics, Duhem emphasizes the develop

ment of the Principle of Virtual Work and rightly so. This principle
encompasses the summation of forces and moments as the criteria for
equilibrium and has proved to be very useful to research in all fields of
physical science. If for an arbitrary set of infinitesimal displacements
from the equilibrium configuration, a compatible set of displacements
are found and the virtual work calculated the displacements will cancel
out and the remaining equations will be the equilibrium equations, i.e.
the forces and moments summing to zero. This happens since force and
moment are proportional to work, i.e. the force times the collinear
displacement or moment times angular rotation represent work. The
advantage of working with the quantity or concept of work is that now
we are working with a scalar quantity and do not have to concern
ourselves with direction as well as magnitude as when working with
vector quantities such as force and moment.
In order to apply the concept of work to problems of equilibrium, it
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must be treated differently than if force and moment equilibrium were
calculated directly. To use work we must depart from the equilibrium
state by imagining a displacement. It does not have to be the actual
displacement but it must be compatible with the constraints. With force
and moment equilibrium, we use the actual state of equilibrium to write
our equations.
The utility of this fact cannot be overestimated. If we are dealing

with scalar quantities, ordinary algebra permits us to formulate the
equations of equilibrium. Although Duhem considered in his investiga
tion only rigid bodies, the Principle of Virtual Work has further
applications when dealing with solid bodies and considering their
equilibrum and deformation. In this latter case, the equilibrium equa
tions would include internal as well as external forces and moments.
In Chapter I of the Origins of Statics, we see the contributions of

Aristotle and Archimedes. Every history of mechanics starts at this
point. Although there were undoubtedly precursors to these two inves
tigators we have no record of their contributions. The two main streams
of statics issue from Aristotle and Archimedes - the former a dynamic
approach and the latter a static one.
We need to say more about Aristotle's approach. Although it is not

explicitly stated in the Mechanical Problems, the general and usual
interpretation of this approach by commentators was that a potential
velocity had to be imagined imposed on the system from the equilibr
ium position. Since machines are considered here, the potential velocity
is compatible with the constraints imposed on the system.

It is this imagined or virtual velocity from the equilibrium state which
will cause a great deal of difficulty later. The objection will be that there
is motion where there should be no motion. That is, in a statics
problem, nothing should be moving.
The origin of this concept was not considered by Duhem, but since it

helps understand the objection made by many investigators later on, we
should mention it. The concept has a metaphysical origin and can be
found in the philosophy of Aristotle.
Aristotle saw motion everywhere. Animate and inanimate bodies

possessed motion and all motion was to be treated by mechanics. For
example, the acorn is potentially on oak. The acorn growing to become
an oak represents motion because motion fulfills what exists potentially.
Likewise, birth, life and death represent motion. Thus Aristotle viewed
motion as a general concept, even change of quality or of the size of an
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Weight X Distance
or

Time

object comprised motion. He went on to say that some bodies move by
an internal cause such as animals or human beings while others are
moved by external forces.

If we consider an inanimate body in equilibrium it can be considered
to have various "potential" states which it could realize by motion. This
notion appears to be the root of the notion of a "virtual" displacement
or velocity. The Greek word for potential is translated as virtus in
Latin. From the Latin word, it became virtuelle in French and finally,
virtual in English [3]. The scientific meaning attributed to the term
virtual displacement today is a displacement in essence but not in actual
fact.
In the Mechanical Problems, it is never stated that the application of

the given principle is to be made in conjunction with a virtual displace
ment or velocity from the equilibrium configuration. However, it is
clearly implied in the development and later commentators understood
it this way.
To the ancient Greeks, circular motion is the primary type. It is from

the example of the planets in the heavens that it appears to be
continuous and eternal. Thus in the Mechanical Problems the circular
arcs made by the lever while rotating about the fulcrum are viewed as
significant and with the predilection of the Greeks to geometrize they
become part of the explanation. In modern terms, we can see that the
problem can be understood as follows:

For Aristotle, force is proportional to velocity, i.e. F = k . v where F is the force, k is
the constant of proportionality and v the velocity.

And as Duhem points out in Note A of Volume II, for Aristotle there is
a conservation of the quantity

Force X Distance

Time

Thus if we examine the equilibrium of the straight lever, we have the
following: Imagine the lever of Fig. 1 at rest with the force F2 greater
than the force FI causing the lever to incline in the direction of the
force F2•

The task is to examine the quantity, (Force X Distance)/Time for
both the applied and resisting load. If the quantities are equal, equilibr
ium holds, but if they are not equal then motion ensues in the direction
of the greater quantity.
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fig. 1.

(2)

(1)

This formulation explains two omissions which cause confusion in
the modern reader. At the outset, it is unclear why an areal trajectory is
considered and whether the applied force follows the trajectory or
remains vertical during the motion. Furthermore, no mention is made
of the magnitude of the displacement. But if a conservation of weight
momentum is understood then the areal displacement is natural and
there is no question over the direction of the force or the magnitude of
the displacement. Aristotle believed that a motor force is in contact
with the body and follows the body. Consequently, the force should
follow the body along the areal trajectory.

In order to apply Aristotle's principle to the equilibrium of the lever,
imagine a potential, or in modern terms a virtual motion from the
position of equilibrium. Since velocity is distance (Di ) divided by time
(1;), Aristotle's principle which is written

FI • VI = F2 • V2

becomes
FI·DI

T]
and since T] = T2

F] . D I = F2 • D2 (3)

If the equality of Equation (1) is satisfied, then there is equilibrium and
if it does not hold, the lever inclines to the side with the largest product.
Now it can be seen from Equation (2) that this is basically the

quantity work (Fi • Di ) divided by time and since TI = T2, it can be
cancelled leaving Equation (3) which states the equality of work for
both forces.

If in place of the velocities in Equation (1) one writes the respective
angular velocities 0multiplied by their distance from the fulcrum, i.e.

VI = /1 • OJ
v2 = ~. O2
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there results

F1 • / •• 81 = F2 • 0. . 82

XXIX

(4)

and since 81 = 82, the expression can be simplified by cancelling 81 and
82 to obtain

F·/=F·l1 1 2 ':2 (5)

This last equation requires that the sum of the moments about the
fulcrum be zero. Aristotle does not fully grasp the concept of moment
although he has it vaguely from his consideration of stability. Con
sequently, he could not have seen this result. In addition, it must not
have been obvious to later investigators who were aware of the
Archimedean formulation of equilibrium that this relation existed. At
least, there is no evidence to suggest such a realization existed, but it
represents the link between Aristotelian and Archimedean approaches
to statics.
It is clear that the Principle of Virtual Velocities provides the

solution to problems of constrained motion. For example, the equilib
rium of the lever or winch can be evaluated using this principle. The
efforts to extend it to other problems led to its modification. The first
modification was to replace the notion of a virtual displacement from
equilibrium with a velocity or displacement caused by an insensible
weight or force.
Galileo's interest in ridding science of metaphysical arguments led

him to interpret the virtual velocity in the following fashion:

Accordingly, consider the balance AB (see the figure below)

D

E

divided into unequal parts in point C and weights suspended at A and B which are
inversely proportional to distances CA and Be. It is already evident how the one
[weight) balances the other, and consequently, how, if to one of these [weights) there
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were added a minimal moment of gravity, it would descend and lift the other. Thus if
we add an insensible weight to heavy body B, the balance will move, with point B
descending to E and the other extremity A ascending to D. And, since to make the
weight B descend any minimal increase in gravity to it is sufficient, hence we shall not
take into account this insensible amount, and so will not make any distinction between
the power to sustain a weight and the power to move it. Now consider the motion
which the heavy body B has in descending to E and which the other body A has in
ascending to D. And we shall find without any doubt that by the amount that space BE
exceeds space AD, distance BC exceeds CA, because there are formed at center C two
opposite and thus equal angles DCA and ECB, and consequently the two arcs BE and
AD are similar and have the same proportion between themselves as the radii BC and
CA by means of which they are described. It then follows that the velocity of the
motion of heavy body B in descending surpasses the velocity of the other moving body
A is ascending by the amount that the gravity of the latter exceeds the gravity of the
former. Since the weight A can only be lifted (although slowly) to D if the other heavy
body B is moved rapidly to E, it is not surprising nor unnatural that the velocity of the
motion of the heavy body B compensates for the greater resistance of the weight A, as
long as it (A) is moved slowly to D and the other (B descends rapidly to E. And so,
contrariwise if we place the heavy body A in point D and the other body in point E, it
will not be unreasonable that the former (D) by falling slowly to A can quickly lift the
latter (E) to B, restoring with its gravity that which it comes to lose as the result of the
slowness of [its) movement. And from this discourse we can recognize how the velocity
of motion is able to increase the moment in the mobile by the same proportion as the
velocity of motion itself is increased [4].

Thus Galileo recognizes that if a system is in equilibrium any small
force will cause it to move. This is the insensible weight mentioned in
the quote. If the insensible weight is very small and the virtual displace
ment small, the product of the two will be even smaller and conse
quently, can be neglected.
It is not until the concept of work is recognized that the idea of a

virtual displacement from the equilibrium state can be accepted. In
conjunction with the former concept it can be applied to determine
equilibrium. The first recognition of the importance of work is due to
Jordanus de Nemore. We can only speculate on what brought Jordanus
to comment on the Liber Jordani and to replace velocity with displace
ment. Jordanus is an algebraist and mathematician and the basic
problems of mechanics lend themselves to algebraic analysis. Having
seen the Liber Jordani he may have simply decided to supply
demonstrations.
Jordanus tries to justify in the Elementa the axioms used by

Aristotle to prove the law of the lever. But to do this, he invokes a
completely new axiom.
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Whatever can lift a given weight to a given height can also lift a weight K times heavier
to a height K times smaller.

This theorem is also used in the de ratione ponderis to demonstrate the
mechanics of the bent lever and the inclined plane.
There is no trace of this axiom in the works known to Jordanus.

Hero of Alexandria had used the concept of work in his treatises on
mechanics but these were unknown in the Middle Ages. By its extreme
generality, it represents a clear improvement over the theory professed
by Greek and Arab mechanicians. Descartes will recognize this gener
ality and will propose to use it as a foundation for statics.
Duhem was criticised for the amount of time he devoted to the

theory of the shape of the earth. Critics claimed that the investigation of
the shape of the earth belongs to geostatics and not to statics. However,
this- criticism overlooks two important developments from this con
troversy which are extremely important for statics:

(1) Newton's Theory of Gravitation is founded on the fact that the
earth is esentially round and that a point can be found at its center
called the center of gravity at which the entire mass of the earth
can be assumed concentrated. This makes it possible to treat the
earth as a point in many problems and greatly simplifies the
calculations.

(2) With the Principle of Virtual Work and a well-defined concept of
the center of gravity, the stability of a rigid system could be
analyzed and understood.

The first development is perfectly clear. With this theory, Newton was
able to solve a problem which had confounded and thwarted the efforts
of numerous researchers for centuries, the motion of the planets in our
solar system. The second development requires further clarification.
Galileo and later Torricelli noted that for a structure to move,

positive work in the earth's gravitational field had to be done. For a
system, this means that the center of gravity of the system has to
descend. When the system's center of gravity has reached its lowest
point, equilibrium prevails. This also means that it was necessary to
understand what the term center of gravity implied for the earth and for
a system.
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This contribution is a result of Galileo's experimental studies on
system equilibrium. This is the observation that system equilibrium
could be viewed from either force equilibrium or from the notion that
once equilibrium had been achieved, the center of gravity of the system
could not descend further. The two viewpoints are equivalent but the
second is more fundamental in the sense that the second principle
encompasses the first. Galileo's approach to the problem follows.
Consider as an illustration of the second viewpoint, the system of

Fig. 2. Friction is absent. Consequently, the two blocks of weight P and
Q are free to move. A pulley at point b permits the two weights to
move as a unit since they are joined together by a string. The position
of the center of gravity, denoted by i, can be found by summing
moments about the line ac.

p·Xl + Q ·Xz
i=--~-=~-=--

P+Q (6)

Now, from this equilibrium position, imagine a small displacement to
take place, which is denoted by the letter h and is given to the weight
Q. If Q falls by the amount h, the weight P will rise by the amount
h . sina. This a result of the geometry of the system which constrains
the weight P to move on the inclined surface abo It is determined
experimentally that i will remain the same or increase in magnitude,
where the latter corresponds to the center of gravity rising. If h is very
small, the magnitude of i will remain the same. Then,

i
P (Xl + h . sin a) + Q (xz - h)

P+Q

aL--*----*------Jc

jig. 2.

(7)
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(8)

Ifwe subtract Equation (6) from Equation (7), one obtains

P . h . sin a - Q . h 0

P+Q
or after simplification

P • sin a = Q

This latter equation is, of course, the equilibrium equation for the
system.
Now, this principle can be generalized and then applied to con

tinuous as well as discrete systems. The actual formulation of this
development is by Torricelli and is known as Torricelli's Principle.
In statics, the stability of a rigid system can be defined in terms of

the center of gravity. Ifwe generalize Torricelli's Principle to read:

(1) If an infinitely small displacement is applied to a system and the
center of gravity rises, the structure is in equilibrium and the state
of equilibrium is stable. If the center of gravity does not rise, but
remains on the same level during a finite displacement, then the
structure is in equilibrium but the state of equilibrium is stable or
indifferent.

(2) If for an infinitely small displacement from the equilibrium con
figuration the center of gravity falls, the structure is unstable and by
having the center of gravity fall, it will move towards the equilib
rium position.

The salient feature of this formulation is that one needs to consider
only one point in the system to understand whether its equilibrium is
stable or not, i.e. the center of gravity.

It is obvious that to determine whether a system is in stable equilib
rium we have to find where the center of gravity is located, then
imagine a displacement imposed on the structure and determine
whether the center of gravity rises, remains on the same level or falls in
order to ascertain whether it is in stable, indifferent or unstable
equilibrium. Of course, the criteria here is applicable only to a rigid
body system. If the system deforms, a different and more general
formulation of this concept is necessary.
Since we have completely defined the stability of the rigid system in

terms of a single quantity, the center of gravity, it is only natural that we
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use the Principle of Virtual Work in conjunction with the concept of
the center of gravity to define what we mean by stability. If we impose a
small displacement on the system in harmony with the constraints and
calculate the virtual work we can say the following:

(1) If the center of gravity rises or remains at the same level during a
virtual displacement the virtual work will be negative or have a
zero value, implying that the system is in stable or indifferent
equilibrium.

(2) If the center of gravity falls during a virtual displacement, the
virtual work will be positive, implying that the equilibrium is
unstable.

Here stability is defined in a narrow sense as being a configuration
which is near to what is conceived as the equilibrium state.
Galileo habitually thought of the virtual displacement as finite rather

than the infinitesimally small displacement used today. The magnitude
of the virtual displacement is immaterial if the system is in a state of
indifferent equilibrium such as the problem of the straight lever. Also,
Galileo's conception is due primarily to the time in which he was
working where an analysis of an infinitesimal quantity was not yet
possible. Today, we recognize that the virtual displacement should be
infinitesimally small so that we examine the nature of equilibrium by
comparing it to the equilibrium states which are infinitesimally close
and so that changes in the geometry of the system causing the direc
tions of the applied forces to change can be omitted from the problem.

It is unfortunate that Duhem concludes his investigation of the
Principle of Virtual Work with the letter written by Jean Bernoulli to
Varignon in 1717 [5]. There is a much better presentation of this
principle in J. L. Lagrange's Mecanique analytique. Lagrange's formula
tion de-emphasizes the virtual displacement and emphasizes the concept
of work. He reverts to the origin of the Principle of Virtual Work by
considering the early investigations of the principles behind the opera
tion of machines. He introduces what he calls the Principle of Pulleys
and states that this device has been in use for centuries and that it is
clear from its operation that work, i.e. force X collinear displacement, is
the quantity which determines the state of equilibrium. However, this is
not so obvious. Early mechanicians had studied this device and
formulated an adage to work by:

What is gained in force is lost in velocity.
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This adage seemed to agree well with Aristotle's law that force is
proportional to velocity. Lagrange's assertion that work is the important
quantity is the result of the efforts of many investigators over a long
period of time.
Hence, when a system reaches equilibrium, all the positive work that

could be done has been done. This is tantamount to Torricelli's
Principle that at equilibrium the center of gravity of the system has
reached its lowest point. Now if the system is imagined to displace from
the equilibrium configuration, the work of all the impressed and
resisting forces must be zero since the center of gravity can descend no
further. Although the center of gravity can descend no further, it could
possibly rise so that negative work could be done. The displacement is
the virtual displacement which must conform to the constraints on the
problem. It is obvious that the constraints on the problem are the
geometric conditions which define the state of equilibrium.
Forces acting oppositely to the direction of the displacement will

contribute negative work and those forces acting in the direction of the
displacement contribute positive work. It is this algebraic sum which is
zero. Thus Lagrange's formulation of the Principle of Virtual Work
makes use of its full historical development.
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PREFACE

In this work the reader will not find the order which he undoubtedly
would have preferred to find and which we assuredly would have
preferred to follow. Therefore, we owe an explanation at the outset to
the perplexed reader concerning our singular way of proceeding, in
which our arguments might seem at times repetitive.
Before we embarked on the study of the origins of statics, we read

the works - few in number - which deal with the history of this
science. It was easy for us to see that most of these works were rather
superficial and contained few details, but we had no reason to believe
that this information was in any basic way incorrect. In resuming the
study of the original texts mentioned in these works, we foresaw that we
would have to add or modify quite a few details, but little did we know
that our research would lead to a complete rethinking of the entire
history of statics.
At the very outset, this research led us to make some unforeseen

observations. It proved to us that the works of Leonardo da Vinci, so
rich in new ideas on mechanics, had in no way remained unknown to
the mechanicians of the Renaissance, as was commonly assumed. It
further proved that his works were used by many scientists of the 16th
century, in particular, by Cardan and Benedetti, and that they furnished
Cardan with his profound insights on the operation of machines and on
the impossibility of perpetual motion. However, after Leonardo and
Cardan and up to Descartes and Torricelli, it seemed to us that statics
developed along a path essentially in accordance with the commonly
held views.
We had already commenced retracing this development in the Revue

des Questions Scientifiques, when we chanced upon a text by Tartaglia,
nowhere mentioned in any history of statics, which proved to us that
what we had done so far had to be rethought on an entirely different
level.
Indeed, it was Tartaglia, who, long before Stevin and Galileo, had

determined the apparent weight of a body on an inclined plane. He had
very correctly deduced this law from a principle which Descartes was

7
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later to affirm in its complete generality. But this magnificent discovery,
which no historian of mechanics mentions, did not come from Tartaglia.
It was nothing but an impudent act of plagiarism on his part, and
Ferrari bitterly reproached him for it and gave credit for this discovery
to a 13th century mechanician, Jordanus Nemorarius.
Two treatises had been published in the 16th century expounding

the statics of Jordanus. However, these treatises were so dissimilar and
sometimes contradicted each other so explicitly that they could not
possibly be the work of the same author. In other to determine
precisely what mechanics owed to Jordanus and his students, we had to
go back to the contemporary sources, to the manuscripts.
Thus we were forced to go through all of the manuscripts dealing

with statics which we were able to find at the Bibliotheque Nationale
and at the BibliotMque Mazarine. This laborious work, in which we
were very competently assisted by M. E. Bouvy, librarian at the
University of Bordeaux, led to totally unforeseen conclusions.
Not only did the Occidental Middle Ages directly, or indirectly

through Arab intermediaries, inherit the tradition of certain Hellenic
theories concerning the lever and the Roman balance, but through its
own intellectual activity gave birth to a statics autonomous from and
unknown in Antiquity. As early as the beginnings of the 13th century,
and perhaps even earlier, Jordanus de Nemore had demonstrated the
law of the lever by proceeding from the following postulate: the same
work is needed to lift different weights when the weights are in inverse
proportion to the heights which they travel through.
This idea, which can be found in germinal form in the treatise of

Jordanus, was progressively developed in the works of his followers up
to Leonardo da Vinci, Cardan, Roberval, Descartes, and Wallis, and
reached its final formulation in the letter which Jean Bernoulli sent to
Varignon, as well as in the Mecanique analytique of Lagrange and in
the works of Willard Gibbs. Thus the science which we are legitimately
so proud of today grew out of a science born around the year 1200
through an evolution whose successive phases it was our task to
describe.
However, it is not only through the doctrines of the School of

Jordanus that the mechanics of the Middle Ages contributed to the
foundation of modern mechanics. In the middle of the 14th century,
Albert of Saxony, one of the doctors who brought great honour to the
brilliant Nominalist School at the Sorbonne, formulated a theory on the
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center of gravity which was to gain great recognition and have lasting
influence. Shamelessly plagiarized during the 15th and 16th centuries
by a great number of mechanicians and physicists who used his theory
without naming its author, the theory continued to flourish during the
17th century. Indeed, to anyone ignorant of this fact, many a scientific
controversy so hotly debated at that time would remain incomprehensi
ble. Through an uninterrupted filiation, the principle of statics pro
claimed by Torricelli developed from this theory ofAlbert of Saxony.
Thus the study of the origins of statics led us to a conclusion which

became overwhelmingly evident when more varied avenues opened as
we looked back in time. Therefore, only now do we dare formulate this
conclusion in its full generality: the mechanical and physical science of
which the present day is so proud comes to us through an uninterrupted
sequence of almost imperceptible refinements from the doctrines pro
fessed within the Schools of the Middle Ages. Tile so-called intellectual
revolutions consisted, in most cases, of nothing but an evolution
developing over long periods of time. The so-called Renaissances were
frequently nothing but unjust and sterile reactions. Finally, respect for
tradition is an essential condition for all scientific progress.

Bordeaux, March 21,1905 P.DUHEM



CHAPTER I

ARISTOTLE AND ARCHIMEDES (384-322 and 287-212 B.C)

Although we are left with few monuments from the profound research
of the Ancients into the laws of equilibrium, those few are worthy of
eternal admiration. Two texts in particular stand out because they are
undoubtedly the most admirable: the book which Aristotle devotes to
questions ofmechanics and the treatises written by Archimedes.
The ''Treatise on Statics," in which Aristotle examines the different

questions concerning mechanisms - the Mechanical Problems' - is
probably misnamed. Indeed, the Stagirite does not separate the theory
of equilibrium from the theory of motion. He does not ascribe to the
first theory its own autonomous principles totally unrelated to the
second theory. He discusses in a general fashion the movements which
can be produced in a mechanism. When no motion is produced, the
mechanism remains in equilibrium.
The axiom which furnishes the solution to diverse mechanical prob

lems is the fundamental law which Aristotle assigns to local motion and
which, be it explicit or hidden, dominates everything he wrote about
such motion. The work of the force moving a body is measured by the
product of the weight of the body moved (or by its mass, because the
two notions of weight and mass were at that time indistinguishable from
each other), and by the velocity of the motion impressed on this body.
One and the same force can, therefore, move successively a heavy body
and a light body, but that force will move the heavy body slowly and
move the light body quickly. The velocities of the motions imparted to
these two bodies will be inversely proportional to their weights.
One can find this thought expressed in many passages. The following

quote suffices because of its extreme clarity.2

Whatever the force may be producing the motion, that which is smaller and lighter
receives more motion from the same force ... indeed, the velocity of the lighter body
will be to the velocity of the heavier body as the heavier body is to the lighter body.

It seems that this fundamental principle of Peripatetic dynamics is
the faithful and instinctive reproduction of the obvious data of daily
experience. However, modern dynamics repudiates this as a major

11
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error. Yet, in order to refute this error, science will require two
thousand years of reflection by the greatest minds after Aristotle up to
Galileo. Someday we will undertake to retrace the main phases of this
gigantic intellectual enterprise. But for now we will attempt to forget
everything which modem mechanics has taught us in order to fully
understand the laws acknowledged by Peripatetic mechanics. Only
under this condition will we be able to understand the thoughts of the
mechanicians who, century after century, contributed to the progress of
statics. Thus two forces will be considered equivalent if, when moving
unequal weights at unequal velocities, they cause the product of the
weight times the velocity to have the same value.
Thus let us imagine a rectilinear lever divided into two unequal

lengths at a point of support and at the extremities of which are
suspended two weights of unequal mass. When the lever rotates about
its point of support, the two weights move with different velocities. The
weight furthest from the point of support describes, during the same
interval, a larger arc than the weight closest to the point of support. The
velocities of the two weights are in the same ratio as the lengths of the
arms from which the two weights are suspended.
Thus, whenever we would like to compare the effect of these two

weights, we will have to compute for each one of them the product of
the weight times the length of the arm of the lever. The one with the
greatest product will descend, but if the two products are equal, the two
weights will remain in equilibrium.3

The weight which is moved, says Aristotle, is to the weight which moves in inverse ratio
to the lengths of the arms of the lever. Indeed, a weight will always move all the more
easily, the further away it is from the point of support. We have already mentioned the
cause: the weight which is furthest from the point of support describes a larger circle.
Thus, while using the same force, the weight will describe a greater path, the further it is
from the point of support.

These considerations, developed with respect to the lever, are not
simply based on observations which hold for only this one case. They
constitute a general method and they contain a principle which can be
applied to nearly all mechanisms. Thanks to this principle, mechanicians
will be able to account for the various effects produced by these diverse
machines simply by considering the velocities with which certain arcs of
a circle are described.
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For the properties of the balance4 are deducible from those of the circle and the
properties of the lever are deducible from those of the balance. In summary, most of
the other unique properties exhibited by the motion of mechanisms are deducible from
the properties of the lever.

Had Aristotle formulated only this single idea, he would deservedly
have to be celebrated as the father of rational mechanics. This idea is,
indeed, the seed from which the powerful ramifications of the Principle
of Virtual Velocities5 will sprout over the next twenty centuries.
Aristotle was not a mechanician and consequently was unable to

rigorously develop from the Principle he had posited all of the conse
quences which could be deduced from it. In other instances, he thought
it possible to apply the Principle to problems so complex that they
actually far exceeded the means by which he proposed to solve them.
At any rate, Aristotle ran into serious difficulties at the very beginning
of his research. The line described by the displacement of the lever
at the point of application of the force or of the resistance is along
the circumference of a circle and does not coincide with the vertical
line along which the force or the resistance acts. Aristotle merely
made some rather obscure observations6 concerning this difficulty,
more suited to elicit remarks by his commentators than to satisfy the
mechanicians.
Mechanicians like to see a long chain of reasoning unfold according

to a perfect order faultlessly tying together some very simple and clear
principles with complicated and remote conclusions. No other work is
more apt to satisfy this need of the mechanician for rigor than the
works inwhich Archimedes deals with mechanics.
These works are comprised of the Treatise on the Equilibrium of

Planes or their Centers of Gravity and the Treatise on Floating Bodies. It
is not our intention here to study the origins of hydrostatics. Conse
quently, we will disregard the Treatise on Floating Bodies in order to
concentrate our attention on the other treatise.
Archimedes sets out to exclude from the foundations upon which he

will construct his doctrine any proposition whose soundness appears
doubtful. Unlike Aristotle, he will not seek his fundamental hypothesis
within the science of motion, because the laws which apparently govern
the motions of heavy bodies seem profoundly hidden beneath complex
appearances and because the analysis of these phenomena - so varied
and so difficult to observe precisely - seems ill-suited for furnishing
propositions upon which everyone would readily agree. On the contrary,
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the everyday use of simple instruments, such as the balance for example,
reveals as far as the equilibrium of weights is concerned, certain rules
whose validity and generality are beyond any doubt. Following the
method which his master had used in the Elements, Archimedes
demands from those intent on following his teachings that they accept
as true those few postulates from which he is going to deduce his
theory. Some of these postulates follow: 7

(1) Equal weights suspended at equal distances are in equilibrium.
(2) Equal weights suspended at unequal distances are not in equilib
rium; the one suspended at the greatest distance moves downward.

(3) If weights suspended at given distances are in equilibrium and if
one adds something to one of the weights, they will no longer be in
equilibrium, and the weight to which something has been added
will move downward.

(4) Similarly, if one removes something from one of these weights, they
will no longer be in equilibrium, and the one from which nothing
has been removed will move downward.

Using a method which originated with Euclid, Archimedes is able to
deduce a long series of propositions from these postulates and others
so obvious that it is unnecessary to list them here. Of these propositions,
let us quote only the sixth and seventh,8 which define the conditions of
equilibrium for a straight lever. These propositions are as follows:

Proposition VI. Magnitudes9 commensurable to each other are in equilibrium when
they are reciprocally proportional to the distances at which they are suspended.
Proposition VII. Magnitudes which are incommensurable are in equilibrium when they
are reciprocally proportional to the distances at which they are suspended.

These two propositions contain the specifically mechanical conse
quences of the works of Archimedes. The theorems which derive from
them and by which the illustrious Syracusan determines the centers of
gravity for numerous figures will attract the attention of the geometer,
who will admire their elegance and ingenuity. The algebraist will discover
in them the first integration ever made. For the mechanician, however,
they do not reveal any novel insight into questions of importance to
him.
By studying the equilibrium of weights, Archimedes comes to the

same conclusion as Aristotle, but by a completely different path. He
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does not deduce his principles from general laws of motion. Instead, he
builds the edifice of his theory on a few simple and dependable laws
relative to equilibrium. Thus he founded the science of equilibrium as
an autonomous science which owes nothing to the other branches of
physics. In a word, he founded statics.
In so doing, he gave his doctrine perfect clarity and extreme rigor.

However, one must admit that such clarity and rigor were purchased at
the price of generality and fecundity. The laws defining the equilibrium
of two weights suspended from the arms of a lever were taken from
hypotheses unique to this problem. However, when the mechanician is
faced with any other problem concerning equilibrium distinct from the
one mentioned above, he is forced to resort to new hypotheses quite
different from the first ones because the analysis of the first set of
hypotheses will give him no direction when trying to choose a second
set. Thus, when Archimedes wants to study the equilibrium of floating
bodies, he will have to resort to principles which have no analogy to the
postulates which he formulated at the beginning of the Treatise on the
Equilibrium ofPlanes.
Even though it is an admirable method of demonstration, the path

followed by Archimedes in mechanics is not a method of discovery.
The certainty and clarity of Archimedes' principles are due in large part
to the fact that they were gathered, so to speak, from the surface of
phenomena and not derived from the very roots of things. In accordance
with a comment which Descartes 10 less justly applied to Galileo,
Archimedes explains quite well "quod ita sit" but not "cur ita sit." 11

Thus we will see that the most important progress in statics will derive
from Aristotle's doctrine rather than from the theories formulated by
Archimedes.



CHAPTER II

LEONARDO DA VINCI (1452-1519)

The commentaries of the Scholastics dealing with the Mechanical
Problems of Aristotle added nothing essential to the ideas of the
Stagirite. To see these ideas develop new branches and bear new fruits,
one must wait for the beginning of the 16th century.

If, in confronting those colossal men who appear at the beginning of the 16th century,!
one dares show a preference, perhaps the laurel should be accorded to Leonardo da
Vinci, that sublime genius who enlarged the entire range of human knowledge. In the
arts, Michelangelo and Raphael could not eclipse his glory. His scientific discoveries
and his philosophical research place him at the head of the learned men of his epoch.
Music, military science, mechanics, hydraulics, astronomy, geometry, physics, natural
history, anatomy, were all perfected by him. If all his manuscripts still existed, they
would form the most original and vast encyclopedia ever created by human intelligence.

In his lifetime, Leonardo da Vinci published nothing. Various wit
nesses assure us that at his death he left in manuscript form certain
completed treatises, notably, one on painting and one on perspective.
But these works did not come down to us. The Tratato della pittura,2

published in Paris by Dufresne in 1651 and often reedited afterwards,
and the Trattato del mota e misura dell'acqua,3 printed at Bologna in
1828, are edited versions more or less faithful to the original. The true
thought of Leonardo must be sought in the notebooks, where he wrote
down his thoughts as they evolved.
Many of these notebooks have been lost. However, after many

peregrinations, a number of them were saved.4 An important collection
of these writings is in the library of the Institut de France. Various
pages, stolen by Libri and sold by him to Lord Ashburnam, became,
thanks to Mr. Leopold Delisle, the property of the Bibliotheque
Nationale. Other manuscripts can be found in Italy. Among these, of
particular importance is the register which is kept in the Biblioteca
Ambrosiana ofMilan, the Codex Atlanticus.
Under the auspices of the Ministry of Public Education and thanks to

the meticulous attention of Mr. Ch. Ravaisson-Mollien, all of Leonardo's
manuscripts located in France have been published. This admirable
collection gives us, in six volumes in folio,s the photographic facsimile

16
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of each of the pages used by Leonardo for his drawings and writings as
well as the transcription of all the comments inscribed upon them and
finally their French translation.
The Italian government has begun to publish in more elegant form

all of the papers of Leonardo in its possession. The first volume of this
collection has already appeared.6

One cannot but feel a curiosity mixed with deep emotion when
leafing through these notes left by Leonardo da Vinci. All of the
thoughts, all of the images seen by the mind of the great artist are right
there and are proof, by their diversity and by their very disorder, of the
universal genius which conceived them.
Innumerable drawings some inked and some in color, depicting

human and animal figures, leaves, churches, machines, plans of monu
ments or of fortresses, waves or cascades,? geometrical sketches, all
intermingled with the crowded lines of an upright, regular handwriting
reading from right to left.
The variety of topics addressed in these lines is enormous. House

hold accounting records, formulas for painting, personal souvenirs,
anecdotes filled with a gruff Gallic humor, fragments of verse, all side
by side with profound reflections on the arts and sciences. At times,
these reflections go on for pages - regular and organized - and
constitute almost finished outlines for a treatise on painting, a treatise
on hydraulics, a treatise on perspective. At other times, the reflections
are nothing but short sentences filled with erasures, revisions, contra
dictions, and fragments which reveal the intense labor of a thinker in
pursuit of the truth.
Among these more or less finished fragments, one finds a great many

dealing with the various branches of mechanics, a science which
Leonardo cultivated with a passion. "La mechanica," he said,s "e il
paradiso delle scientie mathematiche perche con quella si viene al frutto
matematicho."
In 1797, Venturi9 drew attention to the extreme importance of some

of these fragments. The study of the fragments led to the conclusion
that Leonardo da Vinci, who died on May 2, 1519, already knew some
of those great truths for which Galileo or some of his immediate
predecessors received credit. One of these truths is the famous Prin
ciple of Virtual Velocities,1O which has become, since Lagrange, the
foundation of all mechanics.
Later, Libri,1I quoting from even longer fragments, completed and
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confirmed the discoveries of Venturi. Today, now that we better
understand a large part of the manuscripts left by Leonardo da Vinci,
we must recognize him as the thinker who brought about the renais
sance of mechanics by pushing our knowledge of statics and dynamics
beyond the stage reached by Aristotle and Archimedes.
The thinker whom Felix Ravaisson12 justly called "the great initiator

of modern thought" is, as far as statics is concerned, a faithful disciple
of Aristotle. His most innovative thoughts have their source in his
meditations on the Mechanical Problems dealt with by the Stagirite.
First of all, he recognizes the law which serves as the foundation of

Peripatetic statics and formulates it with great precisionP

First: If a force moves a body for some time and through some space, the same
force will move half of this body in the same time through twice that space

Second: Or the same power will move half of such a body through all of that space
in half of the time

Third: Half of this same power will move half of this body through all of this space
in half of the time.

Fourth: This same power will move double this mobile body through the space in
twice the time and will move a mobile body a thousandfold larger through the space in
a thousandfold time.

Fifth: and half of this power will move the whole body through half of the space in
the given time and one hundred times this body through a hundredith of the space in
the same time.

Seventh: When two separate powers move two separate bodies in given time and
through a given space, the same powers combined will move the same bodies combined
through all of the space in all of the time because the former ratios always remain the
same.

This law is so essential to Leonardo da Vinci that he formulates it
again a little further on:14

First: If a force moves a body through some space in a given time, the same force
will move half of this body in the same time through twice the space.

Second: If any power moves any given mobile body through some space in the same
time, the same power will move half of this body through all of the given space in half
of that time.

Third: If a power moves a body in a given time through a given space, the same
power will move half of this body in the same time through half (sic!) the space. 15

Sixth: If two separate powers move two separate bodies, the same powers combined
will move in the same time the two bodies combined through the same space because
the ratios remain the same.

However, Leonardo now qualifies this formulation. A very minute
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force will not impart a minute displacement to a massive mobile body.
In fact, it does not move it at all. All of the theoreticians of mechanics
from Antiquity through the Middle Ages recognized this fact, without,
however, analyzing it as a basic law of equilibrium and motion learned
from daily experience. One must complement, therefore, the preceding
statements with the following propositions:

Fourth: If a power moves a body in a given time through a given space, it does not
necessarily follow that such a force will move double the weight in double the time
through double the space because it could very well be that such a power cannot move
this body.

Fifth: If a power moves a body in a given time through a given space, it does not
necessarily follow that half of that power will move this same mobile body in the same
time through half of the space because it might not be able to move it at all.

These qualifications express the impossibility of certain displace
ments which are not precluded by Aristotle's axiom. They allow us to
anticipate certain cases of equilibrium which do not derive from Peripa
tetic statics. We shall see the full scope of these qualifications when we
discuss Leonardo da Vinci's ideas concerning perpetual motion. For the
time being, we shall limit ourselves to the following consequences which
result from this basic principle ofAntiquity.
Among these consequences, one must first cite the one already

deduced by Aristotle, which is the law of equilibrium for the scale or
lever. Leonardo da Vinci formulates it in this way:16

The ratio which the length of the lever has with its counterlever can also be found in
the quality of their weights and, similarly, in the slowness of the motion and in the
quality of the path traced by their extremities when they have reached the final height
of their pole.

Or, in another way17

There is as much accidental weight added to the driving force placed at the extremity of
the lever as the mobile body placed at the extremity of the counterlever exceeds it in
natural weight.
And the motion of the driving force becomes larger than that of the mobile body by

as much as the accidental weight of this force exceeds its natural weight.

Furthermore, these remarks do not pertain solely to the lever. In the
most complicated machines, Aristotle's axiom still allows us to compare
the power of the driving forces to the resistance of the body moved:
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The more a force 'x moves from pulley to pulley, from lever to lever, from screw to
screw, the more powerful, yet, the slower it is.
When two forces are produced by one and the same displacement and by one and

the same force, the force which takes the longest time will have more power than any
other. Likewise, one force will be weaker than another force by as much as the time of
the first force goes into the time of the other.

These principles illustrate well the properties of the block and tackle.
Leonardo da Vinci discusses the properties of this device with the
greatest possible accuracy. One can find, for example, an illustration
drawn by him (Fig. 1) which he comments upon as follows: 19

The forces which the ropes strung between the pulleys derive from the driving force are
in the same ratio to each other as the ratio existing between the velocities of their
motions.
Of the displacement made by the ropes on their pulleys, the displacement of the last

rope is in the same ratio to the first rope as the number of ropes; that is to say, if there
are five ropes and if the first rope moves by one brasse,20 the last rope will move by a
fifth of a brasse; and if there are six ropes, the last rope will move by a sixth of a brasse
and so on ad infinitum.
The ratio between the displacement of the driving force of the pulleys and the

displacement of the weight lifted by the pulleys will be the same as the ratio existing
between the weight lifted by these pulleys and the weight driving the pulleys.

Let us suppose that we have a well-defined cause for a displacement
as, for example, a quantity of water at rest in a reservoir and ready to
be released from a given height into a lower reservoir. The cause of the
displacement possesses a known mechanical power. We can distribute
the use of this power, but we cannot increase its magnitude. We can
make this force overcome greater resistances but only under the
condition that it move them more and more slowly.

fig. 7.
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If a wheeFl is turned in a given time by a quantity of water and if this water cannot be
increased either by flow or quantity or by increasing the height of its fall, the operation
of this wheel is limited. That is to say, if a wheel drives a machine, it is impossible for
that wheel to drive two machines without needing twice the time. Thus it is impossible
for it to produce as much work in one hour as two machines with a second hour.
However, the same wheel can propel an infinite number of machines, although over a
long period of time these machines will not accomplish more work than the first within
one hour.

A given weight falling from a given height produces a mechanical
effect whose magnitude is independent of the circumstances surround
ing this fall. The magnitude remains the same whether the fall occurs at
once or is divided up.

If someone walks down stairs22 by jumping from stair to stair and if you add up all the
forces of the percussions and the weights of these jumps, you will find that they are
equal to the sum total of the percussions and weights produced by the same person
falling in a perpendicular line from the top to the bottom of these same stairs.

The passages just quoted include the formulation of a principle
which is of extreme importance to the art of the engineer. However, this
principle is in the final analysis nothing but the logical result of the
axiom posed by Aristotle. Not content to bring the seeds planted
by Peripatetic mechanics to fruition, Leonardo da Vinci tackles and
resolves a difficulty which had caused the Stagirite to falter.
The extremity of a lever which is supported at a point on its

horizontal axis describes the circumference of a circle in a vertical
plane. The path followed by this extremity does not have the same
direction as the weight to be lifted, which pulls down along a vertical
line. The result is that the resistance23 to be overcome in order to make
this arm of the lever turn through a certain angle depends on the initial
position of the arm. The closer the lever is to the horizontal position,
the greater the resistance.
According to what law does the force or the resistance of a given

load vary if one inclines the lever with the load applied at its extremity?
Leonardo da Vinci has the following answer to this question:24

The ratio of the length mn (Fig. 2) to the length nb is the same ratio as the fallen
weight at d to the falling weight at b.

Thus the weight suspended at the extremity of an inclined lever arm
has the same effect as if it were suspended at the extremity of a
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b m n

d

fig. 2.

particular horizontal lever arm. The latter lever arm is determined by
projecting the point of support onto the vertical line along which the
weight is exercising its traction. Leonardo da Vinci calls this horizontal
lever arm the "potential lever arm".

The junction25 between the attachments of the scales and the arms of these scales
always forms a potential rectangle which exists only if these arms are inclined.26

The real arms of the balance are always much longer than the potential arms, even
more so when they are closer to the center of the earth.27

The real arms are never28 included within the potential arms (Fig. 3) of the balance
unless the former are in a horizontal position.

At the extremity of a lever, one can apply a force whose direction
may be different from the vertical. It suffices to use a rope stretched in
this direction over a pulley and pulled by a weight. A similar rule to the
preceding one allows us to determine the driving force of a similar
machine. Leonardo da Vinci formulates29 this rule in the following way:

In order to know at each degree of the displacement the quality of the force of the
power which pulls as well as that of the object moved, do as you see in Figure 4. That is
to say, as soon as the weight ceases to move, imagine a line which cuts at right angles
the line of the driving force mn with fh.

fig. J.

h

fig. 4.
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This line mn, considered above as analogous to the potential lever
arm, is called by Leonardo the true expression of the balance or the
"spiritual arm".

A line can be called30 the true expression of the balance when its direction meets the
straight line of the rope pulled by the weight and when their junction forms a right
angle as can be seen (Fig. 5) at m with rnA and pn with nA, the spiritual arm.

Thus, when a force is applied to a body mobile about an axis
perpendicular to this force - Leonardo da Vinci uses the term 'cir
cumvolubile'31 - it matters little in the evaluation of its mechanical
effect to try to find the point of application of that force. One need only
consider two things: the intensity of the force and the shortest distance
between the axis of the 'circumvolubile' and the direction of the force.

There is always32 the same force and resistance no matter where one has attached the
rope on the line abc (Fig. 6) or on the line mn.

f~==:::;r;=:=:::::::::A"C:-==:::;=:==::::=im

fig. 5.
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fig. 6.



24 CHAPTER II

It makes no difference where the rope nc (Fig. 7) is attached to the segment ac
because one always uses a line which falls perpendicularly from the center of the
balance to the line of the rope, that is to say, the line mf

These various passages show that Leonardo da Vinci had a very
clear conception of the notion of the moment of a force with respect to
an axis, at least when a force is situated in a plane perpendicular to the
axis. These passages also show that he knew how to develop the
condition of equilibrium for a solid body about an axis under the action
of similar forces. .

It does not appear that he attempted to establish a relationship
between this theory of moment and Aristotle's axiom. However, such a
relationship exists. The notion of moment appears immediately if one
takes as the measure of the driving force which a load suspended at the
extremity of an oblique lever arm exerts, not the product of this load by
the velocity with which the extremity of the lever turns, but the product
of this load by the velocity with which it descends. This modification
seems to agree perfectly with Aristotle's axiom and with the idea
expressed by Leonardo in a passage we quoted above: namely, to take
the height of the fall of a weight as the measure of the mechanical effect
produced. However, in order to see this relationship between Aristotle's
axiom and the notion of moment, one must refer to the definition of the
instantaneous velocity of the load. This notion, however, which was to
play such an important role in the development of infinitesimal analysis,
was still vague in the minds of Leonardo and his contemporaries.

If there is one mechanical problem upon which the great painter
often reflected, most assuredly it is the study of the apparent weight of

c
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a body descending on an inclined plane. One cannot leaf through his
manuscripts without encountering over and over again one and the
same drawing with minor variations: a rope stretched over a pulley with
the weight on each side descending on two differently inclined planes.
The search for the laws governing the equilibrium of this mechanism

occupied Leonardo incessantly. He recognized immediately that a
weight descending on an inclined plane pulls less on the rope from
which it is suspended than if it were to descend in free fall and,
furthermore, that its pull is smaller the less the plane is inclined.
However, such qualitative information cannot satisfy the mechanician,
who requires a quantitative relation.
In order to obtain this relation, Leonardo da Vinci constantly varies

his approaches. One of these follows, which, by rather strange reason
ing, gives him a result close to the truth.
He undertakes to compare the velocities at which the same sphere

descends on planes of different inclination. He observes that when the
sphere is in equilibrium on the horizontal plane, the center of this
sphere is on the vertical through the point where it touches the plane.
the distance from the center of gravity to this vertical increases with the
inclination of the plane. At the same time, the velocity of the unimpeded
sphere increases as it descends on this plane. From this, he assumes
that there is a ratio between the velocity of descent and the distance
from the center of gravity to the vertical through the point of support.
Consequently, he easily draws the following conclusion. The velocity of
a sphere descending on an inclined plane is to its velocity in free fall as
the ratio of the height of the fall is to the length of the line of the
greatest inclination described by the moving body. Furthermore, for
Leonardo da Vinci as well as for Aristotle, the efficacy of a mechanical
action is proportional to the velocity which it imparts to a moving body.
The preceding ratio is thus equal to the ratio between the weight of the
sphere descending on an inclined plane and its weight in free fall.
Here is the passage33 where this unusual solution is summarized.

The heavy spherical body will move faster, the further away its point of contact on the
inclined plane is from the perpendicular of its central line. The shorter ab (Fig. 8) is in
relation to ac, the more slowly the ball will descend along the line ac. It will do so, the
smaller part 0 is in comparison to part m because with p as the pole of the ball, part m,
being above p, would descend faster if it were not for the small amount of resistance
caused by part 0 as a counterweight. If this counterweight did not exist, the ball would
descend faster along line ac the more 0 goes into m. That is to say, if part 0 goes into
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part m one hundred times, part a is not part of the rotation of the ball, and the ball
would descend faster by one hundredth of the usual time along n and the central line.
With p as the pole where the ball touches the plane, the greater the distance between n
and p, the faster its run down the plane.

Leonardo could not be satisfied with such a method. Thus he chose to
tackle the problem of the inclined plane with a more rational approach.
He recognized that the weight accelerating the moving body towards

the center of the earth could be divided into two components, one
being perpendicular to the inclined plane on which the body descends,
the other being tangential to this plane. It is the latter component which
pulls the moving body down.

The homogeneous body descending obliquely, he says,34 divides its weight into two
different components. The proof is as follows. Let ab (Fig. 9) be the moving body on
the oblique line abc. I maintain that the weight of the body ab divides its gravity into
two components, that is to say, along the line be and the line mn. We will discuss in the
book, On Weights, why and to what extent the magnitude of one component is greater
than that of the other and what degree of obliqueness of the inclined plane divides the
two components equally.

This decomposition can be utilized in various circumstances. If, for
example, a weight suspended by a rope at the extremity of a lever arm
oscillates in the same way as a pendulum, it will at each instant exert a
force on the lever due to the vertical component of its weight. Therefore,
the weight will appear lighter, the further the rope to which it is
attached is from the vertical.35 In the same way, a body suspended by
two divergent ropes will distribute its weight between the two ropes.
According to which rule does the decomposition of a weight in two
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different directions occur? Leonardo does not seem to have known
about the rule of the parallelogram of forces on which the solution to
the given problem depends. Repeatedly, he develops an erroneous
solution. Here is a passage36 where this erroneous solution is explicitly
formulated:

The body is suspended at the angle formed by the two ropes and will distribute its
weight to the two sides of the angle, and their weights will be to each other in the same
ratio as the ratio of the inclination of their sides. Or: such a body distributes its weight
among its supports according to the same proportion as the angles formed by the
division of the angle on which this weight is suspended: it is a division of an angle
produced by the straight line descending to the center of the suspended body. Thus the
length abd (Fig. 10) being cut by the line eb and the angle ebd being 9/11 of the angle
abc, the angle abe 2/11; ab is 9/11 of the weight and ab is 2/11.

This rule for decomposing a weight in two directions is repeated in
another passage:37

Let an angle be formed by the conjunction of two oblique ropes to which a heavy body
is attached. If this angle is divided by a vertical line through the center of the body, then
the angle is divided into two parts which will have the same ratio to each other as the
ratio by which the body distributes its weight between the two ropes.

The figure accompanying this statement shows us that in this passage
as well as in the preceding one, Leonardo is taking the ratio of the two
partial angles under consideration to be the ratio of the lengths which
the angles intercept on the same horizontal line, in other words, the
ratio between the trigonometrical tangents of these angles.
Furthermore, at times38 a similar rule seems to define for him the

ratio of the two weights supported by two unequally inclined planes and
pulling on the two ends of the rope which runs over a pulley. Leonardo
thinks that these weights must be in an inverse ratio to the inclinations
of these planes. He takes the ratio of these inclinations to be the ratio
between the tangents of the angles formed with the horizontal.
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Did Leonardo always adhere to this inexact rule about the decom
position of forces? It is probable that he was not satisfied with it and
that his ever active mind continued to search, and it seems as if he
glimpsed the truth in this matter. This much we seem to be able to
conclude from a briefand unfinished note39 which we shall now analyze.
A rope pmonq is strung across a pulley rotating about an axis d (Fig.

11) and is stretched by two weights p and q. These weights slide on two
unequally inclined planes da and de. The two segments of the rope mp
and nq are stretched parallel to the planes da and dc, respectively.
Moreover, the figure is constructed so that projection de of the radius
dn on the horizontal line hf constitutes two thirds of the radius of the
pulley, while the projection dg of dm on the horizontal line hf is one
third of the same radius. One needs to evaluate the component of the
weight q along ngor de and the component of the weight p along mp
or da. Here is what Leonardo writes about this evaluation:

Because of the right angle n above df, the weight q weighs two thirds of its natural
weight which was three pounds and which now exerts a force of two pounds. The
weight p which was three pounds, now exerts a force of one pound because of the right
angle above the line hd at point g. Thus we have here two pounds against one pound.

It is difficult to say with absolute certainty which principle led
Leonardo to this accurate statement. However, the lines which we have
just quoted seem to indicate that the rule invoked here in a more or less
conscious fashion, is not at all the rule of the parallelogram of forces
but an equivalent proposition: namely, the moment of the resultant of
two forces is equal to the sum of the moments of the components!40
Had Leonardo really acquired an understanding of this important

theorem? In his published manuscripts, we have found no evidence for
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it other than what we have just cited. Do the unpublished manuscripts,
especially those comprising the famous Codex Atlanticus, contain
passages which could confirm this conjecture? There are reasons for
hoping so and, therefore, for wishing for the prompt publication of
these precious relics.



CHAPTER III

JEROME CARDAN (1501-1576)

After Venturi had announced in 1797 that he had found in the
manuscripts of Leonardo da Vinci some of the essential laws of modern
mechanics, the surprise of some mechanicians must have been mixed
with regret. On certain points, the great painter had anticipated Galileo
by a full century. Imagine what an impulse the study of mechanics
would have received had Leonardo only been able to publish the
Treatise on Motion and the Treatise on Statics during his lifetime or at
least if the fragments left behind had become known immediately after
his death! In that case, at the beginning of their research Galileo, Simon
Stevin and Descartes would have found this science much further
advanced on the road to progress. With the efforts of Leonardo added
to theirs, they could have advanced this science much further than they
actually did and the entire development of the exact sciences would
have progressed much faster. Thus human knowledge was believed to
have suffered an irremediable delay in its march forward because the
ideas of Leonardo da Vinci concerning the principles of mechanics
remained unknown for centuries.
This delay, however, did not actually occur. From the middle of the

16th century, the most essential ideas of Leonardo da Vinci concerning
statics and dynamics were known to those interested in these sciences.
The mathematicians and the mechanicians looted the manuscript notes
of the great painter and helped themselves copiously. They flaunted
Leonardo's ideas in their writings without, however, revealing the source
of their riches. It was petty but lucrative theft, which undeservedly
increased the glory of certain of the authors, but which, nonetheless,
brought to light and put into circulation a part of the treasure amassed
by Leonardo da Vinci!
Among those who seized upon Leonardo da Vinci's ideas in order to

analyze, comment upon, and develop them, one ought to mention first
Jerome Cardan. But he was not the only one because others had either
preceded him or later imitated him. To give an example, we can find
the influence of Leonardo in the works of Giovanbattista Benedetti.
Cardan, however, was among the first to publish the most essential

30
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results of the great painter's meditations on mechanics. Cardan's great
reputation and the wide diffusion of his publications made them known
everywhere. Through the writings of Cardan, Leonardo's ideas reached
Galileo, Kepler, and Simon Stevin and exerted a powerful and benefi
cial influence upon the development of mechanics.
The view which we have just expressed has momentous consequ

ences l for the history of mechanics.2 It shows the path by which
Peripatetic mechanics spread through Leonardo's and Cardan's writings
into modern science so as to fecundate it after having been locked away
for centuries by its Scholastic commentators. If this view is correct, it
should help us to better understand the evolution which permitted the
seeds contained in the science of the School3 to burst their archaic shell
and produce the science of the 17th century. Thus it is important to
support our view with solid arguments.

It is unfortunately an all too certain fact that Leonardo da Vinci's
manuscripts had fallen prey to looting in the midst of the 16th century.
We know the negligence of those who were supposed to guard this
precious trust:

Not only did the works of the great painter perish, says Libri,4 but the great majority of
the books containing his notes were lost too. After his death, all of his manuscripts,
drawings, and instruments became the property of his pupil, Francesco Melzi, to whom
he had bequeathed them. Melzi, who was only a dilettante, transferred this precious
heritage to his home in Vaprio, close to Milan. His descendants ignored the existence of
the trust and when a man by the name of Lelio Gavardi, a relative of AIde Manuce the
Younger, and tutor to the Melzi family, saw how the family was letting this fine collec
tion go to waste, he stole thirteen of these manuscripts and took them to Tuscany in
order to sell them to the Grand Duke Francis I. The prince, however, had just died and
the manuscripts were left in Pisa with AIde, who showed them to his friend Mazenta.
Mazenta greatly disapproved of Gavardi's conduct, who, now ridden by remorse, asked
Mazenta to take the manuscripts back to Milan and to the Melzis. The head of the
Melzi family, Horace, completely unaware of their value, give the thirteen volumes to
Mazenta. He also told Mazenta that many more drawings and manuscripts of Leonardo
were stashed away somewhere in his house in Vaprio. In this way, several interested
parties obtained the drawings, the instruments, the anatomical specimens and all the
rest of Lenardo's legacy. Pompey Leoni, a sculptor in the service of Phillip II, was one
of those who obtained the largest share.

Thus everyone ransacked and helped himself as he pleased to the
treasures amassed by the genius of Leonardo. Some treatises were kept
by those particularly interested in them while the others circulated from
hand to hand until they were lost. We know from Pacioli 5 that Leonardo
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had completed a draft of his Treatise on Painting. In his Lives of the
Best Painters, Sculptors and Architects, Vasari6 tells of having seen
Leonardo's autographed treatise in the hands of a Milanese painter who
wanted to have it printed in Rome. Leonardo had also completed a
draft of a Treatise on Perspective. On the same subject Cellini repeats
several times in his work published in Florence in 1568 that he had
held this treatise in his own hands and that he had loaned it to Sarlio
and that Sarlio had used the most important parts of the work for his
own purposes.
More or less faithful copies and excerpts from these treatises of

Leonardo circulated both in and outside of Italy. Dufresne, using one of
the copies sent to Del Pozzo, had the Treatise on Painting published in
Paris in 1651. Another more complete copy kept in the Vatican
Library enabled Manzi to publish a more finished edition in 1817.
Painters and draftsmen took full advantage of the pillaging of

Leonardo's manuscripts. The mechanicians were equally well-informed
about the existence of the manuscripts because the machines which he
invented were still in use in the 16th century and still carried the
name of their inventor.7 Those who were interested in the theory of
equilibrium and motion were sure to find a wealth of new ideas in a
collection left over to depredation through the indifference of the
Melzis.
Jerome Cardan lived in Milan not far from the house in Vaprio

which had so poorly guarded the treasure. Cardan was one of those
universal minds which Italy produced in abundance from the 15th to
the 16th century. Just as Leonardo before him and Galileo after him,
Cardan seems to have been able to understand and perfect all the
sciences which he studied. Although a physician of great fame, he
devoted much of his time to the study of algebra and considerably ad
vanced the theory of equations. Furthermore, he combines the boldest
ideas with the most childish superstitions in a web of stupendous
absurdities. Astrology and the divination of dreams occupy his mind as
much as sound physics and rigorous arithmetic.
The respect he has for other people's intellectual capabilities is not

hampered by any scruples. He is not ashamed to add to the list of his
own discoveries many which he borrowed from his contemporaries.
One example should be proof enough.
Stimulated by a question from Antonio Fiore, who owed to Ferro of

Bologna a method of solving an equation of the third degree, Tartaglia8
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went on to solve all equations of that order. His discovery, which he
carefully kept secret so that he could safely challenge his rivals, like a
swashbuckler keeps to himself a secret thrust, was finally found out.
Cardan was very curious about the solution and repeatedly asked
Tartaglia or had someone else ask him to give him the method. Having
been refused each time, Cardan was able to get hold of a fragment of a
verse which explained how to obtain the root of any equation of the
third degree. In order to obtain this information, Cardan did not
hesitate to pledge his Christian faith and his word of honor as a gentle
man that he would never make public the method which he was asking
Tartaglia to reveal to him:

10 vi giuro, ad sacra Dei evangelia, e da real gentil'huomo, non solamente di non
publicar giammai tale vostra inventione, se me Ie insignate, . ,9

When he found out the solution which he had sought so ardently, he
immediately proceeded to publish it in his Ars Magna. Tartaglia com
plained bitterly about this act of bad faith which allowed his own
discovery to appear in print for the first time in someone else's book.

He was right in complaining, says Libri, because posterity has persisted in calling the
formula which gives the solution to equations of the third degree by Cardan's name.

Cardan, however, had acknowledged the priority of Tartaglia and of his
predecessors Scipion Ferro and Antonio Fiore, whereas Tartaglia never
mentioned the name of Ferro when he published the solution later. The
mechanicians of the 16th century were easily hurt when someone stole
their own discoveries, but were nonchalant when they borrowed the
discoveries of others.

It is difficult to imagine that Cardan, so eager to know Tartaglia's
discovery and so prompt, despite his oath, to use it to adorn his book
on algebra, was not also motivated by a curiosity to know about
Leonardo da Vinci's ideas on mechanics and physics. It is equally
difficult to imagine that once he knew about them, he would resist the
temptation to glean some of these ideas in order to stimulate his own
meditations. And, in fact, he did not resist that temptation at all.

In 1551, Cardan published his twenty-one books On Subtlety.1O A
second and more complete Latin edition 11 of this work was published
in 1554 and was translated into French by Richard Le Blanc l2 in 1556.
During the second half of the 16th century many Latin and French
editions of this work followed. 13 Later, Cardan appended his Opus
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novum de proportionibus J4 to this work. All of the passages dealing
with mechanics in these two works clearly bear the stamp of Leonardo
da Vinci.
The similiarities between the views of Leonardo on statics and those

of Cardan are abundant. The latter are scarcely more than a skillfully
organized version of the former. But it would be idle to dwell here on
these similarities, which will become clear in the following pages.
As we shall see in Chapter IV, Leonardo da Vinci and Cardan are in

complete agreement regarding the impossibility of perpetual motion.
The two men are also in perfect agreement on the principles of
dynamics. This agreement is all the more significant since their opinions
relating to diverse questions on dynamics have a peculiar form which
one seldom finds in their predecessors or their contemporaries.
We hope some day to be able to retrace the origins of dynamics in

the same fashion we are now retracing the origins of statics. That would
be the occasion to analyze in detail the views of Leonardo and Cardan
on dynamics and their influence on the development of rational me
chanics. We would then see how the doctrine of the Milanese physician
was inspired in its most minute details by the thoughts found scattered
throughout the manuscripts of the great painter.
Cardan's borrowings from Leonardo's physics are fewer in number,

although still recognizable. Thus Cardan, setting out to explain how to
start a fire at the focus of a concave mirror, says: 15

The heat obtained from concave or perfectly spherical mirrors obviously results from
concentration. The reason for this concentration is not obscure, because if you dis
tribute ten cents to ten people, each one will have one cent. If you distribute the same
amount to five persons, each one will receive two cents. Thus, if the heat scattered over
a wide surface is collected, aU of the heat scattered over this wide surface will be
concentrated in a small space. However, this large amount of heat concentrated within
this small space will produce great effects. One can truly speak of great effects because
through it fire can be produced.

Leonardo da Vinci had written: 16

On the quality of heat produced by the sun's rays in a mirror. The heat of the sun on the
surface of a concave mirror will be redirected among the pyramidal rays merging in one
single point. The closer this point is to the surface of the mirror, the hotter it will be in
comparison to the heat on the mirror. Also, the more often ab, or if you wish cd l7

enters into the mirror, the higher will be its heat in comparison to that of the mirror.

In another passage, he writes: 18
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One and the same property is more powerful, the smaller the space it occupies. This
applies to heat, sound, weight, force and many other things.
We shall first speak about the heat of the sun which develops in the concave mirror

and is reflected in the shape of a pyramid. 19 The pyramid acquires proportionately
more power the narrower it becomes. That is to say that if the pyramid strikes the
object at the midpoint of its length, it concentrates half of its cross-sectional area in the
lower half. And if it strikes by 99% of its length, it contracts by 99% of its base and
increases by 99% the heat which the base receives from the source, be it from the sun
or the fire.

Cardan's answer20 to the question, "What causes the colors of the
rainbow named Iris?" can be compared, although with less precision, to
Leonardo's writings on the subject of the rainbow.21

But Cardan, on numerous occasions, does not hesitate to diverge
from his illustrious predecessor. On the subject of the tides, the scin
tillation of the stars, the suspension of the clouds in the atmosphere,
Cardan adopts solutions distinct from those proposed by Leonardo.
His theories on heat, fire and the elastic forces in gases are his own.
They could well be the most remarkable part of the work On Subtlety.
Cardan was not a vulgar plagiarist. He was able to extract the

quintessence of the ideas planted by Leonardo and then assimilate and
develop them in order to nourish the science of the 16th century with
ideas which, left buried within the house of the Melzi, would have
remained unknown and useless without his felicitous indiscretion. As
we shall see, in the domain of mechanics, where he borrows heavily
from Leonardo, he was able to leave the imprint of his own originality
beside the unmistakeable mark of his ingenious predecessor.
Cardan did not disdain to exercise his mathematical talents on

demonstrations constructed in the manner of those of Archimedes and
to fill certain lacunae left by the famous Syracusan. Archimedes, for
instance, had always neglected the weight of the lever itself or of the
arm of the balance from which he suspended weights when studying
equilibrium. Cardan set out to determine the mechanical properties
of the homogeneous horizontal arm of a balance suspended at any
arbitrary point. That is the topic of the article entitled "Staterae ratio"22
in the De Subtilitate23 and which his translator Richard Le Blanc
explains in the following way:

It is the standard of weight ordinarily referred to in Paris as a sledge and traditionally
used by weavers; in Latin statera.24

Cardan bases his analysis on two propositions taken as axiomatic.
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First, he states that a segment AB' (Fig. 12) which is equal to the small
arm AB of the balance will hold the latter in equilibrium. Secondly, he
states that the remaining length of B'C of the large arm has the same
effect as if its weight were suspended from point M midway between B'
andC.

Assume that the arm of a balance is weightless and that a uniform weight is distributed
along that part of the beam which is the difference in length of the two arms of the
balance. And further assume that a pin is inserted at the interior endpoint of the
segment. The effect of the distributed weight will be the same as that of an equivalent
concentrated weight suspended midway between the pin and the end of the segment.

These principles easily yield the solution to the given problem.
Cardan treats this problem again in the Opus novum25 and he arrives at
this proposition:

The moments of the two arms AB and AC of the beam of the balance are in the same
ratio as the squares of the lengths of these two arms.

And Cardan does not hide his satisfaction at having arrived at such a
solution:

Hoc est,26 he says, quod Archimedes reliquit intactum, cum esset maxime necessarium
et ostendit magis abstrusa sed, pace illius dixerim, minus utilia.27

This solution was not so difficult to warrant this triumphant exclama
tion. Nevertheless, it had an undeniable influence on the thinking of
Cardan's successors. Simon Stevin, for one, and Galileo, for another,
gave up the requirements upon which Archimedes had based his
reasonings on the equilibrium of the lever. They restricted their study of
the lever to the consideration of a heavy homogeneous beam suspended
at its center, using the very axioms which Cardan had proposed.
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Although Galileo might not have known the Opus novum, he did know
at least the On Subtlety, which he quotes frequently in his early works.
It would be implausible to assert that Simon Stevin was not familiar
with any of the numerous editions of this work. At any rate, the Opus
novum is quoted and criticized by the Flemish geometer.
These demonstrations of statics, conceived in the manner of Archi

medes, do not constitute the most important part of Cardan's thoughts
on the equilibrium of weights. The development he gives to Aristotle's
axiom is of greater significance. By enriching and transforming this
axiom with the help of the thoughts scattered throughout the manu
scripts of Leonardo da Vinci, Cardan derives the Principle of Virtual
Velocities in a form that will be used by Galileo and remain unchanged
until the time of Descartes.
Let us begin with a quote. Later we shall analyze its rich content.

This is how Cardan 28 expresses himself in the first book of De
Subtilitate, translated by Richard Le Blanc:

On the scale and its measure. After these matters one must now consider the weights
placed on the balance. Let us assume a balance which is suspended from point A (Fig.
13) and let the fulcrum be at the point where the two arms of the balance CD are
joined ... I maintain that the weight placed at C will be more powerful than if the
balance were inclined to any other position such as at F. In order for us to recognize
that the weight at C is heavier than at F, it is necessary that it be moved in the same
time through a larger space towards the center.29 For we see that these objects which
are heavier than others for the same reason are moved more easily (faster) towards the
center. I will show by two reasons that this happens with the weight of the balance
placed at C rather than at F.
The first reason is that if the weight is moved instantaneously from C to E and if arc

CE is equal to FG, it would descend from F to G more slowly than from C to E, and
thus it will be lighter at F than at C ... It is obvious from balances and other devices
that lift heavy weights that the further the weight is from the fulcrum the heavier it is.
The weight at C is a distance BC from the fulcrum and at F by the distance FP ... Thus
the following reason is of general validity. Namely, the further the weights are from the
post or line of descent as measured by the perpendicular or oblique line, that is to say
by the angle, the heavier they are. And thus, the tendency of the weight is to move
directly to the center. But since it is prevented because it is constrained, it moves as it
can.

Thus, when a heavy body descends along a vertical line, the motor
power of this body, as Aristotle claimed, is measured by the velocity
with which it falls. But because of the arrangement of the mechanism
supporting it and because of the nature of the connections,30 to use an
expression which modern mechanics has borrowed from Cardan, it can
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happen that the heavy body does not move along a vertical line. In that
case, one must take into account when measuring its motor power, not
the total velocity of the heavy body, but only its vertical component,
that is to say, the velocity of the fall.

If a given weight is suspended from any point on a solid body which
is capable of rotating about a horizontal axis, the motor power of this
heavy body increases the faster the point of suspension descends due to
the effect of rotation imparted to the suspended body. From the outset,
the velocity will increase the further the point of suspension is from the
vertical plane which contains the horizontal axis.
Today, it is easy for us to carry out such an analysis and to deduce

from the given premises the ratio between the motor power of a
suspended body and the distance between the point of suspension to
the vertical plane containing the horizontal axis. All we need do is refer
to the definition of the velocity of the fall: a relation between an
infinitesimal vertical displacement and its infinitely short duration. We
can thus see that the motor power of a weight suspended from an
apparatus which moves about a horizontal axis is measured by the
moment of this weight with respect to the vertical plane containing the
horizontal axis. However, the notion of the ratio between two infinitely
small quantities had not yet been fully developed at the time Cardan
was writing. Thus he could not accomplish the deduction we just
described. All he could demonstrate was that the motor power of the
suspended body increases at the same rate as its moment or admit
intuitively the proportionality of these two quantities, as he did in the
Opus novum.31 The mechanical relation between Aristotle's axiom,
transformed 32 into the Principle of Virtual Velocities, and the theory of
moments, was, nevertheless, clearly grasped. All it needed to become
more rigorous was progress in infinitesimal analysis.
We have seen how Cardan combined various ideas created or

recognized by Leonardo da Vinci and then established relations be
tween them which the great genius might not have recognized and
which he did not point out in any case. In other passages, the physician
from Milan appears as a faithful interpreter of Leonardo's ideas. What
the Books on Subtlety say about the block and tackle seems to come
straight out of the manuscripts which we discussed in the preceding
chapter.

The fourth example of subtlety, says Cardan33 concerns the block and tackle.34
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After having described a block and tackle with four ropes, he adds:

39

The load is thus . . . pulled upward by a fourth part of the force. And if each pulley
block had three sheaves, the load could be lifted by one-sixth of the force. And in this
way, a child could pull up a great load unless the weight of the ropes or the rigidity of
the sheaves or pulleys or block and tackle prevented him from doing so. But since there
is a ratio between time and the forces and powers, the child will pull four times more
slowly over two sheaves and six times more slowly over three sheaves what he would be
able to lift with one rope with the same force. Actually, a slightly larger (force) is
required or the time will have to be multiplied by a little more than four or six to the
extent that the length of the rope adds to the load.35 Thus the child will be able to lift
with a block and tackle in scarcely one hour the same load that a man, six times
stronger and standing above the load, could lift at once with a single rope.

Leonardo da Vinci applied Aristotle's axiom with precision only to
the lever and to the block and tackle. With respect to the screw, he was
satisfied with this brief remark: 36

The more a force moves from wheel to wheel, from lever to lever, from screw to screw,
the slower and more powerful it becomes.

Cardan expands37 on this remark in a section entitled: The Method
ofPulling and Pushing Anything With Little Force.

The screws, he says, used in wine presses are made and constructed according to such a
method ... The more threads there are in the screw and the less inclined they are, that
is, the closer they are to the circle and the deeper, the smaller the applied force and the
easier the movement. And the easier the movement, the slower it will be. If the screw
thus measures two cubits with threads deep and flat, the weight can easily be lifted by a
ten year old child. But as I said previously, the easier it is to move, the slower it will be
pulled or lifted.

Cardan applies this Principle of Virtual Velocities in the Opus
novum38 in order to evaluate the efficiency of the screw-jack and, in the
De Subtilitate,39 he applies it in order to design:

A large machine for lifting bulky and heavy loads, composed of a screw and a screw
jack.

In all matters concerning the Principle of Virtual Velocities, Cardan
cleverly developed and completed the ideas he had gained from his
study of Leonardo da Vinci. He was less fortunate as far as the inclined
plane was concerned. He does not broach the subject in the De
Subtilitate. In the Opus novum, he sets out40 to determine the weight of
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a moving sphere on an inclined plane. According to the principle of
dynamics universally acknowledged at that time, Cardan thinks of the
weight of the sphere as being proportional to the velocity at which
the sphere, if left to itself, would descend along the plane. Since
this velocity, zero on a horizontal plane, increases with the angle of
inclination of the plane, Cardan thinks he can state the following
proposition:

The weight of a sphere which descends along an inclined plane is to the weight of the
same sphere descending in free fall as the angle between the inclined and horizontal
plane is to a right angle.

Although this solution is erroneous, the passage in which Cardan
develops it deserves to be mentioned because it undoubtedly helped
suggest to Simon Stevin, on the one hand, and to Galileo, on the other,
the correct solution to this famous problem. In his work on statics,
Stevin quotes and discusses Cardan's Opus novum. When Galileo
discovered the law of the inclined plane for the first time, he must have
had the following passage in mind:

Let there be a sphere a of weight g (Fig. 14) placed at point b, and which is to be
pulled over the inclined plane be, with bl being the vertical plane. On the horizontal
plane be, a can be moved by a force as small as one wishes, according to what was said
above. Consequently, according to common opinion, the force which will move a along
be will be zero. On the other hand, according to what was said, a will be moved
towards I by a constant force equal to g. It will be moved in the direction be by a
constant force equal to k. Finally, it will be moved in the direction bd by a constant
force equal to h. Thus, because of this latter requirement, eum termini servent quoad
partes eandem rationem singuli per se,41 and since the movement along be is produced
by a zero force, the relation between g and k will be like the relation between the force
moving along bl and the force moving along be and like the relation of the right angle
ebl to the angle ebe. And, similarly, the force moving a along bl which - as stated
previously - is g in relation to the force moving along bd which - by hypothesis - is
h, as ebl is to ebd; thus the relation between the resistance to motion of a along bd and
the resistance to the movement of the same a along be, is the same relation as between
hand k which is what was to be demonstrated.42

f

.~.
fig. 14.



CHAPTER IV

THE IMPOSSIBILITY OF PERPETUAL MOTION

It is easier to resolve the question of perpetual motion in dynamics than
in statics. However, for Leonardo da Vinci and for Cardan as well as
for Aristotle, there are no insurmountable barriers between these two
sciences. On the other hand, Galileo and Stevin accepted the impos
sibility of perpetual motion as an axiom capable of providing a basis for
certain demonstrations in statics. And both of them had read Cardan,
where they probably found support for their confidence in this axiom.
But Cardan himself, in writing against perpetual motion, had done
nothing more than summarize the scattered notes of Leonardo da
Vinci. Thus we cannot gain a clear and complete picture of the origins
of statics without reviewing the objections raised by Leonardo da Vinci
and Cardan to the perpetuum mobile.
The search for perpetual motion is a general term expressing two

distinct utopian goals: the search for the perpetual motor and the search
for the perpetually moving body.
The cruder of these two utopian goals is the search for the perpetual

motor. Such is the illusion of the miller who has a given volume of
water in reservior ready to be released from a given height. The miller
dreams of combining marvellous gears which would enable him to mill
as much grain as he wants without raising his reservoir by an inch or
adding a pint to the existing volume of water.
We have seen with what precision Leonardo da Vinci, the great

master of hydraulics, brings our miller's ambitions back to earth. Let
him connect one hundred millstones to his waterwheel instead of one.
Each one of them will then mill for him one hundred times less grain. A
given weight which falls from a given height represents a given driving
power. One can divide up this power or change its use infinitely, but
one cannot increase it.
This truth dashes the hopes of anyone looking for a perpetual motor.

However, it still gives free reign to the dreams of those seeking to
realize the perpetually moving body.
Without requiring an engine to produce any external mechanical

work and without exerting on it any action, could we not have an

41
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engine which, once put into motion, would move indefinitely? Could we
not construct, for instance, a wheel so perfect that, once in motion, it
would turn on its axis without ever stopping? Could we not construct a
clock in such a way that its two equal weights would precisely counter
balance one another and that one weight descending from its highest
point would lift the second weight, which, in turn, had lifted the first
weight so that this perpetual clock would rewind itself?

It is absurd to expect perpetual motion from an initial impulse
because the motive power of this impulse - Leonardo calls it its
''forza'' or its "impeto," Leibnitz will call it its living force I - is
constantly being expended. It is equally absurd to expect from any
arrangement of weights a perpetually moving body because gravity
always tends towards equilibrium and any motion produced by it has as
its goal a state of rest:

No thing without life, says Leonardo da Vinci,2 is capable of pushing or pulling without
accompanying the body being moved. These motors can only be "forza" or falling
weight. If falling weight pushes or pulls, it can only produce this displacement of the
body because the body seeks a state of rest and, since no moving body which is
descending is capable of returning to its initial position, motion stops.
And if one body which moves another body is the "forza," this potential capacity, in

its turn, accompanies the body being moved by it. It moves it in such a way that it
expends itself. And once it is expended, no body, having been moved by it, is capable
of reproducing it. Thus no moving body can move for a long time because in the
absence of causes there will no longer be any effect.

Leonardo da Vinci's contemporaries readily agreed with him that the
motor power of an impulse transmitted to a group of bodies will
dissipate. Indeed, all the Peripatetics accepted as axiomatic that violent
motion always finishes by expending itself. As they were in the habit of
saying: "Nullum violentum potest esse perpetuum."3 When Leonardo
describes this continuous loss of the living force within a system in
motion, he uses glowing poetic expressions:

I maintain4 that the "forza" is a spiritual virtue, an invisible power which, through an
external accidental violence, is caused by motion, and which is introduced and infused
into the bodies, which are, in turn, being pulled and diverted from their natural condi
tion. This spiritual force imparts to them an active life of marvelous power and forces
all things created to change their form and place. It runs furiously to its desired death
under ever changing forms according to its causes. Slowness renders it vigorous and
swiftness makes it feeble. Born of violence, it dies of liberty. The more vigorous it is,
the faster it expends itself. It hunts with a fury whatever opposes its destruction; it
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desires to vanquish and kill the cause of any obstacle and, in vanquishing, destroys itself
... No motion caused by it endures. It waxes in weariness and wanes in rest.

Using the same rich images, Leonardo compares this loss of the
living force to the continual tendency which gravity has towards rest:

If weight seeks stability5 and if the "forza" is always a fleeting desire, the weight in itself
is without fatigue while the "forza" is never exempt from it. The further the weight falls,
the more it increases;~ and the further the "forza" falls, the more it decreases. If the one
is eternal, the other is mortal. Weight is natural and "forza" is accidental. Weight seeks
stability and ultimately immobility. "Forza" seeks flight and its own death.

How does this continual tendency of gravity towards a final state of
equilibrium7 manifest itself in a mechanism? It becomes evident
through the law stating that in a mechanism in motion:

The motor is always more powerful than the body moved.s

It is in accordance with this law, for instance, that

The rope descending from a pulley carries more weight and, consequently, tires out
more rapidly than the opposite, ascending rope.

This disparity of invariable direction between the motor power and the
resistance of the moving body can be found in any mechanism:

If, for example,9 you want weight b to lift weight a, the arms of the balance being equal,
it is necessary that b be heavier than a. If you wanted weight d to lift weight c which is
heavier than d, it would be necessary to have it descend a larger distance than c's
ascent.
And if it descends further, the arm of the balance which descends with it must be

longer than the other arm. If you want the small weight f to lift the large weight e,
weight f must necessarily move faster and over a greater distance than weight e.
It is solely the excess of power which the motor has over the resistance of the

mobile body that determines the motion. The larger this excess, the faster the motion.
No powerw prevails over its resistance except by that amount by which it exceeds

this resistance. Or, no motor prevails over its mobile body except by the amount by
which it exceeds this mobile body ... And the more the motion of the mobile body is
joined with the "impeto," the larger the "impeto" of the mobile body, which is capable
of increasing infinitely.

If a pulley holds two equal weights, these weights will remain immobile.
If they are unequal, the heavier weight will descend with a velocity
proportional to the weight it has in excess over the lighter one:
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If a pound weight impacts a pound of resistance, II it will not change its place; it will
remain at rest. But, if you add another pound weight to it, it will fall to earth in a given
time. If you add to that weight yet another pound weight, all of the weight will descend
with twice the velocity.

Thus a self-winding clock is an illusion. The weight with the greater
motor power will always descend and when it has reached the bottom
of its path, the clock will stop. Consequently, we read the following
conclusion12 by Leonardo:

Against perpetual motion: No inanimate body can move by itself. Consequently, if it
moves, it is being moved by an unequal power, that is to say, of unequal time and
motion or of unequal weights. And as soon as the action of the first motor ceases, the
second ceases too.

Cardan summarizes these thoughts of Leonardo in De fa Subtiiite,

He demonstrates that nothing has perpetual motion. I 3

When one attempts to produce a perpetually moving body,

One is really asking the following: does a motion exist which, by itself and without any
added outside stimulus, contains a cause capable of perpetuating it? The problem
would be solved if clocks existed which would lift the weights back to their original
height instead of initiating the movement which tells time by striking the hour. There
are only three kinds of movements capable of settting bodies into motion. Either they
tend essentially towards the center of the earth, or they are not simply directed towards
the center like the flow of water, or else they derive from a peculiar nature like the
movement of iron towards a magnet. It is known that perpetual motion can only be
found among the displacements of the first two kinds. 14 It is true that when a weight is
pulled more forcefully or held back more energetically than its nature allows, its motion
is natural; but it is not exempt of violence. The moving weights in a clock furnish us
with an example of these two instances ... As far as the motion around a circle is
concerned, it only occurs naturally in the heavens. And yet, it too is not animated in a
uniform fashion. In the case of the other weights, the motion always has its origin in a
displacement along a vertical line. Even water is animated by a certain motion along a
vertical. Thus, to the degree that the waters of a river are generated by their source,
they always descend following the gradient of the river bed. In order to have perpetual
motion, the body would have to return to its original position after having been dis
placed and run its course. The only way this could occur is through a definite excess (of
the motor power). Thus the continuity of motion either derives from the fact that the
displacement conforms to nature l5 or it will not be able to perpetuate itself. Nothing
which is constantly diminishing, unless it is increased by an external action, can be
perpetual.
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In their thinking Leonardo and Cardan not only reject the possibility
of a perpetually moving body but go a step further. They affirm that all
observed motions have a common tendency, the tendency of a heavy
body to descend as far as possible, to search out the place of its eternal
rest. This idea is ever present in Leonardo da Vinci's mind.

Every weight l6 seeks to descend to the center of the earth by the shortest path; and,
where there is more weight, there is a greater tendency. The body weighing the most,
left by itself, will fall the fastest ... Weight l7 always pushes toward its point of depar
ture ... There is only one such point for the weight, it is the earth.

This proposition can serve as a principle explaining the equilibrium and
motion of water:

The further a body is from the center of the earth, the higher it is;IH and the closer it is
to the center of the earth, the lower it is. Water does not move by itself if it does not
descend and, whenever it moves, it descends. Let these four concepts taken two at a
time help me to prove that water which does not move by itself has a surface equi
distant from the center of the earth ... I maintain that no part of the water's surface
moves by itself if it does not descend. Since the body of water has no segment of the
surface which can descend, it is thus necessary by the first concept that it not descend.

To be sure, water does seem at times to flow spontaneously upstream
and some hydraulic machines take advantage of this property. But, in
reality, these machines lift only a small quantity of water by means of
the descent of a great mass of water. Cardan made the following
observation when he analyzed "Archimedes' screw."19 The argument
seems to have concluded in this way: "Water perpetually descends in
such a way that, in the end, it will be in a lower position than at the
beginning. All of it does not always descend, however, but the large
part which does descend pushes the smaller part forcing it upward."
Such is the general law of motion produced by gravity: no body can

move upward unless a heavier one descends.

All bodies tend to move downwards,20 and things high up will not stay there, but in
time, will all come down. And thus, in time, the earth will become spherical and
consequently completely covered by water.

The entire line of argumentation of Leonardo da Vinci and Cardan
stems from the principles of Peripatetic dynamics: namely, the velocity
and the force moving the body are proportional as are the velocity of
the fall and the weight of the body. Progress in mechanics will sweep
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away these foundations. Yet, after mechanics has advanced even further,
it will again support those earlier conclusions. So far, we have almost
exclusively quoted the authors of the 16th century. However, what they
tell us has a distinctly modem flavor. Their ideas are very close to
those of the physicists who have read Clausius, William Thomson, and
Rayleigh. This is because thermodynamics, by completing the over
simplified dynamics deriving from Galileo's Discorsi, partially bridged
the gap separating the latter from Aristotle's dynamics.
This is not the place to dwell on this reconciliation because it would

take us too far from the origins of statics. We have seen how Leonardo
da Vinci's most essential ideas were published in the works of Cardan.
The vast popularity of the latter will allow Leonardo's thoughts to exert
a great influence on the development of science.
At the end of the 16th century, this influence took two directions:

one is particularly felt in Italy where it inspired the works of Giovan
battista Benedetti, Guido Ubaldo, Galileo and Torricelli; the other,
initiated by Simon Stevin, inspired Flemish science. These two currents
will merge in Roberval and Descartes.



CHAPTER V

THE ALEXANDRIAN SOURCES OF MEDIEVAL STATICS

A geographer wishing to describe a large river basin begins by making a
rough draft of the course of the principal rivers which flow into the
river basin. After that, he completes this provisional and tentative
sketch by detailing all the meanderings of the thousand streams which
feed into the main tributaries.
We intend to proceed in a similar fashion in our study on the origins

of statics. At the outset, we summarized the abundant and fertile ideas
contained in the writings of Aristotle, Archimedes and Leonardo da
Vinci. We saw then how the ideas of the great painter had fecundated
the 16th century through the fortunate plagiarisms of Cardan.
So far, however, we have only crudely sketched the development of

statics from Antiquity to the Renaissance. Numerous details must now
be added to the basic outline we have already sketched.

In order to firmly establish these details, we had to impose upon
ourselves an onerous labor. We were forced to go through and inven
tory the numerous manuscripts dealing with statics in the Bibliotheque
Nationale and the Bibliotheque Mazarine. We are convinced that this
inventory allowed us to discover more than one unknown or ignored
source which contributed significantly to the formation of modern
science. However, despite our inquiry, many questions still remain
obscure. We have no doubt that further research like ours, carried out
in major European libraries, will yield to curious minds new findings
capable of filling the wide gaps left by us and which could possibly lead
to the modification of some of our conclusions.
Before we begin to study the fundamental treatise on statics produced

in the Middle Ages by the enigmatic lordanus de Nemore, we must
gather the remains of the writings scattered among the manuscripts
concerning the science of equilibrium which were composed in Alexan
dria. This will be the topic of the present chapter.

1. THE WORKS ATTRIBUTED TO EUCLID

The ideas which we intend to trace through a complicated evolution
stem in part from Greek science. Not only will we have to clarify the
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influence which certain passages from Aristotle's Mechanical Problems
had on Jordanus de Nemore during the Middle Ages, but we will also
have to search for the origins of some of these ideas in a fragment
attributed to Euclid.
Although Greek Antiquity does not attribute to Euclid any work on

mechanics, the name of the great geometer comes up frequently in the
books of Arabic authors who wrote on statics and three fragments
dealing with mechanics are mentioned as being by Euclid.
The first of those fragments seems to have been unknown to Western

geometers of the Middle Ages. It was first reported in 1851 by Dr.
Woepcke, who translated it from Arabic and published it in the Journal
Asiatique l as Le Livre d'Euclide sur la Balance.2 The text of this
treatise can be found in manuscript number 952.2 in the Arabic
collection of the Bibliotheque Nationale. It was written in Chiraz in the
year 358 of the Hegira (970 AD.).

In another copy, says Dr. Woepcke, I found this book attributed to the Banu Musa3

and collated with the copy by Aboul Hocain AIsoufi. This circumstance could be
explained if one supposes that the Banu Musa might have either translated or revised
this treatise and that a copyist had omitted the name of the original author.

In support of the view which attributes this treatise to Euclid, Dr.
Woepcke points to a reference to Euclid's demonstrations on the lever
in a treatise entitled De canonio, which can be found in a manuscript in
the Bibliotheque Nationale. In the third part of the present chapter,
however, we shall have to return to the treatise De canonio and to the
reference which it contains. We shall see that this passage does not
refer at all to the text translated by Dr. Woepcke but to a different text
which is also attributed to Euclid.
In opposition to Dr. Woepcke's view, Curtze4 does not hesitate to

consider the treatise on the balance as an Arabic treatise written by one
of Muza ibn Schakir's sons, one of the three brothers Muhammed,
Ahmed and Alhazen, whose book on geometry was so well known in
the Middle Ages. Heiberg shares this opinion.5 Indeed, Curtze reminds
us that according to Steinschneider,6 one of the three brothers belonging
to the Banu Musa wrote a book on the balance. According to Stein
schneider, this book was further developed by Thabit ibn Qurra and
the text by Thabit ibn Qurra which we possess is only an amplification
of the text published by Dr. Woepcke.
All of these arguments seem weak to us. We shall have to discuss the
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book by Thiibit ibn Qurra at length in section 2 of the present chapter.
By examining the very explicit accounts of the author, we shall see that
his work is not at all an amplification of an Arabic treatise but a
commentary on a Greek work. Furthermore, the problems discussed in
Thiibit's work are, for the most part, remote from the Book on the
Balance. Even though it is true that the problem of the equilibrium of
the lever is treated in Thiibit's work in the same manner as it is in the
text which Dr. Woepcke attributed to Euclid, it is, nonetheless, resolved
by a completely different method, to wit, by the method of Aristotle.
Still another argument can be made to prove that the text in question

is of Greek origin. Hultsch made the curious remark that the Arabic
treatises translated from Greek preserved in a certain sense the stamp
of their true origin in the sequence of the letters used to mark the
different points on the figures and the diverse magnitudes being
analyzed. These letters always have the following order:

a, b, c, or g, d, e, z, h, t,

and thus reproduce the order of the Greek alphabet:

a,f3,y,o,E, ~,'YJ,(}

This telling sign can also be found in the figures of the treatise
published by Dr. Woepcke and thus convinces us that this treatise is a
fragment of Hellenic science.
However, one cannot conclude from the above that this fragment

should be attributed to Euclid, at least not in its present form. Of the
four propositions contained in it, the first two are demonstrated by a
sequence of reasoning full of contradictions and lacking any conclusive
argumentation. We would, indeed, wrong Euclid if we were to consider
this jumble of paralogisms as a product of the logical genius to whom
we owe the Elements.

It appears that we should consider the treatise under consideration
as nothing but the work of a decent geometer which ultimately became
disfigured by some clumsy commentator who was trying to demonstrate
two indemonstrable postulates and then combine them into the two
illogical theorems which we have mentioned. These unfortunate addi
tions are probably not of Arabic but of Greek origin, judging by the
arrangement of the letters used in the figures.
Once these parasitic and defective demonstrations are removed from
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the treatise it appears to start with four axioms. The first two, which are
actually formulated in the treatise, are given as follows:

Axiom I. When two equal weights are suspended from the two extremities of a
straight beam of uniform thickness which, in turn, is suspended at the midpoint between
the two weights, the beam remains parallel to the plane of the horizon.

Axiom II. When two equal or unequal weights are attached to the two extremities of
straight beam which at one of its points is suspended from a fulcrum so that the two
weights maintain the beam parallel to the horizon, and if then, we leave one weight in
its place at one extremity and draw a straight line from the other extremity of the beam
which forms a right angle to the beam on either side of the beam and if one suspends
the other weight from any point at all on this line, the beam will remain parallel to the
plane of the horizon. This is the reason why the weight does not change if one shortens
the strings of one of the two scale pans or lengthens the strings of the other.

The pseudo-demonstrations of propositions I, IT and III imply the
following two axioms:

Axiom III. If the weights are maintaining the beam of a balance parallel to the
horizon and if one suspends an additional weight to the beam's point of suspension, the
beam remains paraDel to the horizon.

Axiom IV. If any number of weights maintain the beam of a balance parallel to the
horizon, and if Z and D are two of these weights suspended from the same arm of the
beam and if one moves weight Z by a given length away from the point of suspension of
the balance and if one moves weight D by the same length towards the point of
suspension, then the beam will remain parallel to the horizon.

This axiom, which renders the demonstration of proposition III
logical, leads the author to the notion of the power of weight, a notion
which we would call today the moment of the weight with respect to the
point of suspension. This notion shows the author that this power
diminishes by degrees proportional to the diminution of the distance
between the weight and the point of suspension of the balance.
These axioms produce in proposition IV an elegant demonstration of

the law of the lever. Let us summarize this demonstration in a few lines.
Imagine a lever AB with C as the point of support (Fig. 15) and

B ~c A
E D

c5 0
fig. 15.
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suppose that the arm of the lever CB is three times the length of the
arm of the lever AC. A weight P is suspended at B. What weight does
one have to suspend from A in order to put the balance in equilibrium?
Extend CA by the length AD in such a way as to have CD = CB.

Now AD will be twice the length of CA. At D, suspend a weight equal
to P and at C, two other weights equal to P. True to our first three
axioms, the beam will be in equilibrium.
According to our fourth axiom, we can move the weight which

previously was at point D to E, the midpoint between A and D. And
we can move one of the weights which previously was at point C to
point A. The beam will remain parallel to the horizon. It will also
remain parallel to the horizon if one moves the weight one had already
moved to point E along with the second of the two weights, previously
suspended at C, to point A. Thus the beam remains parallel to the
horizon if one suspends a weight P at point B and a weight triple that of
P at point A. This demonstration, which is easy to generalize, leads to
the well-known law of the equilibrium of the lever.
Thus it appears to us that the fragment brought to light by Dr.

Woepcke indicates, under various disguises and alterations which un
doubtedly go back to Greek Antiquity, an interesting relic of Hellenic
science. The author proposed to demonstrate the law of the equilibrium
of the lever starting not from a general principle of dynamics, as
Aristotle does, but by means of postulates rendered seemingly self
evident by their simplicity and by everyday experience. However, the
author's method is the same method by which Euclid has given us
superlative models in his Elements. It is the same method which
Archimedes used when he undertook to deal with statics or hydro
statics. However, the application made of this method by Euclid is
vastly inferior to that made of it by Archimedes in demonstrating the
same law of the equilibrium of the balance. It is possible that the work
on the balance of which we possess only a curiously deformed copy
predates Archimedes and belongs to the time of Euclid. We shall now
turn our attention to another text, which is also attributed to Euclid.
This fragment has been known for a long time. Herwagen (Herwa

gius) included a Latin translation of it in the edition of Euclid's works
which he published in Basel in 1537. This exact same translation was
also included in subsequent editions of the same works published in
Basel in 1546 and 1558. Gregory included the translation with an
implied and discreet criticism in the edition of Euclid which he pub-
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lished in Oxford in 1747. In 1565, Forcadel published in Paris the
Book on Weights falsely attributed to Archimedes. He appended to this
work a French translation of the Latin text published by Herwagen.
Herwagen7 only furnishes us with scant information about the origin

of this fragment which he entitled De ponderoso et levi;

When this work was nearing completion, someone brought me a small book or rather a
fragment (because it appears to be mutilated) entitled De ponderosa et levi and I
appended it.

Recently, Curtze discovered in Dresden, in a manuscript with the
catalogue number Db. 86, a Latin copy of the short treatise attributed
to Euclid. He published its facing a slightly different version of the text
published by Herwagen.
This publication leaves no doubt about the Greek origin of the

fragment. The letters used to designate the magnitudes of the analysis
follow each other in the order a, b, g, d, e, z, h, t, sometimes slightly
altered by the copyist who reads r, for example, for z.
The exact title of the manuscript fragment is: Liber Euclidis de gravi

et levi et de comparatione corporum ad invicem.9 This Book on the
Heavy and Light bears no analogy to the Book on the Balance dis
covered by Dr. Woepcke. It deals with the fundamental principle of
Aristotelian dynamics of which it gives the most precise commentary
which we possess. It proceeds, in effect, in the manner of Euclid, with
definitions and theorems.
Let us quote from these definitions the following one which clearly

bears a Peripatetic stamp:

One calls those bodies equal in power (virtus) which travel through equal spaces during
equal time either through the same air or the same water. Those bodies which travel
through equal spaces during different times are called different in power (fortitudo).
And the body with the most power (virtus) is the one which took the least time.

The words virtus and fortitudo obviously have the same meaning as the
Greek words used by Aristotle under similar circumstances. I0
We should not be surprised to see the author of The Book on the

Heavy and Light take into account the influence of the medium, nor
should we necessarily read into this the influence of Archimedes'
discoveries. Aristotelian physics also admitted that the medium affects
the velocity of a falling body. The less dense the medium, the greater
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the velocity. In a vacuum, the velocity would become infinite. From this,
the Stagirite deduces one of the main arguments against the possible
existence of the void. This is not to say, however, that no valid argu
ments can be cited which favor the view that the De ponderoso et levi
should be dated after Archimedes. The manuscripts from the Middle
Ages include a small but elegant treatise on the determination of
specific weights. Our Bibliotheque Nationale possesses at least three
copies in its Latin collection catalogued as Mss. 7215, 7377b and
10252. Curtius Trojanus printed a very defective edition of this treatise
right after the Jordani opusculum de ponderositate,11 which he published
in Venice in 1565. We are sure that this treatise, sometimes attributed
to Archimedes, postdates him. The relationship of this small treatise to
the De ponderoso et levi is, however, very clear. Right from the start,
the pseudo-Archimedes' treatise repeats some of the same definitions
in the De ponderoso et levi. Perhaps this treatise was originally simply
appended to the De ponderoso. In any case, there seems to be no doubt
that these two writings come out of the same School. Even if they are
not from the very same period, the pseudo-Archimedes' treatise was
probably written by someone continuing the De ponderoso. Father
Forcadel had his reasons when he combined these two fragments which
he published in French in Paris in 1565 as Archimedes' Book on
Weights. The author of The Book on the Heavy and Light defines
below what he calls "bodies of the same category" which are what we
call today "bodies of the same specific weight"

One calls bodies of the same category those which, taken under equal volume, possess
the same power. If bodies of equal volume have different powers with respect to the
same air or the same water, they are called bodies of different categories. The body
with the most power is called the body with the greatest density.

However, the properties which the Greek author associates with this
notion of bodies of the same category are very different from those
which we attribute today to bodies of the same specific weight. He
actually demonstrates (in propositions II and III) that bodies of the
same category possess powers proportional to their size. That is to say,
that according to his own definition the velocities of their fall are
proportional to their volume. Although contrary to what we claim since
Benedetti and Galileo, such a law is essential to Aristotelian physics.
The Greek author implicitly recognizes this postulate in the demonstra
tion which he gives.
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When two heavy bodies are combined into one, their velocities of descent are added.

Bendetti's claim to fame rests on his destruction of the credence
accorded this postulate throughout Antiquity.
Reduced to what Herwagen and Curtze have published from The

Book on the Heavy and Light, it appears to be the most precise account
in our possession of the principles of Aristotle's dynamics and seems to
have nothing at all to do with the science of equilibrium which is our
concern here. Herwagen, however, already warned us that the work
seemed to be only a mutilated fragment. Is it possible to find some
traces of the propositions which, undoubtedly, must have been part of
the original work?
Under the following title: Incipit tiber Euclidis de ponderibus et

levitatibus corporum ad invicem,12 a manuscript in the Bibliotheque
Nationale l3 and presumably dating back to the 16th century, contains a
reply to the question about the work which occupies us here. At the
end of the manuscript one can find the following remark made by the
copyist: "Explicit, quia plus non invenitur,"14 which confirms that The
Book on the Heavy and Light is a mutilated fragment.
This new text contains with insignificant variations almost everything

published so far by Curtze. However, another fragment is inserted in
this text in a most curious way. What Curtze refers to as the fourth
demonstration is barely outlined, when the text becomes incomprehen
sible. Then the terms no longer have any relation to the preceding ones.
Soon, however, one recognizes that the incomplete demonstration is
joined to the last part of the formulation of a different proposition.
We shall soon relate how and by what fortunate circumstances we

were able to find the complete text of this proposition to which we will
assign the letter B. Our fragment contains the brief demonstration of it
followed by the very brief formulation of three other equally new
propositions. We shall call them propositions C, A and D according to
the order which they follow in our manuscript. The manuscript ends
with the fourth and last proposition of the fragment published by
Curtze.
Propositions A, B, C, and D, taken in that order, present a very

logical continuation of The Book on the Heavy and Light and are of
great importance to the history of statics.15 Proposition A can be stated
as follows:
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Assume that the beam of a balance is originally parallel to the horizon. If its two
extremities turn in the same time, their powers will be in the same ratio as the paths
they describe.

A very short commentary is attached to the proposition in which the
word power (virtus) has a meaning close to its use in The Book on the
Heavy and Light. There is no doubt whatsoever that this commentary
derives ultimately from the demonstration of the law of the lever which
Aristotle gives in his Mechanical Problems. But on closer observation
one can see that the two demonstrations proceed, so to speak, in an
inverse manner. Aristotle admits in principle that the power of a weight
suspended from a lever is proportional to the velocity at which this
weight moves when the lever is turned. From this principle, Aristotle
deduces the condition for the equilibrium of two weights suspended at
unequal distances from the point of support. Our author proceeds quite
differently: What was a first principle for Aristotle becomes for him a
proposition in need of demonstration. Furthermore, in this demonstra
tion our author limits himself to proving that the paths travelled by the
extremities are in the same ratio as the lengths of the lever arms. The
demonstration becomes conclusive only if one affirms as previously
proven this proportionality between the power of a weight suspended
from a lever and the distance of this weight from the point of support.
Therefore, our proposition A had to be preceded by an evaluation of

this power of a weight suspended from a beam of a balance and by es
tablishing the law of equilibrium of a lever. Its very structure alerts us to
the lacuna which precedes it and points to the kind of reflections
necessary to fill this lacuna. Therefore, we are now compelled to make
a comparison. The Book on the Balance discovered by Dr. Woepcke
would precisely fill this lacuna. This book, once disemcumbered of the
false demonstrations which have altered it, would furnish us with the
basis for the law of the lever and the proof that a weight suspended
from a beam of a balance has a power or a weight potential which is
proportional to the distance from its point of suspension. Our proposi
tion A and The Book on the Balance published by Dr. Woepcke, now
seem to synthesize in a most natural way.
The examination of proposition B only confirms this view which sees

a kinship between the fragments. This proposition is set forth in the
form of a problem obviously suggested by the use of the Roman
balance.
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If one takes a homogeneous cylinder and divides it into two unequal parts and suspends
it at this point of division, what weight must one suspend from the extremity of its
shortest arm in order to establish equilibrium?

Our author suggests that we measure out from the point of suspen
sion along the longer lever arm a length equal to the shorter arm and
that we call the remaining length abo The weight sought will be in the
same ratio to the weight of segment ab as the distance between the
midpoint of segment ab and the point of suspension is to the length of
the shorter arm.

In order to justify this rigorous solution, the author simply makes the
following short remark:

Because if one concentrates the material of segment ab into a single mass, and if one
places it at the midpoint of the space which it previously occupied, the beam remains in
equilibrium just as before.

The demonstration implies this principle:

A homogeneous cylinder used as if it were the arm of a lever has the same effect as an
equivalent weight suspended from that arm and attached at a point located at the center
of the cylinder.

It is obvious that the author of our fragment establishes proposition
C in order to justify this essential principle. This proposition says:

If an arm of a beam carries four equal and equidistant weights, these weights are
equivalent to a single weight equaling the sum total of the four weights and suspended
at the midpoint of the interval which they occupy.

One sentence indicates how the demonstration of this proposition
can be deduced from the law of equilibrium of the lever. One can guess
how our author establishes the transition between proposition C, estab
lished in the above way, and the principle which proposition B depends
upon. He undoubtedly decomposed the cylinder into many small and
equal slices and claimed for each of these slices what he wanted to
prove for the entire cylinder.
This rather lax procedure, as we will see, is constantly used by

geometers working on these same types of problems. The demonstra
tion of proposition D leaves no doubt that our author also followed this
procedure implicitly.
This is the proposition:
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The fact that the beam of a balance is a heavy cylinder has no bearing on the behaviour
of the weights attached to it.

Indeed, the text says more or less that the weight of a given segment
of the cylinder will be proportional to the length of that segment's axis.
Therefore, if the beam is divided into equal segments, you can choose a
weight at any point on one arm of the balance which will then corre
spond to an equal weight on the other arm at an equal distance from
the point of suspension.
The analysis of our four propositions demonstrates their importance

in the history of mechanics. It was thus of great interest to discover
other texts which verified the contents of the first text and which
allowed us to fill the existing lacunae in it.
Under the number 3642 (previously 1258), the Bibliotheque Maza

rine has a manuscript from the 13th century, or more precisely, a
compilation of several manuscripts of varying format and handwriting.
Of these manuscripts which once must have been part of a very

valuable collection which today is unfortunately very incomplete, the
first starts with this title: Liber Arsamidis philosophi. - Astrologium
Robi. - Planispherium Tholomei. - Liber Thebit. - Elementa Jor
danis. - Liber Euclidis. - Divinationes.
There follows a long table of contents which gives us the list of

numerous treatises contained in the collection; it starts with these
words: 16

In isto volumine libri subscripti continentur. cum capitulis eorumdem et figuris.

Note the following excerpt pertaining to works which will be occupying
our attention: 17

Incipiunt elementa Jordani super demonstrationem ponderis, cum cartulis et figuris.
Incipiunt excerpta de libro Thebith de ponderibus.
Incipit liber Euclidis de ponderibus secundum terminorum circumferentiam.
Divinationes.
DeCompoto.

The title of this The Book of Euclid on Weights According to the
Circumference Described by the Extremities seems to be a very clear
allusion to our proposition A, the very text which interests us here. The
sheets which should contain this Book of Euclid have unfortunately
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been lost. The title, announced in the table of contents as: Incipiunt
elementa lordanis super demonstrationem ponderis, is on the right-hand
side of the twelfth sheet. The above entitled work continues on the back
of the same sheet and does not end at the bottom of the page. However,
on sheet 13, we suddenly find ourselves in the middle of the treatise:
Decompoto.
Most fortunately, we were able to find a copy of the missing pages in

the manuscript from the Bibliotheque Mazarine. This copy is inserted
in a manuscript preserved today in the Bibliotheque Nationale,l8 and
was formerly the property of the Sorbonne as a gift from:

Magisler Franciscus Guillebon, Parrhisinus, Socius Sorbonicus et Doctor Theologus. 19

This collection starts exactly like the manuscript from the Biblio
theque Mazarine with the Liber Arsamidis philosophi de mensura
circuli20 and the following remark is made at the end of the treatise:

Explicit liber Arsamidis. Scriptum 1519.21

Similarly, the Elementa lordanus which are included 10 the same
collection end with the following remark:

Finis. 1519. 2 sa Maii.

These remarks furnish us with the date of the scientific collection which
was in the possession ofMaster Fran~oisGuillebon.
Following Archimedes' treatise on the measurement of the circle, the

collection contains three short works with the following titles:

Incipiunt elementa Jordani super demonstratione ponderum.
Incipit excerptum de libre Thebit de ponderibus.
Incipit liber Euclidis de ponderibus secundum terminorum circumferentiam.22

The wording of these titles and their order suffice to suggest that the
collection, copied during the 16th century and donated to the Sorbonne
by Master Fran~ois Guillebon, reproduces word for word a part of a
collection put together during the 13th century and whose remnants
remain in the Bibliotheque Mazarine. We can in fact furnish an abso
lutely convincing proof for this view.
The scribe to whom we owe the collection at the Bibliotheque

Mazarine was very skilled in the use of both the pen and the brush. He
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excelled in the embellishment of the majuscules and just as he was
about to copy the Elementa Jordani, he enlivened the margin of the
parchment whith an amusing figure drawn with a few spirited brush
strokes. However, the geometrical arguments which he had to repro
duce in an elegant script must surely have presented to him inscrutable
mysteries. Even if a sheet were missing in the original text, the copyist,
unaware of the incoherence thus created, blithely continued his task
and stuck together two separate and different pieces of writing. This
was his procedure in copying the Elementa Jordani. In the middle of a
demonstration in this treatise, the line of reasoning abruptly ends. The
beginning of a sentence from the Elements is followed by a line of
reasoning taken from the treatise De canonio which we will discuss in
section 3.
The scribe - he must have been a German to judge from his

handwriting - from whom Master Franc;ois Guillebon had received his
collection was not struck by the bizarre seam connecting two incoherent
bits of text and servilely reproduced it, just as some Chinese tailors who
use an old garment as their model for a new one, carefully reproduce
the tears and spots on the new garment. This strange error rendered
virtually useless to the geometer a writing copied in such a strange way.
But it was also a fortunate error because it assures us that we possess a
slavishly faithful reproduction of the missing leaves from the Codex
Mazarineus. The Liber Euclidis de ponderibus secundum terminorum
circumferentiam has as its subtitle: Liber Euclidis de ponderoso et levi
et comparatione corporum ad invicem, and is followed by the short
work published by Herwagen and republished by Curtze. But the four
propositions which the title seems to promise are missing. These four
propositions were detached from it and they are called Excerptum de
libro Thebit de ponderibus. This error is quite normal. The book by
Thabit ibn Qurra to which the following section is devoted, is in the
form of an Arabic commentary on our four propositions. Thus they
could have been mistaken for an excerpt from this commentary. The
collection of Master Franc;ois Guillebon contains, nonetheless, the
complete text of these four propositions in the same sequence in which
we have already found them: B, C, A, D.
Furthermore, we found these propositions a second time or at least

the first three, in a manuscript23 of Italian origin, which seems to date
back to the end of the 15th century. One of the sections contained in
this manuscript begins with these words: Incipit liber de ponderosa
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et levi. Those words seem to introduce the fragment known since
Herwagen. In reality, this fragment is replaced by Jordanus de Nemore's
Liber de ponderibus. However, to this latter work, our propositions B,
C, A were appended.

In conclusion, the texts attributed to Euclid which we have examined
seem to furnish us with three fragments, more or less well-preserved, of
Greek mechanical science.
The first of these fragments is the Liber de ponderoso et levi. It

seems to be preserved in its entirety and develops with great precision
the fundamental principle of Peripatetic dynamics.
The last fragment is composed of the four propositions which we

have discussed. Their abbreviated demonstrations as well as their
illogical order indicate serious mutilations. However, we can consider
them a fortunate attempt to harmonize the law of the lever with
Peripatetic dynamics in order to account for the weight of the lever
itself and to establish a theory for the Roman balance.

In order to harmonize these two works, a straightforward theory of
the lever seems necessary. The Book on the Balance, brought to light
by Dr. Woepcke might just be the work capable of integrating the two
preceding fragments. However, this work has been rendered almost
completely unrecognizable because of clumsy alterations.
The remnants which we have examined in their damaged and worn

out forms could be made to fit together and form a sort of treatise in
which Aristotle's and Archimedes' methods would be united. Further
more, the solution to a problem neglected by the great geometer from
Syracuse: the problem of the Roman balance, would be delineated. Was
this treatise the work of a single geometer or of several individual
mathematicians? If so, is the author of the Elements one of them?
These are difficult questions to resolve, but we shall soon point out
some small clues for their resolution.
Montucla wrote: 24

We shall say nothing about the book De ponderosa et levi which is also attributed to
Euclid. One can only compare its content to the initial stammering of a nascent physics.

This judgment certainly would give a very false impression of the
importance due the work whose vestiges we have just discussed. We
shall see that this work exerted a profound influence, first on Arabic
science, and then on Western science.
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2. THE UBER CHARASTONIS PUBLISHED BY
THABIT IBN QURRA

Most libraries25 own a manuscript entitled: Liber Charastonis, editus a
Tebit filio Corae.26 The name of the publisher, or rather of the com
mentator, is that of one of the most illustrious Arab geometers. Thanks
to Wuestenfeld,27 we possess a number of precise details about his life.
Thabit ibn Qurra ibn Marwan ibn Karaya ibn Ibrahim ibn Mariscos

ibn Salamanos (Abu al Hasan) al Harami was born in Harran, in
Mesopotamia, in 836 A.D. First, he was a money changer before he
devoted himself to science. In Baghdad he acquired a great reputation
as a mathematician and astronomer at the same time he was devoting
himself to the study of Greek, which he soon used with the same ease
as Arabic or Syrian. This perfect knowledge of Greek allowed him to
translate and comment on the works of the masters of Hellenic science,
Apollonius of Perga, Euclid, Archimedes, Ptolemy and Theodosius. He
also produced a great many original works on arithmetic, geometry,
astronomy and astrology. After a while, he returned to his native city
Harran, where he was to encounter various ordeals. He belonged to the
sect of the Sabians, but since he was trying to break away from some of
their doctrines and practices, he found himself excommunicated. He
returned to Baghdad where he remained for the rest of his life. He
enjoyed the great respect of Caliph Almu'tadid (892-902) who granted
him a close friendship. Thabit ibn Qurra died in Baghdad in 901.
Thus we have precise information on the author of the commentary

to which we will now turn our attention. We probably even know the
translator himself. According to Prince Boncompagni28 it was Gerard
of Cremona (1114-1187), who translated a certain Liber Charastonis
into Latin from the Arabic. Steinschneider29 quite correctly thought
that his translation was the one we possess so many copies of.
Yet, despite the fact that we know for certain who the author of the

commentary was and who the probable translator was, our confusion is
extreme when we try to interpret the title. How are we to translate
Liber Charastonis? Should it be the Book of Karaston or the Book on
the Balance? Is Karaston the name of a Greek geometer or the Arabic
name for the Latin statera, our Roman balance? Both of these views
have had their advocates and the choice is difficult to make.
All the scribes who reproduced the version attributed to Gerard of

Cremona interpreted Charasto, Carasto, Karisto or Baracto (because
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all of these spellings occur and are sometimes mixed in the same copy)
as the name of an author. The capitalized first letter of the noun shows
this as well as the structure of the sentence which marks the beginning
or the end of the book, to wit: Incipit liber Karastoni de ponderibus,
states the Ms. 10260 (Latin) of the BibliothCque Nationale.
Sometimes the scribe even attempted to guess who this geometer

might be. Such is the case with Ms. 7310 (Latin) dating back to 1604
and kept in the BibliothCque Nationale. This manuscript, whose frag
ments seem to have been copied from similar fragments contained in
Ms. 10260, contain specifically the Liber Charastonis. The scribe to
whom we owe this compilation had first worded the title in the following
way: Incipit liber Baractonis de ponderibus. However, since he knew
of no Greek geometer with such a distorted name, he crossed out
Baractonis and put Eratosthenes in its place, but used the spellings
Baracto, Carasto, Karasto and Charasto throughout the text that fol
lowed. These diverse spellings caught the attention of an annotator who
wrote the following words on the back side of the first sheet: 30

Eratosthenis, sic legitur in titulo. Verum, initio libri, auctor ex quo translatus est
nominatur aliter et, versus finem, diserte dicitur Charaston.

For the annotator it was Charaston31 who was the author upon whose
work Thabit ibn Qurra commented upon.
Some modern bibliographers have shared this opinion. Heilbronner,

in an Index of his, lists Carasto as the name of an author and interprets
in the same way as Hammer in his history of Arabic literature the
words Kitab el Kurstun which Latin translators rendered as Liber
Karastonis.
According to Steinschneider32 this opinion is comparable to the

error of the monkey who took the Piraeus for a man's name. Karastun
could be simply the debased form of the Arabic word Karstun. Accord
ing to Fleischer, whom Steinschneider quotes, this little used word
might have come via the Syrian from the Greek word Xdp, meaning
hand and might signify the Roman balance. Kitab el Karstun, Liber
Karastonis, should not be translated as the Book of Karaston, but as
the Book on the Roman Balance.
The interpretation of the word Karaston which Steinschneider pro

posed, has been adopted by Heiberg33 and by Curtze.34 According to
the latter author, the Treatise on the Balance, discovered by Dr. Woepcke
and attributed by him to Euclid (although certain other manuscripts



ALEXANDRIAN SOURCES OF MEDlEYAL STATICS 63

refer to this work as being authored by the "three brothers"), is identical
to the Kitab el Karstun written by the Banu Musa and to which
Steinschneider has called our attention based on his research on Casiri
and Hammer. Furthermore, a comparison between the Liber Karastonis
of Thabit with the Treatise on the Balance translated by Dr. Woepcke
would show that the first of these two works was only development of
the second.
Reading the Liber Karastonis might be the best way to clear up this

question. (I don't know if the scholars ever thought of this.) It is beyond
any doubt that at the end of the work the word Charasto or Karasto
should be understood as the Roman balance. After Thabit has demon
strated how to calculate the weight of the pan which, suspended from
the small arm of the Roman balance, compensates for the excess weight
of the longer arm, he adds:

We shall divide the larger arm into segments which will have a known ratio with the
small arm. In accordance with the previously established rule for the case of a beam
reduced to a single line, then we will know the weight of a body suspended from any
segment of the charaston made (generati carastonis) in this way.

A very different impression emerges by reading the dedicatory epistle
which Thabit addresses to someone he refers to as his brother. Here is
the translation of the beginning of the epistle:

May God grant you a long life and multiply your share of well-being so that I may not
be deprived of a brother like you who incites minds by his curiosity, who inspires the
soul to speculation, who, by his own nature, inspires science, who improves his own
mind, who rejects whatever is unassimilable in a subject and exposes what is necessary
of that subject.
I have read, dear brother, your letter on what I stated concerning your examination

of the Causae Karastonis with all the clues which you pointed out in it and with all the
figures which you constructed with respect to it. You discovered these ideas by putting
aside all other research and by making the examination of this work your sole pre
occupation. You have reflected well on this subject. I tried to test some of these obscure
passages which are incomprehensible to an intelligent being. I took into account, dear
brother, the difficulties of translation and the hazards of reproduction by the scribes. I
could not make up my mind for a long time on this subject, because you yourself were
unable to render your opinion free of all erroneous interpretation. You have asked me
to give you an exposition of this work written in a simple language where the intentions
of the work are made clear by methods which shorten the discourse and simplify the
difficulty of its argumentation. Therefore, I shall respond on the subject you have asked
of me and I shall finally speak to you with sufficient information and solid demonstra
tions about those things you desired to have clarified. You shall know where falsehood
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lies and how it multiplied until it had taken over the entire work. You already know
how widespread it is. May God direct you and illuminate your heart's wisdom. Let the
absence of geometrical figures in the Causae Karastonis be no excuse ...

It is clear from this passage that Thabit wants to restore in a coherent
form a work which had become incomprehensible because of translators
and scribes. Therefore, it is not a question of an Arabic work needing
commentary - a treatise deriving from the Banu Musa, for instance 
but rather a Greek text. It seems very difficult to interpret the sentences
just quoted, without seeing in the words Causae Karastonis the title of
the work and the author's name and without translating these words as
The Book on Causes by Charaston.
Thus, if in different passages at the end of our manuscript the word

Charaston clearly signifies the Roman balance, it appears that at the
beginning of the same work it designates the name of a Greek mechani
cian. Is there any cause for astonishment in this double meaning? Do
we not see everyday how an instrument in the mechanical arts bears the
name of its inventor or of the person who perfected it? Will our
descendants perhaps not also find some difficulty in deciding if Vernier
was the name of a person or of a divided scale? And do we not roughly
estimate weight on the Roberval in our laboratories while Roberval
remains the name of an illustrious geometer?

It seems to us quite possible that Charaston designates the name of a
Greek author who had written a treatise on the Roman balance to
which his name was subsequently given. That would explain the exist
ence in Arabic of this word of Greek origin - karstun - to designate a
balance.
Is it possible to discover any further trace of this Greek geometer?

We read in Montucla: 35

Several of Ptolemy's books contain this dedication: ad Syrum fratrem. This is proof that
Ptolemy had a brother of this name who was probably versed in astronomy and who
might even have collaborated with him on his observations and calculations. 1 also
found that he had a son, named Heriston, about whom we could say the same. We
discovered this in the title of an extremly rare book, printed in Venice in 1509, entitled:
Sacratissimae astronomiae Ptolomei liber diversarum remm quem scripsit ad Heristonem
filium suum ...3~

Kastner, who saw this extremely rare book,3? has given us a detailed
description38 and a summary. It is written in Gothic characters bearing
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the following complete title: Sacratissimae astronomie Ptholemei liber
diversarum rerum, quem scripsit ad Heristonem filium suum, tractans
compendiose de diversis rebus, ut habetur in tabula que est in principio
istius libri. MDVIII. Felicibus astris prodeat in lucem, ductu Petri
Liechtenstein. Cum privilegio.39 At the end of the book, one finds the
following lines: Explicit liber diversarum rerum Ptholemei philudiensis
Alexandrini, astronomorum principis clarissimi. Anno virginei partus
1509, die tertio aprilis. Venetiis, in edibus Petri Liechtenstein Colon
iensis Germani.40

Thus, according to the book printed by Peter Liechtenstein, Ptolemy
had a son named Heriston, who was well-versed in astronomy. Heriston
is not Charaston, but the difference is slight, especially to those familiar
with the strange distortions Greek names undergo when translated into
Arabic and from Arabic into Latin. Steinschneider41 has called our
attention to some of these distortions:

Hero became Iran and Iranius, Menelaus was changed into Milleius; Archimedes
appears at times as Arsamites, at other times as Aramides and also as Archimenides.

We have ourselves come upon the following names for Archimedes:
Arsamides, Arsanides, Ersemides (Bibliotheque Nationale Ms. 16649
(Latin) Bibliotheque Mazarine Ms. 3642), Arsamithes (Bibliotheque
Nationale Ms. 9335 (Latin), Alaminides (Bibliotheque Nationale Ms.
10525 (Latin». It would hardly come as a surprise to see Charaston
changed to Heriston.
Yet the real name of the author whom we are studying here is neither

Charaston, nor Heriston. The name should most likely be read as:
Charistion.
Any Greek dictionary will give the following information for the

word xapwriwv, a kind of balance invented by Archimedes. Further
more, Bailly's dictionary42 tells us that the term was used by Simplicius
in his Commentaries on Aristotelian physics.
The only passage where Simplicius43 used this word furnishes us

with valuable information. In this passage, Simplicius comments on the
fundamental axiom of Peripatetic dynamics, which is the ratio between
the motor power, the weight moved and the space travelled through in
a given time. When Simplicius proposes to discuss the restrictions one
must apply to this axiom he says that:

By establishing the ratio between the motor power, the weight moved and the space
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traversed, Archimedes came up with an instrument capable of weighing, which is called
the charistion.

Thus at the time of Simplicius (6th century) the Roman balance was
not only referred to by the term "charistion," but it was common
practice to relate its theory to the principles of dynamics established by
Aristotle. This is precisely the goal of the various works we are now
analyzing. Furthermore, the real author of these reflections on mechani
cal problems had been forgotten, because they were attributed to
Archimedes, although the illustrious Syracusan had used in the analysis
of similar problems quite different methods.

It appears beyond doubt that this author's name was Charistion, and
that through a phenomenon quite frequent in the mechanical arts, the
instrument took on the name of its inventor or the name of the person
who studied it. How else can we explain the fact that the root xapl~,
Greek for grace, could have furnished the name for a balance? On the
contrary, it is not in the least surprising to see this same root word
furnish a proper name since it had already produced44 the woman's
name XaplT:W and as names for men: Xapw()iv'YJ~, XapwlaCJ'YJ~,
Xap[aLO~, Xap[ar:tov, and Xaplr:wv.

It is true that certain authors did not think of Charistion as the name
of the Roman balance, but as the windlass designed to haul boats along
the shore. Yet, Simplicius' text is explicit, and the words "an instrument
capable of weighing" can only be understood as implying a balance.

It could be argued that charistion also came to designate the name of
a device used in ports, but it seems more probable to me that this is the
result of a relatively recent misunderstanding.
According to Simplicius, it was the invention of the charistion which

caused Archimedes to exclaim:45

Give me a firm point and I shall move the earth.

Similarly, Tzetzes46 attributes these words to him:

Give me a place to stand and I will move the entire world with a charistion.

These words apply admirably to the Roman balance, where a small
weight, suspended from the longer arm of the beam, will lift a large
weight suspended from the shorter arm.
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However, other authors do not believe that these words of Archi
medes had any reference to the Roman balance. Plutarch, who quoted
Archimedes as follows:

Give me a place where I may stand and I will move the earth.

does not make any mention of any machine to which he refers. More
explicitly, Pappus claims that Archimedes in his joy at having con
structed a powerful windlass cried out:

Give me a place where I may stand and I will move the earth.

Furthermore, Pappus47 gives a description of the windlass which permits
a small force to overcome a large resistance by means of multiple gears.
Furthermore, he assures us that he is borrowing this description from
Hero of Alexandria.
The instrument is actually described by Hero of Alexandria48 who,

however, does not refer to it as coming from Archimedes. But neither
Hero of Alexandria nor Pappus refer to this windlass with the term
"charistion" which they certainly would have done if it had been so
named in their time at Alexandria.
To be sure, the passages which interpret the celebrated statement of

Archimedes on the possibility of moving the world as referring to the
"charistion" have been questioned by those who see in this word an
allusion to the windlass. It was, therefore, concluded quite erroneously
that the "charistion" was a windlass. We can't name with certainty the
author responsible for this confusion. We know only that it was accepted
without question by Stevin,49 who informs us that the description of the
"charistion" had been discovered by Jacques Besson. As far as we are
concerned, Stevin's opinion has no foundation and "charistion" desig
nates the Roman balance.
Let us assume that the Greek book which Thabit ibn Qurra set out

to restore was the work of an Alexandrian geometer by the name of
Charistion, who was probably the son of Ptolemy. Let us further
assume that the Roman balance studied by Charistion took on his name
first in Greek, then in Arabic where it was called "karstUn." Finally, let
us assume that the whims of translators produced from this word the
two names Charaston and Heriston.
The study of Thabit's work will give us further information. At the
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outset, Thabit tells us that the work which he is about to comment on is
closely related to the book attributed to Euclid:5o

Hoc autem capitulum innixum est super librum qui dicitur Liber Euclidis.

Thabit refers anyone seeking detailed information to this book. All he
does, by way of introduction, is to cite from this book everything
necessary to the understanding of the work he is about to analyze.
These declarations immediately precede the following statement:

The spaces which two moving bodies travel through in a given time are in the same
ratio as the powers of these two moving bodies.

No demonstrations follow this statement; he only uses one example to
clarify it. However, this statement formulates the fundamental axiom of
Peripatetic dynamics in the very same terms as those used in the
treatise De ponderoso et levi. We are thus certain that Thabit knew the
short work De ponderoso et levi and we are further certain that this
work already bore Euclid's name at the time of Thabit and that the
Causes ofCharistion were based on this book.
To get from this axiom to the law of the equilibrium of the lever,

Thabit proceeds by two propositions which develop simply and with
great precision the demonstration of this law as it is formulated in the
Mechanical Problems of Aristotle.
In the process of these demonstrations, as well as in the following

two propositions, it is assumed that the lever is weightless:

If the beam of a balance in equilibrium carries two equal weights suspended at unequal
distances from the point of support, it is possible to retain equilibrium by replacing
these two weights with a single weight equal to double the weight of one of the weights
and by suspending it midway between the initial two points of suspension.
In the same way, if one of the arms of a beam of a balance in equilibrium carries a

certain number of equal weights suspended at equal distances from each other and if all
these weights are then replaced by a single weight, equal to the sum total of the weights
and suspended from the midpoint between these weights, the balance remains in
equilibrium.

Thabit establishes the demonstration of this general statement by
supposing that there are four weights to be combined. Yet, it is easy to
see how the demonstration can be generalized.
These propositions which hold true for beams without weight cease

to be true if the beam is a rod which has thickness and weight and two
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unequal arms. Thabit proposes to demonstrate how this case, the case
of the Roman balance, can be derived from the consideration of a beam
without weight.
To this end, Thcibit considers first a beam reduced to a line without

any thickness and which is partially covered by a heavy cylinder. He
proposes to prove that this cylinder is equivalent to an equal weight
suspended at the point which marks the center of the cylinder. Basically,
the demonstration which is deduced from the preceding proposition
amounts to admitting for certain portions of the cylinder what one
wants to prove for the entire cylinder.
Once this proposition is admitted, it becomes easy to demonstrate

the following one:

A cylindrical, homogeneous, and heavy beam ab (Fig. 16) with unequal arms ag, bg,
can be maintained in a horizontal position by suspending a given weight e at the
extremity of the short arm gao If bd is the segment by which the long arm exceeds the
length of the short arm and if u is the midpoint of bd, then weight e will be to the
weight of segment bd as the length gu is to the length gao

Thabit deduces from this the following rule:

IfP is the total weight of the beam, the weight e is given by the formula

bd
e=p--

2· ga

Since this weight is known, a pan having exactly this weight can be
suspended from the short arm of the balance or else an additional load
of this same weight can be put at the extremity of this arm. The karaston
constructed in this fashion can now be considered a beam without
weight.

And now, dear brother, adds the Arab geometer, I have shown you what can lend
support to the work of your mind, what can aid you in the effort of knowledge and
what can give you healthy ideas in the light of the truth and what can entice your soul
to pursue its study ... This art is supported by demonstration and verified by experi-

b u d ~g a

6e
fig. 16.
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ence. Thus, when you have made use of what has been demonstrated, when you have
understood through demonstrations what we formulated at the outset, then with what
we have disclosed to you, you will be able to break the shackles of hesitation, to avoid
all erroneous assimilation and to see clearly where truth lies and to recognize the
pitfalls of error. This then is the end.

This short analysis clearly shows that Thabit's remarkable text is in
no way a development of the Treatise on the Balance which Dr.
Woepcke translated. On the other hand, this text is closely related
to the four propositions which we discovered and summarized. The
resemblance is such that a scribe might well have mistaken these four
propositions for a summary ofThabit's book.
One difference, however, deserves to be pointed out. Thabit deduces

the demonstration of the law of equilibrium of the lever from the
fundamental axiom of Peripatetic dynamics. He does so by strictly
following the method given in the Mechanical Problems of Aristotle.
The method outlined by the author of proposition A is quite different.
It assumes that the law of equilibrium of the lever has been directly
established and deduces its application to the lever from the law of
dynamics stated in the Physics as well as in the On the Heavens of
Aristotle, and in the Liber de ponderoso et levi attributed to Euclid.
While Thabit's text is intricately connected with the De ponderoso et
levi, an intermediary text must be assumed to exist between this book
and our four propositions. As we have indicated earlier, this inter
mediary fragment could very well have been the source of the work
published by Dr. Woepcke.
However, despite the fact that our four propositions have a very

close relationship with the Greek work which Thabit set out to recon
stitute, they do not seem to be that same text. One other consideration
supports this view: Thabit not only mentions the obscurity of the text
upon which he is commenting, but also its prolixity, which he wants to
abridge. This remark cannot apply to our four propositions, whose
demonstrations are reduced to a few extremely concise formulations.
Our four propositions do not seem to be a fragment from the Causae

Karastonis, but rather a summary of them. Even more likely, they might
depict an older topic on which Charistion might have written a more
developed but slightly modified commentary.
These remarks suggest a hypothesis. Ptolemy had written a treatise

On Weights, which is unknown to us. Thurot had already expressed the
suppositionS! that certain fragments which have come down to us -
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especially the De ponderoso et levi attributed to Euclid, could very well
be the remnants of the On Weights. Could not this supposition be
equally true for our four propositions52 as well as for the work which
Dr. Woepcke published in a distorted form as the Treatise on the
Balance? Following this supposition, Charistion would have simply
developed and adapted more closely to the Peripatetic method the On
Weights composed by his father.

3. THE TREATISE DE CANONIO

Only one Liber Karastonis, that of Thabit ibn Qurra, was translated
into Latin. However, it is not the only Kitab el Karstan written by Arab
geometers. In the article which we have quoted several times, Steinsch
neider lists four such treatises which he found in the indexes and
catalogues of various libraries. The treatises are the following:

(1) A Kitab el Karstan by the "Three Brothers," the Banu Musa.
(2) A Kitab el Karstan by Thabit ibn Qurra.
(3) A Kitab el Karstan by a famous philosopher and physician, Arab
by birth, but of Christian faith, Kusta ibn Luka, who lived from
864 to 923 and was, therefore, a contemporary of Thabit.

(4) A Kitab el Karstan by Abu'Ali al Hasan ibn al Hasan ibn Alhaitam,
who died in 1038 after gaining fame under the name of Alhazen
through his Optics, which was translated into Latin.

If one agrees with Curtze that the Kitab el Karstan attributed to the
Banu Musa is identical to the Treatise on the Balance translated by Dr.
Woepcke, one is still left with two unknown treatises with the same title
but which have not come down to us.
It is tempting to assume that one of these treatises is the book De

canonio. The Bibliotheque Nationale possesses one copy of this text
under manuscript 8680A (Latin collection) and a second, modified
copy under manuscript 7378A. And finally, there is the important
fragment which was attached in such a peculiar way to the text of
lordanus in the 13th century manuscript kept in the Bibliotheque
Mazarine under the number 3642 and which we pointed out in section
1. This last fragment is reproduced in the collection53 which Master
Fran~oisGuillebon gave to the Sorbonne.
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However, a more thorough examination of this treatise leads us to
believe that we have here not only a treatise of Greek origin, but a
treatise which might have been directly translated from Greek into
Latin without having gone through an intermediate Arab translation.
The letters used in the figures are in the following order:

a, b, g, d, e, z, i, t

and indicate by their sequence that they were originally Greek letters.
However, the Greek letter eta is depicted not by the letter h as would
be the case in those works having passed from Greek into Latin
through the intermediary of Arabic, but by the letter i. This detail
seems to indicate that the translator knew the pronunciation of the eta
already in use by the Greeks of the Middle Ages.
Furthermore, there is in this short work an abundance of Greek

words which are not translated but merely transcribed. To designate a
beam of a balance of considerable thickness, the translator rendering
the four propositions analyzed in section 1 from Arabic into Latin, uses
the term "longitudo teres." The translator of Thabit's text uses "per
pendicularis cum crassitie" (or "crossitie" or "grossitie"),54 10rdanus
who was writing directly in Latin says "oblongum" or "regula." Our
treatise has retained the Greek word Kavwv by simply latinizing it as
"canonium." In all of the other works we quoted from, a line parallel to
the horizon is called "parallela orizonti." Here it is called "parallela
epipedo orizontis," a wording clearly derived from the Greek name for
a plane to epipedon. Not only do we find the word "parallelogrammum"
in the book De canonio, but a triangle is called "trigonium" instead
of triangulus.55 Finally, "demonstratio" is sometimes replaced by "apo-
d· ."lXlS .

It is clear that the work we are about to discuss is a direct translation
from a Greek text. Its contents, when compared to what Thabit ibn
Qurra informed us about the work of Charistion, shows us that the
treatise De canonio is either a replica of this work or, better yet, a work
meant to complete it by furnishing an elegant geometrical solution to
the calculation done by Charistion.
The goal of the short treatise De canonio is to provide the solution

to the problem to which one is led by the Causae Karastonis, as
preserved for us by Thabit. What weight must be suspended at the
extremity of the short arm of a beam of a Roman balance in order to
compensate for the excess weight of the long arm so as to be able to
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theorize about this instrument as if the beam were a line without
weight?
The author does not establish a second time the law of the lever.

Furthermore, he does not attempt to demonstrate that a portion of a
heavy cylinder parallel to the axis of the beam has the same effect as a
body of the same weight suspended from the point marked by the
center of the cylinder because he considers these propositions as
already established. With respect to the second proposition. he refers
the reader to his predecessor's works: 56

Monstratum est in libris qui de his loquuntur quonian nulla est differentia, sive pondus
db sit equaliter extensum super totam lineam db, sive suspendatur a puncto mediae
sectionis.

With respect to the first proposition, the text ofMs. 8680A states:57

Sicut demonstratum est ab Euciide, et Archimede, et alliis et haec est radix circa quam
versantur oomes.

As we shall see in Chapter VII, Section 1, this statement has dis
appeared in manuscript 7378A.
Thus, when all these preliminary considerations are disregarded, the

treatise De canonio can be reduced to four theorems. The first of these
theorems is identical to the one which ends Thlibit's book. Its object is
to state the rule by which one can calculate the weight required to
compensate for the excess weight of the long arm of a Roman balance.
When these two statements are compared to each other, it is clear that
they represent two translations of the same original Greek text. The
numerical example to which the formula is applied is also the same in
the two works. We have here, most certainly, one of the propositions of
Charistion's book.
The second theorem is converse to the first one and its statement

and demonstration were truly superfluous.
In the third theorem, the author sets out to find a cylinder of the

same diameter and of the same material as the beam which would
weight exactly as much as the compensatory weight. Here is the elegant
construction by which he determines the length of this cylinder:

Let ab (Fig. 17) be the beam; let g be the point of suspension; let ga be the short arm
and gb the long arm. Starting from point g, let us take on the long arm gb a length gd
equal to the short arm gao Through point d, let us draw at ab a perpendicular de which
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bi-__.....:r__---:::; ~,a

z

fig. 17.

is equal to bd; let us join ae and extend this line until it meets at z the perpendicular
drawn to ab through the extremity b of the long arm; bz will be the length which we
are trying to determine.

The demonstration of this theorem is easily deduced from the
formula which can be translated in modern terms as the first theorem of
the De canonio.
From this construction, the author deduces the solution to the

following problem: to determine the point of suspension if the length of
the beam is known as well as the weight necessary to compensate for
the excess weight of the long arm over the short arm. The answer to
this question makes up the fourth and last theorem of this short work. It
is an elegant example of the Alexandrian approach to mechanics.



CHAPTER VI

STATICS DURING THE MIDDLE AGES

JORDANUS DE NEMORE

The fragment De ponderoso et levi attributed to Euclid; the four
propositions called Liber Euclidis de ponderibus secundum terminorum
circumferentiam; the treatise De canonio; the Liber Karastonis pub
lished by Thabit ibn Qurra: all of the above works as well as the
Mechanical Problems of Aristotle seem to be the sole remnants of the
Greek works on statics used by medieval mechanicians. They do not
seem to have known of Archimedes' method because they never use it
in their works. As for the Arabs, they seem to have merely transmitted
to the Western world the remnants of Alexandrian science.
We shall now see how the Western mind seized these remnants and

incorporated them into the mechanical systems which it will construct.
We will observe a prodigiously intense and powerful work of transfor
mation and orgainzation which will produce modern statics. However,
we are rarely able to determine the name of any author of these
ingenious efforts by which the Middle Ages will create several concepts
of a fecundity unexhausted to this day. Those who created these
concepts will remain forever anonymous. Their discoveries, however,
were to enrich the work of the one who was undoubtedly the master of
them all. Although his name is known to us, we have no other reliable
information with which to sketch the character of the man called
Jordanus de Nemore.

1. WHAT DO WE KNOW ABOUT JORDANUS DE NEMORE?

Montucla tells us: 1 "Jordanus Nemorarius, who lived around the year
1230, was a very intelligent man in matters of geometry and arith
metic." Chasles also writes,2 "Jordan was a very erudite geometer, who
wrote about all branches of mathematics, including statics. Only much
later did he attact followers in this latter field. During the Renaissance
he was very well-known to the Italian geometers and Luca de Burgo
quotes him often."

75
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From the 13th century on, the Arithmetic by Jordanus or Jordanis
seems to have been considered a classical work, to judge by the great
number of manuscripts of the Arismetica or the Elementa Arismetice
which are to be found in various libraries. Thus Lefevre d'Etaples
(Faber Stapulensis) saw to it that this work was printed almost imme
diately. Without altering the text of Jordanus, he added new theorems
with his own demonstrations. The Gothic in folio edition3 appeared
in Paris in 1496. A second edition, also due to Lefevre d'Etaples,
appeared in 1514.
Jordanus composed a treatise entitled De numeris datis or De lineis

datis, which Regiomontanus4 mentions in the highest terms: "Tres libros
de datis numerorum pulcherrimos edidit Jordanus."5 Maurolycus did
not attach any less importance to this work, since he placed it on the
list6 of treatises he intended to print. Chasles7 pointed out its great
significance for the history of algebraic calculations. However, it was
only recently published by Treuttlein8 and then by Curtze.9

In 1534, Johannes Schoner published with Petreius de Niiremberg a
treatise entitled Algorithmus demonstratus. The manuscript had been
found among the papers of Regiomontanus. And it is probably justifi
ably attributed to Jordanus. 1O

Besides the algebraist in Jordanus there was also the geometer whose
remarkable talents of invention are evident in the treatise De triangulis,
published by Curtze.11

Further important geometrical demonstrations can be found in a
work on cosmography published in Basel in 1507, 1536 and 1558.tZ
But further investigation will be necessary before we can attribute this
work to Jordanus with certainty. We found the text of a work on the
astrolabe in the collection of mathematical and astronomical works
kept in the Bibliotheque Mazarine under the number 3642 (formerly
1258). It is bound together with a work which, under the title Com
potus manualis, shows how the human hand can serve as a perpetual
calendar. In the table of contents which precedes the collection, one
reads: Compotus Manualis. Liber Jordani de Astrolabio. Liber campoti
manualis. Liber tractatus Jordani de Astrolabio. However, in the text
itself, this work is not attributed to Jordanus, but to someone called
Hermann: Tractatus Hermanni de Astrolabio.
Heilbronner 13 mentions the existence of a Tractatus Jordani de

speculis in a manuscript in the Bodleian Library at Oxford. The
authenticity of this work, known only by its title, has been questioned
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by Cantor.14 We were quite fortunate to have found a copy of this work
in a very precious manuscript collection stemming from the hand of
Arnold of Brussels and kept in the Bibliotheque Nationale under the
number 10252 (Latin collection). On the recto side of sheet 136, one
reads: Incipit tractatus Jordani de speculis cum comento super eodem;15
and on the verso side of sheet 140: Explicit liber de speculis 
Incipiunt elementa Jordani de ponderibus.16 This treatise on optics is
written in the clear and sober fashion characteristic of Jordanus.

If to this treatise De speculis one adds the work on statics entitled
De ponderibus, which we shall analyze in detail in section 3, one will
obtain an impression of the intellectual power of the author generally
known by the name of Jordanus Nemorarius. However, we should
temper our admiration for such fecundity with some reservations. We
shall see that from the 13th century on, Jordanus was thought to be the
sole author of three separate treatises on statics which came out of the
same school, but in fact, were quite different from each other and bear
the marks of at least three separate authors. It should not surprise us
that such a misunderstanding could have reoccurred under different
circumstances and that the collection of mathematical works we listed
here was the work of a coterie of geometers whose names were all
forgotten but one. If this is true, the reputation they themselves would
justly have merited probably served to increase that of Jordanus.
Do we have any personal information about this author? We know

nothing, neither the country he was born in, nor the time in which he
lived. All that we can say about this great geometer amounts to nothing
more than vague and contradictory conjecture.
Let us first mention the view of the Biographie Universelle of

Michaud, where the author of De ponderibus is identified as Raimond
Jordan, provost of the Church at Uzes in 1381 and author of works
deposited in the Bibliotheque des Peres under the strange pesudonym
Idiota. 17 This opinion is untenable, since we have many manuscripts of
the De ponderibus and of other works by Jordanus which date back to
the 13th century.
On the other hand Daunou 18 tells us that certain historians had

Jordanus living in Germany around the year 1050 during the reign of
Emperor Henry III. Giuseppe Biancani, a Jesuit, who under the name
of Blancanus published a Clarorum mathematicorum chronologia 19 in
1615, places him in the 12th century. However, these statements by
Blancanus should be viewed with caution.20
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Daunou has attempted to establish the period in which Jordanus
lived with the following reasoning:

He is supposed to have quoted Campanus of Novara and is supposed to have been
quoted by him as well ... Campanus is sometimes placed in the 11th century, but most
likely belongs to the 12th century.

From this, the author of the Histoire litteraire de la France concludes
that Jourdain Ie Forestier could have begun his work shortly before
1185 and ended his career in 1235. However, this conclusion is wrong
because its premisses are based on a false estimate of when Johannes
Campanus of Novara lived. Roger Bacon mentions Campanus in
Chapter XI of his Opus tertium21 and calls him one of the finest
mathematicians of his time. Campanus was chaplain to Urban IV, who
was Pope from 1261 to 1281. Thus, if Jordanus had been his con
temporary, he would have written much later than Daunou supposes.
Chasles,22 because he assumed that Jordanus Nemorarius had com

posed his works during the 12th century, was sharply attacked by
Libri23 who insisted that Jordanus Nemorarius be placed in the 13th
century. The great geometer, being thus challenged, attempted later to
prove24 that Jordanus had lived at the end of the 12th or the beginning
of the 13th century. He did not hesitate to declare as erroneous the
quote from Campanus by Jordanus which Daunou had used in his
arguments. Chasles adds:

The careful study of some of his works, in particular, his Algorisme has persua!ied me
that they predate the works of Fibonacci, Alexander of Villedieu, Sacrobosco, Cam
panus,etc.

Chasles had very good reasons to call into question the quote from
Campanus which Jordanus was supposed to have used. It is absolutely
true that the Liber Jordani Nemorarii viri clarissimi de ponderibus25

published in Nuremberg in 1533 by Peter Apian,26 refers the reader to
the additions made by Campanus to the Elements of Euclid. However,
as we shall see in Chapter VII, section 1, the treatise published by
Apian is an extensive revision of a manuscript widely circulated in the
15th century and known as either the Liber Euclidis or the Liber
Jordani de ponderibus. This manuscript was itself the result of attaching
the treatise De canonio to the original text of Jordanus, and then
attaching a more prolix version of the latter. The quote from Campanus
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is not to be found in the Liber Euclidis de ponderibus and, more
importantly, is also missing in the original text of Jordanus.
More recently, a new hypothesis on Jordanus Nemorarius has been

proposed by Boncompagni and by Treuttlein27 and supported by
Curtze in the introduction to his edition28 of Jordani Nemorarii de
triangulis libri quatuor.29 According to this hypothesis, this geometer is
no other than the Dominican, Jordan the Saxon.
One tradition ties Jordan the Saxon to the family of the Counts of

Eberstein, another to the von Drach family. According to some sources,
Jordan the Saxon was born in Borrentrick or Borrentreich next to
Warburg in the bishopric of Paderborn, consequently in the forests of
the Eggebirge. This would explain his surname Nemorarius.30 Accord
ing to other sources, he was born on the estate of Dassel, belonging to
the diocese of Hidelsheim.31

In 1220 in Paris, Jordan the Saxon entered the order founded by St.
Dominic. After Dominic's death in Bologna in 1221, the chapter met in
Paris in 1222 and chose Jordan as the Master General of the Order.
The two main pieces of evidence in support of the identity of Jordan
the Saxon and Jordanus Nemorarius are as follows:
First of all, there is a passage which Boncompagni discovered in

a chronicle composed in the 14th century by the English Dominican
Nicolas Trivet. Trivet discusses the election of 1222 which made
Jordanus Saxo the Master General of the Order of Preachers. He states
that the newly elected general enjoyed a great reputation in the scientific
world as a mathematician and it was believed that he had composed
two extremely useful treatises: De ponderi and De lineis datis.
Secondly, there is the chronicle of this order composed in 1420 by

the Dominican, Jacob von Soest. Jacob twice states that the Master
General Jordanus had written, besides other works, a Geometricalia
delicata. 32

This evidence is explicit. Certain authors, however, question it since
neither of these two witnesses is a contemporary of Jordanus Saxo and,
at that time, similarities in names quickly gave rise to confusion.
Furthermore, it is hard to explain why no ecclesiastical document
mentions the name Nemorarius and why no mathematical manuscript is
attributed to Jordanus de Saxonia. Consequently, the Reverend Father
Denifle33 denies that Jordanus Saxo and Jordanus Nemorarius are one
and the same person. Cantor reserves judgement in this matter.34
To these attempts at removing the veil which so completely conceals
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Jordanus Nemorarius, may we be allowed to add some observations
which might help our successors lift a corner of this veil?
These observations concern, first of all, the name of our geometer.

The custom of calling him Jordanus Nemorarius prevailed. However,
this name is not in any of the numerous manuscripts which have come
down to us. Most of the manuscripts read simply Jordanis, Jordanes or
Jordanus. Sometimes these different spellings can even be found in one
and the same manuscript.
When another name accompanies this first name, it is never "Nemor

arius", but "de Nemore." Among all the manuscripts whose titles we
were able to discover in the Parisian libraries, only those which contain
the Arithmetic35 by our geometer bear the name "de Nemore".
Curtze,36 however, points out a manuscript, the Ms. F. 33 in the
Library of Basel, which contains under the title lordanus de Nemore et
Euclides de ponderibus the rhapsodic work generally known as Liber
Euclidis de ponderibus.
In the 13th and 14th centuries, in composite names like Jordanus de

Nemore, the second name, the one that follows the preposition "de," is
usually a place name such as the place of birth or origin: Alexander of
ViIledieu, Campanus of Novara are called Alexander de Villa Dei,
Campanus de Novarra. No one thinks of translating Johannes de
Sacrobosco as John of the Sacred Woods, but by John of Holywood;
Johannes de Muris is not called John of the Walls, but John of Murs.
Thus, instead of translating Jordanis or Jordanus de Nemore by Jour
dain or Jordan the Forester would it not be more natural to see in the
name the latinisation of,37 Giordano de Nemi?
It should not surprise us if Jordanus de Nemore later became Jor

danus Nemorarius. Examples of analogous transformations are plentiful.
Pierre de Maricourt (Petrus Peregrinus), whom Roger Bacon calls
Petrus de Maharne-curia, became Petrus Maricurtensis. Johann Muller
of Koenigsberg, who called himself Johannes de Monte-Regio, came to
be known finally as Regiomontanus. Furthermore, the name Jordanus
Nemorarius seems to have been first used by Lefevre d'Etaples, who
wrote his own name in Latin as Faber Stapulensis.

If one sees in the words "de Nemore" or "Nemorarius" a reference to
the village of Nemi, as now seems plausible, our great geometer would
be Italian and his identification with John the Saxon would no longer be
tenable.
Let us add to these remarks on the name of Jordanus de Nemore an
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observation about the dates when he could have composed his works.
We will show here and in the following chapter that the manuscripts of
the 13th century attribute to three distinct works the same name of
Liber Jordani de Ponderibus. The first one, apparently the original text,
is the one analyzed in this chapter. The second one is a new version of
the same text by a Peripatetic philosopher, who profoundly transformed
some of its fundamental ideas. The third, more developed, is by a
mechanician to whom we owe the notion of moment,38 the theory of
the inclined plane and several other essential discoveries. How else can
we explain the fact that works so different and at times so contradictory
are attributed to the same geometer unless we suppose that they are so
ancient that the true names of their authors had already been forgotten?
But how can we make such a supposition if the oldest work does not go
back more than a century? Thus, if lordanus is the author of the oldest
of these treatises, one would have to conclude that he must have written
no later than the 12th century.

2. SOME PASSAGES FROM ARISTOTLE'S

MECHANICAL PROBLEMS

Although the statics of lordanus appears as a truly original work and
not simply a compilation of earlier works, it deduced its principles,
nevertheless, from Greek science. On the one hand, there are ties
between it and the De ponderoso et levi attributed to Euclid, as well as
the four propositions which sometimes accompany it. On the other
hand, it has ties with certain passages of the Mechanical Problems.
Thus it is necessary to closely examine these passages and to clarify the
ideas which the Stagirite presented in it.
Aristotle was much preoccupied with the composition of velocities.

He states this law with great precision39

If a body moves in two directions in such a way that the spaces traversed in the same
time have an invariable ratio, the body moves in a straight line along the diagonal of a
parallelogram which has as its sides two lines in the same ratio.

He gives the now classical demonstration of this fundamental law.
On the contrary, if the ratio of the two component spaces traversed

in the same time by the body varies with time, the moving body will not
follow a straight line.
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So that a curved trajectory results when the body is moved in two directions in a ratio
which varies with time.

Let us consider, specifically, a circle in a vertical plane and a body
descending along the circumference of the upper half of the circle.

It is clear that this body is borne by two simultaneous movements. One of these
movements makes it descend vertically, the other one displaces the vertical trajectory
so that it moves away from the center.

These propositions, so precise and exact, belong to what we would
call today kinematics. Aristotle deduces from them results which belong
to dynamics and which concern the composition of forces. The transi
tion is not explicit, but it can be easily supplied by recalling the
fundamental principle of Peripatetic dynamics. The force moving a
given weight is directed along a line described by this weight and is
proportional to the space traversed in a given time.
Thus a body describing the upper half of a circumference in a

vertical plane is acted upon by two forces. One pulls it vertically
downward while the other one tends to move it in a horizontal direc
tion away from the circle. In the same way, if a heavy body describes
the lower half of this circumference - and Aristotle only considers this
case from now on - it will be forced to descend vertically according
to a natural movement because of its gravity, and it will be pulled
horizontally, against nature, towards the inside of the circle.
Moreover, if two bodies describe, on vertical planes, unequal semi

circles, they will not have moved horizontally the same distance after
descending by the same amount from the horizontal diameter. Given
the same natural movement, the body which describes the small cir
cumference will have moved further against nature than the body
describing the large circumference. Although the force of gravity will be
the same for both of these weights, the force "which pulls towards the
side and towards the inside" will be larger for the first body than for the
second.
One can see that of these two descending bodies, the body on the

larger circumference moves faster than the other one, or stated differ
ently, is acted upon by a more powerful resultant force because the
natural force of gravity is countered by a force against nature of a lesser
intensity.

If on a radius descending about a center one chooses several points
of unequal distance from the center, these diverse points will describe



JORDANUS DE NEMORE 83

during the same time unequal natural movements and unequal unnatural
movements. However, for each one of these points, the ratio between
the natural movement to the unnatural movement remains the same.
The contemplation of this equality concerned Aristotle for a long time
and he seems to have seen in it a somewhat mysterious correlation with
the law of the lever. It would be difficult for us to trace the rather
confusing considerations to which the Stagirite was led by this con
templation. Even among those propositions which we have stated, there
are some which are hard to reconcile with the principles of modern
dynamics. However, as inaccurate as they may be, they still played an
important role in the development of mechanics because they were the
first to suggest the idea of a composition and decomposition of forces.
What we have said here will suffice to show how the Peripatetic school
understood this composition of forces and to explain certain conceptions
of Jordanus.
We must now say a few words about another question which

preoccupied Jordanus and his successors very much and which had
already been examined by Aristotle.
Aristotle considers4o a balance which has a beam BC (Fig. 18) in the

form of a prismatic rectangular ruler (what he says about it is proof that
he attributes this shape to it). He assumes that this beam is suspended
from a rope DA attached at point A on its upper edge. He then asks
how the beam, displaced from its horizontal position to position EF,
will return to its original position, if let go. In other words, he asks
himselfwhy the equilibrium of such a balance is stable.
He answers in the following way: If the left side of the beam is

lowered as in Figure 18, the segment of the ruler which is on the right
side of the vertical line DAM is larger and, therefore, heavier than the
segment on the left side of the same vertical line. The right segment
descends while raising the left segment and the beam will thus return to
its original position.41

He then takes a beam BC in the same form as the preceding one, but
resting on a support D at point A on its lower edge (Fig. 19). After
comparing this configuration with the preceding one, he states the
following:

The opposite occurs when the support is underneath.

He should have concluded from this that the beam displaced from its
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horizontal posItIOn would not cease to move until it has become
vertical, or in other words that the original equilibrium was unstable.42

By a strange oversight he concludes that this beam would remain in
stationary equilibrium in any position it might be placed. This easily
refutable error persists in several authors up to the middle of the 16th
century.

3. THE ELEMENTS OF JORDANUS ON THE DEMONSTRATION

OF WEIGHTS

This title seems to have been the original title of the treatise on statics
written by Jordanus. The original version of this treatise was not fully
appreciated for a long time because variations and commentaries on it
were composed over the centuries and other works were joined to it
sometimes with and sometimes without a natural justification. All of
these effusions were modified and developed and then reproduced by
the printing press, which gave rise to books with very little resemblance
to the work whose name they carried.
A manuscript43 in the Bibliotheque Nationale preserves a text of the

original work by Jordanus, which seems complete and almost free of
any alteration. The date of this text, composed in an elegant and regular
handwriting of the 15th century, is known exactly because it ends
with the words "8 kal. novembris 1464." It is not signed but some
comparisions easily allow us to determine the scribe's name. In fact, the
same volume contains various other texts all in the same hand. Two of
these texts are not only dated, but also signed. The first, Algorismus de
integris per Joannem de Sacro Boscho ends with the words: Finis.
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Neapoli, per Arnaldum de Bruxella, 1476, die 11 februarii, ante ortum
solis.44 The second one, Tractatus de ponderibus secundum Magistrum
Blasium de Parma, whose importance we shall consider in the following
chapter, ends with the words: 1476, 5 Januarii, Neapoli, per A. de
Bruxella.
In another similar collection45 we find more detailed information on

this Arnold of Brussels. The astronomical tables, works by a Blanchinus
or de Blanchinis, end with this formula:

Finis; 8 kal. Aprilis 1468 imcompleto, Expliciunt canones super tabulis clarissimi
mathematici et artium doctoris lohannis de Blanchinis in armis milities strenuissimi
factoris generalis Ill. Borsii, ducis Mutine et Regii, comitis Rodrigii, marchionis Estensis
et Ferrarie, completi per Arnaldum de Tiishout de oppido Bruxella, ducatus Brabancie.
Anno 1468, incompleto 8 kal. Aprilis 2e indictionis. In urbe Parthenopes.46

Arnold of Tijshout adds this piece of astronomical information as a
remembrance of his fatherland47

Bruxelle polus elevatus g. 40.

From one of his quotes we know that Arnold of Tijshout from the city
of Brussels and the Duchy of Brabant sometimes stayed up almost till
sunrise in order to finish copying a valuable manuscript in regular,
well-aligned, Gothic letters. However, he did not limit himself to the
profession of a scribe. At Naples, where he became established, this
Fleming, or "il Fiamengo" as he was called there, displayed charac
teristic Flemish initiative. He became a printer and many a famous
work came from his press. 48

Thus we owe to Arnold of Brussels the collection in which we find
after Jordanus' treatise De speculis, an almost flawless text of the
Elementa de ponderibus.
The Bibliotheque Nationale has another complete text49 of the same

work which differs only slightly from the first one and which the scribe
incorrectly titled the Liber de ponderoso et levi, which is the name
generally given to the fragment attributed to Euclid. Furthermore, the
scribe appended to the work of Jordanus three of the four propositions
which we studied in section 1 of the preceding chapter.
The Bibliotheque Mazarine has in its possession a text from the 13th

century50 entitled Elementa Jordani super demonstrationem ponderis.
Unfortunately, this text is not complete. We noted in the first section of
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the preceding chapter in what a strange way the beginning of a pro
position of Jordanus was continued by the inclusion of a theorem from
the De canonio. We also noted how this peculiar union had been
scrupulously reproduced in the manuscript collectionS I belonging to
Master Franc;ois Guillebon, Doctor at the Sorbonne. However trun
cated the text of the Bibliotheque Mazarine and its reproduction may
be, they allow us, nonetheless, to verify a portion of the treatise copied
by Arnold of Brussels. They show us that this portion had not under
gone any noticeable alteration between the 13th and 15th centuries.
The clarity and the conciseness of Jordanus' statements and de

monstrations confer to this treatise a very elegant form which his
commentators subsequently altered. The treatise is, however, very
short. It opens with seven axioms or definitions and develops from
them nine propositions.
Moreover, we do not seem to possess the complete text. In the

demonstration of the third proposition, Jordanus writes the following:
"Sicut constituimus Praeexercitaminibus."52 These Praeexercitamina
constitute, undoubtedly, a kind of preamble where certain preliminary
geometrical lemmas are demonstrated. In two other passages where
Jordanus demonstrates the second and fifth propositions, he indicates
another reference: "Sicut declaratum est in Filotegni-sicut declaravimus
in Filotegni."53 These two references also relate to geometrical pro
positions. Thus Jordanus appears to have written, besides the numerous
works known to us, a treatise on geometry which has been lost. He
seems to have given this treatise a Greek title: Filotegnis, "the friend of
the art," a rather peculiar thing to do at the time in which he was
living.54
However, nothing leads us to suppose that the Elementa super

demonstrationem ponderis is, like the De canonio for example, a simple
translation of a Greek work, because it contains no other Greek
expression besides the title we just noted. If we follow the order of the
letters which designate the different points of the figures or the diverse
magnitudes where the author is computing, we no longer see the
sequence of the Greek alphabet. In the first demonstration, the letters
are introduced according to the Latin alphabet: a, b, c, d, e, f In other
places, we see two similar lines marked dy and ez and even dh and ego
Everything seems to indicate that we are here in the presence of a
seminal work, born ofWestern genius.
This does not mean that the author of the work was not familiar with
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some of the original Greek texts which we have previously analyzed. As
soon as one opens the Elementa, it is immediately obvious that the
author knows the De ponderoso et levi attributed to Euclid. His first
two axioms and his first proposition form a sort of summary of this
fragment.
On the other hand, the ninth and last proposition of the Elementa

sets out to prove that a cylindrical mass formed like the arm of a beam
of a balance, weighs exactly the same as if its weight were concentrated
at its center. In order to prove this, Jordanus is content to remark that
two equal weights suspended at two different points of the beam weigh
as much as a single weight equal to the sum total of the two weights and
suspended midway between these two weights. It is impossible to read
the last proposition without thinking that the author must have had
before him the four propositions which comprise the Liber Euclidis de
ponderibus secundum terminorum circumferentiam, or, at least, the two
propositions B and C.
The main interest of the proposition which ends the Elementa of

Jordanus, lies in the fact that it allows one to calculate the compen
satory weight which must be loaded on the small arm of the Roman
balance. Since this book does not mention this application, it has an
unfinished look about it. From the 13th century on, and the strange
union in the text of the Bibliotheque Mazarine testifies to it, one was in
the habit of placing the De canonio after the treatise of Jordanus. This
association, which we shall discuss again in Section 1 of the following
chapter, was very natural, because the Elementa super demonstrationem
ponderis ended with the very theorem postulated in the following terms
by the De canonio:55

Monstratum est in libris qui de his loquuntur.

This association appears so natural that one wonders if it might not
have been intended by Jordanus and if in his Elementa he did not
intend to write a kind of introduction to the De canonio, which he may
have translated.56

The resolution of weight into different directions plays an essential
role in this work of Jordanus. This constitutes the main interest in the
introduction and distinguishes it from all the works we previously
studied, with the exception of the Mechanical Problems, with which it is
quite similar in the above respects.
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lordanus considers a body compelled to descend along a non-vertical
trajectory. In his computation, he introduces the component of weight
along the trajectory as representing the sole motor force. He calls this
component the weight relative to the position of the moving body,
"gravitas secundum situm."57 The quantitative relationship between this
relative weight to the weight per se is not known to lordanus. He
merely formulates a qualitative rule: the more oblique the trajectory, the
weaker the "gravitas secundum situm." Furthermore, in order to com
pare the obliquity of diverse trajectories it is necessary to take trajec
tories of the same length and evaluate the vertical descent to which they
correspond. The one corresponding to the smallest vertical descent is
the most oblique.
Those are the principles which lordanus states at the beginning of

his work in the following words:

Omnis ponderosi motum esse ad medium, virtutemque ipsius potentiam ad inferiora
tendendi et motui contrario resistendi ...
Gravius esse in descendendo quando ejusdem motus ad medium rectior.
Secundum situm gravius, quando in eodem situ minus obliquus est descensus.
Obliquiorem autem descensum in eadem quantitate minus capere de directo.5H

These principles would have been easy to apply to straight trajec
tories, and it seems that the problem of the inclined plane ought to have
occupied lordanus first. However, his attention seems not to have been
focused on this particular problem, but only on the problems posed by
curvilinear motion in the study of the lever and the balance. But these
latter problems are harder to treat with the concept of "gravity relative
to the position" of the body. In order to calculate the obliquity of the
trajectory, it would have been necessary to compare the length of an
infinitely small path traversed along this trajectory with the infinitely
small descent corresponding to this path. Such infinitesimal compari
sons were impossible to carry out in the 12th and 13th centuries.

It seems nevertheless, that these comparisons occurred to lordanus
during the demonstration of one of those important propositions whih
were to significantly influence the subsequent development of statics.
lordanus considers a material point fixed at the extremity of an arm

of a lever moving about point b (Fig. 20). This arm of the lever is first
horizontal and the weight is at a. Then one inclines it in such a way that
the weight is either at d, above point a, or at e, below point a. In both
cases, the positional weight decreases.
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In fact, says Jordanus, let us mark beneath points a, d and e the arcs
az, dh and eg "as small as we wish", or as the Latin says, "quantulum
cunque parvi," but equal to each other and let us note by bf, kn and tx
by how much the trajectories of these arcs project on the vertical.
Since kn and tx are obviously smaller than bf, the descent of dh and

eg is more oblique than the descent of az. Thus the positional weight is
weaker at d and at e than at a.

If the infinitesimal method appeared for an instant to a medieval
geometer, it must have been like a flash instantly disappearing again.
Generally, Jordanus considers finite arcs and compares them to their
vertical projection, just as Aristotle had done in the Mechanical Prob
lems. This sometimes causes paralogisms. Here is such a reasoning
which gave rise to much debate during the 16th century:
A lever bac (Fig. 21), carries equal weights at the extremities b and

c of its equal arms. This lever is not at all horizontal, with arm ac
higher and arm ab lower. Jordanus sets out to prove that weight c is
positionally heavier than weight b, so that the first will cause the second
to rise, bringing the lever to a horizontal position which will then be a
position of stable equilibrium.
To construct this proof, Jordanus takes beneath points band c equal

arcs bg and cd which he projects on the vertical kl and zm. Since kl is
smaller than zm, the arc bg projects less on the vertical than arc cd,
which establishes the stated proposition.
Aristotle had understood very well that the stability of a rectilinear

beam was due to the fact that the point of suspension was above the
center of the lever. This correct concept is not clear to Jordanus or his
commentators.
Other contradictions can be found in Jordanus. In his time, it must

have been quite natural to allow the majority of these errors. It seems

at----:ilI

fig. 20. fig. 21.
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natural, for example, to think that in a mechanism a weight would lift
another if the positional gravity of the first exceeded the positional
gravity of the second. From this admittedly plausible but nonetheless
inaccurate principle, Jordanus will deduce formally an erroneous
proposition. This proposition clearly shows us how far removed its
author was from understanding the concept of moment.
Jordanus considers a bent lever (Fig. 22) with its short arm ca

horizontal while the long arm cl is inclined. He assumes that the
distance Ie between point I and the vertical is precisely equal to the
horizontal arm ca. We know today that equal weights placed at a and I
produce equilibrium. Our author sets out, on the contrary, to prove that
the weight put at a will cause the lever to tip in its favor.
To this end, he remarks that any descent of the weight a takes place

along the quadrant ak with e as the pivot point and ca as the radius,
while any descent of the weight I takes place along the arc fz with c as
the pivot point of el as radius. Let us measure along these two trajec
tories and below weights a and I equal arcs al and fm, respectively.
The length en which the first arc projects on the vertical is superior to
the length ed projected on the vertical by the second. Weight a is thus
positionally heavier than weight f From this Jordanus believes that he
is justified in concluding that the proposition formulated is proven.
Among Jordanus' demonstrations, one deserves special attention

because it does not require the concept of positional gravity, and the
principle which it depends upon is not explicitly stated. But on the
other hand, this principle shows through so clearly that it is impossible
not to recognize it and formulate it in the following way: Whatever can
lift a given weight to a given height can also lift a weight k times heavier
to a height k times smaller. This is the principle which Descartes will
take as the foundation of all statics and which, due to Jean Bernoulli,
will become the Principle of Virtual Displacements. There is more: we
shall see that the current of ideas which carried this principle to
Descartes and which had its source in the Elementa of Jordanus, did
not suffer any discontinuity in its development. Descartes did, indeed,
borrow this postulate from the commentators on Jordanus.
Jordanus implicitly appeals to this principle in order to justify the

law of equilibrium of the lever.

Let us assume, says Jordanus, the beam abc (Fig. 23) with weights a and b placed at its
extremities. And let us assume, furthermore, that the ratio between b and a is equal to
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that between ca and eb. I maintain that the beam will not move. Let us assume that it
will incline on the side b and take the oblique position dee. Then b will descend by the
vertical distance he and a will ascend by the vertical distance fd.

If a weight equal to weight b were to be placed at I, at a distance from
point c equal to cb, that weight would ascend at the same time by a
vertical distance gm, equal to he.

The triangles eeb and eda are obviously similar. The ratio between df and eh is thus
the same as ae to eb, and consequently, as weight b to weight a. Thus df is to gm as
weight b is to weight a, or as weight I is to weight a. Therefore, what is needed to move
weight a to point d would be sufficient to move weight I to point m. But we have
shown that weights b and I counterbalance exactly.

Therefore, neither the assumed displacement nor a displacement in the
opposite direction will take place.
This demonstration of the law of equilibrium of the lever was a great

advance over that given by Aristotle and followed later by Thabit
ibn Qurra. The latter took as its foundation the axiom of Peripatetic
dynamics, the proportionality between force and velocity. The revolu
tion which took place in dynamics in the 16th century was to render
it finally void. The former demonstration, on the contrary, brought
together the equilibrium of the lever and the equality between the
virtual work of the driving forces and the virtual work of the resisting
forces. It was the germinal formulation of a principle which was not to
see its final and full development until the end of the 18th century in
the Mecanique analytique of Lagrange. One of the primary goals of
this investigation of the Origins of Statics will be to study the evolution
of that apparently infinitesimal germ up to the finished form by which
we know it today.
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THE STATICS OF THE MIDDLE AGES (CONTINUED)

THE SCHOOL OF JORDANUS

1. THE GENESIS OF THE LIBER EUCLIDlS DE PONDERlBUS

The ideas propounded in the Elementa Jordani de ponderibus provoked
very intense intellectual excitement during the Middle Ages. Philoso
phers, geometers and mechanicians vied with each other in discussing,
commenting upon and developing these ideas. From the 13th century,
the Elementa de ponderibus inspired treatises quite different from their
source.
This intellectual movement produced works which generally have

neither the simplicity nor the rigor of the Alexandrian texts known
to the medieval geometers. Whereas the former works dealt almost
exclusively with the problem of the Roman balance, the medieval
treatises pose infinitely more varied questions. Quite often, they succeed
in resolving them by means of profound intuitions which disclose to
their authors insight into some of the essential principles of statics.
Among the different currents which come out of the ideas of

Jordanus, we shall study, first of all, the one current which led geome
ters to connect the Elementa Jordani to the De canonio and thus to
compose the treatise usually called the Liber Euclidis de ponderibus.
The connection between the Elementa of Jordanus and another

work was quite natural since the treatise of Jordanus seemed to have no
definite conclusion but seemed to be a sort of introduction to another
treatise, and furthermore it ended with a kind of lemma calling for
additional theorems. The commentators were thus searching among the
other works on statics for the completion which the Elementa de
ponderibus seemed to require.
At times, the fragment which was joined in this way with the

Elementa was made up of propositions contained in the Liber Euclidis
de ponderibus secundum terminorum circumferentiam. It is this con
figuration, which a 15th century manuscript kept at the Bibliotheque
Nationale1 presents to us under the following title: Incipit liber de
ponderoso et levi. This configuration was quite strange, because the
proposition from the fragment joined to the treatise of Jordanus,

92
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proposition C, did double duty with the last proposition of the treatise.
In this way, the law of the lever was established twice and by two
incongruous methods. The combinations of these two texts is too
disparate to conform to the intentions of Jordanus.
This combination of texts does not occur frequently since it only

appears in one manuscript. Generally, one gave the Elementa Jordani
de ponderibus the ending which it seemed to need by appending the
treatise De canonio. This seems to have been standard practice from
the 13th century on. How else can we explain the strange mistake
which joins the ending of the De canonio to the beginning of the
Elementa in the "Codex Mazarineus?" In the Ms. 7378 A (Latin) in the
Bibliotheque Nationale, the De canonio does not follow the original
treatise by Jordanus, but rather two other treatises deriving from it.
Nonetheless, when the De canonio has to invoke the law of equilibrium
of the lever, the text reads: "ut patuit in penultima superiorum demon
strationum."2 This reference makes no sense, considering the place of
the De canonio in our manuscript. However, it becomes perfectly clear
if we assume that the De canonio follows immediately upon the text of
Jordanus. It probably was placed there by the author who joined these
two treatises where the following reference occurred: "sicut demonstra
tum est ab Euclide, et Archimede, et aliis,"3 a reference contained in
other texts of the De canonio. There is more: these two treatises follow
each other so naturally and the book of Jordanus ends so accurately
with the proposition invoked by the author of the De canonio4 to
demonstrate his first theorem that Jordanus himself seem to have
intended this association. As we have said before, this geometer seems
to have the intention of writing an introduction to the De canonio.
This logical connection between the Elementa of Jordanus and the

De canonio cannot conceal, however, the diversity of their origins or
cause us to mistake them for the two parts of a single work. The Greek
text is clearly transparent through the Latin of the De canonio, while
nothing in the Elementa indicates a Hellenic origin. Moreover, when
the author of the De canonio invokes this proposition:

A he,avy cylinder, serving as the beam of a balance, weighs as much as an equal weight
suspended from the center of the cylinder

he does not refer the reader to the last proposition of Jordanus, but to
"books dealing with these matters."
The association of the Elementa Jordani super demonstationem
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ponderis with the De canonio soon became accepted as classical. It was
in the 15th century, perhaps in the 14th, that a geometer whose name is
unknown to us reshaped this rhapsodic work. He gives a verbose
expansion to the clear and concise demonstrations of Jordanus and he
repeatedly provides us with arguments about which Jordanus merely
refers to the reader to the Praeexercitamina or the Philotechnes5 and
he supports them with lemmas borrowed from the Elements of Euclid
or from the Almagest of Ptolemy, works which Jordanus had never
invoked. On the other hand, he reproduced the propositions of the De
canonio in the form they had been given in the 13th century, without
eliminating the incongruity between the two parts of the text,6 and
without replacing the words "monstratum est in libris, qui de his
loquuntur"7 with a reference to his own ninth proposition.
This gradual association of the Elementa lordani with the De

canonio can be found in two manuscripts8 kept in the Bibliotheque
Nationale and bearing the title Liber Euclidis de ponderibus, a title that
seems to have been given frequently.
The close analogy between the Liber de ponderoso et levi attributed

to Euclid and the first proposition of De ponderibus of Jordanus could
have led, quite naturally, to the attribution of the latter treatise to the
Greek geometer. A 14th century manuscript 9 presents the Elements of
Geometry followed by a long series of propositions formulated without
demonstrations. In it we can find in sequence the different theorems of
the treatise De speculis attributed to Euclid, propositions from the
Elementa lordani de ponderibus, from the De canonio, from the Liber
de ponderoso et levi, and finally, from a treatise on perspective, which is
also attributed to the author of the Elements of Geometry. Thus, from
the 14th century on, the fame of Euclid occasionally increases at the
expense of Jordanus.
Sometimes, however, the name of Jordanus reappeared next to that

of Euclid in the titles of treatises which join the Elementa de ponderibus
and the De canonio. Curtze lO found in manuscript F.33 of the Library
of Basel, a text entitled: lordanus de Nemore et Euclidis de ponderibus.
The extremely brief description which he gives of the text, nevertheless,
allows us to recognize that such an association exists here too.
Valentin Rose 11 found in the Codex Amplonianus, kept in Erfurt, next
to Liber lordani de ponderibus a work entitled Liber ponderum
lordani, secundum quosdam vero Euclidis. It ends with these words:
"Explicit liber Euclidis de ponderibus secundum quosdam."12 Curtze,13



THE SCHOOL OF JORDANUS 95

who saw this work, gives us rather superficial information about it, but
does seem to indicate that it is the same association which we discussed
earlier. The same author gives us 14 a more complete analysis of another
treatise attributed to Jordanus, which is contained in a manuscript kept
at Thorn and which is surely the same compilation.
This compilation still had the name of Jordanus when it went to the

printer. It was, indeed, one of the essential elements of the book
published in 1533 in Nuremberg by Peter Apian, Professor at the
University of Ingolstadt. But another element was added to the preced
ing one to comprise the treatise which Peter Apian published, We shall
now study this second element.

2. THE PERIPATETIC TRANSFORMATION OF THE
ELEMENTA JORDAN]

Under the number 7378 A, Latin collection, the Bibliotheque Nationale
keeps a collection of disparate pieces on mathematics, astronomy and
mechanics. Among these pieces is a 13th century manuscriptS on
parchment which contains a long and important document on statics.
This document which begins with the following words: Incipit liber
Jordani de ponderibus, is actually a sequence of three distinct texts.
The third of these texts contains a series of problems on the equilib

rium of the "canonium" which we discussed at length at the end of
Chapter V. The second text will be discussed in a later paragraph. The
first will now receive our attention.
A rather long preamble, giving a general overview of the problems

treated and the methods used to solve these problems, precedes the list
of axioms used by Jordanus as the principles upon which he bases his
deductions. Thirteen propositions follow these axioms. The order of
these propositions and the form of these statements are exactly the
same as those in the Liber Euclidis de ponderibus, but the demonstra
tions and explanations accompanying them are, as we soon shall see,
completely different. The result of the analysis we shall make of them
will justify the name of the Peripatetic Commentary on the Elementa of
Jordanus, as we will henceforth call this treatise.
The Liber Euclidis de ponderibus on the one hand, and the Peri

patetic Commentary contained in our 13th century manuscript on the
other hand, were combined in a single work which was printed during
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the 16th century. It was published in 1533 in Nuremberg by Joannes
Petreius with the title: 16

Liber Jordani Nemorarii, viri clarissimi, de ponderibus, propositions XIII et earumdem
demonstrationes, multarumque rerum rationes sane pulcherrimas complectens, nunc
in lucem editus, cum gratia et privilegio imperiali, Petro Apiano, mathematico Ingol
stadiano, ad XXX annos concesso. MDXXXm. 17

Here is how the famous cartographer, Peter Apian, Professor at the
University ofIngolstadt, undertook to compose this small book.
After a dedicatory epistle addressed to Leonhard van Eck, Vuolffeck

and Randeck, he reproduced the preamble which begins the Peripatetic
Commentary. Then the postulates of Jordanus, followed by thirteen
propositions (nine by Jordanus and four from the De canonio). These
propositions are in the same form and sequence which they had in the
treatises from which they were taken and which they had in the Liber
Euclidis and the Peripatetic Commentary.
Each proposition is followed by two demonstrations. The first

demonstration is the pure and simple reproduction of argumentation
given in the Peripatetic Commentary. The second demonstration, intro
duced in these general terms: "Sequitur aliud commentum,"18 has as its
outline the demonstration given in the Liber Euclidis, which is itself an
amplification of an original deduction by Jordanus.
Peter Apian renders their argumentation even more diffuse and

verbose than it was in the Liber Euclidis by belaboring it with geo
metrical digressions. It is in one of these digressions, by the way, that
he twice quotes Campanus. This quote was afterwards attributed to
Jordanus and continued to mislead his chroniclers. These long and
tangled constructions of Apian are a far cry from the argumentation of
the Elementa Jordani, whose clarity and objectivity reveal the work of a
true geometer despite grave errors in certain principles.
Let us return to the Peripatetic Commentary, which furnished Peter

Apian with one of the consitutive elements of his edition. This com
mentary begins as follows:

The science of weights is subordinated as much to geometry as it is to natural philo
sophy. It is, therefore, necessary that certain propositions of this science receive a
geometrical proof, while others need a philosophical proof.

Consequently, the author proves to be much more concerned with
considering the laws of equilibrium and of motion from a philosophical
perspective than did Jordanus and the author of the Liber Euclidis.
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A reading of the Commentary will but confirm this first impression.
Several times in the course of his discussions, the author refers to the
principles of Aristotle's physics. Thus, in order to determine the posi
tional gravity of a material point placed on a circle, he assumes, like
10rdanus, that the point descends along a small arc. But are the
conclusions reached in this way, which are valid when the point is in
motion, also valid for an immobile point? The author poses for himself
the objection which, so often and for so long, will be opposed to the
Method of Virtual Displacements. In order to answer this objection 
and he does so in a very obscure and inconclusive way - he considers
rest as the limit of motion. In that state, nature is entirely "enacted"
while during the duration of the motion, nature is partially potential.
These are the very same principles developed in Aristotle's Physics on
the subject of natural motion.
Although our author is more knowledgeable about and more con

cerned with Peripatetic physics than 10rdanus was, he is certainly
inferior as a geometer and logician. He almost always substitutes for the
precise and clear argumentation of the original text of the Elementa
Jordani vague considerations without a trace of a conclusive argument.
The influence of the Mechanical Problems on 10rdanus seems un

deniable. However, 10rdanus was able to reflect on the ideas which he
found there and to impose on them his own personal form. The
originality of his doctrine might even lead one to believe that he had no
direct and immediate knowledge of Aristotle's treatise. Our commen
tator followed the Mechanical Problems much more slavishly; even
worse, he forced out of them an erroneous conception of the concept of
positional gravity, which 10rdanus was careful to avoid.
Indeed, the Mechanical Problems, do not have the same beautiful

and logical order of most of Aristotle's works. There, opinions are
intertwined in such a way that it is difficult to disentangle them. This
lack of order is certainly one of the best arguments critics can invoke
who claim that this work should not be attributed to the Stagirite, but to
one of his disciples.
What is the cause which makes the gravity of a material point

descending on a circle vary, according to Aristotle? If one goes by the
passages which we quoted in the preceding chapter, one can see that
the Philosopher considers this gravity a resultant of two forces: natural
gravity and an unnatural resistance directed along a horizontal line.
These two forces are in the ratio to each other as the two components
of the path traversed by the weight in its curvilinear trajectory. If one
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wants to understand the effects of gravity in circular motion, one must
take into consideration the length of the veritcal projection which
corresponds to a given displacement on the circumference, that is to
say, the obliquity of the trajectory. It was in this way that 10rdanus
interpreted Aristotle's ideas when he took them as the foundation of his
statics.
In the Mechanical Problems, the passages yielding the interpretation

given by 10rdanus are mixed together with other passages according to
which the gravity of a mobile point on a given trajectory depends on
the curvature and not on the obliquity of the trajectory. An example is
the following pasage:

If two bodies are moved by the same force and the trajectory of one body curves more
than the trajectory of the other body, it is logical that the body describing the least
curved trajectory moves faster than the body describing the most curved trajectory.
This seems to happen for the bodies moving on the largest and the smallest of two
circles drawn from the same center. The point which moves on the smaller circle is
closer to the center than the point moving on the larger circle. Furthermore, the point
which moves along the larger circle is carried more rapidly than the point moving along
the smaller circle as if it were pulled in the opposite direction, that is, towards the
center. In addition, the same thing happens to any point describing a circle: it is carried
naturally along the circumference and also unnaturally, towards the side and towards
the center. But the point describing the smaller circle is carried by a larger unnatural
motion because by the very fact that it is closer to the center it is restrained and
subjected to a greater force.

It is this obscure passage which seems to have caught the attention of
our commentator. When he tries to consider curvature, where 10rdanus
very wisely had only introduced the analysis of oblique lines, everything
which was clear and precise in 10rdanus becomes confused.
The scientific value of our Peripatetic Commentary is, therefore,

zero. Its influence, however, will be felt for a long time, even by very
great geometers. Even Tartaglia, Guido Ubaldo, and Mersenne are not
entirely immune to this influence.

3. THE PRECURSOR OF LEONARDO DA VINCI: DISCOVERY OF
THE CONCEPT OF MOMENT. SOLUTION TO THE PROBLEM OF

THE INCLINED PLANE.

The work to which we shall now turn our attention is, on the contrary,
one of the most important in the history of mechanics. It can be
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found in the same manuscript l9 which contains the Peripatetic Com
mentary and is a continuation of it. Thus this work cannot be later
than the 13th century, the era when the manuscript was copied.20

It can also be found in more correct form and illustrated with many
precise figures in another 13th century manuscript 21 under the same
title: Liber lordanis de ratione ponderis. Furthermore, these copies
seem to be much later than the original. Certain demonstrations have
lacunae, incomprehensible passages which it would be impossible to
attribute to the author of this treatise because he was surely a good
geometer.
This treatise was printed in the 16th century. Among his papers,

Tartaglia left us a copy which he had illustrated with several figures.
He bequeathed it to his friend, Curtius Trojanus, the great Venetian
publisher, with a charge to publish it. And, indeed, in 1565 Curtius
Trojanus published it as a small book22 to which he appended the
Treatise on Weights by the pseudo-Archimedes as well as several
experimental conclusions on specific weights by Tartaglia.
Curtius Trojanus published this work as if it were the result of

corrections Tartaglia made on the original manuscript. As a matter of
fact, Tartaglia had corrected nothing at all. If one compares the printed
treatise with the manuscript text which we actually saw, one can see
right away only one change: the division into four books in the manu
script no longer appears in the book form. Several additions can also be
discovered and most of them are unfortunate. For the most part, the
original text has been reproduced purely and simply by the printer, who
was, however, rather clumsy in deciphering a 13th century script. Thus
the numerous mistakes committed by the scribes multiply here. The
word "pondus" has become "mundus", and "regula" is constantly re
placed by "responsa".23 Moreover, the figures are just as bad as the text.
Written in indistinguishable letters which hardly correspond to the
notations of the argument and filled with poorly drawn lines where
horizontals sometimes become verticals, these figures further increase
the disorder and confusion. In a word, everything combined to render
unrecognizable the new mechanical ideas which distinguished this
treatise so much from the Elementa lordani.
We shall now analyze these ideas. Yet, one question about them

comes to mind: which geometer conceived these ideas? We find our
selves unable to answer this question. The manuscripts which contain
these ideas imply that they stem from Jordanus. It is true that the
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treatise of Jordanus was the inspiration which led to the work which
occupies us here. However, the latter cannot be considered a simple
development of the former. While it corrects certain mistakes of the
Elementa Jordani, it develops in a successful manner the fruitful
suggestions contained in the treatise of Jordanus. It is an original and
convincing work. To cite it under the name of Jordanus de Nemore
would be to increase the already rich patrimony of that author by
attributing to him something which is not his at all. However, since we
do not know the name of the true author, we shall call him the
Precursor of Leonardo da Vinci.24 We shall see that the ideas of this
unknown geometer certainly exerted a profound and productive influ
ence on the investigations into mechanics by the great painter.
The fourth book of the treatise by the Precursor of Leonardo da

Vinci is concerned more with dynamics than statics. It deals with, above
all, the effects of a fluid medium - be it air or water - on the bodies
moving within that medium. To be sure, one does not expect a 13th
century mechanician to express precise and profound ideas about
problems which even today seem to us almost inaccessible. In any case,
these ideas really have no place in a study on the Origins of Statics. We
shall mention, however, some of these views expressed by our author
on dynamics, because they are quite original and easily identifiable.so
as to allow us to recognize their imprint in the works of his successors,
especially in Leonardo da Vinci.
Any medium resists the motion of a body which is travelling through

it.25 This impediment to motion depends on a great number of circum
stances. First of all, it depends on the shape of the moving body.26 The
more pointed its shape and the smoother its surface, the more easily it
will travel through the medium. Secondly, it depends on the density of
the fluid which the body travels through.27 A more dense medium is
more difficult to penetrate than a less dense one. Water resists more
than air. According to our author, every medium is compressible. Since
the upper layers of fluid push down on the lower layers, the latter ones
are denser than the former.28 The deep layers will thus resist motion
more than the upper layers.
At the bow of the moving body a portion of the medium is com

pressed and adheres to the body.29 But other portions of the medium
repulsed by the moving body bend back and come to occupy the space
vacated by the body.30 This curved motion of the lateral parts of the
medium can be compared to the bending of a bow. When the middle
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part of a body is fixed, an impulse exerted on the extreme parts will
easily bend this body.J1
Aristotle attributed the continuation of the projectile's motion after

the projectile had left its motor to the motion of the medium. This
opinion was shared by Alexander of Aphrodisias, Themistius, Simpli
cius, Averroes, and by St. Thomas Aquinas. What our author attributes
to the motion of the medium is not the continuation of the projectile's
motion, but the acceleration of this motion. It is the motion of the
air which explains the acceleration of the fall of heavy bodies. This
acceleration was already known to Aristotle and his commentors and
was considered by them as the effect of an increase in weight. Let us
quote the passage where the Precursor of Leonardo da Vinci formu
lates this curious theory on accelerated fall: 32

The longer a heavy body descends, the faster it moves. This is more true in air than in
water, because the air is suitable to all kinds of motions. Thus a heavy body descending
in its first motion pulls the fluid immediately behind it and puts into motion the fluid
directly below its immediate contact point. The parts of the medium which are thus put
into motion, in turn, put into motion those which follow them in such a way that these,
already in motion, produce a smaller impediment to the descending body. Because of
this the body becomes heavier and imparts a stronger impulse to those parts of the
medium being pushed in front of it, so that these parts are no longer simply pushed by
it, but they actually pull it. Thus it happens that the weight of the moving body is
increased by their traction and, conversely, their motion increases with this added
weight so that this motion continually increases the velocity of the falling body.

Such an explanation of the accelerated fall of heavy bodies seems
to have been unknown to the Ancients. Simplicius, who lists all the
different views of his predecessors on this phenomenon, does not
mention it. On the contrary, many authors of the Middle Ages and the
Renaissance viewed it favorably. Walter Burley (Burlaeus), who wrote
on Aristotle during the first half of the 14th century, adopts it in his
commentaries to Book II, Chapter 76 of the Physics. These few ideas
concerning the influence exerted by the medium on the fall of heavy
bodies, which we have just expounded, seem to have been a kind of
breviary for Leonardo da Vinci, which he never ceased to contemplate
and which was the source of a great many of his views on the topic of
dynamics. We find these views again in the works of Cardan. The
explanation which our 13th century author had given for the accelerated
fall of heavy bodies is also accepted by Cardinal Gaspard Contarini in
the first book of his De elementis, printed in 1548, six years after the
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death of its author. In 1576, Benedictus Pererius adopted this explana
tion in his De communibus omnium rerum naturalium principiis.33

Finally, Gassendi adopted them in 1640 in a letter addressed to P.
Casree, where the modern theory of the accelerated fall of heavy bodies
is presented for the first time in a complete way.
From this, one can understand the essential role played by our 13th

century geometer in the development of the science of motion. How
ever, this role should not concern us now. Our present object is to
evaluate the contribution to the science of equilibrium by the Precursor
of Leonardo da Vinci. This contribution, as we shall see, is enormous.
The first three books of the treatise which we are analyzing deal with

statics. The second book, restricted to problems related to the De
canonio, contains few new ideas. Only the first and third books will
concern us.
The first book begins exactly like the Elementa Jordani. The same

axioms follow each other in the same order. The first proposition in
both works sets forth in the same form the fundamental principle of
Peripatetic dynamics. But from the second proposition on,34 the origin
ality of the Precursor of Leonardo becomes evident.
We have already analyzed the formulation and demonstration of this

proposition in the preceding chapter.
Jordanus considered a lever be (Fig. 21) rotating about point a with

equal arms carrying equal weights. This lever is displaced from the
horizontal position in such a way that weight b is lowered and weight c
elevated. In this position, weight c should be heavier than weight b,
because the descent along the arc cd is less oblique than the descent
along the equal arc bg.
It is true that the Precursor of Leonardo borrows the formulation

and demonstration of this proposition from Jordanus, but he adds to
the demonstration some considerations which refute it conclusively.
The excess of obliquity of arc bg over the obliquity of arc cd, says

our author, can be reduced by any arbitrary amount. Therefore, if one
puts some weight at c and at b a weight which exceeds the weight at c
by any fixed amount, then weight b will descend and cause weight c to
ascend (regardless of obliquity).
After having made this correction to an error of Jordanus, our

author reproduces several of his predecessor's propositions without any
important modifications. Specifically, he borrows from him the elegant
demonstration of the equilibrium of the straight lever and finally comes
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to the following problem: 35 If a balance (Fig. 24) with two unequal arms
ea and eb which form a fixed angle have the end-points a and b, which
are equidistant from the vertical line passing through the point of
support e and if they carry equal weights, is the balance in equilibrium
or not?
Jordanus had treated this specific problem or, at least, a particular

case of the problem. He had concluded that the balance would not be
in equilibrium under the prescribed conditions and that the balance
would incline with the smaller arm eb descending and the longer arm
ea ascending.
The Precursor of Leonardo, on the contrary, gives the correct

answer to the problem posed. The balance will remain in equilibrium.
However, he does not only formulate this correct answer but he proves
it with a most remarkable demonstration.
On both sides of the arm ea, he draws two radii ex and cl which

form equal angles with ca. Then, on both sides of the other arm eb, he
draws two radii eh and em which form equal angles with eb as well as
with the angles first drawn.
Having done this, he asks if weight a would incline the balance to its

side and then states that this will not happen, because arms ea and eb
of the lever would assume, respectively, positions ex and em. Weight a
will descend by the distance IX, and will cause the equal weight b to
ascend by a distance pm, larger than Ix. In the same way, weight b will
not be able to incline the balance to its side, because arm eb will
assume position eh while arm ea will assume position cl. Weight b
descending by a distance rh will cause the equal weight a to ascend by
a distance nl, larger than rho

jig. 24.
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This demonstration shows an obvious relationship to the demonstra
tion given by Jordanus for the law of equilibrium of the lever. But this
new application of the Method of Virtual Displacements presented
certain difficulties not encountered with the first method. Indeed, in the
case of the straight lever, the equilibrium is not affected, so that in any
completed virtual displacement the work of the driving forces equals
the work of the resisting forces. But in the case of the bent lever, the
equilibrium is stable and equality between the motor work and the
resisting work will not occur except for infinitely small displacements,
which a 13th century geometer would not have been able to treat. The
Precursor of Leonardo da Vinci understood how to overcome these
difficulties in a most felicitous manner. One can easily achieve the
condition of equilibrium of any arbitrary bent lever with any arbitrary
weight suspended from its arms by combining the demonstration which
we have just seen with the following principle:

What suffices to raise a given weight to a given height also suffices to raise a weight n
times smaller to a height n times larger.

In the demonstration on the law of equilibrium of a straight lever,
Jordanus had implicitly recognized this principle and he demonstrates it
as just shown. If, he says,36 a bent lever abc (Fig. 25) supports at a and
b unequal weights, it will assume an orientation such that distances ad
and be from the points a and b to the vertical ch through the point of
suspension are in inverse proportion to the weights suspended from
these same points.
These rules can also be stated in the following way: the effect of a

weight suspended from the extremity of an arm of lever inclined in any
arbitrary way is measured by the "moment" of this weight with respect
to the vertical through the point of support.
This way of formulating the problem we have just discussed does not

escape the attention of our author.

If, he says,3? one lifts a load and if one knows the length from the weight to the pivot,
one can determine the weight of the load for any position ... The weight of this load
lifted to point e by the arm be (Fig. 26) will be in the same ratio to the weight lifted to
point f by fb as el is to Jr, or as pb is to xb. ... The weight placed at e at the extremity
of the lever be will have the same effect as if it were placed at point u on the lever bf

In this way, the law which Jordanus had formulated by defining posi-
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tional gravity as decreasing as the arm of the lever approaches the
vertical, is finalized and put into a quantitative form.
Once this concept was understood, it was easy to recognize that a

balance is in a state of stable equilibrium when, by joining the point of
support to the points of the suspensions of the weights, one is able to
form an angle with the summit directed upwards. It is certain that our
author perceived this truth.38 If the same angle is turned downwards the
only state of equilibrium which the balance can achieve is a state of
unstable equilibrium. The Precursor of Leonardo also formulates clearly
this proposition,39 which contradicts an assertion in the Mechanical
Problems. Aristotle, indeed, had claimed that such a state of equilibrium
was indifferent.
The law of the equilibrium of a bent lever, obtained by an ingenious

application of the Principle of Virtual Displacements, and the clearly
understood concept of moment are two discoveries which in themselves
would assure the Precursor of Leonardo a prominent place among the
seminal minds in the field of statics. But they are not the only dis
coveries by which he enriched mechanics. This science also owes to
him the solution to the problem of the inclined plane.
Only a single geometer of Antiquity, Pappus, concerned himself with

this problem and gave an erroneous solution, which we shall discuss in
the following chapter. The mechanicians of the Middle Ages do not
seem to have known his solution and it had no influence whatsoever in
their research.

It is surprising that 10rdanus de Nemore did not consider taking up
the problem of the inclined plane, because in no other problem was the
application of the concept of positional gravity simpler and more
obvious. Circular motion, the only kind considered by this great geo-
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meter, can not be applied as easily to the consideration of positional
gravity.

If Jordanus had thought of treating the problem of the inclined plane
with his principle and if, unsatisfied with merely asserting that the
positional gravity is greater the more a given path measured along the
trajectory projects on the vertical, and if he had also recognized that the
positional gravity is proportional to the length of this vertical taken by
an oblique descent of a given length, he would have immediately
succeeded where Pappus had failed.
Once again, this application seems to fit so naturally the postulates of

the Elementa Jordani super demonstrationem ponderis that one is
surprised to see the author of this treatise let others gain the glory of
carrying it out.
This honor was reserved for the Precursor of Leonardo, who ob

serves first of all40 that the positional gravity of a weight resting on an
inclined plane is the same whatever the position of this weight on the
plane. He then turns to the comparison of values of this positional
gravity on differently inclined planes. Let us translate extensively from
the 13th century manuscript the statement and demonstration of this
essential proposition:41

If two weights descend on two differently inclined planes and if these weights are
directly proportional to the inclination, these two weights will have the same capability
in their descent.
Let ab (Fig. 27) be a horizontal line and bd a vertical line. Let us assume on either

side of bd two oblique lines da and de and that de is of greater relative obliquity. By
proportion of obliqueness I mean the proportion of the inclination, not the proportion
of angles, that is to say, the proportion of the lengths of the lines measured up to their
intersection with the horizontal in such a way that they project equally on the vertical.

d
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Secondly, let e be the weight put on de and h the weight put on da. Let us assume
that e is to h as de is to da. I maintain that in such a situation these two weights will
have equal capability.
Let there be a line dk with the same obliquity as de and let there be on this line a

weight with the same obliquity as de and let there be on this line a weight g equal to e.
Let the weight e descend to I if possible and let it pu1l42 weight h to m: let us

assume gn equal to hm and, consequently, to el. Let us draw a perpendicular to db
through the points g and h. And let ghy be that perpendicular. From point I let us draw
the perpendicular leI to db. Let us then draw the perpendiculars nr and mx to ghy, and
the perpendicular ez to 11.43 The ratio between nr and ng is equal to the ratio between
dy and dg and it also is the same as the one between db and dk.
The ratio between mx and mh is equal to the ratio between db and da. Thus mx is

to nr as dk is to da, that is to say, as the weight g is to the weight h. But since e could
not lift g to n, it also cannot lift h to m. Thus the weights will not move.

The demonstration is copied from the one Jordanus gave of the law
of the equilibrium of the lever. It puts into play the same implicit
postulate. What suffices to lift weight P to height H, can also lift the
weight P/k to the height kH. This postulate not only led Jordanus to a
convincing proof of the law of equilibrium of the straight lever, but
also allowed the Precursor of Leonardo da Vinci to resolve both the
problem of the bent lever and the inclined plane. The fecundity of this
principle becomes obvious from the 13th century on. It will continue to
be productive up to our day. This principle is the true origin of the
Method of Virtual Displacements. Its breadth and power are still
admired by modern physicists. This principle, through the meditations
of Jordanus and the Precursor of Leonardo, will be further developed
in the works of Leonardo, Guido Ubaldo, Galileo, Roberval, Descartes
and Jean Bernoulli and will come to full fruition in the works of
Lagrange and J. Willard Gibbs. But before we are able to accurately
estimate the influence exerted by the Precursor of Leonardo on the
mechanical research of the great painter, it remains for us to analyze a
final treatise coming out of the School of Jordanus.

4. THE TREA TISE ON WEIGHTS ACCORDING TO
MASTER BLASIUS OF PARMA

Biagio Pelacani, otherwise known as Blasius of Parma, came from an
illustrious family of Parma known for the physicians, scientists and
philosophers which it produced, such as Antonio Pelacani, who died in
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1327 in Verona, or Francesco Pelacani, who practiced medicine in
1438 in Parma.
Blasius44 was also a physician, but as with so many other physicians

of his time no area of science was unknown to him. After having
become a Doctor of the University of Pavia in 1374, he taught astrology
in Bologna from 1378 to 1384. He then taught till 1388 in Padua and
then again in Bologna. In 1404, 1406 and 1407 we find him again in
Pavia. He also found time to travel to Paris. From 1408 to 1411 he
resumes his chair at Padua and dies in his native town of Parma on
April 23, 1416. Tiraboschi calls him "filosofo e matematico insigne."45
Indeed, Luca Pacioli cites him as one of the authors he made use of to
write his Summa de arithmetica geometria. Leonardo da Vinci and
Cardan mention his research on statics. Some of his works and, in
particular, his commentaries on Nicolas Oresme's De latitudinibus
formarum were printed46 in the 16th century. His numerous changes
of residence seem to be due to some defect in character. The students
in Padua refused to take his courses because of his rudeness and his
avarice. The Parisians, finally, composed this unflattering maxim about
him: "It must be the devil, unless it is Blasius of Parma - Aut diabolis,
aut Blasius Parmensis."
The manuscript47 which preserved for us the Tractatus de ponderibus

secundum Magistrum Blasium de Parma stems from the pen of Arnold
of Brussels, who finished his copy of it on January 5, 1476 in Naples.
This work is composed of three parts. In it Blasius attempted to

set forth in a coherent form the doctrines of the School of Jordanus.
Blasius only partially achieves the goal he sets for himself in his work.
The Treatise on Weights contains more than one inconsistency.
The third part deals with hydrostatics. It will be of great interest to

us when we study the development of this science. It is obvious that in
this third part Blasius of Parma uses the Treatise on Weights, falsely
attributed to Archimedes, whom he calls A1aminide. This book is,
however, not the only one which he consulted. The description which
he gives of the constant weight aerometer closely resembles the descrip
tion given in a certain Carmen de ponderibus or de ponderibus et
mensuris,48 which the collection of the Poetae latini minores49 falsely
attributed to Priscian. But since we are concerned here with the general
history of statics and not with the narrower history of hydrostatics, let
us not dwell further on this third part but be satisfied with having
briefly referred to it.
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The first two parts of the treatise of Blasius of Parma deal with the
study of statics. The principles of statics discussed there are clearly
connected with the School of Jordanus. However, Blasius does not
seem to have used the original text of Jordanus de Nemore. His work is
a kind of synthesis of the book we called the Peripatetic Commentary
and the treatise by the unknown author whom we have called the
Precursor of Leonardo da Vinci. Other works unknown to us might
also have contributed to parts one and two. The first part of the book
clearly shows a familiarity with the preamble to the Peripatetic Com
mentary. But two theorems among the geometrical propositions demon
strated in this part are precisely those considered by Jordanus to have
been established in the Philotechnes. The preamble to the Peripatetic
Commentary mentions only one of the two theorems. Could it not be
possible that Blasius of Parma had before him this Philotechnes which
has since been lost?
The influence of the Peripetatic Commentary on the mind of Blasius

of Parma is especially evident in the first part of his treatise. The
affinity is obvious from the first page on: "Cum scientia de ponderibus
sit subalternata tam geometriae quam philosophiae naturali,50 says the
13th century author at the beginning of his work, and Blasius begins his
work with these words: "Scientia de ponderibus philosophiae naturali
vere dicitur subalternari."5!

It is pure Peripatetic physics which guides Blasius to the concept of
positional gravity.

A heavy body, he says, situated outside of its natural place, tends to descend by the
chord rather than by the arc, because when it is outside of its natural place where it
must stay for its conservation and perfection, it tends to return to this place as soon as
possible and by the shortest possible path. A heavy body is all the heavier the more
directly it descends towards the center. The obliquity of the curvature of its trajectory
decreases its positional gravity.

In many cases Blasius of Parma diverges from Jordanus and draws
closer to the Peripatetic Commentary by attributing the decrease of
gravity to the curvature and not to the obliquity.
Blasius of Parma deduces a curious corollary from the concept of

positional gravity which we find nowhere in the works of his predeces
sors:

If a balance with equal arms carrying equal weights is moved away from the center of
the earth, these weights seem heavier the higher the balance is placed.
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Indeed, the line along which each of the weights tends to fall forms with
the vertical which passes through the point of support of the beam an
angle all the more acute the further the balance is from the center of the
earth. It is rather amusing to remark that Mersenne and Descartes will
repeat this same argument word for word.
The second part of the treatise by Blasius is essentially formed by

combining the Elementa Jordani with the De canonio, just as are the
Peripatetic Commentary and the Liber Euclidis de ponderibus. Blasius
of Parma attempted to erase any differences existing between the two
works so combined. The first proposition of the De canonio no longer
refers to "books dealing with these matters." It invokes the last theorem
demonstrated by Jordanus. In the propositions borrowed from Jordanus
(who, by the way, is never mentioned), the beam of the balance is
sometimes called a "canonium" by Blasius. However, the joint between
these two heterogeneous texts remains visible, and can scarcely be
hidden behind this semblance of a transition: "Nunc, datis ponderibus
volo notitiam brachiorum indagare (sic!)."52
In the second part of the treatise, it is still the Peripatetic Commen

tary which unfortunately, continues to inspire the demonstrations of
Blasius of Parma.
Let us take, for example, the demonstration which he substitutes for

the argumentation of Jordanus, so rich in consequences, when he
attempts to justify the law of equilibrium of the lever.
He considers a lever (Fig. 28) with one arm bc, four times the length

of the other arm abo He draws the arcs of the circle am and cn, which

a b

m

fig. 28.
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weights placed at a and c would describe in their descent. If these
weights are equal, they cannot be in equilibrium

because the quadrant am is more curved than the quadrant en so that the weight
suspended from the longer arm will be heavier to the same extent that the corrEspond
ing quadrant will be straighter. ... And since the degree of curvature of quadrant en is
in the same ratio to the degree of curvature of quadrant am as be to ab, the positional
gravity of the weight placed at a will be four times that of the positional gravity of an
equal weight suspended at b.

Blasius of Parma, however, does not escape the influence of the
Precursor of Leonardo da Vinci. It is from this author that he un
doubtedly borrowed the following statement and demonstration. He
assumes that equal weights are attached to points a and c (Fig. 29) on
the line abc with b its midpoint. He further assumes that the point of
support is at 0 on the vertical drawn downward from point b. Under
these conditions, he declares that,

it will be difficult to put the weights in equilibrium.

Let us suppose, indeed, that a descends by as little as one wishes.
The arm to which a is attached becomes longer, while the other arm
become shorter; consequently, a becomes increasingly heavier and c
lighter.
When Blasius of Parma borrows his statements from the Precursor

of Leonardo, he unfortunately does not always borrow his demonstra
tions. He considers for instance, a bent lever acb (Fig. 24) with unequal
arms ca and cb but with their extremities a and b being equidistant
from the vertical passing through the point of suspension c. In accord
ance with the Precursor of Leonardo, Blasius asserts that equal weights

g

fig. 29.

a c

fig. 30.



112 CHAPTER VII

placed at a and c will remain in equilibrium. But he substitutes for the
elegant demonstration of his predecessor reflections lacking any recog
nizable trace of proof.
When Blasius of Parma read the Precursor of Leonardo he could not

have helped but notice the theory of the inclined plane. Yet, he
apparently did not grasp the elegance and rigor of that theory. He
seemed only to have been struck by the following fact which appeared
paradoxical to him: A weight sliding over a steeply inclined plane can
calise a heavier weight than itself to rise along a plane less steeply
inclined. Here is, by the way, the curious passage in which he expounds
his thoughts:

... And furthermore this can be demonstrated by virtue of our sixth principle in the
following way: Every heavy body tends to descend by a vertical line rather than an are,
provided that the heavy body can follow its natural tendency. Therefore, let hg be the
vertical (Fig. 30). It follows from the preceding demonstration that the closer a descent
is to the vertical gh, the more this descent participates in natural motion, as long as the
weights considered are always equal. From this follows what we now propose to
demonstrate.
That it is so evident. Let us draw two straight lines cg and ag with the line cg being

less inclined from the vertical than ago The angle cag is more acute than the angle acg.
This angle cag cuts a smaller arc.

But here a question arises in our mind: The weight c could possibly life a heavier
weight than weight a which is equal to c? And consequently, it seems that it must be so.
Then, indeed, since weight c in such a position is heavier than the weight a, its gravity
in this position exceeds that of weight a by a given amount. From this, it follows that
the weight c can lift a weight which is heavier than a itself. Otherwise, the active force
would admit an affirmative term, per maxim.
But this conclusion seems to imply a contradiction: because it is certain that c and a

are equally heavy bodies which necessarily entail the following conclusion: whatever is
heavier than a is also heavier than c. It follows that anything heavier than a, put on the
balance with c, causes the weight a to necessarily descend to the bottom, in conformity
to our third conclusion. I shall say here nothing about this process ... Videant tamen
philosophantes.53

Moreover, Blasius seems to have been of a paradoxical and skeptical
mind. He takes pleasure in pointing out surprising consequences, in
juxtaposing contradictory propositions and in bringing up objections to
the theorems furnished by his predecessors. The passive resistances
which hardly seemed to bother the geometers of the School of lordanus
disturb Blasius of Parma. He observes that these resistances prevent
one from drawing any certain conclusion from the equilibrium of the
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balance about the equality of the weights in their pans. He remarks that
the accuracy of more than one proposition of statics requires that one
neglect resistance on the part of the medium. He even attempts, in a
naive form, to treat a problem of equilibrium by taking into account just
such a resistance.
To be sure, the treatise by Blasius of Parma lacks the forceful

originality so evident in the work due to the unknown author whom we
have called the Precursor of Leonardo. The former work contains
nothing which influenced the development of statics in any positive
way. It only represents a curious monument to the knowledge spread
among the physicists at the beginning of the 15th century. Yet, it is not
without interest as far as our study here is concerned, because as we
shall see, it is one of the channels by which the mechanics of the Middle
Ages reached Leonardo da Vinci and Cardan.



CHAPTER VIII

THE STATICS OF THE MIDDLE AGES AND

LEONARDO DA VINCI

Science knows no spontaneous generation. The most unexpected dis
coveries were never created in toto by the mind which gave birth to
them, but they always issued from a seed first planted in the mind of a
genius. The role of the genius was limited to making the small seed
within him germinate and grow until the tree in full foliage might offer
its flowers and fruits. When we studied the statics of Leonardo da
Vinci, I we admired the most luxuriant and dense growth of new ideas
imaginable. We shall now search for the seeds which gave birth to this
veritable forest of discoveries. Our knowledge of medieval statics will
be of great help to us in our search. It will be possible for us to
disentangle the influences exerted on the mind of the great painter. We
shall see how his views on the topic of statics grew, sometimes by
developing certain propositions formulated by a geometer belonging to
the School of Jordanus, and sometimes by refuting assertions made by a
mechanician from the same School.

1. THE SCHOOL OF JORDANUS, THE TREATISE OF BLASIUS

OF PARMA AND THE STATICS OF LEONARDO DA VINCI

We need not leaf through Leonardo da Vinci's manuscripts for very
long to recognize that Leonardo's attention was caught by the problems
which take into account not only the weights suspended from the beam
of a balance, but also the weight of the beam itself, as well as by the
questions treated by Charistion and Thabit ibn Qurra.

If you want to test a man, he says,2 and see if he has a true understanding of the nature
of weights, ask him at what point one must cut one of the two equal arms of a balance
so that the segment cut off and attached to the extremity of the remainder will precisely
counterbalance the opposite arm. Since this is never possible, if the man points out the
place to you, he is a dismal mathematician.

The premises used by Leonardo da Vinci to treat this sort of
problem are quite analogous to those given in the book published by

114
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TMbit ibn Qurra or more summarily set forth in the last proposition of
Jordanus. Let us quote several examples:

On weight.3 If the two arms of a balance (Fig. 31) are divided equally and if a pound
weight is placed at each of the points a, b, c, d, and e, the question is how many pound
weights will be needed atfto counterbalance these weights?
This is how to do it: a counterbalances a one pound weight placed at f, b two

pounds, C three pounds, d four pounds and e five pounds so that the sum total will
counterbalance fifteen pound weights placed at f

On weight, If a balance (Fig. 32) has a weight which is equal in length to one of its
arms, let it be MN, which weighs six pounds, how many pound-weights placed at F will
counterbalance it? I maintain that three pounds will suffice because if the weight MN
has the same length as one of the arms, you will be able to recognize that it is placed at
the midpoint A of this arm of the balance. Thus, if there are six pounds, six other
pound-weights placed at R will counterbalance them and if you move forward again the
distance R to the extremity of the balance to point F, three pounds will counterbalance
them.

On the center of gravity.4 The center of suspended gravity is on the central line of
the rope which supports it. One can prove this by considering the weights Band D
suspended from the first arm (Fig. 33). If these weights were one single weight, they
would have their center of gravity at the mid-point E between the two lines of suspen
sion. One must admit this, because weight A counterbalances weight B, since both have
equal moment arms from the fulcrum on the balance - and because the second weight
C counterbalances weight D. Thus the distances proportional to the weights are MN
and ME, which are in a ratio of 3 to 2 as are the weights but in an inverse manner; that
is to say, D and B counterbalance weights A and C. Therefore, it is proved that the
point E is the center of gravity for the suspended weights Band D, whether the weights
are considered individually or combined. I believe that I have proved the same thing for
the second figure (Fig. 34).

~1 1 1 1 1 15
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fig. 33. fig. 34.

These quotes, for which we could find numerous other examples,s
show us that Leonardo was familiar with the mechanical science
developed by his predecessors. Will we be able to say where he had
obtained this knowledge and can we cite the manuscripts which he
perused? There is one treatise among the ancient treatises we analyzed,
which we know Leonardo had read and criticized; it is the Treatise on
Weights by Blasius of Parma.
In his disparaging rage, Libri had torn out a number of pages from

Leonardo da Vinci's notebook kept in the Bibliotheque de I'Institut.
After having been sold to Lord Ashburnam, together with a part of the
collection which Libri had amassed by pillaging all the libraries put in
his charge, these sheets returned to France with the collection of which
they were a part. They are kept at the Bibliotheque Nationale. Among
the sheets which France was able to regain thanks to the efforts of Mr.
Leopold Delisle, there are two which were undoubtedly torn out of
Notebook A and which are of inestimable value for us. The drawings
and brief remarks which cover these sheets will show us how the
erroneous principles of Blasius of Parma were transformed by the
genius of Leonardo da Vinci. They will allow us to observe within a
mind of genius the blossoming of some of the major ideas of statics.
On one of these sheets,6 we recognize a figure borrowed from the

treatise of Blasius. Using the same figure which we reproduced above in
Figure 28 he attempts to justify the law of the lever. Leonardo wrote the
following lines next to this drawing:

Blasius maintains that the longer arm of this balance will descend faster than the
shorter one, because its descent describes a straighter quadrant than that of the shorter
one, and because the weights seek to fall by a perpendicular line, it will slow down in
proportion to the curvature of the circle.
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Leonardo then draws a windlass (Fig. 35) and adds:
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The figure mn (sic) destroys this argument because the descent of its weights does not
move in a circle and, nonetheless, the weight of the longer arm m descends.

Leonardo had in mind the treatise of Blasius of Parma and imme
diately recognized the inaccuracy of some of his principles, which he is
going to replace with more precise concepts.
First, he is not satisfied with what Master Blasius of Parma had said

following lordanus in order to explain the decrease in weight of a load
suspended from an arm of a lever, when this arm is displaced from the
horizontal and approaches the vertical. Here is his drawing (Fig. 36)
and the accompanying commentary.7

The object which is the furthest from its point of support is less sustained by it. Since it
is less sustained, it retains more of its freedom and because free weight always
descends, the extremity of the beam of the balance, which is more distant from its point
of support and which is heavier, will necessarily descend on its own faster than any
other part.

This argument is confused. It betrays the misglvmgs in Leonardo's
mind. Then, suddenly, a flash of genius and the great painter traces the
following sweeping lines:

Because the wheel (Fig. 37) has its outer edge equidistant from its center, all the
weights placed on the circumference will have the same force as similar weights placed
where their perpendicular line intersects the line of equality qz.

One of the most important ideas in all of mechanics - the notion of
moment - has just been discovered by Leonardo. At the precise
moment when his mind first discovered this idea which he was to make

fig. 35. fig. 36.
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such extensive use of, he had before him, we know it by his own
testimony, the treatise of Blasius of Parma, and he was trying to refute
the erroneous methods in it. But is this work the only one he read? Did
he not borrow the prevously formulated concept of moment from the
medieval treatise of that unknown author whom we have called the
Precursor of Leonardo? How could we have any doubt after having
read the comments written on the following page of the manuscript?
Leonardo is searching8 for the condition of equilibrium of a bent

lever with unequal arms. He hesitates and gropes at first:

The (balance) (Fig. 38), with unequal .arms, had its extremities tending to reach the
central perpendicular and if it is of uniform thickness,9 one of them approaches more
closely than the other to the extent that it is longer. And if you want to know how much
point c draws closer to d, consider how many times ab goes into ac. If it goes into it
three times, divide ab in thirds, and the third part of this line will be the distance
between c and d.

a b c a
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fig. 38. fig. 39.
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Then the correct rule appears:
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The ratio between line eb (Fig. 39) and line ae will be the same as the ratio between the
weight and the length of en to the weight em. 'o

The problem which concerns Leonardo in this way is the very same
one which his Precursor treated immediately before defining the con
cept of moment. There can be no double that when the notion of the
moment of a force occurred to him, he had before him not only the
treatise of Blasius of Parma, but also the works of his Precursor.
We stated before that the 13th century manuscript which Curtius

Trojanus was to publish later seems to have constantly inspired Leo
nardo da Vinci. The great painter borrows from it several of the ideas
on dynamics and the resistance of fluids to a moving body which
constantly reappear in his notes. In addition to the effects of the treatise
of Blasius of Parma, the influence of this manuscript can be frequently
sensed in that it corrects the errors the former work was inclined to
make.
Leonardo recognized immediately the inaccuracy of what Jordanus,

and following him, Blasius had written on the stability of the balance. A
rectilinear beam with equal arms, supported at its midpoint and carrying
equal weights at its extremities, is not in stable equilibrium, but in
indifferent equilibrium.
The weights A and B (Fig. 40), he writies, II will be stable in any

position.
Elsewhere 12 he states even more formally that a heavy body sus

pended by its center of gravity will remain in indifferent equilibrium:

If the equilibrium of the balance is achieved with the pivot close to the mathematical
point which is the center of gravity of the balance, then the equal arms of the balance
will remain in whatever inclined position it is placed.

n

fig. 40.

h

fig. 41.
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By formulating such a conclusion, Leonardo merely restores to the
center of gravity the property which Pappus had used as the definition
for this quantity. Indeed, this geometer, whose work Leonardo un
doubtedly knew - as we shall see in the following paragraph - called13

the center of gravity of a body a point where, if one were to conceive of
the body as being suspended from this point, it would remain in
equilibrium in any position given to it by an arbitrary rotation.
This conclusion is contrary to the one formulated by Blasius of

Parma and by Jordanus. Thus their reasoning must be wrong at some
point. This is what Leonardo immediately shows by means of a very
thorough analysis.
Jordanus had considered each of two equal weights carried by an

inclined beam and he compared what would happen during the descent
of one with what would happen during the descent of the other. He
concluded that the more elevated weight would descend along an arc
closer to the vertical than the trajectory which the less elevated weight
would take. Form this he concluded that the former weight, not the
latter, would tum the scale. That was poor reasoning. He should have
noticed that any descent of either of the weights causes the other weight
to ascend and he should have compared these two displacements made
correlative to each other by the connection between the weights. Since
these two displacements have an equal obliquity, it should have been
obvious that neither of the two weights would have turned the scale.
In order to make the accuracy of this approach absolutely obvious

and to show the inaccuracy of Jordanus' reasoning, Leonardo devised 14
an extremely ingenious apparatus.
Over a pulley n (Fig. 41) passes a wire carrying two identical spheres

c and d. These spheres touch two inclined planes pm and pg of the
same inclination: But, in addition, one of these spheres - sphere c 
touches a second inclined plane bh of greater inclination. Let us apply
to this apparatus the approach taken by Jordanus. The descent of
weight d will take place along a path closer to the vertical than the
descent of weight c. The first of these two weights must therefore be
heavier than the second and it will descend while causing the other to
ascend.
This result is obviously false and, on the contrary, the two weights c

and d are in equilibrium.

The weights c and d are in equilibrium if they are situated on the two equally inclined
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planes pm and pg, but if the weight c is on the inclined plane bh then weight c
decreases as the inclination of plane bh supporting it increases. Thus the weight t will
never ascend on plane bp and the weight d will never descend on plane pg because the
inclination of those planes is equal, just as the weights are equal which are in balance
on the inclined planes.

It is clear that weight c will not descend further on plane bh and raise
weight d on plane gp, because under these conditions, weight c would
be less heavy than weight d.

Conclusion. Having concluded in the penultimate paragraph that equal weights placed
on equally inclined planes remain in equilibrium and that things equal to each other will
not outdo each other, we further conclude that the balance will not move with equal
weights e and h on equally inclined plances ab and cd (Fig. 42). These inclined planes
are proven equal to each other, because they are parallel. If you were to say that the
arcs ef and gh were not parallel even though their chords are parallel, I would answer
that it is sufficient that such arcs are similar and equal and that the centers of the
weights which move through such arcs are always equidistant from the center of the
balance and that the centers of equal weights are always equidistant from the center of
the balance.

Leonardo successfully replaces the method devised by lordanus for
analyzing the descent of each of the weights in equilibrium with the
Method of Virtual Displacements, which gave to the different weights
simultaneous displacements which are compatible with the constraints
of the device. lordanus had applied this latter method, incidentally, to
the straight lever and the Precursor of Leonardo had applied it to
the bent lever and to the inclined plane. We saw in Chapter II what
beautiful results Leonardo was able to deduce from this method.
Since the argumentation of lordanus was unable to account for the

stability of the balance, another explanation had to be found. Leonardo

b

fig. 42.
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is at first satisfied with 15 the explanation given by Aristotle. A rigid and
heavy beam is surely in stable equilibrium when the axis of suspension
is located above the center of gravity of the beam.

In another passage, however, Leonardo gives a more complete
explanation, valid even when the beam has no weight. The principle of
this explanation is as follows: when the balance is in equilibrium, the
axis of rotation is above the line joining the points where the weights
are suspended. If one displaces the balance from a position of equilib
rium, the weights remain equal but the lever arms do not. The weight
which is higher and which corresponds to the now larger arm of the
lever will turn the scale and bring it back to a position of equilibrium.
Leonardo expresses this as follows: 16

Why the balance with equal weights and equal arms stops in a position of equilibrium.
The angle formed by the junction of the central line of the arm of the balance and the
central line of its appendage is never rectangular. The junction between the real arm of
the balance and its real appendage is never rectangular. The lines of the gravitational
forces are always at a rectangular junction.
The balance 17 with equal arms and equal weights, displaced from the position of

equilibrium, will cause the product of arms and weights to be unequal, whence the
necessary constraints to reestablish to lost equilibrium of the arms and weights. One
can prove this ... because the highest weight is further removed from the center of the
circumvolution than the lower weight and thus having less support, it will descend
easier and raise the opposite weight joined to the extremity of the shorter arm.

It would be unfair not to point out that these arguments are the
development of those brief and somewhat confusing considerations
which the Precursor of Leonardo had set forth in his eighth proposition.
In a certain way, they reciprocate the arguments used by this author
and, after him, Blasius of Parma, to study the case of the unstable
equilibrium of the balance.

2. THE COMPOSITION OF FORCES

Leonardo was not content merely to refute and transform the inaccura
cies contained in the principles of Jordanus and Blasius of Parma. He
seized everything which was sound and productive in these principles,
but in so doing he developed and perfected them. An example is the
concept of positional gravity, or, as we would say today, of the com
ponent of the weight along its trajectory. He formulates this concept in
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his turn, but adds the following thought, which his predecessors, except
for Aristotle, had not pointed out: positional gravity is nothing but one
component of the weight. A second component, normal to the trajectory,
must be added to it.
When one compares the treatise of Blasius of Parma with the

following passage, it is obvious that these ideas on the decomposition of
weights into two rectangular forces were suggested to Leonardo by that
work of Blasius. ls

On the descent of a heavy body. Any natural action happens in the shortest way. That is
why the free descent of a heavy body is towards the center of the earth since that is the
shortest distance between the moving body and the lowest part of the earth.
The uniform heavy body descending obliquely divides its weight into two different

components. One can prove it. Let ab be l9 a mobile body on the oblique line abc. I
maintain that the weight of the heavy body ab divides its weight into two components,
that is to say, along line be and along line nm. Why and by how much greater the
weight is for one component over the other and what the obliquity is which divides the
two weights into equal parts will be started in the book "OnWeights".

This proposition, obviously derived from the principles of Jordanus,
is frequently put to use by Leonardo when he studies the flight of birds.
Such study more than any other seems to have led his genius to
meditate upon the principles of mechanics. But the great architect in
him could immediately sense another, not less important application of
this proposition to the resistance of materials, because the proposition
is, indeed, related to the following problem: If a heavy body is sustained
by two supports forming a right angle, how does the force 20 distribute
itself among the two supports? This question21 occurred to Leonardo
immediately after he had written the passage quoted below:

The heavy body which does not tend towards the center of the earth always has two or
more components of force. One can prove it: Let abed (Fig. 43) be a heavy body which
has no component along the central line be. Thus it exerts weight through the two
supports ba and bd.
Every heavy body exerts weight in the direction of the component where it is

inclined to descend. One can prove it with the demonstration of ba which weighs on d
and bd which weighs on a, because in these positions ba and bd are inclined to
descend.
Conclusion. The heavy body exerting weight at two locations does not have its

weights in a single place.22

Leonardo constantly turns his attention to this question. It prompts
him to devise several solutions to the problem of the composition of
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forces. In Chapter II we saw the kind of solution he seems to have been
satisfied with, erroneous as it was.
But if this erroneous solution seems to have received Leonardo's

final approval, it nonetheless was not the only solution which occurred
to him.
At the end of Chapter II, we quoted a curious solution, unfortunately

only briefly sketched out, to the problem of the inclined plane and we
observed that this solution seemed to imply accurate notions of the law
of the decomposition of forces. A large part of what Leonardo wrote
would remain incomprehensible if the author did not recognize the
accuracy of the following proposition: The moment of the resultant of
two concurrent forces is equal to the sum of the moments of the
components.
We added the following thought to the above remark: had Leonardo

finally come to an understanding of this important theorem? In his
published manuscripts, we have not seen any further evidence of it
other than what we have already cited.
While reviewing Leonardo's notes after Chapter II had gone to press,

our attention was drawn to several sheets of manuscript E of the
Bibliotheque de l'Institut.23 An examination of these sheets fully con
firms our hypothesis, to wit, Leonardo knew and used the following
theorem.

If one considers two concurrent forces and their resultant, the
moment of the resultant with respect to a point taken on one of the two
components is equal to the moment of the other component with
respect to the same point.
In Leonardo's reasoning, the two components are the tensions in the

two ropes; the resultant of the tensions is equal and directly opposed to
the weight supported by the two ropes.
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On many occasions, the great artist applies this theorem which we
have formulated above, to a weight N suspended at the midpoint B of a
rope which has its extremities A and C situated on the same horizontal
line (Fig. 44). From point A, he drops a perpendicular AF to rope CB
or to its extension and another perpendicular AD to the vertical
through B. He declares that the tension of the rope CB and the weight
N would keep in equilibrium a rigid body formed by two potential lever
arms AF and AD, if this body were simply capable of turning around
point A. Since on the other hand, as we have seen in Chapter II,
Leonardo knows how to express the condition of equilibrium of a
circumvolubile, which amounts to the equality of the moments of
weight and tension with respect to point A, he immediately obtains the
theorem quoted above.
Here are several passages24 which seem unquestionably clear.

First: A is the pole of the angular balance AD and AF; their appendages are DN and
Fe.
Second: the more the angle of the rope increases which supports the weight N

(Fig. 45) at its midpoint, the more the potential lever decreases and the more the
counterlever supporting the weight increases.

And after Leonardo has drawn the figure in such a way that AB is four
times the length of AC, he marks with 1 the weight N and puts the
number 4 on the rope FD in order to indicate its tension.
He continues in the following terms, which clearly shows us how his

genius related the study of the equilibrium of concurrent forces to the
law of equilibrium of the bent lever so familiar to him:

This figure (Fig. 46) represents the potential arms ACB of the preceding figure; but
since what is real has weight and not what is potential, I add the arm MN as a
counterweight to arm O.

fig. 44.
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Later, when Roberval gives another demonstration of the same
theorem, he too will deduce it from the condition of equilibrium of a
bent lever. But the artifice he uses will be much more complex and
much less directly accessible than the device conceived of by Leonardo
da Vinci in this passage.
Returning to Figure 45, Leonardo adds:

AFD provides the real support for weight N, and the lines AC and AB indicate the
potential lever and counterlever of weight N respectively; the semi-real appendages CD
and BF are such that one is joined to the potential lever and the other to the potential
counterlever AB.
The counterlever AB can never change no matter how much the angle formed by

the real rope AFD can change. And the lever AC can never have a permanent length
caused by the change of angle AFD, but it will be decreased all the more the angle
AFD increases.

If the two points A and D as well as the weight N remain fixed, the
tension of the rope DF will be inversely proportional to the potential
lever AC:

Wherever a potential lever is in existence,25 a force will always be in existence. The
force will be all the greater the smaller the magnitude of the potential lever.

The rope DFA (Fig. 45) can never be straight, because with the
potential lever AC equal to zero, the tension in the rope DF would be
infinite:

No rope or force whatsoever, placed in a rectilinear situation with the opposite
extremities, can ever26 come to its original position, once any weight has been placed at
its midpoint.
The potentiallever27 is never exhausted by any force.

In no case is the tension of each of the ropes half of the supported
weight, as common sense would suppose. In order to be so, the two
ropes would have to be parallel, and that cannot be:



LEONARDO DA VINCI 127

If the lever AD (Fig. 47) were double2K its counterlever AB, then the chord DE would
carry half of the weight F; that cannot happen if the lever AD is not in a position of
equality (a horizontal position). This can not be unless the appendages which are
concurrent at the suspension point of weight F, are equidistant from each other.

So far we have seen Leonardo da Vinci apply the stated theorem to
a particular case. The verticals drawn through the supported weight
bisected the angle of the two ropes supporting this weight. But he also
knew and used this proposition in the general case as evidenced by the
passage which we will now summarize:29

Leonardo draws two figures and in each one there are two ropes
forming a given angle and supporting a weight with a vertical which
does not bisect this angle at all. In one of these figures (Fig. 48), the
lever DR of the rope FE and the counterlever DS of the weight Q are
equal to each other. Therefore, Leonardo assigns the same number 3 to
the weight Q and to the tension of rope FE.
In the other figure (Fig. 49), the lever AB of the rope FG is three

times the length of the counterlever Be of the weight E. Leonardo also
assigns the number 3 to the weight E, and 1 to the rope FG in order to
indicate the tension. This second figure is accompanied by the following
commentary:

If a rope is deflected by a weight suspended at its midpoint, it is all the easier to draw it
taut the less oblique the deflected segments. Therefore, rope BGF is easier to straighten
than the preceding rope DEF, as evidenced by the magnitudes of the levers and
counterlevers of both segments. Indeed, the lever AB on the pole B is threefold its
counterlever Be. Therefore, the semi-real appendage AF, with a force of one unit,
counters a force of three units in the opposing semi-real appendage CEo And in the
preceding case, 3 units of force counteract 3 units of resistance.

S D
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fig. 47.
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These various quotes are convincing evidence that Leonardo had a
very accurate knowledge of the previously stated theorem. Implicit in
this theorem are all the rules of the composition of concurrent forces.
Specifically, the following corollary can be deduced from this theorem

by means of a very simple demonstration. With respect to a point taken
along the direction of the resultant, the two components have moments
with opposite signs but with equal absolute values. Did Leonardo
recognize this corollary? Only an affirmative answer to this question
seems to render meaningful a fragment 30 which contains a very explicit
drawing (Fig. 50) and a commentary which is, unfortunately, very
obscure. Here is the commentary:

If two ropes with different and contrary inclinations descend from the same point and
attach at the opposite extremities of a beam positioned in an arbitrary inclination, the
center of gravity of that beam is always located on the intracentral line and at the
intersection of the supreme heights from the two ropes supporting the beam.

The "intracentral" line of which Leonardo speaks is the vertical
through the point of suspension A. As far as the "supreme heights" are
concerned, they can only be the lines GF and GD;3! otherwise, why
were they drawn, unless they are the potential levers of the two ropes
ABandAC?
The various fragments we just quoted and commented upon state

very accurate ideas on the composition of concurrent forces. Why then
did Leonardo turn away from these ideas at the precise moment he had
mastered them and immediately embrace an entirely different and a
completely erroneous rule?
On the very same page32 as the fragment we just analyzed, Leonardo

writes:
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For the two ropes of different inclinations joining the point of suspension of the same
heavy body, the ratio between the portion of the weight supported by them is the same
as the ratio between their inclination. Let us prove it: Let us assume two ropes of
different inclinations AD and CD (Fig. 51) which are such that one of them is double
the other, as is the case with the arms of the balance. BC is double the arm BA. The
inclinations of the appendages AD and CD descend from the extremities of these arms.
Thus rope CD bears half of the weight that rope AD bears.

The number 3, which Leonardo puts under the weight E, indicates that
he considers it equal to the sum total of the tensions in the two ropes.
Thus he accepts an erroneous conclusion which he had rejected a few
pages earlier. One can read on the preceding page: 33

The heavy body suspended from the angle of the rope divides the weight for the ropes
in the same ratio as the ratio of the angles between the rope and the central line of the
weight. One can prove it: Let there be an angle BAC in the given rope (Fig. 52) from
which is suspended the heavy body G by rope AG. Let the angle be cut in a position of
equality (the horizontal direction) by the line FB, and then draw the perpendicular DA
to meet at vertex A and to continue in a straight line with rope AG. And the ratio
between length DF and length DB will be the same as between the weight borne by
rope BA and by rope FA.

In the following pages,34 Leonardo constantly applies this incorrect rule
which can also be found in many other passages 35 in his notes.
In the mind of Leonardo, ideas burst forth tumultuously. But occa

sionally the great painter lacked the power to grasp and hold for good
the truth which the impetuous torrent of his thoughts intermingled
pellmell with error. Thus it happened quite often that the truth which
had revealed itself to him for an instant, emerging to the surface from
an undercurrent of incomplete and erroneous views, again submerged to
wait for the future to be brought to light again. This happened with the
concept of positional gravity conceived by Jordanus. The great artist da
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Vinci had succeeded in extracting from it the idea of the resolution of a
force into its components, but this idea, which he was able to perceive
for a moment in its entirely, becomes obfuscated again until the great
painter could only see in it an erroneous law for the composition of
forces. The study of the problem of the inclined plane will offer us
another opportunity to ascertain the hesitations and fluctuations of
Leonardo's thought.

3. THE PROBLEM OF THE INCLINED PLANE

As early as the 13th century, the great and anonymous mechanician
whom we called the Precursor of Leonardo da Vinci had resolved the
problem of the inclined plane with such an elegant and cogent method
that everyone should have immediately accepted it. But it is not enough
for a truth to be discovered nor is it enough for it to be justified by
perfectly clear and accurate argument to rank among the body of
doctrines which constitute universally accepted science. The human
mind must first become accustomed to a new idea before it grasps it,
just as it is not enough for a light to shine in the darkness for us to see
it, but our eyes must become accustomed to the glare of the light.
Sometimes the mind is not prepared to accept a truth even with a

perfectly convincing proof and it can take years or even centuries
before such acceptance occurs. Afterwards, the historian of science is
amazed that mankind took so long to perceive the light. The historian is
astonished at the prolonged blindness and forgets that his own vision
has been strengthened by prolonged familiarity.
There has probably been no other case where a light capable of

blinding the mind and causing it to misunderstand an all too brilliant
truth has been so apparent as in the case of the inclined plane.
As we have seen, the solution to the problem of the inclined plane

was complete as early as the 13th century. But at the beginning of the
15th century, Blasius of Parma has before him the treatise containing
the solution. Does he adopt it? Absolutely not! Instead, he counters it
with a false argument, with an obviously untenable conception of
equilbrium between two weights, and ends by rejecting it as a paradox.
Furthermore, the geometers at the end of the 15th century do not seem
to have accepted as true the solution of the problem of the inclined
plane.
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Regiomontanus, an admirer of the treatise De numeris datis, had
undoubtedly read the Elementa super demonstrationem ponderis and
we can assume that in reading this his attention had been drawn to the
problem of the inclined plane. However, it is equally true that in a letter
of July 4, 1471 addressed to Christian Roeder, a Professor at Erfurt,
Regiomontanus poses the following prlblem: 36

Two weights (Fig. 53) are attached and are positionally equivalent (secundum situm
equipollentia). If they were freed from their common bond, one of them would descend
vertically and the other obliquely. The oblique path of the second weight forms a
twenty degree angle with the horizon while the right angle is ninety degrees. I am asking
what the ratio between these two weights is. I call equivalent weights those which
prevent each other from descending. Let us then consider bc a horizontal line, ab a
straight line directed toward the center of the earth. Let ac and bc form a twenty
degree angle, and the lighter weight d tend to descend along ab and the heavier weight
e tend to descend along ac, if one were to do away with the bond connecting them.

The use of the words secundum situm equipollentia leads us to
conjecture that this problem, in all probability, was suggested by the
principles of Jordanus.
Maximilian Curtze has pointed out that the problems posed in the

letters of Regiomontanus are generally problems to which he actually
had or believed he had the solution. We can thus assume that this
geometer believed he had solved the problem of the inclined plane. In
any case, it is quite certain that he was convinced that his predecessors
had not solved the problem. But then again, he might not have known
of the remarkable treatise composed by the Precursor of Leonardo da
Vinci in the 13th century.
Moreover, geometers must have hesitated to accept as true the

solution given by this author for the apparent weight of a heavy body
placed on an inclined plane, when they knew of the totally different
solution given earlier by Pappus.
Pappus seems to have been the only geometer of Antiquity to have

considered the problem of the inclined plane. This mathematician lived

fig. 53.
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in Alexandria during the 4th century of our era where he wrote his
Collections.37 Although this work has not come down to us in its
entirety, it is, nevertheless, extremely important for the history of
Hellenic science.
The eighth book of these collections carries the following title: It

Contains Various and Delightful Mechanical Problems. Among the
"various and delightful mechanical problems," is the problem of the
inclined plane.38

From the beginning, the solution of Pappus is in absolute contradic
tion with modern statics. Indeed, Pappus assumes that in order to move
a given weight W on a horizontal plane, it is necessary to draw it
parallel to this plane by a given force F. Common sense agrees with
him. Only at a higher level of abstraction and analysis did it become
obvious that the resistance felt by a weight moving on a horizontal
plane was due to friction. Only a higher level of abstraction and analysis
could have led geometers to the following principle, in total opposition
to the one proposed by Pappus: any force, however small, is sufficient
to put into motion any weight on a perfectly smooth, horizontal plane.
In order to pull the same weight W on an inclined plane, one needs a

force P. Pappus attempts to determine the ratio between force P and
force F, and this is the approach he thinks will achieve it: On the
inclined plane BD (Fig. 54) there is a heavy sphere of weight W which
touches the plane at C. Pappus first asks how this sphere could be kept
in equilibrium. He treats this problem of statics like the problem of the
balance. The balance which he considers, would have its point of
support at C and it would carry, suspended at the center G of the
sphere, the weight of this sphere W. Weight H, meant to equilibrate it,

B
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would be suspended at the extremity E of the horizontal radius GE.
Pappus contends (and by so doing, seems to have understood the law
of equilibrium for the bent lever)39 that the value of weight H will be
(GF/EF)W. Since the weight W is being pulled on a horizontal plane by
the force F, a force J = (GF/EF)F would be needed to pull weight W
on the same plane. Thus Pappus contends that the force P, capable of
lifting weight W on the inclined plane, will be the sum total of the
forces F and J, so that we have P/F = GE/EF.
Some geometers at the end of the 16th century, like Guido Ubaldo,

for example, are still satisfied with this very inaccurate solution. It is to
counter his solution that Galileo must make frequent use of all the
resources of his mind.
Leonardo da Vinci certainly knew the two solutions to the problem

of the inclined plane which had been proposed before his time. Indeed,
one of the solutions is in the De ponderibus written by the 13th century
geometer to whom Leonardo owes so much that we have called him his
Precursor. The other solution, proposed by Pappus, obviously inspired
some of Leonardo's thinking in his attempt to solve this problem.
Leonardo considered the determination of the apparent weight of a

heavy body on an inclined plane as far from being resolved, and he
never ceased to be occupied with its solution. We discussed in Chapter
II the types of answers he formulated, some correct, some erroneous.
There are instances in which the influence of the treatise by his

Precursor is quite obvious. Here is, for example, a passage40 where we
recognize the proposition which immediately precedes the solution to
the problem of the inclined plane in this treatise:

If weights A and B (Fig. 55) do not tend toward the center of the earth because they
are separated, their junction nevertheless tends towards the center of the earth, as the
central line MN shows us. This line intersects at the proportion of the weights two and

N

Q

fig. 55.
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four. But the positions of the weights are not proportionally spaced, because given the
same inclinations, one weight could remain elevated and the other lower without their
positions, different in elevation, changing the double ratio between the weights.

There can be no doubt that Leonardo has in mind here his Pre
cursor's treatise about this invariability of the apparent weight at
different points along an inclined plane. Two pages further on, we find
the passage41 in which Leonardo so cleverly criticizes the demonstration
which had led lordanus to an erroneous proposition on the stability of
the balance. In this passage, Leonardo counters the above proposition
with the Method of Virtual Displacements, precisely as his Precursor
had applied it to the problem of the inclined plane. It seems that
circumstances were pressing Leonardo to accept the solution proposed
by the 13th century geometer. However, he does not do so. It is enough
to look at Figure 55 to realize that Leonardo considers the two weights
A and B as proportional to PM and QM respectively, in accordance
with an erroneous rule often adapted by him.
The solution proposed by the Precursor of Leonardo to the problem

of the inclined plane, was based on a postulate which lordanus had
already implicitly introduced in the demonstration of the law of the
lever. This postulate can be formulated in the following way: The motor
force used to lift a weight is equal to the product of the weight times the
distance it has been lifted. When these two elements change in an
inverse ratio, the motor force does not change. Leonardo, more than
anyone else, understood the accuracy and the consequence of this
postulate. No one else was able to formulate it more clearly or to
pursue more persistently its application to different machines. And yet
Leonardo does not seem to have understood to what degree this
principle was suited for determining the apparent weight of a heavy
body placed on an inclined plane. He never made use of it when
considering this problem. When the great painter, obviously guided by
his knowledge of the treatise of his Precursor, undertakes to solve this
problem for the first time, he accepts the accuracy of the solution
devised by the great 13th century mechanician, but he foregoes the
latter's demonstration in favor of an argument which he seems to have
derived from Pappus.42

We can find signs of these first attempts in Notebook A, kept in the
Bibliotheque de l'Institut. This book, folio 5, recto, presents arguments
very similar to those which are used to demonstrate the last proposition
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of the original treatise of Jordanus. It is in this notebook, from which
Libri had torn out pages, that we find Leonardo meditating on the
equilibrium of the lever, criticizing the principles of Blasius and writing
down his first thoughts on the concept of moment, which were ob
viously taken from the treatise of his Precursor. His meditations on the
inclined plane are thus contemporary to those which we just quoted.
In order to determine the velocity at which a body descends on an

inclined plane or to determine the apparent weight of the body placed
on the plane (these are proportional for anyone relying on Peripatetic
dynamics), Leonardo applies, as we have mentioned, an argument in
which there are distant, yet distinct, echoes of the argumentation of
Pappus.
In Chapter II, we quoted a text borrowed from manuscript A where

this argument is propounded. The same manuscript43 has preserved for
us another version which we shall quote here:

On movement and weight, Any heavy body tends to fall to the center and the most
oblique trajectory offers the least resistance. If the weight is at A (Fig. 56), its true and
direct trajectory would be AB, and whatever part of the wheel touches the ground,
locates its pole: and when the larger part of the sphere is to the left of the pole, it falls.
Since SX is the pole, it is evident that ST will weigh more than SR; thus, the portion ST
will fall, and overcome SR and lift it, since ST moves along the incline vigorously. And
if the pole were at N, the more NC enters into BC, the faster the wheel would descend
on the incline, compared to the pole being at X.

However strange this reasoning may be, nevertheless, it led Leonardo,
as we have seen in Chapter II, to an accurate evaluation of the apparent
weight of a heavy body on the surface of an inclined plane.
We can find this evaluation several times in his notes, provided we

acknowledge with him a proportionality between this apparent weight

fig. 56.
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and the velocity of fall. We can read, for instance, passages such as the
following: 44

Weight N will fall faster than weight M (Fig. 57), the more line AB enters into line AC.

We can also read the following statement:45

The body will descend more slowly on line BC (Fig. 58) than on line BD, the longer
line BC is to line BD, everything else of equal weight and shape (... furthermore, it will
descend more slowly, the closer the point of contact is to the center of gravity which is
moving.)

There is a curious remark46 which implies an accurate knowledge of
the law of the inclined plane:

Weight AB and weight CD are in equilibrium on the balance (Fig. 59).

One does not have to belabor this observation to make it yield the
ingenious demonstration which Simon Stevin will provide.
We have seen in Chapter II how Leonardo da Vinci, using the rule

of the inclined plane, had sketched a demonstration which implied an
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accurate knowledge of the law of the composition of forces. It seems,
however, that neither this demonstration, nor the argumentation bor
rowed from Pappus, sufficed to persuade him. Quite often he applies
erroneous approaches to the problem of the inclined plane as well as to
the problem of the law of the composition of forces.
There is no essential notion in Leonardo da Vinci's work on me

chanics which does not derive from the work of the medieval geometers
especially from the treatise of the great mechanician whom we have
called the Precursor of Leonardo. The notion of the moment of a force,
the distinction between states of stable and unstable equilibrium of a
balance, the determination of the component of a force in a given
direction, the evaluation of the motor force as the product of the weight
lifted and the height to which it has been lifted, the theory of the
inclined plane, all of these ideas were discussed in one fashion or
another as early as the 13th century. Some of these ideas were only tiny
seeds or primitive sketches which developed into concepts of prodigious
breadth in the notes of Leonardo. On the other hand, Leonardo did not
fully recognize the value of other ideas which had already achieved
perfection as early as the Middle Ages, such as the theory of the
inclined plane.
Thanks to the meditations of Leonardo da Vinci and the works

produced in the School of Jordanus, we can say that there was hardly
an essential idea in statics which had not been clearly understood and
formulated by the beginning of the 16th century. But much more is still
needed before this science can be definitively established. The truths
which must coalesce within a coherent doctrine in order to constitute a
science are still sparse and scattered and still contain many errors. The
mind's eye is still too accustomed to false proofs to be able to accept
the clarity of those accurate postulates which are necessary to these
truths.
The entire 16th century and the beginning of the 17th century hardly

provide enough time to sort out the true theorems from the inaccurate
propositions, to dissipate the misunderstandings born of a language as
yet imprecise, to eliminate the false proofs, to show the concordance
between apparently contradictory truths and to rediscover, in short,
what had already been invented in the 13th century.



CHAPTER IX

THE SCHOOL OF JORDANUS IN THE 16TH CENTURY

NICOLO TARTAGLIA

1. NICOLO TARTAGLIA OR TARTALEA

In 1546, one of the great geometers of the 16th century, Nicolo
Tartaglia or Tartalea of Brescia, published the most important of his
works under the title of Quesiti et Inventioni diverse. I This curious work
consists of nine books and is written in the form of a dialogue in which
Tartaglia converses with different personalities of his time. We can read
learned dissertations delivered by Tartaglia to such renowned noblemen
as Franc;ois Marie, the Duke of Urbino, Richard Ventuorth, subject of
his Majesty the King of England, Gabriel Tadino di Martinengo, Knight
of Rhodes and Prior of Barletta, and Don Diego Hurtado di Mendozza,
Ambassador of the Empire to the Republic of Venice. We see Tartaglia
conversing with persons of all conditions, such as Brother Beretino,
Master Zuanne di Tonini da Coi, who has a school at Brescia, the
excellent physician and philosopher, Marc Antonio Morosini, and
mathematicians such as Antonio Maria Fior or his Excellency, Hiero
nimo Cardano. Sometimes, Tartaglia's interlocutors are persons of
lesser social stature whose names have not come down to us, such as an
artilleryman, a mortar man or a fusilier.
These conversations touch upon the various branches of pure and,

especially, applied mathematics. Algebra and, in particular, the solution
of equations of the third degree are the main topics of Book Nine. The
other books deal with statics, ballistics, the manufacture and properties
of explosives, the art of cartography by use of the compass, the
principles needed to layout fortifications, and tactics. Since war was
ubiquitous in those times, the geometer almost always had a second
function as a military engineer.
At the end of Book Six of the Quesiti et Inventioni, Tartaglia, trying

to satisfy the curiosity of the Prior of Barletta, tells us what little we
know about his life.
Tartaglia was born in Brescia at the beginning of the 16th century,

but the exact date is unknown. All he knows of his father is his first

138
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name, Michele and the nickname Micheletto Cavallero; Micheletto
because of his small stature and Cavallero from his occupation.
To earn a living, Micheletto carries mail on horseback and delivers

letters to Bergamo, to Cremona and to Verona. When he dies at a
young age, he leaves two sons and a daughter to his widow. The girl is
the youngest of the children and Nicolo, destined to become the great
geometer, is only six years old and younger than his brother.
The family is destitute even before war breaks out with all its

horrors. The French take Brescia and sack the town. In order to escape
death, many inhabitants of Brescia flee from their insecure houses and
seek an inviolable asylum in the cathedral. The asylum is violated, and
raging and blood-thirsty hordes invade the church and pitilessly mas
sacre men, women and children. Nicolo is struck three times by a
soldier's sabre and has his head split open in three places so that his
brain is exposed. Two blows split his palate and both sides of his jaw.
The unfortunate child fell into his mother's arms. These horrible

wounds prevented him from talking and from eating any solid food. He
could barely swallow liquid. Since Nicolo's mother did not know the art
of making ointments and was too poor to pay for a physician, "she was
reduced to caring for me not with medications, but by tenderly cleansing
these awful wounds, as wounded dogs heal themselves by simply licking
and cleansing their wounds." Thanks to this maternal care, Nicolo was
able to recover, but due to his wound he stuttered severely throughout
his life. Hence, the nickname Tartaglia, the Stammerer, which was to
take the place of his unknown patronymic.
Nicolo Tartaglia was about twelve years old when the sack of Brescia

occurred. Before his father's death, that is to say, when he was about
five or six years old, he had gone to school to learn to read, but after
that he did not receive any formal schooling. At the age of fifteen he
wanted to learn to write and went to see a certain Francesco. Master
Francesco agreed to teach him the art of writing for payment. The first
payment was to be made in advance while a second payment was due
after Nicolo had reached the letter k, with a third payment to be made
once Nicolo had come to the end of the alphabet. But when the pupil
had learned to write the letter k, he ran out of money and was forced to
leave school without having learned to write the remaining letters.
Tartaglia found a means to procure a complete alphabet written by
Master Francesco and to teach himself the remaining letters.
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After the lessons with Master Francesco, Tartaglia had no further
instruction. He lived "with only the companionship of Lady Poverty,
surnamed Industry." This was the route of one of the greatest geo
meters of the 16th century, indeed, of all times.
The date of Tartaglia's death is unknown to us, as is the date of his

birth. In 1556, in Venice, Tartaglia began the publication of his general
Trattato di numeri et misure. The third part, published in 1560, begins
with a dedication by the printer and is dated January 1st, 1560. In the
dedication Tartaglia is referred to as if he were already dead.
Book One of the Quesiti et Inventioni diverse is devoted to the study

of the motion of artillery projectiles. It would be necessary to give a
detailed analysis of this work, which was to have a great influence on
the development of mechanics in the 16th century, if we were intending
to write here a history of dynamics. In particular, we would be forced to
identify in this work the different and obvious influences of Leonardo
da Vinci on the geometer of Brescia. However, this first book is not
without interest for the history of statics because we see for the first
time how Tartaglia applies principles developed by Jordanus.
Leonardo da Vinci had written: 2

Any heavy body moving to a position of equality only weighs along the line of its
motion. This is shown by the initial path described by a mortar shell, a motion which is
towards the position of equality.

This idea immediately followed several passages inspired by the princi
ples of Jordanus, known to Leonardo through Master Blasius of Parma
and through the treatise of his Precursor.
Tartaglia developed this idea during conversations he had with the

Duke of Urbino in Venice in 1538, which inspired him to begin the
Quesiti et Inventioni diverse. An artillery piece, aimed horizontally,
propels a projectile which initially follows a horizontal line. As long as
it keeps to this trajectory, its natural weight, directed along a vertical
line, is zero. As the projectile begins to fall, its natural weight begins to
assert itself and increases as its trajectory approaches the vertical.

In support of this theory, derived from the thought of Leonardo da
Vinci, acknowledged by Cardan and professed by Galileo in his youth,
Tartaglia invokes the following principle: 3

It is necessary to note that a heavy body is considered heavier at the point where its
descent is less oblique or less curved, assuming that the body is in the same situation or
at the same point. And the descent of a heavy body is considered all the more oblique,
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the less it projects on the vertical for the same quantity. Stated differently: it takes less
of a quantity of the vertical or of a parallel to the vertical while it describes the same
portion of the circumference on which it revolves.

Tartaglia immediately deduces the following application from this
principle:

Any weight suspended from a beam of a balance displaced from its position of equilib
rium becomes lighter, and lighter to the degree that the distance between the beam and
the horizontal position increases.

The appeal to the principles of lordanus is quite evident here, but it
is only parenthetical. We shall see Tartaglia give dogmatic expression to
these principles.
Book Seven of the Quesiti et Inventioni diverse bears this subtitle:

On the Principles of the Mechanical Problems of Aristotle. The con
versations between Tartaglia and the Ambassador Don Diego Hurtado
di Mendozza aim, above all, at proving as insufficient the Peripatetic
theory on the balance on the grounds that it was formulated without
taking into account the true principles of the Science ofWeights.
Aristotle is certainly right in asserting that the same virtue or force

applied to the extremity of an arm of a lever moves the arm faster, the
longer it is. However, he incorrectly applies this correct principle when
he claims that larger balances are more sensitive than smaller ones. His
error stems from his inability to distinguish clearly the properties of
mathematical, abstract balances, where arms have no thickness nor
weight, from the properties of physical balances, made up of material
and heavy parts. Thus, contrary to the Philosopher's reasoning, the
smaller the balance, the more sensitive.
Tartaglia explains to the ambassador the reasoning by which Aristotle

describes the stability of a balance with its point of suspension above
the beam. However, his desire to criticize the Stagirite does not prevent
him from borrowing his statement and demonstration for the following
erroneous proposition: when the point of suspension is below the beam,
the equilibrium of the balance is indifferent. To this incorrect proposi
tion he adds another and even takes Aristotle to task for having omitted
this erroneous proposition, which he pompously calls:

a beautiful demonstration, even more hidden from our intellect than the two others.

At issue is the following claim: If the center of gravity is located pre-



142 CHAPTER IX

cisely on the upper surface of the beam of the balance, the equilibrium
of the balance is stable.

I assure your Lordship, Tartaglia adds, that before attempting to demonstrate the cause
of such an effect, I must define and demonstrate several terms and principles of the
Science ofWeights.

Thus in Book Eight the main topic of conversation between Tartaglia
and Don Diego Hurtado di Mendozza is the Science ofWeights.
When we hear the Ambassador declare at the start of the conversa

tion that the Science of Weights is not an independent science, but
rather a "subaltern" doctrine, and ask Tartaglia from which disciplines
it derives, and when we hear Tartaglia immediately answer that it
derives, in part, from geometry and in part, from Natural Philosophy,
we immediately think of the preamble to the Peripatetic Commentary
on the treatise of Jordanus. It was through the efforts of Peter Apian
that this preamble had gone to press only a few years earlier. It is
immediately clear that the description of the Science of Weights which
Tartaglia presents to the ambassador of the Empire can be traced to the
School of Jordanus.
However, Tartaglia does not blindly follow one particular author of

that School, but chooses among the different treatises. We have seen,
for example, that he borrows his opening statements from the Peri
patetic Commentary printed and published by Peter Apian, but that is
all he takes from this obscure treatise. Among the given postulates, we
find the following,4 which finds no application in Book Eight of the
Quesiti:

No body is heavy in its own element; like water within water, wine within wine, oil
within oil, air within air, none have gravity.

We recognize here a proposition borrowed from the Treatise on
Weights, falsely attributed to Archimedes, and reproduced in the works
of Blasius of Parma. There are two main sources for most of the
content of Book Eight of the Quesiti. These are the fragment, De
ponderoso et levi attributed to Euclid, and the first book of the treatise
by the Precursor of Leonardo da Vinci.
The modifications made by Tartaglia in his editions of these various

works are minimal. They consist mainly of laudatory comments made
by the ambassador:
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That is a very elegant proposition! This is a problem to my liking. I follow you very
well, you may continue.

The first book of the treatise of the Precursor of Leonardo da Vinci
is not reproduced entirely by Tartaglia. He does not mention at all, for
example, the elegant proposition concerning the bent lever. On the
other hand, he expounds5 in great detail and with great care the theory
of the inclined plane contained in the same work.
When Don Diego Hurtado Mendozza hears this exposition, he quite

justly exclaims:

Now there is a grand speculation to my liking.

Indeed, it would be impossible to ask for a clearer and simpler solution
to the problem of the inclined plane. Yet Tartaglia shamelessly pretends
that such praise refers to him and carefully avoids mentioning the work
which contains this theorem. Not once did Tartaglia mention Jordanus,
to whose School he is intellectually indebted. This gross injustice did
not go unnoticed for long.
A dispute over the proper method for solving the equation of the

third degree as well as a question about the priority of invention of
these methods brought Cardan and Tartaglia into conflict. This quarrel
provoked a fierce mathematical duel between Tartaglia and a supporter
of Cardan, Ludovico Ferrari. This student of the Milanese physician
declared: "che sono creato SUO."6 The controversey began on February
10th, 1547 with a challenge7 issued by Ferrari to Tartaglia. It was
followed by five other challenges, issued on April 1st, June 1st, August
10th, 1547, during the month of October 1547 and on July 14th, 1548.
To each of these provocations. Tartaglia countered with his own
challenges dated February 19th, April 21st, July 9th, August 30th,
1547,June 16th, and July 24th, 1548.

In his very first challenge letter, Ferrari vehemently attacks Tartaglia's
scientific credibility:

Besides having committed a thousand mistakes in the first books of your work, Ferrari
writes,s you have set forth in Book Eight the propositions of Jordanus as if they were
yours and without mentioning their true author; this is flagrant theft. You give demon
strations of your own making, which are inconclusive most of the time. And to your
great shame, you put words in the mouth of his illustrious Lordship Don Diego di
Mendozza which he would not say for all the gold in the world. I am sure of this
because I know to some extent the breadth of his knowledge. This is proof of your
presumptuousness as well as of your ignorance.
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Tartaglia did not respond to this barb in his counterchallenge.
Ferrari attacked again:

Have you already forgotten, he shouts in his second letter,9 your thefts and errors which
I reminded you of in my letter. Outraged by your injustice I told you that you stole the
propositions from Jordanus, and that you took credit for them without mentioning the
real author at all, that you were fool enough to claim that your futile arguments were
conclusive. And finally, to culminate your disgrace, you put on stage and take for your
interlocutor, a very dignified man, the ambassador of the Empire, and have him say that
your demonstrations are true and convincing. Through a strange lethargy and to the
astonishment of any intelligent mind you often assume what must be proven. Finally,
you falsely and unjustly reproach the divine Aristotle.

This time, Nicolo Tartaglia countered10 and asserted that by Ferrari's
own admission the demonstrations he used to prove the propositions of
lordanus were Tartaglia's own.

A demonstration, as you should well know, is a much more important matter, it
requires much more knowledge. it is more scientific and more difficult than a simple
proposition. Any mathematical proposition without a demonstration is considered by
mathematicians to have no value. To compose a proposition is an easy matter and any
fool can formulate a proposition without being able to demonstrate it ...
. . . Thus, it is reasonable for me to consider the Eighth Book on weights as my own

for three sound reasons.
First, the order of my presentation is completely different. It is simpler, more

intelligible and briefer than the order followed by Jordanus.
Secondly, I expanded considerably on the definitions, the postulates and the pro

positions and, if death does not interrupt my project, I plan on developing them even
further in the future.
Thirdly, as you yourself admit, the demonstration came from me and not from

Jordanus. You claim that the modicum I took from Jordanus obliges me to credit him.
In response, I can only answer that if I had quoted him, I would also have been forced
to point out the great obscurity in his propositions as well as in his demonstrations,
something perfectly obvious to any intelligent man. It seemed to me not to be the thing
to do.

Tartaglia's riposte to Ferrari does not incite a high opmlon of his
credibility. It might have duped someone who had formed his judg
ments of lordanus on the basis of the cloudy demonstrations of his
Peripatetic commentator, as published by Peter Apian. It appears
wretched to anyone familiar with the original texts, which are so clear
and so accurate that Tartaglia's arguments are often nothing but simple
paraphrases in comparison. The demonstrations which Tartaglia claims
as his own with such tenacity owe everything to the Liber de ponderosa



NICOLO TARTAGLIA 145

et levi attributed to Euclid, and to the treatise of the Precursor of
Leonardo da Vinci. Tartaglia made belated amends to his anonymous
predecessor.

In his answer to Ferrari he declared that he intended to expand on
the demonstrations of Jordanus, unless death interrupted the project.
This project was never carried out. Tartaglia bequeathed to his friend
Curtius Trojanus, the famous Venetian publisher, a manuscript to
which he had added several figures. This manuscript is the treatise
which we discussed at length as being the work of the Precursor of
Leonardo da Vinci. In accordance with the express wish of the great
geometer, Curtius Trojanus published II this treatise after appending to
it the treatise on specific weights attributed to Archimedes as well as
various values of specific weights calculated by Tartaglia himself.
This edition, following the one by Peter Apian, first introduced 17th

century geometers not to the original work of Jordanus - which was
still unpublished - but to the different commentaries written on the
work of Jordanus. We shall see that these commentaries will give rise to
serious debate.

2. JEROME CARDAN - ALEXANDER PICCOLOMINI

It is impossible to discuss the School of Jordanus during the 16th
century without mentioning the name of Jerome Cardan. Cardan,
undoubtedly, is primarily a disciple of Leonardo da Vinci. The ideas
which he comments upon and develops in his mechanics are those
which we read in the notes of the great painter and which Cardan must
have known. Yet wherever he adds to Leonardo's discoveries, he
borrows from the works of Jordanus and from his School.
We saw in Chapter III the fuss Cardan made about the theory of the

Roman balance by taking Archimedes to task for having ignored this
problem in favor of less useful research. Yet Cardan was careful not to
claim that his own inventiveness played any role in the solution which
he gave to this problem because he had found it explained in detail in
all of the treatises from the School of Jordanus. The latter had found it
in the De canonio of the geometer of the School of Alexandria.
Moreover, we can cite at least one of the works from the School of

Jordanus from which Cardan drew his information. In one of his earlier
works,12 after having given the theory of the Roman balance, Cardan
continues:
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From this we can conclude the truth of the following proposition by Blasius: 13 A fly
could balance the entire earth if it were placed on the arm of a very long lever. But such
figments of an excessive imagination are not useful, because they tend to make science
look rather ridiculous.

He thus proceeds to enumerate several problems related to the Roman
balance. They are precisely those which make up the De canonio, that
is to say, those solved by Blasius of Parma, whose Tractatus de
ponderibus Cardan as well as Leonardo had studied.
We have also seen Cardan examine the reason why a weight sus

pended from the arm of a balance exerts less weight, the more the arm
carrying it approaches the vertical. Although we heard him express very
interesting views on this subject dealing with the Principle of Virtual
Velocities, those views were permeated with propositions established
by Jordanus on the subject of the variation of the positional gravity of a
moving weight on a circle.
Nevertheless, Cardan mentions Jordanus only in order to take him

to task for the inaccurate proposition on the stability of the balance.
Just as Leonardo, and before him his Precursor, Cardan also corrects in
this passage the error committed by Aristotle, who had declared
indifferent what was in reality an unstable state of equilibrium.

And from this, Cardan asserts,14 what the Philosopher says is demonstrated. If the
weights are equal at F and R (Fig. 60), the balance, nonetheless, returns on its own to
the horizontal position, with its pointer along AB. Iordanus neither demonstrates this
nor did he understand it. Similarly, he fails to demonstrate that if the pointer is located
along QB and below the beam, as it happens when the beam is turned over so that you
hold the pointer in your hand with the beam on top, and with a weight which would
have normally been pulled down to R and with another equal weight placed at F or
with the arms of the balance totally empty, why these arms will not only not return to

A
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fig. 60.
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the horizontal position CB, but rather why R will descend toward Q and F will ascend
towards A, as is clear through experiments.

These rather confusing arguments which Cardan develops on the
questions of stability are in essence those which can be found in the
notes of Leonardo da Vinci.
As we saw in Chapter II, Aristotle's mistake was a simple oversight

and slip of the pen, and any careful reader could have straightened it
out. But to correct the Philosopher, however slightly, was not some
thing to be taken lightly.
During the period which we are now studying, i.e., the middle of the

16th century, Aristotle's Mechanical Problems, which had heretofore
attracted very little interest, were finally expounded with great care and
accuracy by the scholar Alexander Piccolomini.15 Piccolomini also
noticed the oversight of Aristotle, but he dared to reproach the Stagirite
only with extreme caution: 16

The text of Aristotle's words is very unsound as far as this question is concerned. It cost
us much effort to establish the true meaning of this text. We made use of a material
instrument to establish by means of our senses what the demonstration had disclosed to
our intellect. Such an experimental verification is very important according to Peri
patetic doctrine.



CHAPTER X

THE REACTION AGAINST JORDANUS

GUIDO UBALDO - G. B. BENEDETTI

1. GUIDO UBALDO, MARQUIS DEL MONTE (1545-1607)

From the very beginnings of statics we were able to discern two types
of minds grappling with the difficulties of this science: the intuitive
versus the deductive mind. We have seen Aristotle, or rather whoever
the author of the Mechanical Problems might be, look deeply into the
principle governing the science of equilibrium, without, however, con
solidating his views into perfect order. On the contrary, we have seen
Archimedes striving not to set forth any proposition which could not be
rigorously deduced from clear and explicitly stated postulates.
Although the impeccably deductive method of the geometer proves

to be of value when we have to arrange and classify acquired truths, it
is not a method which allows us to penetrate directly to the heart of an
obscure problem, and only intuition can cast its nets to the bottom of
unchartered depths and dredge for the truths which nourish science.
But when the net has been brought in and the rich catch lies spread out
on the shore with precious truths intermingled with dangerous errors,
deduction must be used to accomplish minute and patient sifting. It
must choose what is good, cleanse it of any imperfection, carefully
preserve it and cast away anything false and pernicious.
For two thousand years intuition pursued this bountiful search and

could be justly proud of its harvest. Deduction hardly ever came to its
aid. Most of the fundamental truths of statics are the result of that
harvest, but the moment arrived when geometrical rigor began to sort
and sift through them, separating them from the inaccurate ideas
attached to them and displaying them in full light. When confronted
with that confused mass of truth and falsehood, even the best minds
hesitate and are uncertain as to what to keep and what to reject.
The selection entrusted to the deductive method is a necessary

operation, which must be conducted with judgment and prudence. The
most precious conquests achieved by induction are not always precise
and clear because the slag of their origins still clings to them and veils
them. The geometer who is hurried and not sufficiently perspicacious

148
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runs the risk of mistaking one of these truths for a false or wortWess
proposition, rejecting it with contempt, while a more careful and more
enlightened investigation would have caused him to recognize its value.
Too many times the narrow-mindedness of geometers has rejected

fertile truths and impeded the progress of science by branding as false,
propositions which intuition has formulated without having had enough
time to develop the demonstrations. We shall find blatant examples of
this narrow-mindedness when we study the reaction against the School
of Jordanus, led by Guido Ubaldo 1 and Benedetti. This reaction,
undertaken under the banner of deductive rigor, will cast doubt on
almost everything discovered by the intuitive method from Aristotle to
Leonardo da Vinci.
In the middle of the 16th century, the geometrical approach is

particularly glorified. The masterpieces of Greek science are finally
studied in the original. Their rigor and elegance, which were only hinted
at in Arabic versions, now appear in full light. Pappus, and especially
Archimedes, whose works had remained unknown for a long time, are
proof that the deductive method can be applied with as much rigor to
the field ofmechanics as to the demonstrations of geometry.
Assuredly, not everyone was entranced by the subtle analysis applied

by the great geometer of Syracuse to determine various centers of
gravity and centers of roll. Those who were more inclined towards the
practical side of mechanics thought that the results were certainly not
worth the effort.

Archimedes, Cardan wrote,2 discovered two justifications for the center of gravity. The
first one concerns suspended weights and the second one bodies floating on water. In
each one of these apparati, including the one on the screw, one finds the subtlety which
can be expected of such a famous author. However, the rewards are not proportional to
the effort, because no one, from Archimedes to the present day, has been able to
demonstrate what utility derives from these contemplations.

Those, however, who appreciated the beauty of geometry did not at
all share the somewhat vulgar utilitarianism professed by Cardan.
Francesco Maurolico of Messina (1494-1575) and Frederico Com
mandino of Urbino (1509-1575) translated and commented upon the
works of Archimedes. More precisely, they found new applications for
the methods invented by the illustrious Syracusan and used them to
determine centers of gravity unknown till then. The research which had
been undertaken by Maurolico in the above described spirit was
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finished by 1548 but not published until a century after the author's
death.3 Commandino saw his own work published during his lifetime.4

Other geometers fol1owed the same path. Among them were Luca
Valerio,s whom Galileo called6 a "second Archimedes of his time," and
Guido Ubaldo.
Such minds as theirs, used to the detailed requirements of the

Euclidean method, must have been highly scandalized when faced with
the often profound, but almost always murky and confusing intuitions
of the great mechanicians of the 13th century. Had these geometers
been more perspicacious, they would have found a rich and fertile use
for the works left by those mechanicians. They could have undertaken
to separate truth from error, to reject the latter and confirm the former.
But blinded by the all too evident errors contained in these works, the
admirers of Archimedes refused to recognize the very great and valu
able measure of truth contained in medieval statics. They used their
critical facuIties solely to disparage and to reject indiscriminately every
thing produced by the School of Jordanus.
Thus the admiration professed by the mid-16th century mathemati

cians for the finished and polished works of the Greek geometers had
at first a unique consequence. It negated progress made in statics by
abandoning valid truths which would not be reestablished until the
middle of the 17th century, after prolonged and laborious effort. In
particular, this reaction is the work of two equal1y subtle disciples of
Euclid and Archimedes: Guido Ubaldo del Monte and Giovanbattista
Benedetti.
Guido Ubaldo, Marquis del Monte, was a very skillful geometer, who

elegantly used the procedures dear to the masters of Greek geometry.
His treatise On the Screw7 as wel1 as his research on centers of gravity8

are proof of his skill. These efforts are also of interest to mechanics and
we shall have to mention several passages contained in this research
when we study the Principle of Torricel1i in a later chapter (Chapter
XV, Section 8).
His treatise on mechanics,9 which was very popular at the end of the

16th and at the beginning of the 17th century, not only bears the mark
of Archimedes' influence, but Guido Ubaldo also knows Pappus, whom
he quotes in his Commentary to the books of Archimedes. And
through Pappus he knows the Mechanics of Hero of Alexandria. A
summary of the latter can be found at the end of the Mathematical
Collections. Ubaldo undoubtedly borrows from this summary the
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enumeration of simple machines with which his own study deals, an
enumeration which will be preserved religiously up to the present day.
The work accomplished by Guido Ubaldo in mechanics contributes

less to his fame than his work in geometry. No work better illustrates
how an exaggerated regard for deductive rigor can blind the mind and
cause it to ignore the most precious truths. Because of his punctilious
mind, Guido Ubaldo takes trifles for grave errors. He severely takes his
predecessors to task for always having treated the verticals extending
from different points on a lever or a balance as lines parallel to each
other. However, he is himself guilty of inaccuracies when he attempted
to account for their mutual inclinations and in most cases he, too,
ignores these inclinations.
His severity is primarily directed against the School of Jordanus. At

the very beginning of his work, he proposes to review the theory of the
balance,

Because, he says,'O it is astonishing to see how much trivia Jordanus accumulated
regarding this question, although he enjoys great authority among modern geometers as
well as among other authors intent on discussing this problem.

Jordanus erroneously stated that a lever with equal arms and with
equal weights suspended at their extremities is in stable equilibrium.
Guido Ubaldo correctly states that such an equilibrium is indifferent.

But, he adds, I J certain geometers profess a different opinion concerning this assertion
and raise several objections. It will, therefore, be necessary to stay on this subject for a
while and I shall attempt to defend, as much as I am able, not only my own opinion, but
the opinion of Archimedes, which seems to coincide with my own.

Facing this statement is a note bearing the following entry:

Jordanus, De ponderibus, Hieronymus Cardanus, De subtiiitate, Nicolaus Tartalea, De
quaesitis ac inventionibus.

The proposition impugned by Guido Ubaldo is certainly incorrect,
but it is, nonetheless, merely an illegitimate application of a very correct
and fertile lemma: namely, when the arm of a lever carrying a load at its
extremity rotates about its point of support, the positional gravity of the
load is smaller, the closer the lever is to the vertical. Guido Ubaldo
does not dare question this fundamental proposition, but he assembles
the criticism of his predecessors against the demonstration.
Some of this criticism is quite ridiculous, such as the reproach for
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not having taken into account the mutual inclination of the verticals in
this problem. Other objections, although apparently better founded,
would not have occupied for long a more perspicacious and less
carping mind.
When Jordanus and his successors attempt to determine the ratio

between the true gravity of a weight and its positional gravity, they
assume that the weight descends along a given arc and compare the
length of the arc to its projected length on the vertical. However, the
ratio between these two lengths changes depending on the length of the
arc.

If this argument were correct, the same weight in the same position would be heavier or
lighter depending on how one considers its behavior in the same position: this is
impossible.

The contradiction is only apparent. In order to know the ratio
between the true gravity and the positional gravity, one needs to take to
the limit the ratio between the arc traversed and its projection on the
vertical. Jordanus had pointed this out as clearly as one could expect of
a 13th-century author. The Precursor of Leonardo da Vinci had more
than pointed it out in a passage reproduced in the Quesiti of Tartaglia.
Instead of rejecting such a consideration, Guido Ubaldo, because of his
experience in the computation of limits from his studies of Archimedes,
should have been the very person to clarify this matter once and for all.
Quite the contrary, he resolutely rejects any determination of the

positional gravity deduced from the inclination of the trajectory:

The human mind will not rest until a cause other than this one is found to explain the
variations in this gravity. Indeed, it seems to be more of a designation than a true
explanation. This variation derives from a cause other than the one deduced for a
motion more or less straight or oblique.

What then is this cause which escaped the School of Jordanus? Let
us assume at D (Fig. 61) a weight moving on a circumference in a
vertical plane. If the weight were free and without any hindrance, it
would fall straight down along the vertical DS.12 It is prevented from
doing so by the radius CD which forces it to move along the circum
ference:

... which pushed it, in a certain sense, and which, by pushing it, partially supports the
weight. Thus the radii CD and CL offer resistance to the fall of the weight but not
equally.
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Each one resists more, the more acute the angle it forms with the
vertical. At F, where the radius coincides with the vertical, this resist
ance entirely cancels the gravity of the moving body.

The radius CD offers less resistance to the weight placed at D than radius CL to the
weight placed at L. Thus radius CD supports less than CL. The weight is freer at D
than at L ... That is why it is heavier at D than at L ... Thus the same weight can be
heavier or lighter depending on the conditions of its position. this is not because it
actually acquires a new gravity or loses its original gravity because of its position - it
always keeps the same gravity at any point - but because it weighs more or less on the
circumference.

These considerations assuredly contain a nucleus of truth. When a
weight is moving on a given trajectory, it is fitting to consider not only
the component of the weight tangent to this trajectory, but also the
component of the weight normal to the trajectory which the moving
body is constrained to follow. This idea had already occurred under
various guises to Leonardo da Vinci, and Guido Ubaldo merely recon
siders it.
However, once this is admitted, we cannot see at all why it would be

more logical and more natural to determine the normal component
rather than the tangential component. We cannot see how the con
siderations set forth by Guido Ubaldo furnish him with the quantitative
determination of the normal component. Finally, we cannot see how,
without knowing any law on the composition of forces, our geometer
can deduce the tangential component from a knowledge of the normal
component.
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We can judge by the following passage how vague and erroneous
Guido Ubaldo's views on the composition of forces remain:

If the arm of a balance OD (Fig. 62) is longer than the arm OC, a weight placed on 0
will be heavier if it is suspended from the extremity of the first rather than the second
arm, because the descent of the weight will be closer to the natural movement along the
circumference OH than along the circumference OG.13 If the center of the balance is
placed at D, the weight will be freer and less bound than with the center placed at C.
Therefore, it will be heavier.

Father Mersenne, who reproduced 14 this demonstration in an appendix
to Galileo's Mechanics adds:

Aristotle believes that the reason for this must be taken from the fact that the center
impedes those weights closer to it more than the more distant to the extent that it
constrains them more and imparts to them as much as it can of its own immobility ....
We can easily apply this to the proximity or the distance of created beings from divine
perfection, which renders reasonable beings all the more fixed and immobile in its grace
and in the firm resolution to goodness, the closer they approach it.

Father Mersenne quite rightly compares Guido Ubaldo's ideas with
those of Aristotle. The argumentation which we noted is inspired by
certain passages, although perhaps not the best, from the Mechanical
Problems. The Marquis del Monte was influenced either by the Peri
patetic commentator on Jordanus or by Tartaglia's Quesiti. However,
the maliciousness of his criticism of the School of Jordanus did not
prevent him from adopting the gravest mistakes of that School.
Moreover, if certain arguments concerning positional gravity still

contained faint traces of the great truth discovered by Jordanus, these
traces soon vanished completely in the thoughts of Guido Ubaldo, so
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obsessed was he with false rigor. This geometer even fails to recognize 15

the notion of the moment of a weight with respect to the point of
support of a lever:

If a force, he says, supports by means of a lever a weight which has its center of gravity
on the lever, the force necessary to support the weight will remain the same, in
whatever position the lever maintains the weight.
I maintain that the same force, applied at either K or B or G (Fig. 63), will always

support the same weight because the weight, with respect to the lever AB, behaves as if
it were suspended at E and, with respect to the lever GF, as if it were suspended at L
and finally, with respect to the lever HK, as if it were suspended at M.

When the center of gravity of the weight attached to the lever is not
on the lever, the magnitude of the force depends on the inclination of
the lever and follows a line which changes direction depending on
whether the center of gravity is above or below the lever. The weight
attached to the lever always behaves as if it were suspended from this
lever at the point upon which its center of gravity will project.

If by "force" we understand a weight suspended at the extremity of a
lever, Guido Ubaldo's proposition is correct, because the inclination of
the lever diminishes in the same proportion as the moment of this
weight and the moment of the lifted weight. Ubaldo's proposition is
incorrect, however, if the force always remains normal to the arm of
the lever, as happens when the hand of a laborer exerts the force.
Everything in Guido Ubaldo's work seems to indicate that force is
understood by this geometer in this latter sense.

If, indeed, the word 'force' had for him the same meaning as the
words 'suspended weight,' we would be unable to explain the following:
first of all, how he distinguishes the lever from the balance, the latter
being a rectilinear and weightless beam with a weight suspended at each
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of the extremities. And secondly, we could not explain why, after
having set forth in Archimedean fashion the theory for this latter
device, he believes that he should at this point establish the laws for the
first of these devices. Thirdly, why, in the deduction which extends the
laws of the balance to a horizontal lever, he takes care to specify that he
is substituting for the force a suspended weight of the same magnitude
which under these conditions is certainly equivalent to it. And finally,
why the figures which always show a suspended weight when Guido
Ubaldo reasons about the effects of such a weight, only indicate the
point of application of the force, while the deduction uses this very
same notion.
Thus it seems that in the mechanics of Guido Ubaldo, just as later in

the works of Descartes, the force applied to the lever is perpendicular
to the length of the arm of the lever. It is precisely there that his theory
of the lever is seriously flawed. 16

What a strange remark to make about an author who professed this
theory but was considered and is still considered by a great many
mechanicians as the discoverer of the concept of moment. He owes this
usurped reputation to a passage in Lagrange's Mecanique analytique.
Here is that passage: 17

... this is what is called today the principle of moment, by which is meant the product
of a force multiplied by the arm of the lever upon which it acts ... this general principle
suffices to solve all of the problems of statics. During the first stages of the development
of the theory of simple machines after Archimedes, the study of the windlass brought
this principle into prominence, as one can see in the work of Guido Ubaldo entitled the
Mecanicorum tiber, which was published at Pesaro in 1577. However, this author did
not know how to apply it to the inclined plane nor to the other machines which depend
on it, like the wedge and the screw, about which he gave us only a rather inaccurate
theory.

Nothing that Guido Ubaldo says about the windlass justifies this
view of Lagrange. Yet, there is another passage lS by Lagrange which is
not less favorable to Guido Ubaldo and hardly any better founded:

One only needs to examine the conditions of equilibrium in a lever and in other
machines to see how easy it is to recognize this law that the weight and the force are
always in inverse ratio to the spaces which both traverse in the same time. However, the
Ancients did not seem to know this. Guido Ubaldo was perhaps the first to recognize
this in the lever or in the block and tackle. Galileo recognized this later.

In fact, the law which Lagrange discusses here had been known since
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Aristotle. It was frequently used by the geometers of the School of
Alexandria, as well as by the mechanicians of the Middle Ages. Jor
danus had shown how it had to be modified in order to be applicable to
the straight lever. The Precursor of Leonardo da Vinci had deduced
from it the theories of the bent lever and the inclined plane. Leonardo
da Vinci and Cardan applied it to the block and tackle, to the screw
and to a whole range of machines. It would have been quite surprising if
Guido Ubaldo had not known of this law.
Indeed, Guido Ubaldo does know this law, although not in the final

form which Jordanus and the Precursor of Leonardo da Vinci had
given it, but rather in the form given in Aristotle's Mechanical Prob
lems. Guido Ubaldo is so cautious that he does not see in it the
principle from which all statics can be deduced. He relegates it to the
status of an observation or of a corollary.19
For example, Guido Ubaldo establishes the law of equilibrium of the

lever by a strategem borrowed from Archimedes. Once this law is
established, he deduces from it that the force capable of supporting a
weight is to this weight as the paths described by the extremities are to
each other when the lever is rotated. He adds the following corollary:

It is evident by this that the ratio of the path of the moving force to the path of the
weight being moved is larger than the ratio of the weight to the force. Indeed, the path
of the force is to the path of weight as the weight is to the force which supports it, but
the force capable of supporting the weight is less than the force capable of moving it.

The weight always acts along the vertical, while for Guido Ubaldo the
force is probably normal to the lever. Although the ratio between these
two forces capable of maintaining equilibrium changes according to the
inclination of the lever, Guido Ubaldo seems to deny this change, as we
have seen. On the other hand, a sound understanding of the principles
of mechanics would require the path described by the point of applica
tion of the force to be compared not with the path described by the
point of application of the weight, but with the projection of this path
onto the vertical. One can see how vague and uncertain these ideas are
concerning the ratio between the work of the driving forces and the
work of the resisting forces which exist in every machine.
The difficulties involved in applying this law to the lever no longer

exist when one is dealing with pulleys or the block and tackle, which lift
a weight vertically with the help of a force always pulling in the same
direction. There the force is to the weight which it balances as the path
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traversed by the weight is to the path described by the force. Guido
Ubaldo can thus apply correctly the law in question20 to these ma
chines, but yet, as was the case for the lever, he, again, does not use this
law as the principle behind their theory. He reduces the study of each
arrangement of pulleys to the analysis of a given combination of levers.
Then once the condition of equilibrium for a block and tackle has been
established, he deduces from this condition the observation that the
same ratio which exists between the path traversed by the weight is also
the same for the weight and the force supporting it. This corollary
routinely reappears after each study of various types of block and
tackle. Since, according to Guido Ubaldo, a greater force is needed to
move a weight than to balance it, he adds: 21

It is evident by the foregoing that the ratio between the path of the moving force and
the path of the weight is always greater than the ratio between the weight and the
motive force.

In Peripatetic mechanics, it was natural to emphasize the ratio of the
velocities between the motor force and the weight being moved. Guido
Ubaldo is particularly interested in the ratio of the paths which these
two forces traverse in the same time. Although the two ratios are equal
to each other, a different interpretation occurs, which deserves to be
pointed out because Guido Ubaldo's statics certainly influenced Des
cartes, who proclaims so clearly the necessity for considering not the
virtual velocities but the virtual displacement.
This does not mean that in his study of machines Guido Ubaldo

completely fails to consider the velocities or the duration of transport
as Descartes will require. But he attaches little importance to this
consideration. Accordingly, it is not until the very end of his study on
pulleys and the block and tackle, that he states the following proposi
tion: 22

The easier it is to move a weight, the more time one needs to move it and the harder it
is to move the weight, the faster it can be moved.

The theory of the windlass 23 is constructed in the same fashion as
the theory of the combination of pulleys. It ends with the same com
parisons between the paths described by the weight being moved, as
well as between the ease with which a weight can be moved and the
time it takes to move it. In this case, too, these comparisons are given as
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corollaries to the condition of equilibrium of a windlass and not as
principles from which this condition could be deduced.
After having hastily reduced24 the analysis of the wedge to the

theory of the lever, Guido Ubaldo reduces 25 the analysis of the screw to
a combination of lever and inclined plane. This reduction is done
correctly, but the Marquis del Monte is unable to deduce from it a
satisfactory theory of the screw because he clings to the law of the
inclined plane as formulated by Pappus. Indeed, one of the worst
consequences of the excessive reaction against 13th century statics,
caused by an uncritical admiration for the Ancients, was the return to
the theory of Pappus. This theory was essentially contrary to the princi
ples of the School of Jordanus because it attributes a positional gravity
to a mobile body on a horizontal plane, even though its trajectory does
not project on the vertical at all. The doctrine of Pappus found so much
favor with geometers that Galileo found it difficult to discredit this
doctrine and to establish that the slightest force is sufficient to move a
body on a perfectly polished, horizontal plane. The law of the inclined
plane as formulated by Pappus can only give an erroneous theory of the
screw. That is why Guido Ubaldo states this corollary without any
demonstration:

It is evident by the foregoing that the more numerous the turns of a helix, and the
longer the cranks or the arms of the windlass, the easier but slower it is to move a
weight.

The mechanics of Guido Ubaldo is a work containing errors and it is
always mediocre because it often is outdated by the ideas published in
the works of Tartaglia and Cardan. We had to study it, nevertheless,
because it was very popular towards the end of the 16th and the
beginning of the 17th century. We shall have to note often the influence
which it had on the works of that time.

2. GIOVANBATTISTA BENEDETTI (1530-1590)

Giovanbattista Benedetti was not known for his modesty. He had great
confidence in the originality of his own genius. At the beginning of one
of his works 26 he addresses the reader by saying:

In these books 1 have not published anything which 1 remember having read or heard. If
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I occasionally dealt with certain matters which did not originate with me, I either
modified the demonstrations in some way or I stated them more clearly. And if, by
chance, someone has published anything remotely similar to my work, I either didn't
see those publications or I forgot having read them.

Of all the discoveries he prides himself on, he ranks first his research
on mechanics as that which will assure the immortality of his name: 27

Atque vel hoc uno modo me inter humanos vixisse testatum reliquerim.2H

This pride was, moreover, not totally unfounded, for Benedetti had
scarcely reached the age of twenty-three when he furnished proof of his
originality.

It was commonly accepted that given two bodies of the same
material, but with one having twice the volume of the other, the first
body would fall twice as fast as the latter. The proposition was an
axiom of Peripatetic physics and was the main subject of the fragment
De ponderoso et levi attributed to Euclid. Jordanus had used it as the
first theorem of his treatise De ponderibus. Various commentators
induding the Peripatetic commentator and the Precursor of Leonardo
da Vinci had all scrupulously retained this theorem. Leonardo da Vinci
had formulated it on several occasions and in the Quesiti et Inventioni
diverse Tartaglia had reproduced precisely the description which the
De ponderoso et levi contained.

It is the validity of this universally accepted proposition, which
Benedetti in his very first work29 dared to dispute. In the dedication of
his work to Gabriel de Guzman,30 he showed by a very simple reasoning
that bodies of the same substance but of different volume must fall with
the same velocity. This is the reasoning, later resumed in his Diversarum
speculationum,31 which Galileo was to reproduce in his earliest research.
The proposition to which Benedetti was led by this reasoning was also
adopted by Cardan,32 who in turn justified it with peculiar reasons.
Plagiarized by Jean Taisnier,33 the ideas which Benedetti had developed
in his first work came to the attention of Stevin, who, in collaboration
with John Grotius, submitted them to the test of experiment.34 He
found them to be in no better accord with the truth than the principles
taught by Aristotle.
Benedetti could with good reason insist on the originality of this idea

and his dedication to Gabriel de Guzman ended with these words:
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This truth did not originate in the mind of Aristotle nor did it originate in the mind of
any of his commentators whose work is known to me, nor from anyone with whom I
have conversed and who professes the opinion of that philosopher.

His new doctrine was in direct opposition to all ofPeripatetic mechanics.
We should not be surprised to see him reject the theory of the

balance founded on the Principle of Virtual Velocities. The laws of this
instrument:

... do not depend 35 at all on the swiftness or the slowness of the motion.

But Benedetti is not content to merely reject Aristotle's statics. He
condemns with equal severity the doctrine of the School of Jordanus.
Two chapters36 of his work are devoted to examining:

... various errors professed by Tartaglia on the weight of bodies and their motions,
some of which were borrowed from an ancient author called 10rdanus.

Benedetti does not simply reject the erroneous conclusions of
Jordanus repeated by Tartaglia. Not a single proposition formulated by
these authors finds any favor in his eyes.
Jordanus, for example, very accurately demonstrated how the posi

tional gravity of a weight moving along the circumference of a circle in
a vertical plane diminishes as the weight is displaced from the horizontal
diameter.

What he writes is true, Benedetti declares, but the cause which first 10rdanus and then
Tartaglia ascribe to this effect has no basis in nature.
The eighth proposition of Tartaglia, which is the sixth question of lordanus, is much

better demonstrated by Archimedes because neither lordanus nor Tartaglia have
proven its correctness.

The reasoning which Benedetti treats with such disdain is none other
than the elegant and fertile demonstration by which Jordanus de
Nemore justified the law of the equilibrium of the lever.
The Precursor of Leonardo demonstrated that the positional gravity

of a weight placed on an inclined plane was the same at every point.
This proposition could rightly be considered obvious. But according to
Benedetti, "it is false for two reasons."
This proposition is, moreover, in the work of the Precursor of

Leonardo da Vinci only a kind of lemma which he uses to prepare his
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elegant solution to the problem of the inclined plane. However, it is far
from meeting with our punctilious geometer's approval:

The fifteenth question of Tartaglia is the eleventh question of Jordanus, whose work
was retrieved from the darkenss of oblivion and published by Trojanus, the Venetian
editor. It is absolutely worthless.

What then remains of statics for Benedetti after he has rejected with
such severity everything which depends on the idea of virtual displace
ments? All that is left is the rule of the lever and the notion of the
moment of a weight with respect to a point.

The weight suspended at the extremity of a beam of a balance, he maintains,37 has a
gravity more or less large depending on the position it occupies ... The weight can not
descend on the vertical FuM (Fig. 64) unless the arm FB becomes shorter. It is clear
that the weight F exerts a given effort on the center B by means of arm FB ... Now we
have to presuppose that the weight carried by the arm exerts at the center B an effort
which is all the greater the closer its vertical (FuM) is to the center ... , so that the
closer the weight F is to A, the more it will lie on the center and the lighter it will be.

Despite Benedetti's pretensions to absolute originality, we can easily
recognize the preamble from which we just quoted several sentences
and which is borrowed from Guido Ubaldo. We also recognize what
follows,38 because the Precursor of Leonardo could claim it for himself:

The ratio between the gravity of a weight placed at C and the gravity of the same weight
placed at F is equal to the ratio between the length of the arm BC and the segment Bu.
. . . It is all the same whether the weight F, equal to C, is at F at the extremity of the
arm SF, or at u at the extremity of the horizontal arm Bu. This will be evident to us if

A
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fig. 64.



GUIDO UBALDO-BENEDETTI 163

we imagine a vertical rope Fu with the extremity u to which is suspended the weight
which was at F. It is clear that the weight suspended in such a way will produce the
same effect as if it were at F.

This notion of the moment of a weight with respect to a point is at
once generalized by Benedetti to apply to any arbitrary force:

If one wishes to compare the magnitudes by which one can measure the effects of weight
or motor forces, one can determine each one of them by means of a perpendicular
dropped from the midline of the lever in the direction of the force.

This statement too is not a newly discovered law at all because it can
be found almost word for word in the notes of Leonardo da Vinci.4o

And the figures drawn by the great painter closely resemble those
which Benedetti uses to support his demonstrations.
Moreover, from this point on, there is nothing in the statics of Bene

detti which does not very faithfully reproduce the ideas of Leonardo da
Vinci. Thus our geometer undertakes to show:

... how all the properties of balances and levers depend on the principles mentioned
below.... We could imagine, he adds, that weights are suspended at points u and n
(Fig. 65), although they are attached at s and x in reality, because point u is related in
such a way to point s and point n to point x so that any force that moves one, moves
the other.41

Had not Leonardo already taken this rule which justifies these con
siderations from the manuscript of his Precursor? 42
The theory of the equilibrium of the bent lever leads Benedetti to

state 43 very accurately the theory of the stability of the balance:
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Let AB (Fig. 66) be the balance in its horizontal position. Let E be the point of
suspension above the balance. Let us drop the extremity A to F so that the balance is
now in position FH. Its midpoint will be at G on the same side of the vertical VZ as
point B. VZ will cut the arm FG at point D. DH will thus be longer than FD. Let us
suppose, as is correct, that it is all the same whether the balance is supported at either
point E or point D when placed in position FH. It follows that the weight suspended at
H will exceed in gravity the weight suspended at F by the same ratio that DH exceeds
DF.44 Even if one were to suppose that the material beam FH had no gravity at all, the
excess force of the weight placed at H - a force which is much greater than that of the
weight at F - would be sufficent to explain why the balance returns to the horizontal
position.

Benedetti is correct in considering this theory on the stability of the
balance as an improvement over the one proposed by Aristotle, but he
did not invent it. Leonardo formulated it 45 quite clearly and it had not
escaped Cardan's attention.46

These passages are far from being the only ones in which the influ
ence of Leonardo da Vinci on Benedetti is manifest. Benedetti does not
treat the block and tackle by utilizing the Principle of Virtual Displace
ments. Just as Guido Ubaldo had done, he compares these devices to
combinations of levers.47 However, while the Marquis del Monte works
from figures which reproduce configurations usually used for pulley
blocks, Benedetti, on the other hand, uses very simplified diagrams. It is
enough to glance at these diagrams to recognize the drawings devised
by Leonardo da Vinci.48 In Figure 67, drawings A and B are those of
Leonardo, drawings C and D those of Benedetti.
Benedetti even reproduces Leonardo's errors. One whole chapter,49

for example, does nothing but repeat the erroneous law of the com
position of forces which had caused the great painter to hesitate after
having seen clearly the actual law.
In this chapter, Benedetti considers a weight n (Fig. 68) supported

by two members no and nu. If these two supports have the same
inclination, it is clear from common sense that the capability of the
weight n will divide into two equal parts, with one half resting at 0 and
the other half at u along the two lines no and nu. In this general case,

It is clear that if the vertical ni is further away from the point of support u than from
the point of support 0, a greater portion of the weight will be supported at 0 than at u.
The ratio between the portion of the weight n exerting pressure at 0 and the portion of
weight n exerting pressure at u, will not be the same as the ratio between the angles uni
and oni, but the same as the ratio between the lengths ui and oi.
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Benedetti thus piously preserves for us certain false ideas of Leonardo
da Vinci. What remains in the statics of Guido Ubaldo and Benedetti of
all the fertile ideas which inspired the great genius and of all the
splended discoveries made by his Precursor? Hardly anything, and
what is more, all of these truths will have to be rediscovered. That
will be the task of Galileo, Simon Stevin, Roberval, Descartes and
Torricelli.



CHAPTER XI

GALILEO GALILEI (1564-1642)

For a long time Galileo was a poor, luckless wight. In 1589, at the age
of twenty-five, he was in dire straits. Then his friends procured for him
the chair in mathematics at the University of Pisa with an annual salary
of sixty florins. With such meager resources he had to provide for a
large family because he had become its sole support after the death of
his father. Furthermore, after three years, he lost this meager income
as well by having offended Giovanni de Medici's self-esteem as an
inventor.1 During the summer of 1592, Galileo went to Venice. He
left Florence with a trunk weighing less than a hundred pounds, yet
containing everything he owned.2

Because of this abject penury, it was difficult for Galileo to find a
publisher for his works. When he had his first book published in 1606
on the subject of the compass of proportion,3 he had already been
teaching for seventeen years and had made numerous discoveries.
For lack of a publisher, he copied or had copies made from his

works, which he sent to friends in and outside of Italy. He retained this
habit for the rest of his life. When in 1636, for example, he had finished
his famous Discorsi,4 he did not print them, but had them circulate as
manuscript copies throughout the scientific community of Europe.
Occasionally, those who received a copy from the great geometer did

not wish to keep to themselves a discovery which they admired so
much and thus gave Galileo's manuscript to a printer. Thus it was in
1634 that Mersenne published a French translation of the Mechanics,
although the Italian version was not to be printed until after Galileo's
death. The same thing happened in 1636, when a manuscript copy of
the Discorsi reached Conte in Paris. Conte did not wish to deprive the
world of such a treasure and sent a copy to the Elseviers, the great
printers of Leyden, who published it in 1638.5

But most of the work that Galileo circulated in manuscript form did
not have such good fortune. Its only publishers were unscrupulous
readers who gleaned more than one novel idea from them and then
shamelessly appropriated them. Several of these manuscripts were
published after a century of oblivion, while others have been lost.

166
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Because of these diverse circumstances, it is sometimes difficult to
follow the evolution of Galileo's thought and to trace the influence of
his ideas on the scientists of his time as they spread throughout Europe.
A careful study of the numerous documents we have today will,
nevertheless, allow us to retrace the main steps by which Galileo made
his discoveries in mechanics and in statics.
Let us review the sources we shall use to understand what the

development of statics owes to Galileo.

(1) The oldest fragment in our possession is surely a commentary on
Aristotle's De Caelo, which was preserved in manuscript form at
Florence and Femained unpublished until the publication of the
Edizione Nazionale of Galileo's works, which in 1888 brought this
short treatise to light.6 This work, written in Latin, is of interest to
our purpose in only one respect. It shows us that at the time
Galileo wrote it, he was still a faithful Peripatetic, although he had
read and quoted from the De Subtilitate7 of Cardan, as well as from
the Exereitationes of Scaliger.8 The thoughts of these authors are
only accepted by Galileo to the extent that they are in accord with
the tradition of the School. It is from this tradition and not from
Cardan's argumentation against perpetual motion that he borrows
the following two maxims:9 "Motus simplex terminatur ad quietem."
"Nullum violentum potest esse perpetuum."\O

(2) The Edizione Nazionale of Galileo's works also brought to light
two drafts of a Latin treatise De Motu, I 1 preserved in manuscript
form at Florence. The study of this treatise is of great importance
because Galileo's first ideas on statics, hydrostatics and dynamics
appear there.

(3) One segment of this Latin treatise De Motu was taken up again
later by Galileo, who rewrote it in Latin in the form of a dialogue, a
form he was fond of all his life. This dialogue was published for the
first time in Volume XI of the sixteen volume edition of Galileo's
works published by Eugenio Alberti in 1856 in FlorenceP

(4) In all the versions of De Motu, Galileo discussed at length solid
bodies floating on a liquid. The ideas he expressed are developed
in a work entitled: Diseorso al Serenissimo Don Cosimo II, Gran
Duea di Toseana, intorno alle eose ehe stanno in su l'aequa, 0 ehe
in quella si muovono, di Galileo Galilei, filosofo e matematieo della
medesima Altessa Serenissima (Discourse to his most Serene High-
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ness Don Cosimo II, Grand Duke of Tuscany, on bodies floating
on water or moving in water, by Galileo Galilei, philosopher and
mathematician to his most Serene Highness). This work, printed
in Florence in 1612, contains not only an account of Galileo's
hydrostatic theories, but also an initial definition of a concept
which will be of great importance for the statics of the illustrious
geometer, a concept he refers to as 'momento.'

(5) By mechanics, Galileo means the study of simple machines. His
views on mechanics have come down to us in three different
formulations.
The first formulation can be found in a manuscript in Galileo's

own hand. This manuscript belonged to Prince Hermann of Furst
enberg, who was a disciple of Father Kircher in 1646 in Rome.
Brought by the Prince to Germany, the manuscript is kept today in
Regensburg in the archives of the Turn-und-Taxis family. This
manuscript is a summary of the lectures given by Galileo in 1594
at the University of Padua, as the title suggests, Della Meccaniche
lette in Padova dal Sr. Galileo Galilei l'anno 1594,13 It was published
in 1899 by Favaro. 14

(6) In 1634, Father Mersenne of the Order of the Minims had Henry
Guenon of Paris publish a small volume containing three works.
Two of these works were the Preludes de l'Harmonie universelle
and the Questions theologiques, physiques, morales et mathema
tiques,15 These were original works of the hard-working and prolific
churchman. The third book was composed of Galileo's various
versions on mechanics translated from an Italian manuscript.16 This
work is much more developed than the manuscript published by
Favaro.

(7) No Italian edition of the Mechanics was ever printed during
Galileo's lifetime. It was not until 1649 that the Cavaliere Luca
Danesi had the following work printed in Ravenna: Della Scienza
Meccanica e della utilita che si traggano dagl' instrumenti di quella;
opera del Signor Galileo Galilei con uno frammento sopra la forza
della percossa. (On the science of Mechanics and the utility which
can be derived from its instruments; A Work of Galileo Galilei
with a Fragment on the Force of Percussion.) This work contained
in a more developed form everything which was in the Mechanics
translated by Mersenne. All of the editions of Galileo's works
contain this treatise Della Scienza Meccanica.
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(8) In 1632, the famous Dialogo di Galileo Galilei della due massimi
Sistemi del Mondo, if Ptolemaico e il Copernicano (Dialogue of
Galileo Galiei Concerning the Two Chief World Systems; the
Ptolemaic and Copernican) was published in Florence. This publi
cation brought down on its author on June 22, 1633 a condemna
tion by the Holy Office. On the Second Day in this Dialogue,
Galileo is led to treat parenthetically the principles of statics and, in
particular, the equilibrium ofthe lever.

(9) We have indicated before how Conte rather unexpectedly had the
Elseviers publish the work under the following title: Discorsi e
dimostrazioni matematiche intorno a due nuove scienze attenti alia
Meccanica, ed ai movimenti locali; di Galileo Galilei, Linceo,
filosofo e mathematico primario del serenissimo Gran Duca di
Toscana; Leida, Elsevirii, 1638 (Mathematical Discourses and
Demonstrations on the Two New Sciences concerning Mechanics
and local motion by Galileo Galilei, member of the Accademia
della Lincei, principal philosopher and mathematician to His Most
Serene Highness the Grand Duke of Tuscany; Leyden, the Elseviers,
1638.)
This edition contained hardly anything of interest to statics. The

subsequent editions of the Discorsi - the first one published in
1655 in Bologna - contain, on the contrary, two passages which
pertain to this science.
The first of these passages is the Scholium added to Theorem II,

Proposition II of the Third Day in which the interlocutor Salviati
gives the theory of the inclined plane. This Scholium, which will be
discussed in detail in Chapter XV, was written by Galileo towards
the end of his life and sent by him to Father Castelli on December
3rd, 1639 so that it could be added to The Third Day of the
Discorsi in any new edition.
The second of these passages can be found in the Giornata

Sesta, della fona percossa (the Sixth Day, on the force of per
cussion). The first edition of the Discorsi contained only the first
three days. Everything following these three days was written by
Galileo after 1636 and first printed in 1655 in the first edition of
the Opere di Galileo Galilei, thanks to the good offices ofViviani.
Let us now follow the evolution of the doctrines on statics as

professed by Galileo in the works we have enumerated. From his first
work on De Motu, we see Galileo invoke as an axiom of statics the
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impossibility of perpetual motion. He uses this axiom to prove that a
solid body with the same density as water will remain suspended in
equilibrium in the water:

I conclude, furthermore,17 that it will neither rise nor descend, but that it will remain
wherever one chooses to place it. There is, indeed, no reason why it should ascend.
Since we assume that it has the same weight as the water, to say that it will descend in
the medium of the water would be to say that water within water descends below water
and that the water which rises above it will be able to descend too. The water would
thus rise and descend alternatively, 'quod inconveniens est'.IS

This belief in the impossibility of perpetual motion could have come
from reading the De Subtilitate of Cardan, but it could have also been
taken from the scholastic axioms according to which natural motion
tends towards a state of rest and violent motion dissipates. In his
commentary on the De Cae/o, Galileo formulated these axioms, which
Leonardo had merely developed and brought up to date.
The influence of Cardan and through him that of Leonardo da Vinci

can be seen more clearly in the interpretation of the principles of
Archimedes, which Galileo repeats with minor modifications in the two
drafts of his De Motu and in his dialogue on the same subject. He will
return to this subject in more detail in his Discorso intorno aile cose che
stanno in su l'acqua. This would be the place to discuss this inter
pretation, which is a kind of unpolished and erroneous application of
the Principle of Virtual Displacements, if it were not for the fact that we
want to postpone the study of hydrostatics until later.
When Galileo begins the study of the inclined plane, the influence of

Cardan is incontestable. Although Galileo does not mention any works
by the Milanese physician other than his De Subtilitate, in his De Motu
it would be hard to deny that he had not read the Opus novum. How
can we not think of the fragment in the Opus novum which we quoted
at the end of Chapter III, when we read the following passage: 19

Let us assume ab (Fig. 69) as a line directed towards the center of the earth and
perpendicular to the horizontal plane. From point b let us draw any given number of
lines bd and be which form acute angles with line be. It is necessary to ask why a
moving body which descends along the line ab has the fastest fall; why the fall is faster
along bd than along be, but slower along be and why the fall is slower along be than
bd? Furthermore, we ask by how much the fall is faster along ba than along bd and
how much faster the latter is than along be? In order to resolve these questions, we first
have to make the observation indicated above. It is obvious that a heavy body is drawn
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downwards by a force equal to the one needed to pull it upwards. In other words, the
heavy body is drawn downwards by a force equal to the resistance which it exerts
against upward motion. If we determine how much smaller the force which would pull
the heavy body upwards along the line bd is than the force which would pull it along
the line ba, we will immediately know how much greater the force which causes the
same heavy body to fall along the line ab is than the force which causes it to fall along
the line bd.

Even if it is true that Galileo borrowed this introduction to the study
of the inclined plane from Cardan, nonetheless, he went much further
in the analysis of the problem than his predecessor. Because he was
content to use an inductive approach, Cardan had arrived at an in
accurate solution. Galileo, using ingenious intuition, arrives at the
correct law.
Let us imagine a weight concentrated at the extremity of a straight

line rotating about point a (Fig. 70) and let us assume this straight line
in position as. The weight will follow the circumference determined by
the center a and the radius as. Let us draw the tangent gh to the
circumference at s. At the instant the body reaches point s, it begins to
descend along the arc 20 of the circle which begins at that point and we
will be able to treat it as if it were descending along the tangent gh.
Therefore, the force which would cause the body to descend along the
oblique line gh is equal to the force which from point s on tends to
cause it to descend along this arc.

Quando mobile 21 erit in puncto s, in primo puncto suus descensus erit veluti per lineam
gh; quare mobilis per lineam gh motus erit secundum gravitatem quam habet mobile in
puncto S.22

Once this daring and fertile intuition is admitted, the problem of the
inclined plane is solved. The theory which Cardan and Benedetti
deduced from the notes of Leonardo da Vinci or from the manuscripts
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of his Precursor as edited by Curtius Trojanus - Cardan and Bene
detti developed this theory in their different works - is enough to
finalize the solution. This theory, indeed, shows us that the force
causing the weight placed at s to move along the circumference of the
circle is proportional to the projection ad of line as on the horizontal.
Simple considerations show us that the gravity pulling a moving body
on an inclined plane is to the gravity acting in free fall as the height of
the plane is to the length of the line with greatest obliquity. In other
words, the ratio between these two gravities is the sine of the angle
which the plane forms with the horizontal.
The problem of the inclined plane which Galileo solved in this way

attracted at about the same time the attention of another geometer. In
1586, Simon Stevin of Brugge also published the solution to this
problem in his Elements of Statics.23 Had Stevin preceded or followed
Galileo?
The different versions of the De Motu are not dated. Does the oldest

one predate or antedate De Beghinse/en der Weeghconst?24 It is hard to
answer this question. But it is certain that the two geometers, the one
from Brugge and the other from Florence, were unaware of the other's
essentially different approach to the same problem.
Does it serve any purpose, in any case, to continue to try to

determine who had priority? We know, indeed, that the Precursor of
Leonardo da Vinci had preceded both of them by three centuries and
that the elegant solution of this great geometer had been published in
the five editions of the Quesiti of Tartaglia as well as in the De
ponderositate of Jordanus printed by Curtius Trojanus. However, we
have not yet finished extracting all the information which a reading of
the De Motu can yield.
After having been an avowed Peripatetic while writing his commen

tary to the De Cae/o, Galileo now argues incessantly against Aristotle's
physics. However, he does not totally reject Aristotelian physics. Spe
cifically, he carefully retains the fundamental axiom upon which the
dynamics of the Stagirite rest: the proportionality between the force
moving a body and the velocity of that body.

We must observe, he maintains,25 that velocity does not differ from motion; he who
postulates motion also postulates velocity and slowness is nothing but a lesser degree of
velocity. Thus whatever produces motion also produces velocity: hence, it is the same
whether motion derives from heaviness or from lightness, because it is necessary that
slowness or swiftness have the same origin. From a greater degree of gravity there
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follows a greater rapidity of the motion produced by the gravity of the moving body,
that is to say, by the downward movement. From a lesser degree of gravity a greater
slowness of the same motion results.

Galileo certainly no longer teaches that a ten pound weight falls ten
times faster than a one pound weight, as Aristotle had done. He says
that in the same medium, weights, whether large or small but made of
the same substance, fall at equal velocities. This proposition is in
accurate and completely inadequate compared to the law which he will
propose in his Discorsi:

All bodies in a vacuum fall with the same velocity.

Galileo must have read the inaccurate assertion in the Opus novum of
Cardan, who, like Taisnier, had most likely borrowed it from G. B.
Benedetti. Galileo must have also read it in Benedetti, whose argumen
tation he repeats. Yet this assertion does not contradict the axiom cited
above. If ten pounds of lead fall with the same velocity as one pound of
lead in air in which both had originally been weighed, it is simply
because the tenfold force has to move a body ten times more volumi
nous. Galileo, wh026 repeats Benedetti's view on this point, says:

From this argument derives the solution to the following question: In the same medium
what is the ratio between the velocities of two bodies of the same volume, but of
different weight? The ratio of the velocities of these moving bodies will be as the excess
of specific weight of the medium.

On differently inclined planes, the same moving body has a weight2?
of a known ratio. From here on, Aristotle's axiom will give us the ratio
between the velocities at which this moving body will move along these
two planes, because it will be precisely the ratio between these two
weights:

It is thus certain28 that the velocities of the same moving body descending along
different inclinations will be in inverse ratio to the lengths of these oblique descents
corresponding to a given vertical descent.

Galileo adheres to these principles when he later writes the dialogue
De Motu. In this work, he asserts that in the same medium, two moving
bodies of equal volume fall with velocities which are to each other as
the excess of specific weight of the moving bodies is to the specific
weight of the medium,29 so that, in a vacuum, the velocities of these
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moving bodies are to each other as their specific weights are to each
other.3o

Aristotle's axiom, which influenced Gallieo so much in his first
works on motion, will continue to inform all of his research on statics
and make him the defender of the ideas formulated by the Philosopher
of Stagira and later developed by Leonardo da Vinci and Cardan. In
particular, this axiom will inspire in him a notion which will play an
essential role in all of his mechanics: the notion ofmomento.3l

The same force capable of moving a heavy body at a given velocity is
also capable, according to Aristotle's axiom, of moving a body twice
that weight, but at half that velocity. The characteristic property of the
force is not to be found in the size of the heavy body being moved or in
the velocity which it imparts to it, but in the product of these two
factors. For the same force, each factor can vary; however, the product
is fixed. It is this product which constitutes the momento of this force.
It is at the beginning of the Discorso intorno aile cose che stanno in

su l'acqua, 0 che in quella si muovono, which still has so many affinities
with the different versions of the De Motu, that Gallieo, in 1612,
defines the momento for the first time. However, he is careful to show
how this notion is related to Peripatetic statics.

I borrow, he says, two principles from the science of mechanics. The first is the
following: Two exactly equal weights moving at equal velocities have the same power or
the same "momento" in all of their activities. To the mechanicians, "momento" means
this capability, this action, this efficient power, by which the motor moves while the
moving body resists. This capacity does not only depend on the simple weight, but on
the velocity of the motion, and on the various inclinations of the spaces in which the
motion is produced. Indeed, a heavy body produces an impeto32 which is larger when it
descends on a sharply inclined surface than when it descends on a less inclined surface.
Whatever the reason for such a capacity, it always bears the name "momento." and it
does not seem to me that this meaning for the word "momento" is new to our language.
If I am not mistaken, we often say: This matter is serious, but the other one is of little
moment;33 or while we attend to an insignificant matter, we neglect those of moment.
These are metaphors borrowed from the language of mechanics.
The second principle is that the power of gravity increases with the velocity of the

body moved, so that absolutely equal weights, but with different velocities, have unequal
powers or "momenti," or capabilities. The more powerful of the two is the more rapid
by as much as its velocity exceeds the velocity impelling the other body. We find a very
appropriate example of this principle in the balance, or the Roman balance, where the
arms of the beam are unequal. Exactly equal weights suspended from these arms neither
exert equal pressure nor produce equal actions. The weight which is at a greater
distance from the fulcrum of the balance lifts the other weight and its motion is faster
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than the motion of the latter. The velocity of the motion gives to the moving body such
a power and capability that they can be compensated for with precision by increasing
the slower moving body by an equivalent weight ...
Such compensation between gravity and velocity can be found in all mechanical

devices. Aristotle used it as a principle in his Mechanical Problems. Whence, we can
consider as absolutely certain the assertion that two weights of unequal sizes will be in
equilibrium and will have equal "momenti" every time their gravities are in inverse
proportion to the velocities of their motion: or in other terms, every time the lighter
weight is positioned in such a way that its velocity is to the velocity of the heavier
weight as the weight of the latter is to the former.

The Second Day34 of the Dialogue Concerning the Two Chief World
Systems contains references to statics. There Galileo deals with the
Aristotelian principle, which the interlocutor Salviati formulates in the
folling way:

La velocita del mobile meno grave compensa la gravita del mobile piu grave, e meno
veloce. (The velocity of a lighter moving body compensates for the weight of the
heavier, but slower moving body.)

The Roman balance serves as the example for this principle which is
developed in the same terms as in the Discorso intorno alle cose che
stanno in su l'acqua.
The Mechanics of Galileo was known to the majority of geometers

through the translation of Mersenne, which was printed in 1634. But
the work must have been written much earlier. We know this from
Galileo's own testimony. In 1639, he wrote a passage in dialogue form
which was to be included in the Discorsi and which was, in fact,
included in the Discorsi when the first edition of Galileo's works was
published in 1655. In this passage,35 the interlocutor Salviati refers to
the treatise Della Scienza Meccanica as:

An old treatise on mechanics written some time ago in Padua by our Academician for
the exclusive use of his students.

Thanks to Favaro we know today the text of the lessons On Mech
anics,36 which were taught by Galileo in 1594 in Padua. This concise
text contains considerably fewer reflections on the principles of statics
than the works which we have already discussed. When dealing with the
lever, Galileo remarks very briefly37 that by means of this instrument:

what one gains in capacity, one loses in space, time and velocity, and that the same is
true for all other existing or imaginary devices.
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The capstan38 and the windlass39 provide him with another opportunity
to repeat the same observation, which he makes again when he dis
cusses the block and tackle40 and gear trains.41

The notion of "momento" is not defined in the Della Meccaniche.
However, the word is used there. Galileo remarks that the force
supporting a weight by means of a lever is not enough to lift it. But he
adds,42

since any quantity of momento, however small, added to the force functioning as a
counterweight, is sufficient to put the weight into motion, we shall not take into
account this negligible quantity of momento ...

When Galileo gives his theory on the screw in his Della Meccaniche,
he uses the theory of the inclined plane,43 without, however, emphasiz
ing this fact:

Everything we said, he writes, is obvious to native intelligence and through experience.
But if we wanted to determine in a demonstrative fashion the relation of the force to
the weight which it can move on variously inclined planes, we would be faced with a
somewhat more difficult speculation. We shall thus omit it here and be content to take
cognizance of the conclusion ...

However, at the end of his study on the screw, the great geometer
points out44 that if a heavy weight can be lifted with little effort with the
use of such a device, it is because the force traverses the long path
represented by the helix while the weight. only reaches the height of
the cylinder. Cardan and Guido Ubaldo had already made a similar
observation and it would have been easy to deduce from it the theory
of the inclined plane which Galileo will formulate later by repeating
almost verbatim the arguments of the Precursor of Leonardo da Vinci.
Salviati was certainly not alluding to the Della Meccaniche brought

to light by Favaro. Salviati cited, however, these lessons in reference to
the theory of the inclined plane, which, he said:

. . . was demonstrated in a detailed and conclusive fashion with a view to considering
the origin and the nature of this marvellous device, the screw.

These words could not apply to the Della Meccaniche, which we have
analyzed and which is so concise. These words undoubtedly allude to a
more complete version which Galileo wrote later.
Father Mersenne used such a version to publish the French transla

tion in 1634. Another even further developed version was printed in
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1649 in Ravenna by Luca Danesi. Salviati's remark applies to both of
these versions because both treat in detail the inclined plane.
We can assume that these versions closely followed the Discorso

intorno alle cose che stanno in su l'acqua because we find in them the
definition of "momento" among all the other definitions. The Mechanics,
as well as the treatise Della Scienza Meccanica, formulated the definition
in practically the same terms as does the work on floating bodies, printed
in 1612.

The moment is the tendency of a body,45 when that tendency is not considered solely in
that body but jointly with the position which the body occupies on the arm of a lever or
on the arm of a balance. And its position often causes it to counterbalance a heavier
weight because of its greater distance from the fulcrum of the balance. This length
together with the actual weight of the heavy body gives it a greater capacity to descend,
so that this tendency is composed of the absolute weight of the body and the distance
from the center of the balance or from the fulcrum. Therefore, we shall henceforth refer
to this composite capacity as moment, which corresponds to panr, in Greek"6

In fact, the notion of moment formulated in such a way has more
than one analogy to what Aristotle and his commentators call (}VvaIU~
(power) or LOXV~? (force) and what are called "virtus" or ''fortitudo'' by
the Latin translators of the fragments on mechanics, usually attributed
to Euclid. The notion of "momento" as conceived by Galileo is ob
viously an idea very much permeated with Peripatetic physics.
Galileo no longer merely refers to Peripatetic dynamics to justify his

introduction of this notion. He develops a direct argument which seems
to appeal solely to self-evident affirmations. Behind this argument,
however, one can uncover a postulate which is nothing other than the
axiom ofAristotle.

Let us consider, he says,47 an arbitrarily determined resistance, an arbitrarily limited
force and an arbitrarily fixed distance. One can, beyond any doubt, transport the given
weight over the given distance by means of the given force, even if the given force is
extremely small. It suffices to divide the weight into a great many parts so that none of
the parts is larger than the force at one's disposal and then to transport the parts one by
one. Thus one will ultimately move the entire weight to the designated position. From
the preceding, one can correctly conclude at the end of the operation that a heavy
weight has been moved and transported by a force smaller than itself. But the force,
however, will have repeated its movement several times and will have traversed the
space several times, which the weight under consideration, taken in its entirety, will
have traversed only once. One can see by this example that the velocity of the force
surpasses that of the weight by as many times as the weight surpasses the force. In
effect, during the time that it took the moving force to traverse several times back and
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forth the distance between the two endpoints of the motion, the moving body only
crossed this interval once. Consequently, it cannot be said that it is unnatural for a great
resistance to be overcome by a small force. Only in the particular case where a small
force would transport a great resistance in such a way that force and resistance would
travel at the same velocity, could one say that the laws of nature had been transgressed.
We assert that it is impossible to accomplish such a transportation with any device
available now or conceivable in the future.

It sometimes happens that we have at our disposal a small force but that we need to
transport a large weight in one piece, without dividing it up into smaller weights. In this
case, our force must not traverse the same space as the weight, but must travel through
a path which surpasses the path of the weight by as many times as the weight surpasses
the force. At the end of such an operation, we shall find that the only benefit we gained
by using the machine is to have been able to transport the weight in one piece with the
available force over the required distance. Without a machine and under the sole
condition of dividing the weight into several parts, we could have transported the same
weight with the same force during the same time and over the same distance. This is
where we can expect help from a mechanician, because it often happens that while we
lack sufficient force but have ample time, we can still succeed in moving a great weight
in one piece. But whoever hopes to produce the same effect with the help of machines
without reducing the velocity of the moving body and whoever sets out to do so, will
certainly be disappointed. He will prove that he has no understanding of the power of
mechanical devices and of the reasons for their effects.

It is needless to say that this argumentation by Galileo is anything
but rigorous. It does not follow at all from a precise dynamics, but
gives, indeed, this immediate consequence: The force moving a given
weight through a given space during a given time, moves a weight ten
times greater through the same space during a time ten times longer.
This consequence is none other than the old axiom of Aristotle deriving
from a dynamics where no distinction is made between weight and mass
and where velocity is assumed to be proportional to force.
The Della Scienze Meccanica can thus be seen to be closely related

to the dynamics of the Ancients which Leonardo da Vinci and Cardan
deduced from Aristotle's Physics, from the On the Heavens or from the
Mechanical Problems. Galileo, who is regarded as the founder of a new
dynamics, does not yet possess the principles which will distinguish this
science from Peripatetic mechanics. These principles will, in reality, be
discovered by others and he will never know them.
The equilibrium of the lever or of the Roman balance provide Galileo

with a basic example of the general considerations by which he begins.
He shows that if one moves a lever where the weights are in inverse
ratio to the arms, the velocities of these weights are in inverse ratio to
their weights, and he adds:
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It is neither a miracle nor a contradiction to the laws of nature if the velocity with which
the heavy body B moves compensates for the greater resistance of the weight A.

In conclusion, he observes that the role of the lever surely consists in
transporting a great resistance very slowly and without dividing it, by
means of a small force moving rapidly. The study of the windlass, the
capstan, the pulley and the block and tackle provides him the oppor
tunity to return to similar reflections.
As his research progresses, he, like all his predecessors, encounters

the notion of moment, taken in the sense that moderns give to this term.
Here are the brief terms he uses to introduce it:

The weight suspended at point D (Fig. 71) produces an impetus along the line DF.
When the weight was suspended at point B, it produced an impetus along the line
BH ... Finally, one must take care to measure the distance along the line which meets
at a right angle the line along which the heavy body is suspended and along which it
would fall if it could move freely.

Galileo could have tied this notion of moment to his general prin
ciples. All he had to do was to note that the "momento" of a heavy
body must be considered proportional to its velocity of descent and not
to the total velocity of its motion. He would have discovered that the
"momento" is proportional to the moment, but he made no such
connection, although Cardan had done so in his De Subtilitate. On the
other hand, he will use this principle, which had been so clearly
formulated by Cardan, in his theory of the inclined plane, although this
application had not occurred to the Milanese physician.
When GaWeo approaches the theory of the inclined plane in his

Mechanics and in the treatise Della Scienza Meccanica, it is preliminary
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to the study of the screw. He first repeats everything he said about the
theory in his earlier treatise De Motu, and then in the Della Scienza
Meccanica he adds the following passage, which is also contained in the
Mechanics, in a slightly different form.

In conclusion, let us not leave unmentioned the following consideration: from the outset
we have stated that it is necessary in every mechanical device that the more force is
multipled by means of such a device, the more one loses in time and velocity. This
proposition might not seem self-evident or true to someone observing its use in the
present case. It might seem to him that the force here is multiplied without the motor
force being required to travel over a greater distance than the moving body. Let us thus
imagine that in the triangle ABC (Fig. 72) the line AB represents the horizontal plane.
The line AC is the inclined plane with its height represented by the perpendicular CB.
A mobile body E is placed on the plane AC and is attached to the rope EDF which is
supporting at F a force or a weight which is in the same ratio to the gravity of the
weight E as line BC is to line CA. If weight F starts to descend by pUlling the mobile
body E over the inclined plane, the mobile body E will traverse along line AC a
distance equal to the one described by F in its descent. But let us note the following: it
is true that the mobile body E will have covered the entire line AC in the time that F
will require to descend an equal distance. However, during this time, the mobile body E
will not be displaced from the common center of heavy bodies by a distance greater
than the vertical BC, while the weight F, moving along the vertical, will have descended
by a distance equal to the entire length of line AC. Heavy bodies only resist oblique
displacements when they move away from the center of the earth....4~ We can thus
rightly say that the displacement of the force F has the same relation to the displace
ment of the force E as the length AC to the length CB, that is as weight E is to weight
F.

The first edition of the Discorsi e dimostrazioni matematiche intorno
a due nuove scienze attenenti alla Meccanica ed ai movimenti locali,49
which has finished by Galileo in 1636 and printed by the Elseviers in
1638, contained very few innovations of interest to statics. An elegant
demonstration of the law of equilibrium of the lever can be found in the
First Day, although it closely resembles the demonstration given by
Simon Stevin forty years earlier and published afterwards twice in
Flemish, once in Latin and once in French. In this demonstration,
Galileo, like Stevin, simply made use of the principle so well-known
since the Middle Ages and from which the theory of the Roman
balance can be deduced. Furthermore, a very similar demonstration
had been known since the 13th century, as we shall see in the following
chapter.
The Third Day of the Discorsi, dealing with local motion, contained

a proposition which was essential to the development of modern
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dynamics. This proposition asserted the equality between velocities
acquired by heavy bodies descending from the same height on differ
ently inclined planes. In the first edition of the Discorsi, this equality
had been assumed, but had not been demonstrated.
Under circumstances which we will discuss in Chapter XV, Galileo

attempted to strengthen this proposition with solid arguments. He
wrote a demonstration which he called a Scholium and which was
added to the proposition under consideration when the complete works
of the great geometer were assembled for the first time in 1655.
At the beginning of this Scholium, the interlocutor Salviati expresses

himself in the following terms:

First of all, I shall assume that it is a well-known fact that the "momenti" or the
velocities of the same moving body are different on differently inclined planes and that
the greatest velocity would correspond to a descent along the vertical and that on an
inclined plane, this velocity decreases the further the plane departs from the vertical.
... In this way the impetuosity, the capability, the energy or what we shall call the
"momento" of the descent decreases in this mobile body as the underlying plane on
which it rests decreases.

In order to evaluate this variation of impetuosity, Salviati states that
he is here referring to:

an old treatise on mechanics which was written long ago in Padua by our Academician
for the exclusive use of his students,

an obvious reference to the Della Scienza Meccanica of Galileo. Indeed,
he states that, according to this treatise, the "momento" of a heavy body
descending on an inclined plane is to its "momento" in free fall as
the height of the plane is to the length of the line with the greatest
inclination. It is from this proposition that he deduces the desired
demonstration.
Salviati concludes by asserting that:

In order to assure the equilibrium, that is to say, a state of rest between the two moving
bodies under consideration, it is necessary that their "momenti," their velocities, or their
propensities to motion, which is to say, the distances which they would traverse in the
same time, be in inverse ratio to their gravities, according to the general law which all
mechanical motions follow.

In the lengthy additions to the Discorsi written by Galileo but made
known only after his death, the passage which we have just quoted is
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not the only one dealing with the inclined plane. There is another
passage in the Sixth Day, Della Forza della Percossa. This latter passage
faithfully reproduces the ideas and the terminology of a fragment from
the treatise Della Scienza Meccanica, which we referred to above. The
various passages in the Discorsi which we have just analyzed did not
make any new contributions to the progress of statics. Their significance
lies elsewhere.

If we are to believe the majority of the historians of mechanics, the
Discorsi of Galileo completely overturned the bases of Peripatetic
dynamics and established modern dynamics on an entirely new founda
tion. However, in these same Discorsi, Galileo borrows a lemma from a
statics which has as its basis the axiom of Aristotle. This same lemma
does not have as its goal the demonstration of some subordinate and
insignificant theorem. Its object is the demonstration of a proposition
which Galileo considers the "Quintessential Theorem"5o for establishing
the science of motion which he was propounding. Although the axiom
of Aristotle is not explicitly stated in the reflections on the inclined
plane contained in the Discorsi, there is nothing there to indicate that it
ought to be rejected. The demonstrations in the treatise Della Scienza
Meccanica are viewed as detailed and conclusive demonstrations:

... che in un antico traltato di meccaniche scrilto gia in Padova dal nostro Accademico
sol per uso de suoi discepoli fu diffusamente, e concludentemente dimostrato ...51

Those demonstrations are deduced from a principle which is equivalent
to the axiom of Aristotle. And finally, Galileo repeats several times that
the same heavy body, under different circumstances, has "momenti"
proportional to the velocities at which it is moving under those same
circumstances. The obvious conclusions implied in these remarks is that
Galileo, considered by many historians to be in the process of creating
a new dynamics, continued to base his deductions on Ancient dynamics,
the dynamics professed by Aristotle and commented upon by the
School and from which Leonardo da Vinci and Cardan had drawn so
many important conclusions. Galileo never ceased to believe in the
Peripatetic axiom which proclaimed the proportionality between force
and velocity. The view which makes Galileo the founder of modern
dynamics is nothing but an unfounded legend.
Furthermore, the statics of Galileo perhaps might not deserve all the

praise which historians traditionally have given because much of this
praise should legitimately go to the geometers preceding Galileo. There
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is little in his statics which is not already contained in the works of
Cardan, who was influenced, in turn, by the unpublished ideas of
Leonardo da Vinci. Indeed, if one tries to argue that the statics of
Galileo excels that of Cardan, only one essential advance can be found:
the solution to the inclined plane. However, the solution to this problem
had existed since the 13th century. In considering the two demonstra
tions which Galileo uses to justify the solution, one is an almost direct
application of the concept of positional gravity of Jordanus and of the
connection established by Cardan between this notion and that of
moment. The second demonstration is the most satisfying, but it is a
pure and simple reproduction of the argumentation produced in the
Middle Ages by the Precursor of Leonardo da Vinci.
How can we argue that Galileo did not know the work of this great

but anonymous geometer? The five editions of the Quesiti et Inventioni
diverse by Tartaglia, the collected works of the same author, the
Jordani opusculum de ponderositate printed by Curtius Trojanus, all
made it public on seven different occasions. Cardan, Guido Ubaldo and
Benedetti criticized this work, which they had attributed to Jordanus.
Ultimately, this work was read by the followers of Galileo. One of these
followers, Bardi, writes 52 with regard to specific weight:

Gravitas de qua hie agitue ea est quam nonnulli a pondere distinguunt, Galileus veTO
cum Jordano gravitatem in specie appellat.53

This allusion to Jordanus, as Thurot54 has correctly observed, actually
refers to the short treatise on specific weights 55 erroneously attributed
to Archimedes and which Curtius Trojanus appended to the Jordani
opusculum de ponderositate, without giving the author's name. Thus
this very ancient treatise was clearly known in the circle around Galileo
and in certain points its statics goes beyond everything written on the
same subject by the Florentine geometer.



CHAPTER XII

SIMON STEVIN (1548-1620)

Beginning in Antiquity, the physicists who worked on problems of
equilibrium approached them using two clearly distinct approaches.
Aristotle, more a philosopher than a geometer, considers equilibrium as
only a special case of motion. Thus for him statics is not at all an
autonomous science with independent principles. It is only a branch of
dynamics, and its propositions must be deduced from the general laws
which determine local motion. Archimedes, more a geometer than a
philosopher, applies his great genius more to the development of a
rigorous sequence of propositions drawn from clear and unquestionable
axioms than to a profound penetration into the nature of things.
At the time of Archimedes and perhaps even today, the study of

motion is not far enough advanced to establish those propositions
which everyday experience insists on so clearly that contradiction is
impossible. On the other hand, one can find such propositions in the
study of the science of equilibrium. And it is just such propositions
which Archimedes postulates and from which he develops the hy
potheses upon which he founds statics as an autonomous science.
These two distinct currents can be traced back throughout the

development of statics. Sometimes progress in this science is made
using the method of Aristotle, sometimes using the method of Archi
medes.
The history of the evolution which we have recounted in this book is

almost exclusively tied to the doctrine of the Philosopher of Stagira.
The laws of statics, which were to become more precise and general
through the works of 10rdanus de Nemore, the Precursor of Leonardo
da Vinci, Leonardo da Vinci himself, Cardan and Galileo, grew out of
the ideas contained in the Mechanical Problems. On the other hand,
one needs only to leaf through the statics l of Simon Stevin to recognize
in the geometer from Brugge a faithful disciple of the geometer from
Syracuse.
Simon Stevin was born in Brugge in 1548. For some time he was a

cashier and bookkeeper in Antwerp. Later he received a position with
the financial administration in the "Vrije van Brugge"2 When he was
refused an exemption from the duties on beer, he left his homeland. We

184
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know that he had already left by 1571. He visited Prussia. Poland,
Sweden, and Norway and then returned to settle in the Northern
Netherlands for the rest of his life. From 1581 on, he lived in Leyden,
where he published his first work in 1582. On February 16, 1583 he
registered as a student of letters at the University of Leyden. In 1590,
he left this city for Delft and then for The Hague. His scientific
reputation was considerable and he became Professor of Mathematics
and later Administrator of Finance for Prince Maurice of Nassau and
Inspector of Dikes and Quarter-Master General of the Army of the
Estates. He died in 1620.
We have stated that the works on mechanics by Stevin are not those

of a philosopher, but essentially the works of a geometer. Stevin
showed a great fondness for the approach used by Archimedes, who
had learned it in tum from his master, Euclid, and which was so elegant
in its rigor and precision. This method is evident at the outset in the
erudite arrangement of the presentation of statics by this illustrious
Fleming. The definitions, the axioms, the postulates, the propositions
and the examples are all arranged with minute regularity according to
the place which the laws of deductive logic would assign them. Even
more than Euclid and Archimedes, Stevin attempts to lay bare the
framework of his reasoning so that the reader may see all the parts and
their interrelations. Not only does the form of his writings show us that
Stevin was a fervent disciple of Archimedes. By his own admission he
assures us that he rejected completely the methods used by Aristotle
and Cardan in statics.
This rejection is already apparent in the first edition of his Statics in

the preface to the reader at the beginning of the section which deals
with the application of statics.3 It is also quite apparent in an Appendix4

which Stevin wrote for the second edition of his Statics.
In confronting the numerous erroneous concepts prevailing in the

statics of his time, Stevin feels within himself both the need and the
ability to gain a Marathonian victory5 over this vast army of enemies of
the truth. But he prefers to condense into two propositions the very
essence of all of these heresies and to refute them in two chapters.6

The first of these chapters is directed against the fundamental idea of
the Mechanical Problems;

The cause of the equilibrium of the lever, as the chapter heading states, does not reside
in the arcs of a circle described by its extremities.7

Common sense suffices to prove to us that equal weights suspended from equal
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arms of a lever are in equilibrium. But to say that unequal weights suspended from
unequal arms of a lever are in equilibrium when these weights are in inverse ratio to the
arms from which they are suspended, might not seem so evident. The Ancients believed
that the reason for this resided in the arcs of the circle described by the extremities of
the lever. These views can be found in the Mechanical Problems of Aristotle and in the
works of his followers.
We shall prove the inaccuracy of this view in the following manner:
That which is motionless does not describe a circle; two weights in equilibrium are

motionless: thus two weights in equilibrium do not describe a circle.K Therefore, there is
no circle; once the circle is discarded, the cause which could reside in it disappears. The
cause of equilibrium of a lever is thus not to be found in the arcs of the circle.
Let us insist upon this point so that the minor premise of our syllogism is beyond

any doubt. This circular motion which we are considering here is in no way a property
of the weights which are in equilibrium, but it is rather an effect of chance and is caused
by the wind or by some other external impulse. Thus not only do weights in equilibrium
describe circles but also any unequilibrated weights. The explanation of equilibrium
does not at all reside in the arcs of the circle ... It is not surprising then to see that
those who took such errors as truth did not arrive at a true understanding of causes.
And because they were totally unable to find the real foundations of statics, they
departed from the truth in every possible direction, and thus were forced to contend
with many false propositions.

This judgment is both harsh and completely unjustified. The Method
of Virtual Displacements derived by a continuous evolution from this
proposition, so haughtily rejected by Stevin. The wide applicability of
this method, which seems more astonishing every day, continues to
confirm the genius of the author of the Mechanical Problems. The
disdain which Stevin manifested derives from an exclusively geometrical
perspective. The eyes of the pure geometer require torrents of light, be
cause the only truths which he perceives are those which, like glittering
butterflies, spread their wings in the brilliant light of clarity. However,
the ideas of the future, which will be full-blown tomorrow, are today still
embryonic and exist in a semi-clarity, which appears to the bedazzled
eye of the geometer as dark night swarming with hideous creatures.
The criticism which Stevin9 levels against the rather crude dynamics

taught by Cardan in the Opus novum is far more justified. It is easy for
the geometer of Brugge to show that the dynamics of Cardan cannot
explain the properties of heavy bodies falling through air or through
other homogeneous media. How could dynamics explain the motion of
machines made of wood and iron which have certain parts greased with
oil or lard and which are sometimes swollen by the humidity of the air
or corroded by rust and when all of these different circumstances, as well
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as many others which I shall omit, sometimes promote and sometimes
hinder motion.
Statics will not consider the motion of machines:

Statics will explain exclusively 10 the circumstances under which the motor force and the
weight moved are equivalent and in equilibrium. Yet each moving body always
possesses certain inherent impediments to motion. It is only in theory that one can treat
these impediments as abstractions. But in order to set the body in motion, it is
necessary to overcome these impediments. The calculation of the force necessary to set
any given weight in motion will remain outside the domain of statics. The mathematical
method is, indeed, unable to determine or explain these excesses of motor power
required for motion because the resistances to motion have no fixed relation to the
object moved.

Can statics be constructed without taking into consideration these
impediments to motion? Simon Stevin says yes. He denies that these
obstacles, these resistances, can maintain bodies at rest under condi
tions other than those which the science of statics has determined.

Moreover, he says, II the analysis of the state of equilibrium is sufficient here. Indeed, if
you were to place two equal weights in the two pans of a balance, even though the
beam is not exempt from certain impediments to motion, the slightest effort on your
part would make the balance rock. It is certain that it would be the same in all other
cases.

The assertion here is obviously erroneous. Resistances of all kinds,
as well as the different types of impediments to motion, determine a
great many possible states of equilibrium which statics cannot possibly
anticipate since it does not take into account these obstacles. Each one
of the impedimenta is for statics a source of contradiction or cause of
disagreement with the facts of reality. Nonetheless, the geometer will
ignore them in his argumentation, because the laws which they obey are
not sufficiently clear in his view.

Impedimentorum, inquam,12 potentia, cum catholica non sit, a Staticae praeceptis
rejicienda, quia ejus ad potentiam moventem ratio unica et certa nulla apparet. '3

What a strange approach, one might say of a method which sacrifices
accuracy for simplicity and clarity. However, what a fortunate incon
sistency, which frees the human mind from the useless and hopeless
contemplation of an intractable problem, bristling with difficulties and
complications, so that it may attack a less formidable and more acces-
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sible problem. Once this initial problem is solved, the human mind can
then by a second effort march forward in its quest for the whole truth,
which seemed at first unattainable. When Galileo studied the fall of
heavy bodies, he would not have created dynamics if he had not
ignored the very real and efficacious resistance offered by the medium.
The same thing would have happened in statics if Simon Stevin, who
gave such an important boost to statics, had sought to take into account
these resistances and impediments.14

Stevin, like Archimedes, will construct a statics independent of the
science of motion. This statics will base its deductions on axioms upon
which common sense confers certainty and clarity.
In any undertaking of this kind, it is easier to connect the diverse

propositions in a rigorously logical order which will form the basis for
any future theory, than to enumerate without omission or repetition all
the axioms one needs for completeness. Euclid has provided us with an
unforgettable model of such an enumeration at the beginning of his
Elements. Educated in the School of Euclid, Archimedes was mar
velously capable of disentangling almost all of the postulates which had
to be formulated at the beginning of his treatises on mechanics. How
ever, he left out some important axioms. His theory of the lever
assumes, without requiring it explicitly, the existence of certain prop
erties related to the center of gravity. Simon Stevin was perhaps less
successful than his famous predecessors in a similar undertaking.
Despite the great complexity in the logical order he gives to his
deductions, we occasionally glimpse a half-hidden postulate which is
less evident than the formally stated axioms. Girard himself observed
this. In one of his demonstrations (Book I, Theorem II, Proposition VI),
Stevin offhandedly writes this sentence:

One needs to observe this general rule of statics which says that the center of gravity of
a suspended body is located on the perpendicular of gravity.

Albert Girard wrote a note on this deduction of Stevin in which, along
with other criticisms, one can read the following:

One can see that Stevin does not at all prove his demonstration, because he uses a
concept which he does not demonstrate here ... Finally, he should have applied sooner
the above rule on the petitio principii.15

The Principles of Statics 16 begins with a list of definitions and then
presents a list of propositions. Among the latter, some deal with weights
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which pull vertically, while others deal with weights which pull obli
quely. The first are governed by the theory of the lever and the second
by the theory of the inclined plane.
The theory of the lever is presented in a very ingenious form. Let us

imagine a straight, uniform cylinder ABCD (Fig. 73) generated by
horizontal lines. Let us assume that it is suspended at its center M,
which is also its center of gravity. This cylinder will obviously be in
equilibrium.
At the cross section EF, we can divide this cylinder into two cylin

drical segments AECF and EBFD. Their volume and, therefore, their
weight are in a ratio which we can determine at will. We can then
substitute for each of these weights two weights of any given shape, but
equal in magnitude to the substituted weights and suspended at point K
and L on the weightless line GH which is also the axis of the entire
cylinder. Furthermore, points K and L are the centers of gravity of the
cylindrical segments.
Thus we end up with a horizontal lever KL, in equilibrium and

carrying at its extremities the weights K and L, which are proportional
to GI and IH, that is to say, which are in inverse ratio to the lengths of
the arms of the lever KM and ML, respectively.
It is by this very elegant method that Stevin arrives17 at the law of

equilibrium for a horizontal lever. From it he easily deduces the law of
equilibrium for an oblique lever as well as various propositions con
cerning centers of gravity.
We shall later examine the originality of this demonstration. For the

moment, we shall continue the analysis of the statics elaborated by the
great geometer from Brugge and first turn our attention to the problem
of the inclined plane.
Stevin arrives at the solution of this famous problem by a method so
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absolutely unique that it owes nothing to the various methods used by
Galileo, Descartes and Torricelli to solve it.

Heretofore, he says,IS we have enumerated the different kinds of weights pulling
vertically. Henceforth, we shall describe the properties of weights pulling obliquely. We
shall take as the foundation of these properties the truth contained in the following
theorem.
Theorem XI, Proposition XIX. Let there be a triangle in a vertical plane with a base

parallel to the horizon. On two sides are placed two spheres l9 in equilibrium with each
other.2o The apparent weight (sacoma) of the sphere on the left is to the opposing
apparent weight (antisacoma) of the sphere on the right as the length of the right side
of the triangle is to the left side of the triangle. Let ABC (Fig. 74) be the triangle, Stevin
adds, where side AB is twice side Be. Since the two spheres D and E have equal size
and equal weight, we need to prove that the apparent weight of sphere E is double the
apparent weight of sphere D.

In order to do so, let us add to these spheres twelve more identical
spheres, F, G, H, I, K, L, M, N, 0, P, Q, and R. Let us connect them
with threads of equal length in such a way that we form a wreath on
which the fourteen spheres are strung at equal distances. Let us place
this wreath on our triangle in such a way that four spheres rest on the
side AB and only two spheres on side Be.

If the apparent weight of the aggregate of the four spheres, D, R, Q and P, were not
equal to the apparent weight of the aggregate of two spheres E and F taken together,
one of these two aggregates would weigh more than the other. Let us assume that the
heavier aggregate is made up of the four spheres D, R, Q and P. On the other hand, the
four spheres 0, M, Nand L have the same weight as the four spheres G, H, I and K.
Thus the segment of the wreath formed by the eight spheres D, R, Q, P, 0, N, M and L
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fig. 74.
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would be heavier than the segment of the wreath formed by the six spheres E, F, G, H,
I and K. Since a heavier segment will draw a lighter one, the eight spheres will descend
and the six spheres will rise. Let us imagine that sphere D has descended and now
occupies the former place of 0, that E, F, G and H are now where P, Q, R and D used
to be and that I and K are where E and F used to be. The wreath or the necklace of
spheres will be in the very position it was originally, and for the same reason the eight
spheres on the left will weigh more than the six spheres on the right. These eight
spheres will descend again and the six on the right will rise. Thus these spheres by
themselves would assume a continuous and perpetual motion, which is impossible.

The apparent weight (sacoma)21 of the four spheres on the left is
thus equal to the opposing apparent weight (antisacoma) of the two
spheres on the right. And just as was previously stated, the sacoma of
one of the spheres on the left is half of the antisacoma of one of the
spheres on the right.
Let us assume that a body M (Fig. 75), resting on an inclined plane

AB, is pulled by a rope MN, stretched in a line parallel to the inclined
plane. Let this rope pass over a pulley N and let the free end carry a
weight P. What magnitude must this weight P have in order to hold the
body M in equilibrium? It must certainly be equal to the apparent
weight, to the sacoma of body M. In other words, the weight P will be
to the weight of the body M as length BC is to length AB.
This result can be stated in another way. Let us draw a triangle abc

with sides ac and ab perpendicular respectively to AC and AB, and
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with the third side parallel to AB. The weight P will be to weight M as
the side be is to the side ae. The geometrical construction which
Stevin22 gives here is obviously the same as we would use today to
express the fact that the tension in the rope MN and the weight of the
body M have a resultant perpendicular to the plane AB.
How can one determine the weight P (Fig. 76) if the rope pulling the

moving body M is stretched along a line MN which is no longer parallel
to the inclined plane AB? Stevin preserves the form of the preceding
derivation. If one draws a triangle abe with the vertical ae and with ab
perpendicular to AB and with the third side be parallel to MN, weight
P will be to weight M as side be is to side ae. The rule which is formu
lated is the same as the one which we use today to indicate that the
weight of the moving body and the tension of the rope have a resultant
which is perpendicular to the inclined plane.
But we must admit that this generalization of the first derivation in

the work of Stevin is nothing but a petitio principii. It does not seem to
us that the discussion23 which accompanies the statement can in any
way be taken as an argument.
The geometrical derivations which we have just given are equivalent,

in short, to the composition of forces. Indeed, Stevin will deduce from
them the general rule for the composition of two concurrent forces: the
famous law of the parallelogram of forces.
Stevin will assume that two ropes are supporting a heavy body. Then

he will first demonstrate that the directions of these two ropes, situated
in the same vertical plane, will converge at a point on the vertical
through the center of gravity of the suspended body. He will then try to
determine the tension in each of the ropes. He will construct a paral
lelogram with sides parallel to the two ropes and with a vertical
diagonal. He will then demonstrate that the tension in each of the ropes
is to the total weight of the body as the length of the corresponding side
of the parallelogram is to the length of the diagonal. In this way, he will
demonstrate the now famous law which gives us the resultant of two
concurrent forces. From this law one can also easily deduce various
consequences still considered classical today.
What intermediate steps did Stevin take to get from the theorems on

the inclined plane just mentioned to the law of the parallelogram of
forces? It is not possible for us to retrace those steps here because the
geometrical method of the Ancients, which Stevin used exclusively,
progresses by a long series of propositions connected by complex
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geometrical constructions. These laborious and complicated steps seem
onerous to us today because we have grown accustomed to the con
ciseness and simplicity of modern analysis.
Stevin did not follow this laborious path of deduction from its point

of departure to its conclusion. He needed two attempts in order to
arrive at the law of the parallelogram of forces. When he published the
first Flemish edition of his statics, he had already fully understood the
first part of the statement,24 The second part, however, was published
in an appendix on the equilibrium of ropes (Spartostatica),25 which was
included in the Hypomnemata mathematica.
Furthermore, the detailed intricacy of the logical apparatus brought

into play by Stevin does not function smoothly and we have already
pointed out one source of friction. It is not the only one, and the
development26 from the equilibrium of a body on an inclined plane to
the equilibrium of a body which has a fixed point seems to us rather
crude.
Whatever the objections one might have to more than one of the

arguments of Stevin, the laws which he set forth are accurate and
answer questions which from Antiquity on had challenged mechanicians,
without, however, having yielded any solution. The laws will continue to
be of use to later geometers working in statics. Stevin was thus justified
to look proudly on the monument he had constructed.
He was particularly proud of having solved the problem of the

inclined plane, which was a kind of a crown to his entire statics. On the
title page27 of the first edition of his work, there is a figure placed in the
center of a coat of arms displaying a triangle encircled by a wreath of
fourteen pearls bearing in Flemish the motto: 28 "Wonder en is gheen
Wonder." It was put there to remind the reader of the ingenious way by
which the geometer of Brugge had so easily untied this Gordian knot.
This demonstration draws all of its strength from one principle: the

impossibility of perpetual motion. Stevin uses this principle without
having previously asked his reader to accept it and without having listed
it among the postulates29 at the beginning of his statics. Was this
principle then so completely self-evident that this logical step was
thought by Stevin to be unnecessary? At any rate, among the explicitly
formulated postulates, Stevin lists the following first: Equal weights
suspended from equal arms of a lever are in equilibrium. The impos
sibility of perpetual motion is undeniably a proposition which is much
less obvious than the proposition just quoted. The latter has never been
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questioned, while, on the contrary, every epoch throughout history has
seen inquisitive minds grappling with the problem of perpetual motion
and they were not all fools by any means.
Where else could Stevin have gained this total confidence in the

axiom on the impossibility of perpetual motion, if not in the argumen
tation of Cardan, who, in turn, had borrowed it from Leonardo da
Vinci? It is true that Stevin mentions only one single work by Cardan,
the Opus novum de proportionibus. But after having carefully read and
criticised this work, how could he possibly not have known the De
Subtilitate, which was so much in fashion during his time? And if he
owes his belief in the impossibility of perpetual motion to his reading of
the De Subtilitate, does not this belief pay indirect homage to the
considerations developed in this work on the force necessary to main
tain a machine in motion? Because without these considerations, which
Stevin so vehemently faulted, Leonardo da Vinci and Cardan would
have been unable to justify their attacks against perpetual motion.
So it happens that the very same people who pretend to understand

statics as perfectly autonomous and fully independent of any reference
to the laws of motion, find themselves compelled to resort more or less
explicitly to the principles of dynamics.
Among the appendices to his original statics which Stevin was to

include in his Hypomnemata mathematica, we find one30 which deals
with the equilibrium of pulleys and the block and tackle (Trochleo
statics). He formulates the following brief observations3! about these
mechanisms: "Notice that in the present case the following axiom of
statics can be applied:

Vt spatium agentis, ad spatium patientis; sic potentia patientis ad potentiam agentis."32

This is the only passage in which Stevin alludes to the concepts
developed by those who had turned their attention to the statics
preceding his own. Any consideration of the relation between the
velocity of the force and the velocity of the resistance is carefully
excluded from this reference. In this, Stevin is consistent with his
previous harsh criticism of the Peripatetic formulation of the Principle
of Virtual Velocities. Only the paths traversed by the force and by the
resistance are taken into consideration, just as they will be systemati
cally considered by Descartes, whose research was undoubtedly in
fluenced by the statics of Stevin. This undeniable influence gives special
significance to the brief passage just quoted because this passage marks
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in a certain sense a turning point in the path taken by the science of
equilibrium.
Peripatetic dynamics leads most naturally to the declaration that two

weights are in equilibrium when they are in inverse ratio to the virtual
velocities of their points of application. This statement dominates not
only the Mechanical Problems attributed to Aristotle, but also many
works from the School of Alexandria, the Causes of Charistion, as well
as the commentary on the Causes by Thabit ibn Qurra.
A principle similar in effect to the preceding one, yet very distinct in

origin, consists in positing equilibrium between two weights when the
virtual descent of one is to the virtual ascent of the other as the weight
of the second is to the weight of the first. This principle is implicitly
admitted by Jordanus and leads him to his theory of the rectilinear
lever. From this principle, the Precursor of Leonardo da Vinci cleverly
deduces the theory of the bent lever and the law of the inclined plane.
In the works of the 16th-century geometers, the two principles which

stem from different concepts, but which are undistinguishable when
applied, are continually interchanged. Leonardo da Vinci and Cardan
recognize both principles and very often it is difficult to decide if they
base their arguments on one or the other. After Tartaglia presents the
doctrine of Aristotle, he borrows the method invented by Jordanus and
his School. Finally, Guido Ubaldo refuses to base his deductions on
either one of these principles. After having made one corollary to the
other, he subsequently considers them as equivalent and is always
careful to formulate them together.
Galileo, whom a misguided tradition portrays as rejecting Peripatetic

dynamics in order to build a new dynamics, adheres in almost all cases
to the Principle of Virtual Velocities33 as formulated by Aristotle. It is
only parenthetically and rarely that he gives it the form of the Principle
of Virtual Displacements. On the other hand, with his attacks on the
Peripatetic principle and with his brief remarks quoted above, Stevin,
the practitioner of statics, prepares the way for Descartes, who will
bring to fruition the notions deriving from the School of Jordanus.
Descartes will show how the Principle of Virtual Displacements saves
the fecund method introduced into statics by the Peripatetics, while the
dynamics of Aristotle will crumble under his blows and those of
Beeckman.
Stevin does not seem to have grasped the significance of the relation

between the path traversed by the force and the path traversed by the
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resistance. Early on, this relation had helped to undermine the claim,
attributed to Archimedes, that a machine could be built which would be
so powerful as to allow one man to move a weight as heavy as the
Earth. Quite correctly it was pointed out that the path traversed by this
resistance would be to the path described by the hand of the man as the
force exerted by the man would be to this enormous weight. Even a
very great displacement by this hand would only produce an infinitely
small displacement of the Earth. Stevin mentions this objection which
he can not contest because of its intrinsic merit, but he does not seem
to have grasped its importance.

Although this displacement, he says,34 is neither visible nor measurable, nonetheless,
the possibility of producing an infinite force has been demonstrated to us and any mind
can comprehend it. If its action were to continue through centuries, it would finally
produce a visible displacement ... The exclamation of Archimedes in his joy at having
discovered the Charistion: "Give me a place to stand and I will move the earth," cannot
be considered a statement about an impossibility or absurdity.

The passage from which we have taken this quote is interesting in
more than one respect. According to Jacques Besson, Stevin asserts35

that the Charistion so admired by Archimedes was a machine designed
to haul boats into drydock. The construction of this machine was based
on the application of the worm gear and it had been invented to haul a
large galley which Hieron of Syracuse had built for Ptolemy, King of
Egypt. The designation Charistion was supposed to refer to the elegant
shape of that ship. In truth, it is hard to understand why this elegant
comber could give its name to the galley itself rather than the instru
ment designed to haul the galley into drydock. In Chapter V we stated
how little credit should be given to this legend in our opinion.
For the same task, Stevin preferred to the Charistion of Archimedes

a machine which he named the pancration because it has greater
power. This machine is none other than our modern windlass.
Stevin discusses this windlass,36 its construction and its capabilities in

such a way that the reader is led to believe that Stevin is the inventor of
this machine, However, we know that its invention dates back to Hero
of Alexandria. Not only does Hero describe this windlass at the
beginning of his book on the Elevator, but Pappus, following the great
mechanician, also gives us a description of this machine.37 Pappus
attributes its invention to Archimedes and tells us that the proud
exclamation of the great Syracusan geometer was occasioned by this
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invention. It is certain, however, that Stevin did not know of the work
of Hero, because the manuscript of the Arabic translation of Qusta ibn
Luka, recently published by Baron Carra de Vaux, was brought to
the library at Leyden by Golius (1596-1667) long after Stevin had
published his statics. On the other hand, the great geometer from
Brugge must surely have known the Collections of Pappus, because he
quotes this author38 when borrowing his definition of the center of
gravity which39 is in the same book (Book VIII) which contains the
description of the windlass. Stevin, as we can see, was not particularly
concerned to name his predecessors, and to mention his borrowings
from them. In this, he merely followed the traditional omissions com
mitted by all of his contemporaries. An author would only bother to
quote his predecessors or rivals if it was for the purpose of attacking
them. Such a custom makes work very difficult for the historian who is
attempting to untangle the influences which might have suggested a
novel idea to a particular geometer. Thus the historian is often reduced
to conjectures.
Did Stevin know the doctrines professed in statics by the School of

10rdanus? It is difficult for me to doubt this. How can we possibly
believe that he had not seen the treatise published by Peter Apian as
well as that of 10rdanus or one of the many editions of the Quesiti et
Inventioni diverse of Tartaglia? Surely he was familiar through one or
the other of these works with the notion of positional gravity, to which
his notion, called sacoma, corresponds so well. Was Stevin familiar with
the Mechanicorum liber of Guido Ubaldo? He might have known it
and used it in his research on statics. The Mechanicorum liber was
published in 1577 and the Italian translation by Pigafetta came out in
1581, while the first edition of the statics of Stevin is dated 1586. It is
true, nevertheless, that it is one of Stevin's great claims to fame to have
accurately solved a problem which Guido Ubaldo merely posed.
Indeed, the School of 10rdanus had only given consideration to

positional gravity, i.e., to the component of the weight along the
trajectory which a moving body follows. Guido Ubaldo insisted on the
necessity of taking into consideration the component of the weight
along the perpendicular to this trajectory. But he was certainly not
aware of the procedure by which to determine these two components.
Stevin states the law by which the weight is divided between these

two rectangular components and we cannot deny him the priority of
this discovery.4o Doubtlessly, Leonardo da Vinci had possessed mo-
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mentarily a correct understanding of this law, according to which a
weight is divided into two given directions. However, he rejected this
law almost immediately after he had grasped it and no one seems to
have found it in his notes or made it public.

If Stevin succeeded in correctly dividing a weight into two rectan
gular forces, this was due to the solution of the problem of the inclined
plane. Despite the unique and ingenious method by which Stevin was
able to solve this problem, we cannot forget that the School of Jordanus
had solved it just as accurately before him nor can we doubt that Stevin
was familiar with the research of his predecessors.
By the time Stevin published the first edition of his statics, the

Questiti et Inventioni diverse of Nicolo Tartaglia had already gone
through five editions and the latest one was already thirty-two years
old. Twenty-one years earlier, Curtius Trojanus had printed the Jordani
opusculum de ponderositate. How could Stevin not have known the
splendid theory on the inclined plane contained in the work of the
Precursor ofLeonardo da Vinci?
There can be no doubt that the admirable work accomplished in

statics by the great geometer from Brugge was in several instances
favorably influenced by the ideas expressed from the 13th century on
by Jordanus de Nemore and the mechanicians of his School.
There is one more discovery which had been made before Stevin,

but of which he was perhaps unaware. The geometers of the School of
Alexandria had attempted to deduce the law of the lever from the
demonstration of the following proposition: A heavy cylinder attached
to the arm of a lever in such a way that the generators are parallel to
the lever, is equivalent to an equal weight suspended by a rope and
attached to the center of the cylinder. This theorem played an essential
part in the four propositions attributed to Euclid in the Liber Charas
tonis published by Thabit ibn Qurra, and in the De canonio, and it also
formed the conclusion of the Elementa Jordani de ponderibus.41

By reversing, in a certain sense, the demonstration utilized up to his
time, Stevin conceded the accuracy of this proposition and he very
elegantly deduced from it the proof for the law of the equilibrium of the
lever. After Stevin, Galileo gives a similar deduction in the First Day of
his Discorsi. Perhaps as early as Antiquity, but certainly from the 13th
century on, it was known that the law of the equilibrium of the lever
could be justified in this manner.
One of the numerous manuscript collections 42 kept at the Biblio-



SIMON STEVIN 199

theque Nationale contains an important fragment written in elegant
Gothic script and bearing the undeniable mark of the 13th century.
This fragment contains a very accurate version of the treatise on
specific weights attributed to Archimedes. This treatise, as we indicated
earlier, appears to be related to the De ponderosa et levi attributed to
Euclid and to derive from the School of Alexandria, just as does the De
ponderosa.
Following this treatise on specific weights are several disparate

propositions which might have had the same origin as the treatise
quoted above. The objective of the first of these propositions is to
establish geometrically the equality which modern algebra will express
in the form:

(a - c)b = (a - b)c + (b - c)a

Immediately following this proposition is a unique and elegant demon
stration of the law of the lever, which we shall briefly summarize. Two
equal weights, whatever their form, are in principle assumed to be in
equilibrium if they hang from the extremities of lever arms of equal
length.
Two equal weights are suspended from the two points a and b

equidistant from the point of support c (Fig. 77). One of the weights f,
suspended at a, has no specified form while the second weight is a
cylinder eg whose generators are horizontal. The center of this cylinder
is situated on the vertical rope extending from point b. This cylinder is
long enough for its extremity g to pass beyond the vertical of the point
of support.
Let us lift this cylinder until it becomes contiguous with the lever and

d
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fig, 77.



200 CHAPTER XII

fix it in the position e' g' of this lever. According to the postulate from
which we will derive our demonstration, the lever will remain in
equilibrium.
But it is obvious that we will not disturb this equilibrium if we

remove from our cylinder the segment cg' beyond the vertical line at
the point of support as well as an equal segment ch' on the other side
of the same vertical. In this way, the cylinder e' h' coinciding with the
lever is in equilibrium with the weight F, suspended at a.
According to our postulate, the cylinder e'h' can, in tum, be

replaced by an equal cylinder eN hN suspended from a rope attached to
the beam at q, i.e., at the midpoint of e'h'.

If we designate by I the weight of the cylinder e' h' or of the cylinder
eN h N, we shall easily demonstrate that we have the following equation:

I ca
-=-
f cq

which is the law of the equilibrium of a lever.
Was Stevin acquainted with this demonstration? It is impossible for

us to answer this question. Whatever the case may be, several conclu
sions seem beyond any doubt.
The first conclusion is that Stevin was influenced by his predecessors

much more often and more deeply than his very rare references would
lead us to believe. The second conclusion is that the ideas planted in
him through the works of other geometers germinated and flourished
magnificently through his meditations and often far exceeded the seed
from which they sprang. In particular, it is the idea of resolving a force
into two components, which had only been surmised by the School of
Jordanus and by Guido Ubaldo, that furnished Stevin with the theo
rems which we use today and for which Stevin found so many applica
tions. Before Stevin, only Leonardo da Vinci had had an equally clear
understanding of the law of the composition of forces, but he failed to
recognize his discovery and no geometer, it seems, was able to exhume
it from his notes.
Finally, the third conclusion can be stated as follows: Despite the

complexity and apparent rigor of the logic which Stevin puts to use in
each of his demonstrations, he is still far from establishing a conclusive
proof for the law according to which he combined concurrent forces.
After his death, this law still needed the geometer who would establish
it in an entirely convincing way. That will be the task of Roberval.



CHAPTER XIII

THE FRENCH CONTRIBUTION TO STATICS - ROBERVAL

1. SALOMON DE CAUS. THE EARLY WORKS OF F. MERSENNE.

THE COURSE ON MATHEMA TICS BY PIERRE HERIGONE

Around the turn of the 16th century, the study of statics flourished in
the Low Countries with Stevin and in Italy with Galileo. But during the
first third of the 17th century no important work concerning this
branch of science was printed in French.
French readers wishing to learn about statics and hydrostatics could

only consult l Les Livres de Hierome Cardanus, medecin milanois,
intitules de la'Subtilite et subtiles inventions, traduis de latin en fran~ois
par Richard Le Blanc. Although slightly dated, this work continued to
be useful.

In 1615, the Norman, Salomon de Caux or de Caus (1576-1630)
published a work2 which is of importance to the history of the steam
engine, as Arago pointed out. In this book3 only one modern author is
quoted as having written on mechanics and that author is Cardan. The
concepts of hydrostatics and statics which precede the description of
the machines invented or perfected by Salomon de Caus are all bor
rowed from Cardan. All Salomon de Caus did was to restate neatly and
orderly what appeared in disorder in the bizarre work of the geometer
astrologer.
Since Salomon de Caus was primarily an engineer, he pays almost

exclusive attention to the law of equality between the motor work and
the resisting work in the statics of Cardan. It is a law for which Cardan
himself was probably indebted to Leonardo da Vinci.
In a lever, for instance, the weights which are in equilibrium with

each other are in inverse ratio to the arcs described by their points of
application in a virtual displacement.

If certain men would consider this demonstration more carefullY,4 they would no longer
delude themselves in trying to construct various machines with which they hope to lift
heavy burdens with a small force. Although this quite possible, as shall be demon
strated, the small force must, additionally, travel a longer distance, as we have demon-
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strated above. And I will not demonstrate here that these displacements must occur in
the same time.

The same observations are made about the lever and pulley:5

Thus, if one pulls twenty feet of rope, the weight will only rise by ten feet. With this
machine one man will lift the same weight that two men would lift with a simple
machine. However, the two men would lift during the same time double the length, that
is to say, twenty feet before one man would have lifted ten. And if there were two
pulleys in the block and tackle, the force would be fourfold, but the weight would only
rise five feet for every twenty feet of rope pulled in.
Gears6 exist for the same reason, because by augmenting the force, one augments

the time proportionally.

Salomon de Caus then describes a machine where two axles C and E of
the same diameter have respectively a cogwheel of six teeth and a gear
wheel of forty-eight teeth, all equal in size and meshing with one
another.

The above-mentioned cogwheel must do eight revolutions to one for the large wheel so
that a pound weight suspended from axle C will be equally balanced by an eight pound
weight suspended from axle E, assuming that both axles are of the same size. Thus, if
one wishes to lift a four hundred pound weight with axle E, it will only require as much
work as a fifty pound weight using axle C ... so that one man lifting a load using this
machine would produce as much work as eight men would produce if each of them had
axle C to work with. But the eight men would lift their weight in one hour, while one
man alone would lift his weight in eight hours.

This is without a doubt the first time that the word work is used in
French with the meaning which it will have in contemporary mechanics.
The pinion gear and the wine press give Salomon de Caus occasion

to observe the equality which connects the motor work to the resisting
work in every machine. This law is borrowed from Cardan as well as
the examples used by the famous astrologer.
The year 1634 is a milestone in the history of French statics. It was

in that year that three books were published which revealed to the
mechanicians of our country the discoveries in mechanics which had
been made abroad.
Indeed, it is in 1634 that the Elseviers published in Leyden the

Mathematical Works of Simon Stevin in an edition translated, amended
and enlarged by Albert Girard. Furthermore, it was in 1634 that
Mersenne published the Mechanics of Galileo with the publisher Henry
Guenon is Paris. Finally, Pierre Herigone had his Cours Mathematique
published in Paris in 1634.
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The simultaneous publication of these different works undoubtedly
initiated a powerful movement which directed the attention of the
French geometers to the laws governing the equilibrium of weights.
Inspired by these problems, these geometers produced remarkable
works which perfected and completed the solutions of their predeces
sors. Thus the French School of Statics was born. The first two eminent
practioners of this School - Roberval and Descartes - were also arch
rivals.
The books published in 1634 by Girard, Mersenne and Herigone

disclose to us the sources which will nourish this current of French
thought. Mersenne added various supplements to his translation of the
Mechanics by Galileo:

which will be as gratifying as the rest,? because they contain novel speculations which
can serve to penetrate the secrets of physics and, in particular, everything concerning
natural as well as violent motion.

In these supplements, Mersenne borrows most often from the Me
chanicorum liber of Guido Ubaldo and does not conceal his admiration
for this treatise:

Those wishing to study mechanicsx alone should first read the entire eighth book of
Pappus, in which he explains various kinds of instruments, and then read the books of
Guido Ubaldo, who discussed the nature of such instruments better than anyone else.

The first supplement is devoted to explaining the concept of moment,
and the way it is presented reminds us very much of the format used by
Giovanbattista Benedetti. It would not be surprising if Mersenne had
borrowed it from him, because in a different work9 Mersenne adds the
following remarks to his argumentation after having used the same
concept of moment as Benedetti:

As does Jean Benoist in the 3rd Chapter on mechanics. I 0

Pappus, Guido Ubaldo and Benedetti are not the only ones to have
influenced Mersenne's supplements to the Mechanics of Galileo. In
Supplement X, which concludes the treatise, he gives]] the procedure to
determine the pressure exerted by a weight on an inclined plane:

If one wants to determine the force exerted by weight F on the plane Be, one needs to
take the base of the triangle AC and compare it with the hypotenuse BC, the more so,
since the entire force of weight F is to the weight exerted on the plane BC as BC is to
AC.
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This theorem is one of the most important propositions demonstrated
by Stevin. Mersenne knew the Hypomnemata mathematica before
Girard had translated them. We shall have to return to Supplement X,
when we discuss the work of Roberval.
In one of the first works of this indefatigable member of the Order of

the Minims, we can find proof that he knew the work of Simon Stevin
before Girard had published°it in translation.
The Mechanics of Galileo is preceded by a dedicatory letter to Mr.

de Reffuge, Counselor of the King to Parliament. This letter begins as
follows:

Eight years ago I presented to you the books on mechanics written in Latin...

Indeed, in 1626 Mersenne had published a series of short treatises
with the title Synopsis mathematica,12 and each of these treatises
contained a collection of propositions which had been taken from
ancient and modern authors and had been reproduced without any
figures or demonstrations.
According to Niceron,13 one of the treatises was entitled: Euclides

elementorum libri and another one: Theodosi, Menelai et Maurolyci
sphaerica et cosmographica. 14 These two treatises are lacking in the
copy of this very rare work, which was sent to us by the Bibliotheque
Municipal of Bordeaux. However, that copy contains only three trea
tises, each having its own special pagination. One of these treatises
contains all of the propositions which are to be found in the works of
Aristotle. The second has all of the propositions demonstrated by
Apollonius on the subject of conics and by Serenus on the subject of
conic sections and cylinders. The third treatise, finally, entitled Mech
anicorum libri, is the same one which Mersenne mentions in his letter
addressed to Mr. de Reffuge.
The preface, which bears the mark of Peripatetic influence, asserts

that almost all of the theorems of mechanics can be reduced to the
following axiom:

Rotunda machina est moventissima, et quo major, eo moventior. 15

To which Mersenne adds:

Quo ad illam divinam sphaeram spe erigamur, cujus centrum ubique, circumferentia
nullibi esse dicitur; et quae tempus ab aevo ire jubet, stabilisque manens dat cuncta
moveri. 16
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Pascal,17 who is no longer a Peripatetic but a Cartesian, will not call
God, but rather the universe

... this infinite sphere with a center which is everywhere and a circumference which is
nowhere.

These three books on mechanics probably offer us a complete
summary of what the Frenchman who was the best informed on scien
tific developments outside of France knew of statics in the year 1626.
The first book is entitled: De Gravitatis et Universi centro and is

composed of four parts, several of which will be of great interest to our
study in Chapter xv. The first part is often inspired by Guido Ubaldo.
The second is composed of propositions taken from the book of
Commandino on the centers of gravity of solids. The third book
reproduces a series of theorems by Luca Valerio on that same topic.
Finally, the work of J. B. Villalpand on Jerusalem and its temple - we
shall talk about this in Chapter XV - provides the definitions of the
fourth part for mechnicians who continue to reproduce these formula
tions until the end of the 17th century.
The third book, De hydrostaticis et iis quae adpquam pertinent,18 is

borrowed in its entirety from Stevin. We shall nowt~rn our attention to
the second book, which is dedicated, as Mersenne informs us in his
preface, to a restatement of many propositions which had been demon
strated by Guido Ubaldo and Stevin.
Indeed, Stevin and Guido Ubaldo furnished most of the theorems

on the balance and the lever contained in part one, on the laws of
the pulley and the block and tackle related in part four, as well as on
the theory of other machines stated in part five. The third part, per
meated with the most obscure and confused parts of Peripatetic statics,
deals with Des applications utiles et merveilleuses du cercle aux
Mechaniques. 19

The second part deserves our attention for a moment. It is entitled:
De ponderibus obliquis et de viribus vectis, et librae et aliarum machin
arum ad ea reductarum, ubi et de navigatione et de Quaestionibus
mechanicis Aristotelis.20 The conclusion of the second part reproduces
almost in its entirety the Mechanical Problems of Aristotle, but every
thing preceding this is borrowed from Stevin.
We do not have here a complete list of the propositions demon

strated by Stevin on the inclined plane and the composition of forces.
The theorems which Stevin included in the Supplement to Statics are
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not mentioned at all either because Mersenne did not yet know about
them, or because he considered them to be insufficiently established.
Mersenne, indeed, tells us that the theory of oblique weights was far

from being universally accepted by 1626.

Heretofore, he says,21 hardly anything has been demonstrated concerning weights which
rise or descend obliquely. Thus we shall for the moment only state those propositions
upon which the great majority ofgeometers agree.

The first of these propositions deals with apparent weight on an
inclined plane. After this proposition, Mersenne makes the following
reflections,22 which show us that the demonstration given by Stevin was
far from satisfying all mechanicians:

Stevin proves this proposition by showing that if it were not true, perpetual motion
would exist, which he considers to be absurd. But some maintain that he erred in this
just like Pappus.... They think that the falsity of this proposition as well as the error
by Pappus can be clearly demonstrated.

Further on, Mersenne23 writes the following lines:

But all of this seems to rest on the axiom which I touched upon above. The velocity of
descent of one of the weights is to the velocity of descent of the second weight as the
length of one of the sides of the triangle24 is to the length of the other. Indeed, two
descents are equal when they correspond to the same diminution in distance to the
center. The more oblique the side of the triangle, or, to say it differently, the more
oblique the plane, the longer this side and the slower the descent of a heavy body along
this side and hence, the slower its approach toward the center of the universe.

It is impossible to misunderstand the intent of this passage. The
demonstration of the law of the inclined plane which is sketched out
here is the same one which Galilieo gives in his Della Scienza Mec
canica, which Mersenne was to translate in 1634.
Should we conclude, therefore, that Mersenne was in possession of a

manuscript of the treatise by Galileo as early as 1626? There is every
indication that we should reject this interpretation. Not only is the name
of Galileo not mentioned in the Synopsis, but, apart from the passage
just quoted, none of the remaining propositions bear any trace of the
great Florentine geometer. Finally, at the beginning of the translation of
the Mechanics of Galileo which he publishes in 1634, Mersenne writes
to Mr. de Reffuge:
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After having presented to you eight years ago the books on Mechanics written in Latin,
I now make known this new treatise by Galileo which sheds new light on this science...

This sentence seems to indicate that Mersenne did not come to know
the Della Scienza Meccanica until after the publication of the Synopsis.
We must, therefore, conclude that Mersenne through his own re

flections developed the theory of the inclined plane which Galileo
developed independently. The construction of this demonstration was
hardly difficult. It was enough to take the argument of the Precursor of
Leonardo da Vinci, which Tartaglia had published in the Quesiti et
Inventione diversi and which Curtius Trojanus had included in the
Jordani opusculum de ponderositate, and to substitute for it the veloc
ities of the distances traversed. Such a substitution was familiar to the
readers of Guido Ubaldo, and Mersenne was more than capable of
discovering on his own the demonstration for which Galileo is so
excessively praised.
Thus in the eyes of the French geometers, the argumentation by

Simon Stevin had not entirely superceded the older and solid reasoning
constructed by the School of Jordanus. We shall have further proof of
this when we study the Cours mathematique of Pierre Herigone.
We know very little about this mathematician. Only one episode in

the career of this geometer is known. Herigone was a member of a
commission in charge of examining the method proposed by Morin to
measure longitudes at sea. On March 30th, 1634, the commission
rejected the method of Morin and this decision prompted the publica
tion25 of the Lettres escrites au Sr Morin par les plus celebres astronomes
de France approuvans son invention des longitudes, contre la derniere
sentence rendue sur ce subject par les sieurs Pascal, Mydorge, Beau
grand, Boulanger et Herigone, commissaires deputez pour en juger.26

In 1634, Pierre Herigone published a complete course on mathe
matics in five volumes.27 This course was written in Latin and French.
Furthermore, the demonstrations were set forth by means of abbrevia
tions and symbols thanks to which, according to the author, they could

... easily be understood without making use of any language.

The notation used by Herigone scarcely bears any resemblance to the
algebraic notation in use today. Thus, where we use the three symbols
=, >, <, Herigone wrote 212, 312 and 2/3.
This course, which has fallen into oblivion in our time, enjoyed a



208 CHAPTER XIII

certain popularity at that time. On February 26th, 1639, Debeaune
wrote to Mersenne:28

As far as Mr. de Beaugrand is concerned, I must confess that I have learned much from
the geometry of Mr. Descartes and what I knew before, I had learned from the algebra
ofHerigone.

After having been augmented by two supplements, the work of Pierre
Herigone had to be published again in Paris in 1644 by Simon Pigel.
The part of this work which interests us here is the third volume of

the Cours mathematique, contenant la construction des tables des sinus,
et logarithmes, avec leur usage aux interests, et en la mesure des
triangles rectilignes; la geometrie practique; les fortifications; la milice;
et les mechaniques.29

Although the name of the author is not mentioned for the part of the
course entitled: Mechanica - Les M&haniques, it is easy to recognize
the various influences on Pierre Herigone when he wrote this chapter.
First of all, the influence of Guido Ubaldo is evident. The Mechani

corum fiber must have been constantly used by Herigone, since the
Latin text of proposition VI of the Mechanica reproduces, without
changing a single syllable, the text of the eighth proposition concerning
the lever by the Marquis del Monte. The various problems of the
balance related to propositions III and IV are also borrowed from the
treatise by the Marquis del Monte.
Herigone does not seem to know at all the discoveries of Galileo,

because nowhere does the Cours mathematique reflect a single thought
of the illustrious Florentine. On the other hand, the French geometer
borrows heavily from the statics of Stevin, as the following analysis will
demonstrate.
This analysis will show us a third source of influence on the science

of Herigone. The statics of the School of Jordanus had not remained
unknown to him. The demonstration of the law of the lever devised by
Jordanus de Nemore and the demonstration of the law of the inclined
plane constructed by the Precursor of Leonardo both came down to
Herigone, who was able to make the most of them. How did he know of
these demonstrations? Was it by studying the Quesiti et Inventioni
diverse of Tartaglia or by reading the Jordani de ponderositate edited
by Curtius Trojanus? Or could it have been by examining directly an
ancient manuscript? We will perhaps be able to respond to these
questions later in a more persuasive fashion.
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The point of departure for the statics of Pierre Herigone is the law of
the equilibrium of the lever which he obtains through the elegant
demonstration proposed by Stevin.3D

The proposition which sets forth this law is immediately followed by
this assertion: 31

With two weights in equilibrium, the heavier weight is to the lighter as the displacement
of the lighter is to the displacement of the heavier and as the perpendicular to the
motion of the lighter weight is to the perpendicular to the motion of the heavier weight.

Upon this last remark 10rdanus had based the law of the equilibrium
of the lever, but Herigone does not do the same. On the contrary, from
the law of the lever established in the manner of Stevin, Herigone
deduces as a consequence what 10rdanus had made a principle. The
intuition which motivates him to present his ideas in this order is quite
evident. He wanted to justify, for a particular case, the proposition
which he will later make into a general hypothesis:

With two weights in equilibrium, the heavier one is to the lighter as the perpendicular
to the motion of the lighter is to the perpendicular to the motion of the heavier.

Leonardo da Vinci had formulated very precisely this hypothesis
several times, but he used it together with the hypothesis of Aristotle,
according to which the relation between the virtual velocities discloses
the relationship between the weights in equilibrium. Cardan made even
less distinction between these two hypotheses, and Guido Ubaldo, who
reduced them to the status of corollaries, always considered them of
equal value. Stevin, who had rejected the hypothesis of Aristotle,
reduced the principle of 10rdanus to nothing more than a brief remark
found at the end of the theory on the block and tackle, while Galileo
returned to the Peripatetic statement concerning velocities almost to the
exclusion of everything else. Thus for the first time since the Middle
Ages, the principle of 10rdanus was reaffirmed in full vigor.

It is not that Herigone omitted any allusion to the relation between
virtual velocities, but he reduced this allusion to a very concise corollary,
which he subordinates to the preceding proposition and formulates in
the following terms:

Corollary: From which it appears that the time of the motion of a weight is all the
longer, the easier the weight can be moved and all the shorter, the harder it is to move
the weight and vice versa.
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When Herigone wants to know the ratio between the applied force
and the resistance in a simple device, he compares the distances
traversed and not the velocities, as the following quotes show:32

On the endless screw. The ratio between force and weight can also be found in this
instrument by calculating the displacements which force and load make in the same
time. On the multiplication of the force of the agent by means of toothed wheels. With
wheels as well as with other instruments, the weight is to the force supporting it, as the
displacement of the force is to the displacement of the weight.

The most important application which Herigone was to make of the
principle of lordanus is the demonstration of the law of the inclined
plane. This demonstration33 follows:

If a straight line drawn from the apex of a triangle to its base is perpendicular to the
horizon, the weights which have the same ratio to each other as the sides of the triangle
on which they are supported will be in equilibrium.
Because in the same time that weight G (Fig. 78) descends from point C to point B,

the weight D rises from point A to point E and, consequently, BC will be the vertical
height of weight G and EF of weight D. Therefore, since D is to G as the vertical BC is
to the vertical EF, the weights D and G are in equilibrium by reason of their positions.

This deduction is essentially the same as the one created by the great
unknown mechanician who belonged to the School of lordanus and
whom we have called the Precursor of Leonardo da Vinci. The influence
of this medieval geometer on Herigone is here quite apparent even
down to the wording, such as:

The weights D and G will be in equilibrium by reason of their position - erunt situ
aequilibria.34

This reminds us of the positional gravity dealt with in 13th-century
statics.

G

fig. 78.
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The most prolific principles of the School of 10rdanus must have
reached Herigone and, most likely, also the various other French
geometers of his time, so that we may number the demonstrations by
10rdanus and the Precursor of Leonardo da Vinci among the sources
which contributed to the progress of statics in France. Furthermore, the
Cours of Herigone greatly contributed to the diffusion of ideas deriving
from these sources.
Herigone not only has recourse to the simple and rigorous demon

stration of the Precursor of Leonardo da Vinci to justify the law of the
inclined plane, but he also knows the ingenious demonstration of
Stevin, which he states in his own way:

Another demonstration ofproposition eight. If the weights which are proportional to the
sides of a triangle were not in equilibrium, a perpetual motion around the triangle
would ensue, which is absurd in view of the fact that nature does nothing which does
not come to an end. Therefore, the weights proportional to the sides of a triangle are in
equilibrium.
That perpetual motion would ensue around a triangle if the weights proportional to

the sides of the triangle were not in equilibrium, can be shown in the following way: Let
us imagine that BCAEB (Fig. 79) is a tube of uniform diameter and filled completely
with water or some other substance so that nothing can move inside the tube. Because
AB is assumed parallel to the horizon, the water in the tube AEB will be in equilibrium
and the weight of the water in the tube CB will be to the weight of the water in the tube
AC as the length of the tube AC is to the length of the tube CB, because water is a
homogeneous liquid and because we assumed the tube to be of uniform diameter.

Now if one assumes that the force of descent of the water along one of the sides - side
AC, for example - is greater than the force of descent of water along the other side
CB, the water of the tube AC will descend while the water of the tube BC will move
into its place. In this way, the tube AC will always be filled with water and will always
have a greater force of descent than the water in tube CB. Consequently, the motion
will be continuous, which is absurd. Therefore, since a perpetual motion of the water

A

fig. 79.

B
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inside the tube is impossible, it is necessary that the force of descent of the water in
tube AC be equal to the force of descent of the water in tube CB. This is what was to
be demonstrated.

For the wreath of spheres devised by Stevin, Herigone substituted a
column of liquid of uniform diameter. This change is exasperating. One
could just as easily have supposed that the two tubes AC and BC are of
different diameters, because the equilibrium of the liquid would be
maintained at any rate. If the demonstration by Herigone were conclu
sive, one could prove that any two given weights are held in equilibrium
on two planes of any given inclination.
Further evidence of Herigone's ignorance of the laws of hydrostatics

can be found in the brief tract entitled Les principes ou axiomes des
spiritales, which concerns hydrostatics and can be found at the end of
his Mechaniques. He was unable to gain from Stevin's work an accurate
understanding of the properties of fluids.
Most assuredly, it was not by reading the hydrostatics of Stevin that

Herigone was inspired to modify the theory of the inclined plane
formulated by the great geometer of Brugge, a rather clumsily made
modification in any case. Thus we can assume with a high degree of
probability that this modification was suggested to him by an author of
the 13th century.
We have seen that Herigone surely knew the treatise on mechanics

written by the Precursor of Leonardo da Vinci during that century. One
of the texts,35 copied in the 13th century, which brought this treatise to
our attention contains an interesting feature. At the bottom of the page
where the author concludes the first part of the treatise with a beautiful
solution to the problem of the inclined plane, which Herigone repro
duces here, an annotator of the 13th century added the following
statement:

Note that the following consequence derives necessarily from the last proposition of
this section: Let us take two tubes of the same size and similar in all other respects, join
them in such a manner that they form an angle, fill them with water and put one of the
extremities into water in such a way that the two extremities are at equal distance from
the horizontal plane. The water will remain in equilibrium and will not descend. If one
slightly lowers the extremity of the tube which does not rest in the water, the water will
start to flow on the side. From this it follows that in such devices the water can not
move either to a position higher than its original position or to a place of the same
height; it must necessarily be lower.

If one compares the theory of the syphon to the solution of the inclined
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plane given by Stevin, one immediately has the demonstration devised
by Herigone. Thus it is entirely possible that Herigone read the passage
we have just quoted.
One becomes even more convinced after examining his few texts on

hydrostatics. Among the Principes ou axiomes des spiritales, one finds
the following statement bearing the number III:

The water in a tube which has a longer vertical exerts more pressure than the water in a
tube with a shorter vertical.

Further on, in the Consequences, we read:

From the third axiom it follows that if ABC (Fig. 80) is a syphon filled with water and if
one extremity A rests in the water of the vessel DF, while the other extremity C is
lower than extremity A, all of the water in vessel DF which is higher than the extremity
A, will flow out of the syphon ABC.

The insight Herigone has on the syphon is obviously the same as those
demonstrated by our 13th century annotator.
When writing his Cours mathematique, Herigone borrowed heavily

from the mechanicians of the School of Jordanus. He contributed
greatly to the diffusion of this fecund principle among the geometers of
the 17th century. It was undoubtedly mainly through him that this
principle came to the attention of Descartes, who made it the basis for
his entire statics.
Herigone takes from Stevin the various propositions which remain

to be discussed. The first is a corollary from the theory of the inclined
plane. What is the force exerted on the plane by the weight placed on
the plane? The correct answer36 is given by Stevin:

fig. 80.
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It appears that the weight of body D (Fig. 81) is to the force exerted on the plane AC
by the body as length AC is to length AF.

Stevin had not furnished a convincing demonstration using this correct
proposition. Will Herigone be more fortunate? He joins to the inclined
plane AC a second inclined plane BC which is perpendicular to the
first, and then says:

Since the body D presses against the side AC as much as the body G pulls on the rope
CG; and since the body E weighs as much as the body G pulls on rope CG, the truth of
the corollary is obvious.

This does not even remotely resemble a demonstration.
One can hold the weight D on the plane AC (Fig. 82) by a force

exerted along the line DL, parallel to the plane. But one can also exert
a force Q along the line DP which forms angle PDL above DL. Which
law enables us to determine the weights Q and H? Stevin had formu
lated this law precisely without, however, having been able to establish
it with satisfactory argumentation. Herigone postulates it37 purely and
simply. He draws the inclined plane BC which forms with the vertical
CE an angle BCE equal to the angles PDL and LDI and assumes that
the weights Q and H are both equal to the weight G, which can be put
in equilibrium with weight D by positioning it on the plane Be. Stevin
had shown from these propositions on the inclined plane how one can
deduce the law according to which two concurrent forces can be
composed. Herigone also states this law.38

The Cours mathematique of Herigone certainly made a great con
tribution by publishing the most important discoveries made by Stevin
in physics. Thus we find the name of Herigone associated with Stevin
by both Borelli,39 who attacks the law of the composition of forces

~G
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formulated by the geometer of Brugge, and by Varignon, who defends
the law.4o

However, Herigone did not add anything to what Stevin had demon
strated. He did not fill the gaps in the deductions of his illustrious
predecessor. It is Roberval who will fill them.

2. GILLES PERSONE DE ROBERVAL (1602-1675)

Only once in his life did Roberval print a book devoted exclusively to
one of his own works and, even then, he did not dare to openly claim
its authorship, but he pretended that it was the publication of an ancient
treatise written by Aristarchus of Samos and that he was himself only
the editor and annotator.41 To find his works on statics, we must look
for them among the texts of Father Mersenne.
Marin Mersenne (1588-1648) is one of the most bizarre figures of

the first half of the 17th century. After having been a fellow student of
Descartes at the College de la Fleche, he entered the religious Order of
the Minims. Blessed with an inexhaustible energy and a passionate love
of science, he corresponded incessantly with all the French geometers
and physicians of his time. In the intellectual world of this time, such
correspondence played the same role as scientific publications do
today. Such correspondence insured a continual flow and exchange of
ideas between the capital and the provinces and a constant debate over
discoveries and controversies among scholars in Paris. Compare the
correspondence of Etienne and Blaise Pascal, Beaugrand, Roberval
with Desargues of Lyon, with Fermat, Counselor to the Parliament of
Toulouse, with Jean Rey, Physician in Bugue in the Perigord, and with
Descartes in his self-imposed and proud exile deep in Holland. Mer
senne welcomes the most diverse research, particularly that dealing
with physics and mechanics, in order to disseminate it in his numerous
books, most of which were devoted to acoustics and music. Not only
did he make public the discoveries of his compatriots Fermat and
Roberval as well as his own, but he also reported on many of the works
from abroad. Furthermore, he contributed greatly to keeping France
informed about the progress accomplished in statics, hydrostatics, and
dynamics by Simon Stevin, Giovanbattista Benedetti, Guido Ubaldo,
Villalpand and Galileo. Through Father Mersenne, Blaise Pascal came
to know of the experiment with quicksilver carried out by Torricelli.
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As early as 1627, Father Mersenne had published42 a Traite d'Har
monie universelie, ou est contenue la musique theorique et pratique des
anciens et modernes.43 In 1634, he wrote44 the Preludes de I'Harmonie
universelie, ou questions curieuses, utiles aux predicateurs, aux theolo
giens, aux astrologues, aux medecins et aux philosophes45 at the same
time he was publishing the translation of the Mechanics of Galileo.
In Paris in the year 1636, the publisher Guillaume Baudry came out

with the F. Marini Mersenni, ordinis Minim., Harmonicorum libri.46

The second part was entitled: Harmonicorum instrumentorum libri
IV.47 These two volumes, now adorned with a new dedication and
preface and bound together with a new title page, were for sale again in
1648 as an edito aucta48 with the title Harmonicorum libri XII.
Previously, however, the Harmonicorum libri, translated into French

and enlarged by several supplements, had been published as a large
treatise and the first volume came out in Paris in 1636 with the title
Harmonie universelle, while the second volume was printed in 1637
with the title Seconde partie de l'Harmonie universelle.49

Inserted into the first part of the Harmonie universelle50 and with its
own pagination, we find the Traite de Mechanique; des poids soustenus
par des puissances sur les plans inc/inez d l'horizon; des puissances
qui soutiennent un poids suspendu d deux chordes; par G. Pers. de
Roberval, Professeur royal es Mathematiques au College de Maistre
Gervais, et en la chairs de Ramus au College Royal de France.51

The only authors cited by Roberval in this short treatise are Archi
medes, Guido Ubaldo and Luca Valerio. However, he hardly borrowed
anything from any of them. Yet, in keeping with the annoying custom of
his time, he was careful not to mention any authors who had provided
him with inspiration. However, we can easily supply the missing names.
To begin with, we know for certain that Roberval was thoroughly

familiar with the statics of Simon Stevin because his own Traite de
Mechanique reads like a supplementary text to this major work of
Stevin. Its sole objective is to establish convincing proof for the
propositions which the geometer of Brugge had formulated without
sufficient demonstration.
Secondly, Roberval was well acquainted with the methods which

GaliJeo had used in his Mechanics. The procedure by which he justifies
the propositions which Stevin had been unable to deduce from his
principles, closely resembles the procedure used by Galileo to reduce
the problem of the inclined plane to the problem of the lever.
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Finally, Roberval's introduction of the concept of moment is similar
to the approach used by Giovanbattista Benedetti. Roberval undoub
tedly read this author, whom Mersenne was studying and quoting at
about the same time.
The short treatise by Roberval - only thirty-six pages long - is a

striking example of the false rigor to which geometers enamored of the
geometrical method often succumb. Frequently, a superabundance of
axioms or a complicated and erudite display of deduction merely serves
to cover up certain essential hypotheses. And quite often these hypo
theses consist more or less in alleging what actually ought to be proven.
Thus Roberval alleges that it does not matter as far as the equilibrium

of a lever with equal arms CAB (Fig. 83) is concerned whether the two
weights E and D are fixed at B and C, whether the weight D, held by a
rope which passes over the arm of the lever AC, passes over a small
pulley at A and carries a second weight K, or whether this rope
extended beyond B is attached to a hook I or whether this weight C
(sic) is resting on an inclined plane perpendicular to AC. Roberval
could have spared the reader many absolutely useless preliminaries by
asserting this latter supposition at the outset, as Galileo had done.
Indeed, it easily provides the solutions to the problems which he set out
to examine. By reducing the numerous axioms to a single postulate, he
could have asserted that two independent constraints applied to the
same weight are equivalent when the virtual trajectory which one of
them traces along with the weight is tangential to the virtual path which
the other imposes on the weight. Roberval makes use of some of the
consequences provided by this postulate, just as Leonardo da Vinci and
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Galileo had done before him. But he leaves it to Descartes to formulate
this principle explicitly and in a general form.

If one asserts that it does not matter whether a weight D is forced to
move on an inclined plane AB (Fig. 84) or whether it is attached to the
extremity D of the arm of the lever CD, which is perpendicular to AB
and mobile around point C, it becomes quite easy to resolve the two
problems, which Roberval formulates in the following way:52

Proposition 1. Given a plane inclined to the horizon with a known angle of inclination,
determine the force which, either by pulling or pushing along a line parallel to the
inclined plane, can maintain a given weight on the same plane.
Proposition 11. When the line by which a weight is maintained on an inclined plane is
not parallel to that plane and with the inclination and magnitude of the weight given,
determine the force.

All one needs to do in order to solve these problems is to apply the
general law of equilibrium of a circonvolubile - a method Benedetti
undoubtedly borrowed from Leonardo da Vinci - and to state that the
vertical weight D has the same moment with respect to the point C
as force Q, directed along DP. This is, indeed, the solution which
Roberval gives, but not without useless digressions.
To the two preceding problems one can easily reduce a third

problem, which Roberval now states53 in the following manner:

Proposition Ill. Given a weight supported by two ropes or by two supports of known
position, determine the force developed in each rope or each support.

Roberval deals with the problem of the decomposition of forces
using the following procedures:
The rope AB (Fig. 85) is fastened to a fixture at A. What force
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Q must be exerted on the rope C in order to keep the weight P in
equilibrium?
In accordance with the axioms formulated by Roberval on the

equivalence of constraints, one can imagine that the weight P slides on
an inclined plane perpendicular to AB, instead of assuming that it is
held in place by the rope AB. The solution sought can then be deduced
immediately from the axioms previously given.
This solution implies several consequences, which Roberval formu

lates54 in the following terms:

Corollary. It can be noted that in each case one can draw two perpendiculars from a
point on the line of action of one of the forces. The first perpendicular is drawn to the
line of action of the weight and the other to the line of action of the other force.
Furthermore, it can be observed that the ratios between the weight and the forces are
equivalent to the ratios of the lengths of the perpendiculars dropped to the lines of
action of the forces, and the forces are equivalent to the lengths of the perpendiculars
dropped to the line of direction of the weight. ..
Scholium II. In this second scholium we shall give a demonstration of a general nature
showing that regardless of the arrangement of the weights and forces which are sup
ported by two ropes, provided that the ropes are not in a straight line, the weight and
the two forces are always analogous to the three sides of a triangle.... If from any
point taken on the line of action of the weight a line is drawn parallel to one of the
ropes and intersects the other rope, the triangle thus formed by this parallel, the line of
action of the weight and the other rope, will be similar to the triangle described above
and, consequently, will be analogous to the weights and the forces. A geometer will be
able to prove this easily by using several other properties which we shall not mention
here.

Here we find clearly stated and demonstrated the laws for the
composition of forces which Stevin had formulated, but which he had
been unable to support with convincing demonstrations. Roberval
established his proof by reducing the equilibrium of a weight supported
by ropes to the equilibrium of a weight sliding on an inclined plane and
by subsequently reducing the latter to the equilibrium of a weight
suspended at the extremity of the arm of a lever. He could have saved
himself an unnecessary intermediate step by avoiding the consideration
of the inclined plane altogether and by immediately reducing the
equilibrium of a weight suspended by ropes to the equilibrium of a
weight suspended at the extremity of the arm of a lever. Such a
demonstration would have been more direct and would have shown
great similarity to the demonstration proposed by Leonardo da Vinci.55

If we consider only the essence of these two demonstrations, that of
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Roberval and that of Leonardo da Vinci are identical. The latter has the
advantage of being more direct and of avoiding completely useless
digressions.
Leonardo, as we have seen, had unfortunately abandoned the law on

the composition of forces, for which he had given such an ingenious de
monstration. It took the successive efforts of Stevin and Roberval to
reestablish the truth which Leonardo had allowed to excape after
having grasped it momentarily.
Roberval not only gives the demonstration of the composition of for

ces which we just analyzed. He also provided a second demonstration.
Because of the intrinsic importance of this new proof and the
inaccessibility of the book where it appears, we feel obliged to report in
its entirety what our geometer has to say about it: 56

Scholium VIII. We have observed something about a weight suspended from two ropes
which pleased us very much. This is because when the weight is suspended by two
forces as described and the ratio is as we demonstrated in the third proposition, the
weight can neither ascend nor descend unless the reciprocal proportion between the
paths of the weights and the forces changes, which is against the natural order of things.
And furthermore, let the weight be placed at A (Fig. 86) on the ropes CA and QA,
supported by the forces C and Q or K and E, and let the weight be to the forces as the
perpendiculars CB and QG to the lines CF and QD, as we said in Proposition III.

If one takes a line such as AP below the weight A and in its line of action, it will
follow that if weight A descends to P by pulling the ropes with it and causing the forces
K and E to ascend, there will be a reciprocally greater ratio between the path tra
versed57 by the forces ascending to the path followed by the weight descending than
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between the same weight and the two forces taken together. Thus the forces would
ascend further to the extent that the weight descends while pulling them, which is
contrary to the natural order of things.

If one takes a line such as AP above the weight A in its line of action and if the
weight moves up to V and the ropes move also, pulled by the forces K and E which are
descending, there will be a reciprocally greater ratio between the path traversed by the
ascending weight and the path traversed by the descending forces than between the
forces taken together and the weight. Thus the weight would ascend further to the
degree that the forces descend while pulling it with them, which is contrary to the
natural order of things, where the weight or the force which pulls the other always
traverses a longer path in proportion to the weight or the force which is being pulled.
One will find in our mechanics the demonstration that the ratios between the paths

traversed by weight A and its forces when ascending and descending are as we just
described and contrary to the natural order of things, but this demonstration is too long
to include here. Consequently, the weight A, by remaining in its place, by reason of
Proposition III, thus remains within the natural order of things, which is what we
wanted to demonstrate.

This demonstration of the law according to which two forces are
composed is deduced by comparing the work of the applied forces and
the work of the resistance, to employ the term by which modern
mechanics designates the product of weight by the height of its fall.
We have seen that this comparison served to justify certain laws of

statics as early as the 13th century. Jordanus de Nemore deduced from
it the demonstration of the condition of the equilibrium of the lever,
already known for such a long time. His successor, the Precursor of
Leonardo da Vinci, makes use of this comparison to obtain the first
satisfying solution to the problem of the inclined plane.

In both cases, the comparison between the work of an applied force
and the work of the resistance leads to a very simple result. Whatever
the virtual displacement imposed on the mechanism under study, there
is equality between the motor work and the resisting work when the
conditions for equilibrium are fulfilled. This very simple relation
depends on another property inherent in these mechanisms: their
equilibrium is an indifferent equilibrium.
When a mechanism in stable equilibrium is considered, the com

parison between the motor work and the resisting work which occurs in
a virtual displacement no longer leads to a result as simple as before.
There is no longer equality between these two quantities of work, or, at
least, this equality only exists between infinitely small quantities of work
which correspond to an elementary virtual displacement.
The geometers whose works we are studying - the students of
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Jordanus as well as Roberval - consider only finite displacements.
Thus their analysis becomes somewhat complicated when they attempt
to determine the conditions for stable equilibrium in a mechanism.
They must show that in each displacement of this mechanism, the work
of the weights ascending is greater in absolute value than the work of
the weights descending.
The Precursor of Leonardo da Vinci had given a very elegant

example of this method when he established the law of equilibrium for
two weights suspended at the extremities of the arms of a bent lever. In
the passage just quoted, Roberval finds a second application for this
method, which is in no way inferior to the first.
Did Roberval know of the use which had been made of this same

method of demonstration as early as the 13th century? We cannot give
a definite answer to this question. Nothing prevents us from assuming
that he did not know of the demonstration of the law of equilibrium of
a bent lever which the Precursor of Leonardo da Vinci had formulated.
Indeed, this demonstration is nowhere to be found in the Quesiti et
Inventioni diverse by Tartaglia. It is reproduced in only one printed
work, the Jordani opusculum de ponderositate, published by Curtius
Trojanus, where it is so muddled and confusing that a reader cannot be
blamed for failing to recognize it.
On the other hand, we saw that Herigone had in his possession a

manuscript which contained the treatise of the Precursor of Leonardo
da Vinci, and it is not improbable that it was known by Roberval.
The passage which we quoted summarizes the demonstration by

Roberval but does not give it in its entirety. Roberval tells us that the
complete demonstration can be found in his Mechaniques. Form this
reference and from a similar reference inserted in the statement of
Proposition III, we can only conclude that the Traiti de Mechanique
which Roberval inserted in 1636 in the Harmonie universelle by
Mersenne is merely an excerpt from a larger treatise which he published
earlier.
Furthermore, in the first part of the Harmonie universelle which

includes the Traite de Mechanique by Roberval, Mersenne studies58 the
laws of the accelerated fall of heavy bodies in accordance with the
Dialogue of Galileo on the Chief Systems of the World. Proposition X
of the theory which he sets forth is formulated as follows: With the
plane being inclined to the horizon by a given angle, determine the
force needed to hold the given weight on the plane. The demonstration
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given by Mersenne is precisely the same as the one which Roberval
was to state later in the same volume. The figures used are the same.
After the statement which we have just quoted, we find the following
observation by Mersenne:

I would not have put this proposition here if it had been in French and if the booklet
containing it had been widely known, although it deserves wider dissemination because
of the great use one can make of it.

This observation confirms for us that the demonstrations on me
chanics by Roberval had already been published before the Harmonie
universelle went to press. However, we also learn that this publication
had appeared in Latin and that the book containing it was already quite
rare by 1634.
This last circumstance explains why we were unable to find any

reference to this work in the various bibliographies which we had at our
disposal or in the various library catalogues which we consulted.
But we can affirm that this treatise on mechanics by Roberval existed

as early as 1634 and that Mersenne knew of it by then. Indeed, at the
same time, Mersenne published the Mechanics of Galileo. In Supple
ment X, which concludes this work, Mersenne deals with the apparent
weight on an inclined plane, about which he says:

I discussed this in detail in the tenth and eleventh theorem of the second book of the
Harmonie universelle.

The formulation of the demonstrations of Roberval was, therefore, at
that time in the same form it was to have in 1636 in the Harmonie
universelle. Furthermore,59 we know that Mersenne was working on this
work as early as 1634.
The first draft of the Discorsi e dimostrazioni matematiche intorno a

due nuove scienze, written by Galileo in 1636 and printed by the
Elseviers in 1638, contained only Three Days. The final three days
were added by Galileo between 1636 and the time of his death. They
were only included in the 1655 edition of the works of Galileo,
published by Viviani. These additions could, therefore, have been
influenced by the Traite de Mechanique of Roberval. The passage
ending the Fourth Day can probably be traced to this influence.
Galileo - or Sagredo who speaks for him - considers a weightless

rope AB (Fig. 87) from which are suspended the two heavy and equal
weights C and D. He wants to prove that by suspending a weight H,
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however small, at the middle of the rope AB, the rope will assume the
shape of a broken line AFB and, consequently, will lift the two weights
C and D, however large they may be.
The weight H does indeed descend by the length EF, while the

weights C and D ascend by lengths equal to IF and FL, respectively,
and equal to each other. One can make EF small enough so that the
ratio between EF and IF is larger than the ratio between the weight H
and the weight C.

The proportion is greater between the fall or the velocity of weight H and the ascension
or the velocity of weights C and D than that between the gravity of weights C and D
and the gravity of weight H. Thus it is obvious that the weight H will descend and that
the rope will be displaced from its horizontal position.

Even assuming that Galileo knew of the Traite de Mechanique by
Roberval when writing this passage, he is still far from equalling the
beautiful demonstration in the latter's treatise.
The article on Roberval in the Dictionnaire historique et critique by

Bayle contains only this brief remark:

Roberval, Professor of Mathematics in Paris, a contemporary of Mr. Descartes and his
great enemy.

The animosity was indeed fierce between the philosopher and the
Professor at the College de France.60 The former treated the latter with
contempt and brutality, as will be made evident in the next chapter. For
the moment, let us quote the following excerpt from a letter addressed
by Descartes61 to Mersenne:

I am including some of the mistakes which I found in the Aristarchus and I shall tell
you, just between us, that I have so many proofs of the mediocrity of the knowledge
and mind of its author that I could not be more amazed that he has acquired any
reputation in Paris. Besides his invention of the caster wheel, which is so simple that it
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could have been invented by an infinite number of others just as well as by him, if they
had wanted to, I have never found anything of his making which did not prove his
inadequacy.

The harshness of such a judgment diminishes Descartes in our eyes
more than Roberval. Even if Roberval only had to his credit the Traite
de Mechanique - and he can claim many other titles - his name
would deserve to be remembered, for he demonstrated in his treatise,
in two different ways, the law of the composition of concurrent forces.
No one else prior to him, including Simon Stevin, had published a
convincing proof of that law, which so many mechanicians after him
used so frequently.
The disdain of Descartes for Roberval was, therefore, supremely

unjust. It is true, indeed, that Roberval could find some solace for this
by reading the exaggerated compliments addressed to him by Mersenne,
who declared62 that his friend was "almost the equal of Archimedes."



CHAPTER XIV

THE FRENCH CONTRIBUTION TO STATICS (CONTINUED)

RENE DESCARTES (1596-1650)

On September 8th, 1637, outside of Breda, Constantine Huygens,
father of the great geometer, Christian Huygens, wrote to Descartes:1

I don't intend to leave you alone, "donec paria mecum feceris'',2 by favoring me with a
treatise of three pages on the subject of the foundation of mechanics and the demon
strations on the four or five machines which accompany it, "libra", "vectis", "trochleon'',3
etc. I have seen in the past what Guido Ubaldo wrote about this and I read GaIileo later
in the translation by Father Mersenne, but neither one of them wrote to my satisfaction.
It seems to me that these people have merely enveloped in superficial obscurity
something which I am sure you could grasp in two or three statements because there is
nothing to my mind which should hold together more clearly and logically.

On October 5th, 1637, Descartes answered4 this insistent request of
Constantine Huygens:

Concerning what you asked for in mechanics, I have never been less inclined than now
to write about it.

However, he enclosed in his letter a brief treatise entitled: Explication
des engins par l'ayde desquels on peut, avec une petite force, lever un
fardeau fort pesant.5 In this treatise, the theory of the pulley, the
inclined plane, the wedge, the wheel or the lathe, the screw and the
lever are all deduced from a single principle. This principle is as
follows: The work (Descartes says force) which is necessary to lift
various weights to given heights keeps the same value when the product
of the weight and its ascent remains the same. Here are the terms used
by Descartes to formulate it:

The construction of all these machines rests on a single principle, which states that the
same force6 which can lift a weight of one hundred pounds, for instance, to a height of
two feet, can also lift a weight of two hundred pounds to a height of one foot or a
weight of four hundred pounds to a height of half a foot and so on, as long as the force
applied remains the same.
And this principle must be accepted if one considers that the effect must always be

proportional to the action necessary to produce it. Thus, if it is necessary to employ an
action by which one can lift a weight of one hundred poinds to the height of two feet,
another weight could weigh two hundred pounds and the same action would lift it to a
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height of only one foot. For it is the same to lift one hundred pounds to the height of
one foot and then lift one hundred pounds again to the height of one foot or to lift one
hundred pounds to the height of two feet.
The machines which serve to apply this force acting over a great distance to a

weight which it is lifting by a smaller weight, are the pulley, the inclined plane, the
wedge, the lathe, or the wheel, the lever and others. Because if one does not want to
classify them together, one can count more of them and if one wants to classify them
together, one does not need to have as many.

Constantine Huygens received with obvious and ardent admiration
the short treatise on statics which Descartes had sent him.

I pray God, he said,? to inspire you to continue to make your works public to the world
because they are obviously destined to rid the word of a universal deluge of errors and
ignorance. Moreover, sir, I foresee that people will solicit me on all sides, because I
shall be unable to keep to myself the precious object from your hand.

An opportunity arose which caused Descartes to write a kind of
second edition to the treatise first sent to Constantine Huygens. A book
by Jean Beaugrand, which we will deal with later, had caught the
attention of geometers regarding the following problem: Does the
weight of a body vary with its distance from the earth?
On July 13th, 1638, Descartes wrote to Mersenne8 in order to

discuss the question whether a body weighs more or less depending on
whether it is near or far from the center of the earth. In this letter,
Descartes takes up again in new terms the statement of the principle he
had discussed with Huygens:

And the proof of this depends on a single principle, which is the foundation of all of
statics and which states that one needs no more and no less force to lift a heavy body to
a given height which is all the greater, the lighter the body, or to lift a heavier body to a
height which is all the smaller. Since, for instance, an amount of force which can lift a
weight of one hundred pounds to the height of two feet can lift a weight of two hundred
pounds to the height of one foot, or a weight of fifty pounds to the height of four feet
and so on, as long as one applies it.
One will readily agree with me, if one considers that the effect must always be

proportional to the action which is necessary to produce it and, therefore, if it is
necessary to use the force by which one can lift a weight of one hundred pounds to the
height of two feet, to lift a weight to a height of only one foot means that this weight
weighs two hundred pounds.
Because it is the same to lift one hundred pounds to the height of one foot and again

another one hundred pounds to the height of one foot, as to lift two hundred pounds to
the height of one foot or to lift one hundred pounds to the height of two feet.
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This principle immediately accounts for the relation which exists
between the apparent weight of a heavy body sliding over an inclined
plane and its gravitational weight. Meditations on the arguments which
Galileo developed in his Mechanics on the inclined plane undoubtedly
inspired in Descartes his general principle. At least one may make that
assumption after comparing the two following passages. The first, which
we have already quoted, is in the treatise Della Scienza Meccanica. Let
us reproduce it here from Father Mersenne's translation,9 which had
recently appeared and which had been surely sent to Descartes by the
translator.

Since F (Fig. 88) will not cover less distance in descending vertically than weight E
ascending obliquely, it is necessary that F descend further than it causes weight E to
ascend, but weight E can ascend no further than the vertical BC. So that the line of
descent of F will equal CA when it has caused weight E to move vertically from B to C.
Because the weight does not resist motion parallel to the horizon and because this
motion does not take it away from the center of the earth, it is of great importance to
consider the directions along which the motion takes place, especially when they are
occasioned by inanimate forces which have large moments and resistances in a line
perpendicular to the horizon. However, they descrease proportionally as the line
inclines towards the horizontal plane.

The second passage can be found in a letter written by Descartes to
Mersenne on July 13th, 1638. It is a continuation of the previous quote:

And from this it obviously follows that the relative weight of each body, or what
amounts to the same thing, the force needed to support it and prevent it from descend
ing when it is in a given position, must be measured at the onset of the motion. The
force which is supporting the body must lift it as well as follow it when it descends. So
that the proportion between the straight line which this motion would describe and that
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which would indicate by how much this body would move towards the center of the
earth is equal to the proportion between the absolute and the relative weight.

One can notice only a single difference between these two passages.
Galileo, who had established the theory of the inclined plane from a
different approach, makes the equality between the motor work and the
resisting work the object of a sort of a corollary, while Descartes
considers this equality to be the very cause of the equilibrium between
a weight sliding over an inclined plane and a weight hanging vertically.
Descartes writes to Mersenne10 on November 15th, 1638:

What Galileo has written on the balance and the lever explains quite well quod ita sit,
but not cur ita sit,11 as I do with my principle.

This undoubtedly fixed in his own mind the comparison which we have
just made. Obviously, it is on this very point that the thoughts of
Descartes and Galileo merge.
The juncture is so apparent and the influence of Galileo so obvious

that we cannot read without amazement the following lines which
Descartes wrote 12 to Mersenne on October 11th, 1638:

First of all, as far as Galileo is concerned, I shall tell you that I have never seen him
nor ever communicated with him in any way and that, consequently, I cannot have
borrowed anything from him. I also see nothing in his books which make me envious
nor hardly anything for which I would like to claim credit.

Descartes' boundless arrogance blinded him to the point of not being
able to recognize the worth of any of his predecessors. We shall see the
kind of haughty insolence with which Descartes rejected the claim of
priority for Roberval.
Stevin concluded his theory on the block and tackle by formulating

the following: The force is to the resistance as the path described by the
resistance is to the path described by the force. Descartes first applies
this principle to the block and tackle in his Explication des engins
addressed to Huygens as well as in the copy sent to Mersenne. How
ever, Descartes does not allude to Stevin, and it was not because he did
not know the work of the great geometer from Brugge because on the
same day - July 13th, 1638 - when Descartes sent Mersenne his
statics, he wrote: l3

I want to tell you that just recently I took a look - quite by chance - at the statics of
Stevin and found the center of gravity of a parabolic conoid discussed there.
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This corollary, which is only formulated once by Stevin, is repeated
ad nauseam by Guido Ubaldo on the subject of every type of block and
tackle. Although Descartes does not cite Guido Ubaldo, he knows
nonetheless what this geometer had said about the assemblage of
pulleys because he writes l4 to a mathematician, who was perhaps
Boswell:

It seems to me foolish to see a lever in a screw; if memory serves me right, that is just
the fiction which Guido Ubaldo uses.

But if there ever existed a geometer who, long before Descartes,
dealt with the problem of the inclined plane in precisely the same
manner which the great French philosopher was to use, it was certainly
that anonymous mechanician of the 13th century whom we have called
the Precursor of Leonardo da Vinci. At the time Descartes was writing
his mechanics, the solution proposed by this geometer had already
appeared in print seven times. It can be found in the five consecutive
editions of the Quesiti et Inventioni diverse by Nicolo Tartaglia, in
the collection of the Opere by the same author, and in the Jordani
opusculum de ponderositate, edited by Curtius Trojanus. How can we
believe that the philosopher never leafed through any of these works, or
that the great algebraist never took a look at the work which contained
the first solution to the equation of the third degree or that the clear
and profound reasoning of the medieval mechanician never caught his
eye to influence profoundly his way of dealing with statics? Yet, neither
the name of Jordanus nor the name of Tartaglia can be found in his
treatise on mechanics. Stevin and Galileo, we have to admit, were
equally unjust.
Even if we suppose that Descartes did not know of any of the works

where Tartaglia had published the doctrine from the School of Jordanus,
can we possibly believe that he did not know the Cours mathematique
by Herigone? In 1634, the commission charged with examining the
astronomical methods of Morin put Herigone in contact with Etienne
Pascal, Mydorge and Beaugrand, all three geometers in regular com
munication with Mersenne. It was Clerselier, who, in the name of the
King, granted the printing license for the Cours mathematique on
December 29th, 1633. Can we believe that neither Mersenne nor
Clerselier thought of getting a copy of this work to Descartes? There
fore, Descartes must have known about the work and he must have
found in it, formally stated and applied to the lever and the inclined
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plane, the very principle which he was to use as the foundation for his
statics. H6rigone, in turn, had taken this principle from the School of
Jordanus.
The influence of Galileo can easily be seen in the solution which

Descartes gave to the problem of the inclined plane. It is even more
obvious in what he has to say about the lever. In this case, as in the case
of the inclined plane, his formulation is in a certain sense the formula
tion of Galileo taken in reverse order.

If Descartes had treated the force and the resistance of a lever in
equilibrium as two weights suspended from that lever, the demonstra
tion of the well-known condition of equilibrium would have posed no
problem for him, since Jordanus de Nemore had long before deduced
this demonstration from the very principle on which Descartes based
his entire statics. In a letter undoubtedly addressed to Boswell,15
Descartes gives a kind of summary of this demonstration by Jordanus.
But he considers the equilibrium of the lever in a totally different way
in both his Explication des engins sent to Constantine Huygens and in
the statics addressed to Mersenne. Resistance is always a weight sus
pended from a lever, but the force is constantly perpendicular to the
arm of the lever, as is the case when the force applied to the arm lifts a
burden by means of the lever. It is in this way that Guido Ubaldo dealt
with the lever. Then the problem becomes more complex and this is
why Descartes declares the following in the Explication des engins
addressed to Huygens: 16

I have deferred my discussion of the lever because, of all devices for lifting burdens, it
is the most difficult to explain.
Let us consider that while the force which moves this lever describes the entire

semi-circle ABCDE (Fig. 89) and acts along the arc ABCDE, although the weight also
describes the semi-circle FGHIK, it does not move upward by the length of this curved
line FGHIK, but only by the length of the straight line FOK. Thus Ihe proportion
between the force necessary to move this weight to its gravitational weight must not be
measured by the ratio between the two diameters of these circles, or between their two
circumferences, but rather by the ratio between the semi-circle of the larger circle and
the diameter of the smaller circle. I7

This passage, characterized by such profound insights into the work
of a force of variable direction, only deals with a kind of average
relationship between the force and the weight to be lifted. Indeed, the
force holding a given weight in equilibrium varies with the inclination of
the lever:
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Let us consider, furthermore, that it is far from being true that this force needs to be
greater to turn the lever when it is at position A or E, than when it is at position B or D
... , that is the reason the weight ascends less there, as can be easily seen ...
And in order to measure precisely what this force must be at each point of the

curved line ABCDE, we need to know that it acts everywhere the same as if it were
pulling weight on a circularly inclined plane, and that the inclination of each of the
points of this circular plane must be measured by the slope of the straight line which is
tangent to the circle at this point.

Galileo had taken for granted in all of his works that it is all the same
whether a weight is compelled to move on an oblique line or on a circle
tangent to this line. This postulate had allowed him to deduce the
theory of the inclined plane from the notion of the moment of a weight.
The analysis which had led Roberval to prove the law of the parallelo
gram of forces was also based on this implicitly accepted postulate.
When Descartes reverses the order followed by Galileo, he deduces the
theory of the equilibrium of the lever from the law of the inclined plane,
and he, too, does so by invoking this identical postulate. But instead
of hiding it behind the complicated obscurity of a feigned rigor, as
Roberval had done, Descartes attempts to establish it with complete
clarity.
When a displacement is imposed on a machine held in equilibrium

by two weights, one of the weights will ascend and the other descend.
The work performed by the motor weight equals the work suffered by
the resisting weight. However, this equality does not hold for just any
displacement - great or small - imposed on the mechanism, but is
only true, in a general way, for an infinitely small displacement from the
position of equilibrium. No predecessor of Descartes had ever clearly
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understood this essential restriction, or at least none of them had
formulated it explicitly. Descartes formulates it clearly.

The relative weight of each body, he writes to Mersenne, must be measured at the
beginning of the motion which the force which is supporting the body must traverse in
order to lift it as well as to follow it when it descends.

Headds:18

Note that I say begins to descend and not just descend, because it is the beginning of the
descent to which one must pay attention.

A heavy body forced to move on a curved surface and tangent to that
surface at one point could thus be considered as if it were sliding on a
plane tangent to this surface at that point:

So that if, for example, this weight F (Fig. 90) were not supported at point D by a flat
surface - as we suppose ADC to be - but were supported on a spherical or any
curved plane - as EDG, and as long as the flat surface which we imagined tangent at
point D is the same as ADC, then in so far as the force H is concerned, the heavy body
would not weigh more or less than if it were supported on the plane AC. Although the
motion described by this body ascending or descending from point D toward E or G on
the curved surface EDG would be entirely different than the motion described on a flat
surface ADC, the body positioned at point D on EDG would nevertheless be com
pelled to move towards the same side as if it were on ADC, that is to say, towards A or
C. It is obvious that the change which occurs to this motion as soon as it ceases to
touch the point D, cannot change anything as far as its gravitational weight is concerned
while it is touching it.

The predecessors of Descartes had used this principle. Leonardo
da Vinci had deduced from it the law of the composition of forces.
Thanks to this principle, Galileo was able to reduce the theory of the
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inclined plane to the theory of the lever, and Roberval, also using this
very same principle, was able to prove the propositions which had been
inadequately demonstrated by Stevin. Yet none of these authors had
formulated in an explicit and general manner the postulate supporting
all of their demonstrations.
Descartes was, therefore, the first to clearly affirm the infinitesimal

property of the Principle of Virtual Displacements.19 At the very
moment when Descartes was sending Huygens the Explication des
engins par l'ayde desquels on peut avec une petite force lever un fardeau
fort pesant, he was publishing the Discours de la Methode. When he
wrote his mechanics, he must assuredly have had in mind the rules
which he stated in the Discourse. By formulating the principle from
which he deduced all of statics, he certainly intended to comply with
the first of the precepts which he had stated and which enjoined him:

To never accept anything as true that he did not know to be obviously so; that is to say
... to never include anything in his judgement which did not appear so clear to his
mind that he would have no occasion to doubt it.

Descartes thought that this perfect clarity, this absolute certainty,
was also present in his principle of statics, which seemed to him to be
as certain as the truths of arithmetic.

The same quantity of force20 necessary to lift this weight to a height of one foot is not
sufficient eadem numera 2 ! to lift it to the height of two feet, and the fact that one needs
double the quantity of force is as clear as two and two make four.

However, this principle was not immediately accepted by all who
knew it. Some, and among them not the least famous, like Mersenne or
Desargues, found it to contain obscurities.
These obscurities were due above all to a misunderstanding. Des

cartes was talking about the force necessary to lift a weight to a certain
height. Several of his readers understood the word force in the same
sense we take it today. Descartes, on the other hand, meant by force a
scalar magnitude representing the product of the weight and the
distance by which it ascends or descends. In other words, he meant by
force what we today would call work, and he was surprised, even
irritated at times, when he saw that this confusion could baffle geome
ters and prevent them from accepting his principle.
On November 15th, 1638, Descartes wrote to Mersenne:22
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You have finally understood the meaning of the word force as I understand it when I
say that the same force is needed to lift a weight of one hundred pounds to a height of
one foot as fifty pounds to a height of two feet, that is to say, that the same action or
effort is needed. I would like to believe that I did not explain myself well enough on this
point previously, since you did not understand me. But I was so far from thinking of the
force that one calls the strength of a man when referring to someone who is stronger
than someone else, that it did not occur to me that the word force could be understood
in that sense. And when it is said that less force is needed for one effect than for
another, that does not mean that less strength is needed - even if one had more
strength, it would have no bearing - but that less action is needed. And in this work I
did not talk about force as equivalent to the strength in a man, but only as action and
equivalent to the force by which a weight can be lifted. The action can come from a
man or from a spring or from another weight, etc. It seems to me that there is no other
way to know a priori the quantity of this effect, that is to say, how much and what type
of weight can be lifted with this or that machine, unless one measures the quantity of
this effect, that is to say, of the force which it is necessary to use. I have no doubt that
Mr. Desargues will agree with me on that point, if he takes the time to reread the few
lines I have written on this topic. Since I can be very certain about the capacity of his
mind, I don't think that I ought to doubt the capacity ofmy reasoning.

This impatience over not being understood can be explained and
excused all the more in the case of Descartes, since as early as
September 12th, 1638, in a letter to Mersenne,23 he had defined
precisely his use of the word force and had clearly separated this
meaning from all other meanings attributable to the same word.

One has to consider above all, he said, that I was talking about the force necessary to
lift a weight to a given height, and such a force always has two dimensions and is not
the same as the one necessary to support the weight at any point, since that force has
only one dimension. These two forces differ as much from each other as a surface
differs from a line.

Work, which Descartes calls force, depends on two variables or, as
Descartes said, has two dimensions: the magnitude which we call force
today and which is of the same nature as weight, and a length which is
the projection of the length onto the path of the force. These two
variables can be understood as rectangular coordinates of a figurative
point. The work accomplished by a constant force will be represented
by the rectangle formed by these two coordinates. This graphic repre
sentation of work, so commonly used today, did not remain unnoticed
by Descartes:

I do not simply say that the force which can lift a weight of fifty pounds to the height of
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four feet, can also lift a weight of two hundred pounds to the height of one foot, but I
say that it can do so to the extent that it is applied to the weight. Yet, it is only possible
to apply it by means of some machine or by some other device which causes the weight
to rise by only one foot, while this force will act along the total distance of four feet.
Thus it transforms the rectangle representing the force required to lift this weight of
two hundred pounds to the height of one foot into another rectangle which is equivalent
and similar to the one representing the force needed to lift a weight of fifty pounds to
the height of four feet.

In this letter to Mersenne, Descartes continually uses this geometrical
representation of work.
What Descartes calls force and what we today call work is funda

mentally different from the momenta discussed by Galileo. This latter
quantity, which is the product of a weight and its velocity, depends
upon three kinds of variable magnitudes: the weight, the distance
traversed by the mobile body and the time needed to traverse that
distance.

If I had wished to consider velocity together with distance, I would have had to
attribute three dimensions to force, instead of attributing only two, in order to avoid the
consideration of velocity.24

Some reproached Descartes for excluding velocity in establishing the
magnitude upon which all of statics depends and they invoked the
authority of Galileo. Descartes, however, disdainfully dismissed this
ill-founded criticism because, like Stevin and perhaps even inspired by
him, he had become convinced that the velocity of motion is not at all
proportional to the motor action and that this ancient Peripatetic law
should no longer be considered as the foundation of statics.

Between us, I think that those who maintain25 that I should consider velocity rather
than distance in order to satisfactorily explain machines, as Galileo has done, are
merely fantasizing and are completely ignorant in this matter. Although it is obvious
that more work is needed to lift a body rapidly than to lift it slowly, it is nevertheless
pure fantasy to say that the work must be precisely double to double the velocity and it
is very easy to prove the contrary.

The attack by Descartes on the principle of Peripatetic dynamics
was, by the way, not the first which he made against this axiom. Shortly
before, he had written the following lines:26

What must be considered first in this matter is that many people have grown accus
tomed to mistaking the consideration of space for that of time or of velocity. So, for
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instance, when they consider the lever, or what amounts to the same thing, the balance
ABCD (Fig. 91) and when they assume that the arm AB is double the arm BC and that
the weight C is double the weight A so that equilibrium holds, then instead of saying
that which causes this equilibrium is the fact that if the weight C would lift or were
lifted by the weight A, it would only traverse half of the distance of A, they say that it
would travel only half as fast, which is a mistake, all the more harmful in that it is hard
to recognize. It is not all the difference in velocities which requires that one weight be
double the other, but the difference in displacement, as happens for instance when we
lift the weight F to G by hand. In that case, we do not need to use an amount of force
precisely double the amount used the first time if we wish to lift it twice as fast, but we
need to apply an amount of force which must be more or less double the amount
according to the diverse proportion which this velocity can have with the forces
resisting it.

These two letters were obviously not enough to convince those in the
circle of Mersenne who still clung to the approach of Galileo, that is to
say, in the final analysis, who adhered to the Ancient foundation
defined in the Mechanical Problems. On February 2nd, 1643, in a
letter27 addressed to the scholarly man of the cloth, Descartes is obliged
to take up the task again:

I now turn to your second letter, which I received almost at the same time as the first.
First of all, in as far as you see fit to use in your work something I wrote on mechanics,
I leave this to your discretion and you are authorized to use it in any way you please.
Several others in this country have already seen it and even have a copy of it. Yet, the
reason I chide those who use velocity to explain the efficacy of the lever and other
related things, is not because I deny that the same quantity of velocity is always present,
but because this velocity does not explain why the force increases or decreases - as
does the quantity of space - and because several things must be considered relative to
velocity which are not easy to explain. I fail to see the reason why you say that an
amount of force capable of lifting a weight A to F (Fig. 92) in one moment could also
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lift it in one moment from A to G, if it were doubled. I think you could easily establish
by experiment the contrary. If you have a balance in equilibrium to which you add the
smallest weight capable of tilting it, it will tilt very slowly. If, on the other hand, you add
double the weight of the first one, it will tilt, but it will tilt far more than twice as fast.

The strength of the argument of the adversaries of Descartes ob
viously derived from the following reasoning: According to the great
philosopher, the force and the resistance in any given machine are to
each other as the projections on the vertical of the two paths which the
mechanical arrangement makes interdependent. But these two paths are
necessarily described in the same time so that the relation between the
vertical components of these two displacements is exactly the same as
the relation between vertical components of the velocities. It is of no
importance if the relation between the two weights in equilibrium is in
inverse ratio to the first or to the second, as Guido Ubaldo was always
careful to observe. If that is so, and if the law proposed by Descartes
leads invariably in all possible cases to the same result as the law
formulated by Galileo, why abandon the older and more authoritative
of these laws?
Descartes struggled persistently against this view, which furnished

correct propositions of statics, it is true, but pretended to account for
them on false principles of dynamics. In 1646(?) we see Descartes write
again28 to Boswell(?):

I do not deny the material truths of what the mechanicians are in the habit of saying, to
wit, that the greater the velocity of the extremity of the long arm of the lever with
respect to velocity of the other extremity, the less force is needed to move it. But I deny
that it is the velocity or the slowness which is the cause of this effect.

We should not underestimate or take lightly the importance of this
modification which Descartes makes of the formulation by Galileo. It is
due to that modification that the laws of equilibrium are no longer
founded on an inaccurate postulate or on the dynamics of Aristotle 
already discredited - or even on the new dynamics which has not yet
been formally established. Statics is becoming an autonomous science
which is derived entirely from a principle of absolute certainty and
obvious clarity.

And if I have demonstrated any skill at all29 in any part of this brief treatise on statics, I
want it to be known that it is more evident here than in anything else. It is impossible to
say anything worthwhile about velocity, without having duly explained gravity and
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beyond that the entire system of the world. Since I did not wish to undertake this, I
found a way to avoid this consideration and separate all the others from it so as to be
able to explain them without it.

Descartes had read the statics of Stevin and he could not have been
unaware of the importance of the law stating the composition of two
concurrent forces. It is surprising that it did not occur to him to derive
this law from the principle upon which he founded his statics. One
could assume since he did not do so, that he considered the problem
to be solved. We saw that Roberval was able to demonstrate quite
successfully the law of the composition of concurrent forces by invoking
the very axiom which Descartes was to formulate in complete generality.
To attribute the silence of Descartes regarding the law of the parallelo
gram of forces to a reluctance to claim for himself a solution worked
out by another geometer is to attribute to Descartes a sense of justice
which he rarely felt towards his rivals and which he never felt toward
Roberval.
Roberval had claimed priority for the postulate upon which the

entire statics of Descartes was based. Roberval must have made this
claim in the presence of Mersenne, who then made it known to the
philosopher. Descartes responded3o with a letter in a tone of almost
unequalled contempt and insolence:

I have just finished reading the Traite de Mechanique by Mr. Roberval, in which I
learned that he is a professor - a fact which I had not known - and then I remem
bered that you once told me that he was President in some Province and I was no
longer surprised by his style. As for his treatise, I could find innumerable faults in it if I
wished to submit it to rigorous examination. But I shall tell you briefly that he went to
great lengths to explain a very simple principle and he made it more difficult with his
explanation than it is by nature. Furthermore, Stevin demonstrated before him the same
things in a far more simple and general manner. It is true that I do not know whether
either of them provided an accurate demonstration, because I do not have the patience
to read such books to the end. In as far as he claims to have put in a single corollary
what I wrote in my work on statics, I say, aberrat toto Cae/o,31 because he makes a
conclusion of what I make a principle and he talks about time and velocity, whereas I
talk about space. This is a grave error on his part, as I have explained in my previous
work.

This letter abounds with unfair judgments and it is obvious from it
that Descartes had scarcely condescended to glance at the very elegant
demonstration of Roberval, who had always considered the path tra
versed by the various weights and never the time or velocity. The letter
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furnishes us nonetheless with a valuable and precise bit of information.
Descartes did not have the patience to carefully read the works of
Stevin and Roberval. Thus it is not surprising to find him quite ignorant
on the subject of the problem of the composition of forces.
We have very clear and obvious proof of this ignorance. On Novem

ber 18th, 1640, Descartes wrote to Mersenne:32

It is certain that the weight C (Fig. 93) only exerts a force on the plane AD which is the
difference between the force necessary to support it on the plane and the force
necessary to support it in air. Since it weighs one hundred pounds and since only forty
are necessary to hold it on AD, this planeAD exerts only sixty pounds.

Thus in 1640, Descartes still believes that the two components of a
weight have as their algebraic sum the total weight! The arrogant
philosopher could have profited greatly by reading more patiently the
statics of Stevin and the Traite de Mechanique of Roberval or, simply,
the Cours mathematique by Herigone and the works of Mersenne.
The statics of Descartes signals the last stage in a long development.

All the ideas of the predecessors of the great French geometer con
tributed to the construction of this doctrine. But it is in this doctrine
alone that all of these ideas were brought to perfection. It is here that
all their apparent contradictions dissolve into a harmonious synthesis.
Galileo had founded all of statics on a single principle, when he

completed the work of Aristotle, Leonardo da Vinci and Cardan. Yet
those in favor of a more rigorous method, such as Stevin, were able to
raise a serious objection to this principle: to wit, it was only a corollary
of Peripatetic dynamics, which, henceforth, had been discredited.
The thinkers who favored a rigid and geometrical certainty found the

method of Stevin and Roberval entirely satisfactory because it estab
lished an autonomous statics, devoid of any hypothesis borrowed from
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a suspect dynamics. Although no geometer had attempted to refute or
to question any of the postulates invoked by the mechanician from
Brugge or by the Professor of the College de France, several geometers
had hoped for a single axiom from which to derive all the postulates
and which would be their true raison d'etre.
The work of Descartes satisfies all of these different intellectual

aspirations. It retains the breadth and the unity of the method of
Galileo, which condenses all of statics into a single principle. It retains
the rigor of the method of Stevin because its foundation, which seems
certain and self-evident, borrows nothing from the outmoded doctrines
of dynamics.
Before the statics of Descartes, Stevin and Galileo had already come

upon the importance of the product of the weight of a body and the
distance by which it descends. However, their encounter with it had
been fortuitous and ephemeral. Neither the Belgian nor the Italian
geometer pointed out its importance. In some of the demonstrations by
the School of 10rdanus as well as those of Roberval and Herigone, the
product of the weight and its vertical descent plays an important role.
Yet nowhere is it stated that the entire body of statics could be reduced
to a comparison of such products. Descartes was the first to see in this
product the fundamental concept of mechanics. In this he is, if not the
actual creator, at least the most influential promoter of the concept of
work, which is the foundation of our entire contemporary science of
equilibrium and motion.
His efforts to refine the concept of work and to distinguish it from the

concept which Mersenne and Desargues confused with it, contributed
to a large extent to the precise definition of the concept of work as we
understand it today. It was that concept which continually haunted the
minds of his critics.
Descartes clearly understood and underscored the infinitesimal

property of the Principle of Virtual Displacements and he states what
nobody had explicitly formulated before him: the necessity to apply this
principle to an infinitely small displacement originating from a state of
equilibrium. From this he deduced the equivalence of all relations
corresponding to the same infinitesimal virtual path and thus gave this
principle its definitive form.
One might object that the statics for which he furnished the blueprint

lacks generality because the only force considered is that of weight.
This lack of generality is only apparent. When the geometers of the
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17th century - Stevin, Galileo and Roberval - analyze any given
force, they replace it with a rope stretched in the direction in which it is
supposed to act and which passes over a pulley and supports a weight
equal to that force. It was through this artifice that the statics of weights
came to include all of statics. Indeed, through this artifice, any geometer
can effortlessly deduce from the principle stated by Descartes the
Principle of Virtual Displacements in the exact form in which Jean
Bernoulli was to transmit it to Varignon in 1717. In all probability, this
procedure was the one which inspired Bernoulli to make his discovery.
When Lagrange in his Mecanique analytique proposes it as the correct
way to establish the Principle of Virtual Displacements, he is only
reverting to the method of the inventor. Thus the principle which
Descartes formulated contains implicitly, yet obviously, the axiom from
which we derive today all the laws of statics.
The statics of Descartes is thus the harvest after a long period of

growth. In order to find the seed from which this growth started, we
had to go back a long way in time to the beginning of the 13th century,
where we assembled the teachings of the School of Jordanus. From this
seed, which was engendered by Occidental science in its budding youth,
we can follow each of the advances, each of the transformations by
which the science of equilibrium gradually developed. And when it
finally reaches fruition in Cartesian mechanics, we can distinguish each
of the layers and tissues comprising this fruit.
What was the precise contribution of Descartes to the formation of

Cartesian statics? Certainly, he gave to it the order and clarity which
are the very essence of his method and which characterize so perfectly
his eminently French genius. But did the great philosopher add any
thing to the science of equilibrium beyond giving it form? Did he add
any truth unknown before him? It would be vain to look for any trace
of such a contribution. There is no truth contained in the statics of
Descartes which was unknown before Descartes.
Blinded by his prodigious arrogance, Descartes sees nothing but

errors in the works of his predecessors and contempraries. He
believes33 that the difficulties encountered by those who are preoccu
pied by the problems of equilibrium:

... stem for the most part from the fact that people are already too knowledgeable
about mechanics, that is to say, too preopccupied with the principles adopted by others
on these matters, principles which are in no way true but deceive all the more by
appearing to be so.
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He obligingly allows Constantine Huygens to tell him that:34
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. .. his writings are destined to rid the world of a universal deluge of error and
ignorance.

He is undoubtedly convinced that he alone knows the true foundations
of statics and that he has built statics from the ground up on terrain
cleared by his criticism of all the crumbling hovels built by other
geometers. Faced with such a superb lack of conscience, one catches
oneself recalling the following thought of Pascal:35

Certain authors, in talking about their work, say: My book, my commentary, my
history, etc. They smack of a complacent bourgeoisie priding itself on the ownership of
a house and talking constantly about its "own place." They would be better off to say:
Our book, our commentary, our history, etc., since, most often those things contain
more from others than from themselves.



NOTES TO VOLUME I

A. ON THE IDENTITY OF CHARISTION AND HERISTON

We introduced in Chapter V, Section 2, the hypothesis that the mechani
cian Charistion might be the same person as Heriston, son of Ptolemy,
to whom the father dedicated the Liber diversarum rerum.! The work,
published in Venice in 1508, actually contains the following dedication
in the title: ad Heristonem [ilium suum.2 However, the manuscript,
which is found in the Bibliotheque Nationale (Latin Section, No.
16208), carries the following remark in the title: ad Aristonem.3 The
name Ariston, attributed to the son of Ptolemy, is one of the arguments
in support of the claim that the Liber diversarum rerum is apocryphal.
Ariston is actually the name of the person, unknown elsewhere, to

whom Philo of Byzantium dedicated all of his works,4

the dedication to Ariston, said Carra de Vaux, seems to be a kind of signature in all the
works of Philo.

Some believe that the author of the Liber diversarum rerum bor
rowed the name of Ariston from the writings of Philo of Byzantium5

and attributed it to a son of Ptolemy, ignorant of the fact that Philo
lived nearly 250 years before Ptolemy.
Thus the fictitious person to whom the apocryphal Liber diversarum

rerum is dedicated would in this case have had nothing to do with
Charistion. I am indebted to Mr. Enestrom for having brought this
point to my attention.
Let us mention, in conclusion, that Steinschneider6 introduced as an

aside the hypothesis that the Arabic word karastun for the Roman
balance probably came from the Greek Charistion. The rarely used
word faristun has in Persian the same meaning.

B. JORDANUS DE NEMORE AND ROGER BACON

It is well-known that the Opus maius of Roger Bacon (1214-1292 or
1294) was addressed to Pope Clement IV, who died in 1268. Therefore,

245



246 NOTES

it cannot be later than that date. Not only was this work printed twice,
but certain parts of it were abstracted and published separately. For
example, the first part of Section 4 was published in 1614 under the
title: Specula mathematica.7

This work is divided into four sections.s The fourth section com
prises fifteen chapters, the last, De motu librae, deals with the balance
and its motion.
There Bacon attempts to demonstrate how effective geometry is for

the study ofmotion. It is geometry, namely:

which permits one to comprehend the science of statics. This is a very beautiful science,
but too difficult for those individuals who have not studied the causes of the motion of
heavy or light bodies ...

Dicit ergo lordanus, in !ibro de ponderibus, ...9 are the words with
which Bacon begins his exposition. This exposition is devoted entirely
to the theory of the equilibrium of the balance and the arguments
developed by Jordanus. As soon as the balance deviates from the
position of horizontal equilibrium, the positional gravity of the weight
which is elevated becomes greater than the positional gravity of the
weight which is descending, so that the balance, when left to itself,
returns to the position from which it was displaced. Bacon not only
makes no objection to the theory of Jordanus, but he even finds in this
theory the solution to a difficult problem.
The velocity of a falling body increases in descent. However, the

velocity of a falling body is proportional to its weight. So a body
becomes heavier the further it descends. Such is the opinion of Aristotle,
or, at least, such is the interpretation that most of the commentators
give to his view. Bacon does not doubt in the least that this idea is
correct, but he deduces from it an embarrassing corollary.
Suppose one displaces slightly the arm of a horizontal balance from

equilibrium. The weight which descends moves towards the center of
the earth. Thus it becomes heavier. The other weight, on the contrary,
being elevated becomes lighter. As a consequence, the arm continues to
move in the direction of increasing inclination and it does not cease to
move in this direction until it is vertical. The equilibrium of the balance
is essentially unstable. Bacon says hoc est contra lordanum et contra
sensum.10
The doctrine of Jordanus resolves this difficulty. The weight, which

according to Aristotle becomes heavier as it approaches the center
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of the earth, is, according to Jordanus, the one which possesses the
least positional gravity. Only the second effect, being more powerful
than the first, manifests itself. In expounding this rather unusual
theory, Bacon does not quote Jordanus alone, but his "commentator" as
well.
Now we have seen that there existed from the 13th century on at

least two distinct commentaries on the treatise De ponderibus com
posed by Jordanus. Which of the two commentaries was known to
Bacon? The response to this question is difficult because Bacon hardly
borrows anything from the De ponderibus other than the views and
formulations common to Jordanus and his various commentators. Note,
however, that in order to explain the diminution of positional gravity of
a point which descends on a circle, Bacon invokes in two instances not
only the obliquity but also the curvature of the trajectory. This remark
leads one to believe that the commentary on the Elementa Jordani
super demonstrationem ponderis,ll which Bacon knew, is the very same
one which we described in Chapter VII, Section 2, as the work of a
Peripatetic commentator. Furthermore, it is the sole work which gives
to its demonstrations the title of comentum.12

C. ON THE VARIOUS AXIOMS PERMITTING THE DEDUCTION
OF THE THEORY OF THE LEVER

We noted in Chapter V, Section 1, that The Book on the Balance,
attributed to Euclid and rediscovered by Woepcke in an Arabic manu
script, begins with an awkward attempt to demonstrate the following
proposition.

If any number of weights maintain the beam of a balance parallel to the horizon and if
Z and D are two weights suspended from the same arm of the beam and if weight Z is
moved further away from the fulcrum by a given distance and if weight D is moved the
same distance towards the fulcrum, the beam remains parallel to the horizon.

If, rejecting this demonstration, one takes this proposition as an axiom
- for the sake of clarity, we will call it the Axiom of Euclid - one is
then able to deduce from it the theory of the lever, as did the author of
The Book on the Balance.
On the other hand, the classical demonstration of Archimedes, apart
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from the axioms explicitly enumerated by the great geometer, assumes
this axiom to be implicitly acknowledged:13

If two equal weights A and B, suspended at two distinct points C and D from the same
arm of the beam, are equilibrated by a weight E suspended from the other arm of the
beam, the same weight E will equilibrate a weight equal to (A + B) or 2A suspended
from a point M, at the midpoint of the interval CD.

We will call this axiom the Axiom ofArchimedes.
It is clear that the Axiom of Archimedes, if one wishes, can be

regarded as an immediate corollary to the Axiom of Euclid and vice
versa, so that these two axioms are exactly equivalent.
In the Mechanical Problems, attributed to the Philosopher of Stagira,

the law of equilibrium of the lever is derived from a third axiom, which
we will call the Axiom ofAristotle.

The two weights which produce equilibrium at the extremities of the lever are inversely
proportional to the velocities with which those extremities move in a virtual displace
ment of the lever.

This axiom was used not only by the author of the Mechanical
Problems, but also by Charistion in the book of Causes, of which
Thabit ibn Qurra has left us a record.
Besides these axioms, all equally suitable for founding the theory of

the lever, it is fitting to cite a fourth, which we shall call the Axiom on
the Beam. This axiom can be stated as follows:

A heavy cylinder whose axis is identical to a segment of a lever arm is equivalent to a
body of the same weight which hangs from the midpoint of the segment of the lever
arm covered by the cylinder.

This axiom was employed by Stevin and Galileo to establish the
theory of the lever, but it had already been known for a long time that it
was suitable for this purpose. Lagrange remarks that,14

Archimedes had previously used a similar concept to determine the center of gravity of
a figure composed of two parabolic surfaces in the first proposition of the second book
on the Equilibrium ofPlane Figures.

For our part, we discovered in a manuscript of the 13th century,15 a
demonstration of the law of the lever, very rigorously deduced from the
Axiom on the Beam. This manuscript, as we have said, appears to us to
be of Alexandrian origin, as for example the Treatise on Specific
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Weights, to which it is appended but which is falsely attributed to
Archimedes.
All four axioms, whose formulation we have just recalled, seem to

have served since Antiquity to establish the law of equilibrium of the
lever. Furthermore, it seems that their exact equivalence, i.e., the
possibility of deducing any three of them from the fourth was com
monly recognized. The Causes of Charistion, for example, as they are
reconstructed by Thftbit ibn Qurra, take as a point of departure the
Axiom of Aristotle and undertake to deduce from it the Axiom on the
Beam. The fragment, comprised of four propositions and attributed to
Euclid, which we analyzed in Chapter V, Section I, seems to have as its
main objective the demonstration of the Axiom of Aristotle, the Axiom
of Archimedes and the Axiom on the Beam. These three axioms, in
fact, coincide respectively with the propositions we called A, C and D.
The author, to justify these axioms, assumed as known the law of the
equilibrium of the lever, which he deduced then from a fourth axiom,
probably the Axiom of Euclid.
lordanus also seems to have composed the Elements on the Demon

stration of Weights to justify the Axiom of Archimedes, and by using it,
the Axiom on the Beam. But to justify the law of the lever he implicitly
invoked a completely new axiom which can be formulated as follows:

Whatever can lift a given weight to a given height can also lift a weight K times heavier
to a height K times smaller.

We find no trace of this axiom of lordanus in the works on
mechanics bequeathed to us by Antiquity. It seems to be a spontaneous
product of Western science. It presents a clear advantage over the
axioms used by the Greek and Arabic mechanicians, to wit, its extreme
generality. It is true that lordanus only applied it to the theory of the
straight lever. But his anonymous student, whom we call the "Precursor
of Leonardo," deduced from it the laws of the bent lever and the
inclined plane. Leonardo da Vinci, Cardan and Salomon de Caus
pointed out its importance for industrial mechanics. Roberval made use
of it to justify the rule for the composition of concurrent forces. Finally,
Descartes proposed to use it as the foundation of all statics.
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PREFACE

We shall begin by redressing an unintentional injustice.
In the preface to Volume I, we stated that at the outset of our

research we had been unaware of the solution to the problem of the
inclined plane borrowed by Tartaglia from the School of Jordanus. We
added that not a single historian of mechanics had ever mentioned that
wonderful solution. However, it turns out that we were mistaken on this
point.
Several years ago the Academy of Science at Turin received a

significant paper! from Mr Giovanni Vailati, in which he reviewed the
diverse intimations of the Principle of Virtual Velocities in the works
of the Greek mechanicians. Vailati considered as one of those works
the treatise which was plagiarized by Tartaglia but which had been
written by the unknown author whom we have called the Precursor of
Leonardo.
We shall not discuss here the date of composition which Vailati

assigns to this treatise on mechanics because we shall examine that
question elsewhere.2 We shall merely state for the time being that
the erudite professor at the Technical Institute of Florence correctly
assessed the importance of this treatise, as the following quotation from
his analysis shows:3

To find a work in which statics is so completely tied to the Principle of Virtual Work 
even though this principle is only partially and imperfectly developed - a work, in my
opinion, where statics is so totally subordinated to this principle that the right to any
intuitive initiative - so prevalent in the approach of Archimedes - is rigorously
rejected; to find such a work, I say, one is compelled to refer to the short treatise
by 'Descartes, entitled: Explicatio machinarum atque instrumentorum quorum ope
gravissima quaeque pondera sublevantur. This short treatise is actually the very first
attempt, after the previously discussed treatise, to construct the entire edifice of statics
on the same basis which Lagrange's Mecanique Analytique was to use.

During the Middle Ages statics was taught in two ways. In the uni
versities the Schoolmen taught the study of the laws of equilibrium
together with their own commentaries on the cosmological writings of
Aristotle. Outside the universities, statics was considered to be an
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autonomous mathematical science without any connection with philoso
phy. The basis for that science was found in works at times attributed to
Euclid, at other times to Archimedes or Jordanus, although most often
the authors were simply called by a collective name, Auctores de
ponderibus.4

The main objective of our first volume was to trace through innu
merable vicissitudes the development of the methods created by the
Authorities on Weights. This development culminated in Cartesian
statics, which was founded entirely upon the equality between the work
of the impressed and resisting forces.
The first two chapters of the present volume will retrace the evolu

tion of the ideas formulated by the Schoolmen. We shall see how this
evolution leads to the famous principle of Torricelli:

A system of heavy bodies whose center of gravity has descended as low as possible is
indubitably in equilibrium.

The insight which was to lead to this truth can already be seen,
although vaguely and indistinctly, in the very early commentaries on
Aristotle, such as those of Simplicius. It becomes more precise in the
XIVth century in the books of Albert of Saxony and is formulated as
follows: In each descending body there exists a well-determined point,
the center of gravity, which tends to move to the center of heavy things.
This proposition, which will prove to be so productive, contains

nonetheless a major error: The existence of a fixed center of gravity in a
heavy body is linked to the assumption that the vertical lines5 from the
different points of that body can be considered as being parallel to each
other. This is incompatible with the existence of a common center for
heavy bodies at a finite distance from the surface of the earth. However,
as erroneous as this proposition was, it was universally and uncritically
accepted "as the clearest and most evident of all possible axioms."
The Copernican revolution, which relocated the center of the uni

verse, did not negate the preceding principle, but merely compelled its
modification. The center of the earth was substituted for the common
center of heavy bodies and the axiom thereby rejuvenated could then
receive the unqualified approval of Galileo.
The obviously inadmissible inferences deduced by Fermat from this

erroneous principle were enough to bring about its demise, although
the useful corollaries which had been deduced from it assumed their
correct form.
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This erroneous principle, which for so long had guided the statics of
the School, had also produced the geodesical theory most commonly
taught in the universities. Thus the history of the science of equilibrium
is inextricably tied to the history of the doctrines on the configuration
of the earth and the oceans as developed in the Middle Ages and the
Renaissance. So no one should be surprised to find in the present
volume how closely the history of the latter era is tied to the history of
the properties of the center of gravity.
The numerous notes which can be found at the end of this volume

will present to the reader some discoveries made too late to find their
appropriate place in this study. Some of these discoveries occurred to
us spontaneously during the course of our lengthy investigation. Others
were brought to our attention through the astuteness of many of the
kind readers of our manuscript. Having thanked each of them individ
ually for their separate contributions, we would now like to take this
opportunity to thank them collectively.
We would also like to acknowledge our gratitude to the Reverend

Father J. Thirion whose kindness provided us with documents which
otherwise would have been difficult to obtain and whose vigilance
brought to our atteniton errors we had overlooked.

Bordeaux, July 14, 1906 P. DUHEM



CHAPTER XV

THE MECHANICAL PROPERTIES OF THE CENTER OF

GRAVITY FROM ALBERT OF SAXONY TO EVANGELISTA

TORRICELLI

First Period

From Albert of Saxony to the Copernican Revolution

1. FORMULATION OF THE PRINCIPLE OF TORRICELLI

Lagrange once wrote:!

Torricelli, the famous disciple of Galileo, is the author of another principle which also
depends on the Principle of Virtual Velocities. This is so, because when two weights are
connected and placed in such a way that their center of gravity can not descend further,
they are said to be in a state of equilibrium. Although Torricelli only applies this
principle to the inclined plane, it is easy to see that it is also applicable to other
machines.

The formulation of this principle mentioned by Lagrange can be
found in a collection entitled Opera geometrica Evangelistae Torricellii,
published in Florence in 1644.2

Torricelli says the following in the section dealing with the motion of
descending bodies:3

We shall assume as a principle: Two descending bodies joined together can not move
by themselves unless their common center of gravity descends. Indeed, when two
weights are connected in such a way that the motion of one produces the motion of the
other and this connection is made by means of a balance, a pulley or any other
mechanism, then these two bodies will behave as a single body composed of two parts.
Yet, such a body will never move by itself, unless its center of gravity descends. But
when the mechanism is configured in such a way that its center of gravity cannot
descend further, the body will certainly remain at rest in its final configuration. Further
more, the body would move in vain because it would be moving in a horizontal line
without any downward tendency.

Torricelli postulates this principle in order to solve the problem of
the inclined plane. We shall see later why he was so interested in the
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solution to this problem. Immediately after formulating his fundamental
postulate, he states this proposition:4

If two bodies are placed on two planes of unequal inclination but at the same elevation
and if the weights of these bodies are to each other as the lengths of the planes, these
two bodies will have the same momenta.
Indeed, we shall demonstrate that their common center of gravity cannot descend

further, because whatever movement one may impart to these two bodies, it will always
be along a horizontal line ... Thus two connected bodies would move, but their
common center of gravity would not descend. This would be contrary to the law of
equilibrium which we have assumed as a principle.

At the beginning of his work On the measurement of the parabola,s
Torricelli also returns to this law of equilibrium. Indeed, he formulates
the following hypothesis which is for him the very definition of the
center of gravity:

We shall assume that the nature of the center of gravity is such that a body suspended
freely from any given point is unable to remain at rest as long as the center of gravity is
not at the lowest possible point on the sphere on which the body is moving.

From this TorricelIi easily deduces that at the instant of equilibrium, the
center of gravity is located on the vertical through the point of suspen
sion and below this point. In the same work,6 Torricelli attempts to
construct from his definition of equilibrium the law of equilibrium for a
lever. He gives two equivalent demonstrations but we shall only quote
the second.
The lever AE (Fig. 94) turns around point B. It supports respectively

D

E

N

F

fig. 94.
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two weights suspended from points A and E, and in inverse proportion
to the lengths AB and BE.

Let us connect the two centers of gravity G and L by the line GL.
Since the magnitude of weight L is to the magnitude of weight G in the same ratio as

AB is to BE, or, for reasons of parallelism, as GN is to NL, the common center of
gravity for the two weights suspended from the lever is at N. If the balance AE does not
remain at rest, the center of gravity N will rise because being on the vertical DF it
cannot move without rising.

Torricelli overlooks something here. A virtual displacement of the
balance would not cause point N to go up, but would leave it immobile.
In this case as well as in the case of the inclined plane, the common
center of gravity of the two connected weights is not at the lowest
possible point. It would be at the same height after a virtual displace
ment. Today, thanks to Lagrange, we know how to connect this feature
with another. The two cases of equilibrium of which Torricelli speaks
are each cases of indifferent equilibrium. On the other hand, the
equilibrium of a system of weights is stable when the center of gravity
of this ensemble is lower in its actual state than in any other adjacent
state. We have seen how Roberval had dealt with such a case of stable
equilibrium before Torricelli.
Furthermore, it appears that on the subject of stability, Torricelli did

not have as clear a conception as he might have had from the research
and discussions of his predecessors. The demonstration of the law of
equilibrium of the lever - quoted above - is followed by this passage:7

I am aware that a controversy has arisen among authors on whether a balance carrying
weights with centers on the beam itself will remain in the position in which it is placed
or whether it will return to its initial position. As far as we are concerned in this book,
we have always assumed that the weights were suspended below the beam. We have
always preferred to write on matters useful to our topic rather than to adapt our
demonstrations to the controversies of others.

It is of little importance to the stability of a balance if the centers of
gravity of the weights are above or below the beam. Its stability
depends on the configuration of the beam with respect to the point of
suspension. If the beam is nothing but a straight line passing through
the point of suspension - as in the demonstration by Torricelli - the
equilibrium of the balance is indifferent, even when the weights hang
below the beam. These ideas were clearly stated as early as the 13th
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century in the treatise written by the Precursor of Leonardo da Vinci.
Leonardo and Benedetti had further elaborated on them. One can only
be surprised at the ignorance shown here by the most illustrious of
GaWeo's followers.

2. THE CONCEPT OF THE CENTER OF GRAVITY IN ANTIQUITY

The new principles introduced to statics by Torricelli reached the
precise formulation which he gave them through a slow evolution and
we shall recount its main stages.
Archimedes often spoke of the concept of the center of gravity and

he taught us how to find this point in various plane figures. Yet, none of
his works which have come down to us contain any definition of this
concept. Among the authors of Antiquity, only Pappus includes a
definition of the center of gravity. Let us imagine,8 says Pappus, that a
body is suspended about an axis a{3, and let us permit it to take its
position of equilibrium. The vertical plane which passes through a{3

... will divide the body into two parts in equilibrium, which will remain suspended on
both sides of the plane, because they have equal weight.

Let us take another axis a' fJ' and let us repeat the same procedure:
the new vertical plane passing through the new axis will surely cut the
preceding one. Indeed, if it were parallel to it:

... each of these two planes would divide the body into two parts which would have
simultaneously equal and unequal weights, which is absurd.

Now let us suspend the falling weight by a point y and when it has
come to rest, let us draw the vertical yO from the point of suspension.
Next, let us take a second point of suspension i and, by a similar
procedure, let us trace a second line y' 0'. The two lines yo and i 0'
will surely intersect. If that were not so, one could pass through each of
the two a plane dividing the body into two balanced parts in such a way
that these two planes would be parallel to each other, which, of course,
one knows is impossible.
All the lines such as yO will intersect at the same point in the body

which we shall call the center of gravity. Two remarks are in order on
this definition. The first one is stated in the following way by Guido
Ubaldo:9
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The plane drawn by afJ must divide the heavy body into two parts which are equally
heavy on both sides. This does not mean that they would have equal weights if
considered and weighed separately. But this is not what happens. The two parts of the
body must be equilibrated in the positions they occupy so that neither of them
outweighs the other.

The definition given by Pappus is thus not complete until one defines
the equivalence between the two parts into which a falling weight is
divided by a plane containing the center of gravity. In modern terms,
we define this equivalence by stating that these two parts have the same
moment with respect to the plane. It is this concept of moment that
Pappus and the geometers after him have in mind when they determine
the center of gravity for a body and this application is made by means
of the Law of the Lever10 which is the origin of the concept of moment.
But occasionally, because the result of their reasoning was not false,
geometers would not be sufficiently cautious with their logic and would
argue as if the two parts of a body separated by a plane passing through
the center of gravity, were of equal weight rather than of equal moment.
Simply because of the fact that the median produces two triangles with
equal areas, Pappus concludes" that the center of gravity of a triangle
is situated on the median.
The second remark is of great importance for the investigation which

we shall pursue in this chapter. Today, we know: one, the law of the
lever, as formulated by Archimedes, two, the rules developed by the
geometers for establishing the center of gravity for different bodies and
three, the existence in a solid body of a fixed point which can be called
by the name of center of gravity, are all consequences of the following
hypothesis: gravity has the same magnitude and direction at every point
in the body.

It is quite certain that geometers did not obtain until very late the
precise conditions on which the accuracy of the law of the lever and the
notion of the center of gravity itself depend. It is true that everything
written by Archimedes in his treatise On the Equilibrium of Planes
accords with the hypothesis of a gravity uniformly constant in magni
tude and direction. Yet, nowhere does the great geometer mention that
this assumption is essential for the accuracy of his propositions. One
cannot even be sure if he had a clear opinion in this matter.
To read his books On Floating Bodies will reinforce this uncertainty.

In the first of these two books, we see him continuously assume and
represent the convergence of the vertical lines at the center of the earth,
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while the laws which he wants to demonstrate are inaccurate unless
gravity is of uniformly constant magnitude and direction. Thus the
illustrious Syracusan gives to the principle which still carries his name, a
formulation which is both excessively general and blemished by a grave
error.12 But, in the second book, when he is about to apply this
principle, he considers the verticals as parallel and thus the erroneous
consequences of his first analysis are avoided.
There is no evidence that Pappus had any clearer understanding than

Archimedes of the conditions necessary to determine the center of
gravity of a body. Like his illustrious predecessor, it appears that he
attached no importance to this question. He defines the verticals as
lines converging towards the center of the Universe,13 but immediately
thereafter, he treats them as if they were parallel.

3. THE PROPENSITY OF THE CENTER OF GRAVITY TO MOVE
TOWARDS THE CENTER OF THE UNIVERSE.

ALBERT OF SAXONY (XIVTH CENTURY)

The notion of the center of gravity was vague and imprecise even in the
minds of geometers. One can well imagine how uncertain and ill
defined it was in the eyes of the physicists and philosophers. One can
observe the gradual emergence of a doctrine which gains in precision,
and though it seems rather bizarre to us today, was nonetheless
accepted by great minds for centuries and was one of the most
enduring and least contested theories in the history of physics.
This doctrine can be formulated as follows: There exists in every

falling body a point at which its heaviness seems to be concentrated,
which can be called the center of gravity. Furthermore, in every falling
body heaviness is a desire to unite this center of gravity with the center
of the Universe. If its center of gravity coincides with the center of the
Universe, the falling body is at rest. If the center of gravity is not at the
center of the Universe, the first point seeks to join the second and, if
unimpeded, will move towards it in a direct line. The earth is a falling
body like all others. It seeks to join its center of gravity to the center of
the Universe. Therefore, the earth will remain immobile at the center of
the Universe.

In order to find the origins of this theory, one must go back to
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Aristotle, where it can be recognized, though faint and indistinct, in a
chapter of On the Heavens. 14

Given that the center of the Universe coincides with the center of the earth, we shall
ask, says Aristotle, towards which of these two centers all falling bodies tend to move
by nature including the elements of the earth themselves. Do they move towards this
point because it is the center of the Universe or because it is the center of the earth?
They move, of necessity, towards the center of the Universe ... Yet, it so happens that
the earth has the same center as the Universe. Thus, when the falling weights move
towards the center of the earth, they do so accidently because the earth has its center at
the center of the Universe That is the reason they move towards the common center
of the earth and the Universe .
There is another question which can be solved in the same way. Let us assume that

the earth is round, that it occupies the center of the Universe and that if we add a large
weight to one of the hemispheres, the center of the Universe and of the earth will no
longer coincide. What will happen then? Either the earth will remain immobile at the
center of the Universe or it will not remain immobile since it is not at the center and
consequently, it will be apt to move. This is the question at issue. But this question is
easily resolved if we merely analyze the judgement we make when a given heavy body
moves to the center. It is clear that the descent of this body will not stop at the moment
at which its lowest point touches the center of the Universe. Its heaviest part will carry
further as long as its center does not coincide with the center of the Universe because
up to that moment, it will have the power to move. One can say the same thing about a
part or about the entire earth. What we said does not happen because of magnitude or
size, but is common to all bodies which tend to move towards a center. Thus, starting
from any given point, the earth will move towards the center either as a whole or in
parts, and it will move by necessity until it surrounds the center in a uniform way and
the tendencies to movement in the various parts will counterbalance each other.

The doctrine of Aristotle is still very imprecise in this passage. The
Philosopher fails to characterize the center which in every falling body
tends to move to the center of the Universe. He does not connect it to
the center of gravity, which was unknown to him.
Simplicius l5 in commenting on this passage by Aristotle makes a

rather vague and tenuous connection between the center of a falling
body and its center of gravity. He considers the last objection raised by
Aristotle to be a result of the latter's research in the field of study called
Centrobaricsl6 by the mechanicians. Archimedes and others had formu
lated many elegant propositions on Centrobarics which attempts to
determine the center of a given gravity. It is clear that the Universe, i.e.
the earth, which is assumed to be spherical will have the same center of
magnitude and gravity.
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It does seem that this passage received much attention by the
commentators after Simplicius. St. Thomas Aquinas l7 for example,
merely quotes Aristotle almost literally:

It is clear that a body with gravity does not only move towards the center of the
Universe until its lowest point touches this center, but if unimpeded, the larger part will
prevail over the smaller part and the body in motion will tend to the center of the
Universe until its center touches the earth's center. This is the goal and tendency of all
falling bodies.
Imagine that the only existing falling body in the world was a single stone thrown

from a height. The weight would fall until its own center touched the center of the
earth. Indeed, the larger part would push the smaller away from the center until the
gravity was equal on all sides, as stated above. And from this the Philosopher concludes
that the exact same thing can be said about either any part of the earth, or about the
entire earth.

Averroes before St. Thomas had said more or less the same,18 but in
a more verbose and confused manner. Furthermore, Albertus Magnus
composed formulations 19 almost identical to those of Averroes.
What had been a casual remark in the works of Aristotle, assumed in

the commentaries by Simplicius and St. Thomas Aquinas the dimen
sions of a theory during the 14th century. Walter Burley (1275-1357)
had already extensively elaborated on the remarks of Aristotle.20 The
natural locus of the earth is not the internal surface of the element
water:

The earth is only in its natural locus when it has as its center the very center of the
Universe. Likewise, water is only in its natural locus when its sphere has as its center
the center of the Universe which is the same as that of the earth.

And one can say further about the other elements:

No element is in its natural locus if its center is not at the center of the Universe.
A portion of the earth, unimpeded in its motion, moves towards the center of the

Universe and not towards the internal surface of water.

It is true that a difficulty appears here.

When the earth has as its center the center of the Universe, each of its parts is
subjected to violence, because, free of any constraint, it would move naturally towards
the center.
Likewise, if a hole were bored from one side of the earth to the other through its

center and a clod of earth were thrown down that hole it would move until its center
reached the center of the Universe. One half of the clod would then be on one side of
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the center of the Universe and the other half on the other side. This, however, can only
be achieved if one part of the clod moves away from the center of the Universe and
approaches the heavens. This latter motion is an upwards motion, thus a violent
motion, which is impossible.

Burley answers:

... that a part of the earth, detached from the whole earth, is submitted to violence
when its center is not the center of the Universe, because, if unimpeded, it would move
towards the center of the Universe. However, when joined with the rest of the earth, it
can rest outside the center of the Universe without being submitted to violence, because
it is at rest, not on its own, but in accordance with the position of the rest of the whole.

If all the elements were shaped like spheres having as centers the
center of the Universe - according to Burley, they would thus be in
their natural locus - the earth would be completely covered by water.
How can we explain that such is not the case? John Duns Scotus,21 the
Subtle Doctor (1275-1309) asked himself this question, but was
content with a teleological explanation:

If all the elements were distributed symmetrically, the earth would be completely
covered by water. In fact, at present, only a part of the earth is covered by water with a
view toward the salvation of human beings.

John of Jandun, in 1316, Master of Theology, followed in many points
the opinions expressed by Walter Burley, and like him and Aristotle, he
believed:22

... that the earth moves as a whole towards the center of the Universe and that its
motion will only stop if it reaches the midpoint of the Universe.

He seems to accept the finalist explanation concerning the existence of
continents which Duns Scotus had accepted. However, on this subject,
he encounters a difficulty:

It is certain that water has weight. On the other hand, one part of the earth - the one
inhabited by animals - is not covered by water. Thus it appears that the center of the
earth cannot be the center of the Universe, because on the side where the earth is
covered by water, which is heavy and covers the earth, it must push and move away
from its locus toward the side not covered by water, since a heavy body, such as water,
moves downwards if unimpeded ... It is true that water has weight even in its natural
locus. However, the gravity of water does not suffice to displace earth from the center,
since the gravity of earth is much stronger and will resist. The arguments23 would be
convincing if water were as heavy as earth.
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The insights of Walter Burley and John of Jandun, still vague and
rather incoherent, are organized and developed into an expansive and
powerful theory, the achievement of Albert of Saxony.
Albertus de Saxonia, to whom the Scholastics often refer simply as

Saxonia, is certainly one of the most powerful and original thinkers of
the School. Unfortunately, we know very little of his life, but all of his
writings are known to us in numerous editions.
His place of birth, Saxony, is indicated by his surname. We also

know with certainty that he resided and taught in Paris for a time. A
manuscript24 in the Vatican Library, the Codex Palatinus No. 1207,
contains this reference:25

Explicit tractatus de proportionibus Parisius per Magistrum Albertum de Saxonia
editus. Deo laus.

Albert must have composed his Questions on the Physics ofAristotle in
Paris for in a passage,26 where he wishes to give the example of a stone
falling into water, he assumes this stone as thrown into the Seine.
We can also date this above information. The Bibliotheque Nation

ale2? has a manuscript copy of the Questions on the De Caelo of Albert
of Saxony, and this copy is dated 1378. The History of the University
of Paris28 mentions an Albert of Saxony who fits all the above descrip
tions accurately. He taught philosophy brilliantly at that University
between 1350 and 1361. The Registers of the English Nation of the
Faculty of Arts at the University of Paris29 mention that he presided
over exams in 1352, 1354, 1355, 1358, and 1359. The Historia of Du
Boulay asserts that on several occasions he was Procurator for the
English Nation. According to the same author, Albert of Saxony was
elected Rector of the Academy in June 1358. In 1361, the University
entrusted him with the parish S.S. Come and Damien.
Tnose are the known biographical details on the author we are

concerned with. J. T. Graesse,30 J. C. Adlung31 and U. Chevalier32

identify him with Albert of Riickmersdorff, Rector of the University of
Vienna in 1365 and Bishop of Halberstadt from 1366 to 1390, the
year of his death. However, this identification is anything but certain.
Many details concerning the life of Albert of Saxony remain obscure.

We do not know, for example, whether he was a member of the secular
or regular clergy. Some of his editors refer to him as an Augustinian,
some as a Dominican and others as a Franciscan. Many of them refrain
from mentioning whether he belonged to a religious order or not.
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When Chevalier,33 using Sbaralea34 as a reference, mentions another
Albert of Saxony, surnamed Albertutius, allegedly a Franciscan monk
of the 15th century, we, for our part, believe that this Albertutius is one
and the same as our Albert of Saxony and we offer proof to support
this opinion.
Nicolo Vernias de Chieti, a native of Vicenza, taught philosophy at

Padua at the end of the 15th century where he wrote a book in 1499
entitled De gravibus et Levibus quaestio subtilissima.35 In 1516, when
the editor published in Venice the Quaestiones super Libros de physica
AuscuLtatione36 of Albert of Saxony, he appended to it this short work
of Vernias. The author mentions and refutes the views of Albertutius,
who had attributed the motion of projectiles not to the agitation of the
air, but to an impetus. Such is, indeed, the opinion maintained by
Albert of Saxony in many arguments throughout his Questions on the
Physics of Aristotle and On the Heavens. It is most certainly Albert of
Saxony, whom Nicolo Vernias believed he was quoting. Furthermore,
he not only calls him Albertutius, but also Albertus parvus,37 reserving
the name of Albertus for Albertus Magnus.
We find similar information in a collection of commentaries to

Aristotle's On Generation and Corruption, by Gilles Colonna (Aegidius
Romanus), Marsilius of Inghen and Albert of Saxony.38
In this collection, Paulus of Genocano of the Augustinian Order

implies at the end of the Questions of Aegidius and Marsilius that he
revised the edition. He must have also done the same for the Questions
of Albert of Saxony so that we can attribute to him the note in folio
132 col. a, in which the reader is informed that the Questions of
Albertucius are concerned with the same texts as the Questions by
Marsilius of Inghen.
During the 16th century, Albertutius or Albertucius was unques

tionably accepted as the surname of Albert of Saxony who taught at the
Sorbonne during the middle of the 14th century, so that editors some
times coupled the two names on the title pages of their published
works, as witnessed by the following title:39

Logica Albertucii perutilis. Logica excellentissimi sacrae theologia professoris Magistri
Alberti de Saxonia ordinis divi Augustini, per Magistrum Aurelium Sanutum Venetum.
Venetiis, aere ac sollertia heaeredum O. Scoti MCXXII.

The Tractatus proportionum4o by Albert of Saxony, his Acutissimae
Quaestiones concerning the Physics, On the Heavens, On Generation
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and Corruption by Aristotle enjoyed great popularity in the School at
the end of the Middle Ages and throughout the Renaissance. The
printing presses distributed them widely.41 The works of Albert of
Saxony are one of the main channels by which the physics of the
Scholastics transmitted its ideas to the scientific community of the 16th
century. His theory on weight can be found scattered throughout the
Questions on the Physics or On the Heavens.

In an early passage,42 he is supporting the opinion of Aristotle,
according to which a body falling in a vacuum would move at an
infinite velocity because the body does not possess on its own any
intrinsic resistance to motion. There is nothing analogous here to what
we call today inertia.
Certain thinkers were of the opinion:43

... that the different parts of the same falling body would impede each other because
each of them would have the tendency to descend by the shortest path. But, since only
the middle portion can descend in this line, it hampers the lateral parts. Thus, due to
this mutual obstruction of the various parts, simple falling bodies move in unison. But
this reasoning is untenable.
In the first place, such reasoning claims that each part of some falling weight tends

to descend along the shortest path. This is not valid. Each part does not strive to join its
center with the center of the Universe which would be impossible. It is the whole which
descends in such a manner that its center becomes the center of the Universe and all
the parts strive so that the center of the whole becomes the center of the Universe.
Therefore, they do not obstruct each other ...

To this argument where we ascertain an initial formulation of the
theory confronting us now, Albert adds others, including the following:
According to this view, "... a large body would descend more slowly

than a smaller body which is, all other things being equal, not accurate
... Ten stones joined together would descend more slowly than any
single one, because they would obstruct each other's motion. However,
this is inaccurate and contrary to experience."
When Benedetti demonstrated44 that all bodies with the same speci

fic weight fall with the same velocity within the same medium, he took
great care to stress the originality of his discovery:

This truth, he said, does not stem from Aristotle, nor from any of his commentators
whose works I had occasion to read nor any of those with whom I was able to converse
and who are in agreement with this philosopher.

It is plausible that the passage by Albert of Saxony just quoted might
have been the seed which germinated in the mind of Benedetti.
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The problem of the natural locus of the earth is paramount for
Albert of Saxony in various passages of the Questions on the Physics
and On the Heavens. According to Peripatetic philosophy, each ele
ment has its corresponding natural locus. In that locus, the substantial
form of that element acquires its perfection. It is so disposed that it can
receive as much as possible favorable influences while avoiding destruc
tive actions. If an element is outside its natural place, it tends to return
to it because each form strives toward perfection. When it is in its
natural place, it remains at rest and can only be moved by being
subjected to a violent action.
What are the natural loci of the various elements? What is, above aU,

the natural locus of the earth? That question was keenly debated within
the School.45

For some, the natural locus of the earth was the concave surface
which delimits the bottom of the sea - the natural locus of water; or
more precisely, this surface added to a part of the lower surface of the
atmosphere - the natural locus of air; and these commentators proved
to be faithful interpreters of Stagirite doctrine, according to which the
locus of a body is the internal surface of the bodies surrounding it.
Others rejected this view. The internal surface of water is not the

natural locus of the earth, because then a piece of earth surrounded by
water would remain in equilibrium. However, if one throws a stone into
a river, far from remaining at rest it descends until it reaches the
bottom of the river. No piece of earth, free of all constraints, could
remain at rest as long as it had not reached the center of the Universe.
Thus the center of the Universe must be the natural locus of the earth.
The supporters of the first view responded to this by saying that the
earth, not being a single point, could not naturally rest at a point, even
if this point were the center of the Universe.
Albert of Saxony applies his theories on gravity in particular to the

resolution of this debate. He formulates the following thesis in the
attempt to preserve the portion of truth contained in each of the two
opposing views:46

Earth, limited in part by the concave surface of air, in part by the concave surface of
water, occupies its natural locus when the center of gravity of the earth is at the center
of the Universe. If earth were outside the surface which so delimits it, it would descend
and would move until the center of the aggregate which it forms with all other falling
bodies became the center of the Universe, unless prevented from doing so ...
To this I shall add several remarks: First, if the entire mass of the earth were placed

outside of its natural locus, as, for example, inside the concavity of the orbit of the
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moon, and if it were held there by force and if, from elsewhere one dropped a heavy
body, this body would not move towards the mass of the earth, but it would move in a
straight line towards the center of the Universe. The reason for this is that once it had
reached the center of the Universe, it would be in its natural locus, provided its center
of gravity were the center of the Universe. Any being whose motion is not restrained
tends naturally to move to its natural locus, because there it can persist longer and is
furthest from anything inimical to its natural locus, because there it can persist longer
and is furthest from anything inimical to it. Thus we can conclude that falling bodies
moving towards the earth do not do so because of the earth, but because by moving
toward the earth, they approach the center of the Universe.
However, it is now appropriate47 to make two distinctions. The first one is as

follows: there are two points which can be called midpoints or centers of falling bodies:
the center of magnitude4H and the center of gravity. In those bodies in which gravita
tional pull is not uniformly distributed, the center of gravity is not the center of
magnitude, while in bodies with a uniform gravitational pull, the center of magnitude
will indeed coincide with the center of gravity_
The second distinction is as follows: To say that a body is at the center of the

Universe can be understood in two different ways: first, that its center of magnitude is
at the center of the Universe; second, that its center of gravity is at the center of the
Universe.
Therefore, I assume that the earth does not have a uniformly distributed gravita

tional pull. This is obvious, because the part not covered by the ocean and exposed to
the rays of the sun is more dilated than the part covered by water. Furthermore, if its
center of magnitude coincided with its center of gravity and consequently the center of
the Universe, the earth would be completely covered by water.
From this, we can draw two conclusions: First: It is not the center of magnitude of

the earth which is at the center of the Universe. _. Second: it is the center of gravity of
the earth which is at the center of the Universe. We shall prove it: All the parts of the
earth tend towards the center because of their gravity. Thus, if any given plane passing
through the center of the Universe did not divide the earth into two parts of equal
gravity, the heavier part would push the lighter until the center of gravity of the entire
earth became the center of the Universe. Then, these two parts of equal weight would
remain immobile, even though one would have a larger magnitude. They would counter
balance each other just as two weights in equilibrium.

Thus we have a paradox:49 When the earth is in its natural locus, the
different parts of the earth are subjected to violent action and they are
outside of their natural locus. Indeed, each of these parts would
naturally be at rest if its center of gravity were at the center of the
Universe. However, it is the center of gravity of the earth which
occupies this position.
It is clear that Albert of Saxony resolves this paradox just as Walter

Burley50 had done earlier, by using the reasoning which he had already
developed to prove that the different parts of a falling body do not
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restrain each other in their motion. It is not that each part of the earth
strives to have its center of gravity reach the center of the Universe.
This tendency belongs solely to the earth in its entirety. More precisely,
the aim of each part is to have the center of gravity of the whole reach
the center ofthe Universe.51

Water, he says, does not form the natural locus of the earth as long as the center of
gravity of the earth is not the center of the Universe. It does not suffice that for a part
of the earth surrounded by water to be in its natural locus and remain immobile,
because then its center of gravity is not yet the center of the Universe, and the center of
gravity of the whole which it forms with the rest of the earth is also not at the center of
the World. Thus it continues to descend until the center of gravity of the whole 
comprised of that portion of earth and the remainder - is at the center of the Universe.

From this principle stating that the center of gravity of the totality of
all heavy bodies strives constantly to occupy the center of the Universe,
one can conclude that the earth does not possess absolute immobility
which some thinkers attribute to it. Numerous phenomena, as, for
example, the heat from the sun's rays, cause a continual redistribution
of gravity throughout the terrestial mass and displace its center of
gravity.52

Indeed, Albert53 states, the earth moves constantly. Moreover, gravity in the part of the
earth facing the sun is less than on the opposite side. Since the sun moves in a circular
motion above the earth, this part changes from moment to moment. Thus, in order for
the center of gravity of the earth to remain at the center of the Universe while that part
of the earth which is lighter is changing constantly, it is necessary for the earth to move
continually.

The cause cited here by Albert of Saxony to explain the displace
ment of the terrestial center of gravity is actually quite insignificant. In
another passage54 he invokes another more gradual, but more impor
tant action: the erosion caused by rainfall. And more than one geologist
will be astonished at the precision with which Albert delineates the role
played by erosion in shaping the earth.

It is quite probable that a given part of the earth moves continually in a straight line.
One can easily be persuaded of this by the following reason: from the part of the earth
not covered by oceans, a great amount of earth washed away by rivers continually flows
into the ocean. Thus the amount of earth increases in the part covered by water while it
decreases in the uncovered parrts and consequently, it does not keep the same center of
gravity. However, after this shift in the center of gravity, the new center of gravity
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moves to occupy the center of the Universe, while, at the same time, the former center
of gravity moves towards the surface not covered by water. Because of this continual
flux and movement, the part of the earth which once occupied the center ends up
coming to the surface, and vice versa.
Thus we can show how high mountains developed,. There is no doubt that some

parts of the earth possess more cohesion than others. While those parts with weak
cohesion flow into the oceans, carried along by rivers, the parts with greater cohesion
remain in place and form promontories above the surface of the earth.

Up to this point, Albert of Saxony has only discussed the natural
locus of the earth, but has not taken into account the masses of water.
How can this theory account for the presence of this mass? Albert's
thinking varies on this particular point. The ideas expressed in the
Questions on Physics are different from those expressed in the Ques
tions on the Heavens.
When Albert of Saxony commented on Aristotle's Physics, he wrote

the following:55

[What I have said about the earth alone], must also be understood as being true for the
aggregate formed by earth and water. These two elements constitute undoubtedly an
integrated and unique gravity, with its center of gravity at the center of the Universe.

Thus, in the Questions on Aristotle's Physics, Albert of Saxony
teaches that the center of the Universe coincides with the center of
gravity of the totality of heavy bodies. It also coincides56 with the center
of lightness of the totality of light bodies.
Since cold is particularly intense at the poles, the layer of igneous

element would be much thinner there than at the equator, if fire,
constantly generated at the equator, did not flow continually towards
the poles. Just as water flows constantly towards the lowest places,
allowing the center of all gravity to be at the center of the Universe, so
we must also admit that fire flows continually from the equator towards
the poles allowing its center of lightness to be at the center of the
Universe. One must be aware that at the poles fire is constantly
transformed into air, while at the equator, air is continually transformed
into fire. And fire continually flows from the equator towards the poles
allowing the center of all lightness to be at the center of the Universe,
which is also the locus of the center of all gravity.
Thus, according to the view propounded by Albert in his Questions

on the Physics, one finds at the center of the Universe the common
center of heavy bodies, - of the earth as well as of water - and the
common center of light bodies - of air as well as of fire.



ALBERT OF SAXONY TO EVANGELISTA TORRICELLI 277

Just as John of Jandun had done earlier, Albert of Saxony rejects
this view in his commentary On the Heavens:57

One will object that the center of gravity of the earth alone does not seem to be at the
center of the Universe and that this position is more appropriate to the center of gravity
of the totality formed by earth and water. Since a part of the earth is completely
covered by water, that water combines with the part of the earth which it covers so as
to counterbalance the other part. It must thus push back this other part until the center
of the totality formed by earth and water is at the center of the Universe
We shaIl answer these objections by denying that the center of the Universe coin

cides with the center of gravity of the totality formed by earth and water. Indeed, let us
imagine that all water were removed. The center of gravity of the earth would still be at
the center of the Universe ... because, in essence, earth is heavier than water ...
whatever volume of water might be placed on one side of the earth as opposed to the
other, this latter side of the earth would not receive more help than before to counter
balance and push back the other side ...

It is easy to account for the fact58

that a part of the earth protrudes out of the water. Indeed, the earth is not uniformly
heavy, so that its center of gravity is far above its center of magnitude. It is much closer
to one of the two convex caps which delimit the earth than the other. On the other
hand, water which is uniformly heavy and which tends towards the center of the
Universe, flows towards the earth cap which is closer to the center of gravity of the
earth, so that the other part, the other cap, the one furthest from the center of gravity,
remains uncovered (sic).

For Albert of Saxony the theory of gravity was bound up with the con
temporary notions of geography.59 It helped him justify the hypothesis
of one terrestial hemisphere covered by a vast ocean. This hypothesis
was rendered invalid by the discovery of Christopher Columbus.
The view expressed by Albert of Saxony that the waters of the seas

do not exert any weight, any pressure, on the ocean floor appears
rather strange to us today. However, this was not a haphazard conjec
ture. Albert derives the view from his own general principles on the
pressure distribution in fluids. These principles, whose profound and
lasting influence were demonstrated by Thurot,60 were meant to answer
the following question: does a body continue to have weight when it is
in its natural locus?
A heavy body strives invariably and uniformly to unite its center of

gravity with the center of the Universe. When the heavy body is placed
in its natural locus, this tendency exists as a potential or habitual
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condition. In the latter condition the heavy body has the tendency to
remain where it is.61 As soon as one attempts to remove it from this
place, the potential weight immediately changes into an actual state and
manifests itself in the form of resistance. When the heavy body is
placed outside of its locus, the actual weight sets it into motion as long
as no obstacle restrains it.

If any support arrests it and holds it outside its natural locus, the weight remains in an
actual state. While it is true that it no longer imparts an actual movement to the heavy
body, it does produce an actual effort to reduce the violent force restraining the body.

When the various parts of a heavy body - whether solid or fluid
- are in their natural locus, when, consequently, the body is in its
habitual state and not in its actual state, then these parts neither press
upon nor compress the underlying parts.
Albert makes the following objection to those who defend this

view:62

The lower parts of the earth have more mass than the higher parts. This seems to be
due solely to the compression exerted by the higher parts which results from their
gravity. To which I respond, says Albert, by stating that if the central parts of earth are
denser, it is not due to the fact that they are compressed by the parts above them,
because these parts do not exert pressure on the parts below ...

What is true of the parts of earth also applies to the parts of water:63

When the parts of a heavy body do not move towards each other, they do not restrain
each other. This proposition becomes clear from the behaviour of water, in which the
parts above do not compress the parts below ...

Thus the ocean floor does not support any load, any pressure from
the water above. In any state, be it habitual or actual, the force of the
weight retains the same magnitude in the same body.64

A portion of earth tends toward its natural locus whether it is placed below or above it.

Without further explanation, this invariability in gravity could not be
brought into agreement with the fundamental axiom on which rests
the entire statics of 10rdanus:65 Gravius esse in descendendo quando
ejusdem motus ad medium rectior.
In the preamble printed by Peter Apian,66 the Peripatetician com

menting on this doctrine in the XIIIth century had explained this
apparent variation in gravity as due to an admixture of a certain
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amount of violent action. Albert of Saxony will define much more
precisely the meaning to be given to the axiom of Jordanus:67

We feel compelled to state that a falling body does not tend to fall along one line rather
than along another. If it descends along one line rather than another, it is because of the
resistance applied to it ... However, one will say, it seems that a falling body tends to
descend along a perpendicular rather than along an oblique line. Moreover, we see that
when a falling body descends along a perpendicular, it is more difficult to stop or
impede its descent than when it descends along an oblique line. It seems obvious that
this is indicative of a greater tendency to descend along a perpendicular rather than
along an oblique line.
To this, I respond that a falling body is, indeed, more difficult to stop when it

descends along a vertical line than when it descends obliquely. However, the reason for
this does not lie in a greater tendency to descend along a vertical line rather than an
oblique line. It is due rather to the fact that a heavy body encounters less resistance
descending vertically than obliquely, as would be the case on an inclined plane. It is
indeed more difficult to impede the displacement of a given motor force with a lesser
resistance than with a greater resistance.

Thus, if a smaller effort is needed to stop a heavy body from sliding
down an inclined plane than to halt it in free fall, it is because the
resistance of the inclined plane is combined with the effort exerted. The
resistance exerted by the supports is the true explanation for the effects
which the School of Jordanus attributed to the variation in positional
gravity.
It is amusing to observe that the arguments used by Guido Ubald068

to refute this notion of positional gravity, are nothing other than a
simple development of the arguments expounded by Albert of Saxony.
This is not the only evidence we shall find of the influence of our

Scholastic on the Marquis del Monte. During the second half of the
XVlth century, when the mechanicians instigated a spirited reaction
against the statics formulated during the XIIIth century by the School of
Jordanus, they did so not only because of their one-sided admiration
for recently unearthed scientific monuments of Antiquity, but also
because of the influence exerted upon them by the Schoolmen and, in
particular, by Albert of Saxony.

4. THE THEORY OF THE SHAPE OF THE EARTH AND THE
OCEANS, FROM ARISTOTLE TO ALBERT OF SAXONY

What we have just said about the doctrines of Albert of Saxony
demonstrates, furthermore, the degree to which his writings linked the
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theory of gravity and the whole of statics to sUppositIOns about the
center of the Universe, the center of the earth and the center of the
sphere of water. Therefore, it should not come as a surprise that we
digress here to examine both what Albertutius taught concerning the
sphericity of the earth and oceans as well as the sources of Antiquity he
used for his doctrines. At any rate, we shall not exhaust this vast and
important topic in this brief digression. We shall only examine what is
necessary to understand the development of statics.
In order to discover the origin of the theories which concern us

here, we must go back to Aristotle and his book entitled On the
Heavens and Earth, which, for so long, guided the scientific evolution
of civilization.
One of the most remarkable chapters in the book On the Heavens

and Earth is certainly the one in which the Stagirite undertakes to
prove the sphericity of the earth.69 Among his arguments, we find a
posteriori evidence which presents the sphericity of the earth as a fact.
For example, the shape of the earth's shadow during a lunar eclipse
or the observation that a traveller proceeding from north to south
sees certain constellations descending and disappearing while others
previously unknown to the traveller begin to appear. However, this
observation is also useful for calculating the dimensions of the terrestial
globe and Aristotle presents such a calculation which he perhaps found
in Eudoxus.7o The calculation, to be sure, is totally erroneous, but the
fact remains that it is the first known to us.
The study of gravity furnishes Aristotle with an additional a

posteriori argument in favor of the sphericity of the earth. Aristotle
assumes that all falling bodies tend towards the same point, the center
of the Universe. The trajectory of the fall of a heavy body - the
vertical - which varies in direction from one point to another on the
earth is always perpendicular to its surface. Thus this surface must be of
a spherical shape.
Aristotle's study of gravity also provides him with an argument of a

different nature, an a priori argument called at that time a physical
proof but which we call today a mechanical proof. This proof seems so
important to him that he puts it first.

The earth, says the Stagirite, must have a spherical shape. Indeed, each of its parts is
endowed with weight and tends towards the center of the Universe. If a lighter part
were pushed down by a heavier part, it could not escape, but would be compressed and
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in yielding to the pressure would end up at the center. One must understand that what
is happening is identical to what would happen if the earth were shaped the way certain
physicists imagine it to be. However, these physicists claim that the earth owes its origin
to a violent downward projection of bodies. In opposition to this view we must
formulate the true doctrine and state that this effect is produced because every weight
tends naturally towards the center. Thus, when the earth existed only as potential mass,
its various parts, separated from each other, were ubiquitous and were carried towards
the center by a common tendency. Thus it does not matter whether parts of the earth
were once separated from each other and came from the extremities of the Universe to
unite at the center or whether the earth was formed in a different way the result will be
exactly the same. If parts originating at the extremities of the Universe but travelling to
the center from all sides in the same manner, unite at the center they must necessarily
form a similar mass on each side, because if the parts accumulate uniformly in every
direction, the surface which delimits the resultant mass will have to be equidistant to
the center at each of its points. Such a surface must have a spherical shape. However,
the explanation for the shape of the earth would not be different even if the component
parts did not accumulate in equal quantities from all sides. Indeed, the larger part will
necessarily push a small part in front of it, because both parts have a tendency towards
the center, and a more powerful weight pushes a lesser one.

This passage contains in a rather sketchy and vague form the nucleus
of a great truth which will continue to develop through the centuries.
The earth owes its shape to gravity.
One cannot conclude from its gravity that the earth is spherical, but

only that it tends to be. Due to their solidity, the earth's parts support
each other and impede each other's displacement. The same does not
hold true for water. The fluidity of this element precludes any obstacle
to a change in shape. Since its various parts tend towards the center of
the Universe, water could only be in equilibrium if its surface formed a
sphere concentric to the Universe.
Aristotle fully recognized this truth and he tried to prove geome

trically that the surface of the sea is spherical. Stated more precisely he
proved that if a plane surface were to intrude on this perfect sphericity,
the plane could not persist because the spherical shape would be
restored by gravity. The On the Heavens formulates these arguments in
almost excessively concise terms:7!

It is evident that the surface of water is spherical if the following hypothesis is accepted.
It is the nature of water to flow towards the lowest place and that place is all the lower,
the closer it is to the center. Indeed, starting at the center a (Fig. 95), let us draw two
lines a{3 and ay. Let us connect {3 to y. On the line {30 let us draw from point a a
perpendicular aO and extend it to t:. This line aO will be the shortest line one can draw
from the center to a point on the line {3y. This point 0 will thus be the lowest point
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such that the water will flow from all sides towards this point until its surface is
equidistant from the center. The line ae is assumed equal to the other lines afJ and ay
which emanate from the center. Thus, water must assume the same depth as the length
of all the lines emanating from the center before it will remain in equilibrium. Since the
locus of the extremities of the equal lines emanating from the center is a circumference,
the surface of the water which is fJey will thus be spherical.

The extreme brevity of Aristotle's reasoning is not completely devoid
of obscurity. We shall confront this reasoning again, but in a more
explicit and clear form, in the works of Adrastus.
As a personal student of the Stagirite, Adrastus is believed to have

lived from 360 to 317 B. C. All of his writings have been lost, but a
copy or extensive summary of his teachings concerning the sphericity of
the earth can be found in a work by Theon of Smyrna, who lived in a
relatively obscure period somewhere between the reign of Tiberius and
Antonius the Pious.

In order to prove the sphericity of the earth, Adrastus goes back to
some of the arguments of Aristotle, developing and refining them. He
first takes up the a posteriori arguments:72

The sphericity of the earth is demonstrated by reason of the fact that from any place on
the earth we can only see half of the heavens, while we consider the other half to be
hidden by the earth since we cannot see it ...
First of all, the earth is a spheroid from the eastern to the western horizons. The

rising and setting of the same stars furnish convincing proof. They appear earlier to
people living in oriental regions and later to those living in occidental regions. A further
proof is a lunar eclipse which takes place within the same rather short interval of time.
To those who are able to see it, it appears at different times. The further east one is, the
sooner one sees it and the more one sees of it ...

It is also evident that the earth is convex from North to South, because the inha
bitants of the northern region are able to see stars which southerners are unable to see,
and vice versa.
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To these proofs, Adrastus adds the mechanical reasons given by
Aristotle. He develops and refines them in the following terms:

Furthermore, every heavy body tends naturally to move towards the center. Thus, if we
were to imagine that certain parts of the earth were at a distance from the center, the
smaller parts surrounding them, because of their size, would necessarily be pushed,
repulsed and displaced from the center until equality of position and pressure had been
reestablished like two balance arms in mutual support or two equally strong wrestlers at
grips. If the various parts of the earth are at equal distances from the center, the shape
of the earth must be spherical.
Furthermore, since heavy bodies always and everywhere tend to fall towards the

center and since everything converges towards the same point and each object falls
vertically, that is to say, makes equal angles with the surface of the earth, one must
conclude that the surface of the earth is spherical.

Up to this point, Adrastus has restated (although making a few
refinements), the proofs of the sphericity of the earth formulated by his
master, Aristotle. He then adds: "The surface of the ocean and of still
waters is also spherical." And continuing to draw inspiration from the
Stagirite, he sets out to justify this affirmation:

Many times, he says, while at sea, it is impossible for anyone standing on the bridge to
see land or an oncoming ship, while the sailors perched at the top of a mast are able to
see them because they are higher and overlook the convexity of the ocean blocking the
view of those below them.

After having presented this rather incomplete but classical proof
about the sphericity of the ocean, the Peripatetic philosopher continues
as follows:

It is physically and mathematically possible to demonstrate that the surface of any still
water must have a spherical shape. Indeed, water always tends to flow from the highest
to the lowest elevations. The highest are those furthest removed from the center of the
earth, while the lowest are those closest to it.

Like Aristotle, Adrastus supposes momentarily that a part of the
ocean is limited by a plane surface. He has no problem showing that on
the surface /3oy (see Fig. 95) there would be a point 0 located closer to
the center of the earth a than the other points /3, y. ... This point 0 is
the end of the perpendicular drawn from point ato the plane /3y. Thus
this point 0 is lower than points /3 and y. .. :

the water will flow from point /3, y ... towards point 0 which is lower, until this point,
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surrounded by the onrushing water, is as far away from point a as fJ and y. Similarly,
all the points on the surface of the water will be at an equal distance from a. Thus
water has a spherical shape and the entire mass of water and earth is spherical.

This first mechanical attempt to determine the equilibrium configura
tion of oceans gave rise, from Antiquity on, to other similar attempts.
Archimedes, in turn, attempted to prove by reference to gravity that the
surface of still water is a sphere with a center which is also the center of
the Universe. The demonstration by Archimedes seems more erudite
than those of Aristotle and Adrastus. However, a more critical view of
it will not fail to recognize73 that it is not based on an accurate notion
of hydrostatic pressure. We shall not dwell here on the demonstration
given by Archimedes, which does not seem to have attracted the
attention of physicists until the XVIth century. Because it was more
straightforward than the formulation of the great Syracusan, the ap
proach of Aristotle and Adrastus met with the approval of many
philosophers. We have mentioned how Theon of Smyrna had preserved
the argumentation of Adrastus. We find a trace of this proof, although
it is blurred and faint, in the Pneumatics74 of Hero of Alexandria. Pliny
the Elder who was in all probability almost contemporaneous with
Theon, presents75 in a rather sketchy and summary form the mechani
cal proof of the sphericity of the oceans, as formulated by Aristotle. He
admires "the geometrical subtlety exhibited by the Greek inventors in
creating this fortunate and glorious doctrine."
To this physical proof of the sphericity of the oceans, Pliny adds yet

another, which does not stem from Aristotle and which he must have
read in the works of some other Greek philospher. It is astonishing to
see, he says, that water spontaneously assumes the shape of a sphere:

... and yet, there is nothing more obvious in all of nature. Everywhere, drops which are
suspended shape themselves into small spheres. When thrown into the dust or depo
sited on the fuzzy surface of leaves, they present themselves to us in perfect sphericity.
In a full container, the liquid is higher in the middle. We base this conclusion on the
lack of density and consistency in the liquid rather than on direct observation. Indeed,
even stranger is the fact that the liquid in a full container overflows when even a minute
quantity of liquid is added. However, it does not overflow when one lets weights slip
into it which can be as much as twenty dinars. In the latter case, the weights added only
increase the convexity of the liquid; in the former case, the already existing convexity
causes the liquid to overflow at once.

We know today how erroneous these comparisons are which do not
distinguish between phenomena due to the action of gravity, and those
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due to the effects of capillarity. However, should we reproach those
physicists of Antiquity or the Middle Ages for not having grasped
clearly the distinction between these two categories of phenomena?
Didn't we often encounter just a few years ago, physicists who due to a
very similar confusion, were seeking in the experiments of Plateau on
the phenomena of capillarity an explanation for the rings of Saturn and
a proof of the cosmological system of Laplace?
In the Almagest, Claudius Ptolemy formulates76 rather unconvinc

ingly proofs for the sphericity of the earth and of the oceans. He does
not allude to the physical demonstrations of Aristotle and Adrastus. In
support of the spherical shape of the oceans, he reasons that water,
being a homogeneous element, must confer upon the whole the same
shape as its parts. He must have wanted to deduce the sphericity of the
oceans from the sphericity of liquid droplets. At least, this is the way
many of his commentators have understood him.
Simplicius develops at length77 what Aristotle had said about the

shape of the earth. Using the calculations of Eratosthenes, he corrects
the dimensions which the Stagirite had attributed to our globe. He
explains78 clearly and explicitly the reasoning by which the spherical
shape of the oceans is proven in the On the Heavens. To this proof, he
adds several lines which very obviously resemble the following passage
in Pliny the Elder:

The following observation leads us to conclude that the surface of water is spherical:
when drops of water fall upon a smooth surface, such as the blade of a reed or the leaf
of a tree, they roll themselves into a ball and, once this spherical shape is achieved, they
remain in equilibrium .... If one fills a chalice with water and introduces carefully into
the water coins or other objects, one can see that the surface of the liquid assumes a
spherical shape and that the water only overflows when it has exceeded the surface of
the sphere.

Averroes, whom Scholastics call the "Commentator" par excellence,
merely expands upon what Aristotle had said about the shape and
dimensions of the earth79 and about the spherical shape of the oceans.80

We come now to the XIIIth century. In his treatise, On the Sphere,
which will long remain the most widely circulated cosmography, John
of Sacrobosco merely gives the previously quoted proofs of Claudius
Ptolemy on the subject of the sphericity of the oceans.81

That water is taut, he says, and that it tends towards sphericity can be demonstrated in
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the following way: let us place a light on the beach and let a ship depart from the
harbor until it reaches a point where the eye of an observer standing at the foot of the
mast can no longer see the light. If the ship then stops and the observer climbs to the
top of the mast, he will be able to see the light once more. . .. Another proof: since
water is a homogeneous element, the whole is identical to its parts. Since the individual
parts of water naturally tend towards a spherical shape, as one can see in droplets of
water or in the dewdrops on the grass, the whole formed by these parts must also tend
towards a spherical shape.

The philosophers and the physicists who commented on Aristotle
hold more tenable opinions on the sphericity of the earth and the
oceans than those held by their contemporaries - the astronomers of
the XIIIth century. As early as the first book of his Meteorology,
Albertus Magnus gives an explanation for the sphericity of water drops
which makes no analogy between this phenomenon and the shape of
the oceans. Albert declares that the water drops assume this shape
because their various parts, since they are more intimately connected,
better resist the forces of disintegration. In his On the Heavens, he
merely imitates Averroes in padding the argumentation of Aristotle.82

Without adding anything to the arguments of Aristotle, St. Thomas
Aquinas explains with great clarity and fidelity the arguments concerned
with the shape of the earth83 and those concerned with the shape of the
oceans.84

Roger Bacon, as well, adheres to the formulation of the mechanical
proof by Aristotle85 as far as the sphericity of the oceans is concerned.
He adds this corollary which found such favor in the School:86 a vase
contains less liquid the further it is removed from the center of the
earth.
We must wait until the XIVth century for the teaching of Albert of

Saxony to have the Peripatetic doctrine on such questions enriched by
several important additions.
When Albert of Saxony examines whether the "whole earth is spheri

cal"87 he undoubtedly has before him the text of Aristotle as well as the
commentary of Simplicius. However, he also consults the text of Theon
of Smyrna or a formulation inspired by that text. This is clear for
several reasons.

If we read, for example, the proofs for the sphericity of the earth in
the Questions of the venerable Scholastic Master, we find the argu
ments of Adrastus arranged in the same order in which they were
presented by Theon of Smyrna:
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First Conclusion: The earth is not strictly spherical, as evidenced by its numerous
mountains and valleys.

Second Conclusion: The earth is round from East to West. We shall prove it.
Indeed, if such were not the case, the same stars would rise and set as early for those
living in the West as for those living in the East ... This conclusion is false. Day and
night occur earlier for those living in the East than for those living in the West. This
clearly results from the often observed fact that the same lunar eclipse seen by Orien
tals around the third hour of the night is seen by Occidentals around the first or second
hour, depending on how far west they are from the Orientals. This would not occur if
night did not begin earlier for the Orientals.

Third Conclusion: In the same way, the earth is round from North to South. We
shall prove it. If a traveller moves a sufficient distance from North to South, he will see
the pole noticeably rise and this can only be a result of the bulging of the earth between
north and south. Furthermore, a traveller can move just enough from North to South
to see certain stars which were not visible to him before. At the same time, certain
constellations will go out of sight which were previously visible to him. This can only be
due to the bulging of the earth between North and South.

Fourth Conclusion: The earth is round to the degree that the elevations of the
mountains are small and negligible when compared with the entire earth. We shall
prove it. First, because when heavy bodies fall on soil which is not that of a mountain
or of a valley, they all fall at 90· angles. This would not occur if the heavy bodies did
not tend towards the same center. And since all of the parts of the earth are heavy
bodies, it follows that all of them tend towards the same center. This would not occur if
the earth were not round or did not naturally tend towards sphericity. Secondly, the
parts of the earth all tend equally towards the center of the Universe. They descend to
the lowest places, unless one sustains another as in the case of the mountains. Neverthe
less, in time, all things will descend towards the center of the Universe. This seems to
be the cause for the sphericity of the earth. From this, one can see that if the earth were
as fluid as the water, so that its various parts could not support one another, it would
flow into a uniform roundness and a perfect sphericity.

Up to this point, Albert of Saxony has merely given Scholastic form
to the arguments formulated by Adrastus in support of the sphericity of
the earth. To this, he adds the argument deduced from the shape of the
earth's shadow during a lunar eclipse which Aristotle had mentioned,
but which Adrastus had left out. He then adds the following passage:

As far as this conclusion is concerned, one must recognize that the sphericity of the
earth - as least from north to south - can be determined by experiment. Let an
observer leave a given location and move northward until the pole appears to him to be
higher by one degree than before. And let him measure the distance covered to that
point. After having done so, let him return to his point of departure and from there,
move south until the same pole appears to him lower by one degree that at his point of
departure. Let him again measure the distance covered to that point. If the two
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distances are equal to each other, it is an accurate indication that the earth is circular
from north to south. If, on the contrary, it turns out that the distances are not equal, it
would be an indication that the earth is not round from north to south.

The Ancients had discovered in the measurement of the arc of one
degree the means by which to determine the circumference of the earth
assumed to be spherical. We have seen that this method was already
known to Aristotle, who might have learned it from Eudoxus. However,
the measurement of one degree of arc above the meridian taken at
different latitudes could have helped determine the actual shape of the
globe but was an idea which seems not to have occurred to the
astronomers of Antiquity.88 The passage which we quoted above from
Albert of Saxony shows that XIVth century Scholastics had formulated
it precisely. It was up to the science of the XVilth century to initiate its
implementation.
Let us add that Albert of Saxony in no way imitates those who seek

in the phenomenon of capillarity a reason for the convexity of the
oceans. In the last of the Questions concerning On the Heavens, he
considers as one of many objections to be refuted the following pro
position which he takes from Ptolemy, from Simplicius and John of
Sacrobosco:89

In a homogeneous body, the whole must have the same shape as the parts, otherwise it
would not be homogeneous. Since particles of water appear to tend towards sphericity,
as demonstrated by dew drops and water drops, the entire mass of water must also be
spherical.

Albertutius, like Albertus Magnus, responds as follows to that pro
position:

As concerns the spherical shape of water drops, I say that it is not at all a consequence
of the essential shape of water; rather, it results from the flight of opposites moving
away from each other, because this spherical shape is one in which the various parts are
closely bonded and capable of best resisting a disruptive force. Thus any mass whatso
ever tends to assume that shape, unless prevented from doing so by some other cause,
such as hardness or gravity. This tendency is especially apparent when a body exists as
a small quantity and it is true not only of water, but of all liquids, as evidenced by
quicksilver.

Concerning the sphericity of the earth, Albert of Saxony not only
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expounded upon the various arguments of Aristotle and Adrastus,
already fully developed in one important aspect; he also added to them
a series of strange corollaries, seemingly paradoxical and undoubtedly
intended to impress the minds of his disciples. These corollaries are, as
we shall see, of special importance for the history of the development
of statics. Let us quote them at length:

1. Due to the fact that the earth is spherical, it follows that perpendicular lines to the
surface of the earth, when prolonged towards the center, will continue to draw
closer together until they meet at the center.

2. From the above, it follows that if two vertical towers are constructed, the higher they
are, the further apart they are from each other. The shorter they are, the closer they
are to each other.

3. If one were to dig a well with the aid of a plumb line, this well would be wider at the
opening than at the base.

4. Any line with all of its points at equal distance from the center is a curved line,
because if it were straight, some of its points would be closer to the center while
others would be further away. Its various points would not be equidistant from the
center. Some would not be as low as others. If a straight line touches the terrestial
surface at its midpoint, its own midpoint is closer to the center of the earth than its
extremities. It follows from this that if a man were to walk along this straight line, he
would be walking down towards the center of the earth for awhile and then would
ascend away from it. Indeed he would descend, as long as he was headed towards
the point which is closest to the center of the earth. He would start walking upwards
the moment at which he walked past this point. It is clear that during the initial
period, he would continue to approach the center of the earth, while during the
second period he would move away from it. To approach the center of the earth, is
to descend: to move away from it, is to ascend.
From the above we can conclude that a body which moves between two points and

describes a trajectory which continually rises and falls, can end up having covered
less distance between the two points, than if it had moved without rising and falling.
This can be clearly seen by supposing that the first trajectory is a diameter of the
earth, while the second is a semi-circumference with the diameter as its chord.9o

5. When a man walks over the surface of the earth, his head moves faster than his feet,
because his head, being in the air, describes a larger circumference than his feet
which touch the ground. One can imagine a man so tall that his head, far up in the
air, would move twice as fast as his feet on the ground.

These corollaries on terrestial sphericity, which were quite capable
of catching the imagination of the students at the Sorbonne who
clustered at the foot of the chair occupied by Master Albert of Saxony,
were to ultimately lead Leonardo da Vinci to his discovery of an
important theorem in statics.
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5. THE INFLUENCE OF ALBERT OF SAXONY IN THE SCHOOL:

THEMON JUDAEUS, MARSILIUS OF INGHEN, BLASIUS OF

PARMA, PIERRE D'AILLY, GIOVANNI BATTISTA CAPUANO,

NIFO, GREGORY REISCH

George Lokert, who, in 1516 and 1518, published two editions of
Albert of Saxony's Questions on the Physics, On Generation and On
the Heavens of Aristotle, was certainly in a good position to know the
traditions at the University of Paris. In 1516, he was professor of
physics at the College de Montaigu and in 1518, he taught at the
Sorbonne.
In the Epistola nuncupatoria et paraenetica,91 which he puts at the

head of his two editions, George Lokert tells us that during the XIVth
century three men were outstanding in natural philosophy and formed
within the Parisian school a kind of triumvirate. These three men were
Albert of Saxony, Themon Judaeus and Jean Buridan. He adds that the
Italians and, in particular, the Venetians, were eager to print the works
of the first two, but the works of Buridan remained unpublished. The
French, more casual, appear to have allowed the works of their most
illustrious masters to gather dust. It was in order to remedy this negli
gence, that George Lokert published not only the commentaries on the
Physics, On Generation and Corruption and On the Heavens by Albert
of Saxony, but also the Quaestiones super quatuor libros meteorum
compilatae per doctissimum Philosophiae professorem Thimonem 92 as
well as what Buridan had written on the various treatises which com
prised the Minor Works of Aristotle. Thanks to the efforts of Lokert,
we possess today a precious legacy from the physics taught at the
Sorbonne during the middle part of the XIVth century.
Who was this Themon? Du Boulay provides us with some basic

information on Judaeus.93 He tells us that he was a scholar in the town
of Munster in Westphalia and that he commenced his studies in the
Arts at the Sorbonne in 1349, under Master Dominique de Chivasso.
On August 26, 1353 he was elected Procurator of the English Nation,
an office entrusted to him again on November 18, 1355.

He was a most celebrated professor of philosophy; we have read that a good many
students who started their studies with him went on to earn their degree and completed
their studies with him.

Younger than Albert of Saxony, Themon Judaeus obviously followed
the teaching of this master. Evidence of those teachings can be found
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throughout the Questions on Meteorology in which the commentaries
written by Albert of Saxony on Aristotle's On the Heavens are ex
plicitly quoted and discussed.
The thoughts of Themon Judaeus do not always possess the logical

coherence which characterizes the teachings of Albert of Saxony.
Sometimes they vacillate between two opposing opinions. However,
they are ingenious and original. On many questions on physics, Themon
goes further than his predecessors and with greater accuracy. The
solutions which he proposed and the hypotheses which he formulated
greatly influenced the development of physics during the Renaissance.
The discovery of many a truth unhesitatingly accepted today was
stimulated and prepared by his investigations.
The Questions of Themon Judaeus on the Meteorology of Aristotle

deserves an in-depth study, but this is not the place to undertake such a
study. We will concentrate on those statements of our author which are
directly related to the tendency of the center of gravity of every body to
move towards the center of the Universe.
Themon is familiar with the teachings of Albert of Saxony. He also

knows the two doctrines of this master. The first one, formulated in the
Questions on the Physics, asserts that the center of the Universe is
occupied by the common center of falling bodies, be they water or
earth. The second doctrine, formulated in the Questions on On the
Heavens, maintains that the center of gravity of solid earth alone is
located at the center of the Universe. Themon wavers between these
two doctrines. Sometimes he adheres to the first, at other times to the
second, and such vacillations give rise to contradictions.

In the first book of his Quaestiones perutiles,94 we see Themon
maintain, contrary to the theories of Albert of Saxony, that the water of
the oceans weighs upon solid earth and that this weight must be taken
into account when determining the position of the earth in relation to
the center of the Universe.

I imagine, he says, that on the side of the globe opposite us, the ocean penetrates into
cavities hollowed out in the earth. Between those cavities arise rocky protuberances
which are much heavier than the earth on our side. Perhaps the weight of the water
contributes to the gravity of those parts of the earth located outside the center. Thus,
thanks to the addition of the water's weight, those parts weigh more than the inhabited
parts, although the latter are more voluminous. This is why the convex surface of the
latter can be further from the center of the Universe than the convex surface which
delimits the water on the opposite side of the globe.
.There are philosophers, he says in another passage,95 who have the following

opinion: the earth and the ocean constitute a single body. The center of gravity of this
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aggregate coincides with the center of the Universe. At the center of the Universe one
finds neither the center of gravity of the solid earth, nor that of water, nor the geo
metrical center but only the center of gravity of the whole formed by earth and water.
This view appears to me highly probable and convincing.

Nonetheless, Themon raises somewhat muddled objections which bring
him back again to the view supported by Albert of Saxony in his
Questions on On the Heavens.

It appears to me more probable that the center of gravity of the solid earth is at the
center of the Universe or close to it. In that part of the globe covered by water, the
solid earth is much heavier than it is on our side. As far as water is concerned, although
it is naturally heavy, it is less heavy than earth. Therefore, water is merely superimposed
on the most dense part of the earth while the lightest part of the earth protrudes
through it.

Incidentally, Themon rejects an inadmissible theory with these
words:96

The following has been proposed: Earth and water are both eccentric to the Universe;
that is the reason why the earth is not entirely covered by water, because earth and
water are both spherical.

This unacceptable doctrine attacked by Themon stems from Nicolas of
Lyre,97 who presented it in his commentary on the first chapter of Gen
esis if we are to believe Giuntini.98

Against this view of Nicolas of Lyre, Albert contended99 that the
solid earth was more or less spherical, but that its center of gravity, not
its geometrical center, was at the center of the Universe. Water, on the
other hand, was bounded precisely by a spherical surface with its center
coinciding with the center of the Universe. It is this very doctrine to
which Themon refers when he writes:100

The center of gravity of the solid earth in its entirety coincides with the center of the
Universe. It is around this same center that water seeks equilibrium, and therefore,
moves towards this center as it can.
Let us imagine for a moment that the earth did not exist and that water was

collected about the center of the Universe. Let us imagine then that we submerge the
heaviest part of solid earth until the center of gravity of that part occupied the center of
the Universe. Because we assume that this terrestial sphere does not possess a uniform
gravity and that one fourth of this sphere, for example, is heavier than the rest, this
heaviest part would remain near the center [or below it) while the other three-fourths
would remain above it. Thus it would be possible for a part of the earth to remain
outside of the water because of its greater lightness.
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We can see the great influence exerted by Albert of Saxony on his
contemporaries in the case of Themon. This influence was particularly
powerful and persistent within the School.

In 1386, Marsilius of Inghen was named vice-chancellor at Heidel
berg, where he died on August 20, 1396. His Questions on the Physics
of Aristotle,lol conceived in the same vein as the Questions of Albert of
Saxony, were constantly inspired by his readings in the latter. Their
formulations are often identical. Whether accepted or challenged, most
of Albertutius' doctrines on physics can be found here again, often
further developed or refined. However, Albert's name has been per
sistently omitted as we shall have the opportunity to observe many
times. Marsilius of Inghen merely declares that he is following the
doctrines of the Nominalist School and is dealing with physics secundum
nominalium viam.102 Moreover, the works of Marsilius of Inghen are
much inferior to those of his predecessor. Sometimes it seems that he
restates the views of his predecessor without having sufficiently under
stood them.
This happens, for example, in the inquiry103 which Marsilius of

Inghen devotes to the following problem: "Is water the natural locus of
the earth?"
After having stated in more or less the same fashion as Albert of

Saxony the various objections which can be made against this affirma
tion: "Water is the natural locus of the earth," Marsilius remarks that
the difficulty with the question at hand stems from yet another question
which has to be answered first: "Why is a part of the earth covered by
water and the rest not covered?"
The Rector of Heidelberg then cites several arguments which he

rejects. Some, for example (this is the view advocated by Duns Scotus
as well as Campanus of Novara at the end of the XIIIth century in his
treatise On the Sphere), claim that solid earth exists for the welfare of
those animals which are unable to live under water. "This answer
provides a final cause and not an efficient cause ..., while we seek an
efficient cause and therein lies the difficulty."
"Others answer that earth and water are two spheres which intersect,

because they do not have the same center. On the part not covered by
water, the center of the earth is higher." This view, as we have re
marked, was held by Nicolas of Lyre and Marsilius refutes it, just as
Themon had done in his book on Meteorology, which the Rector of
Heidelberg seems very likely to have read: "The same point is both the
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center of the Universe and the center of gravity. The entire mass of
water as well as the entire mass of solid earth thus have the same center
... otherwise the habitable earth or, at least, the solid earth would have
a circular shape. This deduction is erroneous because the habitable part
is longer than it is wide."
After having presented these various views, Marsilius of Inghen

formulates the following view in which we can recognize the favorite
doctrine ofAlbert of Saxony:

In this argument we shall first assume that the various parts of the earth do not have the
same gravity. Experience shows us that some are heavier than others .... From this
follows the second assumption that the center of gravity of the earth does not coincide
with its geometrical center. Once these assumptions are made, let us imagine that the
earth intrudes into the water like a column with its lower part completely surrounded
by water while the upper part protrudes and forms what we call the solid earth. Let us
imagine, for example, that a nail is in equilibrium at the center of the earth. Only a tiny
segment of the nail - the part near the head - would be on one side of the center
because the head is much heavier than the rest of the nail. Well, let us assume that the
solid earth is similarly arranged with respect to the center and under water.

Marsilius of Inghen rejects this explanation with an argument which
is barely comprehensible. He then proposes yet another explanation
according to which water, which possesses a very small total mass, fills
only certain cavities existing within the solid earth. Let us not dwell any
longer on this theory which is obviously less philosophical in nature
than that ofAlbertutius.
One point deserves our further attention for a moment. In presenting

this doctrine, Marsilius not only refrains from mentioning Albert of
Saxony, he explicitly attributes this theory to Campanus of Novara:
"Quinta via est quam ponit Campanus in tractatusuo de Sphaera."104
Indeed, in his treatise On the Sphere,105 Campanus deals with the

nature of solid earth. However, he limits himself to the affirmation that
the surface of the earth is a sphere whose center is coincidently the
center of the Universe and that the surfaces of continents, protruding
like islands, are further away from the center of the Universe than is sea
level. He does not give any mechanical explanations in support of this
assertion, but merely invokes a teleological cause, to wit, the needs of
animal life.
In a later passage,106 Marsilius of Inghen asks, like Albert of Saxony,

whether a falling body contains an intrinsic resistance to motion. He
expounds with great precision the view of those who like Roger Bacon,
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claimed to find the origin of such a resistance in the tendency in each
part of the falling body to move to the center of the Universe and in the
constraint that the tendency of each single part experiences from the
desire of all others to go to the center of the Universe. Like Albert of
Saxony, Marsilius responds that:

... each part of the falling body does not wish to move to the center by following the
line which connects each one of them to the center ... .It is the falling body in its
entirely which falls in such a fashion that its center becomes the center of the Universe,
or better yet, so that it will join the sum of all falling things with a center which must
also be at the center of the Universe .... In order for this desire in the falling body to
be fulfilled, the center of gravity of that body must constantly be located on one of the
terrestial radii.

The section of the book contammg this passage by Marsilius is
interesting in many respects. We can observe him here first refute a
view formulated by the Precursor of Leonardo da Vinci and then
appeal to him for a proposition which he claims to have taken from the
Tractatus de ponderibus. We find here new arguments in favor of the
hypothesis suggested to us by our reading of Albert of Saxony that the
discoveries of the School of Jordanus were made by mechanicians who,
in general, paid little attention to philosophical questions. The Scholastic
philosophers were preoccupied, from early on, with reconciling the
obvious discrepancies between those discoveries and the principles in
Aristotle's Physics. This preoccupation produced as early as the XIIIth
century the Peripatetic Commentary to the Elements on Weights by
Jordanus. It is evident again during the XIVth century in the Questions
by Albert of Saxony or by Marsilius of Inghen.
The passages just mentioned are not the only ones in which Marsilius

of Inghen alludes to the writings of the School of Jordanus. When he
sets out to establish 107 that variations of velocity of a moving body are
proportional to the variations of motor force, Marsilius confronts the
following objection:

A heavy body suspended from a balance at times moves faster and at other times
slower, even though it remains within the same medium.

He answers this objection in the following way:

Although the essential gravity always remains the same, there is an increase in
accidental gravity due to its position and stemming from the fact that the falling body
faces more directly towards the center, which it is approaching more directly than
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before. It is this accidental gravity which is called positional gravity as can be seen in
the treatise On Weights.

In the example of Marsilius of Inghen, we have seen how pervasive
the influence of Albert of Saxony was at the end of the XIVth century.
We shall see that this influence continued far beyond this period.
For example, during the XVth century, this influence especially

affected Biagio Pelacani. One only needs to read attentively the Treatise
on Weights of Master Blasius of Parma to discover clear evidence of
the doctrines of Albert of Saxony.
The third and last part of the Treatise on Weights by Blasius of

Parma deals with hydrostatics. There is no doubt that the characteristics
of specific weight and the use of the aerometer with constant weight
which are dealt with here go back to Antiquity. We can find them in the
book On Weights, erroneously attributed to Archimedes and in the
Carmen de ponderibus. 108 By the sequence and the form of the ques
tions treated by Pelacani, they appear to have been taken almost
literally from Albert of Saxony. 109

The second proposition of the second part of the treatise by Biagio
Pelacani is stated as follows: 110

Triplum pondus ad aliud in aequilibri positurn, medio uniformiter ut unum resistente,
subtriplum ad ipsum non levabit.

This proposition and its demonstration are borrowed almost word for
word from the Questions 111 of Albert of Saxony and Marsilius of
Inghen on the Physics of Aristotle.
Albert of Saxony denies 112 that the intensity of gravity varies with

the distance from the center of the Universe.

The distance from the center of the Universe causes the various parts of a falling body
to reach their natural locus while following different trajectories, but the distance will
never keep a falling body from tending towards its natural locus.

It seems that this passage, which apparently derives from an argument
of Roger Bacon, suggested to Blasius of Parma an idea which he
develops further and which we mentioned earlier: Even though each
part of a falling body maintains invariable weight, the mutual inclination
between these various parts causes the total weight of the falling body
to be all the smaller, the closer the body is to the ground. This remark
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seems to have become canonical in the Schools because we can find it
all the way up to the writings ofMersenne and Descartes.
The celebrated Pierre d'Ailly was a contemporary of Blasius of

Parma. Born in Compiegne in 1330, he was Grandmaster of the
College of Navarre in 1384, Bishop of Cambrai, Cardinal in 1411,
Papal legate in Germany and at Avignon. He died in 1420. Among his
numerous writings, we find a commentary comprising fourteen ques
tions on the treatise On the Sphere of John of Sacrobosco. This
commentary is almost always included in those collections of cosmog
raphical treatises which were published quite often at the end of the
XVth and at the beginning of the XVIth century.ll3
Pierre d'Ailly formulates the Fifth Question as follows:

Do the heavens and the four elements have a spherical shape?

In order to answer this question, Pierre d'Ailly reproduces almost word
for word what Albert of Saxony had written on the same topic in his
Questions dealing with On the Heavens. However, despite these
extensive and quite obvious borrowings from Albert of Saxony, he fails
to name their legitimate author. Albert of Saxony is indeed a prime
example of one of those misunderstood geniuses whose fertile minds
were able to nourish for centuries a science which was unwilling to
acknowledge their contributions.
To the seemingly paradoxical corollaries which Albertutius deduced

from the sphericity of the earth and the oceans, Pierre d'Ailly adds
some of his own. Let us quote some of them.

He who owns a field bordering on another and who digs up his property and who
hollows out a cavity of an invariable depth, wrongs his neighbor.

If the earth were cut by a plane surface with its midpoint at the center of the
Universe and if water were to be poured over this surface, the water would tend to take
the shape of a hemisphere with its center at the center of the Universe.
Secondly, if the bottom of a pond is flat, this pond is surely deeper in the middle

than at its edges.
Thirdly, the same container contains more liquid at a low elevation that at a high

one.

These aphorisms, the latter borrowed from Roger Bacon, were
meant to strike the imagination. Like those of Albert of Saxony, they
were very popular in the Schools. One also finds them in the work of
many authors of the XVIIth century.



298 CHAPTER XV

According to Tiraboschi, Giovanni Battista Capuano of Manfredo
nia 114 was living around 1475. He was a Canon in the Augustinian
Order and was a devotee of astronomy. We have by him an Exposition
on the treatise of Sacrobosco, which can usually be found in the same
collections containing the Questions by Pierre d'Ailly.
When Giovanni Battista Capuano lists the reasons why water does

not cover the entire earth, he first mentions the following, which
happens to be the favorite theory of Albert of Saxony:

The earth taken in its entirety, does not have a uniform gravity, but it is heavier on one
side than on the other. This is so, because one of its sides is denser and thicker and has
neither pores nor cavities while the other side is porous and has many cavities. Thus the
geometrical center does not coincide with the center of gravity so that the lighter side,
which is much further removed from the center of the Universe, protrudes from the
water and remains uncovered.

Furthermore, Giovanni Battista Capuano completely misunderstood the
reasoning which he repeats. This is obvious when he makes the fol
lowing objection: "It seems unlikely that the earth in those parts where
it is uncovered is light enough to protrude from the water." Even more
curious is the following remark by our author: "This explanation has
been attributed to Campanus." In the Quaestiones subtilissimae in Libras
Physicorum 115 we have already encountered the crediting of Campanus
for a doctrine belonging entirely to Albert of Saxony and which
Campanus himself never mentions. We fail to understand why the
Scholastics so persistently borrow doctrines from Albert of Saxony and
yet so studiously avoid mentioning his name, Moreover, they occasion
ally replace his name with the name of an author who has nothing to do
with their doctrines.
Thus Giovanni Battista Capuano attributes to Campanus a doctrine

which is that of Albertutius. Should we assume that he did not read
Albert or that he has learned of his ideas through an unknown tradi
tion? How can we believe this when we compare the Questions of
Albert of Saxony with this passage from Capuano:

The earth moves constantly in a straight line .... The proof of this is at the same time
both the reason and the cause. The earth on the side not covered by water is constantly
rarefied by the sun's rays and the heat from the stars. It is transformed to vapor and is
expanded. This is obvious both from experience and the first book on Meteors. Indeed,
all vapors rising from the earth come from the uncovered part. But on the side covered
by water, the intense cold condenses the water at the bottom of the ocean and changes
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it into earth. At the same time, since this is the lowest of all regions, all heavy bodies in
the ocean descend to it. The solid earth thus increases constantly on that side, as does
its gravity. Thus, on one side some parts of the earth are expended, while, on the other
side, new earth is generated so that the center of gravity constantly changes place. The
hemisphere covered by water is heavier than the uncovered hemisphere. Therefore, it
draws closer to the center and exerts pressure on the other half. Thus the center of the
Universe does not remain in the same part of the earth. The part of the earth originally
at the center approaches the surface and this movement continues until that part
reaches the surface.

Thus the Questions of Albert of Saxony were widely read and
inspired profound meditation but rarely was his authorship acknowl
edged by scientists at the end of the XIVth and throughout the XVth
centuries. Augustine Nifo (1478-1538) takes his entire theory on
gravity from Albert of Saxony. He writes the following based on that
theory: 116 "It does not matter if water is at rest or in motion, it is not
deorsum in respectu 117 as long as its surface is not equidistant from the
center. It is only when this condition is fulfilled that air occupies its
natural locus. The earth is not deorsum simpliciterl18 as long as its
center of gravity does not completely coincide with the center of the
Universe. Therefore, water will only form the natural locus for the earth
to the extent that the earth so placed, is in the middle of the Universe."
Gaetan of Tiene,119 like Nifo, does not mention Albert of Saxony.

However, in his Commentaries on Aristotle's Physics, it is obvious that
he has borrowed a great deal from Albert. Although he gives it no
credence he does mention Albert's theory on the center of the earth:

Some people imagine, he says,120 that the geometrical center of the earth is not the
center of the Universe. Indeed, the part exposed to the action of the sun and of the
stars is very dry and light. And since the center of gravity of the earth coincides with
the center of the Universe, it follows that the very dry and light part of the earth is at a
much higher elevation than the other part where much water is generated. Thus there is
one part of earth which is at a higher elevation than any portion ofwater.

Gaetan of Tiene also mentions the theory according to which earth and
water have different centers. According to this theory:

Water, freed from any restraint, would tend not towards the center of the Universe, but
towards the center of its sphere so that water placed at the center of the Universe and
without anything to restrain it would rise naturally to the center of its own sphere.

However, Gaetan falsely attributes this peculiar theory to Campanus,
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who had never said anything even remotely resembling this theory. We
know that it is the work of Nicolas of Lyre.

In his book on the celestial orbits,12 Alessandro Achillini of Bologna
(1463-1512), makes a very obvious reference to one of the doctrines
of Albert of Saxony:

I propose as a principle, he says, that there are two centers to the Universe: a natural
center which is a part of the element of the earth, and a mathematical center, the point
which is the center of gravity, if the center of gravity differs from the geometrical
center, because the latter may be called the center of the earth, but not the center of the
Universe.

To account for all of the traces left by the theories of Albert of
Saxony would be an endless task. Towards the end of the XVth and the
beginning of the XVIth century, it is almost impossible to open a book
dealing with gravity, the immobility of the earth, its position in the
Universe, the relationship between water and solid earth, without
encountering - sometimes in an obvious form, sometimes in an altered
form - the influence of the doctrines which A1bertutius had taught at
the Sorbonne in the middle of the XIVth century.
We shall not list all of these traces, but merely call attention to a final

one, because it was to have a lasting effect owing to the extraordinary
popularity of The Philosophical Pearl of Gregory Reisch.
At the end of the XVth century and the beginning of the XVIth cen

tury Gregory Reisch was Prior of a Carthusian Order near Freiburg.122

In 1496 123 under the title Margarita philosophica totius philosophiae
rationalis, naturalis et moralis principia dialogice duodecim libris
doctissime complectens,124 he wrote a kind of philosophical encyclope
dia in dialogue form.
This short work which had lumped together so many various

theories, was extremely popular. During the XVIth century there were
numerous editions 125 and at the beginning of the XVIIth century it was
translated into Italian by Giovanni Paolo Galluci. 126 Book VII deals
with the principles of astronomy. In chapter XLII of the first treatise,
the author examines the distribution of water in relation to solid earth.
Concerning this distribution, he propounds a rather strange view, which
was to find, nonetheless, many supporters in the XVIth century. He
attributes the shape of a sphere to the surface of the oceans and the
shape of a smaller sphere to the solid earth. He assumes that this
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second sphere is entirely contained within the first one, except at one
point where both spheres are tangent.
Gregory Reisch supports this improbable view by means of argu

ments in which we easily recognize a crude and inexact resume of the
theories of Albert of Saxony.

The substance of earth and water, he says, forms a single spherical body. The
philosophers have attributed two centers to it. The gemoetrical center divides into two
equal parts the axis of symmetry of the figure formed by the aggregate of earth and
water. It is the center of the Universe. With respect to the center of gravity it must be
said that it is outside the geometrical center. It is located on the diameter of the
terrestial sphere, this diameter is necessarily longer than half of the diameter of the
sphere formed by water and earth together. Otherwise, the center of the Universe
would not be inside the earth and nothing more absurd could be stated whether in
physics or in astronomy.
It is necessary to distinguish between the two centers, because emerged earth is

lighter than submerged earth. When a part of earth emerges, it is at first saturated, but
soon it dries and becomes lighter. The center of gravity of the earth cannot possibly
coincide with its geometrical center. When located on the diameter of the earth, the
center of gravity constantly tends to approach the part of the terrestrial surface covered
by water. On the other hand, water flows constantly towards this part, because it is
closest to the center of the Universe. From there it follows that the earth is agitated by
a constant local movement, because the parts furthest from the center of gravity tend to
locate themselves at the same distance as the others. Yet the whole is delimited by a
single convex surface and water does not inundate the surface of the earth.

We have to admit that this conclusion is hardly compatible with the
configuration which Gregory Reisch attributes to water and earth, as
Giuntini t27 correctly remarked. As a matter of fact, the hypothesis of
Gregory Reisch is utter nonsense, but it will, nonetheless, exert a
profound and lasting influence on the doctrines of geodesy of the
XVlth century.

6. THE INFLUENCE OF ALBERT OF SAXONY

AND LEONARDO DA VINCI

At the beginning of the XVlth century the influence of Albert of
Saxony was still very much alive among the Scholastics. However, he
exerted no less an influence on those who studied and taught outside
the School. Among these, perhaps no one borrowed more from the old
Master of the Sorbonne than Leonardo da Vinci.128
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One of the most important documents among the manuscripts of
Leonardo in the Bibliotheque de I'Institut is the notebook which
Venturi designated by the letter F. According to a note on the right
hand side of the first leaf, this notebook was begun in Milan on
September 12, 1508.
On the reverse side of the cover is a list of objects doubtlessly

belonging to Leonardo. Among the book titles we find: Archimedes, de
centro gravitatis. 129We further read:

"Albertucco et Marliano decalculatione."
"Alberto decelo et mundo, da fra bernardino."

M. Ravaisson-Mollien 130 translates these two lines in the following
way:

"Albertucco et Marliano, de calculatione."
"Albert, de Caelo et Mundo, par fra Bernardino."131

What is the significance of these works cited in these brief lines
deriving from the hand of Leonardo?
A footnote by M. Ravaisson-Mollien reminds us that Marliani, who

was the principal physician to John Galeasz Sforza and who died in
Milan in 1483, had written a work entitled: De proportione motuum in
velocitate,132 The subject of this work deals with various questions
treated by Leonardo in Notebook F. Thus it is reasonable to assume
that the work alluded to by Leonardo is the same one referred to by M.
Ravaisson-Mollien.
Yet, how is one to interpret the name of Albertucco which ac

companies the title of this work? M. Ravaisson-Mollien proposes with
some hesitation the following surmise: Leone Battista Alberti. Eugene
Muntz133 asserts that this name is a reference to Alberti.
First of all, one need only make the following observation to cast

doubt on the previous interpretation: Leonardo refers to Alberti in
other passages,134 but he does not call him Albertucco, but rather
Battista Alberti.
In the Table of Contents of Notebook F, under the word Albertuc

cius, Ch. Ravaisson-Mollien notes:

My brother Louis Ravaisson-Mollien of the Bibliotheque Mazarine calls my attention to
the fact that one of the two Alberts of Saxony, a Franciscan of the XVth century, was
called Albertuccius.
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This note gives us the true interpretation of the name Albertucco as
written by Leonardo on the cover of Notebook F. This name does not
designate Leone Battista Alberti, but rather Albert of Saxony, often
referred to during the XVIth century as Albertutius or Albertuccius.
Indeed, the second part of the Tractatus proportionum of Albert of

Saxony which was reprinted so often at the end of the XVth and the
beginning of the XVIth century, bears the following title: Tractatus de
proportione velocitatum in motibus.135 Thus it seems evident that
Leonardo compared this work to the work by Marliani.
What did Leonardo borrow from the Tractatus proportionum of

Albertutius and from the treatise De proportione motuum in velocitate
of Marliani? Undoubtedly, those propositions 136 (which are) all derived
from the old Peripatetic axiom that the velocity of a moving body is
proportional to the force which moves this moving body. At first sight,
it seems difficult to make a formal affirmation, because these proposi
tions were commonly known and had been developed by all of the
commentators on Aristotle, from Alexander of Aphrodisias to Sim
plicius. We are fortunate to have the actual declaration by Leonardo,
which enables us to substantiate our view in this matter. In a notebook
published after Notebook F, Leonardo writes: 137

In his De proportione, Albert of Saxony says that if a force moves a body at a given
velocity, it will move half of this body at double that velocity. This doesn't appear to me
to be so ...

We now know with certainty to whom Leonardo was referring when
he wrote the name Albertucco on the cover of Notebook F. But what
does the other name mean, i.e., Albert, de Caelo et Mundo? M.
Ravaisson-Mollien believes that it refers to Albert the Great. Yet, there
is nothing in the footnotes of Notebook F which brings to mind any of
the physical theories of Master Albert. On the other hand, one can
recognize traces of the Quaestiones in Libros de Caelo et Mundo, 138
written by Albert of Saxony. It is certainly this work which Leonardo
had before him and which he had in mind when he wrote: Albert, de
Caelo et Mundo.
In a previous publication 139 we pointed out some of the clearest

evidence of the influence of Albert of Saxony on Leonardo da Vinci.
We shall mention here only that evidence which deals with the theory
of the center of gravity because that will be ample proof to the reader
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that Leonardo had read and meditated on the doctrines of the old
Master from the Sorbonne.
The following is an early fragment 140 in which Leonardo repeats the

essential distinction between the geometrical center of the earth and the
center of gravity, a distinction upon which Albert of Saxony bases his
entire theory.

On the center of a falling body. Every non-uniform body has three centers, the
geometrical center, the center of accidental gravity and the center of natural gravity.
However, if one were to include the center of the Universe, the center of accidental

gravity 141 would be omitted.
On non-uniform bodies with a geometrical center and a center of gravity. The center

of the Universe can only be thought of as the center of gravity and the geometrical
center would be left out.

In another fragment,142 Leonardo follows the view held by Albert of
Saxony and demonstrates how the center of gravity of the earth is
constantly changing place.

Because the center of natural gravity of the earth must be at the center of the Universe,
if the earth is always becoming lighter in some parts, then any part which has become
lighter must push upwards and submerge as much on the opposite side as is necessary
for it to connect the aforesaid center of gravity with the center of the Universe.
The earth becomes lighter on the part directly beneath the sun since it is covered

only by air - water and snow are absent from this region. On the opposite side, rainfall
and snow weigh down the earth, push it towards the center of the Universe and
displace the lighter parts from the center. Thus the sphere of water retains its geometri
cal center, but not its gravitational center.

Albertutius had demonstrated how the earth, through this play of
weight, constantly tended towards sphericity. Leonardo returns to 142
these same considerations:

On the earth. Every heavy body tends to move downwards, and things up high will not
remain at that elevation but, in time, will descend and, therefore, throughout time, the
earth will remain spherical and, consequently, will be covered eventually by water.

Albert refused to draw this conclusion. He had attempted to explain
how solid earth would always emerge from water. It is true that he
wrote: 144

Omne grave tendit deorsum nec perpetue potest sic sursum sustineri, quare jam totalis
terra esset facta sphaerica et undique aquis cooperta. 145

But this sentence is to be found among the propositions to be refuted.
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Leonardo was more audacious and did not hesitate to assert that the
very play of gravity itself would bring about the total inundation of
earth. Not only does he repeat word for word 146 the Latin formulation
of the proposition that Albert of Saxony had proposed in order to
refute it:

Omne grave tendit deorsum nec perpetuo potest sic sursum sustineri, quare jam totalis
terra esset facta sphaerica;

but, he also returns insistently to the following prophecy: 147

If the earth were spherical, every part of it would be covered by the sphere of water.
The depths of the oceans are eternal but mountain peaks are the opposite. It follows
that the earth will become spherical and be entirely covered by water and will be
uninhabitable.

This passage, like so many other reflections inspired by Albert of
Saxony, can be found in the TraUato del mota e misura dell'acqua. A
manuscript copy, kept by the Bibliotheque Barberini in Rome was
published 148 by Francesco Cardinali in 1826. It is Chapter XXV of
Book I in the treatise.

In this unrelenting work of gravity, which incessantly tends to make
solid earth round, erosion caused by rivers plays an essential role.
Albert of Saxony has called our attention to this. He pointed out to us
how erosion shaped the topography of the land. Leonardo goes back to
these considerations, but, as an engineer accustomed to meticulous
observation, he explains them 149 as phenomena produced by running
water.

If the earth supporting the antipodes were to rise up and would emerge above the sea
which is nearly flat, how could mountains, valleys, and rocks of the various layers be
created in time?
Water running off mud or sand uncovered from the inundation of rivers teaches us

what we have to ask ourselves to understand this.
The water which flowed across the part of the earth uncovered by the ocean - since

that earth rose well-above the sea although the latter was almost flat - must have
begun to form various streams at the lowest elevation of this surface and those streams,
beginning to dig their way through, must have formed receptacles for the surrounding
waters. In this way, the streams must have increased in length, depth and breadth the
amount of their water until all of the water had run off. And then these hollowed out
riverbeds must have become the paths of the torrents formed by rain water and so they
must have continued to eat away at the riverbanks until the earth on either side had
become sharp mountains which, in the absence of water flowing over them, would
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become dry and create stones in more or less thick layers according to the thickness of
mud which the rivers must have carried with them in their run into the ocean.

Albert alleges, at least in his Questions on On the Heavens, that it is
the center of gravity of solid earth which occupies the center of the
Universe. Neither the presence of water in certain areas on the surface
which delimits the outer edge of the entire earth nor the absence of
water in other areas on this same surface can dislodge this center of
gravity. Did Leonardo da Vinci accept this doctrine?
Leonardo knows the principle on which that doctrine is based and

he formulates it 150 by summarizing Albert of Saxony:

No simple element possesses either lightness or gravity in its own sphere. And if a
bladder filled with air weighs more than when empty, it is because this air is com
pressed. Fire could also compress in this way until it was heavier than or equal to air
and, perhaps, be heavier than water and even equal to earth.

However, it does not follow from the fact that he knew this theory
that he also accepted it. In any case, he did not accept it without first
contesting the corollary which Albertutius assumed could be drawn
from it.
The modification which Leonardo seems inclined to perform on this

corollary is quite peculiar. He thinks that water does not weigh down
the part of the globe it covers, but, on the contrary, makes it lighter. He
believes this proposition follows from the Principle of Archimedes. The
following passage contains this strange view 151

Is the earth covered by the sphere of water more or less heavy, when uncovered? I
answer that the heavy body weighs more when in a lighter medium. Thus earth which is
covered by air is heavier than earth covered by water ...

Each of two small sketches represents a pyramid partly submerged
in a liquid sphere, partly protruding from it. Next to these sketches one
reads:

I claim that with the center of gravity of the pyramid placed at the center of the
Universe, the pyramid will change its center of gravity if it is subsequently partially
covered by a sphere of water. I give as an example two equal and cylindrical weights.
One is half submerged in water and the other entirely submerged in the same water. I
claim that the first one is heavier, as has been proven.

Leonardo has substituted for a theory which is in absolute contradic-
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tion to the laws of hydrostatics another theory which does not agree
any better with the principles of that science.
However, it appears that it was on this occasion that Leonardo made

a discovery which gives positive evidence of his talent as a geometer.
The theory of weight developed by Albert of Saxony required

constant reflection on the center of gravity of solid bodies. However,
research on such centers had hardly even attracted the efforts of
geometers. In his immortal work, Archimedes taught only how to
determine the center of gravity of plane figures. His research on floating
bodies shows us beyond doubt that he knew how to determine the
center of gravity of the paraboloid of revolution. However, his method
of calculation has not come down to us. While Pappus stated the
definition of the center of gravity for bodies with three dimensions he
subsequently only deals with plane figures. It is not until the middle of
the XVIth century that the works of Maurolico and Commandino
inaugurate the study of the center of gravity of solid bodies.
However, as the following brief note 152 shows, Leonardo had done

such work a half century before Maurolico and Commandino.

The center of gravity of any pyramid is within the lower one-fourth of its axis. If the
axis is divided into four equal [parts] and if two of the axes of this pyramid intersect,
this intersection will result in the above mentioned one-fourth.

What was the demonstration which had furnished Leonardo with this
beautiful theorem which Maurolico would not rediscover until 1548?
We are reduced to mere conjectures which are suggested to us by the
drawings accompanying the statement.
With his habitual inaccuracy, Libri wrote: 153

The drawing accompanying his note proves that Leonardo sliced the pyramids into
planes parallel to the base, as is presently done.

In reality, the two figures drawn by Leonardo do not show any trace of
such division. In each one, Leonardo has merely drawn the median of
the diverse faces of the tetrahedral and the lines which join each vertex
with the point of conjunction of the medians of the opposite face. By a
demonstration which we no longer have, he proved beyond doubt that
the center of gravity of a solid body is situated on the line connecting
one vertex to the center of gravity of the opposite face. Thus the center
of gravity of a tetrahedron is located at the point of intersection of the
four analogous lines drawn from the four vertices.
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There can be no doubt that this geometrical problem was present in
the mind of Leonardo when he meditated on the theory of weight of
Albert of Saxony. Indeed, we saw that when Leonardo discussed the
doctrine of Albert on the relation between a solid sphere, its center of
gravity and the sphere of water, he considered an analogous configura
tion where solid earth was replaced by a pyramid. Marsilius of Inghen
had done the same by using the image of a nail.
Among the questions examined by Albert of Saxony, there are

hardly any which attracted the attention of Leonardo more than the
theory of the shape of the earth and the oceans. That is easy to
understand, given the fact that Leonardo was also the most erudite
hydraulic engineer of his time. Everything concerning the equilibrium
and the motion of water in natural environments was of interest to him.

In Notebook F where Leonardo recorded daily the thoughts inspired
by his readings of Albert of Saxony, he devotes 154 an entire page to
repeating in various formulations the argument of Aristotle and
Adrastus in favor of the spherical shape of the oceans.

Proof that the sphere of water is perfectly round. Water does not move by itself if it is
not descending, and, therefore, it follows that it is descending when moving by itself.
No part of the sphere of water can move by itself, because it is surrounded by water

of equal elevation which confines it so that it cannot escape in any direction. We shall
prove it here in the margin.

Indeed, Leonardo draws a circumference of a circle on which he marks
a point c between two points a and b; he then adds:

Let c be a quantity of water surrounded and confined by the water abo Based on
previously established conclusions, I claim that the water c will not move because it is
impossible for it to descend in accordance with the definition of a circle. Since a and b,
like c, are not at the center of the earth, it follows that c remains immobile.

The passages just quoted are perhaps a reflection of the thoughts of
Pliny the Elder.155 However, the following passages 156 have a much
greater affinity with the demonstrations of Adrastus, as reported by
Theon of Smyrna:

Given a plane of water on the surface of the sphere of water, the extremities of this
plane will move to its middle.
The spherical falling body placed at the extremity of the perfect plane (Fig. 96) will

not stop, but will immediately move to the middle of the plane.
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Jig. 96.

Leonardo refers frequently to the ideas illustrated on this page. The
initial formulation given to the proof of the sphericity of the ocean,
which seems to reflect the arguments of Pliny, can be found more
highly developed in the following fragment: 157

Any flexible and liquid element has, of necessity, a spherical surface. This can be
proved for the sphere of water, but first certain concepts and conclusions must be
given.
The higher the object the further it is from the center of the Universe and the lower

the object the closer it is to this center. Water does not move by itself, if it is not
descending and when it moves, it descends. Let these four concepts, taken in tandem,
assist me in proving that water which does not move by itself has its surface equidistant
from the center of the Universe (disregarding water drops or other minute quantities
which attract one another, such as steel attracts filings, and considering only large
quantities).
I claim that no part of the surface of water moves by itself, if it does not descend.

Thus, since the sphere of water has no part of its surface capable of descending, it is
necessary, according to the first concept, that it not move by itself. And if you carefully
consider any minute particle of this surface, you will find it surrounded by other similar
particles all at equal distance from the center of the Universe. Moreover, the particle
we considered is at that same distance, surrounded by all the other particles. Thus,
according to the third concept, the particle of water will not move by itself because it
is surrounded by boundaries of equal height. Thus each circle of such particles forms a
receptacle in the shape of a circle with its boundaries at equal height. This is the
relation of our particle to other similar particles which make up the surface of the
sphere of water. It will, in itself, necessarily be without motion. Consequently, since
each particle is at equal distance from the center of the Universe, the surface must
necessarily be spherical. ..

However, it is no longer the influence of Pliny, but that of Adrastus
and Theon through the vehicle of the Questions of Albert of Saxony,
which is evident in the following passage 158

If the earth were spherical, no part of itwould be uncovered by the sphere of water.
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The following passage 159 seems to have been borrowed directly from
Pierre d'Ailly:

There will never be any flat earth on which water will not assume a convex shape and
be concentrated in the middle of that flat surface. And the water will never move
towards the extremities of the plane. Thus, on a perfectly flat surface, water can have
various depths.

Figure 97 represents a plane which cuts through a part of the
terrestial sphere. On this plane, a mass of water is placed and assumes
the shape of a segment of a sphere concentric with the earth. Beneath
this drawing, Leonardo writes:

What appears to be flat here is a steep mountain.

He then adds the following:

It is impossible to find any flat part on the surface of any body of water, no matter how
large.
The depths of the ocean are eternal, the mountain peaks are the opposite. It follows

that the earth will become spherical and entirely covered by water and will be
uninhabitable.

This last sentence is a word for word translation from Albert of
Saxony.
Not only did Albert of Saxony restate the arguments of Aristotle and

Adrastus in favor of the sphericity of the earth, but he also added
several paradoxical corollaries based upon that proposition. These
corollaries had also attracted the attention of Leonardo da Vinci. The
thoughts which they inspired fill an entire page of his notes.160

A man who is walking, says Leonardo, repeating what Albert of Saxony had written, is
going faster with his head than with his feet. A man who walks across a flat surface
leans first forward, then just as much backward.161

Albert of Saxony had remarked that if two towers were built with the

o
fig. 97.
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aid of a plumb line, the distance between their tops would be greater,
the higher the towers. Leonardo inverts this remark in a certain sense.
From a given point of the earth, he draws a vertical line. Then on either
side of this point and at a given distance, he imagines that two towers
have been constructed parallel to this vertical line and consequently
parallel to each other. He shows that these two towers must necessarily
collapse if they are tall enough. This passage has great significance and
we shall quote it word for word:

If one constructs two perfectly straight towers and if the distance between them remains
constant, the towers will undoubtedly fall if construction continues uniformly for both
towers.
Let the (Fig. 98) two vertical lines through points Band C continue on outward. If

they intersect with one tower along line CG and the second tower along BF, it follows
that these lines do not pass through the center of gravity anywhere along their length.
Thus KLGC, a part of one of the towers, weighs more than the rest of it, i.e., CGD.
And with the parts being unequal, one prevails over the other in such a way that, of
necessity, the heavier part of the tower will pull down the rest of the tower. This second
tower will do the same, but inversely, to the first tower. 162

Beneath the sketch reproduced in Figure 98, Leonardo draws another
quite similar sketch, where the cylindrical towers are replaced by two
very high pyramids, and he writes:

With the axes of the two pyramids parallel, they will fall against each other if they are of
a very great height.

L K Q

fig. 98.
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In attempting to reformulate a conclusion of Albert of Saxony in a
slightly different way, Leonardo makes use of a theorem which no one
before him seems to have stated: In order for a heavy body, resting on
the ground, to remain in equilibrium, it is necessary and sufficient that
the center of gravity of this body not protrude beyond its base.

In our opinion Leonardo can justly be considered the inventor of
this theorem. But it is certainly worth noting that this theorem is only
true if one attributes to the gravity at each point of the heavy body, the
same magnitude and direction. However, Leonardo discovers this
theorem while dealing with a problem where he not only takes into
account the convergence of the verticals, but, even more importantly,
where he proposes to justify a result of this convergence. In the present
chapter we will have many opportunities to return to this matter. Most
of the mechanical properties of the center of gravity were discovered by
arguments in which the convergence of the verticals played an essential
role. However, these arguments were accurate only under the condition
that the verticals be considered parallel.
The theorem which we discussed above is of great significance

because of its innumerable applications. In the above-mentioned frag
ment, Leonardo makes a very special application of it, but did he
recognize the generality of the proposition which he had discovered in
this very special case? We have no doubt that he did.
Leonardo constantly demands of the painter that he have a universal

spirit, which he himself had to the highest degree. His mind was
universal, but not like those people who amass a large body of dis
parate facts without being able to establish a connection between them.
On the contrary, no one has felt more vividly than he did to what extent
the various branches of human knowledge are interrelated. As soon as
he had discovered a truth in any field in which he was working, he also
recognized how this truth was related to other areas he was studying.
At the same time he was drawing from the Questions of Albert of
Saxony ideas for the Treatise on the Motion and Measure of Water,
which he planned to write, he was jotting down in his notebook the
draft of certain chapters of his Treatise on Painting,163 or returning to
the study on the flight of birds, an ever present topic in his meditations.
Thus, as soon as the demonstration of the sphericity of oceans has led
him to conceive of a property of the center of gravity, he immediately
draws from it useful rules for a painter wishing to depict his subjects in
a calculated pose, or he deduces from it the explanation for the various
behavior of birds.
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We have already seen Leonardo commenting on the corollaries of
Albert of Saxony and excited about the possibilities for applying them
to the upright posture of a man:

A man who walks across a flat surface, leans first backward, then just as much forward.

However, if one wishes to know the full extent of that theorem: A heavy
body resting on the ground cannot be in equilibrium when its center of
gravity is projected beyond its base, if one wishes to know how he
accounts for the differing postures of man and animal, we must leave
Notebook F, which up till now has been almost exclusively our con
cern, and begin to leaf through the notebook designated by the letter A
by Venturi.
Notebook A was written after Notebook F and Leonardo sometimes

corrects hypotheses there which he had formulated in Notebook F.164
There is hardly a question dealt with in Notebook F to which Leonardo
does not return in Notebook A. In particular, the theory of the shape of
the earth and the convergence of the verticals to which the Questions of
Albert of Saxony had attracted the great painter's attention, are the
object of much reflection in the later manuscript.
The following reflection is an almost literal translation of one of the

conclusions of Albertutius: 165

If you build a tower 400 fathoms high and if you use plumb lines, the tower will be
narrower at the foot than at the top and will be the beginning of a pyramid.

Furthermore, Leonardo thinks that it would be possible to measure the
difference in distance between the two verticals at the top and the base
of a tower and deduce from it the length of the radius of the earth.
Among these thoughts, obviously suggested to him by his readings of

Albert of Saxony, are reflections dealing with the role played by the
center of gravity in statics, such as the following one 166

A perfectly spherical body, placed on a perfect plane, will not move 167 if you do not
impart motion to it. The reason for this lies in the fact that all its parts are at equal
distance freom the center. Thus they always remain in equilibrium just as a balance with
arms of equal weight and length remain motionless. If the two halves of the above
mentioned spherical body are equal, it too remains motionless.

Leonardo not only applies certain rules from statics to his considera
tions of the center of gravity, but he also wishes to discover on this
point certain properties of dynamics. But dynamics is not advanced
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enough at the time he is writing for his final intuitions to sense their
own truth.
When the center of gravity of a body placed on the ground projects

beyond the base supporting this body, the heavy body ceases to be in
equilibrium, it moves and falls. And it falls precisely to that side to
which the heavier part pulls it - the part containing the center of
gravity. Based on this remark, which holds true for a heavy body
without an initial velocity, Leonardo claims to establish a general law of
motion. He alludes many times in his notes to this law.168

Everything, he says, placed on perfectly flat ground in such a way that its pole is not
belween parts of equal weight, will never stop. An example is furnished by those who
are spinning on ice and who will not stop unless the parts become equidistant from
their center.
Every heavy body 169 moves to the heavier side ... The heaviest part of bodies

moving in the air directs their motion.
The heaviest part 170 of any moving body will direct its motion.

The main goal of Leonardo's stressing the static and dynamic
properties of the center of gravity is to explain the behavior of living
beings, either at rest or in motion. Consider these reflections, inserted
in Notebook A I71 The first one resolves a problem stated in the
Mechanical Problems of Aristotle.

A person seated cannot get up without making use of his arms if the part in front of the
pole does not weigh more than the part behind the pole.
Whoever climbs to any given place must put a greater part of his weight in front of

the foot which is highest rather than behind it: that is to say, in front of the pole rather
than behind the pole. Thus man will always put a greater part of his body weight in the
direction towards which he wishes to move rather than towards any other side.
Anyone running bends more in the direction in which he is running and puts more

of his weight in front of his pole than behind it so that whoever runs uphill runs on the
toes of his feet and whoever runs on flat ground first touches ground with his heels and
then with the toes of his feet.
Such a runner cannot carry his weight, if he does not establish equilibrium with the

weight in front by bending backwards, so that the foot touching the ground is always in
the middle of the weight.

Leonardo continues by outlining 172 one of the chapters which will be
contained in the Treatise on Painting. There we read that when a figure
"rests on one foot, this foot becomes the center of the weight above it."
These reflections on the posture of living beings, show the influence

of Albert of Saxony and can be found in Notebook A in the brief and
imperfect form of a first draft. In order to find them in a more perfect
and completed form, one must turn to the Treatise on Painting, where
many variations can be found on the following proposition: 173
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A man walking will have the center of his weight over the center of the leg which
touches the ground so that the weight of the man 174 who is standing on only one of his
legs, will always be equally divided on both sides of the perpendicular or central line
which supports him.
Any figure 175 sustaining its own weight on the central line of the mass of its body,

must place as much of its natural or accidental weight on the opposite side as is needed
to establish the balance of the weight equally about part of the central line 175 which
starts at the center of that part of the foot [the center of gravity of the man] 177 which
bears the load. Its line passes through the entire mass of the weight and comes down on
that part of the foot which touches the earth.
One often sees a man lifting a load with one of his arms naturally extend his other

arm, and if this is not enough to create a counterweight, he adds enough of his own
weight to it by bending his body by as much as necessary away from the load in order
to carry it. One can also see that a man faIling always extends one of his arms and
always in the opposite direction ... We must remark here 178 that the weight of a man's
body pulls all the more to the extent that the center of gravity is removed from the
center of the axis supporting him.

On could find numerous such quotes which would show Leonardo's
constant preoccupation with the position of the center of gravity of a
body in relation to the base supporting it.
The Vatican Library possesses a very complete copy of the Treatise

on Painting. The sketches contained in it, doubtlessly crude imitations
of the drawings of Leonardo, show human figures in various positions.
In each case a vertical line is drawn through the figure, showing that the
center of gravity can be projected to a point within the surface by which
the figure makes contact with the ground. The same vertical line was
also used in some of the drawings which Nicolas Poussin made for the
Italian and French editions which appeared in 1651.
In the Treatise on Painting, Leonardo not only makes use of the

static properties of the center of gravity; he also includes and applies
the dynamic properties he attributes to it and he formulates it as
follows: 179

The arrest or cessation of motion in an animal standing on its feet, comes from the
equality or absence of inequality between the opposing weights which support them
selves by their own intrinsic weight.
Every motion 180 is produced by breaking equilibrium, i.e., equality, because nothing

moves by itself without leaving its state of equilibrium and the motion is all the faster
and more violent, the more the object departs from equilibrium.

Here we find once again the thought which Leonardo had rapidly
sketched in his notes and applied to ice skaters. For a body to move
over a horizontal plane, the center of gravity of this body must protrude
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beyond the base. The further it protrudes over the base, the more rapid
the motion.

It is this principle which Leonardo refers to in the study entitled On
the Motion ofRunning Animals.181

The fastest running animal will be the one which leans forwards the farthest. The body
which moves by itself will be all the faster, the further its center of gravity is from its
center of support.

Leonardo most eagerly applies the dynamic properties which he
attributes to the center of gravity to the flight of birds:

On the way to establish equilibrium, we read in his notes: 182 the heaviest part of bodies
will always guide their motion.

The further development of this thought can be found in the Treatise on
Painting. I 83

This can be said principally about the flight of birds which, without batting their wings
or being helped by the wind, move by themselves. This occurs when their center of
gravity is beyond their center of support, that is to say, outside of the center of their
wingspan. Since for every bird, the centerline of its wings is further [towards the front
orl towards the rear than the midpoint or center of gravity, the bird will direct its
motions upwards or downwards depending on how far or near the center of gravity is
to the centerline of the wings. That is to say, when the center of gravity is far away from
the midline of the wings, it causes the descent of the bird to be very oblique and if this
center is close to the midline of the wings, the descent of the bird will be less oblique.

The dynamic properties attributed by Leonardo to the center of
gravity provided him with the first solution he proposed to the problem
of the inclined plane. He wrote several drafts of this solution which he
obtained by a process which seems to reflect the influence of Pappus.
The draft which we included in Chapter II and the one included in
Chapter V, paragraph 3, can be found in Notebook A next to the
devices which Leonardo contrived 184 in order to deduce the radius of
the earth from the obliquity of the verticals. On that same page 185 the
following principle is stated:

Every object located on perfectly flat ground in such a manner that its pole is not
between parts of equal weight, will never stop moving.

The following solution to the problem of the inclined plane is an
application of the very principle of which the preceding one is but a
particular case:
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A body which moves by itself will move all the faster the further its center of gravity is
from the center of support.

Let us repeat that the influence of Pappus seems quite obvious in this
solution. However, an influence by the Questions of Albert of Saxony is
not remote either and can be noted in the following remark which
precedes the sentence quoted above:

Every heavy body strives to fall to the center and the opposing force which is most
oblique offers the least resistance.

This sentence faithfully reflects what Albertutius had written against
the notion of positional gravity and the principles of the School of
Jordanus.
Furthermore, one can ask whether these attempts by Leonardo

dealing with the inclined plane might not have been suggested to him by
reading a particular question by Albert of Saxony on the Physics of
Aristotle. No reference of Leonardo up to this point seems to indicate
any influence of that book in which we find the following remark:186

Let us assume an empty space between heaven and the earth and a surface equidistant
from the center. On that surface let us place two heavy spheres, a and b. Let us further
assume sphere a is heavier than sphere b. Any force (vertu), however small, could
move the two spheres with infinite ease over the surface. We shall prove it: Each of the
spheres would touch the surface at a particular point. Thus the weight of the upper
hemisphere is counterbalanced by that of the lower hemisphere, like two weights in
equilibrium. Since any amount of force, no matter how small, suffices for movement,
any force could move each of these spheres with infinite ease.

If a plane were placed obliquely into the space and if one placed a simple and
spherical heavy body on the plane, the heavy body would descend on the plane at a
finite velocity. This is evident because since it cannot descend on a straight line [to the
center), it would descend by rolling. Since one part of the sphere would have to lift the
other part the latter would be lifted by violence and would thus act as a resistance.

Second Period

From the Copernican Revolution to Torricelli

7. THE INFLUENCE OF ALBERT OF SAXONY AND THE

COPERNICAN REVOLUTION

As early as 1508, while discussing 187 the view of Albert of Saxony on
lunar spots and attempting to formulate his own opinion on this subject,
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Leonardo was led to reject the geocentric hypothesis and to formulate
the following verity: 188

Now the earth is neither in the middle of the orbit of the sun nor in the middle of the
Universe, but rather in the middle of the elements which accompany it and are tied to
it.

Thus, in 1508, harbinger signs of the Copernican revolution were
already appearing. For an entire year, Copernicus had meditated upon
the world system and he was to continue doing so unti11530. Not until
1543 - the year of his death - were the results of his meditations to
appear in print. From 1515 on, at the latest, Celio Calcagnini ascribed
diurnal motion to the earth, without, however, giving up the geocentric
hypothesis.
The Copernican revolution overturned the Peripatetic theory of

gravity on an essential point, because it no longer located the center of
the earth at the center of the Universe. However, once this reorienta
tion had been accomplished, Copernicus and his followers retained as
fas as possible, the laws formulated by the Scholastics and especially by
Albert of Saxony. In their view, as in the view of the Doctors of the
School, the gravity of a terrestial body is the tendency which this body
has to unite with the center of gravity of the earth, a tendency existing
in each body so that the earth may remain spherical.

The earth, says Copernicus, 189 is spherical because, from all sides, it strives towards its
center.
The element of the earth 190 is the heaviest of all and all heavy bodies move towards

it and tend towards its innermost center.

The Scholastics attributed this tendency solely to the component
parts of the earth. The Copernicans attributed a similar tendency to the
fragments which might detach from the sun, the moon or from any
other planet. Each of these fragments tends towards the center of the
heavenly body from which it originated, so that the integrity of the
heavenly body is preserved: 191

In my opinion, gravity is nothing but a certain natural propensity given to the com
ponent parts of the earth by the Divine Providence of the Creator of the Universe, so
that they might converge into unity and integrity, by uniting in a spherical shape. It is
probable that this attraction also exists on the sun, the moon, and other wandering stars
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so that through the effect of this attraction, those bodies persist in their spherical shapes
as they appear to us.

The geographical and cosmographical knowledge of Copernicus is
too sophisticated for him not to reject certain views held by Albert of
Saxony. Copernicus is aware that neither hemisphere of the surface of
the globe is entirely covered by water. He also knows that the conti
nents and the seas form an almost perfect sphere and that the direction
followed by a heavy body in its descent will end up at the center of this
sphere. Thus, just as the Scholastic Doctors, he can only affirm that the
geometric center of the earth is outside of its center of gravity and that
the latter, to the exclusion of the former, is the center of the liquid
sphere. On several occasions, he attacks the following statements of
Albert of Saxony, whom he does not name, but whom he must have
read: 192

Water and earth both tend towards the same center because of their gravity .... One
should not heed the Peripatetics who claim ... that the center of gravity is distinct from
the geometric center. That such a distinction between the geometric center and the
center of gravity does not exist, can be shown in the following fashion: the surface of
the earth not covered by the ocean does not swell in a continuous way. Otherwise, it
would very much restrain the ocean water and could not be penetrated by inland
waters, which resemble vast bays .... Because of all of these reasons, it is apparent to
me that earth and water strive simultaneously towards the same center of gravity which
is not distinct from the center of the earth.

Thus, according to Copernicus, the earth and the oceans form a
mass clearly spherical in form, so that there is no need to distinguish
the center of the earth's shape from the center of the shape of the
surface of the seas.
Both of these points are very close to one another. This hypothesis

which accorded very well with all the geographical and astronomical
observations was independent of any hypothesis concerning the motion
of the earth. Thus it seems that it should have been widely accepted
without any difficulties. However, such was not the case and it met with
very vivid and prolonged opposition.
The source of this opposition must be sought in the rather bizarre

view stated by Aristotle in his book On Meteorology and which we can
formulate in modern terms as follows: 193
The four elements, earth, water, air, and fire all have equal mass so

that the volume which they occupy is in inverse ratio to their densities.
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But, according to many Peripatetics, when a given mass of one of these
elements becomes corrupted and through this corruption, it engenders
the next element, its volume increases by tenfold. Thus densities of the
four elements form a geometrical progression by ten. Therefore, the
total volume of water must be ten times the volume of earth. The
volume of air must be ten times the volume of water and the volume of
fire ten times the volume of air.
This theory, widely accepted throughout the Middle Ages, had given

rise to curious geodesic theories such as, for example, the theory of
Nicolas of Lyre,194 which we mentioned previously. From the XIVth
century on, we see the Nominalists of Paris reject this particular point
in the doctrine based on Aristotle. We see Albert of Saxony advance
geodesic ideas quite similar to those of Copernicus. We see Themon
systematically refute the hypothesis according to which the volumes of
the elements form a geometrical progression. I 95
However, the very reasonable arguments advanced by Albert of

Saxony and by Themon were far from meeting with unanimous
approval. The assumption of Aristotle was still much in favor at the end
of the XVth century. Gaetan of Tiene, after having mentioned the
Aristotelian view, remarks simply196 that "others think differently and
that there is no solution to the question." Others, such as Gregory
Reisch, attempt, as we have seen, to adapt 197 the ideas of Albert of
Saxony to the hypothesis that water occupies a volume tenfold the
volume of the earth.
It can easily be seen that such views could be held until navigators

transformed the geographical knowledge of man. It might seem highly
improbable that men continued even after Vasco da Gama, Christopher
Columbus and Magellan, to claim that the solid earth forms a sphere
ten times less voluminous than the ocean and that the solid earth forms
a continent with a very small surface in relation to the surface of water;
yet, such was the case.
Anyone who is surprised by this strange, intellectual phenomenon

does not, in our opinion, have a good grasp of the mentality prevalent
in the XVIth century. The main characteristic of many men of science
of this excessively praised period is a narrow-mindedness which often
extends to sectarianism. Thus, as at all times, we can distinguish among
those seeking knowledge, between the innovators and the conservatives.
However, the innovators, or those pretending to be so, demonstrate
such a high degree of intransigence that they do not wish to retain any
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of the conquests of preceding ages. Anything remotely attached to
Peripatetic Scholasticism seems to them totally false and pernicious.
They reject it unexamined and retain only what they have inherited
from the geometers of Classical Antiquity. We already met with such
innovators who weaken science by cleansing it of any discoveries made
during the Middle Ages, when we discussed the reaction of Guido
Ubaldo and Giovanbattista Benedetti against the School of Jordanus.
Opposed to these innovators who would like to do away with the

work of entire centuries, are the conservatives whose goal is to retain
everything of that same work, even that which is blatantly false.
To be sure, in the Scholasticism of the XIIIth and XIVth centuries,

the thought of Aristotle is deeply venerated. However, that veneration
is far from being a blind servility. The Alberts of Saxony and Themons
discuss with respect the views of the Stagirite, but they discuss them
and when they believe they have valid reasons, they reject them. During
the XVIth century, however, we see the birth of a slavish Aristote
lianism, which consists in taking the most insignificant view which one
of the commentators believed to have discovered in the Master and
considering it as an infallible oracle against which even the most cogent
counter-arguments, the most solidly deduced reasonings, the most
indubitable facts avail nothing.
Twelve years had passed since the crew of Magellan had succeeded

in circumnavigating the globe, when Mauro of Florence (1493-1556),
a monk of the Servite Order, repeated the opinions of Gregory Reisch
and maintained 198 that the solid earth forms a sphere cropping out of a
small portion of the spherical mass of water which is ten times more
voluminous. Elsewhere Mauro of Florence repeats a theory which
Albert of Saxony had formulated in his Questions on the Physics of
Aristotle but had subsequently omitted in his Questions on On the
Heavens, a theory which, for a certain time, had found the approval of
Themon. Mauro of Florence remarks that the aggregate of earth and
water form a heterogeneous body with a center of gravity not located at
the geometric center. He affirms that it is the general center of gravity
which must coincide with the center of the Universe, so that the
terrestial sphere and the surface of the oceans are each individually
eccentric to the Universe.
Copernicus believes he has accomplished worthwhile work 199 by

refuting the theories of Gregory Reisch and Mauro of Florence. He
notes that if the sphere of the solid earth were not ten times, but only
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seven times less voluminous than the mass of water, then the center of
the spherical surface which delimits the ocean would be outside the
volume occupied by the earth. Thus it could not coincide with the
center of gravity of the solid earth, as Albert of Saxony asserted in his
Questions on On the Heavens. It should be noted that while Copernicus
appears to admit this doctrine of Albertutius, Mauro of Florence does
not.
Cardan, who read Copernicus and quotes him,200 shares the great

astronomer's view of the masses formed by solid earth and water; 201

It is not true, he says, that the water is so voluminous or that it forms a very consider
able part of the entire earth. In reality, there exists only a very small quantity of water
which, due to its lightness, remains on the surface of the earth and fills the lowest
cavities of that surface. If we only consider the surface of the water, we might conclude
that it was more voluminous than solid earth. However, as soon as we take into account
its depth, we can no longer compare the two.

It would be impossible to reject any more clearly the view held by
Gregory Reisch and Mauro of Florence.
Alexander Piccolomini was also a convinced opponent of Mauro of

Florence. In his treatise on natural philosophy,202 Piccolomini had
expounded on the doctrine concerning the shape of the earth and
water, considered classical after Albert of Saxony. Using the demon
stration of Aristotle and Adrastus, he proved 203 that water is delimited
by a spherical surface with the center of the Universe as its center. The
center of gravity of the earth is situated at the same point,204 but due to
the heterogeneity of the earth, this center of gravity does not coincide
with its geometric center. However, in the above-mentioned work,
Piccolomini does not consider whether water does or does not occupy
a much larger volume than earth.
To this problem, he devoted a special work 205 in which he repeats at

length all the reasons of Themon and Copernicus to refute those
thinkers who attributed to water a volume ten times that of earth,
especially Mauro of Florence.206 Incidentally, his discussion is not
without error, as indicated by the following curious example. He
thinks 207 that the shadow causing a lunar eclipse is due to the solid
element only since water does not cast a shadow because of its trans
parency.
This work of Piccolomini by no means settled the debate raging
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among the physicists. In 1578, Giuntini,208 after having copied whole
pages from Albert of Saxony without mentioning him, simple states: 209

As far as I am concerned, I think that earth and water have the same center which is
also the center of the Universe.

In another passage,210 he proclaims to be the adversay of Gregory
Reisch and Mauro of Florence. On the other hand, Antonio Berga
defends the view of the latter two in a work 211 in which he sharply
attacks Alexander Piccolomini.
The pampWet of Berga provokes, in its turn, a sharp retort by

Giovanbattista Benedetti.212 In this retort, Benedetti argues sharply
against those who attribute to water a volume tenfold that of the earth,
and in particular, takes to task Antonio Berga. Benedetti refutes their
reasoning with reasons advanced by his predecessors, especially those
of Copernicus. He does not mention Copernicus by name, but he had
obviously studied him in depth because he often mentions him in his
letters 213 and does not hesitate to put On the Revolutions of Celestial
Orbs on the same level as the Almagest of Ptolemy.214 He goes
even further. Without openly declaring himself an adherent of the
Copernican system, Benedetti considers it a plausible hypothesis.215

In his reflections on the size of land and water, Benedetti accepts
without reservation the doctrine of Albert of Saxony as far as the center
of gravity is concerned. He formulates this doctrine with great clarity by
using the definition given by Pappus on the center of gravity as well as
the definition proposed by Commandino.216

The ancient philosopher, he says, defined the center of gravity of individual bodies in
the following manner: 217 Centrum gravitatis uniuscujusque corporis est punctum
quoddam intra positum, a quo si grave appensum mente concipiatur, dum fertur
quiescit, et servat eam quam in principio habebat positionem, neque in ipsa latione
circumvertitur.
Certain modern philosophers, Benedetti says further, define it in the following

manner: 2lH Centrum gravitatis uniuscujusque solidae figurae est punctum illud intra
positum, circa quod undique partes aequalium momentorum consistunt; si enim per tale
centrum ducatur planum, figuram quomodocumque secans, semper in partes aeque
ponderantes ipsam dividet.
Still others maintain that the center of gravity of each body is the point at which the

body would be united with the center of the Universe, if it were not prevented from
doing so.
All agree with the proposition that the earth is united to the center of the Universe

through its own center of gravity.
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A few years later, Guido Ubaldo, under the influence of Benedetti,
will restate just as precisely the doctrine ofAlbert of Saxony.
Furthermore, like Copernicus and Giuntini, Benedetti believes that

the center of gravity and the geometric center of the earth are signifi
cantly different.219

We are certain, he says, that the spherical surface of water is at all points equidistant to
the center of the Universe, which is the point towards which all heavy bodies tend.
Furthermore, because of the numerous islands and different countries discovered by
navigators in all regions of the world, we can be quite certain that water and earth form
the same globe ... and that the geometrical center of the earth, which coincides with its
center of gravity, is located at the center of the Universe.

These statements deserve further attention. In the field of science,
Benedetti is one of the most daring and intransigent reformers of the
XVIth century. In many instances, he vigorously attacks the Physics of
Aristotle. On the descent of heavy bodies, he formulates a theory which
overturns the Peripatetic theory of gravity. As a great admirer of
Copernicus, he is tempted to adopt the heliocentric system. On the
other hand, he completely rejects all the mechanics of the Middle Ages
and goes so far as to include in his rejection the most beautiful dis
coveries made by the School of Jordanus, such as the correct solution
to the problem of the inclined plane. And yet, such blind contempt for
the science of the past hesitates respectfully before a monument of
XIVth century physics. That monument is the theory on the center of
gravity formulated by Albert of Saxony. This theory, which appears to
us today so blatantly false, survives the Copernican revolution and
scientific reform with scarcely a modification. Benedetti retains it, just
as Copernicus had done before him and as Guido Ubaldo and Galileo
will do after him. And despite the attacks of Kepler, the theory will
survive until Newton.
The Considerations of Benedetti did not suffice to convince those

who maintained that the ocean was more voluminous than earth. This
view continued to be advanced and discussed up to the beginning of the
XVIIth century. In 1580, Francesco Maria Vialardi published a Latin
translation of the pamphlet of Antonio Berga and of the Considerations
of Benedetti.220 In 1583, Agostino Michele defends again 221 the ancient
view which claims that there is more water than solid earth in this
world. In a long letter addressed to Horatio Muto 222 in 1584, Benedetti
resumed his earlier discussion with Piccolomini and Berga and zealously



ALBERT OF SAXONY TO EVANGELISTA TORRICELLI 325

refutes the arguments of Agostino Michele. The following year, Nonio
Marcello Saia joined the ranks of those sharing Benedetti's views.223

Eventually, every sensible thinker came to join those same ranks. In
1593, the Jesuits of the University of COlmbre, who were strict guard
ians of the Peripatetic tradition in physics, published their commen
taries on the On the Heavens of Aristotle.224 Without mentioning the
name of Albert of Saxony, they expounded clearly the main points of
his doctrine: the distinction between the center of gravity and the
geometric center, the coincidence of the center of gravity of earth with
the center of the Universe, the vaporization of the uncovered part of
earth by solar heat. They conclude by stating that since the height of the
mountains and the depths of the ocean are approximately the same, the
earth and water form a single globe with a common center of gravity
which is at the center of the Universe. Advocates as well as opponents
of the Copernican system agree from now on to present the doctrine of
Albert of Saxony in the same form. That form, vaguely envisioned by
Albert of Saxony, was formulated by Copernicus and Benedetti. Only
one difference of opinion separates the two Schools. In the eyes of the
advocates of the geocentric system, the point towards which heavy
bodies tend to move and where the center of gravity of the earth and
the center of the surface of the oceans are located, is at the very center
of the Universe. For the followers of Copernicus, this same point is but
a point peculiar to the heavenly body called the earth and in each
heavenly body there exists an analogous point. From the point of view
of celestial mechanics, the difference is crucial. From the point of view
of statics, the difference is insignificant.
At the end of the XVIth century, both Copernicus and his opponents

agree on the following statement: all heavy bodies which belong to our
earth have a common center. Whether this center of gravity is or is not
at the center of the Universe does not change the fact that all heavy
bodies tend to move towards it, and that each one of the bodies strives
to unite its center of gravity with the center common to all heavy
bodies. If the body is free to move, it moves in such a fashion that its
center of gravity describes the line of direction, that is to say, the
straight line which joins this point to the center common to all heavy
bodies.
Such is the doctrine which ensued directly from the influence of

Albert of Saxony and which we find affirmed in the works of Cardan
and, even more explicitly, in those of Guido Ubaldo.
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8. THE INFLUENCE OF ALBERT OF SAXONY AND OF

LEONARDO DA VINCI: CARDAN AND GUIDO UBALDO

Leonardo da Vinci frequently quoted the following phrase: The heav
iest part of a falling body guides its motion. Cardan makes this phrase
more precise: when a heavy body moves naturally, whether it is free or
impeded by any constraints, the center of gravity always descends.
Here is how he states this important proposition: 225

Every part of a heavy body descending in part by natural movement alone, descends by
its heaviest part with respect to the center of gravity.

Here is how Cardan comments upon this proposition, which, as can
be easily seen, contains the nucleus of the Principle of Torricelli:

Let a be the moving body, b its center of gravity, cd the part of the body closest to the
center. If a part of the body touches the earth, I claim that cd will descend by a natural
motion, because if a cannot descend altogether to the center, b will. Indeed, the part is
of the same nature as the whole. The nature of the entire earth is such that its center of
gravity is the center of the whole. Thus b also moves to the center by the shortest path
and follows cd which is the part nearest point b. But the part closest to the center of
gravity is necessarily the heaviest, because this center is at the center of gravity. Thus,
by natural movement, every moving body descends by its heaviest part.
As a result, if a heavy body has parts of unequal shape and substance, and if it is

placed in such a way that the heaviest part is not at the bottom, it will necessarily
pirouette.

This propensity of the center of gravity of a falling body or of an
aggregate of falling bodies is in the eyes of Cardan the sole principle
upon which are based all the phenomena of motion and immobility
caused by gravity.226

Let us state here what is so remarkable on this subject ... .A heavy body deprived of
direction must follow a geometric rule scarcely known by learned men. There is a
cause, an obvious cause, for this. Everything which is a heavy body is situated on the
line emanating from the center of the Universe. If the midpoint of the [suspended]
heavy body is outside of this line, it will turn towards this line which is in it because the
center [of the Universe] is always on that line. Thus the unique inclination of the center
of the heavy body to locate itself on the line going to the center of the earth and the
center of the Universe is a sufficient explanation.

Cardan outlines the principle of his statics in the Opus Novum.
However, he had attempted to apply it long before to a particular
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problem. Indeed, if we open the French translation by Richard Le
Blanc of the De Subtilitate, we can find the following curious passage: 227

We have discussed things which hold up more than reason seems to admit, as well as
things which are mutually supportive. The time has come to show how certain matters
seem to be self-supporting.
Let a flat dresser or table be AB (Fig. 98a) and the rod be CE, at the outer end of

which hangs the handle of a pail filled with water GHF. Let a straight rod EF be tightly
wedged between the rod CE and the bottom of the pail so as not to fall, I claim that the
pail will remain suspended and will not fall.

It is clear that Cardan is completely mistaken here and that, if left to
themselves, both rod and pail will fall. Nonetheless, the Milanese
physician attempts to prove his claim in the following manner. Assum
ing that the pail has fallen, he pretends to prove that:

the center of gravity is displaced by itself away from the center of the earth. Neverthe
less, assuming that it is heavy, it descends by natural movement which can only happen
here through impediment. Thus the pail will not descend ...

19itur, the Latin text reads, which is much clearer than the translation by Richard Le
Blanc, centrum gravitatis e!ongatum est a centro Terrae sponte, igitur motu naturaIi
grave ascendit, quod esse non potest. Non igitur situla descendit ...22M

The deductions from which Cardan claims to arrive at an obviously
absurd corollary, although based on a correct and fruitful principle, are
completely untenable. Furthermore, it seems that the great astrologer
suspected the falsity of the assertion and the illogic of the reasoning by
which he was attempting to prove it. Indeed, his statement ends as
follows:

It is necessary (lest the experiment not disappoint you through the mockery of the
observers, for if the undertaking does not turn out as desired, the ignorant not only
blame the experimenter, but also his demonstration) to pay close attention to the
following: first, the surface of the dresser and table must be in equilibrium and the

fig. 98a.
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wood straight, and unbending. Likewise, the stick EF be straight and firmly fixed
between the bottom of the pail and CE so that it can hold firmly the wood CE to the
handle D. Furthermore, let the point F be the center of gravity and the pail have a
round bottom.
Many people will read this, but few will understand it. However, more than is

written must be understood and nothing should be omitted which appertains to
perfection.

How is one to explain this strange passage of Cardan? One has the
feeling that it is the distortion of an accurate argument which Cardan
must have found a mutilated copy of and which he hastily inserted in
his De Subtilitate without understanding it.
However, is it possible to discover the actual configuration of

equilibrium of which Cardan has reproduced a distorted description?
Several clues can put us on the right track.
This passage by Cardan which we quoted above is not included in

the first edition of De Subtilitate. The Milanese astrologer included it
only in the second edition which was the basis for the French transla
tion by Richard Le Blanc. He retained it in all subsequent editions.
However, this addition is not the only one in Book XVII of the

second edition of the De Subtilitate. There is another one at the end of
this book. Consequently, it occurs to us that these two additions might
have had the same origin.
The addition at the end of Book XVII229 sets out to explain "... why

man must labor so much when climbing." Among the reasons given by
Cardan one finds the following:

The third cause is peculiar to the situation where the slope is very steep. Since we know
that a man cannot easily stand upright if he does not stand flat-footed, when he is on a
steep hill where the surface is not equidistant to the center of the earth, he is forced
when climbing upright to hold himself up with great effort, because the soles of his feet
do not fully rest upon the surface. Thus he is forced to do one of three things: either to
support himself solely on the forward part of his feet or to bend his entire body
forward or hold himself up by greatly distending and extending his muscles, which is a
very difficult thing.

Can we read this passage without thinking of the reflections of
Leonardo da Vinci on the various postures of the human body and
without being reminded, in particular, of the following passage:230

A man climbing to a given point must put more weight on his forward foot then on his
rear foot, that is to say, more weight to the front of the pole than to the rear?



ALBERT OF SAXONY TO EVANGELISTA TORRICELLI 329

This leads us to think that we can find in the notes of Leonardo da
Vinci the configuration of equilibrium which Cardan presented in such
a confused form.
Let us then peruse the notebook containing the passage we just

quoted. Five pages beyond that passage we read the following: 231

The single weight supported at the middle (center of gravity) and from which the rest
is suspended, can be of any form whatsoever, because it will always establish an
equilibrium on its fulcrum and sometimes the extremities will not be at equal distance
from the center of the weight.
Example. Let AB (Fig. 98b) be a ruler which only rests on its extremity at A, while

the other part is suspended. This is impossible to achieve if you do not first attach to
this ruler the weight C which acts as a counterweight allowing A to remain at the
midpoint between C and B, and this weight will come to rest on the pole A.
Similar reasoning can be applied to the device below (Fig. 98c).

Let us focus our attention on this "device below."
Leonardo da Vinci has put at C a given counterweight. If one hangs

from it a pail of water, one is obviously faced with the paradoxical
configuration of equilibrium which Cardan described to us in such a
distorted form.
What can we conclude from this comparison? A hypothesis which

we shall formulate now and which will be confirmed repeatedly
throughout the remainder of this Chapter.
The sheets of the notebooks which have been in part saved are but a

jumble of all of the reflections suggested to Leonardo da Vinci from his
readings and meditations. But every so often, Leonardo focuses in his

fig. 98b.
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sketches all his thoughts on a single topic. He then transcribed them
and sometimes completed them and put them in a definite order. The
Treatise on Painting and the Trattato del mota e misura dell' acqua in
our possession were written in that way. Others, undoubtedly, were
written in a similar fashion, such as the Treatise on Perspective acquired
by Benvenuto.
Melzi, whose intention was to enhance the reputation of Leonardo

da Vinci by disseminating his ideas, had copies 232 made from these
different treatises which he then put into circulation and which were
then reproduced by readers in more or less complete, more or less
perfect form. It is by means of such a copy that we know the Treatise
on Painting and the Trattato del mota e misura dell' acqua, since the
originals have been lost.
Leonardo certainly assembled in one or more treatises the properties

of the center of gravity to which his meditations upon the doctrine of
Albert of Saxony had led him. As we shall see in the following chapter,
in his Treatise on Painting he quotes one of those treatises, which he
had entitled a Treatise on Local Motion.
These treatises on the properties of the center of gravity were

undoubtedly known by many mechanicians of the XVIth century. The
analysis which we shall develop in the following two chapters will leave
no doubt in this regard.
Was Cardan familiar with these collections? One .can scarcely

believe otherwise, since many passages from the De Subtilitate, besides
the one we are presently studying, carry the mark of the influence
exerted by the thoughts of Leonardo da Vinci. Moreover, in the same
seventeenth book of the De Subilitate, Cardan quotes Leonardo twice:
the first time 233 concerning his anatomical research and the second
time 234 concerning his experiments in aviation. Being familiar with the
diverse paths of the extraordinary intellect of the painter, Cardan must
have zealously sought for the traces of that activity.235 Thus, very
probably, he possessed a copy of one of those treatises in which
Leonardo had written down the properties of the center of gravity.
However, even though the copy contained many errors, Cardan
scrupulously reproduced even those mistakes.
Let us add one last remark, Leonardo da Vinci surrounded his two

paradoxical cases of equilibrium with various confused explanations.
Nevertheless, it is easy to see that he is attempting to reduce them to
the following principle which he had discovered: A body is in equilib-
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rium when its center of gravity is projected within its base which rests
either on the ground or on a horizontal support.
In the De Subtilitate, however, it is not this principle, but the

following which is invoked: A system is certainly in equilibrium if any
virtual displacement raises the center of gravity.
To whom should we attribute this change in the method of demon

stration? Is it to Cardan? In this matter, Cardan appears to have played
more the role of an unthinking scribe than that of an inventive thinker.
It would seem plausible then to conclude that this change in method
was due to Leonardo da Vinci himself and that he introduced it when
he transcribed two cases of equilibrium which we found in his notes.
This hypothesis does not seem at all implausible, since it would be in

accord with several facts, such as the following one for example:
Bernardino Baldi, as we shall see later, appears to have deduced his
entire mechanics from the treatise of Leonardo da Vinci and he
constantly refers to the following principle: the center of gravity of a
heavy system cannot ascend by itself.

If the above hypothesis is true, it would make of Leonardo da Vinci
the true discoverer of the principle of statics commonly attributed to
Torricelli.
The doctrine professed by Cardan in his Opus Novum is precisely

that which was taught in Paris in the XIVth century. We can find that
same doctrine expressed with absolute precision in the work of Guido
Ubaldo. After having expounded the definition of the center of gravity
as given by Pappus and Frederico Commandino, the Marquis del
Monte continues in the following terms: 236

From this, one can draw the following conclusions. If a heavy body were placed at the
center of the Universe, its center of gravity would also be located at the center of the
Universe if one asserts that the equilibrium of this heavy body in this position requires
that the various parts surrounding this point possess and maintain the same moment.
Thus, when we state the proposition that because of its natural propensity any given
heavy body strives to place itself at the center of the Universe, we mean nothing more
than this: that the heavy body strives to unite its own center of gravity with the center of
the Universe, in order to achieve a perfect state of rest. It follows that the downward
motion of any given heavy body occurs along the straight line which unites the center of
gravity of the heavy body with the center of the Universe. Therefore, the rectilinear fall
of heavy bodies demonstrates clearly that the heavy bodies tend downwards in
accordance with their center of gravity ...
Everything we have said so far about the center of gravity leads us to conclude that

a heavy body has its weight, so to speak, at its center of gravity. The very name center
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of gravity clearly implies this truth. The entire force, the entire gravity of the weight, is
concentrated at the center of gravity. It seems to converge from all sides at this very
point. Indeed, it is because of its gravity that the weight strives by nature to reach the
center of the Universe. However, as we have stated, what really tends towards the
center of the Universe is the center of gravity. Thus it is at its center of gravity that a
body has its weight. Consequently, when a given weight is supported by a given force at
its center of gravity, the weight immediately comes to a state of equilibrium and the
entire gravity of that weight becomes evident to the senses. That is what happens if a
weight is supported at a point in such a fashion that the line connecting this weight to
its center of gravity passes through the center of the Universe. In that one case,
everything happens as if the weight were supported precisely at its center of gravity.
This is no longer true if the weight is supported at an arbitrary point. In that case, the
weight does not come to a state of equilibrium. Before its gravity becomes evident it
turns, as in the previous case, until the line which joins its point of suspension to its
center of gravity extends to the center of the Universe.
. . . when this line is perpendicular to the horizon, it is just the same as if the weight

were sustained precisely at its center of gravity, as we just said. Therefore, since the
gravity of a weight only becomes perceptible at its center of gravity, it stands to reason
that it is at this point that the body actually has its weight.

This doctrine, which is so clearly formulated by Guido Ubaldo del
Monte, is but an updated version of the theory of gravity formulated by
Albert of Saxony in the XIVth century. It is based entirely on the
following hypothesis: Within every solid heavy body there exists a fixed
point, the center of gravity, at which its entire gravity is concentrated.
The existence of this point is not a limiting case applicable only when
the verticals are considered parallel to each other, but applies even
when the convergence of these lines towards the same point, the
common center of heavy bodies, is taken into account.
Today, we know that this hypothesis is false. However, until the

middle of the XVIIth century, it was considered admissible by geo
meters. Although neither Archimedes nor Pappus ever stated it ex
plicitly, they had never formally excluded it. We shall see what a crucial
role this assumption and the doctrine of gravity associated with it, will
play in the evolution of statics. It will lead to important discoveries such
as the discovery of the Principle of Torricelli. It will also lead to many
errors which will undermine its credibility and force geometers to
develop a more precise notion of the center of gravity.
The deleterious consequences deriving from this excessively general

notion of the center of gravity are already evident in the works of
Guido Ubaldo. They becloud even the grain of truth contained in the
objections raised by Ubald0 237 against the erroneous proposition
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formulated by Jordanus and Tartaglia on the stability of the balance.
Montucla,238 states quite correctly that Guido Ubaldo, who refuted
them, had himself only avoided a part of those errors because after
having shown that the balance would remain inclined if the verticals are
parallel, he attempted to extend the same conclusion to the case when
they converge. The cause of his error was to have assumed that in the
case of convergent verticals the center of gravity remained in the same
position whether the balance was horizontal or inclined.

9. THE INFLUENCE OF ALBERT OF SAXONY AND

LEONARDO DA VINCI: J ,-B. VILLALPAND AND MERSENNE.

Guido Ubaldo had not drawn from the doctrine of Albert of Saxony
deductions applicable to statics. On the other hand, the theorems of
J.-B. Villalpand are certainly applicable to that branch ofmechanics.
Juan Battista Villalpando,239 who was born in Cordova in 1552,

entered the Society of Jesus and had for his teacher Father Jeronimo
Prado, who was born in 1547 in Baeza. When Phillip II requested from
him a commentary on the vision of Ezechiel, Father Prado involved his
student in that project which he planned on a vast scale.240 Villalpand
was initially responsible for only the archeological part of the work.
However, when Father Prado died in Rome in 1595 with his commen
tary unfinished, his student continued the work and wrote the third
volume alone.241 Villalpand died in Rome in 1608 without having
finished the monumental exegesis of Ezechiel.
In the course of his research on the archeology of Jerusalem and the

Temple, Villalpand concentrates on refuting a strange error. Certain
commentators had claimed the following: Judea is such a mountainous
country that its surface area is four times greater than a flat country
with the same borders. In order to prove the absurdity, or better still,
the uselessness of such an assumption, Villalpand undertakes to
demonstrate that a mountainous area cannot hold any more people, any
more animals, any more buildings and any more trees than a plain with
the same boundaries. The demonstration required must be deduced
from the conditions of equilibrium of a heavy body at rest on the earth.
The statics of Villalpand was undoubtedly influenced by the works

of Guido Ubaldo. His development of the two definitions of the center
of gravity given by Pappus and Commandino leaves no doubt in this
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regard. However, when he reproduces the propositions of the Marquis
del Monte, Villalpand obviously strives to detach them from any
assumption about a connection between the center of gravity of the
individual body and the common center of all heavy bodies. The Jesuit
scholar does not discuss any such connection. He declares outright that
he will consider the verticals as parallel. Finally, when he reproduces
the propositions expounded by Guido Ubaldo, he justifies them not by
reference to the tendency of the center of gravity of each individual
body to unite with the common center of all heavy bodies, but by
means of deductions drawn from the very definition of the center of
gravity.
Furthermore, it is not necessary to examine these deductions at

length to discover their source. The properties which Villalpand
attributes to the line of direction, that is, to the vertical passing through
the center of gravity, were borrowed for the most part from Leonardo
da Vinci.
The following proposition 242 could have been borrowed from Guido

Ubaldo.

Every heavy body which descends without impediment, falls in such a manner that its
center of gravity never deviates from the vertical.

Villalpand justifies this in the following manner:

Let C be the center of gravity in the heavy body AB (Fig. 99) and let us connect this
point to the center of the Universe D by the straight line CD. I claim that when the
heavy body AB descends, point C will not deviate from the line CD, which is indeed,
the shortest distance. Thus, since the heavy body is not hindered by any obstacle and
since point C is surrounded by parts of equal moment, nothing prevents the heavy
body from traversing the shortest and avoiding the longer paths.

The demonstration sketched out by Villalpand reminds us of the
following note by Leonardo: 243

Every natural action is accomplished in the shortest way. This is the reason why the
free fall of a heavy body occurs towards the center of the earth because this is the
shortest distance between the moving body and the center of the Universe.

Villalpand's demonstration resembles even more closely the following
passage from the Treatise on Painting: 244

This is proved in the 9th [proposition] in the Treatise on Local Motion, where it is
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stated that every heavy body exerts weight in the line of its motion. Thus, when a
discrete body moves towards a given point, any additional mass which is attached to it
follows along the shortest line of motion of the whole, without burdening in any way the
constituent parts of the body by its own weight.

In this passage, Leonardo alludes to a Treatise on Local Motion; he
must have composed it in the same fashion as he did the Treatise on
Painting, the Treatise on Perspective, the Treatise on Water, which have
either come down to us or which we know about from other witnesses.
Did Villalpand possess a copy of this treatise? Did he deduce from it
his sequence of theorems on the line of direction? An analysis of these
theorems leaves little doubt since they bear quite clearly the stamp of
Leonardo da Vinci.
When we read the following proposition, how is it possible not

to recall some of the fragments in Notebook A which we recently
quoted: 245

Every body resting at a point on the ground will remain in equilibrium if the vertical
which passes through this point also passes through the center of gravity. The body will
move as soon as the line passes outside of the center of gravity ...

If the line of direction HD (Fig. 100) passes through point C, the body will remain
immobile, because its parts of equal weight are equidistant from the line in question.
Therefore, none of its parts can pull the part on the other side.

This proposition is followed by another 246

A perfectly spherical heavy body, posed on a perfect plane, will continually move, if
unimpeded, until it reaches the single point on the plane where it can remain at rest.

Leonardo, while jotting down on the sheets of Notebook F the
thoughts suggested to him while reading Albert of Saxony, wrote 247

A B

D
D

fig. 99. fig. 100.
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A perfectly spherical heavy body placed at the extremity of a perfect plane will not
stop, but will go immediately to the midpoint of the plane.

Villalpand's debt to Leonardo is undeniable here, all the more so
because this theorem could not have been suggested to the Jesuit
scholar by the problem he was attempting to solve. Nothing in this
theorem is relevant to that problem.
The imprint of Leonardo is profoundly evident in the following

proposition and in the demonstration which justifies it: 148

A heavy body resting on the ground and covering a given base area will remain in
equilibrium when a vertical drawn through the center of that area passes through the
center of gravity [of the body] or, when a vertical drawn from the edge of that base area
either passes through the center of gravity or leaves the latter inside that area. But if it
leaves the center of gravity outside the base area, the heavy body will certainly fall.
... if line FC (Fig. 101) when prolonged leaves the center of gravity of the body (as,

for example, point L) outside the area BC on which rests the heavy body, the latter will
necessarily fall. Indeed, according to the definition of the center of gravity, the weight
CLG is equal the weight CLA. Thus the weight of the volume CGH will exceed the
weight of the volume CHA.
The heavier volume will therefore pull down the lighter. The body will thus fall on

side G, because the center of gravity is on that side and, therefore, that side has the
greater weight.

In meditating on the Questions of Albert of Saxony, Leonardo had
come across a particular case of this crucial question. He had given it a
justification quite similar to the one we have just read. Moreover,
although his notes do not contain any formulation of the general
proposition, Leonardo must have known it, since he makes continual

G

A

F

fig. 101.
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application of it in his Treatise on Painting. How can one doubt that
Villalpand copied it from the great painter's Treatise on Local Motion?
In his manuscripts as well as in his Treatise on Painting, Leonardo

deduced from this proposition a great number of corollaries concerning
the posture of humans and animals. Villalpand is especially interested
in their application and borrows these too from Leonardo. Can we
doubt this assertion when we read, for example, the following proposi
tions?249

When a man is standing on his feet in such a way that the vertical extending from the
extremity of the foot on which he is standing passes through the center of gravity, he
will be unable to lift his arm on the side towards which he is leaning without falling,
because this extended arm plays the role of a lever arm all the greater or heavier, the
further it is from the center of the balance.
A man could not lean forward, backward or sideways unless the vertical which

extends from the extreme point of the base upon which he is standing, passes through
the center of gravity of his body. Or unless this center of gravity falls over this base;
otherwise he will fall.
For a seated man to be able to get up, he must move his feet towards the seat and

move his head forward.

Let us for a moment examine more closely the following from among
the corollaries: 250

When a bird flies, the vertical passing through the center of the wing's surface also
passes through the center of gravity of the body ... If the bird wishes to elevate the
front part of its body and lower the back part, it moves its wings, that is to say, the base
supporting it, forward. On the other hand, when the bird wishes to descend, it moves its
wings backwards. Thus, in this way, the bird is able to alter the location of the center of
gravity in its body.

This last proposition is one of those which especially fascinated
Leonardo. Let us recall the way he formulated it.251

... This applies particularly to the flight of birds which move by themselves without
flapping their wings or without the help of the wind. This is possible when their center
of gravity is outside of the center of support, that is, outside the surface of their wings,
because if the center of the two wings is further forward or backward than the center of
gravity of any bird, the bird will move upwards or downwards. The further away its
center of gravity from the center of its wings, the further upward or downward it will
be. That is to say, the more the center of gravity is displaced from the center of the
wings, the more oblique the descent of the bird. If the center of gravity is near the
center of the wings, the descent of the bird will barely be oblique.
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This proposition, as it appears in the work of Villalpand, bears the
stamp of the great painter all the more since it is completely out of
place and without any relevance to the investigation being undertaken
by the Jesuit scholar. Therefore, we can unhesitatingly attribute to
Leonardo the theorems of Villalpand on the center of gravity and the
applications to the posture of humans and animals which the latter
made of these theorems. In particular, we can attribute the following
proposition to him.252

A quadruped remains in equilibrium when its center of gravity is located on the vertical
extending from one of the extreme points of the surface which passes through its feet,
or when it is located on the same side as this surface of the base in relation to this
vertical.

This proposition is none other than the classical theorem on the
Polygon of Sustentation, taught today in every elementary course on
statics. Thus we must return to Leonardo da Vinci to find the dis
coverer of that law so familiar to every undergraduate. Villalpand
merely transmits this to us by appropriating the discovery of the great
painter.
The theorems of Villalpand which were almost literally transcribed

from a notebook of Leonardo and inserted into a work on archeology,
which, in turn, was appended to a book on exegesis, would have
undoubtedly remained unknown to geometers, if Father Mersenne had
not included them in 1626 in his Mathematical Synopsis. Many
mechanicians of the XVIIth century must have borrowed them from the
latter work in order to develop them in their treatises on statics.
However, when Father Mersenne included these propositions of

Villalpand (whom he calls Villapandus) in his Mechanicorum libri,253
he mixed them with many other formulations, some perhaps borrowed
from Guido Ubaldo and other authors, others thought up by himself.
Some of these formulations implied a more or less obvious adherence
to the hypothesis according to which the center of gravity of every body
tends to unite with the center common to all heavy bodies. Thus the
efforts of Mersenne are oriented towards a completely different goal
than those of Villalpando The assertions of Mersenne are, however, not
exempt from vacillation. This work, which is a simple compilation,
reflects the divergent opinions of many authors.
Mersenne's hesitation is evident in the very first definition: 254

Gravity is the property of a heavy body by which it tends and strives to move
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downwards. It seems to originate in the propensity of each heavy body towards its own
self-preservation. However, others prefer to assume that the descent of heavy bodies is
due to an attraction pertaining to the earth, which is either magnetic or of another
nature.
The center of the Universe 255 is the point towards which all heavy bodies move in a

straight line. There exists a center which is common to all heavy bodies; even though it
is impossible to prove the existence of this point, it is commonly assumed to exist. It is
probable that a unique center of gravity exists in each of the individual systems which
make up the Universe, or in other words, in every massive body. Therefore, nothing
should be flippantly asserted about the center of the Universe ...

The influence of Copernicus is evident in this passage; that of Kepler
whom we shall discuss later (Chapter XVI, Section 1) might have
inspired the last line of the following passage:

We shall assume that all heavy bodies seek the center of the Universe and that they
move towards it by nature along a straight line. This principle has almost universal
acceptance. However, it has never been demonstrated. Who knows if the parts of a star
when torn away from that star, still have gravity and reattach to the star to which they
previously belonged? Similarly, who knows if stones elevated toward another heavenly
body would return to earth? Would stones which, for example, were closer to the moon
than the earth fall back to earth or to the moon?

Mersenne mentions all of the definitions and formulations given by
Villalpand on the center of gravity and the line of direction. The
properties of this line and the applications that can be made of it to the
equilibrium of buildings and to the posture of humans seemed so
interesting to Mersenne that he devotes to them some years later one of
his Theological, Physical, Moral, and Mathematical Questions,256 pub
lished at the same time as the Preludes to Universal Harmony and the
Mechanics of Galileo. However, what he says, is not borrowed from
Villalpand, but is at the expense of the works of Bernardino Baldi,
which we shall discuss in the following section.
The strange and striking corollaries from which Albert of Saxony

had deduced the sphericity of the earth were particularly well-suited to
attract the attention of Father Mersenne, whose imagination delighted
in paradoxical propositions. From 1625 on Mersenne included some of
these corollaries in his work on The Truth of the Sciences against the
Sceptics or Pyrrhoniens.257 In this dialogue we observe the Sceptic
attempting to embarrass the Philosopher with the following question:

Since you were so kind as to make the offer, I beg of you to tell me how much more
distance a man 6 feet tall would move with his head than with his feet, if he were to go
around the earth and how much closer together two ropes or two cords, suspended
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from the top of a tower one league high, would be at the bottom of the tower than at
the top ...

To which the Philosopher answers: "These difficulties are easily
resolved" and he gives the solution. Mersenne repeats these proposi
tions in his Synopsis, to which he adds yet another which is very much
in the spirit of the doctrines of Albert of Saxony: 258

If God were to remove one of the hemispheres of the earth, namely the one which
defines our astronomical horizon, the plane surface remaining would have half the
surface of the removed hemisphere. Nonetheless, only one man would be able to live
on this surface; all other inhabitants would fall or be flung to the center, assuming, of
course, that this section had not changed the center of the Universe. We would be
unable to walk on the surface of the earth if it were flat, because our center of gravity
would have to ascend by nature.

The thought contained at the end of this passage is expressed more
clearly in the following: 259

The center of gravity of a given body never ascends by nature; it only ascends by
violence. Otherwise, half of the weight of the body or even a greater fraction thereof
would ascend, which is not possible ... a part of a body never rises unless a descending
part compensates for it ... The truth of this theorem is evident in the circumvolution of
a falling sphere. Some parts of this body ascend, but the center of gravity continually
descends.

The proposition stated in this fashion obviously contains the same
principle of statics which will later become the Principle of Torricelli.
Mersenne recognizes this principle and once it has been formulated
immediately mentions two of its applications:

The truth of this theorem is evident ... when we observe sabres, knives or other such
instruments remain suspended when stuck in wooden planks set at an angle. The total
weight cannot fall altogether, because it is supported on one side. On the other hand, it
cannot fall in any direction because the part which falls would have to cause another
part equally heavy or heavier to rise, which cannot be.
We must refer to this same principle in order to explain why a pail filled with water

or any other liquid does not fall when suspended from one extremity of a stick with the
other extremity supported, assuming that a second stick is wedged between the bottom
of the pail and the bottom side of the first stick. Thus, if this pail or any other container
were to fall, the center of gravity would have to ascend.

This second case of equilibrium mentioned by Mersenne is already
well-known to us. It is the ridiculous case of equilibrium presented by
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Cardan. Thus it seems that Mersenne had seen a flawed document quite
similar to the one which had misled Cardan.
We can also easily recognize the first case of equilibrium mentioned

by Mersenne. It is the first of the two cases of equilibrium contrived by
Leonardo da Vinci illustrated in Figure 98b. The only difference is that
Leonardo put at c, a counterweight of an indeterminate nature, while
Mersenne put a knife or a sword at that point.
This last observation seems to confirm our earlier hypothesis that the

document used by Cardan and then by Mersenne has its origin in the
notes of Leonardo, as did the treatise used by Villalpand and the
thoughts reformulated by Bernardino Baldi.
One last question: of the two cases of equilibrium contrived by

Leonardo, was only the incorrect version, known to Cardan and
Mersenne, in circulation? On the contrary, it seems likely to us that the
change which made the second case of equilibrium absurd was the
product of a secondhand copy, while other correct copies were still
available.
Let us support this supposition with the following reasons: The great

treatises on mechanics written by the Jesuits in the second half of the
XVIIth century,260 for example, the treatise of Father Dechales and the
treatise of Father Casati, often show the direct influence of Leonardo. It
therefore seems that notebooks preserving the thoughts of the great
painter were still in existence at that period in the College Romain or in
the College des Jesuites at Lyon.
For example, the treatise of Father Dechales presents 261 a very

accurate explanation of the second case of equilibrium contrived by
Leonardo. Father Dechales explains it just as Leonardo seemed to have
done first of all, by remarking that the center of gravity of the system
must go through the part which rests on the support. He also knows the
format which Cardan and Mersenne gave to this case of equilibrium,
but he correctly remarks that in this form equilibrium cannot be
maintained, unless the portion of the stick which rests on the table is
very long and very heavy, in which case the equilibrium loses all its
paradoxical character.

It seems necessary to us to go back to Leonardo da Vinci to find the
discoverer of the principle of statics which Lagrange attributed to
Torricelli. In any case, this principle is clearly formulated by Cardan
and by Mersenne. It is true that the applications of the principle made
by these two authors are peculiar and, occasionally, incorrect; however,
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Bernardino Baldi and Galileo will make more interesting deductions
from it.
Let us end our quotes from Mersenne with a proposition 262 which

contains immediately after the statement of a truth, an error copied by
Torricelli which we pointed out in section L263 Perhaps we will find
there an indication of an influence exerted on Torricelli either by the
writings ofMersenne, or by other sources used by the latter:

If a body is suspended at one point on the line ofdirection located above the center of
gravity, this point (sic) returns to its original state if displaced from it. If the body is
suspended at a point located below the center of gravity, it moves away from its initial
position once displaced from that position. But when the body is suspended at the
center of gravity, it remains in equilibrium whatever its position ... That is the reason
why balances remain in whatever position they are placed when the point of suspension
coincides with the center of gravity. They return to equilibrium when the point of
suspension is above the center of gravity. Finally, they describe a complete circle when
the point of suspension is below the center of gravity.

10. THE INFLUENCE OF LEONARDO DA VINCI ON

BERNARDINO BALDI

The work of Villalpand had ceased to be relevant, when the Exercises
on the Mechanical Problems ofAristotle by Bernardino Baldi appeared
in 162L264 However, this publication predated the voluminous work of
Fathers Prado and Villalpando Baldi, the Abbot of Guastalla, famous
for his prodigious erudition had died in 1617, four years before his
work went to press. The publication of this work was carried out by
Fabritio Scharloncini, who prefaced the Exercises with a short and
interesting note about the compositions of the author. We learn in this
note that Bernardino Baldi had written his Exercises beginning in
1582 265 when he was the friend and confidant of Guido Ubaldo del
Monte.
In 1577 Guido Ubaldo had just published his Mecanicorum liber,

which was to enjoy enormous success for the next hundred years. In
1588 when he was at the height of his greatest intellectual activity as a
mechanician, he was preparing to add to it a treatise entitled: In duos
Archimedis aequiponderantium libros paraphrasis. There can be no
doubt that the doctrines on mechanics of the Marquis del Monte
inflenced those expounded by Bernardino Baldi. Far from denying this
influence, Baldi takes pleasure in quoting his friend's name often.
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This tireless scholar's knowledge of mechanics derives from yet
other sources than the Mecanicorum liber of Guido Ubaldo. Baldi
points out some of them for us himself. First, there is the translation of
the Mechanical Problems of Aristotle, provided with brief commen
taries by Nicolas Leoniceni.266 Furthermore, there is the important and
scholarly Paraphrase of the same Mechanical Problems of Alexander
Piccolomini which was published in 1547. Baldi even goes so far as to
tell us in his preface that the fame surrounding the research of the
Dutchman Simon Stevin has reached him but that he has not yet seen
the work of that author. Indeed, the statics of Simon Stevin, written in
Flemish, was not printed until 1586. Thus, four years before the result
appeared in print, news of the research of the great geometer from
Brugge had already reached Italy.
But there is a profound influence on Baldi which he neglects to

mention: the influence of Leonardo da Vinci.267 In his glosses on
Aristotle, Baldi seizes every occasion to expound upon the observations
suggested to him by the notes of Leonardo. He borrows from the great
painter his explanation of the formation of whirlpools in running water,
his theory on the resistance of materials and on the thrust of arches and
vaults and, finally, many other essential points from his dynamics. But
this is not the place to analyze these borrowings which we have
discussed in another publication. In the present work, we will merely
show how the statics of Baldi derives from that of da Vinci.
At the very outset of his mechanics, Baldi considers himself a

follower of Albert of Saxony, just as his friend Guido Ubaldo del
Monte had done. He states that 268

Everything which is heavy has its weight [concetratedl at a point which is called the
center of gravity.

Thus it should not surprise us to find in the Exercises of Baldi
almost all the theorems which Villalpand had borrowed from Leonardo
and which he had curiously enough included in his description of
Judea.
Baldi gives some of these theorems in the chapter in which he

examines the following question of Aristotle: 269 why is it that when two
men carry weight suspended from a beam, the one closest to the load is
carrying more weight?
This question leads him to ask why people carrying a heavy load

walk bent over? And he responds by saying that they assume this
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posture in order to put their center of gravity on the vertical through
the point of support.
He then begins to develop the notions on the different postures of

humans and animals which Leonardo had sketched out in Notebook A
before explaining them in a more complete fashion in the Treatise on
Painting. Baldi continues to consider these notions in the following
chapter 270 where he examines the following question of Aristotle: Why
do those who are seated and wish to get up position their lower legs in
such a fashion that they form an acute angle with their thighs while
moving their chests closer to their thighs? This was precisely the first
question 271 that Leonardo da Vinci had attempted to resolve by using
the notion of the center of gravity.
Baldi explains in detail the solution given by Leonardo. In a similar

way, he also explains the different postures of humans and animals and
he does not fail to apply the same theory to inanimate objects. The
example of the tripod 272 leads him to formulate the law of the Polygon
of Sustentation. The equilibrium of leaning towers, such as the tower of
Pisa or the tower of Garisendi at Bologna are treated in virtually the
same way as in the book of Villalpando
However, Baldi could not have found the theorems of Leonardo in

the book by Villalpand. The work by the Abbot of Guastalla was
completed well before the publication of the work by the erudite Jesuit.
Nor can it be maintained that Villalpand only had indirect knowledge
of the theorems of Leonardo by means of a manuscript copy of the
Exercises of Baldi. Several passages given by Villalpand, for example,
the very typical passage on the flight of birds, cannot be found in the
book by Baldi. Baldi and Villalpand must have derived their knowledge
from a common source which must have been either a manuscript of
Leonardo or a notebook based on the notes of the great painter.
Furthermore, it is possible that Villalpand knew this document through
Baldi. According to Scharloncini, Baldi was also interested in the
description of the Temple of Ezekiel and had composed a treatise on
that subject. It would not be surprising if he had come into contact,
regarding this maUer, with the two Jesuit scholars who were dedicating
their lives to a commentary on Ezekiel.
Baldi not only made use of the theorems on statics formulated by

Villalpand, but he also formulates a great many other propositions of
his own relative to that branch of mechanics. He justified almost all of
these propositions by basing them on the following fundamental prin-
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ciple: The center of gravity of a body cannot, without violent action,
move away from the center of the Universe.

It seems quite probable that Baldi, undoubtedly inspired by the notes
of Leonardo da Vinci, was the first to make known after Cardan, but
more formally than he, the generality of this principle of statics. He
makes use 273 of it to explain certain cases of equilibrium. He goes even
further and calculates as the measure of the work necessary to tip over
a body, the product of the weight of a body and the height to which
the center of gravity has been raised. Thus one can understand 274 the
reason why, given two columns of identical shape but of different
weight, the heavier column is the most difficult to topple. One also
understands why a circular shape is best suited for motion: 275

When a circular wheel rolls across a horizontal plane, the center of gravity at no
moment increases its distance from the center of the Universe; that is why this motion
is so easy. It is quite different in the case of a wheel which is not of circular shape. Its
motion undergoes oscillations, because as it rolls, its center of gravity is not always at
the same distance from the center of the Universe.

According to Baldi, this axiom is the true basis of all mechanics.
Time and time again his language betrays this view: 276

The demonstration of the Philosopher is true, he says, but it is not deduced from
principles proper to mechanics, that is to say, from the consideration of the center of
gravity.

The most interesting application of this principle by the Abbot of
Guastalla is surely the discussion on the stability of the balance. While
it is true that the XIIIth century geometer whom we have called the
Precursor of Leonardo da Vinci had defined the principal cases of
equilibrium and all of the elements of his discussion appear scattered
throughout the notes of Leonardo, we find them in an orderly fashion
in the Exercises of Baldi 277 where they are constantly related to the
analysis of the displacement of the center of gravity.
A balance which has its point of suspension above the center of

gravity of the beam is in stable equilibrium because any disturbance
imposed on this balance causes the center of gravity to rise. If the
added weight which causes this disturbance is removed, the center of
gravity will return to its initial position.
On the contrary, if the point of suspension is below the center of
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gravity of the beam, the equilibrium of the balance is unstable, because
the slightest disturbance causes the center of gravity to descend.
Finally, if the point of suspension coincides with the center of gravity

of the beam, the equilibrium of the balance is indifferent. This results
from the very definition of the center of gravity as given by Pappus.
To the study of the stability of the balance, Baldi adds an innovative

study on the sensitivity of this instrument and shows considerable pride
in his innovation. However, he still bases this study of sensitivity on the
consideration of the displacement which the center of gravity undergoes
when the balance is displaced from its position of stable equilibrium.
What he says about it is not quite correct, but his errors can be easily
eliminated. One of them seems to be simply an obvious oversight, due
perhaps to a copyist.
Baldi introduces his thoughts on the sensitivity of the balance in the

following terms 278

Let us show what no one else has noted before: that balances with their point of
suspension above the center of gravity of the beam are of such a nature that they are
not put into motion by just any additional weight or, at least, that they do not undergo a
total inclination.
Indeed, let us add a weight to one of the pans of such a balance. If the weight is able

to overcome the resistance exerted by the center of gravity which is forced to rise
contrary to nature, the balance will move. But if this weight is too small to overcome
the resistance exerted by the center of gravity when it is close to its lowest position, the
balance will not move, or, at most, it will only move very little.

Baldi adds that the resistance exerted by the balance to any displace
ment is greater, the closer the center of gravity is to the point of
suspension,279 Moreover, that resistance is more easily overcome by a
given weight, the longer the arms of the balance are. The first of the two
propositions should be replaced by its opposite. To be convinced of
this, it suffices to repeat the very demonstration of Baldi himself but to
leave out several inaccuracies which put it in error.
While studying balances with their point of suspension below the

center of gravity of the beam, Baldi adds the following: 280

These balances characteristically incline completely, however minimal the weight added
to either one of their pans. We have seen that this does not occur in balances with their
point of suspension above [the center of gravity of the beam].

Despite his claim to originality on this point, Baldi merely restates an
assertion already made by Leonardo da Vinci. A rough outline of this
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assertion can be found in Notebook A,281 next to remarks on the
resistance of pointed and flattened arches. These remarks also influ
enced Baldi. Leonardo formulates them as follows:

Why the balance does not rotate beneath its pole (point of support) the heavier the
weight placed at one of its extremities. - If the pole were at the center of volume of the
balance and also at the center of the length, and if the center of the whole [weight) were
at the center of the volume, the heavier weight would fall beneath the [center polel of
the balance.

Leonardo knows that this idiosyncrasy is peculiar to balances which
have their center of gravity at the point of suspension. A few pages
later,282 he proposes a "kind of balance" with a beam in the form of an
equilateral triangle pivoting about one of its vertices. The distance
between the median extending from this vertex and the vertical allows
us to determine the difference between the weights carried by the two
other vertices.
Leonardo could, therefore, have inspired Baldi in everything the

latter said about the stability and sensitivity of the balance. Leonardo
most certainly furnished Baldi with his theory on the inclined plane.
We have already seen to what extent Leonardo was preoccupied

with determining the apparent weight of a heavy body placed on an
inclined plane. He proposed various ways to solve this problem, some
leading to a correct principle, others to an erroneous formulation.
There is one particular demonstration, borrowed from Pappus, to

which Leonardo returned many times.283 Although this demonstration
is obviously illogical, it leads nonetheless to a correct result, which had
been found as early as the XIIIth century. Moreover, this demonstra
tion has already attracted our attention several times.284 The Abbot of
Guastalla appropriates it in its entirety.285 He even goes so far as
to reproduce the uncertainties and the gropings in the thoughts of
Leonardo. Leonardo has left us several formulations (fol. 21, verso) of
his strange demonstration. In one of them he assumes that the object,
made to roll on an inclined plane, is a solid wheel. In another formula
tion (fol. 52, recto) he assumes that it is a sphere. Baldi begins his
demonstration with the following words: "Whether it is a wheel or a
sphere ..." It is obvious that Baldi was hardly concerned with erasing
the stamp of the great creator whose ideas he was plagiarizing.
Like the demonstration of Pappus which undoubtedly inspired him,

Leonardo's own demonstration is an attempt to reduce the problem of
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the inclined plane to the problem of the lever. This simplification will
be provided in a correct form by Galileo (Cf. Chapter XI), then by
Roberval (Cf. Chapter XIII, Section 2).
However, it is remarkable that the logical demonstration of Galileo

and Roberval cannot dispense with drawing exactly the same figure or
with making exactly the same calculation as contained in the unaccept
able demonstration of Leonardo. Must we thus infer an influence of the
latter on the former?
That Galileo knew the solution to the inclined plane given by

Leonardo, is quite probable, although we are unable to prove it. At the
beginning of his studies, the young geometer from Pisa is the disciple
and protege of Guido Ubaldo del Monte, himself at that time a close
friend of Bernardino Baldi. If the latter had a copy of the Notebooks of
Leonardo, is it not higWy probable that he would have shared it with
Guido Ubaldo, who, in turn, would have brought it to the attention of
Galileo? Is it not possible that Galileo was able to read the Exercita
tiones of Baldi in manuscript form, long before they were published?
We can be more certain in the case of Roberval. We know of the

close friendship between Roberval and Mersenne. The latter quoted
Baldi,286 in 1634 and borrowed from his Exercitationes.287 Further
more, the Bibliotheque Nationale 288 possesses in manuscript form a
Traite de Mechanique et specialment de la conduitte et Elevation des
eaux,289 par M. de Roberval. This treatise, to which we shall return in
Chapter XVII, contains obvious evidence of the influence exerted on
Roberval by Bernardino Baldi.290 It is thus quite possible that the
theory on the inclined plane as conceived by Leonardo da Vinci and as
plagiarized by Bernardino Baldi might have suggested to Galileo, on the
one hand, and to Roberval, on the other, the method by which they
reduced this theory to the law of the equilibrium of the lever.
Whatever the case may be, our analysis of the works of Villalpand

and Bernardino Baldi seems to necessitate some inevitable conclusions:
Through their works, a great many ideas expressed by Leonardo da

Vinci on statics and dynamics circulated widely among French and
Italian geometers at the end of the XVIth and the beginning of the
XVIIth Century. In these works, where the ideas of Leonardo are
dominant, we find more or less clearly implied a tendency to found
statics on the following principle: The center of gravity of a system of
heavy bodies can never rise by itself. Bernardino Baldi, in particular,
seems to have clearly recognized the essential role and the full signifi-
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cance of this principle. It, therefore, seems likely that Leonardo was the
first to consider dealing with statics in this way, a natural corollary to
the doctrines of Albert of Saxony.
We shall see how the doctrines of Albert of Saxony as modified by

the Copernican revolution were used by Galileo to clearly formulate
this method of statics.

11. THE INFLUENCE OF ALBERT OF SAXONY AND GALILEO.

IN WHAT WAY DID GALILEO CONTRIBUTE TO THE DISCOVERY

OF THE PRINCIPLE OF TORRICELLI?

At the end of the Fourth Day of his Discourses, Galileo tells us that, he
applied himself to the study of centers of gravity at the insistence of
the Illustrious Lord, Marquis Guidi Ubaldo del Monte, a very great
mathematician of his time as demonstrated in the many works which he
has published. Thus we should not be surprised to find a great similarity
between the ideas of Galileo and those of Guido Ubaldo.291

This similarity is evident in the following passages taken from the
Della Scienza Meccanica:

Definitions. We call gravity the tendency to move downwards by nature as is found in
all solid bodies by reason of the more or less large quantity of mass of which they are
made up ...
By definition, the center of gravity in every heavy body is the point around which

are distributed parts of equal momento.292

If we imagine that such a heavy body is supported by and suspended
from this point, the parts on the right are in equilibrium with those on
the left and the parts in front with those behind and those above with
those below. Provided that it is suspended at the center of gravity, it
will remain immobile however one wishes to place or arrange it. It is
also this point which tends to unite with the universal center of heavy
bodies, that is to say, with the center of the earth when the body can fall
freely in any given environment. We shall make the following supposi
tions on this point:

Suppositions. Every heavy body ... descends in such a way that its center of gravity
never deviates from the straight line which connects the point where this center was
located at the first instant of motion with the universal center of heavy bodies. This
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supposition is quite obviously correct. Since, indeed, it is this center and this center
only which tends to join with the common center, it is necessary that when it is not
impeded, it moves to join this center by the shortest line, which is the only straight line.
Concerning this center, we can make a second supposition: Every heavy body has its

weight principally at its center of gravity so that the entire impeto, the entire weight, in
a word, the entire momenta of that body is concentrated at that point as at its natural
locus.

When Father Mersenne dedicates "to Monsieur de Reffuge, Royal
Counsellor to Parliament" his translation of the Mechanics of Galileo,
which contain the above stated suppositions, he remarks 293 that

the Mechanics can teach us to lead a good life by imitating heavy bodies which seek
their center in the center of the earth, just as the spirit of man must always seek its
center in the divine essence, which is the source of all spirit.

The doctrine of gravity as conceived by Albert of Saxony and then
formulated procisely by Guido Ubaldo and Bernardino Baldi found its
most precise statement in the works of Galileo. The meditations by the
famous prisoner of the Holy Office will only increase the potential of
this doctrine.
Crushed by the condemnation of the Church tribunal, by his solitary

confinement, by his advanced age, by sickness and blindness, Galileo
withdrew with the permission of the Inquisition to his villa at Arcetri,
near Florence. There he was given filial care by a young man, sixteen
years of age, with a precocious gift for geometry. Vincenzio Viviani was
about to begin his lifelong devotion to the old master. Viviani zealously
collected the teachings of Galileo.294 He solicited from Galileo clarifica
tions on the doubts and objections which the study of geometry had
brought to the young man's mind.
These conversations between Galileo and Viviani quickly centered

on the Discourses which had incidently just been published. Conte, in
Paris, had received a copy of the final draft, finished in 1636, and
brought it to the Elseviers, who then published it. In a letter written
from Arcetri and dated March 6, 1638, Galileo dedicated this unex
pected edition of his works to the Count of Noailles.
The novelty of the doctrine presented on the Third Day of the

Discourses, which dealt with local motion, easily captured the attention
of the young geometer without, however, completely satisfying his thirst
for rigor. The entire theory was based on the following proposition: a
heavy body sliding over an inclined plane acquires a velocity which
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depends solely on the vertical distance it falls and not at all on the
inclination of the plane. Galileo postulated this proposition without any
demonstration,295 to the distress of Viviani.
The doubts and the questions raised by Viviani were to induce

Galileo to return to the foundations of his work.
Let us quote the young disciple: 296

When I read the Discorsi and came to the treatise on local motion, I was seized by the
same doubt which others have felt, not so much on the subject of the truth of the
principle upon which rests the entire theory of local motion, but rather on the subject
of the necessity of assuming it to be already known. I began to search for more cogent
proofs of this assumption and thus inspired Galileo to discover the geometrical
mechanical demonstration for it during the long sleepless nights which to his great
distress occurred very frequently. This demonstration depended on a theory which he
had established in opposition to a conclusion by Pappus and which he had developed in
his early treatise on mechanics, printed by Father Mersenne. He immediately told me
about the demonstration and also told his other friends who were in the habit of visiting
him. Being physically blind, but mentally clairvoyant, he developed a method to lead
him through the intricate paths of investigation which he knew so well, and over which I
too was walking, and that method forced me to reformulate this theorem. His blindness
made every explanation involving figures and symbols very difficult. Once drafted, we
sent several copies to his friends in Italy and France.

On December 3, 1639, Galileo wrote to Father Castelli, Professor of
Mathematics in Rome, a letter in which we read the following: 297

Several months ago the young man who is presently my guest and my disciple raised
objections to the principle which I had assumed in my treatise on accelerated motion
and which he had carefully studied at that time. His objections forced me to rethink this
principle in order to convince him of its truth and admissibility. To his great satisfaction
and my own, these reflections, if I am not mistaken, led me to discover the conclusive
demonstration. Once I had established this demonstration. I immediately told several
persons about it. My disciple drafted it for me, since I am completely blind and might
have committed errors in the figures and symbols necessary to my task. This draft is in
the form of a dialogue and is presented as a reminiscence of Salviati so that when my
Discourses and Demonstrations are published again, it will be possible to insert it
immediately after the Scholium on the second proposition in the treatise. It will be the
most essential theorem I have ever proposed for the founding of the science of motion.
I am sending this demonstration by letter to Your Highness rather than to any other
person. I am anxious to hear His opinion first before learning that of the friends close
to His Highness, with the intention of sending other copies to our friends in Italy and in
France after I have received the opinion of His Highness.

The demonstration which Viviani's questions had led Galileo to
discover was inserted 298 at the point designated by Galileo when his
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collected works were published for the first time in Bologna in 1655.
All subsequent editions have carefully retained it.
In Chapter XI we already quoted several passages from this demon

stration, but we intentionally omitted the following passage to which we
now turn our full attention:

It is impossible that a heavy body or an aggregate of heavy bodies can move naturally
and move away from the common center toward which all heavy objects tend. There
fore, it is impossible for it to move spontaneously if as a result of its motion, its own
center of gravity does not gain proximity to the common center. Consequently, on the
horizon, that is to say, on a surface where all parts are at an equal distance from the
same center and which has thus absolutely no inclination, the impeto or the momento
of the moving body is zero.

When he returned to the thoughts he had developed long before in
his treatise Della Scienza Meccanica, Galileo clarified all uncertainties.
By the end of the year 1639 he is in full possession of these two
essential theorems:

No aggregate of heavy bodies can ever move by itself, unless its motion produces a
lowering of its center of gravity. When such an aggregate of heavy bodies descends in
free fall and without initial velocity, its center of gravity describes a vertical.

Although Galileo gave these propositions a perfectly clear and
precise form, he did not, however, create then ab initio. They were
already stated in the XIVth Century by Albert of Saxony and implied in
the following axiom, so dear to Leonardo da Vinci:

The heaviest part of a falling body guides its motion.

These propositions had also been formulated, although in a somewhat
obscure way, in the Opus novum of Cardan and then with more vigor
and precision in the De Subtilitate. They can be found again in the
Paraphrasis of Guido Ubaldo and they finally assume their definitive
form in the Exercitationes of Baldi, in the Synopsis of Mersenne, and in
the works of Galileo.
Montucla 299 tells us that Torricelli was studying mathematics in Rome

under Castelli when he came across the treatises of Galileo on motion.
He then wrote a treatise on the same subject and it was sent to Galileo
and impressed him so much that he wanted to meet Torricelli and work
with him. Torricelli enjoyed Galileo's esteem for only a short time, since
Galileo died three months later. Torricelli subsequently enlarged the
above-mentioned treatise by adding a section on the motion of fluids
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which he published together with his other works on mathematics in
1644. It is there that we find the first inkling of an ingenious principle of
great use to mechanics and which reads as follows: When two weights
are joined together in such a fashion that, when placed in an arbitrary
configuration and their common center of gravity neither ascends nor
descends, they are in equilibrium in every situation. It is by means of
this principle that Torricelli demonstrates the ratio between weights
which counterbalance one another on an inclined plane. Although he
only applies this principle to this particular case, it is easy to see that it is
applicable to any imaginable case in statics.
By comparing this account by Montucla with what was previously

said we come to the following conclusion: Not only did Torricelli not
antedate Galileo in the discovery of the principle of statics which
Montucla and Lagrange attribute to him, but it is Galileo himself who
taught him that very principle. There can be no doubt about this when
one knows that Galileo sent his famous scholium to Father Castelli in
December of 1639 and asked him to circulate it, and that Torricelli, at
that time, was a student of Father Castelli and between that moment
and the time of Galileo's death (January 8th, 1642), Torricelli wrote the
treatise in which the principle in question is stated in almost exactly the
same terms used by Galileo.
But even if Torricelli can no longer be considered as the first author

of this proposition, he is nonetheless the first to have clearly formulated
it as a postulate upon which all of statics could be founded, perhaps
under the influence of the De Subtilitate of Cardan, the Synopsis of
Mersenne or the Exercitationes of Baldi. He is also the first to have
shown the use of this principle by applying it to the inclined plane.
Thus his contribution was important and one can understand why
Galileo gave it his complete approbation.
Indeed, the determination of the (positional] gravity of a body

moving on an inclined plane was, for Galileo, the crucial theorem on
which his entire theory of accelerated motion was to rest. The deduc
tion, however, which furnished him with this result was taken, more or
less explicitly, from the axiom of Aristotle, or from an equivalent
axiom, that is to say, from that very dynamics which the new science
was about to overthrow or supplant. It was more or less apparent that
one was dealing with a vicious circle. By founding the theory of the
inclined plane on a postulate which seemed to him to be obvious from
experimental evidence, Torricelli broke this cycle.
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The more satisfying solution given by Torricelli was known to
geometers much earlier than the solution proposed by GaWeo but from
which it was deduced. The former was actually published in 1644,
while the latter was not published until 1655. As far as the manuscript
copies are concerned which were supposed to have been made by
Viviani and sent to the Italian and French friends of the recluse of
Arcetri, we are convinced that very few of them were distributed.
One of the most fervent admirers of Galileo and, perhaps, the first
Frenchman to have received a copy of the Dialogue on the Two Great
Systems of the World was Gassendi 300 and he, as late as 1645, was not
familiar with the arguments by which Galileo had justified his famous
postulate: The velocities acquired by bodies descending from the same
elevation on planes of various inclination are equal. After Father
Cazree of the Society of Jesus had attacked this postulate, Gassendi
refuted him in a letter which contains the following: 301

While I was writing this letter, much to my astonishment I received a chance visit by the
very noble Senator Pierre Carcavi, who is a man quite abreast of progress in the
sciences and particularly devoted to the study of pure mathematics. After he had seen
your dissertation in my possession and heard about your argumentation, he advised me
that he had been given in this city a copy of a book quite recently published by
Evangelista Torricelli and in which the eminent successor of Galileo had demonstrated
the postulate. I obtained that work and saw that Torricelli had succeeded by using five
propositions and the following premise: Two heavy bodies joined together cannot move
unless their common center of gravity descends.

Through the letter of Gassendi, we can see that the treatise De motu
gravium naturaliter descendentium et projectorum, written by Torricelli
was soon known and admired in France. The following is further proof
of this and is taken from the Treatise on the Equilibrium of Liquids of
Pascal.302 After giving two demonstrations of the fundamental Principle
of Hydrostatics, Pascal adds the following: 303

Here is yet another proof comprehensible only to geometers and which others can
forego. I take as a principle that a body can never move by its weight alone without its
center of gravity descending ...
In a short Treatise of Mechanics, I have demonstrated by means of this method the

reason for all the multiplication of force occurring in all the other devices of mechanics
invented up till now. I demonstrate for all of them that the unequal weights which are
held in equilibrium by means of the devices, are arranged in such a way by the
construction of the device that their common center of gravity can never descend
whatever position they may assume. It follows that they must remain at rest, that is to
say, in equilibrium.



ALBERT OF SAXONY TO EVANGELISTA TORRICELLI 355

Although Pascal does not quote Torricelli by name, it is quite
possible that he borrowed from him the principle of statics of which he
makes a new application here, furthermore that the Short Treatise on
Mechanics to which he alludes here and which has since been lost like
so many of the works of the author of The Provinciales, was a develop
ment of the initial idea provided by the great Italian geometer. By his
own testimony we know, indeed, that Pascal knew very early on of the
Opera geometrica of Evangelista Torricelli. On August 8, 1651 he
wrote to M. de Ribeyre on the subject of an experiment with "quick
silver:"304

But since we were all anxious [around 1647 or 1648\ to know who had discovered it,
we wrote to Cavaliere del Posso in Rome, who instructed me, long after my work was
published [in 16471, that it was in truth the great Torricelli, Professor of Mathematics to
the Duke of Florence. We were delighted to learn that it came from such an illustrious
genius whose works in geometry which we have already received surpass all those of
Antiquity. No one knowledgeable in these matters will disagree with my evaluation.

Furthermore, Carcavi, who had drawn the attention of Gassendi to
the principle of statics as formulated by Torricelli almost immediately
after the publication of the book containing it, was one of the faithful
friends of Pascal, whom he had chosen as a judge in the jury set up to
decide upon the famous geometrical tournament on the Roulette.
Carcavi must have kept Pascal informed, just as did Gassendi.
Pascal, however, can be excused for not having quoted Torricelli as

the discoverer of this principle. As early as 1626, Mersenne had
formulated the principle and applied it to the solution of several prob
lems in statics in his Synopsis. Later on, in 1644, the same Mersenne
made use of the doctrine of Albert of Saxony to explain the laws of
hydrostatics.305 In two connected vases which he assumes full of water:

the water descends until the center of gravity of the entire mass formed by the earth,
the water and the vase unite together at the center of the Universe.

Pascal was therefore right in considering it as part of the common
knowledge of geometers. Finally, let us add that Pascal does not quote
any author by name 306 in his Treatise on the Equilibrium ofLiquids.
Thus at the time of the first publication of the treatise which assured

Galileo priority in this principle - unless it should be attributed to
Leonardo da Vinci - geometers had already been accustomed to
attributing its discovery to Torricelli for over ten years.
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The history of the principle of Galileo and Torricelli offers us a
remarkable example of the continuity of the evolution by which most
often scientific ideas evolve. We have been able to follow the develop
ment of this principle in the same way a naturalist follows the develop
ment of an organism.



CHAPTER XVI

THE DOCTRINE OF ALBERT OF SAXONY AND

THE GEOSTATICIANS

1. HOW THE NOTION OF THE CENTER OF GRAVITY WAS

REFINED. THE INFLUENCE OF KEPLER

A system is in equilibrium if any change in its configuration causes its
center of gravity to rise. I This principle is clearly stated in the letter
addressed by Galileo to Father Castelli on December 3, 1609. It is
formulated no less clearly in the text on the fall of heavy bodies
published soon thereafter by Torricelli. However, when we compare the
forms given this same principle in the work of Galileo with that of
Torricelli, we note an essential difference between them.
Not only does Galileo not neglect, in principle, the convergence of

the verticals towards the center of the earth, but the consideration of
the point of convergence of the verticals is an essential element in his
deductions. These deductions show the clear influence of the doctrine
professed by Albert of Saxony and many other Scholastics and which
had been only slightly modified by Copernicus, to wit, a heavy body
which is a part of the entire earth is of the same nature as the earth.
The center of gravity of that body tends to unite with its counterpart
which is the center of gravity of the entire earth. This sympathy
between equals assures the integrity of the globe.
The language of Galileo is always in conformity with this doctrine.

After having defined the center of gravity, he adds the following:

This is also the point which tends to join the center of the Universe, that is to say of the
earth, when the body can fall freely in any environment.

He assumes that

it is this center of gravity and this center alone which tends to join with the common
center.

Towards the end of his life when he is giving his principle its definitive
form, he still speaks of

the common center toward which all heavy bodies tend.

357



358 CHAPTER XVI

He assumes that an aggregate of heavy bodies

cannot move spontaneously if, as a result of its motion, its own center of gravity does
not gain proximity to the common center.

Our modem historical prejudices are seriously shaken when we see
Galileo base the "most essential theorem," which will destroy Peripa
tetic dynamics, on the Scholastic theory ofAlbert of Saxony.
Torricelli's reasoning differs profoundly from that of Galileo. Not

only does Torricelli no longer attempt to justify his principle by
reference to a tendency allegedly belonging to the center of gravity of
an aggregate of heavy bodies to move to the common center, but he
resolutely projects this latter point to infinity and considers the verticals
as being parallel to each other. The ideas which he propounds on this
subject have great clarity.

The following, he says,2 is an objection very commonly found among serious authors:
Archimedes hypothesized incorrectly when he considers as parallel the ropes support
ing the two weights suspended from a balance. In reality, the directions of these two
ropes converge at the center of the earth.

In order to resolve this objection, Torricelli carefully distinguishes
between the actual machines constructed from real, heavy material with
which one conducts experiments, and the abstract machines about
which geometers reason. It is only in the latter that one can imagine
heavy surfaces without thickness or ropes without weight, or verticals as
being parallel lines.

The mechanical foundation adopted by Archimedes,3 namely, the parallelism between
the ropes of the balance can be considered incorrect when the bodies suspended from
the balance are real, physical bodies which tend towards the center of the earth. It is no
longer incorrect when those bodies (whether they are abstract or real) tend neither
towards the center of the earth nor towards any other point close to the balance, but
towards some point infinitely removed.
However, for the sake of brevity and facility, we shall not deviate from ordinary

language. We shall continue to call the point [infinitely removed) toward which the bod
ies suspended from a balance tend, the center of the earth ...

Torricelli resolutely narrows his field of deductions. He reduces it to
the abstract notion of mechanics which treats gravity as having the same
intensity and the same direction at all points. In this way, he transforms
a principle flawed by error as stated by Galileo into a perfectly correct



DOCTRINE OF ALBERT OF SAXONY AND GEOSTATICIANS 359

principle. What influences might have induced him to attempt such a
transformation?
Among those influences that of Kepler must be mentioned first. The

view of gravity as a desire of one mathematical point - the center of
gravity of the body - to unite with another mathematical point - the
center of the Universe or center of the earth - finds in Kepler a
convinced opponent. The mutual attraction of two mathematical points
appears to him a pure fiction. Only two bodies can attract or repel each
other:4

The action of fire, he states, consists not in seeking the outer surface of the World but
in fleeing from its center; not the center of the Universe but the center of the earth; and
that center, not as a point, but to the degree that it is at the center of a body which is
very much opposed to the nature of fire which itself tends to disperse. I go even further
by saying that the flame does not flee, but that it is pushed by the heavier air as an
inflated bladder would be by water. ... If the immobile earth were placed at a given
point and if another, larger planet moved towards it, the first would acquire gravity with
respect to the second and would be attracted to it like a stone is attracted to the earth.
Gravity is not an action, but is a passivity in the stone which is being pulled.
A mathematical point,S whether it is the center of the Universe or any other point,

could not effectively move heavy bodies nor could it be the object toward which they
tend. Let the physicists prove that such a force can belong to a point which is not a
body and which is only conceived of in a completely relative fashion!
It is impossible that the substantial form of a stone which puts this stone in motion

could seek a mathematical point as, for example, the center of the Universe, without
regard for the body in which that point is located. Let the physicist then prove that
natural bodies have a sympathy for that which does not exist!
Here is the true doctrine of gravity: Gravity is a corporeal, mutual affection between

related bodies which tends to unite and connect them. Magnetic force is a property of
the same order. It is the earth which attracts the stone, rather than the stone tending
towards the earth. Even if we were to place the center of the earth at the center of the
Universe, heavy bodies would not move towards this center of the Universe, but
towards the center of the spherical body to which they are related, that is to say
towards the center of the earth.

It does not matter, therefore, where the earth might be located. Heavy bodies will
always be drawn toward it, due to the force which animates it. If the earth were not
round, heavy bodies would not be drawn from all directions directly to the center of the
earth. However, depending on where they come from they would be drawn to different
points. If two stones were placed at a given point in the Universe close to each other
and outside the sphere of force of any body related to them those stones, like two
magnets, would unite at an intermediate· point and the paths that they would travel to
unite would be in inverse ratio to their masses.

One can easily guess the role that such claims must have played in
the slow evolution which resulted in the doctrine of universal attraction.
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It is not our goal here to retrace the evolution.6 It is sufficient for our
purpose to have contrasted the ideas of Kepler, who sees in gravity a
mutual attraction between a heavy body and each of the parts of the
terrestial globe, with the view of Albert of Saxony, Cardan, Guido
Ubaldo and Galileo, who held that the center of gravity of a body
aspires to coincide with the common center of all heavy bodies.

2. HOW THE NOTION OF THE CENTER OF ORAVITY WAS

REFINED (CONTINUED). THE OEOSTATICIANS

The ideas of Kepler contributed perhaps less in refuting this opinion
than the serious errors it caused many geometers, including the most
well-known.
Around the year 1635, Jean Beaugrand appeared everywhere claim

ing that he had discovered the law according to which the weight of a
body varies according to its distance from the center of the earth.
Mersenne hastened to insert? in his Harmonie universelle, the statement
of the law for which Beaugrand was promising a demonstration. Ac
cording to this law:

A heavy body, for example, a one pound lead ball, becomes lighter the closer it comes
to the center of the earth and it has no more weight when it reaches that center, as
Beaugrand concludes in his GeostatiqueN where he asserts that the gravity of every
body diminishes by the same ratio as it approaches the center of the earth, and that
even the entire earth has no weight at all.

Mersenne added:9

I hope that the person who first advanced this proposition will satisfy us on this subject
by removing all the difficulties involved just as he promised in his Geostatique.

Mersenne was not the only geometer desiring to see the demon
stration Beaugrand had promised. Fermat impatiently awaited the
publication of the Geostatique. On April 26, 1636, he wrote to the
scholarly clergyman:lO

I would be much obliged to you if you could tell me if Beaugrand is in Paris. He is a
man for whom I have great respect. He has a wonderfully inventive mind and I believe
that his Geostatique will be something quite special.

The Geostatique promised for so long and so ardently awaited by
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the best geometers of the time, was finally published.ll The disappoint
ment must have been great since the arguments of Beaugrand were
worth absolutely nothing.
Descartes12 had no difficulty at all in discerning the essential flaw

which negated the entire work. The arguments of Archimedes concern
ing the equilibrium of the lever are only true

when one assumes that heavy bodies tend to move downwards along parallel lines
without tending towards one and the same point.

Jean Beaugrand had not grasped this notion at all. After this initial
error, other fallacies followed and culminated in the famous proposition
so pompously promised by the author. With the usual severity so
characteristic of the judgements of Descartes but with an accuracy quite
often lacking, Descartes appraised the Geostatics in the following terms:

Even though I have seen the circle squared many times, perpetual motion often proven
and many other such demonstrations, all equally false, nonetheless, I can say in all
honesty that I have never seen so many errors in one single proposition.... Therefore,
I conclude that everything contained in this book on geostatics is so irrelevant, so
ridiculous and so despicable that I am astonished that any honest man would deign to
take the trouble to read it. I myself would be ashamed to have expressed my opinion on
it here, if I had not done so at your request.

Such an opinion was hardly suited to assure Descartes of the friend
ship of Jean Beaugrand, who, in all probability, engaged in numerous
maledictions against the Philosopher.J3 We know that Descartes told
Mersenne14 on July 27th 1638 not to worry about what "the geostati
cian" was writing against him.
Furthermore, the Geostatics does not seem to have been any more

favorably received by the friends of Jean Beaugrand than by Descartes.
This is clear from the tone of the letter written by Fermat to Mersenne
on Tuesday, June 3rd 1636:15

I have seen the Geostatics of M. de Beaugrand and I was astonished to find my views
differ from his. I assume that you have already noticed this. I am sending him my
honest opinion of his book and I can assure you that I respect so highly his intelligence
which he has demonstrated to me so often that I have difficulty in convincing myself
that I am not in the wrong by having an opinion contrary to his. However, I concede
that he is my judge and I no longer challenge you.

In this letter, Fermat contrasts his own view with that of Jean
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Beaugrand, because he, too, had advanced a proposition on geostatics
which he had appended to a letter to Carcavi in May 1636. Today, the
letter is lost, but the proposition is known.16

The proposition on geostatics of Fermat will be the starting point in
a long and important debate in the course of which we shall see the
Counselor to the Parlement of Toulouse face the greatest geometers of
his time: Etienne Pascal, Roberval and finally, Descartes. We shall hear
Fermat formulate theorems which seem strange to our way of thinking,
accustomed as we are to modern mechanics. We shall see him develop
deductions which appear to us absurd. However, let us take care not to
consider this debate idle, or to think that its only result was to prove to
Fermat the contradictions which are immediately so obvious to us but
which run counter to his own opinions on statics. This dispute is
important for an entirely different reason. But it is true that its real
significance escapes us if we do not momentarily rid ourselves of the
mechanical knowledge which centuries of effort have made so easy and
obvious to our 20th century minds. Its significance will become clear to
us if we imagine the state of mind of a geometer living in the time of
Louis the XIII.
Two quite distinct doctrines vie with one another to account for the

equilibrium and motion of a heavy body. One of these doctrines takes
as a principle the fundamental axiom of Peripatetic dynamics. Several
mechanicians, for example, Galileo, still adhere to this axiom, but the
majority of geometers have more or less abandoned it. They deduce
their theorems on statics from the equality between the work of the
impressed forces and the work of the resisting forces formulated first
by Jordanus - or from other principles related to the latter such as the
principle of the impossibility of perpetual motion. In the works of
Stevin and Roberval, this doctrine came to constitute a complete statics
of which Descartes was soon to give an illustration, admirable for its
clarity and simplicity.
The other doctrine was formulated by Albert of Saxony and it was

adopted by all Scholastics. It derived from the following principle: In
every heavy body there exists a point - the center of gravity - which
tends to join the common center of all heavy bodies. Bernardino Baldi
and Guido Ubaldo stated this doctrine with great precision while
Cardan, Mersenne and Galileo deduced from it the following rule of
statics: A system remains in equilibrium even should a disturbance
move its center of gravity away from the common center of heavy
bodies. l ?
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There is, however, a contradiction between the two doctrines, be
tween the doctrine deriving from Jordanus and the other propounded
by Albert of Saxony, and the two doctrines cannot be reconciled. The
useful corollaries furnished by the latter are unacceptable to those who
take as a principle the equality between the work of the impressed
forces and the work of the resisting forces, until a suitable correction
has removed from those corollaries the trace of the unacceptable
postulate which produced them.
This contradiction becomes evident, when Fermat, a fervent disciple

of the theories of Albert of Saxony, pushes this theory to its extreme
and unacceptable consequences. The debate which we are recounting
will finally rid statics of the contradiction in it and assure the logical
unity of that science.
From the very beginning of his Propositio geostatica it is evident that

we should consider Fermat a fervent disciple of Albert of Saxony.
Fermat takes as a principle "the proposition which," he says, "can easily
be proven by following Archimedes and which could be immediately
demonstrated should it ever be denied:

Let B (Fig. 102) be the center of the earth, BC a terrestial radius, BA a part of the
opposite radius. If the weight placed at C is to the weight at A as BA is to BC, then
weights A and C will not move, they will be in equilibrium.

What a strange transposition of the laws established by Archimedes.
Fermat applies the law of the lever to the case in which the two acting
forces, both directed along the lever, are opposed to each other.
Nevertheless, it is very clear that in order to be in equilibrium two such
forces must be equal and not in the ratio of AB to Be. This is,
however, the way we would express it today based on knowledge which
has become so familiar to us that is seems self-evident. Let us be

A
C

0 B
0

C

fig. 102. fig. 103.
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careful, however, not to consider Fermat devoid of all intelligence and
incapable of recognizing this. The proposition which he formulates and
which surprises us so much, is the essential proposition of a theory
supported by a great many serious thinkers, ranging from Albert of
Saxony to Galileo.

Itwas, after all, Albert of Saxony who wrote:18

If the entire mass of the earth were held by violence outside its natural locus, as for
example, within the concavity of the lunar orbit and if then a heavy body were dropped,
this heavy body would not move towards the total mass of the earth, but would move in
a straight line towards the center of the Universe. The reason for this is that it would
only find its natural locus at the center of the Universe, assuming at least, that its center
of gravity were at the center of the Universe.

It was also the same Albert of Saxony who attributed to the entire
earth what Aristotle, Simplicius and St. Thomas had previously affirmed
for any falling body and who wrote the following: 19

The earth has its center of gravity at the center of the Universe. Indeed, all the parts of
earth tend towards the center because of their gravity precisely as Aristotle had said.
Furthermore, the truth of this proposition is beyond doubt. Consequently, the heavier
part of the earth would push the other part until the center of gravity of the entire earth
were at the center of the Universe. Thus, if these two parts had the same gravity they
would remain immobile even if they did not have the same magnitude just as two
weights on a balance.

And finally was it not Marsilius of Inghen who explained the theory
of Albert of Saxony in the following terms:20

If a nail were in equilibrium at the center of the earth, only a small segment of the
length of the nail would protrude beyond the center and that would be on the side with
the nail's head because the head is much heavier than the rest of the nail.

Although the postulate stated by Fermat is totally inadmissible to us
today, it is nothing but the conclusion drawn by Marsilius of Inghen but
reformulated in a precise mathematical form.

It is by means of this principle, which is so obviously unacceptable to
us, that the great geometer of Toulouse justifies the following proposi
tion:

Let C be the center of the earth (Fig. 103), CA be a terrestial radius and B a weight
placed between C and A. In order to support the weight placed at B, it would be
necessary to apply to it directly a given force F. Let us assume that instead of applying
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this force directly at point B, we apply it along the segment AB, and further assume that
the force is pulling on A. It will have to have a magnitude F' which will be to F as BC is
toAC.

This conclusion is obviously as inadmissible as the principle. The two
propositions both clearly show the complete ignorance of the laws of
true mechanics typical of some of the greatest geometers of the XVIIth
century.
After giving the argumentation of Fermat, Father Mersenne states

the following in his Universal Harmony:21

I fail to see the cogency of this demonstration.

And Descartes wrote to Father Mersenne22

Furthermore, I must tell you that my friend from Limoges finally arrived eight to ten
days ago, and he brought for me the Geostatics with a letter from you in which you
included the argumentation of Fermat which seeks to prove the same thing as the
geostatician. But, either you omitted something in your description or the matter is over
my head. At any rate, the whole thing seems incomprehensible to me, except that he
seems to me to make the same mistake as the geostaticians by considering the center of
the earth as if it were the center of a balance, which is a grave misunderstanding.

Fermat must have been aware of the objections raised by certain
geometers against his proposition or against the obscurities which they
encountered in his work. In order to remove the former and resolve the
latter, Fermat wrote a text in Latin23 which he included in a letter
addressed to Mersenne on June 24,1636.24

The great geometer of Toulouse complains at the outset, that his
opinion has been confused with that of Beaugrand, according to whom
the weight of a heavy body depends on its distance from the center of
the earth.

I am of the opinion that every heavy body wherever it may be located in the Universe,
outside of the center, taken absolutely in itself always has the same weight. This is
a proposition which I could easily have taken as a principle, if I had not seen it
questioned. Therefore, I will attempt to prove it. However, whether it is true or not,
does not affect the truth of my own proposition which never considers a heavy body in
itself, but always in relation to the lever. Thus I put nothing in the conclusion which
cannot be found in the premises.

The distinction made here by Fermat is difficult for us today to
grasp. To understand it, we must remember that Fermat is imbued with
the opinions favored in the School since Albert of Saxony. He con-
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siders the total weight of a body to be invariable. However, of this
constant weight one more or less large part can pass over into a state of
actuality and exert an effort on the lever, while the rest remains in a
potential state.
Fermat then tells us that he has long suspected that Archimedes did

not exercise the necessary precision in his study of mechanics.25 It is
clear, indeed, that he considered the direction of descent of falling
bodies as parallel, because without this assumption, his demonstrations
have no validity. It is not that this assumption is so far from the truth.
The great distance to the center of the earth allows one to consider the
lines of descent of heavy bodies as parallel. However, this approxima
tion does not satisfy those who seek both detailed and profound truths.

In order to discover such truth, one must make use of other princi
ples than those of Archimedes. Fermat once again mentions some
which he considers as entirely acceptable. Thus he asserts the following
postulate which derives directly from the doctrine of Albert of Saxony:

If two equal heavy bodies joined by a straight and weightless rod were not impeded by
any obstacle, they would not come to rest as long as the midpoint of the rod were not at
the center of the Universe.

He also asserts another postulate and we will reproduce its formulation
exactly.26 No more convincing proof could be given of the ignorance of
M. de Fermat, Counselor to the Parlement of Toulouse and outstanding
geometer, on the subject of the most ancient and best-known laws of
mechanics.

Let DBC be a lever (Fig. 104) which does not pass through the center of the earth; the
fulcrum of this lever is at B. Its arms are BD and Be. The center of the earth is
at A.

D,..---_----._-,C

fig. 104.
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Let one draw lines DA, BA and CA. Let one suspend heavy bodies from points D
and C and let the ratio between C and D be the product of the ratio of line DA and line
CA and the inverse ratio of angles CAB and BAD. I claim that the lever BDC,
suspended at point B, will remain in equilibrium.
We can state that this proposition is very true. We shall demonstrate it when

necessary by demonstrations taken from the purest of geometries and from Physics.

This proposition as formulated by Fermat is completely incorrect. To
correct it, the ratio between angles CAB and BAD must be replaced by
the ratio of their sines. For all practical purposes, these angles are so
small that the error produced is negligible. Thus it is obvious that the
erroneous postulate provided Fermat with results which are qualita
tively correct.
Among these is the following proposition: A balance with equal arms

bearing equal weights is in unstable27 equilibrium when it is parallel to
the horizon.

The error in Archimedes,2H if we can call it that, derives from the fact that he took as
his point of departure that the arms of the balance would stop, even though they were
not parallel to the horizon, and I have demonstrated the contrary.
However, if the descent of the heavy bodies occurred along parallel lines, ... in that

case, the proposition of Archimedes would hold true. It is not in practice that this is far
from the truth, but it is a joy to search for the most minute and subtle truths and to
eliminate all possible ambiguities. This is precisely what I have done and I can assure
you that although the investigation was quite difficult, I am in total control of all the
demonstrations.

The deductions of Archimedes were entirely devoid of the error
which Fermat claimed to eliminate from them. Guido Ubaldo alone had
committed that error. And in his Latin text, Fermat is more accurate in
writing the following:29

We shall demonstrate and refute the error of Ubaldo and other geometers who assume
that the arms of the balance can remain in equilibrium, even when they are not parallel
to the horizon.

It is appropriate to quote the following corollary30 from those which
Fermat deduced from this erroneous principle, because it is of crucial
importance to our study:

It is evident from the preceding that all of the definitions of the center of gravity
provided by the Ancients are invalid. With the exception of the sphere, there is no
other body in which one can find a point such that the heavy body suspended by that
point and outside the center of the earth would remain in an indifferent equilibrium.
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However, instead of recognizing from this that the notion of center of
gravity loses all its meaning, once the verticals are no longer considered
as parallel, Fermat tries to salvage this notion at all costs and
proposes30 a new definition, a bizarre derivation from the doctrines of
Albert of Saxony, Benedetti, Bernardino Baldi, Guido Ubaldo and
Galileo:

Henceforth, we shall define the center of gravity in the following manner:
A point placed inside a body so that the body would remain in indifferent equilibrium

if the point were united with the center of the earth. Only in this case, can one talk
about centers of gravity.

Mersenne was quick to pass on the demonstration by Fermat to the
many geometers whom he was corresponding with. It did not satisfy
anyone and Fermat was soon aware of this:32

You must not doubt that my demonstration comes to a perfectly accurate conclusion,
he wrote33 to Mersenne on July 15, 1636, even though it seems that M. de Roberval
did not find it precise.

Evidently, Roberval was quick to make his objections to the princi
ples of Fermat known because during the month of August 1636, the
latter wrote the following to the Professor of the College of France:34

The first objection consists in the fact that you are unwilling to admit that the midpoint
of a line joining two equal weights will eventually unite with the center of the Universe
in free fall. By doing so, you seem to be in violation of both empirical evidence and
basic principles. The truth of my principle depends on the two weights or forces having
a natural inclination towards the center of the earth and following that inclination....
Furthermore, no one has ever doubted that the center of a heavy body will unite with
the center of the earth if it is not impeded.... The second objection was raised against
the new ratio of the angles which I discovered but against which you had nothing more
specific to say than to demonstrate that the reciprocal ratio between the weights must
be explained by the sine of the angles and not by the angles themselves. Here is the
demonstration ofmy proposition ...

On Saturday, August 16, 1636, Etienne Pascal and Roberval wrote a
long letter to Fermat.35 In this letter, a model of courteous and thorough
scientific discussion, the postulates on which the great geometer of
Toulouse had founded his mechanics are submitted to an exact and
rigorous examination. The thrust of Roberval and Etienne Pascal was
above all to put into question the principle which had been proposed
by Albert of Saxony, formulated by Bernardino Baldi and Guido
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Ubaldo, recognized by Galileo and accepted by Fermat as a basic truth,
as a "first principle" about which "no one ever doubted."

Sir, Etienne Pascal and Roberval wrote, the principle you demand for geostatics states
that if two equal weights are joined by a straight and weightless line and can fall freely,
given this configuration, they will never come to rest until the midpoint of the line
(which is the center of gravity for the Ancients) joins the common center of all heavy
bodies.
This principle which we considered some time ago, just as you were asked to do,

appears at first sight quite plausible. But when it is a question of a principle, you know
what conditions must be met in order for it to be accepted. Of such conditions a major
one is lacking in the principle under consideration, to wit, we know neither the basic
cause for heavy bodies to descend nor the origin of this weightiness. Thus we have no
certain knowledge of what would happen either at the center to which heavy bodies
tend or at the other places beyond the surface of the earth. Since we live on it, we have
some direct experience of the latter upon which to base our principles.
It could be that gravity is a quality residing in the falling body itself. But perhaps it is

in another body which attracts the falling body like the earth. It is also possible and it is
quite probable that it is a mutual attraction or a natural desire which bodies have to
unite, as is evident from iron and a magnet, which are of such a nature that if the
magnet is at rest, the iron will seek it out if not impeded and vice versa. If both are
unimpeded in their motion, they will move towards each other in such a way that the
more powerful ofthe two will move the shortest distance.

When reading these lines written by Etienne Pascal and Roberval,
one cannot help but recognize the influence exerted by Kepler on these
two geometers. This should not come as a surprise to us since an
analysis of the famous treatise Aristarchi Samii de mundi systemate,36
written by Roberval, indicates the extent to which the Professor of the
College de France had meditated upon the thoughts of the great astron
omer, just as Descartes had done.

However, Etienne Pascal and Roberval continue, of these three possible causes of
gravity, the results are quite different which we shall show by examining them here
successively.
First of all, if the first cause is true, in accordance with general opinion, we fail to

see how your principle could stand, because common sense tells us on this subject that
a body always has the same weight regardless of its location, since it always has the
same quality which causes it to have weight. Furthermore, common sense tells us that a
body will rest at the common center of heavy bodies when the parts of the body which
are on either side of the same center are of equal weight and counterbalance each other
without taking into account their distance from the center.
And it serves no purpose to propose a center of gravity for the body AB, which

center, according to the Ancients, is at the midpoint C. This center has only been
shown to exist when the descent of the weights occurs along panillel lines, which is not
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the case. And even if such a point existed - which cannot be the case for bodies which
tend toward the same common center - it has not yet been demonstrated and would in
no way prove that it is the particular point at which the body would unite at the
common center. Even if it were so, it still runs counter to our common knowledge in
several points for the reasons stated previously.
In any case, we fail to see why the common center for the Ancients should be

considered to exist anywhere but in the bodies which are suspended or supported
outside of the place towards which they tend to move.

. . . If either the second or third possible cause of the gravity of bodies is true, it
seems to us that one can draw conclusions from them.

Etienne Pascal and Roberval, in fact, attempt to determine how the
weight of a body varies with the distance of this body from the center
of the earth when the weight of a falling body is considered as the
resultant of attractions exerted by the various parts of the globe. Their
analysis is oversimplified because they do not seem to take into account
the influence which the distance between two objects undoubtedly
exerts on the magnitude of their mutual attraction. It constitutes,
nevertheless, a curious attempt at continuing and developing the ideas
of Kepler. Moreover, it leads the two authors to perspicacious reflec
tions concerning developments in geostatics, such as:

Of these three possible causes for gravity, we do not know which one is correct. We
cannot even be sure if anyone of the three is correct. There could be another possible
cause from which completely different conclusions would be drawn. Therefore, it seems
to us that in this matter we cannot admit principles other than those of which we are
certain through continual experiments guided by sound judgement.
As far as we are concerned, we consider as equally or unequally heavy bodies those

which have an equal or unequal force to move towards the common center. And the
same body is said to have the same weight, if it always has the same force. If this force
increases or decreases, even though it is in the same body, we can no longer consider it
as having the same weight. What we would very much like to know is whether this
occurs in bodies approaching or departing from the center. However, since we have
found nothing which satisfies us on this subject, we leave this question open and
continue to base our reasoning solely on what we, together with the Ancients, have
been able to discover up to now as being true. .

Etienne Pascal and Roberval possess accurate knowledge of the laws
concerning the composition of forces. Therefore, they can easily un
cover the serious errors committed by Fermat in his deduction.
They say to Fermat that3?

After taking the arc of a circle EBD (Fig. 105) with its center A coinciding with the
center of the earth, you assume that the weight placed in its entirety at point B, will
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exert the same weight on support B as if it were distributed in parts to points E, F, B, C
and D. That is far from the truth since often instead of exerting weight on support B in
the direction of A, on the contrary, it will exert weight on the same support in order to
move away from A.

This will happen, for example, if the arc ED is greater than half a
circumference and if the load rests entirely at the two points E and D.

And yet, being entirely concentrated at point B, it will always weigh with full force on
support B so as to move the lever towards A, and in general, when it is distributed, it
will always exert less weight on the support than when concentrated at point B. All
these things, even though contrary to your assumption, are demonstrated by following
our principle.

These same principles led Mersenne to recognize that the total
weight of a body of finite extension should decrease progressively to
the extent that the body moves away from the center of the earth. And
this is true even though, contrary to the view of Beaugrand, the weight
of each part of the body remains invariable.

Those individuals, says the erudite priest,38 who argue for a particular center of gravity
in each part of a given body and who ascribe a particular propensity to each point in
that body to descend to the center of all heavy bodies (which is assumed to be the same
as that of the earth) prove, in another way which seems to me better, that bodies
become lighter or exert less weight when approaching the center, but not in proportion
to their distance from it. ... But because the other, different weight derives from the
different angles formed by each point of the given body (by reason of the straight line
through which it wishes to descend to the center of the earth) with the line passing
through the center of gravity of the body, or one which is parallel to it, it follows that if
the body is considered as a point, that is to say a point having weight, it will always
have the same gravity, no matter how near or how far it is from the center of the earth.
This does not occur in the other view,39 according to which this point becomes lighter
in proportion to its distance from the center, as is the case with a heavy body.
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The remark by Mersenne in this passage seems to express the view
held commonly in the Schools at that time. However, we have already
encountered it40 in a very precise form in the Tractatus de ponderibus
by Master Blasius of Parma. And even Albert of Saxony, whose
influence on Blasius of Parm is undeniable,41 stressed the principle:42

It is true that distance causes the different parts of a heavy body to tend to their natural
locus by different paths. However, it will never restrain the tendency of a body towards
its natural locus.

As we have seen, in writing these lines, Albert of Saxony had in mind
an argument of Roger Bacon. This gives us another opportunity to
confirm the persistence among the mechanicians of the XVIIth century,
of traditions which owed their origins to the School of Jordanus and to
the commentaries ofAlbert of Saxony and his followers.

It was with great surprise that Fermat received the criticisms by
which Etienne Pascal and Roberval claimed to destroy the principle
of Albert of Saxony. This painful surprise is apparent in the letter he
addressed to Mersenne on Tuesday, September 2,1636: 43

As far as the Geostatical Proposition is concerned, he says, it is founded entirely on the
sole principle that two equally heavy bodies, joined by a continuous line and left
unimpeded, will join the center of the earth at the point which divides equally the line
connecting them, that is to say, that this point of division will unite with the center of
the earth. After Messrs. Pascal and Roberval had recognized that my reasoning was
based on this and that allowing this principle, my proposition presented no difficulty,
they denied this principle of mine which I took as the clearest and the most evident
axiom possible. Please let me know if you share their opinion. In any case, I have
recently demonstrated it again by new principles deduced from indisputable experi
ments which I shall send to you as soon as possible.

Since it was undoubtedly limited to the ideas which had been
developed in the Schools in accordance with the archaic teachings
of Albert of Saxony, Fermat's knowledge of mechanics contained
enormous lacunae. The geometer of Toulouse obviously did not know
how the equilibrium of a lever loaded by forces of different inclination,
depended on the moments of these forces with respect to the point of
support. He also had doubts about the argumentation of Roberval,
where this rule was put to use:44

I would be much obliged to you, he writes to the Professor of the College of France, if
you would send me the demonstration of your proposition in which you pursue the
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view that heavy bodies remain in a reciprocal ratio to the perpendiculars drawn from
the center of the lever to the two pendants. I shall continue to doubt this opinion until I
have seen your demonstration. However, I can assure you that I shall continue to stand
by my view.

Giving in to the request of Fermat, Roberval wrote to him on
October 11, 1636:45

I am sending you the demonstration of the fundamental proposition of our mechanics
as I promised you.

By giving in detail the definition of the terms and axioms he used, he
explains with great care the laws of the equilibrium of both straight and
bent levers required to explain forces of different inclination. The
sequence of his presentation resembles precisely the reasonings of
Giovanbattista Benedetti. Furthermore, it can hardly be doubted that
Roberval knew the Diversarum speculationum of that author. One year
later, in fact, Mersenne explains in the Seconde partie de I'Harmonie
universelle46 how the convergence of verticals modifies the law of the
equilibrium of the balance. The rule which he points out is that of
Fermat but corrected by the amendment made by Roberval. In order to
justify this amendment, Mersenne refers to the treatise of Benedetti:

It would not be inappropriate to add here a particular remark which has been made
concerning the arms of a balance whose weights are in a reciprocal ratio to the length
of the arms in accordance to the proposition of Archimedes because it assumed that the
two pendants of balances descend along parallel lines instead of inclining towards the
center of the earth where they would unite if they were both 1145 leagues long. From
this, those who consider the balance in a more precise fashion conclude that the weights
mentioned above are in a reciprocal ratio to the perpendicular lines drawn from the
center of each weight to the line which connects the center of the earth to the balance,
or that they are in a reciprocal rati047 computed as the ratio of the inclined lines or the
ratio of the angles formed at the center of the earth by the line joining the center of the
earth to the center of the balance and the lines which are inclined, that is to say, of the
inclination or of the direction of the pendants towards the center of the earth; or rather,
that they are formed in a reciprocal ratio of the perpendicular lines drawn from the
center of the balance to the inclined lines of the pendants, as Benedetti does in his third
chapter on mechanics and which many excellent geometers consider as true.

This very accurate theory which Benedetti undoubtedly borrowed
from Leonardo da Vinci and which Roberval, in tum, borrows from
him is useless in the face of the obstinacy with which Fermat defends
his point of view. He tries48 to make Roberval contradict himself and
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believes he is able to do so by concluding from the principles contained
in his final letter that a heavy sphere, placed on a plane tangential to the
terrestial globe, will move unless it is located at the point of contact. We
recognize in this conclusion a proposition of Albert of Saxony which
Leonardo da Vinci, Villalpand and Mersenne carefully preserved.
Fermat fails to see that if the theory of the inclined plane requires the
immobility of such a sphere placed on a horizontal plane, it is due
precisely to the fact that this theory does not take into consideration the
convergence of the verticals.
The obstinacy of the geometer of Toulouse, who refuses to give in to

the laws of solid mechanics is evident in several other instances:49 the
cause for this obstinacy is understandable. The view held by Albert of
Saxony which states that the weight of a body is the tendency of the
center of gravity of that body to unite with the center of the earth, has
been dealt a crushing defeat.
With his usual good fortune, Descartes enters the fray at a moment

when he can only gain the laurels of victory. The inexhaustible curiosity
of Mersenne prompted him to ask the opinion of the great philosopher
on the geostatical problem which pitted Fermat against Roberval and
Etienne Pascal. Descartes responded to this inquiry and on July 13,
1638, he sent to Mersenne an Examen de la question s{:avoir si un
corps pese plus au mains, estant proche du centre de la terre qu'en
estant eloigne.5o

This examination contains a discussion of Cartesian statics which
differs little from that which Constantin Huygens had received some
time before. He added to this discussion which we discussed in Chapter
XIV several remarks concerning the debate in question here.
We have seen that Descartes knew from Mersenne the propositions

advanced by Fermat. After reading the following passages it is obvious
that Descartes also knew of the letter in which Etienne Pascal and
Roberval refuted these propositions.

. . . we need to determine what is understood by absolute weight. Most people take it to
be a property or an internal quality in each of the objects called heavy which causes
them to tend towards the center of the earth.
According to some, this property depends upon the form of the body: according to

others on its matter only. According to these two views, of which the first is the most
widely accepted in the schools while the second one is acknowledged primarily by those
who think they know more than the common man, it is clear that the absolute weight of
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objects is always the same intrinsically and that it does not change at all in relation to
their varying distance from the center of the earth.
There is yet a third opinion, namely, that held by those who think that all weight is

relative and that the force or the property which causes bodies we call heavy to descend
is not at all intrinsic, but exists at the center of the earth, either in its entire mass which
attracts them to it as a magnet attracts iron, or in some other fashion. And those who
hold this third opinion, believe that just as a magnet and all other natural agents which
have some degree of activity are always more active at close range than at a distance, so
one must also admit that the same body weighs more the closer it is to the center of the
earth.
In my own view, Descartes adds, I conceive of the nature of weight in a way quite

different from these views. However, I could only clarify my view if I deduce several
other propositions which I have no intention of doing here. AU I can say is that my view
does not teach me anything related to the proposed question, except that it deals with
facts alone, that is to say, that it can only be determined by humans to the extent that
they can conduct experiments on it. And even then, experiments which can be con
ducted here on the surface of the earth will not tell us how things are much further
below towards the center of the earth, or far above, beyond the clouds, because if an
increase or decrease of weight occurs, it is improbable that it happens everywhere in
the same proportion.

Furthermore, Descartes is looking at previous experiments in order
to determine whether one of them might give information on the
variations in weight. The facts seem to prove to him that weight
decreases when one rises above the surface of the earth, but the proofs
which he gives to this assertion are unusual. He cites "the flight of birds,
these paper dragons which children fly, and even, to trust in Mersenne,
cannonballs, shot straight upward and which do not [appear to) fall
back to earth." Among the arguments he uses, we find one which is of
great interest for the universal history of weight:

Another experiment which has already been done and which seems to convince me
very strongly that bodies removed from the center of the earth do not weigh as much as
those which are closer, concerns the planets which do not have their own luminosity,
such as the moon, Venus, Mercury, etc., which are most likely of the same matter as the
earth. Since in the judgement of almost all the astronomers of this century, the heavens
are liquid, it appears that those planets should be heavy and fall towards the earth, were
it not for the great distance preventing them from doing so.

Nevertheless, Descartes does not think that the experiment is ad
vanced enough to permit a geometrical demonstration on variable
weight. In his arguments, he assumes it to be constant.
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Furthermore, we shall assume that each part of the same heavy body always maintains
in itself the same force or propensity to descend, regardless of whether it is approach
ing or departing from the center of the earth, and regardless of its location. Even
though, as I have said before, this might not be true, nevertheless, assume it in order to
make our calculations manageable.
Once this invariability of absolute weight has been assumed, we can demonstrate

that the relative weight in all solid bodies - when considered in open air and without
support - is slightly less when they are closer to the center of the earth than when they
are further from the center, even though it is not the same for liquid bodies. On the
contrary we can demonstrate that when two equal bodies are placed opposite each
other on a perfectly accurate balance, but with the arms of this balance not parallel to
the horizon, the body closest to the center of the earth will weigh more and by precisely
as much as it is closer to that center. It follows that when there is no balance between
the equal parts of the same body, the higher parts weigh less than the lower to the
extent that they are further removed from the center of the earth, so that the center of
gravity cannot be an immobile center in any body, even when it is spherical.

The first proposition stated by Descartes was the one previously
formulated by Blasius of Parma and then rediscovered by Mersenne.
Etienne Pascal and Roberval had stated similar propositions in opposi
tion to Fermat. The rules on the composition of forces allow one to
easily demonstrate this proposition. However, as we have seen, Des
cartes does not seem to have ever had an exact knowledge of these
laws. And thus, when he proposes51 to give a "demonstration explaining
why a body can be said to weigh less when close to the center of the
earth, than when far from it," he makes use of a rather bizarre and
unconvincing artifice to deduce this demonstration from the laws of the
inclined plane.
The proposition concerning the stability of a balance where the

verticals are considered convergent, becomes the object52 of "another
demonstration explaining how the same object can be said to weigh
more, when it is close to the center of the earth, than when it is far from
it." This demonstration did not require of Descartes a high degree of
invention. Etienne Pascal, Roberval and Mersenne had already shown
how to correct the reasoning of Fermat by following the principles
given by Benedetti.53 Descartes makes use of the deduction corrected in
this manner.
Fermat had already concluded from his incorrect deduction the

corollary that a body does not have a center of gravity independent
of its position. Descartes proves this corollary again by a correct
reasoning:54
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From this it is evident that the center of gravity of the two weights Band D (Fig. 106)
joined by the line BD, is not at point C, but between C and D, for example, at point R
where I assume the line which divides the angle BAD into two equal parts falls. . ..
Thus the weights B and D must be supported at point R in order to remain in equilib
rium in the position which they are in. But if the line BD is considered as being ever so
slightly inclined to the horizon, or if these weights are at a different distance from the
center of the earth, they must be supported by another point to be in equilibrium, and
thus their center of gravity is not always at the same point.

Fermat thought he could assert the invariability of the center of
gravity at least for a sphere. Descartes proves that even this exception
can not be allowed:55

Thus it clearly follows that the center of gravity of this whole sphere is not at the point
which is at its geometrical center, but somewhat lower on the straight line which joins
this center to that of the earth. This seems truly paradoxical, unless you consider the
reason for it. However, as soon as you do so, you can see that it is a well-established
mathematical truth.

The statement of Descartes summarizes and settles the debate
between Beaugrand, Fermat, Mersenne, Roberval and Pascal. Today,
his conclusion is clear and certain. The idea of a center of gravity which
is invariably connected to each solid body only makes sense as long as
the verticals are considered parallel to each other. Thus it is an
absurdity to attribute to this point a tendency to join the center of the
earth. It is enough to reflect on the center of the earth to render
illegitimate any concept of the center of gravity. This is the important
result produced by the dispute among the geostaticians.

B

D

A

fig. 106.
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Did Torricelli know about this dispute? Could his research have
possibly come under the influence of the ideas discussed among French
geometers? There is no doubt in our mind on this point.
We have seen that Torricelli spent a great part of his life in Rome,

close to his master, Father Castelli. Only three months before the death
of Galileo (January 8, 1642), he left his first master in order to be with
the great geometer at Arcetri.
In the midst of the dispute on geostatics, Father Castelli was in

contact with Jean Beaugrand. He had heard of the proposition of
Fermat on the variability of the center of gravity and had undertaken
similar research. We know this from the following letter for which we
unfortunately know neither the date, nor the addressee:56

I have read the very subtle thoughts expressed by Fermat on the subject of the center of
gravity. I readily confess that I found them splendid and quite worthy of that keen
intelligence which Beaugrand praised so highly during his stay in Rome. I hope that he
has a rigorous demonstration for them. Beaugrand told me that he had obtained a
similar proposition, to wit, that the same heavy body, placed at various distances from
the center of the earth, weighs differently and that the weight varies in the same ratio as
the distance from the center of the earth. So I began to reflect on this matter and I
thought at the time that I had found a demonstration. However, since then I have
encountered several difficulties and my enthusiasm for such speculations has cooled
considerably. I still recall having deduced the same result as Fermat: to wit, a heavy
body with a center of gravity coinciding with the center of the earth would have no
weight and, furthermore, that the entire earth is devoid of weight.
In addition, I had found that a heavy body which descends towards the center of the

earth not only changes weight from instant to instant, but, even more amazingly, the
center of gravity continually changes place within the mass of the body. Moreover, if a
heavy body rotates in place, its center of gravity changes constantly. Thus I readily
agree with Fermat on the following point: That the nature of the center of gravity is not
at all as commonly described by the mechanicians.

Thus Torricelli was aware of the errors and contradictions involved
each time one considered the center of gravity without considering the
verticals to be parallel. From this one can easily understand why he was
careful to formulate the latter hypothesis with such great precision. By
doing do, he profoundly transformed the principle of statics which he
had taken from Galileo. He removed every trace of the erroneous
doctrine to which this principle owed its existence. Like so many
principles in physics it is by denying its own origin that the Principle of
Torricelli became an irrefutable truth. But, by breaking all ties with the
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error which had produced it, it also lost its apparent self-evidence
which caused its wide acceptance. It thus appeared as it really was: a
pure postulate, justified solely by having its deductions agree with
reality.



CHAPTER XVII

THE SYSTEMATIZATION OF THE LAWS OF STATICS

1. F. MARIN MERSENNE (1588-1648), BLAISE PASCAL

(1623-1662), F. ZUCCHI (1586-1670), F. HONORE

FABRI (1606-1688)

When the XVIIth century reached its midpoint, the work in statics
undertaken by Stevin, Galileo, Roberval, Descartes and Torricelli had
been completed. But at the beginning of the XVIth century, both the
mechanicians of the School of lordanus as well as of Leonardo da
Vinci, had already anticipated the most important truths of statics. Then
these truths were obscured and the narrow-minded and biased criticism
of geometers cast them into oblivion, just as the fog sometimes breaks
and allows us to see the brilliant snow-capped peaks, before another
cloud hides them again from view. Today, the most important proposi
tions among those comprising the science of equilibrium have been
precisely formulated and the silhouettes of the major peaks stand out
clearly. But the science of statics is far from being finalized. A scientific
theory is not a compilation of several important truths which are
unrelated to each other. It is a system in which these truths are meshed
with each other, a systematic classification, whose order demonstrates
the natural affinities between diverse principles. No mechanician at this
point has a clear vision of this interconnection. Although the principle
peaks are already illuminated in brilliant light, the foothills which unite
them into a monolithic chain are still buried in shadows.
Occasionally, one summit will obscure the view of a neighboring

peak. Descartes, who is able to delineate so clearly the Principle of
Virtual Displacements, has only a very vague and imprecise notion of
the law of the Composition of Forces.

In order for statics to become a finished discipline, one important
task remained to be done. All of the various laws previously discovered
had to be grouped into a single, coherent system, in order to show how
they were in accord with each other, how they derived from each other
and how in each circumstance, they defined the sufficient and necessary
conditions to ensure equilibrium.

380
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No one wished more ardently to accomplish this work of system
atization and coordination than Father Mersenne, and no one worked
more actively to bring it about. Unfortunately, the energetic brother of
the Minims was not suited to accomplish the task which he had set for
himself. To organize in a harmonious theory all of these disparate and
incongruous propositions required a clear and profound understanding
of the principles, an extreme rigor in deduction and a very sure and
finely honed critical mind. Mersenne was endowed only with the
boundless curiosity of a collector and the exuberant imagination of an
artist. Thus, instead of the logical system which should have been
constructed, he achieved but a compilation.

It was, to be sure, a very complete compilation for which Mersenne
had drawn from the works of almost all contemporary mechanicians.
As early as 1626, Mersenne had published his Synopsis mathematica,)
a long list of propositions drawn from either the geometers of Antiquity
or from contemporary authors. Besides the theorems comprising the
treatises of Archimedes, Mersenne reproduced the major formulations
contained in the works of Commandino and Luca Valerio. He also
added many excerpts borrowed from Simon Stevin, Guido Ubaldo,
Villalpand, and many others. Up to the end of the XVIlth century, the
Mechanicorum libri provided the material for many treatises on statics,
especially after Mersenne reedited his Synopsis2 in 1644.
In 1634 the Mechanics of Galileo was published. The indefatigable

compiler was not satisfied with merely translating the works of the great
geometer of Pisa. He also added "several rare and new additions, useful
for architects, well-drillers, philosophers, and craftsmen." Among these
additions several are borrowed from the Mechanics of Guido Ubaldo.3

The year 1636 witnessed the publication of the Harmonicorum liber,
where Mersenne reports on the early works of Galileo on the acceler
ated fall of heavy bodies. Statics plays here a minor role but there is
mention of a study4 on the manner of the variation of a weight of a
heavy body suspended from the extremity of a lever when the lever is
rotated around the point of support. The influence of Benedetti, whom
Mersenne does not quote here by name although he will mention him
in another work, is very evident.
In the same year, 1636, Mersenne published in French his Harmonie

universelIe, which contains the Treatise on Mechanics, on weights
supported by forces on planes which are inclined to the horizon; on the
forces which support a weight suspended from two ropes, by G. de
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Roberval. The energetic Brother of the Minims, however, not only adds
the work of Roberval to that part of his work entitled: A Treatise on the
Nature of Sound and Motion of all kinds of Bodies. Second Book. On
the Motion of all kinds of Bodies. After having presented in this same
part the theory of Galileo on the fall of bodies and criticizing the
hypothesis of that great physicist on the inclined plane - hypotheses
which were not in accord with Mersenne's own experiments - Mer
senne examines,s "Proposition 9 of Book Eight of the Mathematical
Collections of Pappus, which asks what force is required to support a
given weight on a level plane inclined towards the horizon at a given
angle which I have already discussed in great detail in the Fourth
Addition to the Mechanics of Galileo. This is why I am adding here
only the demonstration given on this by M. de Roberval, one of the
most outstanding geometers of this century."
Roberval is not the only mechanician whose work was analyzed in

the Harmonie universelle. A little further on, after the above quoted
passage, Mersenne shows us 6 that the law of the inclined plane as
formulated by Cardan in the De proportionibus, is not correct and
furthermore, that "Cardan, Tartaglia and Guido Ubaldo all failed in
their analysis of the balance."7

In another passage 8, Mersenne turns his attention to the decrease in
weight in a body as its distance from the earth increases. This same
concern can also be found in several passages of the Nouvelles observa
tions physiques et mathematiques, which were to be added at the end of
the Harmonie universelle. Here we see Mersenne 9 concerned with the
objection raised by Fermat to the theory of the lever of Archimedes.
He takes into account the convergence of verticals by using the theorem
of moments - "as Benedetti does in his third chapter on mechanics and
which several excellent geometers consider to be correct." On this same
topic, he had previously restated the strange argumentation of "M.
Fermat, Counselor to the Parlement of Toulouse and eminent geo
meter" but he also added: "I fail to see the cogency of this demon
stration."l0 He had also announced the upcoming publication of the
Geostatique of Beaugrand.
The Harmonie universelle dealt with a great many questions on

mechanics. However, these questions were scattered throughout the
different parts of the work and were not sufficiently coherent to
provide a treatise on mechanics. Several years later, Mersenne did
attempt to write such a treatise and added it to one of those obtuse and
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rambling works which he was wont to publish on the most diverse
topics. The Tractatus mechanicus, theoricus et practicus, published in
Paris in 1644 with Antoine Bertier, formed the second part of the
Cogitata physico-mathematica.11

This Tractatus mechanicus 12 is in reality only a rather unsystematic
compilation of information acquired by Father Marin Mersenne on
statics. The Praeludium 13 which begins it contains several drawings 14
concerning the lever and the inclined plane. The Mechanical Problems
of the Stagirite provided the inspiration for the demonstration of the
law of the lever, deduced from the velocities of its extremities. Proposi
tions II and V 15 dealing with the notion of moment were obviously
influenced by Benedetti, while Proposition VI16 restates the argumenta
tion of Guido Ubaldo who seems unfamiliar with this notion. Proposi
tion X 17 is a development of arguments borrowed from Galileo on the
application of pulleys. However, Mersenne owes the most to Descartes
and Roberval.
Our energetic compiler quotes almost in its entirety the letter which

Descartes, that "Vir clarissimus,"18 had written him 19 on July 13, 1638
and which he discussed in Chapter XIV.2o This letter provides him with
the theory of the lever 21 and the inclined plane,22 to which Mersenne
applied the axiom of Descartes and, finally, the apparent variation of
the weight of a body as it moves away from the center of the earth.23

The calculations of the force which is required to act along a parallel
or oblique path on an inclined plane in order to maintain a heavy body
in equilibrium on that plane is taken 24 from the Traite de Mechanique
written by Roberval and induded in the Harmonie universelle.
Moreover, it is not in the Tractatus mechanicus that Mersenne

reproduces the theory of Roberval on the parallelogram of forces but
he gives it only in the Ballistica et Acontismologia in Propositions V
and VI.25

Finally, let us add that the influence of Stevin is not entirely absent
from the statics of Mersenne, although it is less evident than that of the
authors previously discussed. Stevin's influence is more evident in other
parts of the Cogitata physico-mathematica. The term antisacoma 26 used
by Mersenne in a certain passage 27 is indubitable evidence of that
influence, which is especially clear and important in hydrostatics, for
Mersenne borrows this science almost entirely from the geometer of
Brugge.
The treatise on mechanics is similar and, in addition, is composed of
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fragments taken from the most diverse texts and put together in a
primitive mosaic where there are no smooth transitions between the
jagged edges of the ill-fitted pieces. Mersenne was obviously not the
man to harmonize works of such dissimilar nature, containing so many
apparently contradictory principles.
Everything that Mersenne lacked to be able to reduce statics to a

coherent system of propositions, namely, a profound understanding of
principles, a rigor in logical deduction, a sharp critical mind - all these
qualities were possessed to the highest degree by Pascal, who was
supremely well-prepared for the task at hand. It appears, indeed, that
he attempted that task, but unfortunately, his undertaking has not come
down to us, but we know of its existence from a passage in the Treatise
on the Equilibrium ofLiquids, which Perier published in Paris in 1663,
one year after the death of his brother-in-law. We read the following in
Chapter II which is entitled: Why liquids exert weight according to their
depth:

Here is another proof which will only be understood by geometers and which others
can ignore.
I take as a principle that no body ever moves by its own weight without its center of

gravity descending....
In a short Treatise on Mechanics I have demonstrated by using this method the

reason for all of the multiplications of forces present in all the other mechanical
instruments invented till now. I demonstrate for all of them that the unequal weights
which are in equilibrium by means of machines are, because of the construction of the
machine, so arranged that their common center of gravity could never descend, no
matter what position the weights take. It follows that they must remain at rest, that is to
say, in equilibrium.

The principle adopted here by Pascal in his short Treatise on
Mechanics is therefore the principle formulated by Torricelli.
Moreover, Pascal did not fail to recognize the value of the axiom

formulated by Descartes. We read the following in this same Chapter II
of the Treatise on the Equilibrium ofLiquids:

We must admire that fact that this new machine retains the same working principle to
be found in all the Ancient machines, such as the lever, the press, the endless screw,
etc. This principle is that displacement increases in the same proportion as force ... so
that the displacement is to the displacement as the force is to the force. What can be
taken as the true cause of this effect is that it is evident that it is the same thing to move
one hundred pounds of water by one inch, as to move one pound of water by one
hundred inches; And that, when one pound of water is equilibrated with one hundred
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pounds of water, the hundred pounds could not move by one inch without moving the
one pound weight by one hundred inches. They must remain in equilibrium, since one
pound has as much power to move one hundred pounds by one inch, as one hundred
pounds has to move one pound by one hundred inches.

Thus Pascal accepted both the axiom of Descartes and that of
Torricelli. However, we neither know whether he was able to show why
these two principles produce the same results nor whether this question
even interested him.
A talent for critical analysis was surely the gift most valued by Father

Zucchi. It is with great incisiveness and subtlety that he reveals in his
Nouvelle philosophie des machines28 everything inadmissible in the
statements which Aristotle made in the first chapters of his Mechanical
Problems. He shows no less insight when attempting to elucidate the
implicit but not self-evident postulates which Archimedes used in order
to demonstrate the law of the lever.
However, his talent for critical analysis was not sharp and certain

enough to keep Father Zucchi from error and fault in working through
various principles of statics proposed by contemporary geometers.
Confronting these incongruous axioms, he vacillates and, faced with iII
defined concepts, he is confused.
In one of his axioms,29 for example, he uses the word virtus to mean

what Descartes meant by force and which we designate today as work.
However, in the following axiom, the term virtus has now assumed the
same meaning for what we call today force. The first of these postulates
seems to imply that the author intends to base his entire statics on
Cartesian principles:

What is sufficient to lift a given weight to a given height, is also sufficient to lift a weight
K times larger to a height K times smaller.

However, the reasoning takes an unexpected turn and he soon finds
himself led to the Peripatetic principle:

What is sufficient to move a given weight at a given velocity is also sufficient to move a
weight K times larger at a velocity K times smaller.

Nevertheless, after generalizing the remark made by Galileo con
cerning the inclined plane, Zucchi is careful to correct the Peripatetic
axiom: 30

The velocity or the slowness of the motion must be calculated considering the line of
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inclination of the motor or resisting force. In the particular case of weights, it must be
calculated with respect to the vertical because the tendency of these weights toward
downward motion or their resistance to upward motion is directed along this line

This quote shows how easily the contemporaries of Descartes
extended to forces in any direction what they knew to be true about
weights. Thus it should not surprise us to see in Section 3 how Wallis
makes a similar generalization of the axiom of statics formulated by the
great French philosopher.
At the moment when the first edition of the Nova de machinis

philosophia of Zucchi was published in Paris, another Jesuit scholar
was attempting to present dynamics in a completely logical form where
the mathematical laws of that science would be deduced clearly from
the principles of natural philosophy. This Jesuit was Father Honore
Fabri. Born in the Bugey in 1606 or 1607, Father Fabri was a Pro
fessor at the Jesuit college in Lyon before he became Grand Inquisitor
of the Holy Office. He died at Rome on March 9, 1688. At the
beginning of his scientific career he was frequently in contact with
Father Mersenne.
Father Fabri did not publish under his own name the results of his

reflections on local motion. The work which contains those results was
published under the name of a friend of Father Fabri, Pierre Mousnier,
Doctor ofMedicine.3!
The work published by Pierre Mousnier is mainly a treatise on

dynamics and is of the greatest interest for the history of this science.
However, since statics is in the final analysis only a very special case of
dynamics, it comes as no surprise that this treatise also deals with
statics.
Book V, entitled: De motu in diversis planis32 explains the theory of

the motion of a heavy body placed on an inclined plane. This theory
presupposes the previous determination of the apparent weight of such
a heavy body.
Father Fabri bases this determination on the following axiom: 33

A heavy body only moves spontaneously when it descends.

From this postulate, he deduces the following corollary from which
follows the complete theory of the inclined plane: 34

The motion of a heavy body is hindered according to the ratio between the distance it
must traverse to attain a given height or to increase its distance from the center by a
given amount and this vertical height.
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Don't we recognize in this formulation the old axiom of Jordanus:
Gravius in descendendo quando ejusdem motus ad medium rectior? 35

This is not the only trace of medieval science contained in the work
of Father Fabri. On the subject of the convergence of the verticals, it
contains, for example, all of the paradoxes conceived by Albert of
Saxony and his School, and which Villalpand, Bernardino Baldi and
Mersenne had assembled.36

Furthermore, Father Fabri, or his interpreter Pierre Mousnier, is not
satisfied with the brief reference to statics contained in the book
devoted to the inclined plane. There is also an appendix 37 dealing
specifically with the study of machines designed to lift heavy bodies.
The fundamental laws which govern the use of these machines are
related to the principles on which the erudite Jesuit based his dynamics.
The statics of Father Fabri is more clearly based on the statics of

Galileo than that of Father Zucchi. That is to say, in the final analysis it
is based upon the statics of Aristotle, but modified by taking into
consideration the inclined plane. This is clearly evident from several
axioms stated at the beginning of his statics:

The same force will produce a small movement more easily than a large movement in
the same moving body. - A motion is all the smaller, the slower it is, that is to say, the
more time it requires to traverse a given distance. - A weight equal to a second weight
cannot move it by an equal motion. - A weight equal to a second weight cannot move
it with a smaller motion. - A weight moves more easily along a oblique line than along
a vertical in so far as the oblique line is longer than the vertical. - One weight can
move a larger weight, provided that the displacement of the latter is smaller than the
displacement of the former and that the ratio of the displacement is less than the ratio
between the weights. - In order for one weight to pull a smaller weight with a greater
motion than its own, it is necessary that the ratio between the weights be greater than
the ratio of the motions.

After having stated these axioms, the author formulates in the
following terms the "most universal problem" of statics:

To move a given weight by means of an arbitrary force.

He then furnishes the general solution:

To cause the motion of the weight to be less than the motion of the force and the ratio
between the motions to be greater than the ratio between the weights.

To this solution he add the following "most universal corollary:"

It follows that any activity which has as its goal to move large weights consists in
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making their displacement increasingly slow. You can increase the weight being moved
proportional to the decrease in displacement.

A few very brief remarks hint at the application of this principle to
the lever, the block and tackle, the winch, the screw, the cogged wheel
and the inclined plane.
The influence of Descartes, so evident in certain parts of the

dynamics formulated by Father Fabri, is totally absent here. The entire
statics of the erudite Jesuit is based on the notion of "momento" as it
was conceived by Galileo.

2. THE TRAITE DE MEeHANIQUE OF ROBERVAL

It is only in an off-hand way, that is, in an appendix to the theory of
local motion, that Father Fabri dealt with mechanics. He had only
presented in a very generalized and concise form the principle which
justifies its applications. His lessons, published by Pierre Mousnier,
could in no way assume the status of a treatise on statics. Nor could this
claim be made by the work of Father Zucchi, because his treatise was
far from being a complete treatise on statics. It was rather a critical
essay on the principles of mechanics.
Roberval, on the contrary, set out to write a complete treatise on

mechanics. The friends of the Professor of the College de France
anxiously awaited the publication of this work. When Mersenne
restated in his Cogitata physico-mathematica, the theorems of Roberval
on the inclined plane, he hoped to stimulate: 38

those devoted to the study of mechanics to ask of our great geometer, the equal of
Archimedes, an account of the other parts of this science and to demand it so
insistently that they will indeed obtain it, to the greater honor of learning.

These demands were not sufficiently strong to overcome the aversion
which Roberval apparently felt towards the publication of his works.
However, the treatise on mechanics of this great geometer had not

remained a mere draft, but, according to a letter addressed in 1650 by
the author to Hevelius,39 had been brought to completion. This letter
even informs us of the titles of the eight books which the work was to
comprise.

We have constructed, says Roberval, a new mechanics from the foundation up; except
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for a few, all the blocks of Antiquity, with which it had been previously constructed,
have been discarded. It is complete in eight stories, which correspond to the books of
the same number.
The first book deals in a general way with the virtual center of force.4o We will

attempt to see if such a center exists, to which force it applies and to which forces it
does not apply.
The second treatise concerns the balance and examines the weights which form

equilibrium.
The third deals, in detail, with the virtual center of force.
The fourth discusses an extraordinary case of plagiarism.
The subject of the fifth is instruments and machines.
The sixth deals with forces which act within certain media; it concentrates on

floating bodies.
The seventh considers compound motion.
The eighth, finally, deals with the center of percussion ofmoving forces.

This treatise has not come down to us.
Long after the death of Roberval a brief fragment of a text called:

Projet d'un livre de Mecanique traitant des mouvemens composes41

was published42 as a supplement to his treatise on geometry which
was entitled: Observations sur fa composition des mouvemens.43 This
fragment, to which we shall turn our attention in Section 4, can be
considered an introductory essay for the seventh book of the treatise on
mechanics. However, this introduction is limited to what would have
been contained in the first pages of that book.
Other fragments of Roberval on various topics in mechanics, almost

all of them unpublished, can be found in a manuscript notebook kept at
the Bibliotheque Nationale.44

Among these fragments there are several which must certainly be
considered as drafts for one of the books of the Treatise on Mechanics,
mentioned in the letter to Hevelius.
The Tractatus mechanicus at the beginning of the manuscript

notebook seems to be nothing other than the beginnings of the first
book of this treatise. It is indeed precisely the virtual center of force
which Roberval introduces as the purpose of his deductions.
Roberval defines what he means by puissance (virtus seu potentia).

He gives this word exactly the same meaning which we give to the word
force. That is the meaning, incidently, he gave as early as 1636 in the
letter to Fermat which we already mentioned in the preceding chapter:

In general, we use the term force to designate the quality by which any object tends or
aspires to move toward another location, either downwards, upwards or sideways, and
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it does not matter whether this quality is naturally inherent in the body or if it is
imparted to it from some other source. From this definition, it follows that every weight
is a kind of force, since it is a quality by which bodies aspire to lower positions. Often,
we call by the term force the things in which the force is inherent, as for example, a
heavy body can be called a weight.

In today's language we would say that it is the composition of forces
applied to a solid object which Roberval intended to study in the first
book of his Treatise on Mechanics, and of which the Tractatus mechan
icus of 1645 undoubtedly forms the beginning.
Right at the beginning the problem is posed in very general terms. A

body can be a point, a line or a surface. It can be extended in all
directions and the forces can be arbitrary. But these general terms soon
become restricted, explicitly and implicitly. In fact, Roberval asserts
that the force inherent in each of the elements of a solid body has an
invariable magnitude. He further asserts that it either has a fixed
direction or that it is directed towards a fixed center.
These restrictions legitimize the fundamental Postulate ranked as

third in importance by Roberval and which he states in the following
way in his letter of 1636:

If a weight is suspended from or attached to a flexible weightless line attached at one
end to some support, so that it sustains the force which unimpededly pulls on this line,
the force and the line will assume a position in which they will remain at rest, and the
line will be of necessity straight. Let the given line be called the pendant or the line of
direction of the force.

The Tractatus mechanicus of 1645 examines only a very special case
of the already restricted problem quoted above. This is the case in
which all of the forces acting upon the solid body are parallel to each
other and to a fixed direction. This special case is, by the way, studied
with great logical rigor. By a method inspired by both Archimedes and
Pappus, the existence and the properties of the center of parallel forces
are established.
The beginning of an analysis of the composition of forces applied to

solid bodies concludes this fragment, without however completing it.
The largest and most innovative part of the first book of the Traite de
Mecanique mentioned to Hevelius, a book whose overall structure we
can guess at from the letter addressed to Fermat in 1636, is missing.
The second book of this treatise deals with the balance. The Demon

stratio mechanica preserved in manuscript in the Bibliotheque Nation-
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ale was undoubtedly meant to be part of this second book. This
"Mechanical Demonstration" is the demonstration of the law of the
lever. In form, it imitates the rigorous deductions of the Greek geome
ters. In substance, it resembles the deduction adopted by Stevin and
Galileo.
According to the letter addressed to Hevelius, Roberval dealt in his

third book with "virtual centers of forces, in particular." What did he
mean by that? He was undoubtedly referring to his geometrical analysis
of the centers of gravity of various figures, because a good part of his
talent as a geometer was devoted to such analysis. We are probably
dealing with part of the material used in writing this book when we read
in the manuscript kept in the Bibliotheque Nationale a Proposition of
M. de Roberval for determining centers of gravity and a Lemma
Marvelously Suited for the Determination of Centers of Gravity by M. de
Roberval, 1645.
The proposition, which forms the main topic of these two texts,

formulates the fundamental definition of the center of gravity for an
arbitrary number of material points. The moment of the total mass of
points with respect to any given plane with their centers of gravity
joined is equal to the algebraic sum of the moments of these points with
respect to the same plane. This theorem formed the implicit basis for all
the research on centers of gravity, as well as the research undertaken in
Antiquity by Archimedes or Pappus, and also that research undertaken
in modern times by Commandino, Maurolico, Guido Ubaldo, Stevin
and Luca Valerio. To be more precise, this research used a particular
case of this theorem. The case is where the plane chosen passes through
the center of gravity. However, in our opinion, it had never been stated
or demonstrated in its entire generality.
The demonstration of Roberval is carried out with the extremely

complicated deductive approach characteristic of our geometer. In the
Latin edition of the Theorema lemmaticum,45 this complexity is indeed
excessive and one could only wish for more brevity and simplicity.
Interesting applications of the lemma demonstrated there are added to
this Latin edition and concentrate on the determination of the centers
of gravity for the semi-circle, the arc partial circumference, the tro
choid 46 and the curve associated with the trochoid and triangle.
The title of the fourth book: Quartus, de Jure mira continet47

confirms for us that the third book promised to Hevelius was con
cerned with the determination of particular centers of gravity. Roberval,
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undoubtedly, wished to relate the strange theft by Torricelli which
victimized him. In his Histoire de la Roulette,48 Pascal told us of this
shameless case of plagiarism.49

A fragment dealing with floating bodies: Proposition fondamentale
pour les corps flottants sur l'eau so concludes the manuscript notebook
kept in the Bibliotheque Nationale. It most likely was to serve as a basis
for the composition of the sixth book of the Traite de Mechanique.
Our manuscript contains nothing about compound motion with

which the seventh book was supposed to deal. The Projet d'un livre
de mecanique traitant des mouvemens composes,S! published in 1693,
seems to be, as we have indicated before, a draft for the beginning of
the seventh book.
The subject of the eighth book was the center of percussion of

mobile forces, which had caused a lively dispute between Roberval and
Descartes. The manuscript kept at the BibliotMque National does not
contain anything pertaining to this subject.

If we leave aside a rudimentary treatise which we shall discuss later,
we find nothing in our manuscript which could have influenced the
composition of the fifth book, which deals "with instruments and
machines". This deficiency is most unfortunate, since Roberval most
certainly provided in that book the complete demonstrations which are
only sketched out in the Traite de Mechanique, which was inserted by
Mersenne 52 in the Universal Harmony.
Thus we do not have in our possession the Traite de Mechanique in

the form which Roberval mentioned in his letter to Hevelius. The
manuscript notebook kept in the Bibliotheque Nationale only furnished
us with several fragments which Roberval apparently had had collected
and classified so that he might use them in composing this great work.
However incomplete and incongruous this material available to us is,

it is enough to allow us to sense the scope and the basic structure of the
finished work. The loss of this work seems beyond recovery and should
be deeply regretted. It is most certain that the Treatise on Mechanics of
Roberval was a grandiose and powerful achievement in which the
doctrines elaborated at the beginning of the XVIIth century were
ordered and classified. The concern for a rigorous deduction even in
the most minute detail certainly made this work verbose and com
plicated, However, those geometers who wished for a perfectly clear
development of the science of equilibrium, were entirely satisfied in
their wishes.
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Roberval had not only taken into account the aspirations of the
geometers so fond of erudite and rigorous deductions, but he had also
had in mind the needs of practicing artisans. The latter lack the
intelligence and the leisure to follow the arguments by which it is
possible to deduce methodically from a small number of simple and
general postulates the various laws of mechanics. However, because
they need to make use of such laws, they also need to have a clear,
precise and solid knowledge of them. It was undoubtedly with that
purpose in mind that Roberval composed the Traite de Mechanique et
specialment de la conduitte et elevation des eaux, by M. de Roberval,53 a
treatise which has unfortunately remained unfinished, but which fills the
major part of the manuscript at the Bibliotheque Nationale.
Although this Treatise on Mechanics is not dated, a passage in it

contains information indicating its date of composition. When Roberval
discusses the raising of water by means of the "Siphon" he expresses
himself in the following terms: 54

And even though it appears possible to transport water by this means over a high
mountain, one should remember that such a conveyance is impossible above a height of
32 French feet. Even slightly below 32 feet, it is quite uncertain, for two reasons: the
first is that it is very difficult to obtain a siphon, which is so perfectly welded that it is
air tight. And once air enters into the siphon, water will no longer flow. The second
reason is that at a great height one needs too long a siphon and runs the risk of it
breaking.

The experiment of Torricelli showed that the atmospheric pressure is
the true reason for the phenomena mentioned by Roberval. It is clear
that at the time he was writing the Treatise on Mechanics Roberval had
no knowledge of this famous experiment. However, it is in 1644, upon
returning from a trip to Italy, that Mersenne repeated in Paris the
experiment of Torricelli and "made it known throughout France to the
great admiration of all scholars and interested parties."55 As a close
acquaintance of Mersenne, Roberval must have been one of the first to
know about the important "Italian experiment." Since there is no trace
of it in the Treatise on Mechanics, the latter must have been written
before 1644.
In this Treatise on Mechanics there are no definitions, postulates or

deductions, but it is a very clear and simple account, totally devoid
of abstruse scientific pretension and presents the major lessons of
mechanics. When reading this short work, one is reminded of the two
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masterpieces of Pascal, the Treatise on the Equilibrium of Liquids and
the Treatise on the Weight of Air. Roberval's Treatise on Mechanics is
written in the same spirit. Dynamics and the mechanics of fluids form
the main body of this work.

But, at the outset, the author says, we shall furnish enough information on the instru
ments of mechanics as is necessary to construct those needed to pump and raise water.

That is the reason why the treatise begins with a study of the "five
major types of common instruments whose forces are known: to wit,
the balance, the lever, the wheel and axle, the pulley or the block and
tackle and the inclined plane, to which the wedge and the screw may be
reduced."
In this text one can find evidence of the influence of Bernardino

Baldi on Roberval. We have pointed out such evidence elsewhere.56 Let
us only mention here the discussion concerning the stability and sensi
tivity of the balance. Not only does Roberval restate very accurately
what Baldi had said on this subject,57 but he even transforms into an
obvious error an obscure passage written by the Abbot of Guastalla. In
his discussion on the balance with the center of gravity of the beam
below the axis of rotation, Roberval expresses himself in the following
terms: 58

The third type is subject to error when the center of gravity is below the center of
movement.

We can not expect to find any new truths on statics in this rudimen
tary treatise. Roberval merely formulates with clarity and simplicity
laws already known through the work of his predecessors or of his
contemporaries. Thus the properties of the inclined plane are presented
with great care. Let us merely quote the following passage,59 on the
equality between motor work and the work of the resistance in ma
chines. It scarcely differs from what we read in the De Subtilitate of
Cardan or in The Explanation ofMoving Forces of Salomon of Caus:

Finally, it is necessary to note that what is true for the lever is also true for all other
instruments with respect to the displacement and the path traversed by the weights and
the force which moves them by means of the instrument, namely, that if they act over
equal arms or over equal displacements they traverse equal paths. If they act over
unequal displacements, the one acting through the larger, traverses the longer path in
the same proportion as its displacement is longer. Therefore, it follows that the smaller
of the two - whether the force or the weight - must be the one with the longer arm or



THE SYSTEMATIZATION OF THE LAWS OF STATICS 395

the greater displacement for compensation and will also be the one which will traverse
the longest path. It also follows that, proportionately, the weight acting with the longer
arm will need more time to cause the other to move, and vice versa. If, for example, we
take a small force for the purpose of moving a large weight, this small force will need,
proportionately, a longer arm and, therefore it needs to traverse a great distance and
therefore, requires a lot of time while the weight will traverse a much shorter path,
namely, if the arm of the force is ten times longer [than that of the weight),60 it must
travel through ten feet to move the weight one foot. In this way, the weight moves very
slowly and requires a great amount of time to move a short distance. What we have just
said should serve as a warning that one should not hope to be able to save time and
force simultaneously, or to produce a large effect with a small amount of force, except
over a long period of time. This is the common mistake of the ignorant and causes
other ignorant people to mock them but also science undeservedly as well.

Therefore, Roberval dedicated a large part of his effort in construct
ing a vast and rigorous treatise on mechanics intended for the use of
geometers and in composing a rudimentary account of the same science
for the convenience of practicing artisans. But in accordance with a
strange custom of his, he did not have the two works printed. The first
one is lost while the second one is still unpublished. Thus both Treatises
on Mechanics remained unknown and were unable to satisfy the ever
increasing urgent needs of both geometers and artisans for a complete
and systematic statics.

3. JOHN WALLIS (1616-1703)

If not the artisans, the geometers soon saw their wish fulfilled with the
publication of the monumental treatise of John Wallis.61 Indeed, the
three volumes which the great Englishman devoted to statics, dynamics
and hydrostatics form a true monument to mechanics and, moreover,
present the most inclusive and systematic work written since Stevin.
Furthermore, the statics of Wallis is not dissimilar to the statics of

Stevin. It contains the same concern, sometimes exaggerated, for
geometrical rigor, the same desire to admit no supposition, however
clear it might be, and no corollary, however evident it might seem,
without a formal and precise statement pointing it out. It must be
admitted that it is equally tiresome to read these two works because of
their excessively complicated logical apparatus.
Upon which hypothesis should all of statics be based? In any given

machine, two forces (potentiae) oppose each other and must precisely
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counterbalance each other in order to establish equilibrium. One is the
motor force (vis motrix), the other is the resistance (resistentia). How
can the efficacy of each of them be evaluated, either to determine the
displacement of the machine or the prevention of that displacement?
We have two possible solutions. The first is that which Galileo

deduced from ancient Peripatetic dynamics. In order to measure the
efficacy of a weight, whether motor or resistant, its momento must be
calculated, that is to say, one must multiply the weight by the velocity of
the motion at its point of application, or even better, by the projection
of this velocity onto the vertical.
The second solution is that which derives from the School of

Jordanus and was adopted by Herigone and Roberval and then
formulated with precision and defended with vigor by Descartes. In
order to measure the efficacy of a weight, one must multiply the weight
by the path described by its point of application, or to be more precise,
by the projection of this path onto the vertical.
Wallis vacillates 62 between the two solutions and, instead of un

equivocally choosing one of them, he wavers and espouses a bizarre
compromise.
The efficacy of the motor force can be measured by its impedi

mentum. So, while the momentum will be the product of the motor
force and the velocity of the point of application, the impedimentum
can be determined by multiplying the resistance by the path traversed
by the point of application.

Momentum appello, id quod motui efficiendo conducit. Impedimentum, id quod motui
obstat, vel eum impedit. Momentum eadem ratione a verbo moveo descendit, atque
Impedimentum ab impedio ... Ad momentum refero vim motricem et celeritatem.63

Quae, quo majora sunt, eo magis efficitur motus. Ad impedimentum refero resistentiam
et distantiam. Quae, quo majora sunt, eo magis motus impeditur.64

One cannot claim that equilibrium is the result of the equality
between the momentum and impedimentum. These differ in kind, and
equality between them is impossible. A momentum which exactly
counterblances an impedimentum is not equal to it. In Wallis' terms, it
is equipollent to it.
This awkward articulation between the Galilean and the Cartesian

doctrines can not but uselessly complicate the propositions of statics. It
makes the first chapter in Wallis' mechanics seem very awkward and
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crude. This great geometer undoubtly did realize this later because he
abandoned this bizarre compromise and beginning with the second
chapter65 he became a resloute Cartesian.
A heavy body, he says, tends to descend, as long as it is unimpeded.

It only descends by as much as it approaches the center of the earth. It
only rises by as much as it moves away from this center. Its propensity
for a given motion is measured by the magnitude of its descent in its
motion. Its resistence to a given displacement [motion] is measured by
the magnitude of its ascent within this displacement [motion]. The
magnitude of the descent of a body is the product of its weight by the
distance it falls. The magnitude of the ascent is, likewise, the product of
the weight times the distance it rises.
When dealing with a system of several heavy bodies, it is possible to

calculate, on the one hand, the sum of all the descents, and on the other
hand, the sum of all the ascents. If the first sum exceeds the second,
that excess respresents the magnitude of the total descent. If the first
sum exceeds the second, that excess represents the magnitude of the
total ascent. Between these two possibilities is a third where the sum of
the descents is exactly equal to the sum of the ascents.

In the first case, the system tends to move in the direction anticipated
by the calculation of the partial descents and ascents. In the second
case, it tends to move in neither direction and remains in equilibrium.
Such are the principles formulated by Wallis which gave a very

general form to the Cartesian axiom. But the great English geometer
will generalize that axiom even further. In almost every case Descartes
had assumed that the forces in balance were weights and had limited
the statement of his principle of statics to this particular case. We
remarked in Chapter XIV how easy it was to generalize the principle
making it applicable to every kind of force. Although the great philoso
pher was probably aware of the possibility of such a generalization,
he, nevertheless, neglected to formulate it. Wallis will not only call
attention to this generalization, but will emphasize it.
He begins by remarking,66 as Descartes had done before him, that

the fundamental principle of statics does not imply any hypothesis
concerning the nature of gravity. It makes no difference whether one
considers it an innate quality in all heavy bodies, or an attraction
similar to electric or magnetic actions exerted by the earth, or finally, a
pressure pushing heavy bodies towards the center of the globe. It
suffices to understand by the term, gravity, the force which is obvious
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to our senses and which moves heavy bodies downwards, regardless of
its inherent nature.
However, if the laws of statics concerning gravity contain nothing

which depends on the particular nature of this force, they must apply,
mutatis mutandis, to every kind of force:

What we have said on the subject of gravity and the center of the earth can also be said
about any given motor force and the goal towards which it strives. The descent of a
heavy body is measured 67 by the amount by which it moves towards the center of the
earth. Its ascent is measured by the amount by which it moves away from the center.
Thus, in a very general sense, the forward motion due to a motor force is measured by
the displacement effected in the direction of that force, and the backward motion is
measured by the displacement in the opposite direction.
The magnitudes 6X of the descents of the various heavy bodies are in the same

proportion to each other as the products of the weights and the distance of their fall.
The ascent can be calculated in a similar way.... Thus, in a very general sense, the
motion forward or backward under the action of any motor force can be obtained by
calculating the product of the force by the distance of their forward or backward
motion taken along the line of direction of the forces.

The principle is thus quite clear and allows one to generalize from the
consideration of weight to the. consideration of any given force. It is
now easy for Wallis to lay the foundations for a universal statics. All he
must do is add the following words to the statements where he formu
lates the hypothesis on which the statics of heavy bodies rests: 69 Idem
intellige, mutatis mutandis, de quacumque vi motrice.
Thus it is in this way that the English geometer formulates the

fundamental principle of his statics and demonstrates a profound grasp
of the works of his predecessors, be they Torricelli,71 Jordanus,n
Tartaglia or Guido Ubaldo.
What effort was required of Wallis to generalize this principle as

formulated by Descartes? Almost none. All he had to do was to render
more explicit several statements implicit in the undertaking of the great
philosopher, and to produce certain generalizations which were obvi
ously necessary at the very outset.
On the other hand, when Jean Bernoulli set out to state the Principle

of Virtual Displacements, what modifications did he have to make to
this postulate of Wallis? Again, almost none. What Wallis takes into
consideration when he sets out to determine the tendency of a force to
produce a given motion, was later called the virtual work of that force.
He defines equilibrium as equality between the sum of the positive
virtual moments and the sum of the negative virtual moments.
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It is true that Wallis in his formulations is only considering virtual
displacements, which he assumes to be rectilinear. Furthermore, he
assumes the forces to be constant in magnitude and direction. But, he
also foresees the infinitesimal procedures which will obviate these
limitations. Like Descartes, he recognizes 73 that a curvilinear trajectory
may be replaced by its tangents, and a curved surface on which a
weight is resting by its tangential plane. He also recognizes 74 the
analogous artifice which will allow one to take into consideration forces
of variable magnitude and direction.
When Jean Bernoulli is ready to give his definitive formulation to the

Principle of Virtual Displacements, he only needs to unify the
statements scattered throughout the treatise of Wallis and to reformu
late them on an infinitesimal basis. Thus the principle of Wallis and that
of Descartes differ only slightly. There is an even less perceptible
difference between the formulation of Jean Bernoulli and that of Wallis.
And yet, thirty-two years pass between the letter of Descartes to Con
stantin Huygens and the statics of Wallis, and forty-eight years separate
the publication of the latter's statics and the letter which Bernoulli will
write to Varignon. So slow and laborious is the progress towards truth
in the human sciences!

4. THE GREAT TREATISES OF STATICS FROM THE JESUIT

SCHOOL - F. DECHALES (1621-1678) AND
F. PAOLO CASATI (1617-1707)

Written in accordance with an excessively complicated academic logic
and limited to the study of extremely simple machines, the treatise of
Wallis was not able to fulfill the needs ofmost physicists and artisans.

The treatises, Father Pardies wrote 75 in 1637, which have been published on the laws
of motion, on the resistance of bodies, on the force of percussion, on the equilibrium of
liquids, on the hardness, on weight, and many other matters, are certainly works which
testify to their author's subtlety and to the refinement of the times. However, one
cannot consider them taken together a complete science of mechanics. They represent
elegant parts of it, but they do not form a whole, since they are the products of diverse
authors of diverse views who did not collaborate with the same goal in mind and who
even worked from diverse principles.
I had always hoped that this lengthy work of M. Wallis, which we awaited for so

long, would include everything ever wished for about this topic.
I was almost certain that this had happened when I first saw the three large volumes
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in quarto with the titles Mechanics and the Science of Motion. However, I discovered
that this excellent and admirable work is much better suited to satisfy those who are
already experts in this science, than to instruct those wishing to learn it. Besides the fact
that it is far from being inclusive it is written in such a scholarly and mathematical style
that very few people are capable of understanding it.

At the time Father Pardies wrote these lines, the desire for a treatise
on mechanics which would be both simple and comprehensive was so
widespread and so strong that it aroused the support of Louis XIV and
Colbert. In 1675, they called upon the Academie des Sciences and
urged them to find a solution to this problem.?6

The King wished for the Academie to start working without delay on a treatise on
mechanics in which theory and application would be explained in a clear fashion,
readily comprehensible by everybody. However, one was supposed to separate from
theory anything too closely connected with physics and anything which might give cause
for argument was to be included in some kind of introduction to the entire work. The
work itself was supposed to include the machines used in the practical arts in France as
well as abroad.
That is the message which M. Colbert had conveyed through M. Perrault to the

Academie on June 19 of the same year. During several meetings, the Academie
discussed the request and M. DuHamel was charged with giving M. Colbert an account
of the reflections of each of the members. Messers. Picard, Huygens, Mariotte and
Blondel worked together on the preliminaries. Messers. de Roberval and Romer also
dealt with the same subject individually. M. Buot was charged with drawing up the
catalogue of machines and to have drawings of them made. As assistants he was given
M. Couplet, and Messers. Pasquier and Du Vivier.

As far as I know, the work requested of the Academie never
appeared, but treatises on mechanics written by individual members
were published in ever greater number.
Unfortunately, these treatises were not only quite numerous, but

often also quite mediocre. The authors can be divided into two groups.
The first group, obsessed with including everything and unconcerned
with unity, accumulated - pell mell - and uncritically everything ever
written on statics. The second group, on the contrary, given to a
malicious and punctilious criticism rejected even the most undubitable
truths and the most fecund principles.

The Course or Mathematical Universe 77 of Father Claude Fran90is
Milliet Dechales or De Challes has, to be sure, an imposing and antique
aspect. Its deductions and discussions are carried out in the slow,
stringent and rigorous manner of the Scholastics.

In these discussions, written in a Peripatetic form, one continually
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senses the influence of very ancient authors. Besides references to the
Synopsis of Mersenne,78 there are constant allusions to the treatise of
the Precursor of Leonardo da Vinci and to the Jordani Opusculum de
ponderositate, edited by Curtius Trojanus. At one point,79 the Jesuit
scholar rejects the opinion of that author as concerns the influence
exerted by the environment upon the motion of projectiles. At another
point,80 he borrows from him the demonstration of the law of the lever
and certain propositions 81 concerning the balance.

It is true that Father Dechales has a rather strange way of moderniz
ing his borrowings from the Ancient mechanicians. He has no qualms
about attributing what he takes from them to certain contemporaries
who are either colleagues or friends.
Thus the law of the lever which Stevin and Galileo borrowed from

an argument known since the XlIIth century is presented 82 by Father
Dechales as deriving from Father Leotaud (1595-1672), a fellow
member of the Society of Jesus. The reduction of the problem of the
inclined plane to the problem of the lever which Galileo had accom
plished in his early works, which Roberval had used and which
Descartes repeated again in the opposite direction, derives,83 according
to Father Dechales ''from my friend M. Reynaud, a man well-versed in
mathematics."
The principle of statics adopted by Father Dechales is exactly the

same one postulated by Aristotle in his Mechanical Problems. How
ever, in the course of its development, this principle is gradually trans
formed just as it was transformed in the writings of Galileo.

In order to assess the mechanical effect of a weight, its quantity of
motion must be known.

This quantity of motion can be obtained"4 by multiplying the number of parts of the
weight by the velocity, and since we neither know nor can measure the velocity other
than by the space traversed in a given time, in order to know the quantity of motion, we
must multiply the number of parts of the weight by the space traversed ...

If, in a machine, two weights oppose each other:

in such a manner so that there is the same quantity of motion in each of them there is
equilibrium.
Thus two moving bodies are equal in force,"5 when their magnitudes are in inverse

proportion to their velocities.
Thus no machine can increase the force of their potential."5
If the forces of the power can be applied to a larger weight,"? it is because the
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quantity of motion is diminished in the weight or increased in the force. Thus the more
the forces of the power are increased by the machine, the more the ratio between the
motion of the power and the motion of the weight.xx

The principle so stated is faulty, unless it is modified. It is not the
velocity in itself of a weight which must be included in the determina
tion of the resistance of the weight, but only the vertical component of
the velocity. The most simple observation calls for such a correction.
For example, the fact that the same force normal to the same lever
supports a lighter weight when the lever is horizontal than when it is
oblique.89 It seems 90 that our author became aware of the correction
required by the Axiom of Aristotle while studying above all the first
deduction in which that axiom was ever used, i.e., the demonstration of
the law of the lever given by Jordanus de Nemore. Moreover, Father
Dechales also adopts this demonstration for his theory of the balance.91

Moreover, Father Dechales remains faithful to Peripatetic dynamics
in considering the velocity of the ascent or descent of a heavy body and
not the distance it moves upwards or downwards. Thus his theory of
the inclined plane is that of Galileo,92 not that of Descartes.
This theory begins with a curious proposition,93 which is difficult to

reconcile with those which follow. Father Dechales attempts to explain
why a sphere rolls more slowly, the less the plane is inclined. He thinks
he has found the reason in the counterweight formed by a part of the
sphere. His reasoning calls to mind the deductions of Pappus and, even
more, those of Leonardo da Vinci and Bernardino Baldi.
The method by which he treats 94 the composition of concurrent

forces also very closely resembles the method employed for a time by
Leonardo. Dechales assumes that two concurrent ropes support a
weight and he sets out to calculate the tension in each of them. To do
this, he replaces one rope, for which he is not calculating the tension,
by a rigid rod capable of rotating around one of its endpoints. The
solution to the problem is then immediate.
Just as Guido Ubaldo, Villalpand and Mersenne, our author claims 95

that "the center of gravity for any body cannot ascend, unless violently."
He applies this principle to the very same example that Mersenne cites
and which came from Leonardo.
He justifies this principle by means of reasonings similar to those

used by Villalpand, without however, referring to the attraction of the
center of gravity towards the common center of heavy bodies.
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Although it had been clearly refuted for over half a century, such an
attraction does not seem absurd to him, as the following passage
shows: 96

In every body there exists a definite center of gravity ... Father Leotaud attempted to
prove this proposition by taking as his point of departure the following view accepted
by all Peripatetics: The center of the Universe, or if one wishes, the center of the earth
- it doesn't matter which one - is the center of all heavy bodies. They are all drawn to
it by their weight and they remain at rest there. Demonstration: every heavy body tends
with all of its effort towards the center of the Universe so that if all obstacles were
removed, it would move towards this center and then remain there. But it could never
remain at rest if it were not for a certain point or center of gravity within the body so
that the body stops moving, once this point coincides with the center of the Universe
... This demonstration is acceptable but ... we shall see whether it is possible to say
comething even more convincing.

Father Dechales, does indeed have some doubts about the properties
which the Ancients attributed to the center of the Universe. He thinks 97

that heavy bodies might very well attempt in their descent to join not
the center of the earth itself, but an interior nucleus, which, in itself, is
devoid of any weight. How naive and old-fashioned this hypothesis
seems to us, when we recall that at the time it is stated by our author,
Newton had already laid the foundations for the system of universal
gravitation!
The same tone of old-fashioned naivete is prevalent in everything

Father Dechales wrote about statics. No recent discoveries, no new
ideas find their way into his system. Although everything he writes
reeks of old age, he at least is able to preserve what is valuable in the
older traditions. The powerful thoughts expressed by Descartes and
Wallis on the Method of Virtual Displacements remained for him a
dead letter. He only took from this approach what Galileo had written
about it. A heavy body is in equilibrium when the center of gravity is at
its lowest possible point. He fails to give this principle the precise form
which Torricelli and Pascal had given it. He merely states it in the same
fashion as Cardan, Villalpand and Mersenne. The extreme respect of
our author for tradition renders him almost imcapable of accepting new
truths, but makes him the jealous guardian of ancient truths.

If there is a place where respect for tradition is always present, it
surely is within a tightly knit religious order. And Father Dechales is a
Jesuit and his work can be included among the long series of works by
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which the Society of Jesus attempted throughout the XVllth century to
give logical order to statics.
The treatises of Father Zucchi and Father Honore Fabri mark the

beginning of that attempt. Their treatises as well as the teachings of
their authors, whether at the Collegium Romanum or at the College run
by the Society of Jesus in Lyon, were highly influential on all of the
works of Jesuits on statics.
Father Zucchi and Father Fabri took as the fundamental principle of

statics the Principle of Virtual Velocities in the form which Galileo had
given it. In their eyes, this form offered a unique advantage. It allowed
them to meld the laws discovered by modern mechanicians with the
principle of Peripatetic mechanics. We know how much the Jesuits of
the XVlth and XVIIth centuries valued a synthesis capable of carefully
maintaining the major principles of the physics of Aristotle while
enriching them with the discoveries of the new science.
Father Dechales also shared the desire to be both a loyal Peripatetic

and a mechanician, well informed on the science of his day. That desire
had inspired him to base his statics on the principle adopted by Father
Zucchi and Father Honore Fabri. Father Paolo Casati was also inspired
by the same desire and took up the same cause.
Father Paolo Casati of Plaisance (1617-1707) began writing on

mechanics in 1655 in a curious work entitled: Terra machinis mota.98 A
second, more complete edition of this work was published in 1658.99

In this work, three interlocutors called by Father Casati Galileo,
Mersenne and Guldin comment upon the well known statement of
Archimedes: 100

Give me a place to stand and I shall move the earth.

They attempt to prove that this sentence was far from being arrogant
boasting.
Stevin had already expressed a similar opinion. Furthermore, the

influence of Stevin is evident in this strange dialogue written by Father
Casati where the windlass is called a pancratium, the exact same name
proposed by Stevin when he discusses the proposition attributed to
Archimedes.
There exists yet another influence in several passages of the Terra

machinis mota which we could delineate if we had the time. It is the
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influence of Leonardo da Vinci. It is true that the doctrines on mech
anics which the Jesuits taught in their colleges contained numerous
borrowings from the notes of the great painter. Our analysis of the
Cursus mathematicus of Father Dechales has already revealed some of
these borrowings. We could point out many more in the Terra machinis
mota concerning certain theories on hydrostatics, and others will be
come apparent later on.
The dialogues entitled Terra machinis mota have hardly any impor

tance for the organization of the principles of statics. It is in another
book that Father Casati worked on such a synthesis. This new book was
not printed until 1684,101 but in the preface to the reader we learn from
the author that as early as 1655 he had distributed to his students at the
Collegium Romanum a handwritten summary. Thus the work of Father
Casati appears to antedate the one by Father Dechales. Moreover,
there are many similarities between the two works. They not only
derive from the same mentality, but they often make use of the same
demonstrations.
The first book 102 of the work by Casati deals with the center of

gravity and is to a large degree borrowed from Bernardino Baldi,
Villalpand and Mersenne, that is to say in the final analysis, from
Leonardo da Vinci. Furthermore, it sometimes seems that Father Casati
is submitting to the direct influence of Leonardo in his Mecanicorum
libri as well as in his earlier works. He seems to have borrowed almost
literally from the notes of the great painter 103 a pulley arrangement
which facilitates the tolling of a heavy bell. l04 His study of the posture
of animals copied from those who were inspired by Leonardo 105 gives
the author an opportunity to formulate the law of the polygon of
sustentation. It even appears that Father Casati was the first mech
anician ever to use the term.

It is in this same book that the author deals 106 with the apparent
weight of a heavy body placed upon an inclined plane. In order to
determine the apparent weight he uses almost exactly the same reason
ing as Father Honore Fabri:

... the weight of a body on an inclined plane is to its weight in the vertical plane as the
resistance which it experiences in order to move upwards in one of those planes, is to
the resistance which it experiences to move upwards in the other one; but these
resistances are to each other as the violences experienced by the body during these
displacements.
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And these violent actions are inversely proportional to the distances
which the body must traverse in these two planes in order to ascend by
an equal amount.
Moreover, Casati distinguishes between the apparent weight of a

body placed upon an inclined plane (gravitatio in plano inclinato) and
the pressure which it exerts upon the plane (gravitatio in planum
inclinatum). The analysis done by Stevin would have allowed him to
determine precisely this latter force, but Casati does not resort to that
analysis. He repeats an error committed by Descartes when he formu
lates 107 the following proposition:

From the preceding chapter, we know the force of the weight of a body placed upon an
inclined plane. The difference between the weight of the body in the vertical plane and
the weight of the same body placed on an inclined plane measures the resistance to
motion of the body by the adjacent plane. Thus it also measures the pressure exerted by
the body on the plane.

The calculation of the moment of a weight attached to one extremity
of a lever arm with the other being free to rotate about the point of
support can be reduced 108 to the problem of the inclined plane. This
moment is equal to the apparent weight which the same body would
have when placed on a plane normal to the arm of a lever. This artifice
which allows one to move from one problem to another is identical to
the one which Descartes had used and which Galileo and Roberval had
used in an inverted fashion.
Once this problem is solved, Casati 109 goes on to determine the

tensions in two ropes which sustain a weight. He obtains it by using
exactly the same method as Dechales.
The solutions to the different questions on statics analysed in Book 1

were deduced from the postulates concerning the properties of the
center of gravity. These postulates were not reduced to the general laws
on motion. In his second book,l1O Casati attempts to deduce from the
principles of dynamics the theory of diverse machines.
The principles of dynamics used by our author closely resemble

those formulated by Father Fabri. They are founded 111 entirely upon
the consideration of an impetus proportional to the product of the
weight of a body set in motion and the velocity of that motion.
This notion plays an essential role in the formulation of the principle

which provides the basis for all machines. Casati borrowed this
statement almost word for word from Fabri: 112
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The central stratagem of mechanics consists in positioning its instruments in such a way
and placing the force and the load at such points that the force moves faster than the
load. If one takes into account the relation between their displacements, one will be
able to determine the force required to move a given load or the load a given force will
move. To make the motion possible, it is necessary that the ratio between the force and
the weight of the load exceed the ratio between the displacement of the load and the
displacement of the force. The machine does not increase the capacity of the force nor
does it diminish the weight of the load. It merely accommodates the resistance of the
weight to the capacity of the force.
This law has a physical cause. To move a load equal to the force at the same

velocity as that force, the impetus produced by the force would have too great an
intensity. It has a lesser intensity when a heavier load is moved more slowly, but this
lesser intensity is sufficient because of the smaller resistance ...
One can thus see that a kind of justice always rules between the capacity of the

force, the weight of the load, the distances traversed during the motion and the duration
of these motions. Wherever the capacity of the force decreases, or the weight of the
load increases, the distances traversed by the load become shorter and the duration of
these paths longer. On the other hand, the distances traversed by the force become
larger, because this weaker force must move more rapidly than the load. Thus, if one
wishes to lift a heavier load, one must increase the force or, if one wishes to maintain
the same force, one must either decrease the displacement of the load, or increase the
displacement of the force. With a small force, it is impossible to move a large weight
rapidly.

These various passages expound the statics of Aristotle, not of
Galileo. However, Father Casati is aware of the modification which the
study of the inclined plane had forced the geometer of Pisa to make of
the Peripatetic principle. We have seen him restate an accurate solution
to this problem of the inclined plane. Moreover, in all of his calcula
tions he does not introduce the actual velocity of the weight put into
motion, but the projection of this velocity on the vertical.
The mechanicians of the Jesuit School - Fathers Zucchi, Honore

Fabri, Dechales and Casati - were certainly well-acquainted with the
work of Descartes. Nevertheless, they did not adopt the method which
the great philosopher wished to be applied in statics. It is easy to
understand why they refused to adopt this method. Its main goal was to
bring about the definite break between the recently established statics
and the basic law of Peripatetic dynamics. The clear intention of the
Jesuit geometers consisted, on the contrary, of fusing the modern
science of equilibrium with the principle of Aristotelian mechanics.
How could they avoid being attracted to the method of Galileo which
derived so directly from the axioms postulated in the Physics, in the On
the Heavens, and in the Mechanical Problems, but, which, in practice,
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yielded exactly the same corollaries as the Cartesian method, and by
using the same calculations?
Although they misunderstood the notion of work, whose nature

and importance had become ever more apparent from Jordanus to
Descartes, nonetheless, they preserved in its entirety the Method of
Virtual Velocities, which originated in the Physics of Aristotle and had
been transformed by Galileo under the influence of the discoveries
made by the School of Jordanus. Thus the Jesuit school of mechanics
was able to safeguard a great part of the fertile ideas produced by the
venerable Science ofWeights.

5. THE REACTION AGAINST THE METHODS OF VIRTUAL

VELOCITIES AND VIRTUAL WORK: JACQUES ROHAULT

(1620-1675), F. PARDIES (1636-1673), THE TREATISES

OF F. LAMY, THE DE MOTU ANIMAL/UM OF BORELLI

We now shall see how the truths of the Ancients will be misunderstood
and brutally expelled from the field of statics. We have already wit
nessed the violent rejection on the part of Guido Ubaldo, Benedetti and
Stevin during the XVlth century of the rich ideas which were to
develop from the teachings of the School of Jordanus. This same
rejection reoccurs at the end of the XVIIth century and is as radical in
expelling ideas as was the XVlth century. However, it is much less
justified because the School of Descartes is now the enemy in place of
the School of Jordanus.
No one was more fanatical than Jacques Rohault in rejecting any

demonstration which used the Method of Virtual Displacements or any
comparison between the work of the motor force and the work of the
resisting force. One would have to go as far back as Benedetti to find
an author who refused so stringently any consideration of this nature.
Rohault was a student and friend of Cyrano de Bergerac and had

induced him to break with the system of Gassendi and to adopt the
Cartesian cosmology. In Cyrano's papers, Rohault had found a plan 113
for various chapters for a treatise on physics. Based on that plan, he
wrote and published a complete treatise,114 which enjoyed great success
and remained a classic until the middle of the XVIIIth century.
During his lifetime, Rohault published nothing related to statics, but

he lectured on it in his very popular courses, which he taught in a clear
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and elegant fashion by making use of cleverly devised experimental
demonstrations. I IS

The public lectures which he gave once a week were attended by persons of every rank
and condition - prelates, abbots, doctors, courtesans, physicists, philosophers, geome
ters, students, regents, provincials, foreigners, artisans, in a word, persons of every age,
sex and profession. During his lectures he delivered almost as many oracles as he gave
answers to problems which had been submitted to him by all sorts of persons. In this
way, he achieved such a great reputation that we know of many people who left their
homeland and undertook long voyages in order to hear him speak. Some did so out of
curiosity, while others were moved by jealousy for they wanted to criticize and combat
his teachings.

Through these lectures the method by which Rohault taught statics
was soon well-known. The influence of this method is evident in works
which appeared several years before the publication of the method
itself.
We have this method today in the Oeuvres posthumes of Rohault

which his father-in-law, Clerselier, published in 1682.116

We have said before that one could look in vain in Rohault for a
reference to the Method of Virtual Displacements either in the modified
form which developed from Aristotle to Galileo, or in the form which
developed between lordanus and Descartes and Wallis. Furthermore,
no mention is to be found of the principle of the center of gravity which
had been so accurately formulated by Torricelli and Pascal. Nor is
there any trace of the postulate on the impossibility of perpetual motion
so skillfully used by Stevin. The law of the lever, established by the
method which Stevin and Galileo undoubtedly took from the Middle
Ages if not from Antiquity, was the sole source from which derived all
of the laws of "mechanics." The logical order of the presentation, the
rigor and clarity of the deductions, cannot hide its underlying arid
sterility, devoid of any possibility of bearing fruit.
However, the same author who so completely ignored the ideas of

Descartes on "mechanics" was, as far as physics is concerned, a fervent
Cartesian. It was he who wrote the following in the Preface to his
Treatise on Physics:

The man who contributed the most to the composition of this work and whose name
cannot be found anywhere in it because it would have been repeated too many times, is
none other than the famous Descartes, whose merit has been increasingly recognized in
many of the most important states and who will cause everyone to admit that France is
at least as fortunate as Ancient Greece in producing and nourishing great men in all
professions.
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He goes further. In his Treatise on Physics, Jacques Rohault
defined 117 the notion of quantity of motion and uses almost the same
words which Dechales was to adopt just a few years later to show how
the equality of the quantities of motion produced the equilibrium
between the motor force and the resisting force:

Motion has always been considered a quantity which on the one hand can be calculated
by the length of the line which the moving body traverses ... and on the other hand,
can be calculated by how much or how little matter is moved at one time.... From this,
it follows that for two unequal bodies to have equal quantities of motion, the paths
which they traverse must be to each other in inverse ratio to their masses. If a body is
three times larger than another, the path which it traverses can only be one third of the
path traversed by the other body.
When two bodies which are attached at the extremities of a balance or a lever are to

each other in inverse proportion to their distances from the fixed point, they must while
in motion, describe paths which are to each other in reciprocal proportion to their
mass.... Thus we must assume that they will be in perfect equilibrium. This result
could serve as a foundation for mechanics ...

Why did Rohault, when he wrote his Treatise on Mechanics, give it a
completely different basis and not even mention other possibilities such
as the one above? We can't answer this question. The fact is that his
treatise, as it was, was consistent with the fashion of the times.
The most fervent Cartesians, like Rohault for example, had passed

over in silence the principle on which Descartes wished to found statics.
The opponents of the great philosopher went even further, and openly
fought this and other similar principles.
Father Ignatius Gaston Pardies of the Society of Jesus was an

impassioned opponent of Descartes. In his Discours de la Connaissance
de Beres. 118 published in Paris by Mabre-Cramoisy in 1672, he fought
against the automatism which the great philosopher attributed to
animals. In his Discours du movement local, 119 published by the same
editor, first in 1670, then in 1673, he rejects the principles of Cartesian
dynamics. Thus it is not surprising to see him reject the foundations
upon which Descartes meant to build statics. The Statique l20 of Father
Pardies is a rather unoriginal book, even though it had some success at
the time. The beginning is borrowed almost word for word from
Villalpando The law of the lever which is so pompously introduced in
the following words:

Here now is the most important proposition of statics,
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is established through the demonstration adopted by Galileo and Stevin
and taken up again by Rohault and Dechales. In the passage containing
this reasoning, Pardies sounds, incidentally, as if he were presenting a
new invention: 121

Those who know what the interpreters and commentators of Archimedes say about this
subject, will realize that the demonstration which I have furnished is devoid of any of
the shortcomings which are usually associated with this demonstration.

The equilibrium of the bent lever is treated 122 in a form which recalls
the reasonings used by Benedetti. All simple machines, such as pulleys,
inclined planes, the assemblage of two ropes to sustain a weight, are
reduced to the straight or bent lever. The tensions of these ropes are
determined by the same artifice used by Dechales and Casati.123

Incidentally, Father Pardies writes: 124

In the case of all of these moving forces one can observe that the perpendicular
displacement of the weights while moving either upwards or downwards in the same
interval of time is always reciprocally proportional to these same weights.

In support of this proposition, he cites the example of the lever and
reproduces the figure which Dechales had copied in almost every detail
from the treatise of10rdanus de Nemore.
However, Father Pardies is very careful not to make of this proposi

tion the foundation of statics. He wants it to be founded on entirely
different principles and this proposition to be reduced to the role of a
corollary: 125

Thus, he says, some people have labelled it a principle in order to account for all the
moving forces. Furthermore, it seems quite obvious that it does not take more or less
force to raise a one hundred pound weight one foot than to raise a one pound weight
one hundred feet. Thus a one pound weight descending by one hundred feet will
counterbalance a one hundred pound weight descending by one foot. This principle
does not sufficiently satisfy our intellect so to provide clear demonstrations. It is,
nonetheless, quite correct. And in view of the demonstrations which I have just made
on moving forces, one can accept it without hesitation as being beyond doubt.

If Father Pardies refuses to follow Descartes and to make of the
proposition of 10rdanus the essential postulate of statics, he compre
hends clearly, nevertheless, the connection of this proposition with the
impossibility of perpetual motion. It is true that what he says 126 in order
to show that "perpetual motion in mechanics is impossible" is but a



412 CHAPTER XVII

clear and accurate commentary on what Cardan had written in the De
Subtilitate:

From this we can see that those who search for the means to produce perpetual motion
in statics are wasting their time. To produce such motion, certain bodies would
necessarily have to descend and others ascend in such a fashion that the same bodies,
once they had moved upwards would descend again and perpetuate motion in a
continuous cycle. But it is obvious in these instances that whatever moves downwards
must also move upwards. If the weight which must ascend is only equal to the weight
which must descend over the same interval of time, it is impossible for the motion to
occur by itself, since a weight cannot in this fashion overcome another equal weight. If
the weight descending is larger than the weight ascending over the same interval of
time, the velocity of the descending weight must of necessity be proportionately smaller
so that the descending weight is to the ascending weight as the velocity of the ascending
weight is to the velocity of the descending weight. Moreover, the cycle could not be
perpetual so that either more bodies would rise than descend, or, on the contrary, more
bodies would descend than rise. Thus the machine would soon stop. If the velocity of
the descending body is to the velocity of the rising body in an inverse ratio to the
weights of the individual bodies, there will be equilibrium and nothing will move.

The statics of Father Lamy, a priest of the Order of Orators, is
hardly original.127 Lamy's treatise calls to mind the treatise of Dechales
perhaps even more than the treatise of Father Pardies did. Just as the
former, it begins with the theorems of Villalpand and gives for the law
of the lever the same demonstration used by Archimedes and Stevin.
However, the criticism of Father Lamy extends even further than

that of Father Pardies. Neither the postulate of Aristotle or Galileo nor
the postulate of Descartes seems to the punctilious Father a sufficient
foundation for statics. They are merely corollaries to the laws of
equilibrium and not at all their raison d'etre.

What is gained in force by a lever, he says, 129 is lost in time and space.

He substantiates this remark by using the ancient method of Aristotle,
i.e., by taking into account the actual length of the path traversed by
each of the weights and not the projection of this path on the vertical.
He continues: 129

One need not look beyond what we have proposed for any further cause of the
equilibrium of two bodies of different weights, suspended from a balance. As we have
proven, it is obvious that such equilibrium occurs because the balance is being affected
equally on both sides of the fulcrum. However, some people have assigned a different
cause to this equilibrium, to wit, the law of nature which we have just demonstrated in
the preceding proposition ... Several reasons have kept me from sharing that view.
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First of all, when considering two bodies in equilibrium, I cannot see how a displace
ment which they do not have and can only have when they are not at rest, can be the
cause of that very rest ...
There are machines in which this law of nature, i.e., whatever is gained in force is

lost in time - is valid. However, we shall demonstrate geometrically that the force of
those machines has a cause other than this law. Thus it is not an admissible conclusion
that it is the cause of the force of the lever and that it is at the same time one of its
effects ... There is no need for me to mention 130 that the law according to which one
loses in distance and time what one gains in force is not the cause of the force of
pulleys, but rather a consequence of their configuration. These function as levers, as we
have seen ... Thus one need look no further for another cause for the effects of these
machines.

According to Father Lamy, the axiom invoked so often since Aris
totle and Galileo, does not merit its lofty status, but should be relegated
to the more humble level of a corollary.
Our author does not show any more respect for the axiom of

10rdanus and Descartes: 131

Descartes proposes the following principle and claims that it is the cause of the
equilibrium of the lever. It is the same thing, he says, to lift a one hundred pound load
to a height of ten feet as to lift a ten pound load to a height of one hundred feet. ...
This seems to me to contain a fallacy because this principle can only be true if one can
lift separately the parts of the total load. For example, no more force is needed to lift
ten stones separately to a height of one foot, than to lift one of those stones to a height
of ten feet. If I can lift one stone those ten feet, I will certainly be able to lift all of them
to a height of one foot. However, it is evident, that this cannot be done unless I take the
stones one by one, because even though I can lift a load of one pound to a height of
one thousand feet, I cannot lift a weight of one thousand pounds to the height of the
one thousandth part of a foot.

Father Lamy repeats Stevin's objections to the axiom of Aristotle.
These objections lose their validity as soon as one recalls that the
Method of Virtual Velocities is a method of demonstrating per
absurdum. He makes the same criticism of the axiom of Descartes that
Mersenne had made before him. The confusion of force and work
which was due to an inaccurate terminology explains their criticism.
Nor does the axiom of Stevin, deduced from the impossibility of
perpetual motion, find any favor with the harshly critical and punc
tilious priest. While discussing the theory of the inclined plane, he finds
the occasion to attack that axiom.
The major preoccupation of Lamy in his theory of the inclined plane
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is to determine the fraction of the total weight of the body supported by
the plane, since: 132

A heavy body exerts only a part of its weight on the plane upon which it rests, when
that plane is inclined.

That fraction is what we call today the component of the weight
perpendicular to the plane. The "arithmetical" excess 133 of the entire
weight to the component upon this plane is according to the expression
of Lamy that which is " borne by the air."134 Lamy seems here to be
submitting to the unfortunate influence of Father Casati.
Furthermore, when Lamy attempts to calculate the part of the weight

supported by the inclined plane, he makes use of a rather bizarre
demonstration clearly copied from Leonardo da Vinci and Bernardino
Baldi. He assumes that the body supported by the inclined plane has
the shape of a sphere (Fig. 107) and he claims that 135

the inclined plane does not bear the total weight of X, but ... only bears that portion of
the weight someone would feel while supporting lever LG at point E. Therefore, the
rest is borne by the air.

This reasoning furnishes Lamy with the following erroneous theo
rem: 136

When a body is placed on an inclined plane, the part of the weight of that body which
bears on this plane is to that part which does not bear on it as the length of the plane is
to its height.

Although Lamy continues to apply equally strange reasonings, he is
more fortunate in the following proposition: 137

When a sphere is pulled over a plane along a line parallel to the maximum inclination
of this plane, the portion of this sphere bearing on the plane is to the "portion which
does not bear" on it as the inclination 138 of the plane is to its height.

fig. 107.
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In this formulation, "the portion the plane does not bear," means the
component of the weight of the body parallel to the inclined plane.
This theorem leads our author to another one 139 which is also

accurate 140

When two heavy bodies rest on two planes of equal height, if the part borne by one of
the two planes is to the part borne by the other as the inclination (i.e., length) of one
plane is to the other, then these two bodies will be in equilibrium.

This proposition and the theory of the inclined plane as formulated
by Stevin are in perfect agreement. Perhaps motivated by a need to
criticize the great geometer of Brugge, Lamy modifies his own theorem
in order to bring it into disagreement with classical teachings on the
inclined plane.

Although it is commonly believed, he says,141 that when the actual weights of the two
heavy bodies arranged on the two planes, as in the figure accompanying the preceding
proposition, are to each other as the planes upon which they rest, they must be in
equilibrium, that is not what we just observed. It is not necessary that the actual weights
be to each other as the [lengths of these] planes, but the portion of those weights which
bear on those planes. I have seen an author use this so-called demonstration, which I
reject ...

After having given the demonstration by Stevin, Lamy adds: 142

But since the demonstration assumes the impossibility of perpetual motion, which has
not been demonstrated, it is no good. Furthermore, he has not noticed that the spheres
E, F, and G, (Fig. 108) cannot descend and cause the spheres 0, and N to rise since
they incline more on plane AC than on plane AB.

The criticism has no basis. The string of spheres forms a perfectly
symmetrical wreath which inclines equally on side AB and side AC.

G

B
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fig. 108.
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However, we have to admit that Stevin, usually so unsparing in taking
useless precautions for his lengthy demonstrations, would have been
well-advised to state this explicitly and include some justification for
such a statement.
The Statics of Father Pardies as well as the Treatise on Mechanics of

Father Lamy are very mediocre works. Like those of Rohault and
Dechales, these two works are testimony to the miserable state of the
science of equilibrium around the year 1680. The same impression is
made by another work,143 written during the same period, although
its author is none other than the renowned Giovanni Borelli. The
numerous editions of this work testify to its great popularity.
The study of the forces exerted by the muscles determining the

movements of animals, forces Borelli to study the tensions in ropes
which impede a resistance. An entire chapter 144 is dedicated to these
lemmas on the Composition of Forces. The methods by which the
demonstration of these propositions is shown to be based on the
properties of the lever are quite artificial. They are only clever devices
but their results are hardly convincing.
These results are, of course, those which had been known since

Stevin. However, Borelli finds it legitimate to criticize the demonstra
tions of Stevin and Herigone,145 whom he mentions by name as well as
the reasonings of a certain "insignis Geometra neotericus"146 whom
he does not name, but whose device is the very one employed by
Dechales, Casati and Pardies. Borelli goes even further. He thinks he
has discovered an error in the statements by Stevin and Herigone. He
agrees with them that two oblique and concurrent forces transmitted by
two ropes will hold a weight in equilibrium if each of the tensions is to
that weight as the side of the parallelogram of forces is to the diagonal
of that quadrilateral. But, he claims that the converse of this theorem is
not correct. Varignon 147 will have no difficulty in proving to him, by
using Borelli's own lemmas, that he is quite wrong.
Furthermore, Borelli refuses to allude to any of the general prin

cipals of statics, or to the Principle of Virtual Velocities constantly used
from Aristotle to Galileo, or to the Principle of Virtual Displacements
which Jordanus, Descartes and Wallis had continued to expand upon
and refine. For Borelli as well as for Rohault, Pardies and Lamy, the
law of the lever is "the most important proposition in statics." All other
propositions can be reduced to it. The narrow-mindedness of these
authors resembles that of Guido Ubaldo.



THE SYSTEMATIZATION OF THE LAWS OF STATICS 417

It is clear, in fact, that around the year 1680 most geometers had a
very superficial knowledge of statics. The great and fecund principles to
which this science owes its most marvelous discoveries are not only
either unknown, relegated to the status of mere corollaries, passed over
in silence or considered incorrect, but some of the most indisputable
theorems are questioned or are simply misunderstood. Among such
theorems is the Law of the Composition of Concurrent Forces. All of a
sudden this law is no longer considered as one of the many theorems of
statics, but as the most fundamental proposition from which the entire
science can be derived and as the sole principle which enables the
geometer to see with absolute clarity and certainty the reason for the
most diverse cases of equilibrium.

6. THE PARALLELOGRAM OF FORCES AND DYNAMICS. THE
OBSERVA TIONS OF ROBERVAL. VARIGNON (1654-1722) 

THE LETTER OF F. LAMY. THE PRINCIPIA OF

NEWTON - THE NEO-STA TICS OF F. SACCHERI

In spite of the quite unjustified criticism of Borelli, the Law of Com
position of Forces will soon appear to mechanicians as a principle
which can unravel all of the questions of statics. From now on, the
stature of this principle will require that it be made independent of all
other laws relative to equilibrium and that it be disassociated from any
consideration of the lever or the inclined plane from which it had been
derived up till then. It must now be arrived at directly from the funda
mental laws ofmotion.
The Law of the Composition of Forces will find its direct justifica

tion through the principles of dynamics by returning to its very origins
- the reasonings in the Mechanical Problems.
Aristotle, or whoever might have been the author of the Mechanical

Problems, was quite familiar with the Law of the Composition of
Velocities. We have said before 148 that in the eyes of this author, to
know the Law of the Composition of Velocities meant knowing the
Law of the Composition of Forces, because by virtue of the funda
mental axiom of Peripatetic dynamics, a constant force produces a
uniform motion with a velocity proportional to the force which pro
duced it. Thus it can be asserted that the Law of the Composition of
Forces had been known since Antiquity. If modern authors, such as
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Leonardo da Vinci, Stevin and Roberval devoted so much time to the
demonstration of this law, it is because they wanted reasons purely
within the domain of statics and proofs which were not based on the
ratio between the moving force and the velocity of the moving force.
The reason for these efforts is very clear to Stevin, who considered
Peripatetic dynamics as useless, without, however, knowing what form
of dynamics should replace it.
We have seen that Descartes, like Stevin, thought that the dynamics

of the Ancients must be redone and that a new dynamics had not been
attained. Consequently,it was important to at least temporarily base the
science of equilibrium upon autonomous postulates, upon axioms which
would not rely for their certainty upon the laws ofmotion.
Roberval also harbored some doubt concerning the Peripatetic

principle, which asserts a proportionality between force and velocity.
This is clear from the following passage in the unpublished Treatise on
Mechanics. 149

And although the force or impression increases and, consequently, the velocity as well,
one should not conclude that this velocity increases proportionately. For example, one
should not conclude that a two-fold increase in force or impression will cause a two
fold increase in velocity in the body, even though all other conditions remain the same.
On the contrary, in order to produce a two-fold increase in velocity, one often needs
more than a two-fold increase in force without, however, knowing the increase of one in
proportion to the other, which is very difficult to ascertain.

The doubts expressed in this passage constitute, unfortunately, an
isolated occurence within the work of our geometer. Everywhere else
Roberval reasons like a Peripatetic.
As we have seen 150 before, this author is the first to have published

correct demonstrations in statics of the Composition of Forces. He
gives two of them. The second, deduced from the axiom which Des
cartes was to formulate in its general form, is quite elegant. And
although he supported the idea that the Law of the Parallelogram of
Forces should be justified by methods solely within statics, and although
he helped assure the success of this idea, he did not consider it
necessary to abandon the Aristotelian approach to problems.
When Roberval died in 1675, he left in manuscript his Observations

sur la composition des mouvemens, et sur Ie moyen de trouver les
touchantes des lignes courbes,151 which is one of his claims to glory as a
geometer. Mechanics is hardly treated at all in this work and when it is,
it has a distinct Peripatetic form.
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Power, says Roberval 152 is a moving force; Impression is the action of that power. The
line of direction of the power is that in which the power moves the body ... We have
also defined power insofar as it can help us consider the different types of motion.
However, this does not prevent us in other speculations from understanding by the
word power a force capable of supporting a weight or any other effect.

A little further on, Roberval considers: 153

two kinds of forces within bodies capable of making them move. The first one propels
them violently from one place to another. A racket, for example, imparts such a force
to a ball, or a bowstring to an arrow, etc. The second one occurs through attractions
between bodies, whether this attraction is reciprocal or not ...

There is no doubt that Roberval does include weight, the virtue of
the magnet,154 and the other forces among the "powers" whose "impres
sions" he is analyzing.

Generally speaking,155 we shall consider in this treatise two things concerning motion,
direction and velocity.

It is clear from the definition that our geometer has given to the
expression "line of direction" that the direction of motion coincides
with the line of direction of the force which produces it. This is also
indisputably clear from propositions such as the following: 156

The direction of a power moving a body which in its motion describes the circum
ference of a circle, is the perpendicular to the extremity of the diameter where the
moving body is located.

The proposition conforms so closely to Peripatetic dynamics that it
is evident that Roberval has accepted its basic axiom. Namely, propor
tionality between the "impression" of a "power" and the velocity of the
uniform motion produced by it. Despite the doubt expressed in his
Treatise on Mechanics, this axiom seems so self-evident to the Pro
fessor of the College de France that it never enters his mind to require
that it be accepted. He invokes it in the clearest fashion precisely when
he needs to identify the problem of the composition of forces with the
problem of the composition of velocities.

We can now consider 157 a motion to be composed of several motions when the moving
body representing the motion is moved by several impressions ...
But we shall observe 158 that in this first composition as well as, in general, in all

other motions, we can consider six factors. Namely, three directions, of which two are
simple and one composite, and three impressions, of which two are simple and one
composite.
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When these three directions are given, the three impressions are also given, that is
to say, the proportions of the velocities of the three motions.

Thus, in his Observations sur la composition des mouvemens, 159
Roberval applies the law of the Composition of Forces to dynamics, to
be sure, but to Peripatetic dynamics. His work is a logical continuation
of the Mechanical Problems and the Causes of Charistion.
To the Observations sur la composition des mouvemens the Projet

d'un livre de Mechanique traitant des mouvemens composez is added.160

Although we only possess two pages from the preface of the former
work, it was most certainly written in the same Peripatetic spirit as the
Observations.
The Observations of Roberval were only printed once, long after the

death of their author, in 1693. However, the doctrine on composite
motion contained in the Observations and the method of "drawing the
tangents to the curved lines" which was taken from it, must have been
known much earlier, either as oral tradition deriving from the lectures
of Roberval at the College de France or in manuscript form. The ideas
contained in this work seem to have exerted a profound influence on
the research ofVarignon.161

As soon as Varignon had discovered that composite motion provided a simple explana
tion for the use of forces in machines and yielded the exact ratio of those forces no
matter what direction they took, his method had an advantage over all previous
methods and he bagan to apply it to simple machines. In 1685, in the Histoire de La
RepubLique des Lettres,162 he wrote a paper on the block and tackle in which he used
composite motion to answer all questions on this kind of machine. 163

In 1687, Varignon became known to the public through his Projet
d'une nouvelle Mechanique 164 dedicated to the Academie des Sciences.
He continued throughout his life to work on his treatise on statics of
which the Projet had been the blueprint. However, this treatise 165 was
not published until three years after his death, through the efforts of
Beaufort and Father Camus.
The Project for a New Mechanics begins with a preface in which

Varignon familiarizes the reader with the various stages by which his
mind had reached a clear understanding of the laws of equilibrium. The
author undoubtedly thinks that by confiding in us, he will gain our
admiration for the originality of his insights and the unique depth of his
reflections. However, he is not completely successful because we soon
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recognize in his reflections a train of thought routinely encountered in
every treatise on mechanics written around this time. Thus what strikes
us in this geometer's work is not so much the strength and novelty of its
thought but rather the clarity and fidelity with which it reflects the ideas
of its contemporaries.166

At the beginning of the second volume of the Letters of M. Descartes, says Varignon, I
came across a passage in Number 24 in which he states that it is ridiculous to want to
use the concept of the lever for the pulley. This reflection led me to another one:
namely, does it make more sense to imagine a lever as a weight set on an inclined plane
rather than as a pulley. After having given it some thought it seemed to me that these
two machines, being at least as simple as the lever, should not in any way depend on
the lever, and that those who relate them to the lever do so because they are forced to it
by their principles which are not general enough to demonstrate the independent
characteristics of these machines ...
This might have been what caused Messrs. Descartes and Wallis to take another

approach. Whatever the case may be, they were successful because the approach they
took also leads to the knowledge of the application of each of these machines, without
compelling us to make them depend on each other. Moreover, it had led Wallis further
in this matter than any other author I know of.
The comparison which I made of these two kinds of principles gave me the feeling

that the principles of Archimedes were far from being as general and as convincing as
those of Messrs. Descartes and Wallis. However, I felt that none of them enlightened
me much. When I looked for the reason, the deficiencies of those principles seemed to
stem from the fact that their authors were much more concerned with proving the
necessity of equilibrium than with showing how it comes about.
This persuaded me to start spying on nature and, by following it step by step, to see

if I could understand how it causes two powers, whether equal or unequal, to remain in
equilibrium. Finally, I attempted to locate equilibrium at its very source or more
precisely in its genesis.

Varignon then proceeds to give an example of this method, which
allows him to discover the very genesis of equilibrium. He analyzes the
equilibrium of a body placed on an inclined plane. He shows how the
tension in the rope holding the body and the weight of its mass have a
resultant which is precisely perpendicular to the plane. He says nothing
in this matter which cannot be found in Stevin or which has not been
repeated on many occasions by Mersenne, Herigone, Wallis and by all
who have written on the subject of statics.

Thus, after having found the way which equilibrium occurs on an inclined plane, I shall
now set out in the same way to determine how weights supported by ropes alone or
which are attached to pulleys or to levers maintain equilibrium between each other or
between the forces which support them. I also noticed that all of this came about by
means of composite motion. It occurred with such uniformity that I could not help but
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believe that this was the actual path which nature followed in the case of the con
gruence of the action of two weights or of two powers. Nature achieves this uniformity
by causing the individual impressions - whatever the ratio - to unite in a single
impression which discharges in its entirety at the point where the equilibrium arises. So
that the physical explanation of the effects most admired in machines seemed to me
precisely composite motion.
Such far-reaching insights surprised me and the self-evidence of the details of all of

this, independent of their general application, further confirmed my opinion that one
must go into the genesis of equilibrium to see its true nature and to recognize the
characteristics which all other principles can only prove, at the very best, as necessary
ded,uctions.

How did Varignon arrive at the opinion "that all physical explanation
of the effects most admired in machines is precisely composite motion?"
There can be no doubt. He arrived at this opinion in the very same way
as Roberval in his Observations. He was led to it by the principles of
Peripatetic dynamics, which he seems never to have questioned in any
of his works on statics.
Varignon not only does not question the fundamental axiom of

Aristotle's dynamics, but he even formulates it explicitly 167 and makes
it the principle axiom from which all of his deductions will be derived:
The distance, he says, traversed by the same body, or by equal bodies
during equal times, are to each other as the forces which move them.
And, inversely, when those distances are to each other as these forces,
they cause the same body or equal bodies to traverse these distances in
equal times.
One might raise the objection that the similarity between the axiom

of Aristotle and that of Varignon is only apparent, and that the propo
sition stated by Varignon would be in agreement with modern dynamics
provided that the bodies under consideration start from a rest position,
and that this qualification was undoubtedly obvious to Varignon, but he
merely neglected to formulate it.

If the view which we stated were challenged by such doubts, one
could easily confirm it by reading the beginning of the New Mechanics.
After having stated 168 that weight is a force, that "it ordinarily serves

as the standard for calculating all other lesser known forces ... so that
one can call any given force ... one pound, or three, etc.," Varignon
states his axioms and in the list of postulates which he enumerates we
find the following:

(I) Effects are always proportional to their causes or their productive forces, since
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the latter are the causes of the former only to the extent that the former are the
effects of the latter and only by reason of what the latter cause.

(VI) The velocities of the same body or bodies of equal mass are like the motor
forces which are exerted on them, that is to say, those which cause their
velocities; inversely, when the velocities are in the same ratio, they are those of
the same body, or of bodies of equal mass.

(VII) The distances covered with uniform velocity in the same time by any given
bodies are to each other as these same velocities and inversely, when these
distances are in this ratio, they have been traversed in equal times.

(VIII) The distances traversed in equal times by the same body, or by bodies of equal
mass are like the forces which cause them to traverse these distances. And,
inversely, when these distances are in this ratio they have been traversed in
equal time by the same body or by bodies of equal mass. This axiom is a
corollary to the two preceding ones, axioms VI and VII.

From now on the word velocity will always mean uniform velocity, unless otherwise
specified.

It is impossible to formulate more precisely the axiom of dynamics
constantly referred to in the Physics and in the On the Heavens, an
axiom presupposed in the Mechanical Problems. It is stunning to
realize that the person who confirms this axiom in such a clear and
explicit manner is a famous mechanician and a contemporary of
Newton. The error is deep rooted and it will be a long and arduous task
to eradicate it completely. From a root stock long believed dead, new
buds continue to sprout unexpectedly. The views professed by
Varignon in his dynamics are a striking example of the vitality of an
erroneous idea.
Since Varignon accepts the principle of Aristotelian dynamics, the

Law of the Composition of Forces seems self-evident to him. It can be
reduced to the Law of Composition of Velocities and can be obtained
by the same methods used by Roberval. 169

Once the principle of the Composition of Forces has been estab
lished in this fashion, Varignon can reduce all of the possible cases of
equilibrium in machines to that principle. In all these cases, the resultant
forces are reacted by the supports. We do not need to point out in
detail how ingenious but often artificial the processes of reduction are.
Many of these processes became classical and are still taught in school.

It is only in the New Mechanics 170 that Varignon produces the
famous theorem which is stated today in the following form:
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With respect to any given point in the common plane, the moment of the resultant of
two forces is equal to the algebraic sum of the moments of their components.

Thanks to this beautiful theorem, his name is known today to every
beginning student of mechanics. However, it took little effort for him to
discover it.
Leonardo da Vinci had already grasped the truth of this proposition

in the case where the point about which one sums the moments is taken
in the direction of one of the three forces. One of the moments is then
equal to zero. Stevin found it in this form and published it. After him,
Roberval, H6rigone, Wallis, Dechales, Casati, Pardies and Borelli
reproduced it. A simple generalization was all that was needed to
produce the theorem stated in the New Mechanics. However, today's
student, who recognizes the name of Varignon, knows nothing of Simon
Stevin.
The systematic reduction of statics to the Law of the Composition of

Concurrent Forces occurred not only to Varignon. At the same time, it
is also present in the reflections of Father Lamy, who, in 1687, stated
his ideas in a letter. l71 addressed "to M. Dieulamant, Engineer to the
King in Grenoble." Let us quote a few passages from this letter:

(1) When two forces pull the body Z (Fig. 109) along lines AC and BC, called the lines
of direction of these forces, it is obvious that the body Z will not move along either
line AC or BC, but along another line which lies between AC and BC, which I
shall call line X and which will be the path traversed by Z.

(2) If the path X were blocked, then the body Z which is destined to traverse this path,
would remain immobile, and the forces would remain in equilibrium ...

(4) Force means that which is capable of producing motion. One can only measure the
motions by the distances they traverse. Therefore, let us assume that force A is to
force B as 6 is to 2. Thus, if A, in the first instant were to pull the body Z towards
itself up to point E, then B at the same instant, would only have pulled it to point

A

fig. 109.
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F. I assume that CF is only one third of CEo We have seen that Z is incapable of
moving along AC or BC. Thus, in this first instant, it must move to D where it
corresponds to E and F. That is to way that it has traversed the value of CE and
Fe. Everyone agrees on this ...

(6) This line X has such a ratio to the lines of direction of the two forces A and B that
at whatever point one draws from it two perpendiculars to these lines, they are
inversely proportional to each other as the forces, or as DE is to DF.

After having shown that the Composition of Forces applies to the
inclined plane, the winch, as well as to the rod supported by two ropes,
etc., Father Lamy adds:

I therefore, cannot believe that one could possibly wish for a simpler and more efficient
principle for resolving all the problems in mechanics, and for determining precisely the
force in all machines, regardless of how one applies the forces which are needed to
move them.

The similarity was very great between the ideas stated by Varignon
in his Project for a New Mechanics and those outlined simultaneously
by Father Lamy in his letter to M. Dieulamant. Therefore, in 1688, in
his Histoire des Ouvrages des S~avans, 172 Basnage accuses Father Lamy
of plagiarizing Varignon:

It appears, he says, that Father Lamy owes his discovery of the new principles of
mechanics to Varignon.

Father Lamy defended 173 himself vigorously against this accusation and
asserted the indubitable independence of his discovery from the
research of Varignon.
Father Lamy would have been justified in calling attention to the

difference between his demonstration of the Law of the Parallelogram
of Forces and that demonstrated by Varignon, and he might well have
taken pride in this difference. However, this difference was quite
minimal on the surface and amounted to no more than the introduction
of these few words:

In the first instant.

But, in reality, the difference was quite significant, because it trans
formed the reasoning which linked the Laws of the Composition of
Forces to Peripatetic dynamics into a reasoning which linked the same
law to modern dynamics. According to the principles of modern
dynamics, it is true, indeed, that if diverse forces, either constant or
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variable, act successively upon the same moving body no longer at rest,
the velocities which these forces impart to the body after an infinitely
small interval of time - which is the same for all of them - are propor
tional to the intensities of these forces.
At the same time that he was undertaking to reduce all of statics to a

single principle, represented by the Law of the Composition of Forces,
Father Lamy succeeded in deducing this law of forces from the laws of
an accurate dynamics. However, at the same time he was addressing his
letter to Dieulamant, Newton was publishing his immortal work on the
Mathematical Principles of Natural Philosophy.174 The great geometer
was also setting out to deduce a justification for the Law of the Com
position of Forces from the principles upon which rests the science of
motion. He succeeded in doing so by following precisely the same path
taken by Father Lamy. He might even have indicated the path which he
had followed in a less clear way than had the scholar from the Order of
Orators.
According to Newton,175 to each force there corresponds something

which could be called an instantaneous force (sic) and which he calls vis
impressa. He gives the following explication of this vis impressa:

Consistit haec vis in actione sola, neque post actionem permanet in corpore. 176

It seems that the following idea must be inferred from this formulation
which is too concise to be clear: The vis impressa is the effect produced
by a force which acts upon a moving body during an infinitely small
interval of time, chosen once and for all.
The vis impressa thus causes the moving body to move in a straight

line with a uniform motion which for a given body has a velocity which
is proportional to the intensity of the force applied for an instant. From
this, Newton easily deduces the demonstration of the Law of the
Parallelogram of Forces. l77

Today, when we compare the method by which Newton and Father
Lamy arrived at the Law of the Composition of Concurrent Forces with
that by which Varignon obtained the same result, we can make a very
clear distinction between the two. Varignon arrived at the Law of the
Parallelogram of Forces by utilizing the Law of the Composition of
Velocities and the following axiom: A force is in the same direction as
the velocity of motion which it produces and it is proportional to that
velocity. On the contrary, Newton and Father Lamy use the Law of the
Composition of Accelerations as well as the following postulate: The
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acceleration of a moving body is in the same direction as the force
which produces its motion and it is proportional to that force. Of these
two principles, we consider the first a grave error and the second an
essential truth.
The geometers of the XVIIth and XVIIIth centuries do not seem to

have attached the slightest importance to this distinction. After two
millenia the propositions of Peripatetic dynamics had become second
nature in the minds of physicists. Physicists continued to invoke them
without hesitation as long as their implications did not blatantly con
tradict the discoveries of the new dynamics.
Is it not evident that the works of Varignon provide a striking

example of what we have just said? When Varignon publishes his
Project for a New Mechanics in 1687, he takes as the point of depar
ture for his deductions axioms which appear to be borrowed from the
Physics or from the On the Heavens. However, at the very same time,
Lamy and Newton are demonstrating that the same results can be
deduced by means of an exact dynamics. Varignon certainly knew of
the Letter by Father Lamy and it would be highly improbable that he
did not know of the Principia of Newton. These works would have
enabled him to correct his own reasoning and to rid it of any trace of
an antiquated physics. But did he bother to do so? In no way. For
thirty-five years he spent all of his efforts developing the germinal ideas
contained in the Project. And the New Mechanics, the fruit of such
persistent labor, is even more profoundly permeated by Peripatetic
dynamics than the initial outline. The same can be said about the Neo
Statique of Father Saccheri.
Father Saccheri was a native of San Remo, but the year of his birth

is unknown. He died in Milan on October 5, 1733. That same year,
he published a book on geometry entitled Euclides ab omni naevo
vindicatus. 178

This work alone proves that Father Saccheri was a powerful and
original thinker. He had the honor of being considered by Beltrami 179
as a precursor of Legendre and Lobatchewsky. M. P. Mansion said the
following about this work: 180

Despite its defects, the Euclides ab omni naevo vindicatus is the most remarkable book
ever written on the Elements prior to Lobatchewsky and Bolyai.

Such a geometer would seem to be particularly capable of avoiding
paralogisms when dealing with the principles of mechanics so that one
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ought to expect his Ne6-Statique l81 published in 1703, to be free of all
contradiction.
A work by a fellow cleric, Father Ceva,182 had called Father

Saccheri's attention to certain remarkable properties of a weight
supposedly capable of attracting the constituent parts of diverse bodies
towards a fixed center and which supposedly had an intensity propor
tional to the distance of the part attracted toward the common center of
falling bodies. This law of gravity is precisely that which Jean de
Beaugrand, the geostatician, had proposed and which Fermat accepted
with some minor changes.
On the topic of a weight obeying such a law, Saccheri attempts to

demonstrate two propositions which are incidently quite accurate. The
first of these propositions, which seems to condense the scattered truths
contained in the erroneous views of Fermat, can be stated in the
following way: If gravity follows such a law, the resulting weight of a
body always passes through a point (center of gravity) which occupies
in that body a position which is totally fixed and independent of the
orientation of the body.
The second of these propositions asserts that a point mass, released

without any initial velocity and descending in free fall, will always take
the same time to reach the common center of falling bodies, regardless
of the initial distance from this common center at the outset of motion.
Of these two propositions which Saccheri attempts to establish, the

first is derived from statics while the second is derived from dynamics.
Thus we are able to recognize the principles used by the Jesuit scholar
in these two branches ofmechanics.
Saccheri puts the notion of momentum 183 at the very beginning of

his deductions. This notion, which is similar to what Galileo called
momenta and which is identical to the Cartesian quantity of motion,
can be obtained by multiplying the mass184 of the moving body by the
velocity which it has. Generally, Saccheri refers to this as impetus.185

The composition and decomposition of the momenta or the impetus
is nothing but the composition and decomposition of velocities. It is
easy for Saccheri to formulate the solution to this problem known since
Aristotle. However, we soon see 186 that the propositions arrived at in
this fashion undergo an imperceptible change and what had previously
been proven about the impetus is now applied to the vis matrix and the
laws of kinematics concerning the composition of velocity are trans
formed into laws of statics on the composition of forces, apparently
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without the author himself being aware of this change, which the reader
too has difficulty in recognizing.

It is by such a transposition of force to impetus that the apparent
weight of a heavy body on an inclined plane is evaluated.18? It is true
that in this evaluation we are dealing with a velocity from a state of rest
(impetus ex quiete) and one could see in this an indication that the
forces must be measured by the velocity they impart to the moving
body which started from a position of rest after an infinitely short
interval of time. If this were so, the reasoning of Saccheri would be
similar to that of Lamy and Newton and would be correct. Yet no
further explanation of the word ex quiete indicates that it 'should be
given such importance in this passage. It plays no role in the ideas on
statics developed by Saccheri and seems to be a mere subterfuge to
render less blatant the obvious contradictions between the statics and
dynamics of the same author.
Can we doubt for even a moment that Saccheri considers the vis

motrix proportional to the impetus and identical to the momentum,
when we read the following definition of the center of gravity: 188

By center of gravity we mean the point in every heavy body through which the natural
direction of the composite impetus passes which tends towards the common center of
all heavy bodies. This direction must be understood as resulting from all of the natural
impetus by which the different parts of the falling body tend towards the same center.

It is clear that the statics of Saccheri is based entirely upon the
assumption that force is proportional to the impetus, that is to say, to
the velocity. Similar to the statics of Varignon, the statics of Saccheri
takes all of its principles from the dynamics of Aristotle.
But when Saccheri addresses the problems of motion, he invokes the

dynamics of Newton. When he considers a point mass which describes
a given trajectory,189 he considers the impetus vivus of this body, that is
to say,190 the velocity directed along the tangent to the trajectory. He
also considers the impetus subnascens along any given direction D.
Following what he affirmed constantly in his first two books, this
quantity is identical to the quotient of the mass of the body by the
component of the weight in the direction D. If Saccheri had consistently
followed the principles which he deduced from his statics, he would
have considered as equal the impetus subnascens in the direction D and
the component of the impetus vivus in the same direction. However, he
is not consistent. He equates the increase (incrementum) of the com-
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ponent along D of the impetus vivus with the impetus subnascens.
Expressed in modern terms, he equates the quotient of the mass of the
moving body by the component of the weight along a given direction
with the component of the acceleration in this same direction. Such an
equivalence is the basic principle ofNewtonian dynamics.
Thus we can see how Saccheri, a very skilled geometer and an

equally subtle logician, makes use of propositions of statics which he
has established by following the methods of Aristotle to deal with the
problems of Newtonian dynamics. Likewise when the great Euler
explains in an admirable treatise 191 the mechanics which derive from
the works of Newton, he also adopts in toto the laws of statics which
Varignon had founded upon Peripatetic principles.
These examples suffice to show how slowly and uneasily Aristotelian

dynamics gave way to modern dynamics. The reason lay, of course, in
the fact that Aristotelian dynamics offered a much more obvious
explanation of the most common experiences. Modern dynamics is
infinitely more abstract and is the result of a prodigious effort of
reflection and analysis. It took centuries to wean the human mind from
Aristotelian dynamics and to accustom it to the modern approach.

7. THE LETTER OF JEAN BERNOULLI TO VARIGNON

(1717). THE DEFINITIVE FORMULATION OF THE PRINCIPLE

OF VIRTUAL DISPLACEMENTS

In the year 1687, it appeared that mechanics had abandoned forever
the Method of Virtual Displacements developed by Jordanus, Descartes
and Wallis, as well as the Method of Virtual Velocities of Aristotle,
Charistion and Galileo. With the exception of Casati and Dechales,
everyone who wrote on statics after Wallis either ignored these methods
or declared that the human mind was unable to find sufficient certainty
in them for the foundation of statics. At best the authors agreed to treat
them as corollary to propositions constructed upon other hypotheses.
After attempting to base the entire science of statics upon the

principle of the lever, the authors finally recognized in the Law of the
Composition of Concurrent Forces an axiom from which the rules of
equilibrium for all machines could easily be deduced. By relating this
law directly to the essential principles of the theory of motion, they
gave it a clarity and certainty perfectly suited to a hypothesis which
must support an entire doctrine.
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Henceforth, statics seemed finally to be headed in the direction
which Varignon had proposed for it in his Project for a New Mechanics
and which Father Lamy had mentioned in his letter to Dieulamant. All
statics needed to do was to progress in the direction which those
authors had proposed for it. Varignon dedicated the rest of his iife to
this end and attempted to bring statics to the goal he had pointed out.
His efforts resulted in the New Mechanics or Statics, which was
published shortly after its author's death and was to remain a classic
work for a long time.
As far as the Method of Virtual Displacements was concerned which

we have followed in its continuous development from Jordanus to
Descartes and Wallis, it now seemed that it was irrevocably rejected
and was about to be consigned to oblivion forever.
When one follows the slow and complicated process by which a

science develops, one often observes an idea which for a time shines
brilliantly but then gradually grows dim again and disappears from
sight. It seems to have been extinguished forever. However, quite often
this disappearance, which had been taken as a final extinction, is but a
temporary eclipse. The moment when the idea disappears from view is
soon followed by the moment when it reappears, more brilliant than
ever, as if it had hidden for awhile in order to rest and gather new force
and brilliance.
We already have seen how the Method of Virtual Displacements,l92

so influential in the works of Jordanus, the Precursor of Leonardo da
Vinci and in Leonardo and Cardan themselves, had been ignored or
rejected by Guido Ubaldo, Benedetti and Stevin. However, at the very
moment at which it appears to have been completely abandoned,
Roberval and particularly, Descartes return to it. Henceforth, this
principle is autonomous and devoid of any connection with the
postulate of virtual velocities or with the dynamics of Aristotle.
As we shall see, the Method of Virtual Displacements undergoes a

very similar resurrection. In the very same book - the New Mechanics
of Varignon - which seems to signal the definite eclipse of this method
and usher in the final triumph of a statics founded upon the composi
tion of forces, we find the principle from which this method derives in
its definitive form.

It is, indeed, in his New Mechanics where Varignon inserts a letter
which Jean Bernoulli had sent him from Basel on February 26, 1717.
The letter contains the following passage:
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Imagine several different forces which are acting through different tendencies or
directions to maintain in equilibrium a point, a line, a surface or a body. Further
imagine that a small displacement is being imparted to the entire system of these forces
and that this can either be a rectilinear displacement in any direction or a rotational
displacement about any fixed point. It is easy to see that with such motion each of these
forces will move forwards or backwards in its direction unless one or several of the
forces have their displacements perpendicular to the direction of the small displace
ment. In this case, this or these forces will neither move forward nor backwards any
distance at all because these progressions or retrogressions which I call virtual veloc
ities 194 are nothing but the augmentation or diminution of each line of direction after
the small displacement has been imparted. These augmentations and diminutions can
be calculated if one draws a perpendicular to the extremity of the line of direction of
any force. This perpendicular will carve out of the same line of direction, which has
moved to an adjacent position because of the small displacement, a small segment
which will be the measure of the virtual velocity of that force.
Let P, (Fig. 110) for example, be a point within the system of forces which maintain

one another in equilibrium. Let F be one of these forces which pushes or pulls point P
along the direction FP or PF. Let Pp be a short straight line which point P describes in
a small displacement by which the force FP takes the direction fp, which will either be
exactly parallel to FP, if the small displacement of the system occurs parallel to a given
straight line,195 or it will form, when prolonged with FP, an infinitely small angle, if the
small displacement of the system occurs about a fixed point. Draw PC perpendicular to
fp and you will have Cp for the virtual velocity of force F, so that F x Cp equals what I
call energy. Notice that Cp is either positive or negative in relation to the other
displacements. It is positive if point P is pushed by force F and the angle FPp is obtuse.
It is negative if the angle FPp is acute. But if, on the contrary, point P is being pulled,
Cp will be negative when the angle FPp is obtuse. It will be positive when the angle is
acute.
Once the above has been understood, I can formulate the following general proposi

tion: any time there is a state of equilibrium of given forces, however they are applied
or regardless of their direction, whether they act upon each other directly or indirectly,
then, the sum of the positive energies will be equal to the sum of the negative energies
taken positively.

It is in these terms that Bernoulli formulates the principle which,
henceforth, is complete and from which all the laws of equilibrium can
be derived.

F\ (
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fig. 110.
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How did Jean Bernoulli come to an understanding of this general
axiom? What Varignon communicates to us from Bernoulli's letter
gives us no information on this point. However, it is not hard to guess
what we cannot prove by documentary evidence.
The difference is slight between the form which Wallis had given to

the Principle of Virtual Displacements and the form which this axiom
has assumed since then. All that is needed to pass from one formulation
to the other is to openly state what Wallis had suspected all along, and
to consider precisely an infinitesimal displacement, i.e., infinitely small
quantities of work. This transformation presented no difficulty to a
geometer experienced in infinitesimal analysis. Thus it appears very
likely that Jean Bernoulli arrived at his statement of the Principle of
Virtual Displacements by coordinating and perfecting the diverse state
ments scattered throughout the work of Wallis. It is through Wallis and
Descartes that his work is linked to the efforts of Jordanus and the
mechanicians of his School.

It is not true that the Method of Virtual Displacements for which
Bernoulli had just furnished a general and precise statement, won
universal approval nor did the mechanicianis acknowledge in it the
principle from which all of statics must be derived. Varignon himself,
who publicizes the discovery of the great geometer of Basel, fails to
recognize in the method a principle. He only sees in it "a general
corollary of the theory" which he founded upon the Law of the Paral
lelogram of Forces. 196

This proposition seemed to me so general and so beautiful, says Varignon, that after I
saw that I could easily deduce it from the preceding theory, he granted my request to
include it here with the demonstration that this theory had furnished me, but which he
had not yet sent me. I now give it in its individual application to all the above
mentioned machines.

And then Varignon proceeds tirelessly to prove in fifty pages that all of
the machines for which he has deduced the conditions of equilibrium
from the Law of the Composition of Forces verify the equality posited
by Bernoulli. Guido Ubaldo had done the same with the axiom of
Aristotle and so had Father Pardies with the axiom of De:scartes. They
had refused to bestow the title of principle to these rich and far
reaching postulates and relegated them to the rank of corollaries.
We are now approaching the conclusion of our history of statics. The

New Mechanics of Varignon and the Letter of Jean Bernoulli close the
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period of the development of statics which truly deserves to be called
the Origins. Henceforth, the Classical Period begins. We set out to
search out the sources of a river. We described its tumultuous begin
nings and then its torrential passage through sinuous gorges. The river
has now reached a gently undulating plain through which it pursues its
peaceful course.
At the moment we take leave of this river, it has divided into two

branches, with its current taking two different directions. It seems to be
guided by the two impulses which statics received in its origins. In the
first, we recognized the influence of Archimedes, in the second, that of
Aristotle.
From Archimedes to Varignon, the mechanicians never ceased to

pursue the same ideal. They continue this pursuit from Varignon to
Poinsot and from Poinsot to our own time. They dream of constructing
a statics on the model of Euclid's Elements of Geometry. By means
of a thorough and ingenious analysis they hope to reduce the most
complicated cases of equilibrium in the most diverse systems until
they can see clearly simple and elementary instances of equilibrium.
Furthermore, in these simple and elementary instances they want
equilibrium to be as self-evident and certain as those truths of com
mon sense to which Euclid appealed. The goal of Archimedes in his
treatise On the Equilibrium of Planes was to provide statics with
principles which would be acknowledged as just as clear and certain as
the axioms of geometry. Such was the desire of Daniel Bernoulli and
then of Poisson, when they attempted to establish the Law of the
Parallelogram of Forces without reference to the general principles of
dynamics.
While a great many mechanicians follow this first current of thought,

others follow the direction which Aristotle had given to statics. They
are not attempting analysis which breaks down the most complex laws
of equilibrium and reduces them to clear and self-evident elementary
propositions. Rather their efforts tend towards a broad synthesis. They
are attempting to reunite in a single and universal principle all natural
or artificially produced cases of equilibrium. It is clear that they deduce
this principle from a few simple and evident observations. However, the
extreme generalization which takes them from a few individual experi
ences to such an all-encompassing law, denies to this law any claim to
self-evidence. The more science becomes aware of the logical processes
which it puts into playas it develops, and the more it realizes that the
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certainty of such a general hypothesis can not be contained in the few
facts which suggested the hypothesis, the better it sees that what
confirms the hypothesis and gives it its value is the ease with which the
hypothesis can classify the multitude of diverse laws discovered by
experience, or the certainty with which it portends new laws to be
discovered.

It is this latter tendency which had led geometers, from Jordanus and
his disciples to Roberval and Descartes, from Descartes to Wallis and
Jean Bernoulli, to continually refine and extend the Principle of Virtual
Displacements. Each of the two tendencies attempts to dominate statics
and the conflict between them is incessant. However, an impartial
observer of this struggle easily recognizes the advantages in both
methods. It is true that the analytical mind, by means of meticulous
criticism, helps remove every trace or error from the truths discovered
by the process of synthesis. However, its own discoveries are rare and
meager and only serve to demonstrate its sterility. Fecundity is the
prerequisite of the spirit of synthesis. It is the Method of Virtual
Displacements which continues to expand the domain of statics.
The exclusive use of this latter method characterizes the Mecanique

analytique of Lagrange. The work of Lagrange represents the conflu
ence of all the currents which bore statics through history and is the
culmination of all of the tendencies which have guided its evolution.
During the different periods of its development, statics has taken for

the basis of its deductions first the principle of the lever, then the
properties of the inclined plane and finally the Law of the Composition
of Forces. All of these principles are equivalent to each other, and their
equivalence stems from the fact that they all derive directly from the
Principle of Virtual Displacements. Thus the science of equilibrium is
brought to perfect unity by Lagrange. Henceforth, it is condensed into a
single formula.
Varignon, in developing an idea which Albert of Saxony and Guido

Ubaldo had outlined, attempted to discover the explanation for all of
the cases of equilibrium in the forces exerted by moving bodies upon
their supports. Lagrange deduces from the Method of Virtual Displace
ments a process which is as simple as it is accurate for defining and
determining those forces which are negated by the contacts between the
body and its supports.
The doctrine of Albert of Saxony, which states that the center of

gravity of any heavy body tends to join the common center of heavy
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bodies, furnished a principle of statics which Galileo and Torricelli state
in the following terms:

A system is in equilibrium when any change in its configuration would cause its center
of gravity to rise.

For a long time, this principle remained separated from the principle of
equality between the motor work and the work of the resistance and
from the principle of Jordanus, Descartes, Wallis, and Jean Bernoulli.
Lagrange discloses the close tie between these two principles.
The Principle of Torricelli is not the exact equivalent of the principle

of Jean Bernoulli. The latter applies to all cases of equilibrium, while
the former excludes some. It is only because of the general theory of
stability, as established by Lagrange, that we are able to distinguish the
cases of equilibrium which the Principle of Torricelli defines and to de
monstrate that they are the only stable states of equilibrium.
The physicists attempted to deduce the fundamental principle of

statics from the laws of dynamics. In this way, Roberval and Varignon
deduced the Law of the Parallelogram of Forces from Peripatetic
dynamics, i.e., from the proportionality between force and velocity.
Father Lamy and Newton more correctly deduced it from the pro
portionality between force and acceleration. D'Alembert, in a certain
sense, inverted the question by showing how any problem of motion
could be reduced to a problem of equilibrium. Lagrange, in turn, used
the Method of Virtual Displacements to develop a formula which
reduces every problem ofmotion to an algebraic equation.
An arrangement of solid bodies is, by the way, not the only system

where equilibrium depends on the Principle of Virtual Displacements.
The statics of deforming bodies and, in particular, of fluids, derives
entirely from this principle. The various methods proposed by Newton,
Bouguer, Clairaut and Euler for dealing with hydrostatics can all be
reduced to this general method.
By means of the Method of Virtual Displacements Lagrange estab

lishes a magnificently unified and organized statics. In it all laws of
equilibrium for solid or fluid bodies can be classified in perfect order,
and all the legitimate aspirations of those who had promoted the
science of equilibrium are finally realized.
After Lagrange, the Method of Virtual Displacements remains the

most precise and most general method to which mechanicians can
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resort any time an obscure point needs clarification or any time an
embarrassing difficulty requires a solution.

lt is true that Navier did discover the general equations of elastic
equilibrium without the help of the above method. However, when he
needed to complete his work by adding to these general equations the
boundary conditions which complete the definition of the problem, he
approaches this problem by using the Method of Virtual Displace
ments.
Poisson believes that the elasticity of a solid body generally depends

on only 15 coefficients. Cauchy and Lame increase this number to 36.
However, by using the procedures of Lagrange, Green is able to settle
the controversy by proving that the exact number of coefficients is 21.

lt is through the principle of the equilibrium of channels, which
Clairaut had conceived and from which Lagrange had deduced the
Principle of Virtual Displacements, that Laplace derived the equation
of the capillary surface. However, his demonstrations are weak when he
tries to establish the laws governing the interface between the liquid and
the container. The invariability of the angle of contact is postulated, but
not demonstrated. In a work which contains one of the most beautiful
examples of the method of Lagrange, Gauss demonstrated with
absolute precision all the laws of capillarity.
The theory of equilibrium of elastic plates seems to pose a hopeless

enigma for geometers. Cauchy and Poisson are not in agreement in
their formulation of the boundary conditions which must be met at the
edges of a plate, and the conditions which they propose are more than
necessary. Once more it is the Method of Virtual Displacements which
allows Kirchhoff to solve the enigma by lisiting, without any omission
or repetition, all of the boundary conditions required along the edge of
an elastic plate. 197

Indeed, the Method of Virtual Displacements can be proud of the
domain which it conquered and of the clear laws and perfect order it
imposed. However, suddenly at the end of the XIXth century, new
areas, prodigiously rich and vast, increase its already existing empire. lt
is no longer only mechanical equilibrium which is governed by its laws.
Henceforth, with sovereign authority, it will decree the conditions for
those states of equilibrium which occur in electrified and magnetized
systems. The minute seed planted by lordanus not only produced the
Mecanique analytique of Lagrange but the chemical and electrical
mechanics of Gibbs and Helmholtz as well.
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CONCLUSION

After the traveller has crossed the arid limestone plateau of Larzac 198
with its grayish rounded hillocks and its maze of rocks resembling the
ruins of a deserted city, he approaches the plain washed by the Medi
terranean. The path which he must now follow is formed by steep
ravines which are the traces of ancient streams or dried-out riverbeds
and which, with the passing of time, cut deeper and deeper into the
limestone plateau. Soon these ravines join in a single defile. Sheer walls,
topped with ominous parapets of crumbling stones, now border the bed
where once a beautiful river flowed deep and wild. Today, this riverbed
is nothing but a chaos of worn and broken blocks. No spring flows from
its rocky walls and no pool of water wets its gravel. Among the mass of
stones, no plant can grow. The Vissec 199 is the name given to this
parched river of death by those who live here in the Cevennes.200

The traveller, who can only advance with extreme exertion through
the mass of fallen stones, occasionally hears a faraway rumble, like the
roll of distant thunder. As he presses on, this rumble grows louder,
before it bursts forth with a loud crashing sound. This is the great voice
oftheFoux.
In the limestone wall, a dark gaping cavern opens up like a giant

maw. From this maw, white torrents of water gush forth and fall back
thunderously in a mixture of crystal-clear droplets and bubbling white
foam. The fissures in the distant limestone plateau have gathered this
water in an underground lake.
Suddenly a river is born and henceforth, the clear and cold waters of

the Vis flow between the white shores and the silvery oyster-beds.
Its cheerful mumuring arouses in response the clicking of the mills and
the deep ringing laughter of the Cevennes villages, while a glorious
sunbeam glides over the notched edge of the plateau and slips down
towards the bottom of the gorge, painting the poplar branches with a
gold lining.
When traditional history, falsified by prejudice and distorted by

deliberate simplifications, attempts to recount the development of the
exact sciences, the image which it calls to mind resembles that of the
course of the Vis River.

In this traditional view, Greek science flooded vast areas with its
abundant and fertile waters. At that time the world witnessed the great
discoveries of the likes of Aristotle and Archimedes germinate and
grow, to be admired forever. Then the source of Greek thought dried
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up and the river to which it had given birth ceased to deliver its life
giving force to the Middle Ages. The barbaric science of those days was
nothing but chaos in which the unrecognizeable remnants of Hellenic
wisdom were piled up helter-skelter, arid and sterile scraps to which
clung, like parasitical, gnawing lichen, the puerile and conceited glosses
of the commentators. All of a sudden, a great clamour shook this
scholastic desert. Powerful minds cut through the rocks which had
hidden for centuries the pure water from the ancient sources. Set free
by these efforts, the waters gushed forth, happily and abundantly.
Wherever they flowed, they brought about the rebirth of the sciences,
of literature and the arts. The human mind simultaneously recovered
both its vitality and its freedom. Soon thereafter, the great doctrines
were born which, as the centuries passed, grew ever deepening roots
and spread ever more impressively their branches and foliage.
But this traditional view is sheer nonsense. During its evolution,

human science has had very few instances of sudden births or rebirths,
just as the Foux is an exception among the sources of rivers.
A river cannot suddenly fill a large river bed. Before a river flows

majestically, it is at first a mere stream, and a thousand other similar
streams had to become its tributaries. At times those tributaries become
numerous and abundant and the river rises rapidly. But when the
tributaries are but few, mere trickles of water, the river hardly rises.
Sometimes even, a cleft in the porous soil engulfs part of its waters and
diminishes its flow. But through it all, its flow varies only gradually and
does not disappear completely or spring out of nowhere.
Nor does science, in its progressive advance, have any sudden

changes. It grows, but by increments. It advances, but by steps. No
individual human intelligence, whatever its force or originality, will ever
be able to produce a completely new doctrine at one stroke. The
historian enamoured of simple and superficial views, delights in the
brilliant discoveries which illumined the dark night of ignorance and
error with the bright daylight of truth. Yet, anyone who is willing to
analyse deeply and carefully what first appears to be a unique and
unexpected discovery must soon conclude that it was the result of a
great many imperceptible efforts and a conjunction of an infinite
number of hidden tendencies. Each phase of the evolution which moves
science slowly toward its goal has two characteristics: continuity and
complexity. These characteristics are very clearly evident to the student
of the origins of statics.
The historian enamoured of over-simplification will mention only
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one work produced on statics by the Ancients: the work of Archimedes.
Such a historian will present the work as an isolated colossus, towering
above the ignorance surrounding it. But to appreciate the greatness of
this work, it is not necessary to distort it by presenting it in total
isolation. The statics of the geometer of Syracuse is characterized by
research of impeccable rigor in its deduction. His research is a subtle
analysis applied to complicated problems and it presents wonderfully
clever solutions to problems of which no one but a geometer under
stands the importance. All of those characteristics are the hallmark of a
refined science and are far from the groping hesitations of a nascent
doctrine.

It is obvious that Archimedes had precursors, who before him and
by methods different from his own, had understood the laws of the
equilibrium of the lever which Archimedes was to develop so magnifi
cently.
History has retained traces of some of these precursors. The

Mechanical Problems may not be by Aristotle, as tradition would have
it. In any case, the statics explained there is so closely connected with
the dynamics set forth in the Physics and in the On the Heavens that we
must attribute the Mechanical Problems to some close disciple of the
Stagirite. The methods of demonstration followed in this work might
have been methods of invention. However, the same cannot be said
about the deductions of Archimedes.
On the other hand, an ancient tradition stubbornly maintains that the

writings about the lever are to be attributed to Euclid. These writings
might not be those which we possess today under the name of the great
geometer. Yet, merely denying their existence hardly proves the con
trary.

If there were predecessors to Archimedes in Antiquity, he also most
certainly had successors. The science of Byzantium and Alexandria
followed the different paths outlined by Archimedes. The art of
engineering brought to a high degree of perfection by the great
Syracusan, inspired the works of Ctesibius, Philo of Byzantium and
Hero of Alexandria.
Pappus, on the other hand, turned his attention to the study of

centers of gravity, hoping in this fashion to become the equal of the
Geometer. The enigmatic Charistion, finally, carried the principles of
statics beyond Aristotle and Archimedes with his arguments on the
Roman balance.
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The Arabs transmitted only a tiny fraction of Hellenic statics to the
Western medieval world, but they are far from being the servile and
unimaginative commentators they are usually depicted as. Their minds
are quite receptive to the remnants of Greek thought which reached
them via Byzantine and Islamic science. These remnants are enough to
arouse their attention and to stimulate their minds. From the XIIIth
century on, and prehaps even earlier, the School of Jordanus opens up
avenues for the mechanicians which Antiquity had not known.
The intuitions of Jordanus de Nemore are initially rather vague and

uncertain. Serious errors are mixed with great truths. But, little by little,
the disciples of the great mathematician clarify the ideas of their master.
Errors disappear and truths become more precise and established.
Several of the most important laws of statics are finally confirmed with
full certainty.
To the School of Jordanus we owe, in particular, a principle which

will continue to grow in importance with the further development of
statics. This principle bears no analogy to the special postulates on the
lever upon which Archimedes had based his deductions, and it has only
a slight affinity with the general axiom of Peripatetic dynamics. It
asserts that the same motor force can lift different weights to different
heights, provided that the heights are inversely proportional to the
weights. Thanks to this principle, which Jordanus had applied exclu
sively to the straight lever, the Precursor of Leonardo da Vinci is able
to grasp the law of equilibrium of the bent lever, the notion of moment,
as well as the apparent weight of an object placed on an inclined plane.
During the XIVth and XVth centuries, the statics which had origi

nated in the School of Jordanus quietly pursues its own course and no
other important stream of ideas adds to its flow. Not until the beginning
of the XVIth century does it become a raging torrent, when Leonardo
da Vinci brings to it his genius.
Leonardo da Vinci is far from being a seer who all at once discovers

previously unsuspected truths. He is in possession of a prodigiously
active mind, which is simultaneously daring and cautious. He returns to
the laws of mechanics established by his predecessors, discusses them,
and analyzes their every aspect. His relentless reflections enable him to
refine several ideas already known to the disciples of Jordanus, and to
demonstrate their richness and fecundity. An example of this is the
notion of the motor force or the notion of moment. By means of a
marvelous demonstration he is able to extract from this latter notion
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the Law of the Composition of Concurrent Forces. Yet, his mind, given
to hesitation, alternation and reversal of opinion, does not always hold
firmly to the truths which it has once grasped. Leonardo is unable to
come to a definitive conclusion on the problem of the inclined plane,
which had been quite satisfactorily resolved since the Xillth century.
The indecision which always plagued Leonardo's soul and which so

rarely allowed him to complete a work, kept him from bringing to
completion the Treatise on Weights which he wanted to write. The fruits
of his intellectual labours, however, were not entirely lost to science.
Through the oral tradition which had originated during his lifetime,
through the dispersion of his manuscripts after his death, his thoughts
were scattered to the four winds and many fell on soil propitious to
their growth.
Cardan, one of the most universal minds and also one of the most

bizarre men produced by the XVIth century, and Tartaglia, a mathe
matical genius and a shameless plagiarist, both recovered for the statics
of the Renaissance several discoveries made by the School of Jordanus.
What they recovered was often in the richer and more fertile form that
Leonardo da Vinci had given those discoveries.
Through the works of Tartaglia and Cardan a current of Medieval

mechanics starts to spread during the XVIth century. At the same time,
a counter-current develops and gains strength in the treatises of Guido
Ubaldo del Monte and Giovanbattista Benedetti. The works of Pappus
and Archimedes had just been unearthed and were being studied and
discussed with great passion and skill. They restored in mechanics the
desire for impeccable rigor, the hallmark of geometers since Euclid.
This enthusiastic but narrow-minded admiration for the monuments of
Hellenic science had only contempt for the profound but still flawed
discoveries which the Xillth century Schools had produced. The most
profound intuitions of Jordanus and his disciples are misunderstood by
the new school, which impoverishes and weakens statics while pre
tending to purify it. In the same spirit, the exclusive admiration for the
works imbued with Hellenic grace scornfully rejects as "gothic" the
most marvelous artistic creations of the Middle Ages.
Thus, at the end of the XVIth century, almost nothing remained of

what the specifically Western mind had produced in statics. Everything
had to be done again. One had to redo the demonstrations of the truths
which the medieval scholars had grasped and give them the clearness,
precision and rigor of the theories bequeathed to us by the Greeks. This
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work of restoration, which will last to the middle of the XVIIth century,
will be the task of the most brilliant geometers of Flanders, Italy and
France. Yet, despite the extraordinary talents of those men, much
groping and many false starts were involved before the work came to
completion!
A rigorous deduction must assume certain axioms. Where are the

postulates to be found to form a solid foundation for statics? Those
formulated by Archimedes are extremely restricted. They barely suffice
to deal with the equilibrium of the straight lever. It becomes absolutely
necessary to resort to new hypotheses. The mechanicians who are going
to formulate them will present them as original principles and previ
ously unknown truths. However, once we remove the pretense of
originality, in which the vanity of those who had proclaimed them as
truth had wrapped them, we are faced in almost every case with very
old propositions, kept alive and nurtured by a long tradition which
demonstrated their richness. Where a short-sighted and overly rigid
historical view thought it could see a Renaissance of the scientific
method which had fallen into oblivion since the Greeks, we ourselves
see nothing but the natural evolution ofmedieval mechanics.
Galileo, as legend would have it, the creator of modern dynamics,

returns to the already tottering dynamics of Aristotle to find the
foundation for his deductions. He postulates the proportionality
between the force moving a body and the velocity of that body. He is
influenced by the mechanicians of the XIIIth century when he attempts
to deduce from this principle the apparent weight of an object placed
on an inclined plane. However, he fails to conclude from the works of
these same mechanicians that the cardinal notion of all of statics is the
notion of motor power, the product of a weight and the distance of its
fall. Galileo replaces this notion with that of momenta, the product of
the weight and the velocity of its fall, a notion directly related to the
previously rejected dynamics of Aristotle.
When Stevin deals with apparent weight on an inclined plane, he

posits the impossibility of perpetual motion. However, Leonardo da
Vinci and Cardan had already formulated this principle with remark
able clarity by linking it with the notion of motor power which they, in
turn, had taken from the School of Jordanus. However, this notion
plays only a secondary role in the work of Stevin. The great geometer
from Brugge failed to recognize its extreme importance.
The same notion appears more clearly in the beautiful demonstration
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which Roberval furnished of the law describing the compOSItIon of
concurrent forces. This demonstration, which fills so well the major
deficiency in the work of Stevin, does not come out of nowhere. In
order to deal with the equilibrium of the bent lever, the disciple of
10rdanus who was the Precursor of Leonardo da Vinci, had already
sketched the model for it.
The wonderfully insightful and systematic genius of Descartes soon

grasped unerringly the main idea which must serve as the basis for all
of statics. This idea is the same which 10rdanus had already called
attention to in his theory of the straight lever and is also the same idea
used by his disciple in dealing with the bent lever and the inclined
plane. It is the notion of motor power. Descartes defines this notion
with great precision and shows its superiority to Galileo's use of
momenta. While the concept of momenta derives from a dynamics
henceforth untenable, the notion of motor power allows one to formu
late a very clear, very certain axiom upon which all statics can rest. To
be accepted, this autonomous principle does not have to wait until the
new dynamics has been built upon the ruins of Peripatetic dynamics.
Unfortunately, the obsessive arrogance which so often dominates

Descartes causes him to exaggerate the magnitude of the service which
he renders to statics, and even to exaggerate to the point of distorting
the facts. Descartes, who was even less disposed than Stevin, Galileo or
Roberval to do justice to his predecessors, portrays himself as the
creator of a doctrine when he is merely its organizer. What we have
said here about Cartesian statics, could probably be said for all of
Cartesianism. The haughtiness of its author has triumphed, and its
triumph is unequalled in the history of the human mind. It has duped
the entire world and has portrayed Cartesianism as a strangely spon
taneous and unexpected creation. However, the Cartesian system is in
most cases nothing else but the clearly formulated conclusion of
anonymous efforts pursued throughout centuries. The gracious flight of
the butterfly showing off its iridescent wings causes us to forget the
slow and laborious creeping of the humble and unobtrusive caterpillar.
The few lines in which 10rdanus demonstrated the law of the straight

lever contained the seed of an accurate and fertile idea. This idea
continued to develop from 10rdanus to Descartes until it encompassed
all of statics. While the gradual evolution of this truth occurs, science
becomes the scene of another equally interesting, but more bizarre
phenomenon. An incorrect doctrine is slowly transformed into a very
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profound and correct principle. It seems as if a mysterious force is
watching over the progress of statics and is able to render beneficial
both truth and error alike.
Archimedes had used the notion of the center of gravity without

defining it. Several other geometers had attempted to make it more
precise. However, Albert of Saxony and, after him, the majority of the
physicists of the School, took advantage of mechanical imprecision on
this point, and attributed to it characteristics which are completely
different from those which we ascribe to it today. They considered, for
example, that weight was concentrated in each part of a body. The
weight of a body appeared to them as the desire of the center of gravity
of that body to join the center of the universe. The Copernican revolu
tion which relocated the center of the universe and even went so far
with Giordano Bruno as to deny the existence of that center, hardly
modified this theory of weight. It considered this quality to be the
tendency inherent in the center of gravity of each body to join its
analog, the center of gravity of the earth.
One of the claims to glory of Kepler is to have eloquently fought

against this hypothesis of an attraction between geometrical points and
to have asserted that the attraction of gravity was exerted between the
different parts of the earth, taken two by two. However, his less
clairvoyant contemporaries did not share this opinion. Benedetti, Guido
Ubaldo and Galileo, in particular, postulated a sympathy felt by the
center of gravity of each body towards the common center of heavy
bodies, while Bernardino Baldi and Villalpand plagiarized the accurate
corollaries which Leonardo da Vinci had deduced from this erroneous
doctrine.
When this tendency is as completely satisfied as the connections of a

system of weight allow it to be; when, in other words, the center of
gravity of a system is as close as possible to the center of the earth,
nothing induces this system to move any more and it remains in equilib
rium. This is the principle of statics as formulated by Cardan, Bernar
dino Baldi, Mersenne and Galileo and which perhaps they all borrowed
from Leonardo da Vinci.
However, this principle is erroneous. In order to render it accurate,

one needs only to extend to infinity that center of the earth which
Galileo never ceases to invoke in his reasonings, and to consider the
verticals as being parallel to each other. This modification seems
insignificant. However, it is in truth profound because it transforms a
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false statement into an accurate and fertile axiom. It is also profound
because it presupposes the final abandonment of a very ancient and
very authoritative theory of weight.
The confusing and complicated debates provoked in Florence by the

research of Beaugrand and Fermat on the variation of weight according
to its elevation prepare this reform and Torricelli completes it by giving
science a new postulate upon which statics could be founded.
After having traced the continuous and complex development of

statics, when the historian looks back to contemplate the total view
offered by this science, he can only be astounded when he compares
the breadth of the finished theory with the minuteness of the seed
which brought it forth. On the one hand, he will be able to decipher
several lines of an almost illegible XIIIth century manuscript in Gothic
handwriting. Those lines justify very precisely the law of equilibrium of
a straight lever. On the other hand, he can leaf through endless treatises
of the XIXth century in which the Method of Virtual Displacements
helps to formulate the laws of equilibrium for purely mechanical
systems, as well as for those where physical changes, chemical reac
tions, electric or magnetic phenomena can occur. What a world of
difference between the simple demonstration of Jordanus and the
imposing doctrines of Lagrange, Gibbs, and Helmholtz! And yet, those
latter doctrines were contained potentially in that demonstration. His
tory has allowed us to retrace, step by step, the efforts through which
they were developed from that tiny seed.
The contrast between the extremely small and simple seed and the

strikingly complex, finished theory is analogous to what the naturalist
sees when he looks at the development of a plant or an animal of a
higher order. However, this marked contrast will not excite his admira
tion as much as another spectacle far more worthy of his attention and
reflection. The process which he is analyzing is the result of an infinite
number of different phenomena. A great many cell divisions, budding
transformations and reabsorptions are needed to produce the end
result. All these phenomena, however numerous, varied and complex
they may be, are coordinated with perfect precision. All of them
combine very efficiently for the formation of a plant or of an adult
animal. And yet, the countless beings which act in these phenomena,
the cells which proliferate, the phagocytes which devour the tissues
which have become useless, most certainly are unaware of the final goal
they are working to reach. They are workers ignorant of the final
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product, but, who, nevertheless, methodically bring to finality that
product. Thus the naturalist cannot help seek outside of and above
these individual efforts something which is hard to define, but which
already has the final product of the plant or the animal in mind and
which during the formation of the organism sees to it that the multitude
of unconscious efforts combine to obtain the end product. Like Claude
Bernard,20o the naturalist will accept a "guiding idea" as presiding over
the development of every living being.
Anyone who studies the history of science is led to similar reflec

tions. Each proposition in statics was slowly elaborated through a
process of research, experimentation, hesitations, discussions, and
contradictions. Among all these many efforts, not one was wasted. Each
one contributed to the final result. Each one played a greater or lesser
role in the formation of the final doctrine. Even error proved fertile.
The erroneous and sometimes bizarre ideas of Beaugrand and Fermat
forced geometers to sift through the theory of the center of gravity in
order to separate the precious truths from the falsehoods which had
been intermingled.
Yet, while all these efforts contributed to the advance of a science

which we can admire today in its finished form, no single contributor to
these efforts even suspected the final magnitude and shape of the
edifice he was helping construct. When lordanus developed the law of
equilibrium for a straight lever, he was certainly not aware that he was
formulating a principle which could form the basis for all of statics.
Neither Bernoulli nor Lagrange had any inkling that their Method of
Virtual Displacements would one day be perfectly suited to deal with
electric and chemical equilibrium. They could not anticipate Gibbs,
even though they were his predecessors. Like skillful masons cutting
and cementing stone, they worked on the completion of an edifice
without ever having seen the overall design of the architect.
How could all these efforts combine with such precision and bring to

completion a plan which was not known to the individual laborer,
unless this plan existed previously in the mind of an architect, and if
this architect did not have the power to direct and coordinate the labor
of all the masons? Even more than the growth of a living being, the
evolution of statics is the manifestation of the influence of a guiding
idea. Within the complex data of this evolution, we can see the
continuous action of a divine wisdom which forsees the ideal form
towards which science must tend and we can sense the presence of a
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Power which causes the efforts of all thinkers to converge towards this
goal. In a word, we recognize here the work of Providence.

Bordeaux, October 26,1905.



NOTES TO VOLUME II

A. ON THE AXIOM OF ARISTOTLE

In Chapter I of this work (Vol. I, pp. 11-12) we considered the
Principle of Virtual Velocities and the way in which Aristotle applies it
in the Mechanical Problems to the theory of the lever as a corollary of
the following Peripatetic axiom: The same force which moves a given
body at a given velocity is also able to move a body K times heavier but
with a velocity K times smaller.
We previously gave a formulation of this axiom which we borrowed

from the On the Heavens. Another now follows taken from the Fifth
Chapter of the VIIth Book of the Physics where the Stagirite formulates
the principles of his dynamics:!

If the motor force is a, the body moved fl, the distance traversed y, and the time
needed to traverse this path <5, then the same power called the force a, will move in the
same time half of fl over a distance twice y; it moves through distance y in half the
time <5 and thus the proportion will be maintained.

In an interesting critical analysis which G. Vailati was kind enough to
make on Volume I of our work, he used the following terms when
discussing this proposition:2

It seems to me even less evident that this propOSItIon could have any relation
whatsoever with another equally important proposition stated by Aristotle in his
Mechanical Problems. I am referring to the proposition which attributes the equilibirum
of two forces applied to the extremities of a lever to the fact that in any given
displacement of this lever, its extremities describe arcs which are in inverse ratio to the
forces applied to them.
The only common feature of this proposition and the one stated previously consists

in the fact that both assert the existence of an inverse ratio between the two weights (or
two forces) and the two velocities. But this common characteristic is of little importance
in comparison to the differences between the two propositions. In the first proposition,
it is a question of velocities actually acquired effectively in the same time intervals by
two falling bodies of different weight (today we would say of different mass) under the
action of the same force (like two spheres of different weights placed on the same
horizontal plane). In the second proposition, on the contrary, one considers the

449
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velocities which two heavy bodies would acquire or the points of application of two
forces which would be in equilibrium with each other in any given mechanism, if this
mechanism were to be changed from the configuration in which it is in equilibrium.
Thus it is impossible to consider these two propositions identical without depriving

each one of its most significant feature.

Despite this criticism, we persist in our conviction that the Method
of Virtual Velocities contained in the Mechanical Problems can be
derived from the axiom formulated by Aristotle in the VIIth Book of
the Physics and in the IIIrd Book of the On the Heavens.
One can confirm this in the following way: Let us consider a lever

with an applied force a and a resistance {3. The resistance is located at
a given distance from the point of support and we assume that the force
a can move it and make it describe an arc y within a time O. It will also
be able to move the weight {312, placed at twice the distance from the
point of support, because within the same time 0, it will cause it to
describe the arc 2y. Thus the same force (LOXV~) is required to move a
given weight placed at a given distance from the point of support as is
required to move half of that weight over a distance twice the length.
From this, a justification of the theory of the lever as stated in the
Mechanical Problems can be easily deduced. And it is this very
justification which Aristotle seems to invoke when he says in support of
his demonstration:3

[Jar' a:rro riii; avng wXVOi; :rrUov /u,r:aonioe r:oa TO XIVOVV TO :rrAeiOV r:ov
v:rrOf.-loXMov a:rrtxov.

That the Method of Virtual Velocities applied to the lever by the
author of the Mechanical Problems is a corollary to the laws of
dynamics posed by Aristotle in the VIIth Book of his Physics is not at
all, as Vailati would have it, a view which we dreamed up. Rather, it
seems to us that this opinion is universally accepted by tradition.
After commenting on these principles of Peripatetic dynamics,

Simplicius adds:4

Based on this ratio between the motor force, the moving body, and the distance
traversed, Archimedes invented the instrument designed to weigh, called the
charistion.5

It is, indeed, upon the principles of Peripatetic dynamics that Charis
tion based the theory of the Roman balance. Thabit ibn Qurra puts this
proposition at the beginning of the restored text of Charistion:
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If two mobile bodies traverse two unequal distances within the same time, these
distances are in the same ratio to each other as the ratio between the motor power
(virlus malus) of the first body and the motor power of the second body.

The following, adds Thabit, is an example of this proposition:

Let us consider two moving bodies. The first traverses 30 miles and the second 60
miles in the same interval of time. It is known that the motor power of the moving body
which travels 60 miles is double the motor power of the body which travels 30 miles,
just as the distance of 60 miles is twice the distance of 30 miles.
This proposition is self-evident. There is no intermediary between it and compre

hension.

Immediately after this proposItIon which he considers to be self
evident, Thabit establishes the Law of the Lever using the Method of
Virtual Velocities in practically the same fashion as the author of the
Mechanical Problems had done. In order to justify this method, the
commentator on Charistion invokes the proposition which he had
formulated in the first place:

We stated previously that when two bodies in motion traverse unequal distances in the
same time, the motor power of the first is to the motor power of the second as the
distance covered by the first is to the distance covered by the second.... The motor
power of extremity B of the lever is to the motor power of extremity A as the two
distances covered by those points in the same time, that is to say as arc BD is to arc
AF.

Thus Thcibit justifies the use of the Method of Virtual Velocities in
statics with a proposition from dynamics. In Peripatetic terms, this
proposition could be stated in the following fashion:

If a given power (LOXVC:; or oWafltc:;) moves a given body in a given time a given
distance, twice that power is needed to move this same body in the same time twice the
given distance.

This axiom from dynamics is not quite identical to the one which we
saw formulated in two different ways by the Stagirite. It is not even
actually formulated among the rules contained in the Fifth Chapter of
the VIIth Book of the Physics. However, it is a direct corollary of two
of these rules: the one which we previously quoted as well as the
following one:6

Half of the power will cause half of the moving body to cover the same distance in the
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same time. Let to be half of the power a, and ~ be half of the moving body {3. The
power will retain the same ratio to the load ({3aei)(;), so that it will cause it to cover the
same distance in the same time.

Incidentally, it is not from Aristotle that Thiibit borrowed the axiom
upon which he was to found the Method of Virtual Velocities. The
source which he used can be found elsewhere, as he himself tells us:

This section, he states, is based upon the book attributed to Euclid.7 Hoc autem
capitulum innixum est super librum qui nominatur Liber Euclidis.

With these words the great Arab astronomer is referring to the frag
ment on specific weight which is entitled Liber Euclidis de gravi et levi,
et de comparatione corporum ad invicem (Vol. I, pp. 50-56).
This short fragment does, indeed, begin with several definitions and

axioms. If we follow the propositions in a chronological order, the
fourth, the fifth and the sixth propositions correspond to the postulate
affirmed by Thflbit. The following are the three propositions:

Bodies are equal in power (virtus) when they traverse in equal time
equal distances within the same medium of air or water.
Those which traverse the same distance in different time intervals
are called bodies different in power (in fortitudine).
And the one with the greatest amount of power will require the least
amount of time.

Euclid, or whoever the author of the Liber de gravi et levi was, did
not merely formulate these postulates, which are the logical equivalents
to the principle used by Thiibit. He also deduced from the above-men
tioned principle another principle which he states in the following way:

If bodies traverse unequal spaces in an equal time interval, the body which has
traversed the greatest space has the greatest power.

Yet, by formulating the proposition in this particular way, the author's
goal appears quite different from that pursued by Thflbit. He is not
trying to justify a method of statics. He is merely attempting to prove
that the power of heavy bodies of the same "kind" is proportional to the
volumes of those bodies. With reference to the axioms mentioned at the
beginning, it follows that within the same medium of air or water, heavy
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bodies of the same "kind" (that is to say of the same specific weight)
will fall with velocities which are proportional to their volume.
This corollary would be the natural conclusion of what we read in

the Liber de gravi et levi which the manuscripts attribute to Euclid.
However, it is precisely this conclusion which is missing today from the
mutilated volume.
This conclusion is one of the fundamental laws of Peripatetic

dynamics which Aristotle stated as follows in Book I of De Caelo:8

The ratio between weights is in inverse proportion to the lengths of time of their fall. If
a weight falls from a given height in a given time, twice that weight will fall from the
same given height in only half the time needed by the first weight.

Hellenic and Arabic science agree in considering the rules stated in
Book VII of the Physics as principles that are equally suited to serve as
a foundation for dynamics and to justify in statics the Method of Virtual
Velocities. (Several modern mechanicians defend the same view.)
Bernardino Baldi, after quoting the passage in which Aristotle

formulates the Law of the Lever, adds the following:9

This assertion is most surely true and widely acknowledged. Yet, we cannot claim with
certainty that this marvelous effect has as its cause the velocity which results from the
length of the arm of the lever. What is velocity in an immobile body? The lever and the
balance remain immobile when they are in equilibrium and, yet, in that case, a small
force is sustaining a large weight.
The answer to this question could be that if a larger velocity is not acting on the

larger arm, it exists at least in potentiality. However, I would ask you, of what
importance is something which exists only in potentiality in a body in the process of
action? A force which provides support can only do so in the process of action.

This criticism directed at the Method of Virtual Velocities closely
resembles that formulated by Stevin only several years after Baldi
published his exercises and which John of Guevara will attempt to
refute:10 To do this, Guevara resorts to the axiom of Peripatetic
dynamics according to which the same body which is successively
moved by different forces moves with velocities which are proportional
to those forces:

In the case of local motion, he states, velocity always implies or supposes ease; a greater
velocity or a greater ease of motion necessarily indicates a greater gravitational force or
a greater motor force, as can easily be seen by examining either natural or violent
motion. The heavier a body, the faster it descends, if its motion is unimpeded.
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Projectiles move faster within a given medium, the greater the impulse given to them by
the projecting machine. The greater the motor force of animals, the faster they walk and
the faster the motion will be which they are capable of imparting to heavy bodies,
assuming the same configuration of the instruments they activate.
It is for this reason that in the question under examination the extremity of the large

arm of the lever is moving faster and is endowed with a more powerful gravity in hoc
situ. JJ This greater velocity also indicates that the extremity is endowed with a greater
motor force and that it is capable of supporting a larger weight, even though it does not
move.

But there is one mechanician who, very carefully, very explicitly, and
under many different conditions justified the Method of Virtual
Velocities by using the following axiom from Peripatetic dynamics:

The force which causes a given weight to describe a given trajectory within a given time,
is also capable of causing a weight k times larger to describe the same trajectory, but in
a time which is also k times longer.

This mechanician is none other than Galileo.
It is indeed by means of the above-mentioned axiom which he

emphasizes greatly, that Galileo introduces l2 his notion of momento,
the cornerstone of the statics which he develops in the Discorso intorno
aile cose che stanno in su l'acqua, in the treatise Della Scienza mec
canica, and in the Discorsi. This very Aristotelian notion corresponds
in many cases with precisely what the Stagirite had called (lOXV~ or
ovva,Ul~). When Galileo first defines it, he is careful to cite the
Mechanical Problems.13 Thus it is clear that in the eyes of the great
geometer of Pisa, the statics delineated in the Mechanical Problems is
closely related to the dynamics formulated in Book VII of the Physics.
All of Galileo's contemporaries share this view. When Mersenne

defends the Method of Virtual Velocities against the attacks of Des
cartes, he invokes the following axiom:14

If a force can lift a weight to a given height in a given time, a force which is double the
first will lift the same weight twice as high in the same time.

That is the very axiom which Descartes is calling into question15 when
he argues for the Principle of Virtual Work. The Peripatetic Jesuits
such as Father Honore Fabri16 make of the statics of Galileo a corollary
of Aristotelian dynamics. In a word, the majority of the XVIIth century
mechanicians follow in the footsteps of Simplicius and Thabit ibn
Qurra by acknowledging the accuracy of the following proposition: the
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Method of Virtual Velocities, as it is stated in the fourth problem of the
Mechanical Problems with reference to the lever, owes its strength to
the rules of dynamics set down in the Fifth Chapter of Book VII of the
Physics.
We think we are justified in qualifying this view. By asserting that the

velocity at which a weight moves is proportional to the force which
moves it, those rules are certainly in accordance with the theory of the
lever which Thabit ibn Qurra set forth when he restored the writings of
Charistion. However, the theory of the balance and the lever set forth
in the Mechanical Problems seems to us to be far too complex to be
explained in its entirety by these principles. Several assertions which
appear rather obscure to us moderns become clear when we approach
them with a more precise knowledge of Peripatetic dynamics.
No other passage is better suited to reveal to us the true principles of

this dynamics and to demonstrate to what degree these principles differ
from our science of motion than the chapter in Book IV of the Physics
in which Aristotle attempts to prove the impossibility of a vacuum.
We are accustomed to distinguish in each moving body two elements:

the force which moves and the mass which is moved. Nothing similar
can be found in Peripatetic physics. No notion used in that physics
bears any analogy to our modern notion of mass. Every body moved is
necessarily submitted to two forces, an impressed force and a resisting
force. Without the force, the body will not move, without the resistance,
its motion would be instantaneous. The velocity at which the body
moves depends simultaneously upon the magnitude of the force and the
magnitude of the resistance.
For example, in the most simple natural motions, the force is

represented by heaviness or lightness; the resistance comes from the
medium in which the motion is producedP

We have seen that the velocity at which the same weight or body moves can increase
due to two causes; it can increase due to a change in the medium in which the motion
takes place - this medium being either water, air or earth. It can also increase 
everything else being equal - by a change in the moving body such as an increase in
weight or lightness.

The velocity of the moving body must vary in the same ratio as the
force and in inverse ratio to the resistance. What laws are being
followed here? According to a very perspicacious insight of G.
Milhaud,18 Aristotle, being a mediocre mathematician, could never
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conceive of any other form of a function than proportionality. Thus he
will assume, without explicitly stating it, that the velocity of a moving
body is proportional to the force and in inverse proportion to the
resistance. Such a law is inadmissible, since the velocity is nullified when
the force is equal to the resistance. This insight does not escape the
attention of the Calculatores l9 of the XIVth and XVth centuries and
provokes quite a debate among them. However, it does not seem to
have occurred to Aristotle.
The Stagirite goes even further. Without balking, he assumes that the

resistance of a medium is proportional to its density, so that the
velocity of descent of a falling body within a given medium is inversely
proportional to the latter's density.

Let us assume the body a is moving through medium fJ for a time y; later, it is moving
through a more permeable medium 0 for a time E. The distance traversed is assumed to
be the same for both media fJ and O. These displacements take place according to the
ratio between the resisting media. If, for example, medium fJ is water and medium 0 is
air, the more permeable and more incorporeal the air, the faster the motion of a
through the medium O. The different ratio between water and air will also be the ratio
between the two velocities. Thus, if air is one-half as dense as water, the moving body
will take twice as long to cover the same distance through medium fJ as through
medium 0, and time y will be twice time f. The moving body will always move faster,
the more uncorporeal, the less resistant and the easier it is to permeate the medium
which it is traversing.20

The dynamics described in this passage which is at odds with modern
ideas, must be taken into account by anyone wishing to explain the
quite obscure arguments contained in the second of the Mechanical
Problems.
We have already given21 a succinct analysis of these arguments. We

saw how Aristotle makes a kinematic analysis of circular motion and
comes to the following conclusion: When a point traverses the lower
half of a circle in a vertical plane, it is simultaneously carried down
wards in a natural motion as well as towards the center of the circle, a
motion which goes against its nature.

It is clear from the terms used by the author of the Mechanical
Problems that for him the two components of the velocity correspond
to the two forces which are proportional to them: the moving point "is
being held back by force" (JC(!ardrm) from the center.
Moreover, these two forces play the same role that force and

resistance played in the fall of a body within a given medium. The force
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which corresponds by nature to the motion plays the role previously
assigned to the body during the faU, while the violence exerted by the
center is comparable to the resistance of the medium.
For the same value of the first force, the velocity of the moving body

will be all the smaller, the larger the resisting action.

If of two moving bodies moved by the same force, one experiences a greater resistance
while the other experiences a smaller one, it is accurate to say that the one restrained
more moves more slowly than the one restrained less.22

When the moving body descends from a given height along a circle, it partakes of a
motion which goes all the more against nature, the smaller the circle.23 In these two
circles, the ratio between the natural motion and the motion contrary to nature is not
the same. Because of this, under the action of the same force, the body which is furthest
away from the center, will move more rapidly. This is obvious from what we have
said.24

We are convinced that the analysis which we have just finished
reproduces the essence of the ideas of the author of the Mechanical
Problems. It shows us how he reached the following proposition: It
takes a smaller force to move a body at a given velocity when the
motion takes place along a large circle rather than a smaller one. In the
treatise of Charistion this proposition is deduced very simply from the
rules formulated in Book VII of the Physics and in the treatise De gravi
et levi, attributed to Euclid. This simple form of the Method of Virtual
Velocities is suggested in the fourth problem of the Mechanical
Problems, which deals with winches and capstans. However, it is not
explicitly formulated in any of the Problems. The author of the
Mechanical Problems viewed statics in a more complicated fashion. It is
certain that he considered statics as derived from Peripatetic dynamics.

B. ON CHARISTION AND ON THE IIEPI ZyrQN

OF ARCHIMEDES*

After expounding25 our reasons for considering the Liber Charastonis,
editus a Tebit filio Corae to be the work of a geometer by the name of
Charistion, we undertook to find further evidence of this geometer in
other works of Hellenic science.

* The Greek reads, On Balances.
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In particular, we thought that Charistion might be identical with
Heriston, the son of Ptolemy, to whom the latter had dedicated the
Liber diversarum rerum. However, Enestrom called to our attention26

that the above-mentioned work was probably apocryphal and that the
person to whom it is dedicated, called Heriston in the edition of the
Liber diversarum rerum published in Venice in 1509, is called Ariston
in other manuscripts. Enestrom further remarked that this Ariston was
the name of an otherwise unknown person to whom Philo of Byzantium
addressed all of his writings and that the author of the apocryphal work
had made this individual into a son of Ptolemy, not knowing that
Ptolemy lived and wrote much later than Philo.
We are very grateful that Carra de Vaux, who published the Livre

des appareils pneumatiques et des machines hydrauliques of Philo of
Byzantium based on an Arabic version, wrote us on the aforemen
tioned subject. The following is a passage from his letter:

Allow me to call your attention to a small detail. The Arabic text of the Pneumatiques
of Philo of Byzantium also contains the variant Mariston for the name Ariston. The
letter M is interesting because it could very well be a spelling mistake for H or less
probably for K:

Arabic
rna, ha, ka

The confusion of M, H, and K is common in Arabic writings. It would explain why the
three names Mariston, Heriston and Karistion appear here together.

The observation by Carra de Vaux leads to a new hypothesis according
to which Charistion, the author of the Book on the Balance as restored
by Thabit ibn Qurra, would be the contemporary and friend of Philo of
Byzantium, to whom the latter dedicated all of his works. The name
Ariston, like the name Karaston, would be an Arabic corruption of the
Greek name Xaewr{wv.
Moreover, this mistake has had very diverse effects. In the Arabic

manuscripts of the works of Philo, one finds27 the forms "Mouristos",
and "Ristoun." In the Latin manuscripts one can read:28 "Marzotom" or
"mi Argutom."

It is generally believed that Philo of Byzantium lived during the
second century B.c. Thus we would be forced to predate the life of
Charistion as well as the composition of his work on the balance to that
earlier epoch.
An earlier date for the work by Charistion would explain why it was
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attributed to Archimedes. We have already given the following quote
from Simplicius:39

By using the proportionality between the motor force, the moving body and the
distance traversed, Archimedes had invented an instrument for weighing which is called
the charistion.

This quote can be compared to a passage from Pappus30

Archimedes, in his book, On Balances, as well as Philo and Hero in their Mechanics,
respectively have shown that the smaller circles were less efficacious than the larger
circles when both were produced by a rotation around the same center.

These passages from Simplicius and Pappus make claims which are
hardly acceptable. First of all, contrary to the claim of Simplicius,
Archimedes does not appear to have invented the Roman balance,
which is discussed earlier in the XXIst problem of the Mechanical
Problems of Aristotle. However, it could be argued that the great
Syracusan had written a book On Balances meant to furnish the theory
of that instrument. Yet, it would be quite improbable to think that he
found in the Method of Virtual Velocities the principle of that theory,
since he based his investigation entitled On the Equilibrium of Planes
upon entirely different hypotheses and since the theorems thus arrived
at could have easily furnished him with the laws of the Roman balance.
While the statements made by Simplicius and Pappus appear to be

untenable when applied to Archimedes, they are, on the contrary, quite
compatible with the writings of Charistion. And, immediately, the
following supposition comes to mind: The treatise IIfl?l Z vyWV, which
was read at Alexandria and Athens at the time of Pappus (IVth century
A.D.) and Simplicius (VIth century A.D.) and which was attributed to
Archimedes, might very well be the book On the Balance written by
Charistion.
This hypothesis seems quite plausible. After all, Archimedes, whose

renown was such that he had become a veritable legend, was credited
with a great number of works which he had never written, such as, for
example, the treatise On Waterclocks which was dedicated to Ariston,
but was written without a doubt by Philo of Byzantium.31

Furthermore, other remarks concerning the IIfl?l Z vywv of Archi
medes appear to apply, in reality, to the lost treatise of the great
Syracusan and to describe this work in terms far removed from those
used by Pappus and Simplicius.
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These valuable remarks can be found in the treatise on Mechanics
written by Hero of Alexandria.32 By using the notion of the moment of
a weight with respect to the point of suspension, Hero of Alexandria
formulates the condition of equilibrium for a nonrectilinear balance.33

To this, he adds the following:

This is what Archimedes demonstrates in his book On Balances.

This passage is followed by the solution to another problem with the
help of the same concept of moment. It concerns the equilibrium of two
weights which are suspended from two points on a circumference of a
wheel which rotates about its center. This problem could have been
taken from the same work On Balances.
In another passage,34 Hero deals with the equilibrium of a winch. At

the outset, we find the following words which emphasize the impor
tance of the problem posed:

As far as the cause is concerned which makes each of these instruments (the five simple
machines) able to move large weights by a small force, we shall presently discuss it.

After having solved this fundamental problem, he adds:

We shall now apply to the five machines the demonstration which we have just made
with the example of the circle. After this analysis, their operation will be clear. The
Ancients always preceded it by a lemma.

Hero demonstrates this essential lemma quite simply by comparing
the winch and a balance with a horizontal beam with the two arms
unequal in length. He adds:

Archimedes has already furnished this proposition in his book On the Equilibrium of
Weights.

Of the two quotes from Archimedes which we have just stated, the
first most assuredly alludes to a work which is lost today. There is
nothing to prevent us from supposing that this work, called On Balances
by Hero, might have been entitled in Greek IIEQl Zvywv.
Contrary to the opinion stated by Carra de Vaux,35 we do not think

that the second quote refers to the same work. Indeed, this quote
merely discusses the rule according to which two weights suspended
from a beam of a horizontal balance are in equilibrium when they are
inversely proportional to the arms of the balance. This same proposi-



NOTES 461

tion had been demonstrated by Archimedes in his well-known treatise
EJUJltoov WO(!(!oJU1<WV i) 1<tvT(!a f3a(!wv eJUJltowv36 This must be the
work which Hero calls the book On the Equilibrium of Weights, a title
which appears to be related to the word WO(!(!OJllXWV.37

A further quote also clearly alludes to the same work by Archi
medes. It reads as follows:38

When a heavy body is in equilibrium with another heavy body and when both are
suspended from two points on a line which is divided in two and which is supported at
the point of division, this line is parallel to the horizon if the ratio between the
magnitudes of the weights is equal to the inverse ratio of the distances between their
points of suspension and the point of division of the line. The weights suspended in this
manner are in equilibrium without any inclination of the beam, as Archimedes
demonstrated in his books On the Equilibrium ofFigures where Balances are Used.

The proposition stated here by Hero is the theorem of mechanics
which supports the entire theory set forth in the On the Equilibrium of
Planes. The first part of the title, On the Equilibrium of Figures, could
be considered a faithful translation of the Greek title. However, the
Arabic title has as its second part, Where Balances are Used. If we
recall that in another passage the title, On Balances, is probably applied
on IIe(!l Z vywv, one wonders if Hero did not combine in a single
reference the books On the Equilibrium ofPlanes and On Balances.
According to Hero himself, the quote which we just discussed is

preceded and followed by other borrowings from Archimedes. Since
these borrowings do not come from the On the Equilibrium of Planes
they must come from the IIe(!l Zvywv.
Let us stop a moment and comment upon them, because they are

certainly worth our consideration.
They deal with the center of gravity which is sometimes referred to

by Hero as such, but more often as the "center of inclination" or even
as the "point of suspension." Here is the definition (p. 73):

The point of suspension is an arbitrary point on a body or a plane figure such that
when the body is suspended from this point, its parts are in equilibrium, that is to say,
the body neither rotates nor inclines.

Hero adds the following to this definition:

According to Archimedes, heavy bodies can remain in equilibrium without inclining
about a line or about a point. This is applicable to a line when the body resting on two



462 NOTES

points of this line does not incline in either direction. In that case, the plane per
pendicular to the horizon drawn through this line remains perpendicular and does not
incline about the line no matter where one puts it.... As far as the equilibrium about a
point is concerned, it occurs when the body is suspended from that point - no matter
what the motion of the point - and when its parts counterbalance each other.

A few pages further on (p. 75) Hero demonstrates two theorems
without mentioning if his arguments stem from Archimedes. He
formulates them in the following way: If a heavy body is successively
suspended by different ropes, all of these ropes, if prolonged, will meet
at the center of gravity of the body. If one observes successively the
equilibrium of a body about different axes and if one notes each time
the vertical plane passes through this axis, all of the planes will pass
through the center of gravity of this body.
The various passages which we have just mentioned are preceded by

the following (p. 73):

This question has been formulated by Archimedes with sufficient proofs. On this
subject it should be said that Poseidonios, a Stoic philosopher,39 furnished a mechanical
definition of the center of gravity. According to him, the center of gravity or the center
of inclination is a point such that when a body is suspended from this point, it is
divided into two equal parts. Because of this, Archimedes and the mechanicians who
fol1owed him refined this definition and differentiated between the point of suspension
and the center of inclination.

After reading these rather disjointed statements, we are led to make the
following conclusions: The individual identified by the name of Posei
donios provided a mechanical definition of the center of gravity: A
point such that a body suspended by this point remains in equilibrium.
Archimedes gave two propositions: the first concerning the equilibrium
of a body suspended by an axis, and the second concerning the
equilibrium of a body suspended from a point other than the center of
gravity. These two propositions present ways to determine the positon
of the center of gravity. These propositions were established in the
treatise TIEQi Zvywv.
The evidence furnished by Hero would hardly be of much interest,

were it not for a particular circumstance which corroborates what he
says. Archimedes tells us himself that he had submitted the center of
gravity to similar considerations. In his treatise On the Quadrature of
the Parabola, he states the following:40
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Every suspended body - no matter what its point of suspension - assumes an
equilibrium state when the point of suspension and the center of gravity are on the
same vertical line. This has been demonstrated.

Here we find the distinction made by Hero of Alexandria between the
point of suspension and the center of inclination.
Now that we possess some precise information about the TIeQl

Zvywv of Archimedes, we can return to our study of the Mathematical
Collections of Pappus and make the following assertion: the treatise
TIeQl Zvywv must have been already lost at the time Pappus was
writing and he seems to have never seen it.
In Book VIII, Pappus returns to a more precise analysis of the

considerations of the center of gravity which Hero borrowed from
Poseidonios and from Archimedes. Pappus adds4J that anyone wishing
to study the elements of the centro-baric doctrine will find them in the
book On Bodies which are in Equilibrium of Archimedes as well as in
the Mechanics of Hero. Instead of quoting the treatise On the Equilibr
ium of Planes, from which he certainly did not borrow the above
mentioned statement, why would Pappus not quote TIeQl Z vywv, the
original source of this formulation if he had read it originally in the
work of Archimedes, not merely in the summary written by Hero?

It is true that Pappus quotes TIeQl Z vywv in a passage which we
mentioned above. However, a reading of that passage only confirms our
conclusion. Pappus states the following in that passage:

Archimedes, in his book Deei Zvywv, as well as Philo and Hero in their Mechanics,
respectively have shown that the smaller circles were less efficacious than the larger
ones when they are produced by a rotation around the same center.

To which passage in Hero does this sentence refer? It must be the
theory of the winch which the mechanician of Alexandria considers as
the cornerstone of the theory of simple machines. Pappus tells us that
Philo of Byzantium had already formulated a similar theory. This agrees
very closely with what Hero tells us. Indeed, the latter tells us that "the
Ancients always put this lemma" at the beginning of their theory on
simple machines. He adds (pp. 111-112):

The winch is nothing but two concentric circles, one small - the circle of the shaft 
and the other large - the circle of the drum. It is correct to suspend the weight from
the axle and than apply the impressed force to the drum because in this fashion a small
force prevails over a large weight. Those who have preceded us have already stated this.
We have merely repeated it so that our book will be complete and well-organized.
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These references to the Ancients and to those who preceded Hero of
Alexandria conform well with Philo of Byzantium and his School.

In this passage to which the quote by Pappus conforms so well, Hero
of Alexandria names Archimedes. Yet, as we have seen, he attributes to
Archimedes neither the theory of the winch nor the remarks about the
relative efficacy of unequal circles, but merely the law of the equilibr
ium of the lever. The work which he quotes is not the ITEQt Zvywv but
the book On the Equilibrium of Weights, that is to say, the treatise
Em.nlOwv laoQQOjWCWV, which in another passage Pappus calls On
Bodies which are in Equilibrium. It would be strange that in this
passage Hero did not quote from the book On Balances, ITEQt Zvywv,
which he knows and which he quotes twice on other occasions and
from which he borrowed the fundamental properties of the center of
gravity, if the mechanical properties of the two concentric circles were
stated in that book.
Thus it appears that a theory of the winch was not included in the

ITEQt Zvywv of Archimedes. However, Pappus, who does not quote
the above work when he is formulating his own theory, quotes from it
in connection with a problem which, in all likelihood, is not contained
in the work. Should we not conclude from the above that Pappus did
not know that work of the Syracusan - except perhaps by hearsay 
because the latter was no longer read in Alexandria during the time of
Pappus?

It appears that during Pappus' time in Alexandria several books of
Archimedes were only known by name, a fact which Thurot has
recognized:42

Pappus quotes43 the IIE{>t OXOWtEVWV44 of Archimedes among the books on applied
mechanics along with the Pneumatics of Hero. Obviously, all he knew of the book was
its title.

If the ITEQt Zvywv was already unknown in Alexandria during Pappus'
lifetime, it stands to reason that it was also unknown in Athens during
the time of Simplicius. Since, on the other hand, the work of Archi
medes was mentioned in later works, such as the Mechanics of Hero
and the Collections of Pappus, it was only natural that some looked for
it among treatises which had some resemblance to it either in their title
or in their content and that it was taken for a book on the balance
written by a forgotten ancient author. It is in this way that Simplicius
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could well have mistaken the book of Charistion for the I1E()l Z vywv
of Archimedes.
Let us return to Charistion. We stated earlier45 that the copyists of

the Liber Charastonis had generally considered Charasto to be a
proper name - the name of the author of the treatise. The following
testifies remarkably well to this. The Biblioteca Ambrosiana at Milan
has in its possession a manuscript (Ms. T. 100. Parte superiore) in
which the treatise edited by Thflbit ibn Qurra bears the title.46 Liber
Carastonis super Euclidem de ponderibus in mensuris.47 We know that
in his preamble, Thflbit actually refers to the book which he intends to
restore as a work containing deductions which are based upon the book
on weights attributed to Euclid.
Besides the Liber de statera, what other work do we know which is

attributed to Charistion? A manuscript in the Bibliotheque Nationale48

contains within the Liber Carastonis a treatise De figura sectoris,49
which it attributes to Thflbit. In a work kept at the Public Library of the
University of Basel (Ms. F. II. 33), this treatise bears50 the following
title: Liber Castoris de figura sectoris, seu Thebitus. The word Castoris
might well be the misspelling of the word Carastonis by a copyist. It is,
therefore, possible that the treatise De figura sectoris is a work of the
Greek geometer Charistion and that Thflbit ibn Qurra was only its
editor.
We might also add that in certain manuscripts, this treatise De figura

sectoris is attributed to Campanus.51

C. ON THE DE ARCHITECTURA OF VITRUVIUS

Very rarely did the Ancients quote the Mechanical Problems of
Aristotle. Diogenes Laertius is perhaps the only one to attribute to the
Stagirite a work on mechanics. It is for this reason that the authenticity
of that work has often been called into question, especially after Cardan
rejected it in his De proportionibus.
However, this rarely quoted work has had considerable influence

upon the development of mechanics, perhaps an even greater influence
than the works of Archimedes. Indeed, the Mechanical Problems
served as a model for various collections which considered from
various aspects some of the problems treated by Aristotle. Many times
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Aristotle's problems were discussed in connection with other similar
problems.
In later notes,52 we shall have the opportunity of calling attention to

two of these collections. For the time being, we would like to mention
briefly the least known and least interesting of these collections, that of
Vitruvius.
In Book Ten of his De Architectura,53 Vitruvius devotes one

chapter54 to propounding the principles of statics which explain the
capabilities of machines. The content of that chapter is borrowed
entirely from the Mechanical Problems. It is possible that the manner in
which Vitruvius summarizes these problems was a result of the influ
ence of Philo of Byzantium and his School. Above all, it bears the mark
of the Roman mind which was so unable to retain from the Greek
works which it analyzes their original philosophical depth and logical
rigor.
In the peculiarities of circular motion Aristotle had searched for the

reasons for the effects of different mechanisms. Hero tells us that the
Ancients always prefaced their theory of simple machines with reflec
tions on the relative efficacy of two concentric and unequal circles.
Thus it should not surprise us to see Vitruvius give the following title to
his chapter on statics: On the force which the straight line and circular
curve possess in machines designed to carry loads. It should also not
surprise us to read the following introduction:55

I have said in brief what I consider necessary for understanding machines designed to
pull and in which two motions or powers must be considered which are different from
one another, but which work together as principles of two actions. One of these powers
is the force of the straight line called eutheia by the Greeks and the other one is the
force of the circular curve called the cyclotes by the Greeks. However, the truth is that
the straight line cannot exist without the circular curve nor the circular curve without
the straight line when loads are being lifted by winching machines.

To support these remarks, Vitruvius gives an example based upon
the pulley. As Perrault points out, this example is confusing and
unclear. Any interpretation of this obscurity is bound to be false. This
obscure passage might perhaps be read as a garbling of the remarks on
the windlass, which according to Hero, the Ancients always prefaced to
their theory of simple machines.
We cannot see that Vitruvius tries to prove more geometric056 the

efficacy which he attributes to circular motion. He does not attempt at
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all to apply to this motion the principles of Peripatetic dynamics, as did,
on the one hand, the author of the Mechanical Problems and on the
other hand, Charistion. Furthermore, he does not try to deduce these
principles from the law of the lever taken as a principle. He is content
to make simple allusions on the subject of different instruments, as can
be gathered from the Mechanical Problems.
For example Vitruvius states the following about the lever:57

... the reason for this is that the part of the pincers from the fulcrum on, upon which it
clamps the load which it is lifting, is the smallest. The largest part - which goes from
the fulcrum to the other extremity, if one chooses to stretch it over that length - will
give the following result by virtue of circular motion: squeezing with one hand, one can
develop with this hand a force equal to the weight of a very heavy load.

After briefly discussing several problems of statics, all borrowed
from the Mechanical Problems, Vitruvius adds the following:58

These examples show that it is because of the distance from the fulcrum and because of
circular motion that all bodies are moved.

Such vague theoretical remarks satisfied the utilitarian Latin mind of
Vitruvius.

D. ON THE MECHANICS OF HERO OF ALEXANDRIA

Today, it is generally agreed that Hero of Alexandria lived long after
Christ and that he was a contemporary of Ptolemy. Thus we are
justified in having this section follow the one dealing with Vitruvius.
A great many writings of Hero have come down to us more or less

intact in the original Greek and have been known for a long time. An
exception is the important work entitled either The Elevator or the
Mechanics.
For a very long time this work was only known through the

numerous references made to it by Pappus in Book VIII of his Collec
tions and through an excerpt of it which a copyist had added to the
work of Pappus.59

The Greek text of The Elevator seems to be definitively lost. How
ever, the renowned Qusta ibn Luqa furnished us with an Arabic version
which was brought back from the Orient during the XVIIth century by
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a scholar named Golius, who bequeathed it to the Library at Leyden
where it has remained ever since.

It is this Arabic version of Qusta ibn Luqa which Baron Carra de
Vaux published after having translated it into French and which he
commented upon in a remarkable introduction.60

Hero of Alexandria was familiar with the works of Archimedes. The
great Syracusan is cited nine times in his treatise. The same holds true
for the disputed name of Poseidonios, the only other person cited. Hero
not only knows the On the Equilibrium of Weights of Archimedes,
which we have, but also the book, TIeQi Zvywv, which is lost today.
His work is actually the only treatise which furnishes us with reliable
information about this latter book. We examined this book earlier.6t

The influence of Archimedes is not the only one evident in Hero. In
two different passages,62 he talks about the "Ancients" and about "those
who preceded him." We have quoted these passages elsewhere.63 By
comparing them with a quote from Pappus, we came to consider them
as allusions to Philo of Byzantium and his School.

If there is, however, one influence which deeply marks the treatise of
Hero, it is surely that of the author of the Mechanical Problems. Carra
de Vaux correctly sees this influence in the following remark:64

In matters of natural philosophy Aristotle was the teacher of the author of the
Mechanics. Hero was ungrateful in so far as he did not make reference to him.
Nonetheless, the influence of Peripatetic thought upon the Mechanics is obvious. Like
Aristotle, Hero is concerned with searching for the causes, the why of mechanical
phenomena as well as with reducing these phenomena to simple principles. The
chapters which he devotes to this end are among the most elegant and best organized in
his book and bestow upon the entire work a mark of grandeur rendering it worthy to be
ranked above the majority of mechanical treatises left by Antiquity and by Hero
himself.
. . . Besides the influence of Aristotelian thought, one also finds in the Mechanics an

entire chapter'5 which seems to be an actual excerpt from the Mechanical Problems of
Aristotle, although in an abridged form and with some significant variations. This
chapter comprises seventeen problems in the form of questions and answers, the form
Aristotle used in the Mechanical Problems. Furthermore, the chapter is preceded by an
introduction which faintly resembles the introduction to the Physics.

Let us attempt to outline the major ideas of Hero on the principles
of statics. It seems quite appropriate to take as the basis for the
deductions of the mechanician from Alexandria the law of the lever
taken upon the authority of Archimedes.66
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Archimedes has already stated this proposition in his book On the Equilibrium of
Weights.

This law is used, as we came to see in Note B, to establish the
condition of equilibrium for the winch. This condition of equilibrium, in
turn, is used to establish the following truth which is utilized to explain
the lever: A larger weight which is moving on a small circle will be kept
in equilibrium by a small weight moving on a large circle concentric to
the first, if these weights are in inverse ratio to the arcs of the circles
which they describe in the same time.
It is this deduction, which Hero says he borrowed ''from the

Ancients" and "from those who preceded him," which leads to the
principle of statics first used by Aristotle and later by Charistion.
However, this deduction does not lead to that principle by the means
used by the above-mentioned mechanicians. They tied the principle of
statics to the fundamental laws of Peripatetic dynamics. Hero, on the
contrary, who was undoubtedly following the example of Philo of
Byzantium, founded the principle upon the law of the equilibrium of
the lever, which he presumes as having been directly established. It is
interesting to note that such an approach is precisely the one which we
encountered in one of the four propositions on the lever which the
manuscripts attribute to Euclid.67

What had been the central idea of the entire statics of the Mechanical
Problems of Aristotle and of the book On the Causes of Charistion
was relegated in the line of reasoning adopted by Hero to a mere
intermediate step, trifling at best. Instead of reducing all simple
machines to the motion of two weights on two concentric circles, it was
just as easy and even more natural to reduce them directly to the lever.
Hero understood this perfectly well:

The five simple machines which move weight, he says,6H can be reduced to circles with
one common center; this is what we demonstrated with the different figures previously
described. Let me remark, however, that the machines can be reduced even more
directly to the balance than to circles. Indeed, we have seen that the principles for the
demonstration of the circles derive from the balance. It can be demonstrated that the
ratio between the weight suspended from the small arm of the balance and the weight
suspended from the large arm is equal to the ratio between the length of the longer and
the shorter arm.

The intermediate step, challenged by Hero as to its usefulness, has
the advantage nevertheless of demonstrating the following proposition:
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The force and the resistance are inversely proportional to the velocities
at which their points of application move simultaneously. We know
what role this proposition played in the development of statics.
Hero of Alexandria is familiar with this proposition. How did he

come to know it? Was it by reducing all simple machines to two
concentric circles? Was it simply by reading "those who preceded
him?" He remains silent on that question. He does not even furnish any
a priori justification of this law. He merely states that it is verified in the
different machines for which he formulated a theory.
Thus, after having stated the theory of the windlass, he says:69

This instrument as well as all other similar machines are slow because the smaller the
force is in relation to the heavy weight which it is moving, the greater the time needed
to accomplish the work. The same ratio exists between the forces and the times.

He then goes on to verify the accuracy of this statement.
He proceeds in the same manner for the block and tackle by stating

the following truth:70

The reduction in velocity also occurs in this machine ... The ratio between the times is
equal to the ratio between the motor forces.

A little further on, Hero writes the following about the lever:7!

There is a reduction in velocity in this case too and according to the same ratio. There
is, indeed, no difference between levers and windlasses.... As we already demonstrate
in the case of the windlass, the ratio between the forces is equal to the ratio between the
times, and the same demonstration can be applied in the present case.

When Hero formulated the theory of the windlass,72 he actually did
not say one word about the ratio between the motor force and the time.
However, this ratio can be deduced easily from the theory which he
borrowed from the "Ancients" and those "Ancients" undoubtedly had
been careful not to neglect this corollary. However, Hero failed to
restate this corollary although he uses it as if he had developed it.
Hero73 also makes the same claims with regard to the wedge and the

screw:

There is also a reduction in velocity in these two instruments. The ratio between the
times is like the ratio between the forces.

The mechanician from Alexandria merely makes this assertion,
without giving any proof. He is unable to give such a proof because he
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does not possess a complete theory of the wedge and the screw of
which he has only vague notions. If he had a correct theory of these
instruments, he would notice that the law which he is stating cannot be
applied to the wedge and the screw without modification. He would see
that one cannot use the velocities at which the points of application of
the force and the resistance move, but only the vertical component of
these two velocities.
Such a modification would probably not have overly surprised Hero

of Alexandria. In one passage in his work, he seems to have felt the
need for such a refinement.
Among the problems which are for the most part borrowed from the

Mechanical Problems of Aristotle, we find however the following which
is not in that work.74 Let a weight be suspended from a support by
means of a rope which hangs vertically. Let someone then grasp the
rope anywhere between the support and the weight, and then pu1l75 it
until the segment which continues to hang down comes to be super
imposed upon a given vertical line. Why is the effort required to pull
the rope all the greater, the closer to the point of support one has
grasped the rope? Hero proves that this is so because one imposes on
the weight an ascent which is all the greater the closer to the point of
support one has grasped the rope:

And in order to lift the weight higher, one needs a greater force than to lift it less high,
because in order to lift it higher, one needs more time.

One could see in this passage a hint of the change which Galileo will
apply to the Principle of Virtual Velocities as formulated by Aristotle
and Charistion. However, the presentation given here by Hero is
extremely vague and imprecise.
In order to finish this account of the views held by Hero on the

principles of statics, we remind the reader that the mechanician from
Alexandria understood well the notion of the moment of a weight with
respect to a point. As we saw in Note B, he applied that knowledge
when he stated the conditions of equilibrium for a balance with a
curved beam as well as for a wheel which can revolve around its center
and which carries two weights suspended from two points on its
circumference.
This short summary is enough to demonstrate the richness of the

insights into the principles of mechanics contained in The Elevator.
However, we should not give too much credit for these views to the
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mechanician from Alexandria. His own original contribution is small if
not null.76 Whether he reveals to us the sources of his theories or hides
them from us, we can easily see that he has borrowed almost everything
from those who preceded him, from Aristotle to Archimedes and
perhaps even from the mechanicians of the School of Philo of Byzantium
and as well as from Charistion.

E. JORDANUS DE NEMORE

We noted earlier (Vol. I, p. 80) that the mathematician who is usually
known by the name of Jordanus Nemorarius should actually be called
Jordanus de Nemore, according to the unanimous testimony of the
manuscripts. We added that in our opinion the surname "de Nemore"
should be considered as designating the birthplace of Jordanus. This
same opinion happens to have been stated as early as the end of the
XVIth century by Bernardino Baldi. Indeed, he states it in the following
way:77 "Giordano, d'un luogo detto Hemore, si chiamo Hemorario.,,78
It is scarcely necessary to note that the spelling HemOTe or Hemorario
for Nemore or Nemorario resulted from an error by a scribe or
printer.

F. ON THE PRECURSOR OF LEONARDO DA VINCI

The Precursor of Leonardo da Vinci79 is the name we have given to the
unknown author of a treatise on mechanics which was widely known in
the XIIIth century and which we have already analysed at great
length.8o

However, we were unable to pursue this analysis as far as we would
have liked. The edition of this text, published in 1565 by Curtius
Trojanus contains so many errors that it is nearly incomprehensible.
Besides this one printed text, we had access for quite some time to a
unique manuscript contained in MS 7378A (Latin Collection) of the
Bibliotheque Nationale. This latter text, quite difficult to read, also
contains many errors. It was not until we began the revision of our
present work that we learned of a manuscript from the XIIIth century
which is both clear and accurate. It can be found in MS 8680A (Latin
Collection) of the Bibliotheque Nationale.
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With the help of this text, we were able to undertake a detailed study
of the treatise by the Precursor of Leonardo da Vinci. This effort led us
to new conclusions which we have developed elsewhere81 and which we
shall present only summarily in this note.
The treatise De ponderibus82 which we attribute to the Precursor of

Leonardo is divided into four books in these manuscripts. The first
book deals with the propositions which 10rdanus de Nemore had
formulated earlier. It restates them or corrects them. Furthermore, it
contains two very important additions: the condition of equilibrium for
the bent lever and the apparent weight of a body on an inclined plane.
These additions are arrived at by means of the very same approach
which led 10rdanus de Nemore to state the law of equilibrium for the
straight beam.
The second book deals with problems which are very similar to

those found in the De canonio. The third book concerns itself with the
concept of moment and with the conclusions which can be drawn from
it with respect to the stability of the balance. Finally, the fourth book
treats of diverse problems in dynamics.
The conclusion to which our detailed study has led us can be stated

in the following manner: While the first book was written during the
Middle Ages by a disciple83 of 10rdanus de Nemore, the last three
books are relics of Greek science which undoubtedly reached the West
through the Arabs.
The letters on the figures and which are used in the demonstrations

of Books II and III occur almost invariably in the following order:

A,B,C,D,E,Z,H.T.

This brings to mind the sequence in the Greek alphabet:

a, p, y, 0, E, ~, 'Yj, O.

Hultsch has already observed that this is a characteristic which allows
us to recognize with confidence mathematical treatises of Greek origin.
In Book III, the concept of moment is stated in a form which closely

resembles that contained in The Elevator of Hero of Alexandria. Finally,
a great many of the problems in Books III and IV are borrowed from
the Mechanical Problems of Aristotle, although the author has largely
modified and often greatly refined the solutions of the Stagirite.
More than one mechanician from Antiquity borrowed heavily from

the Mechanical Problems of Aristotle. In his De Architectura, Vitruvius



474 NOTES

gives the following title to the eighth chapter of Book X: On the force
which straight and circular lines have in machines designed to carry
weights. The content of this chapter is borrowed entirely from the
Mechanical Problems. In his poorly organized work on Mechanics,
Hero of Alexandria likewise restates84 several problems from the
Mechanical Problems of the Stagirite, although he does add important
variations.
The last three books of the treatise which concerns us here form a

similar collection. They represent for us a precious document of Greek
science. It is through them that a great number of ideas expressed by
Aristotle in his Mechanical Problems reached the West during the
Middle Ages.

It is likely that these ideas arrived through the mediation of Arabic
versions of those Greek texts. This transmission through the Arabic is
the only explanation for the total absence of any latinized Greek word
in the treatise which concerns us here. On the contrary, such latiniza
tions can be found in abundance in works which have been directly
translated from Greek into Latin, such as is the case for the De
canonio.
Therefore, Books II, III, and IV represent important relics of Greek

science. However, Book I is of a completely different character. There
is no trace of Hellenic science to be found in it. The letters which
designate the different points on the figures occur in the sequence of
the Latin alphabet. The only influence which can be clearly recognized
is that of the School of Jordanus. This book is thus obviously a product
of the Occidental Middle Ages.
Between the first book of the treatise De ponderibus, which now

concerns us, and the last three books, there exists only a very loose
connection and it is quite easy to disregard that connection. No
demonstration in the last three books explicitly refers to a proposition
of Book I. Moreover, the two concepts - the concept of gravitas
secundum situm and the concept of the work of the weight - which
play such an essential role in Book I, do not even appear in the last
three books. It is clear that the first book, on the one hand, and the last
three books, on the other, are two distinct works which were artificially
joined together.
These manuscripts, by the way, are not always joined together. A. A.

Bjornbo85 has drawn attention to a manuscript in the Vatican Library,
MS Number 3102, in which one finds first of all the nine propositions



NOTES 475

of the Elementa Jordani and secondly, the four theorems of the De
canonio. These thirteen propositions are then followed by the last three
books of the treatise De ponderibus, which concerns us here.
One further remark should be made. It seems that Leonardo da

Vinci had in his possession a manuscript which was assembled in the
above described fashion. Indeed, of the propositions demonstrated in
the last three books of the treatise De ponderibus there is hardly a
single one which has not left a recognizable trace in the notes. It
appears, on the contrary, that the demonstrations of Book I were
completely unknown to him. For example, his vacillations and gropings,
so evident in his research on the inclined plane, could have been
avoided if he could have read the elegant solution to this problem
discovered by the XIIIth century mechanician.
Thus it appears certain that the treatise De ponderibus, which was

first believed to be the work of one author, is, in reality, the juxtaposi
tion of two heterogeneous treatises, of which one is a legacy of Greek
science while the second has its origin in the Middle Ages.
One must ask, however, if it is due to pure chance that these two

works which are so different in origin and character appear together so
often.
The works used by the School formed around De ponderibus

include another example of a juxtaposition of a treatise of Greek origin
with a treatise written by a medieval geometer. Beginning in the XIIIth
century, one finds the Elementa Jordani super demonstrationem
ponderis almost always joined with the De canonio. The reason for this
is obvious. The De canonio is incomplete by itself since it refers to
propositions which have been demonstrated "by Euclid, Archimedes
and others." The demonstration of these propositions forms one of the
main themes of the work by 10rdanus. Thus 10rdanus' work serves as a
very natural introduction to the De canonio, something which 10rdanus
himself may have intended.
Could the same reasoning be applied to the juxtaposition of the first

book of De ponderibus and the last three books?
Like the De canonio, the second book of this treatise presupposes

the law of the lever and its extension to the case in which the weight of
the arms of the lever are considered. The author of the first book
demonstrates these propositions exactly as 10rdanus had done before
him. Thus his first book, just as well as the Elementa Jordani, might
serve as an introduction to the second book.
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This first book, moreover, contributes to the third book in a way in
which the Elementa Jordani cannot do.
Indeed, if one follows carefully the reasonings by which the first

proposition of this third book is demonstrated, one easily recognizes
that this line of argumentation presupposes a lemma. This lemma can
be formulated in the following way:

If equal weights are suspended from unequal arms of a bent lever, these weights must
be at equal distances from the vertical through the point of support, should one wish to
have equilibrium.

This proposition must have been known by the geometers of the
School of Alexandria. It was quoted by Hero of Alexandria86 who
rightly considered it to be implied in the theorems of Archimedes. But,
far from being firmly established in the Elementa Jordani, it is actually
refuted there. On the contrary, the author of the De ponderibus states it
precisely in Theorem VIII and establishes it by means of a most elegant
demonstration.
Just as Jordanus de Nemore seems to have written the Elementa as

an introduction to the De canonio, his disciple seems to have written
the first book of the De ponderibus to furnish the last three books with
the lemma they needed.

G. ON A PASSAGE IN THE TRACTATUS DE CONTINUO'
OF THOMAS BRADWARDINE

The free surface of a liquid in equilibrium is a sphere which is con
centric to the earth. From this fact the following corollary is derived: A
cup filled to the rim contains more liquid when it is closer to the center
of the earth than when it is far from it.
This corollary is one of those propositions containing an obvious

paradox which the Masters of the School delighted in using to fire the
imagination of their students. We first came across it87 in the Opus
majus of Roger Bacon. We found it again88 in one of the XIV
Questions of Pierre d'AilIy. Thomas Bradwardine, who wrote after
Bacon and before d'Ailly, also makes mention of it.
The Englishman Thomas Bradwardine was born towards the end of

• T.N.: The Latin title reads, Treatise on the Continuum.
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the XIIIth century in Hartfield near Chichester. In 1325 he was Proctor
of the University of Oxford where he taught theology, philosophy, and
mathematics. His teachings earned him the surname of "Doctor pro
fundus." He died on August 26, 1349, several days after being
nominated to the Archepiscopal Chair at Canterbury.
Several of the mathematical works of Bradwardine had a great

influence upon medieval science and were printed at the end of the
XVth and the beginning of the XVIth century. Other works remained in
manuscript form, such as the Tractatus de continuo. We are indebted to
Maximilian Curtze for providing us with a description and an analysis
of it.89

After having shown that the same chord subtends unequal arcs in
unequal circumferences and that the smallest arc corresponds to the
largest circumference, Bradwardine adds the following:

If a container is completely filled with a homogeneous liquid, the liquid leaves the
extreme rim of the container dry; in a half-filled container, the liquid forms an
intumescence above the diameter of the container. If one raises this half-filled con
tainer, it becomes gradually fuller with a convex surface extending upward; ... if
lowered, on the contrary, it becomes emptier.

Maximilian Curtze believes that this passage alludes to the properties
of capillarity. We do not share this opinion because we believe that
Bradwardine is discussing a corollary given earlier by Roger Bacon.

H. ON THE PROGRESSION OF THE ELEMENTS ACCORDING

TO THOMAS BRADWARDINE

We have shown90 how certain commentators on Aristotle supported the
following view: Each of the four elements, fire, water, air and earth has
a volume which is precisely tenfold the volume of the next element. In
the last chapter of his Tractatus de proportionibus,91 Thomas Bradwar
dine proposes another analogous law which enjoyed great popularity in
the Schools.
At the outset, Bradwardine asserts that the four elements completely

fill the spherical volume defined by the lunar globe. He further asserts,
in agreement with Alfraganus and Thilbit ibn Qurra, that the ratio
between the diameter of the earth and the diameter of the moon equals
32.30.92 Finally, he asserts that the volumes of the four spheres which
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mark the bounds of earth, water, air and fire form a geometrical
progression. From a rather simple calculation as we know it today,
Bradwardine, with obvious pride, arrives at the ratios of the volumes of
these four spheres as well as the ratios between their radii.
This theory of Bradwardine was obviously well received in the

Schools of the Middle Ages. It was discussed with great care and
subsequently rejected by Themon Judaeus.93 It was also discussed94 by
the author of the Meteorologicorum libri quatuor, falsely attributed to
John Duns Scotus. Around the middle of the XVIth century, it still had
its supporters. In 1552, Nonio Marcello Saia refers to it as a doctrine
comprehensible to mathematicians only.95

I. ON THE TREA TlSE ON METEORS FALSELY ATTRIBUTED TO

JOHN DUNS SCOTUS

We recounted previously96 how in 1617 Franciscus de Pitigianis had
had the Questions on the Physics of Aristotle printed, attributing them
to John Duns Scotus. Those same Questions had already been
published for a century under the name of Johann Marsilius of Inghen,
who was widely quoted by Scholastic philosophy as the author of the
Questions.
The Franciscans who published the complete works of Duns

Scotus97 did not commit the error of Franciscus de Pitigianis. It is true
that they published98 the Quaestiones in libros Physicorum which de
Pitigianis had published, but they added an introduction99 in which the
Reverend Father Wadding showed how untenable it was to attribute
these Questions to Duns Scotus. Father Wadding clearly saw in them
the influence of the Nominalist School of Paris and he pointed to
Marsilius of Inghen as a probable author.
Furthermore, Duns Scotus was not only given credit for the Ques

tions on the Physics, actually written by Marsilius of Inghen. When the
complete edition was published, the apocryphal Questions on the Four
Books of the Meteorology of Aristotle lOo were further added as being
part of that work.
These Questions on the Four Books of the Meteorology are also

preceded by an introduction by the Reverend FatherWadding. lOt
The erudite Irish Franciscan does not absolutely deny their authen-
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ticity. Yet, the arguments which he proposes against their authenticity
are convincing and he certainly does little to discredit them.
In the first place, he remarks that the author who quotesl02 Thomas

Aquinas calls him Beatus Thomas. Now Thomas Aquinas was canon
ized by John XXII, who became Pope in 1316. John Duns Scotus died
in 1308.
In the second place, the work on the Meteorology quotes lO3 the

Tractatus de proportionibus of Thomas Bradwardine. However, it
seems unlikely that Thomas Bradwardine, who was Proctor at Oxford
University in 1325 and who died in 1349, forty-one years after Duns
Scotus, could have written the Tractatus de proportionibus during the
lifetime of the Subtle Doctor.
Father Wadding proposes the hypothesis that the Questions on the

Four Books on Meteorology could have been written by an English
Franciscan, by the name of Simon Tunsted, who died in 1369. Indeed,
Pitseus and other Franciscan authors claim that this friar wrote a
treatise on this topic which brought him considerable reputation.
A close look at these Four Books on Meteorology does not reveal

anything which contradicts the hypothesis of Wadding. A reference to
England can be found in the Fifth Question of Book I and seems to
indicate that the author was English or that he lived in England.
On the other hand, the influence of the Questions on the Books of

the Meteorology, written by Themon, is evident everywhere in the work
falsely attributed to Duns Scotus. The titles are often identical in both
works. The reasons given to solve them are frequently the same. They
follow in the same order and resemble each other almost word for
word. It is clear that the author of the treatise attributed to Duns Scotus
had for the most part merely abridged the work ofThemon.
Furthermore, it appears that yet another abridgement was written,

based on the first abridged version. We know the author of the second
abridgement, who is Nicolas Oresme.
Indeed, Heinrich Suter called attention to a manuscript'04 kept in the

Library of the Chapter of St. Gallen under Number 839. At the end of
the manuscript one can read the following remark: lOS

Rescriptae sunt hae quaestiones venerabiles Magistri Orem super libros Metheororum
Aristotelis Peripotelici (sic). Anno Domini 1459 pridie idus mensis Seplembris indic
lione.

Suter pointed out the obvious similarity between the treatise of
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Nicolas Oresme and the one he attributes to John Duns Scotus. The
unfortunately limited excerpts which Suter published from the Questions
of Nicolas Oresme lead us to believe that Oresme summarized the
commentary which was to be attributed later to Duns Scotus. We
believe that this commentary served as an intermediate work between
the Questions of Themon and the Questions of Nicolas Oresme.

If one considers that Themon the Jew (or more precisely, Themon,
the Son of the Jew) wrote his Questions on the Meteorology at the
University of Paris where he was from 1349 to 1361, and furthermore,
if one considers that Nicolas Oresme, born in 1320, became Grand
Master of the College of Navarre in 1355, before becoming in 1377 the
Bishop in Lisieux where he died in 1385, it seems quite natural to
attribute the Questions on the Meteorology, which were added to the
works of Duns Scotus, to an English author who must have written
them around 1360. Simon Tunsted seems to fit this conjecture.
The author turned his attention to the shape of the earth and oceans

on two different occasions. It is the Thirteenth Question of Book I
which deals with that topic first. The question is devoted to an examina
tion of the view that the volumes of the four elements form a geometri
cal progression.
The author, who finds much inspiration in the opinions of Themon

on this topic, proves that the volume of the ocean is smaller than the
volume of the earth. "Otherwise," he states,I06 "the entire earth would
be submerged, which is contrary to experience. This can be proved in
the following way:"

Let us imagine the earth being outside of its natural locus and water occupying the
center of the Universe. Since earth descends, before its center could reach the center of
the Universe, it would be completely submerged, assuming that earth is less voluminous
than water.
One could assume the earth was situated on one side of the center of the Universe

and water was its counterweight on the other side.
However, if this were so, the ocean would get deeper, the further one left its coasts:

that is contrary to experience.
Secondly, earth tends naturally to locate below water. Thus water situated on the

other side of the center of the Universe could not become a counterweight.
Finally, the aggregate formed by earth and water would not be spherical. This

conclusion is incorrect, because we can see during eclipses that the shadow of this
aggregate has the shape of a circle. But, on the other hand, the conclusion would result
from the premises if water had a larger volume than earth and the latter were partly
emerging.
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Simon Tunsted combats here the view of Nicolas of Lyre (vide
supra, p. 292). Among the arguments to which he objects is one which
we have already encountered (vide supra, p. 269) in the commentaries
on the De Caelo written by John of Jandum.
It is in the first question of his second book that the author returns

to this discussion in order to study it more thoroughly. He formulates
the question in the following fashion: 107

Utrum mare semper fluat a septentrione ad austrum.

In the second article of this question he wonders:108

Whether the ocean is the natural locus ofwater.

This prompts him to examine the natural loci for earth and water.
Among the problems which he examines, the fourth reads in the
following way:

Either water tends towards the same natural locus as earth does or it does not. From
the first supposition, it would follow that the center of the earth is the natural locus for
both water and earth. From the second supposition it would follow that gravity,
throughout the Universe, does not tend towards the same center.

The answer by which Simon Tunsted intends to resolve this difficulty
is worth quoting in its entirety because it gives rise to many interesting
observations. Here is the quote:

The fourth argument presents us with a great difficulty. In chapter five of his treatise
On the Sphere, Campanus images that the earth, on our side, is situated above the
center of the Universe and that water, on the opposite side, counterbalances the earth.

The gravity of the earth and the gravity of water, therefore, have two
distinct centers. He supposed that the earth was initially covered by
water. Then, by Divine Command, water united in one place and the
firm land masses appeared in order to give man and the other animals a
habitable space. The concentration of water in one place is only
possible if the earth remains at its center because water would other
wise attempt to cover the firm land. Thus land must have moved from
its natural locus. The following are the very words of Carnpanus. After
he has enumerated the position and the orders of the celestial spheres,
of fire and earth, he states:

The second sphere is the sphere of water: By Divine Command its surface is interrupted
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by firm land. The latter emerges by piercing the water's surface according to Divine
Command: Ut congregarentur aquae . .. 109 Against this supposition, we propound the
following basic argument: If it were so, there would exist places on the earth where a
given mass of earth and a given mass of water would not fall in the same direction. Such
a result is contrary to experience. No matter where a given mass of water is lifted above
the ground, it always falls in the same direction as a given land mass placed at the very
same point. On the other hand, this result does derive from the above supposition
because water would move towards the center of water and earth towards the center of
the earth and these two centers would be distinct if the spheres of water and of earth
were eccentric.
In the second place, the contour of habitable land would be a circular shape. This

conclusion is inadmissible because according to the second book on Meteorology of
Aristotle, as well as according to several other authors, habitable space distends more
from East to West than from North to South. Furthermore, it can be proved that the
conclusion derives from the established hypothesis, because the part of the sphere
which protrudes from a spherical surface which is eccentric to it, has a circular contour.
Thus, if we abandon this supposition, we must accept that both earth and water are

concentric to the Universe, as far as gravity is concerned, that is to say, that the earth
and water possess the same center of gravity, without, however, having the same center
of magnitude. In order to comprehend this concept, we need to remark at the outset
that earth, in its entirety, is not just a simple element. The space which we inhabit is a
composite one and thus lighter than pure earth which is situated on the opposite side.
This is a fact because digging into the earth has always revealed matter of different
nature, such as sand, stones and other composite materials.
Secondly, it needs to be said that if an object with a non-uniform gravity were to fall

to the center of the Universe, it would be its center of gravity and not its center of
magnitude that would come to rest at the center of the Universe. So much is clear. But
let us suppose that at the center of the Universe there is neither earth nor water but
only air. If one emptied a glass of water, it would fall to the center where it would
gather around that center in the shape of a small sphere of water. If one were to take a
long iron nail with a very large head, one would see the following: at the end opposite
the head the nail would emerge from the water gathered about the center, but its head
would not emerge for reasons which are easily understood.

It follows that the center of gravity of the earth is distinct from its
center of magnitude since according to the first supposition, the earth
does not possess uniform gravity and the composite part which is
situated on our side is the lightest. Thus the part of the earth which is
inside of its center of magnitude is not as heavy as the part outside it.
Since its center of gravity coincides with the center of the Universe, its
center of magnitude must be inside the center of the Universe. Let us
pause for a moment and examine this text more closely. Its author
expounds here the theory according to which earth and water form two
spheres which are eccentric to each other. We followed Giuntini in
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attributing this theory to Nicolas of Lyre. However, in the text which
concerns us here, the theory is attributed quite explicitly to Campanus
of Novara and is supported by a quote from Campanus.
The author of the Meteorologicorum libri quatuor must surely have

had a different version of the Tractatus de Sphaera of Campanus from
those whch were finally published, because in the published versions,11 0
there is no mention of the phrase which Simon Tunsted quotes and the
ideas of Campanus appear quite different from those attributed to him
by Tunsted. Let us further quote from Chapters IV and V from the
Tractatus de Sphaera:

Chapter IV. On the natural form, locus and order of the elements. The natural locus of
the elements as well as the form and order in which they occur are as follows: Imagine
that the earth is perfectly spheroidal and that the entire water mass covers it with a
spheroidal layer. Imagine further that the spherical layer is enveloped by a spherical
layer of the entire air mass and that around this layer there is another spherical layer
formed by the entire fire mass. The four elements would thus be completely spherical
and concentric. They would have a common center which would be the center of the
earth. Such is the description of the natural locus, form and order of the elements.
Chapter V. The reason why the sphere of water is not complete. In reality, water does
not completely cover the earth with a spherical layer. Creation has mandated that it
would not be so in view of the necessity of land which many created beings need to live.
Therefore, He who created all things, after having contemplated the natural order
which we described above, wished to preordain the elements to his own end and spoke
in the following way: Let the waters which are under the heavens be united in one and
the same place and let there be firm land. This does not mean that the waters swelled
up and assumed the shape of a sphere elevated towards the heavens, but rather that
earth, in the place which now appears as protruding from the waters, rose like an island
by abandoning its perfect sphericity and by creating a protrusion within the spheroidal
surface of water. lndeed, water because of its fluidity, can only be contained by a
retaining wall other than itself. On the contrary, land is solid and coherent and can be
its own retaining wall. Thus the inequality of which we spoke and which was impossible
for water was not so for land. Each heavy body moves towards its center along a path
which takes it closest to the center. Consequently, let us suppose that the water rose in
the manner indicated above and that it rose above the spheroidal surface proper to it.
Nothing could prevent the water which has risen from returning to the spheroidal
surface, because when the waters are contained within that surface they are closer to
the center than when they have risen above that same surface. The part of land which is
visible must have emerged from the water masses, such as islands emerge at different
places out of the ocean. Just as these islands are further removed from the center than
the surface of the ocean, so are the different parts of firm land further removed from
the same center than the different parts of the surface of the waters. Firm land is similar
to a large island rising into the air above the surface of the water.
Let us summarize what we have said so far. The surface of the sum total of the
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water is completely spherical. Its center is the center of the sphere which would be
natural to the earth. It is also the center of the other two elementary spheres, the sphere
of air and the sphere of fire.

Any comment would only distract from the clarity and precision of
these two chapters by Campanus. There is no trace of any influence of
the doctrine which Tunsted attributed to this geometer. The text which
he used to justify this connection must have been an altered text.
The error of the author of the Meteorologicorum libri quatuor

spread and as we have indicated, III can be found in the Comments on
the Physics of Gaetan of Ti~:ne.
Others, such as Johann Marsilius of Inghen112 and Giovanni Battista

Capuano of Manfredonia, Il3 attributed to Campanus the doctrine
defended by Albert of Saxony. This latter attribution is, however, no
more justified than the former. Campanus never made a distinction
between the center of magnitude and the center of gravity of the earth.
Although the author of the Meteorologicorum libri quatuor quotes

the theory of Albert of Saxony without referring to him by name, he
does at least pay homage to a physicist who otherwise is completely
unknown.
The explanation which he furnished of this theory greatly influenced

the teachings in the Schools. In order to explain how the center of
gravity of the earth is situated at the center of the Universe while the
center of magnitude is situated elsewhere, he proceeds to imagine a
long nail with a large head placed at this center. This striking example
must have pleased the Scholastic Masters because Johann Marsilius of
Inghen uses it when he wishes to explain114 the doctrine of Albert of
Saxony which he nonetheless ends up rejecting.
We have seen115 that Leonardo, trying to obtain a conception of the

doctrine of Albertutius, had imagined that the earth would assume the
shape of a tetrahedron. It seems he was the first to have calculated the
center of gravity of such a body.
The tetrahedron could have been suggested to Leonardo by the nail

analogy used by Simon Tunsted and by Marsilius of Inghen. Although
we have already commented upon this, we shall reiterate our observa
tions in view of new light shed upon this matter. In the same notebook
in which Leonardo replaced the earth with a tetrahedron and in which
he calculated the center of gravity of this figure, there are two passages
which remind us immediately of the explanation by Simon Tunsted.
These two passages follow:
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Water, air and earth. 116 However the earth might move, the surface of water will never
move outside of its own sphere, but will always remain equidistant to the center of the
Universe. If earth were to move away from the center of the Universe, what would
happen to water? Water would remain around this center with equal depth, but with a
smaller diameter than when it had the earth within it.
Lead and dewdrops. 117 A well-rounded dewdrop can help illustrate many different

aspects of the role played by the sphere of water, such as, how it contains the land mass
within itself without destroying the sphericity of its surface. At the outset, let us take a
cube of lead which is the size of a millet grain. After we attach a very fine thread to it
and submerge it in this drop, we shall see that this drop does not lose its original
sphericity, even though it has increased in size by the volume taken up by the cube of
lead which is now inside the dewdrop.

At the beginning of Notebook F, Leonardo tells us that he had at his
disposal a treatise on Meteors. We have attemptedl18 to prove that this
treatise was none other than the collection of Questions composed by
Themon Judaeus. Our previous remarks on Tunsted could put into
doubt the accuracy of that attempt. It could lead the reader to believe
that Leonardo had not read the Quaestiones in libros meteororum of
Themon but the Quatuor libri meteorologicorum of Simon Tunsted.
The similarity between these two treatises is often very striking. Thus

at first it seems to be difficult to decide which treatise Leonardo had
used. However, we believe that a closer examination can resolve this
question.
Perhaps Leonardo had in his possession the treatise on meteors

which was later attributed to Duns Scotus. However, many ideas
expressed in the notebooks of Leonardo could not have come from that
work. They could have only been suggested to him by a reading of the
Questions of Themon.
For example, the first book of the treatise attributed to Simon

Tunsted ends with two questions (the XXVth and the XXVIth) which
read as follows:! 19

Utrum fontes et fluvii generentur ex aqua pluviali, congregata in visceribus terrae? 
Utrum in concavitatibus terrae generetur aqua fontium ex aere evaporato?

Likewise, the first book of the work of Themon ends with the following
question (the XXth);120

Utrum aquae fontium et aquae fluviales generentur in concavitatibus terrae?

As far as the origin of springs is concerned, both authors defend the
same doctrine, which happens to derive from Albertus Magnus. Yet, in
explaining this theory, Themon resorts to the example of distillation
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which occurs in a still, while neither Albertus Magnus nor Simon
Tunsted make use of this comparison. Leonardo, however, insisted on
this analogy.
Likewise, Leonardo argued fervently in favor of the theory of the

solar tide, formulated by Themon in the first two questions of his
second book. However, in his discussion on the ebb and flow of the
tide in the second question of his second book, Simon Tunsted makes
no mention of this theory. He merely borrows from Robert Grosseteste
the explanation of tides by the influence of the moon.
Thus it appears possible that Leonardo had read the Meteorologico

rum libri quatuor which the XVIIth century was to attribute to John
Duns Scotus despite all evidence to the contrary. What is certain is that
Leonardo had read and meditated upon a work which influenced John
Duns Scotus, the Quaestiones in libros meteororum ofThemon Judaeus.

J. THE INFLUENCE OF ALBERT OF SAXONY AND

NICOLAS ORESME

The theory of gravity formulated by Albert of Saxony and the conclu
sions which he deduced from its as far as the relative configuration of
land and water is concerned, continued to exert a great influence on the
opinions of philosophers and physicists up to the end of the XVIth
century. This same influence was already apparent among the Masters
at the University of Paris who were contemporaries of Albert of
Saxony. Nicolas Oresme is our example.
Nicolas Oresme was born in Normandy around 1320 and died in

1382. In 1355, at the time when the teachings of Albert of Saxony
exerted their greatest influence, Nicolas Oresme became Grand Master
of the College of Navarre. As we know, he was also the tutor of the
Dauphin, the future Charles V, before he became Bishop of Lisieux in
1377.
This universal mind, this great mathematician to whom we owe our

first notions on coordinates, has also left us a short treatise on
astronomy,121 written in French and designed to teach the principles of
this science to those whom the XVIIth century was to call "les honnetes
gens" and which our century would call "les gens du monde."
In a Prologue to the Reader, Oresme emphasized the purpose of his

book:
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The shape and the configuration of the world, he states, the number and the order of
the elements, as well as the motion of the celestial bodies, are the concern of every man
of free condition and of noble station. And it is a beautiful, delightful, profitable, and
honest thing ... what I wish to say in plain French should be known by every man,
without delving overly into demonstrations and subtleties which are the concern of
astronomers.

In Chapter I of the Treatise on the Sphere which bears as its title:
"On the shape of the Universe and of its main parts," we read the
following:

After earth comes water or the ocean, but water does not cover all of the earth, because
none of the parts of the earth is equal in weight. For example, we can see that tin
weighs less than lead. Therefore, the lighter part is higher and further away from the
center and not covered by water so that the animals are able to live on it. This is, as it
were, the face of the earth, entirely uncovered, except that here and there one finds
several small seas, arms of the sea and rivers. The entire remainder thus resembles a
head wearing a band which is the great ocean.

Thus, thanks to Nicolas Oresme, before the end of the XIVth century,
several corollaries of the doctrines of Albert of Saxony had ceased to
belong solely to the "astronomers" and had entered the domain of all
men "of free condition and of noble station."

K. ON SEVERAL PASSAGES FROM THE XIV QUESTIONS

OF PIERRE D'AILLY

In Chapter XV (Vol II, p. 297), we mentioned the important work of
Pierre d'Ailly which is entitled: In sphaeram lohannis de Sacro Bosco
subtilissimae XIV quaestiones.122 Our attention had focused, in particu
lar, on the fifth of these fourteen questions, which reads as follows:
Quaeritur utrum caelum et quatuor elementa sint sphaerica?123 There
we saw the celebrated Cardinal restate almost verbatim entire passages
from Albert of Saxony. In particular, he borrowed the following crucial
remark from the Master:

One can test the sphericity of the earth in the following way: Let a man travelling upon
the surface of the earth, starting at a given point and moving southwards, measure by
how much the height of the pole has changed and measure the distance which he has
covered. Then let the man continue his trip until the height of the pole has undergone a
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second variation equal to the first one. If the second distance covered is equal to the
first, the earth must necessarily be spheroidal.

This remark, which contains the seed of an entire theory of geodesy,
seems to have its origin in Albert of Saxony (Vide supra, Vol. II, p.
287). The XIV Questions most certainly contributed at least as much if
not more than the Questions on the De Caelo of the same author, to the
popularity of that theory among astronomers.
On one essential point, however, Pierre d'Ailly diverges from the

teachings of Albertutius or at least his essential doctrine. In Question V,
Pierre d'Ailly asks if the earth is in the middle of the firmament.
Concerning this question he states that: "these words can be understood
in four different ways. They can mean:

(1) That the center of the firmament coincides with the center of
magnitude of the earth.

(2) That it coincides with the center of gravity of the earth.
(3) That it coincides with the center of gravity of a given aggregate to
which the earth belongs.

(4) That the earth is completely surrounded by the firmament.

"These remarks," the famous Bishop of Cambrai adds, "call for
conclusions."

First conclusion. The center of gravity of the earth does not coincide with its center of
magnitude because the earth does not have a uniform gravity. Indeed, the part not
covered by water and upon which the sun shines becomes lighter due to solar heat. On
the contrary, the part covered by water becomes heavier due to the frigidity of water.
Second conclusion. The center of gravity of the earth is not in the middle of the
firmament. This is obvious. If one were to divide the earth into two parts with equal
gravity, the half which is partially covered by water and partially surrounded by water
would repel the other half until the center of gravity of the entire aggregate were at the
center of the universe.
Third conclusion. The Earth does not have a center of magnitude situated at the center
of the firmament, because in that case it would be entirely covered by water ... Thus
we have to imagine three distinct centers within the earth: The first one is the center of
magnitude, the second the center of gravity and the third the center of the firmament.
From this we conclude that the earth cannot be said to occupy the center of the
firmament, either in the first or the second sense. It does not occupy this center either
with its center of magnitude or with its center of gravity.
Fourth conclusion. The center of gravity of the aggregate formed by land and by water
occupies the center of the firmament. This is obvious, because the aggregate forms a
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heavy body unimpeded in its motion. It moves until its center of gravity occupies the
center of the universe, according to the nature of a heavy body. Consequently, since the
center of gravity of the aggregate formed by land and water is situated at the center of
the universe, it follows from our preliminary remarks that this aggregate can be said to
occupy the center of the universe. Secondly, according to the third sense of these
words, the earth can be said to occupy the center of the firmament since it is part of an
aggregate which is situated at the center of the universe. The same is true for water.
Last conclusion. Land and water can be said to occupy the center of the universe,
according to the fourth interpretation of these words.

In these passages, Pierre d'Ailly clearly favors the doctrine which
Albert had stated in his Questions on Physics (vide supra, Vol. II, p.
275), but had then rejected in his Questions on the Heavens (vide
supra, Vol. II, p. 276). Themon was tempted to subscribe to this same
opinion (vide supra, Vol. II, p. 291). We have seen (Chapter XV,
Section 7) what role this doctrine, taken up again by Mauro of
Florence, played during the scientific discussions of the XVIth century.
Pierre d'Ailly and the reputation of his XIV Questions probably con
tributed greatly to the rage which the doctrine, strangely enough,
continued to enjoy for such a long period.
There is yet another point on which the doctrine of Pierre d'Ailly

diverges from the teachings of Albert of Saxony. In the same fifth
question, we read the following:

One can express a doubt: Does this aggregate of land and water which naturally rests at
the center of the universe, have any actual gravity? This doubt can be answered in the
affirmative, at least with high probability. One can convince oneself of this with the
following argument: outside of its natural lOCUS, this aggregate would actively be heavy.
However, it does not lose this quality by returning to its natural locus. It continues to
possess actual gravity within this locus. Nothing would be gained by objecting that this
gravity pulls neither upwards nor downwards. Yet, nothing is more certain than that
gravity remains and that it actively exerts its function of gravity. The following argument
is proof: If the aggregate formed by land and water were not actively heavy, a small fly
would be capable of moving it. Such a conclusion is unacceptable and yet, it can
logically be deduced from the premises. The fly does, indeed, have a given power for
pushing or pulling. The aggregate, on the contrary, would offer no resistance to this
impetus if gravity were not active.... We need to realize, therefore, that gravity and
lightness have two functions. The first of these two functions consists in moving the
body from its location when this body is situated outside of its natural locus. The
second function is designed to keep and maintain this body in its place once it has
reached it. No matter which of these two functions is being exerted, gravity or lightness
must be said to be active. Our aggregate of land and water is, therefore, actively heavy.

The difference in opinion between Pierre d'Ailly and Albert of Saxony
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is essentially a question of semantics. What the latter calls habitual or
potential gravity, the former considers, illogically enough, to be an
active gravity. However, this has no bearing as far as the essential ideas
of both authors are concerned.
The agreement between them is complete concerning the continual

motion which gravity must impart to earth. The Cardinal, Pierre d'Ailly,
expresses this in the following way in Question Three: Quaeritur utrum
motus primi mobilis ab oriente in occidentem circa terram sit uniform
is?124

At the outset, we must assume that the center of gravity of the earth is permanently
situated at the center of the universe. This is true. Indeed, every heavy body tends
towards the center of the universe. Therefore, the heaviest of all bodies must have its
center situated at the center of the universe. Secondly, if we imagine the earth to be
divided into two halves of equal weight by a plane which contained the center of the
universe, these two halves would interact like two weights held in equilibrium. If one
were to add a small weight to one of the halves, it would move downwards by pushing
the other half upwards. Thirdly, if the earth were divided into two halves of equal
volume, these two halves would not weigh the same. Indeed, the part of the earth which
is continually exposed to the sun would warm up and become lighter through solar
heat. The other half, which is continually submerged, becomes heavier due to the cold
water. Thus the part of the earth which is not submerged is lighter than the other half.
Finally, one recognizes that the parts which are detached from the land are continually
being carried to the ocean by water. One further recognizes that certain parts of the
land, transformed into dust by dry air, are transported by winds and end up falling into
the ocean.
Once these suppositions are made, one can state this initial conclusion: Each part of

the earth is continually moving in a straight line. Indeed, one half of the earth continues
to become heavier than the other. Thus, according to our first two suppositions, one
half pushes the other half, with the result that the part of the earth which is at the center
at a given time, will be at the surface at another time.

Everything quoted thus far has been borrowed from Albert of
Saxony, with the exception of the remark that erosion causes the center
of gravity of the earth to shift continually.
Quotes from Marsilius of Inghen (vide supra, Vol. II, p. 295) showed

us that the treatises on statics produced by the School of Jordanus were
not unknown in the universities during the second half of the XIVth
century. Thanks to the evidence from Pierre d'Ailly, we can see that
they were also known at the turn of the XIVth century.
In the first of his Fourteen Questions, the Bishop of Cambrai is led to

divide mathematical sciences into five main divisions: geometry, arith-
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metic, music, perspective and astrology. In oppostion to this division,
criticisms are made and he in turn examines these. Specifically, one can
ask:

To which sciences do certain short treatises belong, such as the treatise De ponderibus
or the treatise De speculis?
The answer is that the treatise De ponderibus belongs to astrology and the treatise

De speculis belongs to perspective.

Thus, through the statements given by Roger Bacon, Albert of
Saxony, Marsilius of Inghen, Pierre d'Ailly and even by the treatise of
Blasius of Parma, we come to realize that statics occupied a special
place within Medieval science for several centuries. This Scientia de
ponderibus remained somewhat outside the main current of physical
science. The Tractatus de ponderibus was not among the treatises
taught in the universities and its proponents were not to be found
among the Masters of the Faculty of Arts. They were referred to
collectively as the "Auctores de ponderibus"125 and their works were
attributed to Euclid or to 10rdanus by the scribes. However, the ideas
contained in these works were neither ignored nor denigrated by the
Scholastic doctors.

L. ON THE TRACTATUS DE PONDER/BUS OF BLASIUS

OF PARMA

We stated earlier (Vol. I, p. 108) that in his Tractatus de ponderibus,
Blasius of Parma had formulated the following proposition:

If a balance with two equal arms, from which are suspended two equal weights, is
removed from the center of the universe, these weights seem all the heavier the further
the balance is removed from the center of the universe.

Pelacani proves this proposition by stating that the direction along
which each of the weights tends to fall forms with the vertical line
passing through the point of support on the beam an angle which is all
the more acute the further removed the balance is from the center of
the universe.
The history of this proposition as it pertains to the history of statics

is worth mentioning. In their discussion with Fermat (Vol. II, p. 370)
Roberval and Etienne Pascal used very similar reasoning. Descartes
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attempted to demonstrate in his own way (Vol. II, p. 376) the very
same proposition of Blasius of Parma and Mersenne restated (Vol. II, p.
383) the reasoning used by the great philosopher.
We quoted (Vol. II, p. 297) a passage by Albert of Saxony in which,

in an attack on a view of Roger Bacon, the Master-of-Arts at the
University of Paris, seems to lay the groundwork for the proposition
which Blasius of Parma was to formulate some time later.
We can go even further by stating that Albert of Saxony not only

anticipated the theorem which we are discussing here, but that the
actually knew it and had gotten it from someone else. He himself
attributes it to those "Auctores de ponderibus" whose names remain
unknown and whose works are collectively attributed to Jordanus.
Indeed, in one of the Questions126 of Albert of Saxony on the De CaeLo
et Mundo we read the following:

The "Auctores de ponderibus" say that the further a body is from the center, the
heavier it is "secundum situm."

This passage is a part of a question which plays a capital role in the
history of dynamics. In this question Albertutius analyzes the reason
why natural motion is an accelerated motion. After stating and dis
cussing the different answers proposed to that question, he accepts the
view which attributes this acceleration to an increase in impetus. He is
then led to consider the law of inertia and its application to the
conservation of celestial motions. On the other hand, he attempts to
discover the law which governs the increase in velocity of a falling
body. He asks if it is proportional to the time needed or to the distance
traversed. However, he rejects these two laws which would cause the
velocity to increase without limit and at the same time increase the
length of the fall. He decides upon a third law according to which the
velocity tends towards a finite limit. He seems to imply that the
resistance offered by the medium is the reason for which he chose the
latter solution over the two former ones.
By a strange coincidence, George Lokert left out this all important

question in the two editions of the Quaestiones in Libras de CaeLo et
Mundo, published in Paris in 1516 and in 1518.
Nonetheless, the passage above plays an important role in the history

of statics. It shows that the proposition of Blasius of Parma was already
contained in the treatise De ponderibus, written before 1350. However,
it is nowhere to be found in any of the works of the School of Jordanus
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we were able to consult or in any description of them. These works thus
do not comprise the entire collection of works attributed to the
"Auctores de ponderibus."

M. ON THE SHAPE OF THE EARTH AND THE OCEANS

ACCORDING TO GIOVANNI BATTISTA CAPUANO

OF MANFREDONIA

We have already quoted from (Vol. II, p. 298) the commentary on the
treatise On the sphere of John of Sacrobosco, written by Giovanni
Battista Capuano of Manfredonia. We commented on the undeniable
influence of this author on the doctrines of Albert of Saxony concerning
the center of gravity. In the present note, we would again like to dwell
upon several passages in this commentary.
At the outset, we need to assign a more recent date to the composi

tion of this work than we had previously assumed. When Giovanni
Battista Capuano mentions the spherical shape of the shadow of the
earth during a lunar eclipse, he is referring to the eclipse which he
observed on August 15, 1505. Thus his commentary must postdate that
event.
Capuano seems to have had a critical and paradoxical mind pre

occupied with finding objections, sometimes rather strange ones, to the
arguments of his predecessors. Sacrobosco, for example, as so many
before him, proves the sphericity of the ocean by remarking that a
signal sent from a coast cannot be seen from the ship's bridge, although
it can be seen from the top of its mast. Capuano questions the validity
of this observation supporting the sphericity of the ocean. He explains it
by the presence of fog on the ocean's surface.
We can also find him denying that the circular shape of the shadow

which eclipses the moon proves anything at all about the shape of the
oceans. Indeed, he maintains that water does not reflect a shadow.
Alexander Piccolornini was to restate this strange view. While he admits
that lunar eclipses prove the sphericity of firm land, which has a center
coincident to the center of the universe, he considers the surface of the
water also to be obviously spherical, but much greater than the surface
of the land. According to Capuano, no one should believe those who
maintain127 that water exists only in small quantities, that it is divided
into masses found in the valleys and the depressions of the land, that
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the aggregate of land and water obviously form a single sphere with its
center situated at the center of the universe.
Along with Nicolas of Lyre and Gregory Reisch, Giovanni Battista

Capuano of Manfredonia must be considered a partisan of the curious
doctrine of which Mauro of Florence, Antonio Berga and Agostino
Michele are the most ardent defenders.
One last remark. After having explained the theory which assumes a

center of gravity within the earth distinct from a center of magnitude,
and after having used this theory to explain the existence of underwater
continents, Capuano adds the following words: Haec causa attribuitur
Campano. 128 We have stated that nothing in the Commentary of
Campanus on the treatise On the sphere by Sacrobosco, justifies this
assertion. Therefore, if Campanus were truly the author of this
doctrine, he must have explained it in some work unknown to us and 
even harder to believe - he must have omitted it completely from his
Commentary.
Yet, there is more. In the Commentary of Capuano, the analysis of

this doctrine about two centers of the earth is preceded by the following
lines:

Given the fact that water does not cover all of the parts of land ... one traditionally
assumes multiple efficient causes, as the Conciliator states in the first article of the 13th
Difference. The following is the first of these causes.

Thus it seems that Capuano has borrowed the explanation of the
theory of two centers from Peter of Abano, who was called the
"Conciliator of Differences."129 Since the latter was born in 1250 and
died in 1316, we must conclude that the theory about the two centers
had assumed its final form long before the time of Albert of Saxony.
We were unable to scrutinize the famous work of Peter of Abano:
Conciliator philosophorum et praecipue medicorum. l3o Therefore, we
were unable to form a final judgment. But if the distinction between the
center of magnitude and the center of gravity of the earth had already
been formally stated in the work of Peter of Abano, it would be
surprising to see that no other author we consulted and who wrote
prior to Albert of Saxony, had made any mention of this theory. In
particular, it would be surprising to find that such a theory was un
known to John of Jandun, who taught at the University of Padua
several years after Peter of Abano.131 It seems more likely that Peter of
Abano had merely expounded the doctrine of Campanus and that
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Capuano replaced this doctrine with the doctrines of Albert of Saxony,
without recognizing what the latter doctrine added to the former.

N. ON THE THEORY OF THE INCLINED PLANE AS CONCEIVED
BY LEONARDO DA VINCI

On several occasions we have discussed132 the curious demonstration of
the law of the inclined plane as conceived by Leonardo da Vinci. This
demonstration, which resembles the argumentation of Pappus, consists
of analyzing the power which causes a disk or a sphere to roll down an
inclined plane. Furthermore, we quoted l33 a passage from Albert of
Saxony which contains the germ of the principle of this demonstration.
Moreover, we hesitated to affirm that Leonardo da Vinci was inspired
by this passage. However, it does indeed come from the Questions on
the Physics of Aristotle written by Albert of Saxony. Even though we
learn from his own account that Leonardo had in his possession the
Tractatus proportionum as well as the Quaestiones in libros de Caelo
by Albertutius, and even though his notes are filled with numerous
references to these two works, nothing shows us that the great painter
knew of the Quaestiones in libros Physicorum. 134
We have found elsewhere a passage which might have suggested to

da Vinci his theory of the inclined plane. This passage can be found in
the treatise De distributionibus ac de proportione motum 135 of Alexander
Achillini, a famous professor from Bologna.
Achillini objects to a stated rule, with the following device: I 36

Two balls of equal weight are put into contact with two plane surfaces. One of these
balls touches a plane surface which forms a right angle with the earth. I assume the
surface of the earth to be plane upon which the ball falls vertically. The second ball
touches another plane surface which forms an acute angle with the earth.

Achillini makes the following observation about this device:137

The vertical plane along which the ball would vertically descend does not prevent the
descent. On the contrary, the plane which is not vertical prevents the descent and
imparts a rotational motion to the ball. Consequently, the plane closer to being vertical
offers less of an obstacle to the motion than the plane further from being vertical. It
offers less of an obstacle to the motion, but it imparts a faster rotational motion to the
ball than another plane forming with the earth an angle more remote from a right angle.

The affinity between the idea expressed in this passage and the
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principle of the theory of Leonardo cannot be disregarded. What makes
this parallel so interesting is that Leonardo must have read the De
proportione motuum of Achillini. By his own account 138 he had bor
rowed it from Fazio Cardano, father of the well-known Jerome Cardan:
Le proporzioni d'Alchino colle considerazioni di Marliano da Meser
Fazio. 139

O. LEONARDO'S DISCOVERY OF THE LAW OF THE

COMPOSITION OF CONCURRENT FORCES

In Section 2 of Chapter VIII,140 we have shown how Leonardo was the
first to give a very elegant solution to the problem of the composition
of forces. However, it seemed to us that this great genius did not fully
realize his discovery at that time and that he soon returned to an
erroneous solution to the problem. We saw in this a further proof of the
inconsistency and indecisiveness so often reproached in this great
genius.

In this case, the accusation turned out to be unjustified. It disappears
as soon as one assumes that Notebook E, like several other account
books left by Leonardo, was not only written from left to right but also
backwards, in a sequence opposite to the pagination given. We know
for a fact that this is so, at least in the part of Notebook E in which
Leonardo discovers the Law of the Composition of Concurrent Forces.
Indeed, from sheet 69 to sheet 71, all the notes pertaining to this

memorable invention can be found. The two following facts prove
beyond a doubt that in order to follow the thought of Leonardo, one
must read this part of the notebook backwards.
At the end of sheet 61 verso, Leonardo, unable to complete a line of

reasoning, writes: "Turn the page." At the top of the same page recto,
we read: "This continues what is missing earlier at the bottom."
On sheet 77 verso, a crossed-out passage is followed by the follow

ing note, apparently put there as an afterthought: "This is expressed
better on the third page after this one." We have to go to sheet 75 recto
in order to find a new version of the same passage. There it is preceded
by these words: "This completes what is missing on the third page
before this one."
These remarks oblige us to read Notebook E in the opposite

direction to its page numbers. Thus, if we turn our attention to the
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important problem raised by the Law of Composition of Concurrent
Forces, we see the genius of Leonardo gradually move from error to a
clearer perception of the truth and once discovered, stay with that
truth.

In another work141 we have shown how reading the treatise De
ponderibus, written by his Precursor, had led Leonardo to reflect upon
the composition of concurrent forces.

P. ON THE SHAPE OF THE EARTH AND THE OCEANS
ACCORDING TO JEAN FERNEL

We have seen (Vol. II, p. 295) that Marsilius of Inghen had refused to
accept the doctrine according to which the surface of the oceans forms
a uniformly spherical surface which has as its center the center of the
Universe. He preferred the following view to the doctrine described
above: water forms a definite number of isolated masses which are
contained within the cavities of solid land.
This opinion was doubtlessly shared at the beginning of the XVIth

century by many astronomers and physicists. Among these was the
French astronomer and physician Jean Femel (1497-1558), who was
the first modem thinker to attempt to measure the arc of terrestial
meridian of one degree. He chanced upon the correct result by a
procedure which was far from being precise.

In the treatise on astronomy142 in which he explains his geodesy,
Jean Femel first analyzes the configuration of land and the oceans.143

He furnishes a very precise summary of the theory of Albert of Saxony,
who, according to Femel, is in favor with the modem philosophers
(philosophi juniores). Femel reminds the reader that according to this
theory the earth has two distinct centers, one of magnitude and the
other of gravity. Furthermore, the latter is at the center of the Universe,
while the former is at a considerable distance from that center, since
the immersed part of land is weighed down by its humidity, while the
uncovered part is continually dried by the sun.
Our author does not accept this doctrine. According to a view which

he attributes to Aristotle, he claims that the surface of land and the
surface of oceans form a more or less spherical surface. Is it not true
that the lands and the numerous islands discovered by navigators in the
most diverse regions are proof enough that the surface of land is never
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much further from the center than the surface of the oceans? We
should, therefore, imagine the earth as a wooden ball in which certain
cavities have been carved out and admit that water has filled these
cavities.

If one were to draw a plane through the center of the Universe, this
plane would cut the earth into two halves. These two halves might not
have exactly the same volume - one half might have more cavities than
the other half - but both halves would have the same weight. Indeed,
the half containing cavities filled with water would be weighed down by
humidity and by the weight of the water. This fact would have to be
taken into account.
The Earth arranged in this way remains absolutely immobile. Thus

Fernel rejects the opinion of our philosophers, "according to whom and
contrary to Aristotle the earth could move away from its center."

It is clear that Fernel does not believe that the volume of water is
greater than the volume of land. As a matter of fact, he sharply
attacks 144 this view as well as the other which ranks the volumes of the
elements in a geometric progression.

Q. ON THE SHAPE OF EARTH AND THE OCEANS ACCORDING
TO MELANCHTHON

Philip Melanchthon is known as one of the first to have attacked the
system of Copernicus in the name of theology. However, in the book as
well as in the chapter l45 in which he attacked the heliocentric system,
Melanchthon accepts without reservation the doctrine formulated by
Copernicus as far as the configuration of land and water is concerned.
He expresses his view in the following way:

The reader must be warned here that the aggregate of land and water must be
considered as a single globe which in reality forms an integral whole. Even though
many people distinguish between a center of magnitude and a center of gavity, there is,
in reality, only one center, which is both the center of magnitude and of gravity. The
continent which was recently discovered is proof that land is not completely
surrounded by ocean, as the Ancients believed. Nor is it true to say that the sphere of
water is ten times larger than the sphere of land. They assumed this because they
believed that a given volume of land could engender ten similar volumes of water,
because they believed these spheres to be in the ratio of the cubes of their diameters.
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Moritz Cantor and R. Marcolongo have done me the favor, for which I
now thank them, of bringing to my attention the existence of various
documents on the subject of Nicolo Tartaglia. These documents were
unknown to me or had not been published when I gave my account of
this geometer in Volume I (pp. 138-139).
Prince Boncompagni, who found the last will and testament of

Tartaglia, proved146 that Tartaglia died on December 14, 1557.
At the International Congress of the Historical Sciences, held in

Rome in 1903, Vincenzo Tonni-Bazza presented a paper147 which
contains a good deal of hitherto unpublished information about the life
and work of Tartaglia.

S. ON THE ORTHOGRAPHY OF THE NAME OF GUIDOBALDO

DAL MONTE

We have consistently referred to the benefactor of Galileo as Guido
Ubaldo del Monte. We followed the example of Pigafetta, who
published during the lifetime of the Marquis del Monte an Italian
translation of his book on mechanics. But, as we said before (Vol. I, p.
148):

Other authors spell his name differently. In particular, Favaro writes: Guidobaldo dal
Monte.

Favaro was kind enough to send us some very interesting information
on this subject. We obtained permission from the very learned editor of
the works of Galileo to include that information here.

Most authors when reading the title, Guidi Ubaldi e Marchionibus Montis which
appears at the beginning of this work, believed Guido to be the Christian name and
Ubaldi the family name. But the Christian name (a traditional name in the family Del
Monte) is Guidobaldo, divided in two parts in the Latin translation. All you need do to
confirm this, is to look at the signature at the end of the letters in the 10th volume of
my edition. The facsimilie (p. 38) shows: "Guidobaldi d Marchesi d'Monte." Elsewhere,
he signs either "Guidobaldo de Marchesi de Monte" or "Guidobaldo dal Monte" (a.
pp. 39, 41, 43, 45, 47). Consequently, it is not I but he himself who used the name
"Guidobaldo dal Monte" and I can not see how one can write his name in any other
way.
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FOOTNOTES TO THE FOREWORD

1 A full discussion of Duhem's Catholicism, the continual target of misguided and at
times openly hostile appraisals, is the subject of my most recent book, Pierre Duhem:
Homme de foi et de science (Paris: Beauchesne, 1991).
2 See eh. 10, "The Historian," in my Uneasy Genius: The Life and Work of Pierre
Duhem (2nd. ed.: Dordrecht: Martinus Nijhoff, 1987).
3 See Illustration 138 in my The Physicist as Artist: The Landscapes of Pierre Duhem
(Edinburgh: Scottish Academic Press, 1988).
4 A preliminary report of that shocking story was given in my "Science and Censor
ship: Helene Duhem and the Publication of the Systeme du monde," Intercollegiate
Review 12 (Winter 1985-86), pp. 41-47. A full treatment will be given in the book I
am now writing, "Reluctant Heroine: The Life and Work of Helene Duhem."

FOOTNOTES TO THE TRANSLATORS' INTRODUCTION

1 Cf. Volume I, Chapter VII of the Origins ofStatics.
2 Cf. Moody and Clagett, The Medieval Science of Weights, pp. 151ff and 293ff.
3 Mach, E. Science of Mechanics, Open Court Publishing Company, Sixth American
Edition, 1960, p. 59.
4 Clagett, Marshall, The Science of Mechanics in the Middle Ages, The University of
Wisconsin Press, Madison, 1959, p. 150. This quote is taken from the Mechanics of
Galileo.
5 According to the article on Varignon in the Dictionary of Scientific Biography, it is
Lagrange who discovered and called attention to this letter in the works of Varignon.
Dictionary ofScientific Biography, Charles Scribner's and Sons, New York, 1973.

FOOTNOTES TO THE ORIGINS OF STATICS (VOLUME I)

FOOTNOTES TO CHAPTER I

1 T. N.: This work is now commonly attributed to either Theophrastus (372?-287?
B.C.) or Strato (?-271 B.C.).
2 T. N.: This is Duhem's translation from the original Greek, using the French edition
of Aristotle's On the Heavens, Edition Didot, Vol. II, p. 414. Cf. the English edition:
Aristotle, On the Heavens, Loeb Edition, III, ii, 301b, pp. 278-9.
3 T. N.: This is Duhem's translation from the original Greek, using the French edition
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of Aristotle's Mechanical Problems, Edition Didot, Vol. IV, p. 58. Cf. the English
edition: Aristotle, Mechanical Problems, Loeb Editon, 3, 850b, pp. 352-3.
4 T. N.: This is Duhem's translation from the original Greek, using the French edition
of Aristotle's Mechanical Problems, Edition Didot Vol. IV, p. 55. Cf. the English
edition: Aristotle, Mechanical Problems, Loeb Edition, 1, 848a, pp. 334-5.
5 At one time it was fashionable to consider as useless the science of Aristotle and his
commentators. This prejudice sufficed to render incomprehensible many extremely
important intellectual achievements. Thus in an otherwise admirable opening chapter of
the Mecanique analytique, in which Lagrange gives us a historical perspective, one
finds the following written about the Principle of Virtual Velocities: "For one who
examines the conditions of equilibrium of levers and other machines, it is easy to
recognize this law stating that the weight and the force are always in inverse ratio to the
distances which both can travel through in the same time. Yet, it appears that the
Ancients never understood this law. Guido Ubaldo was perhaps the first to recognize it
in the lever and pulley blocks."
6 Aristotle, Mechanical Problems, Edition Didot, Vol. IV, 1, 848a, p. 55.
7 Oeuvres d'Archimedes, translated literally with a commentary by F. Peyrard, Paris
1807,p.275.
~ Loc. cit., pp. 280-2.
9 T. N.: The words "commensurable" and "incommensurable" denoted to the Greeks
what we call today rational and irrational numbers.
10 Descartes, Letter to Mersenne dated November 15, 1638 (Oeuvres de Descartes,
published by Ch. Adam and P. Tannery, Vol. II, p. 433).
II T. N.: Latin for "how things are" but not "why they are that way."

FOOTNOTES TO CHAPTER II

1 Libri, Histoire des Sciences mathematiques en Italie, from the Renaissance of Letters
to the End of the 17th century, Vol. III, p. 11, Paris, 1840.
2 T. N.: The Italian title reads, Treatise on Painting.
3 T. N.: The Italian title reads, Treatise on the Motion and Measure of Water.
4 The detailed history of these manuscripts can be found at the beginning of the first
volume of the handsome edition by Charles Ravaisson-Mollien: Les Manuscrits de
Leonard de Vinci, Paris, A. Quantin, 1881.
5 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Paris, A.
Quantin, Vol. I (1881): Ms. A from the Bibliotheque de I'Institut; Vol. II (1883): Ms. B
of the Bibliotheque de I'lnstitut; Vol. III (1888): Mss. C, E and K of the BibliotMque de
l'lnstitut; Vol. IV (1889): Mss. F and I of the Bibliotheque de I'lnstitut; Vol. V (1890):
Mss. G, Land M of the Bibliotheque de I'lnstitut; Vol. VI (1891): Ms. H of the
Bibliotheque de l'Institut, and Mss. No. 2037 and No. 2038 in Italian from the
BibliotMque Nationale (Acq. 8070, Libri).
6 I Manoscritti di Leonardo da Vinci Codice sui volo degli uccelli e varie altre materie
(T. N.: The Italian reads, "Codex on the flight of birds and several other topics"),
published by Teodoro Sabachnikoff; transcription and notes by Giovanni Piumati:
translated into French by Charles Ravaisson-Mollien; Paris, Edouard Rouveyre, editor,
1893.
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7 T. N.: The meaning of the French term is vague. In technical terms, it probably refers
to a hydraulic jump.
x Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. E. of
the Bibliotheque de I'lnstitut, folio 8, verso Paris, 1888. (f. N.: The French translation
of this passage by Ravaisson-Mollien is imprecise and should read, "Mechanics is the
paradise of mathematical science because with it one attains the rewards of mathe
matics.")
9 Venturi, Essai sur les ouvrages de Leonard de Vinci, Paris, 1797.
10 Venturi, Loc. cit., pp. 17 and 18.
11 Libri, Histoire des Sciences mathematiques en Italie, from the Renaissance of Letters
to the End of the 17th Century, Vol. III, pp. 10-60, Paris, 1840.
12 Ravaisson, Felix, La Philosophie en France au XIX siecle, p. 5; Recueil de Rapports
sur les progres des lettres et des sciences, 1868.
13 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. F of
the Bibliotheque de l'lnstitut, folio 26, recto. Paris, 1889.
14 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. F of
the Bibliotheque de I'Institut, folio 51, verso. Paris, 1889.
IS T. N.: Duhem's text contains an obvious error here. "... half the space" should read
"twice the space." Compare proposition one.
16 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. A of
the Bibliotheque de l'Institut, folio 45, recto. Paris, 1881.
17 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. E of
the Bibliotheque de l'Institut, folio 58, verso. Paris, 1888.
IX Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. A of
the Bibliotheque de l'Institut, folio 33, verso; entitled "The Capacity of the Force to
Push and Pull," Paris 1881.
19 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. E of
the Bibliotheque de l'Institut, folio 20, recto. Paris, 1883.
20 T. N.: A "brasse" is approximately five feet.
21 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. A of
the Bibliotheque de I'lnstitut, folio 30, recto. Paris, 1881.
22 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. I of
the Bibliotheque de I'lnstitut, folio 14, verso. Paris, 1889.
23 T. N.: Although Duhem uses the term "resistance," "moment" would be more appro
priate in modern usage.
24 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. E of
the Bibliotheque de 1'lnstitut, folio 72, verso. Paris, 1883.
25 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. E of
the Bibliotheque de l'lnstitut, folio 64, recto. Paris, 1888.
26 The text reads erroneously, "are not inclined."
27 That is to say, "closer to the vertical."
2" Leonard de Vinci, ibid., folio 65, verso.
29 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. I of
the Bibliotheque de l'Institut, folio 30, recto. Paris, 1889.
30 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. M of
the Bibliotheque de I'lnstitut, folio 40, recto. Paris, 1890.
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31 T. N.: From the Latin "circumvolvo," meaning to turn around or rotate.
32 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. M of
the Bibliotheque de I'Institut, folio 50, recto and verso. Paris, 1890.
33 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. A of
the Bibliotheque de I'Institut, folio 52, recto. Paris, 1881.
34 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. G of
the Bibliotheque de l'Institut, folio 75, recto. Paris, 1890. Cf. Ibid., folio 76, verso.
35 Les Manuscrils de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. G of
the Bibliotheque de l'Institut, folio 76, verso; folio 77, recto. Paris, 1890.
36 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. E of
the Bibliotheque de I'Institut, folio 6, recto. Paris, 1888.
37 Les Manuscrils de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. G of
the Bibliotheque de I'Institut, folio 39, verso. Paris, 1890.
3H Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. E of
the Bibliotheque de l'Institut, folio 1, verso. Paris, 1888.
39 I Manoscritti di Leonardo da Vinci, Codice sui volo degli uccelli e varie altre
materie; Published by Teodoro Sabachnikoff; Transcription and notes by Giovanni
Piumati; translated into French by Charles Ravaisson-Mollien; Paris, Edouard Rouveyre,
editor, 1893, folio 4, recto. (T. N.: The Italian reads, Codex on the Flight of Birds and
Various Other Topics.)
4tl T. N.: In order to demonstrate this claim, consider the equilibrium of point 0 where
the component forces due to weights p and q are horizontal.

FOOTNOTES TO CHAPTER III

1 M. E. Wohlwill expressed the opinion quite casually and unemphatically that
Tartaglia and Cardan might have been influenced directly or indirectly by Leonardo da
Vinci. Cf. E. Wohlwill, Die Entdeckung des Beharrungsgesetzes (Zeitschrift fUr Volkerp
sychologie und Sprachwissenschaft, Vol. XIV, p. 386, in the footnote; 1883).
2 T. N.: Duhem tried very hard to establish an uninterrupted filiation throughout the
development of science. He refused to admit that a researcher could independently
make the same discovery which had already been made in the work of a predecessor.
He has been rightly criticized by historians for this predilection.
3 T. N.: Duhem is referring here to the Parisian Schools of Buridan and Jordanus. The
latter is discussed in Chapters VI and VII.
4 Libri, Histoire des Sciences mathematiques en Italie, Vol. III, P. 33, Paris, 1840.
5 Pacioli, De divina proportione, folio I, Venice, 1509.
" Vasari, Vite. .. ,vol. VII, p. 57, Florence, 1550.
7 Lomazzo, Trattato della pittura, p. 652. Milan, 1585, Idea del tempio della pittura, p.
17 and p. 106. Milan, 1590. (T.N.: The Italian titles read: Treatise on Painting and
Ideas on Ihe Temple ofPainting.)
H Cf. on the subject, Libri, Histoire des Sciences malhematiques en Ilalie, Vol. Ill, pp.
148ff. Paris, 1840.
9 T. N.: The Italian and Latin read, "I swear to you, by the Holy Gospel of God and
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as a true gentleman, that I will not only never publish your solution if you teach it to
me ..."
10 Hieronymi Cardani medici Mediolanensis, De Subtilitate libri XXI. Ad illustrissimum
Principem Ferrandum Gonzagam, Mediolanensis provinciae praefectum. Lugduni, apud
Guglielmum Rouillium, sub Scuto Veneto, in-S', 1551. (T. N.: The Latin title reads,
Twenty-one Books On Subtlety by the Milanese physician Jerome Cardan. To the
illustrious Prince Ferdinand Gonzaga, Governor of the Province of Milan. Lyon,
Guillaume RouiUe, under the Seal of Venice, in octavo, 1551.)
II This edition is only known to me by the reference made to it by Cardan in his
Apology, which was appended to the Basel edition in 1560.
12 The Books of Jerome Cardan, Milanese physician, entitled On Subtlety and Subtle
Inventions, including their occult causes and reasons, translated from Latin into French
by Richard Le Blanc, published in Paris, in quarto by Charles l'Angelier in 1556.
13 In 1557, the first edition of On Subtlety had been sharply criticised in: Julii Caesaris
Scaligeri exotericarum exercitationum Liber XV; De Subtilitate ad Cardanum, Lutetiae,
apud Vascosanum, 1557, in quarto. (T. N.: The Latin title reads, Book XV of Exoteric
Exercises On Subtlety to Cardan by Julius Caesar Scaliger. Paris, Vascosanus 1557, in
quarto.) To the criticism addressed to him by Julius Caesar Scaliger, Cardan replied in
1560 in the Apology which closes the following edition: Hieronymi Cardani, Medio
lanensis medici, De Subtilitate libri XXI, ab authore plus quam mille locis illustrati,
nonnulli etiam cum additionibus. Addita insuper Apologia adversus calumniatorem,
qua vis horum librorum aperitur. Basileae, ex officina Petrina. Anno MDLX, Mense
Martio, in octavo. (T. N.: The Latin title reads, Twenty-one Books on Subtlety by the
Milanese physician Jerome Cardan, with more than a thousand illustrations by the
author including numerous additions and a defense against his calumniator, in which
the virtue of these books is demonstrated. Basel, Petrina, March 1560, in octavo.)
Besides the editions just cited, we also found in the Municipal Library and in the
University Library of Bordeaux: First, two other Latin editions of the De Subtilitate by
Cardan, Nuremberg, Petreius, 1560, in-folio and Lyon, Stephen Michel, 15S0, in
octavo. Second, three other editions of the Books on Subtlety, translated into French by
Richard Le Blanc: Paris, Lenoir, 1556 (in-4'); Paris, Lenoir, 1566 (in-S'). Third, three
other editions of the Exercitationes by Scaliger: Francofurti, apud Claudium Marniurn
et haeredes Joannis AUbrii, 1607 (in octavo); Francofurti, apud A. Wechelum, 1612 (in
octavo); Lugduni, apud A. de Harsy, 1615 (in octavo). (T. N.: The Latin titles read,
Frankfurt, Claudius Marnius and the heirs of Johann Aubrius, 1607 (in octavo);
Frankfurt, A. Wechelus, 1612 (in octavo); Lyon, A. de Harsy, 1615 (in octavo».
This enumeration alone clearly demonstrates the extraordinary popularity enjoyed by
Cardan's work.
14 Hieronymi Cardani Mediolanensis, civisque Bononiensis philosophi, medici et
mathematici clarissimi, Opus novum de proportionibus numerorum, motuum, ponderum,
sonorum aliarumque rerum mensurandarum, non solum geometrico more stabilitum,
sed etiam variis experimentis et observationibus rerum in natura, solerti demonstratione
illustratum, ad multiplices usus accommodatum, et in V libros digestum ... Basileae, ex
officina Henricpetrina, Anno Salutis MDLXX, Mense Martio. (T. N.: The Latin title
reads, A New Work on the Proportions of numbers, motions, weights, sounds and other
measurable phenomena, suitable for diverse purposes, not only established by a geome
trical method, but also illustrated with various experiments and observations of natural
phenomena, and with a skillful demonstration condensed into five books by the
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eminent philosopher, physician, and mathematician, a citizen of Bologna, the Milanese
Jerome Cardan. Basel, Henricpetrina, March 1570.)
15 Cardan, The Books on Subtlety, translated from Latin into French by Richard Le
Blanc. Paris, I'Angelier, 1556, p. 32.
16 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. A of
the Bibliotheque de l'Institut, folio 20, recto. Paris, 1881.
17 cd should be understood as the surface of the luminous image formed inside the
focal plane of the mirror.
IH Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. G of
the Bibliotheque de I'Institut, folio 89, verso. Paris, 1890.
19 T. N.: The text reads "pyramid" but the word "cone" would be more appropriate if
one assumes a spherically concave mirror as opposed to a cylindrical mirror.
20 Cardan, The Books on Subtlety, translated from Latin into French by Richard Le
Blanc, Paris, l'Angelier, 1556, p. 83.
21 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. F of
the Bibliotheque de I'Institut, folio 67, verso. Paris, 1889.
22 T. N.: The construction of an unequal arm balance called a "statera" by the Romans
has a unique ratio between the short and long arms. The weight that goes on the short
arm is called in the vernacular of Paris a "sledge".
23 Cardan, De Subtilitate, Book I, first edition, p. 31.
24 Cardan, The Books on Subtlety, translated from Latin into French by Richard Le
Blanc, Paris, I'Angelier, 1556, p. 17.
25 Cardan, Opus novum, Proposition XCII, Basilae, 1570, p. 84.
26 Cardan, Opus novum, loc. cit.
27 T. N.: The Latin reads. ''This is something, he says, Archimedes left unattempted,
although it is very necessary and, moreover, he demonstrates more abstruse things than
useful ones, I would say, in due deference to him."
2H Cardan, The Books on Subtlety, translated from the Latin into French by Richard
Le Blanc, Paris, I'Angelier, 1556, pp. 16 and 17. (T. N.: The first book of the original
Latin work has been translated into English by Myrtle Marguerite Cass as a dissertation
for the degree of Doctor of Philosophy at Columbia University. The following is her
rendering of Cardan's own definition of subtilitas/subtlety:

Now subtilitas is a certain intellectual process whereby sensible things are
perceived with the senses and intelligible things are comprehended by the
intellect, but with difficulty.)

29 T. N.: Here and below, Cardan is referring to the center of the earth and not to the
center of the balance.
30 T. N.: Although Duhem uses the term "liaisons," i.e., "connections," modern usage
would require "constraints."
31 Cardan, Opus novum, Propositio XCVIII. Basileae, 1570, p. 92.
32 In the Opus novum, written during his old age, Cardan sometimes seems to forget
the transformation which he had given to Aristotle's axiom and refers to it in its initial
form. For example, the theory of the lever (a) is expounded by a reasoning analogous to
the one found in the Mechanical Problems. Furthermore, the influence of this latter
work is noticeable throughout the Opus novum, where Cardan makes many references
to the treatise of the Stagirite. (a) Cardan, Opus novum, Propositio XLV: Rationem
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staterae ostendere, Basileae, 1570, p. 34. (T. N.: Latin for Proposition XLV, To
Demonstrate the System of the Roman Balance.)
33 Cardan, The Books on Subtlety, translated from Latin into French by Richard Le
Blanc, Paris, I'Angelier, 1556, p. 333 (Book XVII, On the Arts and Artful Inventions.
A Method to Easily Lift Loads).
34 The translator says: "Concerning screws, as in presses." He adds a little later: "Some
call them block and tackle." Cardan uses the term "trochleis". (T. N.: "trochleis" is the
Greek word for pulley. Neither the text nor the figure illustrating it leave any doubt that
Cardan means a block and tackle.)
3S T. N.: Cardan also disregards the weight of the bottom pulley and any other attach
ments.
36 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien; Ms. A of
the Bibliotheque de l'lnstitut, folio 35, verso. Paris, 1881.
37 Cardan, The Books on Subtlety, translated from Latin into French by Richard Le
Blanc, Paris, l'Angelier, 1556, p. 333.
38 Cardan, Opus novum, Propositio LXXII: Proportionem levitatis ponderis per virgam
torcularem attracti ad rectam suspensionem invenire. Basileae, 1570, p. 63. (T. N.: The
Latin reads, To determine the ratio of the weight of a heavy sphere to its ascent (sic)
along an inclined plane.)
39 Cardan, The Books on Subtlety, translated into French by Richard Le Blanc, Paris,
l'Angelier, 1556, p. 334.
4() Cardan, Opus novum, Propositio LXXII: Proportionem ponderis sphaerae pendentis
ad ascensum per acclive planum invenire. Basileae, 1570, p. 63. (T. N.: The Latin reads,
To determine the ratio of the weight of a heavy sphere to its ascent (sic) along an
inclined plane.)
41 We will not bother to translate this obscure part ofthe sentence.
42 Libri, Histoire des Sciences mathematiques en [taUe, Vol. III, p. 174, Paris, 1840,
wrote the following: "In his Paralipomenes, Cardan for the first time stated the paral
lelogram of forces for the case where the components act at right angles (Cardani
Opera, Vol. 10, p. 516). Lagrange attributes this proposition to Stevin." - I have been
unable to verify this statement by Libri. But it would be imprudent to accept the
statements by this author without any verification. Too often he read ancient texts
rather superficially and in the hope of finding in these texts modern ideas not yet
conceived when these texts were written. Thus, for example (loc. cit. p. 41), on the
subject of Leonardo da Vinci's manuscripts he claims that "within them is developed
with great accuracy the theory of the inclined plane." We have seen what one should
think of such a statement. Even if Libri's statement about Cardan's Paralipomenes were
correct, it is certain that Stevin, who knew the Opus novum when he wrote his statics
could not have known the other work.

FOOTNOTES TO CHAPTER IV

I T. N.: Leibnitz called the product of mass by velocity squared (mv 2
) the living force.

This quantity is identical to kinetic energy except for the factor 1/2.
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2 Les Manuscrits de Leonard de Vinci, published by Ch.Ravaisson-Mollien, Ms. A of
the Bibliotheque de l'Institut, folio 21, verso. Paris, 1881.
3 T. N.: The Latin reads, "No violent motion can be perpetual."
4 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. A of
the Bibliotheque de I'Institut, folio 34, verso. Paris, 1881.
5 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. A of
the Bibliotheque de I'Institut, folio 35, verso. Paris, 1881.
6 Leonardo knew of the accelerated fall of heavy bodies and he discussed this at length
in several passages: among others, Ms. M of the Bibliotheque de l'Institut.
7 Here, too, Leonardo only develops what was taught in the School. "Motus simplex
terminatur ad quietem," (T. N.: The Latin reads, "Simple motion ends in rest.") was the
saying in the School.
8 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. E of
the Bibliotheque de l'Institut, folio 20, recto. Paris, 1888. Cf. Ms. E, folio 58, verso.;
Ms. G, folio 81, recto., and folio 82, recto. Paris, 1890.
9 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. A of
the Bibliotheque de I'lnstitut, folio 22, verso. Paris, 1881.
J() Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. E of
the Bibliotheque de I'Institut, folio 21, recto. Paris, 1888.
II Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. A of
the Bibliotheque de 1'lnstitut, folio 22, verso. Paris, 1881.
12 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. A of
the Bibliotheque de l'Institut, folio 22, verso. Paris, 1881.
13 Cardan, Les Livres de la Subtilite, translated from Latin into French by Richard Le
Blanc, Paris, l'Angelier, 1556, p. 339. The quotes which follow have been translated
directly from the Latin text and are not from Richard Le Blanc's translation which
proves to be very obscure in this passage.
14 It should be pointed out that Cardan avoids deciding whether perpetual motion
could possibly be produced with the help of a magnet. In Cardan's time, the very
strange properties of magnets preoccupied to a unique degree all those hoping to create
a perpetuum mobile. In 1558, Achilles Grasser used one of the numerous manuscript
copies in circulation among physicists to print for the first time in Augsburg the famous
document written by Pierre de Maricourt (petrus Peregrinus) in Charles of Anjou's camp
before the battle of Lucera on August 8, 1269. In his essay (a), Pierre de Maricourt,
after having established the laws of magnetic actions in the fashion of the true logician
versed in experimental methods, attempts to produce a perpetuum mobile with the aid
of magnets.
(a) Petri Peregrini Maricurtensis, De magnete, seu rota perepetui mobilis libel/us.

Divi Ferdinandi Rhomanorum imperatoris auspicio per Achillem P. Grasserum L.
num primum promulgatus Augsburgi in Suevis, Anno Salutis 1558. (T. N.: Pierre de
Maricourt, Manual on the Magnet, or the Wheel of Perpetual Motion, first printed in
Augsburg, Swabia by Achilles Grasser in the year of our salvation 1558, under the
auspices of the divine Roman Emperor Ferdinand.) This work has been reprinted in,
Neudriicke von Schriften und Karten iiber Meterologie und Erdmagnetismus, edited by
G. Hellman. No. 10, Rara Magnetica, Berlin, 1896.
15 Cardan intends to exclude the movements in the heavens, which are perpetual by
nature.
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16 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. A of
the Bibliotheque de l'Institut, folio 35, recto. Paris, 1881.
17 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. C of
the Bibliotheque de l'Institut, folio 6, verso. Paris, 1888.
IX Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. F of
the Bibliotheque de I'lnstitut, folio 27, recto; folio 26, verso, and folio 30, verso. Paris,
1889.
19 Cardan, Les Livres de la Subtilite translated from Latin to French by Richard Le
Blanc, Paris, I'Angelier, 1556, pp. 12 and 13. - This passage is not in the first edition
of the De Subtilitate but it was added in the second edition.
20 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. F of
the Bibliotheque de I'lnstitut, folio 84, recto. Paris, 1889.

NOTES TO CHAPTER V

I Dr. Woepcke, Notice sur des traductions arabes de deux ouvrages perdus d'Euclide:
Journal Asiatique, 4th series, Vol. XVIII, p. 217, 1851. (f. N.: The French title reads,
Note on the Arabic Translations ofTwo Lost Works by Euclid.)
2 T. N.: The French title reads, The Book ofEuclid on the Balance.
3 T. N.: The Beni Mouca or the Banu Musa, as the name is sometimes transcribed,
were a family who devoted their lives to mathematics and translation.
4 Maximilian Curtze, Das angebliche Werk des Euklides iiber die Waage, Zeitschrift fur
Mathematik und Physik, XIXth, 1874, p. 263. (T. N.: The German title reads, The
Alleged Work ofEuclid on the Balance.)
5 Heiberg, Literargeschichtliche Studien iiber Euklid, Leipzig, 1882, p. 11. (T. N.: The
German title reads, Literary and Historical Studies on Euclid.)
6 Steinschneider, lntorno al Liber Karastonis, Letter from Dr. Baldassare Boncompagni,
Annali di Matematica, Vol. V, p. 54, 1863. (T. N.: The Italian reads, About the Liber
Karastonis.)
7 Cf. Heiberg, Literargeschichtliche Studien iiber Euklid, p. 10.
X Maximilian Curtze, Zwei Beitriige zur Geschichte der Physik, (Bibliotheca Mathe
matica, 3rd edition, Vol. I, p. 51, 1900.)
9 T. N.: The Latin title reads, The Book of Euclid on the Heavy and Light and on the
Relation ofBodies to one Another.
10 Aristotle, The Physics, Book 7.
II T. N.: The Latin title reads, Jordanus' Treatise on Heaviness.
12 T. N.: The Latin title reads, Here begins Euclid's Book on the Relative Heaviness and
Lightness ofBodies.
13 Bib1iotheque Nationale, Ms. 10260 (Latin collection).
14 T. N.: The Latin reads, "This is the end because nothing more can be found."
15 We hope to be able to publish in the near future the text of these propositions as
well as the diverse unpublished texts discussed in this chapter.
16 T. N.: The Latin reads, "In this volume are contained the following books, in
chapters and with figures."
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17 T. N.: The Latin reads, "Here begin the Elements of lordanus on the Demonstration
of Weights with charts and figures. Here begin excerpts from Th/ibit on Weights. Here
begins the Book of Euclid on Weights according to the circumference described by the
extremities. Divinations. On Time-Reckoning.
IS Bibliotheque Nationale, Ms. 16649 (Latin collection).
19 T. N.: The Latin reads, Master Fran<;ois Guillebon of Paris, a Fellow of the
Sorbonne and Doctor of Theology.
20 T. N.: The Latin reads, The Book of the Philosopher Arsamides on the measure of
the circle.
21 T. N.: The Latin reads, "Here ends the Book of Arsarnides. Written in 1519."
22 T. N.: Cf. footnote # 17.
23 Bibliotheque Nationale, Ms. 11247 (Latin Collection).
24 Montucla, Histoire des Mathematiques, Paris, Year VII, Vol. I, p. 217.
25 I was able to find this work in five compilations belonging to the Latin collection of
the Bibliotheque Nationale as Mass. 7310, 7377B, 7434, 8680A, 10260. Steinschneider
(a) found another copy in Ms. 184 of the Library of the Convent of Saint Mark in
Florence and published its beginning and end. Maximilian Ciirtze (b) pointed out the
existence of the same work in two other manuscripts located in the Vatican Library: the
Ms. Regina Suecorum 1233 and Ms. 2975. He found it again in Ms. R. No 402 of the
Library of the Thorn gymnasium. He published the formulations of the theorems based
on this last copy. We intend to provide an edition of the complete treatise.
(a) Steinschneider, Intorno al Liber Karastonis, Lettera a D. Baldassare Boncom

pagni (Annali de Matematica, Vol. V, 1863, p. 54).
(b) Maximilian Ciirtze, Ober die Handschrift R. 4°2, Problematum Euclidis explica

tio des Konigl. Gymnasial Bibliothek zu Thorn (Zeitschrift fUr Mathematik und Physik
XlIIter Jahrgang. Supplement, p. 45,1868).
26 T. N.: The Latin title reads, The Book of Karaston, edited by Thiibit, the Son of
Cora.
27 Wuestenfeld, Geschichte der Arabischen Aerzte und Naturforscher, Sr. 29, No. 71;
Gottingen, 1840. - Moritz Cantor, Vorlesungen iiber die Geschichte der Mathematik,
Bd. 1, p. 603; Leipzig, 1880.
2S B. Boncompagni, Della vita e delle opere di Gherardo Cremonese, Rome, 1851.
(T. N.: The Italian title reads, On the Life and Work ofGerard of Cremona.)
29 Steinschneider, loco cit.
30 T. N.: The Latin reads, "Eratosthenes is written in the title. But, at the beginning of
the book the author is named differently by the man by whom the book was translated
and toward the end, he is expressly called Karaston."
31 T. N.: In his History of Mechanics Rene Dugas believes like Duhem that the Greek
geometer Charistion , a contemporary of Philo of Byzantium in the second century
B.C., is the author.
32 Steinschneider, Intorno al Liber Karastonis. Lettera a D. Baldassare Boncompagni
(Annal di Matematica, Vol. V, 1863, p. 54).
33 Heiberg, Literargeschichtliche Studien iiber Euklid, Leipzig, 1882, p. 11.
34 Maximilian Curtze, "Das angebliche Werk des Euklides liber die Waage" (Zeitschrif/
fUr Mathematik und Physik, XIXth Jahrgang, p. 263,1874.)
35 Montucla, Vol. I, p. 314; Paris Year VII.
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36 T. N.: Cf. footnote 39 below.
37 J. Graesse, Tresor de livres rares et precieux, Vol. V.
38 Geschichte der Kiinste und Wissenschaften seit der Wiederherstellung derselben bis
an das Ende des achtzehnten Jahrhunderts. VIIts Abtheilung: Geschichte der Mathe
matik. von A. G. Kastner, Bd. II, p. 688; 1797.
39 T. N.: The Latin title reads, A Book on Diverse Matters of Astronomy by Ptolemy,
which he dedicated to his son Heriston, dealing compendiously with diverse matters
contained in the table at the beginning of that book, 1508. Edited by Peter Liechten
stein.
40 T. N.: The Latin reads, Here ends the Book on Diverse Matters by Ptolemy of
Alexandria, illustrious Prince of Geometers. 1509. Venice. Ed. by Peter Liechtenstein
of Cologne, Germany.
41 Steinschneider, Hebraic Bibliography, Vol. VII, p. 92, 1864. Cf. Moritz Cantor,
History ofMathematics, Vol. I, p. 604; Leipzig, 1880.
42 Bailly, Dictionnaire grec-franf;ais, Paris, 1895.
43 SimpLicii in Aristotelis Physicorum Libras quatuor posteriores commentaria; Com
mentaria in Physicorum VII, 5 (Edition Diels, Berlin, 1895, p. 1110). (T. N.: The Latin
title reads, Simplicius, Commentaries on the Last Four Books of Aristotle's Physics,
Commentary on the Physics, VII, 5.)
44 Bailly, Dictionnaire grec-franf;ais, Paris, 1895.
45 T. N.: The usual English translation is, "Give me a place to stand and I will move the
earth."
46 Tzetzes, On the Millennia (Corpus Poetarum Graecorum, Vol. II, Geneva 1614) 
Tzetzes lived in Constantinople from 1120 to ca. 1I 80.
47 Pappi Alexandrini, Collection is quae supersunt, edidit F. Hultsch. Lib. VIn, Propos.
XI, p. 1060; Berlin. 1888.
48 A. J. Vincent, Geometrie pratique des Grecs (Notices et Extraits des Manuscrits de
la Bibliotheque Imperiale, Vol. XIX, 2nd partie, p. 330) - Carra de Vaux, Les
Mecaniques au l'Etevateur de Heron d'Alexandrie, published for the first time based on
the Arab version of Qustii ibn Ltika. Book I, art. 1, Paris, 1894.
49 Mathematicorum Hypomnematum de Statica, conscriptus a Simone Stevino bru
gensi, Liber III, De Staticae praxi, p. 101. (T. N.: The Latin title reads, The Mathe
matical Memoires on Statics of Simon Stevin of Brugge. Book III, On the Practice of
Statics, p. 101.)
50 T. N.: The Latin reads, "Moreover, this chapter is based upon the work called The
Book of Euclid." There is some disagreement between translations of this Latin phrase.
In the Science of Weights on pp. 88 and 89, Moody and Clagett's translation implies
that the Liber Karastonis is physically "joined" to the Liber Euclidis while Duhem's
translation says that the Liber Karastonis is "based upon" the Liber Euclidis. Duhem's
rendering is truer to the Latin.
5! Thurot, "Recherches historiques sur Ie Principe d'Archimede" (Revue Archeolo
gique, nouvelle serie, Vol. XIX, 1869, p. 117.)
52 The treatise by the pseudo-Archimedes might also be a fragment of the On Weights.
53 Bibliotheque Nationale, Ms. 16649 (Latin collection).
54 T. N.: Neither term is a legitimate Latin word.
55 And even "tetragonium" in the 13th century text, No. 3642 of the Bibliotheque
Mazarine.
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56 T. N.: The Latin reads, "It has been shown in the books which speak about these
things that there is no difference whether a weight db is uniformly distributed along the
whole line db or whether it is suspended at a point in the middle of the interval."
57 T. N.: The Latin reads, "It has been demonstrated thus by Euclid, Archimedes and
others and this is the point around which everything else turns."

FOOTNOTES TO CHAPTER VI

1 Montucla, Histoire des Mathematiques, Vol. I, p. 506; Paris, an VII.
2 Chasles, "Histoire de I'Algebre. Sur I'epoque ou l'Algebre a ete introduite en
Europe." (Comptes Rendus, Sept. 6, 1845, Vol. XIII, p. 507).
3 In hoc opere contenta: Jordani Nemorarii arithmetica decem libris demonstrata;
Musica libris demonstrata quatuor, per Jacob. Fabrum Stapul.; Epitome in libros
arithmeticos divi Severini Boetii; Ritmachie ludus qui et pugna numerorum appellatur.
Parisiis. Jo. Higman et Volg. Hopil. 1496, in-folio, Gothic 72 ff. (T. N.: The Latin reads,
Contained in this work: Arithmetic demonstrated in 10 books by Jordanus de Nemore;
The Art of Music Demonstrated in 4 Books by Jacob Faber Stapulensis: Abstract for the
Mathematical Books of the Divine Severinus Boetius: The Game of "Rithmomachie"
which is also called the "Battle of Numbers." Paris, 1496 in Gothic folio. pp. 71dd.) (Cf.
Graesse, Tresor de livres rares et precieux, vol. III-J. Ch. Brunet, Manuel du libraire et
de l'amateur de livres, p. 566).
4 Regiomontanus, Oratio in proelectiones Afragani, Norimbergae, 1537, in-4°. (T. N.:
The Latin title reads, A Speech against the lectures of Afraganus, Nuremberg, 1537, in
quarto.) Cf. Chasles, "Histoire de I'Algebre. Sur I'epoque ou I'Algebre a ete introduite
en Europe," (Comptes Rendus, Vol. XIII, 1845, p. 507).
5 T. N.: The Latin reads, "Jordanus published three very fine books on the properties
of numbers."
6 D. Francisci Maurolyci, Opuscula mathematica, Venetiis, 1575. Index lucubrationum.
(NT.: The Latin title reads, Francesco Maurolico, Treatise on Mathematics, Venice,
1575. With an Index of Erudite Works.) This list is reproduced in Libri, Histoire des
Sciences mathematiques en Italie, Paris, 1840, Vol. III, p. 243.
7 Chasles, Histoire de 1'Algebre. Note sur la nature des operations aIgebriques (dont Ia
connaissance a ete attribuee it tort it Fibonacci). Des droits de Viete meconnus
(Comptes Rendus, 5 Mai 1841, Vol. XII, p. 743).
R Treuttlein, Zeitschrift fiir Mathematik und Physik, Vol. XXIV, Supplement, pp. 135
and 136, 1879.
9 M. Curtze, Zeitschrift fiir Mathematik und Physik, Vol. XXXVI, Histor. litterar.
Abtheilung, pp. 1,41,81,121; 1891.
10 Cf. on this subject Treuttlein, Zeitschrift fiir Mathematik und Physik, Vol. XXIV,
Supplement, p. 132; 1879. - Only recently was the attribution of the Algorithmus
demonstratus to Jordanus questioned by M. G. Enestrom in a work entitled, "1st
Jordanus Nemorarius Verfasser der Schrift 'Algorithmus demonstratus?" (Bibliotheca
mathematica, 3 Folge, Vol. V, p. 9; 1904).
11 Maximilian Curtze, Jordani Nemorarii de triangulis libri quatuor (Mittheilung des
Copernicus- Vereins fiir Wissenschaft und Kunst zu Thorn, 1887, Heft VI.). (T. N.: The
Latin reads, Four Books on Triangles by Jordanus Nemorarius.)
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12 Chasles, Aper,u historique, p. 516 - Weidler, Historia Astronomiae, 1741, p. 276.
13 Heilbronner, Historia matheseos universae, 1742, p. 604. - Chasles, Aper,u his
torique, p. 517.
14 Moritz Cantor, Vorlesungen iiber die Geschichte der Mathematik, Vol. II, p. 54,
1892.
15 T. N.: The Latin reads, "Here begins the Treatise of 10rdanus on Mirrors with a
Commentary on the same."
16 T. N.: The Latin reads, "Here ends the Book on Mirrors - Here begins the
Elements of Jordanus on Weights."
17 T. N.: The Latinized Greek reads, "a private person."
1M Daunou, Histoire litteraire de la France, Vol. XVIII, p. 140, "Art. Jourdain Ie
Forestier."
19 T. N.: The Latin title reads, A Chronology of Famous Mathematicians.
20 Cf. on this subject, Moritz Cantor, Vorlesungen iiber die Geschichte der Mathematik,
Vol. II, p. 599.
21 T. N.: The Latin title reads, The Third Work.
22 Chasles, Histoire de 1'Algebre. "Note sur la nature des operations algebriques (dont
la connaissance a ete attribuee 11 tort 11 Fibonacci). - Des droits de Viete meconnus"
(Comptes Rendus, May 5, 1841, Vol. XII, p. 743).
23 Libri, Histoire des Sciences mathematiques en Italie, Vol. IV, p. 490; 1841.
24 Chasles, Histoire de 1'Algebre. Sur tepoque ou 1'Algebre a ete introduite en Europe"
(Comptes Rendus, Sept. 6,1841, Vol. XlII, p. 107).
25 T. N.: The Latin title reads, The Book on Weights by the Illustrious 10rdanus
Nemorarius.
26 These two quotes can be found on the verso of the eighteenth sheet (including the
title) of the work, which has no pagination.
27 Treuttlein, Zeitschrift [iir Mathematik und Physik. Supplement zur historisch-litter
arischen Abtheilung des XXIV Jahrganges. Abhandlungen zur Geschichte der Mathe
matik, 1879, p. 125.
2M Maximilian Curtze, Mittheilung des Copernicus- Vereins [iir Wissenschaft und Kunst
zu Thorn, 1887, Heft VI.
29 Id., ibid. (T. N.: The Latin title reads, Four Books on Triangles by Jordanus Nemor
arius.)
30 T. N.: "Nemorarius" perhaps derives from the Latin word for forest, "nemus, (gen.)
nemoris."
31 T. N.: Duhem probably means the city of Hildesheim near Dassel.
32 T. N.: The Latin title reads, Mathematical Delights.
33 R.P. Denifle, a letter addressed to Maximilian Curtze and included by the latter in
his work.
34 Moritz Cantor, Vorlesungen iiberdie Geschichte der Mathematik, Vol. II, p. 53.
35 Bibliotheque Nationale (Latin co))ection): No. 16644 (XIIIth century) Jordani de
Nemore Arismetica - No. 7364 (XIVth century) Jordani de Nemore Elementorum
Arismetice distinetiones decem - No. 16198 (XIV century) Jordani de Nemore
Elementorum Arismetice - No. 14737 (XV century) Jordani de Nemore Elementa
Arismetice. (T. N.: The Latin title reads, The Elements of Arithmetic of Jordanus de
Nemore.)
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36 M. Curtze, "Die angebliche Werke des Euklides tiber die Waage" (Zeitschrift fiir
Mathematik und Physik, XIX. Jahrgang, p. 263,1874).
37 Nemus, the Latin form for "Nemi." Cf. De Vit, To/ius latinita/is onomasticon, Prati,
MDCCCLXXXLVII, Vol. IV, p. 651.
3H T. N.: "Moment" in this context is to be understood, in the manner of Archimedes,
as the product of force and perpendicular distance to the pivot point.
39 T. N.: This is Duhem's translation of the Greek original. Cf. Aristotle's Minor Works,
Mechanical Problems, 848b, 11.
40 Aristotle, Mechanical Problems, III.
41 T. N.: Due to the excess weight of the lever to the right of the point of support there
exists a restoring moment.
42 T. N.: In this case, the unbalanced moment will cause the lever to rotate about point
A (Fig. 19) until it assumes the configuration shown in Figure 18, if the rotation is
unimpeded.
43 Bibliotheque Nationale (Latin collection), No. 10252.
44 T. N.: The Latin title reads, Algorism of Integers by John of Sacrobosco. Finished in
Naples, by Arnold of Brussels, Feb. 11, 1476, before sunrise.
45 Bibliotheque Nationale, Latin collection, No. 10267.
46 T. N.: The Latin reads, "The End. Completed April 1468. Here end the rules for the
tables of the illustrious mathematician and Doctor of Arts, John of Blanchine, a soldier
in the service of the most efficacious benefactor, the illustrious Borso, Duke of Modena
and Reggio, Count of Rovigo, Marquis of Este and Ferrara, completed by Arnold of
Brussels, of the Duchy of Brabant, in April 1468 in the city of Naples."
47 T. N.: The Latin reads, Brussels, at 40· oflatitude.
4H De Saint-Genois, Biographie BeIge, 1866.
49 Bibliotheque Nationale, Latin collection, No. 11247.
50 Bibliotheque Mazarine, No. 3642 (formerly 1258).
51 Bibliotheque Nationale, Latin collection, No. 16649.
52 T. N.: The Latin reads, "We have made this construction in the Preambles."
53 T. N.: The Latin reads, "As was stated in the Filotegni. So we have stated in the
Filotegni."
54 We should note here that one of the references to the Filotegni is in a fragment of
the 13th century kept in the Bibliotheque Mazarine. The copy of this text which
belonged to Fran~oisGuillebon reads, Philotegne.
55 T. N.: The Latin reads, "This has been demonstrated in books dealing with these
matters."
56 We called attention to the fact that the translator of the De canonio replaced in his
figures the Greek letter eta, with an i. In the same way, Jordanus writes Filotegni for the
Greek.
57 T. N.: The Latin reads, "positional gravity."
5H T. N.: The Latin reads, The motion of every heavy body is towards the center, with
its force and power tending downward and resisting contrary motion ...
Every falling body is heavier when its motion is straight toward the center.
A body is heavier positionally when in a given position, the descent is less oblique.
The descent is more oblique to the same extent that it projects less on the vertical.
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FOOTNOTES TO CHAPTER VII

1 Bibliotheque Nationale, Latin collection, No. 12247.
2 T. N.: The Latin reads, "As was evident in the next to last of the above demonstra
tions."
3 T. N.: The Latin reads, "As it has been demonstrated by Euclid, Archimedes and
others."
4 Bibliotheque Nationale, Latin collection, Ms. 8680 A. The text of Ms. 7378 A, when
compared to that of Ms. 8680 A, shows that the demonstrations had undergone several
significant emendations. The fragment preserved in the "Codex Mazarineus" is a part of
the unemended text in manuscript 8680 A.
5 T. N.: This is the book Duhem called earlier the Filotegni.
6 Bibliotheque Nationale, Latin collection, Ms. No. 7378 A.
7 T. N.: The Latin reads, "It has been demonstrated in books dealing with these
matters."
8 Ibid., Latin collection, Mss. Nos. 7310 and 10260.
9 Ibid., Latin collection, Ms. No. 7215.
10 Maximilian Curtze, Das angebliche Werk des Euklides iiber die Waage (Zeitschrift
fur Mathematik und Physik, XIX. Jahrgang, p. 263,1874).
II Valentin Rose, Anecdota graeca et graeco-latina, lIter Heft, 1870, - VII, Zwei
Bruchstiicke griechischer Mechanik. Philon und Heron.
12 T. N.: The Latin title reads, The Book on Weights by Jordanus, according to some,
by Euclid. The Latin quote reads, "Here ends The Book on Weights, attributed by some
to Euclid.
13 Maximilian Curtze, Zwei Beitriige zur Geschichte der Physik (Bibliotheca Mathe
matica, 3e Folge, Bd. I, p. 51; 1900).
14 Maximilian Curtze, Ueber die Handschrift, R. 40 2: Problematum Euclidis explicatio
des Konig!. Gymnasiums zu Thorn (Zeitschrift fiir Mathematik und Physik, XIIIter
Jahrgang, Supplement, p. 45, 1868). One can say the same about a piece entitled Liber
de ponderibus vel de statera Jordani, pointed out by Curtze in Ms. Db. 86, at the
beginning of the XIVth century, kept in the Library of Dresden (Maximilian Curtze,
Ueber eine Handschrift der K. Bibliothek zu Dresden: Zeitschrift fiir Mathematik und
Physik, XXVIIIter Jahrgang, Supplement, p. 1; 1883).
15 This is the date attributed to it by Thurot (a) and confirmed by the Gothic hand
writing. The catalogue in the Bibliotheque Nationale assigns Ms. 7378 A to the 14th
century. As a matter of fact, other texts follow those which interest us here and are
written in a different handwriting and almost certainly were copied in the 14th century.
Thus, on sheet f. 52, one reads: Expliciunt canones tabularum astronomie sive tractatus
de sinibus et cordis per Magistrum Johannem de Linieriis, ordinati et completi Parisiis
anno ab Incarnatione Domini 1322. The same on sheet f. 63; Explicit pronosticatio
Magistri Leonis Judei facta in Anno Domini 1341. Incipit pronosticatio Magistri
Johannis de Muris super eodem. (T. N.: The Latin reads, Here end the rules of the
astronomical tables or the Treatise on Sines & Cords by Master John of Linierius,
completed in Paris, 1322. Here ends the Prognosis of Master Leon Judeus made in
1341. Here begins the Prognosis of Master John of Murs.) Chevalier (b) gives us the
following information on John of Murs: musician and mathematician, Doctor at the
Sorbonne,1321.
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(a) Thurot, Recherches historiques sur Ie Principe d'Archimede (Revue Archeolo
gique, nouvelle serie, Vol. XIX, p. 117, 1869.)
(b) U. Chevalier, Bibliographie du moyen age, col. 1213.

16 I am obliged to M. Goedseels, administrator-inspector of the Royal Belgian Ob
servatory for being able to consult a copy of this work kept in the Library of the
Observatory. I would like to thank M. Goedseels for his kind generosity.
17 T. N.: The Latin title reads, The Book on Weights by the illustrious Jordanus de
Nemore, containing thirteen propositions with their demonstrations as well as extremely
elegant explications of many other matters, now published with Imperial privilege by
Peter Apian, mathematician of Ingolstadt, licensed for thirty years, 1533.
\8 T. N.: The Latin reads, "Another commentary follows."
19 Bibliotheque Nationale, Latin collection, No. 7378 A.
20 This is the date assigned to the manuscript by Thurot (Recherches historiques sur Ie
Principe d'Archimede (Revue Archeologique, nouvelle serie, Vol. XIX, p. 117,1869».
The handwriting of this manuscript is clearly from the 13th century.
2\ Bibliotheque Nationale, Latin collection, No. 8680 A.
22 Jordani, Opusculum de ponderositate, Nicolai Tartaleae studio correctum novisque
figuris auctum. Venetiis, apud Curtium Trojanum, MDLXV. (T. N.: The Latin reads, A
Treatise on Weight by Jordanus, corrected and enlarged with new figures by Nicolo
Tartaglia. Venice, Curtius Trojanus, 1565.
23 T. N.: The Latin words "pondus," "mundus," "regula" and "responsa" mean "weight,"
"world," "rule" and "answer" respectively.
24 T. N.: Duhem, in his Etudes sur Leonard de Vinci, changed this designation to the
Precursor of Simon Stevin.
25 Edition by Curtius Trojanus, Quaestio XXIX.
26 Ibid., Quaestio XXXV.
27 Ibid., Quaestio XXX.
28 Ibid., Quaestio XXXli.
29 Ibid., Quaestio XLII.
30 Ibid., Quaestio XLIII.
3\ Ibid., Quaestio XLI.
32 Ibid., Quaestio XXXIV.
33 T. N.: The Latin title reads, On the Common Principles ofall Natural Phenomena.
34 Liber primus, Prop. II. - Edition of Curtius Trojanus, Quaestio II.
35 Liber primus, Prop. VIll - Edition Curtius Trojanus, Quaestio VIII.
36 Liber tertius, Propositiones I et II. - Editions of Curtius Trojanus, Quaestiones
XXIll et XXIV.
37 Liber tertius, Propositio V. - Edition of Curtius Trojanus, - Quaestio XXVII. The
scribe introduced errors in this proposition so that the author's ideas are sometimes
rendered unintelligible.
38 Liber primus, Propositio VIII. Edition of Curtius Trojanus, Quaestio VIII.
39 Liber primus, Propositio VIII, et Liber tertius, Propositio Ill. Edition of Curtius
Trojanus, Quaestiones VIII et XXV.
40 Liber primus, Propositio IX. Edition of Curtius Trojanus, Quaestio IX.
4\ Ibid.
42 It is clear that the author imagines the two weights being joined by a cord which at d
passes over a pulley.
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43 T. N.: Duhem has written "e!" where one should read "It".
44 Cf.: Affo, Scrittori parmigiani Parma, 1789: Vol. II. pp. 112, 118, 123. - Tira
boschi, Storia delle lettere italiane. 1807, Vol. VI, I, pp. 335-339. - Gherardi, Di
alcuni materiali per la storia della facolta matematica nell'antica universita di Bologna,
Bologna. 1846.
45 T. N.: Italian for, "A distinguished philosopher and mathematician."
46 Bassiani politi Laudens, De numero modalium; - Ejusdem, Tractatus proportionum.
- Nicolai Horen, Proportiones; - Ejusdem, De latitudinibus formarum. - Blasii de
Parma, De latitudinibus formarum; De sex inconvenientibus. - Joannis de Lasali, De
velocitate motus alterationis Blasii de Parma, De tactu corporum durorum. Venetiis,
mandato et sumptibus heredum Oct. Scoti Modoetiens, per Bonetium Locatellum
Bergom. KaI. Sept. MDV.
47 Bibliotheque Nationale, Latin collection, No. 10252.
48 T. N.: The Latin reads, Song ofWeights or ofWeights and Measures.
49 T. N.: The Latin reads, The Minor Latin Poets.
50 T. N.: Latin for, "Since the science of weights is subordinate to geometry as well as
to natural philosophy ..."
51 T. N.: Latin for, "The science of weights is rightly said to be subordinated to natural
philosophy." Duhem seems to ignore the essential difference between these two quotes.
52 T. N.: The Latin reads, "Now, with the weight having been given, I wish to obtain a
knowledge of the arms."
53 T. N.: The Latin reads, "However, let the philosophers consider it."

FOOTNOTES TO CHAPTER VIII

1 Cf. Chapter II.
2 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. M de
la Bibliotheque de I'lnstitut, folio 68, verso.
3 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. A de
la Bibliotheque de I'Institut, folio 5, recto.
4 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. E de
la Bibliotheque de I'Institut, folio 32, verso.
5 Cf. in particular: Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson
Mollien, Ms. F de la Bibliotheque de I'Institut, folio 3, verso, and folio 4, recto.
6 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. 2038
(Italian) of the Bibliotheque Nationale (Acq. 8070, Libri) folio 2, verso.
7 Leonardo da Vinci, loc. cit.
8 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Millien, Ms. 2038
(Italian) Bibliotheque Nationale (Acq. 8070, Libri) folio 3, recto.
9 These words should be replaced by the following: "if its extremities carry equal
weights," otherwise all of this passage by Leonardo would be incorrect.
10 This idea must be interpreted in the following way: "The proportion between line ab
and line ae will be the same as the proportion between the weight carried by the length
em and the weight carried by the length en."
11 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. E de
la Bibliotheque de I'Institut, folio 58, recto.
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12 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. G de
la Bibliotheque de l'Institut, folio 78, verso.
13 The Latin title of the original Greek reads, The Extant Collected Works of Pappus
of Alexandria, edited from the manuscripts and provided with a Latin translation and
commentary by Friedrich Hultsch. Vol. TIl, Berlin, 1878, pp. 1032-1033.
14 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. G de
la Bibliotheque de I'Institut, folio 79, recto.
15 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. G de
la Bibliotheque de I'Institut, folio 79, verso.
16 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. E de
la Bibliotheque de I'Institut, folio 57, verso. ct. folio 58, recto.
17 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. E de
la Bibliotheque de l'Institut, folio 59, recto.
18 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. G de
la Bibliotheque de l'Institut, folio 75, recto.
19 Cf. Figure 9 in Chapter II where this passage was quoted.
211 T. N.: Duhem uses the word "pressure," which is the result of the historical develop
ment of statics, but modern usage requires the word "force."
21 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. G de
la Bibliotheque de I'Institut, folio 76, verso.
22 That is to say: does not exert at each of the two points a force equal to its total
weight.
23 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. E de
la Bibliotheque de l'Institut, Paris, 1883.
24 Ms. E, folio 65, recto.
25 Ms. E, folio 60, verso.
26 Ms. E, folio 60, verso.
27 Ms. E, folio 60, recto.
28 Ms. E, folio 61, verso; Cf. folio 63, recto.
29 Ms. E, folio 63, recto.
30 Ms. E, folio 67, verso.
31 T. N.: The "supreme heights," or lines GF and GD of Duhem's text, can only be the
moment arms.
32 Ms. E, folio 67, verso.
33 Ms. E, folio 66, verso.
34 Ms. E, folio 68, recto and verso; folio 69, recto and verso; folio 70, recto; folio 71,
recto.
35 Cf., in particular, the passage quoted in Chapter II and Ms. M, folio 36, verso.
36 This passage was pointed out by Maximilian Curtze in a note published in the
Bibliotheca Mathematica, 3te Folge, Bd. II, 1901; p. 355.
37 Pappi Alexandrini, Collectiones quae supersunt e libris manuscriptis edidit, latina
interpretatione et commentariis instruxit Fridericus Hultsch. Volumen III. Berolini,
MDCCCLXXVTIl. (T. N.: The Latin title of the original Greek reads, The Extant
Collected Works of Pappus of Alexandria, edited from the manuscripts and provided
with a Latin translation and commentary by Friedrich Hultsch. Vol. TIl, Berlin, 1878).
38 Loc. cit., p. 1029.
39 The principle of this theory is the concept of the moment of a weight suspended at
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the extremity of an arm of an oblique lever. This concept must have certainly been
known by the geometers of the School of Alexandria during the time Pappus wrote.
Hero (a) formulates it clearly. The part of the Mechanics of Hero where he uses this
concept is not in the excerpt from the work which is appended to the Collections of
Pappus. It remained unknown until its publication by M. Carra de Vaux. Thus it neither
influenced Leonardo da Vinci, nor contributed to the development of modern me
chanics. Hero (b) also observes concerning the windlass that this "instrument and all the
devices of great force which resemble it are slow, because the weaker the force com
pared to the very heavy weight being moved, the more the time needed to accomplish
the work. There is an equal ratio between force and time." Hero makes the same ob
servations again concerning the block and tackle (c) and the lever (d). But these
passages too, were not known until the publication of Carra de Vaux. Furthermore,
they do not add anything to what the Mechanical Problems taught on this subject.
(a) The Mechanics or the Elevator of Hero of Alexandria published for the first

time, based on the Arabic version by Qusta ibn Lftka and translated into French by M.
Carra de Vaux. Excerpt from the Journal Asiatique, Paris, 1894. Book I, Art 34, p. 91.
(b) Loc.cit.,p.131.
(c) Loc. cit., p. 134.
(d) Loc. cit., p. 156.

4t1 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. G de
la Bibliotheque de l'Institut, folio 77, verso.
41 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. G de
la Bibliotheque de l'Institut, folio 79, recto.
42 T. N.: Duhem is convinced that Leonardo obtained this solution from Pappus
althought the evidence he presents is inconclusive.
43 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. A de
la Bibliotheque de l'Institut, folio 21, verso.
44 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. A de
la Bibliotheque de I'Institut, folio 33, recto.
45 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. M de
la Bibliotheque de I'Institut, folio 42, recto.
46 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. H de
la Bibliotheque de l'Institut, folio 81 (33), verso.

FOOTNOTES TO CHAPTER IX

1 Quesiti et Inventioni diverse di Nicolo Tartaglia, Venetia, Vent. Ruffinelli, 1546 
Various editions of this work follow rapidly. One can cite the following: Quesiti et
Inventioni diverse. La nova Scientia, Venetia, Nic. de Bascarini, 1550; - Quesiti et
lnventioni diverse, Ragionamenti sopra la travagliata Inventione, con supplemento,
Venetia, Nic. de Bascarini, 1551; - Quesiti et Inventioni diverse, Regola generaIe de
solevare con ragione e misura non solamente ogni affondata nave, ma una torre solida
di metallo, Venetia, Nic. de Bascarini, 1551; - Quesiti et Inventioni diverse, con una
giunta al sesto libro, nella quale si mostra duoi modi di redur una cittti inespugnabile,
Venetia, Nic. de Bascarini, 1554. - Furthermore, one can mention; Opere del famosis-
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simo Nicolo Tartaglia, cioe Quesiti, Nova Scientia, Travagliata Inventione, Ragionamenti
sopra Archimede, etc., Venetia, 1606. (T. N.: The Italian reads respectively, Diverse
Questions and Inventions of Nicolo Tartaglia; Diverse Questions and Inventions. The
New Science; Diverse Questions and Inventions, Reflections on burdensome inventions,
with supplements; Diverse Questions and Inventions, General Rules to raise with logic
and control not only any sunken ship but a solid metal tower; Diverse Questions and
Inventions with an addition to the sixth book, in which is demonstrated two methods for
breaching an impregnable city; Works of the famous Nicolo Tartaglia, that is, Questions,
New Science, burdensome Inventions, Reflections on Archimedes, etc.
2 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. G de
la Bibliotheque de l'Institut, folio 77, recto.
3 Tartaglia, Quesiti et Inventioni diverse, edition of 1544, p. 8, verso.
4 Quesiti et Inventioni diverse, Libro ottavo, Quesiti XXVII, Petitione VI.
5 Quesiti et Inventione diverse, Libro ottavo, Quesiti XLI, XLII; Propositioni XIV, XV.
6 T. N.: The Italian reads, "I am his protege."
7 I sei cartelli di matematica disfida primamenti intorno alla generale risoluzione delle
equazioni cubiche di Ludovico Ferrari, Coi sei contro-cartelli in riposta di Nicolo
Tartaglia comprendenti Ie soluzioni de' quesiti dall' una et dall' altra parte propositi.
Raccolti, autografati e publicati da Enrico Giordani, Bolognese. Premesse notizie
bibliografiche ed illustrazioni sui Cartelli medesirni, estratte da documenti gia a stampa
ed altri manoscritti favoriti dal Comm. Prof. Silvestro Gherardi. Milano, 1876. (T. N.:
The Italian reads, The six letters of the mathematical challenge primarily concerned
with the general solution to cubic equations by Ludovico Ferrari, with six letters of
reply by Nicolo Tartaglia concerning the solution of problems posed by both parties.
Collected, printed and published by Enrico Giorodani of Bologna. Prefaced by a
bibliographic reference and illustrations of the same letters, taken from documents
previously published and other manuscripts given by Commendatore Professor Silvestro
Gherardi. Milano, 1876.) These six challenges by Ferrari and Tartaglia's six ripostes
remained unknown to mathematicians until Silvestro Gherardi had the good fortune to
reassemble the entire collection. The six challenges by Ferrari which he found all bore
in the author's handwriting the address: Al Signor Nicolo Simo: Nicolo Simo was
actually one of the geometers to whom the two adversaries sent their works. This
collection is quite unique. Only the second of Ferrari's challenges is in the St. Mark
Library in Venice. Gherardi published the twelve texts in Bologna in 1846 appended to
his own book entitled: Di alcuni materiali per la storia della facolta matematica in
Bologna. (T. N.: The Italian reads, Some Reference Material on the History of the
Mathematical School in Bologna.) He later lent them to Libri. They were sold in
London in 1861 together with the library of Libri. In 1876 this collection was repro
duced in facsimile by Enrico Giordani and was dedicated to Prince Baldassare
Boncompagni. (Cf. Catalogue of mathematical, historical, bibliographical, and miscel
laneous portion of the celebrated library of Guglielmo Libri: Part I: A-L, London 1861,
no. 178, pp. 19 and 20: On page 1 there is a facsimile of the signature of Ferrari. - J.
Ch. Brunet, Manuel du Librarie et de l'amateur de livres, Vol. V, 1864, column 661 
and the announcement preceding the reprinting of 1876.)
8 Ferrari, Primo cartello, p. 2.
9 Ferrari, Secondo cartello, p. 6.
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10 Seconda riposta data da Nicolo Tartalea Brisciano, pp. 7 and 8.
11 Jordani Opusculum de ponderositate, Nicolai Tartaleale studio correctum, novisque
figuris auctum. Cum privilegio. Venetiis, apud Curtium Trojanum, MDLXV. (T. N.: The
Latin title reads, A Treatise on Weights by Jordanus, corrected and enlarged with new
figures by Nicolo Tartaglia. With Imperial Privilege. Venice, Curtius Trojanus, 1565.)
12 Hieronymi Cardani De numerorum proprietatibus liber unicus; Caput LXVI, de
Ponderibus. (T. N.: The Latin title reads, A Single Book on the Properties of Numbers,
by Jerome Cardan, Chapter 66, "On Weights.") According to Niceron (a) this work was
printed for the first time after the death of its author in: Hieronymi Cardani Opera
omnia, tomus IV. (T. N.: The Latin title reads, The Complete Works ofJerome Cardan,
Vol. IV.)
(a) Niceron, Memoires pour servir d l'histoire des hommes illustres, Vol. XIV, p.

271; Paris, 1731.
13 In the manuscript (b) which we studied, Blasius of Parma actually says that a single
grain of millet can maintain in equilibrium a weight a thousand times heavier. Cardan,
doubtlessly, must have had a different version of that same treatise.
(b) Bibliotheque Nationale, Latin collection, Ms. 10252.

14 Les Livres de Hierome Cardanus, medecin milannois, intituLes de la Subtilite et
subtiles Inventions, ensemble les causes occultes et raisons d'icelles, traduis de Latin en
Fran~ois par Richard Le Blanc, Paris, Charles l'Angelier, 1556. (T. N.: The French title
reads, The Book on Subtlety and Subtle Inventions, Together with the Occult Causes
and their Reasons, by Jerome Cardan, Milanese physician, translated from Latin into
French by Richard Le Blanc, Paris, Charles I'Angelier, 1556.)
15 Alexandri Piccolominei in mechanicas quaestiones Aristotelis paraphrasis paulo
quidem plenior, ad Nicolaum Ardinghellum Cardinalem amplissimum. (On the last
page: Excussum Romae apud Antonium Bladum Asulanum, Tertio Non. Januarii
MDXLVII). - The same work was re-edited: Venetiis, apud Curtium Trojanum,
MDLXV. - It was also translated into Italian under the title: A. Piccolomini, Sopra Ie
mecaniche d'Aristotile, translated by O. V. Biringucci. Roma, Zanetti, 1582. (T. N.: The
Latin reads, A Somewhat Fuller Paraphrase of the Mechanical Problems of Aristotle by
Alexander Piccolomini, dedicated to the illustrious Cardinal Nicolas Ardinghello,
published at Rome by Antonius Baldus Asulanus, the third of January 1547.)
16 Edition of 1547, p. 22, verso.

FOOTNOTES TO CHAPTER X

1 Other authors spell his name differently. Favaro, for example, writes, Guidobaldo dal
Monte. We follow the spelling adopted by Pigafetta in the translation of the Mechani
corum liber (T. N.: The Latin title reads, The Book on Mechanics) which Pigafetta
published in Italian in 1581, during the author's lifetime.
2 Hieronymi Cardani Mediolanensis civisque Bononiensis Opus novum de proportioni
bus numerorum ... Propositio CLXXVI, p. 197; Basileae, MDLLXX. (T. N.: The Latin
title reads, A New Work on the Ratios of Numbers by the Milanese Jerome Cardan, a
citizen of Bologna ... Proposition 176, p. 197; Basel, 1570).
3 Admiranda Archimedis monumenta omnia quae exstant, ex traditione D. Francisci
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Maurolyci. Panormi, ap. Cyllenium Hispanicum, DMCLXXXV. (f. N.: The Latin title
reads, All the Extant and Admirable Monuments of Archimedes, expounded by Fran
cesco Maurolico. Palermo, Cyllenius Hispanicus, 1685).
4 Federici Commandini Liber de centro gravitatis solidorum, Bononiae, MDLXV.
(f. N.: The Latin title reads, A Book on the Center of Gravity of Solids, by Frederico
Cornmandino, Bologna, 1565).
5 Lucae Valerii De centro gravitatis solidorum libri III, MDCIV. (T. N.: the Latin title
reads, Three Books on the Center ofGravity ofSolids, by Luca Valerio, 1604)
6 Galileo Galilei, Dialoghi delle Scienze nuove ... Giornata seconda. (f. N.: The Italian
reads, Dialogues on New Science ... Second Day. Duhem must be referring to the
Dialogues Concerning Two New Sciences.)
7 Guido Ubaldi e Marchinonibus Montis De cochlea libri quatuor, superiorum permissu
et privilegio. Venetiis, apud Evangelistam Deuchinum, MDCXV. (f. N.: The Latin title
reads, Four Books on the Screw by Guido Ubaldo, Marquis del Monte, with the
permission and privilege of his Superiors. Venice, Evangelista Deuchinus, 1615)
8 Guidi Ubaldi e Marchionibus Montis In duos Archimedis aequiponderantium libros
paraphrasis, scholiis illustrata. Pisauri, apud Hieronymum Concordiam, MDLXXXVlII.
(T. N.: The Latin title reads, A Paraphrase of Two Books of Archimedes on Equilib
rium illustrated with scholia. Pesaro, Jerome Concordia, 1583.)
9 Guidi Ubaldi e Marchionibus Montis Mechanicorum liber, in quo haec continentur:
De libra, de vecte, de trochlea, de axe in peritrochio, de cuneo, de cochlea. Superiorum
permissu et privilegio. Pisauri, apud Hieronymum Concordiam"MDLXXVII. (f. N.:
The Latin title reads, The Book on Mechanics of Guido Ubaldo, Marquis del Monte,
which contains the following: On the Balance. On the Lever, On the Block and Tackle,
On the Windlass, On the Wedge, On the Screw, With the permission of his Superiors.
Persaro; Jerome Concordia, 1577.) - The same work has been reprinted in: Venetiis,
apud Evangelistam Deuchinum, MDCXV. - It has also been translated into Italian
under a title of rather curious grandiloquence: Le mechaniche dell'illustriss. Sig. Guido
Ubaldo de Marchesi del Monte, tradotte in volgare dal Sig. Filippo Pigafetta. Nelle
quali si contiene la vera dottrina di tutti gli istrumenti principali di mover pesi grandis
simi con piccola forza. A beneficio di chi si diletta di questa nobilissima scienza; et
massimamente di capitani di guerra, ingegnieri, architetti, et d'ogni artefice, che intenda
per via di machine far opre maravigliose, e quasi sopranaturali. Et si dichiarano i
vocabili, et luoghi piu difficili. In Venetia, appresso Francesco di Franceschi Sanese,
MDLXXXI. - A second edition of this translation was published in Venice in 1615.
(f. N.: The Italian reads, The Mechanics of the very illustrious Guido Ubaldo, Marquis
del Monte, translated into Italian by Filippo Pigafetta. In which is included the true
doctrine of all the principal instruments for moving very large weights with a small
force. For the benefit of those who take pleasure in this extremely noble science and
most of all for captains of war, engineers, architects and every artisan who intends to do
marvelous and almost supernatural things with the help of a machine. With an
explantion of the most difficult words and passages. In Venice, by Francesco di
Franceschi Sanes, 1581.
10 Guidi Ubaldi Mecanicorum liber, ad Franciscum Mariam II, Urbinatum ducem,
praefatio. (f. N.: The Latin title reads, The Book on Mechanics by Guido Ubaldo, to
Francesco Maria II, Duke of Urbino, Preface.)
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11 Guidi Ubaldi Mecanicorum liber, de libra, Propositio IV. (T. N.: The Latin title
reads, The Book on Mechanics by Guido Ubaldo, "On the Balance, Proposition IV.")
12 We purposely omit, while presenting Guido Ubaldo's argumentation, the conver
gence of verticals, which troubles the author.
13 T. N.: The lever arm is pivoting about point D.
14 Les Mechaniques de Galilee, mathematicien et ingenieur du duc de Florence, avec
plusieurs additions rares et nouvelles, utiles aux architectes, ingenieurs, fonteniers,
philosophes et artisans; traduites de l'Italien par L. P. M. M. (Ie P. Mersenne, Minime).
A Paris, chez Henry Guenon, MDCXXXIV; 2e addition, p. 23. (T. N.: The French titles
read, The Mechanics of Galileo, mathematician and engineer to the Duke of Florence,
with several rare and new additions useful to architects, engineers, excavators, philoso
phers and craftsmen; translated from Italian By L. P. M. M.: Father Mersenne, of the
Order of the Minims. Paris, Henry Guenon, 1634, 2nd edition, p. 24.)
15 The Book on Mechanics by Guido Ubaldo, "On the Lever," Proposition X.
16 The geometers who reproduced the theory of Guido Ubaldo were careful to specify
and correct it on this point. Pierre Herigone (a) understands by the word "force" a
weight suspended from the arm of a lever, as the drawings which he used show. In this
way, Guido Ubaldo's theorems are corrected. Even more careful is Jacques Rohault.
His posthumous treatise (b) deals separately with a case in which the force is repre
sented by a weight freely suspended and with a second case in which the force always
remains perpendicular to the arm of the lever. The care used by these authors in order
to clarify Guido Ubaldo's thought is proof of how uncertain, if not erroneous, his ideas
were.
(a) Pierre Herigone, Cours de Mathematique, Vol. III: les Mechaniques, Proposition

VI, Paris, 1634. (T. N.:The French title reads, Pierre Herigone, Course on Mathematics,
Vol.lII.; Mechanics, Proposition VI, Paris 1634).
(b) Oeuvres posthumes de J. Rohault (publiees par Clerselier). Traite des Mechani

ques. Proposition XI. Paris, 1682. (T. N.: The French title reads, Posthumous Works of
J. Rohault (published by Clerselier). Treatise on Mechanics, Proposition XI. Paris, 1682.)
17 Lagrange, Mecanique analytique, Ire partie, Section I, Sur les differents principes de
la Statique, Art. 4.
18 Lagrange, loco cit. Art. 16.
19 Guidi UbaIdi Mecanicorum liber, de vecte. Propositio III. (T. N.: The Latin title
reads, The Book on Mechanics by Guido UbaIdo, "On the Lever," Proposition III.)
20 Guidi Ubaldi Mecanicorum liber, de trochlea, Propositiones X ad XXVIII. (T. N.:
The Latin title reads, The Book on Mechanics by Guido Ubaldo, "On the Block and
Tackle," Propositions X to XXVIII.)
21 Guidi Ubaldi Mecanicorum liber, de trochlea, Propositio XXVI, Corollarium. (T. N.:
The Latin title reads, The Book on Mechanics by Guido Ubaldo. "On the Block and
Tackle." Proposition XXVI, Corollary.)
22 Id., ibid., de trochlea, Propositio XXVlII, Corollarium II.
23 Guidi Ubaldi Mecanicorum tiber, de trochlea, de axe in peritrochio. (T. N.: The
Latin title reads, The Book on Mechanics by Guido Ubaldo, "On the block and tackle,
On the Windlass.")
24 Id., ibid., de cuneo (T. N.: The Latin title reads, "On the Wedge,")
25 Id., ibid., de cochlea. (T. N.: The Latin title reads, "On the Screw.")
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26 JO. Baptistae Benedicti, patritii Veneti, philosophi, Diversarum speculationum
mathematicarum et physicarum liber, quarum seriem sequens pagina indicabit. Ad
serenissimum Carolum Emmanuelem Allobrogum et Subalpinorum ducem invictis
simum. Taurini, apud haeredem Nicolai Beveliquae, MDLXXXV. (T. N.: The Latin title
reads, A book of Diverse Speculations on Mathematics and Physics, with the sequence
indicated on the following page, by Giovanbattista Benedetti, citizen of Venice and
philosopher. To his most Serene Charles Emmanuel, the invincible Duke of Savoy and
the Sub-Alpines. Turin, the Heir of Nicolo Bevilaqua, 1585.)
27 J. B. Benedicti Diversarum speculationum . .. p. 141. De mechanicis.
2K T. N.: The Latin quote reads, "And by this means alone, I would have left clear
proof that I had lived among mortals."
29 De resolutione omnium Euclidis problematum aliorumque ad hoc necessario inven
torum una tantummodo circuli data apertura, per Joannem Baptistam de Benedictis
inventa. On the last page: Venetiis, apud Bartholomaeum Caesanum. MOLIII. (T. N.:
The Latin title reads, On the Resolution of all the Problems of Euclid and of others by
a single setting of the Compass, invented by Giovanbattista Benedetti, Venice, Bartho
lomaeus Caesanus, 1553.)
30 This passage was reproduced by Libri, Histoire des Sciences mathematiques en
Italie, note XXV. vol. III. p. 258.
31 J.B. Benedicti Diversarum speculationum ... Disputationes de quibusdam placitis
Aristotelis, Caput, X, p. 174. - This passage is also reproduced by Libri, loc. cit., p.
264. (T. N.: The Latin title reads, Giovanbattista Benedetti's Diverse speculations . ..
Disputations on certain views of Aristotle, Chapter X, p. 174.)
32 Hieronymi Cardani Mediolanensis, civisque Bononiensis, philosophi, medici et
mathematici Opus novum de proportionibus; Basileae, ex officina Henricpetrina, Anno
Salutis MDLXX, Mense Martio. Liber V, Propositio CX, p. 104.
33 Joannis Taisnierii Hannonii Opusulum perpetuum memoria dignissimum de natura
magnetis et ejus effectibus. Item de motu continuo, demonstratio proportionum motuum
localium contra Aristotelem et alios philosophos; de motu alio celerrimo hactenus
incognito, atque de fluxu et reflexu maris. Coloniae Agrippinae, MDLXII. (T. N.: The
Latin title reads, A treatise Most Worthy of Lasting Memory on the Nature of the
Magnet and its Effects. Also on continuous motion: A Demonstration of the Ratios of
Local Motions against Aristotle and other Philosophers; On other rapid motion hitherto
unknown, and on the tides of the ocean by Joannes Taisnier. Cologne, 1562.)
34 Simonis Stevini Mathematicorum Hypomnematum Statica. Appendix Statices. Caput
II: Res motas impedimentis suis non esse proportionales, p. 151. Lugodini Batavorum,
MDCV. (T. N.: The Latin reads, Simon Stevin, Mathematical Memoires on Statics.
Appendix on statics. Chapter II: Moving Bodies are not proportional to their resist
ances, p. 151. Leyden, 1605.)
35 J. B. Benedicti Diversarum speculationum ... De mechanicis, Caput XI, p. 153.
36 Id., ibid., Caput VII et Caput VIII.
37 J. B. Benedicti Diversarum speculationum De mechanicis, Caput I.
38 J. B. Benedicti Diversarum speculationum De mechanicis, Caput II.
39 Id., ibid., De mechanicis, Caput III.
40 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-MoUien, Ms. I of
the Bibliotheque de I'Institut, folio 30, recto. Cf. chapter II.
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41 T. N.: This quote is not clear as it appears in the French.
42 Cf. Chapter VIII, Section I and Figure 39.
43 J. B. Benedicti Diversarum speculationum.. .. De mechanicis, Caput XII.
44 T. N.: Although Benedetti uses the term "gravity," the text implies "positional gravity."
45 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. E. of
the Bibliotheque de I'lnstitut, folio 57, verso; folio 58, recto; folio 59, recto. - Cf.
Chapter VIII, Section 1.
46 Cf. Chapter IX, Section 2.
47 J. B. Benedicti Diversarum speculationum ... De mechanicis, Caput XXI.
48 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. E. of
the Bibliotheque de l'lnstitut, folio 55, recto.
49 J. B. Benedicti Diversarum speculationum ... De mechanicis, Caput V.

FOOTNOTES TO CHAPTER XI

I T. N.: Giovanni de Medici had proposed the construction of a large dredging
machine of his own design to clear the harbor of Leghorn. Galileo criticized the project
with characteristic candor.
2 Libri, Histoire des Sciences Mathematiques en Italie, Paris, 1841; Vol. IV, pp. 176
180.
3 T. N.: In English, this is commonly known as a Sector or Military compas.
4 This work is known in English as the "Discourses and Demonstrations Concerning
Two New Sciences."
5 Viviani, Vita di Galileo Galilei, cavati da Fasti consolari dall'Accademia Fiorentina
di Salvino Salvini. Firenze, MDCCXVII. (T. N.: The Italian reads, Life of Galileo
Galilei, taken from the Fasti consolari of the Academy of Florence by Salvino Salvini.
Florence, 1717.)
6 This short treatise is also contained in the following edition: Le Opere di Galileo
Galilei, ristampate fedelmente sopra la Edizione nazionale con approvazione del Minis
terio della publica Instruzione. Vol. I (the only volume published). Firenze, Successori
Le Monnier, 1890. (T. N.: The Italian reads, The Works of Galileo Galilei, accurately
reprinted from the National Edition with approval of the Ministry of Public Instruc
tion.)
7 On p. 122 of the preceding edition.
x On pp. 76 and 77 of the preceding edition.
9 On p. 61 of the preceding edition.
10 T. N.: The Latin reads, "Simple motion ends in rest." "Nothing violent is perpetual."
11 These two versions of De Motu are also in Vol. 1 of the 1890 edition. (T. N.: The
Latin title reads, On Motion.)
12 The dialogue De Motu is reproduced in Vol. I of the 1890 edition.
13 T. N.: The Italian reads, On Mechanics, read in Padua by Galileo Galilei in the year
1594.
14 Delle Meccaniche lette in Padova l'anno 1594 da Galileo Galilei, per la prima volta
pubblicate ed illustrate da Antonio Favaro (Memorie del R. Instituto Veneto di Scienze,
Lettere ed Arti. Vol. XXVI, No.5, 1899.)
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15 T. N.: The two titles read, Preludes to the Universal Harmony and Theological,
Physical Moral and Mathematical Questions.
16 Les Mechaniques de Galilee, mathematician and engineer to the Duke of Florence,
with several rare and new additions, useful for architects, engineers, excavators, philo
sophers and artisans, translated from Italian by L.P.M.M.; Paris, Henry Guenon, rue St.
Jacques, near the Jacobins, under the sign of St. Bernard, 1634.
11 Le Opere di Gali/eo Gali/ei, Florence, 1890, vol. 1, p. 256. (T. N.: The Italian title
reads, The Works ofGalileo Galilei, Florence, 1890, Vol. I. p. 256.)
1M T. N.: Latin for "which is inconsistent."
19 Le Opere di Gali/eo Gali/ei, Florence, 1890, Vol. I, 296.
20 T. N.: Duhem is referring to the arc formed by point a rotating about point s.
21 Le Opere di Gali/eo Gali/ei, Florence, 1890, Vol. I, p. 297.
22 T. N.: The Latin reads, "When the moving body is at point s and at the moment it
touches s, its descent will be as though along the line gh; therefore, the motion of the
moving body along line gh will be according to the gravity which the moving body has
at point s."
23 T. N.: Duhem translates Stevin's De Beghinselen der Weeghconst as Les Elements de
Statique, although Albert Girard gives a more literal translation in his French version of
1634: L 'Art Ponderaire au la Statique.
24 T. N.: The Flemish title reads, The Principles ofthe Art of Weighing.
25 Le Opere di Galileo Gali/ei, Florence, 1890, Vol. I, p. 260.
26 Le Opere di Galileo Gali/ei, Florence, 1890, Vol. I, p. 272. Cf. Ibid., p. 296.
21 T. N.: The context implies "apparent" weight.
2M Ibid., p. 30l.
29 Le Opere di Gali/eo Gali/ei, Florence, 1890, Vol. I, p. 40l.
30 Ibid., pp. 401 and 402.
31 I purposefully avoid translating into French this word "momento," because the word
moment in today's mechanics denotes a different notion from "momento." Moment,
which is a product of a force times a length, is not, despite what Lagrange says
(Mecanique analytique, Part I, Section 1, number 4), a particular case of the "momen
to," which is the product of a force and its velocity.
32 This word has the same meaning here that it has for Leonardo da Vinci. The
meaning comes close to what Leibniz calls the force vive.
33 "Momento," has here the same meaning as the Latin "momentum," namely, impor
tance or significance.
34 Dialogo delle due massimi Sistemi del Mondo, giornata secunda.
35 Galileo Galilei, Discorsi . .. , giornata terza, Theorem II, Prop. II, Scholium.
36 Della Meccaniche lette in Padova l'anno 1594 da Galileo Galilei ... (Memorie del
R. Istituto Veneto di Scienze, Lettere ed Arti, Vol. XXVI, No.5, 1899.)
31 Ibid., Chapt. 5.
3M Ibid., Chapt. 8.
39 Ibid., Chapt. 9.
40 Ibid., Chapt. 15.
41 Ibid., Chapt. 16.
42 Ibid., Chapt. 15.
43 Ibid., Chapt. 12.
44 Ibid., Chapt. 13.
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45 Les Mechaniques de Galilee, p. 7.
46 T. N.: The Greek word means downward momentum or pull.
41 This quote is from the treatise Della Scienza Meccanica; the same considerations
can be found, slightly less developed, in the Mechanics.
4~ T. N.: Galileo implies here that work is the decisive factor for equilibrium. The entire
concept of the Principle of Virtual Displacements is elucidated by this observation.
Later, Torricelli will generalize this observation and give it status as a principle.
49 T. N.: The Italian reads, Discourses and mathematical demonstrations about two new
sciences related to mechanics and to local motion.
50 Galileo Galilei, Lettere al P. Ab. D. Benedetti Castelli, December 3rd, 1639; repro
duced in all the editions of Galileo's works.
51 T. N.: The Italian reads, "... which was fully and conclusively demonstrated in an
old treatise on mechanics already written in Padua by our Accademician solely for the
use of his students ...".
52 Eorum quae vehuntur in aquis experimenta a Joanne Bardio Florentino ad Archi
medis trutinam examinata. Romae, 1614. (T. N.: The Latin title reads, Experiments on
Bodies Moving in Water, studied using the Balance of Archimedes, by the Florentine,
Giovanni Bardi. Rome, 1614.)
53 T. N.: The Latin reads, "The gravity under consideration here is that which some
distinguish from dead weight, and which Galileo, like Jordanus, rightly calls a specific
weight."
54 Thurot, Recherches historiques sur Ie principe d'Archimede (Revue Archeologique,
nouvelle serie, Vol. XIX, 1869, p. 117):
55 T. N.: The reference is to the De incidentibus in humido which is appended to the
1565 Tartaglia edition of the De ratione ponderis. It contains a definition of specific
weight. Bardi must have mistakenly concluded that the De incidentibus in humido was
also written by Jordanus.

FOOTNOTES TO CHAPTER XII

1 The statics of Stevin was first published in Flemish as De Beghinselen der Weegh
canst, beschreven dver Simon Stevin van Brugghe. Tot Leyden, inde Druckerye van
Christoffel Plantijn, bij Fran~oys van Raphelinghen. MDLXXXVI. (T. N.: The Flemish
title reads, The Principles of the Art of Weighing, written by Simon Stevin of Brugge.
Printed at Leyden by Fran~ois van Raphelinghen at the press of Christoffel Plantijn,
1586.) It was divided into two parts, the first dealing with the general principles of
statics and the second with the determination of various centers of gravity. Two other
works were appended to it. One of them, entitled De Weeghdaet, dealt with the
applications of statics, while the other, De Beghinselen des Waterwichts, dealt with the
principles of hydrostatics.
Later, Simon Stevin published all of his mathematical works in Flemish under the

title: Wisconstige Gedachtenissen, inhoudende t'ghene daer hem in gheoeffent heeft den
Doorluchtichsten Hoochgheboren Vorst ende Heere, Mavrits Prince van Orengien,
Grave van Nassau, ... , Beschreven deur Simon Stevin van Brugghe. Tot Leyden, inde
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Druckerye van Jan Bouvvensz, lnt laer MDCVII. (f. N.: The Flemish title reads,
Mathematical Memoires of Simon Stevin of Brugge containing as well those practiced
by his most illustrious Prince and Lord, Prince Maurice of Orange, Count of Nassau,
Leyden, in the press of Jan Bouvvensz, in the year 1608.)
The second volume of this collection contains his statics and is entitled: Vierde Stvck

der wisconstighe Gedachtnissen wande Weeghconst. Tot Leyden, bij Jan Bouvvensz,
Anno MDCV. (f. N.: The Flemish title reads, The fourth Part of the Mathematical
Memoires on the An of Weighing. Leyden, Jan Bouvvensz, 2605.) The first four books
reproduced the work on statics published in 1586. Stevin adds a fifth book entitled:
Vanden Anwang der Waterwichtdaet, (T. N.: The The Flemish title reads, On the
Origins of the Applications of Hydrostatics) which deals with the applications of
hydrostatics; an appendix titled, Anhang der Weeghconst, inde welcke onder anderen
vveerleyt vvorden ettlicke dvvalinghen der wichtige ghedaenten. (T. N.: The Flemish
title reads, Appendix to the Art of Weighing, in which among other things numerous
errors pertaining to heavy bodies are refuted.) Finally there is a kind of supplement
called Byvorgh der Weeghconst. (T. N.: The Flemish title reads, Supplement to the Art of
Weighing.) This supplement has four parts, the first Van het Tavwicht (f. N.: The
Flemish title reads, On Spartosotatics), deals with spartostatics (the equilibrium of
ropes) and the second Vant Catrolwicht (T. N.: The Flemish title reads, On Trochleo
statics), deals with trochleostatics or the equilibrium of pulleys.
This collection was also translated into Latin by Willebrord Snell and published

under the title of Hypomnemata mathematica. The part which is of interest to us is
entitled: Mathematicorum Hypomnematum de Statica, quo comprehenduntur ea in
quibus se exercuit Illustrissimus illustrissimo atque antiquissimo stemmate ortus Prin
ceps, ac Dominus, Mauritius Princeps Auraicus, comes Nassoviae, ... conscriptus a
Simone Stevino, Brugensi, Lugodini Batavorum, ex officina Joannis Patti; Anno
MDCV. (f. N.: The Latin title reads, Mathematical Memoires on Statics by Simon
Stevin of Brugge, containing as well those practiced by his most Illustrious Prince, born
of the most illustrious and ancient parentage, Prince Maurice of Orange, Count of
Nassau, ... Leyden, Johann Patius; 1605.)
Finally, this collection was translated into French under the title: Oeuvres mathe

matiques de Simon Stevin de Burges, ou sont inserees les Memoires mathematiques
esquelles s'est exerce Ie Tres-haut et Tres-illustre Prince Maurice de Nassau, Prince
d'Aurenge, Gouverneur des Pals-bas unis, General par Mer et par Terre, etc. Le tout
revu, corrige et augmente par Albert Girard Samielois, Mathematicien. A Leyde, chez
Bonaventure et Abraham Elsevier, lmprimeurs ordinaires de l'Universite. Anno
MDCXXXIV. Quatriesme volume traitant de l'art ponderaire ou de la Statique. (T. N.:
The French title reads, The Mathematical Works of Simon Stevin of Brugge, which
contain Mathematical Memoires of the most noble and illustrious Prince Maurice of
Nassau, Prince of Orange, Governor of the Provinces of the United Netherlands,
General at Sea and Land, etc. Reviewed, corrected and augmented by the mathe
matician, Albert Girard, St. Mihiel. Leyden, Bonaventure and Abraham Elsevier,
Official Printers to the University, 1634. The fourth volume deals with the Art of
Weighing or Statics.) Another translation in French, made by J. Tuning and published
in Leyden in 1608, did not contain the part on statics. For further details refer to the
Bibliographie des Oeuvres de Simon Stevin by Ferdinand Vanderhaegen in the Biblio-
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teca Belgica. This work also provides the biographical information which we give in the
text.
2 T. N.: The "Vrije van Brugge" was a rural district surrounding the city of Brugge.
3 Simonis Stevinis, Mathematicorum Hypomnematum de Statica, p. 81; Liber tertius de
Staticae praxi; ad Lectorem. (f. N.: The Latin title reads, Mathematical Memoires on
Statics, p. 81. Book IV, "On the Application of Statics; To the Reader.")
4 Simon Stevin, Ibid., p. 150; Appendix Statices, ubi inter alia errores quidarn Staticon
Idiomaton refelluntur. (f. N.: Simon Stevin, Ibid., p. 150; Appendix on Statics, wherre
among other things certain errors in the Staticon Idiomaton are refuted.)
5 Simon Stevin, Mathematicorum Hypomnematum de Statica, p. 150; ad Lectorem.
(T. N.: The Latin reads, To the Reader.)
6 Simon Stevin, Ibid., p. 151; Caput I: Causam aequilibritatis situs non esse in circulis
ab extremitatibus radiorum descriptis. (T. N.: Cf. footnote 7 for the translation of the
Latin.)
7 T. N.: Apparently, this is Albert Girard's translation from the Latin edition of Stevin
contained in footnote 6. A closer rendering of the Latin in footnote 6 reads: Simon
Stevin, Ibid., p. 151; Chapter I: The cause of the state of equilibrium is not in the arcs
described by the extremities of the radii.
x In his awkward French, Albert Girard formulates this syllogism in the following way:
What remains tranquil when suspended, does not describe a circumference. Two
weights suspended in equilibrium are tranquil. Two weights in equilibrium thus do not
describe a circumference.
o Simonis Stevini, Mathematicorum Hypomnematum de Statica, p. 151; Caput II: Res
motas impedimentis suis non esse proportionales. (f. N.: The Latin reads, Simon Stevin,
Mathematical Memoires on Statics, p. 151; Chapter II: Moving Bodies are not propor
tional to their resistances.)
III Simon Stevin, Mathematicorum Hypomnematum de Statica, Liber tertius, de Staticae
praxi, p. 81; ad Lectorem. (f. N.: The Latin read, Simon Stevin, Mathematical
Memoires on Statics, Book 1II, "On the Applications of Statics; p. 81; To the Reader.")
11 Simonis Stevini, Ibid.
12 Simon Stevin, Mathematicorum Hypomnematum de Statica.
13 T. N.: The Latin reads, "The force of resistance, I say, since it is not a universal
property, ought to be excluded from the precepts of statics because its ratio to the
motor force is unique and not at all certain."
14 T. N.: Most resistances, such as those due to friction, are small, and statical solutions
which omit them generally provide solutions which are accurate enough for almost all
practical problems.
15 T. N.: The Latin "petitio principii" means "to beg the question."
16 Simonis Stevini, Mathematicorum Hypomnematum de Statica, Liber primus Staticae
elementis. (f. N.: The Latin title reads, Simon Stevin, Mathematical Memoires on
Statics, Book I, "On the Elements of Statics.)
17 Simonis Stevini, Mathematicorum Hypomnematum de Statica, pp. 12-13.
IX Simon Stevin, Ibid., Liber primus Staticae elementis, p. 34.
10 Add: "of equal size and weight."
20 Stevin means by this: "arranged in such a manner that the descent of one forces the
other to ascend." Taken literally, this statement by Stevin would contradict the develop
ments which follow.
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21 T. N.: The word sacoma comes from the Greek word for weight. It is used by
Willebrord Snell in place of the word "staltwicht" which is used by Stevin himself.
22 Simonis Stevini, Mathematicorum Hypomnematum de Statica, Liber primus Staticae,
de Staticae elementis, p. 35.
23 Simon Stevin, loco cit., 6 Consectarium, pp. 36 and 37. (T. N.: The Latin expression
"Consectarium" means conclusions.)
24 Simonis Stevini, Mathematicorum Hypomnematum de Statica, Liber primus Staticae,
de Staticae elementis. 16 Theorema, 25 Propositio; p. 46.
25 Simon Stevin, Ibid., Additamentum Stasticae. Pars prima: De Spartostatica; 3
Consectarium, p. 161. (T. N.: The Latin title reads, Simon Stevin, Ibid., Addendum on
Statics. Part I: On Spartostatics; 3rd Conclusion, p. 161.)
26 Simon Stevin, Mathematicorum Hypomnematum de Statica, Liber primus Staticae,
de Staticae eiementis; 9 Consectarium, p. 39.
27 This title page is reproduced in: Mach, Die Mechanik in ihrer Entwicklung, 2.
Auflage, Fig. 21, p. 28; Leipzig, 1889.
2K "The miracle is no miracle."
29 Simonis Stevini, Mathematicorum Hypomnematum de Statica, Liber primus Staticae,
de Stasticae elementis, Postulata, p. 35.
30 Simonis Stevini, Mathematicorum Hypomnematum de Statica, Additamentum Sta
ticae. Additamenti Staticae pars secunda: De Trochleostatica; p. 169.
31 Simon Stevin, loco cit., p. 172.
32 T. N.: The Latin reads, "As the displacement of the motive force is to the displace
ment of the resisting force, so is the force of the resisting body to the force of the
moving body."
33 T. N.: Galileo assumed that the Principle of Virtual Displacements was applicable to
a moving body at an instant in time. Since the displacements can all be divided by this
small unit of time, this is tantamount to applying the Principle of Virtual Velocities.
34 Simonis Stevini, Mathematicorum Hypomnematum de Statica, Liber tertius Staticae,
de Staticae Praxi, Prima Propositio: Infinitae potentiae formas et accidentia exponere;
p. 107. (T. N.: The Latin reads, Simon Stevin, Mathematical Memoires on Statics, Book
III, "On the Applications of Statics; First Proposition: To expound the forms and
accidental qualities of an infinite force; p. 107.)
35 Simon Stevin, loco cit., p. 101.
3. Heron of Alexandria, Les Mecaniques ou I'ELevateur, published for the first time in
French and translated by Carra de Vaux from the Arabic version of Qosta ibn Luka,
Paris, 1894, p. 39.
37 Pappi Alexandrini, Collectiones quae supersunt, edidit F. Hultsch; Berolini, 1878.
Volumen III, p. 1060. (T. N.: The Extant Collections ofPappus ofAlexandria, edited by
F. Huitsch, Berlin, 1878. Volume III, p. 1060.)
3K Simonis Stevini, Mathematicorum Hypomnematum de Statica, Liber primus Staticae,
de Staticae elementis, p. 6.
39 Pappi Alexandrini, Collectiones quae supersunt, edidit F. Hultsch; Berolini, 1878.
Volumen III, p. 1032.
40 We indicated at the end of Chapter III that Libri claimed the invention of this law
for Cardan, and we warned the reader against accepting this assertion. After Chapter
III had gone to press, we were able to check the assertion by Libri and we found that in
the passage which he quotes, Cardan is not talking about the law of the composition of
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forces, but about the law of the composition of velocities, which was already known to
the author of the Mechanical Problems. Curiously enough, Cardan thinks that this law
is only valid for velocities which are perpendicular to one another. This example
demonstrates what value should be given to information furnished by Libri.
41 This principle never ceased to preoccupy the geometers of Antiquity and the Middle
Ages. One of them attempted to justify it directly by a sort of generalization of the
demonstration which the Mechanical Problems had given on the law of the lever. This
generalization, which is very much influenced by Peripatetic thinking, rests on an
attempt to define what must be understood as the magnitude of the motion of a
segment of a line. It is contained in an anonymous fragment from the 13th century and
was inserted after the Liber Charastonis in Ms. 8680A (Latin Collection) of the
Bibliotheque Nationale (folio 6, recto to folio 7, recto).
42 Bibliotheque Nationale (Latin Collection), Ms 7377B.

FOOTNOTES TO CHAPTER XIII

I It goes without saying that all men of science were familiar with Latin and that the
treatise written abroad could easily be read by French mechanicians thanks to the use
of this truly marvelous universal language. The Mecanicorum liber of Guido Ubaldo
was, in particular, one of those works with which men of science became familiar. In
1599, Henri Monantholius, physician and professor of mathematics, wrote a commen
tary (a) on the Mechanical Problems of Aristotle, where he not only quotes Cardan and
the Exercitationes by Scaliger, but also frequently quotes the treatise of Guido Ubaldo.
(a) Aristotelis Mechanica, graeca, emendata, latina facta, et commentariis illustrata

ab Henrico Monantholio, medico, et mathematicarum artium professore regio, ad
Henricum In, Galliae et Navarrae regem christianissimum. Parisiis, apud Jeremiam
Perier, via Jacobaeam, sub signo Bellerophontis. MDXCIX. (T. N.: The Latin title
reads, The Mechanics of Aristotle, in Greek, corrected, translated into Latin and
illustrated with commentary by Henri Monantholius, Royal Physician and Professor of
Mathematics to Henry TIl, His Most Christian King of France and Navarre. Paris,
Jeremia Perier, rue St. Jacques, under the sign of Bellerophon, 1599.)
2 Les raisons des forces mouvantes avec diverses machines tant utilles que plaisantes
aus quelles sont adioints plusieurs desseings de grotes et fontaines, by Salomon de Caus,
engineer and architect to His Highness, the Palatine Electoral. Frankfort, in the shop of
Jean Norton, 1615. (T. N.: The French title reads, The Basis of the Moving Forces in
Diverse Machines Both Useful and Amusing to which are added several Designs for
Grottos and Fountains.)
3 In folio 4, verso, and in folio 5, recto.
4 Salomon de Caus, Les raisons des forces mouvantes, folio 6, recto.
sId., ibid., folio 7, recto.
6 Salomon de Caus, Les raisons des forces mouvantes, folio 7, recto.
7 Les Mechaniques de Galilee, translated by L.P.M.M. Espitre (sic) for Mr. de Reffuge,
Counselor of the King to the Parliament.
x Les Mechaniques de Galilee, translated by L.P.M.M., p. 87.
9 Seconde partie de I'Harmonie universelle, par F. Marin Mersenne; Paris,
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MDCXXXVII. Nouvelles observations physiques et mathemathiques; Vth observation,
p.17.
10 T. N.: Duhem has assumed that Jean Benoist is Mersenne's Gallicization of the name
Giovanbattista Benedetti.
II Les Mechaniques de Galilee, translated by L.P.M.M., p. 87.
12 Synopsis mathematica, ad clarissimum virum D. Jacobum Laetus, Doctorem medi
cum Parisiensem. Lutetiae, ex officina Rob. Stephani. MDCXXVI, cum privilegio Regis.
- Le privilege royal est accorde au P. Marin Mersenne, religieux minime, dont Ie nom
ne figure pas en titre. (T. N.: The Latin and French read, Mathematical Synopsis, to the
distinguished Dr. Jacob Laetus, Dr. Med. at Paris. Paris, Robert Stephanus, 1626, with
Royal privilege. - The Royal privilege was accorded to Father Marin Mersenne of the
Minims, but his name does not appear in the title.)
13 Niceron, Memoires pour servir Ii thistoire des hommes illustres, Paris, 1736, vol.
XXXIIl, p. 150.
14 T. N.: The Latin reads, Euclid's Elements and On Spheres and Cosmography by
Theodosius, Menelaus and Maurolycus.
15 T. N.: The Latin reads, "A spherical machine is the most mobile, and the bigger, the
more mobile."
16 T. N.: The Latin reads, "Wherefore, let us be encouraged in hope for this divine
sphere whose center is said to be everywhere and whose circumference nowhere and
which commands time to come from eternity, and while remaining stable allows the
whole to be moved."
17 Pascal, Pensees, Edition Havet, Art. I, I. E. Havet says: "Pascal probably took this
expression from the preface (of Mademoiselle de Gournay to her edition of) the Essays
of Montaigne. There she uses this expression, if we are to believe what Rabelais says,
under the name of Trismegistus." It is obvious that Mersenne was familiar with this
expression as early as 1626 since he frequently visited Etienne Pascal. Mersenne seems
to have taken it from Nicolas Miiller, who published in 1617 an annotated edition of
the book of Copernicus, On the Revolutions of the Celestial Orbs. In this book, which
Mersenne seems to have known, to judge by several passages from the Synopsis
mathematica, Nicolas Miiller expresses himself in the following way (a): "Forma
rotunda omnium capacissima existit, perfectissima, motui aptissima, atque adeo, sola
locum replet in quo movetur. Quoniam igitur mundus omnia capere debebat, seipsum
motu assiduo conservare, et quidquid loci erat replere, merito formam rotundam illi
attribuit sumrnus Opifex ac Demiurgus. Rogatus quidam ut Deum definiret, haud inscite
respondit: Deum esse sphaeram, cujus centrum sit ubique, superficies nusquam." (T. N.:
The Latin reads, "The sphere is the most capacious of all forms, the most perfect, the
most susceptible to motion, and moreover, it alone fills entirely the space in which it
moves. And since the Universe had to contain everything and to maintain itself in
constant motion and to fill any space it occupied, the Highest Maker and Demiurge
rightly gave it a spherical form. And when someone was asked to define God, he not
unskillfully responded: God is a sphere whose center is everywhere and whose surface
is nowhere."
(a) Nicolai Copernici Torinensis Astronomia instaurata, libris sex comprehensa, qui

De revolutionibus Orbium Coelestium inscribuntur, nunc demum post 75 ab obitu
authoris annum integritati suae restituta, notisque illustrata, opera et studio D. Nicolai
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Mulerii, Medicinae ac Matheseos professoris ordinarii in Nova Academia quae est
Groningae. Amstelrodami, Excudebat Wilhelmus Jansonius, sub Solari aureo. Anno
MDCXVII, p. 1: Notae breves, authore Nicolao Mulerio. (T. N.: The Latin reads, by
Nicolas Copernicus of Thorn: Astronomy Restored, contained in six books entitled On
the Revolutions of the Celestial Orbs: now at last restored to its integral form 75 years
after the author's death and illustrated with notes through the efforts of Dr. Nicolas
Miiller, Professor of Medicine and Mathematics at the New Academy in Groningen.
Amsterdam, Wilhelm Janson under the Sign of the Golden Sun, 1617, p. 1: "Brief
Notes by the author Nicolas Miiller.")
18 T. N.: The Latin title reads, On Hydrostatics and Things Pertaining to Water.
19 T. N.: The French title reads, Useful and Marvelous Applications of the Circle to
Mechanics.
20 T. N.: The Latin title reads, On Oblique Weights and on the Forces of the Lever! the
Balance, and other Similar Machines, also on Navigation and on the Mechallical
Problems ofAristotle.
21 Father Marin Mersenne, Synopsis mathematica, Mechanicorum libri, p. 137.
22 Id., ibid., p. 138.
23 Father Marin Mersenne, Synopsis mathematica, Mechanicorum libri, p. 141.
24 The triangle which has as its sides a line parallel to the inclined plane, the vemical
and the horizontal.
25 Paris, Morin and Libert, 1634.
26 T. N.: The French title reads, "Letters written to Lord Morin by the most celebrated
astronomers in France in approval of his invention to measure longitude and against
the final verdict rendered on this subject by the gentlemen Pascal, Mydorge, Beaugrand,
Boulanger and Herigone, deputies commissioned to judge in this matter."
27 Cursus mathematicus, nova, brevi, et clara methodo demonstratus, per notas reales
et universales, citra usum cujuscunque idiomatis, intellectu faciles. - COUTS mathe
matique demontre d'une nouvelle, briefve et claire methode, par notes reelles lit univer
selles, qui peuvent estre entendues facilement sans l'usage d'aucune langue: par Pierre
Herigone, math6maticien. Paris, MDCXXXIV. (T. N.: The Latin and French titles read,
A Course on Mathematics, demonstrated in a new, brief and clear method by means of
real and universal symbols easily understood without the knowledge of any language, by
Pierre Herigone, mathematician. Paris, 1634.)
28 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery: Correspondance, vol.
V.p.532.
29 T. N.: The French title reads, A Course on Mathematics, containin~ the construction
of tables of sines and logarithms, with their application for computing interest and for
measuring right angle triangles; applied geometry; fortifications; militia; and mechanics.
30 Herigone, loc. cit., proposition I.
31 Id., ibid., proposition II.
32 Herigone, loc. cit., propositions XV and XVI.
33 Id., ibid., proposition VIII.
34 T. N.: The Latin reads, "They will be in positional equilibrium."
35 Bibliotheque Nationale, Ms. 8680 A (Latin collection).
36 Herigone, loc. cit., proposition VIII, corollary.
37 Herigone, loc. cit., p. 306.
38 Herigone, loc. cit., proposition XII.
39 Joh. AIphonsi Borelli neapolitani, matheseos professoris, Du motu animalium; Paris
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prima, Cap. XIII, Digressio ad Propositionem LXIX; Romae, MDCLXXX. (T. N.: The
Latin title reads, On the Motion of Animals, by Giovanni Alphonso Borelli of Naples,
Professor of mathematics; Part I, Chapter XIII "Digression on Propoosition LXIX,"
Rome, 1680.)
411 Varignon, Nouvelle Mecanique ou Statique dont Ie projet fut donne en
MDCLXXXVII. Tome second, p. 453. Paris, MDCCXXV.
41 Aristarchii Samii de Mundi systemate, partibus et motibus cujusdem, libellus. Ad
jectae sunt A. E. P. de Roberval, Mathern. Scient. in Collegio Regio Franciae pro
fessoris, notae in eundem libellum. Parisiis, sumptibus vir. ampliss. Vaeneunt apud
Antomum Bertier, via Jacobea, sub signo Fortunae; MDCXLIV. A second edition is
added to the: Novarum observationum physico-mathematicarum F. Marini Mersenni,
Minimi, tomus III; quibus accessit Aristarchus Samius, de Mundi Systemate; Parisiis,
sumptibus Antonii Bertier, via Jacobea, sub signo Fortunae: MDCXLVII. (T. N.: The
Latin title reads, A Brief Treatise of Aristarchus of Samos on the System of the World,
its Parts and Motions, annotated by A. E. P. de Roberval, Professor of Mathematics in
the Royal College of France, Paris, under the patronage of an illustrious gentleman; for
sale with Antoine Bertier, rue St. Jacques, under the Sign of Fortuna; 1644 and New
Observations on Physics and Mathematics by Father Marin Mersenne, of the Order of
the Minims, Vol. III; to which is attached: Aristarchus of Samos' On the System of the
World; Paris, under the patronage of Antoine Bertier, rue St. Jacques, under the Sign of
Fortune, 1647.)
42 Cf. Niceron, Memoires pour servir d l'histoire des hommes illustres, Paris, 1736; vol.
XXXIII, p. 150.
43 T. N.: The French title reads, A Treatise on Universal Harmony Containing the
Theory and Practice ofMusic among the Ancients and Moderns.
44 A Paris, chez Henry Guenon, rue S. Jacques, pres les Jacobins, 11 l'irnage S. Bernard,
MDCXXXIV.
45 T. N.: The French title reads, Preludes to Universal Harmony or Curious Questions
Useful for Preachers, Theologians, Astrologers, Physicians and Philosophers.
4~ T. N.: The Latin title reads, Books on Harmony by Father Marin Mersenne ofthe
Order ofthe Minims.
47 T. N.: The Latin reads, Four Books on the Harmony ofInstruments.
4H T. N.: The Latin reads, "an expanded edition."
4" A very detailed account of the Harmonicorum libri and the Harmonie universelle by
Mersenne can be found in Brunet, Manuel du Libraire et de l'Amateur de Livres, 5th
Edition, 1862, article "Mersenne," p. 1662. We owe this note to Mr. Paulin Richard, of
the Bibliotheque Nationale. The copy in the Bibliotheque Municipale de Bordeaux
enabled us to check the detailed accuracy of this note. Certain parts of the Harmonie
universelle were printed or at least written before 1636. On the last page of his
translation of the Mechanics of Galileo, printed in 1634, Mersenne refers to a passage
of the first part of the Harmonie universelle.
511 Since this part is of particular interest to us, we shall give its full title: Harmonie
universelle, contenant la theorie et la pratique de La Musique, ou est traite de la nature
des sons, et des mouvemens, des consonances, des genres, des modes, de la composition,
de la voix, des chants et de tOUles sOrles d'instruments harmoniques; par F. Marin
Mersenne de l'ordre des Minimes. A Paris chez Sebastien Cramoisy, Imprimeur
ordinaire du Roy, rue S. Jacques, aux Cicognes, MDCXXXVI. (T. N.: The French title
reads, Universal Harmony, containing the theory and practice of music and treating the
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nature of sound, motion, consonances, categories, modes, COmpOSitIOn, voice, songs,
and of all sorts of instruments of harmony, by F. Marin Mersenne, of the Order of the
Minims. Paris, Sebastian Cramoisy, official printer to the King, rue St. Jacques, at the
sign of the Storks, 1636.
51 T. N.: The French title reads, Treatise on Mechanics; on weights supported by forces
on inclined planes; forces which support a weight held by two ropes, by G. Persone de
Roberval, Royal Professor ofMathematics at the College de Maistre Gervais and holding
the chair ofRamus at the College Royal de France.
52 G. P. de Roberval, Traite de Mechanique, pp. 7 and 13.
53 G. P. de Roberval, Traite de Mechanique, p. 21.
54 G. P. de Roberval, Traite de Mechanique, pp. 24, 27, and 28.
55 Cf. Chapter VIII, Section 2.
56 G. P. de Roberval, Traite de Mechanique, p. 35.
57 The two forces describe two different paths. Roberval is certainly talking about the
average path which would be the path of the center of gravity of the two weights K land
E.
58 Marin Mersenne, Harmonie universelle. A. Traitez de la nature des sons, et des
mouvements de toutes sortes de corps. Livre second. Des mouvements de toutes sortes
de corps. Paris, MDCXXXVI. This proposition and the book on Harmonie universelle
which contains it, are quoted by Mersenne on the last page of his Mechanics of Galileo,
that is to say, as early as 1634. (T. N.: The French title reads, Marin Mersenne, Univer
sal Harmony. A. Treatise on the Nature of Sound and on the Motion of all Sorts of
Bodies. Book II,Motion of all Types of Bodies. Paris 1636.)
59 Les Preludes de ['Harmonie universelle, ou Questions Curieuses, utiles aux predica
teurs, aux theologiens, aux astrologues, aux medecins et aux philosophes. By L.P.M.M.
(Father Marin Mersenne). A Paris, chez Henry Guenon, rue S. Jacques, pres les
Jacobins, it l'image S. Bernard. MDCXXXIV. - Preface to the reader: "I have given the
name of Preludes to the book, because it has essentially the same relation to the
treatises on the other parts of music, which I shall publish soon, with the help of God,
as the preludes on the lute ..."
6() Cf. Paul Tannery, La Correspondance de Descartes dans les inedits du fonds Libri;
Paris, 1893.
61 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance,
Vol. IV (July 1643 to April 1647), p. 391.
62 F. Marini Mersenni, Minimi, Tractatus mechanicus theoricus et practicus. Parisiis,
sumptibus Antonii Bertier, via Jacobea, sub signo Fortunae, MDCXLIV, p. 47. (T. N.:
The Latin title reads, Treatise on the Theory and Application of Mechanics by F. Marin
Mersenne of the Order of the Minims. Paris, under the Patronage of Antoine Bertier,
rue St. Jacques, under the sign of Fortune, 1644, p. 47).

FOOTNOTES TO CHAPTER XIV

I Descartes, Oeuvres, published by Ch. Adam and P. Tannery, Paris, 1897; Corre
spondance, Vol. I (April 1622 to February 1638), p. 393.
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2 T. N.: The Latin reads, "until you have repaid me."
3 T. N.: The Latin terms are, "libra - balance, vectis - lever, and trochleon - block
and tackle."
4 Descartes, op. cit., p. 435.
5 T. N.: The French title reads, An Explication of Machines by means of which one can
lift with a small force a very heavy load.
6 T. N.: Descartes uses force throughout this chapter when work would be more
appropriate.
7 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance, Vol.
I (April 1622 to February 1638), p. 461.
H Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance, Vol.
II (March 1638 to December 1639), p. 222.
9 Les Mechaniques de Galilee, mathematicien et ingenieur du duc de Florence, avec
plusieurs additions. Traduites de I'Italien par L.P.M.M. A Paris, chez Henry Guenon,
MDCXXXIV, p. 57.
10 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance,
Vol. II (March 1638 to December 1639), p. 433.
II T. N.: The Latin reads, "How things are" but not "why they are that way."
12 Id., ibid., p. 388.
13 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance,
Vol. II (March 1638 to December 1639), p. 247.
14 Id., Vol. IV, Additions, p. 696.
15 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance,
Vol. IV, Additions, p. 694.
16 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance,
Vol. I, p. 443.
17 T. N.: Descartes assumes that the weight at point F hangs vertically and the force at
point A is tangent to the circle and remains tangent as it raises the weight at point F.
IH Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance,
Vol. II (March 1638 to December 1639), p. 233.
19 T. N.: Descartes is saying that the forces must remain constant in magnitude and
direction during a virtual displacement. Hence, the requirement that it be an infini
tesimal displacement.
20 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance,
Vol. II (March 1638 to December 1639): Letter to Mersenne of September 12th, 1638,
p.352.
21 T. N.: Latin for "in the same quantity."
22 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance,
Vol. II (March 1638 to December 1639), p. 432.
23 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance,
Vol. II (March 1638 to December 1639), p. 352.
24 Letter from Descartes to Mersenne, September 12th, 1638 (Oeuvres, published by
Ch. Adam and Paul Tannery, Vol. II, p. 352).
25 Letter from Descartes to Mersenne, September 12th, 1638 (Oeuvres, published by
Ch. Adam and Paul Tannery, Vol. II, p. 433).
26 Letter from Descartes to Mersenne, September 12th, 1638 (Oeuvres, published by
Ch. Adam and Paul Tannery, Vol. II, p. 352).
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27 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance,
Vol. III (January 1640 to une 1643), p. 613.
28 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance,
Vol. IV, Additions, p. 685.
29 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance,
Vol. IV, Additions, p. 685.
30 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance,
Vol. II, p. 390: Letter from Descartes to Mersenne, October 11th, 1638.
31 T. N.: The sense of the Latin is, "he misses the mark completely."
32 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance,
Vol. III (January 1640 to June 1643), p. 243.
33 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance,
Vol. II, p. 354: Letter to Mersenne, September 12th, 1638.
34 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; Correspondance,
Vol. I, p. 461: Letter from Constantine Huygens, November 23rd 1637.
35 Pascal, Pensees, Edition Havet, Art. XXIV, no. 68.

FOOTNOTES TO THE NOTES OF VOLUME I

FOOTNOTES TO NOTE A

1 T. N.: The Latin title reads, The Book on Diverse Topics.
2 T. N.: The Latin reads, "to his son Heriston."
3 T. N.: The Latin reads, "to Ariston."
4 Valentin Rose, Anecdota graeca et graeco-latina, Vol. 2, Berlin, 1870; p. 299. - Le
livre des appareils pneumatiques et des machines hydrauliques par Philon de Byzance,
edited and translated into French by Baron Carra de Vaux, Paris, 1902. (T. N.: The
Latin reads, Greek and Greco-Latin Anecdotes. The French title reads, The Book on
Pneumatic Apparati and Hydraulic Machines ofPhilo ofByzantium.
5 This is the hypothesis introduced by Steinschneider (Mathematische Handschrijten
der amplonianischen Sammlung in Bibliotheca Mathematica, Series 2, Vol. V, p. 46,
1891).
6 Steinschneider, Die Sohne der Musa ben Schakir (Bibliotheca Mathemtic, Series 2,
Vol. I, p. 71,1887).

FOOTNOTES TO NOTE B

7 Rogerii Baconis Angli, viri eminentissimi, Specula mathematica, in qua de specierum
multiplicatione earumque in inferioribus virtute agitue. Liber omnium scientiarum
studiosis apprime utilis, editus opera et studio Johannis combachii, Philosophiae pro
fessories in Academia Marpurgensi ordinarii. Francofurti, typis Wolffgangi Richteri,
sumptibus Antonii Hummii, MDCXIV. (T. N.: The Latin title reads, The Mathematical
Watch-Tower, by the distinguished English scholar, Roger Bacon. This work treats of
the multiplication of species and of their virtue in lower forms. An extremely useful
book for students of all sciences, edited by Johann Combach, Professor at Marburg.
Type-set by Wolfgang Richter, under the patronage of Anton Humrn, Frankfurt, 1614.
8 T. N.: Bacon uses the Latin term "distinctiones."
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9 T. N.: The Latin reads, "Therefore, Jordanus says, in his book on weights ..."
10 T. N.: The Latin reads, "this is against the doctrine of Jordanus and contrary to
common sense."
11 T. N.: The Latin title reads, The Elements of lordanus on the Demonstration of
Weights.
12 T. N.: The Latin word translates as "invention."

FOOTNOTES TO NOTE C

13 Cf. on this subject: E. Mach, La Mecanique, expose historique et critique de son
development, translated into French by E. Bertrand, Paris 1904, p. 17ff. (Published in
English as: The Science of Mechanics. A Critical and Historical Account of Its Develop
ment, translated by Thomas J. McCormack, The Open Court Publishing Co., 1960.)
O. Holder, Anschauung und Denken in der Geometrie, Leipzig, 1909, p. 64.
G. Vailati, La dimostrazione del principio della leva data da Archimede nel libro

primo sull'equilibrio delle figure piane (Atti del Congresso Internazionale di Science
Storiche, Roma 1-9 Aprile 1903, Vol. XII, p. 243). (T. N.: The Italian reads, "The
Demonstration of the Principle of the Lever given by Archimedes in the First Book on
the Equilibrium of Plane Figures," International Congress of Historical Science, Pro
ceedings, Rome, 1-9 April 1903, Vol. 12, p. 243.)
14 Lagrange, Mecanique analytique, First Part, Section 1, Art. 1.
15 Vide supra, p. 198.

FOOTNOTES TO THE ORIGINS OF STATICS VOLUME II

FOOTNOTES TO THE PREFACE

I Giovanni Vailati, II principio dei lavori virtuali da Aristotele a Erone d'Alessandria
(Accademia Reale Delle Scienze Di Torino, vol. XXXII, la sessione dal 13 giugno,
1897). (T. N.: The Italian title reads, The Principle of Virtual Work from Aristotle to
Hero ofAlexandria.)
2 See below, Note F.
3 T. N.: The Latin title reads, A demonstration of machines and instruments by which
very heavy weights are lifted.
4 T. N.: The Latin designation reads, Authorities on Weights. It is sometimes translated
as Authors on Weights.
5 T. N.: Duhem is referring to the lines of force of the gravitational field.

FOOTNOTES TO CHAPTER XV

I Lagrange, Mecanique analytique, 1e Partie, Section 1, No. 15.
2 Opera geometrica Evangelistae Torricellii: De solidis sphaeralibus: De motu; De
dimensione parabolae; De solido hyperbolico, cum appendicibus de cye/oide et cochlea.
(T. N.: The Latin title reads, Works on Geometry by Evangelista Torricelli: On spherical
solids; On motion: On the measurement of the parabola; On the hyperbolic solid with
appendices on the cye/oid and spiral.) On the second page, the title De sphaera et solidis
sphaeralibus libri duo is followed by this note: Florentiae, typis Amatoris Massae et
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Laurentii de Landis: 1614. (T. N.: The Latin title reads, Two books on the sphere and
spherical solid: Florence, type set by Amator Massa and Laurentis de Landis, 1614)
The section which interests us in particular is entitled: De motu gravium naturaliter
descendentium et projectorum libri duo, in quibus ingenium naturae circa parabolicam
lineam ludentis per motum ostenditur, et universa projectorum doctrina unius descrip
tione semicirculi absolvitur. (T. N.: The Latin reads, Two books on the Motion of Freely
Falling Bodies and Projectiles, in which is demonstrated the tendency of undisturbed
nature to move along a parabolic path and in which is summarized the general doctrine
of projectiles by means of the description of one semi-circle.) We shall also quote this
other section: De dimensione parabolae solidique hyperbolici problemata duo, anti
quum alterum, in quo quadratura parabolae XX modis absolvitur, partim geometricis,
mecanicisque; partim ex indivisibilium geometria deductis rationibus; novum alterum,
in quo mirabilis cujusdam solidi ab hyperbola geniti accidentia nonnulla demonstrantur.
Cum appendice, de dimensione spatii cycloidalis et cochleae. (T. N.: The Latin reads,
Two Problems on the Measurement of the Hyperbolic and Solid Parabola: An older
one, in which the quadrature of the parabola is solved in 20 ways, some geometrical
and mechanical, some by reasoning deduced from the geometry of indivisibles: A newer
one, in which certain accidental properties of a solid marvelously derived from a
hyperbolic are demonstrated. With an Appendix on the measurement of cycloidal
bodies and spirals.)
3 Evangelistae Torricellii De motu gravium naturaliter descendentium, liber primus, p.
99. (T. N.: The Latin title reads, First Book on the Motion ofFreely Falling Bodies.)
4 De motu gravium naturaliter descendentium, liber primus, Propositio I, p. 99 (T. N.:
The Latin reads, First Book on the Motion ofFreely Falling Bodies, Proposition I.)
5 Evangelistae Torricellii De dimensione parabolae ... , Suppositiones et definitiones,
p. 11 (T. N.: The Latin reads, On the measurement of the parabola, suppositions and
definitions.) .
6 Torricellii, loc. cit., p. 15.
7 Torricellii, loc. cit., p. 15.
H Pappi Alexandrini Collectiones quae supersunt e libris manuscriptis edidit Fridericus
Hultsch: Berolini, 1878. Liber VIII, Propos. I et II; Tomus III, p. 1301. (T. N.: The
Latin reads, The Extant Collected Works of Pappus of Alexandria edited from the
Manuscripts by Friedrich Hultsch: Berlin, 1878. Book VIII, Proposition I and II, Vol.
111, p. 1301.)
9 Guidi Ubaldi e Marchionibus Montis In duos Archimedis aequiponderantium libros
paraphrasis, scholiis illustrata. Pisauri, apud Hieronymum Concordiam, MDLXXXVIII,
p. 9. (T. N.: The Latin reads, A Paraphrase In Two Books of Archimedes' Equilibrium
of Planes illustrated with Scholia, by Guido Ubaldo, Marchese del Monte. Pesaro,
published by Girolamo Concordia, 1588, p. 9).
10 Cf. Pappus, loc. cit., p. 1043.
" Pappus, loc. cit., p. 1035.
12 P. Duhem, Archimede a-t-il connu Ie paradoxe hydrostatique? (Bibliotheca Mathe
matica, 3e Folge, Band I., p. 15: 1900.)
13 Pappus, loc. cit., p. 1030. (T. N.: The original Greek reads, ... to the center of the
Cosmos.)
14 Aristotle, On the Heavens Book II, Chapter XIV. Edition Didot, vol. II, pp. 407
409.
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15 Simplicius, Commentaries on Aristotle's On the Heavens, ed. by S. Karsten, 1865.
16 T. N.: Centrobaric means literally, the heaviness of the center since in Greek "baros"
means weight. Thus centrobarics refers to the science of the center of weight.
17 Sancti Thomae Aquinatis Doctoris Angelici Opera omnia jussu impensaque Leonis
XIII, P. M., edita. Tomus XIII. Romae MDCCCLXXXVI. Commentaria in libros
Aristotelis de Caelo et Mundo. In librum II lectio XVII, p. 124. (T. N.: The Latin title
reads, The Complete Works ofSt. Thomas Aquinas, published at the order and expense
of Pope Leo XIII: Vol. XIII, Rome, 1886. Commentaries on the Books ofAristotle's On
the Heavens. Study XVII on Book II, p. 124.)
IH Aristotelis De Caelo, de generatione et corruptione, meteorologicorum, de plantis.
Averrois Cordubensis cum variis in eosdem commentariis ... Venetiis, apud Iuntas,
MDLXXIIII. - De Caelo lib. II: Summa quarta: De Terra: Cap. 6: Terrae locum
causamque quietis ejus exponit, p. 163. (T. N.: The Latin title reads, Aristotle's On the
Heavens, On Generation and Corruption, On Meteors, On Plants. With various
commentaries on the same by Averroes of Cordoba. Venice, 1574.) - On the Heavens,
Book II, First Part; On the Earth, Chapter 6: Explanation of the location of the Earth
and the cause of its immobility, p. 163.
19 Beati Alberti Magni, Ratisbonensis Episcopi, ordinis Praedicatorum, Physicorum lib.
VIII, De Caelo et Mundo lib. IV De generatione et corruptione lib. II, De meteoris lib.
IV, De mineralibus lib. V, recogniti per R. A. P. F. Petrum Iammy, sacrae theologiae
doctoris, conventus Gratianopolitani, ejusdem ordinis, nunc primum in lucem prodeunt.
Operum tomus secundus. Lugduni, sumptibus Claudii Prost, Petri et Claudii Rigaud
frat., Hieronymi De la Garde, Joan. Ant. Duguetan filii, via mercatoria. MDCLI. De
Caelo et Mundo, lib. II: Tractatus IV: De motu et quiete Terrae: Cap. X, p. 144. (T. N.:
The Latin title reads, The Blessed Albertus Magnus, Bishop of Regensburg, of the
Order of Preachers, Book VIII on the Physics; Book IV On the Heavens; Book II On
Generation and Corruption; Book IV On Meteors; Book V On Minerals: ed., by Peter
Jammy, Doctor of Theology of the Convent in Gratianopolis, of the same order,
published now for the first time. Second volume of his works. Lyon. Printed by Claude
Prost, the Brothers Peter and Claude Rigaud, Jerome De la Garde, Jean Anthony
Duguetan: Via Mercatoria, 1651. On the Heavens, Book II: Treatise IV, On the Motion
and Immobility ofthe Earth, Chapter X, p. 144.)
20 Burleus Super octo libros Physicorum. Colophon: Et in hoc finitur expositio
excellentissimi philosophi Gualterii de Burley Anglici in libros octo de physico auditu
Aristotelis Stagerite (sic) emendata diligentissime. Impressa arte et diligentia Boneti
Locatelli Bergomensis, sumptibus vero et expensis nobilis viri Octaviani Scoti Modo
etiensis ... Venetiis, anno salutis 1491, quarto nonas decembris. Folio 93. (T. N.: The
Latin title reads,Burley, On Eight Books of the Physics. Colophon: This includes an
exposition by the most excellent philosopher Walter Burley of England on eight books
of the Physics by Aristotle of Stagira, most diligently emended and printed through the
skill and diligence of Bonetus Locatellus of Bergamo and at the expense of the
Nobleman Octavianus Scotus Modoetiensis ... Venice, December 1491. Folio 93.)
21 Jo. Duns Scoti Doctor. Subtilis, in VIII lib. Physicorum Aristotelis Quaestiones et
Expositio, in celeberrima et pervetusta Parisiensium Academia ab ipso authore publice
ex cathedra perlectae, nunc primum ex antiquissimo manuscripto exemplari, abstersis
omnibus mendis, in lucem editae, et accuratis annotationibus illustratae a B. Adm. P. F.
Francisco de Pitigianis Arretino, ord. Minorum ... Venetiis, MDCXVII, apud Joannem
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Guerilium, p. 382. (T. N.: The Latin title reads: By the Subtle Doctor John Duns Scotus:
Questions on and an Exposition of the Eight Books of the Physics ofAristotle, first read
publicly ex cathedra by the same author at the ancient and renowned University of
Paris and now published for the first time from a copy of an ancient manuscript
expurged of all errors and provided with accurate annotations by Francisco de
Pitigianis Arretino of the Minorite Order ... Venice, 1617 with Johan Guerilius, p.
382.) - The Questions attributed to Duns Scotus in this edition are certainly not by
him, but were written at the end of the XIVth century by Marsilius of Inghen. We will
analyze them in section 5.
22 Joannis de Janduno In libros Aristotelis de Caelo et Mundo quaestiones subtilissi
mae, quibus nuper consulto adjecimus A verrois sermonem de substantia orbis cum
ejusdem Joannis commentario ac quaestionibus , .. Venetiis, apud Hieronymum
Scotum, 1552; p. 31. Quaest. XIV: An terra sit in medio mundi? (T. N.: The Latin title
reads: John of Jandun: Very Subtle Questions on Books from Aristotle's On the
Heavens, to which we have added by recent decision Averroes' discourse on the
substance of the Universe together with his commentary or Questions on John. Venice,
with Girolamo Scoto 1552; p. 31. Question XIV: Is the earth at the center of the
Universe?)
23 T. N.: The reference is to the previous assertion by Aristotle.
24 B. Boncompagni, Intorno al Tractatus Proportionum de Alberto de Sassonia,
Bulletino de Bibliografia e di Storia delle Scienze Matematiche e Fisiche, t. IV, p. 498;
1871.
25 T. N.: The Latin reads, Here begins the Parisian Treatise on Proportions edited by
Master Albert of Saxony. Praise be to God.
26 Acutissimae Quaestiones super libros de physica Auscultatione ab Alberto de
Saxonia editae. In quartum Physicorum quaestio V. (T. N.: The Latin title reads, Very
penetrating Questions on Books of the Physics, edited by Albert of Saxony. Question V
on the 4th Book ofthe Physics.
27 Bibliotheque NationaIe, fonds Latin, Ms. No. 14723. - Cf. Thurot, "Recherches
historiques sur Ie Principe d'Archimede," 3e Article (Revue Archeologique, nouvelle
serie, vol. XIX, p. 119; 1869).
2H Bulaeus (Du Boulay), Historia Universitatis Parisiensis, MDCLXVIII, vol. IV, pp.
361 et 958.
29 Cf. Thurot, "Analyse d'un ouvrage de Ueberweg" (Revue Critique d'Histoire et de
Litterature, vol. VI, p. 251: 1868).
30 J. T. Graesse, Lehrbuch einer Literargeschichte der beriihmtesten Volker des
Miltelalters, 2te Abth., 2te Halfte, p. 656.
31 J. C. Adlung, Fortsetzung und Ergiinzungen zu C. G. Jachers allgemeinen Gelehrten
Lexico, Bd. I., col. 450-456.
32 U. Chevalier, Repertoire des sources historiques du moyen age, Bi6bibliographie,
Paris, 1883. Colonne 59.
33 U. Chevalier, loc. cit.
34 Sbaralea, Supplementum scriptomm Franciscanorum, p. 723; 1806.
35 T. N.: The Latin reads, A Subtle Inquiry into Heaviness and Lightness.
36 T. N.: The Latin reads, Questions on Books from the Physics ofAristotle.
37 T. N.: The Latin reads, "Little Albert."
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3K Egidius cum Marsilio et Alberto De generatione - Commentaria fidelissimi
expositoris B. Egidii Romani in libros de generatione et corruptione Aristotelis cum
textu interc/uso singuLis locis. - Questiones item subtilissime ejusdem doctoris super
primo libro de generatione; nunc quidem primum in publicum prodeuntes - Ques
tiones quoque c/arissimi doctoris MarsiLii Inguem in prefatos Libros de generatione 
Item questiones subtilissime magistri Alberti de Saxonia in eosdem Libros de gene;
nusquam alias impresse. - Omnia accuratissime revisa, atque castigata; ac quantum ars
eniti potuit fideliter impressa. Colophon: Impressum Venetiis mandato et expensis
nobilis viri Luceantonii de Giunta Florentini, Anno Domini 1518, Die 12 mensis
Februarii.
En depit des indications du titre, ce recueil avait ete deja imprime au moins deux

fois: it Venise, en 1504 (B. Locatellus) et 1505 (G. de Gregoriis).
(f. N.: The Latin and French read, Egidus with Marsilius and Albertus On

Generation - A Commentary on Books from On Generation and Corruption of
Aristotle, including selected passages from that text, by the faithful expositor Egidus of
Rome - Also Very Subtle Questions by the same Doctor on the First Book of On
Generation, now published for the first time. - Also Questions on the Introductory
Books of On Generation by the illustrious Doctor Marsilius of Inghen. also Very Subtle
Questions on the same books of On Generation by Master Albert of Saxony; not
appearing elsewhere in print. Everything most accurately revised and corrected; printed
with greatest possible accuracy. Colophon: Printed in Venice at the mandate and
expense of the Nobleman Lucis Antonio of Giunta of Florence, 12 Feb. 1518. Despite
the claims in the title, this collection had already been printed at least twice: In Venice
in 1504 by B. Locatellus and again in 1505 by G. de Gregorius.)
39 T. N.: The Latin reads, The Very Useful Logic of Albertucius. The Logic of the Most
Excellent Professor of Sacred Theology, Master Albert of Saxony of the Order of St.
Augustine, by Master Aurelius Sanatus of Venice. Venice, at the expense and skill of
the heirs of O. Scotus, 1522.
4(1 T. N.: The Latin reads, Treatise on proportions.
4\ Cf. Boncompagni (Bulletino di bibliografia e di storia delle scienze mathematiche e
fisiche, t. IV, p. 493; 1871); the Tractatus proportionum appeared in ten editions.
Graesse (Tresor de Livres rares et precieux. Vol. 1, p. 57) states that the Questiones
super quatuor Libros AristoteLis de Caelo et Mundo was printed in Pavia in 1481, in
Venice in 1492 and 1497, in Paris in 1516, again in Venice in 1520. - Besides the
collection just cited, we were able to consult the following three editions:
1st: Questiones subtilissime Alberti de Saxonia in libros de Celo et Mundo. Colo

phon: Expliciunt questiones preclarissimi Alberti de Saxonia super quatuor libros de
celo et mundo Aristotelis diligentissime emendate per eximium artium et medicine
doctorem Magistrum Hieronymum Surianum Venetum filium Domini Magistri Jacobi
Suriani physici prestantissimi. Impresse autem Venetiis arte Boneti de Locatellis
Bergomensis. Impensa vero nobilis viri Octaviani Scoti civis Modoetiensis. Anno Salutis
nostre 1492, nono kalendarum novembris, ducante inclite principe Augustino Bar
badico.
2nd: Acutissime Questiones super libros de physica auscultatione ab Alberto de

Saxonia edite; jamdiu in tenebris torpentes: nuperrime vero quam diligentissime a vitiis
purgate: ac summo studio emendate; et quantum eniti ars potuit fideliter impresse. -
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Nicoleti Verniatis Theatini philosophi perspicacissirni contra perversam Averrois
opinionem de unitate intellectus: et de anime felicitate Questiones divini: nuper
castigatissime in lucem predeuntes - Ejusdem etiam de gravibus et levibus questio
subtilissima - On the last page: Venetiis sumptibus heredum q.D. Octaviani Scoti
Modoetiensis ac Sociorum 21 Augusti 1516.
3rd: Quaestiones et decisiones physicales insignium virorum:

Alberti de Saxonia in Octo libros physicorum,
Tres libros de caelo et mundo,
Duos lib. de generatione et corruptione.

Thimonis in Quatuor libros meteorum,

Buridani in Aristotelis Lib. de sensu et sensato.
Librum de memoria et reminiscentia,
Librum de somno et vigilia,
Lib. de longitudine et brevitate vitae.
Lib. de juventute et senectute.

Recognitae rursus et emendatae summa accuratione et judicio Magistri Georgii Lokert
Scoti: a quo sunt tractatus proportionum additi. Venumdantur in aedibus Jodoci Badii
Ascensii et Conradi Resch. - Au verso du titre, se trouve une Epistola nuncupatoria et
paraenetica de Georges Lokert, avec ces deux dates: Ex praeclaro Montisacuti collegio
idibus Januarii ad supputationem Curiae Romanae MDXVI. Et rursus e Sorbona ad
kalen. Octo. MDxvm. - L'ouvrage eut, en effet, a Paris, deux editions, I'une en 1516,
I'autre en 1518. (T. N.: 1st: Very Subtle Questions on Books from On the Heavens by
Albert of Saxony. Colophon: Here are developed questions of the Most Illustrious
Albert of Saxony on Four Books of On the Heavens of Aristotle, most diligently
emended by the distinguished Doctor of Arts and Medicine, Master Hieronymus Surian
of Venice, son of the outstanding physician, Master Jacob Surien. Printed in Venice by
Bonetus de Locatellus of Bergamo at the expense of the Nobleman Octavian Scotus, 9
Nov. 1492 under the regime of the Illustrious Prince Augustinus Barbadicus.
2nd: Very Keen Questions on Books of the Physics, edited by Albert of Saxony; long

since languishing in darkness, but most recently carefully corrected of errors and
diligently emended and printed with the greatest possible accuracy. - Nicole Vernias,
most brilliant philosopher: Against the False View ofAverroes on the Unity of the Mind,
Divine Questions on the Happiness of the Soul: recently corrected and published. By
the same author: A Very Subtle Question on Heavy and Light Bodies. On the last page:
Venice, the Heirs of Octavian Scotus, 21 Aug 1516.
3rd: Questions and Judgements on Physical Matters by Eminent Men:

Albert of Saxony on Eight Books ofthe Physics
Three Books ofOn the Heavens
Two Books ofOn the Generation and Corruption

Themon on Four Books on Meteorology

Buridan on Aristotle's Book on Sense and the Sensible
Book on Memory and Recollection
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Book on Sleep and Waking
Book on the Length and Shortness ofLife
Book on Youth and Old Age
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Newly annotated and emended with utmost accuracy and judgement by Master George
Lokert, and appended are Treatises on Proportions. For sale at the Office of Jodocus
Badius Ascensius and Conrad Resch. On the reverse side of the title page is to be read:
Dedicatory Epistle of George Lokert, with the following dates: 1516 and 1518. The
book appeared in fact in Paris in two editions, one in 1516, the other in 1518.
42 Alberti de Saxonia Quaestiones in libros de physico Auditu; in librum IV quaestio
X. (T. N.: The Latin title reads, Questions on Books from the Physics of Albert of
Saxony; Book IV, Question x.)
43 The opinion rejected here by Albert of Saxony had been stated and asserted by
Roger Bacon (a), who had quoted it as an example of a successful application of
mathematics to the physical sciences.
Rogerii Baconis Angli, viri eminentissimi, Specula mathematica in qua de specierum

multiplicatione, earumdemque in inferioribus virtute agitur. Liber omnium scientiarum
studiosis apprime utilis, editus opera et studio Johannis Combachii. Philosophiae
professoris in Academia Marpurgensi ordinarii. Francofurti, typis Wolffgangi Richteri,
sumptibus Antonii Hummii. MDCXIV. - Distinctio IV. Caput XIV: An motus gravium
et levium excludat omnem violentiam? Et quomodo motus gignat calorem? Itemque de
duplici modo sciendi. - Cet ouvrage est un fragment, imprime separement, de l'Opus
majus dedie, vers 1267, au pape Clement IV (Fratris Rogeri Bacon, ordinis Minorum,
Opus majus ad Clementem Quartum, Pontificem Romanum, ex MS Codice Dubliniensi
edidit S. Jebb, M. D.; Londini, ex typis Gulielmi Bowyer, MDCCXXXIll; pp. 103 et
104, marquees par erreur 99 et 100). Cf. Vol. I, p. 240.
44 See Chapter X, Section 2.
45 T. N.: Duhem is referring to the Nominalist School.
46 Alberti de Saxonia, Quaestiones in Libros de physico Auditu; in librum IV quaestio
V.
47 Alberti de Saxonia, Quaestiones in Libros De Caelo et Mundo; in librum II quaestio
XXIll.
4H For the Scholastics, in general, "magnitude" meant what modern geometers mean by
the word "volume." By "center of magnitude," Albert undoubtedly meant in a vague
way, what we call today the "center of gravity of volume." (T. N.: Duhem's footnote
confuses the issue. It seems clear that what Albert of Saxony calls "center of magnitude"
is the geometrical center of the volume.)
49 Albertus de Saxonia, loco cit.
50 Burleus, Super octo libros Physicorum, Venetiis, 1491; folio 93, col. d. (T. N.: The
Latin title reads, Burley, On Eight Books ofthe Physics, Venice, 1491; folio 93, col. d.)
5\ Alberti de Saxonia, Quaestiones in libros de physico Auditu: in librum IV, quaestio
V.
52 Alberti de Saxonia, Quaestiones in Libros de physico Auditu: in librum IV, quaestio
V. Quaestiones in libros de Caelo et Mundo; in librum II, quaestio X.
53 Alberti de Saxonia, Quaestiones in Libros de CaeLo et Mundo; in librum II, quaestio
X.
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54 Alberti de Saxonia, Quaestiones in libros de Caelo et Mundo; in librum n, quaestio
XXIll.
55 Alberti de Saxonia, Quaestiones in libros de physico Auditu; in librum IV, quaestio
VI.
56 Id., ibid., quaestio VI.
57 Alberti de Saxonia, Quaestiones in libros De Caelo et Mundo; in librum n, quaestio
XXV.
58 Alberti de Saxonia, Quaestiones in libros de physico Auditu; in librum IV, quaestio
V.
59 T. N.: Geographers thought that one of the earth's hemispheres was covered by
water and the other was land.
60 Thurot, "Recherches historiques sur Ie Principe d'Archimede," 3e article. (Revue
Archeologique, nouvelle serie, 1. XIX, p. 119; 1869). (T. N.: The French title reads,
Historical Inquiry on the Principle ofArchimedes.)
61 Alberti de Saxonia, Quaestiones in libros De Caelo et Mundo; in librum III quaestio
Ill. - Cf. ibid., in librum I quaestio X.
62 Alberti de Saxonia, Quaestiones in libros De Caelo et Mundo; in librum Ill, quaestio
llI.
63 Alberti de Saxonia, Quaestiones in libros de physico Auditu; in librum IV, quaestio
X.
64 Alberti de Saxonia, Quaestiones in libros De Caelo et Mundo; in librum I, quaestio
X.
65 T. N.: The Latin reads, A falling body is heavier the straighter its motion is toward
the center.
66 Liber Jordani Nemorarii, viri c1arissimi, de ponderibus, propositiones XIll, et
earumdem demonstrationes, multarumque rerum rationes sane pulcherrimas com
plectens, nunc in lucem editus. Cum gratia et privilegio imperiali, Petro Apiano
mathematico Ingolstadiano ad XXX annos concesso. MDXXXIn. Pages six and seven
(title included) of the work, printed without pagination. (T. N.: Cf. Vol. I, p. 96.)
67 Alberti de Saxonia, Quaestiones in libros De Caelo et Mundo; in librum Ill, quaestio
XI.
68 Cf. Chapter X, Section 1.
69 Aristotle, On the Heavens, II, XIV.
70 Cf. P. Tannery, "Recherches sur I'Histoire de I'Astronomie ancienne" (Memoires de
la Societe des Sciences Physiques et Naturelles de Bordeaux, 4e serie, 1. I, p. 110: 1893).
71 Aristotle, Book II, Chapter IV, Edition Didot, vol. n, p. 394. (T. N.: Cf. the Loeb
edition On the Heavens, W. K. C. Guthrie, pp.160-161.)
72 Theon of Smyrna, Platonic philosopher, An Exposition of mathematical knowledge
useful for reading Plato, translated for the first time from Greek to French by J. Dupuis:
Paris, 1892. Part three: Astronomy. On the spherical shape ofthe earth, pp. 198ft.
73 P. Duhem, "Archimede a-t-il connu Ie paradoxe hydrostatique?" (Bibliotheca
Mathematica, 3te Folge, Bd. I., p. 15, 1900).
74 Heronis A1exandrini Spiritalium liber, a Federico Commandino Urbinate ex graeco
nuper in latinum conversus: Urbini, MDLXXV; p. 12, verso, et p. 13, recto. (T. N.: The
Latin title reads, Hero of Alexandria, Book on Pneumatics, recently translated from
Greek into Latin by Frederico Commandino of Urbino, 1575; p. 12 verso, and p. 13,
recto.)
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75 C. Plinii Secundi Historia naturalis; lib. II. (T. N.: The Latin title reads, Pliny the
Elder, Natural History; Book II.)
76 The Almagest, Book I, Chapt. III.
77 Simplicii Commentarius in IV libros Aristotelis de Caelo, recensione Sim. Karsteni;
Trajecti ad Rhenum, MDCCCLXV; pp. 242 et suiv. (T. N.: The Latin title reads,
Simplicius' Commentary on Four Books of Aristotle's On the Heavens, ed. by Sim.
Karsten; Utrecht, 1865, pp. 242ff.)
78 Simplicii Commentarius in IV libros Aristotelis de Caelo, recensione Sim. Karsteni;
Trajecti ad Rhenum, MDCCCLXV; p. 186.
79 Aristotelis De Caelo, de generatione et corruptione, meteorologicorum, de plantis,
cum Averrois Cordubensis commentariis; Venetiis, apud Juntas, MDLXXIII. De
Caelo, lib. II; Summa quarta: de Terra~ Cap. 7, pp. 165-172. (T. N.: Cf. Footnote 18,
p. 8, Chapter XV.)
80 Averroes, Op. cit., De Caelo, lib. II; Summa secunda: de circulari corpore; Quaesi
tum tertium, pp. 114-115. (T. N.: The Latin reads, Second part: On a circular body;
3rd Question, pp. 114-115.)
81 Johannes de Sacro-Bosco, De Sphaera, Cap. I.
82 T. N.: Duhem must be referring here to Albert's commentaries on Aristotle's On the
Heavens.
83 Sancti Thomae Aquinatis, Doctoris angeiici Opera omnia jussu impensaque Leonis
XIII. P. M., edita. Tomus III. Romae, MDCCCLXXXVI. Commentaria in libros
Aristotelis de Caelo et Mundo: in lib II Iectio XXVII, p. 224.
X4 Id., ibid., in lib. II lectio VI, p. 143.
X5 Rogerii Baconis Specula mathematica. Distinctio IV. Caput IX: De figura mundi. 
Opus majus, edit. Jebb, p. 93 (T. N.: The Latin title reads, Roger Bacon, The Mathe
matical Watch-Tower. Distinction IV. Chapt. IX: On the Shape of the World. Opus
Majus, ed. by Jebb, p. 93).
X6 Id., ibid., Caput X: Quod plus aquae contineat vas inferiori, quam superiori loco
positum. Opus majus, edit. Jebb, p. 97 (T. N.: The Latin reads, That a vase contains
more water the lower it is positioned.).
X7 Alberti de Saxonia Questiones in libros de Caelo et Mundo; in librum II, quaestio
XXVII (Ed. 1492) vol. XXV (Ed. 1508).
xx Cf. Paul Tannery, "Recherches sur I'Histoire de I'Astronomie ancienne" (Memoires
de la Societe des Sciences Physiques et Naturelles de Bordeaux 4" serie, t. I, p. 104;
1893).
X9 Alberti de Saxonia Quaestiones in libros de Caelo et Mundo; in librum III, quaestio
ultima.
90 T. N.: To make sense, the first trajectory should refer to the semi-circumference and
the second to the diameter.
91 T. N.: The Latin reads, Dedicatory Epistle.
92 T. N.: The Latin title reads, Questions on Four Books on Meteorology. Compiled by
that learned Professor ofPhilosophy, Themon Judaeus.
93 Bulaeus, Historia Universitatis Parisiensis,MDCLXVIII, t. IV, p. 991.
94 Thimonis Quaestiones in libros Meteorum; in Iibrum 1 quaestio V. (T. N.: The Latin
title reads, Themon, Questions on Books in the Meteorology; Book I, Question V.)
95 Id., ibid., in Iibrum II quaestio I.
96 Themon, loc. cit.
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97 Nicolas of Lyre was born in Neuve-Lyre (Eure, about 1270): in 1291, he was a
Franciscan in Vemeuil; he died in Paris in 1340. His commentaries have been printed
often: Nicolai Lyrani, Postillae perpetuae in vetus et novum Testamentum; Romae,
1471-1472. Biblia sacra latina cum postillis Nicolai de Lyra; Venetiis, 1481. Nicolai
de Lyra Postillae morales seu mysticae super Bibliam; Mantuae, 1481. Moralia super
totam Bibliam fratris Nicolai de Lira; Argentorati, circa 1479; etc. (T. N.: The Latin
reads, Nicolas of Lyre, Running Exegeses on the Old and New Testament; Rome,
1471-1472. The Holy Bible with Exegeses by Nicolas of Lyre; Venice, 1481. Nicolas
of Lyre, Moral or Mystical Exegeses on the Bible; Mantua, 1481. Moral comments on
the Entire Bible by Brother Nicolas of Lyre; Strasburg, circa 1479; etc.)
9M Fr. Junctini Florentini, sacrae theologiae doctoris, Commentaria in Sphaeram Joannis
de Sacro Bosco accuratissima. Lugduni, apud Philippum Tinghium, MDLXXVIII; p.
178. (T. N.: The Latin title reads, Brother Giuntini of Florence, Doctor of Sacred
Theology Very Precise Commentaries on John of Sacrobosco's On the Sphere; Lyon,
Philipp Tinghius, 1578; p. 178.)
99 Alberti de Saxonia Quaestiones in libros de Caelo et Mundo: in librum II quaestio
XXV.
100 Themon, loco cit.
llIi Quaestiones subtilissimae Johannis Marcilii Inguen super octo libros Physicorum,
secondum nominalium viam, cum tabula in fine libri posita; suum in lucem primum
sortiuntur effectum. - Colophon; Expliciunt quaestiones super octo libros Physicorum
magistri Johannis Marcilii Inguen secundum nominalium viam. Impressae Lugduni per
honestum virum Johannem Marion. Anno Domini MDXVIII, die vero XVI mensis
Julii, Deo gratias. We noted previously (p. 269 and footnote 21.) how, in 1617, the
Questions of Marsilius of Inghen were attributed to Duns Scotus. (T. N.: The Latin title
reads, John Marsilius of Inghen, Subtle Questions on Eight Books of the Physics, in the
fashion of the Nominalists, with Tables at the End of the Book; published for the first
time. Colophon; Here end the Questions on Eight Books of the Physics in the fashion
of the Nominalists by Master John Marsilius of Inghen. Printed in Lyon by the
Honorable John Marion. 16 July 1517, by the Grace of God.).
i02 T. N.: The Latin reads, In the fashion ofthe Nominalists.
i03 Johannis Marcilii Inguen Quaestiones in libros Physicorum; circa librum IV
quaestio V.
104 T. N.: The Latin reads, A fifth way is that which Campanus proposes in his treatise
On the Sphere.
i05 Campani, Tractatus de Sphaera: Cap V. Quare Sphaera non sit integra. (T. N.: The
Latin title reads, Why a Sphere is not uniform.)
106 Johannis Marcilii Inguen Quaestiones in libros Physicorum; circa librum IV
quaestio VIII.
i07 Johannis Marcilii Inguen Quaestiones in libros Physicorum: circa librum IV
quaestio Xl.
10M T. N.: The Latin title reads: Song of Weights. The book was written ca. 500 A.D.
109 Alberti de Saxonia Quaestiones in libros de Caelo et Mundo: in librum III
quaestiones I et II.
'ill T. N.: The Latin reads, A threefold weight placed in equilibrium with another and
exerting a uniform and unitary resistance, cannot be lifted by less than a threefold
weight.
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111 Alberti de Saxonia Quaestiones in libros de physico Auditu: in librum IV quaestio
X. - Johannis Marcilii Inguen Quaestiones in libros Physicorum: circa librum IV
quaestio IX.
112 Alberti de Saxonia Quaestiones in Libros de Caelo et Mundo: in librum I quaestio
X.
113 The following is a documentation of the kinds of collections we consulted:
I'. Barthol. Vespuccio (Florent.) De laudibus Astrologiae. - Textus Spherae Joa. de

Sacro-Bosco. - Capuani de Manfredonia Expositio Sphaerae. - Jac. Fabri Stapulenis
Comment. in Sphaeram, - Petri de Aliaco card. Questiones XlIII - Roberti Lin
coniensis episc. Compendium Sphaerae. - Disput. Joa. de Regio Monte contra
Cremonensia deLiramenta - Fr. Capuani Theoricarum novarum textus cum expositione.
Colophon: Venetiis, per Jo. Rubeum et Bern. fratres Vercelli. ad instant. Junctae de
Junctis.1508.

2'. Sphaera, cum commentis in hoc volumine contentis, videlicet: Cichi Esculani cum
textu - Expositio Joan. Baptistae Capuani in eandem. - Jacobi Fabri Stapulensis. 
Theodosii De Sphaeris - Michaelis Scoti - Questiones reverendissimi Domini Petri de
Aliaco, etc. - Roberti Linchoniensis Compendium. - Tractatus de sphaera solida. 
Tractatus de computo majori ejusdem. - disputatio Joannis de Monteregio. - Textus
theoricae cum expositione Joannis Baptistae Capuani. - Ptolemeus de specuLis. 
Colophon: Venetiis, irnpensa haeredum quondam Domini Octaviani-Scoti Modoetiensis
acsociorum: 19 Januarii 1528.

3'. Sphaerae tractatus Jo. de Sacro Busto (sic!). - Gerardi Cremon. Theoricae
planetarum. - G. Purbachii Theor. planet. - Prodoscimi de Beldomando Patav.
Comm. sup. tractatu sphaerico. - Joannis Bapt. Capuani Expos. in sphaera. - Mich.
Scoti Expositio in sphaera. - Jac. Fabri Stapulensis Annotat. - Campani Compo S.

tract. de sphaera. - De modo fabricandi sphaeram solidam. - Petri card. de Aliaco
XIV quaestiones. - Roberti Linconiensis Tractatus de sphaera. - Bartholomei Vesputii
Gloss. - Lucae Gaurici Castigat. - Ejusdem Num quid sub aequatore sit habitatio. 
Ejusdem De inventoribus Astrologiae. - Alpetragii Arabi Theor. planetarum. 
Venetiis, Luc. et Ant. Juntae, 1531.
(T. N.: The Latin titles read,
I'. Bartholomo Vespuccio of Florence, On the Merits ofAstrology - John of Sacro

Bosco, A Text on the Sphere. - Capuano of Manfredonia, Description of the Sphere. 
Jacob Faber Stapulensus, A Commentary on the Sphere. - Pierre d'Ailly, Cardinal,
Fourteen Questions. - Johannes Regiomontanus, Argument against the Absurdities of
Cremona. - Brother Capuano, Text with an Exposition of New Speculations. Colo
phon: Venice, by Johannes Rubeus and the Vercelli Brothers with the support of the
Giunta. 1508.

2'. On the Sphere, with the following contents in this volume: a Text of Cichus
Esculanus. - An Exposition on the Sphere by Giovanbattista de Capuano. - Jacob
Faber Stapulensis. - Theodosius, On Spheres - Michael Scotus. - The Most
Reverend Pierre d'Ailly, Questions, etc. - Robert Linconien, Compendium. - Treatise
on the Solid Sphere. - Treatise on the Calculation of the Sphere. Johannes Regiomon
tanus, Argument. Giovanbattista de Capuano, Text with an Exposition of Speculations.
Ptolemy, On Mirrors. - Colophon: Venice, at the expense of the Heirs of Octavian
Scotus Modoetiensis and Associates: 19 Jan 1528.
3'. John of Sacro-Bosco, A Treatise on the Sphere. - Gerard of Cremona, Specula-
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tions on the Planets. - G. Purbach, Speculations on the Planets. - Prosdocimo de
Beldamandi of Padua, Commentary on the Treatise on the Sphere. - Giovanbattista de
Capuano, Exposition on the Sphere. - Michael Scotus, Exposition on the Sphere. 
Jacob Faber Stapulensis, Annotations. - Campanus, Compendium on the Treatise on
the Sphere. - On the Method of Constructing a Solid Sphere. - Pierre d'Ailly,
Cardinal, Fourteen Questions. - Robert Linconium, Treatise on the Sphere. 
Bartholomo Vespuccio, Glossary. - Luca Gauricus, Castigations. - By the same
author, Is there Any Habitation below the Equator? - The same author, On the
Discoveries of Astrology. - Alpetragius the Arab, Speculations on the Planets. Venice,
Luc. and Antonio Giunti, 1531.)
114 In some cosmological collections, he is called Sipontinus, i.e., a resident of Santa
Maria di Siponto (Maria-Siponto). Sometimes instead of Giovanni Battista, he is given
the first name Francesco. (See on this subject: Riccardi, Biblioteca matematica italiana,
Part. 1, vol. 1, col. 238-240: Modena, 1870).
115 T. N.: The Latin title reads: Most subtle questions on the Physics.
116 Augustini Niphi philosophi Suessani Expositiones super octo Aristotelis Stagiritae
libros de physico Auditu ... Venetiis, apud Hieronymum Scotum, MDLVIII. Physi
corum liber quartus, p. 307. (T. N.: The Latin title reads, Agostino Nifo, philosopher of
Sessa Aurunca, Expositions on Eight Books of the Physics of Aristotle the Stagirite;
Venice, Girolamo Scoto, 1558. Book IV of the Physics, p. 307.)
117 T. N.: The Latin reads, "conditionally lower."
II H T. N.: The Latin reads, "actually lower."
119 Gaetan of Tiene, born in Venice, taught philosophy in Padua where he died in
1465. He should not be mistaken for Gaetan of Tiene, born in Vicence in 1480 and
who died in 1547. The latter was the founder of the Order of the Theatins and was
canonized. The former should also not be mistaken for the famous Cardinal Caietan
(1469-1534).
120 Recollectae Gaietani super octo libros Physicorum cum annotationibus textuum. In
fine: "Impressum est hoc Venetiis per Bonetum Locatellum, jussu et expensis nobilis
viri Domini Octaviani Scoti civis Modoetiensis. Anno salutis 1496 - Lib. IV, quaestio
1. (T. N.: The Latin title reads, Gaetan of Tiene, Collected Works on Eight Books of the
Physics, with annotations of the texts. At the end: Published in Venice by Bonetus
Locatellus, at the order and expense of the nobleman Octavian Scotus, 1496 - Book
IV, Question 1.)
121 Alexandri Achillini Bononiensis Quatuor libri de Orbibus; Bononiae. Impensis
Benedicti Hectoris Bononiensis, MCDXCVIII; Liber primus, dubium tertium. 
Alexandri Achillini Bononiensis, philosophi celeberrimi, Opera omnia, in unum
colelcta ... omnia post primas editiones nunc primum emendatiora in lucem prodeunt.
Venetiis, apud Hieronymum Scotum, MDXLV; p. 29. (T. N.: The Latin title reads,
Alessandro Achillini of Bologna, Four Books on the Orbits; Bologna, at the press of
Benedict Hector of Bologna, 1498. Book I, 3rd Uncertainty. - Alessandro Achillini of
Bologna, celebrated philosopher, Complete Works in One Volume ... the entirety
revised according to the First Editions and now printed for the first time. Venice,
Girolamo Scoto, 1545; p. 29.)
122 Sbaralea (Supplementum scriptorum Franciscanorum, pp. 312-313) et, d'apres lui,
U. Chevalier (Repertoire des Sources historiques du moyen age; Bio-bibliographie, col.
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927) font de Gregoire Reisch un franciscain. Brunet (Manuel du libraire et de l'amateur
de livres, Paris, 1863. t. IV. col. 1200) lui attribue, par erreur, Ie prenom de Georges.
(T. N.: The Latin title reads: An Addendum ofFranciscan Writers.)
123 Panzer in the Annales Typographiques and Hain in his Repertorium quote an
edition bearing neither date nor place of publication, but containing the following
remarks inside the work: Ex Heidelberga III kal. Januarii 1496. (T. N.: The Latin reads,
From Heidelberg January 1496.)
124 T. N.: The Latin reads, The Philosophical Pearl containing the principles of all of
rational, natural and moral philosophy in twelve books of erudite dialogue.
125 Besides the edition which we just cited, Brunet (Ioc. cit.) mentions the editions of
Freibourg, 1503, of Strasbourg, 1504, 1508, 1512 and 1515, Basel in 1534 and 1583.
The edition which was consulted is in the Municipal Library of Bordeaux and is by
Johannes Schottus, Basileae, 1517.
126 Margarita filosofica del R. P. F. Gregorio Reisch, nella quale si trattono tutte Ie
dottrine comprese nella ciclopedia, accrescinta di molte belle dottrine da Orontio Fineo
matematico Regio. Di novo tradotta in Italiano da Gio. Paolo Galluci Salodiano, Ac
cademico Veneto, et accresciuta di molte cose. In Vinegia, 1599; presso Barezzo Barez
zi e Compagni. This same edition, with only the title page changed, was also sold: in
Venetia, MDC: appresso Jacomo Antonio Somascho. (T. N.: The Italian reads, The Phi
losophical Pearl in which all the doctrines included in the encyclopedia are treated,
augmented by the many beautiful doctrines of Orontio Fineo, Royal mathematician.
Recently translated in Italian by Giovanni Paolo Galluci Salodiano, Venetian academic,
and augmented with many notes. In the province of Venice, 1599. At Barezzo Barezzi
and Company.)
127 Fr. Junctini Florentini, sacrae theologiae doctoris. Commentaria in Sphaeram Joannis
de Sacro-Bosco accuratissima; Lugduni, apud Philippum Tinghium, MDLXXVIII, p.
178.
12M Cf. P. Duhem, Albert de Saxe et Leonard de Vinci (Bulletin ftalien, Vol. V, p. 1 et
p. 113; 1905).
129 T. N.: The Latin reads: On the center of gravity.
13U Les Manuscrits de Leonard de Vinci, publies par Ch. Ravaisson-Mollien: Ms. F. de
la Bibliotheque de l'Institut. Paris, 1889.
131 T. N.: The Latin reads, Albertucco and Marliani, on computation. Albert, On the
Heavens, by Brother Bernadino.
132 T. N.: The Latin reads, On the ratio ofmotions with respect to velocity.
133 Eugene Miintz, Leonard de Vinci, [,artiste, Ie penseur, Ie savant, p. 308 (en note);
Paris, 1899.
134 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien: Ms. F,
fol. 82, recto: Ms. G, fol. 54, recto.
135 B. Boncompagni, fntorno ad un comento di Benedetto Vittori, medico Faentino, al
Tractatus proportionum di Alberto di Sassonia (Bulletino di Bibliograjia e di Storia
delle Scienze Matematiche e Fisiche, t. IV, p. 493; 1871). (T. N.: The Italian title reads:
On a commentary of Benedetto Vittori, Physician of Faenza on the Tractatus propor
tionum ofAlbert ofSaxony.)
136 Les Manuscrits de Leonard de Vinci, Ms. F, fol. 26, recto et fol. 51, verso. These
fragments have been reprinted in the footnote to Chapter II.
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137 Les Manuscrits de Leonard de Vinci, Ms. I, fol. 120 (72), recto.
138 T. N.: The Latin title reads, Questions on certain books from On the Heavens.
139 P. Duhem, Albert de Saxe et Leonard de Vinci (Bulletin Italien, t. V. p. 1 et p. 113,
1905).
140 Les Manuscrits de Leonard de Vinci, Ms. F, fol. 54, recto.
141 It seems to me easy to determine what Leonardo meant by center of accidental
gravity. For many Scholastics, accidental gravity is what is usually called "impeto" by
Leonardo. This vague notion corresponds, more or less, to our contemporary notions
of acquired velocity, quantity of motion and kinetic energy. Just as natural gravity is
situated at one point for Leonardo, so is the center of natural gravity like accidental
gravity concentrated at the center of accidental gravity. If the falling body includes the
center of the Universe, it remains at rest there and the accidental gravity disappears
within this center. - Cf. our study on Bernardino Baldi, Roberval et Descartes which
will soon appear in the Bulletin Italien.
142 Les Manuscrits de Leonard de Vinci, Ms. F, fol. 70, recto.
143 Ibid., folio 84, recto.
144 Alberti de Saxonia, Quaestiones in libros de Caelo et Mundo; in librum II quaestio
XXVIII (Ed. 1492) vel XXVI (Ed. 1518).
145 T. N.: The Latin reads, Every heavy body tends to move downward nor can it
remain perpetually elevated. Therefore, the entire earth ought to be spherical and entirely
covered with water.
146 Les Manuscrits de Leonard de Vinci, Ms. F. folio 84, recto.
147 Ibid., folio 52, verso.
148 Leonardo da Vinci, Del moto e misura dell'acqua; contained in: Raccolta d'autori
Italiani che trattano del moto dell'acqua; edizione quarta, arrichita di molte cose inedite
e d'a!cuni schiarimenti. Torno X, pp. 271-450. Bologna, 1826. (T. N.: The Italian
reads, On the motion and measure of water; contained in A Collection of Italian
authors dealing with the motion of water; Fourth Edition, augmented by many unpub
lished matters and with some explanations.)
149 Les Manuscrits de Leonard de Vinci, Ms. F, folio 11, verso.
150 Les Manuscrits de Leonard de Vinci, Ms. F, folio 69, verso.
15 I Ibid., recto. - Cf. Del moto e misura dell'acqua, libra I, capitola XXIII.
152 Les Manuscrits de Leonard de Vinci, Ms. F, folio 51, recto.
153 Libri, Histoire des Sciences mathematiques en Italie, t. III, p. 41; 1840.
154 Les Manuscrits de Leonard de Vinci, Ms. F, folio 82, verso. Cf. Del Moto e misura
dell'acqua, libra I, capitola V.
155 The Codice Atlantico contains a list of books owned by Leonardo. Among them a
book by Pliny. (Cf. E. Muntz, Leonard de Vinci, l'artiste, Ie penseur, Ie savant, p. 282).
(T. N.: The French title reads, Leonardo da Vinci, the Artist, the Thinker, the Scientist.)
156 Les Manuscrits de Leonard de Vinci, lac. cit. - Cf. Del Moto e misura dell'acqua,
libra I, capitola VI, VII et VIII.
157 Les Manuscrits de Leonard de Vinci, Ms. F, folio 27, recto, and folio 26, verso. 
Cf. Del Moto e misura dell'acqua, libra I, capitola IV.
158 Les Manuscrits de Leonard de Vinci, Ms. F, folio 52, verso.
159 Ibid.
160 Les Manuscrits de Leonard de Vinci, Ms. F, folio 83, recto.
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161 This is an inadvertent error. It ought to read: ... first backwards, then just as much
forward ....
162 T. N.: In modern terms, each tower will be subjected to a moment about its base
because the center of gravity of the tower extends out over the edge of the foundation.
If the foundation is not able to react a tensile force the building will topple over.
163 Compare, for instance, Ms. F, folio I, verso and Chapter XXIV of the Traite de la
Peinture (1651 French Edition).
164 Cf. P. Duhem, "Themon, Ie fils du Juif et Leonard de Vinci" (This article will soon
be published in the Bulletin Italien).
165 Les Manuscrits de Leonard de Vinci, Ms. A of the Bibliotheque de I'Institut, folio
20, verso.
166 This proposition appears to contradict the one which Leonardo previously formu
lated (Ms. F, folio 82, verso). Here, Leonardo neglects the convergence of the verticals,
which he had taken into account previously.
167 Les Manuscrits de Leonard de Vinci, Ms. A, folio 22, recto.
16K Ibid., Ms. A, folio 21, verso.
169 Les Manuscrits de Leonard de Vinci, Ms. E of the Bibliotheque de I'Institut, folio
57, recto.
170 Ibid., Ms. H, folio 115 [281 recto.
171 Ibid., Ms. A, folio 28, verso.
172 Les Manuscrits de Leonard de Vinci, Ms. A, folio 28, verso, and folio 29, recto.
173 Traite de la Peinture, by Leonardo da Vinci, published and translated from Italian
into French by R. F. S. D. C. (Roland Freart, Lord of Chambray); in Paris, at the
printing shop of Jacques Langlois, MDCLl; Ch. CCll, p. 66.
174 Id., ibid., ch. CCI, p. 66.
175 rd., ibid., ch. CCVI, p. 68.
176 Central line = the line which goes to the center of the earth; the vertical.
177 This sentence of Leonardo contains an obvious mistake; we corrected it in
parentheses.
178 Traite de la Peinture, Leonard de Vinci, Ch. CCVII, p. 68.
179 Id., ibid.
180 Le Traite de la Peinture, Leonard de Vinci, Ch. CCVlII, p. 69.
181 Id., ibid., Ch. CCXCIX, p. 99.
182 I Manoscritti di Leonardo da Vinci, Codice sui volo degli uccelli, Paris, 1893; fol.
16 (15), verso: Cf. fol. 4, verso.
183 Le Traite de la Peinture, Leonard de Vinci, Ch. CCXCIX, p. 99.
184 Les Manuscrits de Leonard de Vinci, Ms. A, folio 20, veso.
185 Ibid., Ms. A, fol. 21, verso.
186 Alberti de Saxonia Quaestiones in octo libros Physicorum: in librum IV quaestio
XII. (T. N.: The Latin title reads, Questions on the Eight Books of the Physics by Albert
of Saxony: Question XII on Book IV.) It does not appear that this work was printed
before 1516, at which time it was printed simultaneously in Venice and in Paris.
IK7 Cf. P. Duhem, "Albert de Saxe et Leonard de Vinci" (Bulletin Italien, t. V, p. 1;
1905).
IKK Les Manuscrits de Leonard de Vinci, Ms. F, folio 41, verso.
IK9 Nicolai Copernici De revolutionibus orbium coelestium libri sex; lib. I, cap. II.
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(T. N.: The Latin title reads, Six Books on the Revolutions of the Celestial Orbs; Book I,
Chapter II.)
190 Id., ibid., lib. I, cap. VII.
191 Id., ibid., lib. I, cap. IX.
192 Nicolai Copernici De revolutionibus orbium coelestium libri sex; lib. I, cap. III.
193 Aristotle, On Meteorology, I, III. As a matter of fact, Aristotle only indicated clearly
this proportionality for the volumes of air and water: "The same ratio of volume must
exist between the totality of water and the totality of air, as that between a small
quantity of water and the air which this water can generate. We must agree with Gaetan
of Ti(me that the meaning requires a rearrangement of the words of Aristotle. (T. N.:
The Greek reads, It is necessary for the same ratio which exists between a given small
amount of water and the air which can be produced from it to also exist between the
totality of air and the totality of water.)
194 Cf. First Period, Section 5; p. 292.
195 Thimonis Quaestiones in libros Meteorum; in librum primum quaestio VI. (T. N.:
The Latin reads, Themon, Questions on Books of On Meteorology; Question VI on
Book I.)
196 Libri Metheorum Aristotelis Stagiritae cum commentariis Gaietani de Thienis; lib.
I, cap. III. The first edition, of many, of this work came out of Padua in 1476 with Peter
Mauser. (T. N.: The Latin title reads, Books from On Meteorology by Aristotle of
Stagira with Commentaries by Gaetan of Tiime: Book I, Chapter III.)
197 Cf. First Period, Section 5, p. 299.
198 Sphera volgare novamente tradotta con molte notande additioni di geometria,
cosmographia, arte navigatoria, et stereometria, proportioni et quantita delli elementi,
distanze, grandezze et movimenti di tutti Ii corpi celesti, cose certamente rade et
maravigliose, autore M. Mauro Fiorentino, Phonasco et Philopanareto ... (In fine)
Anno salutis nostrae MDXXXVII, mense Ottobri, impresso in Venetia, per Bartho
lomeo Zanetti. Meme Ouvrage: in Venetia, per Stefano di Sabio, 1537. (T. N.: The
Italian reads, Our Common World recently translated with many additional notes on
geometry, cosmography, the art of navigation, and stereometry, the proportion and
quantity of the elements, distance, size and motion of all the heavenly bodies, rare and
marvelous matters, authored by M. Mauro of Florence.)
199 Nicolai Copernici De revolutionibus orbium coelestium libri sex, lib. I, cap III.
200 The Books by Jerome Cardan, Milanese physician, entitled On Subtlety, and Subtle
inventions, collection of the occult causes and the reasons thereof, translated from Latin
into French by Richard Le Blanc, in Paris, by Charles I'Angelier, keeping shop at the
First Pillar of the great Hall of the Palais, 1556, Book XVII, folio 323, verso 
Copernicus' name is not mentioned in the first edition of the De Subtilitate, published
in 1551; it was introduced by Cardan in the second edition on which is based the
French translation of Richard Le Blanc.
201 Hieronymi Cardani, medici Mediolanensis, De subtilitate libri XXI; Lugduni, apud
Guglielmum Rouillium, sub scuto Veneto, 1551; lib. II, p. 124. In the French transla
tion by Richard Le Blanc, fol. 63, recto. (T. N.: The Latin title reads, 21 Books on
Subtlety by the Milanese physician Jerome Cardan; Lyon, Guillaume Rouille, Under
the Seal of Venice, 1551, Book II, p. 124.)
202 La seconda parte della filosofia naturale di M. Alessandro Piccolomini, in Vinegia,
appresso Vincenzo Valgrisio, alia Bottega d'Erasmo. MDLIIII. - La prima parte della



FOOTNOTES 553

filosofia naturale avait pam en 1551; les deux parties ont eu, ulterieurement, plusieurs
editions. (T. N.: The Italian and French read, The Second Part of the Natural Philoso
phy of Alessandro Piccolomini; Vinegia, printed by Vincenzo Valgrisio, at the Shop of
Erasmus, 1553. The First Part of the Natural Philosophy had appeared in 1551; Both
parts appeared in general later editions.)
203 A. Piccolomini, op. cit., lib. III, cap. III, p. 279.
204 Id., ibid., lib. III, cap. IX, p. 335.
205 Della grandezza della terra et dell' acqua, trattato di M. Alessandro Piccolornini,
nuovamente mandato in luce, all' iIIustr. et revermo sr. Monsig. M. Iacomo Cocco,
arcivescovo di CorfU. In Venetia. MDLVIII, appresso Giordano Ziletti, a1l'insegna della
Stella. - Le meme ouvrage, sous Ie meme titre, et par les soins du meme imprimeur, fut
donne de nouveau en 1561. (T. N.: The Italian and French read, On the size of land
and water, written by Alessandro Piccolornini, recently published by the most illustrious
and reverend Monsignor M. Iacomo Cocco, archbishop of CorfU. In Venice. MDLVIII,
at Giordano Ziletti, at the sign of the Star. - The same work, under the same title, and
under the direction ofthe same printer, was published again in 1561.)
206 A. Piccolomini, op. cit., cap XIV.
207 Id., ibid., p. 41.
208 Fr. Junctini Florentini, sacrae theologiae doctoris, Commentaria in sphaeram Joannis
de Sacro Bosco accuratissima. Lugduni, apud Philippum Tinghium, MDLXXVIII.
209 Junctinus, op. cit., p. 198.
210 Id., ibid., p. 179.
211 Antonio Berga, Discorso ... della grandezza dell' acqua et della terra, contra
l'opinione dil (sic) S. Alessandro Piccolomini. In Torino, appresso gli her. del
Bevilacqua, MDLXXIX. (T. N.: The Italian reads, Discourse . .. on the size of water
and land, against the opinion of Alessandro Piccolomini. In Turin, at the Heirs of
Bevilacqua, 1579.)
212 Consideratione di Gio. Battista Benedetti, filosofo del Sereniss. S. Duca de Savoia,
d'intorno al discorso della grandezza della terra, et dell' acqua, del Eccellent. Sig.
Antonio Berga filosofo nella Universita di Torino. In Torino, presso gli heredi del
Bevilacqua, 1579. (T. N.: The Italian reads, Considerations of Giovanni Battista
Benedetti, philosopher to the Most Serene Duke of Savoy, about the discourse on the
size of water and land, of his excellency Antonio Berga, philosopher of the University
of Turin. In Turin, at the Heirs of Bevilacqua, 1579.)
213 Jo. Baptistae Benedicti, patritii Veneti, philosophi, Diversarum speculationum
mathematicarum et physicarum tiber; Taurini, apud haeredem Nicolai Bevilaquae,
MDLXXXV; pp. 215, 216, 235, 241, 242, 243, 255, 260, 261, 315. (T. N.: Giovan
battista Benedetti, A Book of Diverse Speculations on Mathematics and Physics, Turin,
the Heir to Nicolas Bevilaqui, 1585, pp. 215, 216, 235, 241, 242, 243, 255, 260, 261,
315.)
214 Id., ibid., p. 235.
215 Id., ibid., p. 255.
216 G. B. Benedetti, Consideratione ... , p. 17.
217 T. N.: The Latin reads, The center of gravity of every body is a certain point located
within the body. If one imagines the body suspended from that point, while suspended
it will remain immobile and retain the initial orientation and will not rotate.
218 T. N.: The Latin reads, The center of gravity of every solid figure is that point
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located within, around which the parts have moment equilibrium; if indeed a plane is
drawn through such a center, no matter how it cuts the figure, it will always divide it
into parts of equal wight.
219 G. B. Benedetti, Consideratione ... , p. 14.
220 Disputatio de magnitudine terrae et aquae . .. a Franc. Maria Vialardo ab italico in
latinum sermonem conversa; Taurini, apud Jo. Bapt. Raterium, 1580. (T. N.: The Latin
title reads, Disputation on the Magnitude of the Earth and Water, translated from
Italian into Latin by Francesco Maria Vialardi; Turin, Giovanbattista Raterius, 1580.)
221 TraUato della grandezza dell' acqua e della terra di Agostino Michele, nel quale
contra l'opinione di molti filosofi, et di molti matematici illustri, dimostrasi l'acqua esser
di maggior quantita della terra: (In fine) In Venetia, appresso Nicolo Moretti;
MDLXXXIII. (T. N.: The Italian reads, Treatise on the size of water and land of
Agostino Michele, in which, against the opinion of many philsophers and illustrious
mathematicians, it is demonstrated that water is of a larger magnitude than land: (In
fine), Venice, at Nicolo Moretti; 1583.)
222 J. B. Benedicti Diversarum speculationum liber, p. 397.
223 Tractatus in quo adversus antiquorum, et praecipue peripateticorum opmlOnem
terram esse aqua majorem multis ejficacissimis rationibus et experientiis demonstratur,
auctore Nonio Marcello Saia a Rocca Gloriosa in Lucana ... Addita est etiam quatuor
elementorum expositio; Parisiis, apud Thomam Perier, via Jacobaea, sub insigne
Bellerophonte, MDLXXXV. (T. N.: The Latin title reads, A Treatise in which, contrary
to the view of the Ancients and especially of the Peripatetics it is demonstrated by many
most effective reasons and experiments that there is more earth than water, written by
Nonio Marcello Saia from Lucca ... Appended is an exposition on the four Elements;
Paris, Thomas Perier, Rue St. Jacques, At the Sign of Bellerophon, 1585.)
224 Commentarii Collegii Conimbricensis, Societatis Jesu, in quatuor libros de Coelo
Aristotelis Stagiritae; Lugduni, ex officina Juntarum, MDXCill. - In librum II de Caelo
quaestio III: Num terra in medio mundi constituta sit, habeatque idem centrum
gravitatis et magnitudinis, Arts. 1 et 2. (T. N.: The Latin title reads, Commentaries on
Four Books of Aristotle's On the Heavens, the University of Coimbre, Society of Jesus;
Lyon, 1593. - On Book II of On the Heavens, Question III: whether the earth is
located at the center of the Universe and whether it has the same center of gravity and
geometric center, Articles 1 and 2.)
225 Hieronymi Cardani Mediolanensis, civisque Bononiensis, philosophi, medici et
mathematici c1arissimi, Opus novum de proportionibus ... , Basileae, MDLXX, Prop.
LX, p. 51.
226 Ibid.
227 Les livres de Hierome Cardanus, medecin Milannois, intitules de la Subtilite et
subtiles inventions, ensemble les causes occultes, et raisons d'icelles, traduis de latin en
fran~ois par Richard Le Blanc; a Paris, par Charles I'Angelier, tenant sa boutique au
premier pillier de la grand' salle du Palais. Livre XVII, fol 343, verso. (T. N.: The
French title reads, Jerome Cardan Milanese physician, The Books entitled On Subtlety
and Subtle Inventions, including their occult causes and reasons, translated from Latin
into French by Richard Le Blanc, Paris, Charles I'Angelier, keeping his shop at the first
pillar of the Main Hall of the Palais. Book XVII, fol. 343, verso.)
228 T. N.: The Latin reads, Thus, since the center of gravity is removed spontaneously
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from the center of the earth, so the heavy body ascends by natural motion which is not
possible. Thus the pail does not descend.
229 Translation of Richard Le Blanc, folio 351.
230 Les Manuscrils de Leonard de Vinci, Ms, A de la BibliothCque de I'Institut, folio
28, verso.
231 Id., ibid., folio 33, verso.
232 Les Manuscrils de Leonard de Vinci, published by Ch. Ravaisson-MolIien; Ms, A
de la Bibliotheque de I'Institut, Paris, 1881. Preface, p. 2.
233 Hieronymi Cardani, Medici Mediolanensis, De Subli/ilale libri XXI; Lugduni,
1551; p. 529. Translated into French by Richard Le Blanc, d. fol. 318, verso.
234 Cardan, De Subti/itate, Edition of 1551; p. 532. Translated into French by Richard
Le Blanc, fol. 322, recto.
235 Cf. P. Duhem, "Leonard de Vinci et Jerome Cardan." This article will appear soon
in the Bulletin Ilalien.
236 Guidi Ubaldo e Marchionibus Montis in duos Archimedes aequiponderantium
libros paraphrasis Scholiis illustrata, Pisauri apud Hieronymum Concordiam,
MDLXXXVIII; p. 9. (T. N.: The Latin title reads, Guido Ubaldo del Monte, A
Paraphrase on Two Books of Archimedes on Equilibrium, illustrated with scholia,
Pesaro, Jerome Concordia, 1588, p. 9.)
237 Guidi Ubaldi e Marchionibus Montis Mecanicorum liber. Venetiis, MDCXV, p. 15.
(T. N.: The Latin title reads, Guido Ubaldo del Monte, A Book on Mechanics, Venice,
1615, p.15.)
238 Montucla, Hisloire des Mathematiques, Paris, Part III, Book V, Vol. I, p. 91.
239 T. N.: The name used by English speaking peoples is Villalpand.
240 Hieronymi Pradi et Joannis-Baptistae Villalpandi e Societate Jesu in Ezechielem
explanationes et apparatus Urbis el Templi Hierosolymitani commentariis et imaginibus
illuslratus. Opus tribus tomis distinctum. Romae, MDXCVI-MDCIIII. (T. N.: The
Latin title reads, Exegeses on Ezechiel with commentaries and sketches of Ihe City and
Temple of Jerusalem. By Jeronimo Prado and J.-B. Villalpand of the Society of Jesus, a
work divided into 3 volumes. Rome 1596-1604.)
241 Tomi UI, apparatus Urbis ac Templi Hierosolymilani, ParIes I et lI, Joannis
Baptistae Villalpandi Cordubensis e Societate Jesu, collato studio cum H. Prado ex
eadem Societate. Romae MDCIIII. (T. N.: The Latin title reads, Volume lIl, Ihe
Apparatus on the City and Temple of Jerusalem, Parts I and lI, by J.-8. Villalpand of
Cordova and of the Society of Jesus in collaboration with Jeronimo Prado of the same
society. Rome, 1604.)
242 J. B. Villalpand, loc. cit., Prop IV, p. 321.
243 Les Manuscrits de Leonard de Vinci, Ms. G, fol. 75, recto.
244 Le Traile de la Peinlure de Leonard de Vinci, Ch. cxcvn, p. 64.
245 Villalpand, loc. cit., prop. V, p. 321.
246 Id., ibid., prop. VI, p. 322.
247 Les Manuscrits de Leonard de Vinci, Ms. F, Fol. 82, verso.
248 Villalpand, loco cit., prop. VII, p. 322.
249 Villalpand, loc. cit., prop. VIII, IX and X; pp. 108 and 109.
250 Id., ibid., prop. XIII, p. 324.
251 Traile de la Peinture de Leonard de Vinci, Ch. CXCVI, p. 64.
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252 Villalpand, loc. cit., prop. XII, p. 324.
253 In Chapter XIII, Section 1, we already discussed the Mathematical Synopsis of
Mersenne and the Mechanicorum libri which it contains. The first of these books is
entitled De gravitatis et Universi centro (a). The first part is divided into four parts. It is
defined in the following way: Continens definitiones et ea quae spectant ad centrum
Universi (b). The second part restates the propositions from the treatise of Comman
dino. The third part restates the propositions from the treatise of Luca Valerio. The
fourth part is entitled: De linea directionis et reliquis ad centrum gravitatis pertinentibus
(c). It first restates the theorems of Villalpand (prop. I to prop. XIV), then six more
propositions given without the name of their author. (a) T. N.: The Latin title reads, On
the center of gravity and of the Universe. (b) T. N.: The Latin title reads, Containing
definitions and matters relating to the center of the Universe. (c) T. N.: The Latin title
reads, On the line ofdirection and other matters pertaining to the center ofgravity.
254 Mersenne, Mechanicorum libri, p. 4.
255 Id., ibid., p. 7.
256 Les questions theologiques, physiques, morales et mathematiques, oil chacun
trouvera du contentement et de I'exercice, composees par L. P. M.; aParis, chez Henry
Guenon, rue Saint-Jacques, pres les Jacobins, a I'image Saint-Bernard. MDCXXXIV.
Question VIII, p. 32. (T. N.: The French reads, Theological, Physical, Moral, and
Mathematical Questions, where every reader will find pleasure and practice, a work
written by Father Mersenne, Paris, Henry Guenon, Rue St. Jacques, near the Jacobins
at the sign of St. Bernard, 1634, Question VIII, p. 32.)
257 La Verite des Sciences contre les Sceptiques ou Pyrrhoniens, dedie aMonsieur, frere
du Roy, par F. Marin Mersenne, de I'ordre des Minimes; a Paris, chez Toussainct du
Bray, rue Saint-Jacques, aux Epiesmeurs, MDCXXV; p. 871. (T. N.: The French reads,
The Truth of the Sciences against the Sceptics or Pyrrhoniens, dedicated to the Brother
of the King, by Father Marin Mersenne of the Order of Minims; in Paris; Toussainct du
Bray, Rue St. Jacques, at the sign of the Spice Blenders, 1625; p. 871.)
25H Mersenne, Mechanicorum libri, p. 112.
259 id., ibid., p. 111.
260 Cf. Chapter XVII; Section 4. The Great Treatises on Statics from the Jesuit School.
Father Dechales (1621-1678). Father Paolo Casati (1617-1707).
261 R. P. Claudii Milliet Dechales, Camberiensis, e Societate Jesu, Cursus seu Mundus
mathematicus. Editio altera; Lugduni, apud Anissonios, Joan. Posuel et Claud. Rigaud.
MDCXC. - tomus II, Staticae lib. VIII, prop. IV, p. 364.
262 Mersenne, Mechanicomm libri, p. 114.
263 T. N.: Cf. Chapter XV, Section 1.
264 Bernardini Baldi Urbinatis, Guastalla Abbatis, In mechanica Aristotelis problemata
exercitationes, adjecta succincta narratione, de Autoris vita et scriptis. Moguntiae, typis
et sumptibus Viduae Joannis Albini, MDCXXI. (T. N.: The Latin title reads, Bernar
dino Baldi of Urbino, Abbot of Guastalla, Exercises on the Mechanical Problems of
Aristotle, with a brief narration of the life and works of the author. Mainz, printed by
the Widow of Johann Albinus, 1621.)
265 T. N.: Passages in Baldi's preface and in the text of the book imply that the year of
composition is 1589.
266 Nicolai Leonici (sic) Thomaei Opuscula nuper in lucem edita quomm nomina
proxima habentur pagella . . . Conversio mechanicomm quaestionum Aristotelis, cum



FOOTNOTES 557

figuris et annotationibus quibusdam. In fine: Opusculum hoc ex impressione repraesen
tavit Bernardinus Vitalis Venetus, Anno Domini MDXXV Die XXIII Februarii, ex
Venetiis. (T. N.: The Latin title reads, Nicolo Leonico (sic) Tomeo Treatises recently
published with titles on the next pages . .. Translation of Aristotle's Mechanical
Problems, with figures and notes. At the end: This treatise was published by the
Venetian Bernardino Vitali, Feb. 23, 1525, Venice. The title has apparently confused
Nicolo Leoniceno with his contemporary, Nicolo Leonico Tomeo.)
267 Cf. P. Duhem, Leonard de Vinci et Bernardino Baldi (Bulletin Italien, t. V, p. 309,
Octobre 1905).
26X Bernardini Baldi In mechanica Aristotelis problemata exercitationes, p. 1.
269 Bernardino Baldi, loc. cit., Quaest. XXIX, p. 162.
270 Bernardino Baldi, loc. cit., Questio XXX, p. 166.
271 Les Manuscrits de Leonard de Vinci; Ms. A de la Bibliotheque de l'Institut, folio
28, verso.
272 Bernardini Baldi, In mechanica Aristotelis problemata exercitationes, p. 172.
273 Bernardino Baldi, loc. cit., p. 176.
274 Id., ibid., p. 84.
275 Id., ibid., p. 60.
276 Bernardino Baldi, loc. cit., p. 20 and 31.
277 Id., ibid., Quaestio II, pp. 18-34.
278 Bernardino Baldi, loc. cit., p. 14.
279 T. N.: The further the center of gravity from the point of support the greater the
increment in elevation from the equilibrium position for small displacements of the
balance.
2XO Bernardino Baldi, loc. cit., p. 33.
2X1 Les Manuscrits de Leonard de Vinci: Ms. A de la BibliotMque de l'Institut, fol. 50,
verso.
2X2 Leonard de Vinci, loc. cit., fol. 52, recto.
2X3 Leonard de Vinci, loc. cit., fol. 21, verso and fol. 52, recto.
2X4 Cf. Chapter II, figure 8; Chapter VIII, Section 3, figure 56; Chapter XV, end of
Section 6.
2X5 Bernardini Baldi In mechanica Aristotelis problemata exercitationes, pp. 62-64.
2X6 Les Questions theologiques, physiques, morales et mathematiques, ou chacun
trouvera du contentement ou de l'exercice, par L. P. M. (Ie P. Mersenne); a Paris,
MDCXXXIV, chez Henri Guenon, Rue St. Jacques, pres les Jacobins, a !'image St.
Bernard: p. 38. (T. N.: The French reads, The Theological Physical, Moral and
Mathematical Questions in which everyone will find satisfaction or practise, written by
L. P. M. (Father Mersenne); in Paris 1634, at Henry Guenon, Rue St. Jacques, next to
the Jacobins, at the sign of St. Bernard, p. 38.)
287 Mersenne, loc. cit. Question VIII: What is the line of direction which is helpful to
mechanics?
288 Bibliotheque Nationale, fonds Latin, Ms. No. 7226, fol. 85, recto fol. 207, recto.
289 T. N.: The French title reads, Treatise on mechanics and in particular on the piping
and pumping ofwater.
290 Cf. P. Duhem, Bernardino Baldi, Roberval et Descartes (Bulletin Italien, vol. VI,
January 1906).
291 Furthermore the influence of Guido UbaIdo, combined with that of Bernardino



558 FOOTNOTES

Baldi, was very powerful during the time of Galileo. The works of Monantholius and of
Father Mersenne are proof of this. Further evidence of this can be found in the
commentaries on the Mechanical Problems of Aristotle by John of Guevara (see a,
below). When the latter teaches (see b, below) "that the entire gravity of a heavy body is
united at its center of gravity, that it concentrates there in such a way that there seems
to be no gravity in the rest of the body," Guevara is borrowing most of the supporting
commentary for this idea from Guido Ubaldo del Monte and from Baldi. Furthermore,
he is continually quoting these two authors.
a. Joannis de Guevara, cher. reg. min., in Aristotelis mechanicas commentarii, una

cum additionibus quibusdam ad eandem materiam pertinentibus; Romae, apud Jaco
bum Mascardum, MDCXXVII. (T. N.: The Latin reads, Juan de Guevara, clergyman of
the minor orders: Commentaries on the Mechanical Problems ofAristotle together with
certain additions pertaining to the same matter; Rome, published by Jacob Mascardus,
1627.)
b. Guevara, loco cit., Additio secunda: de centro gravitatis naturaliq. mobilitate

gravium et levium: p. 67. (T. N.: The Latin reads, Guevara, loc. cit., Second Appendix:
On the natural center ofgravity and the mobility of heavy and light bodies; p. 67.)
292 T. N.: Galileo used the term momenta in three ways: first, to mean statical moment,
i.e., the product of weight and perpendicular distance to an axis, secondly, as the
product of weight and velocity in the sense expressed in the Mechanical Problems and
thirdly, as a measure of the positional gravity of a body on an inclined plane.
293 Les Mechaniques de Galilee Mathematicien et Ingenieur du Duc de Florence, avec
plusieurs additions rares et nouvelles, utiles aux Architectes, Ingenieurs, Fonteniers,
Philosophes et Artisans: 11 Paris, chez Henry Guenon, MDCXXXIV. (T. N.: The French
reads, The Mechanics of Galileo, Mathematician and Engineer to the Duke of Florence,
with several rare and new additions, useful to Architects, Engineers, Fountainmakers,
Philosophers and Craftsmen: Paris, Henry Guenon, 1634.)
294 Vincenzio Viviani, Vita di Galileo Galilei, cavata da'Fasti Consolari dell'Accademia
Fiorentina. (This life of Galileo, reproduced in all the editions of his works, was initially
a letter by Viviani to Prince Cardinal Leopold of Tuscany. It was included by the
Abbot Salvino Salvi in the Fastes Consulaires of the Academy of Florence).
295 Viviani was not the only one to have noticed this lacuna in the deduction of
GaIileo. On October 11, 1638 Descartes wrote to Mersenne:' "Reverend Father, I shall
begin this letter with my observations on the book of Galileo. In general I find him to
philosophize much better than the common man in as far as he avoids as much as
possible the errors of the School and tries to examine physical matters by means of
mathematical reasoning. In this, I am in complete agreement with him and I maintian
that there is no other method for finding the truth ... . He also assumes that the
velocity of the same body on different planes is equal when the elevations of these
planes are equal. But he does not prove this and it is not absolutely true. And as far as
everything else which follows depends on these two suppositions, one can say that he
built entirely on a foundation of sand ...."
a. Oeuvres de Descartes, edition Ch. Adam and Paul Tannery, Correspondance, vol.

II (March 1638 to December 1639), p. 379ff.
296 Vincenzio Viviani, Vita di Galileo Galilei.
297 Lettera di Galileo Galilei al P. Ab. D. Benedetto Castelli, contenente una dimostra-
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zione d'un principio gia supposto dall'Autore nel suo Trattato del Moto accelerato
ne'Dialoghi de' movimenti locali. (The letter is reproduced in the various editions of the
Works of Galileo.)
298 Vincenzio Viviani, Vita di Cali/eo Calilei: Cf. also Opere di Cali/eo Calilei, divise
in quattro tomi, in questa nova edizione accresciute di moIte cose inedite: tomo primo.
In Padova MDCCXLIV, nella stamparia del Seminario, appreso Gio. Manfre. Prefa
zione universale, p. XXX. (T. N.: The Italian title reads, Vincenzio Viviani, The Life of
Cali/eo Calilei: Cf. also: The Works of Cali/eo Cali/ei, divided into four volumes, a new
edition augmented by many new unpublished items; 1st Vol. Padua, 1744.)
299 Montucla, Histoire des Mathematiques, nouvelle edition. Paris, An VII, tome II, p.
201.
300 Cf. Gassendi, Opera, vol. VI, pp. 53 and 54.
301 Petri Gassendi Epistolae tres de proportione qua gravia descendentia accelerantur,
quibus ad totidem epistolas R. P. Petri Cazraei, Societatis Jesu, respondetur: Epistola
prima, Art. XIV; Parisiis, eid. martis MDCLV (petri Gassendi Opera, vol. III, p. 570;
Lugduni, 1638.) (T N.: The Latin reads, Pierre Gassendi; Three letters on the ratio by
which falling bodies accelerate, in response to three letters by Father Peter Cazree of the
Society of Jesus; First Letter, article 14, Paris, March 1655. (Pierre Gassendi, Opera,
Vol. III, p. 570, Lyon, 1658.)
302 The date of this treatise of Pascal is unknown. It was published by Etienne Perier in
1663, one year after the death of his brother-in-law.
303 Blaise Pascal, Oeuvres Completes, vol. III, pp. 86 and 87; Paris, Hachette and Co.,
1880.
304 Letter of Pascal to M. de Ribeyre, first president of the Cour des Aides at
Clermont-Ferrand, concerning what was stated in the prologue to the philosophical
theses defended in his presence in the Jesuit College de Montferrand, on June 25,
1651. (Blaise Pascal, Oeuvres Completes, vol. III, pp. 76 and 77; Paris, Hachette,
1880.)
305 F. Marini Mersenni Minimi, Cogitata physico-mathematica in quibus tam naturae
quam artis effectus admirandi certissimis demonstrationibus explicantur; Parisiis, sump
tibus Antonii Bertier, via Jacobea, MDCXLIV. Ars navigandi. Hydrostaticae liber
primus, p. 239. (T. N.: The Latin reads, F. Marin Mersenne of the Minims, Physical and
Mathematical Reflections in which the marvelous effects of both nature and art are
explained by clear demonstrations; Paris, at the expense of Antoine Bertier, Rue de
Jacobins, 1694. The Art of Navigation, Book I on Hydrostatics, p. 239.)
306 Cf. on this subject: P. Duhem, "Le Principe de Pascal, Essai historique" (Revue
Cenerale des Sciences), 16th Year, p. 599, 15 July 1905.

FOOTNOTES TO CHAPTER XVI

1 TN.: A finite change in the system's configuration will raise the center of gravity but
for an infinitesimal change the center of gravity remains stationary.
2 Evangelistae Torricellii de dimensione parabolae solidique hyperbolici problemata
duo ad lectorem prooemium, p. 9. (TN.: The Latin reads, Two Problems on the
Measurement ofthe Hyperbolic and Solid Parabola: Preface to the reader.)
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3 Evangelista Torricelli, loc. cit., p. 11.
4 Jo. Kepleri Littera ad Herwartum, 28 mars 1605 (Joannis Kepleri astronomi Opera
omni edidit Ch. Frisch; vol. II, p. 87).
5 Joannis Kepleri De motibus stellae Martis commentarii, Pragae, 1609 (Kepleri Opera
omnia, vol. Ill, p. 151).
6 Cf. P. Duhem, La theorie physique, son objet et sa structure; 2e partie, ch. VII,
paragraph 2, p. 364, paris, 1905.
7 Harmonie universelle, par F. Marin Mersenne. Seconde partie de I'Harmonie univer
selle. Livre VIll, De I'utilite de I'harmonie et des autres parties des mathematiques.
Proposition XVIII, p. 61. Paris, MDCXXXVII. (TN.: The French reads, On the utility
of harmony and the other fields of mathematics.)
B TN.: Geostatics is that part of mechanics which deals with balanced forces in rigid
bodies.
9 Mersenne, loc. cit., p. 63.
10 Fermat, Oeuvres, published through the efforts of Paul Tannery and Ch. Henry, vol.
II, Correspondance, p. 4.
1I Joannis de Beaugrand, Regis Francae domui regnoque ae aerario sanctiori a consiliis
secretisque. Geostatice, seu de vario pondere gravium secundum varia a Terrae centro
intervalla dissertatio mathematica; Parisiis, apud Tussanum Du Bray. MDCXXXVI.
(T.N.: The Latin title reads, Geostatics or a mathematical dissertion on the ratio of the
weight of heavy bodies to their distance from the center of the earth; Paris, with
Tussamus du Bray, 1936.)
12 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery, vol. II, Corre
spondance, p. 174: Lettre de Descartes itMersenne du 29 juin 1638.
13 The anonymous pamphlets which Beaugrand wrote against Descartes were dis
covered by Paul Tannery (Paul Tannery, La Correspondence de Descartes dan les
inedits du fonds Libri; Paris, 1896).
14 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery, vol. II, Corre
spondance, p. 253.
15 Fermat, Oeuvres, publiees par les soins de Paul Tannery et Ch. Henry. Tome II,
Correspondance, p. 14.
16 Id., ibid., p. 6: Propositio geostatica Domini de Fermat. (TN.: The Latin reads, The
proposition on geostatics by M. de Fermat.)
17 T.N.: The "disturbance" must be infinitesimally small.
IB Alberti de Saxonia Quaestiones in octo Libros Physicorum; in librum IV quaestio V.
19 Alberti de Saxonia Quaestiones in libros de Caelo et Mundo; in librum II quaestio
XXIll.
20 Johannis Marcillii Inguen Quaestiones super octo libros Physicorum; circa librum IV
quaestio V. (TN.: The Latin title reads, Marsilius of Inghen, Questions on the eight
books ofthe Physics, concerning Book IV, question V.)
21 Harmonie universelle, par F. Marin Mersenne. Seconde Partie de ['Harmonie
universelle. Livre VIII, De I'utilite de I'harmonie et des autres parties des mathe
matiques. Proposition XVIll, p. 63. Paris, MDCXXXVII.
22 Descartes, Oeuvres, publiees par Ch Adam et Paul Tannery. Tome II, Corre
spondance, p. 190; Lettres de Descartes itMersenne du 20 juin 1638.
23 Fermat, Oeuvres, publiees par les soins de MM. Paul Tannery et Ch. Henry; Tome
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II, Correspondance, p. 25; Nova in mechanicis theoremata Domini de Fermat. (T.N.:
The Latin reads, New Theorems on Mechanics by M. Fermat.)
24 Fermat, loco cit., p. 17.
25 Fermat, loco cit., p. 23.
26 Ibid.
27 T.N.: "indifferent equilibrium" would be more accurate.
28 Fermat, loco cit., p. 18.
29 Ibid., p. 26.
30 Fermat, loco cit., p. 25.
31 Ibid., p. 25.
32 Fermat, Oeuvres, published through the care of Messrs. Paul Tannery and Ch.
Henry, vol. II, Correspondance, p. 28.
33 Fermat, Oeuvres, published through the care of Messrs. Paul Tannery and Ch.
Henry, Vol. II, Correspondance, p. 28.
34 [d., ibid., p. 31.
35 Fermat, Oeuvres, published through the care of Messrs. Paul Tannery and Ch.
Henry, vol. II, Correspondance, p. 35.
36 T.N.: The Latin title reads, On the System ofthe World by Aristarchus of Samos.
37 Etienne Pascal and Roberval, loc. cit., p. 43.
38 Harmonie universelle, par F. Marin Mersenne. Seconde Partie de I'Harmonie univer
selle. Livre VIII, De l'utilite de l'harmonie et des parties des mathematiques. Proposi
tion XVIII, p. 63. Paris, MDCXXXVIl.
39 The one asserted by Beaugrand.
40 Cf. Chapter VII, Section 4.
41 Cf. Chapter XV, Section 5.
42 Alberti de Saxonia, Quaestiones in libros de Caelo et Mundo; in librum I quaestio X.
(T.N.: The Latin title reads, Questions on Book of On the Heavens, Question X on
Book I.)
43 Fermat, Oeuvres, published by the care of Messrs. Paul Tannery and Ch. Henry; vol.
II, Correspondance, p. 58.
44 Fermat, op. cit., p. 59. Letter ofFermat to Roberval, Sept. 16, 1636.
45 Fermat, op. cit., p. 75.
46 Harmonie universelle, par F. Marin Mersenne; Seconde partie de l'Harmonie univer
selle; Nouvelles observationes physiques et mathematiques. ve observation, p. 17. Paris,
MDCXXXVII.
47 This rule was proposed by Fermat.
48 Fermat, Oeuvres, published through the care of Messrs. Paul Tannery and Ch.
Henry; Vol. II, Correspondance, p.87.
49 Fermat, Oeuvres, published through the care of Messrs. Paul Tannery and Ch.
Henry, vol. II, Correspondance: Letters by Fermat to Roberval on December 6, 1636
(p. 89) and on December 16, 1636 (p. 92).
50 Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; vol. II, Correspon
dance (March 1638-December 1639), p. 222. (T.N.: The French reads, Examination
of the question whether a body weighs more or less, in proportion to its proximity to the
center ofthe earth.)
51 Descartes, loco cit., p. 238.
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52 Id., ibid., p. 242.
53 In a letter probably addressed to Boswell and perhaps written in 1646, Descartes
declares that he "shares the opinion of those who say that two weights are in
equilibrium when they are in inverse ratio to the perpendiculars drawn from the center
of the balance to the lines which join the extremities of the arms and the center of the
earth." He adds that "not only is the reason for this obvious, but it can also be proven."
We have to admit that we have been unable to find any trace of a conclusive reasoning
in the considerations of Descartes.
a. Descartes, Oeuvres, published by Ch. Adam and Paul Tannery; vol. IV, Corre

spondance, Additions, p. 696.
54 Descartes, loc. cit., p. 244.
55 Descartes, loc. cit., p. 245.
56 Fermat, Oeuvres, published through the care of Messrs. Paul Tannery and Ch.
Henry, vol. II, Correspondance, p. 26.

FOOTNOTES TO CHAPTER XVII

I Cf. Chapter XIII, Section 1 and Chapter XV, Section 2.
2 Universae Geometriae mixtaeque Mathematicae synopsis, et bini refractionum demon
stratarum tractatus; studio et opera F. M. Mersenni M.; Parisiis, apud Antonium
Bertier, via Jacobaea, sub signo Fortunae, MDCXLIV. (T. N.: The Latin reads, A
Synopsis of both Universal Geometry and Mathematics and two treatises on the
Demonstration of Refraction, published through the zeal and effort of F. M. Mersenne
of the Minims in Paris by Antoine Bertier, Rue Jacobins under the Sign of Fortuna,
1644.)
3 Mersenne, Les Mechaniques de Galilee, p. 25. Cf. the dedicatory letter addressed to
M. de Ruffuge.
4 F. Marini Mersenni, ordinis minimorum, Harmonicorum libri: Lutetiae Parisiorum,
sumptibus Guglielmi Baudry, MDCXXXVI; Liber secundus, de causis sonorum,
Propositio XXIV, Corollarium IV, p. 22. (T. N.: The Latin title reads, Books on
Harmony by Father Marin Mersenne of the Order of the Minims, Paris at the expense
of Guillaume Baudry 1636: Book Two, On the Causes of Sound. Proposition XXIV,
Corollary IV, p. 22.)
5 Mersenne, loc. cit., Proposition VII, Corollaire VIII, p. 121.
6 Id., ibid., Proposition X, Corrollaire I, p. 124.
7 Id., ibid., Proposition X, Corrollaire II, p. 124.
8 Id., Harmonie universelle. A. Treatise on the nature of sound and motion in all kinds
of bodies. Third Book: On the motion, tension, force, weight and other properties of
harmonic chords and other bodies. Proposition XIX, p. 207.
9 Mersenne, Harmonie universelle, Nouvelles observations physiques et mathematiques,
ve observation, pp. 16-17.
10 Id., ibid., Book VIII. De I'utilite de I'harmonie et des autres parties des mathe
matiques, Proposition XVIII, pp. 61 et seq. (T. N.: The French reads, On the usefulness
of harmony and on other parts of mathematics. Proposition XVIII, pp. 61 and
following.)
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II Here is some information on this bizarre work. It is entitled: F. Marini Mersenni
Minimi Cogitata physico-mathematica, in quibus tam naturae quam artis effectus
admirandi certissimis demonstrationibus explicantur. Parisiis, sumptibus Antonii Ber
tier: via Jacobea, MDCXLIV. (T. N.: The Latin title reads, Physical and Mathematical
Reflections in which the miraculous effects of both nature and art are explained by
means of the most absolutely certain demonstrations. Paris, at the expense of Antoine
Bertier, Rue Jacobin, 1644.) A Praefatio praefationum unites the different treatises
which make up this volume. (T. N.: The Latin reads, A Preface to the Prefaces.) It is
followed by a Table of Contents: Tractatus isto volumine contenti: I. De mensuris,
ponderibus et nummis Hebraicis, Graecis et Romanis ad Gailica redactis. - II. De
hydraulicopneumaticis phaenomenis. - III. De Arte nautica, seu Histiodroma et
Hydrostatica. - IV. De Musica theorica et practica. - V. De mechanicis phaenomenis.
- VI. De Bailisticis, seu Acontismologicis phaenomenis. (T. N.: The Latin reads,
Treatises contained in this volume: I. Hebrew, Greek and Roman measures, weights,
and coins with French equivalents. - II. Hydraulic and Pneumatic Phenomena. - III.
On the Art of Sailing or "Histiodroma" and Hydrostatics. - IV. On the Theory and
Practices of Music. - V. On Mechanical Phenomena. - VI. On Ballistics or "Acontis
mology.") A Prefalio generalis without pagination precedes a text of 40 pages: De
Gallicis, Romanis, Hebracis et aliis mensuris, ponderibus et nummis. (T. N.: The Latin
reads, A General Preface and On the Measures, Weights and Coins of the French,
Romans, Hebrews, et al.) This treatise is a revised draft, more correct than the one
which we shall encounter further on.
A variant title which reads, Hydraulica, pneumatica, arsque navigandi, Harmonia

theorica, practica et mechanica phaenomena, autore M. Mersenno M., Parisiis,
sumptibus Antonii Bertier, via Jacobea, MDCXLIV. (T. N.: The Latin title reads,
Hydraulics, Pneumatics, and the Art of Navigation, the Theory and Practice of Harmony
and Mechanical Phenomena, written by M. Mersenne of the Minims, Paris, at the
expense of Antoine Bertier, Rue Jacobins, 1644.) This variant title is followed by: 1. A
dedicatory letter to the Marquis d'Estampes Valen~ay. 2. the Tractatus de mensuris,
ponderibus atque nummis tam Hebraicis quam Graecis et Romanis ad Parisiensia
expensis (pp. 1-40) and 3. the De hydraulicis et pneumaticis phaenomenis (pp. 41
214). (T. N.: The Latin titles read, Treatise on Hebrew, Greek and Roman Measures,
Weights and Coins with Parisian (sic) equivalents; On Hydraulics and Pneumatic
Phenomena.) A second variant title is: Ars navigandi super et sub aquis, cum Tractatu
de Magnete et Harmoniae theoreticae, practicae et instrumentalis. Libri quatuor.
Parisiis, sumptibus Antonii Bertier, via Jacobaea, sub signo Fortunae, MDXLIV. (T. N.:
The Latin reads, The Art of Navigation on and below water with a treatise on the
Magnet and on theoretical, practical and instrumental harmony. Four Books. Paris, at
the expense of Antoine Bertier, Rue Jacobins, under the Sign of Fortuna, 1634.) This
second variant title gives the contents of pages 225 to 370, in particular, hydrostatics
occupies pages 225-233. We find still another variant title which this time contains a
change in pagination and reads F. Marini Mersenni Minimi Tractatus mechanicus,
theoricus et practicus. Parisiis, sumptibus Antonii Bertier, via Jacobaea, sub signo
Fortunae, MDCXLIV. T. N.: The Latin reads, Marin Mersenne of the Minims; A
Treatise on the Theory and Practice of Mechanics, Paris, at the expense of Antoine
Bertier, Rue Jacobins, under the Sign of Fortuna, 1644).
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This treatise is comprised of ninety-six pages. A final variant title containing a third
change in pagination reads as follows: F. Marini Mersenni Minirni Ballistica et Acontis
mologia, in qua sagittarum, jaculorum et aliorum missilium jactus, et robur arcuum
explicantur. Parisiis, sumptibus Antonii Bertier, via Jacobaea, MDCXLIV. (T. N.: The
Latin reads, Marin Mersenne of the Minims: Ballistics and ''Acontismology'' in which
the hurling of a"ows, javelins, and other missiles as well as the power of the bow are
explained. Paris, at the expense of Antoine Bertier, Rue Jacobins, 1644. This last part
contains 140 pages.) An Index amplissiumus omnium rerum quas hoc primum volumen
complectitur ends the work. (T. N.: The Latin reads, An extensive index of all the
subjects contained in this first volume.)
12 T. N.: The Latin title reads, Treatise on Mechanics.
13 T. N.: The Latin reads, Introduction.
14 Mersenne, Tractatus mechanicus, p. 2.
15 Id., ibid., p. 10 and p. 18.
16 Mersenne, Tractatus mechanicus, p. 23.
17 Id., ibid., p. 36.
IN T. N.: The Latin reads, Most Illustrious Man.
19 He, to be sure, was duly authorized to do so because of a letter by Descartes sent on
February 2nd, 1643 (Oeuvres de Descartes, published by Ch. Adam and Paul Tannery,
Correspondance, Vol. III, p. 611. In this letter, Descartes informed Mersenne that
several persons in Holland were already in possession of a copy of his statics. These
copies derived from the version sent to Constantin Huygens; some were in French and
others translated into Latin. It is one of those Latin translations which the Abbot
Nicolas Poisson, a Priest of the Oratoire Congregation, translated back into French and
had published in 1668.
20 Traite de la Mecanique written by M. Descartes, and Abrege de la Musique, by the
same author, put into French with the necessary explanations by N. P. P. D. L.: Paris,
Angot, 1668. This translation of the Traite de la Mecanique was reprinted in 1724 in
Paris, together with the Method, the Dioptrics and the Meteors. Victor Cousin included
it in Vol. V of his edition of the Oeuvres de Descartes (paris, 1825). (T.N. The French
titles read, Treatise on Mechanics and a Short Treatise on Music.) On the other hand,
Johan Daniel Mayor, discovered a French copy of the Explanation of engines,
translated it into Latin and had it published in Kiel in 1672.
21 Mersenne, Tractatus mechanicus, Propositio III, p. 12.
22 Id., ibid., Propositio IX, p. 34.
23 Id., ibid., Propositio VII, p. 25.
24 Id., ibid., pp. 47-56.
25 Mersenne, Ballistica et Acontismologia, pp. 10-18.
26 T. N.: This reference can be found in Stevin's Mathematicorum Hypomnematum de
Statica, Liber primus Staticae.
27 Id., De hydraulicis et pneumaticis phaenomenis, p. 141.
2N Nova de Machinis Philosophia in qua, Paralogismis Antiquae detectis, explicantur
Machinarum vires unico principio, singulis immediato, authore Nicolao Zucchio
Parmensi, Societatis Jesu, oHm professore Mathematicae in Collegio Romano. Accessit
exclusio vacui contra nova experimenta, contra vires Machinarum. Promotio Philoso
phiae Magneticae; ex ea novum argumentum contra systema Pythagoricum, Romae.
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typis haeredum Manelphii, MDCXLIX. - Vne premiere edition de cet ouvrage avait
ete donnee aParis en 1646; les maitieres mentionnees dans Ie titre de la seconde edition
a partir du mot accessit ne figuraient pas dans la premiere edition. (T. N.: The Latin
and French read, The New Philosophy of Machines, in which, by uncovering the faulty
Arguments ofAntiquity, the capabilities of machines are explained by a unique, singular
and immediately evident principle. Nicholas Zucchi of Parma of the Society of Jesus,
formerly Professor of Mathematics in the Collegium Romanum. A first edition of this
work has been printed in Paris in 1646. The subject matter mentioned in the title of the
second edition beginning with the word "accessit" is not included in the first edition.)
29 Zucchi, loc. cit., pars secunda, sectio V, 2, p. 45.
3U Zucchi, loc. cit., pars tertia, sectio III, p. 86.
3\ Tractatus physicus de motu locali, in quo effectus omnes, qui ad impetum, motum
naturalem, violentum et mixtum pertinent, explicantur et ex principiis physicis demon
strantur; auctore Petro Mousnerio, Doctore medico; cuncta excerpta ex praelectionibus
R. P. Honorati Fabry Societatis Jesu, Lugduni, apud Joannem Champion, in foro
Cambii, MDCXLVI. (T. N.: The Latin reads, A Treatise in Physics on Local Motion, in
which all effects pertaining to impetus, natural, violent and mixed motion are explained
and demonstrated by physical principles, by Pierre Mousnier, Doctor of Medicine, the
entire work taken from the lectures of Honore Fabri of the Society of Jesus, Lyon, Jean
Champion, Place Cambi, 1646.)
32 T. N.: The Latin title reads, On motion on diverse planes.
33 Id., ibid., p. 195, Axioma I.
34 Id., ibid., p. 196, Theorema V.
35 T. N.: The Latin title reads, A heavy body is heavier in descent the more direct its
motion is towards the center.
36 Pierre Mousnier, loc. cit., p. 219.
37 Id., ibid., Appendix secunda: De princlplO physico-statico ad movenda ingentia
pondera, p. 458. (T. N.: The Latin reads, Second Appendix: On the physical principle
of statics for the motion of very heavy weights.)
3K Mersenni Cogitata physico-mathematica. Tractatus mechanicus, p. 47.
39 Huygens et Roberval; Documents inedits par C. Henry. Leyde, 1880. (T. N.: The
French reads, Huygens and Roberval; Unpublished Documents.)
40 T. N.: The virtual center is the center of action of the forces.
41 T. N.: The French title reads, Project for a book on mechanics dealing with
compound motion.
42 Divers ouvrages de mathematique et de physique par messieurs de l'Academie Royale
des Sciences. A Paris, MDCXCIII. (T. N.: The French title reads: Diverse works on
Mathematics and Physics by the Honorable Members of the Royal Academy of
Sciences; Paris, 1693.)
43 T. N.: The French title reads, Observations on the compisition ofmotion.
44 Bibliotheque Nationale, Latin Collection, Ms. No. 7226 - Here is the exact content
of that manuscript: fol. 1: blank; fol. 2 (recto) to fol. 30 (verso): contains the Treatise on
Mechanics of D. D. Roberval, 1645; fol. 31 (recto) to fol. 33 (verso): A mechanical
demonstration - fol. 34 (recto) to fol. 54 (recto): A letter from M. de Roberval to M.
de Fermat, Counselor in Toulouse, containing several propositions on mechanics; fol.
54 (verso) to fol. 56 (verso): A proposition by M. de Roberval for determining centers
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of gravity sent to M. Fermat on April 1, 1645 - fol. 57 and 58 (blank), fol. 59 (recto)
to fol. 82 (recto): A Lemma Marvelously Suited for the Determination of Centers of
Gravity by M. de Roberval, 1645. (This fragment not only contains the lemma
mentioned here, but also its application to the determination of centers of gravity of
semi-circles, semi-circumferences, trochoids, of the curve associated with the trochoid
and finally the centers of gravity of the triangle.) fol. 82 (verso), 83 and 84 (blank); fol.
85 (recto) to fol. 207 (recto): Treatise on Mechanics and more specifically on the piping
and pumping of water, by M. de Roberval; fol. 207 (verso) to foL210 (recto): A
fundamental proposition on bodies floating on water. The remaining pages of the
notebook are blank.
Only one of these various texts has been published, it is the letter addressed to

Fermat, written on October 11, 1636 and deals with the dispute over the proposition
on geostatics. The beginning of this letter was published in Toulouse in 1679 in the
Various Works on Mathematics of M. Pierre de Fermat, pp. 138-141. The letter was
published in its entirety by Paul Tannery and Charles Henry in their edition of the
Oeuvres of Fermat, vol. 11, Correspondance, Art. XIV, p. 75. All of the other fragments
remain unpublished, but are certainly worthy of publication.
45 T. N.: The Latin reads, A Lemma. Cf. footnote No. 44, above.
46 This is the name by which Roberval designates the curve called the roulette by
Pascal and which we commonly call today the cycloid, according to the proposition of
Beaugrand.
47 T. N.: The Latin title reads, Book Four, which relates an extraordinary case of
plagiarism.
4H T. N.: The French title reads, History ofthe Roulette.
49 Oeuvres Completes of Blaise Pascal, vol. III, p. 338, Paris, Hachette, 1880.
50 T. N.: The French title reads, Fundamental Proposition on bodies floating in water.
51 T. N.: The French title reads, Project for a book on mechanics dealing with the
composition ofvelocities.
52 This treatise was also sold separately in Paris by Richard Charlemagne, Rue des
Amandiers, ala Verite Royalle, 1636.
53 T. N.: The French title reads, Treatise on Mechanics and especially on the piping and
pumping ofwater.
54 Roberval, lac. cit., folio 176, verso.
55 Pascal, Nouvelles experiences touchant Ie vide; au lecteur (Oeuvres completes de
Blaise Pascal, Ed. Hachette 1880; p. 1) (T. N.: The French reads, New Experiments on
the Vacuum.)
56 Cf. P. Duhem, "Bernardino Baldi, Roberval and Descartes" (Bulletin [talien, vol. VI,
January 1906).
57 Cf. Chapter XV, Second Period, p. 346.
5H BibliotMque Nationale (Latin collection), Ms. 7226, fol. 89, recto.
59 Bibliotheque Nationale (Latin collection), Ms. 7226, fol. 99, verso.
60 Because of an obvious error of the copyist, the text does not contain the bracketed
words, but merely reads, "than it."
61 Johannis Wallis Mechanica, sive de Motu. Tractatus geometricus. Pars prima, in qua
De motu generalia, De gravium descensu et motuum declivitate, De libra. Londini
MDCLXIX. - Pars secunda, quae est de centro gravitatis ejusque calculo. Landini,
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MDXLXX. - Pars tertia, in qua De vecte, ... , De cuneo, De elatere et resilitione seu
reflexione, De hydrostaticis et aeris aequipondio, variisque quaestionibus mechanicis.
Landini, MDCLXXI. - Reprinted in: Johannis Wallis Opera mathematica. Volumen
primum. Oxoniae, e Theatro Sheldoniano, MDCXCV. (T. N.: The Latin title reads,
John Wallis, Mechanics or On motion. A Treatise on Geometry. Part I, which treats of
motion in general, of the descent of heavy bodies and of the declivity of motion, and of
the balance. London, 1669. Part II, the determination of the center of gravity, London,
1670. Part III, which treats of the lever, ... , the wedge, of elasticity and resilience or
flexibility, of hydrostatics and equilibrium in the atmosphere and various qeustions of
mechanics. London, 1671 (Reprinted in John Wallis, Mathematical Works, Vol. I,
Oxford, at the Sheldon Theater, 1695.)
62 Johannis Wallis, Mechanica. Pars prima, Cap. 1; De motu generalia.
63 It is an obvious error when Wallis says in the text: tempus (time) instead of
celeritatem (velocity).
64 T. N.: The Latin reads, I call momentum that which is conducive to the production
of motion, impedimentum that which opposes motion or impedes it. Momentum
derives from the verb to move and impedimentum from the verb to impede. By
momentum I am referring to the (product of] motion force and velocity. The larger
these two are, the more motion will be effected. By impedimentum, I am referring to
the [product ofl resistance and distance (displacement). The larger these two are, the
more motion will be impeded.
65 Johannis Wallis, Mechanica, Pars prima, Cap. II. De gravium descensu et motuum
declivitate. (T. N.: The Latin title reads, John Wallis, Mechanics, Part I, Chapter II, On
the descent of heavy bodies and the declivity of motion.)
66 Johannis Wallis, Mechanica, Pars prima, Cap. I, Art. XII.
67 Johannis Wallis, Mechanica, Pars prima, Cap. II, Art. XII.
6H Id., ibid., Pars prima, Cap. II, Prop. V.
69 Id., ibid., Pars prima, Prop. VI and VIII.
70 T. N.: The Latin reads, Making the necessary adjustments, the same is true for any
motor force whatsoever.
71 Cf. id., ibid., Cap. III, On the balance, where the influence of Torricelli is obvious.
72 Cf. id., ibid., Cap. III, in particular, ct. especially Prop. XIV and the two scholia.
73 Johannis Wallis, Mechanica, Pars prima, Cap. II, Prop. XV.
74 Id., ibid., Prop. XVII, Scholium.
75 La Slatique ou la science des forces mouvantes, by Father Ignatius Gaston Pardies of
the Society of Jesus, Paris with Sebastien Mabre-Cramoisy, Royal Printer, Rue St.
Jacques, at the sign of the Storks, MDCLXXIII, Preface. (T. N.: The French title reads,
Statics or the Science ofmoving forces, 1673.)
76 Histoire de l'Academie Royale des Sciences, vol. I, from its founding in 1666 to
1686. Paris, MDCCXXXIII, p. 199.
77 R. P. Claudii Francisci Milliet Dechales, Camberiensis, e Societate Jesu, Cursus seu
Mundus mathematicus. Tomus secundus, complectens Geometriam practicam, Stati
cam, Geographiam, Tractat, de Magnete, Architectionicam civilem, Artem tignariam, et
Tractat. de Lapidum sectione. - Editio altera, ex manuscriptis Authoris aucta et
amendata, opera et studio R. P. Amati Varcin, ejusdem Societatis. - Lugduni, apud
Anissonios, Joan Posuel et Claud. Rigaud. MDCXC. The first edition, in two volumes,
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of the Cursus seu Mundus Mathematicus was published in Lyon in 1674; I was unable
to consult it. (T. N.: The Latin title reads, Father Claude Fran~ois Milliet Dechales,
Chambery, of the Society of Jesus, The Course or the Mathematical Universe, vol. n,
containing practical geometry, statics, geography, a treatise on the magnet, civil archi
tecture, carpentry, a treatise on stone cutting. Second Edition, enlarged and revised
from the manuscripts of the author through the efforts of Father Amatus Varcin of the
same society. Lyon, published by Anissonios, Jean Posuel, and Claude Rigaud, 1690.)
7H Ibid., Tractatus nonus: Statica, seu de Gravitate Terrae. Liber octavus: Proprietates
centri gravitatis et lineae directionis. (T. N.: The Latin title reads, Ibid., Ninth Treatise:
Statics or on the gravity of the earth. The Properties of the Center of Gravity and its
line of direction.)
79 Ibid., Tractatus octavus: Mechanica. Liber Primus: De vera cause et principio
augmenti potentiae per machinam. (T. N.: The Latin title reads, Ibid., Eighth Treatise:
Mechanics. Book I, On the True Cause and Principles for the increase of power by
machines.)
80 Cursus seu Mundus mathematicus. Tractatus nonus: Statica, seu de Gravitate Terrae.
Liber tertius De descensu gravium in planis inclinatis et funependulis: Definitiones 
Liber quartus: De aequiponderantibus. Propositio IV. (T. N.: The Latin title reads, The
Course or Mathematical Universe. Ninth Treatise: Statics, or on the gravity of the earth.
Book 3, On the descent of heavy bodies on inclined planes, and when suspended by
ropes. Definitions - Book 4, On equilibrium, Proposition IV.)
81 Ibid. tractatus nonus: Statica, seu de Gravitate Terrae. Liber quartus: De aequipon
derantibus. Prop. XV. (T. N.: The Latin reads, Ibid. Ninth Treatise: Statics or On the
Gravity of the Earth. Book 4: On equilibrium, Proposition XV.)
H2 Ibid. Tractatus octavus: Mechanica. Liber primus: De vera cause et principio
augmenti potentiae per machinam, p. 168. (T. N.: The Latin reads, Ibid. Eighth Treatise.
Mechanics. Book I, On the True Cause and Principles for the increase of power by
machines.)
H3 Ibid. Tractatus nonus: Statica seu Gravitate Terrae. Liber tertius: De descensu
gravium in planis inclinatis et funependulis. Propositio VIII. (T. N.: The Latin reads,
Ibid. Ninth Treatise: Statics, or On the Gravity of the Earth. Book 3: On the descent of
heavy bodies on inclined planes and w~en suspended by ropes. Proposition VIII.)
H4 Ibid. Tractatus octavus: Mechanica. Liber primus: De vera causa et principio
augmenti potentiae per machinam. Prop. XVII. (T. N.: The Latin reads, Ibid. Eighth
Treatise. Mechanics. Book I, On the True Cause and Principles for the increase of
power by machines.)
H5 Cursus seu Mundus mathematicus, loc. cit., Prop. XIX.
H6 Ibid., loco cit., Prop. XVIII.
H7 Ibid., loco cit., Prop. XVII.
HH Ibid., loco cit., Prop. XIV.
H9 Ibid. Tractatus octavus: Mechanica. Liber secundus: De vecte. Propositio X. (T. N.:
The Latin reads, Ibid. Eighth Treatise. Mechanics. Book 2: On the lever. Proposition X.
90 Ibid. Tractatus nonus: Statica seu de Gravitate Terrae. Liber tertius: De descensu
gravium in planis inclinatis et funependulis. Definitiones.
91 Cursus seu Mundus mathematicus. Tractatus nonus: Statica. Liber quartus: De
aequiponderantibus. Propositio IV.
92 Ibid. Liber tertius: De descensu gravium in planis inclinatis. Prop. II.
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93 Ibid., loc. cit., Prop. I.
94 Ibid., loco cit., Prop. X et XI.
95 Ibid. Liber octavus: Proprietates centri gravitatis et lineae directionis. Prop. I. (T. N.:
The Latin reads, Book Eight: Properties of the center of gravity and the line of
direction.)
96 Cursus seu Mundus mathematicus. Tractatus nonus: Statica. Liber quartus: De
aequiponderantibus. Petitio IV.
97 Ibid. Liber primus: Digressiones physicae. Digressio X. (T. N.: The Latin reads, Ibid.,
Book I: Digressions on Physics. Digression X.)
98 Terra machinis mota ejusque gravitas et dimensio. Dissertationes duoa quas ...
publice exposuit ... Antonius Comes de Montfort. Authore Paulo Casato e Societate
Jesu. Romae, typis haeredum Corbeletti, MDCLV. (T. N.: The Latin title reads, The
Earth Moved by Machines and its Gravity and Size. Two dissertations which ... were
publicly expounded ... by Anthony, Count of Montfort. By Paolo Casati of the Society
of Jesus, Rome, in the Press of the Corbeletti heirs, 1655.)
99 Terra machinis mota. Dissertationes geometricae, mechanicae, physicae, hydrosta
ticae, in quibus machinarum conjugatarum vires inter se comparantur; multiplici nova
methodo Terrae magnitudo et gravitas investigatur; Archimedes Terrae motionem
spondens ab arrogantiae suspicione vindicatur. Authore Paulo Casato, e Societate Jesu.
Romae, ex typographia Ignatii de Lazaris, MDCLVIII. (T. N.: The Latin title reads, The
Earth Moved by Machines. Dissertations on geometry, mechanics, physics, and hydro
statics, in which the capacities of integrated machines are compared. The magnitude
and gravity of the earth are investigated by a complex new method. Archimedes' vow to
move the earth is vindicated of the suspicion of arrogance. Paolo Casati of the Society
of Jesus, Rome. In the Press ofIgnatius de Lazaris, 1658.)
100 T. N.: Duhem translates Father Casati to read arrogantly: Give me a point of
support and I shall shake the earth.
101 R. P. Pauli Casati Piacentini, Societ. Jesu, Mechanicorum libri octo, in quibus uno
eodemque principio vectis vires physice explicantur et geometrice demonstrantur, atque
machinarum omnis generis componendarum methodus proponitur. Lugduni, apud
Anissonios, Joan. Posuel et Claudium Rigaud, MDCLXXXIV. (T. N.: The Latin title
reads, Father Paolo Casati of Plaisance, Society of Jesus, Eight Books on Mechanics in
which in accordance with a single principle, the forces of a lever are explained physically
and demonstrated geometrically. A method for constructing machines of every sort is
proposed. Lyon, published by Anissonios, Jean Posuel and Claude Rigaud, 1684.)
102 Id., ibid. Liber primus: De centro gravitatis. (T. N.: The Latin reads, Id., ibid. First
Book, The Center of Gravity.)
103 Les Manuscrits de Leonard de Vinci, Ms. I de la Bibliotheque de I'Institut, fol.
57(9), verso.
104 P. Casati, Mecanicorum libri octo, lib. II, Cap. I, p. 130. (T. N.: The Latin title
reads, Eight Books on Mechanics, Book II, Chapter I, p. 130.
105 P. Casati, Mecanicorum libri octo: liber primus: De centro gravitatis; Cap. XI:
Quomodo animalium motus ordinentur ex centro gravitatis. (T. N.: The Latin reads,
Chapter 11, How the motion of animals is governed by the center of gravity.)
106 Id., ibid. Cap. XIII: Qua ratione minuatur gravitatio in plano inclinato. (T. N.: The
Latin reads, Id., ibid. Chapter 13, How gravity diminishes on an inclined plane.)
107 Id., ibid. Cap. XIV: qua ratione corpus gravitet in planum inclinatum; p. 88. (T. N.:
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The Latin reads, Id., ibid. Chapter 14, How a body exerts weight on an inclined plane;
p.88.)
108 P. Casati, Mecanicorum libri octo; liber primus: De centro gravitatis: Cap. XV:
Inquiruntur rationes gravitationis corporum suspensorum; p. 95. (T. N.: The Latin
reads, The reasons for the gravity of suspended bodies are examined.)
109 Id., ibid., p. 100.
110 Id., ibid., liber secundus: De causis motus machinalis. (T. N.: The Latin reads, Book
Two, On the causes of motion in machines.)
111 Id., ibid., Cap. II: Impetus motum proxime efficientis natura explicatur; p. 142.
(T. N.: The Latin reads, Chapter n, The Nature of the Impetus causing motion is
explained in detail.)
112 P. Casati, Mecanicorum libri octo; liber secundus: De causis motus machinalis; Cap.
V; In quo machinarum vires sitae sint; pp. 171-172. (T. N.: The Latin title reads, Eight
Books on Mechanics. Book 2, On the cause of the motion in machines. Chapter V.
How the forces of machines are to be positioned.)
113 Sous forme de deux fragments que l'on trouvera dans: Cyrano de Bergerac, Histoire
comique des etats et empires de la lune et du solei! ou Voyage dans la lune. Nouvelle
edition par P. L. Jacob, Bibliophile, Paris, 1858. Ces deux fragments furent publies
pour la premiere fois, en 1662, dans les Nouvelles oeuvres de Cyrano. Rohault etait
certainement l'auteur de cette publication et de la preface qui y fut mise. (T. N.: The
French reads, In the form of two fragments which can be found in: Cyrano de Bergerac,
A Comical History of the States and Empires of the Moon and the Sun or A Voyage to
the Moon, New Edition by P. L. Jacob, Bibliophile, Paris, 1858. These two fragments
had originally been published in 1662 in the New Works of Cyrano. Rohault was most
certainly its publisher and the author of its preface.)
114 Traite de Physique, par Jacques Rohault. A Paris, chez la veuve de Charles Savreux,
libraire jure, au pied de la Tour de Notre Dame, a l'Enseigne des Trois Vertus,
MDCLXXI. (T. N.: The French reads, Treatise on Physics by Jacques Rohault. In Paris
at the widow of Charles Savreux, certified bookseller, at the foot of the Tower of Notre
Dame, under the Shop-sign of the Three Virtues, 1671.)
115 Preface written by Clerselier for the Oeuvres posthumes of his son-in-law Jacques
Rohault.
116 Oeuvres posthumes de M. Rohault. A Paris, chez Guillaume Desprez, rue St.
Jacques a S. Prosper, et aux Trois Vertus, au dessus des Mathurins. MDCLXXXII.
TraiN? des Mechaniques, pp. 479-594. (T. N.: The French reads, Posthumous Works
by M. Rohault. Paris, published by William Desprez, Rue St. Jacques, at S. Prosper and
at the Sign of the Three Virtues, above the Mathurins, 1682. Treatise on Mechanics, pp.
479-594.)
117 Rohault, Traite de physique. First part, Chapter X: On motion and rest.
118 This discourse, as well as the other works written by Father Pardies which we must
discuss later was reprinted in the Oeuvres of Father Ignatius Gaston Pardies, of the
Society of Jesus and contains: 1. The Elements of Geometry; 2. A discourse on local
motion; 3. Statics or the science of moving forces; 4. Two machines capable of making
quadrants; 5. A discourse on the understanding of animals, with an appendix in this
new edition of a table for understanding the Elements of Geometry according to Euclid.
Lyon, at the Brothers Bruyset, rue Merciere, at the Sign of the Sun, 1725.
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119 T. N.: The French title reads, Discourse on local motion.
120 La Statique ou la Science des forces mouvantes, by Father Ignatius Gaston Pardies
of the Society of Jesus. Paris, printed by Sebastian Mabre-Bramoisy, Royal Printer, Rue
St. Jacques, at the Sign of the Storks, 1673. Second edition, 1674. (T. N.: The French
title reads, Statics or the Science ofMoving Forces.)
121 Id., ibid., p. 40.
122 Id., ibid., p. 40.
123 Pardies, loco cit., pp. 110 and seqq.
124 Id., ibid., p. 99.
125 Id., ibid., p. 101.
126 Id., ibid., p. 102.
127 Traitez de Mechanique, de l'equilibre des solides et des liqueurs. (T. N.: The French
title reads, Treatise on Mechanics, on the equilibrium of solids and liquids.) In which
one will find the causes of the effects of all machines and can measure their forces in a
particular way; other new machines are also proposed in this treatise. By Father Lamy,
a priest of the Order of Orators. Paris, with Andre Pralard. Rue Saint Jacques, a
I'Occasion, 1679. Treatise on Mechanics, on the equilibrium of solids and liquids. New
Edition, including a new way of demonstrating the principal theorems of this science.
By Father Lamy, a priest of the Order of Orators. Paris, with Andre Pralard. Rue Saint
Jacques, a l'Occasion, 1687. This second edition is, in reality, the same as the first, but
the subtitle has been changed and an addition made which we will discuss in the
following article. A third edition bears the same title as the first, but is followed by
these words: Reviewed and corrected by the Reverend Father Bernard Lamy, a priest
of the Order of Orators. Paris, with Denys Mariette, rue Saint Jacques, a Saint
Augustin, 1701.
128 Lamy, loco cit., p. 74.
129 Id., ibid., p. 76.
130 Lamy, loco cit., p. 117.
131 Id., ibid., p. 79.
132 Lamy, loco cit., p. 121.
133 Id., ibid., p. 125.
134 T. N.: In this passage, Lamy shows his ignorance of the Law of the Composition of
Forces.
135 Id., ibid., p. 121.
136 Lamy, loco cit., p. 122.
137 Id., ibid., p. 131.
138 T. N.: Father Lamy means by "inclination" the length of the plane.
139 Id., ibid., p. 135.
140 T. N.: Father Lamy is referring to a device discussed earlier by Leonardo da Vinci.
(Cf. VoU, pp. 120-122.)
141 Id., ibid., p. 137.
142 Lamy, loco cit., p. 139.
143 Iohannis Alphonsi Borelli, Neapolitani Matheseos professoris, De motu animalium.
Pars prima. Romae, MDCLXXX. Pars secunda, Romae, MDCLXXXI. Editio altera.
Lugduni in Batavi, MDCLXXXV. (T. N.: The Latin title reads, On the motion of
animals, Giovanni Alphonso Borelli, Professor of Mathematics at Naples, Part I, Rome
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1680. Part II, Rome 1681. Second Edition, Leyden, 1685.) In 1710 Leyden an edition
was published to which was appended a dissertation, On the motion of muscles, from
the pen of Jean Bernoulli. In this supplemented form the work of Borelli was reprinted
several times, for example, in Naples in 1734. The last edition appeared in the The
Hague in 1743.
144 Id., ibid., Pars prima, Cap. XIII: Lemmata pro musculis squorum fibrae non sunt
parallelae et oblique trahunt. (T. N.: The Latin reads, Part I, Chapter 13, Lemmas on
muscles whose sinews are not parallel and pull obliquely.)
145 Id., ibid., Pars prima, Cap. XIII: Digressio (following proposition 69).
146 T. N.: The Latin reads, an illustrious modern Geometer.
147 Varignon, Project d'une nouvelle Mechanique. Avec un Examen de ['opinion de M.
Borelli sur les proprietez des Poids suspendus par des Cordes. In Paris, with the widow
of Edme Martin, Jean Boudot, and Estienne Martin, rue St. Jacques, at the sign of the
Golden Sun, 1687.
14M Cf. Chapter VI, Section 2.
149 Traiu! de Mechanique et specialement de la conduitte et elevation des eaux, by
Roberval (Bibliotheque Nationale, Latin collection, Ms. No. 7226, folio 145, recto.)
(T. N.: The French title reads, Treatise on Mechanics with emphasis on the piping and
pumping of water.)
150 Cf. Chapter XIII, Section 2.
151 Divers ouvrages de M. Personier (sic) de Roberval. Observations sur la Composition
des Mouvemens et sur let moyen de trouver les Touchantes des lignes courbes. First
printed in a collection, entitled: Divers ouvrages de mathematiques et de Physique par
Messieurs de l'Academie Royale des Sciences, Paris, 1693 and reprinted in the Transac
tions of the Academy of Sciences from 1666 to 1699; Vol. VI, 1732; p. 1. (T. N.: The
French titles read respectively, Diverse Works by M. Personier (sic) de Roberval,
Observations on the Composition of Velocities and on the means offinding the tangents
ofcurved lines.)
152 Roberval, loc. cit., p. 2.
153 Id., ibid., p. 9.
154 Roberval, loc. cit., p. 10.
ISS Id., ibid., p. 2.
156 Id., ibid., p. 3.
157 Roberval, loc. cit., p. 4.
158 Id., ibid., p. 6.
159 T. N.: The French title reads: Observations on the Composition ofVelocities.
160 Id., ibid., p. 90.
161 Foreword to the New Mechanics of Varignon.
162 T. N.: The French reads, History ofthe Republic ofLetters.
163 Pierre Varignon, A General Demonstration of the Use of the Block and Tackle,
which appeared in the Histoire de la Republique des Lettres, May 1687, p. 487. I was
unable to obtain this work. I am transcribing here what Lagrange says about it
(Mecanique analytique, First Part, Section 1, art. 13): "In this work, the author analyzes
the equilibrium of a weight supported by a rope which runs over a pulley and extends
out obliquely. He neither uses nor mentions the principle of the Composition of Forces,
but he uses known theorems on weights supported by ropes and he quotes the statics of
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Pardies and Dechales. In a second demonstration, he reduces the problem of the pulley
to that of the lever by considering the line which joins the two points at which the ropes
leave the pulley as a lever loaded with the weight attached to the pulley and with its
extremities being pulled by the two segments of the rope which is supported by the
pulley." One can see, as Lagrange remarks, that the foreword to the New Mechanics
"lacks in accuracy" by claiming that Varignon "made use of composite motion" in his
work on the block and tackle.
164 Project for a New Mechanics with an analysis of the view of Borelli on the
properties of weights suspended by ropes. (anonymous). Paris, with the widow of Edme
Martin, Jean de Baudot and Estienne Martin. Rue SI. Jacques, at the sign of the Golden
Sun, 1687.
165 The New Mechanics or Statics followed the Projet which was published in 1687.
Posthumous work of M. Varignon of the Royal Academies of France, England and
Prussia, Royal Lecturer in Philosophy at the Royal College and Professor of Mathe
matics at the College Mazarin. Paris, with Claude Jombert, Rue St. Jacques, at the
corner of the Rue des Mathurins, at the Statue of Notre Dame, 1725.
166 Varignon, Project for a New Mechanics, Preface.
167 Varignon, Project for a New Mechanics, p. 1,Axiom.
168 Varignon, New Mechanics or Statics, Vol. 1, p. 3.
169 Varignon, Project for a New Mechanics, p. 6 - New Mechanics or Statics, Vol. 1, p.
14.
170 Varignon, New Mechanics, First Section, Lemma XVI, vol. 1, p. 84.
171 Nouvelle maniere de demontrer les principaux theoremes des eIemens des Mechani
ques (a). Intended as a supplement to the Treatise on Mechanics by the Reverend
Father Lamy, of the Order of Orators. Paris with Andre Pralard, Rue SI. Jacques, a
I'Occasion, 1687. The several pages which make up this small work were indeed
appended to the earlier Traitez de Mechanique, of Father Lamy and the subtitle was
changed to read: Traitez des Mechanique, de l'equilibre des solides et des liqueurs. New
Edition. To which is added a new method of demonstrating the principle theorems of
this science. By Father Lamy, of the Order of Orators: Paris, with Andre Pralard, Rue
SI. Jacques, aI'Occasion, 1687.
172 T. N.: The French title reads, History ofScholarly Works.
173 The Nouvelle edition of the Traitez de Mechanique by Father Lamy ends with an
Extrait du Journal des S~avans, from Monday, September 13, 1688. A paper intended
as a response to what the author of the Histoire des ouvrages des S~avans stated in
April 1688, Art. 3 concerning a letter in which Father Lamy had proposed in the
preceding year a new method for demonstrating the Principal Theorems of the elements
of mechanics.
174 Philosophiae naturalis principia mathematica, auctore Isaaco Newtono, Londini,
MDCLXXXVII. (T. N.: The Latin title reads, Mathematical Principles of Natural
Philosophy by Isaac Newton, London, 1687.)
175 Newton, loco cit., Definitiones. Definitio IV.
176 T. N.: The Latin reads, This force exists because of action alone and does not
remain in the body after the action.
177 Newton, loc. cit., Axiomata, sive leges motus. Corollarium I. (T. N.: The Latin reads,
Axioms, or the laws of motion. Corollary I.)
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178 Euclides a omni naevo vindicatus sive conatus geometricus quo stabiliuntur prima
universae geometriae principia, auctore Hieronymo Saccherio, Societatis Jesu, in
Ticinensi Universitate Matheseos professore. Opusculum exmo Senatui Mediolanensi ab
auctore dicatum. Mediolani, MDCcxxxm. Ex typographia Pauli Antonii Montani.
(T. N.: The Latin title reads, Euclid Freed of Every Flaw or a Geometrical Enterprize, in
which the first principles of universal geometry are established by Girolamo Saccheri of
the Society of Jesus, Professor of Mathematics at the University of Pavia. A treatise
dedicated by the author to the illustrious Senate of Milan. Milan, at the Press of Paolo
Antonio Montane, 1733.)
179 E. Beltrami, "Un precursore italiano di Legendre e di Lobatchewski," Rendiconti
della R. Accademia dei Lincei, t. V, p. 441; 17 mars 1889. (T. N.: The Italian title
reads, An Italian Precursor to Legendre and Lobatchewski.)
180 P. Mansion, Analyse des recherches du P. Saccheri, S. J., sur Ie Postulatum
d'Euclide, Annales de la Societe Scientifique de Bruxelles, XlV- annee, 1889 - 1890,
seconde partie, p. 46. (T. N.: The French title reads, Analysis of the Research of Father
Saccheri, Society ofJesus, on the Postulate ofEuclid.)
181 Neo-Statica auctore Hieronymo Saccherio, e Societate Jesu, in Ticinensi Univer
sitate matheseos professore, excellentissimo Senatui Mediolanensi: MDCCVlII. Ex
typographia Josephi Pandulphi Malatestae. (T. N.: The Latin title reads, Neo-statics, by
Girolamo Saccheri, of the Society of Jesus, Professor of Mathematics at the University
of Pavia. For the illustrious Senate of Milan: 1708. At the Press of Joseph Pandulphus
Malatesta.) lowe to the Reverend Father Thirion the information about this rare work.
I take the opportunity here to express my sincerest appreciation to him.
IX2 Cf. Saccheri, Neo-Statica, liber IV, Introductio, p. 125.
IX3 Saccheri, Neo-Statica, Liber I, Definitiones, p. 2.
IX4 Id., ibid., lib. I, Definitio 7, p. 2.
IX5 Id., ibid., lib. I, Defmitio 9, p. 2.
IX6 Id., ibid., lib. I, Propp. IX, X, XI.
IX7 Id., ibid., lib. I, Propp. XXVII et XXVlII.
IXX Saccheri, Neo-Statica, Liber II, Definitio 5, p. 55.
IX9 Id., ibid., Liber III, Propositio I.
190 Id., ibid., Liber III, Admonitio, p. 84.
191 Mechanica sive Motus Scientia, analytice exposita, auctore Leonhardo Eulero,
Acaderniae Imper. Scientiarum membro et matheseos sublirnioris professore. Instar
supplementi ad Commentar. Acad. Scient. Imper. Petropoli, ex typographia Academiae
Scientiarum. An. 1736. (T. N.: The Latin title reads, Mechanics or the Science of
Motion, an analytical exposition by Leonhard Euler, Member of the Royal Academy of
Science and Professor of Higher Mathematics. A supplement to the Proceedings of the
Royal Academy of Science, St. Petersburg, at the Press of the Academy of Science,
1736J '
192 T. N.: Lagrange's very clear demonstration of this principle in the Mecanique
analytique attests to Duhem's assertion. His demonstration is based on what he calIs the
Principle of Pulleys and avoids any connection with Aristotelian dynamics.
193 Pierre Varignon, Nouvelle Mecanique ou Statique; section IX, Corollaire general de
la Theorie precedente. Tome II, p. 174. (T. N.: The French title reads, New Mechanics
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or Statics, section IX, General Corollary to the preceding Theory. vol. II, p. 174.) (T.N.
2: The communication was made on February 26, 1715. A printing error in Varignon's
Nouvelle Mecanique resulted in the incorrect date being assigned.)
194 One can see that Jean Bernoulli has given the name of virtual velocities to distances
and not to velocities. This unfortunate term still exists in mechanics and many authors
still use the name Principle of Virtual Velocities for a principle in which velocities play
no role and which should be called the Principle of Virtual Displacements. (T. N.:
Bernoulli (1667-1748) attempts to reconcile Ancient and Modern developments in his
formulation. Since a compatible but arbitrary system of displacements must be used to
apply the Principle of Virtual Displacements, all displacements can be divided by a
constant. If this constant is the time interval in which the displacement pattern takes
place, the resulting quantities have units of velocity. Thus, rather than force times
displacement, one has force times velocity. Therefore, the Principle of Virtual Displace
ments can be called the Principle of Virtual Velocities. This development ignores the
fundamental conceptual differences between the two principles.)
195 The reader will note that Jean Bernoulli introduces several inaccurate assertions
and useless restrictions in his statement. We shall not dwell any further on this trifling
matter.
196 Varignon, Nouvelle Mecanique ou Statique, Vol. II, p. 174.
197 T. N.: The fourth order differential equation, which defines the shape of the
deflected surface of a plate, requires four boundary conditions to be satisfied. Prior to
Kirchhoff's reformulation of the problem, there were, it was thought, six physical
boundary conditions.
19M T. N.: Larzac is the name of a large region in the Massif Central of France.
199 T. N.: The Vissec is a dry river; the Foux is the name of the source of the Vis River.
200 T. N.: The Cevennes is a mountain range in the southeast of that region.
201 T. N.: Claude Bernard (1813-1878), French physiologist, who showed that living
processes are physical phenomena and can be studied using the experimental method.

FOOTNOTES TO NOTE A

I T. N.: G. the Loeb Classical Library translation. Aristotle, The Physics, Vol. II, 249b,
p. 257. If then A is the moving agent, B the mobile body, C the distance traversed and D
the time taken, then A will move one half B over the distance 2C in time D and A will
move one half B over the distance C in time one half D; for so the proportion will be
observed.
2 Bolletino di Bibliografia e Storia della Scienze Matematiche, pubblicato per cura di
Gino Loria. Anno IX, p. 13, 1906.
3 T. N.: G. the Loeb Classical Library translation. Aristotle, Minor Works. Mechanical
Problems, 3.850b 5, p. 353 ... so that by the use of the same force, when the motive
force is farther from the [fulcrum ofthe) lever, it will use a greater movement.
4 Simplicii in Aristotelis Physicorum libros quatuor posteriores commentaria edidit
Hermanus Diels: Berolini, 1895. Commentaria in Physicorum VII, 5, p. 1110. (T. N.:
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The Latin title reads, The Commentaries of Simplicus on the Last Four Books of
Aristotle's Physics, edited by Hermann Diels; Berlin 1895. Commentaries on the
Physics, Book VII, 5, p. 1110.)
5 T. N.: Duhem has accurately translated the original Greek of Simplicius.
6 T. N.: Cf. Loeb Classical Library, Aristotle, The Physics, 250a7, p. 257.
7 T. N.: Duhem's sentence is an accurate translation of the Latin sentence which
follows it.
x T. N.: Cf. the Loeb Classical Library. On the Heavens, I. vi, 273b 32, pp. 49-51. W.
K. C. Guthrie rather awkwardly, if not inaccurately translates: And the proportion
which the weights bear to one another, the times too (sic!) will bear to one another, e.g.
if the half weight covers the distance in x, the whole weight will cover in x/2. Duhem's
translation is a more accurate rendering of the Greek.
9 Bernardini Baldi Urbinatis, Guastallae abbatis, In mechanica Aristotelis problemata
exercitationes; adjecta succincta narratione de autoris vita et scriptis; Moguntiae, typis
et sumptibus viduae Joannis Albini, MDCXXI; p. 36. (T. N.: The Latin title reads,
Bernardino Baldi of Urbino, Abbot of Guastalla Exercises on the Mechanical Problems
ofAristotle, with a brief narration of the life and works of the author; Mainz, printed at
the expense of the widow of Johan Albin, 1621, p. 36.)
10 Joannis de Guevara, c1er. reg. min., In Aristotelis mechanicas commentarii, una cum
additionibus quibusdam ad eandem materiam pertinentibus; Romae, apud Jacobum
Mascardum, MDCXXVII; p. 89. (T. N.: The Latin reads, John of Guevara, a member of
the minor clergy, Commentaries on Aristotle's Mechanical Problems, with Appendices
Pertaining to the Same Subject-Matter; Rome, Jacob Mascardus, 1627, p. 89.)
II T. N.: The Latin reads, "in this position."
12 Cf. Vol. I, pp. 173-183.
13 Cf. VoU, p. 173.
14 Cf. Vol. I, p. 238.
15 Cf. Vol. I, pp. 236-238.
16 Cf. Vol. II, pp. 386-387.
17 T. N.: Cf. the Loeb Classical Library translation. Aristotle. The Physics, Vols. I, IV,
VIII, 215a25, p. 351. We see that the velocity of a moving weight or mass depends on
two conditions (1) The distinctive nature of the medium-water, earth, or air - through
which the motion occurs, and (2) the comparative gravity or levity of the moving body
itself, other conditions being equal.
IX G. Milhaud, Etudes sur la pensee scientifique chez les Grecs et chez les Modernes;
Paris, 1906, pp. 112-117. (T. N.: The French reads, Studies on the Scientific Thought
ofthe Greeks and the Moderns.)
19 T. N.: The Latin term means "mathematicians."
20 Cf. the Loeb Classical Library, Aristotle, The Physics, Vol. IV, viii, 215b 1, pp.
351-353.
21 Cf. Vol. I, pp. 81-83.
22 T. N.: Cf. the Loeb Classical Library, Aristotle, Minor Works, Mechanical Problems,
1, 849a, 6, p. 345-347.
23 T. N.: Cf. the Loeb Classical Library, Aristotle, Minor Works, Mechanical Problems,
1, 849a, 16 p. 343. The lesser radius always moves in its unnatural direction.
24 T. N.: Cf. the Loeb Classical Library, Aristotle, Minor Works, Mechanical Problems,
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1, 849b, 16, pp. 345-347. Nor will the proportion between the natural and unnatural
movements be the same in the two circles. From what has already been said, the reason
why the point more distant from the center travels more quickly than the nearer point,
through impelled by the same force, and why the greater radius describes the greater are,
is quite obvious.

FOOTNOTES TO NOTE B

25 Cf. Vol. I, Chapter IV, Section 2, pp. 61-71.
26 Cf. Vol. I, note A.
27 Le Livre des appareils pneumatiques et des machines hydrauliques by Philo of
Byzantium. Edited and translated by Baron Carra de Vaux; Paris, 1902. Introduction,
pp.6 and 9. (T. N.: The French title reads, Book on Pneumatic Apparati and Hydraulic
Machines.)
28 Ibid., p. 9.
29 Cf. Vol. I, p. 65 and Vol. II, p. 449.
30 Pappi Alexandrini Collectiones quae supersunt edidit Fridericus Hultsch. Volume
III, p. 1068.
31 Le Livre des appareils pneumatiques et des machines hydrauliques by Philo of
Byzantium, edited and translated by Baron Carra de Vaux; Paris, 1902. Introduction,
pp.5 and 14.
32 Les Mecaniques ou l'Elevateur of Hero of Alexandria, published for the first time
from the Arabic version of Qusta ibn Luqa and translated into French by Baron Carra
de Vaux. Excerpt from the Journal Asiatique. Paris, 1894. a. in particular, pp. 25-29
of the splendid introduction by Baron Carra de Vaux. (T. N.: The French title reads,
The Mechanics or the Elevator.)
33 Les Mecaniques ou l'Elevateur of Hero of Alexandria, pp. 87-90.
34 Id., p. 106.
35 Les MI!caniques au l'Elevateur of Hero of Alexandria, p. 28.
36 T. N.: The Greek title reads, On the Equilibrium of Planes or The Center of Gravity
of Planes. Cf. The Works of Archimedes, ed. by T. L. Heath, Dover Publishers, New
York,1912,pp.188-220.
37 T. N.: The Greek term means "of equal inclination."
38 Id., p. 74.
39 The name "Poseidonios" as well as his status as a Stoic philosopher are doubtful. All
the more so, because the person mentioned here seems to be considered by Hero as
preceding Archimedes, and because Posidonius is posterior to Archimedes. (T. N.:
Posidonius' dates are ca. 135 B.C. to ca. 51 B.C., Archimedes' ca. 287 B.C. to 212
B.C)
40 Archimedis Opera omnia, ed. Heiberg, vol. II, p. 306.
41 Pappi Alexandrini Collectiones quae supersunt edidit Fridericus Hultsch; volumen
III; Berolini, 1878. Lib. VIII, prop. 2; pp. 1034-1035.
42 Ch. Thurot, Recherches historiques sur le principe d'Archimede. Deuxieme article
(Revue Archeologique, Nouvelle Serie, 1. XIX, p. 47, 1869). (T. N.: The French title
reads, Historical Investigations on the Principle ofArchimedes.)



578 FOOTNOTES

43 Pappi Alexandrini Collectiones quae supersunt edidit Fridericus Hultsch, volumen
III, p. 1025; Berolini, 1878.
44 T. N.: The Greek title means, On Floating Bodies.
45 Cf. YoU, p. 61.
46 Bulletino de Bibliogra[ia e di Storia delle Scienze Matematiche e Fisiche pubblicato
da B. Boncompagni, Torno lV, 1874, p. 472, en note.
47 T. N.: The Latin reads, The Book ofCaraston on Euclid's On Weight.
48 Bibliotheque Nationale, Ms. 7377 B (fonds Latin).
49 The Latin title reads: On the Sector (of a circle).
50 Bulletino de Bibliogra[ia e di Storia delle Scienze Matematische e Fisiche pubblicato
da B. boncompagni. Torno IV, 1871, p. 474, en note.
51 Maximilian Curtze, Ober die Handschrift R. 4' 2, Problematum Euclidis explicatio
der Konig!. Gymnasialbibliothek zu Thorn (Zeitschrift [iir Mathematik und Physik,
XIII,er Jahrg., 1868; Supplement, p. 64).

FOOTNOTES TO NOTE C

52 Vide infra: Note D, Sur les Mecaniques de Heron d'Alexandrie, et note F, sur Ie
Precurseur de Leonard de Vinci.
53 Les dix livres de l'Architecture de Vitruve, corrigez et traduits nouvellement en
Fran~ois, avec des notes et des figures. Seconde edition reveue, corrigee et augmentee
Par M. Perrault de I'Academie Royalle des Sciences, Docteur en medecine de la
Faculte de Paris. A Paris, chez Jean Bapiste Coignard. Imprimeur ordinaire du Roy, rue
S. Jacques, a la Bible d'Or., MDCLXXXlV. (T. N.: The French reads, the Ten Books on
Architecture of Vitruvius, recently corrected and translated into French, with notes and
drawings. Second revised, corrected and enlarged edition by M. Perrault of I'Academie
Royale des Sciences, Doctor of Medicine of the Faculty of Paris. Paris at Jean Baptiste
Coignard, Printer to the King, rue St. Jacques at the sign of the Golden Bible, 1684.)
54 Chapter VIII, On the force which the straight line and circular curve possess in
machines designed to carry loads.
55 Vitruvius, ibid., p. 309.
56 T. N.: The Latin reads, in a geometrical fashion, geometrically.
57 Vitruvius, loco cit., p. 310.
58 Id., ibid., p. 312.

FOOTNOTES TO NOTE D

59 Pappi Alexandrini Collectiones quae supersunt e libris manuscriptis edidit, latina
interpretatione et cornmentariis instruxit Fridericus Hultsch; Volumen III; Beroline
1878; pp. 1115-1135. (T.N.: The Latin title reads, The Extant Collected Works of
Pappus of Alexandria, edited from the Manuscripts by Friedrich Hultsch; Vo!. III;
Berlin 1878;pp.1115-1135.)
60 Les Mecaniques ou I'Elevateur de Heron d'Alexandrie, publiees pour la premiere
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fois sur la version arabe de Qosta ibn Liiqa et traduites en fran\;ais par M. Ie Baron
Carra de Vaux; Extrait du Journal Asiatique; Paris, 1894. (T. N.: The French reads, The
Mechanics or the Elevator of Hero of Alexandria; published for the first time based on
the Arabic version of Qusta ibn Luqa and translated into French by Baron Carra de
Vaux, Extract from the Journal Asiatique; Paris, 1894.)
61 Vide supra, note B.
62 Heron d'Alexandrie, Les Mecaniques ou l'Elevateur, p. 108 et p. 112.
63 Vide supra, note B.
64 Heron d'Alexandrie, Les Mecaniques ou l'Elevateur, Introduction, pp. 22-27.
65 Heron d'Alexandrie, Les Mecaniques ou l'EJevateur, Livre II, Section IV.
66 Heron d'Alexandrie, Les Mecaniques ou I'EJevateur, p. 107.
67 Vide supra, Vol. I, pp. 54-55.
6R Heron d'Alexandrie, Les Mecaniques ou l'Elevateur, p. 127.
69 Heron d'Alexandrie, loc. cit., pp. 131....:;132.
70 Heron d'Alexandrie, loc. cit., pp. 134-135.
71 Heron d'Alexandrie, loc. cit., pp. 136-137.
72 Heron d'Alexandrie, loc. cit., pp. 106-109.
73 Heron d'Alexandrie, loc. cit., p. 137.
74 Heron d'Alexandrie, loc. cit., pp. 149-15l.
75 T. N.: The vertical line is to one side of the hanging weight. If the cord is grasped
closer to the point of support, the described arc is longer and the ascent of the weight
greater than if the cord is grasped further from the point of support. Hero appears to
have in mind the ancient saying commonly used to explain mechanical advantage in
machines, to wit, "what is gained in force is lost in velocity."
76 T. N.: Hero used a concept close to our modern "real energy." His contribution to
mechanics is small because his works were rediscovered only recently and did not play
a role in the development of modern mechanics.

FOOTNOTES TO NOTE E

77 Bernardino Baldi, Cronica de'Matematici, overo epitome dell'istoria delle vite loro,
Urbino, per A. Monticelli, 1707. Art: Giordano.
78 T. N.: The Italian reads, Giordano, from a place called Hemore, is called Hemorario.

FOOTNOTES TO NOTE F

79 T. N.: Duhem later retreated from this designation. In his Etudes sur Leonard da
Vinci, vol. I, p. 316, Duhem concludes that Leonardo did not have access to Book I of
the De ratione ponderis. Consequently, he suggests the title, "the Precursor of Simon
Stevin."
80 Cf. Vol. I, Chapt. VII, Section 3; pp. 98-107.
81 Etudes sur Leonard de Vinci - VII. La Scientia de ponderibus et Leonard de Vinci.
82 T. N.: Duhem is referring to the Liber Jordani de ratione ponderis.
83 T. N.: Duhem has not presented convincing evidence that a more mature lordanus
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had not revised his earlier work. Cf. Science in the Middle Ages, edited by David C.
Lindberg, The Science ofWeights, p. 197.
X4 Les Mecaniques ou rElevateur de Heron d'Alexandrie, publiees et traduites par Ie
Baron Carra de Vaux. Extrait du Journal Asiatique. Paris, 1894, Livre II, section IV.
X5 Axel Anthon Bjombo, Studien iiber Menelaos' Spharik. Beitrage zur Geschichte der
Spharik und Trigonometrie der Griechen (Abhandlungen zur Geschichte der Mathe
matischen Wissenschaften mit Einschluss ihrer Anwendungen, begriindet von Moritz
Cantor, XlVtes Heft, S. 147; 1902).
86 Les Mecaniques ou I'Elevateur de Heron d'Alexandrie, pp. 87ff.

FOOTNOTES TO NOTE G

87 Cf. Vol. II, p. 286.
88 Cf. Vol. II, p. 297.
89 Maximilian Curtze, Uber die Handschrift R. No.4, 2, Problematum Euclidis ex
plicatio der Konigl. Gymnasialbibliothek zu Thorn (Zeitschrift /iir Mathematik und
Physik, XIII'"' Jahrg., 1868; Supplement, p. 85).

FOOTNOTES TO NOTE H

90 Vide supra, Vol. II, pp. 317-319.
91 Questio de modalibus Bassani Politi. Tractatus proportionum introductorius ad
calculationes Suisset. Tractatus proportionum Thome Braduardini. Tractatus propor
tionum Nicholai Oren. Tractatus de latitudinibus formarum ejusdem Nicholai, Trac
tatus de latitudinibus formarum Blasii de Parma, Auctor sex inconvenientium, Colo
phon: Venetiis, mandato et sumptibus heredum quondam Nobilis Viri D. Octaviani
Scoti Modoetiensis per Bonetum Localtellum Bergomensem presbyterum. Kalendis
Septembribus 1505. Contenta in hoc libel/o: Arithmetica communis ex Severini Boetii
Arithmetica per M. Johannem de Muris compendiose excerpta - Tractatus brevis
proportionum: abbreviatus ex libro de proportionibus D. Thome Braguardini Anglici,
Tractatus de latitudinibus formarum secundum doctrinam Magistri Nicolai Horem.
Algorithmus M. Georgii Peurbachii in integris - Algorithmus Magistri Joannis de
Gmunden de minuciis phisicis, Colophon: Impressum Vienne per Joannem Singrenium
expensis vero Leonardi et Luce Alantse fratrum, Anno Domini MDXV. Decimonono
die Maii. (T.N.:The Latin title reads, An Inquiry into Modalities by Bassanus Politus,
An Introductory Treatise on Proportions by Suisset, A Treatise on Proportions by
Thomas Bradwardine, A Treatise on Proportions and A Treatise on the Extension of
Forms by Nicholas Oresme, A Treatise on the Extension ofForms by Blasius of Parma,
the author of Six Inconsistencies. Colophon: Venice, printed by the Elder Bonetus
Locatellus Bergomenses at the order and expense of the heirs of the late and noble
Octavian Scotus, September 1505. The passage referred to in our text is not contained
in the following editions: This treatise contains: General Mathematics, largely excerpted
from the Mathematics of Severinus Boetius by Johannis de Muris, Brief Treatise on
Proportions: An Abbreviation of the Book on Proportions by Thomas Bradwardine,
Treatise on the Extension of Forms According to the Doctrine of Nicolas Oresme.
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Algorithm for Integers by George Peurbach Algorithm for Physics by Johan of Gmun
den, Colophon: Printed at Vienna by Johan Singrenius at the expense of the brothers
Duchessa di Berri; ed unica Sorella dell'Invitissimo e Christianissimo Henrico secondo
92 T. N.: Using the earth's mean radius as 6371.3 km and the moon's mean radius at
1738.3 km, the ratio of the two is about 3.7.
93 Thimonis Quaestiones in libros Metheororum; in lib. I, quaest. VI: Utrum quatuor
elementa sint continue proportionalia) (T. N.: The Latin title reads, Themon's Questions
on the Books on Meteors; On Book I, Question VI; Whether the Four Elements are in a
Proportional Relation?)
94 R. P. F. Joannis Duns Scoti, Docotoris subtilis, Ordinis Minorum, Meteorologicorum
libri quatuor. Lugduni, sumptibus Laurentii Durand, MDCXXIX. Lib. I, quaest. XIII:
Utrum quatuor elementa sint proportionalia continue? Vide infra, Note I. (T. N.: The
Latin title reads, John Duns Scotus, the subtile Doctor, of the Minor Order, Four Books
on Meteors, London, at the expense of Lawrence Durand, 1639. Book I, Question XIII:
Whether the Four Elements are in a Proportional Relation?)
95 Di Nonio Marcello Saia dala Roccha Gloriosa in Lucania Ragionamenti sopra la
celeste sfera in lingua Italiana comune. Con uno breve Tractato dela compositione dela
sfera materiale alia Molto Eccellente e Magnanima Madama Margherita di Franza,
Duchessa di Berri; ed unica Sorella dell'Invitissimo e Christianissimo Henrico secondo
Re di Franza. Parisiis, Veneunt apud Franciscum Bartholomaeum, sub Scuto Veneto.
1552. Ragionamento primo. (T. N.: The Italian and Latin title reads, By Nonio Marcello
Saia of the Roccha Gloriosa in Lucania Reasonings on the Heavenly Sphere in the
common Italian language. With a short Tract on the composition of the Material Sphere
to the very Excellent and Magnamimous Madame Margherita of France, Duchess of
Berry, and the sole sister of the very Admired and Christian Henry II, King of France,
Paris. Francisco Bartholomeo, under the Seal of Venice 1552. First printing.)

FOOTNOTES TO NOTE I

96 Cf. Vol. II, Chapter XV, footnote 21.
97 R. P. F. Joannis Duns Scoti, Doctoris subtilis, Ordinis Minorum, Opera omnia quae
hucusque reperiri potuerunt, collecta, recognita, notis, scholiis, et commentariis illu
strata, a P. P. Hibemis, collegii Romani S. Isidori professoribus, jussu et auspiciis Rmi
P. F. Joannis Baptistae a Campanea, ministri generalis. Lugduni, sumptibus Laurentii
Durand. MDCXXXIX; 8 vol., in-fol. (T. N.: The Latin title reads, The Reverend Father
John Duns Scotus, the Subtle Doctor of the Minor Order: The Complete Works
discovered so far. Collected, edited and provided with notes, scholia and commentaries
by the Irish Professors of the Roman College, St. Isidor. Under the order and auspices
of the most Reverend Father John Baptiste of Campanea, the Minister General. Lyon,
at the expense of Lawrence Durand. 1639; 8 vols. in folio.)
9H R. P. F. Joannis Duns Scoti, Doctoris subtilis, Ordinis Minorum, Diludicissima
expositio et Quaestiones in octo libros Physicorum Aristotelis. Operum tomus II. (T. N.:
The Latin title reads, The Reverend Father John Duns Scotus, the Subtle Doctor of the
Minor Order: A Clear Exposition and Questions on the Eight Books of the Physics, vol.
II of the Works.)
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99 Censura R. P. F. Lucae Waddingi Hiberni de sequenti opere (Joannis Duns Scoti
Opera, tomus II). (T. N.: The Latin title reads, The Reverend Father Luke Wadding: A
Critique ofthe Appended Work, in The Complete Works of John Duns Scotus, vol. II.)
IOU R. P. F. Joannis Duns Scoti, Doctoris subtilis, Ordinis Minorum, Meteorologicorum
libri quatuor. Opus quod non antea lucem vidit, ex Anglia transmissum. Advertat
compator librorum hunc tractatum, aequo tardius ad nos delatum, ante tomum III
ponendum esse ne erret. (T. N.: The Latin title reads, The Reverend Father John Duns
Scotus, the Subtle Doctor of the Minor Order: Four Books on the Meteorology, a
previously unpublished work sent from England. Let the Binder of these Books be
advised of this treatise, which has reached us so late, lest he fail to place it before vol.
III.)
101 R. P. F. Lucae Waddingi de hoc Meteororum opuscuia censura. (T. N.: The Latin
title reads, The Reverend Luke Wadding: A Critique ofthe Treatise on Meteors.)
1U2 Lib. I. quaest. 10.
103 Lib. I. quaest. 13.
IU4 Heinrich Suter, Eine bis jetzt unbekannte Schrift des Nic. Oresme Zeitschrift fur
Mathematik und Physik, XXVII, Jahrgang; 1882. Historisch-literarische Abtheilung, p.
121. (T. N.: The German title reads, A previously unknown work ofNic. Oresme.)
105 T. N.: The Latin reads, These venerable questions of Master Oresme were written
on the Books on Meteorology of the Peripatetic Aristotle, Sept. 1459.
106 Joannis Duns Scoti Meteorologicorum libri quatuor, p. 33. (T. N.: The Latin title
reads, John Duns Scoms, Four Books on Meteors, p. 33.)
107 T. N.: The Latin reads, Whether the ocean always flows from North to South?
108 Joannis Duns Scoti Meteorologicorum libri quatuor, pp. 62-63.
109 T. N.: The Latin reads, Let the waters be gathered together ... Cf. Genesis 1, 9.
110 On page 297, footnote 113 of Vol. II, we mentioned two collections of astronomi
cal treatises in which the Tractatus de Sphaera of Campanus can be found. These
collections were printed in Venice in 1528 and in 1531. In both of these collections,
the text of the Tractatus de Sphaera is the same.
III Cf. Vol. II, p. 299.
112 Cf. Vol. II, pp. 293-294.
113 Cf. Vol. II, p. 297, et infra, note M.
114 Vide supra, Vol. II, pp. 293-294.
115 Vide supra, Vol. II, pp. 305-307.
116 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. F of
the Bibliotheque de I'Institut, folio 22, verso.
117 Les Manuscrits de Leonard de Vinci, published by Ch. Ravaisson-Mollien, Ms. F of
the Bibliotheque de I'Institut, folio 62, verso. Cf. Del molO e misura dell'acqua, lib. I,
capito XIV, p. 280.
118 P. Duhem, Themon Ie fils du lui! et Leonard de Vinci (Bulletin ltalien, Vol. 6, April
and July, 1906.)
119 T. N.: The Latin reads, Whether the waters of springs and rivers arise from rain
water which has collected in the cavities of the earth? - Whether spring water in the
cavities of the earth arises from evaporated air?
12U T. N.: The Latin reads, Whether the waters of springs and rivers arise in the cavities
of the earth?
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FOOTNOTES TO NOTE J

583

121 Treatise on the Sphere, translated from Latin into French by Master Nicolas
Oresme, the very learned and renowned philosopher. Sold in Paris in the Rue Judas by
Master Simon du Bois, printer. (In fine: Printed in Paris by Master Simon du Bois.) 
This small volume printed in Gothic type, bears neither a date of publication nor
pagination.

FOOTNOTES TO NOTE K

122 T. N.: The Latin title reads, XIV Very Subtle Questions on John of Sacrobosco's
Treatise on the Sphere.
123 T. N.: The Latin title reads, It is to be asked whether the heaven and the four
elements are spherical.
124 T. N.: The Latin reads, It is to be asked whether the motion of the prime moving
body from East to West around the earth is uniform.
125 T. N.: The Latin reads, Authorities on Weight.

FOOTNOTES TO NOTE L

126 Questiones subtilissime Alberti de Saxonia in libros de Caelo et Mundo, Colophon.
Expliciunt questiones ... Impresse autem Venetiis Arte Boneti de Locatellis Berg
monensis, impensa vero nobilis viri Octaviani Scoti Modoetiensis, Anno salutis nostre
1492, nono Kalen. novembris. ducante inclito principe Augustino Barbadico. In librum
IT quaestio xnIT, in fine.

FOOTNOTES TO NOTE M

127 We have seen (Vol. IT, p. 293) that Marsilius of Inghen is among those sharing this
view.
128 T. N.: The Latin reads, This explanation is to be attributed to Campanus.
129 T. N.: This title came from Peter of Abano's mediation of a dispute concerning the
place of the study of medicine in a university curriculum. His book is a compilation of
the disputations on this subject in Paris.
130 T. N.: The Latin title reads, Conciliator of Philosophers, but principally of Physi
cians.
131 John of Jandun was still in Paris in 1324. [Cf. Denifle and Chatelain, Chartularium
Universitatis Parisiensis: tomus IT, sectio prior, p. 303 (en note): Parisiis, 1891.]

FOOTNOTES TO NOTE N

132 Cf. Vol. I, pp. 25 and 135.
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133 Cf. Vo!. II, p. 278.
134 We were unable to study any edition of these Questions dated prior to 1516.
However, in the edition which he published in Paris in the same year, George Lokert
declares that they had already been published by the Venetians. Indeed, the edition
printed in Venice in 1516 by Boneto Locatelli begins with a dedicatory epistle dated
1504. In it, we learn that this work must have been printed in 1504 as well. Further
more, according to the Repertorium bibliographicum of Hain, it was printed in Padua
as early as 1493.
135 This treatise was printed in Bologna in 1494 by Benedictus Hectoris. Hieronymus
Scotus printed it under the title: De proportione motum quaestio in the three editions
of: Alexandri Achillini Bononiensis Opera omnia which he published in Venice in
1545, 1551, and 1568. The edition of the Opera omnia published in Venice in 1508
without the name of the printer does not include this treatise.
136 AlexandriAchillini Opera omnia, ed. 1545, fo!' 194, col. b.
137 Id., ibid., loco cit., fo!' 194, col. C.
138 II Codice Atlantico di Leonardo da Vinci nella Biblioteca Arnbrosiana di Milano,
riprodotto e pubblicato dalla Regia Accademia dei Lincei; Ulrico Hoepli, Milano,
MCDXCIV, fo!. 225, recto b (34). Cf. Mario Baratta, Leonardo da Vinci ed i Problemi
della Terra, Torino, 1903, p. 9. (T. N.: The Italian title reads, The Codex Atlanticus of
Leonardo da Vinci in the Arnbrosiana Library of Milan, reproduced and published by
the Regia Accademia dei Lincei; Ulrico Hoepli, Milano, 1494, fo!. 225, recto b (34).
Mario Baratta, Leonardo da Vinci and the Problems Concerning the Earth, Turin,
1903, p. 9.)
139 T. N.: The Italian reads, The Proportions of Achillini with the considerations of
[Giovanni] Marliani are given by Mr. Fazio.

FOOTNOTES TO NOTE 0

140 Vide supra, VoU, pp. 122-130.
141 La Scientia de ponderibus et Leonard de Vinci (Etudes sur Leonard de Vinci,
Premiere serie, Paris, 1907).

FOOTNOTES TO NOTE P

142 Cosmotheoriae liber primus, et elementorum, et caelestium corporum magnitu
dines, situs, motusque universim aperiens. De omnimoda terrae et maris dispositione,
cap I (Joannis Fernelii Ambianatis Cosmotheoria, fo!. 1). (T. N.: The Latin reads, Book
One of the Cosmotheory, which reveals alI of the magnitudes, sites and motions of both
the elements and the heavenly bodies. On the overall configuration of the earth and the
sea, Chapter! (The Cosmotheory of Jean Femel ofAmiens, folio 1).)
143 Joannis Fernelii Ambianatis Cosmotheoria, libros duos complexa. Prior, mundi
totius et formam et compositionem: ejus subinde partium (quae elementa et caelestia
sunt corpora) situs et magnitudines: orbium tandem motus quosvis solerter referat.
Posterior ex motibus, siderum loca et passiones disquirit: interspersis documentis haud
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paenitendum aditum ad astronomicas tabulas suppeditantibus. Haecque seiunctim
tandem expedite praebet Planethodium. Cuique capiti, perbrevia, demonstrationum
loco, adjecta sunt scholia. Parisiis, in aedibus Simonis Colini, 1528. (T. N.: The Latin
title reads, The Cosmotheory of Jean Fernel of Amiens, comprising two books, The
first pertains to the shape and composition of the entire Universe, to the sites and
magnitudes of its subordinate parts (which are the elements and the hevenly bodies),
and finally to the various motions of the orbs. The second investigates based upon these
motions, the locations and behavior of the stars, interspersed with documents in
support of this respectable approach to astronomical tables, which are presented
separately and clearly. In place of demonstrations, brief scholia have been added to
each chapter. Paris, at the residence of Simon Colin, 1528.)
144 Fernel, loco cit., De aeris ignisque situ, Chap. II. (T. N.: The Latin reads, Fernel, loco
cit., On the Locus of Air and Fire, Chapter II.)

FOOTNOTES TO NOTE 0

145 Doctrinae physicae elementa, sive initia, Philippo Melanchthone auctore; post
omnes alias editiones ex postrema autoris recognitione, cum locuplete rerum et ver
borum in his memorabilium indice. Lugduni, apud Joan. Thornaesium et Gul. Gazium,
MCLII. Ouis est motus mundi, p. 60. (T. N.: The Latin title reads, Philip Melanchthon:
The Elements or Foundations of the Theory of Physics, edited using all the most recent
editions of the author and provided with a complete index of the significant subjects
and terms in those. Lyons, at the press of John Torna and Wm. Gazeius, 1552. What is
the motion of the Universe?, p. 60.) The first edition of this work goes back to 1549.

FOOTNOTES TO NOTE R

146 B. Boncompagni, Intorno ad un testamento inedito de Nicolo Tartaglia, p. 364
(Collectanea Mathematica in Memoriam D. Chelini; 1881). (T. N.: The Italian title
reads, On the unpublished will of Nicolo Tartaglia.)
147 Vincenzo Tonni-Bazza, Frammenti di nuove ricerche intorno a Nicolo Tartaglia
[Atti del Congresso Internationale di Scienze Storiche (Roma, 1-9 Aprile 1903) Roma,
1904. No. XXXIII, p. 293). (T. N.: The Italian title reads, Excerpts from Recent
Research on Nicolo Tartaglia.)
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