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PREFACE

to the English translation of Lagrange’s Mécanique Analytique

Lagrange’s Mécanique Analytique appeared early in 1788 almost exactly one cen-
tury after the publication of Newton’s Principia Mathematica. It marked the
culmination of a line of research devoted to recasting Newton’s synthetic, geomet-
ric methods in the analytic style of the Leibnizian calculus. Its sources extended
well beyond the physics of central forces set forth in the Principia. Continental au-
thors such as Jakob Bernoulli, Daniel Bernoulli, Leonhard Euler, Alexis Clairaut
and Jean d’Alembert had developed new concepts and methods to investigate
problems in constrained interaction, fluid flow, elasticity, strength of materials and
the operation of machines. The Mécanique Analytique was a remarkable work of
compilation that became a fundamental reference for subsequent research in exact
science.

During the eighteenth century there was a considerable emphasis on extending
the domain of analysis and algorithmic calculation, on reducing the dependence
of advanced mathematics on geometrical intuition and diagrammatic aids. The
analytical style that characterizes the Mécanique Analytique was evident in La-
grange’s original derivation in 1755 of the §-algorithm in the calculus of variations.
It was expressed in his consistent attempts during the 1770s to prove theorems of
mathematics and mechanics that had previously been obtained synthetically. The
scope and distinctiveness of his 1788 treatise are evident if one compares it with
an earlier work of similar outlook, Euler’s Mechanica sive Motus Scientia Analyt-
ice Exposita of 1736.! Euler was largely concerned with deriving the differential
equations in polar coordinates for an isolated particle moving freely and in a re-
sisting medium. Both the goal of his investigation and the methods employed
were defined by the established programme of research in Continental analytical
dynamics. The key to Lagrange’s approach by contrast was contained in a new and
rapidly developing branch of mathematics, the calculus of variations. In applying
this subject to mechanics he developed during the period 1755—1780 the concept of
a generalized coordinate, the use of single scalar variables (action, work function),
and standard equational forms (Lagrangian equations) to describe the static equi-
librium and dynamical motion of an arbitrary physical system. The fundamental
axiom of his treatise, a generalization of the principle of virtual work, provided
a unified point of view for investigating the many and diverse problems that had
been considered by his predecessors.

In what was somewhat unusual for a scientific treatise, then or now, Lagrange
preceded each part with an historical overview of the development of the subject.
His study was motivated not simply by considerations of priority but also by
a genuine interest in the genesis of scientific ideas. In a book on the calculus
published several years later he commented on his interest in past mathematics.

vii



viii PREFACE

He suggested that although discussions of forgotten methods may seem of little
value, they allow one “to follow step by step the progress of analysis, and to see how
simple and general methods are born from complicated and indirect procedures.”?

Lagrange’s central technical achievement in the Mécanique Analytique was to
derive the invariant-form of the differential equations of motion

or dor _ v
dg; dtdg  0dg;’

for a system with n degrees of freedom and generalized coordinates ¢; (i =
1,...,n). The quantities T and V are scalar functions denoting what in later
physics would be called the kinetic and potential energies of the system. The
advantages of these equations are well known: their applicability to a wide range
of physical systems; the freedom to choose whatever coordinates are suitable to
describe the system; the elimination of forces of constraint; and their simplicity
and elegance.

The flexibility to choose coordinates is illustrated in the simplest case by a cal-
culation of the inertial reactions for a single mass m moving freely in the plane
under the action of a force. It is convenient here to use polar quantities r and 6 to
analyze the motion. We have x = rcosf and y = rsinf, where x and y are the
Cartesian coordinates of m. The function T" becomes

T= %(:1’:2 +7%) = %(7;2 +126?).

Hence
oT d orT _ o
Fr ag(—({)?) =m(ré* — ),
oT d d 24
:95 - ag(%) = —a“t'(m'f' 0)

By equating these expressions to 9V /dr and 0V/96 we obtain the equations of
motion in polar coordinates. If the force is central, V' = V'(r), this procedure leads
to the standard form

m(ré? — i) = V'(r),

mr?6 = constant.

Lagrange derived his general equations from a fundamental relation that originated
with the principle of virtual work in statics. The latter was a well-established rule
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to describe the operation of such simple machines as the lever, the pulley and
the inclined plane. The essential idea in dynamics — due to d’Alembert —
was to suppose that the actual forces and the inertial reactions form a system
in equilibrium or balance; the application of the static principle leads within a
variational framework to the desired general axiom. Historian Norton Wise has
called attention to the pervasiveness of the image of the balance in Enlightenment
scientific thought.> Condillac’s conception of algebraic analysis emphasized the
balancing of terms on each side of an equation. The high-precision balance was
a central laboratory instrument in the chemical revolution of Priestley, Black and
Lavoisier. A great achievement of eighteenth-century astronomy, Lagrange and
Laplace’s theory of planetary perturbations, consisted in establishing the stability of
the various three-body systems within the solar system. The Mécanique Analytique
may be viewed as the product of a larger scientific mentality characterized by a neo-
classical sense of order and, for all its intellectual vigour, a restricted consciousness
of temporality.

A comparison of Lagrange’s general equations with the various laws and special
relations that had appeared in earlier treatises indicates the degree of formal so-
phistication mechanics had reached by the end of the century. The Mécanique
Analytique contained as well many other significant innovations. Notable here
were the use of multipliers in statics and dynamics to calculate the forces of con-
straint; the method of variation of arbitrary constants to analyze perturbations
arising in celestial dynamics (added in the second edition of 1811); an analysis of
the motion of a rigid body; detailed techniques to study the small vibrations of a
connected system; and the Lagrangian description of the flow of fluids.

In addition to presenting powerful new methods of mechanical investigation La-
grange also provided a discussion of the different principles of the subject. The
Meécanique Analytique would be a major source of inspiration for such nineteenth-
century researchers as William Rowan Hamilton and Carl Gustav Jacobi.* The
seminal character of Lagrange’s theory is evident in the way in which they were
able to use it to derive new ideas for organizing and extending the subject. Com-
bining results from analytical dynamics, the calculus of variations and the study
of ordinary and partial differential equations Hamilton and Jacobi constructed on
Lagrange’s variational framework a mathematical-physical theory of great depth
and generality. Within the calculus of variations itself the Hamilton-Jacobi theory
would become a source for Weierstrassian field theory at the end of the century;
within physics it took on new importance with the advent of quantum mechanics
in the 1920s.

Beyond its historical and scientific interest the Mécanique Analytique is a work
of considerable significance in the philosophy of science. It embodies a type
of empirical investigation which emphasizes the abstract power of mathematics
to link and to coordinate observational variables. The concepts of an idealized
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constraint, a generalized coordinate and a scalar functional allow one to describe
the system without detailed hypotheses concerning its internal physical structure
and working.? In the third part of his Treatise on Electricity and Magnetism James
Clerk Maxwell (1892) stressed this aspect of Lagrange’s theory as he used it to
create a “dynamical” theory of electromagnetism.® Beginning with Auguste Comte
and continuing with such later figures as Ernst Mach and Pierre Duhem, Lagrange’s
analytical mechanics has attracted the attention of leading positivist philosophers
of physics.” In 1883 Mach praised Lagrange for having brought the subject to its
“highest degree of perfection” through his introduction of “very simple, highly
symmetrical and perspicuous schema.”®

Lagrange’s book remains valuable today as an exposition of subjects of ongoing
utility to engineering physics and applied mathematics. Its value to the historian
of mechanics, its intrinsic interest to the practising scientist and its contribution to
the philosophy of physics ensure its place as an enduring classic of exact science.

CRAIG G. FRASER
Victoria College, University of Toronto,
Ontario, Canada
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TRANSLATOR’S INTRODUCTION

Let the Translation Give the Thought of the Author
in the Idiom of the Reader

More than two hundred years have passed since Lagrange published the Mécha-
nique analitique' in 1788. During this period four editions followed and were
each reviewed and annotated. The second edition was prepared almost entirely
by Lagrange toward the end of his life. It is a greatly expanded version of the
first edition and was published in two volumes rather than only one as in the
case of the first edition. The first volume of the second edition appeared in
1811 and the second volume had just reached the printer when Lagrange died.
It is this edition which is translated here. This edition was completed by de
Prony and Garnier and it appeared in 1815. A third edition was prepared by
Bertrand in 1853. The third edition includes mathematical corrections by Bertrand,
mathematical notes by various scientists of the day and finally, three memoirs by
Lagrange. The Oeuvres® of Lagrange contain a fourth edition of this work which
was edited by Darboux. It reproduces nearly all of the third edition. The added
memoirs of Lagrange have been deleted because they appear in other volumes of
the Oeuvres. Two mathematical notes by Darboux have been added to the text.
This edition appeared in 1888 to mark the hundredth anniversary of the first edition
and comprises volumes XI and XII of the Oeuvres. Finally, a fifth edition of this
work appeared in 1965 and incorporated the text and notes of the third edition with
the notes of the fourth edition.

There have been three translations of this work — one into German, a second
into Portuguese and a third into Russian.> All three translations were of the first
edition. The German translation appeared in 1797 with a second printing in
1887, the Portuguese translation in 1798 and the Russian translation in 1938 with
a second edition in 1950. It is not surprising that there have been only three
attempts at translation. During the two hundred years that this book has been
in existence, the French language is understood worldwide and consequently,
there is no need for a translation. However, this explanation overlooks a second
reason for the lack of an English translation; the inherent difficulty of translating
such a philosophically and mathematically sophisticated work as the Mécanique
analytique. The broad mathematical and language skills required of a would-be
translator makes a translation of this work a formidable undertaking. The work
has never been translated into English. We thought it time to offer an English
translation especially since the prominent place of the French language in the
world has been taken by English.

X1



Xii MECANIQUE ANALYTIQUE

LIFE OF LAGRANGE

Whenever an individual attains universal recognition by a monumental achieve-
ment, curiosity concerning the life of its creator is only natural. We wonder what
Lagrange may have said or thought about more mundane topics or how he may
have earned his livelihood. It is a trait of human nature. After all, in our case, the
Mécanique analytique received an acclaim which put the reputation of its creator
in an exalted circle. In its own right, it is as great a book as Newton’s Principia.
While the Principia created and organized the science of mechanics, Lagrange’s
effort was to bring a large portion of what was known about mechanics in his day
under one principle — the Principle of Virtual Work. In the course of this under-
taking, Lagrange contributed a great deal to the further organization of mechanics.
In addition, he displayed a depth and breadth of abstract analysis in the Mécanique
which puts him far beyond his contemporaries. In this regard, the Mécanique
analytique displays the elegance and simplicity which is characteristic of all of his
works.

Newton’s scientific work, in addition, had a great impact on philosophy. The
empirical nature of his science was carried over into the creation of philosophical
systems. For example, the British empirical school of philosophy developed from
Newton’s scientific achievements. In a somewhat different fashion, Lagrange’s
work is the realization of a philosophical program which formed a significant part
of an 18th century movement embracing all of human knowledge. This broad
movement came to be known as the Enlightenment in English-speaking countries.
In order to understand the claim we have made, it is necessary to describe the
thought of a leading representative of this movement-Jean le Rond d’Alembert
(1717—1783). D’Alembert held that a science should be deduced from clear
and distinct mathematically formulated concepts of natural phenomena. He also
claimed that a science is fully-developed when its principles are reduced to the
least possible number and its methodology becomes more abstract and general. In
the Mécanique, Lagrange shows that this program is attainable. He reduces statics
to a single formula and he does the same for dynamics. Both sciences rest on a
single principle-the Principle of Virtual Work. Lagrange further emphasizes the
laws connecting phenomena and he makes no attempt to search for a final cause
of the phenomena.

This last statement is important for two reasons. Prior to Lagrange a great deal of
effort is spent uselessly by scientists in the search for final causes. For example,
the proponents of the Principle of Least Action had at the basis of their arguments
a theological interest. Lagrange would have none of this speculation. Secondly,
Lagrange’s achievement became a standard for 18th century scientists. In keeping
with his characterization of himself as a subtle philosopher, his work became an
important basis for Auguste Comte’s philosophy of positivism.
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Xiv MECANIQUE ANALYTIQUE

could offer him much more than Italy. During his entire life, Lagrange is definitely
a Francophile. He sets his sights on Paris in his youth but his first step is to Berlin.
Once he left Turin, he never returned.

Whatever his reasons for remaining in Berlin and later, in Paris, he nevertheless
referred to Piedmont as his country and he expressed on occasion the kinship he
felt for the inhabitants of Piedmont and for Italy. In 1781, when he was asked to
support the creation of the Societa italiana delle scienze, he replied that he was
anxious to merit that honour and to prove himself a good fellow countryman.® In
addition, when speaking of France to French mathematicians, Lagrange always
spoke of “your country”. He also retained throughout his life the habit of rolling his
r’s when speaking French which is characteristic of Italian. It may have been his
ambition which kept him in Berlin. It was during this period that he contributed
some of his best memoirs and wrote the Méchanique analitique. These efforts
required concentration and almost total preoccupation with the task he had set for
himself. It could be that he was content with his memories of Piedmont.

However, it seems strange that during the twenty-one years he spent in Berlin
and the twenty-six years he spent in Paris he never found time to visit his family,
relatives or colleagues in Turin. Certainly, he had the financial resources to do
so and we can speculate that over that long period of time, he should have been
able to find an opportunity to visit Turin. To be fair to Lagrange, there were
constant threats of war and frequent wars in this period. These factors made
travel hazardous. This situation was especially true during his stay in Paris. But
the distance from Paris to Turin is not great. For a brief period after the French
Revolution, the Kingdom of Piedmont-Savoy was at war with France. Later,
when Piedmont-Savoy was part of the coalition which had been defeated and it
was annexed by France in 1802, Lagrange became a French citizen during the
Consulate and accepted the awards offered by the French government. His loyalty
to France may have upset his family and former colleagues and thereby, he may
have been uneasy in their presence. But from this period on, he would have to be
considered a Frenchman.

The benign attitude on the part of the Duke of Savoy towards the great-grandfather
extended to Lagrange’s grandfather. An office was created specifically for him,
Treasurer of the Office of Public Works and Fortifications in Turin. Lagrange’s
father and later, a brother held this office until it was abolished in 1800 for admin-
istrative reasons.’ Lagrange’s grandfather was married to a Countess Bormiolo di
Vercelli who was also descended from a prominent Italian family.

Lagrange’s father — Giuseppe Francesco Lodovico Lagrangia— married a Teresa
Grosso or as her last name is sometimes spelled, Gros. She was the only daughter
of a wealthy physician from Cambiano, a small town near Turin. From this union,
there were eleven children of whom only two survived to become adults. The
eldest was Lagrange who was christened Giuseppe Lodovico Lagrangia. The
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spelling of the last name was an attempt to Italianize an originally French name.
Lagrange himself wrote his name in various ways. At times, he used Ludovico de
la Grange or Luigi de Lagrange. The use of the particle which suggested nobility
appears to be common practice in his time in France, where it was sometimes
adopted illegitimately. (It appears that Lagrange’s great-grandfather — Louis de
Lagrange — used the particle legitimately. Consequently, there is some basis for
the use of the particle by Lagrange.) Moreover, in imitation of the French, it was
rather common to use the particle in Piedmont-Savoy. However, during the period
of the French Revolution, when Lagrange lived in Paris, the use of the particle was
more of a burden than a distinction. Consequently, he later favored the spelling
La Grange and finally, Lagrange, which is the spelling we use throughout this
work and which is how he is usually known. In Lagrange’s day, the spelling of
last names was not as fixed as it is today. Modem living requires more precise
identification and today, the arbitrary change in spelling of a last name would cause
more than a little distress.

During Lagrange’s boyhood, his father had speculated financially without success
and had nearly lost the entire family fortune. In the light of this event, it was
decided by the family that Lagrange should pursue a career with the promise of a
reasonable income. The law profession was chosen. Consequently, at the age of
fourteen years, he was enrolled in the University of Turin to begin his studies of
law.

It is during this period that Lagrange discovered his mathematical talent. His
instructors in mathematics and physics at the University were Filippo Antonio
Revelli (1716—-1801) and Giovanni Battista Beccaria (1716—1781), respectively.
Both men had established reputations in their fields. It was perhaps their capable
instruction which awakened in Lagrange his native mathematical ability. In fact,
Beccaria was noted for his teaching ability and his ability to motivate his students.
He is also given credit for introducing the physics of Newton into Italy and thereby,
replacing the physics of Descartes.

At the outset, Lagrange studied geometry but his attention quickly turned to the
rapidly developing field at that time of mathematical analysis. The leaders in this
area were the Bernoulli’s, especially Daniel, Maclaurin, d’Alembert and Euler.
Lagrange read their works as is evidenced by his references to them in his early
memoirs. It can be assumed that he also read the work Istituzione analitiche ad
uso della gioventu italiana'® of a very remarkable woman Maria Gaetana Agnesi
(1718-1799). This work provided a good foundation in analytical methods and
prepared Lagrange to master swiftly the works of the major mathematicians of his
day. It had been translated into the other major European languages and was used
as a text.

A testimony to Lagrange’s recognized and promised ability as a mathematician
came very early in his life. As a youth of nineteen years, he was appointed
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substitute professor by a Royal Decree dated September 28, 1755, at the Royal
Artillery School in Turin with an annual salary of 250 crowns. At this time,
the technical and mathematical standards in a European artillery school surpassed
those of a university. His duties consisted of teaching mathematics and mechanics
in the Italian language. It is not known for certain whether or not Lagrange
was an able teacher. However, from what we know of people like Lagrange, we
might venture to say that he probably found teaching burdensome and would have
preferred to substitute the time required for his teaching duties for research.

Before Lagrange left Turin in 1766, he and two colleagues — the chemist, Count
Saluzzo di Monesiglio (1734-1810) and the anatomist, Giovanni Cigna (1734—
1790) — had founded a private scientific society which would later become the
Royal Turin Academy of Sciences. One of the goals of this society was to publish in
Latin and French a miscellany which is usually known by its Latin title Miscellanea
Taurinensia but at times by its French title Mélanges de Turin.!! The society was
founded in 1757 and issued its first volume of memoirs in 1759.

The use of the French language in the Turin Academy is an indication of the French
influence in the Kingdom of Piedmont-Savoy but for that matter French was used
by the educated throughout Europe. Even in the Academy of Sciences of Berlin
the language used was French.

During this period, Lagrange was demonstrating his immense talent for mathe-
matics. The first volume of the Miscellanea Taurinensia contained three papers
by Lagrange. In the first paper'? , Lagrange extended a procedure first worked
out by Maclaurin'? for the determination of an ordinary maximum or minimum
of a function. This paper is an indication of his interest in this field of mathe-
matics. Later, in the second volume published by this society,'* Lagrange wrote
on what would become known as the Calculus of Variations, but which he called
the Method of Variations.'> He developed a purely analytical procedure to find
the function which would extremize an integral, that is, the function which would
render the value of the integral a maximum or minimum. In this paper, Lagrange’s
famous 6 operator is defined for the first time and a complete description of the
methodology is provided.

Lagrange did not invent the Calculus of Variations since this branch of mathematics
has a long history. However, what leads to his great contribution is that he
developed a totally analytical and thus tractable methodology. It avoided the partly
geometrical, partly analytical approach of Euler and John Bernoulli. Furthermore,
it clearly distinguished between a differential and a variation which is not done in
Euler’s work.

This development will be very important since it is Lagrange’s somewhat later
recognition that the variation of an integral is analogous to making a virtual
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displacement in mechanics. These two concepts taken together will form a major
part of the foundation of the Mécanique analytique.

Lagrange was very much aware of his achievement. Later, in a letter dated
November 20, 1769'® written to d’Alembert he said that “I have always regarded
that method as the best I have ever done in geometry.” Considering the contribution
that the Calculus of Variations has made to physics and engineering, it is clear that
Lagrange’s claim was justified.

Lagrange grew restless in Turin. It is important for a developing mathematician
or for that matter, anyone who has selected learning as their vocation to be in an
environment where learning is respected and the calibre of one’s associates are of
a high order. Turin could not provide that type of environment. Naturally, a man
like Lagrange would look towards obtaining a position in Paris or Berlin where
this type of environment existed.

Lagrange’s desire to leave Turin was especially annoying to the Duke of Savoy,
Charles Emmanuel III. The teaching position at the school of artillery had been
given to Lagrange in order to keep him in Piedmont-Savoy. Although a university
position would have been more suitable to Lagrange, there was no instruction in
the infinitesimal calculus at the University of Turin at this time. Lagrange was
paid only a modest salary at the school of artillery but Charles Emmanuel III was
known to be very frugal when it came to granting government controlled salaries.
Many important functionaries in his government were paid at the same level as
Lagrange. But what is more, Lagrange’s desire to leave was interpreted by Charles
Emmanuel as an ungrateful act on his part in view of what had been done for him.

Furthermore, it appears that Lagrange was ill-suited to teaching the practical math-
ematics required of an instructor of artillery officers. An evaluation of Lagrange’s
teaching ability by Alessandro d’Antoni (1714—1786), the Director of the school,
reads

The sublime talent of the substitute professor La Grangia, which placed him rightfully
among the outstanding Academicians in Europe, did not make it possible for him to
reduce the fundamentals necessary to us to their elements. Thus the individuals, who
in the earlier course criticized his treatises as too advanced, metaphysical, diffused
throughout with extraneous material and lacking applications to the professions of
artillery and fortification engineering, had judged correctly. However, if someone
made this identical pronouncement on the contents of the most recent course, he
would display his ignorance of the subject matter.'”

It is clear from the lecture notes left by Lagrange that d’Antoni was accurate
in his evaluation. Lagrange was not contributing to the mission of the school.
His lecture notes reveal his desire to advance the calculus without regard to the
needs of his students and to instruct in topics which were of little use to these
same students. It was probably the fact that he was appointed by Royal Decree
and that he had the attention of Charles Emmanuel that he was able to retain his
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position. From the last part of d’ Antoni’s evaluation, it is clear that with Lagrange’s
departure the status of the classes which had been taught by Lagrange were now
more in keeping with the needs of the student body. It is probably also true that
Lagrange resented the restrictions placed on his desire to win recognition through
his mathematical ability. His dissatisfaction with his position is readily understood
in these circumstances.

Euler and d’Alembert were both impressed by Lagrange’s ability. At this time,
Euler is in Berlin where he is Director of the Mathematical Section of the Berlin
Academy. Maupertuis (1698—1759) had died in 1759 leaving vacant the office
of President of the Berlin Academy and had not been replaced. Euler was dis-
charging the duties of President but his standing and relationship with the reigning
monarch-Frederick the Great, King of Prussia-were not good. Consequently, he
was not offered the position of permanent President. D’ Alembert was offered the
position by Frederick but since he was quite happy in Paris, he declined. Euler
grew increasingly dissatisfied with the situation in Berlin and resolved to leave.
Both men recommended Lagrange as the Director of the Mathematical Section
to Frederick. Since d’Alembert enjoyed the respect and confidence of Frederick,
his recommendation was especially important. Frederick then accepted the yet
unknown Lagrange as Director of the Mathematical Section. Lagrange was not
entirely unknown to the members of the Berlin Academy since Euler had arranged
for Lagrange to become an associate foreign member on September 2, 1756.

Thus early in his life, Lagrange was on intimate terms with two of the outstanding
figures of European science. Euler and d’Alembert, though older and established as
mathematicians, corresponded with him as an equal. Although he never personally
met Euler, he had befriended both d’Alembert and Euler.'® For their part, they had
recognized Lagrange’s ability and had sought to help his career. For his part, he
appreciated their efforts in his behalf and derived inspiration from both of them.

Lagrange arrived in Berlin on October 27, 1766, after a lengthy negotiation with
the Duke of Savoy who very reluctantly permitted him to leave. He was formally
installed as Director of the Mathematical Section on November 6th replacing Euler
who had left earlier for St. Petersburg. The next 21 years of his life were passed
in Berlin. They represent for Lagrange a very fruitful and rewarding period of his
life. But it appears that he always saw himself a foreigner in Berlin. There is no
evidence that he ever travelled in Prussia or even in the city of Berlin. Perhaps the
cultural differences between Prussia and his own country were much too great to
overcome.

Within a year of his arrival in Berlin, Lagrange married for the first time. According
to Lagrange’s own testimony, the marriage was one of convenience. He married
a cousin — Victoria Conti (1747—1783) — in 1767, whom he had known while
a student in Turin. The actual date of the marriage is unknown. There were no
children from this marriage since it appears that Lagrange wanted none as he did
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not want any distraction from mathematics. His first wife died in 1783 after a
lengthy illness. Lagrange tenderly saw to her needs during this period and with
her death he felt her loss deeply. The marriage that began as one of convenience
had become something quite different. Nearly ten years will pass before Lagrange
marries for a second time.

It was stated earlier that Lagrange’s stay in Berlin was a very productive period.
During this time, he wrote on all branches of mathematics and intensively studied
mechanics. The majority of his memoirs during this period deal with celestial
mechanics. It is also during this period that the foundations for the Méchanique
analitique were laid. More will be said about this claim when we discuss the origin
of this work.

Lagrange’s life was intimately bound to the academies of which he was a member.
In his day, these academies served as research institutions unlike the more recent
time where research is carried on by professors in universities and by commercial
laboratories or engineering companies. The primary responsibility of the various
academies was to promote learning.

Probably the single greatest influence on Lagrange’s life was his association with
the Academies of Turin, Berlin and Paris. Although scientists at these academies
did not form a well-defined community in the 18th century, they did provide
a forum for individuals who shared common values of reason, observation and
experimentation to meet and present their research.!’

The Turin academy was modelled after the Berlin academy and the Berlin academy
was modelled on the Parisian Académie des Sciences. This is understandable since
French science in the 18th century outshone that of any other country. France had
professionalized science under the Ancien Régime and this professionalization
carried through the French Revolution into the early decades of the 19th century.
The success of French science was due to a large degree to government support.
For example, the French government supported the Académie des Sciences, the
Collége Royal, the Observatoire de Paris, the Ecole militaire du génie at Méziéres
and the Jardin du Roi. The members of these academies and institutions were paid
a modest pension which generally had to be supplemented by additional income
from other activities. The prestige associated with the membership in one of these
organizations made it somewhat easier to obtain a teaching position which was
the usual activity of a member or act as a consultant to a government agency or
commercial organization. The furtherance of a rational understanding of nature
did not always coincide with the goals and needs of society which the French
government sought to nurture. Therefore, many academicians had to perform
duties which were mundane in order to have some time for scientific research. It
should be understood that membership in an organization such as the Académie
des Sciences was not awarded for past accomplishment as it would be today. At
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that time, a member was usually selected at a much younger age and mainly for
the promise of future accomplishment.

Members of the Académie des Sciences attended bi-weekly meetings whose du-
ration was on the order of two hours. At these meetings, members discussed
technical questions on various topics and with regular attendance the academi-
cians became well-informed on a large number of topics, including those outside
of their particular area.

Membership in the various Académies was very limited. For example, the
Académie des Sciences in Paris was composed of less than fifty members. Each
member negotiated their own pension directly with the government. And as we
noted earlier, membership in the Académie seems to have brought with it more
prestige than income.

The responsibility of the Académie des Sciences to promote learning was partly
addressed in the 18th century by sponsoring competitions for the best memoir on
a topic which was a current and significant problem. For example, in this period,
improved astronomical methods showed that celestial motions were not accurately
and completely described by the mathematical equations which were in use for this
purpose. There seems to have been two reasons for this interest: an intellectual
interest which implied that Newton’s Theory of Universal Gravitation was only
approximate and a commercial interest which sought to find a ship’s longitude at
sea from the position of the planets such as Jupiter and Saturn relative to the Earth
or by the location of the Earth’s moon. In addition, the exact shape of the Earth had
been brought into question. Geophysical measurements in the early 18th century
had indicated that Newton’s claim and demonstration that the Earth is flattened at
the poles may not be correct.

Thus three of the major scientific problems of the 18th century were in the areas of
astronomy and geophysics. This state accounts for the fact that most of Lagrange’s
memoirs during this period were in these areas. The problems were defined as

ot

To describe mathematically the precise motion of the Moon.

2. Toaccount for the apparently secular (non-periodic) inequality in the motions
of Jupiter and Saturn.

3. To determine the precise shape of the Earth.

The first problem required that the motion of the Moon around the Earth be
described accurately. Apart from its primary “monthly” orbit about the Earth,
there are perturbations to this primary motion which are caused by the attraction
of other celestial bodies. These secondary motions make a complete description
of its absolute motion extraordinarily complex. A great deal of effort was put into
the solution of this problem since it would aid navigation by contributing to the
determination of longitude at sea.
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The second problem was primarily theoretical, although it was believed for a time
that its solution might have commercial applications. During the 18th century,
astronomical observations indicated that the solar system might be unstable. The
calculation of the mean velocity of Jupiter and Saturn had indicated that for the
former it was increasing and for the latter it was decreasing. It was believed that
this phenomenon was due to the mutual attraction of the two planets. Hence,
the problem consisted of accounting for this observation. This problem, like the
problem of the motion of the Moon, reduced to the consideration of three bodies
in mutual attraction. Since the Sun’s attractive force is primary its effect had to
be included. By solving this problem the Académie hoped to show that Newton’s
Theory of Universal Gravitation was accurate and consequently, the stability of
the solar system would be restored.

The third problem dealt with the shape of the Earth. Newton demonstrated from his
theory that the Earth is an oblate spheroid. However, astronomical observations in
the 18th century implied that the Earth was a prolate spheroid or a sphere flattened
at the equator rather than at the poles as Newton’s theory implied. Most scientists
believed Newton to be correct since other observational data was available which
corroborated his theory. One example was the change of the period of a pendulum
at different degrees of latitude. This fact correlated well with Newton’s theory.

The competitions held by the Académie des Sciences which dealt with these
questions were all in the area of celestial mechanics. Besides the prestige associated
with winning the competition there was also a monetary award.

Lagrange won the competitions held by the Académie des Sciences five times.

His prize-winning memoirs include:

1. Recherches sur la libration de la Lune, 1764. Oeuvres de Lagrange V1, pp.
5-61.

2. Recherches sur la inegalités de satellites de Jupiter causées par leur attraction
mutuelle, 1766. Oeuvres de Lagrange VI, pp. 65-225.

3. Essai d’une nouvelle méthode pour résoudre le probléme des trois corps,
1772. Oeuvres de Lagrange V1, pp. 229-324. (There is a note from the
editor on pp. 324-331.)

4. Sur I’equation séculaire de la lune, 1774. OQOeuvres de Lagrange V1, pp.
335-399.

5. Recherches sur la théorie des perturbations que les cométes peuvent éprouver
par ’action des planeétes, 1780. Oeuvres de Lagrange V1, pp. 403-503.

There is one interesting note which we might add to our discussion. The second
paper which was submitted for the prize of 1766 dealt with the problem which we
discussed earlier; namely, the apparent change in average velocity of the planets
Jupiter and Saturn. Lagrange thought that the deviations were secular and due
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to the mutual gravitational attraction between the various planets. Later, in 1787
Laplace showed that the inequalities were in fact periodic with very long periods.
This problem was solved by Laplace using a statistical approach.

Although Lagrange was anxious to retain his position in Berlin, with the death
of Frederick the Great on August 17, 1786, he became very dissatisfied with his
situation. The new king, Frederick Wilhelm II, was from a very different mold
than his illustrious uncle. His administration was reactionary and provincial. The
cosmopolitan atmosphere which his uncle had tried to foster quickly disappeared.
Also, Lagrange foresaw the Prussian government’s declining interest and support
of the Berlin Academy and he resolved to leave.

Word reached representatives of the French government that Lagrange was not
satisfied with his situation in Berlin and that he could probably be persuaded to
accept a position in Paris. French science at this time enjoyed the respect of
scientists all over the world and this fact made it difficult for Lagrange to reject
any reasonable offer.

After a lengthy negotiation, Lagrange agreed to the offer of the French government.
He left Berlin on May 18, 1787 and journeyed to Paris where on July 29, 1787, he
became pensionaire vétéran of the Académie des Sciences. This title was created
especially for him and it replaced the title of associé étranger which he had held
since May 22, 1772.

It can be assumed that Lagrange expected to continue his life in Paris as he had
in Berlin. But Paris at this time is vastly different from Berlin. Political unrest
had grown steadily in France since the early 1700’s. It was heightened in the
larger cities such as Paris. By the late 1780’s the country was ready to explode.
If Lagrange had foreseen this upheaval, he probably would not have accepted
the French offer. His attitude seems to have been a-political and his personal
tranquility of foremost importance. Thus it is very likely in this case that he would
have accepted one of the Italian offers and returned to Italy.

Upon his arrival in Paris, he was lodged in the Louvre at the invitation of the Royal
family. He resided in the Hotel de la Briffe, Quai des Théatins near the rooms set
aside in the Louvre for the meetings of the Académie des Sciences. He attended
his first meeting on June 13, 1787. He remained in the Louvre only a short time.
At the beginning of the year 1788 he left to live in a private residence.?!

Paris presented a tremendous contrast to Berlin, while the latter possessed a tranquil
and somber city atmosphere, the former was turbulent and on the eve of the
Revolution seethed with excitement. Lavoisier’s discoveries in chemistry were
the topics of discussion in the city’s fashionable Salons. For the quiet and pensive
Lagrange, Paris was not what he needed. Nevertheless, he had brought along the
Meéchanique analitique. An excerpt from this work was presented to the Académie
des Sciences by Lagrange on April 5, 1788. A committee was selected from the
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academy to review the work and to decide whether it deserved the approbation
of the Académie. Its response was positive and the first edition was published in
1788.

The very next year was to have a tremendous effect on Lagrange’s life in Paris.
In order to understand this effect, we will outline a portion of the political and
economic effects brought about during the period of time known as the French
Revolution. Our main interest is to show how it affected Lagrange.

The royal government of Louis XVI had remained solvent during the 1780’s by
borrowing large sums of money within France and from foreign banks. By the
end of the decade, the ability of the King to obtain revenue or credit to finance
his government had been exhausted. To solve his government’s fiscal insolvency,
Louis XVI called the Estates General into session. With this action the King
unwittingly initiated a series of events which would lead to the destruction of the
Bourbon monarchy.

The Estates-General met on May 5, 1789. The three estates composing this body
were

First Estate Clergy
Second Estate  Nobility
Third Estate Commoners

At the outset, the nobility claimed an ancient right which exempted them from taxa-
tion. After the preliminary discussion, it appeared that the Third Estate would bear
the burden of new taxation. Their representatives tried to obtain some compensat-
ing privilege and they claimed political rights. In addition, arguments ensued over
strictly procedural questions in the conduct and voting rights of the three estates.
The result of these discussions was an impasse. Finally, the Third Estate refused
to recognize the traditional distinctions between the orders and claimed that it had
the sole power to represent the French people. The Third Estate declared itself the
National or Constituent Assembly on June 17, 1789. From then on, a sequence of
events occurred which culminated in the storming of an ancient royal prison-the
Bastille-on July 14, 1789. This act marks the beginning of what is known as the
French Revolution.

Louis XVI was unable to provide the requisite leadership to bring about the need
for change. Consequently, the Constituent Assembly undertook to reorganize the
country. The unusual part of this effort was that scientists were to be used for these
national political purposes.

As a member of the Académie des Sciences, Lagrange was expected to participate
and contribute expertise to the solution of national problems. On May 8, 1790,
the Constituent Assembly ordered the standardization of weights and measures
throughout France. The Académie des Sciences was asked to found the system
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on a fixed basis with the intent that it would be nationally adopted. On October
27, 1790, the Académie appointed the five members of the commission who were
Lagrange, Borda, Condorcet, Lavoisier and Tillet. This commission was retained
in its capacity even after the academies were closed. The metric system was
eventually sanctioned on Dec. 10, 1799.

The Royal family appeared to acquiesce to these goings on but secretly opposed
them. The Constituent Assembly was moving towards a parliamentary system
which limited the prerogatives of the monarchy. Consequently, on June 21, 1791,
the Royal family fled Paris only to be captured and returned to the capital before
realizing their object which was to organize resistance to the democratic trends
underway.

In the midst of this turmoil, Lagrange married for a second time. The marriage
took place on May 31, 1792, nearly ten years after the death of his first wife. His
second wife was Reneé-Frangoise Adélaide Le Monnier (1767—1833).22 She was
the daughter of a fellow academician, the astronomer Pierre-Charles Le Monnier
(1715-1799). Lagrange was fifty-six and she was twenty-five years old. She
was young enough to bear children and probably capable of doing so, but again,
Lagrange had no desire for children. He had said to Delambre (1749—1822), “I had
no children from my first marriage. I do not know whether I shall have any from
my second, but I do not wish for any.”?3 Lagrange’s second marriage was like the
first, a very happy one. His wife provided the companionship and the domestic
tranquility that he seemed to need.

Shortly after Lagrange married, economic and political chaos in France increased
rapidly. Inflation quickly made Lagrange’s income insufficient to meet his needs.
Furthermore, the convocation of the National Convention on September 20, 1792
made the political situation uncertain for Lagrange.

The Constituent Assembly had confirmed and continued to pay the pension that
was due to Lagrange because of his contract. However, the National Convention
viewed the academies as elitist and therefore, relics of the Ancien Régime. On
August 8, 1793, the academies were closed. All pension salaries were reduced by
one-half but in the case of Lagrange an exception was made. Lagrange kept his
entire pension because his agreement was considered a foreign contract.

By the year 1793, he was in danger of expulsion or arrest as an enemy alien.
During September of 1793, a decree of the National Convention ordered that all
foreigners born in countries at war with France should be arrested. The chemist
Lavoisier intervened on behalf of Lagrange and obtained an exemption for him.

It has often been asked why Lagrange chose to remain in Paris at the outbreak of
the French Revolution. It appears that a threat to his life existed-albeit a small one.
It also appears to us that a natural act would have been to flee Paris. However, the
effect of flight in the eyes of the French authorities would have been difficult to
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judge. An attempt to flee may have led to his arrest. At this time, he still carried a
passport issued by the Kingdom of Piedmont-Savoy. Although he had resided in
France for many years, he had not applied for French citizenship. In addition, the
countries to which he may have been able to flee were limited. An attempt to return
to Piedmont-Savoy may not have been all that welcome. Although Lagrange’s
reputation as a mathematician would have helped, there were instances of the arrest
of returning emigrés to Piedmont-Savoy since it appears that the government of
that country believed them to harbor Jacobin ideals. He probably could have
returned to Prussia, but this abode would not have suited Lagrange at all. The
Prussian government was reactionary and its support of scholarly activities had
all but disappeared. Generally, the monarchies of Europe were trying to contain
the Jacobin ideals of the French Revolution and anyone coming from such an
environment was suspect. Thus in reality, Lagrange had no place to go and had to
remain in Paris.

In place of the academies, the National Convention created the Institut de France
or Institut National. The body consisted of three classes

1. Sciences Physiques et Mathématiques
2. Sciences Morales et Politiques
3. Littérature et Beaux-Arts

It was founded on August 22, 1795. The Académie des Sciences became the first
class of the Institut. This class contained 66 of the 144 members of the Insti-
tut. However, the Institut was not basically a scientific institution but a cultural
institution as its full title suggests, a “National Institute of Arts and Sciences”.
The legislators hoped that this institution would provide an enduring cultural and
scientific foundation for the nation.

Lagrange was a member of the First Class of the Institut. He attended the first
meeting of the Institut in the Salle des Cariatides in the Louvre on April 4, 1796.

The revolutionary government continued its efforts to stimulate the sciences. The
Bureau des Longitudes was created on June 25, 1795 to administer the nation’s
observatories and to plan a program of national astronomical research. Lagrange
and Laplace were appointed to the Bureau. Much later, a new responsibility was
added to the Bureau’s charter. Napoleon decreed on September 24, 1803 that the
metric system’s standards would be preserved by the Bureau des Longitudes.

One of the goals of the French Revolutionaries was to eliminate the elitism which
resulted from the status of one’s birth and which pervaded most levels of French
society during the Ancien Régime. This elitism existed in the schools of the
country which were for the most part controlled by the Roman Catholic Church.
Consequently, it was in this period that the church supported primary and secondary
schools lost the pre-eminence they enjoyed before the revolution. The church was
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compromised in the eyes of the French revolutionaries by its association with the
monarchy in France. Thus the French government undertook to secularize the
nation’s school system.

To this end, the National Convention in 1794 ordered the creation of the Ecole
Normale. Its purpose was to train teachers for the nation’s school system. The
most learned individuals in the nation were appointed as instructors. Lagrange,
and Laplace as his assistant, were to lecture on elementary mathematics. The
Ecole Normale began instruction on January 20, 1795 but closed after slightly
more than three months of operation. As part of his duties as a professor at the
Ecole Normale, Lagrange wrote a series of lectures on elementary mathematics.
The lectures dealt with algebra in general and contained a discussion of the theory
of equations and the solution of algebraic equations. The elegance and lucidity
of these lectures are a model to be emulated and show that they originated in the
mind of a first-rate algebraist. These lectures were later collected and published
in volume seven of the Oeuvres de Lagrange with the title Lecons elementaires
sur les mathématiques.** Lagrange also began teaching mathematics along with
de Prony at the Ecole Centrale des Travaux Publics which later became the Ecole
Polytechnique. This school was founded on March 11, 1794 and began instruction
on December 21, 1794. It is still in existence today.

During the Consulate and the Empire, Lagrange received more honours. On
May 18, 1802, the government created the Legion of Honour to reward military
valor and service, and also to recognize outstanding contributions to the nation
by intellectual attainment and civil service. On October 2, 1803, Lagrange along
with Berthollet, Laplace and Monge were made members of the Legion of Honour.
Later, Lagrange was further elevated when he was made a Grand Officer of the
Legion of Honour on July 14, 1804.

As a member of the Legion of Honour, Lagrange received an annual pension of
5000 francs. In order to evaluate the magnitude of this pension it can be compared
with the annual salary of a university professor at this time which amounted to
about 1500 francs. Lagrange in a very generous act gave all of this pension to
his younger brother Michele in Turin. The latter had a large family and probably
found this money to be very useful.

Lagrange became a member of the Sénat-Conservateur on December 24, 1799.
This election was not merely to a ceremonial body. The Sénat-Conservateur was
instituted during the Consulate by the Constitution of December 24, 1799 and it
was charged with insuring that the laws of the nation were constitutional and with
amending the Constitution by Senate deliberations and a majority vote. This body
also had the right to nominate individuals to various high government offices and
also, the right to nominate judges to the high courts of appeal.
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Unlike Laplace who became secretary and later president of the Sénat-Conserva-
teur, Lagrange held no office in the body. However, he did participate in various
commissions. For example, he was chairman of the commission charged with
restoring the Gregorian calendar to France. The Revolutionary calendar, adopted
by the National Convention in 1793, had made it more difficult for France in its
intercourse with other European nations who were using the Gregorian calendar.
The Gregorian calendar was put into effect again in France during the Napoleonic
era when on January 1, 1806, it was restored by Napoleon. As a member of
the Sénat-Conservateur, Lagrange’s social status rose significantly. In addition,
membership in this body brought with it an annual pension of 25,000 francs. The
significance of this pension is clearly evident if it is compared, as we did earlier,
to a university professor’s annual salary of 1500 francs.

The title page of the second edition of the Mécanique analytique lists all of
Lagrange’s titles and honours bestowed by the government.

Meécanique analytique par J. L. Lagrange de I’Institut
des Sciences, Lettres et Arts, du Bureau des Longitudes:
Membre du Sénat-Conservateur, Grand-Officier de la
Legion d’Honneur et Comte de I’Empire.

Lagrange insisted on the inclusion of these titles on the title page. He was proud
of what he had achieved and proud of the honour he had brought to his profession
of mathematician.

Lagrange died in his home on April 10, 1813% in Paris. His death was marked by
two religious ceremonies even though it appears that Lagrange personally was not
very religious. Two religious ceremonies may have appeared appropriate for such
a distinguished member of the French government because of the government’s
relations with the Roman Catholic Church. Napoleon had promulgated a Concordat
with the Church on July 15, 1801. It would not have looked well if an individual
to whom the government had given so many honours was buried in a simple civil
ceremony.

The first ceremony was held in his Parish of St. Philippe du Roule and the second
a few days later at the Panthéon?® (Parish of Sainte-Geneviéve) in Paris where
Lagrange was laid to rest. Lacépéde (1756—1825) delivered a eulogy in his role
as the principal officer of the Legion of Honour and Laplace delivered a second
eulogy as the representative of the Sénat-Conservateur.?’

Thus the life of a man who had lived only for mathematics and who had been
recognized as a leading mathematician in Europe for nearly sixty years had ended.
He was close to a pure mathematician and only in so far as mathematics could
be applied to mechanics, could he be called a physicist. His interest in subjects
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outside of mathematics was never deep enough to induce him to publish on those
subjects and consequently, as we have pointed out, we know so very little about
the other dimensions which make a man.

Lagrange was a man of average height, relatively thin and with a delicate consti-
tution. He seems to have habitually worried about his health and this was perhaps
due also to his view that the sedentary life of a man of letters was an unhealthy
one. Based on the testimony of his colleagues in the academies of which he was
a member, he was generally well-liked, very reluctant to take offense and careful
not to give offense. His modesty and a calm nature, appears to have won the
friendship of nearly all who knew him.

Lagrange generally spoke and wrote in French to the exclusion of other languages.
His speech showed a slight tendency to roll the letter ‘r’. The letters written
to Euler at the beginning of his career were written in Latin but nearly all his
correspondence afterward, including his letters to his family in Turin, were written
in French.

Lagrange appears to have been a very kind man. However, he lived through the
French Revolution and none of its excesses, with one exception, moved him to
action or to comment. The exception was the execution of the chemist, Lavoisier,
on May 8, 1794. After the execution, Lagrange remarked to Delambre, “It has
taken them only a moment to cause that head to fall, and a hundred years may not
suffice to produce a like one.”??

The question of what were Lagrange’s religious beliefs is difficult to answer.
Authors who have investigated this aspect of Lagrange’s personality have not
been able to reach a conclusion. We believe that there are a number of aspects
of this problem which haven’t been given significant attention. The first is the
time in which Lagrange lived. During this period, generally referred to as the
Enlightenment, organized religion, namely, the Christian religion, was the object
of severe criticism. Many of Lagrange’s colleagues were not members of the
Christian church and therefore, Lagrange, as prudent as he was in the conduct of
his personal affairs, kept his religious beliefs to himself. He may have viewed
religious belief as he did metaphysical arguments, that is, with the attitude that they
would not produce any tangible results. Secondly, his private library contained
a number of books on religion — not all on the Christian religion but bibles and
works on various world religions. These books indicate an interest in religion on
the part of Lagrange.

On the other hand, in his letters to his family, where it is not necessary to be
prudent, there are no references to religion. Even when a death in the near family
seemed to require words of consolation such as the death of his mother, brother
and father, there are none. He generally sent gifts to his family in Turin — mainly,
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his brother’s family — on religious holidays such as Christmas but again there are
no references to religion or any expression of religious feelings.

In addition, during the period when he lived in Turin, Lagrange was accused of
being an atheist. But there was never any indication from Lagrange that he was an
atheist. In fact, he attended Mass regularly and during his sojourn in Paris during
the Empire, there is a record of his many chance meetings with Napoleon at Mass.

Lagrange’s name is found in the Dictionnaire des athées anciens et modernes®® by
Sylvain Maréchal along with the names of Napoleon, Frederick the Great, Laplace,
Monge, de Prony, Lalande, Peyrard, Fourcroy, etc. Maréchal noted that these men
held that it was impossible to prove the existence of God. He referred to them
as atheists but it would have been more accurate for Maréchal to point out that a
declaration of agnosticism rather than atheism was really in question.

Lagrange carried on an extensive correspondence with d’ Alembert and Condorcet.
In this correspondence, he often showed his hostility towards the Jesuit Order of
the Catholic Church. However, such a demonstration was not unusual for the time.
In fact, d’Alembert had written a book® advocating the suppression of the Jesuit
Order in France. Lagrange had praised the work of d’ Alembert and had said of a
well-known scientist in the Jesuit Order, Ruggiero Boscovich (1711-1787), that
he was a ““. .. moine et jesuite a bruler.”?! Even Euler, who issued from a staunchly
Lutheran family, was judged harshly in the correspondence between Lagrange
and d’Alembert over his religious views. Euler had written a work — Lettres a
une princesse d’Allemagne3? — in which he attempted to reconcile science and
religion. Lagrange held that this effort was inappropriate for a man of science.

Finally, there is an anecdote about a meeting between Napoleon and Laplace
in which the former thanked the latter for dedicating the fourth volume of the
Meécanique celeste to him. Napoleon remarked that Laplace had not mentioned God
in his work and to which Laplace replied “Sire, I had no need of the hypothesis.”
Lagrange upon hearing Laplace’s reply observed “But it is a beautiful hypothesis
with which many things can be explained away.”

ORIGINS OF THE Mécanique analytique

Lagrange wrote the Mécanique analytique during an epoch which is usually re-
ferred to as the Age of Reason or the Enlightenment. It is a period of time
extending from the time of Newton and John Locke to about the end of Lagrange’s
life. Roughly speaking, it is the interval of time between 1675 and 1805. This
is an extraordinary period in history. It cannot be understood easily for it encom-
passes the interrelated concepts of God, nature, reason and mankind. The outlook
during this period held that Nature is inherently simple. Intellectuals searched for
a single principle which would unify thought. During this period, the solution
of a problem is not complete unless it could be demonstrated from obvious and
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certain principles. It was recognized that various approaches utilizing different
principles would provide a solution. Clearly, the utilization of different principles
to solve the same problem must give the same result. Thus the various principles
of science had to be related in such a way that if one were true the rest of them
could be derived by mathematical deduction. Consequently, there is an interest in
this period to show how the principles are related and to reduce the various princi-
ples to a single fundamental principle. At this point, if it could be shown that the
fundamental principle is independent of experience then a deeper understanding of
natural phenomena could be found. A simple example of this view is the effort by
Daniel Bernoulli to show that what was then taken for the fundamental principle
of statics — the Composition of Forces — is a geometric truth independent of
experience. Investigators were interested in a rational understanding of science
not solely the enumeration of experimental facts. Today, we believe that the root
of a scientific principle lies in experience.

This preceding discussion explains to a degree the esteem accorded Lagrange’s
effort. He had derived all of what was known in mechanics from two principles
— the Principle of Virtual Work and d’Alembert’s Principle. The solution of a
problem of mechanics was thereby reduced to the application of a mathematical
formula. In addition, the mathematical framework which he developed around the
Principle of Virtual Work and d’Alembert’s Principle in order to link the various
areas of mechanics contributed an aesthetic quality to the entire treatise. This
effort began what today is called analytical mechanics.

The intellectual development of Lagrange can be followed in his published mem-
oirs. Another source is his correspondence. Indeed, for his early development, his
correspondence with Euler is particularly revealing because of the strong influence
exerted by Euler on Lagrange.

A study of Lagrange’s memoirs while he was in Turin and Berlin shows that
the Mécanique analytique is the culmination of the mathematical discoveries that
he made during this period. His discoveries were a result of his research and
his teaching duties. The development will be summarized briefly here since it
probably is the best approach to understanding the foundation of Lagrange’s work
and accomplishment.

In a letter’® dated July 4, 1754, Lagrange wrote to Euler from Turin to tell him that
he has been studying Euler’s memoirs on variational methods and that he himself
has made some observations about the occurrence of maxima and minima in the
actions of nature. In another letter>* dated August 12, 1755, Lagrange again wrote
to Euler from Turin to inform him that he has developed a new methodology for
the solution of isoperimetrical problems, that is, problems of maxima and minima.
In the following pages, Lagrange presents his method using the familiar operator
6. Euler replied on September 6, 1755,3° and greeted the young Piedmontese’s
discovery with genuine enthusiasm and admiration. Euler’s letter was particularly
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flattering to Lagrange. Euler was nearly thirty years older than Lagrange and
with an established reputation. Coming from such an illustrious and established
mathematician, Euler’s praise must have meant a great deal to Lagrange. In
fact, Euler’s enthusiasm was genuine. He later withheld publication of his most
recent research in the variational calculus in order that Lagrange would receive
undisputed credit for his discovery.

The Principle of Least Action had a stimulating effect on Lagrange. He never
imbibed the metaphysics associated with the principle but he recognized that his
new method for treating problems of maxima and minima conjointly with the
Principle of Least Action could be used advantageously in problems of mechanics.
In fact, his method is ideally suited for this application.

Lagrange wrote to Euler on May 19, 1756, from Turin*® to discuss his mediations
on the Principle of Least Action. He envisions the application of this Principle to
the whole of dynamics. This inclination is repeated in his first paper published
three years later in 1759%7 and in his discussion of the maxima and minima of
functions he adds

I reserve the right to treat this subject, which indeed, I believe to be entirely new,
in a particular work which I am preparing on this subject and in which after having
presented a general analytical method to resolve all problems related to maxima and
minima, I will deduce the mechanics of solid and fluid bodies completely using the
Principle of Least Action.

At this point in his career, Lagrange has seen how he can systematize and structure
all of mechanics including statics. But his all-encompassing principle is at this
point the Principle of Least Action. It is clear that he considers this principle to be
the basis of mechanics.

Lagrange continued his research while teaching in Turin. In a letter®® of November
15, 1759, he wrote to Daniel Bernoulli about his research, to inquire about the
death of Maupertuis and to ask for news about Euler. In a postscript to this letter, he
advised Bernoulli of his continuing research into problems of maxima and minima.

Since I am actually working on a treatise whose object is to deduce in a simple and
general fashion the solution of the most complicated problems of equilibrium or of
the motion of bodies and fluids using only the principle of the least quantity of action,
I would like very much to know all that you have learned about elastic curves by
means of the formula [ ds/r” which Euler demonstrated represents least action in
this case. I have added a great deal to what Euler wrote on this subject in his book*®
on isoperimetrical curves and in the memoirs of Berlin with the aid of a new method,
totally analytical, for dealing with these types of problems and much more general
than the one used by this author.... This work should have appeared two or three years
ago, because the principles in it were communicated to Euler in 1756. But because of
a lack of leisure time, I have not been able to complete it. Now I intend to complete
it as soon as possible.
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Lagrange is referring to his work with regard to mechanics and mathematics which
he was writing for his students at the Royal Artillery School of Turin. Note that
the Principle of Least Action is foremost in his approach to mechanics and that he
is interested in the connection between this dynamical principle and statics. Thus
it is evident that his intent is to find a principle which will encompass statics and
dynamics.

In a letter*® written to Euler on November 24, 1759, Lagrange comments on the
research he has done in connection with his teaching duties at the Royal Artillery
School of Turin.

I have written down the elements of mechanics and the differential and integral
calculus for the use of my students and I believe that I have developed as far as is
possible the true metaphysics of their principles.

Unfortunately, the book on mechanics is lost. It can be assumed that in this work
it is unlikely that we would find any background to his later use of the Principle of
Virtual Work in conjunction with d’ Alembert’s Principle.

In particular, this formulation appears in Lagrange’s prize memoir on the theory
of'the libration of the Moon in 1764. However, some investigators have suggested
that Lagrange’s use of the Principle of Virtual Work would naturally occur in this
work. They point out that it would have been natural for Lagrange to begin with
statics and to follow this subject with dynamics in his class presentations. This is
the usual order for these two subjects and it would have been most natural to use
the Principle of Virtual Work in statics. Then this application of the Principle of
Virtual Work would naturally carry over to dynamics. However, this explanation
overlooks the fact that at this time the Principle of Virtual Work was not the basis
for statics. Statics was based on the Composition of Forces. Lagrange appears to
have found the Principle of Virtual Work by reading the Nouvelle Mécanique of
Varignon where it appears in a letter to Varignon from John Bernoulli. It appears
more likely that Lagrange would have used Maupertuis’ Law of Rest as a basis for
statics at this early period if he had wanted an analytical function.

The second work*! is available and is entitled Principj di Analisi sublime dettati da
La Grange alle Reggie Scuole di Artiglieria.*? This work consists of two parts —
the algebraic theory of curves and the calculus of differentiation and integration.
The first part deals with commonly encountered geometric figures such as the
conic sections. There are numerous figures in this treatise which is unusual in
Lagrange’s finished work. The second part discusses the basics of the calculus and
it is in this part that Lagrange discusses the “metaphysics” of the calculus which
he referred to in his letter to Euler. He begins by defining the concept of function.

Then, in general, we call functions of one or more variables an algebraic expression
composed in any fashion of these variables and containing any number of additional
constants.
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The discussion continues with an examination of the differential calculus. La-
grange follows a Newtonian formulation but with Leibnitzian notation. The em-
phasis is on algebra and it is certainly clear that this discussion is a harbinger to
his later work in this area, to wit, the Théorie des fonctions analytiques. The work
includes figures which is unusual in Lagrange’s finished work and it was supposed
to be written from the viewpoint of the army engineer or artilleryman. However,
in reality, it is much too difficult for these practical minded individuals.

It is clear at this point that Lagrange’s main interest was to synthesize mechanics.
The next step in the development of his thought is a memoir which appeared
in the proceedings of the Turin Academy for the years 1760—61.*> This memoir
generalizes the Principle of Least Action following the lead of Euler.

General Principle - Let there be an arbitrary number of bodies denoted by M, M’,
M"" ... which interact in an arbitrary fashion and which, if it is wished, are acted upon
by central forces proportional to arbitrary functions of the distance between them.
Let s, s', s ... denote the displacements made by these bodies in the time ¢ and let
u,u',u'" ... denote their velocities at the end of the time interval ¢, then the equation

M/uds+k1’/u'ds'+...

is always a maximum or a minimum.

Lagrange develops this principle further to obtain the development and methodol-
ogy given in the Mécanique analytique.

He begins by applying the Calculus of Variations to the integral
n
Z m; / (7 dS,‘.
i=1
The first variation of this integral produces the following equation
n
Zmi /(6ui ds; + u;6ds;) = 0.
=1
The equation of force vive

u2
m7 + U = constant

permits the elimination of the variation of the velocity u

mudu + 6U = 0.
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After some algebraic operations, Lagrange arrives at the following result

S(P6p+Q6q+R6r+~-~
dx dy dz
+d(a—t§> 6m+d<@> 6y+d<@) 5~)m—-0.

He observes that this latter equation is a statement of d’Alembert’s Principle in
conjunction with the Principle of Virtual Work. Consequently, in his prize essay of
1764 on the theory of the libration of the Moon, he abandons the Principle of Least
Action since he now views it as a result of the laws of mechanics. He substitutes
d’Alembert’s Principle in conjunction with the Principle of Virtual Work.

The memoir of 1764 on the theory of the libration of the Moon** marks the change
in this point of view. It is also in this memoir that Lagrange mentions the letter
from John Bernoulli to Varignon on the Principle of Virtual Work.

A second memoir on the libration of the Moon appeared in 1780.%° It is clear in
this memoir that Lagrange has fully accepted his earlier view that d’Alembert’s
principle in conjunction with the Principle of Virtual Work is the basic approach
to dynamics. It is only a simple step now to apply the Principle of Virtual Work to
problems in statics.

Lagrange began writing a treatise on mechanics while in Berlin. This treatise is
very likely the Mécanique analytique. A letter®® written to Laplace by Lagrange
on September 15, 1782 includes this statement:

I have almost completed a treatise on analytical mechanics founded solely on the
principle or formula which I gave in the first section of the above memoir.*’ But since
I still do not know when and where [ will be able to have it published, I am not in any
hurry to finish the treatise.

The principle or formula to which Lagrange referred is the Principle of Virtual
Work. Note also that Lagrange includes statics in the treatise.

THE FOUNDATION OF THE Mécanique analytique

The foundation of the Mécanique analytique is the Principle of Virtual Work.
Credit for resurrecting the Principle of Virtual Work is generally given to Lagrange.*®
Prior to Lagrange’s use of this Principle, statics had come to be based on the Law
of the Composition of Forces and this law in conjunction with Newton’s Second
Law was the basis for dynamics. It is no wonder that Lagrange devotes a great
deal of discussion to demonstrating the Principle of Virtual Work in PART I, SEC-
TION II. Lagrange retains the old terminology which referred to this principle
as the Principle of Virtual Velocities. We know today that this designation is
a misnomer. In the 1840’s, James Prescott Joule (1818—1889) performed some
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exhaustive experiments to show that it is force times incremental distance which
is the significant quantity and not the rate at which the force moves. Lagrange pas-
sively accepted Jean Bernoulli’s terminology but in his demonstrations, it is clear
that he recognizes work, i.e. force multiplied by displacement, as the significant
quantity.

Lagrange’s work brought the Principle of Virtual Work to a level on par with the
Law of the Composition of Forces in statics. But he must have been troubled by
this result because he makes a significant effort to show that the Principle of Virtual
Work is on a sound foundation. During his time, the Principle of Virtual Work is
somewhat suspect since it appears to be founded on Aristotelian dynamics, that is,
the law which claimed that force is proportional to velocity.

To remove any doubt as to the veracity of the Principle of Virtual Work, he returns
to a consideration of simple machines, in particular, pulley systems. Lagrange
invents a new principle which he calls the Principle of Pulleys. This principle
has been known for centuries and has come down to us as the statement that what
is gained in force is lost in velocity. But it is clear especially from the research
of Descartes that it is displacement and not velocity that is the crucial element.
Lagrange demonstrates that the quantity which must be considered is work as it
is defined today: to wit, force multiplied by displacement. Then he demonstrates
that the principle is applicable to an arbitrary number of forces. Thus he has
demonstrated that the Principle of Virtual Work is a very general principle and he
concludes his discussion with a statement of the principle. It says very basically
that once a system has reached equilibrium, the further expenditure of work is
impossible. Consequently, if the configuration of the system is varied near the
equilibrium configuration, which is tantamount to assuming that the system is
given a virtual displacement, the increment in the quantity of work must be zero.

The status of the Principle of Virtual Work in 18th century mechanics can be clari-
fied by considering its use by two of the most illustrious of the many investigators
of this period-Leonhard Euler and Jean le Rond d’Alembert.

Euler, as a member of the Académie de Berlin, was involved in the controversy
over the Loi du repos and the Loi de moindre action of Maupertuis, the president
of the academy. He sought to defend the Loi du repos in his memoir entitled:
Harmonie entre les principes géneraux de repos et de mouvement.*® Towards the
end of this memoir, he shows that the basic laws of statics can be derived from the
Loi du repos. He begins by considering the equilibrium of a body on an inclined
plane. He defines the “effort” discussed in the Loi du repos as

A-x+B-y=0,

where A represents the vertical force due to a body on an inclined plane and B is
the applied force which holds it in equilibrium on the plane. The variables x and y
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are the displacements in the directions of the forces A and B, respectively. The Loi
du repos requires that this quantity be an extremum for equilibrium. Consequently,
after differentiation, there results

A-dz+B-dy=0.

Euler applies the Principle of Virtual Work, although he never states what principle
he is using, in order to show that the principle leads to the summation of forces
parallel to the plane thatis, —A - siny 4+ B - cos § = 0 is the equilibrium equation
parallel to the plane. His analysis is given below.

Let the body O make an infinitesimal displacement on the inclined plane so that it
traverses the length Oo = ds. From point o draw the perpendicular oa to the vertical
line OA and from O draw the perpendicular Ob to Bo. After the displacement has
been made, it is clear that Oa= —dx and ob=dy. Since the angle Ooa is equal to v,
we will have that Oa=siny ds and since the angle Oob = EOB is equal to 6, we will
also have ob=cos 6 - ds. Therefore, dr = — sin-yds and dy = — cos 6 ds. Then in
the state of equilibrium, it is necessary that — A - siny - ds + B - cosé - ds = QO or
A -siny = B cosé. Thus the force OB is to the weight of the body O as the sine
of the elevation of the inclined plane is to the cosine of the angle EOB which defines
the direction of the force OB with the inclined plane. This same ratio could be found
using the ordinary principles of statics.

Fig.y EuLer’s Fig. 10

Euler goes on to say that, in the same fashion, all of the problems of statics can be
solved.

It is noteworthy to mention at this point that the Principle of Virtual Work had been
replaced in statics by the Composition of Forces. Consequently, he does not give
the former principle any special mention. But it is significant that he has reversed
the order of the application of the Principle of Virtual Work and the Potential
Function. He begins with the potential function and derives the equation which
represents the Principle of Virtual Work. It is this operation which Lagrange will
reverse and use as the basis for his mechanics.
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D’Alembert also recognized the broad applicability of the Principle of Virtual
Work. However, in his works, d’Alembert very seldom uses this principle. He
viewed this principle as based on the concept of energy and since he knew that
energy was lost in inelastic collisions, it held no primary interest for him. Moreover,
he was attempting to banish the concept of force from mechanics and of course,
the Principle of Virtual Work depends on the definition of force. His attitude made
his approach to mechanics very narrow and in fact, it was very difficult for him
to treat problems dealing with static equilibrium. In his Traité de Dynamique,
d’Alembert attempted to demonstrate the law of the Conservation of Vis Viva.>?

It follows from all of our preceding discussion that in general the conservation of vis
viva depends on this principle, that when the powers [puissances] are in equilibrium,
the velocities of the points where they are applied in the directions of these powers
are in inverse ratio to these same powers. This principle has long been recognized
by geometers as the fundamental principle of equilibrium; but no one that I know has
yet demonstrated the principle or shown that the conservation of vis viva necessarily
results from it.

Many years will pass before Lagrange leaves Turin and departs for Berlin. How-
ever, the influence of Euler on his thinking even while he is in Turin is manifest
throughout his work. Maupertuis and Euler had been involved for a lengthy period
in a controversy over a principle which stated that nature minimizes “action” in
all its phenomena. The quantity which expresses “action” was not clearly stated
by Maupertius. However, Euler saw how to make the principle precise. He stated
that under the action of central forces the following integral

/Muds

where M is the mass of the body, u is the velocity and s is its displacement must
be a minimum.

The controversy over the Law of Rest and the Principle of Least Action is very
important because in the hands of Lagrange they would lead to the creation of
analytical mechanics. The significant results were obtained by Euler whose interest
in this controversy was fueled by his interest in metaphysics.>'

Euler’s singular result is the derivation of the Principle of Least Action from the
Law of Rest. The significance of the derivation is that it provides a link between
statics and dynamics and therefore, it reduces mechanics to a single principle. It
must have been clear to Lagrange from Euler’s demonstration that the Principle of
Virtual Work provided the link between statics and dynamics.

A short summary of Euler’s work will be presented here because of its relation to
Lagrange’s work. Euler began the derivation by considering central forces which
he denoted by the letter V;. The central force V; is assumed to be acting on a body
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of mass M;. Further, let v; be the distance from the mass M; to an arbitrary point
lying on the line of action of the central force V;. Then the integral

/Vz‘dvz‘

expresses what Euler called the effort of the force V; and later, Lagrange would
call this quantity the potential. This integral can also be recognized as the work of
the force V; or the statement of the Law of Rest for this single force. Since there
can be more than one central force, the Law of Rest states that an integral of this
form exists for every force V; and that the sum of all the integrals represents the
total effort of all the forces acting on the masses of the system and that this sum
is a maximum or a minimum. To put these statement in modern terms, Euler is
asserting the following: when the particle displaces such that a component of the
gravitational field causes the displacement, the potential decreases. The decrease
in potential is equal to the work done by the gravitational force.

Euler continues the development by stating that

... what is more natural than to maintain that the principle of equilibrium [i.e. the
Law of Rest] should also hold for the motion of bodies acted upon by similar forces.
If the intent of nature is to economize the total effort as much as possible, this intent
must extend to motion provided that the effort is considered for the duration of the
motion and not only for an instant of time. If the effort or the sum of the efforts at any
instant during the motion is denoted by ® and if dt denotes the element of time, the
integral f ® dt must be a minimum. Thus if in the state of equilibrium, the quantity
® is a minimum, the same laws of nature seem to require that for motion, the integral
J @ dt should also be a minimum.

It should be noted that Euler was by no means required to derive the Principle of
Least Action from the Law of Rest. He could have derived the Law of Rest from
the Principle of Least Action. Apparently, he considered this route for he remarks
that it is much easier and more convincing to use the former approach. Since
the two principles are equivalent demonstrating either principle and deriving the
remaining principle from it is sufficient.

The second part of the derivation treats the actual equality between the Law of
Rest and the Principle of Least Action. Euler says the following:

Now it is precisely in this formula that Maupertuis’ other formula concerning motion
is contained, however different the two principles may appear on the surface. In order
to demonstrate how well they accord, I need only remark that when a body moves
under the action of the forces V; the effort ® to which the body is subject expresses
simultaneously the vis viva of the body, i.e. the product of the mass M of the body
and the square of its velocity.

If the quantity u represents the velocity of a body and if the quantity s represents
the path of the body then udt = ds. Consequently, the integral of the vis viva
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becomes [ Mu?dt = [ Muds. Recall that the vis viva did not include the factor
1/2 which is included today because of the principle that the work done equal the
change in kinetic energy and this quantity is called the kinetic energy.

Of course, it is clear from the last equation that the second integral represents the
Principle of Least Action. It remains to demonstrate that the first integral which is
the vis viva leads to the Law of Rest. Euler continues

Then, since f Vidv, + f Vadvp+-- -+ f Vi dv; expresses the effort of the forces on

the body M which I said earlier is equal to @, it is clear that Mu® = constant — .
It is easily seen that the constant does not disturb the harmony which I have sought to
establish between the effort ® and the vis viva M« of the body because if f ddtis

a maximum or minimum the formula Mu? dt or J Muds will also be a maximum

or minimum since the term f constant - d¢ = constant - ¢t does not enter into the
consideration of the maximum or minimum.

Thus this term has no effect on the existence of an extremum. And besides, since the
effort @ is expressed by integral formulas, it already has an arbitrary constant so that
I could neglect this constant entirely and simply write Mu?> = & which makes the
equivalence more obvious.

The mathematical formulation of the Principle of Least Action by Euler was to
make a strong impression on Lagrange as we showed when we presented a broad
outline of Lagrange’s development which we took from his correspondence. This
principle inspired his research because of the new methodology he developed for
the Calculus of Variations.>? It appears that he had no interest in Maupertuis’
attempt to harmonize the Principle of Least Action with the existence of a deity. In
his view, it was simply a mathematical proposition. However, once he recognized
that a mathematical variation and a virtual displacement were analogous operations,
he had come upon the basic foundation of mechanics and from this point, he could
construct analytical mechanics.

Lagrange is not alone in his view that the principles of mechanics are simply
propositions, but such a view was clearly the exception among scientists of his
time. However, during this period of the Enlightenment, the Deist view, which
held that the universe evolved without God’s intervention, was adhered to by
many intellectuals of the period. This view is, of course, contrary to Christian
teachings. The endless discussions over this question, which appeared to lead
nowhere, appeared meaningless to Lagrange. Hence, he undertook to describe the
mechanical behavior of material systems without any metaphysical commentary
at all.

Lagrange was careful to derive his analytical formulas from simple propositions
whose truth was undeniable. Thus the Mécanique analytique continues a develop-
ment which began with Newton where the analytical formulas are carefully derived
from demonstrated empirical results. Consequently, Lagrange avoids a fallacy
which many investigators saw in mathematical reasoning and which d’Alembert
was to describe. D’Alembert observed that mathematics had destroyed the search
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for metaphysical systems to explain the natural world but that it was not, in itself,
sufficient. Mathematical deduction had limitations which required empirical data
if the resulting physical system was to be substantial.

The Mécanique analytique embodies this observation succinctly described by
d’Alembert. The treatise is divided into two parts: Part I deals with statics
and Part II with dynamics. Each part is divided into sections: Part I has eight
sections while Part II has twelve sections. The entire treatise is based on the
Principle of Virtual Work. For problems of statics and hydrostatics, Lagrange
introduces the Lagrangian multiplier in order to treat constraints. In statics, the
multiplier is the force or moment which enforces the rigidity of the structure and
in hydrostatics, it represents the pressure in the fluid. The treatment of problems
in dynamics requires that the Principle of Virtual Work be applied in conjunction
with d’Alembert’s Principle in order to account for the forces of inertia. The
resulting equations, after some algebraic treatment, leads to the Lagrangian form
of the equations of motion for any system.

Lagrange began the sections on statics, hydrostatics, dynamics and hydrodynamics
with a short summary of the fundamental principles which serve as their basis.>
These summaries were not intended in any sense to serve as histories of the subject,
although some investigators have viewed them in this fashion. They simply
fulfilled the Enlightenment ideal that a system be demonstrably derived from
indubitably understood and known premises. There is one bias that was common
to Enlightenment intellectuals which is also reflected in the historical sketches
of Lagrange. The science and technology of the Middle Ages was completely
ignored. It is probably true that not much was known about this subject during the
Enlightenment. However, the attitude of intellectuals was that the Middle Ages
represented a period of time in which religion dominated all human activities and
since a basic tenet of the Enlightenment was that religion was hindering human
progress, they refused to recognize any contribution in this period to intellectual
growth.

Lagrange makes a point of stating in the Preface to the Mécanique that “No figures
will be found in this work.” No other comprehensive work of the time completely
excluded figures from its pages. Lagrange had used figures in his notes for his
students on mechanics and mathematics at the Royal School of Artillery and he
certainly must have used figures as he composed his memoirs on mathematics even
though they weren’t included in the finished work.

The lack of figures in Lagrange’s work is due to developments in mathematics
which began in the 16th century. During the 16th century, primarily due to the
efforts of the Italian mathematicians such as Pacioli, Cardan, Tartaglia and others,
the methodology of algebra had expanded enormously. Algebra had developed to
a point that in this period it is on an equal footing with geometry and henceforth,
it will now surpass it in scope and ease of application. It is true that during this
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period, geometric proofs of the rules of algebra are still given. However, this fact
will soon change. By the time of Lagrange, algebra stands supreme. Lagrange
uses no figures in his work since he is fully aware that algebra has overcome
geometry and figures are no longer necessary.

ABOUT THE TRANSLATION

The object of every translator is to remain true to the original text, yet make it
comprehensible to an audience speaking a different language in perhaps a different
period of time. Thus this object has a two-fold manifestation. The first is to
translate accurately the meaning of the original text. However, languages evolve
in time, and expressions and terminologies change with time. Our use of modern
terminology may bring with it much more than Lagrange intended. Consequently,
we have been very careful with our translation of technical terms and we have tried
to keep the language simple and direct. The second object is to capture the style of
the text and render it into the language of translation. This second object presents
the greatest difficulty. Lagrange’s style of writing is very austere and blunt. It is
almost as if he wrote in this fashion so as not to detract from the mathematics. He
is seemingly not conscious of the repetition of basic phrases which make the work
somewhat tiresome to read. We have tried to convey the austere and blunt style of
Lagrange while eliminating his use of the indefinite pronoun in the active voice by
replacing it with a phrase usually in the passive voice. In so doing, we have tried
to retain the essence of Lagrange’s style of writing without improving on the text.

The third edition of the Mécanique analytique was edited by Joseph Bertrand.
He added numerous footnotes in order to clarify the text. However, we believe
that most of his footnotes were unnecessary since the text should be clear to the
modern reader without them. But we have retained a few of Bertrand’s footnotes
and indicated that they are by him if we thought that they contributed to an
understanding of the text.

We have added footnotes wherever we believed that they would be useful to a
modern audience. This led us to consider very carefully the composition of our
audience. We anticipate our audience to be composed of individuals from four
main groups — historians of science, physicists, mathematicians and engineers.
Each group has its own interests which made it difficult to put our footnotes in a
form pleasing to all. Moreover, the footnotes are intended to complement the text
where necessary and are not intended to be complete in any sense.
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PREFACE
to the First Edition

There already exist several treatises on mechanics, but the purpose of this one is entirely
new. I propose to condense the theory of this science and the method of solving the
related problems to general formulas whose simple application produces all the necessary
equations for the solution of each problem. I hope that my presentation achieves this
purpose and leaves nothing lacking.

In addition, this work will have another use. The various principles presently available will
be assembled and presented from a single point of view in order to facilitate the solution of
the problems of mechanics. Moreover, it will also show their interdependence and mutual
dependence and will permit the evaluation of their validity and scope.

I have divided this work into two parts: Statics or the Theory of Equilibrium, and Dynamics
or the Theory of Motion. In each part, I treat solid bodies and fluids separately.

No figures will be found in this work. The methods I present require neither constructions
nor geometrical or mechanical arguments, but solely algebraic operations subject to a
regular and uniform procedure. Those who appreciate mathematical analysis will see with
pleasure mechanics becoming a new branch of it and hence, will recognize that I have
enlarged its domain.



PREFACE
to the Second Edition

There already exist several treatises on mechanics, but the purpose of this one is entirely
new. I propose to condense the theory of this science and the method of solving the
related problems to general formulas whose simple application produces all the necessary
equations for the solution of each problem.

In addition, this work will have another use. The various principles presently available will
be assembled and presented from a single point of view in order to facilitate the solution of
the problems of mechanics. Moreover, it will also show their interdependence and mutual
dependence, and will permit the evaluation of their validity and scope.

I have divided this work into two parts: Statics or the Theory of Equilibrium, and Dynamics
or the Theory of Motion. In each part, I treat solid bodies and fluids separately.

No figures will be found in this work. The methods I present require neither constructions
nor geometrical or mechanical arguments, but solely algebraic operations subject to a
regular and uniform procedure. Those who appreciate mathematical analysis will see with
pleasure mechanics becoming a new branch of it and hence, will recognize that I have
enlarged its domain.

This is the purpose which I tried to fulfill in the first edition of this work published in
1788. The present edition is in many respects a new work based on the same outline
but augmented. I have further developed the principles and general formulas and I have
introduced numerous additional applications in which the solutions to the major problems
in the domain of mechanics will be found.

I have kept the ordinary notation of the differential calculus because it fits the system of
infinitesimals adopted in this treatise. Once the spirit of this system has been grasped
well and the accuracy of its results established by either geometrical methods' or by the
analytical method of derived functions,? the infinitesimal calculus can then be applied as a
certain and manageable tool to shorten and simplify the demonstrations. It is in this way
by using the method of indivisibles that the demonstrations of the Ancients are shortened.

We are now going to point out the principle additions which distinguish this edition from
the First Edition.

SECTION I of Part I contains a more complete analysis of three principles of statics with
new remarks on the nature and relation of these principles. The section ends with a direct
demonstration of the Principle of Virtual Velocities which is completely independent of
the two other principles.

In SECTION 11, it is demonstrated in a more rigorous manner that the Principle of Virtual
Velocities for an arbitrary number of forces can be deduced from the case where there are
no more than two forces, which leads this principle back directly to the principle of the
lever. The equations which result from this principle are then reduced to a more general
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form and the necessary conditions are given for a system of forces to be equivalent to and
able to replace another system.

In SECTION I1I, the formulas for instantaneous rotational motion and for the composition
of these types of motion are established in a more straight-forward manner. In addition,
the theory of moments and their composition is deduced from the preceding development.
Also, a little known property of the center of gravity is presented and a new demonstration
is given for maxima and minima in the state of equilibrium.

SECTION IV contains more general and simpler formulas for the solution of problems
which depend on the calculus of variations and from the comparison of these formulas
with those for the equilibrium of bodies of variable shape, it is shown how the problems
relative to their equilibrium belong to the category of those which are known under the
title of General Problems of Isoperimetrics and which are solved in the same manner.

SECTION V presents some new problems and some important comments on some of the
solutions already given in the first edition.

In SECTION VI, some details are added to the historical analysis of the principles of
hydrostatics.

In SECTION VII, the calculation of the variations associated with the molecules of a
fluid have been treated more rigorously and with more generality. The analysis of the
terms which refer to the limits of the fluid mass have been greatly simplified. From these
terms, the theory of the action of fluids on the solids which they cover or on the walls of
vessels which contain them is deduced and a direct demonstration is given of the following
theorem: In the case of equilibrium between a solid and a fluid, the forces which act on
the solid are the same as if the fluid and solid formed a solid mass. Much more has been
added to this section and to the following section which treats the equilibrium of elastic
fluids and presents some applications of the general formulas of the equilibrium of fluids.

Part I, which treats dynamics, has also been considerably augmented.

In SECTION I, a more complete and more accurate analysis is given of some topics in the
history of dynamics.

There is an important addition in SECTION II. It is shown for which cases the general
formula of dynamics and consequently, the equations which result for the motion of a
system of bodies, is independent of the position of the coordinate axes in space. This
demonstration gives a means of completing a solution by the introduction of three new
arbitrary constants where some constants would have otherwise been assumed to be equal
to zero.

In SECTION III, more development is given to the properties relative to the motion of the
center of gravity and to the areas described by a system of bodies. There are additions
to the theory of principal axes or of uniform rotation, deduced from the consideration of
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the instantaneous motion of rotation by an analysis which is different from the one used
earlier.

Also, some new theorems are demonstrated on the rotation of a solid body or a system of
bodies, when they depend on an initial impulse.

There is very little difference between SECTION IV of the first edition and this edition.

SECTION V is entirely new. It contains the theory of the Method of the Variation of
Arbitrary Constants® which is the subject of three memoirs printed among those of the
First Class of the Institute in 1808. It is presented here in a much simpler manner and
as a general method of approximation for all the problems of mechanics, where there are
perturbing forces which are small compared to the principle forces.

In order to extend this theory as far as possible, the function V', which depends on forces
principally, can only be an exact function of the independent variables &, 9, ¢, etc., and
of the time ¢, but it is not necessary that the function denoted by €2 and which depends on
perturbing forces, also possess the same nature. Whatever the forces, if they are resolved
for each body m of the system into three components X, Y, Z in the positive directions of
the coordinates x, y, z and with the tendency to increase them, there remains only to reduce
the coordinates to functions of the independent variables &, 1, ¢, etc. and to substitute in
place of the partial derivatives dQ/d¢, d2/d, etc. their respective sums

dz dy dz dx dy dz
Y= Yy—
Sm (Xd§+ §+Zd§> Sm(Xw+ ¢+Z¢)

and as a consequence, the quantity
Sm(XAz + YAy + ZAz)

will be obtained in place of Af2, where the operator A refers to the arbitrary constants in
such a way that the derivative d{2/da can be changed to

dz dy dz
Sm(Xd——+Yd +Zd >

and so on for the other partial derivatives of Q. In this fashion, the method is applicable to
perturbing forces represented by arbitrary variables.

Finally, SECTION VI, which is the last section of this volume and which corresponds to
the first paragraph of SECTION V of the first edition, is augmented by various remarks
and above all, by the solution of some problems on the small vibrations of bodies. It ends
with the theory of vibrating strings which I presented earlier in the first volume of the
Mémoires of the Académie de Turin* and which is presented here in a very simple manner
and free of the objections which d’Alembert made against this theory, in the first volume
of his Opuscules.?



PART I
STATICS

SECTION I
THE VARIOUS PRINCIPLES OF STATICS

Statics is the science of the equilibrium of forces. In general, force or power is the cause,
whatever it may be, which induces or tends to impart motion to the body to which it is
applied. The force or power must be measured by the quantity of motion produced or to
be produced. In the state of equilibrium, the force has no apparent action. It produces only
a tendency for motion in the body it is applied to. But it must be measured by the effect it
would produce if it were not impeded. By taking any force or its effect as unity, the relation
of every other force is only a ratio, a mathematical quantity, which can be represented by
some numbers or lines. It is in this fashion that forces must be treated in mechanics.

Equilibrium results from the equilibration of several forces which oppose and negate the
actions which they exert on each other. The goal of statics is to formulate the laws under
which this equilibration takes place. These laws are founded on some general principles
which can be reduced to three: the lever, the composition of forces and virtual velocities.'

1. Among the Ancients, Archimedes is the sole author who left us a theory of equilibrium
in his treatise of two books de Aequiponderantibus or de Planorum aequilibriis.? He is also
the author of the principle of the lever, which consists, as every mechanician knows, of the
following: If a straight lever is loaded by two weights placed on each side of the fulcrum
at distances inversely proportional to these same weights, the lever will be in equilibrium.
Moreover, its point of support would be loaded by the sum of the two weights. Archimedes
considers this principle applied to two equal weights placed at equal distances from the
fulcrum as an axiom of mechanics obvious by itself or at least as a principle derived
from experience. He uses this simple and fundamental case to analyze the one of unequal
weights by imagining the weights, when they are commensurable, decomposed into several
equal and smaller weights and by assuming that these small weights are distributed at equal
intervals over both arms of the same lever such that the lever is loaded by several small
equal weights placed at equal distances on each side of the fulcrum. Then he proves the
same theorem for incommensurable weights with the aid of the Method of Exhaustion.’
He shows that the weights could not be in equilibrium unless they were placed inversely
proportional to their distances from the fulcrum.

Some modern authors, such as Stevin in his statics and Galileo in his dialogues on mo-
tion, have simplified Archimedes’ demonstration by assuming that the weights attached to
the lever are two horizontal parallelepipeds suspended from their midpoints. The paral-
lelepipeds are assumed to have equal widths and heights but with lengths double the lever

11
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arms which inversely correspond to them. Thus, in this fashion, the two parallelepipeds
are in an inverse relation to their lever arms, and at the same time, they are positioned end
to end, so that they form an integral whole for which the midpoint corresponds precisely to
the point of support of the lever. Archimedes had already employed a similar construction
to determine the center of gravity of a plane figure composed of two parabolic segments
in the First Proposition of the Second Book of the Equilibrium of Planes.

On the other hand, some authors believing that they had found some deficiencies in
Archimedes’ demonstration, have reworked it differently to make it more rigorous. How-
ever, it is clear that by altering the simplicity of this demonstration, they have added almost
nothing in terms of cogency.

Among those who have tried to supplement Archimedes’ demonstration on the equilibrium
of the lever must be mentioned Huygens, who has written a short work entitled Demon-
stratio aequilibrii bilancis.* This work was published in 1693 in the Recueil des anciens
Mémoires de I’ Académie des Sciences.’

Huygens® observes that Archimedes assumed implicitly that if a single weight is replaced
by a number of equal weights, which are distributed over a horizontal lever at equal
intervals, they will exert the same moment to incline the lever. Either they are all on the
same side of the fulcrum, or some are on one side with the rest on the other side. To avoid
this precarious assumption, instead of distributing two commensurate weights on the same
lever, as Archimedes had done, Huygens distributes them on two other horizontal levers
placed perpendicular to the ends of the first lever. In this way, one has a horizontal plane
loaded with several equal weights which is evidently in equilibrium with respect to the first
lever, because the weights are equally and symmetrically distributed from the two arms of
this lever. But Huygens demonstrates that this plane is also in equilibrium with respect to
an axis inclined to the former and passing through the point which divides the first lever
in segments inversely proportional to the weights which load it. Since the small weights
are also placed at equal distances on each side of the same straight line, he concludes that
this configuration and consequently, the lever under consideration, must be in equilibrium
with respect to the same point. This demonstration is ingenious, but it does not replace
entirely what can be found in the one given by Archimedes.’

2. The equilibrium of a straight and horizontal lever with its extremities loaded by equal
weights and with the fulcrum located at its midpoint is a self-evident truth because there is
no reason that either of the weights should move since they are both equal to one another
and located at equal distances from each side of the fulcrum. This observation is not
equivalent to the assumption that the reaction at the fulcrum is equal to the sum of the
two weights. It appears that all mechanicians have accepted as a fact derived from daily
experience that the weight of a body depends only on its total mass, and not on its shape.?
Nevertheless, this truth can be deduced from the first one by considering, as Huygens did,
the equilibrium of a plane about a line.
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In order to carry out this demonstration, it is only necessary to imagine a triangular plane
loaded by two equal weights at the two corners of its base and by one of double weight
at its top. This plane, which is supported on a straight line or fixed axis passing through
the midpoints of the two sides of the triangle, will obviously be in equilibrium since each
of the sides can be visualized as a lever loaded at each end by an equal weight and with
its fulcrum on the axis passing through its midpoint. This state of equilibrium can be
conceived in yet another fashion, by viewing the base of the triangle as a lever whose
ends are loaded by two equal weights and by imagining a transverse lever connecting the
top of the triangle to the midpoint of its base. If the transverse lever which is loaded at
its top by a weight double the one at each corner of the base is used as a fulcrum to the
lever which forms the base, it is obvious that the base lever is in equilibrium with respect
to the transverse lever which it carries at its midpoint. Also, the transverse lever will be
in equilibrium with respect to the axis to which the plane is already in equilibrium. And
because this axis passes through the midpoint of the sides of the triangle, it will necessarily
pass through the midpoint of the transverse lever. Hence, the transverse lever will have its
fulcrum at its midpoint and consequently, it will have to be loaded equally at the two ends.
Furthermore, the load which is supported by the fulcrum of the base lever will be equal to
the weight at the top of the transverse lever and consequently, it will be equal to the sum
of the two weights of the base lever.

If, instead of a triangle, a trapezoid loaded at its four corners by four equal weights is
considered, it would be found, in the same fashion, that the two levers of unequal lengths,
constituting the parallel sides of the trapezoid, exert equal forces on their fulcrums.

3. Once this proposition is established, it is clear that a weight in equilibrium on a lever can
be replaced by two weights, each equal to half of this weight and placed at equal distances
on each side of the point where the weight was originally suspended, as Archimedes did.
The action of this weight on the point to which it is attached is the same as the action of a
lever suspended by this point which is also its midpoint and loaded at its two extremities
by two weights each equal to half of this weight. Moreover, it is obvious that nothing
prevents us from approaching this latter lever from the standpoint of the former. In short,
that it belongs to or which is perhaps more rigorous, this latter lever can be considered
as held in equilibrium by a force applied at its midpoint directed vertically upward and
equal to the weight of the two halves which are assumed applied at its ends. Then, total
equilibrium will always be present if this lever which is in equilibrium is superimposed on
the first lever which is also assumed to be in equilibrium with respect to its support point.
And, if the application is done such that the midpoint of the second lever coincides with
the extremity of one of the arms of the first lever, the force which supports the second lever
will be canceled by the weight applied to the extremity of the first lever. Therefore, the first
lever will be in equilibrium. Finally, the weight applied to the extremity of the first lever
will then be replaced by two weights each equal to half of it and placed at the extremities
of the second lever which is now part of an extended first lever. The superposition of
equilibria in mechanics is a principle as fecund as the superposition of figures in geometry.
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4. Thus the equilibrium of a straight and horizontal lever loaded with two weights inversely
proportional to their distances from the fulcrum can be viewed as a rigorously demonstrated
truth. Using the principle of superposition, it is easy to extend it to any bent lever with the
fulcrum at the apex of the angle and with the arms pulled in opposite directions by forces
perpendicular to the directions of the arms. Indeed, it is obvious that a bent lever with
equal arms and able to rotate about the apex of the angle will be held in equilibrium by two
equal forces acting in opposite directions and applied perpendicularly to the ends of the
two arms. Therefore, if there is a straight lever in equilibrium with one arm of the same
length as one arm of the bent lever and if this straight lever is loaded at one of its ends by
a weight equal to each of the forces applied to the bent lever with the other arm loaded
such that equilibrium holds and if these two levers are superimposed in such a way that
the apex of the bent lever coincides with the fulcrum of the straight lever, and if the equal
arms of both levers coincide and form one lever arm, then the force applied to the arm of
the bent lever will equilibrate the weight hung from the arm with the same length as the
straight lever such that both arms can be removed from the system which we have defined.
The state of equilibrium will still exist between the two remaining arms which constitute
a bent lever pulled at its extremities by perpendicular forces inversely proportional to the
lengths of the arms, as in the case of the straight lever.

But a force can be considered applied to any point along its direction. Therefore, two forces
applied at arbitrary points on a plane, which is fixed at one point, and directed arbitrarily in
this plane are in equilibrium when they are inversely proportional to perpendiculars drawn
from this fixed point to their respective directions. Indeed, these perpendiculars can be
considered part of a bent lever for which the fulcrum is the fixed point in the plane. This
result is called today the Principle of Moments, where moment is defined as the product
of a force by the [length of the] arm of the lever on which it acts.

This general principle suffices to solve all the problems of statics. The initial investigations
following Archimedes in the study of the pulley in the theory of simple machines, led to a
recognition of this principle. The resuits of these investigations can be seen in the treatise
of Guido Ubaldo® entitled Mechanicorum liber'® which was published at Pesaro in 1577.
However, this author did not know how to apply this principle to the inclined plane or
to other machines such as the wedge and the screw where it is also applicable.'! For the
wedge and screw, he presented only an approximate theory.

5. The ratio of the component of a weight parallel to an inclined plane to the total weight
of the body was a problem for modern mechanicians for a long time. Stevin is the first to
solve it but his solution is founded on a proposition which is indirect and independent of
the theory of the lever.'?

Stevin considers a solid triangle placed on a horizontal plane so that its two sides form two
inclined planes. He imagines further that a wreath made of several equal weights, stringed
at equal intervals or rather a closed chain of constant thickness is placed on the two sides
of this triangle in such a manner that the entire upper part is applied to the two sides of the
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triangle and the lower part hangs freely beneath the triangle as if it were attached to the
two ends of the base.'?

Now Stevin remarks that even if the wreath or chain were assumed capable of slipping
freely on the triangle, it must nevertheless remain at rest. Indeed, if it started to slip by
itself in either direction under its own weight, it would continue to slip, because the cause
of the motion remains. The chain, because of the uniformity of its segments, is always
in the same configuration on the triangle. Thus a perpetual motion would result, which is
absurd.

Therefore, equilibrium necessarily exists between all the elements of the chain and the
portion which hangs beneath the triangle is in equilibrium under its own weight. Thus it
must be that the action of all the weight resting on one of the inclined sides counterbalances
the action of all the weight resting on the other side. However, the ratio of the total weight
on one of the inclined sides to the total weight on the other side is equal to the ratio of the
lengths of the sides on which they lie. Hence, the same force will always be required to
maintain one or more weights at rest on inclined planes when the total weight is proportional
to the lengths of the planes assuming that the height of these planes is the same. When the
plane is vertical, the force is equal to the weight and therefore, for any inclined plane, the
ratio of the force to the weight is equal to the ratio of the height of the plane to its length.

I mention Stevin’s demonstration because it is very ingenious and besides little is known
aboutit. Also, Stevin deduces from this theory the equilibrium between three forces which
act at the same point, and he finds that equilibrium exists when the forces are parallel to
and proportional to the three sides of any plane triangle. Refer to the De staticae elementis
and to the Additamentum staticae by this author in the Hypomnemata Mathematica'*
printed at Leyden in 1605 and in the works of Stevin translated into French and printed
in 1634 by the Elzevirs.!> But it should be recognized that this fundamental theorem of
statics, although it is commonly attributed to Stevin, has been demonstrated by this author
only for the case where the directions of the two forces form a right angle.

Stevin remarks with reason that the problem of a weight placed on an inclined plane and
maintained by a force parallel to the plane, is the same as if this weight were held by two
strings-one perpendicular and the other parallel to the plane. Then applying his theory of
the inclined plane, he finds that the ratio of the weight to the force parallel to the plane is
equal to the ratio of the hypotenuse to the base of a right triangle constructed on the inclined
plane by two lines, one vertical and the other perpendicular to the plane. Stevin limits
himself thereafter to applying this ratio to the case where the string which holds the weight
on the inclined plane would also be inclined to this plane by constructing an analogous
triangle with the same lines-one vertical and the other perpendicular to the plane-and by
taking the base in the direction of the string. But for this case, it should be demonstrated
that the same ratio holds for the equilibrium of a weight held on an inclined plane by a
force oblique to the plane, which cannot be deduced from the consideration of the wreath
of spheres visualized by Stevin.
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6. In the Le Meccaniche'® of Galileo, first published in French by Father Mersenne in
1634, equilibrium on an inclined plane is reduced to the case of a bent lever with two equal
arms. One arm is assumed perpendicular to the plane and loaded by the weight resting
on the plane while the other arm is horizontal and loaded with a weight equivalent to the
force required to maintain the weight on the plane. This equilibrium is then reduced to
the case of a straight and horizontal lever by considering the weight attached to the arm
perpendicular to the plane as suspended from a horizontal arm which, when combined
with the horizontal arm of the bent lever produces a straight lever. Hence, the weight is to
the force which holds it on the inclined plane in inverse proportion to the two arms of the
straight lever and it is easy to prove that these two arms are to one another as the height of
the plane is to its length.

It can be said that this presentation is the first direct demonstration of the equilibrium of
a body on an inclined plane. Galileo used it later to rigorously demonstrate the equality
of the velocities acquired by heavy bodies descending from the same height but on planes
with different inclinations: an equality that he only assumed in the first edition of his

Dialogues."

It would have also been easy for Galileo to solve the problem where the force which
maintains the weight is inclined to the plane. But this additional step was taken by
Roberval only a short time later in a treatise on mechanics published as part of Mersenne’s
Harmonie universelle in 1636.'

7. Roberval also treats the equilibrium of a body placed on an inclined plane as if it were
attached to the arm of a lever perpendicular to the plane and he considers the force applied
to the same arm in a given direction. He has, therefore, a lever with only one arm for which
one of the ends is fixed while the other end is acted upon by two forces-the weight and the
force which holds the weight. He later substitutes for this lever a bent lever with two arms
perpendicular to the directions of these two forces and having the same fixed point as the
point of support. He assumes that the two forces are applied to the arms of the lever so
that at equilibrium the ratio of the weight to the force is inversely proportional to the ratio
of the two arms of the bent lever, that is, the perpendiculars drawn from the fixed point to
the directions of the weight and force.

From the prior result, Roberval deduces the equilibrium condition for a weight held by two
strings having an arbitrary angle between them. This is achieved by substituting for the
lever perpendicular to the plane a rope which is attached to the point of support of the lever
and by substituting for the force another rope pulling in the direction of this force. And
through diverse constructions and analogies which are a bit complicated, he arrives at this
conclusion: If from any point lying on the vertical passing through the weight, a parallel
line to one of these ropes is drawn to intersect the other rope, the triangle thus formed will
have its sides proportional to the weight and to the forces which act in the direction of the
same sides. It is obvious that this is the theorem given by Stevin.
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I believe that I had to mention this demonstration of Roberval, not only because it is the
first rigorous demonstration that has been given for Stevin’s theorem, but also because it
remained forgotten in a treatise on harmony' rare enough nowadays, where no one would
think to look for it. Moreover, I presented these details regarding the theory of the lever
only to please those who like to follow a train of thought in science and who like to follow
the paths which seminal thinkers have followed as well as the more direct paths that they
could have followed.

8. The treatises on statics which appeared after Roberval’s, up to the time of the discovery
of the Composition of Forces, have added nothing to this branch of mechanics. Only
the well-known properties of the lever and the inclined plane and their applications to the
other simple machines can be found. Moreover, there exist treatises which contain theories
which are only approximate such as the one by Lami®® on the equilibrium of solids, in
which he gives an erroneous ratio for the weight of a body to the force which holds it on
an inclined plane. Descartes, Torricelli and Wallis will not be mentioned here because
they adopted for the definition of the state of equilibrium a principle which is related to the
Principle of Virtual Velocities, and for which they did not have a demonstration.

9. The second fundamental principle of statics is that of the Compeosition of Forces. It is
founded on this supposition: If two forces from different directions act simultaneously on
a body, the forces are equivalent to a unique force capable of imparting to this body the
same velocity that the two forces acting individually would have imparted to it. Indeed, a
body which is moved uniformly in two different directions simultaneously must necessarily
traverse the diagonal of the parallelogram whose sides it would have followed separately
in virtue of each of the two velocities. From this fact, it can be concluded that two
arbitrary forces which act simultaneously on the same body are equivalent to a single force
represented in magnitude and direction by the diagonal of the parallelogram for which the
sides represent the magnitudes and directions of the two given forces. This result is the
principle which is called the Composition of Forces.

This principle alone suffices to determine the laws of equilibrium in all cases because
by taking all the forces successively two at a time, an equivalent, unique force would be
obtained. In the case of equilibrium, the magnitude of this force must be zero if there is
no fixed point in the system. But if there is a fixed point, this unique force would have to
pass through the fixed point. This is what is found in all books on statics and in particular,
in the Nouvelle Mécanique of Varignon?! where the theory of machines is deduced solely
from this principle.

It is obvious that Stevin’s theorem on the equilibrium of three forces parallel to and
proportional to the three sides of a triangle is an immediate and necessary consequence of
the principle of the Composition of Forces or rather, it is this same principle formulated
differently. But the former has the advantage of being founded on simple and natural
concepts, unlike Stevin’s theorem which is founded only on indirect considerations.
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10. The Ancients knew the Composition of Velocities as can be seen from some passages
in Aristotle’s Mnpyavikd mpoBMjpara.?? Geometers have used it principally for the
description of curves, for example, Archimedes for the spiral, Nicomedes for the conoid,
etc. Recently, Roberval deduced from it an ingenious method to draw tangents to curves
which can be described by two motions for which the equations are given. But Galileo
is the first to have used the concept of composed motion in mechanics to determine the
trajectory of a heavy body under the action of gravity and the force of projection.

In the second proposition of the Fourth Day of his Dialogues?} , Galileo demonstrates that
a body moving with two uniform velocities, one horizontal and the other vertical, must
have a total velocity represented by the hypotenuse of a triangle where the sides represent
the two component velocities. At the same time, it seems that Galileo did not recognize
the importance of all aspects of this proposition to the theory of equilibrium. In the third
dialogue, where he treats the motion of heavy bodies on inclined planes, instead of applying
the principle of the Composition of Velocities to determine directly the positional gravity
of a body on an inclined plane, he makes this evaluation from the theory of equilibrium
applied to inclined planes deduced from what he had previously established in his treatise
Della Scienza Meccanica.?* In the latter treatise, he considers everything from the inclined
plane to the lever.

Later, the theory of composed velocities is found in the works of Descartes, Roberval,
Mersenne, Wallis, etc. But up to the year 1687, when Newton’s Principia and Varignon’s
Projet de la nouvelle Mécanique were published, no one thought to substitute force for
the velocity that it would produce in the Composition of Velocities and to determine the
resultant force composed of two given forces as one determines the resultant velocity of
two given rectilinear and uniform velocities.?

In the second corollary to the Third Law of Motion, Newton describes in a few words
how the laws of equilibrium are easily deduced from the composition and resolution of
forces, by taking for the resultant force the diagonal of a parallelogram for which its sides
represent the component forces. But this subject is treated in more detail in the works
of Varignon and the Nouvelle Mécanique, which was published after his death in 1725,
contains a complete theory on the equilibrium of forces in various machines deduced solely
from the consideration of the composition or resolution of forces.

11. The principle of the Composition of Forces gives immediately the conditions of
equilibrium between three forces which act at a point. These conditions could only be
deduced by a chain of thought beginning with the equilibrium of the lever. But, on the
other hand, when the conditions of equilibrium between two parallel forces applied to the
extremities of a straight lever are to be found using this principle, one is obliged to use
an indirect approach. For example, by substituting a bent lever for the straight lever, as
Newton and d’Alembert have done or by adding two external forces which cancel each
other, but which after being combined with the applied forces makes their resultant intersect
on the same line or finally by imagining that the directions of the forces extend to infinity
and by proving that the resultant force must pass through the point of support.? This last
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approach is taken by Varignon in his mechanics. Hence, although the Principles of the
Lever and of the Composition of Forces always lead to the same results, it is remarkable
that the most simple case for one of these principles becomes the most complicated case
for the other.

12. But an immediate relation can be established between these two principles, by using the
theorem that Varignon gave in his Nouvelle Mécanique (SECTION I, Lemma XVI). This
relation consists of the following: If from an arbitrary point in the plane of a parallelogram,
perpendiculars are drawn to the two sides and the diagonal of the parallelogram, the
product of the diagonal with its perpendicular is either equal to the sum or the difference
of the products of its two sides with their respective perpendiculars depending on whether
or not the point lies outside of or inside of the parallelogram, respectively.?’ Varignon
demonstrates simply that by constructing triangles which have the diagonal and the two
sides of the parallelogram for bases and for sides the lines drawn from the extremities of
the component parts of the parallelogram to the arbitrary point, the triangle?® formed with
the diagonal is, in the first case, equal to the sum and in the second case, to the difference of
the two triangles formed with the sides. This is by itself a very nice theorem of geometry,
independent of its application to mechanics.

This theorem and its demonstration would be equally valid if arbitrary segments equal to
the diagonal and the sides were taken on the prolongations of these straight lines. Indeed,
since every force can be assumed applied at an arbitrary point along its direction, it can
generally be concluded that two forces represented in magnitude and direction by two
lines lying in a plane, have a composed line or a resultant represented in magnitude and
direction by a line lying in the same plane which, when prolonged, passes through the
point of intersection of these two lines and such that having taken an arbitrary point in this
plane and drawing from this point perpendiculars to the prolongation of these three lines,
if necessary, the product of the resultant with its perpendicular is equal to the sum or the
difference of the products of the two composed forces with their respective perpendiculars,
depending on whether the point at which the three perpendiculars meet, is outside or inside
the area defined by the lines representing the composed forces.?’

When this point is assumed to lie on the line of direction of the resultant, this force does
not contribute to the equation of equilibrium. Therefore, equality exists between the two
products of composed forces with their perpendiculars. This is true for any straight or bent
lever for which the point of support is the same as the point referred to earlier, because the
action of the resultant is equilibrated by the resistance of the support.

The theorem attributed to Varignon, is the foundation of almost all of modern statics in
which it constitutes a general concept called the Principle of Moments. Its great advantage
is that the composition and resolution of forces are reduced to additions and subtractions
so that whatever the number of forces to be combined, it is easy to find the resultant force
which must be zero in the case of equilibrium.
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13. I mentioned earlier that Varignon’s discovery occurred at the time of the publication of
his Nouvelle Mécanique, although in the preface of the Nouvelle Mécanique, it is claimed
that it was two years earlier. In the Histoire de la République des Lettres, there is a
memoir on the block and tackle in which he claims to use the Composition of Velocities to
derive all that applies to this device. But I must say that this article "lacks in accuracy".>
This memoir appears only in the Nouvelles de la République des Lettres for the month
of May 1687 under the title: Nouvelle Démonstration générale de ’usage des Poulies
4 Moufle.?! The author analyzes the equilibrium of a weight supported by a rope which
is wrapped around a pulley and which extends out obliquely. He does not use or even
mention the principle of the Composition of Forces, but he uses known theorems on the
problem of weights suspended by ropes and cites the statics of Pardies*? and Dechales.??
In a second demonstration, he reduces the problem of the pulley to that of the lever by
comparing the line which joins the two points where the rope leaves the pulley to a lever
loaded with the weight applied to the shaft of the pulley and whose extremities are pulled
by the two segments of the rope which supports the pulley.

With regard to the history of the discovery of the Composition of Forces, I must say a word
about a short work published by Lami in 1687 entitled: Nouvelle maniére de démontrer
les principaux Théorémes des élémens des Mécaniques®* so that nothing is omitted.
The author asserts that if a body is moved by two forces acting in two different directions,
it will necessarily follow a middle path. But if the path in this direction is blocked, it
would remain at rest and the two forces would be in equilibrium. He determines the
middle direction from the composition of the two velocities that the body would follow
due to each of the two forces as if they were acting separately. This gives the diagonal of
a parallelogram having for sides the distances covered in the same time by the action of
the two forces. Therefore, the length of the sides is proportional to these forces. From this
result he deduces immediately the theorem that two forces are themselves proportional to
the sines of the angles that their two directions make with the middle direction that the
body would take if it were not impeded. Subsequently, he applies it to the inclined plane
and to the lever when its extremities are acted on by nonparallel forces. But in the case
where they are parallel, he uses a vague and rather inconclusive reasoning.

The similarity between the principle used by Lami and by Varignon led the author of the
Histoire des Ouvrages des Savans®® in April, 1688 to say that it appears that the former
was indebted to the latter for the discovery of this principle. Lami defended himself in a
letter published in the Journal des Savans on September 13, 1688. The author replied in
December of the same year. But this controversy, in which Varignon did not take part, did
not go any further and Lami’s letters have been forgotten.

In fact, the simplicity of the principle of the Composition of Forces and the ease with
which it is applied to all problems of equilibrium led to its adoption by mechanicians as
soon as it was discovered. And it can be said that it is used as a basis in almost all the
treatises on statics which have been published since then.
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14. However, it is easy to recognize that the Principle of the Lever is the only principle
which has the advantage of being founded on the essence of equilibrium itself, independent
of motion. Also, there is an essential difference in the way the forces which are in
equilibrium are calculated in these two principles. If it were impossible to correlate them
through their results, one could reasonably doubt that the principle of the lever could be
substituted for the principle which results from the consideration of composed velocities.

In fact, in the equilibrium of the lever, the forces are the applied weights or can be
considered as such and a force can not be considered as double or triple another unless it is
formed of two or three equal forces. But the potential for motion is assumed to be the same
for each force whatever its magnitude. On the other hand, in the case of the principle of the
Composition of Forces, the magnitudes of the forces are calculated from the magnitudes
of the velocities which they would impart to the body to which they are applied if each
were free to act independently. And it is perhaps this difference in the way of conceiving
forces which has prevented mechanicians for a long time from using known laws of the
Composition of Velocities in the theory of equilibrium for which the simplest case is the
equilibrium of heavy bodies.>¢

15. Since then, one has tried to formulate the principle of the Compeosition of Forces
independently of the consideration of motion and to establish it solely from arguments
obvious by themselves. Daniel Bernoulli was the first to present in the Novi Commentarii
Academiae Petropolitaneae,>” Volume I, a very ingenious but lengthy and complicated
demonstration of the parallelogram of forces.>® Later, d’ Alembert simplified this demon-
stration in the first volume of his Opuscules.

This demonstration is based on the following two principles:

1. If two equal forces act in different directions at the same point, their resultant is
a unique force which bisects the angle formed by them. This resultant is equal to
their difference when the angle is equal to 180 degrees.

2. Multiples of the same forces or arbitrary forces which are proportional, have a
resultant which is also a multiple of their resultant or proportional to this resultant
if the angles are the same.

This second principle is obvious if forces are viewed as quantities which can be added or
subtracted.

The first principle is demonstrated by considering the direction of the motion of a body
moved by two forces not in equilibrium. Since this motion is necessarily unique, it can be
attributed to an individual force acting on the body in the direction of its motion. Therefore,
it can be said that this principle is not entirely exempt from the consideration of motion.

With regard to the direction of the resultant in the case of two equal forces, it is obvious
that there is no reason that it should be nearer to one than the other of these two forces.
Consequently, it must bisect the angle formed by these two forces.
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Later, the essence of this demonstration was formulated analytically in more or less simple
fashion by considering the resultant as a function of the forces and the angle between
them. Refer to the second volume of the Miscellanea taurinensia,’® the Mémoires de
I’Académie des Sciences of 1769, the Sixth Volume of the Opuscules of d’ Alembert, etc.
But it must be recognized that by isolating in this manner the principle of the Composition
of Forces from the principle of the Composition of Velocities, its main advantages which
are its clarity and simplicity are lost. It is reduced to a result of geometrical or analytical
constructions.

16. Finally, I come to the third principle, the one of virtual velocities.** One must
understand by the term virtual velocity, the velocity which a body in equilibrium would
take if the state of equilibrium ceased to exist, that is, the velocity that the body would
have in the first instant of its motion. The principle requires the forces to be in a state of
equilibrium if they are to be inversely proportional to their virtual velocities taken in the
direction of these forces. For one who examines the conditions of equilibrium of the lever
and other devices, it is easy to recognize the law that the acting forces and resisting weights
are always inversely proportional to the distances which they traverse in the same interval
of time. Yet, it appears that the Ancients never knew this law. Guido Ubaldo was perhaps
the first to perceive it in the lever and in the block and tackle.*' Galileo recognized it later
in the inclined plane and in machines which depend on the properties of the inclined plane.
He considers it as a general property of the equilibrium of machines. Refer to his treatise
on Mechanics and to the scholium to the second proposition of the Third Dialogue in the
Bologna edition of 1655.4?

Galileo means by the moment of a weight or any acting force applied to a mechanical
device, the effort, action, energy, or impetus of the force which puts the machine in motion
so that there is equilibrium between two forces when their moments during the motion of
the machine are equal and opposite. He shows that moment is always proportional to the
force multiplied by the virtual velocity, depending on the manner in which the force acts.*3

This notion of moment was also adopted by Wallis in his Mechanics published in 1669
in which the author expounds the principle of the equality of moments as a foundation of
statics.** From this principle, he deduces the theory of equilibrium for common types of
mechanical devices.

At this time, moment is more commonly understood as the product of a force and the
distance from its line of direction to a point, line or plane, that is, by the lever arm over
which it acts. But it seems to me that the notion of moment given by Galileo and Wallis is
much more natural and general, and I do not see why it has been abandoned and another
substituted which expresses only the value of the moment in certain cases, such as in the
lever, etc.*

Descartes has similarly reduced all statics to a unique principle which is in reality similar
to Galileo’s principle but Descartes presented it in a less general manner than Galileo. This
principle states that the same amount of force*® is required to raise a heavier weight to
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a correspondingly smaller elevation or a less heavy weight to a correspondingly greater
elevation. Refer to the letter numbered 7347 of the first volume published in 1657 and the
Traité de Mécanigue®® published in his posthumous works. The result to be derived from
this principle is that equilibrium holds between two bodies when they are positioned such
that the vertical paths which they traverse simultaneously are inversely proportional to their
weights. But in the application of this principle to various machines, it is only necessary
to consider the displacements made in the first instant of motion which are proportional to
their virtual velocities. Otherwise, one would not have the true laws of equilibrium.

Also, whether the Principle of Virtual Velocities is viewed as a general property of
equilibrium, in the fashion of Galileo, or is taken for the true cause of equilibrium, as did
Descartes and Wallis, it must be said that it has all the simplicity that can be desired in
a fundamental principle. We will see later how often this principle is used because of its
generality.

Torricelli, the famous disciple of Galileo, is the author of another principle which also
depends on the Principle of Virtual Velocities. That is, when two weights are joined
together and placed such that their center of gravity can not descend further, they are in
equilibrium. Although Torricelli only applies this principle to the inclined plane, it is easy
to see that it is also applicable to other machines. Refer to his treatise entitled: De motu
gravium naturaliter descendentium*®® which was published in 1644,

The Principle of Torricelli led to another principle which some authors have used to
resolve several problems of statics more easily. This principle is: For a system of heavy
bodies in equilibrium, the center of gravity must be at the lowest possible position. Indeed,
it is known from the theory of maxima and minima that the center of gravity is in its lowest
position when the differential of its descent is zero or, which is the same, when the center
of gravity does not rise or descend should the system displace by an infinitesimal amount.

17. The Principle of Virtual Velocities can be expressed in a more general manner: If
an arbitrary system of any number of bodies or mass points, each acted upon by arbitrary
forces, is in equilibrium and if an infinitesimal displacement is given to this system,
in which each mass point traverses an infinitesimal distance which expresses its virtual
velocity, then the sum of the forces, each multiplied by the distance that the individual mass
point traverses in the direction of this force, will always be equal to zero. Furthermore,
the small distances traversed in the direction of the forces are considered positive and the
distances traversed in the opposite direction are considered negative.

John Bernoulli is the first, as far as I know, to have recognized in the Principle of Virtual
Velocities its great generality and its relevancy to solving the problems of statics. This
can be seen from one of the letters he wrote to Varignon in 1717, which Varignon® put at
the beginning of the ninth section of his new mechanics, a section devoted exclusively to
demonstrating by different applications the verity and use of this principle.

This same principle is the basis for the one that Maupertuis®' proposed in the Mémoires de
I’Académie des Sciences of Paris for the year 1740 under the name of the Loi du Repos.
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Later, Euler developed it further in the Mémoires de I’Académie de Berlin for the year
1751. Finally, this is again the same principle which is used as a basis for the one that
Courtivron® gave in the Mémories de I’Académie des Sciences for the years 1748 and
1749. In general, I believe that I can say that all general principles that might possibly be
discovered in the science of equilibrium will be tantamount to the Principle of Virtual
Velocities, but viewed and expressed in a different fashion.

But this principle is not only very simple and very general, it has also the value and unique
advantage of expression in a general formula which covers all the problems that might
arise on the equilibrium of bodies. We will develop this formula completely and we will
even try to present it in a more general fashion than has been done previously and to use it
in new applications.

18. With respect to the concept of the Principle of Virtual Velocities, it must be said that
it is not sufficiently obvious by itself to be erected as a founding principle. But it can be
viewed as a general expression of the laws of equilibrium, deduced from the two principles
which we have just discussed. Therefore, in the known demonstrations of this principle,
it is always made to depend on these other two principles in a more or less direct fashion.
But there exists another general principle in statics which is independent of the Principle
of the Lever and the Composition of Forces. Although mechanicians commonly refer
this principle to the Principle of the Lever and the Composition of Forces, it seems to be
the natural foundation of the Principle of Virtual Velocities. This principle can be called
the Principle of Pulleys.™

If several pulleys are mounted together on the same block, the assembly is called a
polispaste or pulley block and the combination of two pulley blocks, one fixed and the
other mobile, joined by the same rope for which one end is fixed and the other is free to
be pulled by a force, constitutes a machine for which the ratio of the force to the weight
carried by the mobile block is proportional to the number of ropes which converge at this
block, assuming they are all parallel and neglecting friction and the stiffness of the rope. It
is obvious that because of the constant tension along the length of the rope that the weight
is carried by a number of forces equal to the number of ropes supporting the pulley block
and each equal to the force applied to the free end of the rope. Also, since these ropes are
parallel, they can be considered a single rope, if desired, by imagining the diameters of the
pulleys reduced to an infinitely small dimension.

In the same fashion, the fixed and mobile pulleys wrapped with the same rope can be
replicated by means of various fixed and counter pulleys and thus the same force applied
to the free end of the rope can support as many weights as there are mobile blocks, for
which the contribution of each mobile block to this force is proportional to the number of
ropes which holds this block to the unit.

For greater simplicity, let us substitute a weight for the force, after having wrapped the last
rope over a fixed pulley which holds this weight which we will take as unity. Imagine that
the various mobile blocks, instead of supporting weights, are attached to bodies viewed
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as mass points and arranged such that they can model any given arbitrary system. In this
fashion, the same weight will produce, by means of the rope which wraps around all the
pulleys, different forces which act on the various points of the system along the direction of
the ropes which converge at the pulley attached to these points. The ratio of the weight to
one of these forces is equal to the number of ropes so that these forces will be represented
by the number of ropes which contribute to their creation by their tension.

In order for this system to remain in equilibrium, it is obvious that the weight must
not descend when portions of the system are subjected to any arbitrary and infinitesimal
displacement. Indeed, since the weight always has an inclination to descend, it will descend
if there is a displacement of the system which allows it to descend. The weight will then
necessarily descend and it will produce a displacement in the system.

Let us denote by p, q, r, etc. the infinitesimal displacements that this motion will impart to
the various parts of the system in the direction of the forces which are applied to them and by
P, Q, R, etc. the number of ropes of the pulley applied to these parts to produce these same
forces. Then it is obvious that the displacements p, q, r, etc. will also be the magnitude
of the displacements by which the mobile pulleys will approach the corresponding fixed
pulleys. Since the pulleys draw nearer to each other, the length of the rope which is wound
about the pulleys would be reduced by the quantities Pp, Qq, Rr, etc. Therefore, because
of the invariable length of the rope, the weight would descend by the following amount
Pp+ Qq+ Rr+ - - -. Consequently, the forces represented by the letters P, Q, R, etc. will be
in equilibrium if the following equation holds

Pp+Qq+Rr+---=0,

which is the analytical expression for the general Principle of Virtual Velocities.

19. If the quantity Pp+ Qq+ Rr+ - - - were negative instead of equal to zero, it seems that
this condition would suffice to establish equilibrium because it is impossible for the weight
to ascend by itself. But it must be recognized that whatever the connection between the
parts which form the given system, the relations which can result between the infinitesimal
quantities p, q, r, etc. can only be expressed by differential equations. Consequently, the
relations between these quantities are linear and one or several among them will necessarily
be indeterminate and could be taken as positive or negative. Therefore, the values of all
those quantities are such that they could change sign. Hence, if in a given displacement of
the system, the value of the quantity Pp+ Qg+ Rr+ - - - is negative, it can become positive
by taking the quantities p, q, r, etc. with opposite signs. Furthermore, since the reverse
displacement is equally possible, the weight can descend and upset the state of equilibrium.

20. Conversely, it can be proved that if the equation
Pp+Qq+Rr+---=0

is valid for all possible infinitesimal displacements of the system, the system will necessarily
be in equilibrium and since the weight is immobile during these displacements, the forces
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which act on the system remain in the same position. There is no reason that they should
produce one or any other displacement in which the quantities p, q, r, etc. have opposite
signs. This is the reason that the balance remains in equilibrium because there is no reason
that it should incline to one side rather than the other.

Thus the Principle of Virtual Velocities is demonstrated for commensurate forces and will
also be valid for incommensurate arbitrary forces because it is known that every proposition
demonstrated for commensurate quantities can also be demonstrated for incommensurate
quantities by a reductio ad absurdam.

SECTION II
A GENERAL FORMULA OF STATICS AND ITS APPLICATION
TO THE EQUILIBRIUM OF AN ARBITRARY SYSTEM OF FORCES

1. The general law of equilibrium for machines is that the forces or powers are inversely
proportional to the velocities of the mass points®* to which they are applied, taken in the
direction of these forces.

There exists in this law what is commonly called the Principle of Virtual Velocities.>> This
principle has been recognized for a long time as the fundamental principle of equilibrium
as we have shown in the preceding section. Consequently, it can be considered as a kind
of axiom of mechanics.

In order to reduce this principle to a formula, let us assume that the forces P, Q, R, etc.
acting in given directions are in equilibrium. And let us draw from the points where these
forces are applied straight lines along the line of application of these forces equal to p, ¢, 7,
etc. Let us denote by dp, dq, dr, etc., the variations or increments of these lines due to an
infinitesimal change in the positions of the different bodies or mass points of the system.

It is evident that these increments will represent the distance traversed during the same
instant of time by the forces P, @, R, etc. along their own lines of application. Thus,
assuming that these forces extend the lines p, ¢, r, etc., the increments dp, dg, dr, etc.
will be proportional to the virtual velocities of the forces P, @), R, etc. and can, for more
simplicity, be substituted for these velocities.

Now having stated these facts, let us first consider two forces P and Q in equilibrium.
From the law of equilibrium between two forces, the two quantities P and ) must be
inversely proportional to the increments dp and dg. But it is easy to see that there would
be no equilibrium between these two forces unless they were oriented such that when one
of them is displaced along its line of application, the other is constrained to move in the
opposite direction along its line of application. From this result, it can be seen that the
values of the increments dp and dg must be of opposite signs. Therefore, if the forces
P and @ are both assumed to be positive, the equilibrium condition will be expressed by
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P/Q = —dq/dp or Pdp + Q dg = 0. This is the general formula for the equilibrium of
two forces.

Let us now consider the equilibrium of three forces P, @, R with the virtual velocities
represented by dp, dgq, dr. Let Q = Q' + Q" and assume, which is permissible, that the
fraction Q' of the total force @ is such that P dp + Q' dg = 0. This force will then be in
equilibrium with the force P. In order to obtain overall equilibrium, the remaining fraction
Q" of the force Q must be in equilibrium with the force R which will give the equation
Q" dg + Rdr = 0. When the latter expression is added to the former and recalling that
Q' + Q" = Q, the following equation is obtained

Pdp+Qdg+ Rdr =0.

If there is a fourth force S for which the virtual velocity is represented by the increment ds
and furthermore, if one postulates @ = Q'+ Q" and Pdp+ @’ dg = 0,then R = R' + R"
and Q" dqg + R’ dr = 0. Then Q’ will be in equilibrium with P, R’ will be in equilibrium
with Q" and to obtain overall equilibrium, R" must be in equilibrium with S so that one
must have R dr + S ds = 0. These three equations can then be combined to obtain

Pdp+Qdg+ Rdr +Sds=0.

In the same fashion, this formulation can be further extended to an arbitrary number of
forces.

2. Therefore, in general, for the equilibrium of an arbitrary number of forces P, @, R, etc.
acting in the directions p, g, r, etc. and applied to any number of bodies or mass points
arranged in an arbitrary fashion, an equation such as the following will be obtained

Pdp+Qdg+ Rdr+---=0.

This is the general formula of statics for the equilibrium of an arbitrary system of forces.

We will call each term of this formula, such as P dp, the moment of the force P by defining
the meaning of the term in the same fashion as Galileo,* that is, the product of the force
by its virtual velocity. Then, the general formula of statics is that the sum of the moments
of all the forces is equal to zero. The only difficulty in applying this formula will be to
determine, depending on the nature of the system, the values of the differentials dp, dq, dr,
etc.

Therefore, the system will be considered in two configurations which differ infinitesimally
and the most general expressions for the differentials will be sought by introducing in these
expressions as many unknown quantities as there are arbitrary coordinates which define
the change in position of the system. Then the expressions for dp, dg, dr, etc. will be
substituted in the proposed equation and the equation set equal to zero, independent of all
unknowns such that global equilibrium of the system exists. Consequently, the sum of the
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terms related to each unknown will be individually set equal to zero and by this means as
many independent equations as there are unknowns will be obtained. But it is not difficult
to recognize that this number must always be equal to the number of unknown quantities
which define the configuration of the system. Thus as many equations will be obtained by
this method as will be required to determine the state of equilibrium of the system.>’

All the authors who previously applied the Principle of Virtual Velocities to solve the
problems of statics have applied it in this fashion. However, using this principle in
this fashion often requires constructions and geometrical considerations which produce
solutions as lengthy as if they were derived by the ordinary principles of statics. This is
perhaps the reason which prevented its application as often as it should be applied in view
of its simplicity and generality.

3. The purpose of this work is to reduce mechanics to purely algebraic operations and
the formula which we have just developed is fully adequate for this purpose. It is only
necessary to express algebraically, in the most general fashion, the values of p, ¢, r, etc.
taken in the directions of the forces P, ), R, etc. and the values of the virtual velocities
dp, dq, dr, etc. will be obtained by simple differentiation.

Attention must be given solely to the fact that when several quantities vary simultaneously
in the differential calculus they can all be assumed to change simultaneously with their
differentials. And if, depending on the nature of the problem, some differentials decrease
while others increase, then a negative sign must be given to the differentials which decrease.

The differentials dp, dg, dr, etc. which represent the virtual velocities of the forces, P, @,
R, etc. must be taken positive or negative depending on whether the forces will lengthen
or shorten the lines p, ¢, r, etc. which are their respective lines of action. But since the
general formula of equilibrium does not change when all the signs of its terms are changed,
it is permissible to retain as positive the differentials of the displacements which together
increase or decrease and as negative the differentials of the displacements of a contrary
direction. Thus by considering all forces as positive, their moments P dp, @) dg, R dr, etc.
will be positive or negative if the virtual velocities dp, dg, dr, etc. are positive or negative.
And if the forces act in opposite directions, it is only necessary to give a negative sign to
the quantities which represent these forces or change the signs of their moments.

The general property of equilibrium derives from this result, which is, that an arbitrary
system of forces in the state of equilibrium remains in equilibrium when each of the forces
acts in the opposite direction as long as the configuration of the system does not change
with a change in direction of all the forces.

4. Whatever the forces which act on a given system of bodies or mass points, they can
always be considered to act toward points located on their lines of action. We will call these
points the “force centers”. It is possible to define the lines p, g, r, etc. as the respective
distances from these centers to the points of the system at which the forces P, Q, R, etc.
are applied. In this case, it is clear that these forces will have a tendency to shorten the
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lines p, g, r, etc. Consequently, a negative sign must be given to their differentials. But if
all signs are changed, the general formula will remain

Pdp+Qdg+ Rdr+---=0.

The force centers can be either outside or inside the system and still be part of it. Thus a
distinction can be made between external and internal forces.

In the first case, it is obvious that the increments dp, dq, dr, etc. express total variations
of the lines p, g, r, etc. resulting in a change of configuration for the system. They are
consequently total differentials of the quantities p, ¢, 7, etc. when all quantities related
to the configuration of the system are treated as variables and when those related to the
location of the different force centers are viewed as constants.

In the second case, some of the bodies of the system will be the force centers which act on
other bodies of the same system and because of the equality between action and reaction,
these latter bodies will be at the same time the force centers which act on the former.

Let us consider two bodies which act on one another with an arbitrary force P. This force
can result either from attraction or repulsion between the bodies, from a spring placed
between them or from some other cause. Let p be the distance between these two bodies
and dp’ the variation of this distance. Depending on the change of position of one body
with respect to the other, it is clear that the virtual moment of the force P with respect
to this body is P dp’. Similarly, if the variation of this same distance p resulting from a
change in position of the other body is designated by dp”, one will have with respect to
this second body the moment P dp”’ of the same force P. Therefore, the total moment of
this force will be expressed as P(dp’ + dp"), but it is obvious that dp’ + dp” is the total
differential of p which we will call dp because the distance p can only change with the
displacement of the two bodies. Therefore, the moment will be expressed simply by P dp.
This reasoning can be generalized to apply to as many bodies as desired.

5. Consequently, in order to obtain the sum of the moments of all the forces in a given
system, whether they are external or internal forces, it is only necessary to consider, in
particular, each of the forces acting on different bodies or points of the system and to take
the sum of the products of these forces by the differential of the distance between the point
on which it acts and the point to which it is moving. While carrying this out, the quantities
in the differentials are considered to be either variable or constant. The quantities which
are related to the configuration of the system are considered variables and the quantities
which are related to the external centers or points are constants. That is, these points are
considered fixed while the configuration of the system is varied. When this sum is set
equal to zero, it will give the general formula of statics.

6. In order to present all the generality as well as the simplicity that the analytical expression
of this formula is capable of, the position of all bodies or mass points within a given system
and the position of the force centers will be expressed with respect to three orthogonal axes
fixed in space.
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In general, z, y, = will designate the coordinates of the points where the forces are applied
and subsequently, we will distinguish between the different points of the system by one or
more primes. We will also designate by a, b, ¢ the coordinates of the force centers.

It is clear that the distances p, g, r, etc. between the points of application of the forces and
the force centers can be expressed in general by a formula of the form

Vie—a) +(y-b)2+ (2 -,

in which the quantities a, b, ¢ will be constants or at least, should be considered as such,
while z, y, z vary in the case where they are related to points placed outside of the system
and where the forces are external. But in the case where the forces are internal and originate
from some of the bodies within the system itself, the quantities a, b, ¢ will become

m etc. m etc. m etc.
r , Yy , 2

and consequently, they will be variables.

Thus having the expressions of the finite quantities p, ¢, 7, etc. as a known function of the
coordinates of the various bodies of the system, it is only necessary to differentiate con-
sidering these coordinates as the sole variables in order to obtain the required expressions
for the increments dp, dg, dr, etc., which are in the general formula of equilibrium.

7. Although the forces P, @), R, etc. can always be considered directed to given centers,
the consideration of these centers is not part of the problem in which only the magnitude
and direction of each force is considered as data. The differentials dp, dg, dr, etc. are
presented here in a more general fashion.

At the outset, let us assume, which is always permissible, that the force P is directed
towards a fixed center. Then one has

p=+V(r—a)?+@E—b2+(z—c)?

and from there, by differentiating, holding a, b, ¢ constant and for an external force P, the
following equation will be obtained

z—c
dz.

-b
dp= dx+y——dy+
p p

It is easy to see that

T—a y—2> z—c
9 b

p p p

are the direction cosines of the angles which the line p makes with the linesz —a,y — b
and z — c. Therefore, in general, if we call a, 3, 7y the angles that the direction of the force
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P makes with the coordinate axes z, y, z or with lines parallel to these axes, the direction
cosines will be

T —a -b z—c
= cos a, L cos 3, —— =C087.
p p

Consequently, there results
dp = cosadx + cos 3dy + cosydz

and in the same fashion, the expressions for the other increments dq, dr, etc. are obtained.

But if the force P is an internal force and acts on two points with coordinates z, y, = and
x',y', 2z’ where these points can be near or far from one another, the expression for p will
have a = 2’, b = y', ¢ = 2'. The result will be the following equation

dp = cosa(dz — dz’) + cos B(dy — dy’) + cosy(dz — dz’).

It will be noted at the outset with respect to the angles o, 3, v that cos? a+cos? 3+cos? y =
1, which is obvious because of the preceding formulas. Secondly, if the angle of projection
of the line p on the xy-plane with the z-axis is designated by ¢, one will have

r—a y—>b
= COSE,
T T

= sine

assuming that

=@ a7 + (y - b)2.

Then after replacing * — a and y — b by the expressions pcos o, p cos 3, the equation for
T becomes

T = py/(cos?a + cos? B) = p/(1 — cos?) = psiny

and

r—a . y—2> . .
= sin~ycose, = =sin+ysine.
p

Consequently, there results, cos a = siny cose, cos 3 = siny sine.

8. Since dp represents the small interval that the body or point to which the force P is
applied traverses in the direction of this force, this point can only move in a direction
perpendicular to the direction of this force if dp is set equal to zero. Hence, dp = 0 will be
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the differential equation of a surface to which the direction of the force P is perpendicular.
This surface will be a sphere if the quantities a, b, ¢ are constants, but it is an arbitrary
surface when these quantities are variables.

Let us now assume in general that the force P acts perpendicular to a surface given by the
equation

Adx + Bdy+Cdz =0.
In order to make this equation compatible with the following equation
(x—a)dz+ (y —b)dy + (2 — c)dz =0,

which results from the assumption that dp = 0, it is necessary to set

A zx-a B y-b

cC z-c' C z-c¢

for which
B
z—a=—=(z—c), y—bza(z-—c)
and after substituting these quantities in the expression for dp, the following equation is

obtained

_Adz+Bdy+Cdz

ST Br0)

Therefore, when the differential equation of the surface to which the force P is perpendic-
ular is known, the expression for its virtual velocity dp will also be known.

dp

It can be assumed that
Adz + Bdy + C dz = du,

where u is a function of z, y, z, because it is known that a differential equation of the first
order with three variables can not represent a surface unless it can be integrated or it can
be made integrable by a multiplier. Also, by the algorithm of partial differences,

du du du

_—d;’ _@a _Ea
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so that the expression for dp will become

(@)@

Thus the moment of a force P perpendicular to a surface given by the equation du = 0
will be

dp =

(@)@

In the same fashion, the values of the other differentials dg, dr, etc. will be determined
from the differential equations of surfaces to which the directions of the forces Q, R, etc.
are perpendicular.

9. But without considering the surface to which a force is perpendicular, in the same
fashion as an arbitrary quantity is represented by a line, the variable p can be considered
as an arbitrary function of the coordinates and the force P as the force which changes the
value of p. Then P dp will also be the virtual moment of the force P and similarly, @ dg,
Rdr, etc. will be the virtual moments of the forces @, R, etc. respectively. In the same
fashion, these forces are considered to vary the quantities g, r, etc. which are assumed to
be arbitrary functions of the same coordinates. Considering the moments in this fashion
gives a much larger domain of application to the general formula of equilibrium.

10. Since the expressions for the differentials dp, dg, dr, etc. are known as differential
functions of the coordinates of different bodies of the system, it is only necessary to
substitute them in the general formula

Pdp+Qdg+Rdr+---=0

and then to arrange this equation in a manner independent of the differentials that it
contains.

Thus if the system is completely free such that there is neither a given relationship between
the coordinates of the different bodies nor consequently, between their differentials, the
preceding equation must be satisfied independent of these differentials. Therefore, the sum
of all the terms multiplied by each of these differentials must be equal to zero individually.
This will give as many equations as there are unknowns and consequently, as many
equations as are needed to determine all the variables. Thus the position of all the parts of
the system in the state of equilibrium will be known.
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But if the nature of the system is such that the motions of the bodies are constrained in
some fashion, these particular conditions should be expressed at the outset by algebraic
equations which we will call “Equations of Condition”. This is always easy. For example,
if some of the bodies were constrained to move on given lines or surfaces, their coordinates
would be expressed by the equations of these lines or surfaces. Also, if two bodies were
always at a constant distance k apart, the following equation would always hold

k2 — (:L‘l _ xl/)Z + (y/ _ y//)z + (z/ _ 2”)2,

and so on.

After the equations of condition are found, they must be used to eliminate as many
differentials as possible in the expressions for dp, dg, dr, etc. so that the remaining
differentials are absolutely independent of one another and express only what is arbitrary
in the change of configuration of the system. Then, since the general formula of statics
must be satisfied, whatever the change in configuration of the system might be, the sum of
all terms which are affected by each of the indeterminate differentials must be equal to zero.
Thus there will be as many particular equations as there are differentials. These equations
added to the given equations of condition will contain all the necessary conditions for
the determination of the state of equilibrium of the system, because it is easy to see that
the total number of these equations will always be the same as the number of different
variables which are used as coordinates for all the bodies of the system. Therefore, these
equations will suffice to determine these variables uniquely.

11. Also, if we have always defined the locations of bodies with rectangular coordinates,
it is because this approach has the advantage of simplicity and ease of calculation. But this
does not prevent us from using other systems of coordinates in the methodology since it
is clear that nothing prevents us from using a system of coordinates other than rectangular
coordinates.*® For example, instead of using the two coordinates  and y, one could use,
when the circumstances appear favorable, the radius vector p = /(2% + y2) and an angle
, for which the tangent is z /y, which will give z = pcos ¢ and y = psin ¢, keeping the
third coordinate z as it is. In a similar fashion, a radius vector p = /(2% + 3% + 22) with
two angles ¢ and % could be used such that

Yy z
tanp = =, tany = ——,
== V= &

which will give x = pcostcosp, y = pcostsing and z = psinp.> Finally, it should
be clear that any other system of coordinates could be used.

Let us also note that since the methodology requires only the differentials dz, dy, dz, the
origin of the coordinates can be located freely which can help simplify the expressions for
these differentials.

For example, if pcos ¢ and psin g, are substituted for z and y, one would have dz =
dpcosy — psinpdyp, dy = dpsing + pcos ¢ dp but by setting ¢ = 0, which is the same
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as placing the origin of the angle on the radius, one will have more simply dr = dp and
dy = pdyp. Similar transformations hold for the other cases.

12. In general, whatever the system of forces for which the state of equilibrium is sought
and whatever the manner in which the points to which the forces are applied are related to
one another, the variables which determine the position of these points in space can always
be reduced to a smaller number of independent variables by eliminating as many variables
as there are equations of condition: that is, by expressing all the variables, three for each
point, by a smaller number of them or by other arbitrary variables which, because they are
not constrained by any condition, will be independent and indeterminate. Equilibrium must
then exist for each of these independent variables because they can describe individually
various changes of configuration for the system.

13. Indeed, if we denote the independent variables by &, 1, o, etc. and consider the values
of p, g, r, etc. as functions of these variables, the following equations will result

_dp dp
dp_d§d£+dw

_ dq dg
dq—d§d§+dw
dr dr dr
dr = —d —d —d
r i €+d¢ 1/)+d¢ @+

dp
i |
dw+d<p p +

dg
dw+@d<p+-~

and the equation of equilibrium Pdp + Q dg+ Rdr + - -- = 0 will become
dp dq dr
p-= = — 4.
<d§+Qd§+Rd§+ )dg
dp dq dr
+(P@+de+Rdw+ >d1/)
dp dg dr
+(PEE+QHZ+R@+ >dtp
_*_...-—_—(),

in which owing to the indeterminate nature of d¢, dv, dyp, etc., the following distinct
equations will be obtained

dp dq dr

— —_— —_— :0
d§+Qd£+ d£+

dp dg dr _
i dep+Rdw+ =0
d d d

L irE 4 =0
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whose number will be equal to the number of variables ¢, ¥, ¢, etc. These equations will
be used to determine the variables.

It is obvious that each of these equations represent a particular equilibrium condition with
a known ratio between the virtual velocities. And it is from the combination of all these
partial equilibriums that the general equilibrium of the system is composed.

It should also be noted that the reasoning of Article 1 of this section applies without
exception to these partial and determinate equilibrium states. And since, as in the case of
two forces, their state of equilibrium can always be reduced to the equilibrium of a straight
lever for which the arms are proportional to their virtual velocities, the general Principle
of Virtual Velocities can be made to depend by this means solely on the Principle of the
Lever.

14. When the quantity Pdp + @ dg + Rdr + - - - is not equal to zero with respect to all
independent variables, the forces P, @, R, etc. will not be in equilibrium and therefore,
the bodies will move under the action of these forces according to these forces and their
reciprocal action.

Let us assume that other forces represented by P’, Q’, R’, etc., with lines of action p’, ¢/,
r’, etc., are acting on the bodies of the system and therefore, are the cause of the motions.
These forces would be equivalent to the former and in all cases, they could replace them
because their effect is seen to be exactly the same. And if the forces P', Q', R’, etc.,
retain their magnitudes but reverse their directions, it is obvious that they will induce in the
same bodies equal motions, but in opposite directions. Consequently, if in this new state
they acted on the bodies of the same system simultaneously with the forces P, @, R, etc.,
the bodies would remain at rest. The motion induced in one direction is cancelled by an
equal motion in the opposite direction. Therefore, by necessity, there would be equilibrium
between all the forces which results in the following equation (Article 2)

Pdp+Qdg+Rdr+---—P'dp'—Q'd¢ —Rdr' —--- =0
from which the following equation derives

Pdp+Qdg+ Rdr+---=P'dp'+Q'd¢’ + R'dr’' +--- .
This is the necessary condition for the forces P’, @', R', etc. acting along the lines p’,
q', 7', etc. to be equivalent to the forces P, Q, R, etc. acting along the lines p, ¢, 7, etc.
Since two systems of forces can only be equivalent in one way (the motion of a body is
always unique and determinate), it follows that the two systems of forces P, @, R, etc.

and P, @', R/, etc. are such that generally one has, considering all independent variables,
the following equation

Pdp+Qdg+Rdr+---=P'dp+Q d¢d + R'dr' +---,
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then these two systems will be equivalent and in all cases, they could be substituted for
one another.

15. The following important theorem of statics follows from that result: Two systems of
forces are equivalent and can be substituted for one another in the same system of bodies
interacting in an arbitrary fashion if the sum of the moments of the forces are always equal
in both systems. Inversely, when the sum of the moments of the forces of a system is
always equal to the sum of the moments of the forces of another system, these two systems
of forces are equivalent and can be substituted for one another in the same system of bodies.

If the lengths p, g, r, etc. are made dependent on the lengths &, ¥, ¢, etc., the formula
Pdp+ Qdg+ Rdr + - - - becomes, as in Article 13, Z2d¢é + ¥ dy + @ dp + - - - in which

- _ dp dg dr
“_PM+QM+RM+
_ ,dp dq dr
\I!—Pdw+Qd¢+Rd¢+
_ ,dp dg dr
@_Pd¢+Qd¢+R@+

Therefore, the following general equation results
Pdp+Qdg+ Rdr+---=Zd+¥dy+ Pdp+--- .

Thus the system of forces P, @, R, etc. directed along the lines of action p, g, r, etc. is
equivalent to the system of forces =, ¥, @, etc. directed along the lines of action &, ¥, ¢,
etc. The latter forces can replace the former in the same system of bodies to which the
former system of forces are applied.®’

SECTION III
THE GENERAL PROPERTIES OF EQUILIBRIUM OF A SYSTEM OF
BODIES DEDUCED FROM THE PRECEDING FORMULA

1. Let us consider an arbitrary system or assemblage of bodies or mass points mutually
in equilibrium to which are applied various forces. If, for an instant, the action of these
forces ceased to be mutually equilibrated, the system would begin to move and whatever
its motion, it could always be considered as composed of

1) A translational motion common to all bodies.

2) A rotational motion about an arbitrary point.

3) Arelative motion of the bodies expressing their change of position and their distance
from one another.
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But, if they are to be in equilibrium, the bodies cannot have any of the motions cited
above. However, it is obvious that the relative motions depend on the manner in which the
bodies are arranged with respect to one another. Consequently, the conditions required to
preclude these motions must be specifically fit to each system. Furthermore, the motions
of translation and rotation can be independent of the configuration of the system and they
can take place without changing the relative position of the bodies composing the system.
Thus the consideration of these two types of motion must furnish the general conditions
or properties for equilibrium. These conditions and general properties are what we shall
investigate.

Subsection I
Properties of the Equilibrium of a Free System
Relative to the Motion of Translation

2. Let there be an arbitrary number of bodies viewed as mass points and situated or
connected in an arbitrary fashion. These bodies or mass points are acted upon by the forces
P, P', P", etc. along the direction of the lines p, p’, p”, etc. From the preceding section,
the general formula for the equilibrium of these bodies is

Pdp+P'dp + P'dp" +---=0.

By expressing in rectangular coordinates the coordinates of the different points upon which
the forces P, P’, etc. act as well as the coordinates of the force centers as in Article 6
of the preceding section, the following expressions for the external displacements will be
obtained

p=V(@—aP+(y -2+ (:-c)?
V=V —aP+y -+ (- )?

But if the bodies with coordinates z, y, z and Z, §, Z, for example, act on one another
through a common force which we will designate by P, then the rectilinear distance
between these two bodies, denoted by p, will be equal to

)2

]

p=V@-22+@y -9+ (z—

and the term P dp, resulting from the internal force P should be added to the general
formula. If several forces acted on the same bodies, a similar procedure should be applied
to each force.
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3. Let us make the following definitions, which is perfectly acceptable

=z +¢, Yy =y+n, Z=z+(
Il:l._‘_g/’ y/I:y+nl’ zl/=Z+<I
T=x+¢, g=y+7, z=2+(

and let us further assume that these expressions have been substituted in the preceding
formula.

Since 7, y, z are the global coordinates®? of the body loaded by the force P, it is clear
that &, m, ¢, €, n', {’, etc., can only be the relative coordinates of the other bodies with
respect to it which is assumed to locate the common origin so that the relative position of
the bodies will only depend on the latter coordinates and not on the former. Therefore, if
the system is assumed to be entirely free, that is, the bodies are connected in an arbitrary
fashion but without being restrained or constrained by fixed supports or arbitrary external
impediments, it is easy to recognize that the resulting equations defining the configuration
of the system can only be functions of the quantities &, 1, {, &', ', {’, etc. and not of the
quantities z, y, z for which, consequently, the differentials will remain independent and
indeterminate.

Thus, after making the substitutions referred to earlier, each of the relations affected by
dz, dy, dz should also be equated individually to zero. This will give the following three
equations (Article 2)

dp /d ,,d 5P
a t d AT Tt
dp dl/ _dﬁ
pP . p P” e P4 =
ay " dy+ a Tyt ’
d d II __d—

dz dz dz

At the outset, it is obvious that the variables z, y, z are not included in the expression for
p. Therefore, one will have

dp dp dp
dx—o’ dy_o’ dz—o’ e

so that the terms which contain the internal forces P, P, etc. will disappear.

It is also clear that the values of

/1 /" /!

oW W W W b
dz’ dy’ dz’ dz’ dy’ dz’
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will be the same as those of

dpl dpl dp/ de dL/I dpll

dz’ dy’ 42’ de" dy"’ de”’

If a, (3, 7 represent the angles that the line p makes with the axes xz, y, z or with the
parallels to these axes and if &', §’, 7' are the angles that the line p’ makes with the same
axes, one will obtain, as has been observed earlier (Article 7 of the preceding section)

dp dp dp
£ = , — =cosf3, — =cos7.
dz cosa dy 8 dz 57
Similarly
p' dp’ dp’
agzcoso/, d—ylzcosﬂ’, a—z—lzcosv’,

Therefore, the three equations above will become

Pcosa + P'cosa’ + P'cosa” +---=0
Pcosf+ P cosf +P'cosp’+---=0
Pcosy + P'cosy’ + P"cosy" +---=0.

These equations must be satisfied for the equilibrium of a free system. They are necessary
to prevent translational motion.

4. If the forces P, P', P", etc. were parallel, one would have o = o' = o”, etc.,
B =p =p" etc,y =7 = 4", etc. and the three equations above would become
P+ P'+ P" + --- = 0 which demonstrates that the sum of the parallel forces must be
zero.

In general, it is easy to recognize that when P represents the total action of the force P in
its own direction then P cos o will represent its component action taken in the direction of
the z-axis which makes the angle o with the direction of the force P. Similarly, P cos 3
and P cos~y will be the relative actions of the same force in the directions of the y- and
z-axes. The other forces P’, P", etc. are dealt with in a similar fashion.

The theorem of statics which results from the above development states that “the sum of
the forces in the directions of the three orthogonal axes must be equal to zero with respect
to each of the three axes for a system to be in equilibrium”.

Subsection II
Properties of Equilibrium Relative to Rotational Motion

5. Let us now consider, which is permissible, instead of the coordinates z, y, ', ¥, =",
y", etc. and Z, g, etc., the radius vectors p, p’, p”, etc. and p, etc. with the angles ¢,
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¢', ¢", etc. and @ etc. which these radii make with the z-axis. It is well known that the
following relations hold between the coordinates, x = pcosp, y = psin g and similarly
' =p'cosy’,y = p'siny',etc., T = pcosp, § = psinp, etc.

Let us substitute these expressions in the general formula of Article 2 and assume that
o =p+o,¢" =p+0d,etc.,and § = ¢ + 4, etc. It is obvious that o, ¢, etc. and
7, etc. will be the angles that the radii p’, p”, etc. and p, etc. make with the radius p.
Consequently, the distances of the bodies measured with respect to the zy-plane or with
respect to the point which is taken as the origin of coordinates will only depend on the
quantities p, p’, p”, etc., p, etc., o, o', etc., 7, etc., 2, 2/, 2", etc. and Z, etc.

Therefore, if a system is free to rotate about this point parallel to the xy-plane, that is to
say, about the z-axis which is perpendicular to this plane, the angle ¢ will be independent
of the conditions of the system and consequently, its differential dp will remain arbitrary.
Thus all the terms multiplied by d¢ in the general equation of equilibrium must all be equal
to zero.

It is obvious that all these terms will be represented by Ndy by setting

dp ,dp’ ,dp” - dp
ds0+ d90+ i +. 4 d¢+ ,

so that the equation for equilibriumis N = 0.

By substituting the values of z, y, 2/, ¥/, etc. and Z, §, etc. in the expressions for p, p/,
etc. and P, etc. (Article 2) and also by lettinga = Rcos A, b = Rsin A, a’ = R’ cos A,
b’ = R'sin A, etc., the following equations will be obtained

p=1/p*—2pRcos(p — A) + R + (2 — ¢)?
p/ — \/pl2 _ 2p/R/ COS(QO' _ A/) + R? + (z/ _c/)Z

P=/p* —2ppRcos( — @) + p* + (z — 2)?

in which it still remains to replace ¢’, ©”, etc., @, etc. by ¢ + 0, p + d’, etc., p + G, etc.

With the latter substitutions, it is clear at the outset that the quantities p, etc. no longer
include the angle . Thus we will have

dp
£ -9
de

and consequently, the internal forces P, etc. will disappear from the equation and only the
external forces P, P', etc. will remain.
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Therefore, we will have

dp _ pRsin(y — A) dp’ _ p'R'sin(y’ — A')

dep P dp y

b

and the quantity N will become

_ PRpsin(p — A) + P'R'p'sin(p' — A')

N /
P p

Since the force centers of the forces P, P’, etc. can be taken at arbitrary locations along
the directions of these forces, the forces can be assumed to be represented by the same
lines p, p’, etc. which are the rectilinear distances from their points of application to their
respective centers. In this fashion, the following simpler equation will be obtained

N = Rpsin(p — A) + R'p'sin(¢’ — A") + .

In this formula, the radii R and p which emanate from the origin of the coordinate system
and which include the angle (p — A), are the sides of a triangle which has for its base the
projection of the line p on the zy-plane. Consequently, the quantity Rp sin(yp — A) is twice
the area of this triangle and a similar assertion can be made for the other quantities.

Now after having noted above (Article 3) that v, 4/, etc. are the angles which the
directions of the forces P, P’, etc. make with the z-axis or with lines which are parallel
to this axis, it is clear that the complements of these angles will be the inclinations of
the lines p, p’, etc. to the xy-plane. Thus psin~y, p’siny’, etc. will be the projections
of these lines. If perpendiculars to these projections are drawn from the origin of the
coordinate system which we will call II, IT’, etc., one will have Rpsin(¢ — A) = IIpsin~y,
R'p'sin(¢’ — A’) = II'p’ siny/, etc. and the quantity NV will be reduced to the following
form

N = HPSiIl’Y+H’P’Sin’y,+H”P”sinfyll + ..

by replacing p, p’, p”, etc. with P, P', P", etc.

6. Thus the equation, N = 0, will give the following theorem: For the equilibrium of a
system which is free to rotate about an axis and which is composed of bodies interacting
in an arbitrary fashion and which are at the same time acted upon by external forces, the
sum of the products of each force resolved parallel to a plane perpendicular to the axis
and multiplied by a line drawn from the axis perpendicular to the direction of the force
projected on the same plane must be zero. The forces which would cause the system to
rotate in an opposite direction are given opposite signs.

This theorem is ordinarily stated more simply as: The moments of the forces about an axis
must equilibrate one another to obtain equilibrium with respect to that axis. The moment
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of a force with respect to a line is now understood in mechanics as the product of the
component of this force taken parallel to a plane which is perpendicular to this line, with
its lever arm which is the perpendicular drawn from this line to the direction of the force
projected on this same plane. Indeed, the action of the force which causes the system to
rotate about the axis depends only on this moment, because if this force is resolved into
two components, one parallel to the axis and the other in a plane perpendicular to the axis,
it is obvious that only the latter could produce rotation. Consequently, we will give to this
moment the specific name of moment about the axis of rotation.

7. The coefficient V in the term Ndyp (Article 5) represents the sum of the moments of all
the forces of the system about the axis of instantaneous rotation dy. Thus in order to find the
sum of this moment about an arbitrary axis, the general formula P dp + P’ dp’ + P"” dp”+
etc. which represents the sum of the virtual moments of all the forces will only have to be
transformed by replacing one of the independent variables with the angle of rotation about
the given axis. The coefficient of the differential of this angle will be the sum of all the
moments about this axis. This latter expression is occasionally very useful.

8. When the system can rotate in any direction about a point which we take for the origin
of the coordinate system, the instantaneous rotations about the three axes x, y, z must
be considered simultaneously. An equation similar to the one we just found, and which
contains the property of moments will be obtained with respect to each of these axes. But
it will be useful to resolve the same problem by a simpler and more general analysis. To
this effect, as in Article 5, let us set

T =pcosp, y=psing, ' =pcos¢’, y,=p'sing,
By permitting the angles ¢, ¢’, etc. to vary by the same amount dy, one will have
dz = —ydy, dy = z dyp, dz’ = -y do, dy’ =2’ dy,

These expressions are the variations of z, y, ', ¥/, etc. resulting from the elementary
rotation dy of the system about the z-axis.

Similarly, the variations of y, z, ¥, 2/, etc. resulting from an elementary rotation di> about
the x-axis can be obtained by simply replacing z, y, ', ¥/, etc. in the preceding formulas
by y, z,¥’, 2', etc. and dp by dy. This will give

dy=—-zdy, de=ydy, dy=-z'dy, d=9'dy,

By replacing y, z, ¢/, 2/, etc. in these latter formulas with z, x, 2/, 2/, etc. and dy by dw
the variations resulting from the elementary rotation dw about the y-axis will be obtained

dz = -z dw, dz = z dw, dz' = -2’ dw, dz’ = 2’ dw,
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If the three rotations are assumed to occur simultaneously, the total variations of the
coordinates x, y, z, =, y', 2/, etc. will be, by the principles of the differential calculus,
equal to the sums of the partial variations resulting from each of these rotations so that the
following complete expressions will result

dzr = zdw — ydy, dy = zdy — zdy, dz = ydy — x dw,

dz’ = 2/ dw — ' dyp, dy' = 2’ dp — 2/ dvy, dz' =9/ dy — 2’ dw,

By substituting these expressions in the general formula of equilibrium (Article 2), one
will have the terms resulting only from the rotations dy, dw, diy about the z-, y- and
x-axes, which should be set equal to zero separately when the system is free to rotate in
any direction about a point which is at the origin of the coordinate system.

By differentiation, the following equations will be obtained

_(z—a)dr+(y-b)dy+(z—c)dz

dp >
o (@ —ad)dr' + (y —b)dy' + (2" — ') de’
dp = -
p
dp = (z — 7)(dz — dz) + (y — §)(dy — dg) + (¢ — 2)(dz — d2)

p

Thus after substitution, the following equations will result
_(ay —bx)dp+ (bz — cy)dy + (cx — az) dw
p
(a'y = b2 )dp+ (V2 =y )dy + (2’ —a'2") dw
pl

dp

dp’ =

And it will be found that dp = 0, dp’ = 0, etc. by replacing dz, dg, dz, etc. by the
analogous values zdw — §dy, Zdp — Zdy, §dy — ¥ dw etc. It can then be concluded
immediately that the terms P dp, P’ dj, etc. of the same equation, which would result
from the internal forces of the system, will disappear after substitution.

Also,dp = 0, if one sets a = 0, b = 0 and ¢ = 0, that is, if the force centers for the forces
P are at the origin of the coordinate system. This will also result in the elimination of this
force.

9. Thus if the internal forces are not considered, should there be any, and in addition, if all
forces which are directed towards the origin of the coordinate system are not considered,
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one will have in general the following equation for all the forces P, P’, etc. with directions
along the lines p, p/, etc.

Ldy+ Mdw+ Ndp =0,

where
L= P(bz — cy) + PV ,— y)
p p
M= P(cx — az) N P’(c’a‘,’,— a'z') b
p p
N P(ayp— bz) P’(a’y;)l— ba) .

and for any system free to rotate in any direction about the origin of the coordinate system
three equations L = 0, M = 0 and N = 0 will result. These equations are related to the
equation of Article 5, which is written with respect to three coordinate axes.

Also, if we use the angles «, 3, 7, @, etc. instead of the coordinates a, b, c, a’, etc. of the
force centers that the directions of the forces make with the coordinate axes and if we use
the relations of Article 7 of the preceding section

a=2x—pcosa, b=y —pcosp, c=2z—pcosy

and if we do the same for all other similar quantities, there results

L = P(ycosy — zcos3) + P'(y' cosy’ — 2 cos B') + - - -
M = P(zcosa — xcosy) + P'(z' cosa’ — z' cosy') + - -
N = P(zcosf8 —ycosa) + P'(z' cos 3’ —y'cosa’) + - -+

But since P cosa, Pcos 3, Pcos~y are the components of the force P calculated along
the directions of the three axes x, y, z, one sees immediately that x P cos 3 — yP cosa
are the moments relative to the z-axis, in which the term y P cos a has a negative sign
because the force P cos « tends to rotate the system in the opposite direction of the force
Pcos 3. Similarly, zP cosa — xP cos will be the moment relative to the y-axis and
yP cosy — zP cos 3, the moment relative to the z-axis, and the same should be done for
all other analogous expressions. Thus the three equations L = 0, M = 0, N = 0 express
the fact that the sum of these moments is zero with respect to each of the three axes.

Also, it is clear that the coefficients L, M, N of the instantaneous rotations dv’, dw, dy are
only the moments relative to the axes of instantaneous rotation (Article 7) dv’, dw, de.

10. One could doubt that the rotations about the three coordinate axes will suffice to
represent all the small motions that a system of material points may have about a fixed
point, without changing their relative configuration. In order to dispel this doubt we are
going to investigate directly these types of motion.
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Let us imagine a straight line passing through the given point which is also used as the
origin of coordinates z, y, z and through another point in the system. Now let us also
imagine a plane defined by this straight line and by a third point of the system. Furthermore,
let us represent with respect to this line and this plane the other points of the system by
new rectangular coordinates z’, y', z’ having the same origin as the former coordinates x,
y, z. Itis clear that these new coordinates will depend only on the relative configuration of
the points of the system and consequently, will be constant when the system moves while
the old coordinates would have changed.

The well-known theory of the transformation of coordinates gives directly the relations
between the first three and the last three coordinates as

r=az' + By +77

y= o'z +6/y/+,y/z/

= a”ll:” + /Bllyll + ’Y”Z”
The nine coefficients a, 3, v, o, etc. depend only on the relative position of the axes of the
two systems of coordinates and must be such that the coordinates z, y, = represent the same
points as the coordinates 2, y', 2, and consequently, the two expressions z% + y? + =2
and 2'? + y'? + 2'? are identical, which gives these six equations of condition

a2+a/2+a//2:17 ﬂ2+ﬁ/2+,8”2:1
72+712+7H2=1’ a,@+a'5’+a”[3”:0
ay + O/’}’/ +a//,yu — 0, B’Y + B,'Y’ +IBII,YII =0

so that among the nine quantities «, 3, 7, ', etc. three will remain indeterminate.

When the axes of the coordinates ', y’, 2’ coincide with the axes of the coordinates z,
y, 2thenx = z’, y = ¥’ and z = 2’. Consequently, there resultsa = 1,3 =0,y = 0,
o =0,8=1,p8"=0,7v=0,9 =0,7" = 1. Thus by differentiating the preceding
formulas and by making these substitutions one will have the expression for an arbitrary,
infinitesimal displacement of the system about a given point.

By differentiating the expressions of x, y, z under the hypothesis that 2’, y’, z’ are constant
and then by substituting x, y, z instead of these quantities, the result will be

dz =xda+ydB+ 2dy
dy =zda’ +ydf +:dy
dz=zda" +ydp" + zdy"
But the six equations of condition after differentiation, give by the substitution of the values

a=1,08=0,v =0,etc. found above,da = 0,ds8' = 0,dy' = 0,ds + do’ = 0,
dy +da” =0,dy' +dB" = 0, from which do’ = —df3, do’' = —dv,dB" = —dv'.
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After these values are substituted in the expressions for dz, dy, dz, one will have the
following

dr = —ydd’ + zdy, dy = zdo’ — 2dp”, dz = —zdy +ydp”,

which are equal to those found in Article 8 after setting do’ = dy, dy = dw, d3” = dv.

These formulas for the variations of x, y, = have all the generality that the statements of
the problem may include. The three equations L = 0, M = 0, N = 0 which result from
the elimination of the terms affected by di), dw, dy in the general equation of equilibrium
are consequently the only ones necessary to maintain the system in equilibrium about a
given point, not considering the relative configuration of the points. So that when this
configuration is invariant the equilibrium of the system will depend only on the three cited
equations.

In his Recherches sur la Précession des équinoxes,%® d’Alembert is the first to have found
the laws of equilibrium for several forces applied to a system of points with an invariant
configuration. He arrived at this result by a very complicated procedure using the compo-
sition and resolution of forces. Since then these laws have been demonstrated more simply
by different authors. But our formulas have the advantage of leading to the conclusion
directly.

Subsection II1
The Composition of Rotational Motion And of Moments
About Different Axes

11. If a point in the system is selected for which the coordinates x, y, z are proportional
to dy, dw, dyp, the corresponding differentials dz, dy, dz will be zero, as can be seen from
the formulas of Article 8. This point and all those which will have the same property will
thus be immobile during the instant that the system traverses the three angles d, dw, de,
by rotating simultaneously about the x-, y-, z-coordinate axes. And it is easy to see that
all these points will be on a straight line passing through the origin of the coordinates and
making an angle A, u, v with the x, y, z-axes, respectively, such that

CosA = v
V(dy? + dw? + dg?)
cosp = dw
V(a2 + du? + do?)
dp
cosv =

V(@2 + dw? + dg?)

This line will be the instantaneous axis of the composed rotation.
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By using the angles A, p, v and taking, in order to shorten the equations

df = /(dy? + dw? + dp?),
one will have
dyy = df cos A, dw = df cos p, dy = df cosv

and the general expressions for dx, dy, dz (Article 8) will become

dxr = (zcosp —ycosv)df
dy = (zcosv — zcos \) df
z = (ycos A — zcosu)df.

Since the square of the small distance traversed by an arbitrary point is dz? + dy? + dz?,
it will be expressed by

((zcosp — ycosv)? + (zcosv — zcos A)? + (y cos A — z cos p)?) db?
= (2> + 9> + 22 — (zcos A + ycos i + z cosv)?) db?

because cos? A + cos? yu + cos? v = 1.

It is easy to prove that x cos A + y cos © + z cos v = 0 is the equation of the plane passing
through the origin of the coordinate system and perpendicular to the line which makes the
angles A, u, v with the z, y, z coordinate axes. Thus the small distance traversed by an
arbitrary point of this plane will be

dd+v/(x2 + y? + 22)

and since the instantaneous axis of rotation is perpendicular to this same plane, it results
that d6 will be the angle of rotation about this axis, composed of three partial rotations di,
dw, dp about the three coordinate axes.

12. It follows that arbitrary instantaneous rotations dv, dw, dp about three orthogonal axes,
intersecting at the same point, are composed of one rotation df = /(dy?2 + dw? + d?),
about an axis passing through this same point of intersection and making the angles A, p,
v, with these three axes such that

do do

di
coOsA = —, c:os,u_-dt97

dé
and conversely, an arbitrary rotation df about a given axis can be resolved into three partial
rotations expressed by cos A df, cos i df, cos v df about three axes which intersect at right
angles on a point of the given axis and which make with this axis the angles A, p, v. This
gives a simple way to compose and resolve instantaneous motions or rotational velocities.
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Thus if one takes three other orthogonal axes which make with the axis of rotation di) the
angles X', A", X', with the axis of rotation dw the angles ', u”’, ¢'”, and with the axis
of rotation dy the angles v/, v, V', the rotation di) can be resolved into three rotations
cos X' dip, cos N’ dip, cos A"’ dip about these new axes. The rotation dw will be resolved
similarly into three rotations cos p’ dw, cos " dw, cos ¢’ dw, and the rotation dy in three
rotations cos v’ dg, cosv” dp, cos v’ dp about the same axes. By adding together the
rotations about a given axis and calling df’, d6", d0"" the total rotations about the three
new axes, one will have

dd’ = cos N dy) + cos ' dw + cosv’ dy
d8” = cos X' dy + cos p’ dw + cos V" dp
dd"" = cos A" dyp + cos "’ dw + cos v dp.

13. The rotations dv, dw, dy are thus reduced in this fashion to three rotations d¢’, d6”,
dé’", about three orthogonal axes which consequently, must give by composition the same
rotation df which results from the rotations dy», dw, dy so that one will have (Article 11)

d6? = d6”? + df"* + db""* = dy? + dw® + d?

and since this last equation must be an identity the following relations are obtained

cos A2 4+ cos A2 + cos " =1
12 1

"2 __

cos p'? 4 cos p'? + cos 1
cosv'? + cosv'? + cosv"? =
cos X cosp’ + cos N cos " + cos X" cosp’ =0

cos A cosv’ +cos A cosv”’ +cos N cosv =0

cos ' cosv’ + cosp” cosv” + cos " cos v’ =0,

which can also be found by geometry.

From these relations the values of di, dw, dy in terms of d¢’, 9", d6"”, can be immediately
obtained by adding together the values of df’, d8"”, d8"”, successively multiplied by cos X',
cos A\, cos A", cos ', cosp”’, etc. With this procedure the following equations will be
obtained

dyp = cos N df’ + cos A" df"’ + cos "' d§""

dw = cos ' d8' + cos u” d8" + cos pu'"’ d§""’

dyp = cosv' dd’ + cosv” d8" + cosv' d8"".

14. Moreover, if #', ©”, ©""’ designate the angles that the axis of the composed rotation
df makes with the axes of the three partial rotations d¢’, d6”’, d"”, one will have as in
Article 11

dé#’ cos ' dé, dd" cos " db, dd" cos 7" d8,
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and if in the expressions given above (Article 12) for d@, d@’, d¢’, the angles dv, dw, dy
are replaced by the values expressed in df of Article 11, that is, cos A d6, cos 1 df, cos v df
the comparison of the different expressions for d¢’, d6”, d8"" will give after division by
dé, the new relations

cosm' = cosAcos )\ + cospcospu' + cosvcosv'

cosm' = cosAcos A" + cospcos pu” + cosvcosv”

n

cosm'"" = cosAcos N + cos pcos p’"’ + cosvcosv”

which can be verified by geometry.

15. It is clear from this development that the composition and resolution of rotational
motions are entirely analogous to rectilinear motions. Indeed, if on the three axes of rotation
dy, dw, dy, one takes from their point of intersection lines proportional respectively to
d®, dw, dyp, and if one draws on these three lines a rectangular parallelepiped, it is easy
to see that the diagonal of this parallelepiped will be the axis of composed rotation df and
will be at the same time proportional to this rotation df. From this result and because the
rotations about the same axis can be added or subtracted depending on whether they are in
the same or opposite directions as the motions which are in the same or opposite directions,
in general, one must conclude that the composition and resolution of rotational motions
is done in the same manner and by the same laws that the composition or resolution of
rectilinear motions, by substituting for rotational motions rectilinear motions along the
direction of the axes of rotation.

16. Now if in the formula of Article 9
Ldy+ Mdw+ Ndy

which contains the terms resulting from the rotations dy, dw, dy in the general formula
Pdp + P'dp’ + P" dp” + etc., one substitutes for dv, dw, dy, the expressions found in
Article 13, this formula becomes
(Lcos\ + M cosp' + Ncosv')dé’
+(Lcos\' + Mcos " + Ncosv')dd”
+(Lcos A" + Mcosp" + N cosv')de"”
Thus from Article 7, the coefficients of the elementary angles df’, d8”, d8"”, will express
the sum of the motions relative to the axes of rotation dd’, d6”, d6"’. Therefore, the
moments which are equal to L, M, N and relative to three rectangular axes, are expressed
by the following three equations
LcosA + Mcosp' + Ncosv/,
Lcos\' + Mcosu" + N cosv”,
Lcos\" + M cos ' + N cosv""
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relative to three other rectangular axes which make respectively with the former, the angles
)\I /—'4, l//. AII ull V/I. AIII ulH V’”

There is a geometrical demonstration of this theorem in Volume VII of the Nova Acta of
the Académie de Petérsbourg.%*

17. If the rotations di, dw, dy are assumed proportional to L, M, N and if
H=+/1*+M?*+N?,

then by Article 11 the following equations will result
L = Hcos ), M = Hcospu, N = Hcosv

and the three moments which we have just found will be reduced, using the relations of
Article 14, to the following simple form

Hcosn', Hcos7"”, Hcos7'".

But 7/, ", n'"" are the angles that the axes of rotation d6’, d§"’, d9"”, make with the axis of
the composed rotation df. Therefore, if the axis of rotation df’ is made to coincide with the
axis of rotation df, one has 7' = 0, and ", n""’ each equal to a right angle. Consequently,
the moment about this axis will be simply H and the two other moments about the axes
perpendicular to this one will be zero.

Thus it results from this development that moments equal to L, M, N and relative to

three rectangular axes, will compose a unique moment H equal to \/(L? + M? + N?)
and relative to an axis which makes the angles A, u, v, with respect to the rectangular axes

such that

cos/\:£— cospL = —, cosv = —.
H’ H H
These are the known theorems on the composition of moments. And it is obvious that this
composition also follows the same rules as the composition of rectilinear motions. One
could have immediately deduced this result from the composition of instantaneous rotations
by substituting the moments for the rotations that they produce as Varignon substituted
forces for rectilinear motions.

Subsection IV
Properties of Equilibrium Relative to the Center of Gravity

18. If in the formulas of Article 9, all of the forces P, P’, P", etc. are assumed to act
along directions mutually parallel, one will have & = o’ = o, etc., 8§ = 3’ = 3", etc.,
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v =~" =~", etc. Consequently, if the following relations are defined, in order to shorten
the formulas

X=Pz+Ps' +P'z" +--
Y=Py+P,y’+P"y”+"’
Z=Pz+P2+P'2"+. .

the quantities L, M, N will become

L=Ycosy—Zcosf
M = Zcosa — X cosvy
N=Xcos3-Y cosa

and the equations of equilibrium will be L = 0, M = 0, N = 0, of which the third
is here a permutation of the first two equations. But since there is also the equation
cos? a + cos? 3 + cos? v = 1 (SECTION II, Article 7), one will be able to determine with
these equations the angles a, 3, v and it will be found that
X
(X2+Y?2+2?)
Y
Z
(X2+Y2+ 2%

cosa =

cosf3 =

cosy =

Therefore, if the positions of the bodies are given with respect to three axes, the system
must be placed relative to the direction of the forces, such that this direction makes with the
three axes the angles «, 3, v that have just been determined, so that all rotational motion
of the system is prevented.

19. If the quantities X, Y, Z were equal to zero, the angles «, 3, v will remain indeterminate
and the position of the system, relative to the direction of the forces, could be arbitrary.
From this result the following theorem is obtained: If the sum of the products of parallel
forces with their distances to three orthogonal planes is equal to zero with respect to each
of these planes, the ability of the forces to rotate the system about the common point of
intersection of these three planes is equal to zero.

It is known that gravity acts vertically and proportional to mass. Thus in a system of heavy
bodies, if one seeks a point such that the sum of the masses multiplied by their distances
to three orthogonal planes passing through this point is zero, gravity could not act on the
system to produce rotational motion about this point. This point is called the center of
gravity and it is used often in all branches of mechanics.

In order to determine this point, it is only necessary to find its distance to three given
orthogonal planes. But because the sum of the products of the masses with their distances
to a plane passing through the center of gravity is zero, the sum of the products of the same
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masses with their distances to another plane parallel to the former plane will necessarily be
equal to the product of the sum of the masses with the distance of the center of gravity to
the latter plane. This distance will be obtained by dividing the sum of the products of the
masses with their distances by the total sum of the mass. From this result, the well-known
formulas for the centers of gravity of lines, surfaces and solids are obtained.

20. But there exists a property of the center of gravity which is not as well-known and
which is occasionally useful because it is independent of the planes to which the different
bodies of the system are referred and because it is used to determine the center of gravity
from the relative position of the bodies. This is what it consists of:

Let A be the sum of the products of the masses taken two at a time with the square of their
relative distance divided by the square of the sum of the masses.

Let B be the sum of the products of each mass with the square of its distance to a given
arbitrary point divided by the sum of the masses.

Then the quantity /(B — A) is the distance between the center of gravity of all the masses
and the point about which the moments of the masses are taken. Since the quantity A is
independent of this latter point, the values of B can be determined with respect to three
different points taken either in or outside of the system. Hence, the distance of the center
of gravity to these three points will be found and consequently, the position of the center
of gravity with respect to these points will be known. If the bodies were all in the same
plane, it would be sufficient to consider only two points and it will be sufficient to consider
only one if all the bodies were on a given straight line.

By requiring the given points to be within the bodies of the system, the position of the
center of gravity of the system will be given uniquely by the masses and their respective
distances to the point. This is where the main advantage of this approach to determine the
center of gravity lies.

To demonstrate it, I begin again with the expressions X, Y, Z of Article 18 and I also take
three arbitrary quantities f, g, h and develop these three identities which are easy to verify,

(X —(P+P +P'"+--)f)?
=(P+P +P"+-)(Plx—fP+P@ - f)+P'@" - f)P+ )
— PP'(z —2')>— PP"(z —2")> = P'P"(a' —2")?* -
(Y = (P+P +P'+...)g)?
=(P+P +P"+--)(Ply—9’+ Py -9 +P'(" -9+
— PP'(y—y')? = PP"(y—y")’ - P'P"(y —y")* -
(Z-(P+P +P'+--)h)?
=(P+P +P'+--)(P(z=h)+P (2 =h)?+P'(2" —h)?+--)
— PP'(z - 22 = PP"(z = 2")? = P'P"(2 = 2")* -



54 PART I: STATICS

The quantities P, P’, P", etc. represent the weights or the masses of the bodies which
are proportional to them and the quantities z, y, 2, z’, y', 2/, ", etc. are the rectangular
coordinates of these bodies. But we have seen (Article 19) that when the origin of the
coordinates is at the center of gravity, the three quantities X, Y, Z are zero. Therefore, if
one sets in the three preceding equations X = 0,Y = 0 and Z = 0, adds them together
and assumes in order to shorten the expression, the following relations

g+ h2 =12
(=) +(y -9+ (z=h)?*=(0)

(@' -+ @ -9+ -h)P =)
(" = )P+ " =9+ (z" - h)? = (2)?

(=) + -y + (=P = (0,17
(2= 2"V + (y=y"P + (= ") = (0,2
(& = 2"+ (o ="V + (& = 2" = (1,27

After dividing by (P + P’ + P" + - - -)2, the following expression will be found

2 P(0)2 + P'(1)> + P"(2)* +
P+P +P'+
PP'(0,1)2+ PP"(0,2)* + P'P"(1,2)* +
(P+ P +P'+...)2

Now if the three quantities f, g, h are taken for the rectangular coordinates of a given point,
it is evident that 7 will be the distance of this point to the center of gravity which is assumed
at the origin of the coordinate system and that (0), (1), (2), etc. will be the distances of
the weights P, P’, P", etc. to this same point. Also, (0,1), (0,2), (1,2) etc. will be the
distances between the bodies or weights P and P’, P and P”, P' and P”, etc. Therefore
the above equation will become 7> = B — A, from which one hasr = /(B — A).

Subsection V
Properties of Equilibrium Relative to Maxima and Minima

21. We are now going to consider the properties of maxima and minima which occur at
equilibrium. For this effort, we will consider again the general formula

Pdp+Qdg+Rdr+---=0

of equilibrium between the forces P, @), R, etc. directed along the lines p, g, 7, etc. which
pass through the centers of these forces (SECTION 11, Article 4).
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It can be assumed that these forces are expressed in such a fashion that the quantity
Pdp + Qdq + Rdr + etc. is an exact differential of a function of p, g, r, etc. which is
represented by II, so that the following equation results

dll = Pdp+ Qdg+ Rdr+---.

Then for equilibrium the equation dIT = 0 will hold which indicates that the system must
be configured in such a manner that the function II is, generally speaking, a maximum or a
minimum in the state of equilibrium. I say, generally speaking, because it is known from
the theory of curves that the equation of a differential set equal to zero does not always
represent a maximum or a minimum.

The preceding assumption holds when the forces P, @), R, etc. are definitely directed
toward either fixed points or bodies of the same system, and are proportional to arbitrary
functions of distance, which is properly the case in nature. Thus for this type of force, the
system will be in equilibrium when the function II is a maximum or a minimum. This
constitutes the principle which Maupertuis called the Loi du Repos.®

In a system of heavy bodies in equilibrium, the forces P, Q, R, etc. resulting from gravity
are, as it is known, proportional to the masses of the bodies and consequently, they are
constant. The lines p, g, r, etc. converge at the center of the Earth. Thus one will have in
this case that II = Pp+ Qq + Rr + - - -.

Consequently, since the lines p, g, r, etc. are assumed to be parallel,66 the quantity

I
P+Q+R+ -

will represent the distance from the center of gravity of the system to the center of the
Earth. This distance will be a minimum or a maximum when the system is in equilibrium.
For example, it will be a minimum in the case of the catenary and a maximum in the case
of several elements which support one another in the shape of an arch. This principle has
been known for a long time.

22. Now if the same system is considered to be in motion and u’, u”, u"”’, etc. designate
the velocities and m’, m”/, m'"’, etc. designate the respective masses of the various bodies
which compose it, the well-known principle of the Conservation des Forces Vives®’ for
which we will give a direct and general demonstration in PART II of this work, will give
the following equation®®

m'u? + m"u"? +m""u""? + - = const. — 2IL

Therefore, since in the state of equilibrium, the quantity IT is a minimum or a maximum,
it follows that the quantity m'u'? + m”u/? + m"'u""? + etc., which expresses the force
vive of the entire system, will be at the same time a maximum or minimum. This leads
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to another principle of statics, which is, that in all configurations which the system takes
successively, the one where it has the largest or smallest force vive is also the one in which
it should be placed at the outset so that it remains in equilibrium. In the Mémoires de
1’ Académie des Sciences of Paris for 1748 and 1749 there is a discussion of this principle.

23. We have shown that the functionII is a minimum or a maximum when the configuration
of'the system is one of equilibrium. We are now going to demonstrate that if this function is a
minimum the equilibrium will be stable, so that the system, which is assumed in equilibrium
and displaced by a small amount, will return to the configuration of equilibrium by itself
while making infinitesimal oscillations. On the contrary, in the case where the same
function is a maximum, the equilibrium will not be stable and once disturbed, the system
will begin by performing fairly small oscillations but the amplitude of the oscillation will
continually grow larger.”

In order to demonstrate this proposition in a general fashion, I consider that whatever might
be the configuration of the system, the position of the diverse bodies which compose it
will always be determined by a given number of variables and that the quantity IT will be
a given function of these same variables. Let us assume that in the state of equilibrium
the variables in question are equal to a, b, ¢, etc. and that, in a state very close to the state
of equilibrium, they are a + z, b + y, ¢ + z, etc., in which the quantities z, y, z, etc. are
very small. Substituting the latter quantities in the function for II and expanding it in a
series according to the order of the very small quantities z, y, z, etc., the function IT will
become”"

MI=A+Bzx+Cy+Dz+---
+F2’ + Gry+ Hy’ + Kez + Lyz + M2> + -,

where the quantities A, B, C, etc. are obtained as functions of a, b, ¢, etc. But in the state
of equilibrium the value of dII must be equal to zero, however the configuration of the
system is altered. Therefore, the differential of II must be zero in general when x, vy, z,
etc. are equal to zero. Thus it must be that B =0,C = 0, D = 0, etc.

Thus for an arbitrary state which is very close to equilibrium, the following expression for
II now results

O=A+F2>+Gxy+ Hy* + Kzz+ Lyz+ Mz*+ - --

in which, as long as the variables z, y, z, etc. are very small, it will suffice to consider
solely the second order magnitudes of these variables.

24. Now it is clear that when z, y, z, etc. are zero, for the quantity IT to be a minimum the
function

Fx’ + Gry+ Hy?+ Kzz+ Lyz + Mz2* + -+ -,

which I will call X, must always be positive whatever the values of the variables z, y, z,
etc.
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This function can be reduced to the form

X =f€+gn’ +h¢+--

by taking
f=F
_ Gy Kz
£_x+_2?+2f+
G2
_H_Z_f-
_y (L-CEYZ,
K I?
"M T
(=24

Thus for the function X to be always positive, the coefficients f, g, h, etc. must be positive
and at the same time, it can be seen that if these coefficients are positive, the values of X
will necessarily be positive because the quantities £, 7, { etc. are real when the variables
z,y, 2, etc. are also real.

On the contrary, if the quantity II is always a maximum when z, y, z, etc. are zero, the
function X must always be negative. Consequently, the coefficients f, g, h, etc. should
be negative. Conversely, if these coefficients were negative, the result would be that the
value of X will necessarily be negative.

25. One will have, accounting for only the second order magnitudes of the very small
quantities z, y, 2, etc. that

OD=A+f&+gn*+hP+--

and the equation for the Conservation des Forces Vives (Article 22) will become

MIuIZ + M/IuIIZ + M///u/uz 4.
=const. —2A —2f&% —2gn* —2hC* + - .

But in the state of equilibrium, it has been assumed that z = 0,y = 0, z = 0, etc. Thus one
alsohas £ = 0,7 =0, { = 0, etc. (Article 19). Therefore, if it is assumed that the system
has been disturbed from this state by impressing on the bodies M', M"', M, etc., the very
small velocities V', V", V"' etc. one should have v’ = V', v/ = V", "' = V", etc.
when ¢ = 0,97 = 0, = 0, etc. Hence, one will have M'V 2+ M"V'"2 4+ M"'V'"? t-etc. =
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const. —2A. This equation will serve to determine the arbitrary constant and the preceding
equation will become

Mlul2 + Muuuz + Mmumz 4o = M/V/2 + Ml/vIIZ 4 M///V/uz 4.
—2f€ —2gn" = 2h¢* — - -

from which it is easy to draw these two conclusions:

1. In the case where II is a minimum for which the coefficients f, g, h, etc. are
all positive, the quantity 2f£2 + 2gn? + 2h(? + etc. which is always positive
must necessarily be less or at least will not be greater than the given quantity
M'V"? 4 M"V'" 4+ M"V"? 4 etc. which is itself very small. Consequently, if
this quantity is denoted by the letter 7', one will have for each of the variables &, 7,
¢, etc. the limits

+ 1 + _7_1_ + l
2f° 2g° V2n>

by which they will always be bounded. In this case, the result is that the system
will be able to depart by only a small amount from its state of equilibrium and will
be able to make only very small oscillations of a very finite extent.

2. In the case where II is a maximum for which the coefficients f, g, h, etc. are all
negative, the quantity —2f¢2 — 2gn® — 2h(?, etc. which is always positive could
increase to infinity and thus the system could depart further and further from its state
of equilibrium. At least the equation above shows that in this case nothing prevents
the variables &, 7, (, etc. from constantly increasing. But yet it does not follow that
they must actually increase. We will demonstrate this last proposition in SECTION
VI of PART IL

If all the coefficients f, g, h, etc. were zero, it is known from the methods of maxima
and minima that in order to have a minimum or a maximum that the terms of the third
order should vanish and secondly, that the terms of the fourth order must always be either
positive or negative. And it is also in this fashion that the stability of the equilibrium given
by the vanishing of the terms of the first order can be judged when those terms of the
second order also vanish.

26. Incidently, the properties of maxima and minima which are present in the equilibrium
of an arbitrary system of forces are only an immediate consequence of the demonstration
which we gave for the Principle of Virtual Velocities at the end of SECTION L

Indeed, let p be the distance between the first two pulleys, one fixed and the other mobile.”?
Furthermore, let the pulleys be connected by P strings which produce a force proportional
to P which is represented simply by P. Assume that the weight which pulls on the rope
can be taken as unity. Conversely let g be the distance between two pulleys which produce
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the force @, r the distance between the pulleys which produce the force R, etc. It is
obvious that Pp will be the length of the portion of the rope which wraps around the first
two pulleys. Conversely, Qg, Rr, etc. will be the lengths of the portion of the rope which
wraps around the other pulleys so that the total length of the rope wrapped around the fixed
and mobile pulleys will be Pp+ Qg+ Rr + - - -.

Let us add to this length, the lengths of the different segments of the rope which are located
between fixed pulleys to make the necessary change in direction which we will denote by
a. Let us also add the segment of the rope which is located between the last counterpulley
and the weight attached to the extremity of the rope which we will denote by u. Finally,
let ¢ be the total length of the rope for which one end is attached to a fixed point in space
and for which the other end carries the weight. One will obviously have the equation

{=Pp+Qq+Rr+ - +a+u,
for which
u=¢—a—Pp—-Qq—Rr—---.

But assuming that the forces P, @), R, etc. are constant, that is, independent of p, g, 7, etc.
which is always possible in an equilibrium state where only infinitesimal displacements are
considered, it is obvious that the quantity Pp + Qg + Rr + - - - will be the same as the one
we have designated by II in Article 21. Thus one will have generally that u = ¢ — a — II,
where £ and a are constants.

27. Now, it is clear that since the weight tends to descend as far as possible, equilibrium
will generally hold only when the value of u, which expresses the distance traversed by the
weight from the fixed pulley, will be a maximum and consequently, the value of IT will be
a minimum. It is obvious at the same time that in this case the equilibrium will be stable
because a small arbitrary change in the configuration of the system will surely cause the
weight to ascend, but the weight will then tend to descend and return the system to a state
of equilibrium.

But it has been shown that to have equilibrium, it suffices to have dII = 0 and consequently,
du = 0 which also holds when the value of u is a minimum, in which case, the weight,
will be at its highest position instead of at its lowest position. In this case, it is obvious that
a small change in the configuration of the system will only have a tendency to lower the
weight, which then will not tend to ascend but to descend further and to move the system
further from the initial state of equilibrium. It is clear from this result that this equilibrium
state will not be stable and that once disturbed, the system will not return to its initial
configuration.
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SECTION IV
A MORE GENERAL AND SIMPLER WAY TO USE THE FORMULA OF
EQUILIBRIUM PRESENTED IN SECTION II

1. The authors who have written on the Principle of Virtual Velocities in the past have
concentrated on proving the veracity of this principle by demonstrating the congruity
between solutions obtained using this principle with those obtained from the ordinary
principles of statics rather than to demonstrate its application to solve directly the problems
of this science. We propose to fill this latter task with all possible generality and to deduce
from this principle analytical formulas which contain the solution of all the problems of
the equilibrium of bodies, basically in the same fashion that the formulas for sub-tangents,
oscillating radii, etc. contain the means of determining these lines in all curves.

The method presented in SECTION II can be used in every case and requires, as has
been shown, solely analytical operations. But since the immediate elimination of the
variables or their differences by means of the equations of condition, can lead to excessively
complicated calculations, we will present the same method in a simpler form, by reducing
all cases to the case of an entirely free system.

Subsection I
Method of Multipliers

2. Let L =0, M =0, N = 0, etc. be the various equations of condition which are
given by the nature of the system. The quantities L, M, N, etc. are finite functions of
the variables, z, y, z, z', y', 2/, etc. By differentiation of these equations, the following
expressions result dL = 0, dM = 0, dN = 0, etc. which will give the relation which
must exist between the differential of the same variables. In general, we will represent by
dL = 0,dM = 0,dN = 0, etc. the equations of condition between these differentials
whether or not the equations are exact differentials as long as the differentials are linear.

Now, since these equations are only used to eliminate an equal number of differentials in the
general formula of equilibrium, after which the coefficients of the remaining differentials
must individually be set equal to zero, it is not difficult to prove by the theory of elimination
for linear equations that the same results will be obtained if the different equations of
conditiondL = 0,dM = 0,dN = 0, etc. each multiplied by an undetermined coefficient
are simply added to this formula. Then if the sum of all the terms which are multiplied
by the same differential are put equal to zero, as many particular equations as there
are differentials will be obtained. Finally, from these latter equations the undetermined
coefficients, by which the equations of condition have been multiplied, can be eliminated.”

3. An extraordinarily simple rule results from this approach to find the equilibrium
conditions of an arbitrary, given system. The sum of the moments of all the forces which
must be in equilibrium can be gathered (SECTION II, Article 5) and to which can be added
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the various differential functions which must be equal to zero from the conditions of the
problem after having multiplied each of these functions by an undetermined coefficient.
The whole can be equated to zero and thus a differential equation results which can be
treated as an ordinary equation of maxima and minima and from which as many particular
finite equations as there are variables can be extracted. These equations from which the
undetermined coefficients have been eliminated will give all the necessary conditions for
equilibrium.

The differential equation will have the following form
Pdp+Qd¢+Rdr+---+AdL+pudM +vdN +---=0

in which A, u, v, etc. are undetermined quantities. We will call this equation the
General Equation of Equilibrium.

This equation will give with respect to each coordinate, such as z, of each body of the
system, an equation of the following form so that the number of these equations will
be equal to the number of coordinates of the bodies. We will call these equations the
Particular Equations of Equilibrium.

dp dg dr dL dM dN
Pd—x +Q£+R8§+”'+’\H§+“H+VH+M:0'

4. The greatest difficulty will be to eliminate the undetermined coefficients A, u, v, etc.
from these latter equations. But this can always be done by known means. It will be
appropriate to choose in every case the alternative which can lead to the simplest result.
The final equations will contain all the necessary conditions for the proposed equilibrium
state. Since the number of these equations will be equal to the total number of coordinates
of the bodies of the system minus those of the undetermined coefficients A, p, v, etc.
which had to be eliminated and since the number of these same undetermined coefficients
is equal to the number of finite equations of condition L = 0, M = 0, N = 0, etc., it
follows that these equations added to the last equations will give the same number as the
number of coordinates of all the bodies. Consequently, they will be enough to determine
these coordinates and to determine the position of each body at equilibrium.

5. I now note that the terms AdL, pdM, etc. of the general equation of equilibrium
can also be viewed as representing the moments of the various forces applied to the same
system.

Indeed, assuming that dL is a differential function of the variables ', ¢/, 2/, ="/, y", etc.
which are the coordinates of the various bodies of the system, it will be composed of
different parts which will be designated by dL’, dL", etc. so that dL = dL' + dL" + etc.,
with dL' having only the terms which depend on dz’, dy’, dz’ and dL” having only the
terms which depend on dz”, dy”, dz" and so on.
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In this fashion, the term A dL of the general equation will be composed of the terms A dL’,
AdL", etc. But if the following form is given to the term A dL’

dr\?* | (dr\? . rdr? dr’
A i + ™ + o X R
x y z dL’ 2+ dr/ 2+ dr’ 2
dz’ dy’ dz’

it is obvious from what was stated in Article 8 of SECTION II that this quantity can
represent the moment of a force equal to

dL\?* (dL\*  /drn\?
== = —
(&) (&) +(&)
applied to the body with coordinates z', y’, z’ and directed perpendicular to the surface

which has for its equation dL’ = 0, considering only z’, y’, 2’ as variables. Conversely,
the term A dL” can represent the moment of a force equal to

dLII 2 dLII 2 dLII 2
(@) + (o) + (&)
applied to the body with coordinates =", y”, 2" and directed perpendicular to the curved

surface with equation dL"" = 0, which for this case, considers only =", y”, 2"’ as variables
and so on.

Therefore, in general, the term A dL will be equivalent to the effect of different forces
expressed by

() 4 ()4 ()
dx! dy’ dz’
/(4L 2+ dL 2+ dL \*
dxll dyll dZ"
1 n

and applied respectively to bodies with coordinates z’, y', 2/, =, y", 2", etc. along
directions perpendicular to different curved surfaces represented by the equation dL = 0,
in which z', y', 2’ are varied first, followed by z”, ¥", 2" and so on.

6. In general, the term A dL could be interpreted as the moment of a force A which can
change the value of the function L. Since dL = dL’ + dL"” + etc. the term A dL will also
express the moments of several forces equal to A and all with the tendency to change the
function L considering the variability of the various coordinates z', 3/, 2/, =, y", 2, etc.
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A similar development can be made for the terms p dM, v dN, etc. (SECTION II, Article
9).

Furthermore, because of the fact that in the general equation of equilibrium (Article 3) the
forces P, @, R, etc. are assumed directed towards force centers where the lines p, ¢, r,
etc. intersect and with a tendency to shorten these lines, the forces, A, u, etc. should be
viewed as having a tendency to reduce the magnitudes of the functions L, M, etc.

7. From the preceding development, it is clear that each equation of condition is equivalent
to one or more forces applied to the system along given directions or in general, able to
change the values of given functions so that the state of equilibrium of the system will
remain the same whether these forces or the equations of condition are considered.

Conversely, these forces can take the place of the equations of condition resulting from
the nature of the given system so that by using these forces, the bodies can be viewed as
entirely free and without any constraints. From this result the metaphysical reason for the
introduction of the terms AdL + pdM + etc. in the general equation of equilibrium is
obvious. It is that this equation can be analyzed as if all the bodies of the system were
entirely free. This is the essence of the method presented in this section.

Strictly speaking, these forces account for the resistance that the bodies must experience
through their mutual connection or because of the impediments which, due to the nature
of the system, could hinder their motion. Or rather, these forces may only be the forces of
resistance themselves, which must be equal and directly opposed to the pressures created
by the bodies. Our method provides, as one sees, the means of determining the forces and
resistances which is one of the more important advantages of this method.

8. In the case where the forces P, @, R, etc. are not in equilibrium and where it is required
to reduce them to equivalent forces with given directions, it will be enough to add to the
sum of the moments of the forces P, @, R, etc., the moments resulting from the equations
of condition L = 0, M = 0, etc. The sum of the moments of the forces equivalent to
the forces P, Q, R, etc. and to the action that these bodies exert on one another will be
obtained by virtue of these equations of condition.

Thus by using all the equations of condition given by the nature of the proposed system, the
coordinates of every body of the system could be viewed as independent and an expression
of the form

dp dg dr dL dM dN
P= = 4. = == AT
dx+de+Rdx+ +/\dx+u x+y :r+
will be obtained, which will express the resulting force acting along the direction of the
line z, which must be equal to zero in the case of equilibrium as was seen in Article 3.
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Subsection II
Application Of The Same Method To The Formula
For The Equilibrium Of Continuous Bodies Where All The
Points Are Loaded By Arbitrary Forces

9. We have considered bodies to be material points until now and we have seen how the
laws of equilibrium are derived for these points, whatever their number and the forces
acting on them. But since a body of arbitrary volume and shape, is only the aggregate of
an infinity of parts or material points, it follows that the laws of equilibrium for the bodies
of arbitrary shape can also be determined by applying the preceding principles.

Indeed, the ordinary manner of solving the problems of mechanics dealing with bodies
of finite mass consists of first considering only a given number of points located at finite
distances from one another, then to find the laws of their equilibrium or of their motion,
subsequently, to expand this research to any number of points, further, to assume that the
number of points becomes infinite and at the same time that the distance between them
becomes infinitesimal and ultimately, to apply to the formulas found for a finite number of
points the simplifications and modifications which are necessary when extrapolating from
the finite to the infinite.

It is clear that this procedure is analogous to the geometric and algebraic methods which
preceded the infinitesimal calculus. And if this calculus has the advantage to facilitate and
to simplify, in a surprising manner, the solutions of problems dealing with curves, this is
because it considers these lines by themselves as curves without having to view them first
as polygons and then as curves. Thus nearly the same advantage is obtained by treating
the problems of mechanics by direct means and by considering from the beginning, the
bodies of finite mass as an aggregate of an infinite quantity of material points or particles,
each moved by given forces. And nothing is more easy to modify and simplify by this
consideration than the general method which we just gave.

10. But it is necessary to note at the outset that in the application of this method to bodies
of finite mass, for which all the points are acted upon by arbitrary forces, two types of
differentials are present which must be distinguished. Some are with respect to the various
points which compose the body. Others are independent of the relative position of these
points and only represent the infinitesimal distances that every point can traverse, assuming
that the location of the body changes by an infinitesimal amount. Since heretofore we had
only differentials of this type to consider, we designated them by the ordinary symbol ‘d’.
Now since we must consider the two types simultaneously, it is necessary to introduce a
new symbol. It seems judicious to us to use the old symbol ‘d’ to designate the differences
of the first type which are analogous to those which are commonly considered in geometry
and to call the differences of the second type, which are peculiar to the matter which we
shall treat, by the symbol used in the Calculus of Variations ‘6°,”* which has a necessary
and intimate relation with the problem considered here.
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For this reason, we will call variations the differences produced by ‘6’, and we will retain
the name of differentials for those produced by ‘d’. Also, the same formulas which define
ordinary differentials will give the variations when ‘¢’ is substituted for ‘d’.

11. I now note that instead of considering the given mass as an aggregate of an infinite
number of contiguous points, one should, in accordance with the principles of the infinites-
imal calculus, consider it rather as composed of infinitesimal elements which are of the
same dimensional order as the entire mass. So, in order to have the forces which act upon
each of the elements, the forces P, ), R, etc. should be multiplied by these same elements.
These forces are assumed applied at every point of the elements and will be viewed as
forces of acceleration similar to those which are generated by the action of gravity.

Thus if the total mass is denoted by m and any one of its elements by dm, one will have
Pdm, Qdm, Rdm, etc. for the forces which act on the element dm in the directions of
the lines p, g, r, etc. Therefore, the moment of this force will be obtained by multiplying
these forces by the variations ép, dq, ér, etc., respectively. The sum of the moments for
each element dm will be represented by the formula (Pép + Q g + Rér + etc.)dm.
And the sum of the moments of all the forces of the system will be obtained by taking the
integral of this formula with respect to the total given mass.

We will denote these total integrations, which are relative to the entire mass by the symbol
‘S’ retaining the ordinary symbol [ to designate the partial and indefinite integrals.”

12. Thus we will have for the sum of the moments of all the forces of the system, the
integral formula S(P ép + Q 6q + R 6r + etc.) dm. In general, this quantity must be equal
to zero for the equilibrium state of the system.

Because of the nature of the system, there are necessarily given ratios between the different
variations ép, 8q, Or, etc. relative to each mass point. They should be reduced to a given
number of independent and undetermined variations. And the particular equations for
equilibrium will be obtained when the terms multiplied by these latter variations are set
equal to zero. But these simplifications can be burdensome and it is then convenient to
avoid them by means of the Method of Multipliers which we presented in the preceding
subsection.

13. In order to apply this method to the case in question, we will assume that L = 0, M = 0,
etc. are the equations of condition, which must exist with respect to every mass point
because of the nature of the problem, and we will call them Undetermined Equations of
Condition.

Here, the quantities L, M, etc. will be functions of the finite coordinates z, y, z of each
point of the given mass and of their differentials of any order.

After differentiating these equations according to ‘4°, the following equations will be
obtained 6L = 0, M = 0, etc. Then after multiplying the quantities 6L, § M, etc.
by the undetermined quantities A, u, etc., the general equation of equilibrium will be
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obtained by taking the total integral, which consequently will be represented by the formula
S(A6L + p6M + etc.) and adding this integral to the one of the preceding article.

We will note that it is not necessary that L, 6 M, etc. be exact variations of the functions of
z, y, z, dz, dy, etc. but that it is sufficient that L = 0, 6 M = 0, etc. be the undetermined
equations of condition between the variations of z, v, z, dz, dy, etc. (Article 3).

But it must be recognized that besides the forces which in general act on all points of the
mass, there may be some which act only on some particular points of this mass. These
points are ordinarily at the boundaries of the given mass, that is, at the lower and upper
limits of the integral denoted by S.

Conversely, there may be particular equations of condition at these points, which we
will call Determined Equations of Condition to distinguish them from those which exist in
general for the entire mass. We will express them by A = 0, B = 0, C = 0, etc. or rather
by A =0,6B =0,6C =0, etc.

We will denote by a prime, two primes, three primes, etc. all the quantities which are
related to known points of the mass and in particular, those which are at the beginning
of the integral denoted by S will be indicated by one prime, and those which are at the
end of this integral by two primes and those which are in intermediate positions by three
primes. Thus one should add to the integral S(P ép + Q éq + R ér + - - -) dm, the quantity
Pép +Q é6¢ + Rér' +---+ P"ép" +Q"6q" + R"ér" + --- and to the integral
S(ASL + péM + ---), the quantity A + 6B + v6C + ---. Hence, the general
equation of equilibrium will be of the form

S(Pép+ Qéq+ Rér +---)dm + S(ASL + péM + ---)
+P16pl+Ql6ql+R/5T,+"'+P”6p”+Q”6q”+R”6T"+"'
+adA+ 6B +v6C+---=0.

14. Because the functions L, M, etc. not only contain the finite variables z, y, z, but also
their differentials, the variations 6L, M, etc. will give the terms multiplied by 6z, éy,
6z, 6 dx, 6 dy, etc. And the preceding equation, after one has substituted the values of ép,
bq, br, etc. 6L, 6M , etc., for bz, by, 6z, 6 dz, 6 dy, 6 dz, etc. as well as those of §p’, 6p”,
etc., 8¢, 6q", etc., 6 A, 6 B, etc. for 6z’, 6z, etc., by’, 8y", etc., 6 dz’, etc. deduced from
the particular conditions of each problem, will always have an analogous form to those
which the Calculus of Variations gives for the determination of maxima and minima of an
indefinite integral. Therefore, the known rules of this calculus must be applied.

Therefore, one will consider that because the symbols ‘d’ and ‘6’ denote two types of
differences entirely independent of one another, when these operations are combined, the
order in which they are applied does not matter because assuming that a quantity varies
in two different manners, the same result will be obtained whatever the order of these
operations. Therefore, édz will be the same as déx and conversely, d*z will be the same
as d?6z, and so on. Therefore, the order of the operations can always be interchanged
at will without changing the values of the differences. And for our purpose, it will be
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judicious to place the operator ‘d” before ‘¢°, so that the proposed equation contains only
the variations of the coordinates and the differentials of these same variations.

Thus, the symbols of integration [ or S, are treated in a fashion similar to the symbol for
the variation §. Consequently the symbols § [ or §S can always be substituted for [ § or
Sé. This is the first fundamental principle of the Calculus of Variations.

15. But the differentials déx, déy, déz, d?6z, etc. which are under the symbol S, can
be eliminated by the well-known operation of integration by parts. Because, in general,
[Qdéz = Qéz — [bzdQ, [Qd? bz = Qdéz — dQ bz + [ 6z d*(, and similarly for the
others, where one must observe that the quantities outside the integral sign [ are naturally
evaluated at the boundary points of the integrals. But in order to make these integrals
complete, it is necessary to subtract the values of the same quantities outside the symbol
which are related to the first points of the integrals so that everything cancels with respect
to these points which is obvious from the theory of integration.

Thus denoting by a prime the quantities related to the beginning of the total integrals
denoted by S and by two primes those related to the end of these integrals, one will have
the following relations

SQdér = Q" 62" — Q' 6z’ — S b2 dQ

SQd* b6z = Q" déz” — dQ” 62" — Q' d b6z’ + dQ 62’ + S 6z d*Q

which will be used to eliminate all the differentials of the variations which could be under
the symbol S. These relations are the second fundamental principle of the Calculus of
Variations.

16. Thus in this manner the general equation of equilibrium will be reduced to the following
form

S(Eéz+Tby+Tbz)+A=0

in which =, ¥, ¥ will be functions of z, y, z and their differentials. The term A will
contain the expressions affected by the variations 6z, 6y’, 62/, 8z", 6y”, etc. and their
differentials.

Therefore, in order that this equation exists independently of the variations of the various
coordinates, one should have:
1. The functions Z, £, U, are equal to zero for the entire domain of the integral S, that
is, at every point of the mass.
2. Every term of A is also equal to zero.

The undefined equations = = 0, £ = 0, ¥ = 0, will give in general the relation which
must exist between the variables x, y, z. But for this purpose, the undetermined variables
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A, 1, etc., whose number is the same as the number of equations of condition L = 0,
M = 0, etc. (Article 13) should be eliminated.

But it can be shown that the number of these equations can not be more than three because
being undefined equations between the three variables z, y, z, and their differentials, it is
obvious that if there were more than three, there would be more equations than variables
so that the fourth one would be a function of the first three and similarly for the others.”®
Therefore, there will never be more than three undetermined variables A, u, v, to eliminate.
Consequently, the values of these undetermined variables can always be found as functions
of z, y, z. But the equations which were eliminated will be replaced by the equations of
condition so that the values of z, y, z can always be found when the system is in the state
of equilibrium.

However, the equations of condition L = 0, M = 0, etc. could also contain other variables
u, v, etc. with their differentials which should be eliminated by means of other equations
suchas U = 0, V = 0, etc. In this case, these new equations of condition could be
treated as those which are given by the nature of the problem. By taking as undetermined
coefficients o, v, etc. the terms o U + v 6V + etc. would have to be added to the terms
AL + p 6 M + etc., which are under the integral sign in the general equation of Article 13.
After having eliminated all the differentials of the variations éz, éy, 6z, du, év, etc. the
final equation of Article 16 will contain under the integral sign the terms affected by the
variations du, 6v, etc. which consequently, shall be individually equal to zero. Thus there
will be as many new equations as unknowns o, v, etc. which should be eliminated. Then,
the new variables u, v, etc. will be eliminated by using the given equations U/ = 0,V = 0,
etc. This method will be very useful when there exist integrable quantities in the functions
L, M, etc. Because, by substituting for these quantities new unknowns, all the integration
signs can be eliminated which will simplify the computation.

17. With respect to the other equations resulting from the different terms of the quantity
A which is outside the integral sign, they will only be particular equations which should
only exist with respect to determined points of the mass and which will be mainly used
to determine the arbitrary constants that the expressions for z, y, z, deduced from the
preceding equations, could contain. Thus in order to make use of these equations, the
previously determined values of A, u, etc. will be substituted and the indeterminates a, 3,
etc. eliminated, and the equations of condition A = 0, B = 0, etc. will be added which
will be used to replace those which have been eliminated as previously discussed.

18. Moreover, the terms P ép, @ éq, etc. resulting from the forces of acceleration P, Q,
etc. do not require any simplification as long as these forces act along the lines p, g, etc.
since the quantities p, g, etc. are only functions of the finite variables z, y, z. However, it
will be different when forces are included for which the analysis will consist of varying a
given function (SECTION II, Article 9). Therefore, if this function contains differentials,
the same simplifications used for the terms A § L, etc. should be applied and a final equation
of the same form will always be obtained. This case occurs when elastic bodies, whether
solids or fluids, are considered.
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Subsection III
The Analogy of Problems of this Type with those of
Maxima and Minima

19. Not only is the Calculus of Variations applicable in the same fashion to problems of
the equilibrium of continuous bodies and to problems of maxima and minima relative to
integrable formulas, but it raises a remarkable analogy between the two types of problems
which we will consider. We will begin by giving a general formula for the variation of an
arbitrary differential function with several variables.

It is known that one differential of the first order can always be taken as constant in functions
of several variables and in their differentials of order higher than the first, which simplify
the function without reducing its generality. But in differentiation by 9, the variable for
which the differential has been assumed to be constant must also be considered as constant.
And if variations have to be attributed to all the variables, the variability of the differential
which is assumed to be constant should be reestablished.

20. Let U be a function of

dy  dy

’ v dx’ dz?’ ’

where dz is assumed constant. If the following definitions are made, as in the Théorie des

Fonctions™’

dy o dy’ o dy” —m
iz dx 7 dz Y

3 ey

the quantity U will become a function of z, y, ', ¥”, etc. and the variation U will be,
using the notation of partial differentials,’® of the form
dU dU dU

dU
U = — — — 0y + =0y + .
U = 6z+dy 6y+dy, Y +dy” Y+

Now, by permitting all of the terms to vary, the following equations will be obtained
sy s _0dy_dysdr dby  dé
% T dr  dr dz de U dz

_ d(dy — y'6x) "
= i +y" oz
i "
)
dy” — d(éy y 1") + y/ll 6:1:
dx
— d2(6y - y’ 61:) + y/// Sz
dz
6y"' — d3(6y - yl 61‘) + ylV Sz

dz3
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After substituting these expressions and making the following definition in order to shorten
the expressions, (6y — y' 6x) = bu, and as a consequence, éy = (du + y' dx) there will
result
oU = (fg + (;Uy' + g—U;y” + :U,y’” + - > oz
dU 6 dU déu + daUu dzﬁ
d dz | dy" dz?

By differentiating the function U and substituting 3’ dz for dy, y"dz for dy’, there will
result

_+__

dU  dU , dU dU
J = —y" =
at ( dy + dy’y dy”

y”/"l"")dl‘

from which is derived

dU dU, a , _ 1
dr +d’y + _d:ch

Then, finally

1 dU dU déu  dU d*6u

If the quantity U contained another variable such as z with its differentials

I

dz’ dz?’ U
then by setting

dz ',

0 aw

and operating on the equations in the same fashion, the following expression would result

aw, Uty U S
dz dz' dx  dz" da?

in which dv = (6z — 2’ §z) is to be added to the preceding expression for 6U and so on.

21. Therefore, if it is required to make the integral function [ U dz a maximum or a
minimum, one should proceed as follows using the principles of the Calculus of Variations

6/de:/6(Uda:):/(6de+U6dx)=O
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Substituting the expression for U, replacing ddx by déx, and eliminating by the integration
by parts, the differences x, du, dv, there will remain under the integral sign only terms of
the form (Z éz + Y éu + ¥ év) dz, in which

E=dU-dU =0

dv 1 .dU 1 dU

T = d2
dy T dz dy + dy”
_dUu 1 dU 1 P2 dU

T d: de d | da? 4
These terms must be equal to zero whatever the variations éx, 6y, §z. By replacing éu
and v by their expressions 6y — y’ 6z, 6z — 2’ bz, these terms will become, since = = 0,
(YTéy + T éz — (Yy' + ¥2')dx) dx, from which only the two equations T = 0, ¥ = 0,
are obtained. The third equation, dependent on dz, is included in these two.

It is obvious from this result that it is not necessary to vary the quantity z which is assumed
constant in the function U because the necessary equations for the solution of the problem
result only from the variations of the other variables. This is an observation which was
made at the outset in the Calculus of Variations and which is a necessary deduction from
this field of mathematics.

However, it can be useful to consider all the variations simultaneously with respect to the
integration limits because particular conditions for the points at the boundaries can result
as we showed in the last lesson of the Le¢ons sur le Calcul des Fonctions.™

22. The integrable function from which the maximum or minimum is derived can also
contain other integrals. But whatever it is, it can always be reduced to contain finite
variables with their differentials and to depend on one or several equations of condition
between these same variables which can always be solved by the Method of Multipliers.

Let us assume, for example, that U is a function of z, y, z and their differentials and
that, at the same time, the variable = depends on the equation of condition L = 0. After
this equation is differentiated with respect to é the result is 6L = 0. Thus we only need
to multiply this equation by an undetermined coefficient A or by A dz for homogeneity
when L is a finite function, add the integrable equation [ A§L dz = 0 to the equation of
maximum or minimum & f U dz = 0 and finally, treat the variations 6z, dy, 6z as if they
were independent. But by viewing L as a function of z, y, y', y”, etc., z, 2/, 2", etc., the
following equation is obtained

dL dL

6L_d—6 +—6 +Fay

a6z+a~,6 +d”6 ”+
Thus, if the same substltutions used above are made for éy’, 62', 6y", etc. § L will become
dL déu
6L = —dL6 —
x + 5 dy’ e

—5 +deél/
dz' dz
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and the terms under the integral sign which derive from the equation [(6U dz+ A\6L dx) =
0 will be of the form (Z6z + Yéu + ¥év)dz, where

E = AL
dU dL 1 (dU dL
== 2= - —d{ = il
T (dy+ dy dz (dy’+Ady’>

1 U dL
—d? A— ) — ...
@ (dy” * dy”> ) dx
dU

dL 1 dU dL
@—@/“5‘54@ ﬁﬂ

1 ,(dU dL
t gt (g g) ) o

But since L = 0 is the equation of condition, dL is also equal to zero which, in turn,
will give Z = 0. Thus by equating to zero the coefficients of the three variations éz, oy,
6z, only the two equations Y = 0 and ¥ = 0, will remain of which one will be used to
eliminate the indeterminate A, so that only one equation in z, y, z remains to be combined
with the given equation L = 0 for the solution of the problem.

23. Since by assuming dx to be constant, one has

PR
dz’ dx?’

4z n_ @
dz’ dz?’ ’

it suffices to replace the variables y, z, etc. by their differentials in the functions U, L,
etc. Thus by using the notation of partial differentials with the operator ¢ the following
equation is obtained
oU oU oU
68U = — by + — déy + ——d*6y + - - -
U= 5%t 5q vt 5, V09 F
oU oU oU

JE— — e — 2 PR
+6z 6z+5dzd62+5d2zd6z+

and if the variation of U with respect to x is also required simultaneously, the term
(1/dz) dUézx must be added to the expression for §U and 6y must be replaced by dy —
(dy/dz)éx and 6z by 6z — (dz/dz) 6z , etc.

In this fashion, after reducing the expression, there will result

6/de:/('r6y+\1162+~-)dx
+Y Sy + X" dby+ -+ Uz + U dbz + -,

where
oU d U & U

by E+ oy
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00U G8U wn_ U
T 6dy  6dy ’ T bd2y '
LU U, 8U
V=% "Y%& TV
sU U §U
- —_— PPN ”:__...
V=& et Y=mm

and to obtain the expression with respect to z, one will put in all the terms —(dy/dz) 6z
in place of §y and —(dz/dz) éx in place of §z.

24. This is the general method for the problems of maxima and minima relative to the
indefinite integral formulas for which the Calculus of Variations was first formulated. And
it is clear that even by varying all the variables, there will nevertheless always be one less
equation then there are variables. This is also in conformity with the nature of the problem
because it is not the individual value of each of the variables that is sought, as in ordinary
problems of maxima and minima, but indefinite relations between these variables by which
they become a function of one another and can be represented by curves of single or double
curvature.

25. Let us now apply the same method to the problems of mechanics and let us assume for
simplicity that the formula P dp+ @ dg+ Rdr+ etc. is integrable and that its integral is IT,
asin Article 21 of SECTION III. Thus one will have Pdp+Q dg+ Rdr+etc. = 811, and the
general equation of equilibrium (Article 13) will become S(6ILdm+AdL+u 6 M +etc.) =
0, as long as no consideration is taken of the equations of condition relative to determined
points. Since the mass of every particle dm of the system must not change during the time
the position of the system changes, it should be assumed that § dm = 0 and consequently,
6L = 6dm.

When the system is linear, one has generally dm = U dz, where U is a function similar
to those presented in Article 20. Thus 6L = U dx + U édx and the formula S A § L will
have the following terms under the integral sign (Z6x + Y éu + ¥ év) dz, from which
there results (Article 22)

2= (AU - d(AU))é

dU 1 dU 1 dU
=2 - a0y L en o

iy @G @ g

dU 1 dU 1 dU
U=)\—— — V4 — A=) =

A dz dz d(/\dz’) dz? d (/\dz”

26. Thus if there is no other condition, the equation obtained from the terms under the
integral sign S will be

SIIdm + (Eéx + Y du + Tév)dz = 0,

which should be verified individually with respect to the variables 6z, dy, 62.
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But since II is a function of z, ¥, z, one has

dIl dIl dIl
6H—aé$+@6y+ a;éz

and since

d d
6u=6y—£6z, (51}=62~£(51‘
the preceding equation becomes

(%lg—dm+5d:c—'rdy—\lldz)6x

dIl dIl
+(@dm+'rdx)6y+(d—zdm+\lldx)6z—0

from which the following three equations are obtained

g-I:‘[-dm+Eda:—Td3,/—\I'dz=0

dz

M om+rd=0, Lamt+wde=0
dy dz

Thus in this case, there are as many equations as variables which seems to be the difference
between problems of this type in mechanics and the problems of maxima and minima

27. But I observe at the outset that these three equations can be reduced to two by
elimination of the undetermined coefficient A. And in general, although the equations of
condition always replace those which disappear after the elimination of the undetermined
coefficient, the condition 6dm = 0, introduced here, that is, dm is a constant, cannot
furnish a particular equation for the solution of the problem because, according to the
logic of the differential calculus, it is always permissible to take an arbitrary element
for a constant since it is, properly speaking, only the ratios of differentials and not the
differentials themselves which are to be considered in the calculus. Therefore, the three
equations will be reduced to two and will be used only to determine the nature of the curve
as in problems of maxima and minima.

28. I observe in passing that the problems of statics discussed here can be reduced to
simple problems of maxima and minima.

If after multiplying the first equation found above by dz, the second by dy and the third
by dz, the three equations are added together, the equation dIT dm + = dz? = 0 will result
because of the relation

dIl dII dII

—dz + — —dz=dII
i x+dydy+dz dz
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But since Zdzr = AdU — d(AU) = —U d), and dm = U dz, one will have after dividing
by dm, dII — d\ = 0 from which the equation A = II + a is obtained, where the letter a
represents an arbitrary constant.

Therefore, the term AJL in the equation of Article 25 will become Il édm + aédm
since 0L = 8dm, and since 6I1dm + [1édm = §(IIdm), this equation will become
S6(ITdm) + aS édm = 0, that is

6(SIIdm) +aé(Sdm) =0

This is the necessary equation which makes the integrable formula S IT dm a maximum or
a minimum among all those for which the formula S dm has the same value.

In this fashion, one of the variables can be considered constant as is done in the problems
of maxima and minima relative to the variations by §, which in turn simplifies the analysis.
But the general method has the advantage of providing the value of the coefficient A, which
by the theory developed in the preceding section, will express the force with which the
element dm reacts the forces P, Q, R, etc. which act on the system.

29. We have assumed, for greater simplicity, that there were no other equations of condition,
but if, in addition, there were the equation M = 0, where M is a function of z, y, 2, v', ¥,
etc., z', 2", etc., the term ud M, or rather, for homogeneity, the term ué M dz, should be
added to the term Ad L under the integral sign in the equation of equilibrium, which means
to add to the values =, T, ¥ of Article 25 the following quantities, respectively

1
—upndM
d:c“

dM 1 dM 1 , dM
ﬂ*@*— iz 'ud—y’)+az_2 (Mdy,,)*"'
p LM ai—zdz(ug%)—--'
Thus three equations of the same form as those of Article 26 would be obtained which
by elimination of the two indeterminates A and p would be reduced to only one. But by
adding the equation of condition M = 0, two equations between the three variables x, v,

z would be obtained as before.

These three equations lead to the same equation as in Article 28 which is 611 dm + = dz? =
0. Here we have =dx = —U d\ + pdM. But the equation M = 0, gives also dM = 0.
Therefore, one will have simply, as in the cited article, Zdx = —U dJ, from which the
same result 6(SIIdm) + a §(dm) = 0 will be obtained.

30. Therefore, in general, the problem of equilibrium of a system of particles dm on
which act the forces P, @, R, etc. along the directions of the lines p, ¢, 7, etc. and with
the assumption that Pdp + @ dg + Rdr + etc. = dII, is simply reduced to making the
integrable formula S IT dm a maximum or a minimum with respect to particular conditions
of the system, which as one sees, makes all the problems of equilibrium enter the class of
problems of maxima and minima, known under the name of “isoperimetrical problems”.
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In the case of the catenary by taking the ordinates y in the vertical direction one has IT = gy,
where g is the constant force of gravity. Thus the formula Sy dm must be a maximum or
a minimum among all those where the value of S dm is the same. But Sy dm/S dm is the
distance from the center of gravity to the horizontal. So since the entire mass is assumed
given, this distance must be the largest or smallest value which is known already.

31. We have only considered functions of variables which are viewed as independent up
to this point. But if the variable z were a function of = and y, and one had a function U
which contains z, y, z, with the partial differences of z relative to x and y, the variation of
6U could be expressed with respect to the simultaneous variations of z, y, =

For added simplicity, let us define

dz , dz d?z "

a =2z, d_y =z, @ =2z

d?z , d?z dz "

dzdy " dy? ~ o a3 = °
&z " dz o

da?dy o dzdy? “n

Then the quantity U will be a function of z, y, z, 2/, 2, 2", 2/, 2 etc., so that the following
equation results

dUu dU

§U dxé + 3% +d—5
du dU o, U
—5 bt g 3%

Thus the problem is reduced to finding the expressions for the variations 6z, 6z, 62", etc
by varying simultaneously the elements dzx and dy in the partial differences.

We can assume, in order to simplify the calculation, that the variation dx is a function of
x independent of y and that the variation ¢y is a function of y independent of x. We shall
see in what follows that this assumption possesses all the generality required to obtain the
solution.

32. After having presented this information, differentiation will give the following equation

5 gz _ 0z _dzds
T dz ~ dz  dz dz

Furthermore, it is clear that (6dz/dz) = (déz/dz) and (6dz/dz) = (déz/dzx).

Consequently, the following equation will be obtained

déz déx d(&z—z'&x) dz

dz dx dx 6

62 =
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or
o d(éz — 2oz — 26y) | dZ dz
6z’ = i + = ox + . oy
Similarly
_d(éz = 2'éx — 20y) | d2 dz
0z = dy + iy ox + -(géy

since déz/dy = 0 and déy/dxz = 0. The following result will then be obtained

d2’  déz dz déx
n_ goc S0« Ul TO4
62" =20 dx dx dxr dz

Substituting the expression for §2’, one will have

d?(6z — 2" bx — 2 6y)  d*2’ d?z
a2 M TRl

63” —

Similarly

dz'  déz' dz' dby
[ Sl _ =
b dy dy dy dy

Substituting also the expression of §2’, one will have since dz,/dz = dz'/dy

,  d¥(6z - 26z —z 6y) d* dz
62 = dzdy + dzdy bz + dxdy by
similarly
d?(6z — 2/ bx — 2z 6y) 2’ d?z
6 /’/ = —_— —_—
2z % + a7 ox + a7 by
and so on.

33. Thus in order to shorten the derivations, if one sets

dz dz
bz — —bx — —by=246
Tt dy A
and observes that
dz, _ d d2’ _dy d?z’  dz” d?z  de”
dr — dy’ dy ~ dz’ dz?2 ~ dz’ dr2 = dy
a2z’ dz; d’z,  dz d?z' dzy

dedy ~ dz’ dzdy ~ dy’ dy? ~ dz’
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the following equations result

déu  dZ’ dz’

6Zl—dx+ ’6$+@6y
821 = d:;+%5 i’;’&

52":%+%6z+?;6y
e €
5z,,:%+t;'6 dz"é

After making these substitutions in the expression for U, replacing = by

dz dz
6 — 4 — 6
u+dx x+dy Y

and further ordering the terms with respect to 6z, §y, du, the result is the following equation

SU = (dU+gd_z gd_z’_}'dUd/,,
dz dz dx dz dz  dz dz
W W
dz" dz = dz dz
(808, s a
dy dzdy dz'dy dz dy
dU dz" + dU dz; 5
dz"dy " dz dy > Y
+§ ou + dU déu + dU dbu
dz dz' dx  dz dy
AU EbuaU Eou
dz" dz? = dz) dzdy

Let us designate by (dU/dx) and (dU/dy) the partial differences® of U relative to = and
y. Then, by regarding z as a function of these two variables, it is clear that one will have

(ﬂ) dU+dUdz+gggz_’+dUdz,
dz dr  dzdzx dz’dz dz dx
<g> dU+dUdz+dUdz+dUdz,

dy dy dzdy dz'dy dz dy
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Thus the total variation of U will be reduced to this simple form
dU dU dU
oU = (— — )y + —
(dx)6m+(dy) y+ P bu

QW dbu | AU dbu AU P
dz’ dz = dz, dy = dz2” dz?
W Eou | U o
dzjdz dy = dz, dy?

34. Therefore, if the double integral SS U dx dy is to be maximized or minimized the
following equation will be obtained

6(SSU dxdy) =SS6(U dzdy) =0

But by making all quantities variable, one has §(U dz dy) = 6U dx dy + U é(dz dy) where
it should be noted that dz dy represents a rectangle which is the element of the zy-plane.
This rectangle will remain a rectangle after assembling the variations éz and éy of the
coordinates z and y using the adopted assumption that d2 does not depend on y and neither
by on z. The variation dz dy in this case will be simply dyédz + dx §dy. Therefore

6dzr = déx = 9_@ dz, ody = déy = @ dy
dz dy

Since 6z and dy are assumed to be functions of = and y only, one will have

dé dé
§(Udz dy) = (6U US4 U—ﬂ) dz dy
dx dy
After substituting the expression for 6U, and eliminating by partial integration the dif-
ferentials of the variations §x, 6y, du, the following terms will remain under the double
integral sign (Eéx + Yéy + Yéu) drdy where

- ,dU dUu,
“"(dm) (dx)—O
dU dU
T: —_— ) () =

dy) dy) 0

dUv du’ du, du”
U=——(—)— (= -—
dz dx) dy)+(dz2)

d?U! d*U,
* <dxdy) + (d—yz) e
in which the following definitions have been made in order to shorten the expressions
dU dUu dUu
f’ = — = — " = —
C dz"’ U dz,’ v dz"’
, dU dU
U, Ul’ =

dz}’ dz,’
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Furthermore, it is assumed that the partial differentials in parentheses represent the total
values of these differences by viewing z as a function of = and y.

35. Thus because of the expression

dz

6u=6z——a

dz
b — —&
x ay Y
the terms under the double integral sign will simply give the equation

dz dz
v <6z - a;éz— a—y—&y) =0

from which, by equating separately to zero the coefficients of §z, éz, dy, the equation for
¥ will be equal to zero, as if only the variable z had been varied.

It is obvious that in problems of maxima and minima relative to double integrals in
which one of the three variables is a function of the other two, there is precisely only
one equation that can be found directly by varying by é the variable which is assumed a
function of the other two. This is the equation of the surface which satisfies the problem.
This is how the equation of partial differences for the least surface is found, by making
U = /(1 + (2')? + (2/)). What we have demonstrated proves that this equation fulfills
all the conditions of the problem whatever the variations given to the three coordinates of
the surface.

36. The formulas of variation which were just found can be applied to the equation of
a plane system of particles dm acted upon by arbitrary forces. In the case where dm is
invariable, the general equation of equilibrium will become, as in Article 25

SS(6ITdm + A 6dm) = 0

Here the expression for dm will be of the form U dx dy and consequently, the following
equation results (Article 34)

déx déy
6dm = (U + U— — .
m ( + dx+Udy>dzdy
After substituting this expression, as well as the one for 6U from Article 33 in the inte-
grable formula SS A §dm and eliminating by the integration by parts the differences of the
variations éx, 8y, du, there will remain under the double integral sign only the following
terms

(Eéx + Yoy + Yéu) dx dy,
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where
== 2D - (@) =y
T=xE —(‘“25’)— U<32>
2rrn
R
+(oy - S0+

by retaining the values of U’, U, U", U}, etc. of Atrticle 34.

Let us add to these terms those which are derived from the integral SS 6II dm, by substi-
tuting the values of 6II and dm

dI1 dII
dz

—6 +—5+ 6>Ud:1:dy

and by replacing §u with the expression (Article 33)

dz
bz — —6 - ——6
z x i
The general equation of equilibrium will contain under the double integral sign SS, the
following terms with respect to the variations éz, §y, 6z

(&~ (P - w s
+H(Gy (G - ¥y drdy

+(EU + ‘IJ)(SZ

from which the three following equations are obtained

dil  dx
U - \I'— =0
(& dz (dx ) dx
dil dx dz
@—(@))U—‘I’@—O
EU +¥ =0
The last equation gives ¥ = —U(dII/dz) and this expression when substituted into the

other two and after dividing by U produces
dil dlIdz dX
@ Gl A
dil ~dlldz dx
PR E T v
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The first equation gives A = II + f(y) and the second equation gives A = II + f(x).
Therefore, one will have A = II+a, where a is a constant. After substituting this expression
in the general equation of equilibrium, it will become SS(6(ILdm) + a §dm) = 0, that is,
6(SSTIdm) + a 6(SSdm) = 0. This is the equation for the maximum or minimum of the
integrable formula SS IT dm, among all those in which the value of SS dm is the same.

Thus it is here that the problems of mechanics reduce to a simple equation of maxima and
minima, for which the solution depends only on the variation of the coordinate = which
is assumed a function of z and y (Article 35). This theory could be expanded to include
triple integrable formulas and similar conclusions deduced.

SECTION V
THE SOLUTION OF VARIOUS PROBLEMS OF STATICS

We will now demonstrate the application of our method to various problems in the equi-
librium of bodies. It is apparent from the uniform and rapid solution of the problems of
statics using our method, how superior it is to those presently used.

Chapter I
THE EQUILIBRIUM OF SEVERAL FORCES APPLIED AT THE SAME POINT AND
THE COMPOSITION AND RESOLUTION OF FORCES

1. We propose to find the laws for the equilibrium of an arbitrary number of forces P, Q,
R, etc., all applied at the same point and directed towards given points. Denoting by p, g,
r, etc. the rectilinear distances between the common point of application of these forces
and the respective points to which they are directed, the following formula

Pdp+ Q@dg+ Rdr +---

will result for the sum of the moments of all the forces. This equation must be put equal
to zero for the state of equilibrium.

Let z, y, = be the three rectangular coordinates of the point at which all the forces are
applied and conversely, let a, b, c be the rectangular coordinates of the point towards which
the force P is directed; f, g, h those of the point toward which the force @ is directed; (,
m, n those of the point toward which the force R is directed and so on for the remaining
forces. Since all of these coordinates are considered relative to the same fixed axes in
space, the lengths p, ¢, r can be expressed by the following equations

p=V(@—aP+ -2+ (z-c)
g=+(z = f)?+(y-9)+(z—h)
r=y/(z -0+ (y—m)+(z —n)?
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The quantity Pdp + Q dg + Rdr + etc. will become X dz + Y dy + Z dz, where®!
rT—a T — f x—/

x=""Cp+ 1o+ "R+...
P T
—b

Y=yp P+ Y= gQ+ mR+m

Z=Z_CP+z— Q+""R+...
Y4 T

It is worthwhile to note that in these expressions the quantities

T—a y—>b z—c

p p’ D
are equal to the cosines of the angles which the line p, that is, the direction that the force
P, makes with the z, y, z axes. Similarly

r—f y—yg z—h

q q q

are the cosines of the angles that the direction of the force ) makes with the same axes
and so on (SECTION II, Article 7).

Subsection I
The Equilibrium of a Body or Material Point
Loaded by Several Forces

2. After having stated these facts, let us assume at the outset that the body or point to
which the forces P, @, R, etc., are applied is entirely free. Then there is no equation of
condition between the coordinates z, y, z and the quantity X dz + Y dy + Z dz must be
equal to zero, independent of the values of dx, dy, dz (SECTION II, Article 10). This
result will immediately give the following three particular equations

X=0, Y=0, Z=0

These equations express the laws of equilibrium for any number of forces applied at the
same point.

3. If in the expressions for X, Y, Z, onesets P = p, @ = q, R = r, etc. which is
permissible®? since it is immaterial where the force center is taken along the directions of
the forces, the following equations will be obtained

xr—a+x—f+zr—C0+---=0
y—b+y—g+y-m+---=0
z—c+z—h+z—-n+---=0
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and by assuming that the number of forces P, @), R, etc. is u, there results

_atf+Ll+-- _b+gt+m+ - s c+h+n+---

= s )

I 7 I

These expressions for z, y, z show that the point at which these forces are applied is at the
center of the points to which these forces are directed.

The theorem of Leibnitz derives from this development. It states that for any number
of forces in equilibrium at a point from which straight lines are drawn to represent the
magnitude and the direction of each force, the point under consideration will be the center
of gravity of all the points at which the lines terminate.

Thus, if there are only four forces and if a pyramid is imagined for which the four angles
are at the extremities of the lines which represent the forces, there will be equilibrium
between the four forces when the point on which they act is at the center of gravity of the
pyramid, since it is known from geometry that the center of gravity of the pyramid has the
same location as the center of gravity of four identical bodies placed at the four corners of
the pyramid. This last result is due to Roberval.

4. Let us now assume that the body or mass point on which the forces P, @, R, etc. act
is not entirely free, but it is constrained to move along a surface or on a given line. Then
there will be one or two equations of condition between the coordinates x, y, z which will
be the equations of the surface or line.

Thus let L = 0 be the equation of the surface on which the body can only slide. Then
the term A dL (SECTION 1V, Article 3) will be added to the sum of the moments of the
forces X dz +Y dy+ Z dz and the general equation of equilibrium will be X dz +Y dy +
Z dz + AdL = 0 where A is an undetermined quantity.

Now L is a known function of z, y, z and after its differentiation, the following equation
results

dL dL dL
dL_H;dz+@dy+£dz

Thus by substituting and equating separately to zero the sum of the terms multiplied by
each of the differences dz, dy, dz, the following three particular equations of equilibrium
will result

dL
X+2—=0, Y+)\£:O, Z+/\—q£=0
dz dy dz

Then after eliminating the undetermined coefficient A from these equations, one will obtain

dL dL dL dL
vy& _x&_ & _ xSl
dz dy ’ dr 2 0.
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which consequently, express the required conditions for the equilibrium of a body on a
given surface.

5. If the theory presented in Article 5 of SECTION 1V is applied here, the conclusion will
be that the surface must support the body with a force equal to

A\/%)z (GG

and directed along the perpendicular to the surface which has for its equation dL = 0, that
is, perpendicular to the surface on which the body is resting. And since

dL

dL dL
@ 4

-X, i -Y, Pl -Z,

it follows that the force of the body on the surface (a force which must be equal
and directly opposed to the vertical force exerted by the surface) will be expressed by
V(X% + Y2 + Z2) and will act perpendicular to the same surface.®® The two equations
for the equilibrium of a body found above are uniquely reduced to this condition, as can
be shown by the composition of forces.

6. Also, for the case of a single body acted on by given forces, the conditions of equilibrium
can be found more easily by immediately substituting in the equation X dx+Y dy+Z dz =
0, the expression

dL dr
dr+ —
& T+dy dy
dL
dz

for the differential dz obtained from the differential equation of the given surface on which
the body can slide and by equating separately to zero the coefficients of the differentials
dz and dy, which remain indeterminate, following the general method of Article 10 of
SECTION II.

The two equations

dL/dy _

L4L/dz _ _
dL/dz

X - dL/dz ~

Y-Z 0

which are the same as those found above will be obtained immediately.

In the same fashion, if the body were forced to move on a given line defined by the two
differential equations dy = pdx and dz = ¢dz, it will only be necessary to substitute the
values of dy and dz in the equation X dz + Y dy + Zdz = 0 in order to obtain, after
dividing by dz, X + Y'p + Zq = 0 for the equilibrium equation.
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But in every case where several bodies are in equilibrium, the method of undetermined
coefficients presented in the preceding section, will always have the advantage of ease,
simplicity and uniformity of calculation.

Subsection II
The Composition and Resolution of Forces

7. The identity Pdp + Q@dg + Rdr + --- = X dz + Y dy + Z dz found in Article 1
shows that the system of forces P, @, R, etc. directed along the lines p, q, 7, etc. is
equivalent to a system of three forces X, Y, Z directed along the coordinate axes z, vy, z
(SECTION 11, Article 15). Thus the quantities X, Y, Z are the magnitudes of the forces
P, Q, R, etc. after these latter forces have been resolved in the direction of the three
rectangular coordinates z, y, z, respectively. The forces X, Y, Z are assumed to reduce
the magnitudes of these coordinates, in the same fashion that the forces P, Q, R, etc. are
assumed to reduce the lengths of p, g, r, etc.

8. In general, if arbitrary forces P, @, R, etc. directed along the lines p, ¢, r, etc. act at
the same point, these forces can always be reduced to three others directed along the lines
&, 1Y, o, as long as the three lines are not all in the same plane. Since three lines located in
different planes are sufficient to determine the position of an arbitrary point in space, the
values of the lines p, ¢, r, etc. can always be expressed as a function of the three quantities
&, ¥, . And from the theorem of Article 15 of SECTION II, the forces P, Q, R, etc. will
be equivalent to three forces =, ¥, ®, defined by the following formulas

= _ pd dgq dr
,_—Pd€+Qd§+Rd§+
dp dq dr
y=—pP= —= — 4 ...
d1/J+Qd1,D+Rdd)+
dp dq dr
d=P— — +R—+---
d<p+Qd<p+ ng+

and directed along the lines &, ¥,  or along the differentials d¢, dv, dy if some of these
lines were curved.

These formulas can be of great utility in many cases such as when it is a question of finding
the resultant of an infinity of forces which act at the same point, as in the case of the
attraction of a body of arbitrary shape.

9. Let m be the mass of a body for which each of the elements dm are viewed as the
center of a force P proportional to dm and to a function fp® of the distance p. By making
[ fpdp = Fp, the element dm will give, in the expression for =, the term (d(Fp)/d¢)dm
for which the integral relative to the total mass m will be reduced to the attraction of this
mass. And because this integration is independent of the differentiation relative to £, the
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preceding integral can be expressed as d(S F'p dm)/d¢ so that by defining S(Fpdm) = X,
one has

dx dx dx
&= Y= = d =
d¢’ dy’ dyp

—
- —
—_ =

and it will only be necessary to substitute in the function F'p, instead of p, its expression in
terms of a function of the coordinates which determine the position of each particle dm in
space and the coordinates &, 1, ¢ of the attracted point and then to perform separately the
integrations relative to the former and the differentiations relative to the latter. Because of
the nature of the problem, one has fp = 1/p?, therefore, Fp = —1/p and consequently,
T = —S(dm/p).

Let a, b, ¢ be the coordinates of each particle dm of the body. By assuming that the density
of this particle is expressed by I', a function of a, b, ¢, one will have dm = I" da db dc and
thus © = —S(I"da dbdc/p).

But, since z, y, z are the coordinates of the attracted point, one has (Article 1)

p=V@E@—a)P?+ -0+ (z—c)?
Thus

I'dadbdc
VE—a?+y—-0b2+(-c?

¥=-S

10. The simplest case occurs when the attracting body is a sphere. In this case, by defining
I' = 1 and assuming that the center of the sphere is at the origin of the coordinates z, y, 2
of the attracted point, one has

m

V22 + 22

where m is the mass of the sphere which is known to be equal to (47 /3)a?, the variable  is
the radius of the sphere and 7 is the ratio of the diameter of the sphere to its circumference.
If the function I" were a variable inside the sphere and if I' were assumed to be a function
of o, one would have

¥=-

m= 4%8 d(a?)
The value of ¥ can also be found when the attracting body is an elliptical spheroid for

which the surface is represented by the equation

a? b2 c?

F+§+E=l
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where A, B, C are the semi-axes of the three principal planes and a, b, ¢ are the rectan-
gular coordinates of the surface taken along the three axes and having their origin at the
intersection of the axes which is the center of the sphere. But the general expression for
this value depends on a rather complicated integrable formula by which it is impossible to
obtain ¥ as a function of z, y, z.

However, if the spheroid is assumed to have nearly the same shape as the sphere or if
the distance from the attracted point to the center of the spheroid is very large relative to
the axes of the spheroid, the value of ¥ can be expressed by a convergent series without
integral terms. Laplace has given in his Théorie des attractions des sphéroides,® a very
nice formula by which it is possible to successively calculate all the terms of the series
and which shows at the same time that the value of ¥/m, where m is the mass of the
spheroid, depends only on the quantities B> — A% and C? — A2, which are the squares of
the eccentricities of the two sections which go through the same semi-axis A.

I found that by starting from this result and using the theorem that I gave in the Mémoires
de Berlin for 1792-3 that this series could be developed at once solely from the radical

1
Va2 +y?+ 22 -2by —2cz + b2 + 2

according to the powers of b and c, keeping only the terms which are even powers of b and
c and transforming each of these terms such as Hb*™c*", to

(13.5..2m — 1)(1.3.5..2n — 1) H(B? — A2)™(C? — A"
579.2m+2n+3 m

where m is the mass of the spheroid which is given by (47 /3)ABC.

Therefore, in order to obtain immediately the series ordered according to the powers of y
and z, make the following definition

=zt +y? + 22
and then order the radical
(r* = 2by —2cz + b2 + c2)~'/2

with respect to the powers of y and z, keeping only the terms with even powers. Thus one
will have

1 3 bPy?+ PP
Vit + 02+ ¢? - 2(r2 4+ 02 + )52
+£ byt + 6b2c2y?2? + 2t
8 (r2 + b2 +¢2)°/2
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Then develop the radical (r2 4 b% + ¢2)~'/2 with respect to the powers of b2 and ¢? and
transform these powers to powers of B> — A2 and C? — A? by the formula given above.
In this fashion, if one defines for greater simplicity

BZ—A2:€2, Cz—Az=i2

where e and ¢ are the eccentricities of two ellipsoids formed by the sections which pass
through the semi-axes A, B and A, C one will have for ¥ a series expression of this form

—m(R+ Ty + V2 + Xyt + Y222+ Z24 + )

where
R 1 2442 9(e* +14%) + 6€%?
T r 2593 8.5.7r3
T 3e2 9¢?* + 3e%;2
T 2.573 4.7¢7
o 39+ 3e%?
T 2.578 4.7¢7
3e?
X = &9 + ...
Y= 6e242
T8
344

The approximation for e and 7 has only been carried out to the fourth power. But it is easy
to expand the series to any number of terms.

If the spheroid were composed of elliptic layers of different densities, then by varying in
the expression for ¥ the quantities A, B, C and consequently, also e and i, the expression
for ¥ relative to this spheroid would be ST d¥.

Thus having the value of ¥ as a function of the rectangular coordinates x, y, z of the
attracted point, the forces

dz dx dx
dz’ dy’ dz
resulting from the total attraction of the spheroid with respect to these coordinates will be

immediately obtained by differentiation.

If instead of the coordinates x, ¥, z, the radius r and the two angles u and v are taken such
that

T = T COS i, y = rsinyusiny, z =rsinpcosy
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the attraction of the spheroid will be resolved in the direction of the radius r which joins
the attracted point and the center of the spheroid, perpendicular to this radius in the plane
which passes through the semi-axis A and perpendicular to the same radius in a plane
parallel to the one which passes through the semi-axes B and C from the three following
partial differentials, that is

dz E d¥
dr’ rdu’ rsin g dv

These formulas are particularly useful in the theory of the shape of the Earth.

Chapter I1
THE EQUILIBRIUM OF SEVERAL FORCES APPLIED TO
A SYSTEM OF BODIES TREATED AS POINTS
AND JOINED TOGETHER BY STRINGS OR RODS

11. We saw earlier (Article 7) that whatever the forces which act on each body, these
forces can always be resolved into three components X, Y, Z directed along the three
rectangular coordinates z, y, = of this body and with a tendency to reduce the magnitude
of the coordinates.

Thus we will assume for greater simplicity here and in what follows that all the external
forces which act at a point are reduced to three: namely, X, Y, Z. Therefore, the sum of the
moments of these forces will be expressed in general by the formula X dx + Y dy + Z d=.
Consequently, the total sum of the moments of all the forces of the system will be expressed
by the sum of as many similar formulas as there are bodies or mobile points, denoting by
one, two or three primes, etc., the quantities relative to the various bodies which we will
call the first, second, third, etc.

In this manner, the sum of the moments of the forces which act on three or more bodies
will be expressed by the following equation

XI dI, + YI dyl + ZI dzl + XH dxll + Y” dy" + ZII dZ”
+X”I dCL‘”I + YIII dy/ll + ZIII dz”, + .

It will only remain to investigate the equations of condition L = 0, M = 0, N = 0, etc.
resulting from the nature of the problem.

Thus having L, M, N, etc. or their differentials as a function of z', y', z’, 2", etc. and
considering the undetermined coefficients A, u, v, etc., the terms AdL + pdM + v dN+
etc. will be added to the preceding equation and then the expressions associated with each
of the differences dx’, dy’, dz’, dx”, etc. (SECTION IV, Article 5) should be equated
separately to zero.
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Subsection I
The Equilibrium of Three or More Bodies Joined
by an Inextensible or Extensible and Contractible String

12. Let us consider at the outset three bodies firmly joined by an inextensible string. The
constraints of the problem are that the distances between the first and second bodies and
between the second and third bodies are invariant. These distances represent the lengths
of the segments of the string between the bodies.

Denoting the first of these lengths by the letter f and the second by g, one will havedf = 0,
dg = 0 for the equations of condition. Therefore,dL = df and dM = dg, and the general
equation of equilibrium for the three bodies will be

XI d$l + Y/ dy’ _+_ ZI dz’ +X” dzll + YII dy” + ZII dZ”
+Xllldxlll + Yllldylll + ZIII dzlll + Adf +/Jdg — 0

But it is obvious that in addition, there are two equations of condition

f= \/(xu _ w/)z + (y" — y/)z + (z// _ z/)z
g= \/(SL‘“/ _ CIJ")Z + (y/r/ _ yn)z + (Z”’ _ ZII)Z

and therefore, after differentiation®¢

(1‘” _ :L'/)(d{L‘” _ dx’) + (y// _ y’)(dy" _ dy’) + (Z” _ Z/)(dzll _ dz’)

df = 7
(IL‘/” _ :I?”)(dl"” _ d.’L‘") + (ym _ yn)(dy/// _ dy”) + (Z”l _ z”)(dz”’ _ dZ”)
9

and after these expressions are substituted in the equilibrium equation, the following nine
equations for the equilibrium of the bodies will be obtained

dg =

P

X' - =0
f
y" —y
Y' - A =0
f
O
VAR =0
f
"no__ . m_.n
X7 428 fx 0 gz —0
"o mwo_
YII+/\y fy__#y gy -0
"o__ mo_
Z,,+)\zfz_uz "
g

X/// +/"’xT_ =0
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Ym+/~‘
Z,H+uig—220

and it is only necessary to eliminate from these equations the two unknowns A and p. This
can be accomplished in several ways which will also give different forms of the equations
for the equilibrium of the three bodies attached to the string. We will choose the approach
which seems the simplest.

It can be seen immediately that if the first three equations are added to the three following
and then the resulting equations are added to the last three, respectively, the following three
equations, without the unknowns A and p, are obtained

X' +X"+X"=0

Y+Y"+Y" =0

Z'+Z2"+27Z"=0
which show that the sum of all the forces parallel to each of the three coordinate axes

must be equal to zero and are simply a particular case of the general equation found in
SECTION III, Subsection I.

Therefore, it remains to find four additional equations. For this purpose, disregard the first
three and add the three in the middle to the last three equations, respectively. Thus the
following equations, which are free of u, result

XII+XIII+ i(xll_x/) :0
f

Y/I+Y/II+ %(y/!_yl) :0

ZII+ZIII+§(~H ! _0
f A ‘—Z)—

and which, after the elimination of A, gives the following two equations

y// _ y/
Y4y — (X” + X///) -0
" — !

n
<~

_z’
_xl(XII_{_XIII) — O

1://

2"+ 7" —

Finally, considering separately the last three equations which contain only p and after
eliminating p, the following two equations will be obtained

" " " "

yo—-y A
y'" — X" = 07 z"m _ X/// -0
! — ! ! — g

These seven equations express the necessary conditions for the equilibrium of the three
bodies and when they are added to the equations of condition f and g, which are identical
to the given quantities, they suffice to determine the location of every body in space.
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13. If the string, assumed to be inextensible, were loaded by four bodies, acted upon by the
forces X', Y', Z', X", Y",Z", X" etc. inthe direction of the three rectangular coordinate
axes, respectively, one would find by similar procedures, which seem unnecessary for me
to repeat, the following nine equations for the equilibrium of these four bodies

XI+XII+XIII+XIV:O
Y/ + YH + YII/ + YIV — 0
ZI +Z/I+ZI/I+Z1V :0

"

Yy vy - LY e xm oy xvy =
! — !
P
" o v
z'+ 2"+ 2"~ x”_x,(X"+X”’+X‘ )=0
ym _ yl/
YI/I + Ylv _ . - (XHI + XIV) — 0
xr =T

LM
"4 7v P — (Xm + XIV) =0
"

Y[v_yw—y XIV:()

v — g
v "
z -z
ZIV _ XIV — 0
v —

It is now easy to extend this solution to any number of bodies and even to the case of
a funicular or catenary. However, we will treat this case, in particular, by the method
presented in Subsection II of the preceding section.

14. In some respects a simpler solution would be obtained if the invariability of the
segments f, g, etc. were introduced in the calculation at the outset. Thus by limiting
ourselves to the case of three bodies and denoting by 1, ¢', the angles that the lines f, g
make with the zy-plane and by ¢, ¢, the angles which the projections of these lines on
the same plane make with the z-axis, one will have

z" —2' = fcospcosp, y" —y' = fsinpcosy
2" — 2! = fsin, 2" — 2" = gcosy’ cos )’
ym _ yu = gsin (PI cos 1, S G — gsin V'

By substituting the values of 2, y", 2", z'", y'"', 2’ obtained from these equations in the
general formula of equilibrium for three bodies

X'de' +Y'dy' + Z2'dz’' + X"d2" +Y" dy" + Z" 42"

+XIII d.’L‘l” + YIII dylll + ZIII dz”’ — 0
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and by simply varying the quantities z’, y', z’, ¢, ¢’, 1, ¥, for which the variations remain
indeterminate and finally, by equating the quantities multiplied by each of these variations
separately to zero, the following seven equations will be obtained

X'+X"+X"=0

)/I + YII + YII/ — 0

Z2'+2"+2"=0

(X" + X")sing — (Y" +Y")cosp =0

X"sing' —=Y" cosp’ =0

(X" 4+ X")cospsiny + (Y +Y")singsiny — (Z" + Z")cosp = 0
X" cos'siny’ +Y" sing'siny’ — Z" cosyp’ =0

where the first five equations coincide exactly with those found in Article 12 after elimi-
nation of the undetermined coefficients A and p and for which the last two equations are
reduced easily by eliminating Y/, Y’ by means of the fourth and fifth equations.

However, if, in this fashion, the final equations are obtained more directly, it is because a
preliminary transformation of the variables has been used which contains the equations of
condition. Instead of immediately using the equations with undetermined coefficients, as
in Article 12, the solution of the problem is reduced to a pure calculation. Moreover, one
has from these coefficients, the values of the forces which the strings f and g must support
by their resistance to extension, as will be seen later.

15. If the first body were fixed, then the differences dz’, dy’, dz’, would be equal to
zero and the terms affected by these differences will drop out of the general equation of
equilibrium. Therefore, the three equations of Article 12, that is

X'- 2@ -a) =0, V=30 -y)=0  Z=36" =) =0

would not exist. Thus, the equations X'+ X" + X" +etc. = 0,Y'+Y" +Y" +etc. = 0,
Z'+ 7" + 7" + etc. = 0 would not exist either, but all the others would remain the same.
It is obvious that this is the case where the string would be firmly secured at one of its ends.

And if the string were fixed at both ends, then not only would one have dz’ = 0, dy’ = 0,
dz’ = 0, but also dz""*¢: = 0, dy'"’®®: = 0, dz"""***- = 0, and the terms related to these six
differences in the general equation of equilibrium would drop out and consequently, the
six particular equations which depend on it will also drop out.

In general, if the two ends of the string were not entirely free, but were attached to mobile
points according to a given law, this law, expressed analytically would give one or several
equations between the differences dz’, dy’, dz’ which are related to the first body and the
differences dz'"'¢ = 0, dy"’®' = 0, d2"""*"> = 0 which are related to the last body. These
equations, each multiplied by a new undetermined coefficient, should be added to the
general equation of equilibrium found above or it is acceptable to substitute in this general
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equation the value of one or several of these differences obtained from these equations and
then to equate to zero the coefficients of each of those which would remain, as it is carried
out in Article 14. Since no difficulty is present here, we will not go further.

16. In order to calculate the forces which are produced by the reaction of the string on the
various bodies, the method formulated for this purpose in the preceding section (Article 5)
should be used.

Thus it will be observed that, in the present case, one has

dL = df
B (Z” _ x’)(dx" _ dxl) + (yu _ y’)(dy” _ dy’) + (Z" _ ZI)(dZII _ dz’)
f
dM = dg
B (JJI” _ l‘”)(ditm _ dl‘”) + (y/u _ y”)(dy”’ _ dy”) + (z'" _ z”)(dz"’ _ dz”)
g

1. Therefore, the result with respect to the first body with coordinates z’, y', 2’ will be

dL ' -1 dL ¢y -y dL " -7

dz’ f o d f 0 A f

and

" o_ p1\2 " o__ 2 1\2 " o__ ,1\2
\/(dx,)zﬂ (L= G LEATE DT GEEL

Furthermore, the first body will receive from the action of the other bodies a force equal
to A, and for which the direction will be perpendicular to the surface represented by the
equation dL = df = 0, obtained by simply varying z’, y', 2’. However, it is clear that
this surface is nothing less than a sphere for which the radius is f and for which the center
has as coordinates =, y", z'’. Consequently, the force A will be directed along the same
radius, that is, along the string which links the first and second bodies.

2. Similarly, with respect to the second body whose coordinates are z”, y", z”, the
following equation will be obtained

dL 2" -2 dL " -9/ dL 2" -7
dz" - f ’ dy” - f ’ dz" - f
thus

dL dL ., _ V@ =P+ " -y P+ =P
\/( :v“)2+(dy") +(@)2— f =1
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from which it follows that the second body will also have a force A directed perpendicular
to the surface represented by the equation dL = df = 0, obtained by varying =", y", 2.
This surface is also a sphere with radius f but with a center having coordinates z’, ', 2’
which are the coordinates of the first body. Consequently, the force A which acts on the
second body will also be directed along the string f which links this body to the first body.

3. In addition, with respect to the second body, there will be the following equations

dM 3 -~ dM 3 y/// _ y// dM 3 P
dzx" - g ’ dy” - g ’ dz" - g
thus

aw) TG (G

J (M, M, A

so that the second body will also be acted upon by a force equal to u for which the direction
will be perpendicular to the surface having the equation dg = 0, obtained by varying z”,
y”, 2". Since this is the equation of a sphere with radius g, it is true that the direction of
the force will act along this radius, that is, along the string which links the second body
to the third body. The same reasoning applies to the other bodies and similar conclusions

will be drawn.

17. It is evident that the force A produced in the first body along the direction of the string
which links this body to the second and the force equal to A in magnitude but directed
in the opposite direction which acts on the second body in the same direction can only
be the forces which result from the reaction of the string on the two bodies, that is, the
tension exerted by the segment of the string between the first and second bodies so that the
coefficient A will express the magnitude of this tension. In the same fashion, the coefficient
u expresses the tension in the segment of the string between the second and third bodies
and similarly for the other bodies.

Incidently, in the solution of this problem it has been tacitly assumed that each segment
of the string was not only inextensible but also rigid [sic] so that it will always keep the
same length. Consequently, the forces A, u, etc. will define the tensions as long as they
are positive and will have a tendency to move the bodies towards one another. But if they
were negative and had a tendency to move the bodies apart, they will define rather the
resistance that the string exerts on the bodies by means of its rigidity or incontractibility.

18. In order to confirm what we just demonstrated and to present at the same time a new
application of our methods, we will assume that the string to which the bodies are attached
is elastic along its length and capable of extension and contraction and that F', G, etc.
are the forces of contraction in the segments of the string f, g, etc. between the first and
second bodies, between the second and third bodies, etc. It is clear from what was said in
Article 9 of SECTION II that the forces F', G, etc. will give the moments F'df + G dg,
etc.
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Therefore, these moments should be added to those resulting from the action of the external
forces which as we saw above (Article 11) are represented by the formula X' dz’ +Y' dy’ +
ZI dzl + XII d.’L‘" + Yll dyll + ZII dzll + XII/ d‘,EII/ _+_ YIN dylll + ZII/ dzlll + etC to Obtaln
the total sum of the moments of the system. Since there is no particular condition to fulfill
relative to the configuration of the bodies, the general equation of equilibrium will be
obtained by simply equating this sum to zero. Thus, this equation will be

Xl dwl + Y/ dyl + ZI dZI + X/I dxl/ _+_ YI/ dy" + ZII dz” + XIII dl‘/"
+Y"dy" +2"dZ" + .-+ Fdf +Gdg+---=0
Substituting the values of df, dg, etc. found above (Article 12) and equating to zero the

sum of the terms related to each of the differences dz’, dy’, etc., the following equations
are obtained for the equilibrium of the string in this case

F(x”—x')
X'-—=——"7=90
f
F(y" —y')
Y- = — 21 =0
f
F(z"—z’)
A =0
f
"no_ . no__ n
xny Pl —a)  GE" -2
f g
2l o no__ 1
yry FW 9D G-y
f g
~II__' ! III___ "
Z,,+F(4 Z')  G(z z)___o
f g
X”/+G(IIII_III) :0
g
mo_n
ymy G =y
g
Z”’+G(ZIII_ZH) :0

which are analogous to those of the same article for the case where the string is inextensible
and give by comparison, A = F, u = G, etc.

From this development, it is obvious that the quantities F', G, etc. which express here the
forces of the strings which are assumed elastic, are the same as those which we found above
(Article 16) to express the forces in these same strings, assuming that they are inextensible.

19. Let us consider further the case of an inextensible string loaded by three bodies, but
let us assume at the same time that the body at the center can be moved along the string.
In this case, the constraint on the problem will be that the sum of the distances between
the first and second bodies and between the second and third bodies is constant. Thus
denoting, as we did above, these distances by f and g, we will have f + g = constant and
consequently, df + dg = 0.
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Multiplying the differential quantity d f + dg by an undetermined coefficient A and adding
it to the sum of the moments of the different forces which are assumed acting on the bodies,

will result in the following general equation of equilibrium
X/ dl" _+_ Y/ dyl + Zl le + X/I dl‘” + YII dy” + ZII dZ” _+_ XIH dl:”/
+Y"dy"" + 2" d2"" + A(df +dg) =0

from which (by substituting the values of df and dg, and equating to zero the sum of
the terms related to each of the differences dz’, dy’, etc.) the following equations for the

equilibrium of the string will be obtained

" -7

—A =0
f
y A=Y
z”iz’
—AT— =0
X"+ A AN A W
( f ;(]”l)
Y”+/\(y - gy):o
DT VA A k1 W
( fx,, g )

XIII /\_—_ — O
g
"

m__
Y”l+/\y Y -0
g

" "
4

=0

7" 4 22

in which only the unknown A will have to be eliminated.

From this analysis, one learns how to proceed when there are a larger number of bodies,
some firmly attached to the string and some free to move along the string.

Subsection II
The Equilibrium of Three or More Bodies Attached to an Inflexible and Rigid Rod

20. Let us now assume that the three bodies are linked by an inflexible rod so that they
are constrained to remain an equal distance apart. In this case, not only does df = 0 and
dg = 0, but in addition the differential of the distance between the first and third bodies,
which we will call A, is also equal to zero.!” Consequently, by taking three undetermined
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coefficients A, u, v, the following general equation of equilibrium will be obtained
XI d.rl + YI dy, + Zl dZ’ + XII dmll +YII dy” + ZII dZII + XIII dmlll
+YIII dy”l + ZIII dzlll + Adf + /.ldg + th — 0

The expressions for df and dg were given earlier. For dh, it is clear that the expressions
will be

h = \/(1"” _ x/)z + (y/// _ y/)z + (Z”' _ zr)z
and as a consequence

(1"" _ J)/)(dilj'" _ dxl) + (ym _ y/)(dym _ dy’) + (Z"' _ Z/)(dzm _ dz’)
h

dh =

Making these substitutions and equating to zero the sum of all the terms related to each of
the differences dx’, dy’, etc. the following nine particular equations will be obtained

! !

P~ " =y

X' — A - =0
"k
"o 1 "no__ 1
SRR Ak AN Mt AP
f h
"no_ "ot
Z,—/\Z z -—I/Z VA :0
f h
X”+Axl/_xl_ﬂxl/1_x_11=0
f g
"o "mo_,.n
v Y _“y v o
f g
P P
Z" + X —u =0
f g
Xy me — " N me — —o
g h
mo__,n "no__ 1
v Y LYY
g h
P +Mzu/ — +VZI” — 2 —o
g h

from which the three undetermined coefficients A, u, v, should be eliminated so that only
six equations remain for the conditions of equilibrium.

21. Atthe outset, it is clear from the form of these equations that by adding the first three
to the following three, respectively and then to the last three, the three equations where the
coefficients A\, u, v, have been eliminated will immediately be obtained

Xl + XII + XIII — 0’ Yl + YII + YIII — 0’ ZI + ZII _+_ ZIII — 0
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Nothing is easier than to find three more equations by elimination of A, u, v. But to obtain
the equations in a simpler and more general fashion, it is better to begin by deducing from
the equations of the preceding article, the following nine transformed equations

" 1,01 1,111

X’y’—YII/—/\y’x”_x/y o yr -y -0

v
f h
1.1 . n 1.0 Il
2z’ —x'z 2z — 'z
X' -7 =) —v =0
f h
1,11 . n 1,11 r
2y —y'z z —y'z
Y'z'—Z'y'—/\ Y Y —y Y Y -0
f h
I/ 1,11 n_ ", .mn
'’ -2y y'x" — 'y
X”y” _ Y/lel + Ay _ I,l — O
f 9
101 i n_ " mn
2z —x'z 2" — a2
.X”Z” _ lexll + A . /_L — 0
f g
1,1 11 ", il
2y —y'z 2y -z
Vi Z//yu +) Y Y —u —0
f g
n 1 ", mn 101 1,011
y'x" -2y y'z'" -2y
Xl/lyll’ _ Y/le/ll + ﬂ + v — 0
g h
n, n_n 1. .01 i
A A 22" -2’z
X”,Z”/ _ ZIII:L./H + /.L + v — 0
g h
", n n_mn 1,11 i
2y —y'z 2y —y'z
YI/IZIN _ Z/IIyIH _+_ /.L + v h — 0
g

which are, as can be seen, analogous to the original equations and will give in the same
fashion by simple addition, the three following equations

lel _ Y’:E’ + Xllyll _ YII:EII + X”ly/” _ Y”II”’ — 0
XIZI _ lel + XIIZII _ lexll + XNIZ”I _ Z/I/$l/l - 0
Y/ZI _ Zlyl + Yllz// _ Z/Iyll + YIHZHI _ Zl”y”l — 0

The three equations found above show that the sum of the forces parallel to each of the three
coordinate axes must be zero. The three that we just found contain the known principle
of moments (denoting moment here by the product of force by its lever arm), by which
the sum of the moments of all the forces, tending to rotate the system about each of the
three axes, is also zero. Thus these six equations are only particular cases of the general
equations given in SECTION III (Subsections I and II).

22. If the first body were fixed, then the differences dz’, dy’, dz’ would be equal to zero
and the first three of the nine equations of Article 20 would not exist. Only six equations
will remain which after elimination of the three unknowns A, p, v, will reduce to three.

In order to derive these three equations, a method analogous to the one that was used to
find the last three equations of the preceding article can be employed if care is taken that
the transformed equations do not contain the indeterminates A and v which are present in
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the first three equations and which now must be eliminated. The following equations are
obtained using these combinations

Xll(yll _ y/) _ Y”(CC” _ xl) _ /L(y” _ y’)(xm — 1‘") — (‘73" — xl)(y"’ — y”) -0
X' )= 2" (" -2 - #(z” —2)(@" - ") 5(1” —z')(z" = 2") -0
Y =)= 2"y — ) - ,U/(ZH -2 —y") - W =y)E" -2 -0
9
Xm(yn/ _ y/) _ Y”’(x'” _ :L‘I) + #(y//r — y/)(x/// — x”) - (x”/ — I’)(y”/ — y/l) =0
9
X///(Z/u _ z/) _ Z"’(LE”I _ iI:’) + u(z’” - Z’)(I”’ - 1‘") ; (x/// - x/)(zm - Z”) =0
Y/"(zlll B z,) _ lel(y/l’ B y/) . IL(Z/// _ z/)(ym _ yu) _ (ym _ yl)(zlll _ z”) —0o
9

and if the first three of these transformed equations were now added to the last three, the
following three equations will be immediately obtained

Xll(yll _ yl) _ Y”(.T” _ fl:,) + Xlll(ylll _ yl) _ Y”I('l'l” _ xl) — 0

XI/(Z// _ Zl) _ Z/I(xll _ zI) + XI/I(ZIII _ Zl) _ lel(xlll _ :L_I) — 0

YII(ZII _ Z/) _ Z"(y" _ y/) + YI”(Z”I _ z/) _ Zm(y//l _ y/) =0
which will always exist whatever the state of the first body because they are independent
of the equations relative to the position of this body. These equations contain, as can be

seen, the same principle of moments but with respect to axes which pass through the first
body.

23. Let us assume that a fourth body is attached to the same inflexible rod, with rectangular
coordinates 2", y", 2" and whose forces are parallel to these coordinates and given by
XIV YIV ZIV'

The quantity X" dz" + Y dy" + Z" dz" should be added to the sum of the moments of
the forces, and because the distances between all the bodies must remain constant, one will
have not only df = 0,dg = 0, dh = 0, as in the preceding case, but also d¢ = 0, dm = 0,
dn = 0, in which ¢, m, n are the distances between the fourth body and the other three.
Thus in this case the general equation of equilibrium will be

X'de' +Y'dy' + Z'd" + X" da" +Y" dy" + Z" 42"
+XI// d:vlll + YI/I dyll/ + ZI// dz/// + XIV dxlv + YlV dylv + ZlV dle
+Adf+pdg+vdh+ndl+ pdm+odn=0

The expressions for df, dg, dh are the same as above. For the values of d/, dm, dn, it is
obvious that

(= \/(xw _ z:)2 + (yv — y/)z +(2v - 21)2
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m = \/(l.lv - z/I)Z + (yw _ y/I)Z + (ZIV _ ZII)Z
n= \/(;l?’v _ z///)2 + (yw _ ym)z + (Z'V _ ZII/)Z

and consequently

d¢ =
(zlv _ xl)(dxlv _ d,’lT’) + (ylv _ yl)(dylv _ dy’) + (ZW _ zl)(dzlv _ dz/)
14
dm =
(l.lv _ :L‘N)(d.'l‘w _ d.’L‘”) + (yIV _ y/l)(dylv _ d’y”) + (zlv _ zll)(dzlv _ dZ”)
m
dn =
($IV _ .’L’/”)(dl‘w _ dl‘”’) + (ylv _ ylll)(dylv _ dylll) + (zIV _ z”’)(dz‘v _ dZ”’)

n

After making these substitutions and equating to zero the sum of the terms related to each
of the differences dx’, dy’, etc., twelve particular equations will be found of which the first
nine will be the same as those of Article 20 after adding respectively to their first members
the following quantities

v ! v ! ~IV !

vV —x YV —y 2V -z
-7 f y - e ) -7 é y
Vv — g yIV :U” SV
—p ) —p ) —p )
m m m
v — " ylV _ yul LV
-0 , -0 , -0
n n n

v ! v n v n

_$ — p—
XVl 7 +px mx +ol nx =0
W o_ \ ] W o_

v 4 Y Zy LY my 4+ oY ny —0
SVt LV M SV
ZV+ 7 +p +o =0
14 m n

24. Since there are a total of twelve equations and six indeterminate quantities A, p, v, 7,
p, 0 to eliminate, only six final equations will be left as the conditions of equilibrium as in
the case of three bodies. And by a method similar to the one of Article 21, the following
six equations will be found which are analogous to those of this article

XI + XII + ‘YIH _+_ XIV — 0
YI + YII + YIII + YIV - 0
ZI+ZII + ZI/I +Z1V - 0
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‘leyl _ Y’.’L” + X”y” _ Y”:D" + XIIIyIII _ YWII?’" + XIV,yIV _ YIV.TW — 0
X—Izl _ Z’.Z" + XII7I/ _ lexll + X'Illzlll _ Z’”l‘”’ _+_ XWZW _ ZW;EW — 0
Y/ZI _ Zlyl + }/llzll _ Z/Iy// + YIIIZIII _ Z/Hyll/ + Y]VZIV _ Z]vylv — 0

Instead of the last three equations, the following three which are found by the method of
Article 22 could also be substituted and since they are independent of the equations relative
to the first body, they have the advantage that they will always exist whatever the location
of this body

Xll(yll _ yl) _ Y”(.I” _ l‘l) + Xlll(ylll _ yl) _ Y”I(I”I _ xl)
+X|V(ylV _ yl) _ YW(.TIV _ x/) — 0

X”(z” _ Z,) _ le(xll _ xl) + X”l(zl“ _ Zl) _ ZIII(IIII _ xl)
+XIV(ZIV _ Z’) _ ZIV(:L,[V _ x/) — 0

Y”(Z" _ ZI) _ Z"(y" _ y/) + Ym(zm _ Z/) _ Z/u(ym _ yl)
+Y'V(ZW _ ZI) _ ZIV(ylv _ yl) — 0

25. Now it is clear how one should proceed in order to find the conditions of equilibrium
for an arbitrary number of bodies attached to a rod or rigid lever. In general, it is obvious
that for the relative positions of the bodies to remain the same, it suffices that the distances
between the first three bodies remain constant and that the distances from each of the other
bodies to these three are also constant, because the location of an arbitrary point is always
determined by the distances from this point to three given points. For each additional body
added to the lever, the same reasoning and operations which were made in Article 23 with
respect to the fourth body should be followed. And each of these bodies will produce three
new particular equations with three new undetermined coefficients to eliminate so that the
final number of equations will always be the same as in the case of three bodies. These
equations will have the form which we found in the preceding article.

It is also obvious that these equations are part of the group which we found in general for
the equilibrium of an arbitrary free system in Articles 3 and 9 of SECTION III. Indeed,
because of the rigidity of the rod, the distances between the bodies remain constant and
equilibrium holds if the motions of translation and rotation are nullified. The preceding
problem could have been solved with this single consideration using the formulas of the
cited articles. But we believe that it is useful to give a direct solution and to obtain the
particular conditions of the problem.

Subsection III
The Equilibrium of Three or More Bodies
Attached to an Elastic Rod

26. Let us reconsider the case of three bodies linked together by rods. Moreover, let
us assume that the rod is elastic at the point where the second body is located so that its
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distance from the first and last bodies is constant, but that the angle made by the directions
of these distances is variable and that the effect of elasticity®® consists of increasing this
angle and consequently, decreasing the exterior angle made with one of the sides by the
prolongation of the other.

Let us denote the forces?? of elasticity by E and the exterior angle by e. The force E has
a tendency to decrease the angle e. The moment of this force will be expressed by Ede
(SECTION 11, Article 9) so that the sum of the moments of all the forces of the system will
be

X'dz' +Y'dy'+Z'd2' + X" d2" +Y" dy" + Z" d2"
+X"dz" + Y dy/// + 2" d:" + Ede

But the conditions of the problem are the same here as in Article 12, that is, df = 0 and
dg = 0. Thus the general equation of equilibrium will be

XI df[, + Yl dy’ + ZI dzl +X” dxﬂ + Y/I dy” + ZII dZ”
+4YI/I dw’” + YIH dyll/ + Z//I dz/" + Ede + Adf + ng — 0

and it will only be necessary to substitute the expressions for de, df, dg. The values of d f
and dg are the same as those in the cited article.

In order to find the value of de, denote the rectilinear distance between the first and third
bodies by the letter h as in Article 20. In the triangle formed by the three sides f, g, h
and for which the angle opposite the side h is (180° — ¢), the application of a well-known
theorem” produces the following equation

f2+g2_h2

—C0Se =
2fg

from which the expression for de will be obtained by differentiation. From the conditions
of the problem, where df = 0 and dg = 0, it will suffice to vary e and h which will give

hdh

de = —fgsine

When this expression is substituted in the preceding equilibrium equation, it is easy to see
that it will assume the same form as the general equation of equilibrium for the similar
case of Article 20, assuming in this case that

Eh
fgsine

Consequently, the particular equations will still be the same in both cases. The only
difference is that in the case of the cited article, the quantity v is indeterminate and
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consequently, it must be eliminated. On the other hand, in the present case, this quantity
is known and there are only the two indeterminates A and u to eliminate so that there is
one additional equation than in the cited case, that is, seven equations instead of six. But
since, whether the quantity v is known or not, nothing prevents us from eliminating it with
the other two quantities A and (4, it is clear that one will also have in the present case the
same equations that were found in Articles 21 and 22. And to find the seventh equation, it
is only necessary to eliminate A in the first three equations or y in the last three of the nine
particular equations of Article 20 and to substitute for v the following expression

Eh
fgsine

27. Also, if in the formulation of the expression for de, it is assumed that d f and dg are
not equal to zero, an expression of the following form would be obtained

hdh
fgsine

de = — +Adf + Bdg

where A and B are functions of f, g, h, sine. Then the three terms E de + Adf + © dg of
the general equation would become

Eh

—dh+ (EA+ \)df + (EB +pu)dg
fgsine

but since A and p are two indeterminate quantities, it is obvious that they could be replaced
by A — EA, p — EB, after which the quantity given above would become

__ER
fgsine

dh + \df + pdg

as if f and g remained constant when calculating the expression for de.

If several bodies were linked together by elastic rods, the necessary equations for the
equilibrium of these bodies would be found in the same manner. In general, our method
will always give with the same facility, the conditions of equilibrium for a system of bodies
linked together in an arbitrary fashion and loaded by external forces. The procedure is, as
one sees, always uniform, which must be accepted as one of the main advantages of this
method.
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Chapter III
THE EQUILIBRIUM OF A STRING WHERE ALL THE POINTS ARE
LOADED BY ARBITRARY FORCES AND WHICH IS ASSUMED FLEXIBLE
OR INFLEXIBLE, OR ELASTIC AND AT THE SAME TIME
CAN BE EXTENSIBLE OR NOT

28. This is the time to use the method which we developed in Subsection II of SECTION IV.
For greater simplicity, we will always assume that all the external forces which act at each
point of the string are reduced to three, namely, X, Y, Z, directed along the rectangular
coordinate axes x, y, z associated with this point. Thus denoting an element of the string by
dm which is proportional to the elemental length ds along the length of the string, multiplied
by the string’s thickness, one will have for the sum of the moments of all the forces relative
to the total length of the string the following integrable formula (SECTION IV, Article 12)

S(Xéx+Y éy+ Z6bz)dm

is obtained since the quantity X dz + Y dy + Z dz is only a transformation of the relation
Pdp + Qdq + Rdr + etc. (Article 1). If the forces P, @, R, etc. are such that this
quantity is integrable and if the function I is its integral, the following equation results, as
in Article 25 of SECTION IV

Xbéx+Yoy+ Zé6z=46I1

and the sum of the moments will be expressed by S I dm.

Subsection I
The Equilibrium of a Flexible and Inextensible String

29. Let us consider at the outset the case of a perfectly flexible and inextensible string.
Since the element ds of the length of this string is expressed by \/(dx2 + dy? + dz2)
and since the string is inextensible, ds must be an invariable quantity and in addition,
the indefinite equation of condition 6 ds = 0 must hold with respect to each element of
the string. After multiplying ¢ ds by an undetermined coefficient A and forming the total
integral the quantity A ¢ ds will be obtained. And if there is no other equation of condition,
the general equation of equilibrium will result by equating to zero the sum of the two
integrals S §II dm and SA 6 ds.

Now considering that ds = /(dz? + dy? + dz2), the following equation results after
differentiation by 6

_dzxédr+ dyddy + dzddz

bds %
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and thus

SA6ds = si‘i"fédx+s“y5dy+s&5d

After replacing 6d by dé and integrating by parts according to the rules given in Article 15
of SECTION IV to eliminate the operator d before the operator é, the following transformed
equations will result

Adz X' dz" N dz'! Adz

S—Eg—é dr = ds"’ oz — ds’ 6 - SdT(S
" .1 13,0
Ady&d Adjf;’ sy — AW s, '-Sd“ya
)\ dz )\” dz" ., Nd_, A dz
S———6d ds”’ 62 - ds’ 6 - de—6

Therefore, the general equation will become

S{{ Xdm —d/\ﬁ br + Ydm—dicg by
ds ds

n " " "
+<Zd —dﬂf>5z> 4 e AT

d ds” ds"
A'dz" o, Ndo' 0 Ndy' 0 MdY
g 07 T gy 0T T gy Y T gy 97 =0

30. The coefficients of éx, dy, 2z under the first integral sign must be equated to zero
(SECTION 1V, Article 16). Then the three following particular and indefinite equations
will result

Xdm - d&=o, Y dm —dﬂ_o, Zdm — d-/\—d%~=0,
ds ds ds

from which after eliminating the multiplier A, two equations will remain to define the shape
of the string.

This elimination is very easy, since it is only necessary to integrate the preceding equations,
which results in the following equations

Ad
)‘dx_A+/de, )‘diy—B+/Ydm, d:_c+/zc1m

ds
where A, B, C are arbitrary constants. Then after eliminating A, the following equations
will be obtained

dy_B+/Ydm dz_C+/de

dz A+/de dz A+/de
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which are two equations which are consistent with the formulas for the catenary.

If one wished to obtain exact differential equations directly, without the integral sign, the
developed equations could be put in the following form

dz dz
A —an oo
Xdm - s &
Y dm —/\djy d/\dy
dz dz
—_— :0
Zdm - AT — AT

from which, after eliminating dJ, the two following equations will be obtained

Xdy—Ydr o dydedeody

ds T 'ds ds  ds ds
Xdz—-Zdx dz dz dz dz
& Im=AGYE T B

Then, if the same equations are multiplied respectively by

@ w e
ds’ ds’ ds

and because of the following relation

dz dz dy dy dz dz 1 (dz?+dy®+dz?
TSt SIS DRt S (2 Y TR )
ds d ds = ds d ds '~ ds d ds 2 ( ds? 0

the following equation will be obtained

Xdz+Ydy+ Zdz

dm = dA
ds m

and it will only be necessary to substitute successively in this last equation the values of
obtained from the two preceding equations.

31. Since the quantity A dds can represent the moment of a force A having a tendency
to shorten the length of the element ds (SECTION IV, Article 6), the term S\ éds of
the general equation of equilibrium of the string (Article 29), will represent the sum of
the moments of all the forces A that can be assumed to be acting on all elements of the
string. Indeed, each element resists, by its inextensibility, the action of external forces and
generally, this resistance can be viewed as an active force which is called “tension”. Thus
the coefficient A will denote the tension in the string.

32. With respect to the condition of inextensibility of the string represented by the
invariability of each element ds of the curve, it cannot be introduced in the equation of this
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curve as a replacement for the undetermined coefficient A as in the case where the string
forms a polygon, because by the nature of the differential calculus the absolute value of the
elements of the curve and in general, all the infinitesimal elements remain indeterminate.
But also, for the same reason, it is not necessary to have as many equations as there are
variables and it suffices to have one less equation to determine a curve whether of single or
double curvature. Thus the solution which we just found by our method is complete with
respect to the differential equations and necessitates only integrations which depend upon
the expressions for the forces X, Y, Z.

33. Let us now consider the terms of the general equation of Article 29, which are outside
the integral sign S. Furthermore, let us assume at the outset that the string is entirely free.
In this case, the variations éz', éy’, 62’ and éz", éy”, 62" which are related to the two
end points of the string will all be indeterminate and arbitrary. Consequently, each term
affected by these variations must be equal to zero independently. Therefore, one should
have A’ = 0 and X\’ = 0 that is, the value of A must be zero at the two extremities of
the string. This condition is met by means of constants. Therefore, since the first three
integrable equations of Article 30 give, for the first point of the string where the quantities
affected by the integral sign [ become zero, and for the last point of the string where [ is
changedto S

N dr! N dy' N dz!
s & - D & -
n " " " 1} "
NArT s rsxdm,  2Y _pisydm, 2% _cyszdm
dsll dsll dS/I

One will have, in this case, A = 0, B = 0, C = 0 and consequently
SXdm =0, SY dm =0, SZdm =0

It is obvious that these three equations are related to those of Article 12 of the preceding
section.

34. Secondly, let us assume that the string is either fixed at one of its extremities or at both.
If it is the first end that is fixed, the variations éz', 6y’, 6z’ will be zero and it will suffice
to equate to zero the coefficients of §z”, 8y, 82", that is, it will suffice to make "' = 0.

By the same reasoning, when the other end is fixed, it will suffice to make A’ = 0. But
if the two ends were simultaneously fixed, there will be no particular condition to fulfill
because the variations éx', 6y’, §z', 6z", by", 62" will all be equal to zero.

35. Thirdly, let us assume that the ends of the string are attached to lines or curved
surfaces along which they can slide freely. For example, let dz’ = o' dz’ + b'dy’,
dz" = a”dx"” + b" dy"” represent the differential equations of the surfaces to which
the two ends of the string are fixed. In addition, one will have by replacing d with 6,
6z =a' bx' +b' 6y, 62" = a" 62" + b by". Then these expressions will be substituted
in the terms in question and the coefficients of 8z', 8y', 6z, 6y will be equated to zero.
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In general, one will treat the expression which is outside the integral sign in the general
equation of equilibrium as if it were separate and as if it represented the equation of
equilibrium of two distinct bodies located at each end of the string.

36. As an example, let us assume that the string is fixed by its two ends to the extremities
of a lever mobile about a fixed point. Let a, b, ¢ be the three rectangular coordinates which
determine the position of this fixed point in space, that is, the position of the fulcrum of the
lever. Let f be the distance between this support point and the end of the lever to which
is fixed the first end of the string, g the distance between the same support point and the
other end of the lever to which is fixed the second end of the string, h the distance between
the two extremities of the lever and consequently, also between the ends of the string. It is
clear that these six quantities, namely, a, b, ¢, f, g, h derive from the nature of the problem.
It is also obvious at the same time that since z’, y', 2’ are the coordinates at the origin of
the string and z”’, y”, =" the coordinates at the other end of the string, one will have

f=Via-2)P2+(b-y)+(c—2)
g= \/(a //)2 b y//)z + (C _ zl/)2
h=+(x" -2+ @ —y)2+ (2" —2')?

But since the quantities f, g, h are invariant, by differentiating by  the following three
determinate equations of condition will be obtained

(a—z")éx' + (b—y")oy' + (c — 2")62" =

(a—2")oz" + (b—y")oy" + (c — 2")62" =0

(.’I/.” _ xl)(éxll _61‘/) + (yll — y/)(éy/l _ 6yl) + (ZI/ _ ZI)((SZ” _ 621) — 0
which when multiplied respectively by an undetermined coefficient, shall also be added
to the general equation of equilibrium. Therefore, taking «, [, 7y as the three required

coefficients and equating to zero the coefficients of the six variations éx’, 8y’, 62/, 6z”,
by", 62", six particular equations will result

i !
ala—12')—~y(2" -2') - % =0
N Ay
alb—y) =" -v') - a4
!
ale — ") = (2" z)—Adz_o
n n
Bla—z")+v(z" —2') + :\—a‘:"?— =0
A//d "
Bb—y")+v" -y + T}," =0
A”d "
Ble—2")+~(z"=2")+ _dsTf— =0

which, after elimination of «, 3, vy, will be reduced to three. When these equations are
combined with the three equations of condition above, they can be used to determine the
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location of the two ends of the string. This demonstration shows how to proceed in other
similar cases.

37. Finally, if besides the forces which act upon each point of the string, there were
particular forces applied to the two ends of the string, which are denoted by X', Y”, Z’ for
one end of the string and by X", Y, Z" for the other end, these forces will produce the
moments

XI 61" + '}// éyl + Zl 62’ +XI/ (51./! +YII 5yl/ + ZII 62”

and this quantity should be added to the first part of the general equation of equilibrium,
that is, to the part which is outside the integral sign, which would then become

, AI/ dxll AI’ d " A’/ dzll
(XI + e )6CIJII+(Y"+ ds’f/y )6y"+(Z”+ o )5ZU
! ' )\/ ! AI !
+xr = A d‘:f” )62 + (Y — %}’)5;/ +(Z' - d‘si,z 162/

and which can be applied to the different cases as was demonstrated in the preceding
articles.

38. Let us now assume that the string is loaded at every point by the same forces X, Y, Z,
and also pulled at its two ends by the forces X', Y', Z', X" Y" Z". Its configuration
is defined by a curved surface for which the equation is dz = pdz + ¢ dy and that the
configuration and location of the string on the same surface is described so that it is in
equilibrium.

This problem which might be difficult enough to treat by ordinary principles of mechanics
is solved very easily by our method and formulas.®' Indeed, with the equation of the given
surface, one has, after replacing d by ¢, 6z = péx + ¢ dy. Therefore, this expression for
6z will only have to be substituted in all the terms under the integral sign of the general
equation of equilibrium of the string (Article 29) and then to equate separately to zero the
quantities affected by 6z and dy. By this means the two following indefinite equations will
result

Adz Adz
X —_ —_— —_ —_ =
dm — d( s )+ p(Z dm — d( i ) =0
Ady Adz
Y — < —_ —_— =
dm — d( s ) + p(Z dm — d( & )=0

which after combining them with the equation of the surface dz = pdx + ¢ dy will be
used to determine the equation of the string which is now free since the indeterminate A
has been eliminated.

39. Moreover, since the string is assumed to be in the same plane, one will have for its
two endpoints 6z’ = p’ 8z’ + ¢’ 6y’ and 62" = p” b6z + ¢" by". Thus these substitutions
will be made again in the terms outside the integral sign of the general equation or rather
in the formula given in Article 37 in which the forces X', Y’, etc. are present. Then
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the quantities relative to each of the four remaining variations éx’, §y’, 6", 63" will be
equated separately to zero. Thus four new equations result

N dx' )\’ dz’
X' - p'(Z' —)=0
ds’
v N (2 ,\'dz)_
d !
)\/l d 1 A/I dzll
XI/+ o +pll(zll+ o )—O
)\Il d n AII d "
Y + ds’%l +4d"'(Z" + ds,,z )=0

which should be satisfied by means of constants.

40. But, instead of substituting the expressions for §z in terms of 6« and éy obtained from
the equation 6z — péx — qdy = 0, as we just did, this same equation could be viewed
as a new indeterminate equation of condition. Then, the total integral of this equation
multiplied by another undetermined coefficient 1, should be added to the general equation
of equilibrium (Article 29). In this manner, the expression under the integral sign would
become

SIX dm — 48 — s + (v dm — d(Y) — sy
+H(Zdm — d(Ad )+ 1)82]

and these three undefined equations would be obtained immediately

Adz
Xd -dK—uP—O
Ad
Ydm—d2 —pug=0
ds
Adz

Zdm—d==+p=0

which, by elimination of p will give again the same equations already found (Article 38).
But these latter equations have, moreover, the advantage that the pressure that each element
of the string exerts on the surface is obtained simultaneously from the theory given in
Article 5 of SECTION IV.

Indeed, it is easy to deduce from this theory that the terms (62 — p 6 — ¢ dy) coming from
the equation of condition 6z — p éx — q by = 0, can represent the effect of a force equal to

(1 4+ p? + ¢?) applied to each element ds of the string in a direction perpendicular to the
surface which has for its equation §z —p éz —q 6y = O ordz —p dx—qdy = 0, that is, to the
same surface on which the string is assumed resting. This surface, because of its resistance,
produces the force u\/(1 + p* + ¢%), which consequently, will be equal and directly
opposed to the pressure exerted by the string on the same surface (SECTION IV, Article
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7). Thus the pressure on each point of the string will be equal to [u\/(1 + p? + ¢?)]/ds
or rather, by substituting the values of u, up, uq obtained from the equations above

Ndz Ndy Ndz,
- Y 2% —d2=c
\/(de dds)+( dm dds)+(de dds)

ds

Then the same reasoning will be applied to the portion of the general equation which is
outside the integral sign S and similar conclusions will be reached.

41. If the string resting on the given surface is under tension as a result of forces applied at
its ends only, one would have X = 0,Y = 0, Z = 0, and consequently, d\ = 0 (Article
30). Thus the coefficient A is equal to a constant. Therefore, the tension in the string
would be the same everywhere along its length (Article 31) which is consistent with what
is already known. In this case, the general formula for equilibrium would be reduced to

ASéds +Su(bz—pbx —qdy) =0

of which the first term is the same as A §(Sds) or A §s. Thus this equation expresses the
fact that the length of the curve formed by the string on the surface represented by the
equation dz — pdx — gdy = 0 must be a maximum or a minimum and that the pressure
exerted by the string at each point of this surface will be

W (d 2+ (@)

But it is known that

VO s @ @&y

defines the angle of the instantaneous tangent to the curve which is equal to ds/p where p
is the osculating radius. Therefore, the pressure will be A/p and consequently, it will be
inversely proportional to the osculating radius.

Subsection II
The Equilibrium of a Flexible and Simultaneously Extensible
and Contractible String or Surface

42. Up to this point, we have assumed that the string was inextensible. Let us treat it
now as a spring capable of extension and contraction. And let F' be the force with which
each element ds of the curve of the string might contract. One will have, as in Article 18
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(by replacing f by ds and by replacing d with §), F' dds for the moment of this force and
SF 6ds for the sum of the moments of all the forces of compression which act on the length
of the string. Thus this integral SF' dds is added to the integral S(X éx +Y éy+ Z 62)dm
which expresses the sum of the moments of all the external forces acting on the string
(Article 28) and by equating the expression to zero, the general equation of equilibrium
for a deformable string will be obtained.

But it is obvious that this equation will be of the same form as the one in Article 29 for
the case of the inextensible string and that by replacing ' with A the two equations will
become identical. In the present case, one will have the same particular equations for the
equilibrium of a string that were found in Article 30 by replacing F' in those equations by
A. And if the quantity I’ were eliminated, as the quantity A was eliminated, two equations
identical to those which exist for an inextensible string would be obtained to represent the
curve formed by an extensible string.

43. With respect to the quantity F" which represents the elasticity of the force of contraction
of each element ds, it is natural to express it as a function of the extension that this element
receives from the action of the forces X, Y, Z. Therefore, assuming that do is the initial
length of ds, F' can be viewed as a given function of ds/do. But because of the nature of
the differential calculus the absolute value of the element ds remains indeterminate. Thus
the value of F' will also be indeterminate and can be found only by means of one of the
three equations of equilibrium of the string. Therefore, although in the present case our
analysis seems to give one more equation than needed, nevertheless, it provides only the
necessary equations to determine the curve of the string and the resistance of each of its
elements.

Because the quantity A in the solution of Article 30 corresponds exactly to the quantity F',
which is the real force with which each element of the string is pulled by the action of the
external forces, it is obvious that this quantity can be viewed as representing the tension in
the inextensible string. This is what we have found earlier a priori in Article 31.

44. Let us now apply the same principles to the determination of the equilibrium of a
surface for which all of its elements dm are extensible and contractible. The element of a
surface with coordinates z, y, z, where 2 is viewed as a function of z and y, is expressed
by the formula

dz, ,dz,
dzdy\/l + (dx) + (dy)
Thus, by calling F' the force of elasticity with which this element has the tendency to

contract, the sum of the moments of all these forces will be expressed by the double
integral

SSFé(da: dy\/l + (%)2 + (j—;)2>
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which, when added to the double integral
SS(Xéx +Y by + Zé6z)dm

where dm is the element of the surface, will give the sum of the moments of all the forces,
which must be equal to zero at equilibrium.

By making, as in Article 31 of SECTION IV

dz dz
T=7  ge=m 1eed=v

one will have dm = U dz dy and

w_z dW_=x
dz' U’ dz, U

then (Articles 33 and 34 of SECTION IV)

AU, U 1, ,déu déu
6U——($5£L‘+ @(53})4’5(2’ E Z/@)
S(U dzdy) = (6U + U(%E 1 99 40 a4y

dz dy

After substituting these values in the double integral SS F §(U dx dy) and eliminating
through integration by parts the partial differences of the variations indicated by ¢, one
will have

!
S(U 8y + %M)F dz + S(U 6z + %&L)F dy

+ss((w LAYy (P D)

)6y - Véu)dzdy

dz dx dy dy
where
L
ve-U T
dx dy

and du = 6z — 2’ bx — z, by (cited articles).

The simple integrals relative to  and y are calculated with respect to limits and vanish
identically in the case where the boundaries of the surface are assumed fixed because then
the variations éz, dy, 6z are equal to zero at all points of the boundaries of the surface.



116 PART I. STATICS

When the terms under the double integral sign SS are added to those of the double integral
SS(X éx + Y by + Z 6z)U dx dy, the coefficients of the variations 6z, &y, 6z will be
equated separately to zero to obtain the following three equations

FAU _dUF) 0 oy, FAU_dWUF)

dz dz dy dy
ZU -V =0

XU +

+VZ/ = O7

The first two equations will give the expression of the force F' that must be substituted in
the expression for V' of the third so that one will have ultimately only one equation with
partial differences to determine the equilibrium surface.

Indeed, although the force F' must be assumed a known function of the element dm of the
surface in its state of contraction or extension, it is, nevertheless, indeterminate because the
absolute value of the elements of the surface cannot enter in the calculation. Therefore, the
value of F' can only be determined by the conditions of equilibrium. The case considered
here is similar to the one of Article 43.

45. In order to eliminate the quantity F', the value of V' obtained from the last equation

will be substituted in the first two equations. They will become

FdU 3 d(UF)
dx dx

FdU dUF) _

dz
U(X+Z£) + ay i

dz
=0, U(X+Z@)+

Then as in Article 28
Xdz+Ydy+ Zd: =dII

one will have since z is assumed to be a function of x and y

dIl dz dIl dz
C_ox42z8 Ly, %
dzr X+ dx’ dy + dy

and the two equations will become after division by U

dl _dF  dl _dF
dz ~ dz’ dy — dy

which give simply the following equation
dll = dF
from which

F=1I+a
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This result is in accordance with Article 36 of Section IV.

Then the third equation will give by viewing II as a function of z, y, 2

FZI FZ/

This last equation will be the equation of the surface.

If the surface departs only slightly from a plane so that the ordinate z is very small, then
by neglecting some very small quantities of second order, one would have U = 1. Thus
F =TI + a where a is a constant and the equation of the surface is

dz dz
an  d@+a) dII+a)g

dz + dz * dy =0

By assuming that there is no other force than gravity g which acts to increase the ordinate z,
one will have IT = —gz. Consequently, if terms of the second order are always neglected,
the following equation results

a(dzz N dzz)_
dr? = dy? o

In general, this is an integrable equation but with imaginary solutions which makes appli-
cation of the solution difficult.

Subsection IT1
The Equilibrium of an Elastic String or Strip

46. Let us now reconsider the case of an inextensible string. But instead of assuming in
addition that it is perfectly flexible, as was done previously, let us assume that it is elastic
so that there is at each point a force which I will call E which opposes the deformation
of the string and consequently, which tends to diminish the tangential angle. Calling this
angle e, one will have, as in Article 26 (replacing only d by 6), FE ée for the moment of
each force E. Thus S E de will be the sum of the moments of all the forces of elasticity
which act along the full length of the string, which then must be added to the first member
of the general equation of equilibrium in the case of an inextensible and perfectly flexible
string (Article 29).

All the difficulty rests with trying to reduce the integral S Eée to a convenient form. In
order to find a convenient form of the integral, the expression for e must first be found.
But we have found above (Article 26)

f2+g2_h2

— C0Se =
2fg
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from which the following relation is obtained

22 (2 2 12\2
Sin26’—‘4fg (f*+g h*)
4f2g2

In order to apply this formula to the present case, it suffices to remark that the coordinates
'y, 2, 2y 2 2"y, 2", which we used to define the quantities f, g, h (Articles
12 and 20) are reduced here to z, y, z; x +dx, y + dy, 2+ dz; £ +2 dz +d?z, y +2 dy + d?y,
2+ 2dz + d?z; so that
fP=de?+ dy® +d2 =ds?,  ¢® = (dz + d®x)? + (dy + d®y)? + (dz + d%2)?
= dz? + dy? + d2? + 2(dz &’z + dy &%y + dz d?2) + d®x? + d*y? + d?2?
= ds® 4+ 2dsd®s + d*2? + d*y? + 4?22, h* = (2dz + d*z)? + (2dy + d%y)?
+(2dz + d%2)? = 4ds® + 4ds d*s + d*a? + d*y? + d?2?

then
2+ g?—h?=-2ds> —2dsd%s

and
4f2g* — (f*+ ¢* — h*)’ — 4ds* + 8ds’ d®s + 4 ds*(d*? + d*y? + d227)
—4(ds? + ds ds)? = 4ds?(d?2? + d*y? + d222 — d*s?)

Finally, neglecting the infinitesimal quantities of third order there results

., d2x? 4+ d*y? + d22? - d2s?
sin* e =
ds?

Since this value of sin” e is an infinitesimal quantity of second order, it happens that sin® e
and consequently, also the angle e, will be an infinitesimal quantity of the first order.
Therefore

. \/dzxz + dzyz + d222 — d2s2
- ds

This is the expression for the tangential angle for an arbitrary curve with double curvature.
It is similar to the expression of Article 41.

47. Now the value of de is obtained by differentiating according to §. Since the string is
inextensible, it must be that éds = 0 (Article 29) and also that déds = 6d?s = 0. Thus ds
and d%s could be treated as constants. In this fashion, one will have

_ &z 6d%x + d?y 6d%y + d?z 6d%z
dsy/d2z2 + d2y? + d2z2 — d2s2

be
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Substituting in S E de, and in so doing, the expression is shortened by putting

E
 dsy/d%2? + d%y? + d222 — d2s2

there results
SEébe = SId’zé6d*x + STd*yéd*y + SITd*z6d%z

These expressions are treated according to the rules given in Article 15 of SECTION IV
by first replacing 6d by dé and integrating by parts to eliminate the d before the §. The
following transformed equations will result
SId*xé6d’x = 1" d*2" déz”" — d(I" d*2")éz" — I' d*x’ déz’
+d(I' &2')62’ + S d*(I d*z)éx,

SIdZy 6d2y — III dZyII dé‘yl! _ (I/I d2 I’)éy II d2yl déy’
+d(I' d®y')6y' + S d*(I d*y)by,

SId?z6d*z = I" d*2" dé2" — d(I" d*2")62" — I' d*2' d6='
+d(I' d*2')62" + Sd*(I d*2)é2,
Now add these different terms to those which form the first part of the general equation of

equilibrium of Article 29 and the equation of equilibrium for an inextensible and elastic
string will be obtained.

48. If the coefficients of the variations dx, 6y, 6z which are under the integral sign S are
first equated to zero, the three following indefinite equations will be obtained.

Xdm —d (Ad"”) +d(Id%) =0

Y dm —d (Ady) +d(Id¥y) =0
ds

Adz

ds

from which A should be eliminated which will reduce them to two and which will be
sufficient to determine the equation of the string.

Zdm — d( ) +d*(Id*2) =0

The first integration gives

%—d(]dzx)=A+/de
Adiy d(I d?y) = / Y dm
Ad‘iz d(Id27)—C’+/de
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where A, B, C are arbitrary constants and the elimination of A will give
dzd(I d®y) — dyd(I d*z) = (A + /X dm)dy — (B + /Y dm)dz,
dzd(Id®z) —dzd(Id%z) = (A + /X dm)dz — (C + / Z dm)dz,
dyd(Id*z) —dzd(Id%) = (B + /Ydm)dz —(C+ / Z dm)dy

where the last equation is dependent on the two preceding equations.

These equations are again integrable and one will have
I(dz d®y — dyd’*x) = F + /(A - /de)dy - /(B + /Ydm)da:
I(dzd*z —dzd*2) =G + /(A +/de)dz - /(C’ +/de)d:c

I(dyd®z — dzd%) = H + /(B + /Ydm)dz - /(C + / Z dm)dy
where F, G, H are new constants.
Now we saw earlier that (Article 47)

E

I =
ds\/d2z? + d2y? + d2z2 — d2s?

The square of the denominator of this quantity is
ds?(d®z? + d*y? + d222) — ds? d%s? = (da? + dy? + d2?)(d*x? + d*y? + d22?)
—(dz &’z + dy &>y + dzd?2)? =
(dz d*y — dy d’z)? + (dz d®z — dzd*z)? + (dy d*z + dz d’y)?

Therefore, if the square of the three preceding equations were summed, the following
equation without the differentials would be obtained

Ez=(F+/(A+/de)dy—/(BJr/Ydm)dC”))2
+(G+/(z‘1+/de)d~~/(C+/de)df'f))2
+(H+/(B+/Ydm)d~—/(0+/de)dy))2

and if two of these equations were divided, the following equation where the string’s
elasticity is eliminated would result

dzd’z —dzd’z G+ [(A+ [Xdm)dz— [(C+ [ Z dm)dx
drd?y —dyd2z  F+ [(A+ [Xdm)dy — [(B+ [Y dm)dz
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These two equations are the simplest from which to determine the elastic curve, if double
curvature is to be considered.

49. It is commonly assumed that the elastic force which is opposed to the deflection of
the string is inversely proportional to the radius of osculation. Therefore, by denoting this
radius by p the elastic force will be E = K /p, where K is a constant coefficient.”?

But it is known that p = ds/e. Thus E = Ke/ds and the quantity I, which we assumed
equalto E/e ds? (Article 47), will become K’/ ds? and consequently, a constant, assuming,
which is permissible, that ds is constant. Thus the first three equations (Article 48) will be

Adz K d%z
de—dw + '—a;'3— =0

Ay  Kd'y
Ydm—dg o+ 4a =0

Adz R d*
de—dES— + ? =0

Ifthese three equations were added together after multiplying the first by dz/ds, the second
by dy/ds, and the third by dz/ds, and since

dzdda: dydd_y dzddz _ 1

dojdo  dydy  dogds 1, de +dy +da?
ds ds ds ds ds ds 2

ds? )=0
the following equation will result

dz d*z + dy d*y + dzd*z _

45 di

d
(de+Ydy+Zdz)£ + K

Let I be the cross-sectional area of the string so that dm = I"ds. The integration of the
preceding equation, assuming ds to be constant, produces the following equation

A =/I‘(Xd$+Ydy+Zdz)+
ded’z +dyd’y +dzd’z  d?2? +d%° + &2
ds? 2ds*

This value of A expresses the tension in the elastic member, that is, the resistance with
which it reacts the force which tends to extend it, as in Article 31.

K(

50. The simplest and most common case is the one in which the forces X, Y, Z, which
are assumed acting at all points of the elastic strip, are equal to zero and the curvature of
the strip results only from the forces applied at its two ends. In this case, the integrable
equations of Article 48, give by replacing I by its value A'/ds3

.dzd%y — dy &’z

K="= =F+Ay—Br
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I% dz d?z — dz d?z
ds?

K dyd?z — dzd%y
ds3

but another integration of these equations might be impossible in general.

=G+ A2-Cx

=H+Bz-Cy

When the surface of the strip is always in the same plane and taking for this plane the
zy-plane and making dy = dssing, dz = dscosy, the first equation which is now the
only necessary equation, becomes

(:1—¢=F+A/sin<pds——B/cos<pds
s

which, after differentiation, gives

d2
az—f = Asingp — Bcosy

Multiplying by dy and integrating once

dy? :
Tde? = Acosy + Bsing + D

from which is obtained

do

ds =
s V2D +2Acosp +2Bsiny

and from there

cospdy

dx =
¢ V2D +2Acosp +2Bsiny

and because from the first equation F' + Ay — Bx = dy/ds, there results

_B:c—F
¥=72

1
— Z\/2D+2Acoscp+ZBsimp

Therefore, the problem is reduced to integration of the expressions for ds and dz. But the
integrations depend upon the rectification of conical sections. Until now, it does not appear
that research had gone farther in the general solution of the problem of the elastic curve.

51. Let us now consider the terms of the general equation which are outside the integral
sign S. These terms are

AII dxll

5 _ d(I” dzcc”))éx” + I dsz'” déx"

(
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N dy"
d:[:’l;/ _ d(I” dzy”))éy” + 1" dzy// déy"
"qn

’\dd:' _ d(I” dzz”))éz” +I"d2:" 462"

S
[
A dd,x —d(I' dz'))éx’ — I' &2’ déa’
S
13,0

Adj:,y _ d(II d2y/))6yl _ Il dZyl d&yl
I

A d‘:f _d(I' d2"))62 — I' 2 462

and they should be eliminated independently of the values of 6z, 6y”, etc.

1. Therefore, if the string is entirely free, the coefficients of the twelve quantities 6z,
by", 62", déx", déy", dbz2", éx', by', 62', déx’, ddy’, dbz' must be individually
equal to zero.

From the first integrable equations of Article 48, it is obvious that by beginning
the integrations from the first end of the string, the coefficients of 62, 6y, 6=’ are
equal to A, B, C, and those of 6z, éy”, 62" become A + S X dm, B + SY dm,
C + S Z dm. Thus in this case it results that A = 0, B = 0 and C = 0 and also
SXdn=0,SYdn=0,SZdm =0.

Then there also results I" d?z” = 0, I" d*%" = 0, " d*2" = 0, and I' d*z' = 0,
I' dy' =0, I' >z’ = 0, to eliminate the terms related to déz”, déy”, etc.; and it is
clear that the second integrable equations of the same article will give F' = 0, G = 0,
H = 0; and S(f X dm.dy — [Y dm.dz) = 0, S(f X dm.dz [ Zdm.dz) = 0,
S(fY dm.dz — [ Zdm.dy) = 0.

. Ifthe first end of the string were fixed, then 6z’ = 0,6y’ = 0,6z’ = 0. Consequently
A, B, C will not be equal to zero, but the condition that the coefficients of 6", 6y”,
62" are equal to zero will give A = —-SXdm, B = —SY dm, C = —SZdm.
And if the position of the tangent to this extremity was also given, it would also
result that déz’ = 0, déy’ = 0, déz' = 0. Consequently, F, G, H would not be
equal to zero, but equating to zero the coefficients of déz”, déy”, déz" would give
F=S((B+ [Ydm)dz — (A+ [ X dm)dy), G =S((C + [ Zdm)dz — (A +
J X dm)dz), H =S((C + [ Zdm)dy — (B + [ Y dm)dz). The problem will be
approached in the same manner with regard to the other end of the string.

. Finally, if besides the forces which act on every point of the string, there were, in
particular, various forces X', Y', Z', X", Y", and Z" applied to both ends, it will
only be necessary to add to the terms above the following relation

X'62 +Y b6y + 262 +X"62" +Y" 6y + Z 62"

and if there were other conditions relative to these extremities, the problem would
be approached in the same fashion and from the same principles.
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52. If the string were required to be doubly elastic not only with respect to extensibility
but also with respect to flexibility the term S F' dés, that is, simply F' instead of A\, where F’
represents the force of elasticity which resists the extension of the string (Article 42) will
replace the term S A dds in the general equation of equilibrium. The quantity ds should
also be viewed as a variable in this case in the expression for de. Consequently, one should
add to the value of ée of Article 47 these two terms

ebds d%séd’s

ds eds?

Then the terms

2
—Sﬁéds Ed’s

2,
ds d2(Sd

would have to be added to the value of S E e of the same article. The last term is first
reduced to

Ell 2 .01 Eld2 ! E 2
& g5 + E4 45 +8d- d’s

el ds'2 e ds”? 6d3

Therefore, the terms

E" 325" E' dzs’ Ed’s Ee
dés” + ——d S - —
s 6s' +S(d 42 T ds

RPTFI —de )bds

should be added to the value of S E ée.

Since the last term of this expression is analogous to the term S F' §ds, it will be possible
to simplify it in a similar fashion. With respect to the two other terms, dés should only
have to be replaced by its value

dx déx + dy déy + dz déz
ds

obtained by marking all the letters by one or two primes.

From this point, it is easy to conclude that for the solution of the present case the same
formulas as in the case where the elastic string is assumed inextensible will be obtained by
only replacing A by

Ed?’s Ee
F+d—— - —
+ eds? ds

and by adding to the terms outside the integral sign S, the two following terms

EI dZSl . Eu d2 "

"
e dSIZ $ e’ ds "2 déds
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Since in the equation of the curve the quantity A must be eliminated, it results that the
equation for the elastic strip will be the same whether it is assumed extensible or not. But
the tension in the string which is expressed by A or by F' when the string is not elastic
(Article 43) will be increased, in view of the elasticity F, by the quantity

Epd®’s E

qzrPees =
ds3 p

with e = ds/p (Article 49).

Subsection IV
The Equilibrium of an Inextensible and Inflexible String
of Given Configuration

53. Finally, let us consider the case of an inextensible and inflexible string. The sum of the
moments of the forces for this case will produce the same integrable formula as in the case
of Article 28, that is, S(X 6z + Y 6y + Z 6z)dm. Then the condition of the inextensiblity
of the string will give as in the same article dds = 0 and the condition of inflexibility gives
de = 0 because the tangential angle must be invariant. But these two conditions are still
not sufficient in the case where the curve has double curvature, as will be seen.

In order to treat the problem in a very simple and direct fashion, I note that everything
consists of requiring the different points of the curve of the string to always keep the same
distances between themselves. Considering several points with the coordinates x, vy, z,
z+dz,y +dy, z +dz, z + 2dx + d*z, y + 2dy + d?y, 2 + 2dz + d*z, etc,, it is clear
that the squares of the distances between the first of these points and the following ones
will be expressed by the quantities

da? + dy? + dz?, (2dz + d*z)* + (2dy + d*y)* + (2dz + d%2)?,
(3dz +3d%z + d*z)> + Bdy +3d%y + d®y)? + (3dz + 3 d%z + d*2)?

Let us assume in order to shorten the expressions

dz? + dy* +dz? = a
2’ + &y + &2 =5
&z’ + &y’ + 27 =

The preceding quantities after further development will become
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(0]
4a+2da+ 3
9a + 9da + 96 + 3(d*a — 28) + 3dB + ~

Therefore, the variations of these quantities must be equal to zero at every point of the
curve which will give the following indefinite equations

ba=0
4éa+26da+68=0
96a+986da+368+36d*a+36dB+6y=0

but since da equals zero, there results dda = éda = 0, and thus 63 = 0. Thus it will also
result that d26a = 6d%a = 0, d63 = 6dB = 0. Hence 6y = 0, and so on. Therefore, the
equations of condition for the inextensibility and inflexibility of the string will be o = 0,
63 =0, by = 0, etc., that is, by differentiating and replacing 6d by dé

dzdéz + dydéy + dzdéz =0

>z d?6x + d?y d%6y + d*2d%62 =0

SrdPor + Py doy + 262 =0

It is clear that three of these equations are sufficient to determine the three variations dx,
by, 6z. Thus, it can be concluded that if the first three conditions are satisfied, all the other
conditions that can be found will also be satisfied. The same conclusion could be found
using the calculus, which will be shown in Article 60.

54. Thus using our method, the following general equation of equilibrium will be obtained

0=S(Xbéx+Y by + Zbz)dm + SA(dz dbz + dy déy + dzddz)
+Su(dx d*6z + d?y d®6y + d?z d%6z) + Su(dPx 6z + By 6y + d*2 d%62)

and which after the transformations described will be reduced to the following form

0 = S(X dm — d(Adz) + d*(pd’z) — & (v d*z))éz
+S(Y dm — d(A dy) + d*(pd?y) — & (v d*y))dy
+8(Z dm — d(Mdz) + d*(pd?z) — P (v d2))é2
+(N'd2" — d(p"d*z") + (V" dz"))62”

+(p" 2" — d(v" 2" )déax" + v" 2" )d* 6"
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+(A"dy" — d(u" &*y") + (" dy"))sy”
+(p" &2y — d(v" By"))déy" + v &y )d6y"
+(\"dz2" — d(p” d*2") + (" B2"))62"
+(u" 2" — d(v" d832")déz + V" d32")d*62"
—(Nda' —d(p' d*2') + d*(V'd*z") 62

—(' &z’ — d(v' &z"))déz’ — v'dz')d?*6x’
—(Ndy' —d(y' d*y") + & (' y))by’

—(W' &y —d(v' - d’y)dby’ — v dy')d ey’
—(Nd2' —d(p d?2') + (v d*2"))é2

— (' &2 — d(v' &2')déz" — v d*2")d%6z

55. At the outset equate to zero the coefficients of éz, 6y, z under the integral sign S then
the following three indefinite equations will result

X dm — d(\dz) + d*(pd’z) - E(vd®z) =0
Y dm — d(\dy) + & (pd*y) — d(vd’y) =0
Zdm —d(\dz) + d*(pd*z2) — E(vd®2) =0

which, containing three undetermined variables A, u, v, will only be used to determine
these three quantities, so that there will be no indefinite equation between the different
forces X, Y, Z which are assumed applied at every point of the rod and furthermore, the
conditions of equilibrium will only depend upon the terms which are outside the integral
sign S. But, since these terms contain the unknowns A, p, v, the analysis should begin by
determining these unknowns.

In order to achieve this result, the preceding equations must be integrated which is straight-
forward and from which the following three equations will be obtained

/de —Adz +d(pd?z) - Pwdz)=A
/Ydm— Ady + d(pd’y) — d®(vd®y) =B
/de—)\dz+d(ud2z)—d2(ud3z) =C

where A, B, C are three arbitrary constants.

These equations give, after elimination of A, the following three equations
dy/de - dx/Ydm + dy d(pd*z) — dz d(pd?y)
—dyd®(vd®z) + dzd®(vdy) = Ady - Bdz
dz / X dm — dzx / Zdm + dzd(pd’z) — dzd(pu d®2)



128 PART I: STATICS

—dzd?(vd®z) + dzd*(vd®z) = Adz — Cdz
dz/Ydm - dy/ Z dm + dzd(pd®y) — dyd(pd®z)
—dzd*(vd®y) +dy P (vd®z) = Bdz — Cdy

which are also integrable. Their integrals are

y/de—a:/Ydm—/(Xy—Ya:)dm

+u(dy d*z — dz d*y) — dy d(v d*z) + dz d(v d®y)
+u(d*y &z — d*xd’y) = Ay — Bz + F

z/de—x/de—/(Xz——Za:)dm

+u(dz d®z — dr d*z) — dzd(v &) + dzd(v d*2)
+u(d?zd’r — dad’z) = Az - Cz + G

z/Ydm—y/de—/(Yz—Zy)dm

+u(dzd?y — dy dz) — dzd(v dy) + dyd(v d32)
+u(d®z &y —d?yd®z) =Bz - Cy+ H

where F, G, H are new arbitrary constants.

The last three equations will be used to determine the three quantities u, v and dv. The
first three integrable equations will give the values of A, du, and d?v. Thus the values for
all the unknowns which are contained in the terms outside the integral sign S will be found.
It will suffice for this purpose to mark all the letters in the sixth equation found above by
one or two primes with the exception of the arbitrary constants and to assume equal to zero
in the first case the quantities affected by the integral sign [ which are assumed to begin
at the first end of the string and to change in the second case [ by S in the same quantities
in order to refer them to the other end of the string.

56. Having made these assumptions, let us see now how the conditions can result from the
elimination of the terms outside the integral sign S in the general equation of equilibrium
(Article 54).

At the outset, if the rod were assumed to be entirely free, the variations éx’, éy’, 62/,
déz’, déy’, dé2', d26x’, d26y’, d262', 6, 6y", 62", déx", etc. will all be indeterminate.
Consequently, each of their coefficients should always be equated to zero. It is obvious
that for this purpose, the quantities X', /, v/, du/, dv’, d®v', as well as A", pu’, v, du”,
dv", d*v" are equal to zero.

Therefore, the first three integrable equations of the preceding article when referred to the
first and last extremities of the string will give these six conditions

A=0, B=0, C=0, SXdn=A, SYdn=B, SZdn=C
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The last three integrals will give similarly the next six conditions

0=Ay - Bz’ + F
0=Az -C2' +G
0=B: —Cy +H
y'SXdm —2"SYdm — S(Xy — Yz)dm = Ay — Bz" + F
2"SXdm —2"SZdm —S(Xz — Zz)dm = AZ" - Cz" + G
2"SYdm —y"SZdm —S(Yz — Zy)dm = Bz" - Cy" + H

Therefore, A =0,B=0,C =0, F =0,G =0, H = 0, and consequently

SXdm =0, SYdm =0, SZdm =0,

S(Yy —Yz)dm =0, S(Xz — Zz)dm =0, S(Yz—-Zy)dm =0
These six conditions are the sole requirements which are necessary for the equilibrium of
an inflexible rod when there is no fixed point. This is in accordance with what we said

earlier (Article 25) and this is also what could have been deduced immediately from the
theory given in SECTION III as we observed in the cited article.

57. Let us now assume that there is a fixed point in the rod and that this point is one
of the ends of the rod. In this case, there results 6z’ = 0, dy’ = 0, 6z’ = 0 so that the
terms affected by these variations will disappear. Thus it will suffice to equate to zero the
coefficients of déz’, ddy’, d6z, d?6x’, d26y’, d*6 2, as well as the coefficients of 6z, 6y,
62", déx", déy”, etc.

But it is easy to see that for this purpose it will suffice to have p’ = 0,v' = 0,dv' = 0,
andthen \ = 0,y =0, 0" =0,dy” = 0,dv" =0, d*v" = 0, as in the preceding case.
And the same conditions as in the preceding article will be found with the exception that
A, B, C will not be equal to zero.

Thus there will result A = S X dm, B =SY dm,C = SZ dm, and then F' = Bx' — Ay’
G = Cz' — AZ', H = Cy’' — B2’ and the other three equations will be reduced to the
following

—S(Xy — Yz)dm = Bz' — Ay’
—S(Xz— Zz)dm = Cz’' — A2
-S(Yz — Zy)dm = Cy' — B2’

that is, to the following equations
S(Xy—-Yz)dm +2'SY dm —y'SXdm =0
S(Xz—Zz)dm +2'SZdm —2'SXdm =0
S(Yz—Zy)dm +y'SZdm — 2'SY dm =0
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or, which is the same, to these equations
S(X(y—¢')—Y(z—2"))dm =0
S(X(z—2")—Z(x—-12")dm =0
SY(z-2)-Z(y—y'))dm =0

These are the only conditions necessary for equilibrium and it is clear that they are
equivalent to those found in Article 24.

58. If the rod were firmly attached by its first end so that not only the first point of the
curve is fixed but also the tangent at this point, then it will not only result that 6z’ = 0,
by’ = 0, 6z = 0, but also that §dz’ = déz’ = 0, 6dy’ = déy’ = 0, 6dz’ = déz' = 0.
Consequently, all the terms affected by these quantities will disappear identically and only
the terms affected by d?6z’, d26y’, d26z' and by 62", é6y", 62", déx", déy", etc. will
remain to be eliminated.

Thus in this case only these conditions will result
= 0, A= 0, NH =0, U= 0,
dp'’ =0, dv" =0, &' =0

and the constants A, B, C will retain the values
A=SXdm, B =SY dm, C=SZdm

The last three integrals of Article 55 when applied to the endpoint of the rod will give
F=S(Yz - Xy)dm, G =S(Zx — Xz)dm, H=S(Zy-Yz)dm

And if these same equations were applied to the other end, there would result
p(dy’ ?dz’ — da’ d’dy’) — dv/'(dy’ &*a’ — d2'd’y’) = Ay’ — Ba' + F
@ (dz' d?da’ — dz' d*d2’) — dv/(d2' P2’ — do'd®2’) = A2’ — C2’' + G
p'(dz' d®dy’ — dy’ d®dz’) — dv/(d2' &y’ — dy'd®2’) = B2’ = Cy' + H
from which after eliminating u' and dv/’, the following equation will be obtained
A(y' dz' — 2’ dy’) + B(z' d2’ — 2’ d2') + C(2' dy’ — o' dz’)
+Fds' —Gdy' —Hdx' =0
This equation is necessary to prevent the rod from rotating about the tangent to the first

endpoint which is assumed fixed and it is easily seen that its first term will be equal to zero
when the rod is rectilinear.

59. The great length of this solution using our method could be viewed as a shortcoming.
Using ordinary methods, this last problem is much more difficult than the one for equilib-
rium of a rigid rod acted on by arbitrary forces, because the configuration that the string
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must assume in order to be in equilibrium must be determined by the composition of forces
while this configuration is given in the case of the rod and the equilibrium requires only
that the moments of these forces be equal to zero. But if a uniform procedure is desired
for all these problems with the capability to go from one problem to the other easily, as
more conditions are added, it is evident that the case of an inflexible string is less simple
than the case of a flexible string because the inflexibility expressed analytically requires
the invariability of the respective distances between the points of the string. In this case
if the curve were given, it must no longer be a result of calculation, as it is in the case of
the flexible string. This is a circumstance that the analysis must reflect and which indeed
it does with the three indeterminate quantities A, u, v, which remain in the three indefinite
equations between x, y, z of Article 55 and which have a form that is adaptable to any given
curve. Therefore, these equations should not be viewed as superfluous. In addition, they
are used to determine the three unknowns A, p, v, on which the conditions of equilibrium
depend and which express at the same time the forces which oppose the variations of the
three functions «, 3, v due to the effect of the forces acting on the string.

It is true that the three indeterminates A, p, v must be replaced by the three equations of
condition which are founded on what the differential functions «, 3, v are assumed to
express. But because of the nature of the differential calculus, the absolute values of the
differentials remain indeterminate and it is only the ratio which can be given. These three
conditions can only be equivalent to two, which contain the ratios of the three quantities
a, B3, v and these two ratios are sufficient to determine the curve.

Indeed, based on what was demonstrated above (Article 46), it is seen that the angle of
tangency made by two successive sides of the curve is expressed by y/4a3 — da?/(2a)
keeping the values of a, 3, v of Article 53 so that the osculating radius will be expressed

by 2av/a/\/4aB — da?.

If this radius is assumed given, the resulting curve has single curvature and for the curves
with double curvature, it will not be difficult to prove that the second curvature coming
from the angle of tangency made by the planes which successively pass by two successive
elements of the curve will depend on the ratio of the three quantities «, 3, v. Therefore
these three conditions with respect to the curve are reduced to the condition that the curve
must be given, as was assumed.

The analysis of this problem could be expanded to the case of a surface or of a solid for
which all the points would be acted on by arbitrary forces. But we are going to show
how the analysis can be simplified beginning with the same equations of condition and
by determining in advance from these equations the expressions for the variations of the
coordinates.
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Chapter IV
THE EQUILIBRIUM OF A SOLID BODY OF FINITE DIMENSION
AND ARBITRARY CONFIGURATION WHERE ALL POINTS ARE
LOADED BY ARBITRARY FORCES

60. Since the condition of rigidity for a body requires that all the points of this body retain
the same relative position and the same distances apart, the same equations of condition
as those which were found in Article 55 will be obtained between the variations dx, 6y,
0z, because it is obvious that by imagining an arbitrary curve within the body, it will
suffice that all its points retain the same relative distances to each other whatever motion
the body receives. Thus by this means, the values of these variations could immediately
be determined.

To this effect, I note that by passing to the differences of the second order, it is always
permissible to take one of the differences of first order as constant. Thus dx can be assumed
constant and consequently, d%x =0, d*z = 0, etc. so that the second and third equation of
the cited article will become

>y oy + &2 d*%6z =0, dEydoy+dzd*6z=0
The first of these equations gives immediately

d2z
by = ——==d%6z

and after differentiation

d?z &3z
Sy = — 2@ — (&2 —
&>y dzyd z (dzy

After this expression is substituted in the second equation, it will be found to be divisible
by &>z — (d3y d?2/d%y) and after the division the following equation will result

d3
oz — E%dzéz =0

From this last equation after integration it will result that d?6z = 6L d*y, where 6L
is a constant. Having calculated d?6z it will be found that d26y = —6Ld?z. Then
integrating again and adding the constants —§ M dz and 6 N dz, there will result déz =
6Ldy — 6M dzx, ddy = —OLdz + 6N dz, and these values after substitution in the first
equation of condition, that is, dz déz + dy déy + dz déz = 0, will produce the following
equation: déx = —0N dy + 6 M d=.
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Finally after a third integration and by addition of the new constants 6¢, ém, én, the
following equations will be obtained

bx = 6 — yON + z0 M, oy = dm + 20N — z0L, bz =én — x6M + ybL

It is easy to be convinced that these expressions not only satisfy the first three equations
of condition of Article 53, but also all the others that could be found and which are all
contained in this general equation

d"zd"éz + dny d"6y + d"zd"6z = 0

These are the values of dx, dy, 6z for an arbitrary system of points connected in such a
manner that they always keep the same distances between themselves. Thus these values
will not only be used in the case of an arbitrary mobile and invariable curve in the body,
but also for the case of a solid body with an arbitrary shape.

Euler was the first to find these simple and elegant formulas which express the variations
of the coordinates of all the points of a solid mobile body in space. He arrived at these
formulas by considerations drawn from the differential calculus but different from those
that we have used and it seems to me less rigorous. Refer to the memoir in the volume of the
Académie de Berlin for 1750 entitled Découverte d’un nouveau principe de mécanique.”

61. Since the preceding values of 6z, dy, 0z already satisfy the equations of condition
of the problem, it is clear that it will be sufficient to substitute them in the formula
S(X éx +Y by + Z dz)dm, and to equate this latter equation to zero independent of the
quantities 6¢, ém, ém, 6L, 6 M, 6 N, which are the only indeterminates remaining.

But since these quantities are the same at every point of the body, they should be put outside
of the integral sign S in making the substitution. Consequently, this general equation of
equilibrium for a solid body of arbitrary shape will be obtained

HSXdm+émSYdm+énSZdm
+OINS(Yz — Xy)dm + 6M S(Xz — Zz)dm
+6LS(Zy—Yz)dm =0

from which the particular equations of equilibrium for the particular conditions of this
problem will result.

62. At the outset, if the body were assumed entirely free, the six variations 6¢, ém, én, 6L,
6 M, 6N will all be indeterminate and the quantities by which they are multiplied should
also separately be equated to zero, which will give these six equations which are already
known

SXdm =0, SY dm =0, SZdm =0,
S(Yz — Xy)dm =0, S(Xz—Zz)dm =0, S(Zy—-Yz)dm =0
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In the second place, if there were in the body a fixed point about which it has only the
freedom of rotation in any direction and if the values of the coordinates z,y, z for this
fixed point were called a, b, ¢ it will result that da = 0, b = 0, 6¢ = 0. Therefore

60 —bON +cdM =0, bm+adN —cdL =0, n—adM +b6L =0
from which one obtains
6 =bbN —cbM, ébm =cbL —aébN, bn=abédM —béL

These expressions will be substituted in the general equation of the preceding article and
putting the quantities a, b, ¢ which are constants with respect to the different points of the
body under the integral sign S, the following transformation will result

SNS(Y(z —a)— X(y—b))dm

+6M S(X (2 —¢)— Z(x — a))dm

+0LS(Z(y—b)-Y(2—¢))dm =0
which will give only three additional equations, that is

S(Y(x—a)— X(y—0b))dm =0

S(X(z—¢)—Z(x —a))dm =0

S(Z(y—b)-Y(z—¢))dm =0

In the third place, if there were two fixed points in the body and if f, g, h were the values
of z,y, z for the second of these points, there will also result

60 =g6N —hoM, ém =hoéL — fON, on=fo6M —géL

Thus after subtracting these expressions for 8¢, ém, én from the preceding expressions,
one will have

(g=b)dN — (h—c)6M =0, (f —a)dN — (h —c)6L = 0,

(f—a)lM — (g—b)6L =0
The first two of these equations give

sL=1"%N M=
h—c

and because these expressions also satisfy the third equation, the variation of N will
remain indeterminate.
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After making these substitutions in the transformed equations above, the following equation
will result

ON[(h—¢)S(Y(z —a) — X(y — b))dm
+(g—b)S(X (2 —¢) — Z(x — a))dm
+(f—-a)S(Z(y—b)—Y(z —c))dm] =0

Thus the conditions of equilibrium will be contained in this single equation

[(h—c)S(Y (z — a) — X(y — b))dm
+(g—=b)S(X(z2—¢)— Z(x — a))dm
+(f —a)S(Z(y —b) =Y (2 —c))dm] =0

63. These diverse equations are related to those which we have given in SECTION III for
the equilibrium of a system of isolated points and of invariant configuration. We could
have immediately applied the conditions of this equilibrium to a solid body of arbitrary
configuration for which all the points are acted on by given forces. But we believed that
it was useful for the purpose of showing the fecundity of our methods to treat this last
problem specifically and without using anything from problems already solved.

Also, if the two points of the body we assumed fixed were mobile on given lines or
surfaces or even joined together in an arbitrary fashion, then one or several differential
equations between the variations of the coordinates a,b,c, f,g,h of these points will
result. Substituting in place of these variations their values in 6¢, ém, én, 6L, 6M, N,
from the general formulas of Article 58, there will be as many equations between these last
variations by means of which some of these variations could be determined from the others.
One would then substitute these values in the general equation and equate to zero each of
the coefficients of the remaining variations which will give all the necessary equations for
equilibrium.

The process of calculation is, as is observed, always the same. This fact should be viewed
as one of the main advantages of this method.

64. The expressions found above (Article 60) for the variations 6z, éy, 6z show that
these variations are nothing more than the motions of translation and rotation which we
considered specifically in SECTION III.

Indeed, it is obvious that the terms 6¢, ém, én which are the same for all the points of
the body represent the small distances traversed by the body in the directions of the x, y, 2
coordinate axes by virtue of an arbitrary motion of translation. From the formulas of
Article 8 of the same section it can be seen that the terms 26 M — yéN, z 6N — 2 6L,
y 6L — x 6 M represent the small spaces traversed by each point of the body in these same
directions by virtue of the three motions of rotation L, § M, § N about the three coordinate
axes of x,y, z. These quantities 6L, § M, 6 N, are associated with the quantities dv, dw,
dy of the cited article. Thus these expressions could have been immediately deduced
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from the consideration of these motions which would have been simpler but not as direct.
The preceding analysis leads naturally to these expressions and proves then by a more
direct and general approach than that of Article 10 of SECTION III that when the various
points of a system retain their respective positions, the system can have at any instant only
translational motion in space and rotation about three orthogonal axes.

SECTION VI
THE PRINCIPLES OF HYDROSTATICS

Although we have ignored the internal structure of fluids, we cannot doubt that the particles
which compose them are material and that for this reason the general laws of equilibrium
are as applicable to them as they are to solid bodies. Indeed, the principal property of fluids
and the only one which distinguishes them from solid bodies is that all their parts have
no resistance against the smallest force and can move among themselves with all possible
facility, whatever their mutual action and connection. This property is easily modelled by
the calculus and it follows that the laws of equilibrium for fluids do not require a separate
theory but that they are only a particular case of the general theory of statics. It is from
this point of view that we will consider them. However, we believe that we must begin by
presenting the different principles which have been used in the past in this part of statics,
which is commonly called hydrostatics, in order to complete the analysis of the principles
of statics which we gave in SECTION L.

1. Again itis from Archimedes that we have the first principles for the equilibrium of fluids.
His treatise De insidentibus humido' did not come down to us in the original Greek. There
was only a rather imperfect Latin translation published by Tartaglia which Commandino
undertook to restore and clarify with notes. This treatise was published under the direction
of this learned commentator in 1565 with the title De iis quae vehuntur in acqua.?

This work, which can be viewed as one of the most precious relics of Antiquity, is divided
into two books. In the first book, Archimedes formulates two principles which he considers
drawn from experience and on which he bases his entire theory. The first is that the nature
of fluids is such that the portions compressed are displaced by those which are more
compressed and that each portion is always compressed by the weight of the column
standing vertically above it. The second is that everything which is pushed upward by a
fluid is always pushed along the perpendicular which passes through its center of gravity.

From the first principle, Archimedes easily demonstrates that the surface of a fluid, for
which all the parts are assumed attracted toward the center of the Earth, must be spheroidal
for the fluid to be in equilibrium. Then he demonstrates that a body as heavy as an equal
volume of fluid must sink entirely in it because by considering two equal pyramids of the
fluid assumed in equilibrium about the center of the Earth, the pyramid in which the body
would be partly submerged would exert a greater pressure on the center of the Earth than
the other pyramid or in general on an arbitrary spherical surface which could be imagined
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about this center.® In the same fashion, he proves that bodies lighter than an equal volume
of fluid will sink in it until the submerged part displaces a volume of fluid as heavy as
the entire body. From these demonstrations, he deduces the following two theorems of
hydrostatics: bodies which are lighter than an equal volume of fluid are pushed upward by
a force equal to the amount by which the weight of the displaced fluid exceeds the weight
of the immersed body and heavier bodies lose a part of their weight equal to that of the
displaced fluid.

Thereafter, Archimedes uses his second principle to establish the laws of equilibrium for
floating bodies. He demonstrates that all submerged portions of a hemisphere lighter than
an equal volume of fluid must necessarily assume an orientation for which the base is
horizontal. His demonstration consists of showing that if the base were inclined, the total
weight of the body considered concentrated at its center of gravity and the buoyant force of
the fluid considered concentrated at the center of gravity of the submerged portion would
always tend to rotate the body until its base became horizontal.

These are the goals of the first book. In the second book, Archimedes formulates, from
the same principles, the laws of equilibrium for various solids formed by the revolution
of a conic section and submerged in fluids of greater density than these bodies. He
examines those cases where the conoids can remain inclined, those where they must
remain horizontal and those where they must rollover or right themselves. This book is
one of the most beautiful monuments to the genius of Archimedes and it contains a theory
for the stability of floating bodies to which modern investigators have added little.

2. Although the pressure of a fluid on the bottom or on the walls of a vessel in which it
is contained is not difficult to determine from the demonstrations of Archimedes, it is not
until Stevin that this research is carried out and the paradox of hydrostatics demonstrated,
that is, that a fluid can exert a pressure much greater than its own weight.* Stevin’s theory
of hydrostatics is in the third volume of the Hypomnemata Mathematica,® which was
translated from Flemish by Snellius and published at Leyden in 1608. After having proved
that a solid body of arbitrary shape with the same [specific] gravity as water can remain
submerged at an arbitrary depth because it occupies the same volume and weighs as much
as if it were water, Stevin imagines a rectangular vessel filled with water and he shows
easily that its bottom must bear the entire weight of the water contained in the vessel. He
then assumes that a solid body of arbitrary shape and of the same [specific] gravity as
water is placed in this vessel. It is clear that the pressure will remain the same so that
if a shape is assumed for the immersed solid such that it remains a column of fluid of
arbitrary configuration, the pressure of the column on the base will still be the same and
consequently, it will be equal to the weight of a vertical column of water which would have
this same base. But Stevin observes that by assuming this solid firmly fixed in place, it
cannot result in any change in the action of the water on the base of the vessel. Therefore,
the pressure on this base will always be equal to the weight of the same column of water,
whatever the shape of the vessel.
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Stevin proceeds from there to determine the pressure of the water on the vertical or inclined
walls of the vessel. He divides their surface by horizontal lines into several small parts
and he shows that the pressure on each part is greater than if it were horizontal and at the
elevation of its upper edge, but that at the same time the pressure is less than if it were
positioned horizontally at the elevation of its lower edge. Thus by diminishing the width
of the parts and by infinitely increasing their number, he proves by a limiting process that
the pressure on an inclined plane, is equal to the weight of a column of fluid for which this
plane will be the base and for which the height will be half the height of the vessel.

He then determines the pressure on an arbitrary part of an inclined plane and discovers
that it is equal to the weight of a column of water which would be formed by applying
perpendicularly to each point of this part straight lines equal to the depth of the point
under water. Now that this theorem has been demonstrated for plane surfaces positioned
arbitrarily, it is easy to extend it to curved surfaces and to conclude that the pressure exerted
by a heavy fluid against an arbitrary surface has for its measure the weight of a fluid column
which would have for a base this same surface, if necessary, converted to a plane surface
and for which the heights with respect to the different points of the base would be the same
as the distances from the corresponding points of the surface to the fluid level or which is
the same, this pressure will be measured by the weight of a column which would have for
a base the weighted surface and for a height the vertical distance from the center of gravity
of this weighted surface to the top surface of the fluid.

3. The preceding theories of equilibrium and of the pressure of fluids are, as is observed,
entirely independent of the general principles of statics because they are founded only
on principles of experience peculiar to fluids. Hence, the approach to demonstrating the
laws of hydrostatics, by deducing from empirical knowledge of some of these laws, one
from all the others, has been adopted by most modern authors and this approach has made
hydrostatics a science entirely different and independent of statics.

However, it is natural to attempt to combine these two sciences and to make them depend
on only one principle. But among the different principles which can be used as a basis
for statics and for which we have given a concise exposition in SECTION I, it is obvious
that only the Principle of Virtual Velocities can be applied naturally to the equilibrium of
fluids. Thus Galileo, author of this principle, has used it to demonstrate the main theorems
of both statics and hydrostatics.

In his Discorso intorno alle cose che stanno su l'acqua o che in quella si muovono.® he
deduces immediately from this principle the equilibrium of water in a siphon by showing
that if the level of the fluid is assumed to be at the same height in the two branches, it cannot
descend in one and ascend in the other and at the same time not have equal moments for the
portion of the fluid which descends and for the portion which ascends. In a similar fashion,
Galileo demonstrates the equilibrium of fluids with solid bodies immersed in them. It is
true that these demonstrations are not very rigorous and although an attempt is made to
remedy this shortcoming in the notes added to the Florentine edition of 1728, it can be
asserted that they still leave a great deal to be desired. Descartes and Pascal have also used
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the Principle of Virtual Velocities in hydrostatics. In particular, the latter made broad use
of it in his Traité de I'equilibre des liqueurs’ and has used it to demonstrate the principal
property of fluids which is that an arbitrary pressure applied to a point of the surface is also
transferred to all other points.

4. However, these applications of the Principle of Virtual Velocities were still too hypo-
thetical, more precisely stated, too broad to serve as a foundation for establishing a rigorous
theory for the equilibrium of fluids. Thus, from that time, this principle was abandoned
by most of the authors who have investigated hydrostatics and even more so by those who
have undertaken to extend the frontiers of this science by investigating the laws of equi-
librium of heterogeneous fluids in which all the parts are acted upon by arbitrary forces.
This research is very important because of its relation to the famous question concerning
the shape of the Earth.

Huygens has assumed as a principle of equilibrium in this research the perpendicularity of
gravity to the fluid surface. Newton® began his research with the principle of the equality
of the weights of central columns. Then Bouguer® observed that often these two principles
did not give the same result and concluded that to have equilibrium in a fluid mass, the
two principles had to be acting simultaneously and accordingly, would have to give the
same shape to the surface of the fluid. Moreover, Clairaut'® has demonstrated that there
might exist cases where this is true but yet, there would be no equilibrium. Maclaurin has
generalized Newton’s principle by establishing that in a fluid mass in equilibrium, each
particle must be equally compressed by all the rectilinear columns of fluid which act on this
particle and terminate at the surface. Clairaut has made this principle more general yet by
showing that the equilibrium of a fluid mass requires that the forces acting on all the parts
of a fluid, contained in an arbitrary conduit, terminating at the surface or self-contained,
equilibrate each other. Finally, he was the first to deduce from this principle, the true
fundamental laws of equilibrium of a fluid mass for which all the parts are acted upon by
arbitrary forces. Furthermore, he found the equations of partial differences from which
these laws can be derived. This discovery has changed the science of hydrostatics and has
made of it a new science.

5. Clairaut’s principle is nothing less than a natural consequence of the principle of equality
of pressure in all directions at a point and the same equations which hold for equilibrium in
conduits can immediately be deduced from this principle. Since, by considering pressure
as a force acting on each particle which can be expressed as a function of the coordinates of
the particle in a fluid mass, the difference between the pressures acting on two opposed and
parallel faces gives the force which tends to compress the mass of the fluid perpendicular to
these faces and which must be equilibrated by the accelerating forces acting on this particle
so that by projecting all these forces on the directions of the three rectangular coordinate
axes and by assuming the fluid mass divided into small rectangular parallelograms having
for sides elements of these coordinates, one has directly three equations of partial differ-
ences between the pressure and the given accelerating forces which are used to determine
the value of the pressure and the relation which must exist between these forces. This
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simple approach to finding the general laws of hydrostatics is due to Euler (Mémoires de
Berlin, 1755)'! and it is now adopted in almost every treatise on this science.

6. Thus until now the principle of the equality of pressure in every direction has been
the foundation for the theory of the equilibrium of fluids and it should be said that this
principle contains in effect the most simple and general property that experience has
discovered in fluids in equilibrium. However, is knowledge of this property indispensable
for investigating the laws of the equilibrium of fluids? Can these laws be derived directly
from the nature of fluids considered as aggregates of molecules loosely held together,
independent of one another and perfectly mobile in all directions? This is what I will
attempt to do in the following sections using only the general principle of equilibrium
which I applied heretofore solely to solid bodies. This part of my work will not only
furnish one of the most beautiful applications of this principle, but it will also be used to
simplify several aspects of the theory of hydrostatics.

In general, fluids are divided into two categories: incompressible fluids for which portions
change shape but do so without changing volume and compressible, elastic fluids for which
portions change shape and volume simultaneously and which always expand by exerting
a known force which is ordinarily assumed proportional to a function of their density, for
example, water, mercury, etc. belong to the first category and air, steam, etc. belong to the
second.

We will begin by treating the equilibrium of incompressible fluids and later, the equilibrium
of compressible, elastic fluids.

SECTION VII
THE EQUILIBRIUM OF INCOMPRESSIBLE FLUIDS

1. Let the letter m denote a mass of fluid for which all the particles are acted upon by
gravity or arbitrary forces P, @, R, etc. acting in the direction of the lines p, ¢, 7, etc. The
sum of the moments of all these forces, according to the formulations of Article 12 of
SECTION 1V, will be represented by the integrable formula

S(Pép+ Qbég+Rér +---)dm

which will be equal to zero for a fluid in equilibrium.

Subsection I
The Equilibrium Of A Fluid In A Very Narrow Conduit

2. Let us assume at the outset that the fluid is contained in a conduit or pipe of very small
cross section and of given shape, and let us further imagine that this fluid is divided into
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infinitesimal elements for which the length is ds and the cross section is w. It is obvious
that dm = w ds, since the cross section w is assumed infinitesimal and ds is the elemental
length of that portion of the fluid passing through the cross section.'? By assuming that
the fluid makes a small displacement and changes its position in the conduit by a small
amount and by letting 6s be the small distance that the element or particle traverses in the
conduit, it is obvious that w ds will be the quantity of fluid which will pass at the same
instant through each cross section w. Thus because of the incompressibility of the fluid,
this quantity must be the same throughout so that w §s = «, where the quantity a will be
a constant along each of the infinitesimal elements of the conduit. Thus w = a//és, and
consequently, dm = a ds/ds so that the formula which expresses the sum of the moments
of the forces'? will become after taking the constant quantity « outside the integral sign S

aS(Pép+Qdéqg+ Rér +---)ds
bs

Now it is obvious that since ép, dq, dr, etc. are the variations of the lines p, ¢, r, etc.
resulting from the variation ds, these variations must be in the same ratio to ds as the
differentials dp, dg, dr, etc. are to ds because of the given configuration of the conduit.'*
Thus there results

@_dp 6qg dq or dr

6s ds’  és ds’ &8s ds’

which will reduce the preceding formula to the following form
aS(Pdp+Qdg+ Rdr +--+)

where the differentials dp, dq, dr, etc. are taken with respect to the curvature of the conduit
and the integral sign S indicates an integral taken along the entire length of the conduit.

After setting this quantity equal to zero, the following equation is obtained
S(Pdp+Qdg+Rdr+---)=0

which expresses the general law of equilibrium of a fluid contained in a conduit of arbitrary
shape.

3. If in addition to the forces P, @, R, etc. which act on every point of the fluid, there is
also at one of the ends of the conduit an external force II' which is produced by means
of a piston acting on the surface of the fluid perpendicular to the walls of the conduit,
then denoting by s’ the small distance traversed by the segment of fluid that is assumed
compressed by the force II', while the other segments traverse the various distances ds,
the moment of the force II', which will be expressed by I’ §s’, should be added to the
sum of the moments of the forces P, Q, R, etc. However, if w’ denotes the cross sectional
area of the conduit where the force IT' is acting, the quantity of fluid which passes through
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the section w’ will be w' §s” while the quantity of fluid passing through the other arbitrary
cross sections w will be w §s.

However, the incompressibility of the fluid requires that these quantities be everywhere
the same. Thus since w ds = ¢, it follows that w’ §s’ = « and consequently, s’ = a/w'.
Therefore, the total sum of the moments of the forces which act on the fluid will be
represented by the formula

H/
Q(J +S(Pdp+Qdg+ Rdr +--+))

so that the equation of equilibrium will be
H/
o +S(Pdp+Qdg+Rdr+---)=0

4. It is obvious that in the state of equilibrium the force IT' must be equilibrated by the
fluid pressure exerted on the piston over the cross sectional area w’. From which it follows
that this force will be equal to —IT’, and consequently, equal to

Ww'S(Pdp+ Qdg+ Rdr +---)

Therefore, in general, the force of the fluid exerted on each point of the piston will be
expressed by the integral formula

S(Pdp+Qdg+ Rdr+--+)

where this integral is to be taken over the entire length of the conduit. This force will be
the same if an immobile wall which seals the conduit at one end replaces the mobile piston.

5. If at the other end of the conduit there is another force I1", produced in a similar fashion
by means of a piston, the equation for the equilibrium of the fluid would be found in a
similar fashion

o I
—,-+—;+S(Pdp+qu+Rdr+'~):0
w w

where w'’ is the cross sectional area of the conduit at this location.

6. Thus if the fluid is only compressed by the two external forces IT' and II" applied to the
surfaces w’ and w”, the equilibrium equation would be
H/ HII
—+ = =0

w w

From which it is obvious that the two forces I’ and IT"” must be in opposite directions and
at the same time mutually proportional to the areas w’ and w” on which these forces act.
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This is a proposition which is commonly viewed as a principle drawn from experience or
at least as following from the principle of the equality of pressure in every direction, which
most authors writing on hydrostatics consider to be the fundamental property of fluids.

7. Knowledge of the laws of equilibrium for a fluid contained in a narrow conduit of
arbitrary shape can lead to the laws of equilibrium for an arbitrary mass of fluid whether
contained in a vessel or not. Indeed, if a mass of fluid is in equilibrium and if an arbitrary
conduit is assumed to pass through it, the fluid contained in this conduit will also be in
equilibrium, that is, independent of the other portions of the fluid. Thus the equation for
equilibrium in this conduit, omitting the external forces (Article 2), will be

S(Pdp+Qdg+Rdr+---)=0

Since the configuration of the conduit can be arbitrary, the preceding equation should be
independent of the configuration. From that fact, it could be immediately concluded, as
Clairaut has done in his “Théorie de la Figure de la Terre”, that the quantity P dp + @) dg +
Rdr + - - - must be an exact differential. However, this conclusion could be found using
solely analytical methods, and at the same time, the relations which must hold between the
quantities P, @, R, etc. could be obtained. To this effect, it is only necessary to vary the
integral S(P dp + Q dg + Rdr + - - -) by the method of variations and to assume that its
variation is equal to zero.

8. Let us denote by ¥ the value of the general integral S(Pdp + Qdq + Rdr + ---)
taken over the entire length of the conduit. In addition, it follows that 6% = 0. Now by
differentiation, the following equation results

60 = 4[S(Pdp+Qdg+ Rdr+---)] =S[6(Pdp+ Qdg+ Rdr + - --)]
=S(Pédp+Qbdg+ Rédr + -+ 6Pdp+6Qdg+ 6Rdr + -+ -)

Replacing éd by dé and then eliminating the double operator dé through integration by
parts, the expression for § ¥ will become

00 =Pép+Qbéqg+ Rér +---
+S(6Pdp —dPép+ 6Qdg—dQ bq+ é6Rdr —dRér + - )

where the terms which are outside of the integral sign S correspond to the limits of the
integral represented by the integral sign and consequently, they correspond to the ends
of the conduit where by assuming these ends fixed, the variations ép, éq, ér, etc., which
correspond to them will be equal to zero. Consequently, the terms outside of the integral
sign will vanish.

Now, since the quantities P, @, R, etc. which represent the forces are or can always be
assumed to be functions of p, ¢, r, etc., it is clear that the part of 6% which is under the
integral sign S cannot be reduced further. Therefore, in order to have in general 0¥ = 0,
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this part must be independently equal to zero and consequently, the following identity will
be obtained for each point of the mass

0Pdp—dPép+6Qdg—dQdéq+ éRdr —dRér+--- =0

By regarding the expressions of the forces P, ), R, etc. as arbitrary functions of p, q,r,
etc., the following equations written in the usual notation will be obtained

dP = Edp+ d—}—D—dq+ Edr%—-"
dp dg dr

and similarly

dpP dP dpP
0P = —ép+ —bq+ —or+ -
dp P+ i q+ ar T+
and identically for the other differences. Substituting these expressions in the preceding
equation and ordering the terms, it will assume the following form

_dP  dQ

0= (Eq_ dp)(éqdp dq p)
dP dR

+ (E - d—p)(érdp— dr ép)
dQ dR

(—d? - d—q)((ST dq - dréq)

and should exist independently of the differences dp, dg, dr, etc. and the variations dp, éq,
or, etc.

Therefore, if no relation is given between the variations p, g, r, etc., the following expres-
sions should be put equal to zero'?

P _dQ _,
dg dp
dP dR _
dr  dp
Q _dr _
dr dg

These are the equations of condition derived from the integrability of the formula P dp +
Qdg+ Rdr 4 ---1¢

9. When the lines p, g, r, etc. relate to a point in space, as in the present case, they depend
only on the coordinates of this point and the forces P, @, R, etc. can always be reduced to
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three in the direction of these coordinates (SECTION V, Atticle 7). Thus by taking p, q,
for these coordinates, either rectangular or not, and P, Q, R, etc. for the forces which
act on each particle of the fluid in the direction of these same coordinates, the quantities
P, Q, R viewed as functions of p, ¢, r must satisfy the following three equations

dP dQ_O dpP dR_O dQ dR _

dg dp dr dp 7 dr dg

These are the necessary conditions for the equilibrium of a fluid mass under the action of
the forces P, @, R which act on all its points.

Incidentally, up to this point the density of the fluid has not been considered or rather it
has been viewed as a constant and equal to unity. However, if it is to be assumed variable,
then by denoting by I' the density of an arbitrary particle dm, one will have (Article 2)
dm = I'wds and the quantities P, @, R, etc. will all be multiplied by I". Therefore, the
laws of equilibrium for fluids with variable density will be the same as the laws for the
equilibrium of fluids with uniform density after multiplying the acting forces by the density
of the particle on which they act, that is, by simply writing I'P, I'Q, TR, etc. instead of
P,Q, R, etc.

Subsection II
Where the General Laws of Equilibrium of Incompressible Fluids
are Deduced from the Nature of the Particles which Compose It

10. We are now going to determine directly from our general formula, the laws of
equilibrium for incompressible fluids by viewing these types of fluids as composed of a
mass of perfectly mobile particles and capable of changing shape but not volume. Let
us assume for greater simplicity that all the forces which act on the particles of the fluid
are reduced to three, represented by X, Y, Z and acting in the direction of the rectangular
coordinates z, y, z, that is, acting towards the origin of these coordinates. We have given
the means to carry out this task in Chapter I of SECTION V using the general formulas.

Denoting the mass of an arbitrary particle by dm, the sum of the moments of the forces
X.,Y, Z, will be given by the integral formula

S(X 6z +Y 6y + Z6z)dm

but the volume of the particle dm can be represented by dz dy dz. So by expressing the
density by I' it is clear that dm = I dz dy dz and the integration will be with respect to the
three variables z, v, z.

Moreover, the equation of condition expressing the incompressibility of the fluid must
be considered. This equation is assumed to be expressed by L = 0, and will give, after
differentiating according to , multiplying by an undetermined coefficient A and integrating,
the formula SA § L which will be added to the preceding equation.
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If there are no external forces which act on the surface of the fluid, nor conditions peculiar
to the surface, the general equation of equilibrium (SECTION IV, Article 13) will simply
be

S(X 6z +Y 6y + Z62)dm + SASL =0

in which the integral must be taken with respect to the entire mass of the fluid.

11. The condition of incompressibility requires that the volume of each particle be invari-
able. So, having expressed this volume by dz dy dz, it must be that dz dy dz = constant
for the equation of condition and consequently, L is equal to (dr dy dz — constant) and
6L = é(dx dydz).

In order to obtain the variation 6 (dz dy dz) it seems that it will only be necessary to simply
differentiate dz dy dz according to é but at this point there is a particular consideration to
be made and without which the calculation will not be rigorous. The quantity dx dy dz
represents the volume of a particle as long as the shape of this particle is assumed to be
a rectangular parallelepiped whose sides are parallel to the x,y, z axes of the coordinate
system. This assumption is very well-founded because the fluid can be imagined divided
into infinitesimal elements of arbitrary shape. However, §(dx dydz) must express the
variation of volume when the particles change position by an infinitesimal amount. That
is, when its coordinates x, y, z, become = + dx, y + 6y, z + 6z and it is clear that if in this
change the element retained the shape of a rectangular parallelepiped, one would have

6(dr dy dz) = dydz édz + dz dz édy + dx dy 6d=

Using the principles of the Calculus of Variations, the variations 6dz, 6dy, édz can be
replaced by déx, déy, déz. However, it is necessary to recognize that since the variations
bx, by, 6z can be viewed as indeterminate and infinitesimal functions of z, y, z, only x must
be considered variable in the differentiation of 6z so that déx represents the elongation of
the side dz of the rectangular parallelepiped dx dy d= while the coordinates y and z do not
vary. Therefore, according to the notation for partial differentials, (déx/dz)/dz should
be written in place of déz. By a similar reasoning (déy/dy)/dy and (déz/dz)/dz will be
written instead of déy and déz. In this fashion, with the assumption that the elemental
volume dx dy dz remains rectangular after the variation, one will have

dsr | dsy o
dz dy dz

6(dz dydz) = dedydz( )

Nothing will change, if it is assumed that the elemental volume dz dy dz became after the
variation, a parallelepiped whose angles are very close to right angles. Since it is known
from geometry that if a, b, ¢ are the three sides of a parallelepiped which makes a solid
angle and «, (3, 7 are the three angles which these sides form with each other, then the
volume of the parallelepiped is expressed by the formula

abcr/(1 — cos? o — cos? 3 — cos?y + 2 cos a cos B cos )
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Now the lengths of the sides become, because of the variation,

déx doy déz
dl‘(l‘i—&-), dy(1+@ ) dz(l+a)

and the cosines of «, 3, v become infinitesimal. Thus by substituting these values in
place of a, b, c and neglecting the infinitesimal quantities of orders higher than the first, the
variation of dx dy dz will give the same expression which was just found.

Although this last assumption is legitimate, we do not want to adopt it without a demon-
stration so that no doubt is left about the accuracy of our formulas. Thus we will investigate
in a rigorous manner the variation of dz dy dz with respect to both change of position and
length of each of the sides of our rectangular parallelepiped and by only assuming that
these sides remain rectilinear, which is true for infinitesimal variations.

12. In order to simplify this investigation, we will begin by considering only one of the
faces of the parallelepiped dx dy dz, for example, the face dz dy for which the four corners
have the following coordinates

(1) z,y, 2, (2) z +dz,y, =,

(3) z,y+dy,z, (4) r+dz,y+dy,z2

Let us assume that the coordinates x, y, z of the first corner become = + dx, y + dy, 2 + 2,
and let us further consider the variations 6z, 6y, 6z as infinitesimal functions of z, v, 2.
By incrementing in turn, z and y by their differentials dz and dy, the coordinates of the
other three corners can be found simultaneously. Therefore, the following expressions will
be obtained, using the same numbers to represent the coordinates of the four corners after
variation

(1) x4+ éz, y + oy, z+6z

(2) r+da:+6:r+d§—xdx, y+6y+dé—ydx, z+6z+@dx
dx dz dx
déz

dé dé
(3) a:+6x+—xdy, y+dy+6y+—ydy, 246z + —dy
dy dy dy

( déx déx

x+dx+6x+adx+—&y—dy

déy déy
4 dy + 6y + — ==
4) <y+dy+ y+dxdz+ dydy

z+dz+6z+-@idx+%dy
\ dz dy

Since these four expressions are the coordinates of the four corners of the new quadrilateral
in which the rectangle dx dy has been altered, it is clear that the lengths of the sides of this
quadrilateral will be obtained by taking the square root of the sum of the squares of the
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differences of the coordinates of the two corners at the end of each side. Thus by denoting
the length of the straight line which joins two corners by the two numbers assigned to the
coordinates of those two corners, the following equations will be obtained

12)_@\/(1 déx déy) (déz)z

d:c
(1,3>=dy\/<dj;> 1+ G (0

6. =doyf(14 By (S0 (2,

(2,4) = dy\/&‘si)z (14 29y, (B2,

dy dy

from which it is clear that the opposite sides (1,2), (3,4) are equal to each other as are the
opposite sides (1,3), (2,4). Therefore, the quadrilateral is a parallelogram for which the
lengths of the two contiguous sides (1,2), (1,3), after the quantities of second order under
the square root sign are neglected, will be

(1,2) = dz (H?—z) (1,3)=dy(1+(f—y

13. The angle made by these two sides (1,2) and (1,3) will be found by considering the
diagonal length (2,3) which is obtained by taking the square root of the sum of the squares
of the differences of the respective coordinates of the corners (2) and (3), which is

(2,3):\/((1 +%5ﬁd -?fd) (dy+d5yd —‘fjd) (@fdx—%zdy)z

Denoting by a the angle in question, the triangle formed by the three sides (1,2), (1,3),
(2,3) results in the following equation

(1,2)% +(1,3)% — (2,3)?
2(1,2)(1,3)

Cosax =

Substituting into this expression the equations which have been found for (1,2), (1,3), (2,3)
eliminating those terms which cancel out, and neglecting the infinitesimal quantities of the
second and higher orders, one will have

cosa = dox + @
T ody dx

where it is clear that the angle o differs from a right angle by infinitesimal quantities,
because its cosine is infinitesimal.
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14. If the same analysis is applied to the other two faces, dz dz and dy dz of the rectangle
dz dy dz, these faces will also become parallelograms and the three opposite faces will
also be parallelograms, as can be demonstrated easily by geometry. Consequently, the new
solid will be a parallelepiped for which the sides which form a solid angle will be

déx déy déz
d17(1+—a'z—), dy(l'i-@), dz(l+g)

and denoting by «, 3, v the angles formed by these sides, one will have

_déx  doy
cosa = d—y+a
_déx | doz
cosf3 = E+d_:v
cos'y——-iiéy+%i
dz dy

From this result, it can be concluded that the variation of the rectangular parallelepiped
dz dy dz is rigorously expressed by the formula given above in Article 11.

15. It can also be observed from this that if the variations éx, 6y, 6z were only functions

of x,y, z, respectively, then it happens that cos @ = 0, cos 3 = 0, cosy = 0 such that the

rectangular parallelepiped dx dy dz would remain rectangular after these variations. But

since the change of configuration of this parallelepiped is only infinitesimalegin {center} and does not
influence at all the magnitude of its volume, it follows that without altering the generality

of the result, the variations éx, 6y, 6z can be assumed to be functions of z,y, z as was

done in Article 31 of SECTION IV.

16. Thus since we have the exact value of §(dx dy dz), it will be taken for § L. Conse-
quently, there results

déx déy dbz
6L =drdyde(— + — + —
$yz(d1:+dy+dz
After substituting this expression in the general equation of Article 10 and at the same time
replacing dm by the expression I' dz dy dz, the following equation results

IN(Xéx+Yoy+ Z6bz)

dz dy dz

and it will only be necessary to eliminate the double operator dé by the method presented
in Subsection II of SECTION IV.

17. Let us consider at the outset the quantity S A(déx/dz)dx dy dz where the integral
sign S indicates a triple integral with respect to z,y,2. It is clear that since the dif-
ference 0z depends solely on the variations of z, it will be sufficient to consider only



150 PART I: STATICS

the integration with respect to z. This is the reason for first giving to this quantity the
form S dy dz S A(déz/dx)dz and then transforming the simple integral S A\(déx/dz)dz to
Nz — Néx' — S (dA/dx)éx dz.

The quantities denoted by a prime correspond to the lower limit of the integration and
those denoted by a double prime correspond to the upper limit of the integration following
the adopted notation. Therefore, the quantity in question will be transformed to

Sdydz(\'éx" — XN éz') — Sdydz S%éz dz

or what is the same thing S(A\” §z"” — X' é2')dy dz — S(d\/dx)éx dx dy d=.

In the same fashion and by a similar reasoning, the quantities S A(déy/dy)dxdydz
and SA(déz/dz)dzdydz will be transformed to S(A’éy" — N éy')drdz —
S(d)\/dy)éy dx dydz and S(A" 62" — X' éz')dz dy — S(dA/dz)ézdz dy d=.

Thus after these substitutions are made, the following general equation for the equilibrium
of the fluid mass will be

dA dx dA

+S(\" 8z" — N 62" )dy dz + S(N" 6y" — N éy')dz d=
+S(\" 62" — X' 6z")dxrdy =0

in which it is only necessary to equate separately to zero the coefficients of the indeterminate
variations éz, 0y, 6z (SECTION 1V, Article 16).

18. The following three equations will be obtained at the outset

dA dA dA
G IY - == = zZ-=Z=
IX - =0, =% TZ-g=o0

which must hold for every point of the fluid mass. Then, if the boundaries of the fluid
are free, the variations 6x', 8y, 62', 6x", 6y", 62" which correspond to the points of the
surface of the fluid will also be indeterminate and consequently, their coefficients will also
equate separately to zero, which will provide A’ = 0, A" = 0, that is, in general A = 0 for
all points of the surface of the fluid. Furthermore, this equation will be used to determine
the shape of this surface.

It will be the same for the surface of a fluid contained in an open vessel. But with respect
to the part of the boundary which is supported on the sides, the variations éz', 8y', 62,
6", 8y", 62" must have ratios between them given by the shape of these sides because
the fluid can only slide along the sides. And we will demonstrate below that whatever
their shape, the terms which contain the variations in question will always be equal to zero
individually so that there will be no condition imposed on this part of the fluid’s boundary.
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19. The three equations just found for the conditions of equilibrium of the fluid give

a _
dr ~

A _
dy

dx

rx, Iy, —=IZ
dz

and since d\ = (d\/dz)dz + (d\/dy)dy + (d\/dz)dz one will have d\ = ['(X dz +
Y dy + Z dz) and consequently, the quantity I'(X dz + Y dy + Z dz) must be an exact
differential in z, y, 2. And this condition alone expresses the laws for the equilibrium of
fluids.

Ifthe quantity A is eliminated from these equations, the following equations will be obtained

dTX) d(IY) d(rX) _ d(rz) dTY) d(T2)

dy dz dz dr ’ dz dy

which are compatible with those of Article 9.

These conditions are necessary so that the fluid mass can be in equilibrium under the action
of the forces X, Y, Z. When these conditions hold due to the nature of these forces, it is
certain that equilibrium is possible and it remains to find the shape that the fluid mass must
have in order to be in equilibrium, that is, the equation of the external boundary of the
fluid.

We have seen in the preceding article that at each point of the surface, A must be equal to
zero. Thus since d\ = I'(X dz + Y dy + Z dz), one will have after integration

A= /F(de+Ydy+ Z dz) + const.
Consequently, the equation for the external boundary of the fluid will be
/F(de+Ydy+Zdz) =K

where K is an arbitrary constant. This equation will always consist of finite terms because
the quantity I'(X dz + Y dy + Z dz) is assumed to be an exact differential.

20. The quantity X dz + Y dy + Z d=z is always an exact differential when the forces
X, Y, Z are the result of one or several attractions proportional to arbitrary functions of
the distances between the centers of the particles since one has in general from Article 1
of SECTION V

Xdr+Ydy+Zd:=Pdp+Qdg+ Rdr +---
Denoting this quantity by dII, one will then have d\A = I"dII. Therefore, for d\ to be an

exact differential, I' must be a function of II. Consequently, A\ = [ I"dII will also be a
function of II.
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Thus in this case, which is due to the essence of the problem, the shape of the surface will
be represented by the equation f(II) = k, that is, IT is equal to a constant, as if the density
of the fluid were uniform. Moreover, since II is constant at the surface and I is a function
of I, it follows that the density I" must be the same at every point of the external boundary
of a fluid mass in equilibrium.

Within the fluid the density can vary in an arbitrary fashion, as long as it is a function
of II. It will thus be constant wherever the value of II is constant, so that II = A will
in general be the equation of the layer of the same density, where A is a constant. Thus
after differentiation, there results dII = 0, or X dz + Y dy + Zdz = 0 for the general
equation of these layers and it is obvious that this equation is for surfaces perpendicular
to the resultant of the forces X, Y, Z which Clairaut calls “surfaces de niveau”.!” From
which it follows that the density must be uniform in each layer of equal potential formed
by two surfaces which are infinitesimally close to one another.

This law must hold on Earth and on the planets, assuming that these bodies were originally
fluid and that they kept, during their solidification, the shape that they had assumed by
virtue of the attraction of their parts combined with centrifugal force.

21. With respect to the quantity A which we just found, it is worthwhile to remark that the
term S A § L of the general equation of Article 10 represents the sum of the moments of all
the forces A which tend to reduce the value of the function L (SECTION 1V, Article 7)
so that because 6L = §(dx dydz) (Article 11), it can be said that the force A tends to
compress each particle dz dy dz of the fluid. Consequently, this force is nothing more
than the pressure applied to this particle from every direction and which it reacts by its
incompressibility.

Thus, in general, the expression for the pressure at each point of the fluid mass is
ST'(Pdz + Qdy + Rdz)

and since the quantity under the integral sign must always be integrable so that the fluid
remains in equilibrium, it follows that the pressure can always be expressed by a finite
function of the coordinates relative to the particle to which this pressure is applied. This
is a fundamental proposition of the theory of fluids presented by Euler (SECTION VI,
Article 5).

In order to present an example of the equation II = constant which was found earlier
to represent the surface of a fluid mass in equilibrium (Article 20), we will consider the
equilibrium of the sea, assuming that it covers the Earth completely. The Earth is viewed
as a solid with an elliptical shape which is very close to a sphere, and each of the particles
of the sea are attracted simultaneously by all the particles of the Earth and the remaining
sea. Furthermore, the sea is acted on simultaneously by the centrifugal force created by
the uniform rotation of the Earth about its axis.
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This is an opportunity to use the formulas which we gave in Article 10 of SECTION V. We
have designated by ¥ the value of the function IT when the forces are the result of attractions
of all the particles of a body with a given shape and we have given the expression for ©
for the case where the attraction is inversely proportional to the square of the distances
and where the attracting body is an elliptical spheroid very close to a spheroidal shape.
Retaining the symbols used in that article and keeping only the terms up to the second
order for the eccentricities e and ¢, it has been found that

1 2,2 2,2 4 ;2,2
Z:—m(——e +1 " ey  +17z
r o 2.573 2.513

)

where z,y, z are the rectangular coordinates of the attracted point, r = /(z2 + y2 + 22)
is the distance from this point to the center of the spheroid and m is the mass of the spheroid
which is equal to (47 /3)ABC, where A, B, C are the semi-axes of the spheroid.

If T is the density of the spheroid, which is assumed homogeneous, the expression for ¥
must be multiplied by I" and if the spheroid is assumed to envelope a spheroidal core for
which the density is different, it will only be necessary to add the value of ¥ relative to this
new spheroid, multiplied by the difference in the densities. Thus by denoting by a prime
the quantities corresponding to the internal spheroid and assuming its density to be I' +I",
the total value of ¥ will be

I'm+T"m’ N I'm(e? +i2) + I'm/ (e + i)

Yy =
r 2.573
_3I‘me2 +T'm'e? , Tmi? +0'm/i"? ,
2505 Y 2.5r5

23. Let us assume that the point attracted by the spheroid is at the same time acted on by
three forces represented by fx, gy, hz in the direction of the x, y, z coordinate axes away
from the origin. Then their moments will be — fx dz, —gydy and —hzdz. The terms
—fx?/2 — gy*/2 — hz?/2 will have to be added to the quantity ¥ to obtain the value of
I1, which results from all the forces which act at the same point. Thus the equation of
equilibrium will be

B fx? + gy? + hz?

= 2

= const.
24. Now in order to apply these formulas to the problem in question, the external and
internal spheroids will be assumed to be the sea and Earth, for which the densities are T’
and T + I, respectively. The attracted point will be located on the surface of the sea by
having its coordinates z, y, z equal to the coordinates a, b, ¢ of the surface of the external
spheroid. Thus the following equation must hold so that this surface is in equilibrium.

'm+TI'm’ Tm(e?* +i?) +T'm/(e? +i?)  fa?

—_ + —_—
T 2.573 2

I'me? + I"m'e”? I'miZ2 +T'm/i? h
sme rTome” + %)yz + (3__— 2

— )z = t.
2.5 2515 +3)%" = cons

+(3
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This equation, in which r = /(2% + y2 + 22), gives the shape of the surface. But we
have assumed in the formulas of Article 10 of SECTION V that this surface is represented

by the equation
2 2 2

T Y
z2tEte

=1
in which z, y, z have replaced a, b, c. Thus these two equations must be identical.

Using this equation, let us express the value of  as a function of y and z. In order to do
this, we will substitute for 22 in the relation 7> = x2 + 32 + 22, the expression

A2y2 AZZZ
T B

AZ
then after replacing B2 and C? by the expressions (A2 + €?) and (A2 + 4?) (article cited),
the following equation will be obtained

2,2

2,2 ;
e 1"z
L

2 2
r-= A"+ -
A2+ €2 A2 442

from which there results, after discarding powers of e and i greater than e? and i? in which
we are not interested here

1 e*y? +i222
r A 243
Thus after substituting this expression for 1/ as well as that for z? in the first equation
and discarding the terms which contain e, 74, €2, i2, etc., one will have

I'm+T'm'  Tm(e? + i) +T'm/(e”? +1i?) N fA?

A 2543 2
_‘_(31“me2 +T'm'e? g  fA* (Im +F’m’)ez) ,
2545 2B? 245 v

2
'mi2 +T'm'i'> h  fA2  (D'm+D'm')?
WO T

= const.

Since this equation is an identity, the coefficients of the variable quantities 2 and 2% must
be equal to zero which produces the following two equations

3'm'e?  (2L'm+50'm/)e? g fA?
2545 2545 T2 23

30'm/i? (2Lm+5I'm')i>  h fA?
2545 2545 T3
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from which it is possible to determine the two eccentricities e and ¢ of the elliptic surface
of the sea.

25. It is known that centrifugal force is proportional to its distance from the axis of rotation
and to the square of the angular velocity of rotation. Therefore, if the axis of rotation is
taken along the semi-axis A, which is also the z-coordinate axis and if f is the centrifugal
force at a distance A from the axis, fu/A is the centrifugal force applied to an arbitrary
point of the spheroid where u = /(y? + 2z2). The force fu/A directed along the line
u in the positive direction will give the moment —(fudu)/A for which the integral is
—(fu?)/2A, that is, — f(y* + z%)/2A, must be added to the quantity & to account for
the centrifugal force. Thus the conditions for equilibrium of the sea can be obtained by
considering the mutual attraction of all the particles of the sea and Earth and the centrifugal
force resulting from the rotation of the Earth, by substituting f = 0, ¢ = f*/A and
h = f*/A in the two preceding equations.

Since the two constants g and h are equal, it can be seen from these equations that if the
two eccentricities e’ and 7’ of the Earth are equal, then the two eccentricities e and ¢ for the
shape of the sea are also equal to each other, so that if the Earth is a spheroid of revolution,
the sea will also be spheroidal. But if the Earth is not a spheroid of revolution neither is
the sea and the two equations in question will give values for the two eccentricities e and
1 which will be different from the eccentricities e’ and ¢’ of the Earth.

26. Also, this solution is exact only to the second order of the quantities €2, i2, (¢')?, (i')?,

and if terms of higher order are to be considered in the quantities £ and 7, it will generally
no longer be possible to verify the equation

s [+ 2)

A = const.

for the surface of equilibrium. Hence, it must be concluded that this surface does not
exactly have the shape of an elliptical spheroid.
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