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FOREWORD 

During a meeting in Haifa in 1992 Joseph Kestin from Brown approached 
me for a common project concerning a book on thermodynamics. Both 
Prof. Kestin's untimely death in the Spring 1993 and another reason made, 
or would have made, such an enterprise impossible. The second reason is 
that I wanted to remain in friendly terms with Joseph Kestin. Once Louis 
de Broglie, creator of Wave Mechanics, was asked why he had co-authored 
so few papers in his very long career (he died having reached the age of 96). 
His answer was that he did it once with Maurice de Broglie, his own elder 
brother, while he was in his twenties, and they almost went to the point of 
rupture in their brotherhood, so that, being a gentleman, he never tried such 
an experience again. If this adventure reflects well the situation with spec
tral analysis and atomic theory in the early 1920s, the situation would even 
be more touchy with thermodynamics, a field for which it is, as we all know, 
an extremely difficult, perhaps even insuperable task, to find two individuals 
who fully agree on all its basic aspects and the way it should be taught to 
students and researchers alike. In other words, therefore, this book had to be 
written by one author only, even though we cannot forget the immense debt 
that we owe to Joseph Kestin, Paul Germain and others, especially in France. 
My own pragmatic standpoint concerning thermodynamics, or as we prefer 
to say, thermomechanics, is expressed at length in Chapter 1 which has some 
historical and controversial flavor. Here, however, we simply want to point out 
a drastic change in the physical view of the World that took place during the 
last two or three decades, and which somewhat justifies, if there is any need for 
that, the existence of this book. We are all aware of the arrogant reductionism 
brought by elementary particle physics in the physical landscape after World 

V 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 8
0.

82
.7

7.
83

 o
n 

06
/0

2/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



VI Foreword 

War II. But it is our view, shared by some prominent physicists (e.g. P. W. An
derson) that condensed-matter physics, through both its object and methods, 
have had a radical influence that, to some extent, has helped to counteract 
this type of intellectual imperialism. In particular, if many good fundamental 
equations are definitely known, it is the solutions to the equations, and not the 
equations themselves, that provide a mathematical description of the physical 
phenomena. Furthermore, although no one would be so ridiculous as to reject 
any attempt at looking for some ultimate building block of matter — a search 
which closely parallels the childish ambition to reach the horizon line — and 
we certainly gain a better understanding of our World, if not a higher spiritual 
status, through this quest, we must also recognize that the behavior of a large 
and complex aggregate of "elementary" entities is not to be understood "in 
terms of simple extrapolation of the properties of few particles" (P. W. An
derson). Parodying the French epistemologist Gaston Bachelard, physics at 
our scale seems to have become more a science of effects than of facts.1 This 
was particularly well captured by L. D. Landau, John Bardeen, and P. G. de 
Gennes. Our conception of the thermomechanics of complex irreversible behav
iors goes along this direction, being conceived from the start as a field of cross 
fertilization of many subdisciplines, accompanied by a deep experimental foun
dation and precise time and space scales of observations. This combines in a 
blend of P. Duhem (for his rigor), P. G. Bridgman (for his operationalism), and 
J. Kestin (for his inquisitiveness), and others. This may seem unbearable to 
either elementary-particle physicists who reject such developments in the dark
ness of macroscopic science, or to applied mathematicians who cannot stand 
the view of a thermometer and who presently have the tendency to mistake 
the proof of existence for a solution. We hope that this book (perhaps nothing 
more than a pamphlet), with all its defects and shortcomings, can bridge the 
gap between these two communities. But our natural naivete is also bounded 
by our own pragmatism. 

A paradox exists in the thermodynamic literature. Practically all the books 
and treatises dealing with irreversible thermodynamics simultaneously claim 
an unbounded generality and present a very restricted range of applications 
only. These are essentially linear irreversible thermodynamic processes lim
ited to the phenomena of viscosity in Newtonian fluids, diffusion-like processes 

1But the joke works only in French ("d'effets" and "de faits", practically with the same 
pronounciation). We could say that physics has become a science of artifacts more than of 
facts. This is what happened to chemistry in the recent past. 
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Foreword VII 

such as in mixture theory, and the traditional linear coupling between heat and 
electricity conductions. Sometimes an application to plasmas (another exam
ple of mixture) and a remark on electric relaxation are presented as ultimate 
examples. From this it would seem that only physico-chemists and chemical 
engineers may get some benefit from a thermodynamical framework. Our at
titude is completely different as this book testifies and the title implies. Rich 
in our experience in several fields of physics and engineering science, we do 
present irreversible thermodynamics in its realm and splendor. The reader will 
find here the application of this inclusive science to both fluids and solids, to 
viscous as well as viscoelastic, viscoplastic or purely plastic continua, to so
lutions of polymers and polyelectrolytes, to liquid crystals, to the phenomena 
of damage and creep in solids, to the fracture of solids, to phase transitions, 
to complex phenomena in electromagnetic bodies (dielectric relaxation in ce
ramics, application to shock wave propagation, electric and magnetic hystere
sis, dissipation in deformable superconductors, the fracture of electromagnetic 
solids) and, finally, reaction-diffusion systems such as those exhibited in mod
els of nerve-pulse dynamics or the propagation of phase-transition fronts. This 
richness and wide vision are, we believe, unmatched by other books. Most of 
the time we have tried to give general theorems which find applications in sev
eral fields and we have not hesitated to have recourse to modern mathematical 
techniques such as convex analysis or the theory of generalized functions. This 
is the price we had to pay to reach a sufficient degree of generality. Vector and 
tensor analysis on flat manifolds, are used systematically. 

The origins of this book are to be found in the lectures which I deliv
ered at the Institut Prancais du Petrole in Paris in 1987 in a seminar devoted 
to irreversible thermodynamics. I have had several opportunities to improve, 
polish, and elaborate upon those notes, especially through my yearly lectures 
on plasticity and fracture at the University of Paris (Pierre et Marie Curie), 
during the writing of a long review paper on internal variables together with 
Prof. Wolfgang Muschik of T. U. Berlin during my stay at the Wissenschaft-
skolleg zu Berlin in 1991-1992, during our research on complex fluids together 
with Prof. Raymonde Drouot in the years 1980-1988, during our research in 
the field of material forces with Prof. Marcelo Epstein (Calgary, Canada) and 
Prof. Carmine Trimarco (Pisa, Italy) in the years 1989-1994, during our re
search on the thermodynamics of nerve-pulse dynamics together with Prof. Jiiri 
Engelbrecht (Tallinn, Estonia), while writing my lecture notes for a course 
in Udine (C.I.S.M., Italy, 1992) on the applications of thermodynamics to 
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vin Foreword 

electromagnetic solids, during the preparation of my previous two books, re
spectively on the Thermomechanics of Plasticity and Fracture (C.U.P., 1992) 
and the Theory of Material Inhomogeneities in Elasticity (Chapman, 1993), 
and obviously in fruitful discussions with colleagues (in particular, D. Lhuillier) 
and students and co-workers (especially, M. Motogi, M. Sabir, E. Bassiouny 
and C. Dascalu, respectively from Japan, Morocco, Egypt, and Romania) 
at the Laboratoire de Modelisation en Mecanique, Universite Pierre et Marie 
Curie, Paris, over the last two decades. My early experience with continuum 
thermodynamics was deeply influenced by Prof. A. C. Eringen at Princeton 
University. Private discussions with Joseph Kestin, wherever we could meet 
in the World, have enriched this view to an extent that the reader can hardly 
conceive. My heart felt thanks go to all the individuals mentioned and many 
whom I have unjustly forgotten. We wish an enjoyable time to our readers 
as pleasure should always accompany study . This is what I felt during the 
writing of this book. 

Paris, January 1997. G.A.M. 
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XIV Contents 

Laws of Thermodynamics: 
1. You cannot win 
2. You cannot break even 
3. You cannot get out of the game 

Anonymous. 

A man viewed as a behaving system, is quite simple. The apparent complex
ity of his behaviour over time is largely a reflection of the complexity of the 
environment in which he finds himself. 

H. A. Simon (The Sciences of the Artificial, MIT Press, Cambridge, Mass., 
1969). 

To the devil with those who published before us 
(Pereant qui ante nos nostra dixerunt) 

Attributed to Aelius Donatus (4th Century) by his pupil St. Jerome. 
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Chapter 1 

INTRODUCTION: A POST-DUHEMIAN 
THERMODYNAMICS 

The "irreversibility" of many processes arises because they are so com
plex that adequate description is impossible, for the practical attitude of 
thermodynamics toward such complicated processes will be merely to have 
anything to do with them, which is also its attitude towards irreversible 
processes. 

P. W. Bridgman, The Nature of Thermodynamics, 1943, p. 134. 

Perhaps, after all, the wise man's attitude towards thermodynamics should be 
to have nothing to do with it. To deal with thermodynamics is to look for 
trouble. This is not the citation of a famous scientist, but the result of a deep 
cogitation following mere observations. Why do we need to get involved in 
a field of knowledge which, within the last hundred years, has exhibited the 
largest number of schizophrenics and megalomaniacs, imbalanced scientists, 
paranoiacs, egocentrists, and probably insomniacs and sleepwalkers? Is there 
any other field of scientific activity such as this one where, apparently, each of 
the bricklayers has unhesitatingly revindicated an originality that, to our eyes, 
and looking through the mirror dear to St. Paul (but also to Alice), we may 
see but with confusion. The intimate relationship between psychoanalysis and 
the behavior of more than one thermodynamicist may be due to the fact that 
Ludwig Boltzman (1844-1906) — may his soul rest in peace — both studied 
and dramatically ended his life in a city that saw the birth and burgeoning of 
Freud's theory. 

In introducing our subject we shall have to deal with hard-headed scien
tists and uncompromising characters, among them Pierre Duhem (1861-1916), 
Percy W. Bridgman (1882-1965), Joseph Kestin (1913-1993), and Clifford 
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2 Chapter 1. Introduction: A Post-Dtthemian TTiermodynamics 

A. Truesdell (born 1919), all kind and affable personalities but sharp, witty, and 
somewhat aggressive and vivacious critics of the scientific scene who, willingly 
or not, belong to the above-sketched out "medical" landscape and who, like 
the author, are not exempt from apriorisms and idiosyncrasies. 

For some thermodynamicists and for their enemies as well, thermodynamics 
is the science of everything, so that for the second category of individuals, it 
is, by mere logic, the science of nothing, and thus not a science at all; and the 
everything is naturally seen as a sign of megalomania from which some have not 
escaped. Let us admit that megalomonia in a moderate dose is an admissible 
behavior (after all, sometimes it does help in science). What is then the purpose 
of such a "science" ? Is it to explain or to classify phenomena? Here we touch 
on the whole problem of the significance of physical theory. Should we try to 
explain essentially through models or are we to be satisfied with a mere natural 
classification of phenomena, i.e. saving the phenomena. It is not by chance that 
one of those epistemologists who most impressively pondered this question in 
a remarkable book full of hindsight was indeed Pierre Duhem (The Aim and 
Structure of Physical Theory, 1906a) who was so active in defending the cause 
of thermodynamics and who produced the longest treatise so far published in 
energetics or, as he says, general thermodynamics (Duhem, 1911).1 

Nobody can deny the urge to explain things, whether physical or belonging 
to other categories. That is, if it is true that a good classification, such as Carl 
Linnaeus' in natural history, helps one to describe the variety of life, it does 
not explain it, so that we easily imagine the relief first brought by the Holy 
scriptures, and then by a solidly documented theory of evolution. The same 
applies in physics to which thermodynamics belongs. A natural classification 
dear to P. Duhem2 helps us in organizing our knowledge and presenting to 
our students a neat logico-deductive framework. But this does not disqualify 

JTo the few who have read it in the original French, this imposing treatise sounds like an 
unfinished program of "rational thermomechanics", simultaneously a declaration of faith in 
a type of approach to field theory that was later to blossom, and a course on the pedagogy of 
logico-deductive science where "no hypotheses are framed". Some of it sounds prematurely 
TYuesdellian in tune, and parts have obviously inspired B. D. Coleman and J. L. Ericksen in 
some of their approaches to the stability of continua. 

2 In a secrete, {at the time) document (report in my French Doctoral Thesis in Mathe
matics), a well-known French mathematician classified my approach to thermomechanics as 
neo-Duhemian (I had not yet read Duhem in those times). When I could read that document 
after a law was passed giving access to all such personal papers, I felt that this was intended 
to be derogatory by its author, who could not figure out how much I later became pleased 
with such a classification. 
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Introduction: A Post-Duhemian Thermodynamics 3 

before hand the use of ingenious models* and, obviously, the call to microscopic 
descriptions. This is to specify our credo without ambiguity from the outset: 
we shall be pragmatic, and like Henri Poincare and Percy Bridgman, somewhat 
conventionalist and operationalist. That is, like the Romans regarding religion, 
we would like to take the best out of each contribution while keeping a down-to-
earth attitude. We shall accept objects and definitions which can be observed 
or realized through well-defined operations, but we shall not hesitate to have 
recourse to pencil and paper operations (versus instrumental operations), and 
to gedanckenexperiment(s), often the deepest and certainly the least costly 
ones. This "mixed salad" is welcomed as it should avoid fanatism, dogmatism 
and sectarism, as a matter of fact, any spirit of chapel (so much religious 
wording which tells a lot!) and it should bring some tranquility of mind, some 
felicita.4 

At this point it is customary to make a historical digression which should 
span some hundred and fifty years.5 But we shall do this in gigantic (in Greek 
megalo — again!) steps, following in the footsteps of C. A. Truesdell (1984, 
"Historical Introit") but not advocating the entirety of his standpoint.6 Apart 
from an axiomatic foundation line and kinetic-theoretical arguments and the 
recent "extended' thermodynamics to be discussed later on in this book, one 
easily recognizes two main lines, which concurred at some time and then coa
lesced to our modern view (see Fig. 1.1). On the one hand, we obviously have 
the line inaugurated by Sadi Carnot (1796-1832) and B. Clapeyron (1799-
1864) which built on notions of thermometry and calorimetry and emphasized 
to start with the notion of work, and then took its most fruitful form with 
R. Clausius (1822-1888) and the statements of the first law (energy conserva
tion) and the second law (nondecrease of entropy). Regarding the second law, 
one must recall that if energy is to be conserved at all [this is the first law whose 

3To Duhem, W. Thomson (Lord Kelvin) in England and J. Boussinesq (1842-1929) in 
France epitomize the class of those who cannot do without (mechanical) models. As to 
J. C. Maxwell, Duhem criticizes him not for his achievements, which nobody can deny, but 
for his inconsistencies and, finally, for his enlightened amateurism. 

4We are indebted to Paul Germain for this wise and serene approach to the thermome-
chanics of continua. 

8 This attitude is exemplified by J. L. Lagrange who, in his classical "Michanique Analy-
tique" of 1788, indeed introduces each part with a long historical quest which, in his opinion, 
gives the essentials of a somewhat linear development. This is not "history of science" in 
this more mythological, fairy-tale-like success story — and not history — which has been 
fruitful and bears pedagogical value. 

6uTradutore, traditore". 
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Chapter 1. Introduction: A Post-Duhemian Thermodynamics 

FAMILY TREE OF THERMOMECHANICS 

THERMOMETRY 
CALORIMETRY 

Sadl Camot 
Clapeyron 

CARNOT LINE 
(dissipation/ess 

work) 

Clausius 
(thermodynamics based 
on 1st and 2nd laws) 

* 

THERMO-
STATICS 
(Gibbs) 

Coleman-
Noll 

'Rational" 
thermodynamics 

CONDUCTION 
OF HEAT 

Fourier 
Duhamel 

FOURIER LINE 
Iworkless 

dissipation) 

Stokes 
Kelvin 

DISSIPATION LINE 

Kirchhoff 
l _ _ 

Clauslus-Duhem 
Inequality 
(Duhem) 

T.I.P. 

Coleman 
Gunin T.I.V. 

• thermo-
elasticity 

• field 
theory 

• 3 beat flux 
• dissipation of 

mechanical 
energy 

• first thermome-
chanical field 
theory 

• local equations 
of state 

• thermodynamics 
can lead to 
global 
irreversibility 

Bridgman 
Kestin 

Fig. 1.1. Family tree of thermomechanics. 

statement is due in essence to J. R. Mayer (1814-1878) and Kelvin (1824-
1907)], energy in most physical situations changes its nature. This change of 
quality, according to Clausius, goes only in one way, either there is no change 
or energy is degraded. But this last word had no meaning in Clausius' time, 
the 1840s-1850s. By analogy with the word en-ergy, Clausius then invented a 

4 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
A

IN
A

N
 U

N
IV

E
R

SI
T

Y
 o

n 
02

/1
3/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



Introduction: A Post-Duhemian Thermodynamics 5 

neologism, en-tropy, a word specially designed to qualify what changes when 
energy is conserved, a word which has a meaning only to physicists or this 
was what expected.7 Thus a quantity other than energy evolves only in one 
direction, later called the Arrow of time — and is witness to the irresistible 
degradation of energy (see the book by Brunhes, 1909). In practice, heat is 
the ultimate form of energy, in some sense the worst one, the one that we feel 
when an intense electric current passes through a resistive wire or when friction 
occurs between two parts of materials in contact in relative motion. Two 
general laws of Nature, i.e. principles, have thus emerged, the conservation of 
energy and the necessary non-decrease of entropy, of which the first developed 
at length in the works in thermostatics of W. Gibbs (1839-1905) (book, 1928), 
while the second gave rise to the Clausius-Planck inequality in the expert hands 
of Max Planck (1858-1947). 

On the other hand, J.-B. Fourier (1768-1830) and later J.-M.-C. Duhamel 
(1797-1872) are the founding fathers of the Fourier line, a true mathematical 
physics, which gave rise to a paragon of field theory (first, thermal conduc
tion and then thermoelasticity in isotropic bodies and anisotropic crystals — 
see Bachelard, 1927) with its paraphernalia of partial differential equations 
and "mathematical methods for physics and engineering", among them the 
celebrated Fourier series and integrals. This line would emphasize the role 
of dissipation with the recognition of the existence of the heat flux vector by 
G. G. Stokes (1819-1903) and of the dissipation of mechanical energy by Kelvin. 
This line, via G. Kirchhoff (1824-1887) who completed the first thermome-
chanical field theory, would lead to the essential formulation of the Clausius-
Duhem inequality by P. Duhem who also clearly introduced local equations of 
state while recognizing that thermo- dynamics can lead to global irreversibility. 
With Gibbs, Planck and Duhem we enter the twentieth century. The Bel
gian school of thermodynamics, under the leadership of Th. de Donder (1872-
1957) was then to create the standard theory of thermodynamics, the theory of 
irreversible processes, referred to as T.I.P. for short. At this point we need to 
pause as some of the ingredients introduced become our daily bread and the 
main actors our contemporaries. 

What is the situation with thermodynamics on the eve of World War I? 
Along the kinetic-theoretical line which was also inaugurated by Clausius and 

7"TPO7TTJ" (tropty means change, transformation; "tropism" in fact relates to changes in 
orientation. But in modern Greek "entropy" means something like "pudeur" or "sense of 
decency", a virtue seldom exhibited by thermodynamicists! 
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6 Chapter 1. Introduction: A Post-Duhemian Thermodynamics 

much improved by J. C. Maxwell (1831-1879) with the introduction of his 
equilibrium distribution function, Ludwig Boltzmann (1844-1906), in break
through studies, has definitely shown that the notion of entropy, whether of 
Clausius' or Gibbs' origin,8 coincides with his definition (essentially a num
ber) that is attributed, via a statistical theory of time-asymmetric irreversible 
non-equilibrium behavior, to each microscopic state of a macroscopic system 
be it solid, liquid, gas or otherwise. But contrary to Gibbs' entropy which 
does not change in time even for ensembles describing isolated systems not in 
equilibrium, Boltzmann's entropy increases in a way that explains the evolu
tion toward equilibrium of such systems. Unlike Gibbs' entropy, Boltzmann's 
one captures the separation between microscopic and mesoscopic scales (see 
Lebowitz, 1993). More practically, Lord Rayleigh (J. W. Strutt, 1842-1919) 
has already introduced his dissipation function to deal with some macroscopic 
systems — essentially Newtonian-Stockesian viscosity— (Rayleigh, 1945; orig
inally 1877,1894), and this has already been used by Maxwell in some problems 
of electrodynamics (electric conduction currents, Maxwell, 1873). But apart 
from this, researchers are stocked as far as phenomenology is concerned. This 
is illustrated by P. Duhem who, in a rather famous literary review of the state 
of the Art, entitled "The Evolution of Mechanics" (Duhem, 1903), identifies 
several branches of applied physics that seem to resist a thermodynamical 
unification and are therefore called nonsensical. These branches are friction, 
hysteresis (such as in the plasticity of metals, or magnetic hysteresis), and elec
tromagnetic fields. This was very well explored by Manville (1927) who wrote 
a masterly review of Duhem's scientific achievements. Three essential ingredi
ents which are still lacking at that moment (1910s) are: (i) the expression of a 
balance law for entropy, (ii) the formal expression of the production of entropy 
as a bilinear form, and (iii) the nonquadratic nature of the assumed dissipation 
potential (truly nonlinear dissipative processes). The first of these is clarified 
in Bridgman (1943, pp. 142, 143) who speaks (at the time) of the "not very 
much used"9 equation of balance that, parodying Bridgman, we can state as: 

"(net entropy leaving a close region) = (entropy created within the 
region) — (increase of entropy localized in this region)", 

8 In Clausius' case entropy is that of a system at equilibrium. In Gibbs1 case, it is defined 
for a statistical ensemble (a collection of independent systems, all with the same Hamilto-
nian, distributed in different microscopic states consistent with some specified macroscopic 
constraints). This quantity does not change in time even for systems not in equilibrium. 

9An exception seems to be in discussions by Paul Ehrenfest (Bridgman, 1943, p. 146). 
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Introduction: A Poat-Duhemian Thermodynamics 7 

or in mathematical modern terms, where S is the entropy per unit volume, S 
is the entropy flux (also called entropy flow vector), and C is the body source 
of entropy: 

d ivS = - — +C. (1.0.1) 

The last quantity C is at first a pure convention. The problem resides in its 
expression. Bridgman shows in the case of pure heat conduction that for heat 
passing through a bridge between two reservoirs, one has 

C = - 0 - 2 q V 0 , (1.0.2) 

if S — q/0, where q is the heat current and 8 is the absolute temperature, 
the introduction of which is due to Lord Kelvin. He shows by the same token 
that the "final location of entropy change may be different from the location of 
the irreversible processes which generates it . . . There need be no irreversible 
process occurring at the place where the flow of entropy occurs". For pure 
thermal processes, the second law of thermodynamics results then in the non-
negativeness of the C term in the form of a dissipation inequality. 

c = r 1 $ t h = q - v ( r 1 ) > o , (1.0.3) 

where $ th is the thermal dissipation that we shall meet later on on several 
occasions. 

The second ingredient (ii) was reached by Carl Eckart (1902-1980) who, in 
a beautiful series of papers (Eckart, 1940, 1948), laid out part of the mathe
matical framework for describing the phenomenon of diffusion, a fully thermo-
mechanical phenomenon as it is associated not only with mass transport but 
also with thermal influences and flow of heat. In the same papers Eckart intro
duces a consistent formulation of relativistic continuum thermodynamics and, 
last but not least, he remarks that the density of production of entropy (the C 
term above) is a bilinear form in certain variables, all of which vanish in equilib
rium. This bilinearity property was also noticed by Josef Meixner (1908-1994) 
who, in addition, brought the support of the kinetic theory (of monatomic 
gases) and of Lars Onsager's 1931 statistical treatment of small fluctuations 
about equilibrium (the celebrated Onsager symmetry relations between coeffi
cients of the bilinear form in the presence of coupled dissipative phenomena). 
With this T.I.P. was born and it would take a definite, almost dogmatic, form 
in the famous treatise of S. R. de Groot and P. Mazur (1962), still probably 
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8 Chapter 1. Introduction: A Post-Duhemian Thermodynamics 

the most reliable and best available on the market. This, however, did not 
fully give satisfactory answers to the questions raised by the third point (iii). 
One had to await for the 1970s-1980s for its fulfillment. 

It is probably at this point that Bridgman's thorough analysis of the bases 
of thermodynamics — its nature — plays a most important role, the main ques
tion being: What are the independent variables of thermo-mechanics? (this is 
Truesdell's language, 1960, p. 100). In other words, what are the most rele
vant variables of state in a true thermo- dynamical description of irreversible 
phenomena, i.e. those that may make the entropy grow? The answer to this 
question is clearly related to matters of time and space scales, perhaps fre
quencies (for periodic processes), and a threshold value of some characteristic 
fields, a matter that shall be recurrent in the remainder of this book. 

Bridgman first admits that thermodynamics (1943, p. 6) is "a subject not 
yet complete or at least,..., one whose ultimate possibilities have not yet been 
explored, so that perhaps there may still be further generalizations awaiting 
discovery..." (he writes in the early 1940s). Then he emphasizes the notion 
of thermodynamical state and that of parameters of state (p. 17). Classical 
thermodynamics — to fix ideas, at the human scale of experience, and not 
the quantum scale — presupposes large-scale instrumental operations (p. 135) 
and this, in turn, provides a framework for the relevant parameters of state 
(p. 152). These are the parameters which completely define a state, in the way 
we can present specific values to the properties of a body (if God knows what is 
meant by that).10 In any case, this demonstrates the "macroscopic attack" of 
thermodynamics whose main function is not to explain (p. 222) in agreement 
with P. Duhem's vision of the physical theory. "Thermodynamics smells more 
of its human origin than other branches of physics" (p. 214).n Relating to 
characteristic scales Bridgman rightfully mentions that in some "situations the 
irreversible aspects could be made to vanish in comparison with the reversible 
aspects by a suitable choice of the dimension of the apparatus and the time*2 

of the experiments, or of some other parameters" (p. 138). Along the same 
line he points out to the possibility of "measurements on systems which are 
not too inhomogeneous" (p. 75). 

10Bridgman will be very instrumental in the clear-cut selection of state variables in elasto-
plasticity (cf. Kestin, 1966, p. 369; Bridgman, 1950). 

n T h i s may explain the practically neurotic behavior of more than one thermodynamicist; 
see first paragraph of this chapter. 

1 2The Deborah number will be introduced for that purpose. 
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Introduction: A Post-Duhemian Thermodynamics 9 

Although simple cases of irreversible processes exist which include "heat 
conduction, Joulean heat, diffusion, laminar flow of a viscous fluid" (p. 134), 
there are also obvious complex cases of which hysteresis (one of Duhem's non
sensical examples) is paradigmatic. His feeling towards such cases is reflected 
by the difficulty in writing the functional dependence of the energy function 
(pp. 65, 66) — this is essential to write down the expression of the first law of 
thermodynamics or Gibbs' equation — and he already alludes to "one or more 
new parameters that would effect the desired reduction to states of these com
plex cases" (p. 64). Perhaps in those complicated cases "the expression of the 
flow vector of entropy has to be modified" (p. 146)13 — remember that S = q/0 
in Eq. (1.0.1) — and, in any case, "a more detailed study and classification of 
irreversible processes than any yet attempted would doubtless be rewarding" 
(p. 135). The present monograph is just about that, relying heavily on the 
notion of internal variables of state. This notion, some sharp observers believe 
to have spotted it in Bridgman's writings,14 at least this is what the above 
quotation about additional parameters allowing for the definition of a "state" 
hints at. Other writers see the germ of this notion in some of Duhem's works 
(Truesdell, 1984, p. 39, citing Duhem's 1911 treatise). As it happened, this no
tion and presently no other one, allows one to construct a true post-Duhemian 
thermomechanics which does bring the nonsensical branches of mechanics of 
P. Duhem under the unifying, but also constraining, umbrella of irreversible 
thermodynamics. This has materialized through the works of many contribu
tors, not the least among them, Kluitenberg (1962a, b; 1963), Coleman and 
Gurtin (1967a), Rice (1971), Sidoroff (1976), Nguyen Quoc Son (1973) and 
several others whom we shall discover as we proceed from one chapter to the 
next. Other developments such as the so-called urational' thermodynamics of 
Coleman, Noll and Truesdell which may be considered an offspring of Gibbs' 

1 3This remark is of far reaching insight when we consider what happens in diffusive systems 
involving gradients (see below). 

1 4 J . Kestin (1992, p. 1830; also in Muschik and Maugin, 1992, p. 44, the last publication 
of the late Prof. Kestin) cites Bridgman (1943): 

"/ believe that in general the analysis of such systems will be furthered by the 
recognition of a new type of large-scale thermodynamic parameter of state, 
namely the parameter of state which can be measured but not controlled... 
These parameters are measurable, but they are not controllable, which means 
that they are coupled to no external force variable which might provide the 
means of control. And not being coupled to a force variable, they cannot take 
part in mechanical work." 
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10 Chapter 1. Introduction: A Post-Duhemian Thermodynamics 

thermodynamics and Duhem's grand program, and "extended" thermodynam
ics whose bases are rooted in the kinetic-theoretical program, are part of the 
present study, and we shall deal with them in due course, although briefly. 

The above-developed ideas, brief as they are, are just to preach to the al
ready convinced the usefulness of a general thermodynamical view. But 80 
years after Duhem's writings there are still groups of scientists working at 
the human scale of experience, who do not recognize this evidence. For in
stance, some very active rheologists still completely ignore thermodynamical 
constraints (e.g. Larson, 1988, in an otherwise well-documented work). The 
same holds true in elastoplasticity and its generalizations with the Russian 
and English engineering schools. If it is true that thermodynamics amounted 
only to the consideration of Rayleigh's dissipation function for the Newtonian-
Stockesian fluids, and could thus be dispensed with, this is no longer a tenable 
position with more involved behaviors that, according to others (e.g. Sidoroff, 
1976; Luillier and Ouibrahim, 1980; Maugin and Drouot, 1983a; Jou et al, 
1993; Grmela, 1990, 1995), clearly necessitate, and practically fit, a thermo
dynamical background. The wealth of theoretically dissipative constitutive 
behaviors certainly needs to be restrained by the second law which then does 
provide some information. Likewise in elastoplasticity, fracture, and their gen
eralizations where first the American and French, and now the German and 
North-European (Denmark, Holland) schools of theoretical mechanics have 
shown that the strict thermomechanical framework was the one which also 
corresponds to the best numerical one in so far as implementation is concerned 
(treatment of mathematical systems of evolution, use of convexity properties, 
exhibition of good stability properties, problems analogous to those handled in 
nonlinear programming techniques such as in econometry). Thus the "national 
style"15 in science, often originally propounded by only a few creative individ
uals, has some importance here because, like Newton's and Leibniz's notations 
for calculus, it may either hinder or foster a fruitful and rapid development. 
Furthermore, while the Art of cooking gains through the continuous aggrega
tion of new recipes, the main purpose of Science — an economical one — is 
to reduce the number of recipes.16 General thermodynamics or energetics a la 
Duhem, or thermomechanics as we shall say, is just such a scientific framework 

l 5 No "nationalistic" connotation, obviously; pre-World War I Duhem's times are gone. 
1 6Think of the endless collection of Theological models which discard invariance rules and 

thermodynamical constraints! 
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Introduction: A Poat-Dxthemian Thermodynamics 11 

that gathers under the same umbrella so many phenomena while singularizing 
an evolution in a definite sense, the Arrow of time. 

Now in attacking such a program we face the problem of the degree of 
abstractness and mathematical formalism that we should work with. Again, 
we shall stick to our pragmatic attitude. Is it reasonable, following thinkers 
like Auguste Comte, Nicolas Bourbaki (a famous collective author in mathe
matics), and some disciples of C. A. Truesdell, to assume previous knowledge 
of all of mathematics, to start studying a specialized, although vast, domain 
of physics? The answer is definitely no, because one should not expect so 
much from both our readers and ourselves. This would be both cheating and 
supererogatory pedantry. We shall rather be satisfied with a basic knowledge 
of college mathematics for physics and engineering.17 If the message does not 
go through, then we, alone, shall be considered responsible for this failure. 

The contents of this book: 

Following the general arguments expanded in following sections, we shall spend 
some time on introducing the basic elements of thermodynamics, that is, 
thermo-statics and the various approaches to thermo-dynamics, i.e. outside 
(even-though just slightly outside) equilibrium. In order to introduce thermo
dynamics in its thermo- static background (this is our approach which contrasts 
with "rational" thermodynamics), we must, it is clear, carefully define the no
tions of system, state, and variable of state. This is done in Chapter 2, where 
the Born-Caratheodory formulation of the second law has been followed. This 
is where the trouble starts. While we practically all agree on the statement of 
the first law of thermodynamics, the second law can be formulated in different 
more or less mathematical, formal, or physical ways. The Born-Caratheodory 
formulation of the second law was proposed by C. Caratheodory (1873-1950) 
on a suggestion by Max Born (1882-1970). Achieving elegance and general
ity in exposition, this is the mathematical formulation which is based on a 
common characteristic of all irreversible processes, the inaccessibility of states. 
The question boils down to whether some states can be reached from other 
neighboring ones in an adiabatic process (no exchange of heat in the bulk or 

17We are referring to a good college where analysis and algebra are cultivated in a modern 
fashion, but without unnecessary symbolism. This does not exclude elements of topology, 
matrix algebra, vector analysis, tensor analysis, convex analysis, and functional analysis, all 
things which have become a necessity for a competitive engineer of high standard. 
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12 Chapter 1. Introduction: A Post-Duhemian Thermodynamics 

per unit area) taking place in a closed system (all terms are precisely defined 
in Chapter 2). This is a convincing formulation which supersedes the more 
classical ones derived from the Clausius and Kelvin-Planck statements found 
in classical college books (e.g. Kestin, 1966); Truesdell (1986, p. 114 on), how
ever, strongly criticized the Born-Caratheodory formulation, claiming, with 
some controversial exaggeration, that in Caratheodory one finds "both math
ematical gaps and errors". It was supposedly shown by Cooper (1967) that 
Caratheodory failed to prove that his "absolute temperature" deserves the 
name of temperature. But this was proved false by Walter (1976). According 
to Bernstein (1960), the problem with Caratheodory's absolute temperature is 
that its existence is established only locally, while the scale of such a tempera
ture should be global. But then J. Serrin has also claimed (cf. Truesdell, 1986, 
p. 117) "that all 'flaws' [quotation marks mine, G.A.M.], whether mathemati
cal or physical, can be overcome by a thorough reformulation and recasting". 
Walter (1978) has indeed provided some reconciliation of the classical method 
(Carnot, Gibbs) with that of Caratheodory. Walter's development, it is true, 
like Caratheodory's, makes the second law contingent on the first. We shall be 
satisfied with the "modest" formulation of Caratheodory while referring the 
reader to Truesdell's writing for a flavor of scandal and a touch of excitement. 
Whether Caratheodory distracted us from Carnot and Gibbs (cf. Truesdell 
and Bharatha, 1977; Pitteri, 1982) is somewhat peripheral and a disputable 
subject. 

Chapter 3 has for declared purpose to present in a nutshell the essential 
theories of irreversible thermodynamics. We have already mentioned T.I.P. as 
the "successful" one. It indeed provides the core for further developments as we 
shall exploit a direct extension of it, leaving aside the linearity of constitutive 
equations while enlarging the set of state variables. "Rational thermodynam
ics", of which the credo and dogma are cognizably expanded in Truesdell (1969, 
1984), offers the elegance and temptations of all formal logico-deductive ap
proaches: it is very attractive] P. Germain (1975) has thoroughly analyzed 
its biases, shortcomings and audacity. "Extended thermodynamics", of much 
more recent extraction [although early works by R. E. Nettleton (e.g. 1960) 
should not be discarded], and well expanded in two monographs by its most 
ardent proponents (Muller and Ruggieri, 1993; Jou et al., 1993), lends itself 
to few manageable applications and suffers from its intrinsic limitations to the 
set of fluxes considered. Thus the essential of our efforts will naturally be 
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Introduction: A Post-Duhemian Thermodynamics 13 

placed on the thermodynamics with internal variables, for short, T.I. V., i.e. the 
thermodynamics which introduces additional variables of state, say along the 
timid but farsighted proposal of P. W. Bridgman, that are not controllable. 

Thermodynamics with internal variables is formally examined in Chapter 4. 
The main problems there are the proper selection of such internal variables, 
the relationship of the resulting theory with other thermodynamics, the way 
entropy can be denned in spite of the lack of equilibrium, and how does one 
generalize the notion of dissipation potential initiallly introduced by Rayleigh. 
Furthermore, there exist some relationships between the notions of internal 
variables and internal degrees of freedom, as also with the order parameter of 
phase-transition theory. What are we to do when the bodies subject of our 
thermodynamical analysis are highly heterogeneous, i.e. when length-scales 
enter the stage? This is complemented in Chapter 5 by the statement of the 
general rules of application of T.I. V. 

Chapter 6 outlines the numerous applications which will allow the reader to 
grasp the flexibility of the method and the profusion of applications in all do
mains of physical science, especially in materials science, in the sense granted 
nowadays to this term. Many of these successful applications have been de
veloped by the author and co-workers during the last two decades. These 
applications are presented in order, following a somewhat traditional classifi
cation of the behavior of materials (recall Duhem's vision of the physical the
ory). Thus Chapter 6 discusses the problem of the representation of viscosity 
in fluids of all kinds, with an emphasis on dilute solutions of polymers, liquid 
crystals, and turbulence. This representation varies within a large spectrum, 
depending markedly on the internal variables introduced as new "Bridgma-
nian" variables of state. This provides a true thermodynamically admissible 
approach to rheology (the science of what flows). 

T.I. V. applied to solid-like materials is probably the most successful of 
its application as its acceptance in this domain has practically become univer
sal. Our previous (specialized) textbook on the Thermomechanics of Plasticity 
and Fracture (Maugin, 1992a) is witness of this trend. This also holds true of 
the book on the Mechanics of Materials by J. Lemaitre and J.-L. Chaboche 
(1990) which, in a different style, has been instrumental in spreading the gospel 
of Thermomechanics. Viscoelasticity, Viscoplasticity, at both small and large 
strains, together with damage and creep are obviously covered, although rather 
briefly in order to avoid duplication, in Chapter 7. Mechanical hysteresis and 
friction (two of the Duhem's nonsensical branches of mechanics) are thus 
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14 Chapter 1. Introduction: A Post-Dvhemian Thermodynamics 

incorporated in the thermodynamical framework, at the price, however, of 
some mathematical complication (use of convex analysis, potential which are 
homogeneous functions of degree one, and thus somewhat singular). The debt 
to the original views of Ziegler in Switzerland, to J. R. Rice and J. Kestin 
(in the USA) and to the French school of analysis and theoretical mechanics, 
especially with J. Mandel, P. Germain, J.-J. Moreau, Nguyen Quoc Son, and 
P. Suquet, in these developments need to be emphasized. 

With fracture, we enter a different domain of application in Chapter 8. 
That is, the global thermodynamical behavior of a specimen may be dissipa-
tive, while the local constitutive equations in the bulk do not manifest any 
dissipation. This is the case in brittle fracture where the irreversibility clearly 
stems from the fact that we cannot solder back the faces of the growing crack; 
the latter progresses irreversibly, if it progresses at all. Here the expression 
of the laws of thermodynamics in global form plays a fundamental role. But 
the originality is that the domain of integration of these laws evolves with the 
progress of the crack. It is possible to construct the corresponding global ir
reversible thermodynamics and to devise thermodynamically based criteria of 
progress. This in fact is an example of thermodynamics of material forces 
(see our book on "Material Inhomogeneities in Elasticity, Maugin, 1993a) of 
which other examples are exhibited in further chapters. The role of Griffith (en
ergy concept of fracture, 1920), Eshelby (force on an elastic singularity, 1951), 
Cherepanov (IMntegral in many phenomena, 1967), Rice (path-independent 
integral of fracture, 1968), Freund (dynamical fracture, 1972, 1990), Bui (frac
ture of different types, 1978) and Nguyen Quoc Son (1980) must be recognized 
as decisive. In our own works with co-workers to be cited in due course we 
have placed the fracture of solids under the umbrella of the general theory of 
material forces on a material manifold and not in physical space, as the non
linear deformation theory of material demands. Brittle, dynamic, and ductile 
fractures can be treated thus, as well as the fracture of electromagnetic solids 
(see below). 

Electromagnetic theory was conceived by Duhem as the most difficult 
branch of continuum physics to incorporate into the thermodynamical frame
work. This is certainly true if one considers the full electrodynamics of con-
tinua, i.e. the theory of moving media which are magnetized, electrically po
larized, and possibly conductors of current. The problem remains at first view 
inextricable even though we satisfy ourselves with an approximate Galilean 
invariant theory to start with (which is sufficient in all cases of engineering 
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Introduction: A Post-Duhemian Thermodynamics 15 

interest). For the general aspects of the electrodynamics of nonlinear continua, 
whether solids or fluids, for the time being we can find no better references in 
the existing literature than our own books (Maugin, 1988; Eringen and Mau-
gin, 1990). Thus only a sketch of this theory is given in the first sections of 
Chapter 9. Rather than duplicating existing books, after a brief review we 
show how the simplest irreversible behaviors follow from a more or less stan
dard use of T.I.P. once the appropriately invariant fields have been introduced. 
Of greater interest is the application of T.I. V. which answers Duhem's wor
ries about this nonsensical branch of mechanics. Dielectric relaxation, electro-
and magneto-hysteresis, and their coupling with temperature and mechani
cal effects can be incorporated in the thermodynamical framework which does 
provide rules and constraints to select the most comprehensive and satisfac
tory representations of these somewhat singular behaviors. As in the case 
of viscoplasticity, the identification of the relevant internal variables is the 
most formidable problem, requiring physical insight. A prime example from 
this viewpoint is the identification of the unexpected variable in the magnetic-
hysteresis theory developed by Motogi and Maugin (1993a, b): the area of mag
netic domains oriented at 90° to the direction of the magnetizing field. Other 
sensible applications concern deformable superconductors where the internal 
variable of interest is a function which intervenes at a lower degree of descrip
tion (the complex-valued wave function of Cooper's pairs), polyelectrolyte solu
tions (Drouot and Maugin, 1985), ferrofluidic solutions, elastic semiconductors, 
and the mechanical fracture and electric breakdown of electromagnetic struc
tures. Most of the examples presented have been devised by the author and 
co-workers in a long series of memoirs and collated here for the first time. Some 
of the aspects concerning nonlinear dissipative electromechanical behaviors, 
per se, have been examined in a different monograph (Maugin, Pouget et al, 
1992). 

We have gathered in Chapter 10 problems relating to the reaction-diffusion 
systems which abound in physics and which have played historically an impor
tant role in the inception of T.I. V. (think of reaction advancement rates and the 
associated thermodynamics). Nowadays such systems are exemplary of some 
typical problems of progress of some signals (like in nerve-pulse dynamics) or 
some phase-transition fronts. The latter problem can also be viewed as one of 
thermodynamic material forces (see above) but which relates to moving jumps 
in properties of the material. Coherent phase-transition fronts in elastic crys
tals enter this framework. In this respect we must underline the contributions 
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16 Chapter 1. Introduction: A Post-Duhemian Thermodynamics 

of Jii. Engelbrecht, C. Trimarco, M. E. Gurtin and coworkers (e.g., Gurtin, 
1993a, b), M. Grinfeld (1991), and L. Truskinowski (1987, 1991), the first two 
in collaboration with the author (see bibliography). 

Notation. As a rule we use the standard notation of vector analysis 
(with the nabla symbol V) without indices. For tensors the intrinsic 
(no index) notation is in general preferred over the indexed Carte
sian tensor notation commonly used by engineers, but, in harmony 
with our opened declaration of pragmatism, indices may be called 
for in case of ambiguity. Because of the wealth of material expanded 
in this book, we may have to use several different types of fonts (in
cluding German Gothic ones!), but these are used in a consistent 
manner which the reader will identify as we proceed, especially when 
dealing with electromagnetic fields in various frameworks. 
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Chapter 2 

THERMOSTATICS AND 
THERMODYNAMICS 

"Die Energie der Welt ist constant, 
Die Entropie der Welt strebt einem 

Maximum zu." (R. Clausius, 1863) 

2.1. Thermodynamic Systems 

The object of thermodynamics: As emphasized in Chapter 1, the object of 
thermodynamics is everything. This is certainly not a very convenient delin
eation. But thermodynamics, according to Bridgman, has to do with some 
macroscopic aspects of matter and fields. How does this macro versus atomic 
standpoint arise? To be more specific, we may follow Callen (1960, p. 7): 

"Thermodynamics is the study of the macroscopic consequences of 
myriads of atomic coordinates, which by virtue of the statistical 
averaging, do not appear explicitly in a macroscopic description of 
a system". 

In agreement with Bridgman's view as recalled in Chapter 1, we must then 
specify what is a macroscopic system in terms of numbers, time and length 
scales. To that purpose we may remind the reader of the following orders of 
magnitude (which will be either underlying, or recurrent in, various subsequent 
chapters):1 

'All figures relevant to physics have been collected or evaluated and reported in Maugin 
(1988), de Gennes (1974) and Eringen and Maugin (1990). 

17 
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18 Chapter 2. Thermostatics and Thermodynamics 

Characteristic numbers of elements (in units): 

1 0 2 3 

1015 

109 

107 

106 

105-104 

103 

103 

103 

lOMO0 

Avogadro's number (A = 6.024 x 1023) 
number of macromolecules in suspension in one cubic me
ter of dilute solution 

World population 

Greece's population 
number of grains in a 0.5 cm3 volume of piezoelectric pow
der (each grain is a continuum such as an elastic plate!) 

typical number of students in a large state university 
usual size of population sample in a Gallup test 

Typical number of faculty members in a large university 
(note the ratio 1/10 to the above number of students in 
the optimist view; ratio at University of Pierre and Marie 
Curie: 1/9 — 1993 figure) 

number of students in a selective private college 
number of magnetic domains in a whisker 

Characteristic times (in seconds): 

io-15 

1 0 - io 

io-9-io-6 

io-8 

io-7 

io-6 

io-5 

io-4-io-3 

period of atomic motion 

reciprocal magnetoacoustic resonance frequency 
reciprocal Larmor frequency in ferromagnets 

relaxation time of macromolecule 

orientational relaxation of a grain in a piezoelectric powder 
acoustic relaxation time in liquids 
nuclear spin relaxation 
dielectric relaxation in a ferroelectric 

liquid-crystal relaxation time 

waiting time of dislocation between two obstables/ 
Barkhausen jumps 

charge relaxation in a ferrofluidic suspension 
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2.1. Thermodynamic Systems 19 

10"3-10 

lO"1 
101 
102 
104 

105 
106 
107 
108 
109 

- 2 speed of photo-camera shutter 

Landau-Lifshitz damping of spin precession 
reaction time of average car driver 

inverse strain-rate in viscoelasticity of solids 

cooking time in a micro-oven 
long fiction movie 
creep-fatigue response 
one day 
a fortnight 
a year /one and thousand nights 

large-mammal life duration 
sequoia's life duration 

Chinese and Egyptian dynasties 

Characteristic lengths (in meters): 

io-15 

io-13 

1 0 - i o 

10-io_io-9 

IO"9 

10 1-8 

io-8-io-7 

IO"7 

io-7-io-6 

classical radius of the electron 

Compton wave length 

lattice spacing in an elastic crystal 
molecular dimension in liquid crystals 
thickness of domain wall (twin boundary) in elastic 
crystals) 

range of interaction in nonlocal elasticity (coherence length 
in solids) 
thickness of domain walls in ferroelectric of the displace
ment type 
coiled-uncoiled size of a macromolecule of polyelectrolyte 
in solution 

magnetoacoustic resonance wavelength in a ferromagnet 

wavelength of sodium light 
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20 Chapter 2. Thermostatics and Thermodynamics 

10 6 : thickness of domain wall in a ferroelectric of the molecular-
group type 
typical range of variation of order parameter in ordered 
solutions (liquid crystals) 

length of microcrack in a solid 
10 _ 6 -10 - 4 : typical scale of observation of orientational changes of mag

netic spins in ferromagnets 

accuracy of machine tooling 
10 - 4-10~3 : size of thermometer 
10 - 2 : size of ferromagnetic domains 

size of electronic chips 

length of macrocrack in a solid 
10_ 1 : width of a hand 
10° : shock-formation distance in an elastic crystal 

Many of the above-mentioned figures having a scientific basis will herein 
after intervene at some point in various modelings. Now we can make Callen's 
delineation of the aim of thermodynamics more palpable. At the microscopic 
scale where, discarding quantum mechanical effects, Newton's equations of mo
tion and potential forces of interaction govern the whole system (this is the 
scale of large numbers of elements, lengths of the order between the Comp-
ton length and a typical lattice spacing, and time intervals of the order of 
10~15 sec), such systems are endowed with extremely large numbers of degrees 
of freedom which we also call atomic coordinates. Their number is in the range 
of the Avogadro number, say 1024. It is no question to study such systems, even 
with the help of the fastest available computers. But the organized pattern 
of the motion of so many particles gives rise to so-called normal modes. The 
number of the latter is also of the same order, 1024. However, on a macroscopic 
scale (say time scales of the order of 10 - 3 sec and length scales of the order of 
10 - 6 meters) we can average out using some statistical averaging and in the 
process only a few surviving "coordinates" with unique symmetry properties 
will be extracted, some of them being mechanical in nature, e.g. the specific 
volume T in a fluid (strain in a solid), some others of electric or magnetic na
ture, e.g. the electric polarization P and the magnetization M, per unit volume, 
etc. (notice that there are so-called extensive variables — see below for this 
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2.1. Thermodynamic Systems 21 

notion). With each of these particular macroscopic modes we can associate an 
elementary work which is exemplified by expressions such as p dr and E.dP, 
where p is the pressure, E is the electric field, etc. These expressions convey 
the transfer of energy in mechanical and electric form in a schematic manner. 
But it is equally possible to transfer energy to those modes of motion — the 
hidden atomic modes of motion — that we have mentioned, in passing to the 
macroscopic description: the energy transferred to the hidden modes is called 
heat. The existence of this additional term to those of work by mechanical, 
electric and magnetic means is, in fact, the outstanding consequence of the 
existence of those apparently neglected hidden atomic coordinates. Thermo
dynamics is very much concerned with the notion of heat. What is true in 
modern developments, however, is that we are taking into account more and 
more atomic coordinates by progressively reducing both space and time scales.2 

This appears to be the unveiled project of modern generalizations of thermo
dynamics such as extended thermodynamics or the present thermodynamics 
with internal variables. In some way we are going to improve the mechanical, 
electric and magnetic thermodynamical description while the role of heat is 
correlatively reduced (to some small extent only). In any case, the ultimate 
form of energy, the most degraded one, remains as heat, hence the important 
role of the second law of thermodynamics whose formulation is based on the 
heat concept and the notion of temperature. We shall first consider classical 
thermodynamics, i.e. in the absence of internal variables, for which we now 
recall the more inclusive definition of a system. 

Closed systems, thermodynamic systems, isolated systems: 

Following the remarks made above, we recognize as basic the fact that mass, 
work, and heat are those "things" which can be exchanged between systems. 
Thus we are led to introduce the following definitions within the framework of 
nonrelativistic physics (which is sufficient for our purpose): 

We call a system S a part of the material universe, i.e. a topologically 
open region of three-dimensional Euclidean space E3. The complement of S 
in E3 is called the exterior of S, or «Sext. A system is said to be closed when 
there is no exchange of matter between it and its exterior. Limiting ourselves to 
thermomechanics only, we call a thermodynamic system a system whose energy 

2For example we consider length scales of the order of 1 0 - 8 - 1 0 - 6 meters and time scales 
of the order of 1 0 - 6 sec. 
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22 Chapter 2. Thermostatics and Thermodynamics 

exchange with its exterior is nothing but an exchange of heat and of work done 
by volume forces or by surface forces acting upon S. A thermodynamic system 
in which there is no energy exchange with the exterior is said to be isolated. 

The definitions just given bring into play three kinds of exchange: mass, 
work and heat. This obviously leads to the introduction of the notion of 
membrane and the specification of this notion for each type of exchange. A 
membrane is a geometrical delimitation (regular surface) of a system. We 
recognize thus three types of membranes: 

1. Impermeable membrane (contrary: permeable): This is a membrane that 
does not permit mass exchange. 

2. Rigid membrane (contrary: deformable): This is a membrane that does 
not permit work exchange. 

3. Adiabatic membrane (contrary: diathermat): This is a membrane that 
does not permit heat exchange. 

Now we need to describe the main properties of a system with the help 
of typical entities which can be given some quantitative content. These are 
thermodynamic variables. 

Definition 2 .1 . A thermodynamic state variable is a macroscopic quantity, 
which is characteristic of a system S, and which can be a scalar, a tensor, an 
n-vector, etc., such as temperature or a stress tensor. 

A state variable is said to be extensive if, within a homogeneous system <S, 
it is proportional to the mass of the system. We remind the reader that a 
homogeneous system is one in which state variables are spatially uniform. 
Obviously, mass itself, but also electric polarization and magnetization are 
extensive variables. If a variable does not depend upon the mass of the system, 
then it is said to be intensive. All thermodynamic state variables are either 
extensive or intensive. We accept that with each extensive variable a specific 
intensive variable (i.e. defined per unit of mass) can be associated. Ultimately 
this is the fact that makes it possible to work with intensive variables alone. 
Among intensive variables of state we note specific volume r (a scalar) and the 
electric polarization and magnetization per unit mass, respectively TT and fj, (a 
polar vector and an axial vector, respectively). 
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S.&. Thermodynamic States 23 

2.2. Thermodynamic States 

The choice of the thermodynamic state variables is determined not only by the 
physical nature of the system S under study (e.g. do we include n or fj. among 
the list of state variables if the system does not markedly exhibit electromag
netic properties?) and its transformations, but also by the scheme adopted and 
the hoped-for precision of the description; so the number of thermodynamic 
state variables may vary from one system and theory to another; they may, for 
instance, depend upon the number of secondary effects and couplings taken 
into consideration. For example, in a liquid suspension exhibiting a marked 
electric polarization, both T and n should be considered as relevant state vari
ables where we may expect a phenomenon of electrostriction. In any case, by 
the very notion of averaging when moving from atomic coordinates to state 
variables, the latter will be in small numbers (say of the order of 10°-102, and 
this must be compared to 1024) 

Definition 2.2. The set of values of the thermodynamic state variables that 
characterize a system 5 at a certain moment constitutes the thermodynamic 
state S(S, t) of the system at that given moment t. 

We say that a system is in thermodynamic equilibrium if this system does not 
evolve with time. But, in general, thermodynamic systems do evolve with 
time, under the action of various external stimuli. The transition from one 
thermodynamic state to another is called a thermodynamic process. A thermo
dynamic process is said to be reversible if the inverse evolution of the system in 
time — i.e. the succession of thermodynamic states that the system has gone 
through — implies the reversal in time of the action of the external stimuli. 
This can be pleasantly visualized by picturing a movie that we project back
wards by rewinding the film. Otherwise the thermodynamic process is said to 
be irreversible. 

Definition 2.3. Thermostatics is the science that compares systems in ther
modynamic equilibrium. 

For example, thermostatics describes the transition from a state of equilibrium 
£i(S) to another state £2(5). Thermodynamics, in its main sense, then is the 
study of phenomena relating to systems out of equilibrium, but are actually not 
far from equilibrium (see below for that limitation). Everybody of course agrees 
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24 Chapter 2. Thermostatics and Thermodynamics 

that in the years 1890 to 1920 thermostatics was developed to an unsurpassed 
persuasive and elegant mathematical form by Clausius, Gibbs, Duhem and 
Caratheodory (see Chapter 1) in full harmony with the experiments. Unfor
tunately, we cannot say the same about thermodynamics outside equilibrium. 
This is one more reason why thermostatics deserves some careful study. 

2.3. Thermostatics (Born-Caratheodory) 

A. Axioms of thermostatics 

The exclusive object of thermostatics is systems S which are in thermody
namic equilibrium. Above we gave some kind of "experimental" definition of 
equilibrium. The exact mathematical definition is the following. 

Definition 2.4. The state £(S) of a system S in thermodynamic equilibrium 
is the set of the quantities proper to this equilibrium, whether of geometric, 
mechanical, or physicochemical, etc., nature, expressed by real numbers that 
remain invariable in time. 

The system <S is said to be finite if n + 1 of these characteristics, (denoted by 
XOi Xii • • •. Xn, i e . xa, ct = 0 , 1 , . . . , n) constitute a system of independent vari
ables, so that any other characteristic quantity becomes a well-defined function, 
called a function of state of the Xa> m this way forming a complete system of 
variables of state of the state £(<S). In geometrical terms, the set of all possible 
states £ of a system forms a simply connected differentiable manifold which is 
denoted by V(S) = V. 

This definition inevitably leads us to an axiomatic formulation of thermo
statics as given by C. Caratheodory (1909, 1925) — a German analyst well 
known for his work on the calculus of variations — following the guidance and 
advice of M. Born, the physicist of quantum-mechanical fame (among other 
things; see Born, 1921) — see also Lande (1926) and Falk and Jung (1959). 

The transformation, denoted by T{£\,£2), is the transition of a system 
S, from one state of equilibrium £\ to another state of equilibrium £2. Let 
{!F} be the set of these transformations. During a transformation there is the 
possibility of exchange. According to the notion of membrane mentioned above, 
we can state that a system is closed if all membranes (external of internal) are 
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&.S. Tkermostatics (Born-Caratheodory) 25 

Fig. 2.1. (a) Composition of general transformations between equilibrium states (Carathec-
dory's formulation); (b) reversible transformation (the path T\i 2' ' s entirely in V). 

impermeable. A system will be called simple if there is no internal membrane, 
while all the parts of the system are homogeneous in any state of equilibrium £.3 

When a transformation T(£i, £2) is such that £2 is identical to £\, it is then 
called cyclic. The composition of transformations is defined in an obvious way 
by Fig. 2.1 

•T^i , £>) = T2{£2,£z)oTl{£u£2), (2.3.1) 

so that the final state of the first transformation T\ becomes the initial state 
of the second T^. We can then state the following. 

First law of thermodynamics in axiomatic form: To any transformation 
J~{£\.,£2) of a system S two numbers Tjr and Qj? can be associated, called 
respectively work received and heat received by S during the transformation. 
The thermodynamic function called internal energy E(xQ), defined up to an 
additive constant, is defined such that 

3Note that other authors define simple systems (e.g., Callen, I960, p. 8) as "systems 
that are macroscopically homogeneous, isotropic, uncharged, and chemically inert, that are 
sufficiently large that surface effects can be neglected, and that are not acted on by electric, 
magnetic, or gravitational fields" (in other words, these are not complex systems as opposed 
to those that will provide the essential subject for our study, G.A.M.). We are faithful to 
our definition in the body of the text. 
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26 Chapter S. Thermostatics and Thermodynamics 

E(£a) - Wi) = 7> + Qr ■ (2-3.2) 

Although the notion of work is the same as in pure mechanics, the notion of 
heat is not specified; which means that within an axiomatic system (2.3.2) may 
be considered as a definition of Q^. If T is denned by a composition similar 
to (2.3.1) then 

7> = 7>, + 7>2 , Q? = Q * + Q^ 2 . (2.3.3) 

And this leads us to consider the existence of two particular classes of trans
formations. 

Adiabatic transformations. These are the transformations belonging to 
the subset {.4} of {7} that take place without heat exchange with the exterior 
(consequently within the limits of an adiabatic membrane); so 

Q?€{A}=0. (2.3.4) 

We then have the following axiom. 

Axiom of adiabatic transformations. / / £Q is a state of the system S and 
N(£o) is the set of the states, in such a way that each one of them will be the 
final state of an adiabatic transformation of which £Q is the initial state, i.e., 

N{£0) = {£\1A{£0,£)}, (2.3.5) 

and I(£o) is the set of states where each state is the initial state of an adiabatic 
transformation of which £Q is the final state, i.e., 

1(£0) = {£\3A(£, £<>)}, (2.3.6) 

then 
Af{£0)Ul{£0)DV(S). (2.3.7) 

This means that two states of V can always be connected by an adiabatic 
transformation, but in general we cannot arbitrarily select which one of these 
two states will be the initial state of the transformation. In so far as notation 
is concerned, A/" clearly refers to "natural" evolutions and I to "impossible" 
evolutions. 
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2.3. Thermostatics (Bom-Caratheodory) 27 

Reversible transformations. These are the transformations that belong to 
the subset {11} of {5}, where the path from £\ to £2 takes place entirely inside 
V (which is not the case for any J-\) If C is the transition path from £\ to £2 
in V, then we have 

7^e{TC} = / w, Q^e{w} = / < / > , (2.3.8) 

where w and 0 are two differential forms of the first order,4 which are not 
identically zero and not proportional to one another, denned on V. We say 
then that the system is in reversible evolution between the states £\ and £2, and 
that u and <f> are, respectively, the elementary work received and the elementary 
heat received in this reversible evolution. For example, we can write explicitly 

n n 

O=0 Q=0 

and the first law (2.3.2), in the case of reversible transformations, is written 
here in an elementary form as 

dE = u) + 4>. (2.3.10) 

What is then the statement of the second law of thermodynamics according to 
Caratheodory? 

Second law for a simple closed system (Caratheodory). Given that 
o 

£0 £ V, then £Q £ Af(£o) — the interior of M, i.e. £0 belongs to the boundary 
ofM{£0). 

In less esoteric language, this means that there are neighboring states of £0 
that cannot be reached through an adiabatic transformation starting from £Q 
so that, as announced, Caratheodory's formulation of the second law is an 
axiom of inaccessibility of states. We have then the following. 

See any book on exterior calculus and differential forms, e.g. Lovelock and Rund, 1975. 

u> = Aad\a, * = Bad.Xa , (2.3.9) 
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28 Chapter 2. Thermostatics and Thermodynamics 

Caratheodory's theorem. / / the axiom above is true, then there exist two 
functions of state 9(Xa) and S(xa), which are not unique, such that 

(f> = 6dS. (2.3.11) 

That the two functions are not unique is obvious from the fact that we can 
introduce a once differentiable function tp such that 

9' = 0(diP/dS)-x, S' = ip(S), (2.3.12) 

so that (2.3.11) is still satisfied for 6' and S' if it holds true for 8 and S. 

Proof of Caratheodory's theorem.5 As the form <f> is not identically zero let us 
assume that in a neighborhood U{£Q) of £Q where, without loss in generality 
we can set all x<* equal to zero, the equality <f> = 0 can also be written as 

n 

i> = dxo - Yl C0dX0 = 0. (a) 
0=1 

A curve along which <j> = V = 0 defines a reversible and adiabatic transfor
mation and is, in the neighborhood of £Q, an integral curve of the differential 
equation 

^ = £ Q ( X 0 , X l , . . . , X n ) ^ . (b) 
0=1 

Now let us try to construct integral curves that pass through So (where ;̂ o = c, 
Xi = ' ' ' = Xn = 0); t is a parameter such as time which we can suppose equal 
to zero at £Q. Such curves C will be obtained as 

Xi=a\t,...,Xn = ant, (c) 

where the ap are arbitrary constants, by selecting xo(t) as the unique solution 
Xo = F(t, o i , . . . , an, c) of the differential equation 

-^ = 'Y^Cp{xo,ait,...,ant)ai3, (d) 

with initial condition 
i r (0 , a i , . . . , o„ ) c ) = c . (e) 

5This proof can be skipped by readers not keen on mathematics. 
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2.3. Thermostatics (Born-Caratheodory) 29 

Let A; be a non-vanishing positive real constant. Then we also have 

Xo = F(k~1t,kal,...,kan,c) = F(t,ax,... ,an,c). 

This identity for F shows, when we make k = t, that 

Xo = F(l,ait,...,ant,c). 

But from the continuity of F with respect to t, when t goes to zero we also 
have that 

F ( 0 , a 1 , . . . , a n , c ) = c = F ( l , 0 , . . . , 0 , c ) . 

At this point it is convenient to simplify the geometric representation of the 
neighborhood U(£Q) by effecting a change of variables which transforms the 
curves C above into so-called "horizontal straight lines". That is, we replace 
{Xc,} by new variables (S, {£p}) such that 

Zf} = X!3, P=l,2,...,n, 

Xo = F ( U i , . . . , £ n , S ) . 

As dF/dS = 1 at point (1,0, . . . ,0,0), the transformation is regular, and, in 
particular, invertible, in a neighborhood of £Q. The result of this is that </> can 
now be written as 

n 

4> = 0dS-'£D(i(S,Zu...,Sn)dZil, (g) 
0=1 

together with 
0(O,O,...,O) = 1. 

In this representation the set of curves C becomes a set of straight lines T> 
of the {£^} space, which are all parallel to S = 0 and intersect the 5-axis. 
Furthermore, two points S3 and Si of a hyperplane S — c can be connected 
by a reversible adiabatic path. To see this it suffices to consider segments of 
V's which join £3 to Sc and £c to £2, and these are particular curves C. It 
remains to prove that in a neighborhood of £0, all Dp in (3) are identically 
zero. With this in mind we shall use a reductio at absurdum proof and suppose, 
to start with, that there exists a point £i{S^l\ £} , . . . , £n ) of U(£Q) where at 
least one of the Dp is not zero. Then the second law would be violated. This 
is shown by proving that there exists a reversible adiabatic path A, passing 

/ ?= ! , 
(f) 

= F(l,a 

an,c) 
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30 Chapter 2. Thermostatics and Thermodynamics 

through £\ and along which S is strictly increasing, 7 < S < 6, where 7 and 
6 are such that 7 < S^ < 6 . Then if S2 is a point in a neighborhood of £\ 
formed by the points OIU{£Q) such that 7 < S < 6, it is possible to connect £\ 
and £2 via a reversible adiabatic path. To do this it suffices to take the path 
£\£s of A, with £3 a point of A such that £(£3) = S(£z), and then to apply 
the foregoing remark that £3 and £2 can always be connected by two "straight 
segments". Indeed, set dp = Dp(£\) ^ 0, j3 fixed. Let an integral path of 
4> = 0 be given in parametric representation by 

tl3=Z{
3
1)+d0t, / 3 = l , 2 , . . . , n , 

s = f{t), /(o) = s^. 
Then f(t) must be a solution of the differential equation 

Jf = " 
0=1 

(h) 

^ ) i = £ < W < ) , /(0) = 5(1>, (i) 

wherein 

0) 
e{t) = o(f{t),tf)+dlt,...,tP + dnt), 

D0(t) = Dl3(f(t),s{1)+d1t,...,&+dnt). 
As 6(£o) = 1, we may suppose that 6(£) > O for state points in U{£0) even 
though we may have to limit the neighborhood of £0 so that this holds true. 
As a consequence 6(0) > 0 strictly. The classical existence and uniqueness 
theorem for solutions of a differential equation of the type (i) then yields that 
f(t) exists and its derivative at the origin is strictly positive since 

*(o)f(o) = X )4 00 
ai 0=1 

if, as was assumed, all dg do not vanish simultaneously. The df/dt is also 
strictly positive in an interval (—ti, t\) so that there exists a path A along which 
S increases and this is contrary to the second law as stated by Caratheodory 
for simple closed systems. Therefore, all Dp must vanish simultaneously, and 
the theorem is proved. This is essentially the proof given by Buchdahl (1960, 
1966) of Caratheodory's (1925) theorem (see also Germain, 1973, pp. 340-
342). The proof is mathematically satisfactory but it does not shed any light 
on the physical significance of the variables 6 and 5. To reach this "physical" 
hindsight we must introduce the notion of temperature. 
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S.3. Thermostatics (Born-Caratheodory) 31 

B. Scaling of temperature, Carnot's theorem 

Notion of temperature 

We shall say that two simple closed systems, Si and S2, are in thermal equilib
rium when, although they are initially separated by an adiabatic membrane, 
the equilibrium is left unchanged if this membrane is replaced by a diathermal 
membrane. This refers to the definitions mentioned previously. It follows that 
if two systems are in thermal equilibrium with a third one, then they are in 
thermal equilibrium between them. This statement defines, in terms of math
ematics, an equivalence relation. The classes of equivalence of V through this 
equivalence relation are isomorphic to the real line R. The states of equilibrium 
of a well-defined system in thermal equilibrium defines then a submanifold of 
dimension n of V, called isothermal, which we consider to be sufficiently regu
lar. This submanifold is a hypersurface of equation 

T = g{xa) = const., (2.3.13) 

so that T is a function of state by this very relation. We say then that (2.3.13) 
defines a scaling of temperature and that T is the temperature of the system in 
the state {x<*}. We can also say that a complex closed system S is thermally 
simple if all the simple subsystems Sp that compose it are at the same temper
ature. The second law applies to thermally simple systems. The above-given 
introduction of temperature is sometimes referred to as the "zero principle" of 
thermodynamics. We then have the following. 

Carnot's theorem. There is a universal scaling of temperature 9, called 
thermodynamic temperature or absolute temperature and a function of state 
S(xa) called entropy of the system, such that 

4> = 6dS, S = S{xa), 6>>0, inf0 = O, (2.3.14) 

and the entropy of a combination of thermally simple systems is the sum of the 
entropy of each one of these systems. S is defined up to an additive constant 
(often considered as equal to zero in the limit as 9 goes to zero). 

This theorem attributed to Sadi Carnot and often called the zero principle 
of thermodynamics in fact reflects the introduction of the notion of absolute 
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32 Chapter 2. Thermostatics and Thermodynamics 

temperature by W. Thomson (Lord Kelvin). It provides the physical signifi
cance of Caratheodory's theorem in which absolute temperature appears as the 
reciprocal of an integrating factor for heat as we can write dS = 6~^<j>, where 
<j> is the elementary heat received by the system. We shall call isentropic those 
transformations that are both reversible and adiabatic. 

Proof of Carnot 's theorem: By the "zero principle" 6 can never be zero, so we 
can always arrange to have 6 > 0 strictly while entropy remains defined up 
to an additive constant. This ensures that absolute temperature and entropy 
differences are well determined and present a universal character. A sketchy 
proof of Carnot's theorem, which amounts to an exercise on exact differentials, 
is as follows. 

Let £ be a thermally simple system made of two subsystems Si and £2-
These are defined by the following state variables: 

£1 :xo,T,X2,---,Xn 
(a) 

£2 ■/no,T,r)2,...,rim 

p = n + m+1, 

where T is the common scaling of temperature. According to Caratheodory's 
theorem we can write 

0 = M(6»rl...,eJ,)deo, 
fa=Mi(xo,T,...,xn)dxo, (b) 

</>2 = M2(r)o,T,...,r)m)dr)o , 

which are the elementary amounts of heat received by the various systems. As 
internal energy is additive, we have <j> = <f>i + fa, i.e. 

Md£0 = Midxo + M^drjo, (c) 

or setting n = M^1 as M ^ 0 necessarily, we can extract from this 

d^o = vMidxo + M^2<^% • (d) 

£ :£o,? \62>-- - ,£p 

dxo, 

Xo, 

7 ? 0 , 
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S.3. Tkermostatics (Born-Caratheodory) 33 

From this it follows first that /zMi and \iM2 depend only on xo and 770. The 
same is also true of the ratio M1/M2, so that we have the relation 

Mi(xo,T,...,Xn) =M2(7?o,r, ...,r?m)a(xo,r?0). (e) 

But the variables of state X2> • • • 1 Xn and 772,..., r/m are independent so that 
Mi can at most be a function of xo and T while M2 can at most be a function 
of 770 and T. Let Mi(xo,T) and M2(T7O,T) those functions. Let further T = Tj 
be a fixed value of T. Accounting for (e) above we then have that 

Mxfro.T) Mifro.T/) 

M2(r7o,T) M2(7?o,T /)' U 

Consequently we can also write 

Mxfro.T) M2(Xo,T) 
Mifo.T/) M2(vo,Tf)- (g) 

But xo and 770 are also independent variables so that each of the ratios in (g) 
is independent of xo and 770. We call m(T) the value of this ratio (as 7 / is a 
fixed constant). Therefore 

Mx = m(T)ai(Xo), M2 = m(T)a2(r>o), (h) 

and thus from (c) 

M 
—jTf^dio = ai(xo)dxo + a2{vo)dvo ■ (i) 
m(l) 

The right-hand side of this equation is an exact differential (as a\ and a2 do 
not depend on 770 and xo> respectively). This must also be the case of the 
left-hand side of (i), so that we can write 

M = a « o ) 0) m(T) 

only. Now define Si(xo) a n d S2(r)o) as the primitive functions of ai(xo) and 
a2(7?o), respectively. It follows then from (j) that 

a(to)dto = dSi + dS2 . (k) 

Whence there exists a primitive function of a(£o), say 5(£o), such that 

8 = 8^82. 
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34 Chapter S. Thermostatics and Thermodynamics 

Selecting then S, Si and 52 as new variables replacing £o, Xo and Vo, respec
tively, and noting 9 = m(T) the new scaling of temperature introduced in the 
course of the derivation, we have shown that 

<j> = fa + 02 = OdS, fa = 9dSi , <fo = 9dS2 . (Q.E.D.) 

This is essentially the proof reported in Germain (1973, pp. 344-345). 
As a corollary of the previous theorem we have the following. 

Corollary of Carnot's theorem. We can always describe a thermodynamic 
system by the state variables called normal, {xa} = {xo = S,Xi> • • • >Xn} *n 

such a way that 
n 

4> = 9dS, u> = ^T Tpdxp, (2.3.15) 

where there is no dS in u>. 

The introduction of normal state variables is due to P. Duhem (1911). 

C. Thermodynamic potentials 

We should point out that both E (internal energy) and S (entropy) are ex
tensive variables (i.e. they are proportional to the mass of the system). The 
Xp's are also extensive variables. Furthermore, E is a positively homogeneous 
function of degree one with respect to the variables xp- We note that (2.3.15), 
in an obvious way, gives 

dE 9E , 
9=dS> Te = 8x-0> / > = ! . - . » . (2-3-16) 

in such a manner that 9 and the Tp's are positively homogeneous functions of 
degree zero. They are intensive variables of state. We say then that E(xo = 
■̂ i Xi > • • • > Xn) is a thermodynamic potential from which both 8 and the r^'s are 
derived through (2.3.16). Generally speaking, we have the following broader 
definition: we call thermodynamic potentials those variables from which we 
can deduce the variables characterizing all the thermodynamic properties of 
the system. There exists a large class of thermodynamic potentials which 
are all introduced through the notion of Legendre transformation (or contact 
transformation). 
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2.3. Thermostatics (Born-Caratheodory) 35 

Associated thermodynamic potentials 

Let Z = Z(xa) = Z(xo, Xii • • • i Xn) be a given thermodynamic potential. We 
then have 

n 0 7 
dZ = y~] nad.Xa = M • dX, Ma = o — . (2.3.17) 

where the dot indicates the scalar product of (n +1)-vectors. We define an as
sociated thermodynamic potential g(^, Hi,..., /ip , Xp+i> • • • > Xn) through the 
partial Legendre transformation on the first p + 1 variables of state, by 

(2.3.18) 
ff(M<1),X(2)) = ^ ( x ) - M ( 1 ) - X ( 1 ) , 

X(1) = (Xo,Xi,---,Xp), 

X(2) = (Xp+l,Xl.--->Xn), 

in such a way that 

dg 

dZ 
"0 = dx~0' 

M ( 1 ) = ( M o . M i , - -

X(2) = 0 ^ f i -

a = 0,l,...,p 

/? = p + l , . . . , n . 

• ,M P ) T , 
. . ,Mn)T 

(2.3.19) 

The Legendre transformation (after the French mathematician A. M. Legen
dre, 1752-1833) is called partial as it affects only the first p + 1 variables and 
corresponding functions. For example, we may consider thermodynamic po
tentials which are associated with the internal energy in agreement with the 
foregoing transformation. Remember that xo = S. The Helmholtz free energy 
F can be defined by 

F = E-0S, (2.3.20) 

so that 
dF 

F = F(0 ,Xi , . . . ,Xn) , S=—Q§- (2-3-21) 
This clearly is the appropriate thermodynamic potential to study isothermal 
processes {9 = const.) whereas internal energy is adapted to the treatment of 
isentropic processes (S — const.). Now, if among the remaining x«> a > 1, we 
find the volume V, e.g. xi = V, then the dual function TI is minus the pressure 
p, and we can define the enthalpy H by 

H = E + pV, (2.3.22) 

Xa = ~ 
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36 Chapter 2. Thermostatics and Thermodynamics 

so that 
SH 

H = H{S,p,X2,...,Xn), V=~fy- (2-3-23) 
As to the Gibbs potential, this is obtained by combining (2.3.20) and (2.3.22), 
that is 

G = G(0,p,X2,...,Xn)=®-0S+pV, 

q__dG dG (2-3-24) 
s~ de' dp-

It is thus well adapted to the treatment of processes which are simultaneously 
isothermal and isopressure (at constant pressure). In a general way the poten
tials associated with S through Legendre transformations are called Massieu 
functions of the system (after F. Massieu, 1832-1896, a French geologist and 
mineralogist). Different potentials present different properties of convexity 
with respect to the different choices of independent state variables. For ex
ample, E is convex in S and in the strain components in an elastic solid. It 
follows that F is concave in 0 (in particular it has a negative second derivative 
with respect to 8) but it is still convex in the strain components. Actually, 
the properties of convexity (and homogeneity) are preserved by the Legendre 
transformation (or the more general Legendre-Fenchel transformation). For 
a gas, S is concave in E and the volume V. Convexity is a property which 
is necessarily involved when stability matters are discussed (see, for instance, 
Germain, 1973, pp. 352-362, for this question concerning thermodynamic po
tentials). In any case, as 9 > 0 strictly, the potential E must be an increasing 
function of S — cf. Eqs. (2.3.16). 

D. The evolution of real systems; continua 

We call real systems those systems which are subject to all types of thermo
dynamic transformations, including irreversible ones. That is, we now want 
to apply the second law to all transformations {F} including the last class. 
Starting from any state £<j we can show that the set N{£Q) may be denned by 
the inequality (whose sign is prescribed by experiments) 

S > S0, (2.3.25) 

the equality sign holding good for reversible transformations only. The in
equality (2.3.25) is a characteristic of the entire set of adiabatic transforma
tions, whereas the reversible adiabatic transformations were used in order to 

G{0,p,X2, 
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2.3. Thermostatics (Born-Caratheodory) 37 

introduce the universal concepts of temperature and entropy. We recognize in 
(2.3.25) the second part of the celebrated statement of R. Clausius (see head
ing citation of the chapter) according to which entropy of an isolated system 
cannot decrease. 

As temperature plays a crucial role, we must first specify further the notion 
of isothermal transformations and thermal irreversibilities. 

Isothermal transformations. During such a transformation of the system 
the temperature remains constant. If, in addition, this transformation is re
versible, then the evolution of the system between the initial state £$ a n d 
the actual state £ is described by a succession of equilibrium states, and the 
quantity of heat received Qr during this transformation is given by 

S{£) - S{£0) - % = 0. (2.3.26) 
u 

If the transformation is irreversible we may suppose that (2.3.26) is replaced by 

S(£) - S(£0) - j > 0, (2.3.27) 

in such a way that, for a given Q, the final entropy will be greater than the one 
we would have observed in a reversible transformation. We can also say that 
the quantity of heat received during the transition from £Q to £ is smaller in 
the case of irreversible transformations, and that the resulting loss of received 
energy is due to the intrinsic irreversibilities of the system. According to 
(2.3.27), these losses caused by intrinsic irreversibilities are defined by 

P(^taoth(S>,£)) = S(£) - S(£Q)-e-lQ(Fisoth(£0,£)) > 0. (2.3.28) 

We can define in the same manner the losses due to thermal irreversibilities: 

POFmonoth^O, £)) = S{£) - S(£0) - 0„ ' Q(^monoth(^0 , S)) > 0 , (2 .3 .29) 

where Tmonoih(£o,£) is a monothermal transformation which corresponds to 
an exchange of heat with a source at constant temperature 6Q. 

For a continuous medium we shall use the form 

5 2 - 5 j > y ^ (2.3.30) 

£o,£ 
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38 Chapter 2. Thermostatics and Thermodynamics 

of Eq. (2.3.27), where 1 and 2 denote the initial and final states of the contin
uum. More precisely, for a material body occupying the volume Q of Euclidean 
physical space E 3 at time t, with a regular boundary dfi, and evolving between 
two instants t\ and t2, w e shall write (2.3.30) in the more expressive form 

5(*i) - S(t2) > f ' I f lda+ [ p^dnldt, (2.3.31) 

where q and h are, respectively, a flux and a source (per unit mass) of heat. 
The inequality (2.3.31) is known as the inequality of Clausius (who, in 1854, 
postulated its existence for an isolated system with h — 0 and q = 0). In 
fact, at moment t, this fundamental inequality can be written in a differential 
form as 

i2j(.'?"-/«ar*- <23-32> 
where q is the heat flux vector (directed conventionally towards the interior 
of fi, hence the minus sign) and n is the unit outward normal to dil. Since 
entropy is en extensive quantity, at time t we can write 

S(ft) = / pqdn, (2.3.33) 

where 77 is the specific entropy at event point (x, t), x £ il. Then the time 
derivative present in (2.3.32), d/dt, is the material time derivative of continuum 
mechanics (see below). 

The above given formulation brings about a few remarks. First, the above 
statements and results apply to transformations linking between them states 
in equilibrium. What can we say about the states outside equilibrium, i.e., for 
thermodynamics in the full sense of the term? This is the problem to be ex
amined in Chapter 3. As we shall see entropy is still attributed its equilibrium 
values and the inequality (2.3.32) is to be applied at nearby instants. Equa
tion (2.3.32) is nowadays called the global expression of the Clausius-Duhem 
inequality, so that Duhem, who added the flux term, is associated to Clausius. 
The volume source term was later added by Truesdell and Toupin (1960). Fi
nally, it must be noted that the entropy flux, that we shall denote by S, a 
vector field, is above assumed to be the ratio of heat flux to temperature, i.e., 

(2.3.34) s = q 
" 9' 
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S.3. Thermoatatics (Born-Caratheodory) 39 

This is not true for all theories of continua, in particular in presence of diffusion-
like phenomena (when the gradient of state variables is involved in the ther-
modynamic formulation). Thus it may be wise not to suppose (2.3.34) to start 
with. Such an approach was advocated by I. Miiller (1967, 1973), although 
(2.3.34) may hold in numerous cases indeed. To proceed further we need to 
introduce a few elements of continuum mechanics. That is, in addition to 
the statements of the first and second laws for a system formed by a material 
body fi, we need to postulate the mechanical balance laws and the equation 
of conservation of mass. For the time being we consider a so-called simple 
material body in the absence of electromagnetic and chemicophysical effects, 
which is made of just one constituent (all material "points" are made of the 
same material). 

Mater ia l body: In what follows, a nondefective material body is a simply 
connected region B of an Euclidean three-dimensional manifold .M, called the 
material manifold. The elements of this manifold are material points, denoted 
X. In a system of (possibly but not necessarily) curvilinear coordinates XK, 
K = 1,2,3, this point is simply represented by X. 

If the said region of M is not simply connected, then we say that the material 
body is defective (e.g., it presents voids, inclusions, cracks). It may be that we 
can replace in thought this multiply-connected Euclidean manifold by a simply 
connected but then non-Euclidean (and sometimes not even Riemannian) one 
as is done in some theories of continuous distributions of structural defects 
(dislocations, disclinations, see Maugin, 1993a). In what follows we shall stick 
to the above definition as we shall not consider microscopic defects. To each 
point X o n M there is attached a density, the matter density po(X) which is 
the density of matter at the reference configuration KR. This scalar quantity is 
at most a function of X, when the body is materially inhomogeneous, i.e. with 
material properties (here mass) varying from point to point. For a homogeneous 
body, po is a mere constant expressing the quantity of matter in Newton's sense. 
In these conditions, as we all know, density is defined by the limit procedure: 

p= lim -TTF > 0, (2.3.35) 
AV-»O AV ~ 

where Am is the total mass contained in a small volume AV' of B. For ho
mogeneous materials, one finds that the limit quantity defined by (2.3.35) is 
nearly constant when we select AV at random in B, under the condition that 
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40 Chapter 2. Thermostatics and Thermodynamics 

AV be large enough to erase the ultimate discrete nature of matter. This 
defines some kind of critical length L which delineates in a rather imprecise 
manner the macroscopic world (to which we shall apply thermomechanics) and 
the microscopic world of true particles, lattices and quantum physics. 

Then the motion (or deformation) of the material body B of M. is the time 
sequence of the positions (also called placements) occupied by the point X 
in Euclidean physical space E3, the arena of classical phenomenologic physics. 
That is, t representing Newtonian absolute time (t € R), we can write 

x = x (X , t ) . (2.3.36) 

The placement x is usually reported to a Cartesian system of coordinates x', 
i = 1,2,3.6 The set of geometrical points x ( 5 , t fixed) constitutes the actual 
or current configuration Kt of the body B at time t. For a certain time to, 
usually preceding t in the time sequence, we can write 

X o = x ( X , « o ) . (2.3.37) 

If the functions involved in (2.3.36) and (2.3.37) are sufficiently smooth and, 
in particular, invertible, then we can rewrite (2.3.36) as 

x = x(x -1(xo,to),r.) = x(x 0 ,Mo) = x(xo,«) (2.3.38) 

as to may conventionally be taken as 0. The configuration Kt0 = K.Q of the 
body B defined by (2.3.37), and which does belong to the sequence of ac
tual configurations, is often referred to as Lagrangian after its introduction 
by J. L. Lagrange (1736-1813) in fluid mechanics while x given by (2.3.38) 
refers to the Eulerian representation (after L. Euler, 1707-1783). Prom the 
above we see that the reference configuration on the material manifold M. is 
a somewhat more abstract notion than that of Lagrangian configuration. It 
was introduced by G. Piola (1848) in a paper of far reaching insight,7 as this 
configuration, which corresponds to an ideally unstrained and unloaded con
figuration, is needed in solid mechanics to define the material symmetry of the 
body (it also has to correspond to a minimizer of the energy) while in fluid 

6Or, for that matter, any other system of coordinates which fits better the shape of the 
body and is better suited to the analytical solution of a boundary-value problem than a 
rectangular one. 

7 The abstract nature of AC/j in Piola is enhanced by the fact that Piola takes it as a 
configuration of a priori uniform matter density conventionally normalized to unity. 
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S.3. TTiermoatatics (Born-Caratheodory) 41 

mechanics, for ideal fluids (those which present neither deformable nor rigid 
but orientable micro structure), any configuration, including the current one, is 
as good as another for an inclusive description of the material properties of the 
continuum. Thus the XQ, i = 1,2,3, are referred to as Lagrangian coordinates, 
and the Xk as material coordinates. We shall use only the latter (see Fig. 2.2). 
More detailed elements of continuum kinematics and of deformation theory 
will be introduced when the need arises.8 

Fig. 2.2. General kinematics of a continuum 

Let B — fi the image of B at time t in physical space. Then we have the 
following balance laws in the absence of electromagnetic and physico-chemical 
couplings: 

(i) Conservation of mass: 

d f 
—m(B) = 0, m(B) = dm, dm = pdQ, (2.3.39) 
dt Jn 

8This book is not a textbook on continuum mechanics for which there exist many valuable 
introductions and treatises; in the first class, see e.g., Eringen (1980), Germain (1973), 
Maugin (1988, Chapter 3), and in the second class, Eringen and Maugin (1990), Truesdell 
and Toupin (1960), Truesdell and Noll (1965). 
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42 Chapter 2. Thermostatics and Thermodynamics 

where dm is a mass measure and p is the image by (2.3.36) of the matter 
density po, i-e-

p(x,t) = p 0 (X)Jf 1
1 (2.3.40) 

where 
J F = d e t F > 0 , F : = V K X = ^ . (2.3.41) 

Here F is the so-called motion gradient (a denomination that we prefer over 
that of "deformation gradient"). The direct motion x(X, t) has been assumed 
smooth enough for the definition of F to make sense and the fact that Jp keeps 
in one sign (say +) during motion. Thus \ is invertible (this was already used 
for writing (2.3.39)) and we call inverse motion the mapping of E3 onto M at 
fixed t given by 

X = x " 1 ( M ) , (2.3.42) 

so that the inverse-motion gradient F _ 1 given by 

F - 1 := V * - 1 = - | - . (2.3.43) 

is well defined. It is readily checked that F _ 1 indeed is the inverse of F at 
fixed t, so that we have the identities 

F . F _ 1 = 1 , F - 1 . F = l f i , (2.3.44) 

where the symbols 1 and 1 R represent the unit dyadics in E3 and on M, re
spectively. It must be emphasized that both F and F _ 1 are not tensors per se, 
as they are geometric objects defined on two manifolds simultaneously (i.e. in a 
picturesque language, they have one foot in K,t and one foot in KR\ their com
ponents are F^1 and (F - 1 ) f \ respectively; such objects are two-point fields). 
Speaking of their symmetry, for instance, has no meaning. Equation (2.3.40) 
is none other than the integral of the local form of (2.3.39). 

(ii) Balance of linear momentum (physical momentum): 

— / vdm = I f dm + f Tdda, (2.3.45) 
"* Jn Jn Jan 

where f is a physical force acting per unit mass of the body and T d is a physical 
force, called traction, acting per unit area of the boundary dQ. The field v is 
the physical velocity defined from the direct motion mapping (2.3.36) by 
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2.3. Thermostatics (Born-Caratheodory) 43 

v : = ^ . (2.3.46) 
dt x 

The formulation (2.3.45) of the balance of physical momentum — the vector pv, 
per unit volume of il, in E3 — emphasizes the physical nature (action of gravity 
or electromagnetic fields) of the force f. Equation (2.3.45) is complemented 
by the 

(iii) Balance of angular (or moment of) momentum: 

— / x x vdm = I x x fdm + [ x x Tdda, (2.3.47) 
dt Jn Jn Jdn 

where x denotes the vector product. Equation (2.3.47) which accounts for 
Newton's third law (that of action and reaction) does not bring any new con
cept into the picture in the absence of body couples, which is the case in the 
present situation (see further developments below). 

As we know from continuum mechanics, the application of (2.3.45) to an in
finitesimal tetrahedron following a celebrated argument of A.-L. Cauchy (1789-
1857) which marked in 1828 the very beginnings of continuum physics (inde
pendently of any microscopic discrete model), leads to the introduction of the 
notion of Cauchy's stress tensor, i.e. the fact that the natural boundary condi
tion at d£l reads 

<r-n = Td or o-ijnj=T?, (2.3.48) 

where the last form has been expressed in Cartesian tensor components on 
account of Einstein's summation rule on dummy indices. The material time 
derivative present in Eqs. (2.3.45) and (2.3.47) is such that 

4- [ Adm= I ^-dm. (2.3.49) 
dt Jn Jn dt 

This is a direct consequence of the conservation of mass (2.3.39). It must be 
understood that the symbolism dA/dt here means 

dA _dA 
dt ~ dt 

dA 
dt 

+ ( v - V ) i , (2.3.50) 

depending on whether A is expressed as a function of (X, t) or (x, t), i.e. A(X., 
t) = A(x - 1 (x , t), t) = J4(X, t). Using then a classical localization argument 
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44 Chapter 2. Thermostatics and Thermodynamics 

based on the assumed continuity of all fields, (2.3.45) and (2.3.47) yields the 
following local field equations on account of the introduction of a: 

Local balance of physical momentum: 

dv 
p-r = diva + pf or pVi = a^j + pfi (2.3.51) 

at 

at all points x in ft, and 

Local balance law of angular momentum: 

Q — aT or <iij = o-ji, (2.3.52) 

which expresses the symmetry of Cauchy's stress tensor in the absence of body 
couples. The superscript T indicates transposition as explained in the second 
of (2.3.52). 

For completeness we must formulate the first law of thermodynamics for a 
continuous body B. This reads: 

jt{K{B) + E(B)) = Pext(B) + Q{B), (2.3.53) 

where K is the total kinetic energy, E is the total internal energy, P,,^ is 
the mechanical power expanded by applied forces both in the bulk and at the 
bounding surface, and Q is the total heat received by radiation or conduction 
by the body. As kinetic energy and internal energy are extensive, we have 

K{B) I -v2dm, E(B)= I edm, (2.3.54) 
Jn 2 Jci 

where e is the internal energy per unit mass of the body. Finally, according 
to (2.3.45) on the one hand and in agreement with (2.3.42) on the other hand, 
we have the following expressions for the source terms in (2.3.53): 

Vext(B) / f.vdm+ / Td.vda, (2.3.55) 
Jn Jan 

and 

Q(B) = / hdm - / q.nrfa. (2.3.56) 
Jn Jdn 
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2.3. Thermostatics (Bom-Caratheodory) 45 

With Eqs. (2.3.39), (2.3.45), (2.3.47), (2.3.53) and (2.3.32) we have at hand all 
the global balance or inequality equations governing the thermomechanics of 
continuous bodies made of simple materials. 

Principle of virtual power: The following variational or weak formulation 
of mechanical balance laws is equivalent to Eqs. (2.3.45) and (2.3.47) when v* 
is an arbitrary continuous virtual velocity field defined on il and 80,: 

V'{a)=V^+Vlb)+V'{c), (2.3.57) 

where 

v^ = Ldi-v'dm' 
V*(i) = - I p-lo:Trdm, 

Vfa= f f.v'dm, 
Jn 

and 
Vlc) = f Td.v'da, 

Jan 
where (tr = trace) 

< T : D * = ti{oD*)=oiiD)i 

with 

D ' : = ( V V ) „ i.e. Z?r. = ^ + t,*,) = D'jt. (2.3.63) 

The equivalence between d'Alembert's formulation (2.3.57) and Newton's for
mulation (2.3.45) and (2.3.47) follows from the fact that (2.3.57) in particular 
holds true for v* fields which correspond to a rigid-body motion for which 
D* = 0 at t for all xs. (see Maugin, 1980, 1988, pp. 78-79). The d'alembert 
formulation is closer to the spirit of modern applied mathematics, distribution 
theory, and numerical analysis (e.g. finite-element method). Verbally, how
ever, (2.3.57) reads: the virtual power of acceleration (or inertial) forces in a 
continuous body is balanced by the sum total of the virtual powers of all types 
of external and internal forces impressed on the body either at distance (body 
forces) or by contact (tractions), and internally (stresses). In particular, for a 

(2.3.58) 

(2.3.59) 

(2.3.60) 

(2.3.61) 

(2.3.62) 
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46 Chapter &. Thermostatics and Thermodynamics 

real velocity field v (no asterisk), i.e. that field which corresponds to the actual 
solution of the dynamical problem, the statement (2.3.57) produces the global 
equation: 

jtK(B) = V{i) + Pext, (2.3.64) 

where the quantity Vext has already been defined in (2.3.55). 
A straightforward combination of (2.3.53) and (2.3.64) then yields the so-

called theorem of energy. 

jtE(B)-rP{i)=Q(B). (2.3.65) 

The thermodynamics of continuous bodies made of a simple material is encap
sulated in the global formula (2.3.65), a statement of the first law on account 
of the mechanical balance laws, and (2.3.32), the statement of the second law. 
For sure, in the presence of motion (2.3.36) or (2.3.42), we need a true thermo
dynamics as the time evolution, unless it takes place at a sufficiently slow pace, 
is a true dynamic process. Thermodynamics per se, in various guises, is the 
subject matter of Chapter 3. 

Q(B). 
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Chapter 3 

VARIOUS THERMODYNAMICS 

"So many thermodynamicists, 
so many thermodynamics !" 

(a faked true common citation) 

3.1. Preliminary Remarks 

Thermo-dynamics has a wealth of applications and several presentations. Ap
plications shall be dealt with in Chapters 6 to 10. Here we focus on its 
various representations. Among these presentations, some are more "tradi
tional" and others more adventurous. Some are based on microscopic in
sight, others discard any "atomic" basis. Some exploit the experience acquired 
in thermo-statics, others simply ignore it. Some specify how little far-from-
equilibrium their validity stands, others claim a general validity truly outside 
equilibrium. Some use a classical balance-law postulational approach, others 
claim a variational basis. By combining all these possibilities we see that the 
variety of presentations and justifications has a natural tendency to become 
isomorphic to the number of thermodynamicists. We shall restrict ourselves 
to giving limited information on the most adventurous presentation, that of 
rational thermodynamics which ignores altogether the acquired experience of 
thermostatics and claims the largest validity outside equilibrium (Sec. 3.3), 
and on the recent approach known as extended thermodynamics on account 
of its (in our opinion) lack of versatility (at least for the moment — see 
Sec. 3.4), to concentrate on the accepted formulation known as the theory of 
irreversible processes (T.I.P.). The latter builds on the experience gained in 
thermostatics and modestly envisages only slight deviations from equilibrium 
(Sec 3.2). We shall also pay extensive attention to its modern generaliza
tion to which most of the book is in fact devoted, the thermodynamics with 

47 
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48 Chapter 3. Various Thermodynamics 

internal variables (for short T.I. V.). This one cautiously builds on the previous 
knowledge of thermostatics while enlarging the theory of irreversible processes 
so as to include a large variety of phenomena as well as nonlinear irreversible 
processes (Sec. 3.5 and further chapters). In doing so we follow the advice of 
Duhem, Bridgman and Kestin while bringing an efficiency, both physical and 
mathematical, to the thermodynamical description of physical phenomena that 
no other approach has so far attained. 

3.2. Theory of Irreversible Processes {T.I.P.) 

A. Axiom of local state 

This approach is the most standard, and most widely accepted by physicists 
and physico-chemists alike. It is exemplified by the now classical treatise of de 
Groot and Mazur (1962).x Relating to small deviations from equilibrium, it is 
supported by a microscopic analysis which was achieved in celebrated works 
by Onsager (1931) and Casimir (1945). For our present purpose it suffices to 
emphasize the role played in T.I.P. by the axiom of local (equilibrium) state 
that we can state thus: 

Axiom of local (equilibrium) state. Each part U of a material system S 
can be approximately considered, at each time t, as being in thermal equilib
rium. 

In other words, a thermo-dynamic process close to equilibrium can be viewed 
as a sequence of thermostatic equilibria and this allows us to grant to entropy 

1 There exists a wealth of books presenting T. IP. in various degrees of rigor and generality, 
among these, in alphabetic order: Fitts (1962), de Groot (1951), de Groot and Mazur 
(1962, reprint 1986), Haase (1968), Katchalsky and Curran (1965), Lavenda (1978), Meixner 
and Reik (1959), Prigogine (1947), Stueckelberg and Scheurer (1974), Sychev (1981, 1983), 
Wisniewski et al. (1976), Woods (1975). The most persuasive presentation remains that 
of de Groot and Mazur. The most critical and rigorous is that of Woods. Papers such as 
those of Eckart (1940, 1948) and Eringen (1960) were instrumental in reconciliating T.I.P. 
and continuum mechanics. Rather original in its presentation based on some variational 
formulation is the book of Gyarmati (1970), an author who founded a true Hungarian school 
of thermodynamics. Classical T.I.P. was much publicized by many publications in the 
journal Physica published in the Netherlands by Elsevier. Both T.I.P. and its generalizations 
have received the forum of the Journal of Non-Equilibrium Thermodynamics (de Gruyter, 
Berlin). The series of books on Non-Equilibrium Thermodynamics edited by P. Salamon and 
S. Sieniutycz at Taylor and Francis, Washington (1991), is also a fruitful source of expositions 
by various active contributors. 
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S.S. Theory of Irreversible Processes 49 

and temperature their usual thermostatic definitions. That is, at each moment 
t there exists a set of normal extensive state variables xQ , a = 0 , 1 , . . . ,n, 
Xo = V the specific entropy, and a specific internal energy e(\a) such that the 
temperature 6 and the laws of state for r^, j3 = 1 , . . . , n are given by 

de de , 

One must naturally make the notion of closeness to equilibrium more precise. 
This is achieved by introducing time scales and length scales. In effect, first the 
closeness to equilibrium may be measured at each spatial location by the ratio 
of the characteristic response time TR which allows the thermostatic system to 
recover a new state of thermostatic equilibrium to the characteristic duration 
TM of the kinematic and dynamic evolution of the material medium. Inspired 
by rheology (Reiner, 1964) we may call Deborah number Ve2 this ratio which, 
for T.I.P. to apply must be very small. That is, 

(Pe)-rip = TR/TM < 1 • (3.2.2a) 

This will prove impracticable each time that the evolution of the system is 
too fast (e.g. in a shock-like evolution). The listing of characteristic times in 
Sec 2.1 is a useful guide to decide on the validity of the application of T.I.P. in 
many rather complex situations. In many cases the smallness of Ve indicates 
that the response time inherent in perturbations of a thermal equilibrium is 
such that the relevant subsystem will recur to a new equilibrium state in a 
much shorter time than the typical duration of kinematical (e.g. flow rate) or 
dynamical (inverse frequency) evolutions so that one can indeed attribute to 
the entropy its equilibrium value and apply the inequality (2.3.31) at nearby 
instants, i.e. the expression (2.3.32) of the global Clausius-Duhem inequality. 

In the beginning of the reasoning made on time scales we indicated the 
local spatial validity of the present argument if we remember that thermostat-
ics is also based on the notion of spatially uniform systems. Thus closeness 
to equilibrium should ideally be defined in space-time as it also imposes some 
condition on the gradient of variables of state during a true thermo- dynamic 
evolution (remember that heat conduction itself involves the gradient of tem
perature, but there will be many other processes in the same class). We expect 
that all gradients involved will be such that 

2Remember the biblical saying: "and Deborah saw the mountain flowing before her..." 
(free translation, G.A.M.). Deborah's time scale is the geological one if we admit with 
Heraclitus (circa 544-483 B.C.), that everything, including mountains, can flow: nai/ra pel. 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

B
IR

M
IN

G
H

A
M

 L
IB

R
A

R
Y

 -
 I

N
FO

R
M

A
T

IO
N

 S
E

R
V

IC
E

S 
on

 0
3/

21
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



50 Chapter 3. Various Thermodynamics 

A : = j ^ j » l , (3.2.2b) 

where x is a typical variable of state, Vx is its "microscopic" gradient, and 
L is a macroscopic length scale — hence macroscopic gradients are much less 
"stiff" than microscopic ones. As a matter of fact, adopting Bridgman's point 
of view of pencil and paper experiments, we note that instruments (e.g. a 
thermometer) used in measuring thermodynamic features measure gross quan
tities and disregard the small length scale strong gradients to capture only 
those gradients that are significant over a relatively large length scale.3 The 
list of characteristic length scales given in Sec 2.1 will be useful in assessing 
whether a physical dissipative phenomenon involving spatial dis-uniformities 
is amenable through the methodology of T.I.P. 

Equations (3.2.1) are state laws: the expression and validity of these laws 
are justified by the corresponding relations valid in thermostatics — where the 
internal energy plays the role of a potential — and also by the axiom of local 
(equilibrium) state. Here 

e = e{ri,xp). (3.2.3) 

The first law can be locally rewritten as 
n 

e = 9f) + w, U = ^2T0X0=L-X- (3.2.4) 

We may also refer to this as Gibbs' equation. A dual formulation makes use of 
the partial Legendre transformation 

TP:=e-n8, „=-§£, r0 = g , (3.2.5) 

where ip is the Helmholtz free energy per unit mass. Simultaneously, the second 
law (2.3.32), under appropriate continuity conditions for the integrands, reads 
in local (in time and position) form: 

PV > p(h/9) - V • (q/0) , (3.2.6) 
3According to Bachelard (1927): "...C'est I'ordre de grandeur out, a Jut seal, crie le 

phinomene. Si la longueur d'onde A n'itait pas assez grande pour enjamber en quelque sorte 
les discontinues de la distribution punctiforme, la confusion s'dtablirait... La grandeur de 
la quantity \ relativement aux distances interatomiques, ditermine une solidarity qui caique 
la continuity..." (This was written apropos heat conduction; "distances interatomiques" 
could be replaced by "mean free path", or "lattice spacing" depending on the application 
envisaged). 
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3.S. Theory of Irreversible Processes 51 

where p is the matter density at time t, q is the heat-flux vector, and h is the 
heat source per unit mass. The dissipation $ per unit volume is then obtained 
by combining (3.2.4) and (3.2.6). That is, 

$ = p{e - h + p'1? ■ q- u) + 6q- V(0_ 1) > 0 . (3.2.7) 

B. Application to deformable material continua: 

In this case the localization of Eq. (2.3.65) immediately gives: 

pe = a : D - V - q + p/i, (3.2.8) 

with the notation of (2.3.62), whence (3.2.7) takes on the reduced form: 

* = $intr + *th > 0 , (3.2.9) 

where the intrinsic and thermal dissipation have been defined in general by 

$ i n t r := a : D - pv, * t h = 0q • V ^ " 1 ) . (3.2.10) 

Sometimes stronger conditions than (3.2.9) are imposed, e.g., 

3>intr>0, & h > 0 , (3.2.11) 

separately. The first of these is known as the Clausius-Planck inequality. The 
second one expresses the intuitive condition that heat flows in the direction of 
negative gradients of temperature. According to the weaker condition (3.2.9), 
the second of conditions (3.2.11) may no longer hold true when there is intrinsic 
dissipation. In the present case, $intr takes on the following simple form that 
results solely from deformation processes: 

$intT = <7:D-pu=-(p(i)+pu), (3.2.12) 

where, compared to (2.3.52), p(j) is the power developed by internal forces per 
unit volume in the current configuration Kt. We can also work per unit volume 
of the reference configuration KR. In that case it is fitting to introduce the first 
Piola-Kirchhoff stress T and the material heat flux vector Q by the convection 
formulas: 

T = J F F _ 1 - a , Q = J F F - 1 q , (3.2.13) 
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so that by taking note of the demonstrable identities 

V - ( 7 ^ 1 F ) = 0, VH-VPF-^^O, (3.2.14) 

and accounting for (2.3.40), we find that (2.3.51) and (2.3.52) are replaced by 

dv 
Pi 

and 

P0M 
divRT + Pof or Po-^=rKiK + p0r, (3.2.15) 

T - F T = F - T T or Ti.KF?L6KL = T?KF?L6KL, (3.2.16) 

while (3.2.9) takes on the form 

$R = J F $ = tr (TF) - pouj + 6>Q • V^ t f " 1 ) > 0 . (3.2.17) 

The convection operation (on one index) defined in (3.2.13) is called the Piola 
transformation (after Piola, 1848). The relationship between D and F is as 
follows: 

F = L F, F = ^ F "(£)- V « v , (3.2.18) 

and 
L = Vv = F - F _ 1 , D = L s = s y m L , (3.2.19) 

where sym denotes the action of taking the symmetric part. 
For small strains, we introduce the displacement vector u and the infinites

imal strain e by 

F = 1 + V f lu(X, t), v = u(X, t), (3.2.20) 

and 

V u = ( F _ 1 ) T - V f l u ^ V f l U , e = symVu = (Vu) , , (3.2.21) 

where we no longer distinguish between the reference and the current configu
rations. In these conditions we obtain the dissipation inequality in the form: 

$R^$ = a :e-pu> + 0q- V(0_ 1) > 0 , (3.2.22) 

i.e. 
$intr =cr:i-pu. (3.2.23) 

We are now in a position to illustrate the exploitation of T.I.P. in some simple 
paradigmatic cases. 
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3.S. Theory of Irreversible Processes 53 

C. The compressible Newtonian fluid 

In that case we take e = e(rj,r), where T is the specific volume (r = p - 1 ) . 
Equations (3.2.1) read: 

de de 
B=w p = - ^ , (3.2.24) 

and on account of the continuity equation (2.3.40) that we can rewrite in any 
of the following two forms: 

p-rptrD = 0 or -£ + V • (pv) = 0, (3.2.25) 
at 

we note that the dissipation inequality (3.2.10) takes on the form 

$ = a D : D + 0 q - V ( 0 - l ) > O > (3.2.26) 

with 
aD:=a+pl since pw = - p t r D = - ( p i ) : D . (3.2.27) 

The simplifcation of T.I.P. now consists of rewriting (3.2.26) as 

$ = aD :T>-6o1(i-V0>O, (3.2.28) 

where #o is the ambient temperature (spatially uniform reference temperature 
about which 6 varies only slightly) and considering linear relationships between 
the so-called dissipative fluxes aD and q and their "causes", referred to as forces 
in general (although V# does not appear as such at a macroscopic scale). We 
shall return to this practice in due time. For the time being we simply note 
that a Newtonian fluid is often considered as a viscous, i.e. dissipative, fluid, 
which is incompressible (or practically so). If this is indeed the case then we 
have to enforce the mathematical constraint of incompressibility in the form 
(this also refers to isochoric flows) 

V - v = t r D = 0. (3.2.29) 

As a consequence both p and r are constants, and (3.2.29) is taken into ac
count through the introduction of a Lagrange multiplier, called the mechanical 
pressure it (an unknown scalar field to be determined upon solving a well-posed 
boundary-value problem). The Cauchy stress tensor a now is defined up to 

I > 0 , 
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the isotropic stress field —nl, while, clearly, only the deviatoric part of D is 
involved, since 

a = ad+\tial, (3.2.30) 

in general, where ad denotes the deviator of a. The resulting residual dissipa
tion inequality reads 

$ = aD :Bd-0o1(iV9>O, aD := ad + TTI , (3.2.31) 

where D d is the deviator of D. Classically {T.I.P.) one assumes that aD and 
q have expressions given by 

aD = 2r)vT>d, q = - * V 0 , (3.2.32) 

with T}v{90) > 0 and x(#o) > 0, so that the inequality (3.2.30) is identically 
satisfied. This is a naive application of T.I.P. (see below). The second of 
(3.2.32) is known as Fourier's law of heat conduction for isotropic bodies (al
though the notion of heat vector was introduced only later by W. Thomson so 
that Fourier did not have a clear idea of a constitutive equation). Now back 
to the compressible case. Had we not assumed incompressibility, the whole 
of D would have remained involved in the dissipation inequality (3.2.26). In 
that case, still for isotropy, the first of (3.2.32) would be replaced by the more 
general formula: 

oD = r)vl(0o)(trD)l + 2r)v2{6o)T), (3.2.33) 

with the constitutive inequalities 

3T/„I -I- 2^2 > 0, rjv2 > 0, (3.2.34) 

which we ask the reader to establish by himself, by substituting (3.2.33) and the 
second of (3.2.32) — still valid — into (3.2.26). We have indicated a possible 
dependence of the coefficients on the ambient temperature; a dependence on r 
or p is not ruled out by the second law of thermodynamics, but is not indicated 
here. A fluid is said to be Stockesian when the viscosity coefficients 77̂ 1 and 
r)V2 jointly satisfy the condition of vanishing bulk viscosity. 

3?7vi + 277̂ 2 - 0. (3.2.35) 

The expression in the left-hand side of this expression stems from the fact that, 
on account of the general decomposition (3.2.30) for a second-order symmetric 

V 6 > > 0 , 
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3.S. Theory of Irreversible Processes 55 

tensor, (3.2.33) can also be written as 

aD = 2tlv2Bd + 3 r M + 2 T ^ ( t r D ) i t ( 3 2 3 6 ) 
o 

thus separately emphasizing the pure shear (term in Dd) and bulk behaviors 
of the fluid's response. 

D. The linear viscoelastic solid 

In this case we start with e = e(e,r)), so that Eqs. (3.2.1) read 

• - ! ; • ' * = ' ! • <32-37> 

The dissipation inequality (3.2.22) takes on the following form. 

$ = (7D -.i-e^q- V6>>0, oD=o-oe, (3.2.38) 

where ae may legitimately be referred to as the elastic (thermodynamic) stress 
and aD the viscous stress (this by analogy with the fluid case). Here we have 
a better application of T.I.P., especially for anisotropic media such as crystals 
which are solids in small strains (typically strains of the order of 10 - 4 in ul
trasonic experiments). So-called complementary laws (constitutive equations) 
for the dissipative fields <rD and q can be looked for as linear combinations of 
i and V0. That is, one will a priori write 

aD = N[D] 4- A[g], 
1 J ' ' (3.2.39) 

q = B[D] - X o[g ] , 
where we set g — V0 and N, A, B and xo are linear operators. Thus they 
are represented by Cartesian tensors of fourth, third, third, and second or
der, respectively. On substituting from (3.2.39) into (3.2.38) we see that it is 
sufficient to consider N as a symmetric application of the set of second-order 
tensors onto itself, xo as a symmetric application of the set of polar vectors onto 
itself and that A and B may, without loss in generality, satisfy the following 
symmetries: 

Ajik = Aijk, Bijk = Bikj. (3.2.40) 

For materials having a center of symmetry, the tensors A and B have identi
cally vanishing components. In this case from (3.2.39) there remains the linear 
relationships: 

<r£ = NyfcieW) qi = -XoijOj . (3.2.41) 
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If we further specify e(e,rj), for instance in the form of an expansion limited 
to the second order in the components of e and the small deviation fj = 77 — 770, 
from a spatially uniform equilibrium value 770, then Eqs. (3.2.37) and (3.2.41) 
provide a complete set of constitutive equations for the thermoelasticity of 
viscous, heat conducting anisotropic (but homogeneous) solids in small strains, 
e.g. a crystal that presents a center of symmetry. For an isotropic material 
(very special case of the above where full isotropy includes invariance under 
the full orthogonal group and under reflection of axes of Eqs. (3.2.37) and 
(3.2.41), then e can depend on e only through its elementary invariants, and 
according to a well-known irreducible representation due to Racah (1933), the 
surviving linear operators N and xo takes on the following form: 

Nijki = VviSjiSki + r)v2(6jk?>ii + djrfik), 

XOij = XO$ij , 

where 5y is Kronecker's symbol. As a consequence, aD and q acquires practi
cally the same form as for a compressible viscous fluid. That is, 

crij = Vvi(Oo)(tri)6ij + 2T]v2(90)iij , 

q = - x ( * o ) V 0 , 

whose coefficients satisfy the same inequalities as (3.2.33) and \ > 0- The 
dissipation inequality does not rule out a dependency of these coefficients on 
the principal invariants of e, but this is not indicated here in the equations as 
this dependency is seldom considered. A solid that exhibits linear elasticity 
(derived from an energy e quadratic in the components of the strain e) ad-
ditively combined to a viscous behavior described by (3.2.41)x or (3.2.43)i is 
called a Kelvin-Voigt linear viscoelastic solid, after the theoretical represen
tation introduced by W. Voigt (1850-1919) in 1891 and the original idea of 
W. Thomson (Lord Kelvin). 

We see in passing from (3.2.39) to (3.2.41) that Nature here refuses a cou
pling of dissipative processes between effects which are represented by tensorial 
objects of differing orders. This has often been considered as another manifes
tation of the principle of symmetry attributed to P. Curie. It also seems to be 
a tenet of many applications of T.I.P. in the form of the so-called symmetry 
relations of Onsager and Casimir. But the application of this restriction must 
be considered much more precautiously than this simple remark indicates (see 
the general presentation below). 

(3.2.42) 

(3.2.43) 
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E. Finite-strain behavior of a solid 

On account on the remark on admissible length scales the motion gradient 
must still remain small in some sense. Here we consider e(F, 77) and have to 
exploit the dissipation inequality (3.2.17). Here Eqs. (3.2.1) read 

from which it follows by using the reciprocal of (3.2.13) that the Cauchy stress 
tensor is given by 

a = pF(§) +JF1*-T-Td, (3-2.45) 

in which the dissipative contribution Td, if any, still satisfies the following 
residual dissipation inequality jointly with the material heat-flux vector: 

$ R = tr (TdF) - 9Q 1Q • Vfl<9 > 0. (3.2.46) 

We shall not pursue further this case which will receive more attention in the 
framework of rational thermodynamics. We simply note first that a partial 
Legendre transformation can be performed on the energy density so as to in
troduce the Helmholtz free energy tp per unit mass in the current configuration 
Kt, i.e. ip(F,6) — e(F,rj) — r]6 so that we obtain also the laws of state as 

The second of these is the Cauchy-stress constitutive equation for a thermoe-
lastic solid. In particular, if the said solid is isotropic, then the scalar-valued 
function ip(F,6) must be form invariant under the full orthogonal group on 
M. Let (cf. Truesdell and Noll, 1965; Maugin, 1988, p. 70) 

F = R U, U = U T , R R T = R T R = l , de tR = ± l , (3.2.48) 

F - V R, V = V T , (3.2.49) 

be the so-called right and left polar decompositions of F, where U and V are 
positive-definite symmetric tensors (on M and E3, respectively), and R is an 
orthogonal transformation. It is a simple matter to show that 

U = C 1 / 2 , V = B 1 / 2 , (3.2.50) 

9 = 
de 
drj T e = A> 

de 
dF 

T 

1 
(3.2.44) 

v = -
&d> 
de1 ae = PF ■ 

dip 
dF 

T 
(3.2.47) 
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where C and B are defined by 

C = F T F, B = F F T . (3.2.51) 

These are the Green and Finger finite-strain tensors, respectively (the first is 
defined on M while the second one is defined in E3 at K,t). 

For tp to be form-invariant under the full orthogonal group on .M we have 
to verify the condition 

t(F,9)=4>(FP-\9), (3.2.52) 

where P _ 1 belongs to 0(3). We can make it to coincide with R T . But V = 
F R T , so that, in agreement with (3.2.50), V 2 = B, it follows that a necessary 
and sufficient condition for rp to be the free energy of an isotropic body is that 

ip = ip{B,0). (3.2.53) 

But constitutive equations have to be independent of the observer. That is, 
they must be frame-indifferent under the time-dependent orthogonal group in 
E3 in K.f Let Q(t) such an orthogonal transformation belonging to this group. 
The function tp must satisfy the following invariance: 

4>(B, 9) = V<QBQT, 9). (3.2.54) 

This in turn means that rp must be an isotropic scalar-valued function of the 
tensor B, or, in orther words, after a well-known result due to Cauchy (later, 
Weyl), it may depend on B only through its three principal invariants Ia, 
a = 1,2,3 defined by 

h = t r B 

12 = sum of the principal minors of B (3.2.55) 

13 = det B . 

Thus V = 4>{IQ,9), from which it follows through an elementary computation 
that cre has the following expression for elastic isotropic bodies: 

-*KS)'+[(S)+*(S)]-(©-)-^ 
A further use of the Cayley-Hamilton theorem according to which the invari
ants satisfy the characteristic equation 

B 3 - / i B 2 + / 2 B - / 3 l = 0 , (3.2.57) 
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3.2. Theory of Irreversible Processes 59 

allows one to transform the expression (3.2.56) into the one obtained by F. Mur-
naghan (1951) in his original work on elastic solids in finite strains: 

-*((S)-+KS)+*(S)]i-*(S)--)-
(3.2.58) 

Equations (3.2.56) and (3.2.57) are in general, exact, equations. 

F. Rubber-like materials 

These are elastic materials which are essentially incompressible while being 
subject to finite strains. Incompressibility now requires the satisfaction of the 
mathematical constraint: de tB = const. = 1. Like in the case of fluids the 
stress tensor of rubber-like materials will be defined up to an isotropic pressure 
tensor while the energy reduces to p\p = potp = ^f(Ii,l2,6). Mooney materials 
correspond to a simple expression of ip in terms of I\ and 1% with no dependence 
on 6: 

* ( / i , h ) = Ai(/i - 3) + A2{h- 3), A i , a > 0 . (3.2.59) 

And this appears to be in fair agreement with experiments for a wide range of 
strains. 

G. Anisotropic elastic materials 

In that case we must remain with a material measure of strain so as to be able 
to express the material symmetry of the material on the material manifold 
M. A basic relative material measure of strain is provided by the Lagrange 
strain tensor 

E : = i ( C - l f i ) = E T . (3.2.60) 
Li 

Then we can consider a free energy of the type ip = ip(E, 0) which is automat
ically objective or frame-indifferent as this expression is a first integral of the 
functional equation: 

rl>{F,9) = 1>{QF,e), (3.2.61) 

as is immediately realized since we may take Q(t) = R _ 1 = R T while account
ing for (3.2.50) and (3.2.60). It follows then that ae takes on the following form: 

- e = / > F ( ^ f ) F r = ( 0 T . (3-2.62) 
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This is the form to be used when dealing with anisotropic homogeneous crys
tals subject to infinitesimal deformations superimposed on finite strains, as is 
often the case in the acoustics of crystals (cf. Maugin, 1985, 1988). Then the 
additional dissipative contribution of the viscous type will be governed by the 
remaining dissipation inequality (3.2.46). We do not elaborate further along 
this line. Rather, the few examples treated help us to draw a more general 
picture of the methodology of T.I.P. 

H. Onsager—Casimir symmetry relations 

Once laws of state — that part of the constitutive equations which does not 
"dissipate" — are given by Gibbs' equation or, in a simple way, by the deriva
tives of the energy with respect to the various variables of state, the remaining 
dissipation inequality, e.g. (3.2.28), (3.2.38)i or (3.2.46), may in fact be writ
ten in a symbolic form, whether in Kt or KR, as the celebrated bilinear form 
of the thermodynamics of irreversible processes: 

m 

$ = Y X = ^ r 7 X 7 > 0 , (3.2.63) 
7=1 

where the F7 are referred to as the thermodynamic forces (typically a or V0_ 1) 
and the X 7 are thermodynamic velocities (typically D or i and 6q). One class 
is placed in thermodynamic duality to the other through the bilinear expression 
(3.2.63), the duality being induced by the usual scalar product in Rm. The 
term velocity may be ill-chosen for the heat-flux vector unless we remember 
from kinetic theory that the heat flux is also a flux of energy related to the 
fluctuation velocity (but this argument relying on another level of description 
is more than suspicious to several authors, e.g. Truesdell, 1969). 

The bilinear form (3.2.63) does not presuppose that the m-vector Y is linear 
affine in X and vice versa. It is T.I.P. that relates to slight deviations from 
equilibrium — for which we emphasize that both Y and X vanish: 

Y| e q = 0, X|e q = 0 - , (3.2.64) 

which simply proposes to write linear affine relationships between the Ys and 
Xs, e.g. in the form of evolution equations (typical of kinetics) 

m 
Xy — y ^ L~fVYv , (3.2.65) 

7=1 
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3.2. Theory of Irreversible Processes 61 

or, assuming that L is not singular (det L always in one sign, say + ), in the 
dual form 

m 

7=1 

There are two fundamental questions raised in writing (3.2.65) or (3.2.66). 
One is how do we identify thermodynamic forces and velocities? A hint of 
answer to this was given above. Velocities are those quantities which, in a 
general way, can be expressed as time-rates of change of state variables. If 
this is not clearly the case, as seen above for q, then we need a microscopic 
definition which provides us with the time parity of the quantity labeled X. 
Such quantities should reverse sign with time reversal. Thus we can say that 
a good exploitation of T.I.P. in fact borrows some ingredients to microscopic 
considerations. But this is not all. Equations (3.2.65)-(3.2.66), together with 
the symmetry relations, 

L = L T , (3.2.67) 

receive microscopic support in terms of the theory of fluctuations in statisti
cal mechanics as shown by L. Onsager (1931) and H. G. B. Casimir (1945).4 

Macroscopically, the Onsager-Casimir relations (3.2.67) simply mean that the 
skew part of the linear application L is irrelevant as, by virtue of (3.2.65) or 
(3.2.66), only the symmetric part of L is involved in the final dissipation 

* = Y - L - Y = X - L _ 1 - X > 0 . (3.2.68) 

We should in fact note that the vanishing property (3.2.64) and the funda
mental linearity of T.I.P. ensures that the clear distinction between forces and 
fluxes or velocities becomes peripheral, so that any suitable combination of the 
components of Y and X will do. What remains important is the time parity of 
the various quantities. That is, while (3.2.67) strictly applies to the case where 
both Y and X (not X) behave like polar vectors, a more general expression of 
the Onsager-Casimir relations reads 

where ey and ev are indicators of time-parity such that they equal +1 and 
— 1 depending on whether the corresponding state variables (i.e. X-, and Xv) 

4 The experimental validity of the Onsager-Casimir relations is established beyond any 
doubt (cf. Miller, 1973). 

Yv = ^u-j X-l ■ (:i.2.66) 

Lf-fi/ — 6~jCuLu^ , (32.69) 
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62 Chapter 3. Various Thermodynamics 

are even or odd under time reversal. If, furthermore, L depends linearly on a 
magnetic induction B and/or an angular velocity (spin) w — both quantities 
are axial vectors — then (3.2.69) must be further amended to read 

L7„(B, u)) = eyevL^(-B, -u), (3.2.70) 

which includes most of the possibilities. Finally, material symmetry may also 
rule out certain linear couplings in (3.2.65) and (3.2.66), i.e. some components 
of the applications L and L _ 1 may be identically zero to start with. This was 
exemplified by the vanishing of the coefficients (3.2.40) in a material exhibiting 
a center of symmetry. Such complications show up especially when dealing with 
electromagnetic dissipative couplings involving the Hall effect, spin-precession 
phenomena, etc. (see Maugin, 1988; Eringen and Maugin, 1990, Vol. I; also 
Chapter 9 below). 

I. Dissipation potent ia l 

To end this section we note, following an early proposal by Lord Rayleigh 
(1945) to study the dissipation through Newtonian viscosity in acoustics, by 
J. C. Maxwell (1873) to deal with electric conduction effects in circuits, that 
if we assume the existence of a dissipation function P (Y) and its Legendre 
transform P*(X), which are twice differentiable and, in fact, non-negative and 
homogeneous functions of degree two in their arguments, and if we can write 

iy.«gl, v-vm. 7 dY1 

^ = ^ P > V'(X) = Y.X-V(Y), 
(3.2.71) 

then 

(3.2.72) 
dXy/dYy = dXy/dY-y = L7„ = L„7 , 

dYy/dX„ = dY„/dXy = L~l = L^ , 

so that the Onsager-Casimir symmetry relations are automatically fulfilled 
while, with Euler's identity for homogeneous functions 

E ^ 7 ^ y 7 = 22>(Y) = $ > 0, (3.2.73) 
7=1 7 
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3.3. Rational Thermodynamics 63 

the dissipation inequality is also satisfied. A modern nonlinear generalization 
of Onsager-Casimir relations relies on the consideration of nonquadratic dissi
pation potentials and the use of Maxwell's differentiation rules such as (3.2.72), 
cf. Edelen (1972). 

3.3. Rational Thermodynamics 

A. General features 

Rational thermodynamics (for short R.T.) is the phenomenological thermody
namics developed essentially by B. D. Coleman, W. Noll, C. A. Truesdell and 
their co-workers in the 1960s,5 which takes as a model the rational mechanics 
of the mathematicians of the eighteenth and nineteenth centuries (especially 
the French mathematicians Lagrange and Cauchy) and the embryonic ther-
momechanics of Duhem (1911). It openly ignores, or bypass, the experience 
acquired in thermostatics. Caratheodory (1909,1925) and Born (1921) become 
thus the Great Satanic figures (cf. Truesdell, 1986) of this school of thought 
that also belongs to the axiomatic trend of thermodynamics. Its basic postu
lates (this is our interpretation) seem to be that those notions which precisely 
could be defined only at equilibrium in thermostatics, exist a priori for any 
thermodynamical state whatever, even largely outside equilibrium. Again, a 
certain measure (distance in the appropriate space) of departure from equilib
rium should be defined in order to clarify that matter. Thus the notions of 
temperature and entropy are a priori granted to any state, so that the formal 
bases of this thermodynamics are the a priori statement of the second law 
(assuming the existence fo the functions 9 and r]) such as in (2.3.32) and the 
usual first law — say (2.3.53) — on which, fortunately, everybody agrees. In 
localized form these equations yield, on account of the equation of motion: 

pe = a:I>+ph-V q, (3.3.74) 

and 
Ph > PW9) - V • (q/0) (3.3.75) 

5 The foundation paper is Coleman (1964). The standard exposition is given in Truesdell 
(1969, 1984) — see also Truesdell (1966), Miiller (1967, 1973, 1985). The thermodynamics 
considered by Eringen (1980) is of a similar type. The axiomatic trend in thermodynamics 
was also developed in Boyling (1972), Buchdahl (1966), Giles (1964), Landsberg (1964, 
1970), Muschik (1990), Tisza (1966), Turner (1961), but without special attention to the 
thermomechanics of continua, except for the paper by Muschik. 
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64 Chapter 3. Various Thermodynamics 

at all regular placements x in the material body in Kt. Introducing then the 
free energy density V by (3.2.5) i and combining (3.3.74) and (3.3.75) leads to 
the celebrated Clausius-Duhem inequality in local form as: 

- p ( ^ + rfi) + a : D + 0q • V"(0_1) > 0 . (3.3.76) 

In finite-strains this can also be cast in the form 

- ( W + 5e) + t r (TF) + 6»Q-Vfl((9-1) > 0 , (3.3.77) 

where we defined the free energy and entropy per unit volume in K.R by 

W:=p0ip, S = p0T). (3.3.78) 

These expressions are valid whether the material body is homogeneous or not. 
Dynamics then enters the framework through the fact that, in theory, the whole 
past history must be taken into account; for example, in the case of (3.3.76) 
or (3.3.77), as only temperature and motion appears as dynamical quantities, 
their whole past hisory, i.e. the collection of all values taken by these fields at 
a point x for all past times and the present time is thought to determine the 
thermo-mechanical behavior of the material at the current time t. And this 
should apply to all types of behavior, the only constraint being that (3.3.76), 
(3.3.77) must be respected. One is then naturally led to the consideration 
of the constitutive equations in a functional form on the temporal line, the 
instantaneous behavior being formally the same as the one described by the 
laws of state of T.I.P. The Clausius-Duhem inequality (3.3.76), (3.3.77) plays 
the role of a mathematical constraint that must be satisfied by the functional 
constitutive equations, written down for 77, CT, ip and 9 as, e.g. for a 

00 
cr(t) = 9 [e(t - s), 0(t - a)] (3.3.79) 

3=0 

for any so-called thermodynamically admissible process. We shall not dwell 
further on this functional approach which, in practice, can only be useful for 
behaviors with memory [such as so-called Boltzmann's (1874) viscoelastic solids 
and the hereditary media introduced by the Italian mathematician V. Volterra 
early in this century] as we saw in certain types of viscoelastic media with a 
non-Newtonian viscous behavior and of electromagnetic media (see Eringen and 
Maugin, 1990, Vol. 2, Chapter 13). This type of approach that radiates a won
derful elegance was seriously criticized by "classical" thermodynamicists for its 
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3.3. Rational Thermodynamics 65 

lack of touch with the experimental definition of concepts such as temperature. 
Its application to a relatively simple case, that of thermoelastic materials, is 
nonetheless particularly enlightening. 

B. Thermoelastic materials6 

According to Coleman (1964), such materials are defined by a set of four consti
tutive equations which describe the specific free energy tp, the stress tensor a, 
the specific entropy rj, and the heat-flux vector q as a priori functions (here no 
functionals over time as we discard any viscoelastic component in the behavior 
of the material) of the motion gradient F, the absolute temperature 9, and the 
material temperature gradient G = VR9. That is, writing the expression for 
one quantity only, 

^ = V>(F,0,G). (3.3.80) 

The fact that all four dependent variables are a priori supposed to be functions 
of the same set of arguments may be referred to as the working hypothesis of 
equipresence. This simply is a precautionary measure to avoid missing any 
significant dependence or coupling.7 Of course, the scalar-, vector-, or tensor-
valued functions V>, fj, q and a are assumed to be sufficiently differentiable on 
their domain of definition. Then a set of seven functions (F, 9, G, 4>, °~, V, q) 
that satisfies constitutive equations of the type (3.3.80), the local balance laws, 
and the second law of thermodynamics in its form (3.3.76) or (3.3.77), is said 
to define an admissible thermoelastic process. Such a process is specified as 
soon as one knows the solution 

x = X (X, t ) , 9 = 0(X,t), (3.3.81) 

since one can then compute F and G, while the fields V, 9, r} and q are com
puted through the constitutive equations (3.3.80). The remaining quantities f 
and h that still appear in the field equations (motion and first law) are finally 
evaluated from these equations. Clearly, this procedure constitute a thought 

6 With very insignificant changes we follow here the exposition that we previously gave in 
pp. 111-115 in Maugin (1988). 

7To call this the principle of equipresence, as was originally done by the school of R. T. 
would be to deny any profound meaning to the word principle (a principle is usually never 
contradicted, e.g. the first principle — first law — of thermodynamics. Equipresence is 
always negated as \j> cannot depend on G, except in extended thermodynamics, but that is 
another story (see Sec 3.4). 
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66 Chapter 3. Various Thermodynamics 

experiment since, in general, it is f and h that are prescribed. What is then the 
reduced form of the constitutive equations? We must exploit the inequality 
(3.3.76) in order to reduce the generality of expressions (3.3.80). There holds 
the following. 

Lemma 3.1. There exists at least one admissible thermoelastic process such 
that the fields F , F , 0, 6, G and G, for each given material point X and at 
each given time i € (to, t\t), may take arbitrary prescribed values, respectively, 
F, A, 8, a, G, and a, ivith F, § and G defined on the domain of definition of 
F, 6 and G, respectively. 

The proof of this lemma goes as follows. It is sufficient to consider fields of 
the type (3.3.81) in the following special form: 

*<X,«) = [F + «-<)AHX-X), 

6(X, t)=6~ + a{t-t) + \G + (t- i)a] • (X - X ) . 

Indeed, from these equations and the definition of F and G, we obtain 
F(X, t) = F + (t - i)A and G(X, t) = G + (t - f)a; from which it follows 
that F(X,f) = F, 6»(X,<) = 9, G(X,i) = G, F(X, t ) = A, 0(X,i) = a, and 
G(X,i) = a (Q.E.D.). Then we can state the following. 

Theorem 3 .1 . In order that the Clausius-Duhem inequality (3.3.76) be satis
fied for thermoelastic solids, it is necessary and sufficient that the constitutive 
equations of the type of (3.3.80) fulfill the following three conditions: 

(i) the functions V>, a and T] do not depend on G: 

rP = 4>(F,e), <T = &{F,0), r) = f)(F,6); (3.3.83) 

(ii) a and r) are related to rp by 

T 

dip * = -£; (3.3.84) 

(Hi) q satisfies the thermal conduction inequality: 

q(F,0 ,G)-V6><O. (3.3.85) 

(3.3.82) 

a = pF 
dip 
dF 

T 
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3.3. Rational Thermodynamics 67 

This is proved as follows. First, as a consequence of (3.3.80), we have 

T 

1p = tl 
0V> 
dF 

dxb • dxb ■ 
+ —-0+ —- G. 

80 dG 

Substituting from this into (3.3.76), we obtain 

T~\ 

tr F-'a-p 
dxb 
dF 

M + %)i-^-a^.™>_o, 

where the dependence of xp, <7, >7 and q is understood. The conditions (3.3.84) 
through (3.3.86) are obviously sufficient. The necessary conditions are thus 
established. Let us apply the last inequality to the special processes introduced 
in (3.3.82) with x' — 6'KXK and t = i. From the inequality we obtain 

tr 
r-'i A)-P[T) + 

dip_ a-pH-a-^q-W^O, 

from which it follows the necessary character of (3.3.83)-(3.3.85) since X, (, 
A, a, and a are arbitrary (Q.E.D.). 

On account of the above results we immediately transform (3.3.74) into the 
equation (the future equation of heat propagation) 

p6f) — ph — V • q . (3.3.86) 

This is a very special form (no intrinsic dissipation) of the heat equation. For 
this particular case we see tha t an admissible thermoelastic process which is 
adiabatic, i.e. ph — V • q = 0, is also isentropic (r) = 0); this is a necessary and 
sufficient condition. 

Applying now the condition of frame-indifference to the scalar function ip 
we can show tha t it reduces, for instance, to a function 

V = i/i(E,0). (3.3.87) 

From this there follow the constitutive equations (laws of s ta te in T.I.P.) for 
nonlinear thermoelasticity. 

a =pF 
dj> 
dE 

FT, v = -
d-ip 
d9 E(|«od 

(3.3.88) 
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68 Chapter S. Various Thermodynamics 

In like manner we show that q takes on the form 

q = FQ(E,0,G) with Q G < 0 , (3.3.89) 

where Q is assumed to be sufficiently continuous (say C1) with respect to the 
components of G (here E and 0 play the role of parameters). As a matter of 
fact, let 

0Q(E,0,G) K(E,6>) : = - -
dG 

(3.3.90) 
G=0 

be the conduction tensor in the reference configuration KR. Fixing E and 9 
and assuming Q to be smooth enough in the neighborhood of G = O, we can 
expand Q as 

Q(G) = Q ( 0 ) - K - G + o(|G|) (3.3.91) 

for |G| tending toward zero. Carrying this truncated expansion in the second 
of (3.3.89) yields 

Q(0) G - G K G + o(|G|2) < 0 (3.3.92) 

for |G| —> 0. This last equation must be checked for all Gs in their domain 
of definition Q. This is true only if Q(0) = 0 and G • K • G > 0. Hence we 
can state: In an admissible thermoelastic process which satisfies the Clausius-
Duhem inequality, the heat flux vanishes whenever the temperature gradient 
vanishes and the heat conduction tensor K(E, 8) is non-negative definite. Thus 

Q(E,0 ,G) | G = O = O, (3.3.93) 

and 
Q(E,0,G) = - K ( E , 0 ) - G + o(|G|), K = K T , (3.3.94) 

where the last property can be considered without loss in generality. Equa
tions (3.3.93) and (3.3.94) show that in a thermoelastic body it is not possible 
to produce a heat flux by a pure deformation and a uniform temperature field 
only. In other words, the piezocaloric effect is not possible in thermoelastic 
bodies. Equation (3.3.94)i is an anisotropic generalization of Fourier's law in 
which the coefficients of conduction may depend on the state of strain and 
temperature. We would like to believe that the reader will be convinced of the 
elegance of the methodology of rational thermodynamics by this simple exam
ple which offers the best presentation of thermoelasticity. The linear thermoe-
laticity theory is straightforwardly deduced from the above with due account 
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3.3. Rational Thermodynamics 69 

of simplifying assumptions [for this, see Sec 2.11 in Maugin (1988)]. We sim
ply quote the final constitutive relations and most relevant field equations for 
linear anisotropic homogeneous thermoelastic bodies: 

C o n s t i t u t i v e equat ions : 

Jij = Cijueu + (0- 0o)Mij , 

V = % + 0Q1C{9 - 90) - p^Mijdj (3.3.95) 

(3.3.96) 

Fie ld equat ions ins ide t h e b o d y : 

aij,j + Pofi = PoUi , 

PoCO - OoMijiij = (KfjOjli + pah, 

in which the isothermal elasticity-coefficient tensor of components Cijki, the 
thermoelastic-coupling tensor of components M ^ , and the specific heat at con
stant strain, C, are defined by 

Cijki(Qo) '■= Po 

Mij(0o) := po 

C(flo) := 0o 

d2rP{E,0) 
dEjjdExL 

d2ip{E,6) 

E=0 
« = «0 

W,1, 

dEudO 

dr,(E,0) 

E=0 J 

« = «0 

dO E=0 

They satisfy the following obvious tensorial symmetry relations. 

Cijki = Cjiki — Cijik = Ckuj, Mij = Mji. 

(3.3.97a) 

(3.3.97b) 

(3.3.97c) 

(3.3.98) 

The scalars 0Q and 7?0 are spatially uniform, reference values, and ey are the 
components of the infinitesimal-strain tensor: 

1 
e-ij = EKL6?6!f S U{iJ) = -{uij + ujti), (3.3.99) 

qi = -K?j(9Q)0j. 
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70 Chapter 3. Various Thermodynamics 

iiui are the Cartesian components of the elastic displacement. We recognize in 
Eqs. (3.3.96) the linearized equation of motion and the equation of heat prop
agation, where the superimposed dot now denotes the partial time derivative. 

For isotropic thermoelastic solids we have the following reduction: 

Cijki = HOo)6ijSki + fi(0o)(6ik6ji + Su6jk), 

Mij = m{6Q)8ih K% = /c(0o)<^ , 

with 
3A + 2 /z>0, / x>0 , K > 0 , m ^ O , 

from which it follows that (3.3.95) and (3.3.96)2 takes on the reduced form 

Oij = [Aefcfc + m(6 - 00)}Sij + 2p.e{j , 

1 = no + 0Q1C{9 - 0O) - Polmekk, qt = -x9,i, 

and 
PoCd - m0oekk = «V20 + p0h; (3.3.102) 

the scalar coefficients A and /x are the celebrated Lame coefficients of linear 
isotropic elasticity, while 

" = -7771—;TT (3.3.103) 
(3A + 2/i) v ' 

is the dilatation coefficient. The first of (3.3.101) reduces to Hooke's law for 
isothermal processes for 6 = 6Q. For isentropic processes, the situation is quite 
different as f) — 0, hence n — T)Q is the prevailing condition. From (3.3.95)2 it 
follows then that 6 is given by 

6o_ 
PoC 

so that (3.3.95) i takes on the form: 

°H = ClkieM, C?.w = Ciju + -^MijMkt. (3.3.105) 

From this we immediately conclude that isentropic elasticity coefficients are 
never less than the corresponding isothermal ones. Isothermal elasticity co
efficients can be measured using a quasi-static method as during very slow 
deformation in a thermostat. Isentropic ones can be measured by means of 
dynamical methods such as ultrasonic waves so as to respect the adiabaticity 
condition which follows from (3.3.86). For the solutions of problems in lin
ear thermoelasticity on the basis of (3.3.96) and the accompanying boundary 
conditions, we refer to Nowacki (1975). 

O = 0O + -^MijCij , (3.3.104) 

(3.3.100) 

(3.3.101) 
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3.3. Rational Thermodynamics 71 

C. Comparison with T.I.P. 

First we note that Eq. (3.2.8) of T.I.P. can also be rewritten as 

P ^ = *intr + ( p f c - V - q ) , (3.3.106) 

wherein 
$ i n t r = -p(V> + 770) + a : D . (3.3.107) 

This is indeed identical to (3.2.12) whenever the basic consequence of the axiom 
of local state holds true, i.e. entropy has its thermostatic definition 

ri=~- (3-3.108) 

Therefore, we see that, in practice, assuming that 9 coincides instantaneously 
with the absolute temperature of thermostatics and that the definition 
(3.3.108) applies, make it such that (3.2.9) is equivalent to the statement of 
the Clausius-Duhem inequality of R. T. This is usually what the present writer 
applied in practical cases without having to repeat all the detailed working as
sumptions of both theories. However, the application of both theories is quite 
different if one sticks with the original R. T. approach that considers functional 
constitutive equations. In this latter framework several authors have tried to 
encompass all types of thermomechanical behaviors, including rate-independent 
plasticity (see works by D. R. Owen and Lucchesi) but, in our opinion and in 
spite (of rather interesting developments, they have failed to produce a man
ageable and directly applicable theory such as the one based on T.I.V. (see 
Chapter 7 below). The same holds true for electromagnetic behaviors involving 
hysteresis (cf. Chapter 9). 

D. Further improvements 

Further justifications of R.T. are to be found in the works of I. Muller (1967, 
1973, 1985) and a remarkable paper by I.-Shih Liu (1972). First, it was ob
served that the general notion of coldness as an integrating factor for entropy 
is essential. With an appropriate scaling of temperature this indeed reduces 
to the reciprocal of thermodynamical temperature. Second, as a deviation from 
the strict orthodoxy of R. T. some freedom is given to the expression of the 
entropy flux present in (2.3.32) by letting it differ a priori from the ratio of the 
heat flux to the temperature. That is, we can rewrite (2.3.32) as 

drp 
89 
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72 Chapter 3. Various Thermodynamics 

^ > / p^dU - f Snda, (3.3.109) 
dt Jii & Jan 

with 
S = 0 _ 1 q + k , (3.3.110) 

where the extra entropy flux k has to be determined by a constitutive equation. 
Thus it theoretically varies in form from one material to another. In practice, 
however, after some tedious and cumbersome algebra it is often found that 
fc = 0, except for systems exhibiting a diffusion-like behavior (i.e. thermody-
namic systems that account for the spatial gradient of state variables). We 
shall see a few applications of these in later chapters. Finally, Liu introduced 
the beautiful idea that in applying thermodynamical admissibility (i.e. the 
necessary and sufficient condition of satisfying the Clausius-Duhem ), it is 
generally necessary to consider the field equations (in pure thermomechanics, 
the conservation of mass, the balance of momentum, and the energy equa
tion) as mathematical constraints in that procedure. That is, they are each 
multiplied by the appropriate Lagrange multiplier and the resulting vanishing 
quantities are added to the left-hand side of the Clausius-Duhem inequality; 
again, for many cases, this astute but cumbersome manipulation results in 
very little change, if any at all. Notice for later use that with account of the 
general formula (3.3.110) for S, the local Clausius-Duhem inequality takes on 
the general form: 

-p(ijj + rtf) + a : D + V • (6k) - S • V0 > 0. (3.3.111) 

This form exhibits a rather annoying divergence term (that one is tempted to 
formally discard altogether by setting k = 0; we shall see later that in more 
involved cases, this yields a particular nonzero expression for k), while it also 
shows that the thermodynamical dual of V6 is ( -S) . 

3.4. Extended Thermodynamics 

It may be an insuperable challenge to draw a sketch of extended thermody
namics (for short E.T., a "thermodynamics of the third type" as humor
ously emphasized by G. Lebon, 1992).8 In order to go beyond the classical 

8In addition to sketchy presentations in Casas-Vasquez et al. (1984) and Lebon (1989) 
and the contributions in the book on Extended Thermodynamics edited by Salamon, Sieni-
utycz, Taylor Francis and Washington, 1991), the most comprehensive and articulate expo
sitions of E.T. are given in Jou et al. (1988, 1993), Muller (1985) and Miiller and Ruggeri 
(1993). A lengthy bibliography including many items up to 1992 is given in Jou et al. (1992). 
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3.4- Extended Thermodynamics 73 

description, E.T. envisages the consideration of the usual dissipative fluxes 
(e.g. viscous stress, heat flux, electric conduction current) as additional inde
pendent variables. As a consequence the entropy itself, in agreement with 
an early proposal of Machlup and Onsager (1953), becomes a function of 
these fluxes. The same generally holds true of the extra entropy flux intro
duced in (3.3.110). In addition to their contribution in classical field equations 
(Euler-Cauchy equations of motion, energy equation, equation of conserva
tion of charge in electricity), the fluxes satisfy evolution-diffusion equations 
inspired by higher-order kinetic-theory developments that we shall not touch 
upon here. As a matter of fact, the print left by kinetic theory is so strong with 
some authors that often one cannot see how to accommodate the case of truly 
deformable solids in E. T. Putting aside some of the reasons at the basis of this 
approach (e.g. causality and hyperbolicity; see Miiller and Ruggeri, 1993), we 
simply note a few examples which will help us to shed light in a comparison 
with the theory with internal variables (T.I. V.). Possible outcomes of E.T. 
are (i) the so-called Maxwell-Cattaneo-Vernotte law of heat conduction (see 
Cattaneo, 1948) that we intentionally rewrite in the form 

q = - - ( q - q f ) , qF = - « V 0 , (3.4.112) 

for isotropic rigid bodies, and (ii) an evolution-diffusion generalization of Ohm's 
law (the celebrated U = Ri of our gymnasium/lycee/public-school years) as 
(Jou et al, 1988; p. 1161) 

j = - — (3 - J0) + (I2/TJ)V23, JO = E E , (3.4.113) 
Tj 

in an isotropic electric rigid conductor, where E is the electric field, J is the 
electric current (jointly they produce the Joulean dissipation $ j = J • E, see 
Chapter 8), and rq and TJ are two (positive) relaxation times and I is a charac
teristic length. We recognize in (3.4.112)2 a n d (3.4.113)2 the classical Fourier 
and Ohm laws of heat and electricity conduction in rigid conductors. Let aD 

be the dissipative part of the stress tensor, which is also governed by such an 
evolution-diffusion equation. Then the free energy density ift, entropy density TJ 
and entropy flux S, in a deformable body, will be given by general expressions: 

V = </>(<?,-; a D , q , J ) , 

n = ns+N{<JD,<\,3), 
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74 Chapter 3. Various Thermodynamics 

S = 0 _ 1 q + k((7D ,q,J)> (3.4.114) 

where we expect r), and 6 to coincide with thermostatic values when all dissi-
pative fluxes vanish. Because of the tensorial orders involved, the deviations 
from thermostatic definitions in (3.4.114)1,2 are usually at least quadratic in 
the dissipative fluxes, i.e. in an isotropic body ip and n will certainly contain 
terms proportional to q • q and J • J, while k may in fact contain a term linear 
in q or J, or perhaps a term jointly quadratic in aD and q! 

The first example (3.4.112) intentionally discards a diffusion phenomenon 
in order to increase the resemblance with equations of a similar form to be 
developed in T.I.V., but for other variables. For the time being we simply 
note that in equations of the type of (3.4.112) — or (3.4.113) for nearly spa
tially uniform fluxes — relaxation occurs towards a quantity, e.g. q^ or Jo, 
which is not at thermodynamic equilibrium. As matter of fact, thermody-
namic equilibrium corresponds to all three contributions in (3.4.112) going to 
zero simultaneously. In the case of (3.4.113) all four terms, with E = —V</> 
(where <f) is the electrostatic potential) must go to zero simultaneously as ther
modynamic equilibrium also includes spatial uniformity in its definition. The 
problem with the formulation above is that the number of possible additional 
variables represented by the fluxes is limited to those already introduced above 
in the framework of the thermomechanics of electromagnetic bodies. This is 
too poor to allow for the phenomenological description of the wide classes of 
phenomena that we have in mind. As remarked by some authors (e.g. Jou et 
a/., 1988, p. 1171), these variables cannot cope with many other dissipative 
processes involving the hidden complexity of, say, a microstructure. It is only 
with the introduction of internal variables of state that we can proceed to a 
larger generality. This is the object of the final section of this chapter. 

3.5. Thermodynamics With Internal Variables 

The detailed structure, advantages, and shortcomings of the thermodynamics 
with internal variables (for short, T.I. V.) will be dealt with at some length 
in Chapter 4. Here we simply note a few general facts about T.I.V. It is 
a thermodynamic theory which stands somewhat between T.I.P. and R.T. 
but, in fact is the simplest generalization of T.I.P. P. Germain (1975) qual
ified of cautious those who favor this approach as they succeed in describing 
a rich variety of material responses without invoking a drastic revision of the 
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3.5. Thermodynamics with Internal Variables 75 

basic concepts of thermodynamic laws. The origin of this improved T.I.P. may 
first be traced back in the kinetic description of physico-chemical processes of 
evolution, e.g. while considering the advancement rate of chemical reactions; 
see Miiller (1985, Chapter 12). But its spectacular development is related 
to rheological models and the elasto-visco-plasticity of deformable materials of 
the metallic type (alloys, polycrystals) — see Maugin (1992a), Lemaitre and 
Chaboche (1990), and Chapter 7 below. In particular, if we consier all rheolog
ical behaviors described, for instance, in the early book of Reiner (1960 — the 
original version goes back to 1943) or the more recent book of Vyalov (1986), 
T.I. V. offers a nice thermodynamic framework to all behaviors formally de
scribed in these books. The same holds true for fluid-like behaviors in rheology 
that gently come under the umbrella of T.I. V. 

As already mentioned, T.I. V. is adopting a somewhat intermediary line 
between T.I.P. and R.T. Essentially, it provides a new characterization of the 
behavior of continuous media which, in order to define the thermodynamic 
state £(S, t) of a system S, introduces in addition to the usual observable 
variables of state (heretofore collectively noted x, e.g. temperature and elastic 
strain), a certain number of internal variables of state, collectively denoted by 
a. These are supposed to describe the internal structure that is hidden to the 
eye of the (untrained) external observer who can only see a black box — hence 
they are also called hidden variables.9 It follows at this state of generality 
that the value, at time t, of the dependent variables (e.g. the stress) becomes 
simultaneously a function of the values of both the independent observable vari
ables and the internal variables. This constitutive equation, for example the 
mechanical one cr(x, a) where x represents as before the controllable variables 
of state (those on which we can act per unit mass or else by the intermediate 
of surface actions, e.g. imposed tractions), must be complemented by an evo
lution equation law which describes the temporal evolution of the variable a, 
essentially the way in which it returns to its equilibrium value. For instance, 
we can write the following: 

a = d{x,ot) : law of state (mechanical here) (3.5.115) 

and 
a — / ( x , a) + g(Xi a)x '■ evolution equation. (3.5.116) 

9This last naming will be avoided as it sometimes creates confusion with variables so 
christened in certain causal re-interpretations of quantum mechanics — for this last point 
see Sec 4.1. 
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76 Chapter 3. Various Thermodynamics 

In fact, we may suppose that we have been able to select the Q'S in such a 
way that ^(x, ot) might be identically zero and that an instantaneous variation 
of x does not cause any instantaneous variation in the a's. In the present 
mechanical case, if % is a strain, then the hypothesis g(x, a) = 0 corresponds 
to the fact that instantaneous strains are elastic or zero). 

The freedom in the choice of a makes it such that a framework can ac
commodate an incredibly wide range of dissipative behaviors, including those 
that P. Duhem early in this century could only consider as nonsensical from 
a thermodynamic point of view. Obviously, the internal variables are those 
gross "microscopic" variables of state of which P. Bridgman was dreaming be
fore the full development of T.I.P. The latter must in fact be revisited so as 
to encompass these new variables, especially in so far as the axiom of local 
(equilibrium) state is concerned. Equations such as (3.5.116) will not have to 
contradict the second law. Methodologically, it in fact is this mathematical 
constraint that produces the sought evolution equations. The necessary ap
pearance of evolution equations simultaneously indicates the important role 
that time scales will play. Length scales are not to be ignored altogether as, 
although there appear no diffusion term in (3.5.116) to start with, one must 
theoretically account for the size of the microstructure which gives rise to the 
dissipative processes that T.I. V. has to model in the most efficient manner. 
In particular, some materials may be micro-heterogeneous and this, indeed, 
causes dissipation on the macroscopic scale as shown in the case of composite 
materials (cf. Maugin, 1992a, Chapter 8). Last but not least, we should be able 
to identify the internal variables of state in terms of the underlying microscopic 
mechanisms which are responsible for the sensible dissipation. This is needed 
if we want to build a theory that is not physically empty. All these peculiar 
aspects of T.I. V. in comparison with other thermodynamics are specified in 
the forthcoming chapter. 
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Chapter 4 

THERMODYNAMICS WITH 
INTERNAL VARIABLES1 

"Hide and seek" 
(The motto of internal 

variables, G.A.M.) 

4.1. Nature and Choice of Internal Variables 

According to our historical disquisition of Chapter One the idea of internal 
variables in thermodynamics seems to have germinated in the mind of our 
grand predecessors, P. Duhem (1911) and P. Bridgman (1943). To start with, 
we have to provide a list, the length and detail of which depend on our own 
inclinations, of the parameters that we think will completely (this means to 
our own satisfaction) define a thermodynamic state. The question arises then 
of the one or more new parameters that would affect the desired reduction of 
states of these complex cases to a manageable list.2 

The above-mentioned manageability is fostered by an astute choice of a 
new type of large-scale thermodynamic parameters of state. . . which can be 
measured but not controlled (Bridgman, 1943). By this we more precisely 
mean internal variables of state which can be identified and measured; but 
they are not coupled to any external-force variable which, like a body force 
or an applied traction, might provide the means of control. As a consequence 
these new variables of state do not appear beforehand in the mechanical work 

1This chapter depends heavily on the contents of Sections 3 to 6 of our review paper 
(Maugin and Muschik, 1994a). 

2Recent works in physicc-mechanico-metallurgical models involve up to 150 such variables 
with the accompanying evolution equations and a plethora of phenomenological coefficients 
to be determined by all means. 
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78 Chapter 4- Thermodynamics with Internal Variables 

present in the statement (2.3.53) of the first law of thermodynamics. This is 
what gives them this special status of being internal or hidden. In spite of 
this, however, the tensorial nature of the internal variable a (scalar, vector, 
tensor, n-vector) as well as its "physical" nature must in general be specified. 
Does it represent the average of some microscopic effect or is it the measure of 
some local structural rearrangement? This identification is the most difficult 
part of phenomenological analysis. One must also point out at that stage that 
the notion of being "internal" for a variable of state depends on the level of 
observation. We can very easily think of a variable that might be considered 
as internal from the macroscopic observation point of view, say, at the usual 
macro-scale of continuum mechanics — in which a strong nonlocality is not 
taken into account (see below for this) — or as observable from a point of 
view of mesoscopic observation which, while already outside the usual scope of 
phenomenological physics, might still be understood in an enlarged (in length 
and time scales) phenomenological framework. Therefore, along with J. Man-
del (1980) we can always say that a "clever physicist will always manage to 
detect the 'internal' variables and measure them". Controlling them may be 
outside his power, so that they are indeed internal variables. Thus in practice, 
these variables are measurable but not controllable, i.e. they cannot a priori be 
adjusted to a prescribed value through a direct action via a surface or body 
(volume) stimulus. We shall return to this critical point later (Sec. 4.7). 

Is the idea of internal variable proper to thermomechanics or is it an old 
and recurring idea in physics? This question deserves a short digression if we 
are to believe M. Jammer (1974) in his discussion of a related idea in quantum 
mechanics. In that branch of physics it was thought in the 1950-1960s that 
one could introduce hypothetical quantities in order to "define" or "modify" 
the theory which was considered by some researchers, including Einstein and 
de Broglie, to give an incomplete, and therefore unsatisfactory, description of 
physical reality at the microscopic (atomic) scale. Such quantities were usu
ally called "hidden variables" and the refinement or modification were called 
hidden-variable interpretations of the theory. The conceptual problem was, 
and remains, to find a generally accepted definition. David Bohm (1962) — 
one of the most active and penetrating exponents of this approach — char
acterized such variables as a "further set of variables, describing the state of 
new kinds of entities existing in a deeper subquantum mechanical level and 
obeying qualitatively new types of individual laws". According to other au
thors (quoted in Jammer, 1974, pp. 255-256), "hidden variables characterize a 
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4.2. Interned Variables and Functional Constitutive Equations 79 

theory in the formulation of which one dispenses with a pervasive readability 
of the theory". Such hidden variables are, in the quantum mechanical jargon, 
unobservable. Thus we see that although we come close to a similarity between 
"hidden" and "internal" variables, up to a drift in scale, in so far as the def
inition of state is concerned, the definitions clearly differ where observability 
is concerned. Still, this difference may only be conjunctural in the sense that 
the sub-quantum level was unobservable at the time, but it may later become 
decipherable through the use of to-be-discovered techniques, while on the other 
hand in T.I. V. we also use the qualitative "internal" in order to complement 
the "incomplete" description of thermodynamic states given by standard ob-
servable variables of state. To Max Jammer (1974, Chapter 7), a recognized 
observer of the quantum-mechanical scene, the idea of hidden variables and 
the accompanying two levels of description of physical reality are as old as 
physical thought, the continuum-versus-discreteness struggle being a clear il
lustration of this accompanying duality and complementarity, but most often 
antagonism. This idea was "applied in man's early attempts to explain the 
world in terms of a postulated invisible world" (p. 257). In modern but pre-
quantum times, atomic quantities formed the basis of a not clearly advocated 
theory of hidden variables. Along this historical view, Ernst Mach (1838-1916) 
and P. Duhem seem to have been those who most forcefully opposed Ludwig 
Boltzmann's mechanical kinetic interpretation of phenomenological thermody
namics, a hidden-variable theory in its own right. Mach's arguments, similar to 
those of opponents to hidden variables in causal re-interpretations of quantum 
mechanics or opponents to internal-variable theory in modern thermodynam
ics, were the metaphysical print and scientific futility of such variables. It is 
the irony of the history of science that modern physicists almost unanimously 
follow Boltzmann and not Mach, while some authors find in P. Duhem's writ
ing the very bases of a theory that was to become that of internal variables in 
thermomechanics. 

4.2. Internal Variables and Functional Constitutive 
Equations 

It is easily understood that the elimination of the variable a between, for 
example, Eqs. (3.5.115) and (3.5.116) by integration of the second on account 
of appropriate initial conditions will lead in theory to a time-functional law for 
a with respect to the observable variables alone, i.e. a relationship of the type 
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80 Chapter 4- Thermodynamics with Internal Variables 

of (3.3.76) in thermomechanics. This interplay between T.I. V. and functional 
constitutive equations in the manner of R. T. was obviously noticed by some of 
the initiators of T.I. V. [Meixner,(1961); Coleman and Gurtin (1967a), Lubliner 
(1969, 1972, 1973)]. But from a practical point of view, what may look like 
an approximation, Eqs. (3.5.115) and (3.5.116), of a functional constitutive 
equation through the notion of internal variables, offers two main advantages: 
(i) it only requires a finite number of variables (the space of state remains of 
finite dimension). We may say that the past history has been condensed into 
the present values of a finite number of internal variables. But this number 
either may increase with the size of the sample if the structural rearrangements 
under study are local, or is relatively small if the internal variables represent 
averaged effects; and (ii) it enables us to use all the lessons learnt from T.I.P. 
(see below). In this manner we combine the two apparently markedly different 
approaches to thermodynamics, T.I.P. and R.T., and at the same time we are 
automatically led to a differential mathematical problem of the evolution type, 
which a priori seems quite reasonable on account of known theoretical results 
concerning such systems and their rather simple numerical implementation. 
In conclusion, we note that introducing internal variables allows one to work 
with a large state space while material properties defined by maps of process 
histories, as in Eq. (3.3.79), make use of a small state space (cf. Muschik, 1990). 
However, it is clear that the state space of internal-variable theory, although 
larger than that of rational thermodynamics, should be as small as possible, 
whereas for the best validity of the forthcoming analysis it should be as large 
as possible.3 As usual this contradiction is resolved in a compromise. 

4.3. Non-Equilibrium and Equilibrium States 

Equation (3.5.116) shows that we are placed within a dynamic framework. 
What are we to do then with those notions, like temperature and entropy, that 
are well defined only in thermostatics? It is obvious that we must formulate 
some axiom of the local-state type and that we must pay attention that the 
characteristic times that eventually enter (3.5.116)4 remain relatively small as 
against the macroscopic evolution. If this is possible, we can then actually use 

Parodying a saying attributed to Einstein, this state space should be "as small as pos
sible, but not smaller!". 

4This is not always the case; see elastoplasticity which has no time scale (Chapters 5 
and 7) 
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4.3. Non-Equilibrium and Equilibrium States 81 

the theory of irreversible processes, enlarged so as to encompass the internal 
variables of state. And in this case T.I. V. will remain a thermodynamic theory 
in the vicinity of equilibrium. In the process we expect that the looked-for 
evolution equation for a, being constrained to satisfy the local statement of 
dissipation, will indeed follow from this very statement, for instance through 
the appropriately generalized notion of dissipation potential. Incorporating 
internal variables in such a framework is the object of this section. 

We consider a discrete system S in the sense of W. Schottky (1886-1976). 
This is a system which can suffer the three types of exchange mentioned in 
Sec. 2.1. while the power expanded by the usual normal (in the sense of 
Duhem) variables of state x/? /? = 1,• • • ,« , reads (cf. Muschik, 1990): 

n 

0=1 

We shall not consider exchanges of mass. Thus, in a general manner the ther
modynamic state £(S, t) at each time t is characterized by a set of independent 
and dependent state variables. For instance, outside equilibrium, which is our 
concern, and accounting for a set a of internal variables, the state space at 
non-equilibrium is defined by 

Z = {e,xp,a,8c;0:,T^), (4.3.2) 

where e is the internal energy, X/3 a r e the observable variables of state, 9S is 
the thermostatic temperature — denned from e — (cf. Eq. (3.2.1)) — and 9C is 
the so-called contact temperature which is independent of e in non-equilibrium 
(cf. Muschik, 1977, 1979, 1981, 1990a, b). The latter notion which we shall 
not elaborate upon, receives a statistical-mechanics justification (Muschik and 
Fang, 1989). The superscript asterisk * denotes the quantities defined in the 
equilibrium state £*(<S) in the vicinity of £(S,t fixed). The equilibrium sub-
space of Z is generated by 

£«, = (e- Xp, a(e, Xp)). (4.3.3) 

according to which the equilibrium values of internal variables a are expressible 
in terms of energy and the observable variables alone at equilibrium. Whether 
this determination is unique or not depends on the type of phenomenon con
sidered. The solution <*«, = a(e, xp) m a v present a multiplicity of order m of 
determinations as is the case in plasticity (Muschik, 1990a). If we remember 

P(.) = - PT0X0- (4.3.1) 
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82 Chapter 4- Thermodynamics with Internal Variables 

that the equations of state relate variables in the equilibrium state, then with 
the identification of 9C and 6S at equilibrium and the fact that 0S and r@ then 
derive from e, the reduction from (4.3.2) to (4.3.3) is easily understood. 

At this point we recall that the Q'S have been introduced to compensate for 
our lack of a precise description of underlying microscopic instablities [e.g. the 
growth of Frank-Read sources in dislocated (plastic) bodies, the jerky motion 
of domain walls in ferromagnets, etc.] which manifest themselves as irre-
versibility at the macroscopic scale. Along a trajectory T of a process joining 
two states in non-equilibrium state space, the time evolution of non-equilibrium 
entropy n has the form [cf. (3.2.4)] 

pecrj = p(e - w) + Aa + £ , (4.3.4) 

where A is the force (affinity) conjugate to a and E is the entropy production 
per unit volume through heat processes. The additional power term Aa repre
sents an internal power which, in the case of a real (i.e. irreversible) evolution 
is entirely dissipated inside the system instead of being developed against the 
exterior (this is a definition of internal variables). As a consequence of this 
characteristic manifestation of the internal nature of a, this power does not ap
pear in the following statement, which therefore remains unchanged compared 
to classical thermodynamics. That is, for a thermodeformable continuum the 
local first law reads the same as in the energy equation (3.2.8) 

pe = a :D + q, g : = p / i - V - q . (4.3.5) 

On combining (4.3.4) and (4.3.5) we obtain 

pO.r} = $intr + q + 2 , (4.3.6) 

where we have now 
$ i n t r = a : D + Aa - pu . (4.3.7) 

At equilibrium, Eqs. (4.3.4) and (4.3.6) reduce to 

p0,j)eq = p(e - weq), A q = 0, S e q = 0, (4.3.8) 

and 
pO,Veq = qeq , (4.3.9) 

respectively. Equation (4.3.8) i is none other than Eq. (3.2.3) up to the factor p. 
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4-4- Accompanying Processes and States 83 

The constitutive quantities present in (4.3.4) form a set M = (n, rp,A, E) 
which can be defined either on a large state space (theory with internal vari
ables) or a small state space (theory with time functionals). The former choice 
is preferred here. According to Muschik (1990), an isolation of the system <S 
from its vicinity does not influence internal variables. This isolation is denned 
by e = 0, q = 0 (adiabaticity), so that the second law of thermodynamics is 
given by the dissipation inequality 

pecfiiso\=Aa + Z>0. (4.3.10) 

Equilibrium can now be defined in a more precise maner. We, in fact, give two 
definitions. First, unconstrained equilibrium is defined by 

« , ( . ) - . . . E = 0, 
.4 = 0 — > d = 0. 

That is, contact temperature at equilibrium takes on the thermostatic value. 
The third of (4.3.11) follows from the assumed continuity of A with respect to d 
in the neighborhood of vanishing forces A. In contrast, constrained equilibrium 
imposes a vanishing time evolution of a but not necessarily vanishing conjugate 
forces, so that (4.3.11) is then replaced by the conditions: 

«.<«)-fc, E - o . 
d = 0 —► .4 = 0 possibly, 

In such constrained equilibria the internal variables are frozen in; they do 
not evolve with time. This definition proves to be useful in associating an 
equilibrium state to a non-equilibrium one following along the works of Bataille 
and Kestin (1975, 1979) — see next section. 

4.4. Accompanying Processes and States 

Now we associate points of non-equilibrium state space with points of equilib
rium state space by means of a projection. This procedure has a long history 
which is mainly due to by Meixner (1972), Bataille and Kestin (1975, 1979), 
Kestin (1990, 1992), and Muschik (1990). It is the most commonly accepted 
point of view which consists of replacing the axiom of the local equilibrium state 
of classical irreversible thermodynamics with a somewhat straightforward gen
eralization known under the name of the axiom of local accompanying state 
(for short, L.A.S). We first deal with this in a nontechnical manner. 

(4.3.11) 

(4.3.12) 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



84 Chapter 4- Thermodynamics with Internal Variables 

A. Verbal statement of the L.A.S 

According to Bataille and Kestin (1975, 1979), the axiom of L.A.S can be 
enunciated thus: To each "particle" of the continuum we may associate at 
time t a thermostatic system (of unit mass) characterized by the set of variables 
(e,xp,ot) for which Gibbs' equation can be written as 

dna = 6'1 I de - £ rfdxp + p'1 Aada j , (4.4.13) 

where 9a and T)a are an absolute temperature and an entropy density to be used 
for the thermo- dynamic description of the "particle". Note the labeling "a" of 
0, Tp and A related to the fact that this particular set a has been selected. The 
association (4.4.13) is effected at each instant of time t of the evolution of the 
said particle which is generally thermodynamically irreversible. In agreement 
with a previous remark, Gibbs' equation (4.4.13) provides us with the equations 
of state, here either 

6« =-de~> T*=-0adc7^ ^ = ^ a o 7 ' (4A14) 

or else, after partial Legendre transformation of the type of (3.5), 

^ - ^ T*=Wi ^-'Ta (4-4'15) 

The thermostatic system thus introduced is called the local accompanying sys
tem (L.A.S). The introduction of this L.i4.5raises several questions concerning 
its physical significance, applicability, and the selection of significant internal 
variables. To shed some light on the first point, let us consider the simple case 
where \ is the strain tensor e of the small-strain theory of deformable solids, 
and the system presents no anelastic stress. Thus T = a/p and <7anel = 0. Then 
the L.A.S method in fact assumes that the "particle" or "cell" in question in 
fact represents itself a continuum at a finer level of description (cf. Germain 
et al., 1983).5 The local value of the internal energy e can be looked upon 
as the global internal energy of the particle or cell. In like manner, e may be 
viewed as the global geometrical description of the cell. Then keeping both 

5This is not without recalling the subquantum level for hidden variables in quantum 
mechanics. 
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4-4- Accompanying Processes and States 85 

e and e constant means, from a thermodynamical viewpoint, that the cell is 
isolated. But this "macroscopic" cell may be highly heterogeneous and the 
various dissipative mechanisms at work in it are then described by internal 
variables a which indeed appear as the new type of large-scale thermodynamic 
parameters to which Bridgman (1943) hinted at in order to fulfil J. W. Gibbs' 
wishes. We obviously would like to have the number of such variables rela
tively small, and there must exist some criterion to decide on how to retain or 
discard any physically interpretable internal variables from the description. 

It is at this point that characteristic time scales enter the picture, c.f. 
(3.2.2a). The macroscopic time that one related to the cell as a whole is 
TM = £/£- Let further O~M be a possible bound on macroscopic stresses acting 
on this cell. Some internal dissipative mechanisms are characterized by a relax
ation time ra = a/a, e.g. in viscoelasticity. If (I'e) re]ax = raJTM = 0(1), then 
the corresponding mechanism can be discarded. If, however, (De)re]ax <S 1, 
then the corresponding internal variables take their equilibrium value that they 
have reached once the whole sytem has been considered isolated (with e, e and 
the other internal variables frozen), while if (Pe)reiax ^» 1> then the correspond
ing internal variable appears to be frozen in on the time scale of strain evolu
tion. For dissipative mechanisms such as rate-independent plasticity which, by 
definition, do not involve a characteristic time (cf. Maugin, 1992a), it is the 
yield limit which plays a determining role. If that yield limit — in microscopic 
terms, the activation level of dislocation glide — is below OM , the correspond
ing Q must be kept while for a yield limit much larger than OM , again the 
corresponding a may be considered as frozen, and this plays no role in the 
L.A.S. 

A simple example due to J. Mandel (1973) illustrates particularly well 
the above emphasized point in relation to the choice of the pertinent inter
nal variable. Consider the simple rheological model known as Maxwell's model 
(Fig. 4.1) where a dash-pot (viscous or Newton element) and a spring are placed 
in series. Clearly, the observable variable /3 — the relative displacement of the 
two ends of the model — is not sufficient for the determination of the state 
of the model. As internal variables we have the choice between the abscissa 
a of the piston in the dash-pot and the elongation x = (3 — a of the spring. 
But if a fast change is imposed on /? via the force a (stress) x clearly changes 
accordingly while a remains practically unchanged. Thus we must discard x 
and select a as the pertinent internal variable in so far as time scales and 
the application of the L.A.S are concerned. The hierarchy of such time scales 
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86 Chapter 4- Thermodynamics with Internal Variables 

■> a 

i >J > 

a P 

Fig. 4.1. The Maxwell model and the choice of internal variable. 

was heavily emphasized by Bataille and Kestin (1979, pp. 242-243) in their 
interesting gedanken experiment involving a sequence of less and less admissi
ble accompanying equilibrium states — corresponding to progressively fewer 
constrained deformation variables. The same idea was again used in a model 
of plasticity (Ponter et al., 1979; see also Muschik, 1990a, b) where different 
projections onto equilibrium subspaces relate to very dissimilar time scales. 

The variety of behaviors which results from the above sketched out method 
makes it such that the definition of a system associated with a particle depends 
on the degree of refinement which seems suitable to the description, both spa
tially and timewise. This decides on the choice and number of internal variables 
to be kept in the description. In turn, entropy density and absolute tempera
ture are very much associated with a definite level of description. Therefore, 
they have a relative significance. This points to an inherent weakness of the 
method. This lack of uniqueness in the concept of entropy of a non-equilibrium 
state was first discovered by J. Meixner (1973a).But once the selection of in
ternal variables is achieved, the nature of microscopic mechanisms of interest 
delineated, and the relevant time scales and stress levels (or of other fields in 
a different branch of physics) well established, then this definition of entropy 
77 = T)Q and temperature 6 = 6a becomes unambiguous to a trained scientist 
who masters the art of material modeling. However, we must still notice, to
gether with Meixner (1973b) that it is still possible to assume that 77 differs 
from na and 6 from 9a, and these differences will generate additional terms in 
the final dissipation inquality. As a matter of fact, the entropy rja of the L.A.S 
is always larger than that of the original non-equilibrium state because the 
former is produced from the latter by an adiabatic, no-work process (Kestin, 
1992; Bataille and Kestin, 1979). But this complication can often be discarded 
(see Bataille and Kestin, 1975, pp. 376-377). 
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4-4- Accompanying Processes and States 87 

B. Formal statement of the L.A.S. 

The above statement can now be formally summarized as follows (Muschik, 
1990a): call a.; the subset of internal variables which may be considered as 
frozen in on the time scale TM, ae that subset which, having fast relaxation, 
reaches their equilibrium values, and am the final subset such that ram/TM = 
0(1). Then to each point in state space (4.3.2) we associate a general local 
accompanying state (L.A.S) by 

z?<i = (e, Xp, "e(e, xp), am, a/frozen), (4.4.16) 

so that Eqs. (4.3.4) through (4.3.11) hold true and, by isolation, we obtain the 
dissipation inequality (4.3.10) while 9c(e) = 9, at equilibrium. 

Fig. 4.2. Projection of the process Z(t) point by point onto the equilibrium subspace repre
sented as a hypersurface in state space (after Muschik, 1990). 

Equation (4.4.16) is viewed as a projection PZ onto equilibrium state space 
(Fig. 4.2). Several different projections exist, e.g. 

P0Z(t) = (e,Xp,af), (4.4.17) 

or 
Pni*xZ(t) = (e, xp, ae(e, Xp)), (4.4.18) 

or else 
PZ(t) = (e, xp, ae(e, Xp),«/) • (4.4.19) 
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These possibilities are well illustrated by the Ponter-Bataille-Kestin model of 
plasticity (1979) where internal variables are supposed to account for modes 
of operation of Frank-Read sources of dislocations (see also Muschik, 1990a, 
for a formal presentation in the above formalism). 

The time parameter that appears in Eqs. (4.4.17)-(4.4.19) is fixed. But in 
thermo- dynamics a process is a time sequence of states. The reversible pro
cess obtained as the sequence of projections of points of non-equilibrium state 
space onto equilibrium state space may be called the accompanying reversible 
process so that, in theory, "process" and "state" cannot be misunderstood for 
one another. However, the qualitative "accompanying" has an unavoidable 
dynamical connotation and this favors that misunderstanding. The accom
panying reversible process is enslaved to the time evolution of the real (ir
reversible) process, i.e. the time sequence of points in non-equilibrium state 
space; in truth, the time solution of the general problem of evolution on ac
count of initial conditions and boundary conditions. This slaving is due to 
the fact that according to (4.4.17) through (4.4.19) the time is left untouched 
by the projection. As recently noted by Kestin (1992), this gives a picture 
of a "reversible process as one which occurs at a finite rate in contrast with 
the historic prescription that a reversible process must occur infinitely slowly 
or must be the result of the convergence from a real process when its rate is 
reduced to zero".6 

In the practice of many worked out examples the present author has often 
followed the pragmatic point of view of J. Mandel (1971,1973) in that the start
ing point has often been the Clausius-Duhem inequality — say Eq. (3.3.76) — 
in the form favored by rational thermodynamics, but with r) and 6 defined by 
the L.A.Smethod. Thus, 

i> = Hxp,0,a), (4.4.20) 
0=9a 

in agreement with (4.4.15), so that the remaining dissipation inequality will 
read [cf. (4.3.6)] 

* = $intr + 0aq • V ( 0 > 0, (4.4.21) 

6Kestin (1992) continues by noting that readers not persuaded by this apparent paradox 
"can imagine that, departing from equilibrium at any state 2 e q , the system keeps continu
ously reverting to it (say by coaxing of Maxwell's demon) with a negligibly short relaxation 
time (Ve S< 0)." 
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4.5. Applying T.I.P. to T.I.V. 89 

where, obviously, it has been assumed in general that the entropy flux S is the 
heat flux q divided by 0a. This last constraint can eventually be relaxed (see 
below). This pragmatism is also demonstrated by Sidoroff (1976). Further
more, some extensive works (e.g. Lemaitre and Chaboche, 1990) that make 
constant use of T.I. V. do not even bother with the subtleties touched upon in 
this section. 

In conclusion, as pointed out by Germain et al. (1985), the flexibility of 
the L.A.S method thus exhibited and its simplicity in formulating constitu
tive equations (by following T.I.P. — see below) are two assets which other 
approaches can hardly compete with. 

4.5. Applying T.I.P. to T.I. V. 

Here we introduce the viewpoint expressed in Eqs. (4.4.20) and (4.4.21) ac
cording to which the starting point is the Clausius-Duhem inequality given by 
Eq. (3.3.76), it being understood that 9 = Bc = 6S = 6a when (4.4.20) is valid. 
Here, for the sake of illustration we consider only thermomechanical processes; 
more general cases will be examined in the application part (Chapters 6 to 10). 
More precisely, we look at solids in small strains, but there are no difficulties 
in rewriting the same expressions in material formalism in order to accommo
date large (finite) strains — see Chapter 7. That is, we consider that strain e 
decomposes additively into elastic (ee) and anelastic (ep) contributions, none 
of which being a gradient. The latter, ep, always causes dissipation, i.e. it has 
a fully dissipative nature. With the laws of state 

e=ea 

« - d W 

(4.5.22) 
A=~^> W:=p0xl> = W{ee,a,6), 

we deduce the dissipation inequality in the form 

$ = *intr + *th > 0 , (4.5.23) 

wherein 

4>intr = °v ■■ ie + a : £? + M, av := a - ae = av
a , 

(4.5.24) 
0 th=»aq -V( t f - 1 ) , 

V = Va 
dW 
de - -Po" 1 

dW 
da 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



90 Chapter 4- Thermodynamics with Internal Variables 

where subscripts a emphasize the choice of the phenomenological description 
with the set of a internal variables. Equations (4.5.24) are rich enough to 
accommodate very many material behaviors via the presence or absence of 
ep, and whether o~v exists at all. Again $ is in the canonical bilinear form 
(3.63) which encourages the application of T.I.P. in the most straightforward 
manner. The interesting points at this state of generality are the following. 
First, one often assumes separate non-negativeness conditions for intrinsic and 
thermal dissipations, i.e. 

$ in t r>0 , & h > 0 . (4.5.25) 

although this is not a general rule. Second, according to (4.5.24), while a — the 
total stress — remains the thermodynamic conjugate of the anelastic (in most 
cases plastic) strain, the viscous stress av has for thermodynamic conjugate 
the elastic strain only. Whenever ep = 0, o~v is none other than the dissipative 
stress introduced in (3.2.26). Third, one could be tempted to apply T.I.P. — 
Eq. (4.5.22) or the dissipation-function framework, Eqs. (3.2.71)-(3.2.73) — 
directly to (4.5.24). But, on the one hand, this cannot be so blindly applied 
without precisely knowing the time parity and tensorial nature of the internal 
variables a. On the other hand the very naming of ee, ep and o~v suggests that 
markedly different behaviors are expected from the first two contributions in 
(4.5.24)i. As a matter of fact, av is to denote viscous-stress processes which 
typically exhibit a characteristic time and are therefore of the relaxation type, 
whereas we expect the second contribution (and perhaps the third as well) to 
represent typically rate-independent (plastic-like) effects, thus exhibiting no 
characteristic time but rather a yield stress level in agreement with a foregoing 
discussion. Whether the third contribution in (4.5.24) i is of the former type 
or the latter depends on the type of microscopic phenomenon accounted for 
through a. Such distinct behaviors cannot be accommodated simultaneously 
in the classical framework of T.I.P. — Eq. (3.2.65) and (3.2.66) — which, 
certainly, was not initially built to account for plasticity and rate-independent 
hysteresis.7 The solution to this problem is provided (see Chapter 5) by an 
ad hoc generalization of the second point of view, resulting in the introduc
tion of a non-negative convex dissipation potential with the appropriate degree 

7Thus Duhem's hope (1903) — see also Manville (1927) — to incorporate friction and hys
teresis in a harmonious thermodynamic framework was far from being realized with classical 
T.I.P. But J. J. Moreau's paper (1971), short as it is, indeed fulfills this dream concerning 
two of the nonsensical branches of thermodynamics. 
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4.5. Applying T.I.P. to T.I.V. 91 

of (mathematical) homogeneity with respect to its arguments. This had to 
await the proposal by Ziegler (1963, among other works by this author) and 
Moreau (1971) of the consideration of such a pseiwfo-potential of dissipation. 
The same method, applied to the internal variable a, enabled other authors to 
incorporate hardening (Nguyen Quoc Son, 1973; Halphen and Nguyen Quoc 
Son, 1975) in the same thermodynamical framework. Magnetic (Chernyi, 1983; 
Maugin, Sabir and Chambon, 1987) and electric (Bassiouny et al., 1988; Mau-
gin and Bassiouny, 1989) hysteretic responses would then find their right place 
in this framework by also combining the notion of internal variables and rate-
independent, plastic-like, response, and the existence of a pseudopotential of 
dissipation. These belong to a class of singular behaviors as all other dissipative 
behaviors that we shall consider in this book are of the more regular, relax
ation type. Such relaxation behaviors are exemplified by evolution equations 
of the type 

dW = ~r ( 1 a ^HO - M X / J ( 0 . M * ) } (4-5.26) 

where r a > 0 is the relaxation time and ae is the "equilibrium" functional 
form of Q, and 

a(t) = 7(X/J, *«){! - exp(-/i(t)A,(X/j(0, *«(*)])} • (4-5-27) 

The latter is typical of reaction kinetics (7 > 0, \i > 0) and satisfies the 
condition that AQ = 0 implies d = 0; Typically, (4.5.26) is obtained from 
Eqs. (4.5.24) and (3.2.71) through 

W = \\(xp,6)[<* - «e(X/3,0)}2 + f(Xp,9), 
L (4.5.28) 

V=-v(xp,0)A2+9, 

where g is not a function of A. Thus, 

raHxpO) = Kxp,0)v(xpMe=ea • (4.5.29) 
Clearly, the case of Eq. (4.5.27) is more involved and does not lend itself to 
this simple formalism because a potential V from which (4.5.27) would be 
derivable, is not homogeneous, at any degree, in A so that no guarantee of 
non-negativeness of dissipation $ exists! 

The final point concerns the rich couplings that may exist between a" and 
a on the one hand, and the time evolution of a and the state variables x/3 
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92 Chapter 4- Thermodynamics with Internal Variables 

essentially through the energy density W. That is, in most cases where such 
couplings are allowed by the time parity and tensorial nature of both xp a n d 
a, the application of T.I.P. or of the pseudopotential of dissipation imposes 
rather definite couplings between the additional (complementary) constitutive 
equations, e.g. for av or aD, and the right-hand side of evolution equations 
for internal variables. This is particularly true when a is a second-order tensor 
(for instance, in solutions of polymers and liquid crystals — see Sec. 6.4 below) 
or a is a polar vector such as in suspensions of fibers and some liquid crystals 
(see Chapter 6 below). 

4.6. Potentials of Dissipation 

In many cases the introduction of a dissipation potential along the above-
indicated lines is practically automatic. We illustrate this by essentially fol
lowing Kestin and Rice (1970), Rice (1971), and Germain et al. (1985).8 We 
wish here to account for an anelastic behavior as a result, for example, of 
the microscale structural rearrangements of the constitutive elements of the 
examined sample. This type of behavior may well be the result of a plastic 
deformation due to a dislocation movement, e.g. the slip of crystallographic 
planes in a metal, to the twinning of crystals, to the slip of grain boundaries, or 
to a stress-induced phase transition, etc. Then the internal variables are rep
resented collectively by an n-vector a, of which each component characterizes 
a local structural rearrangement at a given point in the sample. Obviously, the 
number of this type of internal variables increases in relation to the size of the 
sample under consideration, and this is not what we would like most. Perhaps 
more usual and more interesting for the applicability of the method is the case 
of internal variables of the average type. They then represent the mean mea
sures of the structural rearrangements that take place at several points. As a 
consequence the number n then is independent of the size of the sample and 
we expect it to be small, in any case. Examples of such internal variables are 
the different statistical moments of the distribution of dislocations as proposed 
by Kroner (1963). 

Let us suppose that the internal variable a may be kept at a prescribed 
value by the imposition of an appropriate stress a. Note that we can only act 
via classical mechanical forces but not through a force directly conjugated to 

8See also Maugin (1992a, pp. 278-281) to whom we borrow much of the final form of this 
section. 
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4-6. Potentials of Dissipation 93 

a. The sample will then tend towards a state of thermodynamic equilibrium 
characterized by a stress (response) a, a strain e, and a temperature 8. Let 
us further assume following Kestin and Rice (1970) that if different states 
of equilibrium between the variables of state (a or e, 8, a) are possible for 
the same values of a, then the neighboring states are connected by the laws 
of ordinary thermoelasticity (which are established in thermostatics, in the 
absence of heat conduction), i.e. in small strains (see Sec. 3.4): 

dW m _ ^dW 

(4.6.30) de' V--p° d8 
dW A = ~ ^ ' W = PorP = W(e,8,a), 

where W is concave in 9 and convex and lower semicontinuous in e and a. We 
can thus introduce a partial Legendre-Fenchel transform of W by 

W*(<T,9,a) = sup(a : e - W), (4.6.31) 
e 

so that 
dW _!dW 

dVfi ^ <4-6-32) 
A=-fa-, W' = W'{a,8,a). 

The infinitesimal anelastic strain will be the contribution resulting from a 
variation of internal variables when both stress and temperature are kept fixed. 
That is, 

de d2W* dA 

according to Maxwell's relation between second order partial derivatives of W*. 
As to the thermoelastic strain, it is that one which results from a variation of 
0 and a alone, so that 

d2W* d2W* 
M'-M--5***™69' (46-34) 

where the two factors of variations introduced in the right-hand side are the 
so-called elastic compliances and thermal dilatations, respectively. Then we 
can apply T.I.P. as a process of homogeneous macroscopic strains may be 
approached by a true sequence of constrained (controlled) states of equilibrium 

(4.6.33) 
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94 Chapter 4- Thermodynamics utith Internal Variables 

(L.A.S). Furthermore, the above development shows that a potential of dis
sipation can be introduced which will provide, by differentiation, a kinetic 
relation for the internal variables a. A natural way to proceed is, following 
Kestin and Rice (1970) to suppose that: "the rate at which any structural 
rearrangement (a) happens is entirely determined by the force (A) associated 
with this rearrangement". This is some kind of common-sense causality pro
posal (which does not in general imply a linear relationship) according to which 
we should write: 

a = a(A,0,a), (4.6.35) 

where A depends on a as shown by (4.6.32) and (4.6.33). This formalism is 
particularly well suited to the viscoplasticity of metals, in which case the above 
supposition translates to: "the force on a segment of dislocation line governs 
its movement". 

Prom (4.6.35) we can write in an identical way, by evaluating the integral 
at 8 and a fixed, 

d fA 

d = — / a(A,6,a)dA. (4.6.36) 
oAJo 

Setting 
rA(<r,B,a) 

we check that 

/ • > H < 7 , » , Q ; 

W(<T,0,a):= a(A,6,a)dA, (4.6.37) 
Jo 

dV* dV* dA . de .„ l i e n o , 
-do- = l A - ^ = a d ^ = £ P ( 4-6-3 8) 

through the use of (4.6.33). Thus we have the proof of the existence of a flow 
potential V* such that 

„ dV(a,e,a) 
iP = Q ■ (4.6.39) 

This also expresses the fact that the increment ep is normal to a constant flow 
potential in stress space. This situation is met within the elastoviscoplasticity 
of metals, where a time scale (viscosity) plays an important role. This is 
illustrated by a continuous model of slip in metal viscoplasticity (Zarka, 1973) 
where (4.6.39) is written as 

FfT)* 
^(a)=^(a)(T(a))^7) = _ _ i ( 4 . 6 . 4 0 ) 
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4-7. Internal Variables and Microstructvre 95 

in which 7<°) is the slip in the a-simple-slip system in the crystal — it is a 
variable of the "structural rearrangement type — and 

T w = ™L 
07(a) 

is the so-called resolved-shear stress related to the a system of slip. 
We also note that Eq. (4.6.35) can be written as 

. dW(A,6,a) 
a = dA — 

If V* is associated to a non-negative dissipation (pseudo) potential which is 
homogeneous of degree m in the force A, then Aa is also non-negative and 
homogeneous of degree m by virtue of Euler's identity. The intrinsic dissipa
tion thus satisfies, in the condition where (4.5.25) applies, the second law of 
thermodynamics 

$ = Aa > 0. (4.6.43) 

We shall return to this framework in Chapter 5 in general and in Chapter 7 
for the case of solids. 

4.7. Internal Variables and Microstructure 

A. Highly heterogeneous bodies 

Through the procedure known as homogenization, a material body which 
presents a high degree of heterogeneity at a microscopic scale (characteristic 
length Lm) is, in some asymptotic sense, replaced by a conveniently homoge
neous body at a larger (macroscopic) scale (characteristic scale LM) endowed 
with effective material properties. Then A = Lm/L,M is a small parameter. 
This is exemplified by periodic structures, bodies which are made up of cells 
(so-called Representative Volume Element, R.E. V), polycrystalline media, etc. 
In commenting upon the L. A.S we have already hinted at the fact that global 
state variables for a cell could be viewed as (local) internal variables of state for 
the homogenized body. This was masterly dealt with by Suquet (1982) — also 
in Germain et al (1985) and in Maugin (1992a, Chapter 9). Special attention 
must be paid to systems in equilibrium and non-equilibrium evolutions. In the 
first case (thermo-statics) one may assume that the temperature fields 6M and 
9m at the macroscopic and microscopic scales may be practically equal. But 

(4.6.41) 

(4.6.42) 
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96 Chapter 4- Thermodynamics with Internal Variables 

VQM and V0m may be markedly different because 8m may exhibit very high 
(stiff) spatial variations due to heterogeneities. However, it is possible to show 
that the usual laws of state are valid at the level of the macroscopic description, 
while the generalized Fourier law of heat conduction — including a relaxation 
effect such as in Eq. (3.4.112)i — follows for the homogenized material. Next, 
when the theimo dynamic evolution is very close to equilibrium, the working 
hypothesis now is that TM is large compared to any time rm of propagation of 
information inside the cell. Thus 

(Pe)cen = Tm/rM < 1. (4.7.44) 

If we admit the first and second laws in their classical form — Eqs. (4.3.5) 
and (3.2.6) — at the microscopic level, then it is possible to prove that, at 
each time, similar laws hold true among averaged variables of state at the 
macroscopic level so that the thermostatic description and Gibbs' equation are 
indeed valid at the macroscopic scale if they were assumed to hold for each 
constituent at the microscopic one. 

More interesting perhaps is the case of true non-equilibrium evolutions. 
Then the previous analysis fails, as inertia effects can no longer be neglected at 
the microscopic scale as they manifest themselves as small-wavelength effects. 
One has then to apply the artificial process described above in Sec. 4.4. In 
particular, one has to study a dynamical evolution toward equilibrium in order 
to obtain the set of characteristic microscopic parameters. For instance, as 
remarked by Germain et al. (1985), if a, the set of internal variables such that 

{Ve)a = Ta/rM < 1, (4.7.45) 

is empty, then one has to study a dynamical thermoelastic evolution toward 
equilibrium. A most spectacular feature of this procedure is obtained when 
some of the constitutents of the structured material are elastic-perfectly plas
tic (no hardening) — see Suquet, 1982, 1987 — but the homogenized medium 
does present hardening (i.e. the property that the yield point evolves with the 
loading history). This results from the fact that some energy is stored in the 
form of residual stresses at the microscopic level, and the internal variables 
of the macroscopic picture are defined from this. The fact that the backstress 
(residual stresses embedded in a polycrystalline structure) may be considered 
as an internal (tensor) variable giving rise to kinematic hardening is also an 
established result of polycrystalline plasticity. We shall return to these two 
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4.7. Internal Variables and Microstructure 97 

phenomena in Chapter 7. Relating more closely to dislocation concepts, we 
also recall that two internal variables may be introduced in that spirit, a scalar 
one which is associated with the stress field arising from forest dislocations, 
point-defect clusters or fine precipitates and yielding isotropic hardening, and 
a second-order tensor one which is related to the stress field due to cell walls 
or piles of dislocations and giving rise to kinematic hardening (see, e.g. Bam-
man, 1985). 

B. Internal variables or internal degrees of freedom 

Having disposed of the qualitative of "hidden" variables, we now focus on 
the differences or resemblances between thermodynamic internal variables of 
state and so-called internal degrees of freedom. The confusion between the 
two notions arises even among the best specialists (for instance, in the title of 
papers: Parry, 1987; Kluitenberg, 1977), although a clear distinction between 
these two classes can be precisely drawn (see Maugin, 1990a). To be more 
general and pave the way for the discussion, we shall consider now that the 
entropy flux deviates from its usual definition and, therefore, Eqs. (3.3.110) 
and (3.2.11) hold true. That is, 

S = 0 _ 1q + k , (4.7.46) 

and 
-p(V> + rfi) + P{i) + V • (0k) - S • V0 > 0, (4.7.47) 

where S is the entropy flux, per se, the excess k is called the extra entropy 
flux, and p^ is the power developed by internal forces, e.g. classical stresses 
in small strains yield p^) = cr : e. We generally need constitutive equations 
for these internal forces. The latter, as emphasized above, are quite different 
from the thermodynamic forces conjugate to a, because they contribute to 
the power (4.3.1) while the A's do not by virtue of their very nature of being 
internal. It is at this crucial point that the whole difference between internal 
variables of state and additional degrees of freedom becomes the most forceful. 

First, if a were an additional observable variable which serves to describe 
the dynamics (in the full sense of that word) of a microstructure attached to 
each point in the continuum (as is the case in the mechanics of micropolar, 
micromorphic, and Cosserat continua — see Maugin, 1980, for an introduction 
of these models along the present line) then, according to general principles of 
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98 Chapter 4- Thermodynamics with Internal Variables 

rational mechanics (e.g. the principle of virtual power recalled in Sec. 2.3), a 
is to be governed by a true field equation of the canonical form: 

g - f « = 0, (4.7.48) 

where f̂* is a dissipative force acting on the a-microstructure and 6/6a denotes 
the Euler-Lagrange functional derivative denned by 

^ = ^-dt{^)-vid(ya-)) + -- (4-7-49) 

In usual situations the Lagrangian C depends at most on Va, so that there 
are no terms further than the third in the definition (4.7.49). This Lagrangian 
typically has the general expression 

C = K(v,a)-ptlj(-,a,Va,8), (4.7.50) 

where v is the classical velocity field of the continuum and the "-" in ip stands 
for the relevant observable variable (e.g. the density in a fluid, or the infinites
imal strain in some solids). Equation (4.48) complements the classical equa
tions of motion of Euler and Cauchy that we do not rewrite here (note that the 
stress tensor may no longer be symmetric if there exists a mechanical torque 
associated with the variable a, as is the case in liquid crystals and some elec
tromagnetic continua). It is valid at each regular point in the body and it 
must itself be supplemented by a boundary condition whose "natural" form at 
the boundary SSI of the body at time t is [cf. (2.3.48)] 

where T Q is the surface "force" (traction) acting on the a-field. This follows 
from the general structure of a "first-order gradient' theory — an easily under
stood name if we remember that £ depends at most on the first gradient of a 
— see Maugin (1980) for this concept in continuum physics. A dual boundary 
condition involving either a or d is also admissible (in the same way a dis
placement or velocity field — or some components of them — may be imposed 
at a boundary in classical continuum mechanics). 

For instance, if the overall material is considered as a solid in small strains, 
then it is easily shown that (4.7.47) will formally yield the following dissipation 

dC 
3(Va) 

- n - rpa (4.7.51) 
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4-7. Internal Variables and Microstructure 99 

inequality on account of the classical axiom of local equilibrium state (here a 
is not an internal variable): 

<f> = <7D : i + fdQ • a + V • (0,k) - S • VO, > 0, (4.7.52) 

where 9 takes locally its thermostatic value (here not indexed by a). The extra 
entropy flux k may be taken to be equal to zero without loss in generality so 
that (4.7.52) reverts to its classical form [cf. (3.2.26)]: 

$ = oD : e + f£ • a + 0sq • V ^ ; 1 ) > 0. (4.7.53) 

The second contribution may be studied by means of T.I.P. or by introducing 
a dissipation potential. If the latter, say T>, is positive, homogeneous of degree 
two in d, it will yield a relaxation effect, together with the general expression 
fa = dV/da. The resulting field equation (4.7.48) will be of the form 

together with the boundary condition (4.7.51) or its kinematic dual. In sum
mary, a here is an additional observable variable which we assume to be related 
to a microstructure. It represents an internal degree of freedom as compared to 
the classical description of a continuum. It is controllable through boundary 
conditions and possibly also body forces which we did not introduce in (4.7.48). 
The reader will find complete examples of continuum theories with such inter
nal degrees of freedom of electric or magnetic nature in Maugin (1988) with a 
special interest in coupled dynamical effects (as a does present an inertia). 

On the other hand, had we considered a as an internal variable of state, 
we would not have assumed any equation such as (4.7.48) to start with and, 
therefore, no accompanying boundary condition of the form (4.7.51) would 
show up! Following the method of internal-variable theory we would simply 
have computed ift and used the trick to select k in such a form as to eliminate 
any true divergence term in the dissipation inequality (Maugin, 1990a). Thus 
instead of (4.52), we would have obtained 

<j> = aD : £ + Aa - (S„ • V)9a > 0, (4.7.55) 

wherein we have set 

aD = o - (dW/de)a, S Q = 0 - 1 q + k, 

<5£ &D 
6a da 

= 0 , (4.7.54) 

A = -6W/6a = -
dW 

da 
+ V-

dW 

,a(va) 
(4.7.56) 
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100 Chapter 4- Thermodynamics with Interned Variables 

with 

k = -0-l[dW/d{Va)]-a, r)c = -PoldW/de\e=ea, 
(4.7.57) 

W = Porp = W{e, a, Va, 9). 

The classical theory of internal variables is recovered by ignoring the depen
dence of W on Va. If we now assume the existence of a dissipation potential 
V such that (this is only an example to fix ideas): 

°° = % *-& 
then in particular (4.7.56)3 and (4.7.58)2 combine to give 

6W dT> , 

with apparently no accompanying boundary conditions. However, if the last 
equation is assumed to be valid at any regular point in the body, then at the 
crossing of a discontinuity surface one can deduce a related jump relation by 
using a local method such as the so-called "pill-box" method, or else more so
phisticated mathematics such as the theory of generalized functions (distribu
tions). This indicates that if one side of this "discontinuity surface" is occupied 
by a foreign body, and the surface becomes a material one, then the method 
will yield a local boundary condition of the same type as (4.7.51). This subtlety 
disappears when W does not depend on Va. Nonetheless, Eqs. (4.7.54) and 
(4.7.59) encapsulate the essential differences and resemblances between the ba
sic equations that govern internal degrees of freedom in a first-order gradient 
theory and internal variables for which we account for spatial gradients. Both 
consider a weak nonlocality likely to give rise to transition layers and surface 
effects. We rewrite (4.7.54) as 

where /x and e are so-called ordering parameters (i.e. nondimensional param
eters that provide an appreciation of the "size" of the terms in which they 
appear) to become eventually small. For example, Eq. (4.7.54), on account 
of its rewriting as (4.7.60), for small /x's but e's which are 0(1), is a typical 
field equation with a weak dissipation. At the other end of the spectrum, for 

(4.7.58) A = 

6a da 
- 0 , (4.7.59) 

6W 
6a f A* 

dV 
da + e 

d 
dt 

'dfc' 
da 

= 0, (4.7.60)  T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



4-7. Internal Variables and Microstructure 101 

\i — 0(1) and vanishingly small e (Caution: this, in general, is a mathemati
cally singular procedure), (4.7.60) takes on the form (4.7.59). Internal-variable 
theory would then principally be characterized by the neglect of inertial effects 
and its very classical form by the further neglect of any nonlocality, how weak 
the latter may be. A weak nonlocality, as is happens, describes a very short 
range of interactions in the a-field or small coherence or correlation length in 
the language of organized structures. 

Indeed, the above dichotomy probably reflects again the fact that whether 
some variables are to be considered as internal variables or internal degrees 
of freedom is a matter of scale of space-time observations. If one is able to 
comprehend both the time and length scales on which the variables vary, then 
it is possible to view these variables as true internal degrees of freedom which 
enrich the dynamical description of the medium by requiring additional field 
equations on an equal footing with the old ones. For example, the continuum 
theory of nematic liquid crystals of Leslie and Ericksen (cf. Leslie, 1968), where 
the additional variable is a vector field n of constant amplitude representing the 
mean orientation of a bunch of elongated "particles", was originally conceived 
by its authors as a field theory with an internal degree of freedom n (with only 
two independent components). But the corresponding inertia is most often 
neglected (cf. de Gennes, 1974) and the above internal-variable theory applies 
(cf. Maugin, 1990a) with an extra entropy flux (4.7.57) i which indeed coincides 
with some proposals (Kats and Lebedev, 1988, p. 23). 

The idea of introducing spatial gradients of internal variables recently ap
peared in the description of some physical properties coupled to mechanics, 
e.g. magnetic spin in magnetically ordered bodies (Maugin, 1979a,b), and 
of some other mechanical properties, among them the localization of damage 
and the problem of shear-band evolution related to the localization of plastic 
strains (cf. Maugin, 1990a; Zbib and Aifantis, 1989). The problem, however, 
is that a may be controlled through an external force such as the "traction" 
T a of Eq. (4.7.51). It is only when the length scale Lm = 0(a / |Va | ) is small 
compared to the macroscopic scale LM or when one is far away from bound
aries and transition layers that the true "Bridgmanian" character of inter
nal variables is recovered. If external excitations (wave length of dynamical 
processes, spatial variations of external fields affecting the a-field such as a 
nonuniform magnetic or electric field) are of the same order as L m , then the 
internal-degree-of-freedom interpretation and equations should be enforced. 
Whether one should consider a weak nonlocality (using gradients) or a strong 
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102 Chapter 4- Thermodynamics with Internal Variables 

nonlocality, with constitutive equations that then become functionals over 
space, is debatable (in this respect, see Maugin, 1979c). 

To conclude this section with a note on dynamics, we remark that, in 
general, the internal-degree-of-freedom approach accounting for the inertia 
of additional degrees of freedom and the allied nonlinearity and weak non-
locality provide physical systems which are prone to exhibiting the dynamic 
phenomenon of solitary waves, and sometimes of solitons, if the systems in 
question are exactly integrable. The internal-variable formalism, on its side, 
neglects the inertia of a and fosters mathematical systems of equations of the 
evolution type. With the ad hoc amount of nonlinearity (with respect to a — 
to that purpose it is sufficient to have a dissipation potential homogeneous of 
degree two in a and an energy function W highly nonquadratic in A) and diffu
sion, such model equations may give rise to dissipative structures and autowave 
phenomena (cf. Vasilev et al., 1987), two other basic tenets of nonlinear science 
(cf. Maugin, 1990a). This viewpoint will be expanded in Chapter 10. Some 
characteristics of the theory are also very close to those met in phase transition 
theory. Therefore, it is salient to spend some time on the relationship between 
internal-variable theory and phase-transition theory. 

4.8. Internal Variables and Phase Transitions 

If A vanishes in Eq. (4.7.58)2, then (4.7.59) takes the form 

SW/6a = 0, (4.8.61) 

which is reminiscent of the equation that defines static structures as elementary 
solutions for the order parameter in the Landau-Ginzburg theory of phase 
transition (cf. Kittel, 1971). 

We remind the reader that an order parameter is a variable of state which 
is essentially zero above the temperature of the phase transition and nonzero 
below (e.g. the magnetization vector in ferromagnetism, the polarization vec
tor in ferroelectricity, a certain characteristic combination of components of 
the strain tensor e in ferroelasticity, etc.). In many cases, then, it seems that 
the theory of internal variables including gradients is the same as the corre
sponding continuum (mean field) theory of phase transitions if a is assimilated 
to an order parameter which, indeed, vanishes in the high-temperature disor
dered phase and is nonzero in the low-temperature ordered phase. We have 
already cited magnetization and polarization as appropriate vectorial order 
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4-8. Internal Variables and Phase Transitions 103 

parameters. The second moment — a second-order symmetric tensor — of 
the director n of unit length in nematic liquid crystals, and the conformation 
tensor in polymeric solutions (see Chapter 6 below) may be considered as or
der parameters. Perhaps more subtle is the fact that the complex-valued wave 
function rp (not to be mistaken for the free energy) of Cooper's superconduct
ing pairs is the relevant order parameter of superconductivity (see de Gennes, 
1966, reprint 1989). Landau's phase-transition theory is then reflected in the 
nonlinearity of dW /da with respect to a — it may be a polynomial up to 
a certain order different from one and the resulting multi-valued solutions of 
(4.8.61) for spatially uniform fields, Va = 0 everywhere in the body. 

The incorporation of spatial gradients in the tradition of the original work 
of Landau and Lishitz on ferromagnets (1935) and Ginzburg's general idea 
concerning these gradients, allow one to study smooth transition zones with 
steep gradients but not true discontinuities in a (considered as a field). If 
some relaxation toward these equilibrium solutions exists, then the formalism 
(4.7.59) applies and, with T> quadratic in d, yields the relaxation equation of 
the Ginzburg-Landau theory of phase transitions as 

d = - ± ^ (4.8.62) 
ra da 

in the appropriate units for W. This equation, here a direct consequence of 
the internal-variable formalism, is typical of the kinetics of phase transitions 
and also of reaction-diffusion processes (see, e.g. Ebeling et al., 1990, pp. 99-
100; also Chapter 10 below). An example of such an equation with a quartic 
potential W(a, Va, 0) in the real-valued scalar parameter a, reads 

raa=-(aa + ba3)+cV2a, (4.8.63) 

where the coefficient a vanishes at a critical temperature 8 = 9a = 0CT. If a is 
a complex-valued scalar (such as a wave function in quantum mechanics), then 
typically (4.8.62) will read 

T Q Q = -(aa + b\a\2a)+cV2a. (4.8.64) 

The addition of a random force in the right-hand side in Eqs. (4.8.63) and 
(4.8.64) transforms them into so-called Langevin equations (compare Haken, 
1982, pp. 201-204). An equation such as (4.8.64), coupled to strains and tem
perature, indeed obtains in the internal-variable theory of elastic superconduc
tors (Maugin, 1992b, also Sec. 9.8 below) in which ra is the finite relaxation 
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104 Chapter 4. Thermodynamics with Internal Variables 

time of superconducting electrons. Equations of the type of (4.8.62) also oc
cur in the kinetics of non-equilibrium phase transformations in many materials 
(see Chvoj, 1993). Whenever W may have several extrema, at Va = 0, by 
factorization (4.8.62) may also be written as 

Taa = -kaUj(a - otj), (4.8.65) 

where the otj's are the indexed local extrema. It is not clear to which one of the 
Oj's, i.e. to what metastable state corresponding to a minimum of W, would 
the system relax with characteristic time rQ. As a rule relaxation time and 
growth rate play an important role. In phase transitions driven by temperature 
these should always be compared to the time rate of change of temperature 

T0 = \6- 0o\/\0\, (4.8.66) 

where 6Q is some reference temperature. 
In the case of polymer and polyelectrolyte solutions (see Chapter 6), 

where a is a second-order tensor called the conformation, an equation such as 
(4.8.62) also involves the fluid motion and electric fields. Then it allows one to 
study flow-induced and polarization-induced conformational phase transitions 
(Drouot and Maugin, 1988). A similar scheme can apply to liquid crystals in 
their transition between isotropic and nematic phases (de Gennes, 1971). 

4.9. Comparison with Extended Thermodynamics 

In briefly sketching out the approach of extended thermodynamics (E.T.) in 
Sec. 3.4, we have seen that the additional state variables in E.T. are none 
other than the dissipative fluxes of classical T.I.P., with the added possibility 
that these fluxes satisfy themselves new equations which are of the evolution-
diffusion type. Equation (3.4.113) for electric conduction is an example of 
these additional governing equations. But the fluxes in question are still con
trollable, essentially through the usual boundary conditions dealing with stress, 
heat and electric currents. Thus from this point of view at least, these fluxes 
cannot be considered as internal variables. But it is true that when we take 
into account the spatial gradient of a in the above presentation, the two ap
proaches are brought into close contact. However, as mentioned above, the 
variety of phenomena to be described by T.I. V. is practically unlimited, save 
for the imagination of the scientist. In a case such as the heat-conduction re
laxation equation (3.4.112) where this problem with gradients no longer exists, 
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4-9. Comparison with Extended Thermodynamics 105 

it is still true that the heat flux is controllable through the boundary as it is 
still involved in the boundary conditions accompanying the energy equation. 
Furthermore, the three terms in (3.4.112) go simultaneously to zero in the limit 
of equilibrium. In T.I. V. with relaxation, the internal variable relaxes toward 
an equilibrium value which is then entirely determined by the values of the 
observable variables. It is true, however, than with a certain normalization, 
such variables may be made to relax to a zero value. In any case the clear 
delineation between the two thermodynamics makes the frequent misunder
standings and assimilations between these two all the more surprising. On the 
one hand some true T.I. V. are presented as extended thermodynamics (e.g. in 
Jou et al., 1988, p. 1170). On the other hand, some examples that belong 
to E. T. are sometimes presented as examples of T.I. V. in the guise of the 
hidden-variable theory (Bampi and Morro, 1980; 1981a,b; 1984). 

We hope that we have been sufficiently clear in unveiling the true and fas
cinating nature of T.I. V. compared to other approaches to thermodynamics 
so that any shadow of a doubt has been dissipated (an appropriate word, ob
viously). We can now enunciate the working rules of T.I. V. in a somewhat 
abstract framework. 
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Chapter 5 

APPLICATIONS: GENERAL 
FRAMEWORK 

So hidden in his hocus-pocus 
There lies the gift of double focus 
(W.H. Auden, New Year Letter) 

5.1. Summary 

Once thermodynamics with internal variables (T.I.V.) has been distinguished 
from rational and extended thermodynamics, we can work with confidence 
within its clearly delineated framework. As it happens, with a clear insight 
in the time and space scales of the dissipative mechanisms that we want to 
take into account (this is based on each individual's experience) and with the 
axiom of local accompanying state (L.A.S.) enforced, we are then left with 
an exploitation of the dissipation inequality in a manner that reminds us of 
the classical theory of irreversible processes (T.I.P.). The essential difference, 
however, is that with progress in the understanding of exemplary behaviors 
(e.g. plasticity) and advances in some techniques of analysis (e.g. convex anal
ysis), we can now incorporate within a proper thermodynamical framework all 
nonsensical branches of thermomechanics of Pierre Duhem. All we need to 
note is the general form taken by the thermodynamic theory that we sum up 
as follows: 

Clausius-Duhem inequality: 

-p(rP + r,9) +p{i]+ $ t h > 0 , (5.1.1) 

where r\ is the entropy per unit volume in the actual configuration K.t of a 
continuous body at time t, p is the matter density at Kt, 9 is the absolute 

107 
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108 Chapter 5. Applications: General Framework 

temperature, and the density of Helmholtz free energy ip, the power of internal 
forces p(j) and the thermal dissipation $ th are given by 

V = 0(x/3,a,e), (5-1.2) 
n 

P(i) = P^2T0X0, (5.1.3) 
0=i 

and 
* t h = 0 q - V ( O , (5.1.4) 

where X/3, P = 1,. . •, n are the n independent components of the set of observ
able variables of state, Tp is the corresponding set of thermodynamic forces, 
and q is the heat flux per unit area in K.%. The set of internal variables of 
state a is supposed to contribute to the energy density only through its own 
values and not its gradients. Then the L.A.S allows one to write the following 
constitutive equation for the entropy density: 

dxp_ 
dO 

= fj{X0,a,B). (5.1.5) 
e=ea 

It is commonly admitted that the function tp is concave in the variable 0, 
so that 

d24>/d62<0 for all 9. (5.1.6) 

Prom the illustrative examples already introduced in previous chapters we 
gather that essentially two different cases present themselves. The first one 
corresponds to the case where we can write the dissipation inequality as 

$ = $intr + $th > 0 , (5.1.7) 

with an intrinsic dissipation given by (the summation convention is used) 

$intr = PTpX0 + Aa , (5.1.8) 

together with the laws of state 

In the second exemplary case, (5.1.7) is obviously still valid, but the intrinsic 
dissipation is given by 

$intr = prpxp + -4" , (5.1.10) 

v = -

** = 
dtp 

dxp' 
A = -p 

dxb 
da' 4--= T(}-TT

0. (5.1.9) 
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5.1. Summary 109 

together with the laws of state 

Tfi = 9^' A=-Pd^> ( 5 " L 1 1 ) 

and the decomposition 
X0 = X0 + X0- (5-1-12) 

The example of solid mechanics in small strains of Eq. (4.5.24) partakes of the 
two cases in gathering them in a single expression for dissipation. But similar 
situations occur, for instance in magnetism or for electric polarization, if a 
different physical meaning is granted to the state variable x&- Thus Eqs. (5.1.8) 
and (5.1.10) are generic. For all practical purposes we can even rewrite any of 
the two intrinsic dissipations in the simple form (i.e. retaining only the internal 
variables as we are mostly interested in them) 

$ i n t r = A i , (5.1.13) 

and this will satisfy the intrinsic dissipation inequality 

*intr=Aa>0, (5.1.14) 

if we admit the separate non-negativeness of the thermal dissipation as in 
(3.2.11). In all cases the heat propagation equation will be given by [cf. 
Eq. (3.3.106)] 

P*i7 = *intr + (P>i - V • q ) , (5.1.14) 

where r\ is given by (5.1.5), hence the importance of the inequality (5.1.6) in 
order to define a non-negative heat capacity [cf. Eq. (3.3.97c) as an example]. 

Relaxat ion of t h e L.A.S. 

As a curiosity we note that we could relax the L.A.S by assuming that the 
entropy outside equilibrium is not equal to the value given by Eq. (5.1.5). Let 
nd denote that deviation from fj, so that we have 

v = fj + nd, fj = -&4>/de. (5.1.15) 

Nothing in principle forbids this generalization where a constitutive equation 
must be formulated for rf whose thermodynamic conjugate remains the observ
able variable of state 0. This formal generalization results in an additional term 

$ , := -frnd6 (5.1.16) 
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110 Chapter 5. Applications: General Framework 

in any of the above dissipation inequalities. This additional term, although 
strange to many of our readers, enters the general frame that we wish to 
apply. As tf will principally be determined by 6, if rf is taken linear affine in 
6 as is the case in a straightforward application of the rules of T.I.P., then we 
see that the heat-propagation equation (5.1.14) will then result in an equation 
with a second order time derivative in 9, hence, with the appropriate sign, a 
propagation of heat at finite speed. This is a simple but still very interesting 
result if we consider the marked interest of many scientists in formulating 
a heat-propagation equation that does not violate the relativistic causality 
principle (we remind the reader that extended thermodynamics was designed 
in part to remedy this violation by Fourier's law in classical T.I.P. — see 
Miiller and Ruggeri, 1993). The above approach — Eqs. (5.1.15)-(5.1.16) has 
been exploited by A. F. Ghaleb (1986). As our interest is not focused on this 
aspect of causality since there are many other interesting problems which, in 
our opinion, are more important from the experimental viewpoint, we shall 
not pursue the above farther. Consequently, for subsequent use we only note 
the generic formulas (5.1.13) and (5.1.14). 

5.2. Convexity of the Energy 

Now we make all our reasonings on (5.1.14) independently of whether a is an 
observable or an internal variable. Thus ip = ^{ct, 6). As we know %[) is concave 
in the scalar variable 6, whence the useful inequality (5.1.6). What about the 
dependence on al The latter is, in general an n-dimensional Cartesian vector 
in Rm , or it can be represented as such after indexing the various independent 
components of the multiple tensorial objects of various orders that make up a. 
Let ctj the m indexed components of a. Is ip to be convex in the ctj's and is 
there a physical necessity for this requirement? The answer to the last question 
is definitely no\ As a matter of fact, it is possible in many cases of interest 
that the convexity properties of xp vary in a more or less continuous manner 
with a change in a characteristic parameter, say 0 itself. This is the case in so 
far as mechanical, electric, and magnetic, and probably other, properties are 
concerned. 

Generally speaking we say that a scalar-valued function rp is convex in the 
Qj's if and only if, for A any positive number between zero and one, we have 
the inequality 
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5.2. Convexity of the Energy 111 

^(\aj + (1 - A)a,-) < \1>(aj) + (1 - A)V(«j), (5.2.17) 

where atj and a., denote any two values of the components of the variable a. V> is 
said to be strictly convex if the strict inequality sign holds in (5.2.17). A convex 
set K in a space is such that any two points of its closure (boundary) satisfy 
the inequality (5.2.17). It is then said in a vivid language that all cords are 
entirely inside K. An equivalent statement is that all tangent hyperplanes lie 
entirely outside K except the contact point. The strange function Ik defined by 

f 0 if a e / i T , 
IK = \ (5.2.18) 

{ oo if a e K (exterior of K), 

is called the indicator function of K. An essential property of convex functions 
already illustratred in (5.1.6) for — ip which is convex in 9, is the property of 
non-negativeness of the second-order derivative of ip, i.e. the fact that 

E^ft-0' {5'2J9) 

for all f3 belonging to the a-space. This has particularly important conse
quences in all approximate theories which involve a quadratic energy in a or 
any situations, such as in a linearization or in the study of stability properties, 
which will involve the second-order derivatives of rp with respect to a. For 
instance, consider the case where a is none other than the infinitesimal strain 
and ip = rp(e,9), a form familiar to us in thermoelasticity. With the law of 
state a = podrp/de, we look at the linearized form about a state of zero initial 
stress. The resulting "small stress" is obviously given by the straightforward 
variation: 

dH d2xb 

^='°d^£+"W*- (5-2-2°) 
The tensorial coefficients, respectively of the fourth order and of the second 
order, defined by 

Cijki = Po -, 

M,, = P0g-£ 

deijdeki 
9 (5.2.21) 

1 = 0 
6 

J e 

obviously are the tensors of elasticity and thermoelasticity coefficients. The 
assumed convexity of xp with respect to Sij, but concavity with respect to 
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112 Chapter 5. Applications: General Framework 

6, together with (5.2.19), make it such that Cijki is not only symmetric but 
also non-negative definite while nothing can be concluded, as we know, for 
Mij which is simply symmetric. The essentially positive character of C^ki has 
for immediate consequence the proof of the existence of three nonzero posi
tive squared velocities of propagation of small elastic isothermal disturbances 
(see, e.g. Maugin, 1988, Chapter 2). The same will hold true for isentropic 
disturbances according to (3.3.105). 

Now we notice that what is important qualitatively is not so much the 
quadratic nature of the approximation (5.2.20) and (5.2.21), but the convexity 
of the energy ip, which obviously includes much more than the case of quadratic 
energies. The convexity without quadratic nature is of prime importance for 
the existence of phenomena such as the propagation of shock waves, whether 
in solids or in fluids, or for electromagnetic shock waves (see, e.g. Eringen and 
Maugin, 1990a, Chapter 6). 

But the problem may be that within a certain range of temperature, $ 
is no longer a convex function of a, in the deformable solid case, of e. For 
instance, in the latter case this occurs in ferroelasticity (e.g. in shape-memory 
alloys), while for electric and magnetic bodies this occurs in ferroelectricity and 
ferromagnetism, respectively (in all three cases, a plays the role of an order 
parameter — see Sec. 4.8). Then contrary to a quadratic function in particular, 
and a convex one in general, the function if) may present a multiplicity of min
ima. As a result the associated law of state may give a multiple determination 
in terms of a. As a simple example one can think of a double-well energy in 
one-dimension where a is a scalar. That is, 

^^\{a/al){a2-alf. (5.2.22) 

Here a and cto are two positive constants. The minima are at ±ao while Q = 0 
corresponds to a so-called metastable state of nonzero energy. In ferroelasticity 
one may have to envisage tp functions which are of the sixth order in the 
strain, thus with the possibility of presenting three minima. One is naturally 
tempted to convexify those energies (by taking the convex hull), but then 
one misses essential physical critical properties of the bodies of interest (see 
Maugin, Pouget et al, 1992, pp. 44-45 and Appendices I and II). In general, 
for "small" ctj's one can envisage an expansion of the type 
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5.3. General Properties of Dissipation Potentials 113 

+ 24 Cij-w (e)aiajakal + h.o.t., (5.2.23) 

where we recognize in successive tensorial coefficients the successive derivatives 
of ip with respect to the ctj 's. No obvious conditions of sign apply a priori to the 
components of these tensors in a general case. Examples of expansions in con
tinuum mechanics, electricity and magnetism , and electromagneto-mechanical 
interactions are to be found in previous books such as in Maugin (1985, 1988), 
Eringen and Maugin (1990a,b), Maugin, Pouget et al. (1992). 

5.3. General Properties of Dissipation Potentials 

As in T.I.P., it is tempting in T.I. V. to have recourse to the notion of dissi
pation potential, according to which, if (5.1.14) holds true, then the existence 
of a dissipation potential T> which is positive and homogeneous of degree n in 
d, conduces to the dissipative constitutive equation 

A = dV/dd, (5.3.24) 

and 

$ = Ad = d—=nT>>0 (5.3.25) 
da 

by virtue of Euler's identity for homogeneous functions of degree n. Now two 
essential cases can be recognized. The first one is that of classical T.I.P. 
where T) is taken as homogenous of degree two in d, so that A is homogenous 
of degree one in d. Consequently, the constitutive equation for A involves a 
characteristic time. This is even more visible on the dual expression obtained 
after Legendre transformation to a dissipation potential V* such that 

X>*(^) :=^d-Z>(d) 

= Ad- -Act = -Ad = V(d), (5.3.26) 
it £t 

from which it follows that 

d= — =C(A), (5.3.27) 

ip = MO) + i 
2 

Oij(9)aiaj + 
1 

6 
Cijk(6)aia}ak 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



114 Chapter 5. Applications: General Framework 

where £ is a linear affine operator. But A derives from ip via the equation of 
state A = —d^/da. For rp quadratic in a we have thus A = —ka(a — ao), 
where ao is the equilibrium value of a, and fcQ is another linear affine operator, 
and (5.3.27) yields an evolution equation of the relaxation type: 

a = -T-\a-a0), (5.3.28) 

where r " 1 is a linear operator obtained by composition of C and ka. This 
operator has components which are reciprocal relaxation times, hence its form. 
Its components in general still depend on the observable variables of state, in
cluding 6. The formalism presented practically encompasses all applications 
which exhibit relaxation effects and are thus, in the spirit of the discussion of 
Sec. 4.7, endowed with a characteristic time and a corresponding Deborah num
ber whose relative value indicates if we need to account for the corresponding 
internal variable or not. 

But there also exist dissipative processes which are not characterized by a 
characteristic time but by a certain critical level of "force" A (e.g. the stress 
level). This is the case in the most current theory of plasticity which practically 
exhibits no sensitivity to the rate of change of a (i.e. the resulting response 
is not markedly affected by the velocity at which a evolves), but dissipation 
occurs only when a certain threshold A is reached. Behaviors of this type are 
referred to as plastic. For a wide range of frequencies in the magnetizing field 
magnetic hysteresis belongs to this class. This "plastic" case is more difficult 
to deal with and deserves more attention than the "relaxation" case. 

5.4. Convex Pseudo-Potential of Dissipation 

Using as a basis the exemplary case of strain-rate insensitive plasticity (see 
the brief description in Maugin, 1992a, Chapter 1), we consider the case where 
the thermodynamic force A (an m-dimensional Cartesian vector in general) is 
constrained to a closed convex set K in Rm . No dissipation occurs when A 
is inside K. Dissipation may occur when A corresponds to one point of the 
boundary of K. As a consequence, we can formally rewrite the dissipation 
inequality (5.1.14) as 

$ = sup Aa > 0, (5.4.29) 
AeK 

which is a more precise form of the dissipation inequality than (5.1.14) in 
the present case as its means that there is possible dissipation only if A has 
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5-4- Convex Pseudo-Potential of Dissipation 115 

reached a border point of K. But this can also be expressed in the following 
variational-inequality form 

{A-A*)-d>0, (5.4.30) 

for all A* G K. It is immediately verified that (5.4.29) and (5.4.30) are fully 
equivalent statements. Equation (5.4.30) with the appropriate choice of vari
ables is referred to as the principle of maximal dissipation of Hill and Mandel 
in elasto-plasticity (cf. Hill, 1948; Mandel, 1971). This looks as a rather rea
sonable principle to start with. What is less clear is that if we enforce (5.4.29) 
or (5.4.30) simultaneously with the mathematical constraint that the dissipa-
tive mechanism considered exhibits no time scale (if it is to be insensitive to 
the rate d), so that A must be homogeneous of degree zero in d and therefore $> 
will simply be homogeneous of degree one in d, then Eqs. (5.4.29) and (5.4.30) 
are also expressions of a normality law according to which the evolution of a, 
if any, satisfies the condition that 

d = A ^ , (5.4.31) 

where A is a positive scalar [the dot is put intentionally to show that although 
(5.4.31) is paradoxically expressed by means of d, it presents no time scale 
— there is a "time derivative" on each side of (5.4.30)] and / = 0 is the 
equation of the hypersurface in ^4-space which describes the convex boundary 
of the convex set K. Equation (5.4.31) means that d, if nonzero (i.e. when A 
is nonzero) is parallel to the unit outward normal to / = 0 in .4-space. The 
multiplier A belongs to the solution of the evolution problem. It must also 
be emphasized that the convex K, although convex alright, may have angular 
points such as vertices or appices, or edges. Thus the notion of normal to / = 0 
may not be uniquely defined. One in general needs a mathematical apparatus 
which accounts for these complexities in a natural way. Convex analysis is the 
appropriate tool for this. So let us briefly prove the above statement (5.4.31) 
on the basis of this technique of advanced calculus requiring some abstractness 
from the part of the reader. The proof is based on the following. 

Theorem 5.2. If f* = IK is the indicator function of K, and (p = supA^K 

Aa is the Legendre-Fenchel transform of <p, then <p is a positively homogenous 
function of degree one, and this property is characteristic in that if<p* is a lower 
semi-continuous convex function on the A-space, then there exists a closed 
convex set K such that ip = (IK)*■ 
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116 Chapter 5. Applications: General framework 

The proof of this can be found in Suquet (1982) and in Appendix 2 in 
(Maugin, 1992a) to which we refer the reader. Here we simply analyze the 
consequences of the theorem for the thermodynamic application. We need the 
following few elements of convex analysis (see, e.g. Germain, 1973): 

(i) Let 2?(d) be a positive convex function of d. Then the Legendre-Fenchel 
transform (generalization of the classical Legendre transformation) of 
V(c\) is given by 

V*{A) = sup[Aa - P (d ) ] , (5.4.32) 
A 

where, in our case, A is restrained to the convex set K in .4-space. 
Furthermore, this transform preserves both homogeneity and convexity 
properties. It is noted that the conjugate V* obtained from V by the 
Legendre-Fenchel transform is such that 

(V*)*=V. (5.4.33) 

(ii) We call subdifferential &D* of V* the set of points A of ,4-space such 
that 

V (A) -V*{A)>a-{A- A) (5.4.34) 

for all A. For a smooth set K this is the usual differential. But the 
remarkable result of convex analysis is that if V* (A) is none other than 
IK, then 

dV = dIK = NK(A), (5.4.35) 

where NK{A) denotes the cone of outward normals of K at its bound
ary. In particular, at any regular point of this boundary / = 0, NK(A) 
reduces to the unique outward normal to / — 0 at that point, i.e. &D* is 
proportional to df/dA. 

(iii) It is noted that if V and V are conjugate through Legendre-Fenchel 
transform, then 

8V* = (dV)~l. (5.4.36) 

Let us apply these definitions and results to our thermodynamical consider
ations. Assume that there exists a dissipation potential "D(a) which is positive 
and only homogeneous of degree one in d, so that A is given by A = dV/da, 
and $ is necessarily homogeneous of degree one in d also, and the dissipative 
mechanism studied is not rate-sensitive. Let V*(A) be the conjugate of V via 
the Legendre-Fenchel transform in agreement with (5.4.31). But our A here 
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5.4- Convex Pseudo-Potential of Dissipation 117 

is restrained to the convex set K in .4-space. Equation (5.4.29) must hold and 
its left-hand side is precisely V = V* = $. As the result stated in the theorem 
is characteristic, it means that V* according to (5.4.33) is none other than the 
indicator IK of K, whose subdifferential in turn is none other than NK(A) so 
that, in an abstract way, we have the evolution equation 

dedIK=NK(A), (5.4.37) 

or Eq. (5.4.31) at regular points of the boundary / = 0 of the convex set K in 
.A-space. In conclusion of this point, we can say that the variational inequality 
(5.4.30) for A 6 K is completely equivalent to the normality law (5.4.37) 
or (5.4.31). These are but two different expressions of the same result. To 
distinguish it from a quadratic dissipation potential a la Rayleigh as prevails 
for relaxation effects, the above potential for "plastic" effects is sometimes 
referred to as pseudo-potential of dissipation. 

The remarkable result above finds its roots in the early proposals of Ziegler 
(1957, 1958, 1961, 1963, 1970) — see also Ziegler (1977) and Ziegler and Wehrli 
(1987). But the neat mathematics exploiting powerful results of convex anal
ysis belong to J.-J. Moreau (1971) and Germain (1973). These were polished 
by Nguyen Quoc Son (1973) and Suquet (1982) in the framework of plastic
ity, but they also apply to other fields of physics such as magnetic hysteresis 
(see Chapter 9 below). We shall elaborate further on the mechanical case in 
Chapter 7. 

Notion of generalized standard material: 

Remembering that A is still given by a law of state as A = —pdxp/da, in many 
applications (elastoplasticity, fracture) we may find it convenient to consider 
that V> is convex in a. This, together with the specifications given above for 
rate-insensitive phenomena involving a "plastic" threshold, was identified by 
Halphen and Nguyen Quoc Son (1975) as a general model for many responses 
of materials as the model of generalized standard materials. For such behaviors 
we have: 

(i) rjj = ip(a,&) (^ convex in a, concave in 6); 

(ii) r, = -dip/de (L.A.S.); 

(iii) A= -pdi>/da (law of state); 
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118 Chapter 5. Applications: General Framework 

(iv) $ = Aa > 0 (intrinsic dissipation); 

(v) A& K (existence of a closed convex set K in »4-space); 

(vi) a e NK(A) (normality law). 
Equivalently to (vi) we have: 

(vi)' (A — A") ■ a > 0 (principle of maximal dissipation, where A* € K is at 
our disposal). 

Models of response which enter this framework enjoy local and global stabil
ity properties that we shall evoke while examining the particular cases of elasto-
plasticity in Chapter 7 and electromagnetic hysteresis in Chapter 9. These 
properties result essentially from the assumed convexity of both the energy 
density and the pseudo-dissipation potential, thus resulting in nice properties 
for the mathematical evolution systems at hand. 

"Viscoplast ic" behavior: 

By considering the mechanical case, we note that in general even "plastic" 
strains are not instantaneous. In other words, contrary to what was assumed 
above, a characteristic time, even though very small, hence viscosity, might be 
involved in the description. We call "viscoplastic" those behaviors which simul
taneously exhibit a threshold in the generalized force A and a characteristic 
time akin to relaxation. Such behaviors are amenable in the present general 
framework by assuming that while for pure "plastic" behaviors A is restrained 
to the convex set K, for 'Viscoplastic" ones the representative point in .4-space 
may possibly lie outside the convex set K, but it is restored to the convex set 
with a characteristic time. Mathematically, this can be represented thus. In a 
simple case we can assume that a is proportional to the distance between the 
representative point A in ^4-space and the convex K. For example, with f]v a 
viscosity coefficient, we could write the evolution equation replacing (5.31) for 
a "viscoplastic" response as 

a = {2r)v)-1{A-XiKA), (5.4.38) 

where lin is an operator of projection onto K. By the very definition of a 
projector, if A is already inside K, the right-hand side of (5.4.38) is zero as 
A = URA in such a case. It is clear that (5.4.38) represents a rather regular 
behavior which contrasts with the singular one of pure "plasticity". It can also 
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5.4. Convex Pseudo-Potential of Dissipation 119 

(a) 

(b) 

Fig. 5.1. Difference between "plastic" and "viscoplastic" behaviors in A(= a)-space; (a) 
plasticity, (b) viscc-plasticity (the actual a state can be outside the convex). 

be derived from a dissipation potential by noting that 

a = dW/dA, V* = ̂ -\\A-UKA\\2. (5.4.39) 
4T7„ 

Such a dissipation potential was proposed by P. Perzyna (1966) in the vis-
coplasticity of solids where A is none other than the stress tensor a. Figure 5.1 
formally illustrates the difference in behavior for "plastic" and "viscoplastic" 
bodies in .4-space. It can be shown that with TJV going to zero, the regular 
behavior described by (5.4.39) coalesces in the singular one of rate-insensitive 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



120 Chapter 5. Applications: General Framework 

plasticity where V* transforms into the indicator IK of the convex set K. 
Following Kestin and Rice (1971), we may say that the plasticity pseudo-
potential of dissipation may be considered as a singular sequential limit of 
surfaces of equipotentials of the viscoplastic type. The viscoplastic-like be
havior has the mathematical advantage to smooth out the singularity of the 
plastic case. Thus many mathematical proofs can be first constructed within a 
"viscoplastic" framework and then a limit procedure of vanishing viscosity will 
yield, if correctly effected, the sought result for the plastic case (see Do, 1978). 

General remark: 

It is remarkable that when viscosity or relaxation is involved as an irreversible 
process, the corresponding dissipation potential is homogeneous of degree two 
(and thus convex) in d or A, while for "plastic" behavior the potential is 
only convex and homogeneous of degree one thus yielding a truly nonlinear 
irreversible process. But the common idea of nonlinearity would rather be to 
envisage a potential of higher degree of homogeneity, or at least of higher order 
than two in a. This possibility is not physically excluded and some physical 
processes seem indeed to fit this view. This is illustrated below by an example 
of nonconvex dissipation potential. 

5.5. Nonconvex Dissipation Potential 

For the sake of illustration we deviate from general features to present here a 
particular case that manifests itself in the study of the phenomena of stick-
slip and relaxation oscillations. We, in fact, look at the intriguing problem 
of the adhesive tape that we try to unwind. It is remarked by the less gifted 
experimentalists like us that if we try to unwind the tape at a constant speed 
(a difficult task indeed), we cannot practically achieve this and we record 
a jerky rate of advancement of the unwinding tape with an accompanying 
characteristic "crack-crack-crack" noise, which, as it appears, is related to an 
instability. The problem is simply modeled as follows. We neglect inertial 
effects, so that the length a of unwound tape is a variable which will at most 
be described by some kind of evolution equation. Its equilibrium is governed 
by a balance between an elastic restoring force, say A = —ka, where k is a 
spring constant — this is the law of state — and a force which depends on the 
characteristics of adhesion. The modeling of the later is a difficult problem, 
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5.5. Nonconvex Dissipation Potential 121 

(a) 

force 
bloc 

speed 

rubber 

band 

(b) 

Fig. 5.2. Unwinding an adhesive tape. 

although we know that such a force, which will therefore balance A in the 
absence of inertia, depends on d. We assume that this force is derivable from 
a potential of dissipation which is positive, but not convex in a. Thus, the 
equation governing a, reads 

A = -ka = dV/da, (5.5.40) 

and this seems to enter quite well into our general framework (5.1.14) and 
(5.3.25) as we expect dissipation in the form $ = Act > 0. For T> we consider 
a double-well potential [compare to (5.2.22)] in the form 

2\2 V(a) = -(a/al)(a*-al) (5.5.41) 
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122 Chapter 5. Applications: General Framework 

D(&) 

(a) 

force 

0>) 

Fig. 5.3. Dissipation potential (a) and phase-plane picture (b) for stick-slip. 

where a is a positive constant and do is a critical value of the rate d. We 
obtain for V(a) and A = —ka versus d, the curves shown in Figure 5.3, 
which obviously resemble similar curves for some phase-transition phenomena 
in condensed-matter physics (see, e.g. Fig. 1.25, p. 44 in Maugin, Pouget et al, 
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5.5. Nonconvex Dissipation Potential 123 

1992). But up to the factor ( -£) , part (b) in Figure 5.3 is none other than a 
picture of the phase plane as we are essentially representing a versus d. Thus 
A versus d is the typical S-shaped curve with a maximum at d = — d 0 / \ /3 
and a minimum at d = d 0 / \ / 3 . Unfortunately, if we compute the elementary 
dissipation, 

$ = ^ d = a ( ^ 2 - l j d 2 , (5.5.42) 

we see that the interval \d\ < do should theoretically be forbidden as it would 
correspond to a negative dissipation. This corresponds to a loss of unique
ness in the determination of the velocity d in terms of (—a). One way to 
resolve this problem would simply be to convexify the dissipation potential V 
by replacing the central part by an horizontal segment joining the two minima 
(in mathematical terms, this consists in taking the convex hull of V). Then 
the resulting phase-plane curve would present a Maxwell line at A — 0; but 
this regime would correspond to vanishing dissipation which is not the case as 
dissipation does take place. The only possibility to reconcile the model with 
irreversible thermodynamics is therefore to ignore the intermediate descending 
part of the S-shaped curve in the center of the diagram and to envisage jump
like vertical segments starting at A and going to the right on the top part and 
starting at A' and going to the left on the bottom part, so that we recover a 
typical hysteretic curve or limit cycle in phase space. The remaining curved 
parts of the resulting cycle are covered in a finite time interval whereas the 
two vertical segments are covered in a practically zero time interval. These 
two segments correspond to a dissipation which is homogeneous of order one 
in the velocity (as A has reached a fixed constant level along these segments), 
just as in plasticity. It is the alternation of the two regimes which gives rise 
to the characterisic "crack-crack-crack" noise of the adhesive tape that we try 
to unwind. Typically, the above phenomenon refers to so-called relaxation os
cillations and stick-slip (an expression that speaks for itself in the case of the 
adhesive tape) which occur when dynamic losses have a tendency to decrease 
with increasing velocity [see Eq. (5.5.42)]. Crack propagation in some materials 
such as glasses, ceramics, glassy polymers, and some metals and alloys, and 
the peeling of viscoelastic solids (this is the example of the tape) belong to this 
type of dissipative phenomena. For these we refer to Kubin and Poirier (1988) 
and Maugis (1985). 
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124 Chapter 5. Applications: General Framework 

5.6. Reminder of Basic Equat ions 

Here we gather in one place the basic equations that we shall need in subse
quent chapters for establishing the essential classes of dissipative behaviors of 
continuous media. In the absence of (i) electromagnetic effects and some diffu
sion effects, which will be brought into the picture especially in Chapter 9, of 
(ii) any internal degrees of freedom (cf. Sec. 4.7 above), and (iii) any diffusion 
for internal variables, i.e. strictly for so-called simple thermodeformable media, 
the basic equation is the Clausius-Duhem inequality (3.3.76), 

-p{i> + 7)6) + a : D + 0q • V(0_ 1) > 0, (5.6.43) 

together with the statement (4.4.20) of the so-called L.A.S. We further need 
to specify whether the medium under consideration is incompressible or not, 
and whether it is essentially solid in small or large strains, or fluid, although 
this distinction between solids and fluids is somewhat unjustified (especially in 
the presence of viscosity and, more generally, in rheology). 

A. T h e case of solids 

In the case of small strains, we have the expressions given in Eqs 
(4.5.24). That is, 

• decomposition of strains: 

• laws of state: 

W:=poi> = W{ee,a,e), 

r, = r,a = -Po1dW/de\9=ea , 

ae = o-%= dW/dee, A = -dW/da, 

• dissipation inequality: 

$ = $intr + $th > 0 , 

$intr - <TV : ie + a : s" + Aa, $ t h = 0 a q • V ( 0 - l ) , (5.6.46) 

<TV : = a - <re , 

where a is the total stress, o~e is the elastic stress, and o~v is the viscous stress. 

(4.5.22)-

(5.6.44) 

(5.6.45) 

(5$ = 
£ 

fz-6xX-ldZ, 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



5.6. Reminder of Basic Equations 125 

For solids in finite strains, we better work per unit volume of the reference 
configuration KR for which the Clausius-Duhem inequality (5.6.53) transforms 
to [cf. (3.2.46)] 

-(W + SO) + tr(TF) + 0Q • V R ^ " 1 ) > 0, (5.6.48) 

where T is the first Piola-Kirchhoff, F is the direct-motion gradient, Q is the 
heat flux referred to the unit area in KR, and W and S are defined per unit 
volume in KR, i.e. 

W = poil>, S=POT). (5.6.49) 

In the presence of anelastic finite strains, the reasoning must be a little more 
subtle than in the case of small strains where the decomposition (5.6.44) holds. 
It is sufficient to remark that, in general, deformation is characterized by the 
tangent map F between the reference configuration KR and the current con
figuration Kt. Such gradients compose in a multiplicative way. Thus, if there 
exists any elastic and anelastic finite strains, they should compose the total, 
and only true, gradient F in a multiplicative way, e.g. 

F = F e F p , (5.6.50) 

where none of the elements F e and F p of the multiplicative decomposition is a 
true gradient. In geometrical differential terms, they are only Pfaffian forms. 
The decomposition (5.6.50) was originally proposed by Lee (1969) and his co-
workers. A simple picturesque interpretation of this is given in Figure 5.4 
where the first step, i.e. F p , defines from KR a so-called intermediate con
figuration K.&, which is also called elastically released configuration (hence 
the notation) as it is also obtained from Kt by applying ( F e ) _ 1 , and the name 
follows if F e is indeed interpreted as the elastic finite strain. Let Q repre
sent an orthogonal transformation of E3 onto itself. Then it is clear that the 
decomposition (5.6.50) is invariant by rotation of K& as we can write 

FeFp = FeFp Fe = FeO Fp = O T F P 

' ' f5 fi 51^ 
QQT = QTQ=1, Q T = Q - ! , detQ = ± l . 

In practice a definite orientation can be granted to K,g through a particular 
crystal lattice (cf. Mandel, 1971). Concerning constitutive equations all we 
need to note for the moment is that we may rewrite the inequality (5.6.48) in a 
specific form by introducing the following elements of kinematics and kinetics. 
Let, by analogy with (5.6.45), the 
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<K„) 

Fig. 5.4. Total deformation with intermediate configuration. 

• laws of state: 

W = W(Fe,a,6), 

S = -dW/dO\0=9a , (5.6.52) 

T e := T% = {dW/d¥e)T, A = -dW/da. 

Then we look for a convenient and suggestive expression of the residual dissi
pation inequality. To achieve this we first note that 

F e = F (F" ) - 1 - F e • F p • {Fp)~l. (5.6.53) 

This is obtained by computing F on the basis of (5.6.50) and applying ( F p ) _ 1 

to the left to the result. Furthermore, we set 

f" := F p T - T e , f := T F . (5.6.54) 
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5.6. Reminder of Basic Equations 127 

Then it is readily checked on account of (5.6.52) that (5.6.48) provides the 
following 

(5.6.55) 

• dissipation inequality: 

$ = $intr + $th > 0 , 

$ i n t r = t r{T"F e + TF*} + Ad, $ t h = 0aQ ■ VR(0-1). 

Then the Piola-Kirchhoff stress is recovered by computing 

T = ( F p ) - 1 - ( T e + T " ) = T e + T \ (5.6.56) 

wherein 
T e = ( F P ) - I . (0flr/0F«)f TV = (F" ) - 1 • fV . (5.6.57) 

We remark that $ has exactly the same structure as in the small-strain theory 
— compare (5.6.55)2 and (5.6.46)2- This convenient presentation was given by 
the author (1994a). 

B. The case of fluids 

Fluids, with their "flowing" behavior, are naturally subjected to large strains 
and displacements, although these notions are practically never used in fluids, 
except if some markers, such as suspended debris or deformable particles (e.g. 
polymers) make these clearly visible. 

Discarding the case of gases, we shall mostly be concerned with liquids and 
incompressible fluids. Then we know that the Cauchy stress tensor a is defined 
up to an isotropic pressure term, and only the deviatoric (or shear) part of a 
contributes to the statements of irreversible thermodynamics. That is, we shall 
have the 

• laws of state: 

W = POTP = W{Po fixed, a, 6), 

A = -dW/da, S = poV = -dW/dB, 
(5.6.58) 

and the 
• dissipation inequality: 

$ = $ i n t r + $ t h > 0 , 

$tr = t r (aDD) + Ad, $ t h = e q . V ( « - 1 ) , 
(5.6.59) 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



128 Chapter 5. Applications: General Framework 

where 
aD := a + pi, tiaD = 0. (5.6.60) 

It may be (see Chapter 3) that $ i n t r is somewhat more sophisticated than the 
above, especially when W involves an elastic strain as is the case in certain 
elastic liquids. 

Conclusion: Although this may sound a bit presumptuous, we can say that 
we now have at our disposal all the ingredients to study a wealth of applications 
of T.I. V to solids and fluids, as a matter of fact, the richest collection of 
irreversible behaviors so far put under the same umbrella. This is developed 
in some detail in the following five chapters. 
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Chapter 6 

VISCOSITY IN COMPLEX FLUIDS 

/ began my investigations because progress in physiology demands a 
knowledge of the laws of motion of the blood... in small-diameter pipes. 
(J. L. M. Poiseuille, Le mouvement des liquides dans les tubes de petits 
diamitres, Paris, 1844) 

6.1. In t roduc to ry Remarks 

Viscosity is the most ubiquitous dissipative mechanical behavior. Its essential 
feature is the manifestation of a time scale. It is, therefore, akin to relaxation. 
In practice this time behavior is experienced by a continuously evolving view 
of the pattern of the medium at a fixed placement in time. This is called a 
flow. If it is true, in agreement with Heraclitus' citation that "everything can 
flow", including the mountains of Prophetess Deborah and even the glass of 
our windows (we would be allowed to observe this if the sustaining structure 
could resist the passing of time), we limit ourselves here to those flows which 
are clearly observable at our human scale, say with significant changes in the 
pattern within a fraction of a second to a few minutes. 

Both solids and fluids are capable of exhibiting viscosity. But the former do 
not correspond to the time scale just roughly introduced so that their viscosity 
— such as the one accounted for through the Kelvin-Voigt model of Sec. 3.2 
— has manifestations that do not catch the eye, but are more subtle such as 
the slight attenuation of ultrasonic waves. Here we concentrate on the sec
ond class, so-called fluids for which the proper time scale, expressed through 
the reciprocal of a gradient of a velocity or, equivalently, a strain rate, is of 
the order of 10-103 seconds. This capability of relatively easy flow, fluidity, is 
captured by the fact that fluids have a tendency to occupy their actual con
tainer more or less rapidly. In terms of continuum mechanics (see Paragraph 

129 
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2.3D), we may say that, in contradistinction to solids, fluids do not exhibit any 
privileged (reference) configuration, or rather, their reference configuration is 
constantly re-actualized with a certain characteristic time related to viscosity. 
A consequence of this is that one seldom refers to the notions of displacements 
and deformations in fluids, although this would be perfectly admissible. In 
turn, only an Eulerian representation is used where the physical velocity, and 
all other fields for that matter, are considered as function of the actual po
sition and time. But markers introduced in a fluid, such as particles or long 
deformable fibers (in the ocean, shipwrecks) plainly exhibit those elements of 
kinematics such as displacement, rotation and stretch. This remark will prove 
essential in some of the developments below. Indeed, the classical incompress
ible viscous fluid behavior is that of Newtonian fluids for which classical T.I.P. 
is more than sufficient (Sec. 3.2 in which we already noted the possible intro
duction of Rayleigh's dissipation function). That is, those very simple fluids for 
which we have the celebrated Newtonian-Stockesian constitutive equations: 

aD = 2rjvT>, t r D = 0, 77„>0, (6.1.1) 

where T]V is the shear viscosity coefficient. The latter may depend on temper
ature 8 in a way that we do not need to specify. From the point of view of 
material symmetry, fluids described by (6.1.1) are isotropic: their mechani
cal response at a point is direction-independent. Any fluid whose constitutive 
equation deviates from (6.1.1) is called a non-Newtonian fluid. The modern 
science of rheology is essentially concerned with the construction of models, 
and the subsequent study of the flows, of these fluids. The latter includes 
all types of materials such as paints, varnishes (strongly viscous materials), 
suspensions of macromolecules (very fluid but with anomalous viscosity prop
erties), fluids with directional properties (e.g., suspensions of fibers, liquid 
crystals), etc. Mere T.I.P. is not sufficient to capture these generalizations, 
if we agree on the basis that thermodynamics, as a somewhat general science 
that points to the Arrow of time, should have something to do with this. Al
though this may seem obvious to the reader who is already convinced, it is fair 
to say that many rheologists do not feel the need to place rheology under the 
umbrella of thermodynamics. This is illustated by monographs (e.g. Reiner, 
1960; Schowalter, 1976; Larson, 1988; Vyalov, 1986) that do not say a word 
concerning thermodynamical constraints on rheological models. Here, however, 
we do enforce thermodynamics and we are necessarily led to envisage a general
ization of T.I.P. in order to accommodate complex behaviors where underlying 
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6.2. The Notion of Simple (Non-Newtonian) Fluid 131 

complicated mechanisms are at the root of an additional irreversibility. The 
thermodynamics with internal variables (T.I.V.), as described in Chapters 4 
and 5, proves to be an adequate tool to achieve this most inclusive view. This 
necessity is demonstrated in the next two sections. 

6.2. The Notion of Simple (Non-Newtonian) Fluid 

Here we expand the point of view which, following Coleman and Noll (1961) 
and others, prevailed with theoreticians of the continuum in the 1960s and 
1970s, essentially because of (i) its conceptual simplicity, (ii) its aesthetically 
pleasing formulation and (iii) its relatively good efficiency in the interpretation 
of certain typical behaviors in so-called viscometric flows (Coleman, Markovitz 
and Noll, 1966). In some intuitive and anthropomorphic way, a viscous ma
terial of the fluid type has a rather long memory of its passed kinematical 
experience. Therefore, its stress should be determined by a functional of the 
history (we recognize the spirit of rational thermodynamics) of a "relative" 
strain tensor, an observable variable of state. Referring to Figure 2.2, we can 
introduce this relative strain measure by 

C ( M ' ) = ( I ) ' ! ' X = *(X'0' (6.2.2) 
£ = x(X,i'), t'<t. 

Equivalently, we can write C(t,t') = Ct(s), s = t — t'. Then for so-called 
simple fluids (that are simple only in name!) one has the following constitutive 
equation [cf. (3.3.79)] 

<r(t)= G [C t(a)]. (6.2.3) 
5e[0,oo) 

With appropriate continuity assumptions concerning the functional, various 
approximations of (6.2.3) provide hereditary (time-integral) constitutive equa
tions (see Coleman and Noll, 1961, for this procedure). Among these one must 
single out the Bernstein-Kearsley-Zapas (1963) model — the so-called BKZ 
fluid — for which (6.2.3) takes on the following explicit form: 

a{t)= r{Ms,h,h)B-<t>2{s,hj2)C}ds, (6.2.4) 
Jo 

h)C}ds, 
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132 Chapter 6. Viscosity in Complex Fluids 

where B is the Finger measure of finite strains already introduced in (3.2.51), 
and the (/>», i = 1,2, are derived from a potential W by 

4>i = 2dW/dIi. (6.2.5) 

The potential >V is said to be separable if and only if 

W(s,I1,I2) = m(s)U(I1,I2), (6.2.6) 

where the function m can be represented by a linear combination of memory 
functions of the exponential decreasing type. The model (6.2.3)-(6.2.6) can 
be justified on a thermodynamical basis. But the reader has understood by 
now that we are now here doing the apology of rational thermodynamics. The 
interesting point for subsequent developments is that, following Larson (1983a), 
if W is separable then it is shown that B satisfies an objective (i.e. form-
invariant by time-dependent rotations at time t) differential equation of the 
general form 

B : = ^ + f c ( B , V v ) = 0 , (6.2.7) 

where 
L = ( V v ) r = F F T , (6.2.8) 

is the velocity-gradient tensor, whose symmetric and skewsymmetric parts, 
respectively D and fi, are referred to as the rate-of-strain tensor and vorticity 
or spin tensor: 

D = L, : = i ( L + LT ) , fi = L A : = i ( L - L T ) . (6.2.9) 

In (6.2.7) the □ denotes an objective time derivative (e.g. a convected-time 
derivative), and fc is linear affine in its two arguments. It follows from "sep
arability" (6.2.6) that the stress satisfies a number of rheological evolution 
equations of the Maxwell type (see Chapter 7; also Proslier, 1979). For the 
sake of simplicity we call differential rheological models (for short D.R.M.) such 
evolution equations. Thus we stand at the left and bottom parts in the "flow" 
diagram of Fig. 6.1. Remark that no microstructure, no image relating to any 
physical vision, intervene in this formal construction. The situation is just 
the opposite with so-called molecular models to which we now briefly turn our 
attention with a particular interest in solutions of polymers. 
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Fig. 6.1. Thermodynamical modeling of polymers in solution. 

6.3. Statistical Theory of Polymeric Fluids 

A. Molecular models1 

Two models are at our disposal, the model of dumbbells, generalized to Rouse 
Chains if necessary, and that of networks with strands and entanglements. 
These two are schematically represented in Fig. 6.2. But the statistical philos
ophy is the same one for the two models, being based on the assumed existence 
of: (i) a distribution function / , (ii) a vector characterizing the microstructure, 
e.g. R or R ' in Fig. 6.2, (iii) the velocity field of the solvent, hence by space 
differentiation, L = (Vv)7 ; (iv) an averaging procedure of the ensemble type 
noted (...), and (v) a conservation law for / such as 

9 (R/ ) = 0, (6.3.10) 9-l + dt dR 
for dumbbells, and 

5 /+ d (R'n R (6.3.11) 

'This point of view is expressed at length in Bird et al. (1977). Here we follow the 
synthetic presentation of Maugin and Drouot (1988). 
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134 Chapter 6. Viscosity in Complex Fluids 

(a) dumbbell 

H: oriented distance between 
extreme beads 

\|/: distribution fuction 
n: number of dumbbells per unit 

volume 

IV (|L t )d 3R=n=const . 

(b) elastic network 

R': oriented distance of a seg
ment between two strands 

\|/: distribution fuction 
n': number of segments per unit 

volume 

jV(R\t)d3R'=n'(t) 
R' 

Fig. 6.2. Molecular models. 

for networks, where R is a source term which accounts for creation and an
nihilation of strands in the elastic network. The essential problem here is to 
determine R or R ' in the form 

R = nc(R,Vv) + nd(R,f), (6.3.12) 

and also R in the case (6.3.11). In (6.3.12) the subscripts c and d stand 
for "convection" and "diffusion", respectively, in the following mathematical 
sense. Once (6.3.12) has been carried in (6.3.10), the 1ZC term alone provides 
a hyperbolic equation (hence the justification for "convection") while the TZd 
term alone leads to a parabolic equation (hence "diffusion") if lid, as many 
force fields, is derivable from a potential W, i.e. TZj = —dW/dR. Clearly, 
(6.3.12) is nothing but an equation that governs the relative motion of the two 
beads in the dumbbell model, an equation in which inertia has been discarded 
compared to relaxation (time scales again\). This reduced "equation of motion" 
can contain other terms, i.e. forces, such as, for instance, a term ~R.e(7Z,q) 
of the electrostatic type — if q is an electric charge — which will reinforce 
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6.3. Statistical Theory of Polymeric Fluids 135 

the diffusive nature of Eq. (6.3.10), — cf. e.g. Dunlap and Leal (1984). The 
scheme in Figure 6.2(a) where the interactions between neighboring dumbbells 
are neglected, applies to dilute or semi-dilute solutions of macromolecules while 
that in Figure 6.2(b) corresponds better to a dense solution or an elastomer 
(for this last case, see Treloar, 1955; Weiner, 1983). Equation (6.3.10) or 
(6.3.11) can also be looked upon as an evolution equation that we symbolically 
rewrite as 

^ = J F ( / , R , R , V v ) , (6.3.13) 

for the "microscopic" variable / , which, usually, does not appear in the hy-
drodynamical description (see, however, Grmela, 1990, Grmela and Carreau, 
1982, 1984). 

The second statistical moment of R, i.e. classically, 

K := (R ® R) = / R ® Rfd3R = KT (6.3.14) 
JR 

defines a symmetric second-order tensor in the current configuration K-t of the 
fluid, that we shall call the conformation (cf. the pioneering works of Kuhn 
and Huhn, 1945, and Cerf, 1957). But, knowing in principle (6.3.12), one can, 
in theory at least, obtain an evolution equation for K in the symbolic form 

— = /C(K,Vv). (6.3.15) 

We are therefore brought back to the essential problem which is obtaining 
(6.3.12) or a similar equation for R'. One can rewrite (6.3.12) as 

R = Tlc+^Jr, (6.3.16) 

where TZC is defined in terms of the hydrodynamical motion, Vv, T is the spring 
force exterted on the beads of the dumbbell, and £ is the viscosity of the solvent 
— Stokes' flow may be assumed around dumbbells — with T — —dW/dR and, 
for instance (see below), 

W = ^R2 + Dlnf. (6.3.17) 

The convection term 1ZC can be more or less involved depending on the de
gree of refinement considered for the interactions between the beads and the 
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136 Chapter 6. Viscosity in Complex Fluids 

surrounding fluid solvent. Three examples can be quoted for the sake of illus
tration. In increasing order of complexity: 

(a) affine motion: 
RC = L R ; (6.3.18a) 

(b) motion with slip (Gordon and Schowalter, 1972): 

1lc = (L-ZB)-R, (6.3.18b) 

where f is a slip coefficient (0 < £ < 1), and 
(c) model of hydrodynamical interactions (Ottinger, 1986): 

nc = (i - en) • fc + -A , (6.3.18c) 

where 
fi = (87rClRr1)(l + R~2R ® R ) , (6.3.19) 

is Oseen's tensor, and 72.̂  is given below. In this case Hc itself contains an 
average (...) so that there arises a problem of consistency in the averaging 
procedure for which one must envisage a solution in the form of an asymptotic 
expansion (in terms of the retarded motion — see Ottinger, 1986). 

For the diffusion term TZd the simplest expressions are given by (D = ksO, 
where &B is Boltzmann's constant and 9 is the temperature): 

(d) Brownian motion: 

*5 = -D±Q*f) (6.3.20a) 

and 
(e) anisotropic diffusion (Green and Tobolsky, 1946): 

nd = -B.-(lnf), (6.3.20b) 

where the tensor B = D£_1 is the anisotropic diffusivity tensor of Giesekus (if 
C is the mobility tensor) which, if it depends only on the mean orientation, can 
be shown to depend on K (cf. Giesekus, 1986). 

The elastic term of diffusive nature can result from a quadratic or Hookean 
energy such as W = HR2/2 (linear spring) or can be more realistic (so-called 
FENE (finite-extension) model with a nonlinear spring of finite extensibility). 
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6.3. Statistical Theory of Polymeric Fluids 137 

Finally, assuming that the rates of creation and annihilation of strands in the 
network are equal at equilibrium, the R term in (6.3.11) can be characterized 
by a single coefficient r ' — the mean life time of a strand — and be written 
thus (Green and Tobolsky, 1946): 

R = - ^ ( / - / o ) . (6.3.21) 
T 

It is then said that one has an impulsive diffusion (cf. Larson, 1983a). 

B. Evolution equation for the conformation 

Many authors have examined the influence of terms of the type of (6.3.18a) 
through (6.3.21) in the basic equation (6.3.10), hence the evolution equation 
(6.3.15). For instance, accounting for (6.3.18a) and (6.3.20a) and for Hookean 
elasticity, one obtains the relaxation equation 

K = - — ( K - K 0 ) , (6.3.22) 

where we have set 
K0 = (D/H)1, TK=C/4H, (6.3.23) 

and 
K := K - (LK + K L T ) . (6.3.24) 

The latter is a well-known convected time derivative (in differential geometry, 
a so-called Lie derivative — see Maugin, 1988, Chapter 2), so that both sides 
on Eq. (6.3.22) are objective. If one takes account (6.3.18b) instead (6.3.18a), 
all other things being left unchanged, then one obtains an evolution equa-

7 
tion which is also objective but with the derivative K replaced by a Gordon-
Schowalter derivative defined by 

KGs := DjK - a(KD + DK) = K + £(KD + D K ) , (6.3.25) 

where a = 1 - £, 0 < a < 1, and Dj denotes the so-called Jaumann (co-
rotational) derivative of continuum mechanics, such that (cf. Maugin, 1988, 
Chapter 2) 

DjK:=K-nK + Kn, (6.3.26) 
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138 Chapter 6. Viscosity in Complex Fluids 

when applied to a second-order symmetric tensor. At this point it can be re
marked that any temporal derivative of the objective tensor field K, defined by 

2 ) K : = D j K + f(K>D)> (6.3.27) 

where f is a linear affine and isotropic tensor-valued function of K and D 
7 D 

jointly, is also objective. Equation (6.3.27) holds for K and K G S - This is also 
the case of the other convected time derivative defined by 

K := K + (L T K + KL) = DjK + (KD + DK) 

= K + 2(KD + D K ) , (6.3.28) 

which is much less used in DRMs than the "V" derivative. 
Instead of using K, Giesekus has suggested the use of a tensor b such that 

it effects the transformation of Ko into K, i.e. 

K = b K0 , (6.3.29) 

where Ko is an isotropic equilibrium value. He calls this tensor b the configu
ration. This name is rather confusing as "configuration" already has a precise 
meaning in continuum mechanics. Notice that since Ko is isotropic, b is in 
fact proportional to K, such that 

b = (H/D)K; (6.3.30) 

and b appears to be nothing but a normalization of K to unity at equilibrium 
(for which bo = 1). 

C. Stress tensor 

The above developments show how a statistical basis provides a plausible evo
lution equation for a tensor which seems to relate in some way to a microstruc
ture. Within this framework this microstructure evolves under the action of the 
surrounding fluid. But this is not all, as the deformation of the microstructure 
should in some way influence the flow to some extent. We should, therefore, 
exhibit the contribution of the statistical variables K or b to the stress ten
sor of the overall fluid medium. This will manifest itself by the addition of a 
contribution ap to the Newtonian expression of Eq. (6.1.1). Classically in a 
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6.4. Thermodynamics with Internal Variables 139 

statistical approach (cf. Bird et al., 1977), this additional stress is determined 
by computing the first moment of forces acting on the microstructure. That is 

crp = n ( J r ® R ) , (6.3.31) 

where, for example, T is the force present in expression (6.3.16). In the simple 
case where (6.3.22) holds good, one directly obtained (with G = nkB&) 

CTP = G(b - 1) = fc(K - K 0 ) , (6.3.32) 

which obviously vanishes at equilibrium. As b or K satisfies an evolution equa
tion of the relaxation type (6.3.22), the stress a will satisfy a DRM with a 
time derivative a. This can be generalized to the case of a Rouse chain and this 
demonstrates the possibility of bringing into contact statistical molecular mod
els and DRMs, while the latter can be equivalent to simple fluids, in particular 
to BKZ fluids. This is indeed the case if the notion of anisotropic diffusivity 
is introduced and it depends on the actual "configuration" of Giesekus b . This 
holds true in the reptation theory of Doi and Edwards (1978). Larson (1983a) 
has shown what are the models which, like the BKZ fluids subjected to the 
restriction of separability, lead to "separable" constitutive equations. He has 
also given the expression of objective derivatives and differential stress con
stitutive equations that emerge at the macroscopic scale when convection and 
diffusion models are considered at the microscopic (molecular) scale. 

The essential problem that we now consider is: as both the equation for K 
and the constitutive equation of a (i.e. both relaxation of the microstructure 
and the viscosity of the macroscopic flow) contribute to dissipation, what is the 
macroscopic thermodynamic scheme that allows one to account for these two 
effects which are coupled and co-operate in the entropy growth? The answer is 
to be found in T.I. V. for which the long excursion just made in the molecular 
landscape provides a physical background and a striking interpretation. 

6.4. Thermodynamics with Internal Variables 

A. General view 

We consider now a purely phenomenological approach constrained by the sec
ond law of thermodynamics. We assume that p and v are the mass density 
and physical velocity field of the macroscopic fluid under consideration, i.e. the 
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no Chapter 6. Viscosity in Complex Fluids 

final product composed of a solvent (carrier fluid) and the solute (here macro-
molecules). Let pp and p , be the mass densities of polymer molecules and of 
the solvent, respectively. The concentration in macromolecules is defined by 

c = Pp/p, pp = p-p,. (6.4.33) 

Then the local field and thermodynamical equations which govern the macro
scopic fluid considered as a mixture with prevalent solvent mass are as follows 
at each point x in the domain occupied by the fluid at time t (configuration K.t): 
• Balance of mass (no chemical reactions occur in the solution): 

p + pV • v = 0, (6.4.34) 

and 
pc + V • J = 0; (6.4.35) 

• Balance of linear and angular momenta (no externally applied couple): 

pv = diver -(- pf, (6.4.36) 

and (T =transpose) 
a = aT, (6.4.37) 

• Balance of energy (tr=trace) 

pe = tr (crD) - V • q + ph; (6.4.38) 

• Entropy inequality [Clausius-Duhem form when the entropy flux has the 
general form (3.3.110] 

-(V> + nO) + tr(<rD) + V • (0k) - S • V0 > 0. (6.4.39) 

In these equations a superimposed dot denotes the material time derivative, J 
is the diffusion-flux vector, c is Cauchy's symmetric stress tensor. All other 
notations were introduced in previous chapters. 

The system (6.4.34)-(6.4.38) — which must be accompanied by initial and 
boundary conditions in problem solving — will be closed if constitutive equa
tions are given for the following set of fields: 

{<7,J,q,S,e,tf,77}, (6.4.40) 
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6.4- Thermodynamics with Internal Variables 141 

the fields h and / being prescribed as functions of (x, t). The volumetric 
behavior of the macroscopic fluid is assumed to be the same as that of the 
solvent. Since the latter is usually incompressible (very often the solvent is 
just water), we also have 

t r D = V v = 0 . (6.4.41) 

For dilute solutions we have the condition 

c < 1. (6.4.42) 

The internal structure of the macroscopic fluid, hence the microstructure or 
changes in shape and orientation of molecules, is phenomenologically described 
by the introduction of an internal variable a (of which the tensorial character 
will be chosen later on). This variable is such that it does not modify before 
hand the above-stated balance equations since, globally, the macroscopic fluid 
appears to us as a classical fluid, albeit perhaps not Newtonian. But the 
dependent variables of the set (6.4.40) will depend on a, and a itself is supposed 
to satisfy an evolution equation2 of the form 

2?a = g ( 0 , V v , . . . ; a ) , (6.4.43) 

where V is some appropriate time-like derivative. This is complemented by 
equilibrium conditions a = an with V Q = 0, such that at equilibrium 

g(0o,Vv = O, . . . ; a = ao) = O (6.4.44) 

In the present case, due to the presence of a the stress tensor of our macroscopic 
fluid will deviate from Newton's incompressible fluid law by an additional 
contribution av in such a way that if T]v(c, 6) is the usual viscosity coefficient 

<7 = 277vD + a p ( 0 , V v , . . . , a ) . (6.4.45) 

The simple equations (6.4.43) and (6.4.45) reveal at the outset the crucial 
interdependence between the way in which the fluid strain-rate induces the 
molecular deformation (changes in a) and the way in which the molecular de-
formability enters the stress tensor through the contribution ap. The require
ment that (6.4.39) be satisfied for all admissible thermodynamic processes will 

2 As a matter of fact, this, later on, is no longer a supposition but a consequence of the 
applications of the rules of T.I.P. 
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show that, in general, the functions g and o~v are not independent. Our concern 
is obviously the determination or construction, on some rational basis, up to 
a few material constants to be determined experimentally, of these functions 
g and CTP, once the internal variable has been selected. Note that only the 
deviatoric part of D is involved by virtue of (6.4.41) but no special symbol will 
be introduced for that matter. Now we face the problem of selecting the most 
relevant internal variable. 

B. The internal variable is an anelastic strain 

A strain, whether elastic or not, is represented by a second-order tensor as it 
should play the same role as a metric from the point of view of differential 
geometry (measure of distance between two infinitesimally close points). Sev
eral authors, among whom Buevich (1968), Gorodtsov and Leonov (1968) and 
Capriz (1968) must be credited with the original idea of introducing a tensor as 
an internal variable in viscoelastic materials. And we owe to Green and Naghdi 
(1967) and Perzyna (1974) the introduction of an intermediate configuration 
Ki and the idea of relating the tensorial internal variable to one of the elements 
of the kinematical decomposition thus introduced (at least in viscoplasticity). 
In the case of the viscoelasticity of complex fluids, Leonov (1976) has exploited 
the above ideas by considering the multiplicative decomposition (5.6.50) of Lee 
which we shall note here F = F e F a , where F a is the anelastic "gradient" (not 
a gradient per se). Now from the very definition of B, Eq. (3.2.51)2 and the 
definition (6.3.24) applied to B, we let the reader check for himself that B 
satisfies the following kinematical identity: 

B := DjB - (BD + DB) = 0 . (6.4.46) 

Now let 
B e = F e F e , L = Le + L a , 

(6.4.47) 
L£ = F eF e-1 , La = F e • ( F a F " 1 ) ^ 1 . 

Then one shows that B e satisfies the following differential equation: 

B £ + (L - L 0 )B e + B e(L - L a ) T = 0 . (6.4.48) 

One can view Eqs. (6.4.46) and (6.4.48) as evolution equations. In particular, 
following Leonov (1976), if we consider that for an incompressible fluid behavior 
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6.4. Thermodynamics with Internal Variables 143 

the free energy function W per unit volume cannot depend on B (see Truesdell 
and Noll, 1965), we can only take W as a. function of B e and 9, and the 
procedure sketched in Chapter 5 for internal variables apply. In particular, 
the intrinsic dissipation takes on the form 

$intr = tr(<7irD + ABe) , 

where (d =deviatoric part) 

where the last two equations constitute the laws of state. On assuming then 
the existence of a potential of dissipation D*(D,A), we obtain thermodynam-
ically compatible complementary laws for mechanical dissipative processes in 
the form 

dV" v gj)* 

°,r=Tm- B<+mwim=°- <6-451) 
This straighforward derivation was introduced by Maugin and Drouot (1988). 
Leonov (1976) does not follow this line of reasoning. Noticing that in order to 
know the evolution equation (6.4.48) in full we need to known an expression 
for the difference (L — La) in terms of B e , he invokes an analogy with (6.4.50)2 
and write that the anelastic strain rate L0 is derivable from a "dissipation" 
potential V of the same form as W so that [cf. to (6.4.50)2] 

( L o ) i = 2 ( ^ B e ) ' ( 6 A 5 2 ) 

while for W he considers a Mooney-Rivlin type of incompressible free energy 
for an elastomer (justified by rubber elasticity — see Paragraphs 3.2E,F; also 
Treloar, 1955) and thus [cf. of (3.2.58)] 

the expression of (L a ) , being formally the same but with V(I\, ^2) replacing W. 
Equations (6.4.48), (6.4.52) and (6.4.53) are the bases of Leonov's theory. The 
elegance of the direct approach (6.4.51) for W and V both isotropic functions 
of B e as a result of the objectivity requirement, hence depending only on the 

(6.4.49) 

rriT — / T d rrR ~ ^ 1 
<T = a — (7 , IT = Z 

dW 
Be 

KdBe 

d 

) A = -
dW 
dB ' 

(6.4.50) 

aR = 2 dW 
dh 

B e -
1 
3 hi 

dW 
dh B e 1 -

1 
3 hi ) (6.4.53) 
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144 Chapter 6. Viscosity in Complex Fluids 

invariants I\ and I2 of B e in the "Mooney" approximation, is to be emphasized 
as it is inescapable. Following a remarkable classification of all viscoelastic 
fluid behaviors by Sidoroff (1975a,b) on the basis on internal-variable theory, 
this more rational approach was used by Proslier (1979), independently of 
Leonov's work, to show that a viscoelastic model based on a tensorial internal 
variable and an intermediate "elastically released" configuration fC& = fCi — 
see Fig. 5.4 — could be equivalent to a class of BKZ fluids with separable 
energy. Stickforth (1981) and Dasher and Van Ardale (1981) have proposed 
theories which are quite comparable with Leonov's. Relationships between the 
latter and DRMs have been studied by Leonov (1982) and Larson (1983b). 
We however find no apparent relationship with the statistical presentation of 
Sec. 6.3 because B e is on the same footing as F and is, therefore, not more 
"microscopic" than the usual deformation. To reach a close contact with the 
contents of Sec. 6.3 we need to consider another type of internal variable, 
although still a second order tensor. 

C. The internal variable is a conformation 

The "conformation" tensor introduced in Sec. 6.3 is an obvious candidate 
for a good tensorial internal variable in the theory of dilute or semi-dilute 
solutions of polymers and macromolecules. Being entangled in an intricate 
manner (Fig. 6.3) long polymeric chains in their equilibrium configuration K0 

under the influence of Brownian agitation may be assumed to roughly have 
the shape of spherical balls (so-called spherically coiled conformation) of ra
dius Ro. The "spheres" will be slightly deformed but will keep an essentially 
three-dimensional shape (spheroid, ellipsoid) in the presence of a weakly elon-
gational flow of the surrounding fluid in a configuration Kt, while they will 
more or less take a one-dimensional (rodlike) structure in strongly elongational 
flows. In the case of polymeric fluids such as polyelectrolytes which have elec
trical properties (Fig. 6.4), the overall shape of the molecules depends on the 
charge of the fluid, low charges yielding spherically coiled conformations and 
an increase in charge causing eventually a stretched rodlike or cylindrical con
formation, ellipsoidal conformations comprehending the whole range of such 
conformations. Let R be the directed distance between extreme monomers in a 
molecule chain in fCt. In the first case a second-order moment (lowest harmonic 
departure from sphericity), hence a symmetric second-order tensor, must be 
introduced to describe the three-dimensional deformability of the molecules. 
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6.4- Thermodynamics with Internal Variables 145 

In the second case, it is possible that a vector field indicating a direction be 
sufficient to obtain a satisfactory kinematic description. We shall return to 
this second case later on. For the time being, the tensor of interest, in fact 
akin to an inertia per unit mass, is denned as in the first of (6.3.14). That is, 

K := (R ® R ) , (6.4.54) 

CRR. 

Rn=—1 R=(r<»r) 

Fig. 6.3. Macromolecular deformation for spherically coiled conformations. 

(a) (b) 

Fig. 6.4. Conformation of polyelectrolytes in solution (a) low pH; (b) high pH (after Drouot 
and Maugin, 1985). 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



146 Chapter 6. Viscosity in Complex Fluids 

so that this remains a statistical concept, and should not be interpreted as 
pertaining to any macromolecule in a specific configuration in particular. The 
average (...) is over all possible realizations. We have tr K = (R2), and we 
can also write 

K = K d + i ( t r K ) l , (6.4.55) 

where Kd , the deviatoric part of K, is the extensibility-free or shear part of 
K. Obviously at KQ 

( R o ) = 0 , K0 = ^ l . (6.4.56) 

The tensor K defined by 

K = K-K0 , tiK = (R2)-Rl, K = 0, (6.4.57) 

is a good relative measure of the conformation. A volume-preserving confor
mation of macromolecules is such that 

tr K = 0, (6.4.58) 

so that only the deviatoric part, Kd, of K needs be considered in this case. 
For strongly elongational flows one is tempted to discard the lateral (with 

respect to the flow direction) behavior of elongated polymer molecules and to 
describe its "conformation" by a single vector n of variable magnitude. This 
situation appears to be somewhat limiting, considering the above-described 
situation where we neglect the components of K orthogonal to n and thus 
reduce it to the form 

K ^ t f n n ® n / | n | 2 , (6.4.59) 

so that, indeed, K reduces to the knowledge of a direction n and a magnitude 
Kn = ((R-n)2) / |n |2 . Another way to view this is to consider that in a strongly 
elongational flow the unit vector A = n / |n | is an eigenvector of K with a 
corresponding eigenvalue which is much larger than the remaining two ones. 

In both cases (i.e. the choice of K or n), if L = na is the total developed 
length of the polymeric chain, where n is the number of monomers in the chain 
and a is the length of a monomer, then RQ = ■s/na. In polyelectrolytes RQ is of 
the order of hundreds of angstroms at neutral pH, whereas an extended length 
is rather in the order of 2500 angstroms (Fig. 6.4b). 

Having identified the relevant internal variable, we now pursue the ther-
modynamic approach independently of any statistical viewpoint (although we 
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6.4. Thermodynamics with Internal Variables 147 

are strongly influenced by it). Lhuilier and Ouibrahim (1980) seem to be the 
first to have considered such an approach which was cast in T.I. V. by Maugin 
and Drouot (1983a). In agreement with the formal developments of Chapter 5, 
we start with an energy per unit volume W(0, c, K), where K is traceless. We 
consider a volume-preserving conformation and an incompressible fluid carrier. 
The laws of state are given by 

ew dw aw 
S=-d6-' " = -&■ T=-dK> ( 6 4 - 5 9 ) 

where fx is the chemical potential of the polymer component and T is the 
microstress, i.e. the generalized thermodynamic force associated to the internal 
variable a = K. On the one hand, the scalar-valued function W is rotational 
invariant (or objective), i.e. 

W{9, c, K) = W(0, c, Q K Q r ) , (6.4.60) 

where Q is an orthogonal transformation. Equivalently, W satisfies the differ
ential constraint (prove this by considering the case of an infinitesimal rota
tion Q = 1 + eui, where w is skewsymmetric and e is an infinitesimally small 
parameter) 

dW dW 

This, or (6.4.60), means that W depends on K only through its principal 
invariants. Simultaneously, we must enforce the Clausius-Duhem inequality 
(6.4.39) on account of (6.4.59), (6.4.61), and (6.4.35). This results in the 
dissipation inequality 

tr ( a i r D + FDjK) + V • (6>k + /xJ) - S • V0 > 0, (6.4.62) 

where we used the definition (6.3.26) and (6.4.61) while computing the time 
derivative of W. It is reasonable to select k in such a way that the divergence 
term in (6.4.62) disappears altogether. That is, 

k = -(n/0)J. (6.4.63) 

We see that the extra-entropy flux is denned in terms of the laws of state and 
the diffusion flux. This agrees with simple theories of two-component mixtures 
(e.g. de Groot and Mazur, 1962, p. 24). Consequently, the residual dissipation 
inequality takes on the form 

$ = $intr + *td > 0 , (6.4.64) 

(6.4.61) Kkl = 0. 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



148 Chapter 6. Viscosity in Complex Fluids 

where the intrinsic and thermodiffusive dissipations are given by 

^ t r ^ D + ^ K ) , 

*tf = - ( J . V / i + S . V 0 ) . 

The groupings in these two contributions are physically obvious. The working 
rules of T.I.P. enunciated in Chapter 2 can be applied at once. For instance, 
on noting that K is even while D is odd under time reversal, the a priori 
admissible linear isotropic dissipative contributions are given by 

(Tir = 2r)vD, DjK = kF, 
(6.4.66) 

3 = -(DVn + AVe), S = -(XV9 + AV(*), 

with 
Vv > 0, k > 0, A2 < KD, K > 0, D > 0. (6.4.67) 

Equivalently, we can envisage the existence of a dissipation potential P ( D , T) 
such that 

But there is more than that in (6.4.64), because this inequality does not rule out 
the occurrence of couplings between air and DjK., which do not contribute to 
the dissipation and are obviously no longer derivable from the energy density. 
These coupling terms that we call aG and KF may be labeled gyroscopic as 
they correspond to "forces" and "velocities" which are orthogonal in the sense 
that they jointly satisfy the orthogonality relation: 

$ G := t r (a G D + TKF) = 0 , (6.4.69) 

where 
aG = o(D,T;K,0,c), KG = £ ( D , T\ K, 9, c) (6.4.70) 

where the last three arguments — which in fact define the laws of state — are 
parameters. It is the presence of K in these last three arguments which allows 
for the existence of interesting couplings between a and DjK. Globally then 

a = - p i + (&D/&D) + a (D, T\ K, 6, c), 
_ (6.4.71) 

I>jK = (aP/a j - ) + /C(D,^ ;K,e , c ) . ; 

(6.4.65) 

air = dV 
3 D ' 

DjK = &D 
dT 

or DjK + 
&D 

8{dW/dK) 
= 0. (6.4.68) 
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Examples of simple contributions (6.4.70), which must necessarily be linear 
affine jointly in D and T, are given by (Lhuillier and Ouibrahim, 1980) 

aG = XT - 0(K?+ TK), 
(6.4.72) 

KF = -AD + /3(KD + D K ) , 

where A and j3 are scalars which depend at most on 9, c, and the nonvanishing 
elementary invariants of K. Their sign is not constrained by any thermody-
namical inequality such as in (6.4.67), but they are the same coefficients in both 
contributions, otherwise they would not be consistent with the orthogonality 
condition (6.4.69). 

With V quadratic in D, we recover the Newtonian contribution (6.4.66)i to 
a, while (6.4.72) i provides the looked for non-Newtonian contribution of which 
the expression is, as we have seen, intimately related to that of the contribution 
KF to the evolution equation of K. This is a characteristic feature of T.I. V. If 
W is now quadratic in K, i.e. we have some kind of Hookean elasticity, F will 
be linear in K and thus, with V also quadratic in T, we shall arrive at a first 
contribution in the right-hand side of (6.4.71)2 of the relaxation type (i.e. linear 
in K) and a second contribution in the right-hand side of (6.4.71)i quadratic 
in K. In this case we will have the following final constitutive quations: 

a = -pl + 2T7„D + 2(3HK <8> K , 
1 (6.4.73) 

D j K = K + 0{KD + DK) - AD, 
TK 

which clearly exhibit the dependence of the non-Newtonian stress on the 
Hookean elasticity H of the polymer solute. The coefficient A is related to 
the osmotic pressure of the solution. But the second equation of (6.4.73) can 
also be rewritten as 

P K = - — K - A D , (6.4.74) 

where V indicates one of these objective time derivatives introduced by (6.3.27), 
and the unknown coefficient j3 then plays the same role as the slip coefficient 
in the Gordon-Schowalter derivative (6.3.25). Only experiments or some con
ditions of existence and stability of solutions can reduce the generality of the 
coefficient 0. It was in fact shown by Lhuillier (1981) that 0 must lie in the 
(0,1) interval so that the Taylor stability of such fluids is guaranteed. 

The present theory can be made more complex by considering more lengthy 
expressions instead of (6.4.72) while respecting all stated principles, and con
sidering additional internal variables (of the scalar type to represent an electric 
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charge, a pH, or a strand density in a network). For these we refer the reader 
to the discussions in Maugin and Drouot (1983a, 1988, 1991). In particu
lar, comparison with Hindi's (1977) model and Eringen's micromorphic fluids 
(Eringen, 1964), the Kramers-Giesekus stress tensor (cf. Bird et al, 1977), 
models by Barthes-Biesel and Acrivos (1973), and Hinch and Leal (1976), and 
the pioneering work of Hand (1962) are found in those review papers. What 
is particularly striking is the resemblance between (6.4.74) and (6.4.73)i and 
the equations obtained by totally different means for a kinematical quantity 
F introduced in the description of emulsions of spherical-like drops, and the 
corresponding additional (non-Newtonian) stress, as 

D j F = - - F + a i D , CTp = 3nsF 2 , (6.4.75) 
T 

where n is the number of drops per unit volume and r is related to the surface 
tension s (cf. Frankel and Acrivos, 1970). Here F is a second-order tensor which 
describes the small deviations of viscous drops from sphericity. Surprisingly 
enough, the two expressions (6.4.75) check our thermodynamic presentation 
with the appropriate identification. This was noticed by D. Lhuillier. And 
this probably gave him the idea (Lhuillier, 1988) of approaching the theory of 
suspensions of deformable particles with spherical equilibrium shape along a 
similar line. A two-phase averaging then imposes a definite relation between 
critical material coefficients. His final results agree with those of Goddard 
and Miller (1967) and Barthes-Biesel and Acrivos (1977) from hydrodynamics 
for dilute suspensions. For concentrated ones, it is shown that a Maxwell-like 
constitutive equation follows for the stress. 

D. The internal variable is a vector 

If we formally introduce a single vector field n to account for the irreversibili-
ties resulting from the inner structure of the fluid, we are tempted to introduce, 
along with n, its spatial gradient Vn, because a kind of prevailing directional 
order may emerge (the tendency of all elongated macromolecules to align par
allel in the same direction). This behavior is called nematogen after its char
acteristic appearance in nematic liquid crystals (see Sec. 6.7 below). Assume 
that this ordering is negligible, so that we may consider a free-energy density 
such as 

W = W(0, c, n)oiW = W{6, c, n2 = |n | 2 ) , (6.4.76) 
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6.4- Thermodynamics with Internal Variables 151 

where the last expression follows from the rotational invariance of W. Thus 
W depends only on the magnitude of n. This in turn means that n plays an 
essential role in the description of thermodynamically irreversible processes by 
introducing a preferred direction and hence a markedly anisotropic behavior 
which contrasts with Euler's and Newton's fluids. Indeed, with the laws of state 

dW dW dW 
s = -d9> b = - a r 7 ' " = -&■• ( 6 - 4 - 7 7 ) 

and (6.4.63) still valid, the first of (6.4.65) is replaced by 

*mt = tr (crirD) +b-Djn, (6.4.78) 

as is readily checked as 

dW dW 
(Djn)i := hi - w^n, , — n, - Q—"i = 0 . (6.4.79) 

Although D and n behave differently under time reversal, there now exists a 
possible coupling of the dissipative type between axr and D j n by in reason 
of n being a vector field. Neglecting the coupling with heat conduction and 
diffusion which is now theoretically possible, and assuming that n and — n 
are equivalent (e.g. the two ends of a dumbbell are undistinguishable), the 
following reduced expressions emerge from the application of T.I.P. to the 
residual dissipation inequality (d = n/ |n | ) : 

air = 2rfvD + (Ai + A2d • D • d)n ® n + 2A4(d D ® n + n ® D d ) (6.4.80) 

and 
D j n = -(/xi + M2d • D • d)n - n3(D ■ n ) , (6.4.81) 

where the coefficients Ai, \ii and \iz are not independent. Note that 

T = /iJ-1, T' = ( M l + / i 2 d - D - d ) - \ (6.4.82) 

may be considered as a relaxation time (depending on 9 and c) and a strain-
rate dependent relaxation time. Equations (6.4.80) and (6.4.81) are formally 
identical with those of an Ericksen anisotropic fluid with a director n of variable 
length as considered by Abhiraman and George (1980) and much earlier by 
Kaloni (1965) outside any thermodynamic framework, so that these authors 
do not exhibit any relationship between the coefficients intervening in the two 
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152 Chapter 6. Viscosity in Complex Fluids 

equations (6.4.80) and (6.4.81) and their coefficients were not constrained by 
any thermodynamic inequality. Improvements on these models are described 
in Maugin and Drouot (1983a). Piau and Doremus (1984) and Cartalos and 
Piau (1985) practically use such a model for polymeric solutions in strongly 
elongational regimes. It must be emphasized that kinetic theory may also yield 
an evolution equation of the type (6.4.81) for n (cf. Olbricht et al, 1982), which 
can be rewritten in the form 

Djn = G (D • n - Y^p(d • D ' d)n) - lf^n' <6-4-83) 
through an appropriate redefinition of the coefficients. A general equation of 
the type (6.4.83) where the coefficients G, F and a depend on the properties of 
the molecules and of the carrier fluid, was obtained for particular axisymmetric 
models of microstructure (rigid particles in Bretherton, 1962; elastic ellipsoids 
in Hinch, 1977; linear elastic dumbbell with G = 1, F = 0 and a = const., in 
Kuhn and Kuhn, 1945; linear elastic dumbbell with F nonzero in Bird et al., 
1977). In general 0 < F < oo, and practically G < 1. (see further remarks in 
Maugin and Drouot, 1983a, p. 719). In a simple model of fluids carrying fibers 
(Hinch), we have the simple equations [compare to (6.4.80) and (6.4.81)] 

£ : = h - ( n . V ) v - n ( d . D . d ) , (fl ̂  ^ 

a = -pi + 2r)shB + 2r]extd ® d(d • D • d ) , 

where rjah and 77ext are the viscosities in shear and extension, respectively, the 
former being typically ten times smaller than the latter. The aligned flow 
solution corresponds to d = v/ |v | . More on a closely related model below in 
Sec. 6.7. 

E. The internal variable is a scalar 

(a) By progressively reducing the tensorial order of our internal variable but 
still on the basis of the statistical view, it seems that we impoverish the de
scription. For instance, if we consider the scalar product of Eq. (6.4.81) by n 
we shall obtain an equation of evolution for the squared magnitude of n, i.e. 

- n 2 = - i 7 n 2 - 2 ( / x 2 + M 3) (n -D-n ) , r ' = l/2fn . (6.4.85) 

This equation for the scalar internal variable n2 discards the entangled struc
ture of polymer molecules in the solvent, retaining only the change in length. 
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6.4- Thermodynamics with Internal Variables 153 

Since entanglements play an important role as they would certainly hinder 
segmental motions, it can be expected that both relaxation time and modulus 
for a polymer will increase with increasing density of entanglement. If (n2) 
denotes the average overall possible entanglements and n now represents the 
directional vector between two successive entanglements in a molecule within a 
fluid element, then the following simple equation of evolution can be proposed 
for the structural parameter (n2) 

jt{n2)=H{0,c,Dn,(n2)), (6.4.86) 

where Du = tr D 2 . A linear approximation to (6.4.86) yields 

j t (n2) = a + /3(n2) + jDn . (6.4.87) 

For a fluid at rest (n2)0 = —a//? gives the equilibrium entanglement parameter 
and the quantity H = (n2) — (n2)o which measures the deviation from equilib
rium value, could obviously be used as a scalar internal variable. Ideas similar 
to those underlying (6.4.86) are contained in several works (e.g. Southern and 
Porter (1970) — relaxation time depending on Du — or Acierno et al. (1976, 
1977) — smooth evolution of an equilibrium network density). 

(b) To avoid the above-mentioned impoverishment we may follow the quite 
remarkable point of view of Grmela and Carreau (1984) by considering the 
scalar distribution function / of the statistical description as an internal vari
able compared to the hydrodynamical description. This is some kind of gener
alized hydrodynamics which couples two levels of description of physical reality, 
the sub-level, that of / , being required to satisfy the contraint imposed at the 
higher level, e.g. the non-negativeness of dissipation, so that a strong feedback 
is established between the two levels. Indeed, consider that in addition to the 
classical set of hydrodynamical fields {p, v, e} we need the extra field a which 
should be governed by an evolution equation 

da 
- = g . (6.4.88) 

Now paying special attention to the parity of the variables we suppose that: 
(i) the function g is linear in L = (Vv)T; (ii) a does not depend explicitly on 
x, (iii) one part of the energy depends only on a, and (iv) a depends on time 
and an internal coordinate R (e.g. the R already introduced in the statistical 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.
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description). At equilibrium the entropy equation has also the form of an 
evolution equation (no source of entropy) symbolically as 

One then shows that in order that (6.4.89) be a consequence of the field equa
tions (balance of mass, momentum, and energy) and of (6.4.88), it is necessary 
and sufficient that the stress a be given by 

where 6/6a denotes Volterra's functional derivative and rp is the free-energy 
functional. Obviously, the formalism (6.4.88) reminds us of the internal-
variable approach. Indeed, consider that a is none other than the distribution 
function f of the statistical approach to polymeric solutions, and R is the vec-
torial distance introduced in Fig. 6.2. On account of an affine convection such 
as (6.18a), Eq. (6.4.88) reads 

^ = - A . ( L . R / ) , jj(R,t)d3R = n . (6.4.91) 

Then (6.4.90) delivers the usual formula for stress in the kinetic theory [see 
Eq. (6.3.31)] with 

dR 
,W=5

1lj, (...) = J^(...)fd3R. (6.4.92) 

One still has to specify the functional form of \&. Suppose that \£ depends on 
/ only through the conformation tensor K. It follows that 

6f ~ **>"*"" **> ~ dKi:j ' (6.4.93) 

Multiplying then (6.4.91)i by R ® R and taking the average of the result yields 

K := DjK - (KD + DK) = 0 . (6.4.94) 

That is, at equilibrium K evolves only by convection with the surrounding fluid. 
Carrying then (6.4.93) into (6.4.90) one obtains a as 

<7 = -(JTK + K 5 ) , (6.4.95) 

as 
at = s. (6.4.89) 

a = 6<f> 

/R 8a 
dg 
dL 

d3R, (6.4.90) 

T=-
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6.4- Thermodynamics with Internal Variables 155 

which is none other than the second contribution (which does not "dissipate") 
in (6.4.72)i with j3 — 1, in the same way as (6.4.94) is none other than the form 
taken by (6.4.73) in the absence of dissipative processes and gyroscopic coupling 
with D(A = 0) but with 0=1. Thus we have coincidence of the two approaches 
at equilibrium. For related dissipative processes we refer to subsequent works 
by Grmela and co-workers (in particular, Grmela, 1986, Grmela and Carreau, 
1982, 1987). 

The last approach mentioned presents the challenge of closing a theory 
with ingredients of microscopic origin by imposing a thermodynamic compati
bility (at equilibrium in the above-illustrated case). This extremely promising 
aspect is discussed at length by Grmela (1990, 1995) who is the most active 
contributor to this trend. 

F. Forced thermodynamic systems 

The flow of the fluid surrounding macromolecules in a solution of polymer be
longs to the global thermodynamic system and this is reflected in the expres
sion of the intrinsic dissipation, e.g. (6.65) i, where both D and T contribute 
to an equal extent to the dissipation. However, while studying the evolution 
of conformation and the stability of the conformations which are allowed by 
the expression of the energy W, one is led to envision this flow (or some other 
field such an an electric one) as some forcing on a system built of deformable 
macromolecules only. In particular, if the dissipation potential V in (6.4.71) is 
homogeneous of degree two while K. in (6.4.71)2 is necessarily homogeneous of 
degree one in both D and T, then Eqs. (6.4.71)2 can formally be rewritten as 

DjK=~, V:=V{D,F)-tT{M?), (6.4.96) 

where M(D) is a tensor to be determined. In the case of pure shear of 
conformations and on account of the special expression (6.4.72) and with 
dV/dT = —(>T (quadratic approximation), Eq. (6.4.96)i can be rewritten as 

dW 
DjK = < — , (6-4.97) 

where W is the following modified free energy 

W{0, c, K; D) = W(0, c, K) - tr [Z • ( T D ) ] , (6.4.98) 
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where r is a characteristic time, and the stress tensor Z depends essentially on 
K. With W quadratic in K, Z is itself of second degree in K. Equation (6.4.97) 
allows one to study the isotropic-anisotropic conformational transtion induced 
by a flow and the modified energy (6.4.98) plays the same role as the modified 
free energy of Landau in phase-transition theory where, for a ferroelastic solid, 

W(0, e; a) = W{9, e) - tr (ere), (6.4.99) 

where a is an applied stress (see Drouot and Maugin, 1988b). 

6.5. Diffusion and Migration 

The phenomenon of diffusion describes the relative translational motion be
tween two species in a mixture. In the case of polymer solutions this is repre
sented by the diffusion-flux vector 

J = Pc(vp - v ) , (6.5.100) 

where vp is the velocity field of the center of mass of the polymer molecule. In a 
phenomenological theory a constitutive equation is given for J , i.e. for the left-
hand side of Eq. (6.5.100) — see, for instance, (6.4.66)2. Apart from a possible 
anisotropic generalization, (6.4.66)2 simply describes diffusion in terms of the 
gradient of the chemical potential and no fluid kinematics or macromolecule 
deformability is involved in such a simple equation. There is, however, strong 
interest in specific diffusion phenomena in non-homogeneous velocity gradient 
fields, and these phenomena have been put forward to explain a wall effect 
in laminar flows of polymeric fluids (Tirrell and Malone, 1977; Drouot and 
Maugin, 1983). Interest has also focused on the molecular migration in such 
velocity fields. It seems that macromolecules in a nonhomogeneous flow tend 
to minimize their configurational entropy by migrating toward less nonhomo
geneous flow regions, thus escaping the more highly oriented configurations 
induced by higher velocity gradients. Aubert and Tirrell (1980) have shown 
that the bead-spring theory (see Bird et al., 1977) for dilute solutions of poly
mers predicts a diffusion of macromolecules for nonhomogeneous flows. At the 
bottom of their mathematical model is a force — and then a diffusion flux 
— proportional to the second gradient VVv^ of the velocity v^, of the liquid 
solvent. Subsequent refinements were presented by Brunn (1983) by modeling 
macromolecules as nonlinear elastic dumbbells. But here also, while micro
scopic theories are fruitful for pointing out new mechanisms or more detailed 
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6.5. Diffusion and Migration 157 

mimics, macroscopic theories have the advantage of a simpler and more com
pact scheme. Furthermore, as a recurrent theme, a macroscopic theory allows 
the framing of the scheme within a thermodynamic context, which results in a 
selection of physically admissible phenomena. 

A macroscopic thermodynamic investigation of polymer diffusion in non-
homogeneous flows was developed by Drouot and Maugin (1983) by modeling 
the polymer solution with a vectorial internal variable (see Paragraph 6.4D). 
They also allowed the constitutive properties of the solution to be described by 
second-order velocity gradients (a second-order gradient theory in the sense of 
Chapter 2). They deduced a cross-streamline migration effect. They showed 
that, accordingly, a second-gradient model deprived of the internal variable 
is inadequate for a satisfactory account of polymer diffusion. More recently, 
Morro et al. (1990) have set up a more refined scheme where the polymer 
solution is modeled as a binary mixture. Essentially, the macromolecules con
stitute the dispersed phase (with properties indexed by d) while the solvent is 
a classical liquid (index L). Then the internal variable, a tensor K such as a 
conformation, is ascribed to the dispersed phase and the second-order velocity 
gradient to the liquid. Without entering into details, it is worth mentioning the 
main thermodynamical equations of this modeling. The mixture is assumed 
to consist of norirreacting constituents, each one assumed incompressible for 
simplicity (but the mixture as a whole is compressible). Then neglecting heat 
conduction, the reduced dissipation inequality is shown to read 

$ = tr (<7LDL + FDjK) + m • (vL - vd) + cL ■ (ftL -Sld)>0, (6.5.101) 

where fi/, and Qd are vorticity vectors related to liquid and dispersed phases, 
and m and ci are the exchanges of linear and angular momenta between 
phases. In this modeling the extra flux of entropy k is given by [compare to 
(6.4.63)] 

k = A(vd - v L ) , (6.5.102) 

where A is an arbitrary function of time which contributes terms A0 and — A9 to 
the partial pressures p^ and pi of the constituents. In (6.5.101) the dissipative 
mechanisms are described by the fields m, c^,, D/, and J- (as these vanish 
at thermodynamic equilibrium). Then thermodynamic schemes for modeling 
diffusion fluxes proportional to (K : VV)v£, can be elaborated, which satisfy 
the dissipation inequality (6.5.101). The exploitation of the latter shows that a 
VVv^-depedent model can produce coupled dissipative constitutive equations 
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of the following type (Morro et al., 1990; the energy is assumed to be quadratic 
i n K ) 

DjK = KX6K + K2BL - a (VVvi ) • m + • • • 

v t - yd = i/jm + a<5(K : VV)vL + T(DL : VV)vL + • • • (6.5.103) 

aL = 2T)VDL - K2SK - r (VVv L ) • m + • • • , 

where «i , K2, V\, r]v, r, a, and 6 are macroscopic material coefficients con
strained by thermodynamical inequalities. The second of Eqs. (6.5.103) con
tains the looked for phenomenon. This must be compared to the results of other 
works. For instance Lhuillier (1983), by using a classical theory of mixtures, 
arrives at an expression for the relative acceleration containing terms which, 
in the present notation, read div(^K + K.F) and div ox. So he provides an 
expression for the force that causes migration via the divergence of the stress, 
and then through a scheme conceptually akin to the one above, but without 
introducing a VVv£,-dependence. An analogous procedure was developed by 
Sehkon et al. (1982). The procedure of Tirrell and Malone (1977), although 
essentially microscopic in character and without thermodynamic analysis, re
sembles more closely the above presented VVv/,-dependent model. 

6.6. Vorticity and Conformation 

With their generally entangled conformations macromolecules should be prone 
to being strongly influenced by vortices, if the latter are of a length-scale that 
matches the macromolecules. With this coupling phenomenon in view, we may 
ask for the thermodynamical admissibility of such couplings, if any. To that 
purpose it is convenient (Maugin and Drouot, 1991) to imagine that the field 
of vortices is described a priori by a field of axial vector <D, an intrinsic spin, 
which is not related to the rate-of-rotation or vorticity tensor Q, of the v-flow. 
Through rotational invariance, one is led to introduce a relative spin density 
u> = u) — fi, where fi = (V x v)/2. This relative spin measures the deviation of 
intrinsic spin from the local vorticity. With neglect of heat conduction and with 
an energy-density W = W(0,K,D,u), one can deduce a reduced dissipation 
inequality in the following form: 

* = tr (CTA(1) + BA ( 2 ) + TDCK) +A-Dcu>Q, (6.6.104) 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



6.6. Vorticity and Conformation 159 

where we have set 

a := a + (A <g> w), + (^K + K.F) + (BD + D B ) , (6.6.105) 

and 
A<»> = D , 
A(2) : = t) - (Vv • D + D • Vv) , 

DCLJ := u> — (Vv) • u;, 

DCK := K - (Vv • K + K • Vv) = K, 

(6.6.106) 

Here, convected-time derivatives — cf. (6.3.24) — naturally appear instead of 
Jaumann derivatives. The kinematic tensors A ^ , i = 1,2, are the first two 
Rivlin-Ericksen tensors. The introduction of the new stress tensor a shows 
that the stress will in general contain non-Newtonian contributions involving 
both the elasticity of polymeric chains through T and B and also a contribution 
due to the intrinsic spin which is not ruled out by time-symmetry conditions. 
At thermodynamic equilibrium, among other constraints we shall have 

Dcu) = 0 . (6.6.108) 

If Q = fi initially, then this property is conserved by convection according to 
(6.6.108). This is the essence of Helmholtz's theorem in perfect fluids. Outside 
equilibrium, the dissipation inequality (6.6.104), which still is of the classical 
bilinear form although containing a significant number of terms, can be ex
ploited as in previous cases. In particular, evolution equations can be obtained 
for both K and u>. These two will couple, resulting for instance in dissipative 
constitutive equations of the general type (Maugin and Drouot, 1991): 

a=Af(K,u)-D + a{K,Lj), 

Dcu = -T-1{D,K,w)-u, (6.6.109) 

DCK = - T ^ ( D , K , w ) : K + K 2 D + K(D,u), 

where M and T^-1 are fourth-order tensors and a, T~ l , and K are second-order 
tensors of which the last one is homogeneous of degree two in w. The latter 

and 
T - - — \ - - — dW 

dK' du' dB 
(6.6.107) 
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160 Chapter 6. Viscosity in Complex Fluids 

dependence and that of T " 1 on K are the sought couplings between confor-
mational behavior and the intrinsic spin evolution. Satisfaction of (6.6.104) 
imposes the restriction that the coefficients present in Eqs. (6.6.109) cannot 
all be independent. The modeling sketched out above can be further refined 
by introducing a weakly nonlocal behavior assuming that the energy density 
depends on the additional gradients VVv, VK and Vw. We shall not pursue 
further the arcanes of these technicalities. 

6.7. Liquid Crystals 

Liquid crystals are obviously complex fluids as (i) according to their very name 
they are similar to fluids as they can flow, and to crystals as they show a ten
dency towards some ordering, and (ii) physically they are solutions of macro-
molecules in a solvent. Concerning the last aspect, there seem to be three 
large classes of liquid crystals known as nematic, smectic and cholesteric liquid 
crystals (we refer the reader to de Gennes, 1974 for the essential properties 
of such materials; see Fig. 6.5). We shall focus particularly on nematics be
cause the latter admit a thermodynamic description which closely resembles 
that already given for polymeric solutions. The natural tendency of a bunch of 
"particles" in liquid crystals is to agglomerate in more or less aligned groupings 
so as to minimize energy. Thus these materials present a prevailing order which 
may be described adequately by a vector field of directions, called director, n. 

I M I N I 
I I Mi l I 

h | , | MMMIIMIL /,/Y7, 
i i i ij 11 r M 

(a) (b) (c) 

Fig. 6.5. The three large classes of liquid crystals: (a) nematic, (b) smectic, (c) cholesteric. 
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6.7. Liquid Crystals 161 

This type of description goes back to F. C. Prank, Oseen and J. L. Ericksen, 
and was further developed by Leslie (1968) using a standard thermodynamic 
formalism, that is, assuming that n is a new vectorial degree of freedom, re
quiring thus an additional balance equation. If the inertia is negligible in that 
equation (this is usually the case), then n can be considered as an internal 
variable. But the ordering already mentioned requires accounting for the gra
dient, Vn, of n, as the uelasticity', of the liquid crystal can in fact be measured 
only by this quantity (as usually |n|2 — const. = 1 by normalization). Thus we 
are in the framework delineated in Paragraph 4.7B that we can apply directly 
(Maugin, 1990). That is, the dissipation is given by (this has to be exploited 
following T.I.P.) 

$ = tr(frD) + A ■ Djn - (S • V)0 > 0, (6.7.110) 

where 

(6.7.111) 

dW (6-7-H2) 

&ij '■= aij + P$ij + B(iknkj) , 

ki = e-lBiq{Djn)q, 
and 

dW W = W(0,nyn), S = ~ , 

A;--—--(— d ( 9W X\ B 9W 

dni \drii dxj \d(nij) J J ' ,J ^rii,j ' 

and the energy W satisfies the rotational invariance: 

dn^n>] + O^**"** + dn^S>]pnk>P = ° • ( 6 - 7 1 1 3 ) 

This last property has been used in computing the time derivative of W and 
introducing the Jaumann derivative Djn. The first of (6.7.111) means that 
liquid crystals do not obey Euler's hydrodynamics at rest unless the distribution 
of n's is spatially uniform. As a matter of fact it is not difficult to recognize 
in the above-formulated set the equations that govern the thermodynamics of 
nematic liquid crystals (e.g. Muller, 1985, de Gennes, 1974, Kats and Lebedev, 
1988), where W is Frank's energy density, the director's inertia is neglected, 
and D j n is written as a linear afflne function of A [by application of T.I.P. to 
the inequality (6.7.110)], thus providing an evolution-diffusion equation for the 
internal variable n. The evolution-diffusion equation (equation of motion) for 
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162 Chapter 6. Viscosity in Complex Fluids 

the fluid velocity v will be highly nonlinear in n as a depends on A. The extra 
entropy flux k in (6.7.111)2 agrees with that obtained by Kats and Lebedev 
[1988, p. 23, Eq. (16)] once Djn is taken linear in n. 

The many analogies between the continuum thermodynamic theory of ne-
matics and that of strongly anisotropic fluids and fluid suspensions of fibers as 
sketched in Paragraph 6.4D above are obvious. 

But this is not all, as liquid crystals are also subjected to phase transitions, 
in particular from a high-temperature isotropic phase to a nematic phase (there 
are other types of transition and other phases which are not our concern here). 
The relevant order parameter is the second moment of n or, rather, its devia-
toric part: 

Q : = / n ® n - i l \ , t r Q = 0. (6.7.114) 

Then the phase-transition theory of such liquid crystals is to be based on a 
free-energy density W = W(0, Q, VQ) and this looks very much like a T.I. V., 
with spatial gradients of the tensorial internal variable Q for which we have 
the general framework of Paragraph 4.7B on account of the additional remarks 
made in Sec. 4.8. In particular, a relaxation equation of the type (4.8.62) will 
follow, but as Q is essentially of the same nature as a trace-free conformation 
K, we may also have gyroscopic couplings of the type mentioned in Para
graph 6.3B. Pioneering works along that line are found in de Gennes (1971). 
Anisotropic optical properties, e.g. the Kerr effect (cf. Maugin, 1988, p. 46), of 
these nematic solutions are governed essentially by Q since Q and the optical 
tensors are proportional. This has direct applications in optical investigations 
of liquid crystals, e.g. optical-field induced ordering (Prost and Lalannes, 1973; 
Drouot and Maugin, 1985). The theory of liquid crystals presented by H. Hess, 
W. Muschik and their co-workers in a series of work in the 1990s (e.g. Blenk 
and Muschik, 1991; Blenk et al., 1991) makes use of an alignment tensor which 
belongs to the same class as Q or K. But the typically nematogen behavior 
can also be reproduced by considering directly the distribution function f as a 
scalar internal variable and then accounting for the Lifshitz or Onsager entropy 
term (see Grmela and Chlon Ly, 1987). In general, with or without additional 
gradient, liquid crystals easily enter the thermodynamic framework of T.I. V. 
by a careful selection of a meaningful variable which may be either a scalar, a 
vector, or a second-order tensor. 
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6.8. Structurally Complex Flows 163 

6.8. Structurally Complex Flows 

We should not, obviously, mistake a structurally complex fluid, whose com
plexity results from the multicomponent feature of the fluid and structurally 
complex flows such as those which arises in turbulence in more or less definite 
conditions of velocity, velocity gradient, and "size" of the flow (in fact depend
ing on the value of a nondimensional number called the Reynolds number which 
compares the viscous and kinetic energies). We acknowledge that the manisfes-
tations of turbulence are related to combined effects of nonlinearity (through 
convection) and dissipation in an apparently noncomplex fluid, although addi
tives in a fluid may have a strong influence on turbulence, e.g. drag reduction 
effects by polymeric additives. These manifestations of turbulence are some
times modeled by the (relatively) simple Burgers equation (convection and 
simple shear viscosity). However, even fruitful contributors to the theory of 
statistical turbulence such as Rotta (1951) or Lumley (1979) presented some 
views on turbulence that amount to trying to characterize some aspects of 
turbulence (e.g. return to isotropy) by means of constitutive equations. This 
is an original view which does not receive general agreement in the "turbu
lence" community. The author (Maugin, 1981c) has made a proposal in that 
direction by noting that a working regime which, experimentally, exhibits time 
and space scales, may be described by thermodynamically constrained general
ized constitutive equations that rely on the consideration of internal variables. 
Indeed, far from boundaries, the development of Reynolds' stresses in homoge
neous flows may be described by tensorial internal variables. Two of these are 
necessary in order to account simultaneously for a characteristic time r and a 
characteristic length A (or a characteristic velocity q = A /T) . For instance, if 
u is the fluctuation velocity about the mean flow velocity v, we may introduce 
a "deformation measure" of Reynolds stresses, R (this is a second-order ten
sor which measures velocity correlations), and a "deformation measure" of the 
energy related to fluctuation-velocity gradients by ((...) indicates an ensemble 
average) 

R = g-2{u<g>u) = R T , 
' ' (6.8.115) 

U = (A/<?)2(Vu ® (Vu)T) = U T . 

In the spirit of T.I. V. the free energy per unit volume volume of the incom
pressible fluid defines new thermodynamic forces (tensors) H and M by 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



164 Chapter 6. Viscosity in Complex Fluids 

and the evolution equations for R and U are to be looked for in the form (V 
here stands for an objective time derivative) 

D R = 7l(R,U;D), P U = W(R, U; D ) , (6.8.117) 

where D is the strain-rate tensor of the mean flow, and there remains the 
dissipation inequality 

$ i n t = tr ((7DD -(- UTl + MU) > 0. (6.8.118) 

Possible expressions for aD and 2?R are (many couplings may be envisaged) 

aD = 2r?vD + 7 R + <5U + • • • , 7 = q2 > 0, 
1 1 (6.8.119) 

VR=— (R - Ro) + C(trU)l + • • • , Ro = - l , 
T d 

where r is the time constant associated with return to isotropy. Here no 
problem of closure — the problem of turbulence — arises as the closure is given 
by a constitutive assumption (see, e.g. Favre et al., 1979, for such closures). 
The above, however, is worth only as a sketchy example. 

6.9. Conclusions 

To conclude this chapter on fluid viscosity, we should also mention that in 
a spirit combining the idea of internal variables (e.g. the conformation K of 
polymeric solutions or the order parameter Q of liquid crystals), avoiding the 
introduction of gradients, but applying a reasoning close to that of extended 
thermodynamics (i.e. assuming that the so-called internal variable has to sat
isfy an ei/oZur-ion-diffusion equation, which requires a closure hypothesis to for
mulate the flux present in that equation), we refer to the works of Hess and 
Pardowitz (1981), Hess (1986), Hess and Koo (1989), and Drouot and Berrajaa 
(1993). We refer the reader to these authors for this fruitful line of approach 
which allows one to consider anew the effect of "apparent slip" at a solid 
boundary, but also presents the difficulty of having to solve spatially partial 
differential equations for the components of K, which can be achieved only in 
very simple situations and with stationariness of the flow (e.g., steady shear 
flow). 

H = - dW 
0R 

= H r , M = - ew 
dV 

= MT, (6.8.116) 
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6.9. Conclusions 165 

More complicated schemes introducing several internal variables find their 
justification in some fluid solutions such as so-called magnetic fluids which 
in fact are colloidal suspensions of magnetic particles.3 Rather than forming 
ellipsoidal blobs, the magnetic particles suspended in the magnetic fluid may 
show a tendency to form chains and needle-like aggregates in a magnetic field. 
Such a situation can be tackled by making an astute choice of internal vari
ables. Following Kiriushin (1983), we consider the average relative stretch of 
forming chains 

e = ^ , (6.9.120) 
'0 

and a unit orientation vector n in the direction of microscopic chains of equi
librium length Zo as internal variables. This locally defined direction n plays an 
important role by endowing the fluid with directional properties, not unlike the 
director field in liquid crystals. We note that 1 +e = (l/lo)- Thus we consider 
an energy W = W(G,e, n) and define the following objective (convected) time 
derivatives: 

n := ri - (n • V)v + n(n • D • n) = n + n(n • D • n ) , 

! = e - ( f / J o ) ( n - D - n ) . 

The intrinsic dissipation will read 

$intT = tT(aT>)+T-n + ££, (6.9.122) 

wherein 
*U = °?i + 7linj) + \£ (1 + e)-T- n\ninj , g 

Ti = -dW/dm, £ = -dW/de. 

As in previous examples, application of T.I.P. to the separate dissipation in
equality $i„tr > 0 will yield a constitutive equation for a, and hence also for 
aD through the first part of (6.9.123) once W is prescribed, and relaxation 
equations for n and e. The present model is a formalization (Maugin, 1993b) 
of the one briefly sketched out by Kiriushin (1983). 

The study of fluid viscosity would not be complete without mentioning 
the phenomenon of superfluidity which manifests itself through a complete 
lack of viscosity in certain circumstances. This has also been approached in a 

3Sometimes these fluids are also called "ferrofluids" but this is also a trademark (Fer-
rofluidic Corporation, USA). 

(6.9.121) 

(6.9.123) 
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166 Chapter 6. Viscosity in Complex Fluids 

continuum framework which is none other than T.I. V. In that case the relevant 
internal variable is a kinetic quantity, in fact an internal linear momentum 
which relates to the relative motion of normal and superfluid components in 
the two-fluid description of superfluidity. Its evolution equation, coupled to the 
usual flow equation and the stress constitutive equation, is an internal equation 
of motion; but it is still constrained by the second law of thermodynamics. This 
appears to be one of the most satisfactory continuum theories of superfluid 
helium (see Lhuillier et al, 1975). 
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Chapter 7 

VISCOPLASTICITY AND 
PLASTICITY 

7.1. Introductory Remarks 

Thermodynamics of solids began with George Green (1793-1841)1 when he in
troduced the conservative behavior of finite-strain elasticity through an energy 
function or potential. This line of thought was taken over by some scientists 
such as G. Piola in Italy, W. Thomson (Lord Kelvin) in England, KirchhofF 
and later Voigt in Germany, and Boussinesq and the Cosserat brothers in 
France, but we had to wait for P. Duhem's Hydrodynamics, Elasticity and 
Acoustics (1891) and the last part of his Treatise on Energetics (1911) before 
we were able to see these thermodynamic notions, including that of free en
ergy, taken into account in discussions on stability.2 The subject seems to 
have more or less laid dormant until a revival of thermodynamics in solids, 
essentially through Eckart's (1940, 1948) works and some of P. G. Bridgman's 
(1943, 1950, 1953) deeply thought remarks, brought irreversibility into the 
picture. P. Duhem has thought about this, but often in vain (see Manville, 
1927). Then A. C. Eringen (1960), G. A. Kluitenberg (1962a,b; 1963), and 

' G . Green is an interesting scientific figure who, in addition to being one of the creators of 
potential theory and vectorial analysis, presents two original traits. Firstly, practically self-
educated in mathematics and a miller by profession, he first did creative research and then 
went to Cambridge as a student only to practically leave that world just after graduating; 
Second, he had seven children (whom he recognized in his will) from the same woman whom 
he never officially married, being apparently a confirmed bachelor. But these were pre-
Victorian times! (information provided by L. J. Challis and A. J. M. Spencer, Nottingham). 
Whether these anecdotal facts have any bearing on thermodynamics is left to the reader's 
judgment. 

2This was revisited by modern authors (see Ericksen, 1991). 

167 
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168 Chapter 7. Viscoplasticity and Plasticity 

Kestin (1966) were instrumental in bringing the complex behaviors of solids 
into contact with thermodynamics. To proceed further, however, more math
ematics was needed, especially in the province of convex analysis. This was 
achieved rather recently with the works of H. Ziegler (1957 to 1970), the math
ematical analysis of J.-J. Moreau (1971), and the more physical insight mixed 
with applied mathematics of J. Mandel (1965), P. Perzyna (1966, 1971, 1974, 
1978), Nguyen Quoc Son (1973), and others (P. Germain 1973; P. Suquet, 
1984; Germain et al, 1983). 

This chapter will present only a few essential elements on the thermome-
chanics of solid-like behavior. The reason for this is that recent textbooks and 
treatises develop that theme at length in a spirit that fits the present book, so 
we leave it out to avoid duplication.3 

7.2. Viscoelasticity of Solids 

Apart from the rational-thermodynamics approach due to Coleman and Noll 
(1961), the thermodynamics of the viscoelasticity of solids finds its roots in 
works by Eckart, Kluitenberg, and others. Rheological models, exemplified in 
Fig. 4.1, have played a crucial role in this development, see, e.g. Reiner (1960) 
and Vyalov (1986) for an extensive use of these models without thermodynamic 
framework, and Mandel (1965) for one of the first clear relationships with ther
modynamics. The most elementary models are those of Kelvin-Voigt (viscous 
and elastic elements in parallel) and Maxwell (viscous and elastic elements 
in series — Fig. 4.1) for linear behaviors. Whereas the former is, like New
tonian viscosity in fluids, derivable in the classical T.I.P. framework without 
internal variables (see Paragraph 3.2D) and is not a very good model of solid 
viscoelasticity, the latter is a good one but is reputedly not amenable through 
a thermodynamical analysis. This last statement is not true as the thermo
dynamic with internal variables accommodates the formulation of Maxwell's 
model and, therefore, of the so-called standard model of rheology (cf. Maugin, 
1992a, pp. 42, 43). To prove this we consider the framework of small strains 
and the intrinsic dissipation (5.6.46)2 for which 

£ P = 0 , <rv = 0, a = {£"}, (7.2.1) 

3These books include Mandel (1971), Germain (1973), Ziegler (1977), Lemaitre and 
Chaboche (1990), Lubliner (1990), and Maugin (1992a). 
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7.2. Viscoelasticity of Solids 169 

where ev is an infinitesimally small strain, and we take an energy and dissipa
tion potential of the form 

W = W(e-ev,9), V'=V*((T,9), (7.2.2) 

from which it follows that 

dW dW 

The second of these equations indeed means that it is the same stress which 
acts on both elastic (<7e) and viscous (.4) elements, hence the setting in series 
in Fig. 4.1. In agreement with Mandel's remark as alluded to in Sec. 4.4, 
it is indeed the strain related to the viscous element (ev) which provides a 
good choice as internal variable. Now if we let W depend quadratically (linear 
elasticity) on (e — ev) and V* depend quadratically (linear viscoelasticity) on 
a — in agreement with T.I.P. — it is readily shown by elimination of ev by 
taking the time derivative of e, that a and e are finally related through a DRM 
of the type 

(T + T - 1-<7 = E - e , (7.2.4) 

where E and r _ 1 are linear operators with components representing elasticity 
coefficients and reciprocal relaxation times, respectively. With E and r _ 1 

reduced to scalars, we have the behavior of the model of Fig. 4.1, i.e. the 
Maxwell model that, supposedly, could not be placed under the umbrella of 
thermodynamics. 

A combination of the model of Kelvin-Voigt and Maxwell's modeling will 
yield the so-called standard model of the rheology of solids in small strains as 

T - 1 . a + a - ( r - 1 E ) - £ + E - £ , (7.2.5) 

where r " 1 , E and T~XE are three linear operators (fourth-order tensors in the 
fully anisotropic case), whose components may still depend on temperature. 
When these operators are isotropic, so that proportionality factors replace the 
operators in (7.2.5), we have the mathematical expression of the rheological 
model in Fig. 7.1. Let H, N, M, and KV denotes the Hookean (linear spring), 
Newtonian, Maxwell and Kelvin-Voigt rheological models, and the symbols — 
and || denotes the setting in parallel and series, respectively. Then we have: 

s = - de , a = ae = A = 
d{e - £v) 

* i n t r = O : CV . (7.2.3) 
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170 Chapter 7. Viscoplasticity and Plasticity 

H, 

« — v w v — • — « — 

Fig. 7.1. Standard model of solid viscoelasticity. 

• Kelvin-Voigt model: KV = H || N; 
• Maxwell model: M = H - N; 
• Standard model: S = KV - H0 = (Hi || N) - H0; 
• Poynting-Thomson model: PT = H || M; 
• Lethersich model: L — N - KV; 
• Jeffrey model: J = N || L; 
• Burgers model: Bu = M - KV; etc. 

For example, the J-model introduced by the geophysicist H. Jeffrey, often 
used to model the Earth's crust has formula: 

& + T-1a = 2T)v(£+Tj1i), (7.2.6) 

where T„ and TJ are two relaxation times. 
In a general manner multi-element models built from H and N elements 

yield stres-strain relations of the following general time-rate type: 

a0cr + G\o + a-ia H V anay > 

= b0E + b1i + b2£+---+ bmeW , (7.2.7) 

where (n) denotes the nth order time derivative, and it is to be noted that (m) 
is not necessarily equal to (n). This is illustrated by the J-model. A prob
lem of causality (initial conditions) will naturally arise given the possibly high 
degree in the time derivatives involved (this problem starts with the second 
derivative!). 

All the above models are viscoelastic ones as they present characteristic 
times but no threshold. Their thermodynamic realization requires in general 
decomposing the total strain e and the Cauchy stress a in as many elements 
as necessary with the corresponding interpretation as internal variables (see 
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7.2. Viscoelaaticity of Solids 171 

Kluitenberg, 1984, for these laborious generalizations). The natural question 
which arises then is whether this procedure can be generalized to finite strains'! 
For viscoelasticity this has been examined in detail by Sidoroff (1976) by con
sidering the notion of internal variables and the existence of one or several 
intermediate configurations (cf. Fig. 5.4 in the case of one such configuration) 
following along the path paved by Perzyna (1971a,b). These multiple inter
mediate configurations in fact serve as nonlinear generalizations of Theological 
models. The Maxwell model in finite strains was thus obtained by Gorodzov 
and Leonov (1968) and Buevich (1968). In his masterly constructed classifica
tion Sidoroff (1976) has shown, after linearization, how important the model 
of Biot (1954) was in this general background. Characteristic of T.I.V., this 
model in all generality involves n observable variables a and p internal vari
ables a and two quadratic forms, an energy W(a, a) and a dissipation T>(a, a) 
— this will typically result in a DRM such as that described by (7.2.7). 

In conclusion, we note the two main characteristics of the models studied 
heretofore: (i) there is no apparent limit to the value of stresses involved, and 
(ii) there exists at least one characteristic time, which is typical of viscosity. In 
viscoplasticity, the first characteristic is lost as there appears to exist, at each 
time, a threshold in stress, while the second characteristic remains. This is 
classically illustrated by Bingham fluids, i.e. those highly viscous toothpaste
like materials which flow like fluids until the stress involved has reached such a 
level that the material moves en bloc as if it were rigid (we have all experienced 
this with toothpaste). This enters a thermodynamic framework by considering 
the following model: 

(7.2.8a) 

aD. 

and there exists a 

£>' 

a = 

$intr -

a = 

{evp}, 

■■ aD : £"P 

dW 
: de ' 

W = W(e -

= Aa>0, 

dW -
da 

pseudo-potential V* such that 

4??„ <!l °D II --cr0)2, a = 

evp), 

- a = c 

ivP = 

where (• • •) denotes the positive part, i.e. (a) = 0 if a < 0 and (a) — a if 
a > 0, and || aD \\ must be understood as the norm of the deviatoric part of 
the dissipative stress, i.e. 

dV' 
daD' 

(7.2.8b) 
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172 Chapter 7. Viscoplasticity and Plasticity 

| | ^ | | = ( t r [ ( < x D ) < T ) 1 / 2 -
With e = se +evp, and W quadratic in ee, we obtain an evolution equation for 
£ in the form 

£ = E - l cr + 
-o-o) D\d 

2Vv TD (O (7.2.9) 

where E _ 1 is the tensor of elastic compliances. In the absence of elasticity, the 
first term in the right-hand side is not present, and we have an incompressible 
Bingham fluid, per se. If, furthermore, the yield stress OQ vanishes, then this 
further reduces to an incompressible Newtonian fluid, while if it is 77,, which 
tends to zero, then we recover the behavior of an elasto-plastic body with a 
Mises type of flow rule (see below). In one dimension the model (7.2.9) reduces 
to the rheological model 

i = E~1&+ -—{cr -cr0). 
2T7„ 

N 

a 

r <JV 

H 
—AAAAi— VV V V — • — 

a 

Fig. 7.2. Bingham visco-plastic rheological model. 

This corresponds to the rheological model sketched out in Fig. 7.2 with rheolog
ical recipe: Bi = (N || SV) — H, where SV designates a Saint-Venant friction 
element (perfect plasticity). Indeed, in this rheological model we have 

£° +£ vp £N = £sv c"P 

a = aN + oSv , o- = Eee , ON = 1r)v£N = 2rjv£vp, 

isv = (signo-Sv)\esv\ for |CTSV-| > <?o, 

from which there follows the above equation after elimination of ie and ivp. 
Remarkably enough, this behavior (in the absence of elasticity) results from a 
dissipative mechanism which is the sum of two normal dissipative mechanisms, 
viscosity and plasticity (cf. Germain, 1973, p. 200). Normal mechanisms are 
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7.3. Plasticity and Viscoplasticity in Small Strains 173 

those for which we can write an evolution equation of the form (5.4.39) i. This 
can be seen if we note that the first of (7.2.8a)3 can be rewritten as 

where o~v is of the viscous type in that it produces a power that is homogeneous 
of degree two in evp, while av is of the plastic type developing a power which 
is homogeneous only of degree one in e"p. Obviously, the pseudo-dissipation 
potential introduced here is of the same type as the Perzyna potential (5.4.39)2-
Out of curiosity we note in Brun (1984) the case of a dissipative mechanism 
which involves two dissipative mechanisms, but only one of these is normal. 

In plasticity, the second characteristic above is also lost in most cases: no 
time scale is apparent in the phenomenon, and this should correspond to some 
singular behavior as the dissipated power a priori involves time rates. This is 
examined at some length in the next section. 

7.3. Plasticity and Viscoplasticity in Small Strains 

We are placed in the framework of Eqs. (5.6.44)-(5.6.46) for which we may 
discard the index a once we have recorded its meaning and we assume that no 
viscous phenomena are present. Thus Eqs. (5.6.44) through (5.6.46) reduce to 
the following: 

(7.3.10) 

(7.3.11) 

(7.3.12) 

$ = $intr + $>th>0, (7.3.13) 

S>intr = a:ip + Aa, $ t h = 0 q - V ( O . (7.3.14) 

Here it is emphasized that ee, the elastic strain, is an observable variable, while 
a contains all internal variables. This follows the following essential remark of 
Bridgman (1950). During isothermal plastic straining, i.e. when the material 
is yielding, there is no change in the state of the system, so that the strain e 
does not in this view constitutes a good parameter of state. The reason for this 

£ = 

w = 

s = 

ee+ep = 

W(ee,a). 

dW 

(Vu 

1 

a 

) . . 

convex in e' 

dW 

e a n d 

A = 

a, 

dW 
da. 

*,ntr = ov : i^ + CTP : ivp, a = av + a?, 
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174 Chapter 7. Viscoplasticity and Plasticity 

is that plastic deformation appears to be a process of energy dissipation (that 
is essential) but at constant statel The proper strain parameter is identified by 
letting the system unload and relax so that only the reversible strain ee can 
enter the thermal equation of state or the expression for energy, W (cf. Kestin, 
1966, pp. 369, 370). This is what is expressed by (7.3.11) to which convexity 
conditions are added for stability reasons (see below). 

Plasticity is characterized then by the fact that stress is constrained to re
main in a closed convex set C of stress space and that it is essentially strain-rate 
independent, so that the dissipation $j„tr can only be homogeneous of degree 
one in the fluxes (generalized thermodynamic forces) a and A. According to 
the fundamental theorem of convex analysis outlined in Sec. 5.4, we thus have 
(applying a stronger version of the second law) 

$ i n t r = Y - X = $ ( X ) > 0 , (7.3.15) 

Y = (a,A), X = ( £ P , Q ) , (7.3.16) 

and the equivalent statements: 

(i) principle of maximal dissipation: 

$ ( X ) = s u p Y * X > 0 , (7.3.17a) 

or 
( Y - Y * ) - X > 0 , V Y * e C ; (7.3.17b) 

(ii) normality law. 

X = A J £ , (7.3.18a) 
at all regular points of the yield surface dC : / ( Y ) = 0 in generalized stress 
space, where A > 0 is the so-called plastic multiplier to be determined later on, 
and more generally and in an abstract way 

X € NC(Y), (7.3.18b) 

where Nc denotes the cone of outward normals to C at Y. Equation (7.3.18a) 
or (7.3.18b) is an evolution equation of somewhat singular character in that 
X = 0 if Y lies inside C. 

In the present thermodynamic approach the pseudo-dissipation potential 
V* is none other than the flow surface / = 0. We say that we are dealing with 
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7.3. Plasticity and Viscoplasticity in Small Strains 175 

associated plasticity as dissipation is associated to the flow rule. Historically, 
flow rules were found outside any thermodynamic setting, and the knowledge 
of the fundamental equation / = 0 remains an experimental datum (except in 
some polycrystals where a sensible / = 0 can be justified on some microscopic 
basis; cf. Maugin, 1992a, p. 196). We refer the reader to specialized books 
on elastoplasticity (Maugin, already cited, Lubliner, 1990) for a list of exper
imentally discovered flow rules or yield surfaces, or plasticity criteria, / = 0 
or, for that matter, pseudo-dissipation potentials. All surfaces f = 0 observed 
so far are indeed convex, but some of them are not closed (e.g. in geophysical 
materials). Typically, however, the mathematical expression of such flow rules 
relates to a criterion which involves either a pure stress level or some stress 
energy, for instance, the celebrated Tresca criterion observed experimentally 
by H. E. Tresca in 1872 relates to a maximum shear whereas the ubiquitous 
Hubber-Mises criterion (often referred to as Mises criterion, and which was 
proposed only for its mathematical simplicity by its two proponents — in 1904 
by Hubber and in 1913 by von Mises) in fact relates to a maximum-distortion 
energy (i.e. excluding dilatation effects). The Rankine and Beltrami criteria, 
now essentially of historical interest, relate to a maximum stress, and a max
imum strain energy, respectively. The Coulomb criterion involves an internal 
friction (hence its validity for powder-like materials; this one involves a non-
closed convex set) and the von Schleicher (1926), and Gurson (1977) criteria 
try to accommodate the influence of the mean stress and porosity. Whenever 
the surface / = 0 is a fixed experimental datum which depends only on the 
material, we say that we have perfect plasticity. When this surface evolves with 
loading, we say that we have plasticity with hardening. 

We make more explicit some of the above outlined points with the aid of a 
simple example involving hardening. Assume that / = 0 is regular enough so 
that we can unambiguously use the formulation (7.3.18a) which reads in full 

iP='Xfo-> d = A S < <7-3-19> 
where, for the time being, A > 0 if / = 0 (we are sitting on the yield sur
face) and A = 0 if / < 0. Now sitting on the yield surface is not enough to 
guarantee that there is any evolution of ep. But a simple reasoning based on 
the exploitation of the variational inequality (7.3.17b) — and considering Y 
at instant t + h and t — h, and Y* at instant t with h infinitesimally small and 
taking the limit of vanishingly small h — leads to the following orthogonality 
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176 Chapter 7. Viscoplasticity and Plasticity 

condition between "velocities": 

Y X = 0. (7.3.20) 

Using the definition of Y = (a, A) and the condition of convexity of W (so 
that our material is generalized standard in the sense of Halphen and Nguyen 
Quoc Son, 1975), Eq. (7.3.20) shows that in the absence of hardening (no a in 
the formulation), W = W(e — ep), we have the strict orthogonality relation 

&:ip = 0; (7.3.21) 

while in the presence of hardening, W = W(e — ep, a ) , we have the inequality 

&:ip>0. (7.3.22) 

The latter condition, which results from both the principle of maximal dis
sipation and the convexity of W, is a local stability condition which is none 
other than the celebrated Drucker's inequality. For one-dimensional effects, 
this means that increments in stress and plastic strain can only be in the same 
sign. As a consequence of (7.3.21) by expressing the consistency condition, 
f = 0, we can find an expression for the plastic multiplier A in terms of & or 
i, and also prove the more accurate conditions: 

A > 0 i f / = 0 a n d / = 0, 
(7.3.23) 

A = 0 i f / < 0 o r / = 0 a n d / < 0 . 

This clearly distinguishes loading and unloading from one another. This is also 
what makes elastoplasticity with hardening essentially different from nonlinear 
elasticity. Indeed, if only loading is considered then there is no way to dis
tinguish plasticity from a special type of nonlinear elasticity (with appropriate 
convexity conditions on the "elastic" potential — see Maugin, 1992a). The
ories of elastoplasticity, such as the Hencky-Nadai-Ilyushin one, which only 
envisage loading, are not theories of elastoplasticity per se. 

To be more specific, consider the case where a is made of EP itself (not 
only this is not forbidden, but this is very meaningful indeed) and a scalar /?, 
i.e. we note 

c< = (ep,t3), (7.3.24) 
together with the energy and convex stress set 

W = l(e-ep)-E-(e-ep) + W(0), 
2 (7.3.25) 

C = {((7, B)|{tr (a*)2}1 /2 + B - a0 < 0, aQ > 0} , 
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7.3. Plasticity and Viscoplasticity in Small Strains 177 

where E is the (fourth-order) tensor of elasticity moduli. The laws of state are 
given by 

*=«? = - * ' A = -8*=°> B = -W = -W (7-3-26) 

with W convex in f3. The presence of the distortion-energy norm in (7.3.25)2 
means that we are building on a criterion of the Hubber-Mises type, in which 
the thermodynamical force B — also homogeneous to a stress — associated to 
(3 has for effect to modify the yield limit <7o- A straightforward elimination of 
A between the two equations (7.3.19) leads to the scalar internal variable /? in 
the form 

0(0 = / {&$) : ep{t')}1/2dt' =: &, (7.3.27) 
Jo 

where only the deviatoric part of ep has to be considered. The quantity defined 
by (7.3.27) is the so-called cumulative or accumulated plastic strain. This shows 
that, indeed, the internal variable /? accounts for the whole history of the 
plastic deformation up to the present time, although no time scale is involved 
in the formulation. This variable is none other than the hardening parameter 
proposed by F. K. G. Odqvist in 1933 to account for the experimental fact 
of isotropic hardening, i.e. the uniform expansion of the flow surface in stress 
space. This surface may also be displaced by a translation of its origin by 
introducing a tensorial internal variable which is none other than the so-called 
backstress — in the first approximation linear in ep — that is responsible for 
kinematic hardening (see Maugin, 1992a, Chapter 5). 

The above presentation, essentially built by Nguyen Quoc Son (1973) on 
the basis of preliminary works by Ziegler (1963) and Moreau (1971), is a beau
tiful application of T.I. V. to a nontrivial case. It shows that contrary to per
sisting rumors plasticity can be incorporated in the framework of irreversible 
thermodynamics (see the interesting remarks in Ziegler, 1970). This elegant 
thermodynamic formulation within the frame of generalized standard mate
rials not only includes the local stability "postulate" of Drucker (7.3.22) — 
so-called positive hardening — but also Ilyushin's celebrated global stability 
criterion according to which: 

Ilyushin's "postulate": For any strain cycle e(t), t € [0,1], £(0) = 
e(l), the strain power is positive or zero: 
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178 Chapter 7. Viscoplasticity and Plasticity 

f a:idt= f a:de>0. (7.3.28) 
Jo Jo 

This was presented as a postulate by the Russian scientist A. A. Ilyushin in 
1948. Here we can prove that the result (7.3.28) follows from the satisfaction 
of the principle of maximal dissipation (convexity of the yield surface and 
homogeneity of degree one of the dissipation) and the convexity of the energy 
function. 

Proof. For generalized standard materials, we have (see Chapter 5) 

dW dW 
W = W(e,a), < 7 = ^ p A=—fa> AeC< (7-3-29) 

and 
(A-A*)-a>0, V / e C . (7.3.30) 

From (7.3.29) we have 
W = o : i — A ■ a. (a) 

Integrating this over the time interval [0,1] (this has been normalized to the 
unit interval as there is no time scale] we have 

/ a:edt= I Wdt + [ A-adt. (b) 
Jo Jo Jo 

The first integral in the right-hand side is estimated as 

W(e(l),a(l))-W(e(0),a(0)) 
fdW\ 

= W{e(0), Q(1 ) ) - W(s(0), a(0)) > ( ^ J [a(l) - a(0)] 

= - ^ ( 0 ) [ a ( l ) - a ( 0 ) ] , (c) 

by virtue of the periodicity of e, the convexity of W in a, and the law of 
state (7.3.29)3. Substituting now from (c) into the right-hand side of (b) and 
considering the integral of (7.3.30) between t = 0 and t — 1 by selecting .4(0) 
as A", we deduce (7.3.28). Q.E.D. 

This result means (classical interpretation of integrals as areas below the 
curve) that the hysteresis loops, in the plane (e, a) in the one-dimensional case, 
can only be followed clockwise. This is a global stability result. If, in addition, 
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7.3. Plasticity and Viscoplasticity in Small Strains 179 

(a) (b) 
Fig. 7.3. Hysteresis loop in elastoplasticity with positive hardening (Ilyushin's "postulate" 
combined to Drucker's inequality makes that only the right-hand figure is admissible. 

we account for Drucker's inequality (7.3.22) at all points of these loops, in 
particular at the maximal and minimal stress points, we see that these hys
teresis loops cannot present any rounded corners: they must exhibit sharp 
corners (included in an accute angle) at upper and lower extrema of the loop 
(see Fig. 7.3). This is a characteristic sign of the periodic response of elasto-
plastic materials with positive hardening admitting a convex energy potential. 
Any experimentally observed markedly rounded extremum on such a hysteresis 
loop is an indicator that either viscosity is present or the material considered 
exhibits some softening (negative "hardening"). Remarkably enough, in his 
studies of what he called, at the time, theory of permanent strains, P. Duhem 
was led to propose a theory of hysteretic phenomena which clearly anticipated 
the exposed results, in particular in so far as the existence of state laws and 
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180 Chapter 7. Viscoplasticity and Plasticity 

convex dissipation are concerned, and also the resulting hysteresis diagram 
with sharp corners (in this respect see Manville, 1927, pp. 307-316).4 

Viscoplasticity in small strain was already exemplified by the Bingham 
model which enters the rigorous "viscoplastic" framework given in Sec. 5.4. In 
the case of solids, however, viscoplasticity is of utmost interest in the plasticity 
of the monocrystal and polycrystals, in which case a finite-strain background 
is usually requested (see next section). 

7.4. Plasticity and Viscoplasticity in Finite Strains 

Plasticity and viscoplasticity in finite strains are the realm of single crystals for 
which the finiteness of strain is essential (see Havner, 1992). The main prob
lems from the methodological viewpoint are the finite-strain generalization of 
the decomposition (7.3.10) and the formulation of an evolution equation for 
the plastic strain and the accompanying internal variables which should now 
possess a good form-invariance as requested in all nonlinear theories of con-
tinua. This includes the identification of a meaningful "plastic rate" and the 
solution of the problem related to "plastic spin". An enormous amount of liter
ature has appeared which testifies of the interest for such extensions. But the 
subject matter becomes rapidly highly technical. For an extensive approach 
to this we refer the reader to original works with special attention to those 
that emphasize the role of internal variables of state, in particular, Mandel 
(1971, 1973), Rice (1972), Zarka (1973), Bamman (1985), Dillon (1967), Kra-
tochvil and Dillon (1969), Stolz (1982, 1987), Teodosiu (1975), Teodosiu and 
Sidoroff (1976), Sidoroff (1975, 1976), Ting (1971), Lehmann (1988), Haupt 
(1984), Haupt and Tsakmakis (1988), van der Giessen (1989), Critescu and 
Suliciu (1980) — and many others that we cannot list — the most recent re
view works by Cleja-Tigoiu and Soos (1990), and the books of Mandel (1978), 
Lubliner (1990) and Maugin (1992a), and the original contributions of Kluiten-
berg (1984) and Valanis (1972). Here we shall content ourselves with simply 
illustrating the model sketched out in Sec. 5.6. 

We tentatively answer the first query by considering the multiplicative de
composition (5.6.50) of the motion gradient as an exact replacement of the 

4In particular, Eqs. (9) in p. 310 and the (un-numbered) third equation in p. 313 in 
Manville (1927), who is supposed to faithfully reproduce Duhem's thought, are equivalent 
to Drucker's and Ilyushin's proposals, respectively. By some chance, the symbols employed 
are practically those of our approach (A, a) replacing (A, a). The crucial paper of P. Duhem 
is Duhem (1901). 
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7.4- Plasticity and Viscoplasticity in Finite Strains 181 

approximate additive decomposition (7.3.10). Consequently, if F e , the elastic 
"gradient" is considered as the mechanical observable variable of state, we may 

envisage the laws of state given by Eqs. (5.6.52) and we shall inevitably be led 
to the dissipation inequality (5.6.55). It is at this crucial point that an answer 
to the second query is sought. Obviously the structure of the remaining in
trinsic dissipation (5.6.55)2 is the same as in the small strain theory. So we 
could try to follow along the same path, but most of the geometric objects 
present in (5.6.55)2 are not true tensors. They are still two-point tensor fields 
with "two feet in different systems". It is tempting, if not the only clear-cut 
solution, to refer all fields to the intermediate configuration Kn as it is the one 
with respect to which elasticity is defined, unfortunately up to the rotation 
of K,-ji as indicated by (5.6.51). But we can take the stand of Mandel (1971, 
1973) that it is possible to fix reference directions in AC-R, in particular through 
a director frame { d ^ ; a = 1,2,3} that specifies the crystalline lattice in its 
elastically released configuration, and such that there is no ambiguity in the 
definition of K.n, at least at each point X in the material. Thus IC-n is lo
cal rather than global, i.e. it cannot be integrated in space to yield a global 
reference configuration for the whole body. This is the price we have to pay 
for this definition which concurs with that admitted in the elasticity of bod
ies endowed with a continuous distribution of defects (such as dislocations, 
cf. Kroner, 1962). With this in mind we can define the following finite-strain 
tensors, deformation rates, and stress tensors: 

• Strain tensors relative to K.fi 

• Plastic strain rates: 

I F := { F e L p ( F e ) - r } s = (W)T, in Kt (7.4.32) 

and 
Wn := {Ce • V}s = (K.)T , in Kn ; (7.4.33) 

• Second-Piola Kirchhoff stress relative to K.&: 

§n = J e ( F e ) - J • o- ■ (Fe)-T = (Snf, 

where 

Je = d e t F e , Jp = d e t F p , J F = J e J p > 0 . (7.4.35) 

Efe := ̂ (Ce U ) , (7.4.31) 

(7.4.34) 

C := (Fe)TFe, 
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182 Chapter 7. Viscoplasticity and Plasticity 

We assume for the case of elastoplasticity that there are no viscous stresses. 
Then the intrinsic dissipation (5.6.55)2 is shown to read 

• per unit volume in K.t: 

$ i n t r = a : W + J^Aa; (7.4.36) 

• per unit volume in K&: 

(*i»tr)tt = tr (S*I>k) + Aa, (7.4.37) 

together with the energy (per unit volume in K-JI) and the laws of state: 

W = tf>(E^,a,0), (7.4.38) 

and 

aw aw Sn = _™. (7.4.39) 

It is assumed here that E ^ is the mechanical observable variable of state. This 
is a symmetric tensor in K.-R- Its thermodynamic dual or conjugate is Sn. 
Apart from the tensorial order of a which is not yet specified, we have thus 
reduced the elastoplasticity in finite strain to a thermodynamic formulation 
which is strictly identical to that of the small-strain case. We shall assume 
that the energy W is convex in its first two arguments and concave in the 
temperature, and that there exists a pseudo-potential of dissipation V* from 
which the remaining evolution equations derive. That is, for a rate-independent 
plastic behavior: 

V*=V'(Sn,A) (7.4.40) 

convex and homogeneous of degree one in both §TJ and A, so that 

with a yield surface ^ ( S ^ , ^ ) = 0 bounding a convex C in ( S ^ ^ - s p a c e . 
The above formulation is strictly correct and appropriately form-invariant 

only when a is a pure scalar. In this case we see that no problem appears with 
any "plastic spin" as this notion does not show up since the first of (7.4.41)i 
involves only symmetric true tensors while (7.4.41)2 involves only a classical 
material time derivative. 

If a is a tensorial internal variable, then we should specify its tensorial 
order and in what "space" (configuration) it is represented. This is essential 

Stt = 

W(®k,a,9), 

»£ = A dfn d = A 9 / R 

& 4 ' 
A > 0 , (7.4.41) 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



7.5. Damage, Cyclic Plasticity and Creep 183 

in order to write (7.4.41)2 hi proper invariant form. For instance, if a is 
a symmetric-tensor-valued function in K-n, then in writing a form-invariant 
Eq. (7.4.41)2 we may introduce an objective time derivative with respect to 
K.TI, e.g. a co-rotational derivative Dua, such that 

Duct := d - cJd ■ a + a ■ ud , (vd)p-, ■= ^ d^'d."' , (7.4.42) 
a 

where u>d is the spin tensor associated with the director lattice triad of Man-
del. Note that Dua is defined just like a Jaumann derivative with wj replacing 
the usual spin tensor. But then the right-hand side of (7.4.41)2 has also to 
be form-invariant under the rotations (orthogonal transformations) Q in JCn-
This imposes, through a well-known representation theorem, that / be an 
isotropic scalar-valued function of both §/? and A, where A itself, being the 
thermodynamic conjugate of a, is also a symmetric second-order tensor in Kg, 
for instance, a backstress responsible for some kinematic hardening. It is fair 
to say that the developments along such lines are still in their infancy and the 
subject of sometimes frantic scientific discussions. For these and the case of 
viscoplasticity in finite strain we refer to the excellent review of Cleja-Tigoiu 
and Soos (1990) which rightly emphasizes the role of intermediate configura
tions and internal state variable in the spirit of the present book. For simple 
models of viscoplasticity, we also refer to Lemaitre and Chaboche (1990)'s book 
(Chapter 6) which offers a rich discussion. 

7.5. Damage, Cyclic Plasticity and Creep 

In contrast to fracture, which is due to the progress of macro-cracks and which 
we shall examine in Chapter 8, we agree to call damage the decrease in elasticity 
caused by the reduction in area likely to transmit stresses (contact actions) 
through the body. This is a consequence of the progress of micro-cracks and 
of the expansion of micro-cavities. A rather naive but simple way to describe 
this phenomenon is to introduce, under certain hypotheses of isotropy, a scalar 
variable D (for damage) such that 0 < D < 1, where D = 0 corresponds 
to the virgin element of matter (no microcracks nor microcavity) and D = 1 
corresponds to fracture (cf. Fig. 7.4). In reality the element is out of order 
before the last limit is reached as atomic decohesion takes place before D 
reaches the value one. In fact, then, D is limited to a convex set smaller than 
the closed segment [0,1], but a closed convex indeed, so that the idea to use the 
formulation of generalized standard materials for damage phenomena emerges 
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184 Chapter 7. Viscoplasticity and Plasticity 

(a) (b) (c) 

Fig. 7.4. Three stages of damage: (a) virgin element, (b) partially damaged, (c) fully damaged 
element (D = 1). 

naturally. One can thus envisage a damage criterion or criterion of initiation 
of macroscopic fracture when the upper limit is reached (this can correspond 
to, say, a value of D = 0.8, but it is an experimental datum). The convex set 
in question is 

CD = {D\0<D<DC<1}. (7.5.43) 

This is essentially the idea of Kachanov (1958) and Rabotnov (1963), although 
the thermodynamical framework was to come only with the works of Chaboche 
(1974, 1978, 1989) and Lemaitre and Chaboche (1990), which would develop 
into a true Continuum Damage Mechanics (for short C.D.M.). It is obvious 
that D may be considered as an internal variable of state. The elementary 
power developed in an isotropic damage process thus reads 

$D = YD, Y = -dW/dD, (7.5.44) 

where Y is the scalar thermodynamic force associated to D. This is much 
documented in Lemaitre and Chaboche (1990), Lemaitre (1992), and Maugin 
(1992a, Chapter 10). In the case of anisotropic damage, which is most often 
the case, an internal variable of higher order should be introduced. 

Physical and experimental realities are much more complex than the sim
ple picture just recalled. In particular, it is observed that plastic hardening 
decreases with increasing damage (it may even become negative) and the in
crease in plastic strain during so-called tertiary creep is also due to damage. 
Tertiary creep is that regime of creep observed where under relatively small 
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7.5. Damage, Cyclic Plasticity and Creep 185 

stresses, strain grows rapidly in time. In an analysis which goes all the way 
to the neighborhood of fracture, one must then necessarily envisage a coupling 
between damage and elastoplasticity (Lemaitre, 1985). For the sake of exam
ple, we shall give in full the model of ductile damage (i.e. damage in the plastic 
regime) of Cordebois (1983) in which the notion of generalized standard mate
rials is exploited (normality law in a plastic-like manner) along with associated 
plasticity (i.e. the plasticity criterion is the plastic potential). In this model 
constructed for small strains, a and /? are the plasticity internal variables and 
we have: 

• laws of state: 

dW 
W = W(ee,9,a,(3,D), S = — ^ 

3D ' 

• intrinsic dissipation: 

$ = o-:ip + A-a + B$+YD>0; (7.5.46) 

• Convex of plasticity. 

Cplas t ic = {a, A,B,Y\ f(a, A, B, Y) < 0} . (7.5.47) 

More precisely, for an isotropic material in small strains we can take: 
• Laws of isotropic elasticity with damage: 

? = (1 - D ) - 1 j i ± ^ a - £ ( t r a ) l } , (7.5.48) 

where E is Young's modulus and v is Poisson's ratio of the virgin elastic 
material; 

• Plasticity evolution equation (after determination of the plastic multi
plier A): 

*" = §*(/)<*«,) UK/M)W» - ko^-Y1 ■ £ . (7-5.49) 
2 { ec - eDJ <7eq 

a = 
dW 
dee ' A = -

dW 
da 

B = -
dW 
dp ' 

(7.5.45) 

Y = -
dW 
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186 Chapter 7. Viscoplasticity and Plasticity 

where /3 is the cumulative plastic strain, 0 < eo entails D = 0, D = Dc at the 
initiation (start) of macro-cracking, e = €R is the strain at fracture, and creq is 
von Mises equivalent stress: aeq =|| ad || K and M are coefficients which can 
be measured in hardening tests in traction. The function H(/) is such that for 
/ < 0, H = 0, while H = 1 for / = 0. The criterion / = 0 is a straightforward 
generalization of Mises' criterion with hardening in which the stress a has been 
replaced by an effective stress 

* = ( T ^ D T (7-5-50) 

that accounts for elasticity weakening through damage. Finally, 

Re = r ( l + v) + 3(1 - 2i / ) (am /a e q ) , (7.5.51) 

where am is the mean stress; 
• Evolution equation for D (once A has been eliminated): 

D= D° Rj. (7.5.52) 

The above modeling is complete, thermodynamically admissible, and all its 
coefficients (E,i/,ko,K,M,£D,£R,Dc) have been experimentally determined 
for steel 35 NCD 16 (French standards). 

The following remarks are in order: 

(i) From Eqs. (7.5.48) and (7.5.45)6 it is easily seen that the thermodynamic 
conjugate force of the scalar damage parameter D is none other than the 
elastic energy of the undamaged material; 

(ii) For loading at high temperature one should generalize the above model 
by coupling damage with elasto-uisco-plasticity; 

(iii) Damage progresses essentially during periodic loading. There is thus 
a special interest in cyclic plasticity (and creep) and its coupling with 
damage. For this we refer to the original work of Chaboche (1978) — 
also Dafalias and Popov (1976) — which makes extensive use of the 
concept of internal variable; 
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7.5. Damage, Cyclic Plasticity and Creep 187 

(iv) Clearly, porosity is a parameter akin to damage and can also be viewed 
as an internal variable in a thermodynamic modeling. A degree of hu
midity or moisture could also be introduced in a similar way to assess 
the deterioration of some materials under these effects; 

(v) In recent works it has been envisaged that damage could present a marked 
nonlocal feature. If this nonlocality is nonetheless weak, then it can be ac
counted for by introducing the spatial gradient of the variable D, i.e. VZ), 
in the energy density. For instance (Maugin, 1990a), in the case of dam
age coupled only to elasticity, we could consider the following energy 
density in small strains: 

W = W{e,6,D,VD), (7.5.53) 

and thereafter apply the formulation of Paragraph 4.7B. For example, 
with 

W = (l- D)We(e, 9) + \vD{VDf , (7.5.54) 

where We is the thermoelastic energy of the virgin sample (at D = 0) 
and the material coefficient VD > 0 accounts for damage localization, we 
have from Eqs. (4.7.55)-(4.7.59) 

a = ~ = { \ - d ) ^ , A = We(e,e) + »DV*D, 
fe d£ (7.5.55) 

k = 0 - 1 (VD)D, $ = A D - ( S V ) 6 > > 0 . 

This provides a system of evolution for the whole thermomechanical prob
lem in the following form: 

u = v , £ = (Vii)s, p0v = div a, 

d = -at> + (1 - D)(E -£-T6), 

rDD = {We/W0) + l2
DV2D, 

C9 + V- (0S) = $ intr + *te , 

where 

d2W d2W 

(7.5.56) 

E = T de ® de ' dedO ' 
T = — S = - « V 0 , (7.5.57) 
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188 Chapter 7. Viscoplasticity and Plasticity 

where WQ is a reference energy, TQ is a characteristic time, $intr = AD, 
$ t e is the thermoelastic dissipation, ID is a characteristic length of dam
age localization, and a is defined in (7.5.50). For the coupling with plas
ticity, we refer the reader to Maugin (1990a). Another approach where 
V£) is involved but D is considered as an observable variable of state 
(this matter can be discussed) is due to Fremond and Nedjar (1993). If 
the nonlocality is more pronounced (i.e. larger range of ID), then one may 
be obliged to have recourse to a constitutive equation of the functional 
type over space but nevertheless with a sufficiently fast decreasing ker
nel (cf. Pijaudier-Cabot and Bazant, 1987). Our general view on this 
problem of nonlocality is given in Maugin (1979c). 

7.6. Relationship with Microscopic Theory 

Plasticity and viscoplasticity are known to be intimately related to the ir
reversible motion of defects such as dislocations while damage is related to 
microcracking and the growth of microcavities. Establishing a bridge between 
these two levels of descriptions is an active and fruitful scientific activity, espe
cially as it concerns the detection of what should be good internal variables for 
the macroscopic thermodynamic description. While dislocation densities de
fined in different manners (total length of dislocation lines in a volume, number 
of dislocation lines intersecting a unit area, etc.) are obvious candidates for the 
"nomination" as internal variables bridging the two scales, we have also seen in 
Sec. 4.6 that slips in single slip systems [see the evolution Eq. (4.6.40)] could be 
appropriate internal variables in metal plasticity. Among the most original pro
posals, however, we must single out the Ponter-Bataille-Kestin (1979) model 
of viscoplastic deformation for it shows that, at sufficiently low temperatures 
and strain rates, and following the careful analysis of Lambermont (1974), a 
meaningful internal variable can be the area swept by the loops of Prank-Read 
sources. As these expand and contract repeatedly (see Fig. 7.5), a microscopic 
instability is exhibited along the mechanical loading curve, reflecting thus the 
real process that takes place at the microscale. More precisely, according to 
this picture, a good internal variable a is given by 

SNb 
« = -jr , (7.6.58) 
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7.6. Relationship with Microscopic Theory 189 

Fig. 7.5. Mode of operation of Frank-Read source (eight different phases). 

where b is Burgers' vector, N is the uniform distribution of noninteracting 
identical Frank-Read sources in the volume L3, and S is the total area swept 
out by the dislocation lines. In the linear case, Ponter et al. (1979) have 
determined an explicit model which provides the energy W = W(e, a, 6), where 
£ is an averaged strain (over volume L3) and a is given by (7.6.58). The average 
plastic strain is then given by 

ep = -(n<g>m + m ® n ) , (7.6.59) 

where m is a unit vector perpendicular to the initial position of the dislocation 
line and n is the normal unit vector to parallel slip planes. The model is not 
generalized standard as the energy may be nonconvex in the above a variable. 
The micro-instabilities cannot be controlled by external forces; we recognize 
here one of the characteristic features of phenomena amenable by T.I. V. Fur
thermore, as these micro-instabilities are of small extent, they are not always 
clearly observable on the macroscopic loading curve which exhibits at a gross 
scale only a rather regular hardening (cf. Fig. 7.6). But these instabilities are 
known to manifest themselves collectively through the phenomenon of acous
tic emission (compare to the Barkhausen jumps in Sec. 9.7). Further research 
along this line is reported in Grolig (1985). This, in our opinion, is one of the 
most fertile models devised in the spirit of T.I. V. According to the analysis of 
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cr 

Fig. 7.6. Stress-strain behavior of plasticity model exaggeratingly showing the microinsta-
bilities along the hardening curve. 

Muschik (1990a,b), this model fits perfectly well with the framework given in 
Chapter 5. 

Other mechanical models exhibiting a marked hysteresis are those related 
to shape-memory alloys. In a thermodynamical description using the con
cept of internal variables, these are then the phase fractions of martensite and 
austenite components; They are thus directly related to measurable metallur
gical quantities (cf. Premond, 1987, Wilmanski, 1992). The observed effects, 
however, may be pseudo-elastic in that they result from the nonconvexity of 
the strain energy function. This is called "reversible plasticity" of crystals 
by some authors (Boiko "et al., 1991). Still an essentially internal-variable 
thermodynamic description is feasible (Wilmanski, 1993). 

7.7. Remark on Elastoplastic Composites 

Although we do not return to the intimate microscopic level, it is of interest to 
see if a description at a mesoscale has an influence on one at the macroscopic 
scale and how does the notion of internal variable emerge in the transition 
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7.7. Remark on Elastoplastic Composites 191 

Heterogeneous medium 'Equivalent' homogeneous 
medium 

RVE 

Fig. 7.7. Representative volume element and the two scales y (micro) and x (macro). 

between the two scales. This influence is illuminating in the case of the elasto
plastic composites to which we alluded in Paragraph 4.7A. Composite materi
als may be thought of as highly heterogeneous materials exhibiting two spatial 
scales. One, y, is that of the strong inhomogeneities which may be averaged 
out over a so-called representative volume element (R. V.E.) — see Fig. 7.7 — 
and thus allowing the passing to the second scale, the macroscopic one, x. Let 
(• • •) denote the average operation over an R. V.E., so that macroscopic stress 
and strain, E and £, are defined by 

I RVE 
a(x, y)d3y, S(x) = <*> = £ / 

E{x)=(e) = ±[ e(x,y)d3y. 
v JRVE 

(7.7.60) 

where V is the volume of the R.V.E. The local strain e(u) of the problem is 
naturally rewritten as 

e(u) = £ + e(u'), (e(u*))=0, (7.7.61) 

where u* represents the fluctuation part. 
In most homogenization techniques the following uprinciple of macrohomo-

geneitity" applies. Let a and u be so-called statically admissible (i.e. com
patible with the data in forces) and kinematically admissible (i.e. compatible 
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192 Chapter 7. Viscopiasticity and Plasticity 

with the data in displacement) fields, respectively. Then we have the following 
remarkable equality concerning mechanical works: 

{a : e(u)> = 2 : 5 . (7.7.62) 

This was formulated by R. Hill (1965) and J. Mandel (1971). In statistical 
theories (e.g. Kroner, 1972), (7.7.62) is viewed as an ergodic hypothesis. Now 
the important results are as follows. 

(i) Any quantity which is an additive function, i.e. extensive in the thermo-
dynamical language, is averaged in the micro-macro transition. That is, 
for example (the bar here denotes the result of the averaging) 

p= (p), density 

pE = (pe), internal energy 
. _ (7.7.63) 
S = pN = {prj), entropy 

$ = {$), dissipation. 

(ii) In elastoplastic components, the elastoplastic solution can be formulated 
as the sum of an elastic solution (with superscript E) with identical data 
and loading, and a residual field (with a superscript r), the latter being 
self-equilibrated, i.e. corresponding to vanishing data in the body and at 
the boundary (cf. Maugin, 1992a, p. 78). This is independent of scale 
and here it is applied at the microscale y. We can write thus 

o{t) = oE{t)+a*{t) 
(7.7.64) 

u(t) = uE{t) + ur(t), 

where the presence of the residual solution is what distinguishes an es
sentially e/osto-plastic solution from a purely elastic one. 

For the sake of simplicity and because it helps one to emphasize a character
istic property of homogenization, we assume that the elastoplastic constituent 
are linear elastic-perfectly plastic (no hardening) at the microscale. Then the 
strict orthogonality condition (7.3.21) holds at the microscale. What about 
the homogenized elastoplastic material at the x scale? By an average of the 
elastic strain energy it was shown that (Suquet, 1982) 

pE = ^ E : Sh o m : E + \{ar :S:ar), (7.7.65) 
*4 £f 
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7.7. Remark on Elastoplastic Composites 193 

where S is the tensor of microscopic elastic compliances, and Sh o m is that of the 
homogenized elastoplastic material. The latter is deduced from the former by 

ghom = (CT . S:Q)t (7.7.66) 

where C is the so-called tensor of stress localization defined by a = C : E, (an 
application of R6 onto R6). The expression (7.7.65) is tantamount to granting 
to a r the status of thermodynamic internal variable of state although it is a 
field (cf. Suquet, 1987). The important result, however, is that on averaging 
the orthogonality condition (7.3.21) one arrives at the inequality 

E : £p = (<Tr : S : <jr) > 0, (7.7.67) 

where 
£P = S-Ee, £e = Sh o m : E . (7.7.68) 

In other words the homogenized elastoplastic material satisfies Drucker's in
equality for a material with positive hardening. This hardening finds its origin 
in the residual stresses of the microscale. We may say that the homogeniza-
tion transition "stabilizes" the elastoplastic material. By selecting the local 
flow rule as the microscopic elastic energy itself, i.e. 

f{y,a) = ±o:S:o-ko, (7.7.69) 

Michel (1984) has provided a striking example where the homogenized medium 
exhibits the behavior of a generalized standard material. Indeed, in his formu
lation we have: 

laws of state: 

1 , „ „„* „hom . ic CV\ i A*,„.2 pE(£,£P,a) = =,(£- £p) : E h o m : {£ - £p) + -ha2 , h > 0, 

dE _8E . _dE 
*=~Pd£=-pd£-r> A=-'p-^ = -ha' 

• evolution equations: 

£f = ASl«»":E = i | | ( S , ^ ) , 

with the macroscopic flow rule 

(7.7.70) 

(7.7.71) 

d = A dT 
dA 

(Z,A) 
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194 Chapter 7. Viscoplasticity and Plasticity 

?(L, ,4) = </) = I s : Sh°m : E + ^ A 2 - (k0), (7.7.72) 

while the following relations exist with the microscopic scale: 

h = (ar(0) : S : a r (0) ) , W (7.7.73) 
ar(t) = <7r(0)exp{-[A(t) - A0]} = ar(0)a(t). 

That is, only one parameter a(t) allows one to determine the whole field of 
residual stresses once the initial distribution crr(0) is known (this may be a dif
ficult but not insuperable task). The latter, through its energy, determines the 
hardening modulus h. It is checked that the macroscopic dissipation (7.7.63)4 

is given by 
# = <$) = {a : ip) = \(a : S : a) = \(k0). (7.7.74) 

We refer to Michel (1984), Suquet (1987) and Maugin (1992a, Chapter 9) for 
more detail on this micro-macro transition in which the flow surface T = 0 
expands until its reaches (ko). 

7.8. Remark on the Heat Equation 

In most of the above presented developments, couplings with thermal effects 
were ignored or, at the very least, considered secondary. Obviously, temp
erature plays a fundamental role in temperature-driven phase transitions con
cerning mechanical properties, and thermal fields, in general, influence the 
mechanical response. But what is perhaps more essential in concluding this 
chapter is to note that both dissipative and nondissipative phenomena (ther-
moelasticity belong to the last class) also influence the distribution of temper
ature, and this influence may serve as an experimental means of detection, or 
even measurement, of dissipation due to both macro and semi-micro- (through 
internal variables) irreversibilities . This is particularly true with the experi
mental technique known as infrared thermography. The latter consists in recon
structing the spatial distribution of temperature, hence also its second-order 
space derivatives and its Laplacian from point-like thermal measurements — 
as in a finite-difference numerical scheme or in the same way as a lattice with 
nearest neighbors reconstructs the continuum with second-order derivative — 
via a scanning infrared camera. By the same token this reconstructs the spa
tial distribution of intrinsic or thermoelastic dissipation.5 The possibility in 

5Although thermoelasticity is not a dissipative phenomenon, per se, it contributes a term 
in the heat equation (this term often is neglected because it is quadratic jointly in thermal 
and strain fields). 
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7.8. Remark on the Heat Equation 195 

fact exists in dynamics to discriminate between dissipations of viscoelastic and 
plastic types by considering the in-phase and out-of-phase parts of the tem
perature signal (as the corresponding dissipations are homogeneous either of 
degree two or of degree one in strain rates). As explained in greater detail 
in Maugin (1992a, Chapter 12), the main theoretical and practical ingredient 
here is the heat equation. Examples of such equations were already given in 
Eqs. (3.3.96) and the last of (7.5.56). In all generality, this equation is none 
other than a transformed form of the energy equation, i.e. in a sufficiently 
general case (no body heat source): 

C0 + V - ( 0 S ) = $ i n t r + $>te, (7.8.75) 

with 
nd2W n 

d*w .e nd2w . ( 7-8 J 6 ) 

0 

and $intr in general includes both "viscous" and "plastic" contributions, de
pending on the dissipative model considered. The heat equation (7.8.75) is 
completed by the constitutive equation for S directly in terms of V0, e.g. in 
the simple isotropic case of Fourier, S = - K ( 0 ) V 0 , with K > 0. A reconstruc
tion of the left-hand side of Eq. (7.8.75) by the above method will therefore 
provide a reconstruction of the spatial map of the right-hand side, i.e. the 
dissipation. The practical exploitation of Eq. (7.8.75) still requires some kind 
of linearization in 6 about the ambient temperature #o and a so-called natu
ral state. It should be written in the material framework in the case of finite 
strains. We refer the reader to our book on plasticity and fracture (1992a, 
Chapter 12) for specific applications of (7.8.75) to these two behaviors. 

c = -

$te = e\ 
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Chapter 8 

THERMODYNAMICS OF 
FRACTURE 

// only I could break my leg, what 
a lot of scientific work I could do. 
Thomas H. Huxley (1825-1895) 

8.1. Pre l iminary Remark 

Although one may have recourse to glue, i.e. some expense of energy, it is clear 
that the fracture of solids belongs to the class of thermodynamically irreversible 
phenomena. Obviously, even a perspicacious physicist/thermodynamicist such 
as Duhem could not envisage that fracture would one day be incorporated in 
the framework of irreversible thermodynamics. That energy concepts had to be 
present and played an important role in fracture became evident with the pio
neering work of A. A. Griffith in the 1920s, when this scientist related fracture 
to the notion of surface energy — the energy we need to suppress the atomic 
bonds along the fractured surface. It is only in the period 1970-1990 that a 
sound thermodynamical framework was to develop with the exploitation of the 
first and second laws, and the working out of a sensical expression of the dis
sipation accompanying fracture. The differences and resemblances with other 
typically irreversible behaviors, viscoelasticity and plasticity in particular, were 
also to be emphasized but rather belatedly. 

The essential fact to be recognized in the phenomenon of fracture is that 
dissipation, in any, is manifested first through the irreversible change in the 
domain occupied in a continuous (say, simply connected) way by the material. 
Fracture resembles other phenomena such as the expansion of cavities or the 
motion of dislocations, all in fact defects in the material body. That is, the 

197 
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198 Chapter 8. Thermodynamics of Fracture 

local behavior described by constitutive equations and the local dissipation 
inequality as a mathematical constraint, is not so relevant at first. This is why 
the most fruitful analysis of fracture, that one which captures the essential 
features while remaining relatively simple, is to be conducted in the frame of 
brittle fracture, i.e. when the material at hand allows for crack propagation 
while it still has an elastic response locally. Accounting for more complicated 
local behaviors comes next in order of complexity, but it is not so rewarding 
from the point of view of understanding. 

Using as a basis this important remark, we present here the thermodynam
ics of fracture, essentially brittle fracture, in two guises: one of these is naturally 
based on the exploitation of the global energy equation and the computation 
of the global dissipation occurring during fracture. The other is perhaps more 
difficult to comprehend but it is based on the recognition that fracture indeed 
takes place in the material and may be represented in an abstract way as if a 
fictitious force (of a non-Newtonian nature)1 was trying to pull — "to suck" — 
the crack in the material. This is visually manifested by the extension of the 
crack. This is the point of view that we advocated recently as a general ap
proach, not only to fracture, but to several problems of mechanics and physics 
that do consider a material manifold, e.g. a crystal lattice, as the arena of 
interesting effects, and mostly defects (see Maugin, 1993a). This has dictated 
the logic of the succession of sections. The most traditional energy aspects of 
brittle fracture are presented in Sees. 8.2 and 8.3 both with neglect and account 
of thermal couplings. This is the viewpoint of Cherepanov (1967 to 1985), Rice 
(1968), Bui (1978), Nguyen Quoc Son (1980), and Preund (1990). The point 
of view of material forces, that was strongly influenced by the original work 
of J. D. Eshelby (1951), is given in the long Sec. 8.4 and further commented 
upon for the cases of thermoelasticity and elastoplasticity in Sec. 8.6. Sec
tion 8.5 presents the view that the total system "material plus elastic defects 
(e.g. crack)" is a conservative one, although written in local form, when the for
malism of generalized functions is dutifully exploited. The "energy of defects" 
goes all in dissipation, obviously, as it is only a truly potential energy that is 
no longer available in any form except heat, once the defects have irreversibly 
progressed. 

1Thia fictitious force, later called material force, acts not on elements of mass like a 
Newtonian force (e.g. gravity) nor on elements of charge like the Lorentz force, but on 
defects (cracks, cavities, dislocations, disclinations, solitons...) which are localized singular 
solutions of partial differential equations. 
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8.2. Energy Aspects of Brittle Fracture (No Thermal Fields) 199 

8.2. Energy Aspects of Brittle Fracture (No Thermal 
Fields) 

In a general way, the first law of thermodynamics for a material body occu
pying the regular domain il of E3 in its current configuration Kt is given by 
Eq. (2.3.53), i.e. in the absence of body forces and heat sources, 

di Lp G y 2 + e ) d n = l 9 n
{ T d ' v ~q ■n)da' (82i) 

where dil is the regular boundary of il equipped with unit outward nor
mal n. 

The problem of fracture: We are interested in the following problem. Although 
we shall consider that the material itself is not dissipative, for instance, it is a 
linear elastic material and we can neglect heat conduction (quasi-adiabaticity), 
so that there is no local dissipation at all regular points in il, we look at the 
problem in Fig. 8.1 where the material region il may evolve irreversibly (in 
quasi-statics) through the progress of a macroscopic crack called S. Its two 

-*- X 

Fig. 8.1. Straight-through crack (frame moving with the tip of the crack). 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



200 Chapter 8. Thermodynamics of Fracture 

stress-free faces S + and E~, although remaining geometrically in contact, can
not solder back once separated by rectilinear fracture (Fig. 8.1). This is where 
the global irreversibility of the problem resides. On a closer look it appears 
that the irreversibility, from the thermodynamic point of view (see below), is 
the combined result of this geometric fact (the irreversible separation) and the 
fact that the tip of the crack (that line perpendicular to the figure passing 
through the end point of the crack) carries with it a singularity in the fields 
that causes dissipation. This dissipation should correspond to the energy spent 
in loading the body from which is subtracted the energy consumed from the 
body. Thus, when E progresses, (8.2.1) without kinetic energy and heat-flux 
term, should be replaced by the expression of the total dissipation 

*(fi(0) = f T d • vda - £. f pedQ. (8.2.2) 

Here fi is naturally parametrized by the actual length of the crack. If the crack 
does not progress, i.e. fi does not evolve, then $(fl(Z)) = 0. In small strains 
we can replace v by u, Td by a • n and pe by W, and for elasticity, W = W(e) 
where e = (Vu), . We adopt the notation in Fig. 8.2. 

Fig. 8.2. Isolating the singularity. 
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8.2. Energy Aspects of Brittle Fracture (No Thermal Fields) 201 

In the absence of propagation of the crack, 1 = 0, there is no difficulty 
in evaluating the second contribution in the right-hand side of (8.2.2) as Q is 
fixed, so that 

4- I WdQ = f ^-dQ = f a-.idQ. (8.2.3) 
«* Jii Jn dt Jn 

But this is simply wrong when the crack progresses. The reason for this follows 
from a short reasoning concerning the mechanical problem (determination of 
the displacement and stress field in the vicinity of the tip) around the crack. 
Although the exact solution of this problem depends on the shape of the body 
and the loads, an idea of the behavior of the solution may be found heuristically 
(cf. Maugin, 1993a). In linear elasticity, it is found that up to an irrelevant 
angular factor the displacement field for the plane problem of elasticity behaves 
like y/r as r goes to zero, if r is the radius from the tip. Thus the relevant 
strain components e behaves like 1/y/r and similarly for the stress components 
a. These evaluations are valid in a frame (X, Y) attached to the tip. Obviously 
X = x — l(t). Computing the time derivative of e, we will thus obtain 

i = it(X,Y)=i-^et(X,Y), (8.2.4) 

where we used the formula of time differentiation in a moving frame. We 
see that det(X,Y)/dx will behave like r - 3 / 2 as r goes to zero. Whence the 
last integral in (8.2.3) will diverge, so that some more precautions must be 
taken. To perform the computation of the second contribution in (8.2.2) when 
the crack progresses, we must isolate the singularity. For this we follow the 
notation in Fig. 8.2 and call T a contour starting on one lip £~ of the crack 
and ending at the other lip, £ + , and delimiting the volume Vr- The outside is 
noted fi — Vr. We write in an obvious manner 

4- f WdQ = 41 WdV + T" f Wd^ ■ (8-2-5) 
dt Jn dt JVr dt Jn_Vr 

As T is fixed in the moving (X, F)-frame, we have trivially 

4- I WdQ= f a:it(X,Y)dn, (X,Y) fixed, (8.2.6) 
dt JVr JVr 

where it behaves like r - 1 hence the integrability in (8.2.6). Besides, by using 
the formula for the material time derivative of a nonmaterial volume integral, 
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202 Chapter 8. Thermodynamics of Fracture 

we have 
^ f WdSl = f a-.idQ- f Wl(ei ■ n)dT, (8.2.7) 
dt Jn-Vr J(l-Vr Jr 

since the volume Vr moves as a whole with speed I in the direction of unit 
vector ei . We shall note n\ = ei • n where n is the unit outward pointing 
normal to T. 

Now we write the energy balance for the region il — Vr in which neither 
dissipation nor singularities occur, keeping in mind that n ( r ) = —n(9f2). 
We have 

/ a : idQ, = I u • a ■ rids 
Jn-Vr Jdft 

= uands- u a ndT, (8.2.8) 
Jen Jr 

at time t. With this given, as well as (8.2.7), (8.2.2) may be expressed as 

* ( f i ( 0 ) = f(Win1+u-a-n)dT+ f a : it(X,Y)dQ., (8.2.9) 
Jr Jvr 

where the integrand of the last contribution is integrable. If we now take the 
limit where we make the contour T tend towards the crack tip ( r —> 0) and if 
we account for this integrability, there remains 

$ ( f t ( i ) , 0= l i m [(Wini+u-<T-n)dT, (8.2.10) 

since the second contribution tends towards zero. This shows the localization 
of dissipation at the tip of the crack. 

At this point it is appropriate to note that, for any physical quantity / 
attached to the tip of the crack, / has the same singularity as — (df/dx)L 
This, in particular, applies to u, so that when T goes to zero, li behaves 
like —(du/dx)l. Taking / outside the integral and the limit, we can rewrite 
(8.2.10) as 

$ = $(G,/) = G(S)I, (8.2.11) 

where we have set 

GM=*%J(wni-n.*.£)dr. (8.2.12) 
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8.2. Energy Aspects of Brittle Fracture (No Thermal Fields) 203 

Because of the way it was introduced [Eq. (8.2.2)], and the fact that (8.2.11) 
is defined as a dissipation or a power, G is called the energy-release rate: It is 
the energy released to the crack per unit extension length and unit time during 
the progress of the crack. The expressions (8.2.11) and (8.2.12) merit three 
important comments: 

(i) the first one brings us back to irreversible thermodynamics. It is clear 
that the global dissipation (8.2.11) is exactly written in the traditional bilinear 
form of T.I.P., where G is the thermodynamic force conjugate to the velocity I. 
Thus we can apply T.I.P., just like in plasticity, viscoplasticity or damage, and 
envisage several types of thermodynamic behaviors for the "force" G. Close to 
physical reality is a plastic-like behavior for which G is constrained to a closed 
convex set (belonging to K). This is nothing but a criterion of progress of the 
crack in the form: 

Griffith's criterion: There exists a threshold value Gc of the energy-release 
rate G such that: 

G G GF = (G < Gc} 

1= 0 (no progress) if G < Gc, (8.2.13) 

I > 0 (possible progress) if G = Gc . 

As G is dimensionally a surface energy, we see that the criterion (8.2.13) is 
none other than the criterion proposed in the 1920s by A. A. Griffith, one of 
the creators of the theory of fracture. Just like plasticity, the above can also 
be formulated in a more abstract form, e.g. 

/ G d(p(G), (8.2.14) 

where d indicates the subdifferential and <p(G) is a pseudo-potential of dissi
pation. For Griffith's criterion <p(G) is none other than the indicator function 
of the convex {G < Gc), i.e. 

< (̂G) = 0 if G < G C , < (̂G) = + o c i f G > 0 . (8.2.15) 

We can then also write a principle of maximal dissipation in the form 

(G - G*)l > 0, VG* G CF . (8.2.16) 
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204 Chapter 8. Thermodynamics of Fracture 

This fracture behavior describes well the situation for brittle fracture, i.e. in 
those materials where fracture occurs in the elastic mechanical regime. For 
material such as polymers or rubber, fracture would be of the viscoelastic 
type. Accordingly, we can use (8.2.14) with, for example, 

^ G O — C 2 , (8.2.17) 

yielding an evolution law for I as G = 2npl, which looks just like a Newtonian 
model. A law of the viscoplastic type may be even more appropriate. We let 
the reader construct such a law by analogy with the case of Bingham fluids. 

(ii) We can set 

G = lim Jr , Jv= I (wm - n • a ■ ^ ] aT. (8.2.18) 
M " 7r V dx 

It happens that the left-hand side of the definition (8.2.18)2 is independent 
of the choice of T in the case of an elastic (linear or not) and homogeneous 
material. This was discovered by J. R. Rice (1968); (also Cherepanov, 1967). 
The contour-independent integral J (no more T) denned in (8.2.18) is called 
the Rice-Eshelby-Cherepanov integral. This property of independence of the 
contour is essential in practical applications that deliver an estimate of G. 

(iii) With a dead loading at dil, we notice that (8.2.2) can also be written as 

* = - - * , i.e. G = - - , (8.2.19) 

if P denotes the total potential energy of the body Q(l). Notice that P is a 
functional of I, as I intervenes through the change in time of the volume of 
integration (cf. Maugin, 1992a, pp. 149-152). 

8.3. On Account of Thermal Fields 

The localization of dissipation at the tip of a crack progressing in a glassy 
material is experimentally observed by a concentration of heat at the tip via 
infrared thermography. There is thus need for a fully thermomechanicol anal
ysis of brittle fracture. To proceed along this line one must consider the full 
energy balance (8.2.1) with fl = Q(l(t)), I nonzero. We must adjoin to this the 
global statement of the second law. That is, 

— I pndn>- j 9~lqnda. (8.3.20) 
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8.3. On Account of Thermal Fields 205 

Here it is Eq. (8.2.1) as such which provides the transformation of mechanical 
energy into heat, while Eq. (8.3.20) will provide an indication on the "direction" 
of heat production. This is indeed the case. The corresponding analysis is due 
to Nguyen Quoc Son (1980). We follow the same reasoning as in the first 
paragraph but we no longer are in quasi-statics. We obviously have 

I i' (^+*)""/«.'(^+,)'dn- (8'3'21) 
where the notation g* means 

9* = ̂ (x + l(t),y,t) = g + i ^ . (8.3.22) 

Then the integrand in the right-hand side of (8.3.21) is an integrable function 
for the asymptotic behavior assumed in elasticity so that, indeed, the limit 
of expression (8.3.21) when T shrinks to zero is zero. There remains thus the 
quantity [cf. (8.2.7)] 

- I p ( -v2 -I- e J in^aT. (8.3.23) 

Now we assume that the system fi is thermally isolated. Hence q = 0 at the 
outer boundary of fi. On account of the above obtained results the first law 
(8.2.2) therefore reduces to 

lim / f Tduda- f p^- (\ii2 + e] dtl r^°\Jdn Jn-vr dt\2 J 

+ f P (W + e) in^dT] =°> (8.3.24) 

in the limit as T tends towards zero. 
We can also apply the first law of thermodynamics (8.2.1) to the system 

fir = ft — Vr which is not thermally isolated as it can exchange heat with Vp 

d 
dt. n-vr 

p 
1 
2 

v2 + e dn = 
'n-vr 

p 
d 
dt 

1 
2 

v2 +e dn 
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206 Chapter 8. Thermodynamics of Fracture 

by conduction through I\ For any T we have 

/ (q • n — n • a • u)dT + I n • a ■ iida 
Jr Jdn 

Eliminating the boundary term at dQ between (8.3.24) and (8.3.25) while 
taking the limit as T shrinks to zero, we obtain that 

H = lim I ip ( i i i 2 + e\in1+no-u\dT, (8.3.26) 

where the quantity H, which represents a heat source concentrated at the crack 
tip, is defined by 

H = lim / q • ndT. (8.3.27) 

Equation (8.3.26) tells us that the dissipation created during the progress of 
the rectilinear crack in the material goes entirely into heat at the crack tip. 
This is indeed observed as a high temperature almost pointlike source (of an 
extent of, say, 20 angstroms) in fast fracture of glass and steel. It is the second 
law of thermodynamics which decides on the sign of this "source". This law 
can be applied to three different systems, (a) the whole system fl which is 
isolated, so that (8.3.20) reduces to 

dtJa pr]dn>0; (8.3.28) 

(b) the system SI? = ft — Vp which is not isolated and for which the second law 
takes the form 

dt jnr jnr 

and (c) the system Vp itself which is not isolated either and for which (8.3.29) 
is replaced by 

/ pr]dn= I pf)dn> I 0 - 1 q - n d T , (8.3.29) 

I pf)d£l+ I 0 _ 1qndT>O. (8.3.30) 
JvT Jr 

me type as in (8.3.23) for (8.3.28) yields 

lim ( I pqdQ. - j prjimdT j > 0. (8.3.31) 

An evaluation of the same type as in (8.3.23) for (8.3.28) yields 

'Or 
P 

d 
dt 

1 
,2 

i 2 + e dil. (8.3.25) 
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8.3. On Account of Thermal Fields 207 

For (8.3.29), calling 6& (nonzero) the temperature at the crack tip, we obtain 

lim ( I pqdSl] - — > 0, (8.3.32) 

where H is none other than the quantity denned by (8.3.27). As is easily 
shown, we also have 

/ (rqdQ. = lim / pr)dn > 0, (8.3.33a) 
Jn nr-K>./nr, 

lim / frqinidT = 0, lim I pqdQ. = 0. (8.3.33b) 

On combining the above results we finally obtain 

f H 
im / 0 - 1 q - n d r = — > 0 , i.e. H>0. (8.3.34) lim 

r 
This means that the pointlike heat source at the crack tip necessarily is a 
warm source: the whole of the intrinsic power concentrated at the crack tip is 
transformed into heat. 

Note that (8.3.26) can be rewritten in terms of the free energy xp, i.e. equiv
alent^ to (8.3.26), 

H = lim I j p ( v + ^ u 2 ) f r i i + n - C T - u l d T , (8.3.35) 

because Qr\ is such that 

lim / peinidT = 0. (8.3.36) 
r-»o7 r 

Moreover, using the fact that u behaves essentially like —Idu/dx, we can also 
rewrite (8.3.35) as 

H = GdyJ > 0, (8.3.37) 

where Gdyn is a kind of dynamic energy-release rate given by 

G d y B : = U m j r ^ ^ + ^ ) » 1 - n . < r . g } i r . (8.3.38) 

Again H is in the canonical bilinear form of a dissipation and a criterion of 
crack progression can be proposed on a true thermodynamic basis, e.g. there 
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208 Chapter 8. Thermodynamics of Fracture 

exists Gc such that Gdyn = Gc when propagation occurs and Gdyn < Gc oth
erwise. For the temperature and heat-flux behavior in the vicinity of the crack 
tip, we refer the reader to Bui et al. (1987) who give a rather comprehensive 
discussion depending on the heat-flux law assumed and the type of local dissi
pation (plasticity, viscosity) which may exist in the material surrounding the 
crack tip. This requires considering the solution of the heat equation with a 
concentrated heat source at the crack tip. 

8.4. Material Forces in Fracture 

A. General features 

Here we look at brittle fracture in a different way which considers operations, 
not in physical space, but on the material manifold M. introduced in Chapter 2 
(Fig. 2.2) for the description of the finite deformation of a solid. To illustrate 
our point we consider the equation of motion (3.2.15) in the absence of body 
forces, f = 0, and also the energy equation (3.2.8) for adiabatic processes. 
These two, at all regular points in the body B (i.e. at points where the fields 
do not take any infinite value), can be rewritten as 

and 

where 

sp 

I* 
- d i v R T = 0 , (8.4.39) 

x 

- divfi Q = 0 , (8.4.40) 
x 

p = p 0(X)v, H = p 0 Q v 2 + e V Q = T v . (8.4.41) 

Equations (8.4.39) and (8.4.40) are written in the form of strict balance/conser
vation laws with space-time derivatives with respect to independent space-time 
variables (X, t). While (8.4.40) is a scalar equation, (8.4.39) has vectorial com
ponents in physical space E3 at the current configuration K.t. For a nonlinear, 
in general anisotropic and inhomogeneous body, we have 

- (dW 

~ \d¥ 
\ > T F T = F T r , W = p0(X)e(F,X)=W(F;X), 

(8.4.42) 
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8.4' Material Forces in fracture 209 

and (8.4.40) appears to be none other than the result of (8.4.39) multiplied 
scalarly by v and integrated by parts. We have let e depend, not only on 
F, but also explicitly on X to account for a possible material elastic inhomo
geneity (i.e. the fact that elasticity properties depend on the material point 
considered). Similarly, po may depend on X, thus accounting for possible ma
terial inhomogeneities in inertial properties. By left multiplication by F T and 
integration by parts, we immediately check that Eq. (8.4.39) also provides an 
equation with components on M, that is 

dt 
- d i v f l b = finh, (8.4.43) 

x 
where we have defined the following four quantities: 

V:=-Po{X)FTv, (8.4.44) 

b = - ( £ l f l + F T - T ) , (8.4.45) 

£ : = i p o ( X ) v 2 - W ( F ; X ) , (8.4.46) 

and 
rinh -(iL-(H*-(£L- <-' 

where ( )eXpi denotes the explicit derivative with respect to X, keeping the 
other arguments of the function fixed. The four fields defined by (8.4.43)-
(8.4.47) are called, respectively, the pseudomomentum (a material covariant 
vector on M), the Eshelby stress tensor (a mixed material second-order tensor 
on M), the Lagrangian density per unit volume of KR, and the inhomogeneity 
material force (a material covariant vector on M) — cf. Maugin and Trimarco 
(1992), Maugin (1993a).2 From (2.3.42), we can also define the material ve
locity field by 

dt ( 8 - 4 4 8 ) 

Then one verifies by using the chain rule of differentiation that v and V are 
related by 

v + F V = 0 or V = - F ~ 1 - v , (8.4.49) 

2The fact that both Lagrangian and Hamiltonian densities appear in the formulation is 
not fortuitous as there is a strong interrelation with the analytical mechanics of continua 
(for these developments see Maugin, 1993a, Chapter 5). 

V : = 
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210 Chapter 8. Thermodynamics of Fracture 

so that V also reads 
V = Po{X)C-V, (8.4.50) 

The latter shows that V is indeed a covector on M. as poV is a contravector 
and the finite-strain C plays the role of a deformed metric to produce from 
it the covector V (see any book on tensors on manifolds). We let the reader 
check that if he takes the scalar product of (8.4.43) by V, then he recovers 
(8.4.40), since this is the same as multiplying (8.4.39) by V • F T or —v. Thus 
there is only one local energy equation, (8.4.40), whereas (8.4.39) and (8.4.43) 
are but two equivalent local expressions of the balance of linear momentum 
on two different manifolds, E3 and M., respectively. The second form (8.4.43) 
extracts in a clear manner the material inhomogeneities via the material force 
finh ^ye a j s o n o t e t k a t (8.4.42)2 is equivalent to 

bC = C b T . (8.4.51) 

The question now is what is the relation between the material description given 
here and the problem of fracture? One obvious answer is, following J. D. Es-
helby (1951, 1970, 1975), that macrocracks are material inhomogeneities in 
their own right, albeit rather abrupt ones. Consequently Eq. (8.4.43) is the 
form of the balance of linear momentum that should be used when dealing 
with fracture. We illustrate this point in Paragraph B below by a direct calcu
lation of the dissipation developed during a quasi-static progression of a crack 
in material space «M. A second point (Paragraph C below) is that, so far, the 
problem of fracture has been approached only on a pure energetic basis, while 
Eq. (8.4.43) is an equation of motion (or equilibrium, in quasi-statics). It is 
obvious that the components of tensor b are none other than energies: they 
are quadratic in the basic fields of the theory. Thus they have, in a way, the 
same order of singularity as energetic quantities, and this should agree with 
the energy approach. 

B. Evaluation of elementary dissipation 

We consider again Fig. 8.1 for quasi-statics but finite strains. Let V be the 
defect, i.e. the crack is E. In an elementary progress of the crack we have an 
elementary dissipation given by (cf. (8.2.2)] 

8${V) = f ( N T ) - SxxdA - 6X I WdV, (8.4.52) 
Jen-v Jn 
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8.4- Material Forces in Fhicture 211 

where all reasoning is now performed on the material manifold (elements dV 
and dA, unit normal N to fi). The variation <5x introduced is a so-called 
Lagrangian variation strictly defined by 

tfxx(X,t,e) = — fixed, £ = 0. (8.4.53) 
x 

It is noted that <5x commutes with V#. As in (8.2.2), one must pay special 
attention to the computation of the second contribution in (8.4.52) as the 
domain of integration evolves with the quasi-static extension of the crack. 
That is, isolating the region Vp around the crack tip, taking into account the 
fact that no tractions are acting along the lips of the crack and that we are 
working in the reference configuration, we have 

Sx f WdV = 6X f WdV + [ W(N ■ 6xX)dT, (8.4.54a) 
Jn Jsi-Vr Jr 

Sx ( WdV = f (6xW)dV, Sx{dV)=0, (8.4.54b) 
Jn- vr Jn- vr 

SXW = (c>W/dF) • <5x(VfiX) = T ■ VR(<5xx), (8.4.54c) 

SxX \x,t,e)= —^ 
- l 

fixed, £ = 0, (8.4.55) 

and is related to 5xx by (cf. (8.4.49)] 

*xX + F - ^ x _ 1 = 0 . (8.4.56) 

The final result of the computation (8.4.52) is 

6*= f (SxX'1 ■ b • N)dT, (8.4.57) 

which directly involves the Eshelby stress in its quasi-static form and a variation 
of the material points themselves. For an "en bloc" virtual (inverse) motion of 
the region V around the crack tip, e.g. 

SxX-1=EISl, (8.4.58) 

where the Eulerian variation J^X = 6xx 1 is defined by 
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212 Chapter 8. Thermodynamics of Fracture 

where E/ is a unit material vector along the crack direction (here X), the 
elementary dissipation (8.4.57) takes on the form 

6$ = G6l, G = T{1), ?(I) := f E / • b • NdT . (8.4.59) 

This result shows that the energy-release rate G is none other than the com
ponent along E/ of the global material force 

f=fb- NdT, (8.4.60) 

which is the flux of the Eshelby stress across I\ There is no disagreement 
between (8.4.60) and (8.2.12) although the latter is written for small strain. 
The reason for this is that the T-integral is independent of the contour so that 
we do not need to take the limit, and that for the degree of singularity observed 
for a in linear elasticity, we have 

lim [naeidr = 0, (8.4.61) 

so that with the appropriate change in notation in (8.2.12) and accounting for 
(3.2.20), the latter can be rewritten as 

G = f (WN • E/ - E/ • F r • T • N)dT = T(I). (8.4.62) 

The above reasoning generalizes to the dynamical case (Maugin, 1994a) for 
which a term involving the flux of the pseudomomentum across T in the E/ -
direction allows one to introduce the Hamiltonian M in the final result of G 
via a Legendre transformation of the Lagrangian density. But this equivalence 
or nonequivalence between the two approaches deserves more attention (see 
Dascalu and Maugin, 1993). 

C. Global balances of momentum 

Consider for the sake of simplicity the two expressions of the balance of linear 
momentum in quasi-statics in the absence of material inhomogeneities and 
body forces. They read 

divfiT = 0, divfl b = 0. (8.4.63) 
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8.4- Material Forces in fracture 213 

At any regular point x = x(X) or X = x _ 1 ( x ) i these two are strictly equivalent. 
The second is none other than the first multiplied by F r , and reciprocally, the 
first is the second multiplied by ( F _ 1 ) T . If we take a small region Vp encircling 
a singular point (by this we mean a point where the elasticity solution of the 
boundary value problem diverges, say like y/r for the displacement). Then as 
we saw in (8.4.61), the global form of (8.4.63)i yields nothing as we shrink Vp 
to the singular point, whereas the global form of (8.4.63)2, that is (8.4.60), 
captures the singularity as the resulting expression does not yield zero as the 
integrand is no longer integrable! Thus the equivalence between the two ex
pressions (8.4.63) has been lost in passing from the local to the global. This lack 
of equivalence at the global level is what makes the reasoning on the material 
manifold particularly relevant in the presence of material defects, i.e. elastic 
singularities, of which a macrocrack is a simple example. To see this in an even 
clearer manner we follow Dascalu and Maugin (1993) in their consideration of 
the hilly dynamical case. The integral of (8.4.39) over a material volume B, i.e. 

4 [pdV= f N-TdA, 
at JB JdB 

(8.4.64) 

is to be considered as being the set of three components on the vectorial basis 
{ej}, i = 1,2,3, on x(B,t) at K.t. For the global form of (8.4.43) to be viewed 
as a tensorial relation, it must be considered by component on a basis {E;}, 

Fig. 8.3. Notch S in a nonlinear elastic solid body B. 
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214 Chapter 8. Thermodynamics of Fracture 

I = 1,2,3. Then while the local equations are placed in correspondence via 
convection, this is no longer the case between the corresponding global balance 
laws. Now we use this, following Dascalu and Maugin (1993), in dealing with 
the situation where the material body B presents a notch (Fig. 8.3) whose 
front T* propagates with material velocity V(X., t) in the E/-direction (/ fixed, 
in fact equal to one). Integrating the balance of pseudomomentum over B 
while exploiting the transport theorem for an evolutive domain in the material 
framework, we obtain 

4 / VidV + ?(I) = f (b • N)idA, I = 1,2,3, (8.4.65) 
at JB JdB 

where we used the fact that the notch is supposed to be free of tractions and 
we emphasize the component character of (8.4.65). The quantity 

Fin = - f {CNi -Vi{V- N)}dA (8.4.66) 

is the 7th (material) component of the global material force acting on the 
notch. In order to deduce an equivalent statement for a straight-through crack 
S (Fig. 8.4) we consider a family of notches indexed by the parameter S such 

Fig. 8.4. The straight-through crack as a limit case of a notch. 
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8-4- Material Forces in Fracture 215 

that for 5 going to zero the notches converge toward the crack while the limit 
of the family of solutions of the boundary-value problems for each S converges 
toward the solution of the same problem with the crack. If the first term in 
(8.4.65) converges in such a procedure, then in the limit as 6 tends towards 
zero we obtain for the relevant material force the expression 

Fa) = - lim / {£N/ - P/ (V • N)}dA. (8.4.67) 
s->°Jr*(6) 

This is the material force which acts on the crack when the latter progresses 
in the direction E/ , / fixed. In linear elasticity, the singularity of the solution 
and the relation (8.4.49) show that the convergence hypothesis assumed for 
the first term in (8.4.65) is verified. In a different manner, using the balance of 
pseudomomentum over the region Vp in the case of a notch and using (8.4.66), 
in the limit i ^ O w e have the following equivalent expression for the crack: 

^</) = y " { ( b - N ) / + P / ( V . N ) } c L 4 - £ / VidV. (8.4.68) 

For a straight-through crack this expression is independent of the domain Vp 
that encircles the tip of the crack and moves rigidly with it. An expression 
such as (8.4.68) does not involve any energy argument beforehand. Nonethe
less there should be a deep relationship between the result (8.4.68) and more 
classical arguments such as the ones we use above. This is elucidated next. 

D . Energy a rgument 

In the dynamical case based on the energy equation, we shall obtain in the 
case of the notch of Fig. 8.3, the following global energy balance with a source 
term Q: 

^■[ HdV + g= [ N - Q d A , Q = T v , (8.4.69) 

< " J B JdB 

together with 

g= [ H{V-N)dA. (8.4.70) 

This, according to the very form of Eq. (8.4.69), is the rate of energy released 
during the propagation of the notch, expressed in a somewhat unconventional 
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216 Chapter 8. Thermodynamics of Fracture 

way. Considering now the "crack limit" of the J-indexed family of notches we 
shall arrive at (8.4.69) but with Q defined by 

im f H(V-N)dA. (8.4.71) 
->o Jr. 

lim 
& 

But considering a contour T as in Fig. 8.4, a computation of the same type as 
the one performed for .F(/) will yield the classical expression of Q in dynamics 
(compare Freund, 1990) 

g = / { f t ( V • N) + N • T • v}dA - I f HdV. (8.4.72) 
JT at Jvr 

We are now in a position to unequivocally relate the notion of material force 
and that of energy-release rate for the rather general case of the elastodynamics 
in finite strains. To that purpose let P be a point of T* for the case of a 
notch (Fig. 8.3). Let r denote the position vector from P. We can write 
x(X, t) — xPC-p + r, t), from which it follows by differentiation that 

V = _ F . V + | , V = ^ , (8.4.73) 

where x(X, t) = x(r, t) and V is none other than the material velocity of P. 
Convection of (8.4.73) by F _ 1 leads to 

V = V - F - 1 - ^ , V = V)E/. (8.4.74) 
at 

Let us assume now that the points P of Y* have a uniform motion, V = V(£) 
only. In this case it is reasonable to assume that the deformation shall be the 
same at all points along T* and that dx/dt = 0. As the only nonzero compo
nent of V is V[, multiplying (8.4.67) — or (8.4.68) — by V) and considering 
the identity 

V • C • V = v2 , (8.4.75) 

we obtain that 
9 = Vi?(i), (8.4.76) 

as the reader can check by himself. We have thus obtained that the material 
force acting on T* coincides with the rate of energy released per unit length 
of progress of the notch. The reasoning used emphasizes the fact that global 
material forces are intimately related to the "en bloc" motion of defects on the 
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8.5. The Use of Generalized Functions in the Energy Equation 217 

material manifold. Indeed, had points P had different velocities the second 
term in (8.4.74) would have not vanished. Nor could multiplication by V} any 
longer commute with integration over T* in (8.4.67). A relation such as (8.4.76) 
is meaningful only whenever V does not depend on P. For a crack, however, 
P reduces to one point in the limit (obviously a mathematical abstraction), 
the tip of the crack. In this limit case, by repeating the above argument and 
taking the appropriate limit we shall arrive at an expression such as (8.4.76) 
for the crack. Combined with (8.4.68), the latter expression will take the 
classical form involving the energy-release rate of a crack in elasto-dynamics 
[see Eq. (8.3.38)]. In the process we have passed from the Lagrangian density 
C present in b, hence in T(i), to the Hamiltonian density H — total energy 
density — in Q thanks to the contribution of the flux of pseudomomentum in 
the E/-direction which allows for the Legendre transformation between these 
two quantities: 

From here on we enter the domain of analytic continuum mechanics (see Mau-
gin, 1993a, Chapter 5). A result essentially equivalent to (8.4.76) was obtained 
by Ehrlacher (1981) in small-strain elasticity. 

8.5. The Use of Generalized Functions in the Energy 
Equation 

Generalized functions or distributions were introduced in the 1940s by Lau
rent Schwartz following pre-World War II pioneering works by J. Leray and 
L. Sobolev. By transferring operations of differentiation on sufficiently smooth 
test functions after integration by part over a compact support, they allow 
for a weak formulation of solutions of partial differential equations which ad
mits singular behaviors at points or jump discontinuities across surfaces (see 
Gelfand and Shilov, 1964). The principle of virtual power in continuum me
chanics, e.g. Eq. (2.3.57), may itself be considered as an exemplary use of 
a distributional formulation in which the role of test functions is played by 
virtual fields of displacements or velocities (see Maugin, 1980). The theory 
of cracks in particular and, more generally, of elastic defects should have the 
theory of distributions for natural mathematical background. But few au
thors have worked along this line, with the noticeable exceptions of Dascalu 

n = 
dc 
av • V - £ , v = 

dC 

av J v = &H 
dV 

(8.4.77) 
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218 Chapter 8. Thermodynamics of Fracture 

and the author (1994a). Before discussing their approach, it is necessary to 
recall that generalized functions may be viewed as linear continuous function
al on a set of very smooth functions with bounded, compact support. The 
paragon of generalized functions is the celebrated and ubiquitous delta function 
of P. A. M. Dirac which may be considered as a "unit" (for the convolution 
product) and which extracts the value of a function at a point (for the delta 
function with punctual support) or at a hypersurface (for the delta function 
having this hypersurface for support). For instance, in R, (...) indicating the 
duality product between distributions and the set of smooth test functions: 

/ (a ) = {5(a), f)= [ 6(x - a)f(x)dx, (8.5.78) 

so that 6 has the strange property of vanishing almost everywhere, except at 
point a where it diverges to infinity; still it is normalized to one over R, i.e. 

L Sdx = l. (8.5.79) 
R 

Such a "function" can be defined as the limit of several sequences of functions 
which yield properties (8.5.78) and (8.5.79). The operational definition (8.5.78) 
extends to the case where the support of 6 is a surface or a line in E3 or on the 
material manifold M.. Let us apply this to the continuum mechanics of elastic 
bodies presenting "defects" such as cracks. The argument of Dascalu and Mau-
gin (1994a) is that the very structure of elasticity theory and the singularity 
order of elastic solutions dictates (i) the expression of the energy balance law 
in the presence of cracks and (ii) that a Griffith-like surface-energy distribution 
follows by necessity. Without repeating the mathematical detail of their proof 
which is outside the scope of this book, it seems necessary to emphasize the 
following results as they bear direct relationship to the thermodynamic results 
exposed in previous sections. 

First of all, assuming quasi-statics and the absence of any body and inhomo-
geneity forces, the local balance of physical momentum, angular momentum, 
energy, and pseudomomentum for an elastic body in finite strain are written as 

divfl T = 0, divfi (x x T) = 0 , 

dW (8-5-80) 
— - div«(T • x) = 0, divflb = 0 , 

at all regular points in the body B. In the absence of defects, the first three 
parts of Eqs. (8.5.80) take on the following distributional form (over the whole 
ofR3) 
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8.5. The Use of Generalized Functions in the Energy Equation 219 

DivRT + Td6(dB) = 0, 

Divfl (x x T) + (x x Td)5(dB) = 0, (8.5.81) 

DtW - DWR (T • x) - (Td • x)5{dB) = 0, 

where Div/j and Dt are distributional operators (i.e. classical derivatives where 
this notion applies), Td is the mechanical traction at dB, and 5(dB) is the delta 
generalized function with support dB. That is, writing (8.5.81) allows one to 
work on the whole of R3 while the natural boundary conditions are directly 
incorporated in the local field equations. Under the present conditions (no 
defects) this writing is elegant but does not provide anything new, as it is sim
ply of a synthetic nature. In the presence of elastic defects (e.g. crack, cavity, 
dislocation), the first two parts of Eqs. (8.5.81) are shown to be left unchanged 
while the third takes on the following generalized form (this exceptional status 
of this third equation is due to the essentially quadratic nature of energy in the 
basic fields — this, therefore, would also apply to the fourth part of (8.5.80); 
but we have already emphasized the equivalence between reasonings on energy 
and pseudomomentum): 

DtW + VGS{S) = DivR(T • x) + (Td ■ x)5(dB). (8.5.82) 

Here C is the set of defect points, B/C is the homogeneous elastic body, S is 
the set of extension points of the defect (this reduces to a point, the crack 
tip, in the case of a crack), G is the energy absorbed per unit area (or length) 
extension of the said defect, and V is the propagation speed. Equation (8.5.82) 
is valid at all points of B, dB, and in fact R3. If, furthermore, there exists a 
steady-state propagation criterion of the type (8.2.13), i.e. G = Gc yields a 
possible progress, then (8.5.82) becomes a true distributional conservation law 
in the form 

Dt{W + GCH{C)) = DivR(T • x) + (Td • x)6{dB), (8.5.83) 

where H(C) is a Heaviside function and the quantity GCH(C) may truly be 
called the energy of the defect. This last quantity depends on time through 
the time rate of change of the defect's size. Equation (8.5.83) was proved for a 
straight crack, and both screw and edge dislocations (cf. Dascalu and Maugin, 
1994a) by introducing regularizations of nonintegrable quantities (this is the 
case of W in the case of a crack) and principal values in the Cauchy-Hadamard-
Schwartz sense. 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



220 Chapter 8. Thermodynamics of Fracture 

The results (8.5.82) and (8.5.83) are interesting from the energy point of 
view as they show that we can alternately consider that either the crack's ex
tension causes a global dissipation (while there is no local dissipation at all 
regular points in the elastic body) — this is the point of view developed in 
previous sections — or that, within a globally conservative system (conserva
tion expressed by Eq. (8.5.83) in the case of a crack), there is an exchange 
of energy between the defect and the evolving nondefective material, because 
we have granted energy to the defect. This is of particular interest when the 
set of extension points has the same dimension as the body (case of cavities 
where the set of extension points becomes a surface — cf. Dascalu and Maugin, 
1994a). 

8.6. Remark on Cases Exhibiting Local Dissipation 

Until now we have addressed the problem of fracture only in bodies that do not 
exhibit any local dissipation, whether intrinsic or thermal, at all regular points. 
It is true indeed that the essential characteristic of the "fracture problem" 
is dissipation due to the progress of the crack. But it is also evident that 
dissipative materials are also subjected to the phenomenon of fracture. This is 
the case of elastic conductors in which the local dissipation is only of thermal 
origin, and also of materials such as viscoelastic, viscoplastic and elastoplastic 
ones that exhibit intrinsic dissipation. In contrast to brittle fracture, fracture 
is called ductile when it occurs during the plastic response of the material. 

Thermoelastic conductors. This case was already touched upon in Sec. 8.3. But 
it can also be examined in the light of the theory of material forces (Epstein 
and Maugin, 1994). The basic equations for nonlinear thermoelastic conduc
tors have been established in Paragraph 3.4B. Transcribed in the formalism of 
Sec. 8.4, these equations read, in the absence of body forces and heat sources, 
but for a possibly anisotropic and materially inhomogeneous material, 

— divfl T = 0 (equation of motion), (8.6.84) 

+ V/j • Q = 0 (equation of energy), (8.6.85) dt x 
/dW\ dW 

T = ( a F J ' S = —QQ-,W = W(F,0;X) (laws of state), (8.6.86) 

d 
dt P 
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8.6. Remark on Cases Exhibiting Local Dissipation 221 

Q • V f l(ln0) < 0, lim Q = 0 (residual dissipation), (8.6.87) 

where Q is the (material) heat flux vector and W is the free energy per unit 
volume in K.R. These are the bare essentials of the theory as the heat-flux 
law still needs to be specified, verifying (8.6.87). Proceeding as in Sec. 8.4, 
i.e. multiplying (8.6.84) to the left by FT integrating by parts, and using 
(8.6.86), we arrive at the balance of pseudomomentum in the form 

dt 
- d i v f t b = f i n h + fth, (8.6.88) 

x 

where V, b , £ and finh are formally defined just as in Eqs. (8.4.44)-(8.4.47), 
but we emphasize that W here is the free energy (i.e. the thermodynamic 
potential that depends on temperature), and the material force f411 is given by 
the remarkably simple expression 

f t h : = S V f i 0 , i.e. lim fth = 0 . (8.6.89) 

This may be called the material thermal force. It acts exactly like a true 
material inhomogeneity (f'nh) on the material manifold M. As a matter of 
fact, the property that thermoelastic strains are internal strains is already 
well known in small strain elasticity. Here we have the same result but in 
finite strains. This line can be pursued to treat the problem of thermoelastic 
fracture on the basis on (8.6.88) by integrating this equation in a small region 
around the tip of a crack. But this requires also exploiting (8.6.85) and having 
the knowledge of the conduction law and of the behaviors of thermomechanical 
fields in the vicinity of the crack. The left-hand side of (8.6.88) will necessarily 
yield the expression (8.3.38) for a straight-through crack. It remains to show 
that the right-hand side (with finh = 0) will integrate to give (8.3.27). 

Elastoplastic case. One can theoretically treat the case of a straight-through 
crack progressing in an elastoplastic material in finite strains by using (8.6.84) 
jointly with the results of the constitutive and evolution equations of Sec. 7.4 
and constructing the corresponding equation of balance of pseudomomentum 
in which the elastoplastic behavior materializes in two facts: (i) in the Eshelby 
stress tensor, the energy density W is replaced by 

W+ f^„ttdt, (8.6.90) 
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222 Chapter 8. Thermodynamics of Fracture 

and (ii) there exists an extra material force V due to elastoplastic effects as 
an additional source term. This shows that elastoplastic strains can also be 
interpreted as creating a material inhomogeneity. We refer to Maugin (1993c, 
1994b) for more precise developments along this line where a J-integral is 
obtained for this case. The usual argument in small strains is more traditionally 
based on exploiting the energy balance only (cf. Preund, 1990). 

In both thermoelastic and elastoplastic cases the material formalism shows 
the intricacies of the mixed problem of local dissipation — due to the behavior 
of the material — and of global dissipation — due to the irreversible progress 
of the defect into the material. We conclude this chapter with this warning. 
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Chapter 9 

NON-EQUILIBRIUM 
THERMODYNAMICS OF 

ELECTROMAGNETIC MATERIALS 

He who controls magnetism 
controls the Universe 

(attributed to) Dick Tracy 

He who understands the thermo
dynamics of magnetism, 

controls Dick Tracy 
(attributed to) G.A.M. 

9.1. Introductory Remarks 

The thermomechanics of electromagnetic continua is a branch of energetics 
which deals with the unification of continuum mechanics and electrodynam
ics of material media under the umbrella of general thermodynamics. This 
ambitious, somewhat Aristotelian-like scheme adds one difficulty to another. 
In effect, in addition to the cumbersome and rather heavy framework of non
linear continuum mechanics (as exposed in preceding chapters), one has to 
consider electromagnetism (e.g. Jackson, 1962), and then combine them within 
the harmonious frame of thermodynamics. But this combination is generally 
nonlinear, i.e. we cannot proceed to a simple and naive linear superposition. 
Some of the difficulties met have to do with the electrodynamics of moving 
bodies (e.g. writing fields and equations in appropriate frames), while others 
relate to the introduction of a general deformation field ("material" writing of 
the fields). Last but not least, there are difficulties connected with the inherent 
complexity of some of the behaviors (e.g. hysteresis and /erro-properties). 

223 
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224 Chapter 9. Non- Equilibrium Thermodynamics of Electromagnetic Materials 

In spite of the many obstacles mentioned above which one has to overcome 
to achieve as clean and rigorous an approach as possible, the most courageous 
and entrepreneurial among us did not hesitate to attack such a formidable 
problem.x The principal purpose of this chapter is to present in a synthetic 
manner those developments that relate to thermodynamically irreversible ef
fects in electrodeformable continua, whether solids or fluids. That is, after 
recalling the more or less classical thermodynamical background for electro
magnetic continua and the simplest irreversible behaviors (relaxation and clas
sical conduction), the chapter is devoted to an organized description of more 
complex behaviors (as announced in the book's title) which necessitate the im
plementation of a richer thermomechanical background, e.g. thermodynamics 
■with internal variables and/or the introduction of internal degrees of freedom of 
electromagnetic origin. The applications presented are multifaceted, exhibiting 
an interest in all types of electromagnetic behaviors either in solids or in fluids. 

In the course of this chapter many analogies are drawn upon with the ther-
momechanics of solids exhibiting mechanical irreversible behaviors. As a rule 
we remain in the engineering context so that only nonrelativistic concepts are 
used. But many of the results obtained can be generalized to a fully (spe
cial or general) relativistic background as shown in Maugin (1978a) — also 
Eringen and Maugin (1990, Chapter 16). The background (modern continuum 
approach to electromagnetic bodies) is essentially found in the following books: 
Truesdell and Toupin (1960), Eringen (1980, Chapter 10), Nelson (1979), Mau
gin (1985, 1988), Eringen and Maugin (1990), Maugin, Pouget et al. (1992). 
Readers who do not feel sufficiently comfortable with the pure, albeit simpler, 
electromagnetic background should consult Jackson (1962) or Landau and Lif-
shitz (1984).2 

9.2. Reminder on Electromagnetism 

Electromagnetic fields are of a different nature than mechanical and thermal 
fields dealt with in other chapters. They are governed by a set of equations 
known as Maxwell's equations. As a matter of fact, after pioneering works 

1Here a special tribute must be paid to the pioneers, R. A. Toupin, A. C. Eringen, 
H. F. Tiersten, and D. F. Nelson who, in the Western World, have been so instrumental in 
organizing the general background. We have had the chance to be closely associated to these 
most recent advances during the last twenty five years. 

2The present chapter leans heavily on our Udine lecture notes (Maugin, 1993d). 
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9.2. Reminder on Electromagnetism 225 

by Coulomb, Gauss, Poisson, Oersted, Ampere, Faraday, Weber and others, 
Maxwell (1873) succeeded in formulating a coherent set of dynamical equations 
valid in a continuous material. At each regular point x in a material volume 
fi at time t, this set reads3 

1 9B 
V x E + - — = 0 , V - B = 0, 

C dt (9.2.1) 

c at c 

together with 
H = B - M , D = E + P . (9.2.2) 

In these equations the various symbols introduced bear the following signifi
cance: c is the speed of light in vacuo, E is the electric field, B is the magnetic 
induction, H is the magnetic field, D is the electric displacement, J is the 
electric current, <?/ is the volume density of free electric charges, and M and 
P are the magnetization and electric polarization per unit volume. Here, E, 
D and P are polar vectors, while H, B and M are axial vectors which reverse 
sign in time reversal. The fields H and D differ from B and E, respectively, 
only in matter. Thus the first two parts of Eqs. (9.2.1) — Faraday's law and 
the equation indicating the nonexistence of magnetic monopoles — are valid 
everywhere, even in a vacuum. The fields M, P , J and qj relate to the pres
ence oi ponderable matter. Equations (9.2.1) can be deduced from a statistical 
average of microscopic Maxwell's equations with point-like sources of charge 
and current (this is the point of view of H. A. Lorentz in his celebrated "the
ory of electrons" which has not been superseded so far). In that case M, P , 
J and qj are given expressions in terms of the elementary charges and the 
motion (position and velocity or linear momentum) of these charges. The "mi
croscopic" definitions may be helpful in establishing the invariance properties 
of these "material" fields, especially in so far as objectivity (invariance under 
time-dependent rotations of the actual frame). However, in a phenomenologi-
cal framework which is the one adopted here, qf is a datum or the result of a 
computation while M, P and J have to be given constitutive equations, e.g. to 

3This is written here using so-called Lorentz-Heaviside units where neither factor 47r nor 
vacuum permeability (IQ and dielectric constant eo are involved. This is the most convenient 
system in theoretical considerations, especially in so far as dynamical effects are concerned. 
See Maugin (1988, p. 56) for other systems which may be more or less rational. 

V x H - V • D = qf , 
1 

J, 
l dD 
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226 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

give an idea to the readers, functional relations of the type 

M = M ( H , . ) , P = P ( E , . ) , J = J ( E , . ) , (9-2.3) 

where the dot stands for some other variables such as temperature, the strain 
in a deformable solid, or the density in a compressible fluid, etc. Note that the 
inverse relations, e.g. E = E(P, . ) or D = D(E, .) , H = H(B, . ) , E = E(J , . ) 
may be preferable depending on what we want to put the emphasis. Thus 
Ohm's law of our secondary-school years is usually written in the last form, 
U — RI where U is the difference of potential (electric field), / the intensity 
of the current, and R is the resistance which is the proportionality coefficient 
that may depend on the stretching of the wire (so-called elasto-resistance) and 
temperature. 

It must be emphasized that Eqs. (9.2.1) are expressed in a fixed frame TZL 
traditionally called the laboratory frame. It is known since Lorentz, Heaviside, 
Larmor, Poincare and Einstein that Maxwell's equation in a vacuum are form-
invariant by the special-relativistic group of space-time transformations (so-
called Lorentz Poincare group). For Maxwell's equations in matter the results 
depend on what one assumes for the transformation of the "material" fields 
M, P , J and qj. Being interested in material velocities much smaller, and 
dynamical processes much slower, than c, we may impose on Eqs. (9.2.1) a 
restricted invariance which will be the same as the one already verified by the 
mechanical equations, namely, the Galilean invariance of classical Newtonian 
mechanics (cf. de Groot and Suttorp, 1972; Maugin and Eringen, 1977, Maugin, 
1988, Chapter 3). Bearing this in mind, it is found that Eqs. (9.2.1) can 
be rewritten in a frame 7lc{x,t) co-moving with the infinitesimal element of 
deformable matter at velocity v in physical space E3 as 

1 * 
V x £ + - B = 0, V - B = 0, 

° . (9-2.4) 

c c 
where a superimposed * denotes the convected time derivative such that 
[cf. (6.3.24) and (6.9.121)] 

P : = P - ( P . V ) v + P ( V - v ) , 

= ¥ + V x ( P x v ) | v ( V . P ) , (9.2.5) 

V x W - * 
D 

1 
J, V • D = q, ,  T
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9.2. Reminder on Electromagnetism 227 

and the "script upper case" fields are given by the following "Galilean trans
formation laws" between 7£/, and TZc(x,t): 

£ = E + - v x B , c 

0 = B - - v x E , c 

M = M + - v x P , c 
J = J - qfv, 

H = H - - v x D c 

■H = B-M, 

V = P, 

V^S + V. 

(9.2.6) 

Clearly, in such transformations the symmetry between magnetization and 
polarization processes is lost (but this is fully justified by the microscopic 
definitions of such fields; cf. Maugin, 1988). The field £, electric field in TZC, is 
usually referred to as the electromotive intensity. The field J, current in TZC, 
is called the conduction current, since §/v is the convection current; qj and 
v will be known through the solution of a boundary-value problem; only J 
requires a constitutive equation. 

Large classes of electromagnetic materials. We shall say that a material is non-
magnetizable and nonpolarizable if and only if (exact definition, independent 
of whether a Galilean or Lorentzian framework is assumed): 

M(x,t) = 0, Vx,V<, (9.2.7) 

and 
V(x,t) = 0, Vx,V<; (9.2.8) 

These give the approximate "Galilean" conditions 

M = i p x v , and P = 0,Vx,Vt. (9.2.9) 
c 

The material is said to be a conductor of electricity if and only if J" is nonzero; 
otherwise it is called an insulator. The material is said to be electrically charged 
if qj ^ 0 at all points in the material. A material is called a dielectric when it 
is an insulator and qj = 0. Most of electrically polarizable media (solids) are 
either dielectrics or semiconductors. Strongly magnetizable media may be insu
lators or conductors. Weakly magnetizable media may be extremely good con
ductors (in the limit which is a mathematical idealization, perfect conductors). 
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228 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

In metals, heat conduction usually accompanies electricity conduction. This is 
why magneto-thermo-elasticity is a fashionable subject of research. Some elec
trically polarized materials may present a permanent electric polarization in 
the absence of electric fields. These are called ferroelectric, antiferroelectic or 
ferrielectric media depending on the circumstances. The equivalent behavior 
for magnetism refers to ferromagnetism, antiferromagnetism, and ferrimag-
netism. Some materials may conduct electricity without apparent resistance 
and no dissipation; these are called superconductors. The last three classes of 
materials present the noted critical behavior only below a certain temperature 
at which a change of phase has occured. In all we see that the range of possible 
behaviors is very wide. 

Direct consequences of Eqs. (9.2.1) are: 

(i) the law of conservation of electric charge [this is obtained by taking the 
divergence of (9.2.1)3 and accounting for (9.2.1)4] 

^ - + V - J = 0; (9.2.10) 

and 
(ii) an energy identity called the "Poynting theorem" [this is obtained by 

multiplying scalarly (9.2.1) 1 by H and (9.2.1)3 by E and making a combination 
of the two resulting expressions] 

H - ^ + E ~ = - J - E - V - S , S E C E X H , (9.2.11) 
at at 

or, using the fields introduced by (9.2.6), 

HB + £-D = - J £ - V S , S = c€xn, (9.2.12) 

where nothing has been assumed concerning the behavior. These are mere 
identities and not statements of a law of thermodynamics. The vectors S 
and S are the so-called Poynting vector (flux of electromagnetic energy) in 
TZL and Hc, respectively. Equation (9.2.11) is exact. The very structure of 
Eq. (9.2.12) reflects the "Galilean" approximation because, whereas all terms 
in the right-hand side are expressed in TZC, terms in the left-hand side are typ
ically composed of products of a field in 1ZC and the convected time derivative 
of a thermodynamically conjugate field, in V,L. TO proceed further we need 
to introduce the interactions between electromagnetic fields and deformable 
matter in the fundamental balance laws of thermomechanics. 
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9.3. Thermomechanics of Electromagnetic Materials 229 

9.3. Thermomechanics of Electromagnetic Materials 

Now we consider a material body such as in Paragraph 2.3D. The body, just 
as before, is acted upon by mechanical tractions T d at dCl and physical forces 
(say, gravity) f per unit mass in Q with a possible influx of heat q per unit area 
across dCt and a supply of heat h per unit mass in fi. If this body is a general 
electromagnetic body without internal degrees of freedom (of mechanical or 
electromagnetic origin) and it is acted upon by electromagnetic fields, then 
the general balance laws of thermomechanics for that body can be a priori 
written in the following general form (see Maugin, 1988, Chapter 3): 

• Balance of mass: 
d f 
— / dm = 0; (9.3.13) 
dt Jn 

• Balance of linear (physical) momentum: 

£■ f vdm= f(f + p-ifemdm+ [ {Td + Tem)da; (9.3.14) 
dt Jn Jn Jan 

• Balance of angular (physical) momentum: 

4- I\TX \)dm = / (r x f + p-lcem)dm 
dt Jn Jn 

+ / (r x (Td + Tem))da; (9.3.15) 
Jan 

• First law of thermodynamics: 

j f ()-v2 + e) dm = I (f • v + h + / 3 - 1w e m )dm 

+ / ( T d v - q n ) d a ; (9.3.16) 
Jon 

Second law of thermodynamics: 

— I r)dm> I he~ldm- [ B^qnda. (9.3.17) 
"* Jn Jn Jan 
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230 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

In these equations we assume that the entropy flux has the classical form. The 
interaction contributions fem, T e m , c e m , and w e m have to be determined by 
an analysis which is foreign to continuum thermomechanics, per se. There 
is no general agreement on their expressions as they depend either upon the 
taste of the scientist or on the quality and fineness of the model used to build 
them at a sub-macroscopic scale. A practical approach based on an averag
ing procedure was proposed by Maugin and Eringen (1977) in the tradition 
set forth by Lorentz in his theory of electrons and carried on by Nijboer, de 
Groot, Suttorp, etc. We shall use their expressions because these were exactly 
obtained within the above-introduced "Galilean" approximation. T e m here 
is irrelevant. For the other electromagnetic source terms we have (neglecting 
quadrupole contributions) 

fem = qf£ + -(j + p)xB + (P-V)£ + (VB) • M , (9.3.18) 

c e m = r x fem + cem , (9.3.19) 

w e m = f«m . v + c «m . fi + p f c em _ (9 .3 .20) 

wherein 

Cem = P x £ + A * x B , 
(9.3.21) 

phem =J£ + £-P-M-B + ti ( a e m D ) , 

and 

&em = P®£-B®M + (M-B)1 (9.3.22) 

together with 

fi:=-Vxv, (9.3.23) 

where ® indicates the tensor product. 

The local form of Eqs. (9.3.14) through (9.3.17) is easily shown to be (the 
divergence of second-order tensors — which are no longer necessarily symmetric 
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9.3. Thermomechanica of Electromagnetic Materials 231 

— is taken on the first index) 

p + pV ■ v = 0 or po = PJF in fi, (9.3.24) 

pv = div cr + pf + fem , in ft (9.3.25) 

n • a = Td + Tem at dtt , (9.3.26) 

a A := i ( a - aT) = (aem)A = (P®£ + M®B)A, (9.3.27) 

pe = t r ( c r L ) - f e m - v + w e m - V - q + p/i, i n f i , (9.3.28) 

and 
pfi>ph6-1 - V • (q0 - L ) , (9.3.29) 

where L is the velocity-gradient tensor and we note that the Cauchy stress 
tensor is no longer symmetric. Its antisymmetric part a A is given by a quan
tity called the ponderomotive torque. In this model which admits no internal 
degrees of freedom, this torque goes to zero with magnetization and electric 
polarization, or when the latter are aligned with electric and magnetic fields, 
respectively (in the magnetic case, this torque is responsible for the transient 
rotation of the compass' needle). Equation (9.3.25) has been used to transform 
the local form of (9.3.16). 

Of special interest for further developments is the transformation of the 
local form of (9.3.28) and (9.3.29) of the first and second laws of thermo
dynamics. First we can transform the expression of wem on account of the 
identity (9.2.11) or (9.2.12). Thus it can be shown that (prove this by the way 
of exercise) 

or 

or else 

where 

wem =f»".v + p£.jr_M-B + J-£ 

wem = J - E + E ~ - M ~ + V- [v(E • P)], 
at at 

w e m = - ^ ^ - - V- {S - v ( E - P ) } , 

7r = P / p , n = M/p, u e m / = i ( E 2 + B 2 ) . 

(9.3.30) 

(9.3.31) 

(9.3.32) 

(9.3.33) 
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232 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

Accounting for the first of these in (9.3.28) yields the form 

pe = tr(CTL) -V-q + ph + J-S + pS-n-M-B. (9.3.34) 

Introducing now the Helmholtz free energy density r\> by (Legendre transfor
mation if 8 = de/dr)) 

-p(ip + rfi) + tr (CTL) + J-£ + p£-n 

- ■ M - B + 0 q - V ( 0 - 1 ) > O - (9.3.34) 

This, together with (9.3.34) can be further transformed by performing Leg
endre transformations and introducing various types of time derivatives. For 
instance, introducing 

e = e + /x • B , ^ = # + /x • B , (9.3.35) 

we can transform Eq. (9.3.34) to 

-p{j) + rfi) + tr (CTL) + J ■ £ 

+ p£-* + pB-p, + 6q-V(e-l)>0. (9.3.36) 

Alternately, defining e and t/> by 

e = e — 7r • £ = e — /x • B — IT ■ £, 
(9.3.37) 

ip = e — T)0 = ip — /x • B — 7 r - £ , 

we can write (9.3.34) or (9.3.36) in the form 

-/>$ + rfl) +ti(<rL) + J ■ £ 

-P £ -M-B + Oq-ViO'1) > 0 . (9.3.39) 

The relevance of each of the inequalities (9.3.34) through (9.3.39) depends on 
the choice of independent variables to describe the interactions that take place 
between the Maxwellian electromagnetic fields £ and B and the (material) 
polarization and magnetization fields. Furthermore, if we note that, e.g. 

pn = P + (P • V)v, (9.3.40) 
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9.3. Thermomechanics of Electromagnetic Materials 233 

and define the symmetric stress o~E by 

aE = (<7 + £ ® P 4-B <g> A4)s , (9.3.41) 

then, on account of (9.3.27), 

aem = C em > Qem = _ d u a l c e m j (9.3.42) 

we can rewrite (9.3.36) as 

-p(j> + r?<9) + tr (a £ D) + J • S 

+ S-P + (BM + 6q-V(9-l)>0. (9.3.43) 

Another possibility is 

-p$ + rfi) + tr (cr£D) + J • £ 

- P - f - X - B + ^ q - V ^ - ^ ^ O , (9.3.44) 

where 
aE :=aE -(£-P + M-B)l. (9.3.45) 

This is not all in the case of deformable solids in finite strains where one often 
prefers to introduce material fields for both mechanical and electromagnetic 
entities (at points in space where this is meaningful for the latter as we remind 
the reader that electromagnetic fields exist also outside the body, in vacuum). 
This is achieved in the following manner. We look for material expressions of 
electromagnetic fields which allow one to express equations formally as (9.2.1) 
or (9.2.4) but in terms of material fields which are functions of X and t only, 
and indeed vectors on the material manifold M3. Here, however — this was 
not the case for Euclidean physical space E3 — that manifold makes the dis
tinction between contravectors and covectors. As a matter of fact, the following 
"Maxwellian" formulation of Maxwell's equations in matter: 

* ld(B 

c at 

V « x * - - -

= 0, V f i -9J = 0, 
x 

= - 3 , V B -S) = £ I / , 

(9.3.46) 
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234 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

is obtained if we introduce the fields noted with Gothic letters by the following 
operations of convection (so-called "pull back") to the reference configuration 
KR (see, e.g. Nelson, 1979, or Maugin, 1988): 

<B = J F F - 1 B , D ^ J F F - ^ D , 

c 
fi = H-F + -V x S , 

c (9.3.47) 
TL = JFF-1-P, M = M-F, 

Z = JFF~1J, Qf = JFqf, 

and 

We check that 

<S = E F , <8 = < 8 - - V x € = J F F _ 1 - B . 
c 

j) = j F c - x - € + n, 53 = j ^ 1 c - ® - : 

(9.3.48) 

(9.3.49) 

which replace the simple (spatial) relations (9.2.2). 
Introducing now the so-called second Piola-Kirchhoff (or "thermody-

namic") "elastic" stress S E by 

l -E -n-T Sfc = JpF-1 -o-" -F~' , 

and the fields 
Q ^ J f F - ^ q , VRA={VA)-F, 

by multiplication by JF of equations such as (9.3.43) and noting that 

A , ,„ an , dM 

(9.3.50) 

(9.3.51) 

(9.3.52) 

we readily show that Eqs. (9.3.43) and (9.3.44) transform to 

-{W + SB) +tr(SEE) +2 •<£ 

(9.3.53) 

or 

- I I - < E - M - < 8 + 0Q- V*(0 _ 1) > 0, (9.3.54) 

+ e-Il + !8-M + 0Q- Vafr1) > 0 

- ( l^ + 5 )̂ + tr(S£E)+a-€ 

£ = £ - 1 
V x < 8 , 
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9.4- Classical Irreversible Processes: Conduction and Relaxation 235 

where we have set 

W = p^, W = Poi>, S = POT1. (9.3.55) 

Any of the Clausius-Duhem inequalities obtained may be considered as a con
straint imposed on the formulation of constitutive equations for the fields, e.g. 

W , S , S E , 3 , n , M , Q , (9.3.56) 

or any equivalent set defined, for instance, through partial Legendre transfor
mations The following two remarks are in order: 

(i) The above derivation does not pay attention to the tensorial variance of 
various geometrical objects, so that we have straightforwardly applied deriva
tives such as those marked * to objects which, in fact, do not have the same 
variance. One could think that those are irrelevant mathematical details as 
we work to start with in a Cartesian framework in K.t- But, as mentioned 
before, this is not the case because the material manifold used to described the 
reference configuration does make that difference [e.g. between the elements 
of the pair (P, M) or (£,B)]. A correct derivation is to be found (in the 
absence of dissipative processes) in Maugin, 1993a, Chapter 8. The correct 
definition of materially convected fields is forced upon us by the rewriting of 
Maxwell's equations as (9.3.46), as the curl operator (Vx) and the divergence 
operator (V) distinguish between contravariant and covariant vectors [see the 
definitions (9.3.47)]. 

(ii) An important case where the previous remark becomes irrelevant is 
that of rigid bodies which are not in motion. Then the fundamental inequality 
(9.3.43) reduces to 

-(W + S6)+J-E + E-P + B-M + 6ci- V(6»_1) > 0, (9.3.57) 

while the energy equation takes on the reduced form 

E = (ph - V • q) + (J • E 4- E • P + B • M ) , (9.3.58) 

where the contribution within parentheses is the electromagnetic dissipation. 
Indeed, the rigid-body motion is defined in differential form by the condition 

D(x,t) = 0,Vx,£, (9.3.59) 

where D is the rate-of-strain tensor. Furthermore, v = 0 if the body does not 
move at all, even rigidly. From which there follows (9.3.57) and (9.3.58) with 
E = p0e. 
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236 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

9.4. Classical Irreversible Processes: Conduction and 
Relaxation 

We call classical irreversible processes of electromagnetic bodies, those be
haviors which can practically be "read" from the expression of the Clausius-
Duhem inequality as their description does not necessitate the introduction of 
additional entities (e.g. either extra thermodynamical variable of states of the 
"internal" type or internal degrees of freedom). The corresponding formulation 
is none other than the classical theory of irreversible processes (T.I.P.). 

A. Rigid bodies 

It goes in the natural order of complexity to start with rigid bodies for which we 
have the inequality (9.3.57) and the energy equation (9.3.58). Here electromag
netic properties for which constitutive equations are needed in a macroscopic 
description amount to three: electric polarization, magnetization, and electric 
conduction. On the one hand we note that an electric dipole density P placed 
in an electric field E and a magnetic dipole density M placed in a magnetic 
induction B 4 develop mechanical powers [see Eq. (9.3.57)] 

p E = E P , pM = B M . (9.4.60) 

The obvious analogy between these formulas and the expression of the corre
sponding deformation power in small strain 

P( i )=<x:e , (9.4.61) 

up to the tensorial order of the objects involved, also means that there is a 
direct analogy between stress and electric and magnetic fields (the "causes") 
on the one hand, and between strain and electric polarization and magneti
zation (the "effects") on the other hand. In principle, therefore, all devel
opments concerning the irreversible thermodynamics of deformation processes 
have analogs in dielectrics (electrically polarizable media) and in magnetism, 
accounting however for the differing tensorial character. Electric conduction 
both is of a different nature and shares something in common with mechanical 
processes. Indeed, the elementary power dissipated by the conduction current 

4We can replace B by H, on the condition to change the definition of energy, i.e. to 
introduce W = W(tA, P, 0) - (M 2 /2) = W(M, P, 6). 
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9.4- Classical Irreversible Processes: Conduction and Relaxation 237 

(here noted simply J) in an electric field E, is as we all know, given by Joule's 
expression 

pc = E • J . (9.4.62) 

On the one hand, as E is given in statics by — V<£, where <f> is the electrostatic 
potential, electric conduction, as recognized 150 years ago by W. Thomson, 
is very similar to heat conduction. In fact, Joule's contribution (9.4.62) then 
reads — J • V0 in total analogy with the heat contribution —S • V8 or the 
diffusion term found before as — J • Vp, where J was the diffusion current. 
Thus, a vanishing potential difference belongs to the condition of application of 
the axiom of the local equilibrium state (the system must be spatially uniform 
at thermostatic equilibrium). Simultaneously, from the microscopic definition 
of current, we have the equivalence 

pc = E - J = ( g E ) ( J / g ) = F - v , (9.4.63) 

where q is an electric charge density, F is a mechanical force and v is a vector 
field akin to a velocity. This demonstrates the current nature of J — e.g. J has 
the same nature as P ; compare (9.4.63) and (9.4.60)i. These two visions of J 
reflect the duality of the concept of conduction. These two aspects materialize 
in the modeling of various regimes of conduction such as normal, semi- and 
super-conduction. 

Joule and Hall effects. Here we just want to remark on normal conduction 
and the Hall effect. We examine only the contribution (9.4.62) to dissipation. 
According to T.I.P., we can take E linear affine in J, i.e. 

E = E(J ;0) , E ( J = O ; 0 ) = O . (9.4.64) 

For an isotropic body this yields, in the linear approximation, the celebrated 
Joule equation: 

E = R(9)J , (9.4.65) 

where R(0) is a temperature-dependent resistivity. 
Now imagine that, as the dependence on B is not ruled out, we consider a 

somewhat more general equation than (9.4.64): 

E = E(J ;B ,0 ) , E(J = O;B,0) = O, (9.4.66) 

where B and 6, which belong to the observable state variables, here play the 
role of simple parameters. But B is a vectorial parameter having an axial 
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238 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

nature. Even for an isotropic body, using simple arguments of group theory 
and its representation theorems, we can write a linear affine relation between 
E and J as follows 

E = -Ro(|B|2,9)3 + Ri(\B\2,0)B x J . (9.4.67) 

The last contribution, noted E G , representing the so-called Hall effect, is a 
gyroscopic effect in the sense that it satisfies the following orthogonality relation 
[cf. (6.4.69)] 

E G • J = 0. (9.4.68) 

Typical of this type of contribution is the fact that they do not cause any 
dissipation while they are not given by a law of state. As a consequence, 
there are no thermodynamical restriction on the sign of the scalar coefficient 
Ri. Effects of the Hall type are important not only in rigid bodies but also 
in plasmas (fluid mixtures) and elastic semi-conductors (solid mixtures). But 
they remain classical effects in so far as we are concerned. 

The inequality (9.3.57) also allows one to establish the constitutive equa
tions of linear isotropic or anisotropic electrically polarized or magnetized rigid 
bodies — also see below, the case of fluids and deformable solids — as well 
as the coupling between the two effects in a nonlinear theory, and also the 
couplings between heat and electricity conductions in the absence or presence 
of a magnetic induction (effects known as the thermoelectric and galvanomag-
netic effects: Thomson, Peltier, Nernst, Leduc-Righi, Ettingshausen and Hall 
effects). We refer the reader to more standard treatises for these e.g. de Groot 
and Mazur, 1962; Eringen and Maugin, 1990, Chapter 5. 

B. Fluids 

In this case we are satisfied with an Eulerian description and all fields are 
considered at time t in the actual configuration Kt. The basic thermodynamic 
inequality is provided by Eq. (9.3.43) or (9.3.44) depending on the set of inde
pendent variables chosen. On should consider to start with 

$ = i>(p,e,£,B), (9.4.69) 

limited to the case where dissipation is only of viscous, Joulean, and thermal 
origin. We refer the reader to Eringen and Maugin (1990, Chapter 5). As 
the fluids considered have no preferred direction, i.e. they are isotropic, it 
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9.4- Classical Irreversible Processes: Conduction and Relaxation 239 

is consequently shown, even in the nonlinear theory, that P is linear in the 
vector £ and M is linear in the vector B (they can also depend parametrically 
on the magnitude of these fields), so that the ponderomotive couple vanishes 
in such fluids, and the Cauchy stress tensor is symmetric (see Eringen and 
Maugin, 1990; p. 172). We do not duplicate these developments as we shall 
concentrate, on the case of solids, rigid or not, which admit more original 
dissipative behaviors. 

C. Deformable solids 

We are particularly concerned by the phenomena of electric and magnetic 
relaxation. We consider the Clausius-Duhem inequality in the form (9.3.54). 
The corresponding Gibbs' equation which serves to provide the laws of state, 
is naturally given: 

W = tr (S£E) - II • £ - M • SB - S0. (9.4.70) 

So that at thermodynamic equilibrium we have the following laws of state: 

W = W(E,£,<B,6), S=-dW/d0, 

sE = aw/dE, n = -dw/dt, M = -dW/d<s. (9.4.71) 

Slightly outside equilibrium, the temperature field 9 and the electric potential 
<j> may be spatially nonuniform, but we shall suppose that entropy still assumes 
its thermostatic definition (9.4.71)2- We define the following quantities outside 
equilibrium, i.e. deviations from the definitions at equilibrium: 

S" = S E -dW/SE, 
(9.4.72) 

ud = n + dw/d*., Md = M + dw/d®, 
so that the Clausius-Duhem inequality (9.3.54) provides the dissipation in
equality in the form 

$ = t r ( S " E ) - n d - € - M d - 5 8 + 3 - € + 0Q- Va(0 - 1 ) > 0 . (9.4.73) 

Again this inequality is in the canonical bilinear form favored by tenants of 
T.I.P., with equilibrium defined by 

V f lv = 0 , n d = 0; Md = 0 , (£ = 0 , VR0 = 0 . (9.4.74) 
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240 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

The simplest idea, that of T.I.P., on account of the smallness of deviations from 
equilibrium, is to consider the quantities dual to those appearing in (9.4.74) as 
linear in the respective fields. Thus 

S» = £ 5 [E] , £ = -Cv{Ild}, <B = - £ M [ M d ] , 
(9.4.75) 

a = £E[<*] + £EQ[VRO] , Q = cQ[vRe] + CQE{<B} , 
where the £'s are linear operators which are homogeneous of degree one. Equiv-
alently, we could deduce Eqs. (9.4.75) from a dissipation potential homogeneous 
of degree two in the appropriate variables. It is clear that Eqs. (9.4.75)4-5 de
scribe coupled electricity and heat conductions while Eq. (9.4.75)i refers to 
viscoelasticity in the manner of Kelvin-Voigt, and (9.4.75)2-3 describe one 
type of electric and magnetic relaxations. Once the relaxation is achieved, 
both polarization and magnetization recover their equilibrium definition given 
by Eqs. (9.4.71). Onsager's relations may be invoked to establish a necessary 
relationship between the operators C-EQ and £QE-

The approach given above is to be found in classical books so that we do 
not dwell in greater detail on it here. However, the expressions (9.4.75) deserve 
the following comments. First, in general the linear operators introduced in 
Eqs. (9.4.75) may still contain the thermodynamic variables of state on which 
W depended to start with, as this dependence is not excluded by any thermo-
dynamical principle. Thus Eqs. (9.4.75) in fact contain a host of interesting 
coupled effects, of which thermo-galvanomagnetic ones have already been men
tioned, but we may also have, for instance, dependence of relaxation times on 
the electric field and strain, and temperature, etc. 

Second, typically, an equation such as (9.4.75)2 will read (for isotropy to 
simplify the presentation) 

^ = - A { U - W ) , Ur = -dW/d<£, (9.4.76) 

where rg > 0 is a relaxation time and a(0) will be chosen for convenience. For 
a linear nondissipative behavior, W = <£2 and II r = XP(P)&> where XP i s the 
electric susceptibility. We can take a = Xp1^)- Then Eq. (9.4.76) in this case 
may also be written as 

n = XP(0) U - rE^\ . (9.4.77) 
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9.4- Classical Irreversible Processes: Conduction and Relaxation 241 

Similarly, for magnetic processes, working along the same line, we would obtain 
the "relaxation" equation 

M = 7 M ( < ? ) ( Q 3 - T M ^ y (9.4.78) 

Had we considered the formulation (9.3.53) to start with, Eqs. (9.4.75) would 
have been replaced by the set 

S " = £ 5 [ E ] , ft = £„[€"], U^CM\^d], 

3 = CB[€\+CEQ^Rfi], Q = £Q[V f i0]+£Q £[<S], (9.4.79) 

where the £'s are a priori different from the £'s in (9.4.75). Typically, the 
relaxation equation for II would read 

T S ^ ^ T ^ - ^ ' €r = dW/dIl. (9.4.80) 
at TM(V) 

With W Si n 2 and <Br = XpH^U, we can take 0(9) = Xp(0), and (9.4.80) will 
take on the typical form 

Tv(0)n + n = Xp(0)<£. (9.4.81) 

Obviously, Eqs. (9.4.76) and (9.4.81) are different although they admit the 
same "equilibrium" limit, the truth, however, may be an admixture of the 
two formulas (9.4.76) and (9.4.81) involving two relaxation times. Such more 
complicated relaxation formulas, just like those for rheological models more 
involved than the pure Kelvin-Voigt and Maxwell models of viscoelasticity, re
quire the consideration of internal variables to be justified on a thermodynamic 
basis. Similarly to (9.4.81), for magnetization we would obtain the relaxation 
equation 

T M ( 0 ) » + M = 7 M ( 0 ) » , (9.4.82) 

or 

« - - 4 m ( M - M e , ) , (9.4.83) 
at TM(u) 

where we have introduced the equilibrium value: 

Meq=TM(d)>yM{0)<B. (9.4.84) 
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242 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

Equation (9.4.83) is of the standard Block type in nuclear magnetism. Gen
eralizations for deformable ferromagnets and magnetic fluids will be derived 
in Sees. 9.10 and 9.11 below. To proceed further, we need to introduce either 
internal variables or additional degrees of freedom. 

9.5. Thermodynamics with Internal Variables 

The same way as for rheological models of solids, the thermodynamics with 
internal variables of electromagnetic bodies offers an unmatched variety of 
descriptions depending on the type of internal variables selected. The compli
cation and confusion are increased by the combination with internal variables 
of mechanical origin, so that we may envisage fields of application such as 
the magnetoplasticity of solids in which plastic mechanical effects couple to 
magnetic hysteresis ones, a coupling that is fully justified on a microscopic ba
sis. In order to remain within reasonable limits, we illustrate our propos with 
two separate, but still broad, examples, magnetic solids in small strains, and 
electrically polarized solids in large strains. 

A. Magnetic solids in small strains 

In that case we build on inequality (9.3.43) or (9.3.53) in which we discard 
electric and conduction effects so that with 

H = B - M , W = W{E,e,M)-^M2 = W(E,e,M), 

= W(e,9,M) (9.5.84) 

and restoring a simple notation, we have the inequality 

-(W + S6) + o-:i + H-M>0, (9.5.85) 

where (<r,H) are the "forces" conjugate to the "velocities" (i, M). Thus M 
plays a role that parallels that of e. Even more so, as M is indeed an exten
sive variable (it is proportional to the mass) and experimental evidence shows 
that magnetization, in total analogy with small strain, can be decomposed into 
a reversible part M r and an irreversible contribution M R , also called resid
ual magnetization. While in plasticity and viscoplasticity (Chapter 7) finding 
the evolution equation for the anelastic strain ep was the ultimate goal, the 
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9.5. Thermodynamics with Internal Variables 243 

evolution equation for M f l , eventually giving rise to magnetic hysteresis (see 
Sec. 9.7) should be the main concern of magneticians. The axial vector M r 

is the observable magnetic thermodynamic variable of state. Obviously, we 
are aware that relaxation and hysteresis are complex phenomena and it would 
be surprising that only M r and M f i are sufficient to describe them. Like in 
the mechanics of materials, to compensate for our relative ignorance of the 
underlying microscopic phenomena, we propose to introduce a set of magnetic 
internal variables. We shall assume that this set is composed of a traditional 
axial three-vector M' n t and a scalar a, all four components thus introduced 
having the physical dimension of a magnetization (magnetic moment per unit 
volume). It seems that the idea of introducing electromagnetic internal vari
ables such as M m t in particular (the scalar variable a is of more recent ex
tract) goes back to Meixner (1961) where the internal variable is conceived as 
an angular momentum {via the gyromagnetic ratio, cf. Maugin, 1988, for these 
concepts). This was taken over by Maugin (1979a,b; 1981a,b) both in rigid 
and deformable ferromagnets, while in the meantime Kluitenberg (1973, 1977, 
1981) presented a simple theory of Snoeck's formulation of magnetic relaxation 
based on the consideration of a magnetic internal vector variable. 

For example, in rigid bodies, we are thus led to consider a free energy per 
unit volume as 

W = W{Mr =M-MR,Mini,a,6). (9.5.86) 

Hence, the same way as for (5.6.44)-(5.6.46), we shall obtain the dissipation 
inequality in the form 

$magn := H r e l a x • M r + H • MR + H i n t • M i n t + Aa > 0, (9.5.87) 

where we have set 

jjrelax = JJ _ jjr jjr = QW/QMr , 
(9.5.88) 

H i n t = -dW/dMint, A = -dW/da. 

The last three of these provide the laws of state, while T.I.P. can be applied 
to the four contributions present in the expression of the magnetic dissipa
tion $magn. Evidently, H r e l a x bears this name because it provides the usual 
relaxation contribution to the magnetic constitutive equation. The formalism 
(9.5.86)-(9.5.88) allows one to consider also a model of magnetic relaxation 
which is the magnetic analog of Maxwell's rheological model; it seems to be 
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244 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

more satisfactory than (9.4.83) in macroscopic applications of dynamical hys
teresis loops met in electrical engineering works (e.g. Chua and Stromsmoe, 
1971; Saito et al., 1988). To that purpose, parodying the mechanical Maxwell 
model, consider the case where a = 0 and M R = 0, so that H = H r , and 
further let W depend on M only through the difference M - M i n t . It follows 
then that H i n t = H, and (9.5.87) reduces to 

$ W n = H M i n t > 0 . (9.5.89) 

For W quadratic in M - M m t and M i n t linear in H in agreement with T.I.P., 
by elimination of M l n t we obtain a magnetic constitutive equation of the type 
(cf. Maugin, 1991a,b) 

H + TH-H = (TH-XJI1)-M, (9.5.90) 

which is analogous to (7.2.4). This emphasizes the role of magnetic-field relax
ation while (9.4.83) does the same for magnetization relaxation. It is clear that 
by weighting adequately the role of these two relaxations by an appropriate 
choice of internal variable, it is possible to generate magnetic relaxation equa
tions of the general differential type (comparable to RDM in the beginning of 
Chapter 7): 

M + rM ■ M = XM ■ (H + TH • H), (9.5.91) 

where XM is a tensor of magnetic susceptibilities and TM and r # are ten
sors of relaxation times. Equation (9.5.91) is the magnetic analog of (7.2.5). 
However, such laws, which are thermodynamically admissible so that they do 
represent some progress, will not reproduce an essential fact of hysteresis which 
is a markedly different response in loading and unloading. Furthermore, for 
relatively small magnetizing frequencies, it appears that magnetic hysteresis, 
just like plasticity, is practically rate-independent and, therefore, does not ex
hibit relaxation times in contrast to the laws (9.5.90) or (9.5.91). Appropriate 
laws must, in some way, involve the sign of the rate of loading, i.e. of dH/dt, 
while being essentially independent of the time scale. This will be examined in 
Sec. 9.7 where, discarding any relaxation at all, we shall consider the following 
simplified version of (9.5.87): 

$m«gn = H • M r + H i n t • M i n t + Aa > 0 . (9.5.92) 
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9.5. Thermodynamics with Internal Variables 245 

B. Electrically polarized solids in finite strains 

In the case of nonmagnetizable dielectrics the Clausius-Duhem equation 
(9.3.53) reduces to 

-{W + SO) + tr (SEE) + <£ ■ fl + 6»Q • Vf i(<T!) > 0. (9.5.93) 

To make the essentials of the theory clear to the reader we consider the follow
ing thermodynamic scheme which obviously draws on the modern formulation 
of elastoplasticity with hardening (Chapter 7 above). Assume that the total 
strain E is composed of an "elastic" part Ee and an "anelastic" part W. In 
like manner, the electric polarization II is built of two contributions, one II r 

called the reversible part (this will serve to define a law of state from the energy 
density) and the other IId called the residual polarization, i.e. 

E = Ee + W, n = IT + UR. (9.5.94) 

In addition, like in the magnetic case, we know that rather complicated micro
scopic mechanisms are at work (irreversible slip motions in the crystal lattice, 
dislocations, irreversible motions of ferroelectric domain walls, Barkhausen ef
fect, etc.) which all imply a dissipation since they all have an irreversible 
nature. In the spirit of previous chapters we are thus led to the introduction 
of internal variables, say a and II in t, respectively a set of variables accounting 
for mechanical hardening and a variable having the physical dimension of an 
electric polarization per unit volume. The observable variables are now the 
"elastic" strain Ee, the reversible polarization I F and temperature 0. Accord
ingly, Gibbs' equation that replaces (9.4.70) reads 

W = -SB + tr (§EE) + <T • IT - A ■ a - £ i n t • IT n t , (9.5.95) 

and this yields the laws of state as 

W = W{9,Ee,W\a,Uint), 

5 = -dW/de, Se = dW/dW, <£r = dW/dW, (9.5.96) 

A = -dW/da, € i n t = -dW/dTlint. 

On account of the axiom of local accompanying state (L.A.S), S is formally 
denned as in thermostatics, so that the Clausius-Duhem inequality (9.5.93) 
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246 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

takes on the form of the following dissipation inequality. 

$ = tr (§"Ee) + tr (SBEP) + A • d + € r e l a x • IT 

+ € • tlR + £ i n t • n i n t + 6>Q • V*(0- ' ) > 0, (9.5.97) 

where we have set 

§f : = S £ - S e , £ r e l ax := € - <£r 

The inequality (9.5.97) is rewritten as 

$ = $ ! + $ 2 , (9.5.99) 

with 
$2 := tr (SvEe) - £ reIax • IT + 0Q • V^ t f " 1 ) , 

(9.5.100) 
$ i := tr (§SE") + A ■ a + € ■ tlR + <*int • IP" . 

Equations (9.5.97) through (9.5.100) deserve the following comments. First, 
we see by direct comparison with the general case that the roles of E and II 
are now played by Ee and II r in the part $2 of the dissipation. This means 
that the usual viscosity, electric relaxation, and electric conduction processes 
are expressed, according to T.I.P., in terms of time rates of change of the re
versible parts of strain and electric polarization, and the temperature gradient. 
In contradistinction, the irreversible parts of the strain and electric polarization 
(W and IIfl) produce a dissipation in the total mechanical symmetric stress 
SE and the total electric field <5. Finally, the split (9.5.99) is explained by the 
fact that the thermodynamic fluxes in $ 2 are assumed to be derivable from a 
dissipation potential which is homogeneous of degree two in the corresponding 
forces (this is equivalent to T.I.P. — as the fluxes will then be linear, homoge
neous of degree one in these forces) while the time rates in $1 will be assumed 
to derive from a pseudo-dissipation potential which is homogeneous of degree 
one only in the corresponding thermodynamically conjugated quantities, pro
viding thus the needed evolution equations for the internal variables as well as 
plasticity and hysteresis evolution equations (without time scale) for the irre
versible parts of the strain and electric polarization. The first characterization 
of electromagnetic dissipative processes is rather similar to what was done in 
viscoelasticity. A critical illustration is given in the next section for dielectric 
relaxation. For the second class of dissipative processes, illustrations are given 
in Sec. 9.7 for both electric and magnetic cases. 

(9.5.98) 
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9.6. Dielectric Relaxation in Ceramics 247 

9.6. Dielectric Relaxation in Ceramics 

To illustrate the viewpoint developed in the preceding section for dielectric 
relaxation we shall consider the problem of the propagation of transient plane 
nonlinear waves in a one-dimensional model of ferroelectric ceramics. The 
problem was treated by Collet (1987) — see also Maugin, Pouget et al. (1992, 
Chapter 4). From the point of view of thermodynamics this problem is es
sentially of interest to show the importance of relative time scales (hence the 
Deborah number) in discussing a phenomenon in which both macro-scale and 
micro-scale are involved. 

In this modeling we assume that 

a = 0, Ep = 0, II f i = 0 . (9.6.101) 

Accordingly, Ee reduces to E and IF to II, so that the free energy W reduces to 

W = W{E, n, 6»|IIint). (9.6.102) 

The corresponding internal energy is obtained through a partial Legendre 
transformation as 

E = W + SO = E(E, n, S | l t n t ) , (9.6.103) 

and the laws of state are 

0 = dt/dS, S £ = dt/dE, 
(9.6.104) 

€ = dt/dU, <5int = -dt/dUint, 

where the last one merely is a definition of <£'nt. We have assumed that £ r e l ax = 
0, and the quasi-electrostatic framework is sufficient (hence <H reduces to <£). 
Then the electric relaxation, if any, is taken care of via the dependence of 
energy on II'nt only. As there is no other dissipative process (remember that 
we have a dielectric, and we neglect heat conduction and mechanical dissipative 
effects), the residual dissipation inequality reads 

$2 = £ i n t • n i n t > 0. (9.6.105) 

By way of example we may consider the separable case for which 

t - Ei(E,n,5) + s2(n,n in t), (9.6.106) 
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with 
Ea(n, nint) = i sn 2 + h{u - n i n t)2 . (9.6.107) 

Then 
e - (dSi/dU) + (a + 6)n - wi int, (9.6.108) 

while, applying T.I.P. to the inequality (9.6.105) we obtain a relaxation equa
tion (Collet, 1987) 

Tdtlint = II - n i n t , rd > 0, (9.6.109) 

where rd is called the dielectric (polarization) relaxation time. This shows 
that the equilibrium value of n i n t is none other than II itself. The quantity 
Ta is practically directly accessible to experiments in a study of shock-wave 
propagation in dielectrics (Yakuscov et al., 1968). Obviously it intervenes in 
transient problems which themselves exhibit a characteristic time, or a char
acteristic length of propagation. In the present case, for a propagation process 
whose linear regime is characterized by the velocity CQ (say, an acoustic speed), 
a characteristic length 

L a = CoTd (9.6.110) 

may be constructed and referred to as the electric attenuation length. It is 
clear that when the wavelengths associated with all dynamical disturbances 
(for small amplitude signals) are short compared to La, then the effect of 
electric relaxation is negligible and the material behaves locally as an elas
tic dielectric without losses. This is verified by establishing the expression 
that governs the behavior of an acceleration wave (i.e. a wavefront carrying a 
discontinuity in the acceleration) propagating through a material modelled by 
Eqs. (9.6.104)-(9.6.107) and considering the limit where the traveled distance L 
is much smaller than La (see McCarthy, 1984b). In this limit, one-dimensional 
motions admit simple-wave solutions (i.e. wavelike solutions which depend only 
on one space-time, or characteristic, coordinate). We refer the reader to Mc
Carthy (1984a) and Collet (1985) for this problem. Here we prefer to deal in 
greater detail, but not exhaustively, with a problem which directly exhibits 
the role played by the Deborah number in nonlinear wave propagation. To 
that purpose we consider the effect of electric (polarization) relaxation on the 
transient nonlinear electroelastic motion inward a half-space X > 0 from the 
limiting plane X = 0. Third-order nonlinear elasticity and dielectric relaxation 
(9.6.109) are taken into account as we still need some nonlinearity, but the lat
ter is purely elastic. Hence we are facing the competition between nonlinearity 
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9.6. Dielectric Relaxation in Ceramics 249 

of elastic origin and a dissipative mechanism (related to another physical prop
erty, here electric polarization), the two being coupled via piezoelectricity, a 
very much classical electroelastic coupling (cf. Eringen and Maugin, 1990). We 
give only the broad lines of the derivation. 

It is shown, in one space dimension and quasi-electrostatics, that the basic 
equations of the problem take on the following form: 

Td^nint = n-n int, 
at 

along with the constitutive equations ( / = F— 1, where F is the only surviving 
component of F) 

r = cf(i + 27/) -en, 
(9.6.112) 

2) = ef + a n - 6n i n t . 

Here C, 7, e, and a are, respectively, a second-order elasticity coefficient, 
a nondimensional third-order elasticity coefficient, a piezoelectric coefficient, 
and an electric constant. 

The system (9.6.112)-(9.6.113) in a quasi-linear system which must be 
solved subject to initial conditions at t — 0, boundary conditions at X = 0, 
and regularity conditions as X tends towards infinity. These are given by 

/ = 0 ,n = 0, n i n t = 0 atr. = 0, X > 0 , 

/ = K(t), V = 0, a t X = 0, t > 0 , (9.6.113) 

/ -v 0, n -> 0, n i n t ->• 0 a s X - > o o , f > 0 . 

An approximate (asymptotic) solution to this problem can be sought in two 
ways. One of them is to look at a far-field solution and the other one is to 
examine what occurs in the neighborhood of the traveling signal. These pertain 
to so-called delayed and instantaneous wave analyses, respectively. 

(9.6.111) 

0 = p0 
d 

V 
'at 

d 
dX T

l, 

0 = 
d 

ax 
©, 
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A. Delayed-wave analysis 

Let r be a characteristic time scale. We call 77 = max |#(£)| the small param
eter related to the amplitude of the input signal. Let 

Cd = C - (e2/Xeq), X«q = ( l + a ) - & . V2 = Cd/p0, (9.6.114) 

a piezoelectrically altered elasticity coefficient, the thermodynamical equilib
rium value of the electric susceptibility (II = II in t at equilibrium), and the 
squared delayed acoustic speed. We can introduce nondimensional variables 
(with superimposed bars) by 

X = VdTX, t = ri, f = r)f, v = ■yVdV, 

II = Tyell, n i n t = r?en int, T = r]VdT, D = rjeT). (9.6.115) 

Furthermore, 
ed = (Ve)„ := Td/r (9.6.116) 

is a small parameter which is none other than the Deborah number related to 
polarization-relaxation processes [cf. (4.7.44) or (4.7.45)]. Equations (9.6.111) 
are rewritten using the new variables and then overbars are discarded in order 
to lighten the notation. We thus obtain the following system (where dt and 
dx denotes the partial derivatives) 

<*ddXf + rffdfdxf + (e2/Cd)dxU = dtv, 

dxf + xdXK ~ Pdxllint = 0, (9.6.117) 

eddtUint = IT - n i n t , 

where ad = C/Cd, >yd — A^ad. Also, taking the X-derivative of (9.6.117)i, we 
get the useful equation 

<*d&xf + rflddxifdxf) + (e2/Cd)dxU = d2f. (9.6.118) 

The appropriate time scale for the far-field study is 0 ( ^ _ 1 ) with (T)/ed) —*■ 0 as 
ed —► 0. The system (9.6.117) is treated by introducing multiple strained coor
dinates Xn = (ed)nX, n > 0. The zeroth- and first-order governing systems are 
then deduced from (9.6.117). The zeroth-order solution SQ = {/o, ITo, IIont} sat
isfies a linear wave equation, and this provides a solution /o = fo(Xi, £), where 
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9.6. Dielectric Relaxation in Ceramics 251 

C = t — XQ is a characteristic coordinate typical of simple-wave-propagation 
problems. The secularity condition for solving the first-order solution uniformly 
in space provides a constraint on the functional dependence of /o through the 
equation (here x = 1 + a; see details in Collet, 1987) 

dfo , df0 l , d 2 / o / n c n o i 
+ 7 d / o — = od^72~. (9.6.118) aXi ,aj" ac 2 ac2 

where we have set 

7 = - 7 m / 2 e d , d=^-%^±, Ci = C - ( e 2 / x ) > 0 , (9.6.119) 
Xeq cd 

where d is a diffusivity coefficient and Cj may be called the instantaneous 
(see below) effective second-order elasticity coefficient. Equation (9.6.118) is a 
paradigmatic equation of nonlinear wave theory known as the Burgers' equation 
(cf. Maugin, Pouget et al, 1992) in which the roles of time and space are played 
by the variables X\ and £, respectively, and that of the viscosity by the diffusion 
coefficient. Its solution is the delayed wave which is valid for 

r = 0(77- 1 )>T d , i.e. (2?e)w « 1, 

(X, t)£Vd = {X, t\X > Ld » Vdrd) , (9.6.120) 

Ld » 0(ViTi) 

where Vj and r, are defined by 

Vf = Q/po, r, = ^L-^—rd. (9.6.121) 
Xeq < t̂ - W 

The first equation of (9.6.120) is none other than a condition of very small 
electric Deborah number, which is characteristic of the local accompanying 
state hypothesis in internal-variable theory. 

B. Instantaneous wave 

The problem now consists of examining what occurs in the immediate neigh
borhood of the wave front as the latter travels inward the half-space X > 0. A 
solution is described in this neighborhood by considering an asymptotic pro
cedure in which the perturbation parameter is none other than the distance 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



252 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

(X1)B = -2 ln(l - ( 2 | 7 , | ^ ) - 1 ) , K'm = max (9.6.125) 

from the wave front of the linear theory. That is, we introduce the param
eter £» = r/ri, with Ti given by (9.6.121) and Tj > r j . In this analysis the 
nondimensional form of Eq. (9.6.111)3 is given by 

0 tITnt = Si(Ti/Td)(U - n i n t ) . (9.6.122) 

A multiple strained-coordinate (Xn = (ei)nX) analysis in which £{ is the small 
parameter with 0(r]/ei) = 1 as e< goes to zero, yields a secularity condition on 
the zeroth-order solution fo{X\, C, —t — Xo) in the form of a following simple 
nonlinear equation (Collet, 1987) 

H+Wo^ + i/o-0, (9.6.123) 

with the boundary conditions 

f0(t, X0 = 0,X1=0) = /0(C = t,Xl=0)= K(t). (9.6.124) 

This solution forms a shock at a breaking distance (XI)B given by 

dK(Z) 

Here the electric losses, although small, have a cumulative effect on the 
attenuation of the wave. This is involved in (9.6.125) so as to prevent the 
formation of the shock. However, once the shock is formed, then it will evolve 
according to the rules of weak-shock theory. The instantaneous solution thus 
obtained is valid for 

(X,t) &Vi = {X,t\ \Vit-X\ < Li « Vin}. (9.6.126) 

For an input K{t) = / (0 , t) in the form of a ramp followed by a plateau, we 
obtain a space-time dynamical response as reproduced qualitatively in Fig. 9.1 
(after Maugin, Pouget et al., 1992). This response consists of an exponentially 
damped front and of the main wave which, at lowest order, is governed by the 
Burgers equation (9.6.118). We see that the influence of the internal variable 
is somewhat spectacular. 

Other works of a more formal nature that consider electric internal variables 
and nonlinear waves in electroelasticity are those of Collet (1983, 1984, 1985) 
and McCarthy (1984a,b). The case of semiconducting electroelastic bodies 
may be even more interesting, but then the electric conduction certainly is the 
leading dissipative mechanism (see, e.g. Daher and Maugin, 1987, Maugin and 
Daher, 1986). 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



9.7. Electro- and Magnetomechanical Hysteresis 253 

-U . t 
i 

Fig. 9.1. Response of a half-space with electric relaxation to a ramp / ( 0 , t) in stress at the 
limiting plane X = 0 {after Maugin, Pouget et al., 1992, p. 200). 

9.7. Electro- and Magnetomechanical Hysteresis 

A. Electric bodies 

Here, basing on the equations of Sec. 9.5, we address the following problem: a 
polycrystalline multidomain dielectric material exhibits both induced electric 
polarization and spontaneous electric polarization. The former is reversible 
and may be modeled by n r while the latter is accompanied by dissipation and 
will be modeled by both IIR and n i n t . We focus the attention on the last two 
fields, in particular on the first one and its relationship with the polarizing field 
and other stimuli such as temperature, stresses and bias electric fields. For a 
given temperature and fixed state of stresses and bias fields (usually zero or 
considered as such), the typical response |IIf i | versus |€| presents the shape of 
a hysteresis loop such as in Fig. 9.2 with a saturation such that |II f t | —¥ U§ as 
|£| goes to infinity (i.e. becomes large enough physically). This hysteresis loop 
is obtained in an alternating polarizing field of low frequency. As a matter of 
fact, we assume that this loop does not depend on that frequency. In other 
words, the electric hysteresis phenomenon is rate-independent and, as such, it 
does not involve any characteristic time (and is very much similar to plasticity 
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254 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

Fig. 9.2. Typical hysteresis behavior of ceramics: (a) in the absence of applied stress and 
bias electric field; (b) in the presence of such fields. 

and locking — locking is the mechanical property that strains remain bounded 
although the level of stresses can be increased considerably such as in biological 
materials) in contradistinction, say, with viscosity or electric relaxation. This 
is probably not true for high frequencies of the polarizing field and for relatively 
high temperatures. 

The hysteresis curve (a) in Fig. 9.2 is essentially characterized by: (i) the 
level of saturation U§; (ii) the value Ec = <£(IIR = 0) of the so-called coercive 
field, and (iii) the "inclination" of the hysteresis loop on the IIfl-axis. We 
should remember that perfect hysteresis loops of one-domain crystals have 
vertical, jump-like, branches (cf. Maugin, Pouget et at., 1992, Chapter 6). 
When this inclination is not zero — what appears the be the case for most 
industrial materials such as ceramics — then we say that the electric material 
exhibits electric hardening. This wording is granted by analogy to mechanical 
hardening. It simply means that it takes a greater value of the polarizing field 
to increase the polarization HR by a given amount. 

Under the influence of a perturbation such as a bias (dc) electric field, an 
applied stress or irradiation, the loop (a) transforms into loop (b) in Fig. 9.2. 
In general, four essential effects are manifested in this transformation: (i) the 
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9.7. Electro- and Magnetomechanical Hysteresis 255 

saturation level is changed, (ii) the width of the hysteresis loop at zero polar
ization has been altered, (iii) the coercive field has evolved, presenting different 
values on loading and unloading (the loop is no longer symmetric with respect 
to the origin), and (iv) the electric hardening has been modified to some extent, 
all facts which are made more eloquent on the derivative curve (instantaneous 
electric susceptibility). All these recognized facts may be modeled in a nec
essarily nonlinear manner. This phenomenological theory was developed by 
Bassiouny et al. (1988a,b), Bassiouny and Maugin (1989), Maugin (1989), and 
Maugin and Bassiouny (1989). 

The above brief description views electric hysteresis as a dissipative mech
anism without time scale although the past history of the electric loading of 
the sample clearly plays a determining role at any instant. The first point 
is coped with by assuming that the power dissipated in the time evolution 
of IIR is homogeneous of degree one in tlR, while the second point is taken 
care of by the presence of the electric internal variable Il i n t . The latter will 
account for electric hardening and will also yield an entropy production which 
is homogeneous of degree one in its time evolution (IP"'). Accordingly, focus
ing on electric processes, we only keep in the thermodynamic formulation the 
effects of II f l and n , n t , so that the dissipation inequality (9.5.97) reduces, in 
quasi-electrostatics, to 

$i = <£ ■ tlR + <Sint • i l i n t > 0, (9.7.127) 

where 4>i is supposed to be positive, homogeneous of degree one in the elements 
of the set V = {tlR, IP"1} of generalized velocities or fluxes. The corresponding 
set of "forces" is F = {<£, <£mt}. Both homogeneity and non-negativeness 
properties of $ i are satisfied, just like in elastoplasticity (Chapters 5 and 7), 
by the introduction of a pseudo-dissipation potential Upon use of the basic 
theorem of Sec. 5.4, there exists a closed convex set CE in the space of elements 
of F such that the said pseudo-dissipation potential is none other than the 
indicator function of that convex set. That is, we have 

( 0 if / < 0 
V*(F) = mdCE = < , (9.7.128) 

[ +oo if / > 0 

and 

CE = {E = (£, € i n t) G F\f{E) < 0} . (9.7.129) 
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256 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

This physically means that dissipation occurs only when E belongs to the 
boundary of CE- Then we necessarily have the following normality laws (equa
tions of evolution) 

ft* = ^ P > n - = A § g § , (9.7.130) 

where the unknown multiplier A is such that A = 0 if f(E) < 0 and A > 0 
if f(E) — 0. The same as in elastoplasticity, this provides a very singular 
correspondence between elements of V and F spaces, which is proper to this 
type of rate-independent processes. Most of the following properties are derived 
just like in elastoplasticity to which we refer the reader for the analogies. 

(i) Principle of maximal dissipation for electric hysteresis 
Equivalently to the normality laws (9.7.129) we can state the following prin

ciple of maximal dissipation in perfect analogy with the Hill-Mandel principle 
of the plastic case: 

(€ - <£*) • ft* + {<£int - (<Eint)*} • riint > 0. (9.7.131) 

This variational inequality holds true for any E* = {<£*, (£ in t)*} € CE{F); 
(ii) Orthogonality relation: 
The conditions pertaining to the multiplier A can be made more precise, 

viz: A > 0 if / = 0 and / = 0, and A = 0 if / < 0 or / = 0 and / < 0. The 
proof of these is elementary once the following orthogonality property is proved: 

€ • rift + £int ■ n i n t = 0. (9.7.132) 

Like in the plastic case the proof is based on the use of (9.7.131). The above 
model is mathematically neat. It corresponds to the case where the electric 
loading surface / = 0 is identified to a surface of egui-pseudc-potential V*. 
Several consequences and further specifications of this modeling are of partic
ular interest. 

(iii) Local stability. 
Assume that 

W = WE{W, 9) + W W ( n i n t ) , (9.7.133) 

where WB is convex in FT and concave in 6, and W^ is convex in Uint. Then 
(9.7.132) yields 

. . „ . d2W(«) . 
g - n f l = n i n t - aTT. taTT. n , n t > o . (9.7.134) 
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Whence the vectorial increments in € and IlR form an acute angle or, in a 
one-dimensional model, this translates to 

> 0 (9.7.135) 
dUR ~ 

at all points of the hysteresis loop. Thus electric hardening is always positive 
in this model; 

(iv) Global stability. 
Another consequence of the formulation (9.7.131)—(9.7.133) is the follow

ing result 

I <Edn>0, (9.7.136) 
c 

for any closed (total) polarization cycle C. The proof follows the identical 
proof in plasticity with hardening in Chapter 7 where the roles of £ and II 
were played by the stress and the total strain. Then (9.7.136) is the electric 
analog of Ilyushin's postulate. The result here means that electric hysteresis 
loops are always described in the counterclockwise direction (in a plane where 
<£ is the abscissa and II is the ordinate). 

(v) Example of electric loading surface f(E) = 0. 
Let II i n t be a scalar and M its thermodynamic conjugate such that TV = 

dW/dU,nt. Then / = f(<8,Af). An example of such a function / is given by 

f(E) = f(<Z,AT> = (ll<S|l + AO2 - El. (9.7.137) 

It is readily shown by using Eqs. (9.7.130) that 

n i n t( t) = f {tlR(t') • A " 1 • tR{t')Y'2dt' = A* (9.7.138) 
Jo 

if ||<£||2 := £ ■ A • £, where the real symmetric nonsingular A accounts for 
electric anisotropy (if any). In this case IImt is none other than the cumulative 
or accumulated (in time) residual polarization at time t. It thus really accounts 
for the whole past history, up to the present, of the electric loading. 

(vi) First polarization curve: 
The above model is completed by the datum of a first polarization curve 

<e = <p(nR)ornR = <f-1(<£), (9.7.139) 
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such that 

^(11*) = -v>( -n f i ) , hence <p(0) = 0, 

d<p/dnR>o,ve, 
^-1(«)le=±oo = ±nf. 

This allows one to construct the hysteresis curve from an alternating loading 
starting from a virgin state; expression (9.7.139) is foreign to the present theory 
in the sense that either it is given by experiments or it is obtained from a semi-
microscopic theory of electric polarization relying on the effects of domain-
wall motions. The construction of hysteresis curves on the basis of the above 
thermodynamically developed model is described in Bassiouny et al. (1988a,b). 

(vii) A correct parametrization of the curve (9.7.139) and the loading surface 
(9.7.137) in terms of stresses and temperature allows one to reproduce (at 
least the tendency) of the alterations to the hysteresis loop due to such fields. 
Figure 9.3 reproduces the result of such a parametrization for the influence of 
stress for PLZT ceramics. The agreement with experimental data is not too bad 
in spite of the obvious complexity and strong nonlinearity of the phenomenon. 
It is also possible to describe the horizontal translation of the hysteresis loop 
under the action of a bias electric field or the nonsymmetric widening of the 
loop (see Bassiouny and Maugin, 1989). 

In all, the above-given electric modeling, which somewhat parodies the 
elastoplasticity of metals, is thermodynamically sound while reproducing 

— o 
<r*50MPa 
2a 

L 

(9.7.140) 

Fig. 9.3. Influence of compressive stresses on the electric hysteresis loop of PLZT ceramics 
(after Bassiouny and Maugin, 1989). 
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physical reality in a rather satisfactory manner. It is also "comprehensible" 
as it adheres well to the logic that we developed in previous sections. We 
obviously refer the reader to the original papers for the mathematical details 
and many graphic illustrations. It is fair to indicate that Chen (1980, 1984) 
— Chen and Peercy (1979) — has also attempted to construct a model of 
electric hysteresis by domain switching which in fact amounts to a theory with 
electric internal variables as shown by Bassiouny et al. (1988b). This theory 
reproduces well the general features of electric hysteresis and butterfly (strain 
versus field) loops in PZT ceramics although it had no thermodynamical basis 
to start with. 

B. Magnetic bodies 

The above-reported developments obviously admit of a magnetic analog in 
the description of ferromagnetic hysteresis and its couplings to mechanical 
effects. This is especially important in view of the potential applications to 
nondestructive testing (NDT) such as the measure of residual stresses via 
the Barkhausen effect [cf. Rudyak (1971), Karlajainen and Moilanen (1979), 
Ghaleb (1979), Chernyi (1983), Maugin (1989, 1991a,b), Maugin and Sabir 
(1990)]. 

Just for the sake of illustration we shall recall here the elements of a typical 
thermodynamically admissible modeling of magnetic hysteresis based on the 
exploitation of the inequality (9.5.87) when we discard any magnetic relaxation 
phenomenon. That is, 

$magn = H • M * + H i n t • M i n t + A* > 0, H = H r . (9.7.141) 

This parodies plasticity in small strain and the electric behavior already ex
amined in Paragraph A above. We have the following model (Maugin, Sabir 
and Chambon, 1987) for a rigid medium: 

• Free energy: 
W = Wm{Mr,9)+W(a,6); (9.7.142) 

• Laws of state: 
dW dWm dW 

S = -W> H = 9 i v F ' A = -^dc7; (9-7-143) 

Evolution laws: 

r « _ i » / , . _ i f l / M = A a S ' * = A a J r t9-7"144) 
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where 
A > 0 if / = 0 and / = 0, 

A = 0 if / < 0 or / = 0 and / < 0, 

with the "convex" set of magnetism: 

(9.7.145) 

For instance, 

CM={U,A\f(U,A)<0}. (9.7.146) 

(9.7.147) 
M r = 3 e - 1 ( H ) = M - M R , 

/ (H, .4) = (||H|| + .4) 2 - t f c
2 , 

where Hc, the coercive field, depends on the loading point, i.e. on | |H||, and 
X~l is obtained by inverting the second of (9.7.143). It has been assumed 
that magnetic hysteresis is rate-independent, hence the dissipation (9.7.141) 
is homogeneous of degree one only in the respective rates, and we have set 
H m t = 0. By eliminating A between the two equations (9.7.144), we obtain a 
result similar to (9.7.138) in the form 

a ( * ) = M « : = / \\MR(t')\\dt', (9.7.148) 
Jo 

i.e. the scalar internal variable is the cumulative residual magnetization. With 
the additional data of the first magnetization curve (which itself presents a 
saturation) 

H = ip{MR) or MR = <p-\H), H=\\H.\\ (9.7.149) 

such that 

(p(MR) = -ip(-MR), d<p/dMR > 0, V# , 

(^( t f = ±oo) = ±M£, 
(9.7.150) 

we check that the "convex" defined by (9.7.146) and (9.7.147) — a line segment 
— evolves with an alternating magnetizing field of growing amplitude until 
a maximum loop is formed [for which saturation corresponds to the last of 
(9.7.150)] of which the intersection with the .ff-axis corresponds to the usual 
definition of the coercive field of the sample. Such a "construction" of the 
final hysteresis curve is shown in Fig. 9.4. Figure 9.5 exhibits a hysteresis loop 
for steel with a comparison between the theoretical curve entering the above 
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1. 

261 

Fig. 9.4. Constructing the maximum magnetic hysteresis loop from a virgin state (after 
Maugin, Sabir and Chambon, 1987). 

Fig. 9.5. Hysteresis loop for steel (in normalized units) at zero stress: — experimental 
curve after Jiles and Athernon (J. Phys. D. App. Phys., 17, 1984, p. 1273) and — "good" 
theoretical fit (M. Sabir, Thesis, Paris, 1988). 
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scheme and some experimental data. A nonlinear parametrization of <p and the 
introduction of an effective magnetic field accounting for magnetomechanical 
couplings (e.g. magnetostriction) allow one to recover the essential features of 
the influence of mechanical stresses on magnetic hysteresis, at least in a one-
dimensional model (Sabir, 1988). With the introduction of an internal axial 
variable M i n t with companion "force" 

H i n t = -dW/dMint, (9.7.151) 

it is possible, like in (mechanical) kinematic hardening, to mimic a displacement 
of the convex of magnetism, which will no longer be centered on the origin of 
the H-axis. In that case we may take, for example, 

/ ( H , H i n t) = ||H + H i n t | | 2 - El, (9.7.152) 

instead of (9.7.147)2- It is found then that M i n t is none other than MR itself 
up to a constant vector (in the mechanical case the backstress is proportional 
to the plastic strain!). 

C. Relation to microscopic descriptions 

We briefly comment on the relationship between the above developed phe-
nomenological models and microscopic or semimicroscopic descriptions. We 
illustrate this with the magnetic case which is better known from the micro
scopic viewpoint. At the scale of magnetic domains and magnetic-domain 
walls — which is a mesoscopic scale — the process of magnetization takes 
places reversibly through the reversible deformation (essentially bending) of 
magnetic domain walls or, when the input energy is sufficient enough, through 
the irreversible movement of the said domain walls. This occurs if the energy 
input is sufficient to overcome the pinning energy of walls, as the latter has a 
tendency to get pinned by lattice defects. This, in fact, explains the intimate 
relationship between "mechanical defects", and thus plasticity, and magnetic 
hysteresis, so that there is a need for a true magneto-plasticity. 

The irreversible movement of magnetic domain walls is jerky and takes 
some time to occur. Thus, on the one hand the jerky movement of walls 
gives rise to microinstabilities along the magnetic-loading curve, and this is 
quite analogous to what we observed in mechanics in Fig. 7.6. The collective 
response of all magnetic domains is the resulting magnetizing process, and the 
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9.7. Electro- and Magnetomechanical Hysteresis 263 

usually observed M-H hysteresis is a smooth out version of this rather chaotic 
behavior. Nonetheless, this semi-microscopic behavior manifests through the 
so-called Barkhausen noise which, therefore, represents the magnetic analog of 
acoustic emission. It is of interest, following Sabir and Maugin (1988) to give 
a few elements of the semi-microscopic approach and to explain how it relates 
to the phenomenological one above. 

For a magnetic flow equation such as (9.7.147)2 we shall have a macroscopic 
magnetic evolution equation in the form 

M f l = ± 2 A ^ H , (9.7.153) 

where Hc is defined at the loading and unloading branches. Sabir and Maugin 
(1988) have shown, by exploiting the ideas of L. Neel from the 1940s, that for 
one domain wall of area S, and across which the magnetic moment density m 
suffers a finite jump [m], with an applied magnetic field H and a mean free 
(or fly) path Lw between two successive stops of the wall on pinning points, 
we have the following microscopic evolution 

rh* = ( c o n s t . ) - 2 5 L m | | m | 1 (1 - IIH^II/HHIDa-H, (9.7.154) 

where 2t is a simple matrix whose numerical expression depends on the type of 
wall (e.g. so-called 180° and 90° walls); | |H,i| | is related to the pinning energy 
Wp of the wall by | | H A | | = Wp/|[m], andrx is the mean transit time of the wall 
between two successive pinnings. The symbolism (...) indicates the positive 
part. This microscopic law is not precisely of the same form as Eq. (9.7.153). 
It involves both a threshold (i.e. a sufficiently intense magnetic field needs to 
be applied to overcome the pinning energy) typical of plastic-like behaviors 
and also a characteristic time which is rather typical of viscous-like behaviors. 
We may say that (9.7.154) is the magnetic analog of a viscoplasticity evolution 
equation in solid mechanics. The essential properties of (9.7.154) are carried 
to the macroscopic level for a statistical distribution of domain walls. The final 
result is [cf. (5.4.39)] 

M f l = ^ , (9.7.155) 

where it can be shown that (Sabir and Maugin, 1988) 

BT>* •?' T 
— = (const.) • - ^ M J < 1 - | |H^ | | / | |H | | )H, (9.7.156) 
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264 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

Table 9.1 State variables and dissipation in magnetism and solid mechanics (after Maugin, 
1991a). 

Magnetism 

magnetization (axial vector) 
power 
magnetic field (axial vector) 

decomposition 
reversible magnetization 
residual magnetization 
dissipation 

relaxation magnetic fied 
dissipation 

M 
H M 

H 

M = Mr + MR 

Mr 

MR 

H MR 

u relax 

Hrelsx Mr 

Solid mechanics in 

small strain (tensor) 
power 
stress (tensor) 

decomposition 
elastic strain 
anelastic (plastic) 
dissipation 

viscous stress 
dissipation 

strain 

small strains 

£ 

<T : e 
a 

e = ee+eP 
e' 
e" 

a:i" 

p.vi.0 

avi.c . p. 

internal magnetization M m t internal strain £ , n 

(n — 3) internal variable a (n — 6) internal variable a 
area of domain walls oriented densities of dislocations 
perpendicular to a certain along different glide systems 
direction, per unit volume in the crystal 

where S' is the total area swept out by all walls in their motion and H ^ is now 
an averaged pinning field. A complete analogy with the viscoplastic behavior 
of so-called Bingham fluids (see Sec. 7.2) can be drawn. This is reported 
in Table 9.2 after the analogies between magnetism and solid mechanics in 
general have been collected in Table 9.1. If the transit time TT tends to zero, 
then the expression (9.7.156) acquires a singular behavior which, in the limit, 
is none other than the one of Eq. (9.7.153). i.e., as in the mechanical case, the 
"plastic-like" behavior is a singular limit of the "viscoplastic-like" behavior. 

In a different vein, by carefully examining the coupled magneto-mechanical 
unidirectional response of a magnetic specimen of unit thickness made of a 
few magnetic domains (a whisker), Motogi and Maugin (1993a,b) have been 
able to identify a good magnetic internal variable of state as being the area 
(volume) of (magnetically saturated) magnetic domains which are magnetized 
orthogonally to the direction of magnetization of the specimen or of the ap
plication of stress. In other words, these new internal variables take account 
of the irreversible changes in the domain structure in an unexpected way. The 
reason for this is that it is the deformation of walls which are not parallel 
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9.8. Elastic Superconductors 265 

Table 9.2. Analogy between irreversible magnetization and viscoplasticity of crystals and 
Bingham fluids (after Maugin, 1991a). 

Magnetism Solid mechanics 

Saturation in magnetization, magnetic loading locking, yield surface, cumulative plastic 
surface, cumulative residual magnetization strain (Odqvist parameter) 

Micromagnetism Viscoplasticity of crystals 

transition time of wall, Pinning pressure, 
Evolution equation: 

,« = [mJSKum, 
[mj: jump in magnetic moment 

(a domain wall is a two-dimensional defect 
related to a discontinuity in magnetization) 

S: area of domain wall 
Ken: mean normal speed of the wall 
( H - H * ) - r h R > 0 

waiting time of dislocation, 
Peierls-Nabarro force, Orowan's formula: 

£p = pm[u]v, 
b = [u]: Burgers vector 

(a dislocation is a one-dimensional defect 
related to a discontinuity in elastic 
displacement) 
p m : density of mobile dislocations 
ii: mean velocity of dislocation 
Hill-Mandel maximal dissipation principle 

Residual magnetization resulting from the 
motion of a distribution of domain walls 

Evolution equation for Bingham fluids 
(rheology) 

Magnetization rate: M K 

transition time: TR 
pinning field: || H^ || 
magnetic field: H 
norm of magnetic field: || H 

strain rate (tensor): D 
viscosity: r/ 
stress threshold: g 
deviator of stress tensor: od 

(second invariant of stress)1/2: (<TH) 

to the magnetizing field that contribute most to the resulting magnetization. 
This approach allows one to reproduce in a rather neat way the phenomenon of 
stress-induced magnetization (via magnetostriction) while fitting precisely with 
the above-presented phenomenological framework (see Motogi and Maugin, 
1993a,b). 

9.8. Elastic Superconductors 

"Normal" electric conduction is probably one of the physical properties whose 
measurements vary within a largest interval (think of resistivities spanning 
the interval from 1 0 - 8 ohm x meter to 10+17 ohm x meter, i.e. an interval of 
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266 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

25 orders of magnitude) and which is characterized by so many well recognized 
regimes, i.e. average conduction, perfect conduction (as in astrophysics and 
magnetohydrodynamical studies), dielectrics (practically no conduction) and 
semi-conduction. While dielectrics request the condition 3 = 0 in the material 
framework, perfect conduction corresponds to a mathematical idealization of 
infinite conductivity which translates in the condition that the electric field in 
the co-moving frame must vanish in order to keep the Joule heating finite, i.e. 

£ = 0 or <£ = 0 (perfect conductors). 

The cases of normal and perfect conductions do not need any improved thermo
dynamics (see Sec. 9.4). Semi-conduction, as exhibited in certain piezoelectric 
crystals of technological interest is amenable through thermodynamics with 
internal variables as it exhibits diffusion of several charged species with possi
ble dissociations and recombinations. The additional state variables then are 
real scalars. We do not dwell in this case for which we refer the reader to the 
original works (Maugin and Daher, 1986; Daher and Maugin, 1987). 

Superconductivity, the property (not to be mistaken for perfect conduction) 
of certain materials to let electric current flow without opposing any resistance 
below a certain transition temperature, is of a totally different nature as a 
good treatment of it, if we discard nonlocal electrodynamics, necessarily in
volves the consideration of concepts which are foreign to phenomenological 
physics, per se, such as the wave function t/> of superconducting electrons (so-
called Cooper's pairs — see de Germes, 1966), obviously a complex-valued scalar 
function. That is, we are working in a framework where we couple the macro
scopic vision with some arguments issued from a lower level of description, in 
fact the quantum one. The idea is to consider ip itself as a complex-valued in
ternal variable in an otherwise more or less classical background of deformable 
conductors. This type of approach should bear fruit with the current develop
ment of high-temperature superconductors, and with better knowledge of their 
coupled properties, such as those relating deformable and superconducting be
haviors. Furthermore, as tp is an order parameter from the point of view of 
phase-transition theory, the existence of a rather large correlation length im
poses the consideration of the spatial gradients of ip together with ip. Thus 
we are right in the framework recalled in Sees. 4.7 and 4.8. In this we fol
low Maugin (1992b). We know now that in addition to the usual material 
indifference (objectivity) of continuum mechanics, the gauge invariance of su
perconductivity should be implemented. These two restrictions, together with 
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9.8. Elastic Superconductors 267 

the fulfilment of the second law of thermodynamics in its Clausius-Duhem 
form and where we know that entropy flux is no longer the ratio of heat flux 
to thermodynamical temperature (we have to account for the gradients of the 
internal variable, hence a diffusion-like phenomenon), make this approach su
perior to other attempts at a phenomenological formulation (e.g. Zhou and 
Miya, 1991; Zhou, 1991). 

Calling Sfl and K the material vectors associated with the entropy flux S 
and extra-entropy flux k by convection, i.e. 

SH = J F F - 1 - S , K = J F F - 1 k , (9.8.157) 

it is trivial to show that (9.3.54) for a nonpolarizable body reads 

- M • 58 + Vfl • (0K) - S f l • VR6 > 0. (9.8.158) 

Here F designates the free energy per unit reference volume. 
Obviously, Eqs. (9.3.46) show that there exist [material, i.e. functions of 

(X, t)] electromagnetic potentials <p and & such that 

(V+c-flJ' * = Vflxa. (9.8.159) 

But there is more than that in the superconducting case as the gauge invariance 
of superconductivity (de Gennes, 1969; Lynton, 1969) further imposes that 
(£ and B remain form-invariant in the space-time transformations defined by 
(€ - 6, 58 = 58) 

Vfi = V f i - ( ie7/ic)a, j t = j t + (ie*/h)<p, (9.8.160) 

where h is Planck's reduced constant, i is the imaginary unit, and e* is a 
characteristic electric charge (equal to 2e for Cooper's superconducting elec
trons, where e is the electronic charge). The constitutive equations for our de-
formable superconductors must satisfy the inequality (9.8.158) and the gauge 
invariance (9.8.160). For elastic superconductors (i.e. assuming no mechanical 
dissipation), we naturally assume that F, to start with, is a sufficiently regular 
function 

F = F{F,£,B,6,i>,VRtP), (9.8.161) 

- ( F + 50) + tr(S£E) + O-£ 

<B = -
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268 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

where ip is a scalar-valued complex function, and we see that the first appear
ance of the gradient of this internal variable via VRip. That is, in the tradition 
of T.I.V., we have no specific field equation for ip. 

The electric conduction current 3 is composed of a normal contribution 3n 
to be determined essentially by £ and that will dissipate, and a superconducting 
contribution 3* determined by ip and which does not contribute to the entropy 
growth, by definition of superconductivity. With this in mind we write, using 
(9.8.159), 

1 521 
3 • <S = 3„ • € - V* • {Zsf) + (Vf i • 3s V - - 3 . • -57 • (9.8.162) 

c at 
Applying first the requirement of material indifference to F, we easily show 
that the following F satisfies this invariance: 

F = F{E,<B,fB,e,ip,VRip). (9.8.163a) 

Noting further that ip is complex-valued while F is real valued, on account of 
the gauge invariance we consider the reduced form 

F = F(E, <£, <8,0, |V|, | V R V I ) • (9.8.163b) 

We now compute F while setting (ip* denotes the complex conjugate of ip): 

(i* := dF/d(VRr), 

dp . (9-8.164) 
Ai,- :=-—+VR-n* + (2ie*/fic)/i* ■ 21. 

On substituting the result of F into Eq. (9.8.158) while accounting for (9.8.162) 
and (9.8.164), and assuming that 5, S £ , M and 3s do not depend on 6, E, 2$ 
and 21, respectively, we obtain that the inequality (9.8.158) will keep in one 
sign if and only the following results hold true: 

(9.8.165) 
dF

 n a, °F 

and 
(9.8.166) 

b~ 80' 

Zs=2h (/x> 

0E' 
dF 

-«&•)• 
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9.8. Elastic Superconductors 269 

Furthermore, we select K in such a way as to avoid the appearance of a true 
divergence contribution in the second law of thermodynamics. Thus 

as a consequence of (9.8.165) through (9.8.167), (9.8.158) reduces to the fol
lowing dissipation inequality: 

■<P VR-Js- 2Re (%+*■)' > 0. (9.8.168) 

Proceeding now as in preceding sections, i.e. exploiting T.I.P. — or assuming 
the existence of a positive dissipation potential which is homogeneous of degree 
two in the fluxes — for the first three contributions in (9.8.168) we obtain (for 
instance, assuming isotropy for these effects, but there are no problems in 
considering an anisotropic case) the following complementary laws: 

and 

SR = -frn0 + VnZn, 3» = E n (g - i roVR0) , (9.8.169) 

■ 4 * = V ^ , (9.8.170) 

while, on account of (9.8.170), (9.8.166) and (9.8.164), we check the following 
identity 

V f i • 35 = 2Re f ^ A o V ' * ) , (9.8.171) 

so that the last term in the left-hand side of (9.8.168) just vanishes. The 
remaining dissipation is non-negative if and only if we have the following con
straints on the coefficients: 

K > 0, E„ > 0, vn = 6-KO , 7^ > 0. (9.8.172) 

Equations (9.8.169) are thermoelectrically coupled Fourier's and Ohm's laws 
(but note here that the former is given directly for the entropy flux). Equa
tion (9.8.170) is the looked for gauge-invariant evolution equation for the inter
nal variable if). The coefficient 7^ — which has to be positive according to the 

K = 
1 

e 
<Ss<p + 

1 
2 I h' 

dip 
dt - v-

d-d)' 
dt 

(9.8.167) 

$ = 3„ • £ - SR ■ VR6 + 2 Re 
&4>* 

A^,- dt 
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last of (9.8.172) — accounts for the finite relaxation time of superconducting 
electrons (however, this relaxation time must be sufficiently small compared to 
the characteristic time of external loads so as to justify the working hypothesis 
of local accompanying state). The constant h has been introduced for nota-
tional convenience. Both Js and K are entirely expressible in terms of F and 
ip because of Eq. (9.8.170). 

If we consider as a particular case the following free energy — clearly some 
kind of truncated expansion — where ft and the effective mass m* are intro
duced for convenience: 

F = Fn(E,0) +a{E,0M2 +/?(E, W| 4 + ^ l ^ r f , (9.8.173) 

then Eqs. (9.8.166) and (9.8.170) yield 

ie*h (p*\2 

Zs = ^ - r ^ V f l V * - rVRip) - ^ - f - M ' a (9.8.174) 

and 

7 v , A ^ + a(E, 0)V + /J(E, 0 ) M V - ^ V ^ V = 0, (9.8.175) 

respectively. Equation (9.8.174) is the accepted law for supercurrent (see, 
e.g. de Gennes, 1969). Equation (9.8.175) is obviously a straightforward dy
namical generalization of the Ginzburg-Landau equation of superconductivity 
which accounts for the coupling with strains and for dissipation by relaxing su
perconducting electrons (cf. Tinkham, 1964). At this point, it remains to write 
down the conservation-of-charge equation deduced form (9.3.46)3 by taking 
the divergence and accounting for (9.3.46)4, (9.8.166) and (9.8.169)2, and the 
heat equation which is obtained by expanding the intrinsic-dissipation equation 
which here reads 

OS = $ i n t r + V R • (0S f l), (9.8.176) 

with 

*i„tr = 3 n - e + 2Re ( A f r ^ H • (9.8.177) 

This completes the essentials of the continuum thermomechanics of thermoe-
lastic superconductors in the Galilean and gauge-invariant form which fits well 
in the general scheme for systems prone to exhibiting dissipative structures 
(see Maugin, 1990a, and Paragraph 4.7b). The coupling between typically 
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superconducting features and strains will naturally come into the picture, 
e.g. through the functions a and /? present in the energy (9.8.173), possibly 
with drastic behaviors at phase-transition points. Some of these are illustrated 
in the book of Zhou (1991). 

9.9. Solutions of Polyelectrolytes1 

We consider the case of fluid solutions of polyelectrolytes to illustrate simultane
ously the theory of mixtures with chemical reactions, the presence of a tensorial 
internal variable (the conformation of Sec. 6.4), and the interactions with elec
tromagnetic fields. Such solutions were schematically depicted in Fig. 6.4 with 
counter-ions forming a more or less tenuous cloud around the macro-ion. 

A. Thermodynamical modeling 

Polyelectrolyte solutions can be modeled as mixtures, the solvent being the 
carrier fluid, and the solute merely consisting of the polyelectrolyte molecules, 
or rather macro-ions. The different types of ions are dissolved into the fluid. 
For the sake of simplicity the solvent is supposed to undergo isochoric motions. 
The motion of the different types of ions gives rise to electric current densities 
which need not be conserved because of the possible ionization and recombi
nation reactions. The volume charge density as a whole is assumed to vanish 
(neutral fluid). But the different types of ions are described through a set of 
charge densities qa, a = 1,2,..., one of them, qm being the charge density of 
macro-ions. So the polyelectrolyte solution is modeled as a reacting mixture of 
several fluid components. However, in order to avoid the complexity inherent 
in the standard theory of fluid mixtures we introduce simplifying assump
tions. Indeed, let pc and pm be the mass densities of the carrier fluid and the 
"macro-ion" fluid. Owing to the assumption of isochoric motions we have pc, 
pm = const, and hence the total mass density p = pc+pm is constant (the mass 
of counterions is discarded). The corresponding velocity fields v and v m satisfy 
V • v = V • v m = 0. Only the Eulerian description in the current configuration 
tCt is employed. We ascribe material properties to the carrier fluid and the 
macro-ions only. Thus p is the mass density of the mixture and we disregard 
the partial pressures of the different ions in the fluid. Finally, the local electric 

*We rely heavily on the review contribution of Maugin and Drouot (1991). 
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272 Chapter 9. Non- Equilibrium Thermodynamics of Electromagnetic Materials 

properties are taken care of through the electric polarization per unit volume 
(effective density of electric dipoles) P , or unit mass, n = P/p, and Maxwell's 
equations are considered within the framework of quasi-electrostatics (optics, 
however, requires the use of the full set of Maxwell's equations; see Drouot 
and Maugin, 1987, for these further developments). The carrier fluid itself is 
regarded as electrically neutral. All this being specified, we can now consider 
the basic equations. 

The balances of electric charge for the ions a in the solution are written as 

^■p + V • (qava) = 7 Q , a = 1 ,2, . . . , (9.9.178) 

7 a being the charge supply (from the other ions) and vQ is the velocity field of 
the a th type of ion. Conservation of charge implies by summation over a that 

J > « = 0 . (9.9.179) 
a 

Moreover, the charge supplies j a are not independent of one another since 
there can occur n distinct chemical reactions so that 

n 

7« = Y, v*rK, (9.9.180) 
r = l 

where the uar's are stochiometric coefficients and Ar are reaction progress rates. 
Let Ja = qa(vQ — v). In view of the condition V • v = 0, we have 

V • {qavQ) = V • Ja + (v • V)qa . (9.9.181) 

And Eq. (9.9.178) transforms to 

qa + V • JQ = 7a , (9.9.182) 

where the superimposed dot denotes the usual material time derivative (relative 
to the whole mixture). We emphasize that macro-ions are carried with the fluid 
and thus 

Jm=0, 9 m = 7 m . (9.9.183) 

B. Field equations 

From the general theory of electromagnetic continua in interaction, which 
builds on a generalization of the principle of virtual power (cf. Maugin, 1980), 
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9.9. Solutions of Polyelectrolytes 273 

it is shown that the local equations of physical linear and angular momenta 
for the whole solution are in the form 

p\ = div a + pf + fem , fem = (P • V)5 , (9.9.184) 

and 
a = a + (P ® £)A , i.e. aA = (P ® f ) ^ , (9.9.185) 

where the symmetric tensor <r is called the intrinsic stress tensor, and we see 
that the Cauchy stress becomes symmetric when P and £ are aligned. Let 

J = ^ J a , (9.9.186) 
a 

be the total current density, e the internal energy, q the heat flux, S the entropy 
flux, k the extra entropy flux (we have diffusion so that we expect a deviation 
from the classical formula of S) and h the heat supply per unit mass. The 
local energy equation reads 

pe = tr (<7D) +J-£-p£L- DJ-K - V q + ph, (9.9.187) 

where £L is the so-called local electric field which satisfies the "balance" equa
tion 

£L + £ = 0, (9.9.188) 

and Djn is the Jaumann derivative [cf. (6.4.79)i] of the electric polarization 
7r. Introducing the Helmholtz free energy t/> = e — T)9, and combining (9.9.187) 
with the second law 

prj > (ph/9) - V • (S), S = 0 - 1 Q + k , (9.9.189) 

we obtain the Clausius-Duhem inequality in the form 

-p{Tp + Tj9) + tr (CTD) +J-£-p£L- Djn 

+ V • (0k) - S • V0 > 0, (9.9.190) 

where D is reduced to its deviatoric part in reason of the incompressibility of 
the mixture as a whole. 
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274 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

We call K and K the volume and deviatoric parts of a general conformation 
tensor which accounts for the macro-ions deformabihty and is considered as an 
internal variable from the thermodynamical viewpoint. The function ip thus 
has a general functional dependence 

ip = ip(6,qa,ir,k,K). (9.9.191) 

The laws of state read 

dip 

f = 

where f) is the entropy at local instantaneous equilibrium, /xQ are chemical 
potentials of the species a, / and J- are generalized forces, and we also define 
£R and k by 

eR = eL-eLr, k = - g £ ^ ja, (9.9.193) 
a 

and finally, for a spatially uniform state (i.e. Vv = 0, £ = —V<f> = 0, V0 = 0, 
where <j> is the electrostatic potential) entropy has its thermostatics definition, 
i.e. T) = ij, when all rates of internal variables (K, K, A r) are nil. Then after 
computing the time derivative of ip, taking account of the invariance of ip by 
rotations, expressed by (invariance under infinitesimal rotations of a scalar-
valued function of a vector field n and a symmetric second order tensor K) 

'(&*«-&*«)+(£"'-£*)-■ <—» 
and accounting for Eqs. (9.9.182), (9.9.189)2, (9.9.192) and (9.9.193), we de
duce from (9.9.190) the following residual dissipation inequality 

$ = tr (CTD + FDjK) + fk-£R- DjP 

n 
+ ^ J a £ Q - ^ f l r A r - S V 0 > O , (9.9.195) 

a r = l 

dip 
oqa 

dip T 

?Lr dip_ 
dn ' 

dip 
7dK' 

(9.9.192) 
77 = 
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9.9. Solutions of Polyelectrolytes 275 

where, on account of incompressibility, we have set 

a* 
£a := £ - V/xQ , /iQ = ■£— , P = pn, 

Q»iy 

* = / > V , S = frn=-—, Rr = ^2pa^ar, (9.9.196) 
a 

0 P * J 8K' 8K-

All dissipative processes that contribute to (9.9.195) in the traditional bilinear 
form, can be studied on the basis of T.I.P. Thermodynamical equilibrium is 
denned by three groups of conditions: 

s-=-(S),q' «■>--(£).,■ (Mi97» 
Vv = 0, V<?i. = 0 , V£a = 0 , V<? = 0 , (9.9.198) 

and 

/(/ceq) = 0, ^ ( K e q ) = 0 , ( f L ) e q = ( ^ r ) e q , i?r = 0, (9.9.199) 

of which the second corresponds to a spatially uniform state while 
Eqs. (9.9.199) define equilibrium values of K, K, P and Ar once the condi
tions (9.9.197) are fulfilled. A linear theory usually implies that K e q = 0 and 
(A r)eq = 0. But /ceq ̂  0 and (9.9.198)2 and (9.9.199)3 do not necessarily imply 
that P e q = 0 since (£Lr)e<i may be strongly nonlinear in P and the equation 
(£Lr)eq = 0 could have non-zero P solutions (case of a ferroelectric behavior). 

C. Dissipative processes 

Equations (9.9.198) and (9.9.199) clearly single out two types of dissipative 
processes through their limit conditions corresponding to thermodynamical 
equilibrium. The former are the usual dissipative processes of T.I.P. (de Groot 
and Mazur, 1962) that correspond, at equilibrium, to spatially uniform states 
of the basic observable variables of thermo-electro-mechanics, while the latter 
represent relaxation processes governed by evolution equations and of which 
reaction kinetics have probably offered historically the first example. Electric 

ELT = -
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276 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

and conformational relaxations belong to this class while shear viscosity, elec
tric conduction and thermal conduction belong to the former. A third class, 
the "plasticity-like" one is not represented here, but was amply illustrated in 
previous chapters. 

The various parities in time and tensorial orders of the fluxes and forces 
involved in the inequality (9.9.195) means that one can immediately envisage 
certain couplings, as well as decouplings, between various dissipative effects. 
Equivalently to the linear equations olT.I.P., we can also assume the existence 
of a dissipation potential that is homogeneous of degree two in the fluxes. 
For instance, 

V = ^ J27fr,trD2 + Ctr J* + £ / 2 + £ Ja ■ Ra ■ Ja 

+ B(V0)2 + 2 £ Aa Ja ■ V0 + u(£R)2 + £ RibrRr } , (9.9.200) 
o l ,r=l ' 

so that with this special choice we obtain the following complementary "con
stitutive" equations: 

S = -BV9-J2AaJa, 
a 

€a = RaJa + AQV6, (9.9.201) 

oD = 2T7„D , (9.9.202) 

and 

(9.9.203) 

The first two of these represent the coupled Fourier-Ohm laws. They can be 
rewritten in the following form: 

q = -{9B)Ve - ]T (eAa - J ^ ) Ja , 

£ - V [ g - ) = R « Jc.+AaVe, a = 1 ,2, . . . . 

(9.9.204) 

DjK = -C 
3 * 
dK' 

DjP = u S- 9 * 
dP J Ar = ~ 

K=-t a* 
OK I 

n 

fc=l a 

a* 
9gQ 

Vaktkr 
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9.9. Solutions of Polyelectrolytes 277 

The non-negativeness of $ requires that the following inequalities be satisfied: 

Vv>0, C > 0 , £ > 0, 1/ > 0, B>0, 
2 - (9.9.205) 

A^ < BRa , £kr a non-negative matrix, 

where Ra is the smallest eigenvalue of RQ. 
Since dissipative entities can also depend on the state variables (e.g. 9 and 

K) it is clear that (9.9.200) is only to be considered as one of the simplest 
examples used for illustrative purposes. In particular, one can envisage con
duction processes which involve K and will therefore be anisotropic. Also, 
gyroscopic terms such as those already exhibited in (6.4.69)-(6.4.72) are not 
excluded and can always be added to the equations for DjK and a. Just for 
the sake of example we specify a possible expression for the free energy ^!: 

* = ~(kB0)\n (det ( K + i K l ) ) -q^{K-1'2 - vj'1'2) 

+ -eJ(£Cr - E)(K - «o)2 + - 7 ( K - «o)4 

+ (a272 + a'272
2 + a'3li + aj,7| 

+ ao/3/4 + 74A + a 6 / 6 + a'6I%) + *(0, a ) , (9.9.206) 

where the first line represents singular contributions, the second line accounts 
for dilatational effects of the conformation with a coupling with an electric field 
E which may take a critical value Ecr (see below) and the long contribution 
within parentheses gathers regular contributions in the traceless tensor K, the 
electric polarization P , and the electroelastic couplings between these two. 
The a's, (a')'s and (Q") 'S are coefficients and the invariants Ia are defined by 

/ 2 = p 2 , 73 = t r K 2 , 74 = P K . P , 
(9.9.207) 

75 = P K 2 - P , 76 = t r K 3 . 

The first term in (9.9.206) accounts for the Brownian agitation which has a 
tendency to bring the conformation back to a spherical one (ICB is Boltzmann's 
constant), while qeff being some effective electric charge, the contribution in 
K - 1 / 2 accounts for Coulombic electrostatic interactions, that in 7̂ " ' will ac
count for the mechano-chemical effect with coefficient ve (see below), and the 
coefficient an accounts for the electrostriction effect. Coulombic interactions 
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278 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

were introduced by Dunleap and Leal (1984) in a dumbbell model. The other 
terms, together with the above-introduced dissipative contributions, were in
troduced by Drouot and Maugin (1985) and Morro, Drouot and Maugin (1985, 
1987). The model thus built is extremely rich and only three remarkable effects 
are illustrated below. 

D. Mechano-chemical effect 

Consider the solvent (carrier fluid) at rest and a vanishing electric field. We 
look at deviations from a spherically coiled conformation (and thus K = KQ = 
fixed const, for all practical purposes). The effect of the charge qm < 0 that 
we select for the qeff in Eq. (9.9.206) is thought to be dominant over that of 
electric polarization. At the simplest level of approximation the free energy 
then is viewed as resulting from the deformation energy of macromolecules and 
the interaction between that deformation and electric charge. Prom (9.9.206) 
one therefore extracts the relevant contribution 

i>me = a3I3 + qmvel3l/2 ■ (9.9.208) 

Equation (9.9.203), in its stationary form yields (shear) conformations K which 
are not zero. They are given by 

I3 = /3
3/2 = {ve/2a3)qm ■ (9.9.209) 

Since / > 0 and qm < 0, one must have ue < 0. Let le the value of I given 
by Eq. (9.9.209). Then we can show in absence of flow that the relaxation 
equation for K gives, after tensorial contraction with K (cf. Morro et al., 1985) 

^ - ^ r r C - y , (9.9-210) 
T(l,le) 

where the conformation-dependent relaxation time is given by 

T = l2/2Ca3(l2 + lle + ll). 

Thus I tends eventually toward le. Now the interaction between macro-ions 
and solvent is taken into account by observing that the number of dissoci
ated groups in the polyanionic macro-ion increases (hence qm decreases) with 
increasing the pH value p, of the solution; namely dqm/dp < 0. In view of 
(9.9.209) one has dl3/dqm < 0 and thus 

dl3/dp>0 or dl/dp>0. (9.9.211) 
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9.9. Solutions of Polyelectrolytes 279 

This means that the polyanionic macroion elongates with increasing pH (and 
vice versa). This is the content of the mechano-chemical effect (Volkenshtein, 
1983, pp. 91-94). 

E. Electrically induced conformational phase transition 

Without entering the detailed biophysical mechanism which allows for the 
occurrence of sudden volume changes, we set up a very simple scheme for 
describing these volume changes. We are thus concerned with the internal 
variable K rather than K. We concentrate on the second line of expression 
(9.9.206). There e\ > 0 is a pure constant (bulk elasticity of conformations) 
and E is the externally controllable parameter (magnitude of the electric field 
or induced electric polarization when the solution is placed between the plates 
of a condenser) which causes the transition. The corresponding elastic energy 
is minimum at K = /q> for E > ECT. After relaxation Eq. (9.9.203)2 produces 
the equilibrium values via d^/dn = 0, i.e. 

K = KQ or K-KO =-i~\e\{ECT-E))l/2. (9.9.212) 

This implies that 7 > 0 if E < E„. It follows from the second of (9.9.212) that 

dn 
dE 

1/2 
(9.9.213) 

L7(Scr - E) 
which diverges to —00 for E tending to Ecr. This implies that although the 
transition is continuous, K changes significantly near the critical value Ecr [for 
E > Ecr we apply the first equation of (9.9.212)]. The phenomenon relates to 
the collapse of polyelectrolytes in certain circumstances (see, e.g. Tanaka et al., 
1982, where E„ ~ 0.3 volt/cm). 

F. Kerr effect 

We let the reader check for himself that on carrying the expression (9.9.206) 
into (9.9.203)i and accounting for the coupled gyroscopic effects between stress 
and conformation in the manner of Sec. 6.4, the evolution Eq. (9.9.203) 1 will 
give, up to irrelevant terms for our purpose, an equation such as (Drouot and 
Maugin, 1985, p. 485) 

DjK + ~K = f(E®E-l-E2l) -AD + (9.9.214) 
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280 Chapter 9. Non- Equilibrium Thermodynamics of Electromagnetic Materials 

where we have defined the conformation-relaxation time TK , accounted for the 
fact that P has aligned with the electric field, and considered a quasi-static 
approach and the property that K is a deviator. The material coefficient / rep
resents the electrostrictive effect combined to the elasticity of the conformation 
and the electric susceptibility; it may also be referred to as the electro-optic 
coefficient as Eq. (9.9.214) is none other than the evolution equation forming 
the basis of the analysis of the laser-induced Kerr effect — also called optical-
field induced ordering — when applied to a nematogen in its isotropic phase 
(cf. Prost and Lalanne, 1973), the modeling of which was initially due to de 
Gennes (1971). The optical Kerr effect follows if we assume that K is directly 
proportional to a tensor that is representative of the deviation from isotropy of 
some electromagnetic property such as the magnetic susceptibility. The Kerr 
effect is then obtained by time integration of (9.9.214). A general study of 
optical effects for polyelectrolytes with the consideration of the effects of both 
intense bias fields and flows is due to Drouot and Maugin (1987) to whom we 
refer the reader, especially for a discussion of characteristic numbers including 
time scales and Deborah numbers. 

To conclude this section which has simultaneously shown the complexity 
of physico-chemical processes involved and the relative simplicity with which 
these can be described in a fully thermodynamic framework, we note on the 
one hand additional diffusion processes can be incorporated along the lines of 
Eqs. (6.5.101)-(6.5.103) — cf. Morro, Maugin and Drouot (1989) — while on 
the other hand, with all the differences in mind, some part of the description 
introduced also applies to elastic semiconductors considered as mixtures of 
conducting electrons, holes, etc. In that case also, the effective electric field 
such as in the definition (9.9.196)i and the extra entropy flux (9.9.193)2 play a 
fundamental role. K is then replaced by an observable state variable which is 
none other than the strain (see Maugin and Daher, 1986; Daher and Maugin, 
1986b, 1987). 

9.10. Ferroelectrics and Ferromagnets 

There are two ways to look at electromagnetic materials such as ferroelectrics 
and ferromagnets, which exhibit a phase transition separating a high-temper
ature disordered phase from a low-temperature ordered phase. One way is to 
look, at a macroscopic scale, at multidomain specimens for which irreversibil-
ity is essentially meant as producing hysteresis. This was examined in Sec. 9.7 
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9.10. Ferroelectrics and Ferromagnets 281 

where thermodynamic internal variables of state appear to provide the most ef
ficient tool in the description of irreversible phenomena. The other way (as seen 
in Sec. 4.7) which fits well the consideration of coupled dynamical processes 
in nondefective materials (i.e., without domain structure), consists of consid
ering a microstructure of electric or magnetic origin as evidenced in condensed-
matter physics and the theory of phase transitions. Indeed, whether in 
ferroelectrics or in ferromagnets, electric polarization or magnetization density 
have to be considered as an additional degree of freedom of vectorial nature 
endowed with some type of inertial properties, and for which spatial gradients 
have to be accounted for. It is thus surmised, if there is an obvious dynam
ical coupling between the mechanical fields of stress and displacement and 
either the electric fields of electric polarization and electric displacement, or 
the magnetic fields of magnetization and magnetic induction, that the most 
reasonable approach is the classical thermomechanics (T.I.P.) of a mechani
cally deformable medium equipped with a microstructure of electromagnetic 
origin. In this line of thought the kinematic and kinetic description increases 
in complexity while the thermodynamical frame becomes more standard, but 
for the larger number of observable state variables. This is the spirit of this 
section which briefly recalls some essential properties. Lengthy developments 
have previously been reported in other books (Maugin, 1988, Chapters 6 and 7; 
Eringen and Maugin, 1990, Chapter 9; Maugin, Pouget et al., 1992, Chapters 2 
and 5). Electric polarization in the ferroelectric case and magnetization in the 
ferromagnetic one provide the additional variables as both order parameters 
(and thus primary independent variables in the thermodynamic description) 
and observable variables of state. We start with the second case, which is more 
original. 

A. Deformable ferromagnets1 

We focus attention on the thermodynamic aspects. Let ^ be an axial vector 
under time reversal, K.t, the magnetization per unit mass in the current con
figuration and V R ^ , its material gradient. For elastic materials, we naturally 

1We refer to Maugin (1988, Chapter 6) for a rather exhaustive presentation and for numer
ous references to the early works of Landau and Lifshitz, Akhiezer et al., Brown, Tiersten, 
Maugin and Eringen on the modeling of deformable ferromagnets and the corresponding 
dynamics. 
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282 Chapter 9. Non-Equilibrixim Thermodynamics of Electromagnetic Materials 

consider a free energy density ip in the functional form 

rP = i>(F,d,p,VRp), (9.10.215) 

where the gradient of p takes care of the magnetic ordering typical of a ferro
magnetic phase; VR/I = 0 at all points in a single ferromagnetic domain, while 
fi varies rapidly with X through a transition zone such as a magnetic domain 
wall. In addition (dynamics), p is related to a density of intrinsic spin s by 
the celebrated gyromagnetic relation: 

s = 7 " V , (9.10.216) 

where 7 is the so-called gyromagnetic ratio. At sufficiently low temperature 
0 <^ 6C (where 9C is Curie's ferromagnetic transition temperature), it is as
sumed that p is saturated, i.e. \p\ = ps = const. As p is not an internal 
variable, but indeed an additional internal degree of freedom, it is governed 
by a field equation. This is the equation of magnetic-spin precession. Such an 
equation, together with the other field equations (balance of physical momen
tum and angular momentum) can be constructed by different means: postulate 
of global balance laws, application of a generalized form of the principle of vir
tual power (cf. Maugin, 1980), variational principle of the Hamiltonian type in 
the absence of dissipative processes. The last approach is insufficient here as 
we are mainly interested in dissipative processes. Whatever the method used, 
the fundamental local balance laws, in addition to that of mass, are found 
to read: 

(9.10.217) 

i.e. aA = p(p <g> hL)A , (9.10.218) 

B e f f : = B + B L + p - 1 d i v B , (9.10.219) 

V x H = 0 , V B = 0, 

and 
pe = tr (crL) - pBL ■ p. + Si;,(/ii),j - V • q + p/i. (9.10.220) 

Here we recognize in Eqs. (9.10.217) through (9.10.220), the balance of physical 
linear momentum, the balance of angular momentum (Cauchy's stress tensor 
a is not symmetric), the balance of magnetic spin (or equation of spin preces
sion), Maxwell's equations in their magnetostatic form for isolators, and the 

/9v = diva + pf + fem 

a = a - (pBL <S> p.)A 

A = - 7 ( B e f f x p) , 
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9.10. Ferroelectrics and FeTromagnets 283 

local balance of energy. In these equations, a is an intrinsic symmetric stress, 
fem is the reduced form of the electromagnetic force for the magnetostatics of 
nonpolarized isolators, B L is called the local magnetic induction, and the sec
ond order (nonsymmetric) tensor of components Bij accounts for Heisenberg 
exchange forces of quantum origin (cf. Kittel, 1971) through the gradient of fi. 
The above-given equation verifies the condition of magnetic saturation 

Bk[i(ijlk = 0. (9.10.221) 

Constitutive equations must be formulated for the set of fields {a, B L , B, e 
or ip,r), q} subject to the standard form of the Clausius-Duhem inequality 
(3.3.75) — there is no need for an extra entropy flux. On introducing xp = e—r]0, 
and the objective time derivatives 

rh = Djix = (i-Slx fi, (9.10.222) 

fm = £>j(V/i) + ( V / x ) r - D , 

we can express the Clausius-Duhem inequality in the form: 

-p(i}> + 7]9) + tr (CTD) - pBL ■ rh + tr (<897tT) 

+ 0q-V(0- 1 ) > 0 , (9.10.223) 

where we used (9.10.218). The whole reversible and irreversible thermody
namics of elastic ferromagnets is based on the exploitation of the inequality 
(9.10.223) by assuming the axiom of local state (n is given by its thermostatic 
expression) and applying T.I.P. to the residual dissipation inequality (Maugin, 
1972, 1975). For instance, with the following functional dependence for elastic 
ferromagnets 

ip - WEKL, 9, mK,MKL), (9.10.224) 

EKL = -^{CKL-^KL), mK = FiKm, MKL = Mi,KMt,L , 

we have the laws of state: 

(9.10.225) 
T)= -

dxl) 
ae' 

aE = ar + p(BLr <g> n)s = pF • 
8$ 
dE 

■FT, 

BLr = - F dip 
dm ' 

B = 2pF ■ 
drp 

dM 
■ (VRAO T 
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284 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

while there remains the dissipation inequality 

$ = tr (<rDD) - pBLD • m + 0q • V(0_ 1) > 0, (9.10.226) 

where we have set 

aD := a - ar , BLD := B L - B L r , (9.10.227) 

and assumed that there are no dissipative processes associated with the ex
change forces represented by the tensor B. We recognize in Eq. (9.10.225) 
magnetoelastic generalizations of Eqs. (3.3.88). The intrinsic-dissipation part 
in Eq. (9.10.226) is in the traditional bilinear form and allows one to study vis
cosity and magnetic-spin relaxation via T.I.P. (Maugin, 1975). The simplest 
forms of corresponding complementary constitutive equations are obtained for 
isotropy as 

aD = 2J?VD + A„( t rD) l , BLD = - p r ^ r h . (9.10.228) 

Because of the canonical decomposition of stress apparent in Eqs. (9.10.218) 
and (9.10.225)2, we see that magnetic-spin relaxation will in fact contribute to 
the Cauchy stress, and consequently to the damping of essentially deformation 
waves. As a matter of fact, introducing the relaxation term R and the viscous 
force f" by 

R : = pryr^m x p) , V = div aD , (9.10.229) 

we can rewrite Eqs. (9.10.217) and (9.10.219) as 

pv = divcrr +pf + fem + f - (27)_1(V x pR), 

ii = ~rpxBf + R, 
(9.10.230) 

e n ■ T I *■ 

where crr and B*ff are defined solely in terms of the thermodynamically re
versible contributions. If, in addition, the positive relaxation time r^ is small 
enough, then a naive perturbation scheme accounting for the definition of rh 
allows one to rewrite (9.10.230)2 as 

^ = 7 ^ x B f + R , (9.10.231) 

where 

Tm = ( v y 2 p V ) - 1 . (9.10.232) R=-2^»*h{Bf+") 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



9.10. Ferroelectrics and Ferromagnets 285 

In the absence of deformation and vorticity, Eq. (9.10.231) is none other than 
the damped-spin precession equation proposed by Landau and Lifshitz in 1935, 
while Eq. (9.10.230)2 with relaxation time TM reduces to the more exact equa
tion proposed by Gilbert in 1956. An attempt has been made to reformulate 
the same as (9.10.230) and (9.10.231) using only the concept of internal variable 
(by accounting for its gradient — following the view expressed in Sec. 4.7) in 
Maugin (1979a,b). It is also possible to complicate somewhat the mechanical 
description by accounting for eventual dissipative mechanisms such as plas
ticity or viscosplasticity, which may exist in defective ferromagnetic crystals. 
For this we refer the reader to Maugin and Fomethe (1982). The magnetic 
structure can also be rendered more complex by considering /i to be a result 
of several magnetic sublattices as is the case in elastic ferrimagnets and anti-
ferromagnets. For these developments we refer to Maugin (1976) and the few 
elements given in Eringen and Maugin (1990, Vol. 2, pp. 492-497). 

B. Elastic ferroelectrics 

The case of elastic ferroelectrics is treated by introducing a free energy density 
[cf. (9.10.215)] 

il> = rl>(F,6,ir,VRir), (9.10.233) 

where n is the electric polarization per unit mass. The latter quantity serves 
as order parameter in the ferroelectric phase transition, and V/?7r is naturally 
introduced to account for some "ferro" ordering. But this does not parallel 
further the ferromagnetic case because the inertia associated with n is quite 
different from that associated with \i. Indeed, (9.10.216) provided a gyroscopic 
effect in the sense that the time derivative of (9.10.216) is orthogonal to fi. But 
7r has simply the nature of a displacement (multiplied by a charge) and thus 
its inertia will provide a term dEd2ir/dt2 in the new equation that governs 
7r, considered as an additional degree of freedom. The number dE can be 
estimated from a microscopic analysis for each type of ferroelectric crystal (see 
Askar et al., 1986). Furthermore, IT, unlike fi, is not saturated. All these 
differences being borne in mind, it is shown that Eqs. (9.10.217)-(9.10.220) 
are replaced by 

pv = diva + pf + fem, (9.10.234) 

o = a + pEL ®TT- (VTT) • EL (9.10.235) 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



286 Chapter 9. Non- Equilibrium Thermodynamics of Electromagnetic Materials 

i.e. aA = p(EL ® IT)A - [(VTT) • E ^ , 

dE^-=Seif, £eff:=£ + EL + p-ldivEL, (9.10.236) 

V x E = 0 , V D = 0, D = E + /97r, 

and 
pe = tr (<r£D) -SL-P- Efctlji -V-q + ph, (9.10.237) 

where we have set 

aE := o - p{£L ® TT)S + [(VTT) • E L ] 5 = (<rE)T, 

p = p - ( v V)P + P(V • v ) , (9.10.238) 

U-ij ■= '72\7rij} + n*,k^k,j ~~ v«,fc7rfc,i • 

And the standard form of the second law yields the Clausius-Duhem inequality 
in the form: 

-p(i> + rfi) + tr (aEB) - £L ■ P + tr (ELII) 

+ 0 q - V ( 0 ~ 1 ) > O . (9.10.239) 

This inequality shows that we may have dissipative processes involving viscos
ity, relaxation in electric polarization, heat conduction, and possibly an addi
tional process related to the gradient of polarization. Like in the ferromagnetic 
case, the general decompositions (9.10.235) and (9.10.238) show that electric 
relaxation will contribute to the Cauchy stress, hence to the damping of defor
mation waves. We do not further pursue this complicated case which is well 
documented in Maugin (1988, Chapter 7) and Maugin, Pouget et al. (1992, 
Chapter 2) and the original papers of Pouget and Maugin quoted in those two 
books. In any case, the thermodynamical formulation is somewhat standard 
in following T.I.P. 

9.11. Solutions of Magnetic Fluids 

Dilute solutions of solid strongly magnetizable particles are known under dif
ferent names such as, magnetic fluids (not to be misunderstood for plasmas) 
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9.11. Solutions of Magnetic Fluids 287 

and "ferrofluids". We have already alluded to these in Sec. 6.9, but we did 
not pay attention to the magnetic properties. It would appear that these 
could be treated in the same general framework as the ferromagnetic solids of 
Sec. 9.10. But simplifying assumptions can reasonably be envisaged. These 
are: (i) inertia of the gyromagnetic type does not show up at this larger scale 
of observation, and (ii) there is no apparent magnetic ordering, so that there 
is no need to introduce the gradient of magnetization. As the fluid as a whole 
is generally incompressible, this leaves as essential phenomena, thermomag-
netic couplings, viscosity, magnetic relaxation, and heat conduction. Thus we 
consider a free energy such that, per unit volume, 

tf = tf(0,M) = *(0 ,M), M = |M | ,M = /?/i. (9.11.240) 

The laws of state read 

Equation (9.10.219) provides the "balance" equation 

H = f(0, M)M - BLD , (9.11.242) 

where 
BLD = BL-BLr, H = B-M. (9.11.243) 

The field BLD, together with the viscous stress, contribute to the intrinsic 
dissipation [cf. (9.10.226)] 

$ i n t r = tr (<rDD) - BLD ■ DjM. (9.11.244) 

In the absence of magnetic relaxation, Eq. (9.11.242) provides the static non
linear magnetization law of the magnetic fluid, which can be rewritten in the 
scalar form M = M(9,H). Simple magneto-mechanical dissipative laws are 
taken as 

BLD = -TMDJM , aD = 2tj„D, (9.11.245) 

where t r D = 0, TM > 0, rjv > 0, in agreement with T.I.P. Then on setting 

1 do2 eedM de ) ' 

*-(£).■ " 
a2* 

d9dM 

(9.11.246) 

S = -
dV 
89 ' 

BLr = -
0 * 

am. 
= - 2 a* 

dM 
M . (9.11.241) 

c = -e 
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288 Chapter 9. Non- Equilibrium Thermodynamics of Electromagnetic Materials 

we obtain the following dynamical magnetic equation and heat equation: 

C6 = 6KH + $mtr+ph-V-q, (9.11.247) 

and 
H = f{9,M)M + rM(0)(M - ft x M ) , (9.11.248) 

respectively, where we emphasized the thermomagnetic couplings. The ro
tation, even though rigid, of the medium, yields an interesting effect in the 
relaxation equation (9.11.248). This effect can be used in a special ferrofluidic 
viscometer. As for (9.11.247), it exhibits the phenomenon of adiabatic mag
netization with material parameter K. We refer the reader to Eringen and 
Maugin, (1990, Vol. 2, Chapter 12) for applications of the above equations 
of which the thermodynamical description was given by Maugin and Drouot 
(1983b). More complex thermodynamical descriptions apply to ferroliquids in 
which the effects of density and density gradients can be relevant (Maugin, 
1978b). 

9.12. Electroelastic and Magnetoelastic Fracture 

So far, we have only considered the effect of local dissipativity built in the 
electromagnetic material itself. To conclude this chapter, we may ask the 
question of how do the electromagnetic fields affect the fracture of the material. 
That is, we examine a globally dissipative effect due to the irreversible evolution 
of the material domain. We illustrate this with the electroelastic case (Maugin 
and Epstein, 1991; Dascalu and Maugin, 1994b). 

We consider the problem of a straight-through crack in the electroelasticity 
of dielectrics in finite strains. The framework is that of quasi-electrostatics. 
The setting is that of Figs. 8.1 and 8.2. For the purpose of the derivation the 
problem may be considered as two-dimensional in space (variables x and y, 
or X and Y). But the elastic displacement may have a component along the 
axis perpendicular to the plane of the figure. As we know from Chapter 8, the 
energetic problem of fracture then consists of evaluating the global expression 
of the first law of thermodynamics or, in other words, the source of dissipation 
that shows up in this global balance law when a singular point such as the 
tip of the crack is progressing in the material. Special attention must first be 
paid to the local energy balance in the absence of bulk dissipation. With the 
notation of Sec. 9.3, by multiplication of Eq. (9.3.25) by Jp and integration 

V - q , 
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9.12. Electroelastic and Magnetoelastic Fracture 289 

by part, it can be shown (Maugin, 1988, Chapter 3) that the relevant field 
equations read as follows in quasi-statics in dielectrics [cf. Eq. (8.4.39)] 

div f l(T£ + T F ) = 0 , 
V f l x € = 0 , (9.12.249) 

at any point x(X, t) £ £1. Here TE and T F are first Piola-Kirchhoff tensors 
such that (we have rearranged terms) 

T B = S E F T , T f , = € ® E - i F _ 1 ( e - € ) , £ = JFC~l£, (9.12.250) 

and 
,E dT, „ 8Y, 

M , n = - ^ € ' S = E(E,€) . (9.12.251) 

The last of these means that the local energy balance reads [cf. (9.4.70)] 

t = tr (SEE) - n • e = tr ( T £ F ) - II • « . (9.12.252) 

But we can also use the electric enthalpy 

1 DWE f)WE 

^ ( E , g ) = E - i € - € , § £ = - g E - . 3 ) = — a T - ( 9 - 1 2 2 5 3 ) 

Furthermore, it is possible to prove the following identities (Dascalu and Mau
gin, 1994b) 

tr (TBL) = I ( g . g _ g . g ) , (9.12.254) 

tr (T F L) = V f i • ] (T£ + TF) • v] - tr ( T F L ) , (9.12.255) 

H := (div f iTF) • v + (V* • £)<pR = - ( V R • n ) ^ , (9.12.256) 

where y> and fR are the electrostatic potentials in the current and reference 
configuration related by 

¥>(x, 0 = tpR(x-lt*, *), *). € = -VRVR ■ (9.12.257) 

V«-2) = 0, 
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290 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

On computing dWE/dt and using the results (9.12.254) through (9.12.256) we 
arrive at the following useful equation which is in the form of a true material 
conservation law. 

dWE 

dt 
- V f l • \(TE + TF) ■ v + $!&] = 0. (9.12.258) 

x 
By transforming (9.12.252) we also have the following material balance law 
with a source term: 

dt 
Vfl • [TE ■ v + cpRU] = H, (9.12.259) 

where the source term H has been evaluated in (9.12.256). 
Now the classical energy argument of fracture theory can be applied to 

either (9.12.258) or (9.12.259) which are entirely equivalent at all regular points 
in the bulk of the body. Arguments relating to the theory of material forces 
have led Maugin and Epstein (1991) to base their reasoning on (9.12.259). In 
any case, following along the same reasoning as in Sec. 8.2 or Paragraph 8.4D, 
we shall obtain the global energy balance as 

/ WEdV + gE= I N • [{TE + TF) ■ v + Q<pR]dA, (9.12.260) 
Jnr Jan 

if we start with (9.12.258), and 

/ tdV + gE=[ N-[(TEv) + n<pR]dA+ f HdV, (9.12.261) 
•/nr Jen Jn 

if we start with (9.12.259). Here we have introduced the following energy-
release rates: 

:= lim / ] 
r - o . / r 

N • [Wh V + (Tfc + T*) • v + V<pR]dA, (9.12.262) 
' ~ru JT 

and 
QB := Uni / N • [EV + T £ • v + II<pR]dA, (9.12.263) 

where V is the material velocity of propagation of the tip of the crack, and thus 
of the shrinking region Vr that moves rigidly with it. Obviously, the quantities 
QE and Q are just expressions of the rate of global dissipation occurring during 
the quasi-static progress of the crack at material velocity V. 

GE 
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9. IS. Electroelastic and Magnetoelastic Fracture 291 

As in the purely mechanical case, it is possible to establish relationships 
between the above results and contour-independent integrals and the notion 
of Eshelby stress properly generalized to the electroelastic case. To do so we 
must first notice the following behavior of the electroelastic solution in the 
neighborhood of the crack tip (this can be proved only in the linear theory, 
say in piezoelectricity or piezoelectricity induced by electrostriction in a bias 
electric field, for a simple mode of cracking — cf. Dascalu and Maugin, 1994b): 

u = - V - VfiU + w , 

VR = - V - VR(fiR + g, 

where w and g have no singular behavior at the tip of the crack. Then we can 
rewrite QE and QE as 

$ £ = gE = V • TE, TE = J E E 7 , (9.12.264a) 

<££ = QE =V-FE, 7"£ = J £ E / , (9.12.264b) 

where we have denned J-integrals by 

JE := lim / N • [WE1R - (TE + TF) ■ (V f iu)T - 2) ® VR<pR} ■ E/«M 

JE := lim / N • [El* - T E • (V f iu)T - II ® VR<pR] ■ E7cL4. 

(9.12.265) 
The first of these was formulated by Pak and Herrmann (1986) while the 
second was obtained by Maugin and Epstein (1991). The path independence 
of the integrals present in Eq. (9.12.265) follows if appropriate homogeneous 
boundary conditions hold at the faces of the crack. On account of the limit 
result (8.4.61), we can also rewrite Eqs. (9.12.265) in the following enlightening 
form [cf. (8.4.59)2]: 

JE = lim fN-bm-EidA, 
(9.12.266) 

JE = lim [ji-bem-EIdA, 

or 
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292 Chapter 9. Non-Equilibrium Thermodynamics of Electromagnetic Materials 

where b e m and b e m are electroelastic versions of the quasi-static Eshelby str
ess tensor. 

bem = WE1R - (S £ + T F F T ) • C + D <g> € 
(9.12.267) 

Sem = EIR - s £ • c + n ® e = mR - [s£-n <g> (e • c-1)] • c . 
The last expression was found by Maugin (1990c; Eq. 25) in the general dy
namical case — with additional magnetic terms — by generalizing Eq. (8.4.43) 
to the dynamical case. The electroelastic quasi-static version (9.12.265)2 is due 
to Maugin and Epstein (1991) who obtained it by using an invariance geomet
ric argument. Indeed, for instance, in quasi-statics, by left mutliplication of 
Eq. (9.12.249)i and integration by parts at all regular points in the bulk of the 
material, there hold the following material balance laws 

div f l b e m = 0 and d i v R b e m = 0 . (9.12.268) 

The second of these can be interpreted by saying that the material manifold 
J M 3 is transparent to the pure field contributions at all regular material points 
(Maugin and Epstein, 1991; see also Chapter 8 in Maugin, 1993a). In other 
words, it captures the action of electromagnetic fields (£ and 2$ only in so far 
as electric polarization or magnetization (two true material, thermodynamically 
extensive fields) enter in combinations with them. 

To conclude we note that the expressions (9.12.264a) are again in the tradi
tional bilinear form of irreversible thermodynamics, so that thermodynamically 
based criteria of progress of "electroelastic" cracks can be devised. We refer 
the reader to the original papers for the magnetoelastic case (Maugin, 1990c; 
Maugin and Trimarco, 1991; Maugin, Epstein and Trimarco, 1992a,b; Sabir 
and Maugin, 1996, for soft ferromagnets, Fomethe and Maugin, 1997b, for hard 
ferromagnets) and the dynamical electro-magneto-elastic case which involves 
an electromagnetic pseudomomentum and a Legendre transformation in the 
style of (8.4.67) (Maugin, 1994a). 

9.13. Concluding Remarks 

We are afraid that the developments reported above demonstrate that the 
irreversible thermodynamics of electromagnetic materials is not always a very 
easy matter. Pierre Duhem was certainly right in thinking that this is indeed 
difficult, but it is not altogether nonsensical as something can be done about 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



9.13. Concluding Remarks 293 

it, as we have tried to show. The reader will realize that its takes some time 
and several trials to capture the beauty and complexity of the subject matter, 
two arguments which will always attract researchers in the field. In summary, 
the most expedient ways to build a coherent set of field equations are the use of 
a Lagrangian-Hamiltonian principle when the material itself is not dissipative, 
and the use of a generalized version of the principle of virtual power when 
the material may dissipate and, above all, when there exist additional degrees 
of freedom of purely mechanical or electromagnetic origin. Both T.I.P. and 
T.I.V. have been proven to be powerful tools in the study of an extremely 
wide range of dissipative behaviors in both solids and fluids. Many examples 
have been presented in a more or less detailed manner. The number of such 
examples had to be limited, a limitation that is due both to limited space and 
our own capability. 
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Chapter 10 

WAVES AND REACTION-DIFFUSION 
SYSTEMS1 

. . . physics the subject, makes old hearts fresh;... 
W. Shakespeare, (The Winter's Tale, I, i) 

10.1. Preliminary Remarks 

As thermodynamical internal variables of state introduce additional differential 
equations which are first order in time (they are evolution equations) while 
the usual equations of motions are second order in time (if true generalized 
coordinates are used), then they are bound to present a special interest in 
wave propagation problems. The reason for this is twofold: on the one hand the 
introduction of such variables modifies the order of time differentiation of the 
overall system and, on the other hand, they may bring interesting properties in 
the propagation of discontinuity waves where the continuity of a certain order 
of differentiation, following Hadamard, participates in the very definition of the 
waves. This was recognized rather early in many cases without introducing a 
thermodynamical framework but just considering the evolution equation for 
the additional variables. However, Day (1976) gave a formal structure for 
these mathematical aspects accounting for thermodynamical restrictions. In 
this vein, among mathematically inclined papers we find those of Kosinski and 
co-workers (Kosinski, 1973, 1975a,b; Kosinski and Perzyna, 1972; Kosinski 

1This is not a book on wave propagation. As a separate book on wave propagation in 
many structures with special attention to nonlinear effects is in preparation, here we simply 
comment briefly on the influence of the thermodynamic formulation on essential dynamical 
properties. 

295 
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296 Chapter 10. Waves and Reaction-Diffusion Systems 

and Wojno, 1973), and Suliciu (1975), while Coleman and Gurtin (1967b), 
and Bampi and Morro (1980, 1981a,b) and Morro (1980a,b,c,d) paid special 
attention to the case of dissipative fluids and (heat or electricity) conducting 
bodies, Brun (1972), Mandel (1974) and Piau (1975) focused on plasticity and 
viscoplasticity, and McCarthy (1984a,b) and Collet (1983, 1984, 1985, 1987, 
1990) concentrated their works on deformable dielectrics, piezoelectrics and 
ferroelectrics. 

In many cases the authors aimed at producing a theoretical framework 
which endowes the system with finite speeds of propagation, i.e. a nice hyper
bolic feature. This aim is also pursued by other thermodynamic approaches, 
e.g. extended thermodynamics (cf. Miiller and Ruggeri, 1993). In the case of 
discontinuity waves (singular surfaces in the sense of Hadamard), acceleration 
waves (that carry discontinuities in the second-order derivatives of basic fields) 
may by definition miss phenomena related to internal variables. As to shock 
waves (that carry discontinuities in the first-order derivatives, e.g. velocity), 
they will necessarily be influenced by the evolution equations governing the in
ternal variables. The same holds true for simple waves which provide another 
building block of nonlinear-wave solutions. In fact, shock waves may provide a 
means to measure the relaxation time related to some internal variable as is the 
case in some dielectric materials (Yakushcov et al., 1968). Transient nonlinear 
waves are also an efficient means to place the effect of internal-variable relax
ation on the wave process in evidence. This was particularly well exhibited in 
the case of nonlinear electroelastic materials in Sec. 9.6 where, in fact, the va
lidity of the working hypothesis of the local accompanying state can be tested. 
In such conditions the propagating simple waves of electromechanical nature 
may be modulated by the dissipation mechanism (in this case, polarization 
relaxation; cf. Collet, 1987). 

The presence of relaxing internal variables also favors the existence of ad
ditional induced discontinuities in the presence of shock waves (for the main 
field variables) — see, for instance, Collet (1990) in the electrodeformable case. 
This phenomenon has led to a re-examination of some models of solid viscoelas-
ticity on the basis of internal variables of the stress type (Maugin and Morro, 
1989a,b). 

There is another class of models which are likely to present wavelike solu
tions and also spatiotemporal patterns although they are parabolic in their lin
earized form; they are the reaction-diffusion systems (for short RDS^ which, 
by their very nature and their occurrence in physico-chemistry and biological 
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10.2. Simple RDS' 297 

systems, must be, and indeed are, amenable via irreversible thermodynamics. 
They are, in fact, the realm of T.I.V. and as such they deserve more than 
passing comments. The bulk of this chapter has the purpose of illustrating 
this remark by presenting a few examples.2 

10.2. Simple RDS' 

Using the notation of applied mathematics, Uf = du/dt, ux = du/dx, we recall 
the standard diffusion equation 

ut = Au, (10.2.1) 

where Au denotes the Laplacian of the scalar-valued real function u(t, x). This 
celebrated equation is often called the heat equation after its introduction by 
J. B. Fourier (1822) to describe the "propagation" of heat in a rigid materi
ally homogeneous, isotropic body. This equation became famous because the 
attempts of Fourier at solving space-time problems on its basis led to the de
velopment of Fourier analysis. Furthermore, this is the paragon of parabolic 
equations which, in constrast to hyperbolic equations, yield an infinite speed of 
propagation, or, in other words, an instantaneous propagation of information. 
This may be considered as physically nonrealistic and altogether unsound but, 
again, time scales of observation must be introduced to have a truly dispas
sionate debate about this matter. 

An even more interesting equation is the one obtained by adding a contri
bution f(u), called reaction, in the right-hand side of (10.2.1). That is, 

ut = Au + f(u). (10.2.2) 

Systems of this type occur in the theory of combustion For example, if 

f{u) = au + bu2 + du3 , (10.2.3) 

as may happen in some systems, Eq. (10.2.2) will present both a dissipative 
feature (this we know from heat conduction directly or by analogy) and non-
linearity, with a possible competition betwen these two effects. This is what 
occurs with Fisher's model of population dynamics where, in one dimension of 
space, we have 

/ = u(l - u ) . (10.2.4) 
2For the mathematics of reaction-diffusion systems, we recommend the book of Grindrod 

(1991). 
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298 Chapter 10. Waves and Reaction-Diffusion Systems 

Such equations present wave-front solutions which are obtained by trying 
simple-wave solutions in the form u = u(x — ct), where c is a speed of propaga
tion. With appropriate / ' s (e.g. / cubic in u with ad hoc signs of coefficients) 
good fortune leads to such explicit solutions (cf. Grindrod, 1991, Sec. 1.5). 
More generally, we may consider an f-function that involves space-derivatives 
of u, e.g. 

ut = Au + f(u, Vu, x, t). (10.2.5) 

Such is the case of the following equation: 

vt = vxx - vvx , (10.2.6) 

which is indeed of the form (10.2.5) in one space dimension. Now when there 
is no nonlinearity Eq. (10.2.6) is the diffusion equation which is parabolic. 
But the whole equation (10.2.6), known as Burgers' equation as a model of 
turbulence is both a reaction-diffusion equation of type (10.2.5),3 hence con
taining both dissipation and reaction (or forcing) and, as shown in many books 
(e.g. Maugin, Pouget et al, 1992, Chapter 1), the one-directional wave equa
tion or nonlinear evolution equation associated with a true (bi-directional) wave 
equation containing both nonlinearity and dissipation. All this to emphasize 
the ubiquity of nonlinear-wave processes and the relativity of the definition of 
both a dissipative system and a hyperbolic or parabolic one. Such qualifications 
are sensical only in the linear framework. 

Physically, the variable t i o r t i above can be many things, but the most 
popular cases are temperature and a concentration of a constituent in a mixture. 
In the last case u is noted c. In various chapters we have already witness the 
occurrence of a transport equation such as 

dc 
_ = - V . J + Q, (10.2.7) 

where J is a flux and Q is a source term which may be one of the above-
mentioned reaction or source terms. The thermodynamic basis of the constitu
tive equation for J is obvious in T.I.P., e.g. 

J = - P V c , e > 0 , (10.2.8) 
3Indeed Eq. (10.2.6) has traveling-wave solutions of the form 

v = v(£) = c — o tanh (a£/2), £ = x — ct, 
for any constant a > 0, with wave speed c. 
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10.&. Simple RDS' 299 

the celebrated isotropic, linear, materially homogeneous, Fick law with diffu-
sivity coefficient D. 

Thus Eq. (10.2.7) can be of the general type 

ct = DAc + Q(c, Vc, x, t). (10.2.9) 

Fourier's law is of the same type as Fick's law. Typically, in T.I.P., J dissipates 
according to the dissipation inequality 

$ c = - J • V/i > 0, fi = d^/dc, (10.2.10) 

where the second of these is none other than a law of state. The first part 
of (10.2.10) is also true of electricity conduction in quasi-statics, and of heat 
conduction. In which case J is replaced by electric conduction current and en
tropy flux, respectively, and the chemical potential [i is replaced by electrostatic 
potential and thermodynamic temperature, respectively. Some couplings, es
pecially between the last two, can be expected. We have seen in Sees. 6.4, 9.4, 
9.8, and 9.9 examples of theories where a flux of the type of J is involved. In 
the next section, however, we would like to present a more subtle application 
of irreversible thermodynamics to the construction of good physical RDS'. To 
illustrate this we still quote three systems which appear in biological and eco
logical problems (for the last class we refer to Okubo, 1980, for a comprehensive 
introduction), and combustion. 

Chemiotaxis. This is the phenomenon by which individual biological mo
bile cells are assumed to move up gradients of a particular concentration, the 
so-called chemo-attractant. Let v(x,t) be the attractant concentration. The 
attractant is subject to random, so-called unbiased diffusion, and linear degra
dation; s(u) represents the nonlinear secretion of attractant by the cell of 
concentration u(x, t). We call a2 and D the diffusivities of the cells and the 
attractant. The resulting governing RDS' reads (cf. Grindrod, 1991, p. 11): 

ut = a2uxx - (uvx)x , 
(10.2.11) 

vt = Dvxx - rv + s(u). 

The second equation contains a relaxation effect (coefficient r) and a rather 
strong reaction due to the cell concentration. The first one is a diffusion equa
tion which is nonlinearly coupled to the second equation. In particular, this 
coupling disappears with a spatially uniform v. 
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300 Chapter 10. Waves and Reaction-Diffusion Systems 

FitzHugh-Nagumo system. This is one possible system used by physiol
ogists to model the conduction of action potentials along unmyelinated nerve 
fibers (FitzHugh, 1961, Nagumo et al., 1962). Without specifying for the mo
ment the precise meaning of the introduced symbols (see Sec. 10.3), we note 
that this system couples two diffusion equations (in dependent variables u 
and v), 

ut = uxx + f(u) -v, 
(10.2.12) 

vt = 5vxx + ou — 7«. 

The coupling is linear. The first equation with diffusivity normalized to one, 
presents a nonlinear reaction f(u) and a linear reaction due to the second 
variable. The second equation with diffusivity S presents a linear reaction 
from the first variable, and what may be considered as a relaxation of its own 
variable. It is thus possible that the first equation in each pair (10.2.11) and 
(10.2.12) is in fact a true wave equation in which inertia has been discarded. 

The two more sophisticated systems presented so far, (10.2.11) and 
(10.2.12), exhibit a second equation akin to a generalized relaxation equation 
with additional diffusion and couplings. This hints at the fact that this sec
ond equation may be a generalized evolution equation for the second variable 
considered as internal with respect to the first one, considered as observable, 
in a thermodynamical framework of the type developed in previous chapters. 
This is the point of view expanded in Sec. 10.3 below. 

Combustion problem. Let u(x, t) represent the temperature distribution 
and v(x, t) the concentration of some immobile chemical species which is com
bustible at (positive) temperature like a burning fuse. With k a positive con
stant and g(u) a monotone decreasing function such that g(0) = 0, we have 
the system 

"t = « n + kvgtu), 
(10.2.13) 

vt = -vg(u). 

The coupling is nonlinear and typical of combustion processes as it occurs 
through the product of functions of the two dependent variables. As an
nounced, there is no diffusion of the second entity; this is the fuel that is 
simply consumed. Its natural fate is to contribute to the heating but its rate 
of consumption also goes to zero with the temperature going to zero (this 
arbitrary zero is taken as a threshold), below which nothing further happens. 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



10.3. Model of Nerve-Pulse Dynamics: A Good Physical ... 301 

Although it directly relates to a physical thermodynamical process, this system 
is much less transparent than the previous two from our point of view of 
thermodynamic modeling. 

10.3. Model of Nerve-Puke Dynamics: A Good Physical 
Example of Internal-Variable Theory4 

A. Nerve-pulse transmission 

Here our object is nerve-pulse transmission which is classically considered as 
a reaction-diffusion system. The physical description behind this is as fol
lows. Nerve pulses are actually electromagnetic solitary waves propagating 
along nerve fibers at a speed of about 20 m/s. A nerve fiber can be modeled 
as a thin tube filled with axoplasm that has a certain concentration of ions 
(potassium and sodium ions, mainly — see Fig. 10.1). The tube wall is called 
a membrane which, due to its special nature, permits ion exchange between 
axoplasm and the fluid surrounding the fiber. The initial excitation triggers 
the membrane activity, resulting in "ion pumps" responsible for keeping the 
progressive pulse propagating in the fiber. An important feature is that small 
excitations are not able to trigger a progressive pulse. There exists a thresh
old and every excitation above it leads to the stable progressive wave with a 
characteristic asymmetric shape — Fig. 10.2. For a full physical description of 
such a fascinating wave process the reader is referred to Cole (1968) and Scott 
(1975). 

In order to explain this wave process several mathematical models have 
been produced since the celebrated work of Hodgkin and Huxley (1952) in 
which the mechanism by which the ion current governs the nerve pulse motion 
was described. The basic idea of these authors was telegraph equations where 
inductance was neglected. Such equations read 

dv dia C ^ + 7T+^ = 0 ' 
dt & (10.3.14) 

— +ma = 0. 
ox 

4This section is based on the recent work of Maugin and Engelbrecht (1994) and previous 
works by the second author. 
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Fig. 10.1. Nerve axon and exchange. 

Fig. 10.2. A typical nerve-pulse asymmetric shape. 

Here v is the voltage across the membrane, ia is the total longitudinal current 
inside the membrane, ji is the ion current, and c and r are constants. The most 
ingenious result by Hodgkin and Huxley was to give an empirical expression for 
the ion current depending on (as they call them) phenomenological variables, n, 
m and h. These variables govern : n, the potassium conductance (turning on), 
and m, h, the sodium conductance (turning on and turning off, respectively). 
The ion current expression is 

ji = 9Kn4(v - VK) + gNam3h(v - VNa) + gL(v - VL), (10.3.15) 

where <7K, ffNa and gi, are potassium, sodium and leakage conductances, re
spectively, and Vj<, V^a and VL are the corresponding equilibrium potentials. 
The variables n, m and h are governed by the following kinetic equations: 

1 
Tn(v) 

1 
m = — 

h = -

rm(v) 

1 
Th(v) 

[n -no(v ) ] , 

[m - m0(w)] 

[h - hQ(v)}. 

(10.3.16) 

h = — 
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Here no, mo and ho are equilibrium values, and T„, r m and T^ are characteristic 
relaxation times. As a result of careful experimentation, the empirical relations 
for these parameters were found (we do not give these expressions here; see 
Hodgkin and Huxley, 1952). From this, two main directions in the theory of 
nerve pulse transmission can be distinguished: 
(i) to make the mathematical model even more complicated in order to account 
for all the possible physical and physiological effects; 
(ii) to make the mathematical model simpler in order to get simple solutions 
still preserving the main physical features of a pulse. 

Direction (i) is more developed in physiology and cardiac dynamics where 
the influence of various drugs ("narcotizing") on nerve systems is of inter
est. The DiFrancesco-Noble (1985) model incorporates as many as twelve 
different terms in the total ion current, accounting for delayed potassium cur
rent, background potassium and sodium currents, background calcium current, 
potassium-sodium exchange current, etc. The number of phenomenological 
variables may certainly be even higher. 

Direction (ii) has its best representation in the FizHugh-Nagumo (for short 
FHN) model (10.2.12). This model accounts for only one additional variable 
and the ion current is taken in the form 

ji = k1v + k3v3+w, (10.3.17) 

where k\ and k3 are constants. The variable w of the phenomenological type is 
usually referred to as a recovery variable. It is governed by a kinetic equation 
of the following type: 

w + co'yw = qo(v + qi), (10.3.18) 

where co, 7, qo and </i are constants. Nagumo et al. (1962) have used 7 = 0, 
resulting in a field equation 

^ . g + r t I . . W ) | + . . ( . 0 . 3 . , , 

where /x and e are again constants. Later the form with 7 ^ 0 was found to 
be preferable, but still many works are devoted to the analysis of Eq. (10.3.19) 
and its variant. There have been also attempts to replace the cubic polynomial 
in v in (10.3.17) by a piece-wise linear approximation in order to get simpler 
mathematical expressions. 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



304 Chapter 10. Waves and Reaction-Diffusion Systems 

This approach has been popular in the mathematical analysis of many 
diffusive systems because the initial equation results from Eq. (10.3.14) as the 
parabolic equation 

£-!>£+**. ao.3,0, 
where D and K are constants. 

Within the framework of the second direction, Engelbrecht (1981) has pro
posed an evolution-equation approach based on hyperbolic telegraph equations. 
As a result of this, the evolution equation 

dv 
— + alV + a2ji = 0, (10.3.21) 

was derived, where ax and 0,2 are constants. Together with the ion current, 
(10.3.14), (10.3.15), the resulting equation in a suitably chosen normalization 
of variables (with 7 = 0) reads: 

g&+f{v)% + g(v)=0, 
/ ( « ) : = 60 + M + b2v2 , (10.3.22) 

g(v) := b0ov, 

where 60, 62 and 600 are constants and £ = cot — x, so that (10.3.22) 1 is written 
in the frame moving with velocity CQ. The stationary form of (10.3.22) 1 is of 
the Lienard type. The full analysis of this equation is given by Engelbrecht 
(1991). 

Recently (Engelbrecht et al., 1992), a more sophisticated variant of 
(10.3.18) was proposed. It reads 

w + 4>{w, v)v = i/}(w, v). (10.3.23) 

This is of a general rate-type relation known in viscoelasticity (see Chapter 8). 
To sum up, we notice that in the description given so far, the observable 

variable is, as a rule, the electric potential (voltage). This is the actually 
measured wave. The other variables introduced are called either phenomeno-
logical, or recovery, or auxiliary variables. This last qualification suggests that 
once eliminated from the formulation via proper operations of differentiation, 
integration in time, and combinations, they altogether disappear from the fi
nal equation. Such variables also present a typical relaxation, and they are 
related in some way to dissipative processes. In the formulation given above 
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10.3. Model of Nerve-Pulse Dynamics: A Good Physical ... 305 

they seem to come out of the blue, without any thermodynamical support, 
although they present all the characteristic properties of internal variables of 
state in a good thermodynamics. It is this thermodynamic aspect that we 
want to examine next. To do so we need to have at hand the field equation for 
the observable variable and then we will draw on a mechanical analogy in a 
way that W. Thomson would have appreciated. For this purpose we can start 
from Lieberstein's (1967) model also used as a basis for evolution equations. 
Using the notation of Lieberstein, the transmission line equations describing 
the motion (telegraph equations) read: 

,_, dv dia „ 
7ra2C0— + - ^ + 2iral = 0, 

7ra2 dt dx 7ra2 

where a is the radius of an axon, Ca is the axon self-capacitance per unit 
area per unit length, L is the axon specific inductance, I = ji/(27ra) is the 
membrane current density, and R = (7ra2)r is the specific resistance of the 
axon, while r is the resistance per unit length. Combining the two equations 
(10.3.24), it is easy to obtain the following second-order wave equation with 
source terms due to I(t): 

d2v d2v dv 2 2 dl 
- - L C a W = R C a - + -RI+-L-. (10.3.25) 

The internal variables, if any, must satisfy thermodynamical restrictions and 
inequalities. 

B. Thermodynamics of nerve-pulse dynamics: F H N model 

We shall start with the FiztzHugh-Nagumo model. In this model the voltage 
v is an observable variable somewhat similar to an elastic displacement. We 
shall exploit this analogy. The recovery variable w is considered as an internal 
variable of state (the a of Chapters 4 and 5). Relying, to start with, on the 
idea of a hyperbolic model and accounting for the internal nature of w, with 
normalized units we expect a field equation of the following type (fi > 0, but 
possibly very small): 

Wit ~vxx =F(v,vuw), 
(10.3.26) 

wt — R(v, w). 

L dia dv R 
ia = 0, 

(10.3.24) 
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306 Chapter 10. Waves and Reaction-Diffusion Systems 

The first of these reminds us of some type of generalized Frenkel-Kontorova 
model for a linear elastic chain acted upon by a force J- due to a substratum 
(interaction with the surroundings), but instead of a simple F(v) = sinu (cf. 
Maugin, Pouget et al., 1992) we have a more complex force expression involving 
both friction (through vt) and interaction with an additional field w, the latter 
being governed by the relaxation equation (10.3.26)2- We can introduce a 
Lagrangian density C such as 

C = \nv2
t - W(v, vx,w)= l-ixv2

t - \v\ - W(v, w), (10.3.27) 

in which we recognize kinetic, elastic, and interaction energies. Contrary to 
Sec. 4.7 we do not grant any diffusional property to w so that W does not 
involve wx. Nor is any inertia associated with w (internal variable!). In the 
absence of dissipation and discarding thermal effects, Gibbs' equation reads 

dW 
— ■ 7 r - F v t + avxt = 0 . (10.3.28) 

at 

This is valid for any vt and d(vx)/dt so that with the special form of W 
indicated in the second of (10.3.27) we obtain the laws of state (a is a "stress"): 

F = F=-dW/dv, 
(10.3.29) 

a = dW/dvx — vx , 

while the Euler-Lagrange equations of motion takes on the form (10.3.26) but 
with y reduced to !F. 

In the presence of dissipation, i.e. when (10.3.28) is replaced by the 
ClausivLS-Duhem inequality 

dW 
—-7- - Tvt + avxt > 0, (10.3.30) 

at 
we shall assume that there are neither "viscous" stresses nor "anelastic" strains, 
so that (10.3.29)2 continues to hold. Accounting for the general expression of 
Wy Eq. (10.3.29)2 and that fact that T in general depends on vt, from (10.3.30) 
we deduce the following dissipation inequality. 

$ = -J^vt +Hwt>0, (10.3.31) 

where we have denned J-d and TZ by 

P1 = T->r dW/dv, 11 = -dW/dw. (10.3.32) 
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Now we use T.I.P. to formulate the laws that govern Td and TL in agreement 
with (10.3.31). Thermodynamic equilibrium corresponds to Td — H = 0. 
Outside (but only slightly outside), equilibrium we assume the existence of a 
positive dissipation potential V, which is homogeneous of degree two in vt and 
wt, and such that 

jrd = -dV/dvt, n = &D/dwt. (10.3.33) 

But we can as well introduce another dissipation potential V*, by partial 
Legendre-Fenchel transform of Z>, such that (see Chapter 5) 

V*{yuTl) = supWt[1lwt - V(vt,wt)}, 

Td = dV* /dvt, wt^dV'/dn. 
(10.3.34) 

By way of example, consider the following dissipation potential V* and inter
action energy W: 

V* = - i a u t
2 + ^0H2, a > 0, /?><), 

W(v, w) = W(v) — vw + -7W2 , 
(10.3.35) 

whence 
Td = -avu wt=P1l. (10.3.36) 

Setting then 

f{v) = -dW/dv, TW = (/37)-1, w0(v) := 7 - ^ , (10.3.37) 

we obtain Eqs. (10.3.26) in the suggestive form 

Mu« _ vxx + avt = f(v) + w, 
1 (10.3.38) 

■wt = [w - wo(v)}, 

which are the two equations of the FHN model up to the polarity of the voltage. 
According to the general discussion of Sec. 4.7 — solitons versus dissipative 
structures (cf. Maugin, 1990a) — the model (10.3.38) is likely to present either 
solitonic or dissipative structures (/x = 0) in the v variable (the "main" variable 
of the problem once w has been eliminated as a functional oft;), but not directly 
in u; as we are lacking any diffusion term for the latter. Also, if w is indeed 
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308 Chapter 10. Waves and Reaction-Diffusion Systems 

an internal variable of state, then the fact that we remain close to equilibrium 
during true thermo- dynamical excursions requires that this internal variable 
relaxes fast enough compared to a macroscopic time scale, i.e. the Deborah 
number based on TW should be rather small compared to unity. A special case 
of the above modeling corresponds to 7 = 0 (no self-energy related to w) in 
which case (10.3.38)2 is replaced by the equation [not a relaxation equation, 
per se, cf. (10.3.18)]: 

wt=/3v. (10.3.39) 

This is an often considered simplified model (Nagumo et al, 1962). 

C. Hodgkin-Huxley model 

Can we give a true thermodynamical guise to the Hodgkin-Huxley (HH) model 
of nerve-pulse propagation? A simplified version of the HH model can be ob
tained by generalizing the model of the foregoing paragraph. This generaliza
tion consists in increasing the number of internal variables from one (it;) to 
three (n, m, h) and introducing the appropriate generalization of the interac
tion potential W(v, w) as W(y, n, m, h), e.g. 

W(y,n,m,h) = W(y) + ^{ai(v - VK)2n4+a2{v - VNafm3h 

+ a3(v - VL)2] - (bin + hm + b3h), (10.3.40) 

while (10.3.31) is transformed to 

$ = -J=dvt + Mnt + Mmt +mt>0, (10.3.41) 

wherein 

N = -dW/dn, M = -dW/dm, V.--dW/dh. (10.3.42) 

With a simple dissipation potential [more complicated ones can be imagined 
in so far as they still satisfy (10.3.41)] 

V*(VUM,M,H) = -\<*v2
t + ^tr+foM^+m2), 3 

<*.•,&> 0, 1 = 1,2,3, 

this will naturally reproduce the contribution (10.3.15) to (10.3.26) — in the 
HH model, /z = 0 — up to the notation, while the relaxation equations (10.3.17) 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



10.3. Model of Nerve-Pulse Dynamics: A Good Physical ... 309 

with voltage-dependent relaxation times will come out but with necessarily 
simplified expressions for the many involved factors. This clearly exhibits a 
difficulty at representing experimental data in both field and relaxation equa
tions via the thermodynamical model which is rather rigid as everything seems 
to be decided by the expressions of W and V. 

D. More complex relaxation equations 

Let us examine briefly the possible consistency of more sophisticated equations 
such as (10.3.23) with thermodynamics. If this is well-known in viscoelasticity, 
this type of formulation requires here some caution and an altogether non-
trivial approach. To that effect we propose to first remind the reader that v 
has the nature of a voltage while w has that of a current. Assume now that 
the additional variable w is additively decomposed as w = w\ + w2 and that 
the first part u>i relaxes whereas the second part w2, in the observable (volt
age) field v, causes dissipation of the Joule type. Consequently, the transition 
from thermodynamical equilibrium [Eq. (10.3.28)] to dissipation is effected by 
considering that (10.3.30) generalizes to 

dW 
— — - ?vt + w2v + c-vxt > 0 , (10.3.44) 

at 

where we immediately recognize a Joule effect in the third contribution. Only 
wi is essentially internal so that we can write W = W(v,u>\). On comput
ing Wt and accounting for (10.3.29)2 we are led to the following dissipation 
inequality: 

$ = - ? d v t + w2v + Hiwu > 0, (10.3.45) 

wherein 

Td = ? + dW/dv, fti = -dW/dwx. (10.3.46) 

For example, on taking (a > 0, 0 > 0, 7 ^ 0) 

1 

we have 

W(v, w\) = W(v) — vu>i + ^ 7 ^ 1 , 

V(vt,nl,w2) = - i a u t
2 + ]^TL\ + \kw\ , 

_d dV* dV* dV 

(10.3.47) 

T -^ v = ^ *» = m- (103-48) 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



310 Chapter 10. Waves and Reaction-Diffusion Systems 

We recognize in the second of these an equation of the type of Ohm's law. 
With k ^ 0 and using the decomposition of w, from (10.3.48)2 we obtain the 
following generalized relaxation equation. 

Wt - k~lvt = -{0l)(w - w), (10.3.49) 

wherein v = ,y~1 + k~l. Simultaneously, the field equation for v is obtained as 

pvu - vxx = -avt + f(v) + w, (10.3.50) 

where f(v) = f(v) - k_1v. Equation (10.3.49) is the simplest (linear) ver
sion of Eq. (10.3.23). Equation (10.3.50) is just the same as in Paragraph B. 
The full case of that paragraph follows in the limit of large k's for which v 
remains bounded only if Wz = 0 (a condition of the same type as for perfect 
conductors). There may exist many ways to generalize (10.3.49) to the nonlin
ear form (10.3.23) but, again, the thermodynamical framework imposes severe 
restrictions as is must be simultaneously consistent with the u-field equation. 
For instance, the simple form (10.3.49) already indicates that the principal 
(constant) contribution to the function <j>(v,w) in (10.3.23) must be negative 
as k > 0 . 

E. Some conclusive remarks 

In this section we have checked that some simple models for nerve-pulse dy
namics enter the general framework of T.I. V. when the additional recovery 
variables are identified with the internal variables of T.I. V. On the basis of 
this thermodynamical admissibility, there essentially follow guidelines and pre
scriptions as to which processes do in fact respect the statement of the second 
law of thermodynamics. These prescriptions are rather strong statements as 
they at once cast the expression of thermodynamically coupled contributions 
which are to appear simultaneously in both field equations for observable vari
ables and evolution equations for internal vraiables. It is easily conceived that 
agreement with a priori set contributions, or contributions to these two types 
of equations which were more or less guessed, or were developed independently 
of one another, is rarely met. This is the case even for the relatively simple 
FitzHugh-Nagumo model, so that agreement between the rather rigid thermo
dynamical theory like the ones presented and a more complicated model such 
as the Hodgkin-Huxley one is not to be expected before hand. The difficulty 
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is of the same order as the one already encountered in the thermodynamical 
description of dilute solutions of macromolecules in Sec. 6.4. 

10.4. Coherent Phase-Transition Fronts: Another Example 
of Thermodynamics of Material Forces 

A. The general problem 

A propagating phase-transition front in a three-dimensional elastic body may 
be looked upon using from different points of view. In metallurgy it is often 
conceived as a diffusion process according to which a certain elastic phase a 
grows to the expense of another elastic phase /3. Introducing then the con
centrations of the two phases we have to examine a mixture of a certain type 
with reaction-diffusion equations for the two phases. From the point of view 
of continuum mechanics, the front with negligible thickness may be viewed as 
a propagating discontinuity wave, the material being elastic but possibly with 
different symmetries, on both sides of the singular surface that geometrically 
represents this discontinuity wave. Does this mean that no dissipation occurs 
in the process? Obviously not. The progress of the front consumes energy 
which is provided in any suitable form (applied forces, heating, etc). Thus 
there indeed is dissipation, but the latter takes place at the interface, some
what like the dissipation occurring in brittle fracture which is concentrated at 
the tip of the crack that progress in an otherwise nondissipative material. This 
will be examined in Paragraphs B and C. For the moment we also note that 
in one dimension of space the phase-transition front can be viewed as a very 
much localized, rapid variation of the mechanical state of the material which 
present both elementary dissipation of the viscosity type and some dispersion 
(also called capillarity effects) that accounts for some weakly nonlocal inter
actions. This was masterly examined by Truskinowsky (1992, 1994). In this 
case one considers a time-dependent problem in one dimension x with a stress 
"tensor" of single component a, displacement u, velocity v, and strain e. We 
have 

6W 
o =—r-+ oD, v = ut, e = ux, (10.4.51) 

be 
where 

6W (dW\ dW „ , lT , , . n dV 

^ = *-{a^)x'* = ̂ 'W = Wie'ex)'(T ^' ( 1 ° A 5 2 ) 
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and 
W = W(e)+e(ex)2, V = \rjv(vx)2 > 0, 

a = a{e) + r]vvx - 2eexx . 

Here r)v is a viscosity coefficient and e is the square of a characteristic length 
(the thickness of the above mentioned localized solutions). It is possible to 
construct a nondimensional number 

cJ = Vv/Ve, (10.4.54) 

which compares viscous effects to dispersive ones. The energy function W is of 
sufficiently high order so that a{e) is not linear in e. The equation of motion 
(balance of physical momentum) in the absence of force reads (mass density is 
normalized to one): 

vt = crx, vx=et, (10.4.55) 

where the second equation represents the kinematical compatibility. Imagine 
that the material body occupies the whole real line R so that we can think 
in terms of asymptotic values at + and — infinity. Truskinowsky (1992) has 
shown that Eqs. (10.4.55) possess strongly localized solutions (over a length 
scale of the order of v^) which allows passing from one limit (e(+co) = e + , 
ex(+oo) = 0) representing say phase a, to the other limit (e(—oo) = e_, 
ex(—oo) = 0) representing then phase (3. Such dynamical solutions u — u(f = 
x — ct) propagate at speed c given by 

ca = y ^ . (10.4.56) 
[e]tf 

This would be the Rankine-Hugoniot equation if the jumps were taken between 
sides of a true discontinuity. Here the jumps are defined in terms of asymptotic 
values but these are also practically valid up to a distance of the order of y/e of 
the wave front. On account of this, the equation of motion (10.4.55)x provides 
then the following nonlinear eigenvalue problem with respect to e_ if e+ is 
known: 

2£d^ + Vv°lk = ^ ~ ^ ( e + ) ~ ° 2 ( e ~ 6 + ) ' (10.4.57) 

The specification of the points of discrete spectrum for this eigenvalue problem 
constitutes the desired kinetic relation for the wave front transiting from e + to 
e_ as it provides c in terms of the "driving force" acting on the solution (the 

(10.4.53) 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
0/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



10.4. Coherent Phase-Transition Fronts: Another Example of ... 313 

jump in a). We refer the reader to Truskinowsky for this discussion and the 
relationship with commonly admitted laws of growth of such phase boundaries. 
But we retain from this the notion of driving force which manifests itself almost 
automatically in the continuum-physics context. 

B. Quasi-static progress of a coherent phase-transition 
front5 

We first neglect inertia and discard any temperature effect. The phase-
transition front is viewed in Fig. 10.3 as a deformable elastic body (one phase, 
on one side of the surface S, say on £_) growing at the expense of another 
deformable elastic body (the other phase) situated on side E+. Alternately, 
we may also say that the body V+ on side E + sees the other body V_ as 
an expanding defect. The hypothesis of coherence between the two phases at 
£ (correspondence of lattice sites) imposes some restriction on the jump of 
characteristic quantities. 

Fig. 10.3. Coherent phase-transition front. 

Let F the direct-motion gradient and Ng the local unit normal to £ point
ing toward V+. Then the Maxwell-Hadamard lemma of singular-surface theory 
yields 

[Fl = f ® N s , f = [ F ] - N E , (10.4.58) 

5We follow the derivation of Maugin and Trimarco (1994). 
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where [...] denotes the jump across E, i.e. [A] = A+ — A~ where A^ denote 
the uniform limits of A in approaching E along its normal on it minus and plus 
sides. Here f is a vector field in physical space. The field equations read: 

divfi T± = 0 mV±, T± = 8W±/dF, 

N • T = Td at dV - E , (10.4.59) 

N E • [T] = 0 at E . 

In order to evaluate the elementary dissipation in an irreversible progress of 
E, we shall follow the same method as the one sketched out in Paragraph 8.4B 
for a crack. But now we should write 

<$<!> = f (N • T) • SxxdA - 6X / W(F)dV (10.4.60) 
Jev Jv 

where, indeed, 

f\V(F)dv=f W+(F)dV+ [ W-(F)dV, (10.4.61) 
Jv Jv+ Jv-

as the two elastic phases are essentially different materials, and E is material 
for both bodies. Assuming that it is V~ that progresses into V+, we use twice 
the "transport theorem" (8.4.54a) to write 

Sx f W±{F)dV= j 6xW±dV- f W ± ( N ± - r f x X ± ) d E , 
JV± Aff ixed) JE± 

(10.4.62) 
where we note that N E = N~ = - N + , so that we can write the second 
contribution to (10.4.60) as 

Sx. f W{F)dV = / 5xW(F)dV + / N E • [W<5xx-1]<ffi. (10.4.63) 
Jv Jv+uv- Jz 

Now in computing the first contribution to (10.4.62) we have 

/ 5xW±(F)dV = - [ (divf lT).<5xX+ / (N • T) • 6xXdA 
JV+UV- Jv-Y, JdV-T. 

+ [ Nx ■ [T ■ 6xX]dZ, (10.4.64) 
JE 

where the jump term comes from the application of the divergence theorem 
to both V+ and V~ and the gluing back of the two resulting terms. Now we 
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can account for Eqs. (10.4.59), so that collecting nonvanishing contributions 
we obtain 

S* = - f N E • \W6xX~1 + T • 6xX]da (10.4.65) 

At this point we follow Hill (1986) by selecting the virtual variations in direct 
and inverse motions in such a way that the jump in <5xX is n o t z e r o (we 
cannot control the direct motion which can suffer a jump in its first variation; 
this has the same properties as a gradient), whereas 5xx~l should be taken as 
continuous across £ on the material manifold so as to respect the continuity 
of lattice sites at a coherent front, i.e., 

[*xx] = - [ F M x X - 1 • (10.4.66) 

That is, we have taken the jump of the general compatibility relation (8.4.56), 
considering a continuous 5xX~l- On account of the fact that 

[NE-T-<5xxJ = - [ N J : - T - F - ^ x " 1 ] 

= - [ N S - T - F ] - < 5 I X - 1 

= - < N E . T ) . [ F ] . * x x - \ (10.4.67) 

since ((A) = %(A++ A')) 

{AB} = (A)[B) + [A}(B)^(A)[B}, 

for A continuous across E, we can rewrite our final result as 

where the material force fs, with support S, is defined as 

fc := - N s • [W(F)l f l - (T) • F] = - N E • [b], (10.4.70) 

where b is none other than the quasi-static material Eshelby stress tensor 
defined by (cf. (8.4.45)): 

b = W ( F ) 1 R - F T - T , b C = C b T , (10.4.71) 

where the second equation reminds us of the symmetry property of b. 

(10.4.68) 

(10.4.69) (5$ = 
£ 

fz-6xX-ldZ, 
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For coherent phase-transition fronts, we have to account for the condition 
(10.4.58) and the fact that the elementary material displacement <$xx_1 r e" 
duces to a normal component. Passing to (material) time derivatives instead 
of infinitesimal variations, we can rewrite (10.4.69) as 

*M = J frVzdX, (10.4.72) 

where VE is a scalar speed of progress, and 

h = - N E • [b] • N E = -[W{F)} - ( N E • T) • f. (10.4.73) 

It is possible that no dissipation occurs at E. In this case we must have a 
vanishing force / E , i.e., 

/ s = -\W(F) - ( N E • T) • F • N E ] = 0. (10.4.74) 

Such a relation closely resembles the Hugoniot relation that shock waves have 
to satisfy in elastic solids (cf. Maugin, Pouget et al., 1992, p. 171), when 
thermal effects are discarded. For phase transitions, Eq. (10.4.74) accounts for 
the classical Maxwell rule (cf. Grinfeld, 1991; Truskinowsky, 1992). If / E does 
not vanish, then we have dissipation. The elementary dissipation per unit area 
of S reads 

VE = / E V E > 0, (10.4.75) 
which is in the traditional bilinear form of "force" multiplied by a "velocity". 
In particular, / E may be called the thermodynamical driving force of the front, 
a material force (with components on the material manifold M.3), as to have 
nonzero dissipation we have to write a relationship between / E and V%. This 
is the kinetic relation looked for. From the experience gathered in other chap
ters, we know that this relationship may be of the "viscous", "plastic", or 
"viscoplastic" type, i.e. involving either a time-scale or a threshold, or both. 
The most relevant type is the "plastic" one, for which (cf. Chapter 5) there 
exists a critical / £ such that / E < /£ , no progress, while for / E = / £ there 
is possible progress, and we can write in more abstract terms (compare the 
formalism of Chapters 5 and 7) 

VE € N c ( / s ) , V = Ind C ( / E ) , C ( / E ) = [0,/£] € R, (10.4.76) 

where V* is a pseudo-potential of dissipation. In general we would write the 
second of (10.4.76) as 

dV* 
VE = T r , (10.4.77) 
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where the degree of homogeneity of V* depends on the behavior. The first work 
to give the velocity of a transition front was by Malomed and Rumanov (1984). 
The same idea was propounded in Cherepanov (1985). Note that the critical 
/£ is in fact an energy per unit volume (Maugin and Trimarco, 1994). Thus 
/ s is a quantity akin to the energy-release rate of fracture. Expressions such 
as (10.4.71) were in fact obtained for the driving force acting on damage and 
delamination surfaces by various authors (cf. Dems and Mroz, 1985; Pradeilles-
Duval and Stolz, 1991). 

Now the above derivation neglects inertia and temperature effects so that 
it is unsatisfactory if we think that many phase transitions are also driven 
by temperature. Furthermore, the inclusion of this parameter may help to 
make the distinction between the above wave fronts and shock waves. To 
elucidate this point we examine next the direct approach through the basic 
jump relations of thermomechanics. 

C. Heat-conducting case. 

We consider anew the same problem as in the previous paragraph but we ac
count for material inertia, heat conduction and, therefore, the local expression 
of the second law of thermodynamics. The surface £ separating the two phases 
is viewed as a discontinuity surface propagating at material velocity Vs ■ It ap
parently does not present, by itself, any structure and thermodynamic proper
ties (e.g., surface energy, surface tension, dissociation and recombination rates 
of species,etc). At any regular point X outside E and with the appropriate 
internal energy e(F,7y) for each homogeneous phase, we have the following 
balance laws [cf. Eqs. (8.4.39) and (8.4.40)] 

dpo 
dt 0, (10.4.78) 

d ( 
dtP°\^ 

and the inequality of Clausius-Duhem in its primitive form: 

—S + V f l S > 0 , S = Por1, S = Q/0 , (10.4.81) 

- div f iT = 0, p = p0v, 
X 

-£) - V f l . ( T - v - Q ) = 0, 
X 

(10.4.79) 

(10.4.80) 

« 
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318 Chapter 10. Waves and Reaction-Diffusion Systems 

where Q is the material heat flux. It was assumed that there are neither body 
force nor body heat supply. Corresponding to Eqs. (10.4.78) through (10.4.81) 
we have jump relations across £ which, for equations that occur as true con
servation laws, are formally obtained from them by replacing the operators 
d/dt and V f l by -VN[...] and N E • [...] (cf. Maugin, 1988, Chapter 5), where 
Vn = V • N = Vs is the normal (material) speed at E. Thus we have the 
so-called Rankine-Hugoniot jump relations: 

N E • [poV] = 0 or m = const. 

tMp] + NE-[T]=0, 

VN Po + N E - [ T - v - Q ] = 0, 

(10.4.82) 

(10.4.83) 

(10.4.84) 

VN [por]} - [Q • N E /0] = <rE > 0. (10.4.85) 

Here m = PQVN is the mass flux. We consider that the transition across £ is 
homothermal, so that 

K) 
and 

0=0, or e = e+ = e~ = e at s . (10.4.86) 

The relevant constitutive equations are given by Eq. (8.6.86) and (8.6.87) with 
a free energy W = W(F, 6) in each homogeneous phase. The energy equation 
in the bulk of each phase can also be written in the form of the heat equation 
(8.6.85): 

e^r + V f l - Q = 0, (10.4.87) 
dt x 

because there is neither heat body source nor intrinsic dissipation. Finally, the 
balance of pseudomomentum (8.6.88) is reduced to 

dt 
- divfl b = f th (10.4.88) 

where fth is given by (8.6.89)!. Both equations (10.4.87) and (10.4.88) are 
nonconservative. Therefore, the corresponding jump relations across £ should 
exhibit source terms, respectively qz and fs

h, to be jointly determined by the 
thermodynamical study: 

W } y [ 5 ] - N 2 . [ Q ] - < 7 S = 0 , 

N E • [b + V ® V] + fEh = 0 . 

(10.4.89) 

(10.4.90) 
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On account of (10.4.86) and comparing (10.4.85) and (10.4.89) we see that 

o-z = q-z/0 at E . (10.4.91) 

Now we can estimate N E • [Q] from (10.4.84) and, in parallel, compute the 
power expanded by fj.h in the continuous velocity field V at E. In performing 
the first computation we obtain 

poe + -Pov' + ( N E . T ) - [ v ] + N E . [ T ] . < v ) . N E • [Q] = Vn 

But Eq. (10.4.83) yields at once 

N E • [T] • (v) = -VN\pov\ ■ (v) = -VN 

from which it follows that 

N E . [ Q ] = V} v [ A ) e ] - (N E -T>- [F ] -V 1 

-Pov 

(10.4.92) 

according to the fact that while both v and F are discontinuous across E, 
the coherence condition (continuity of lattice sites at E) requires that V be 
continuous, so that the relation v + F • V = 0 at regular points yields the jump 
relation 

[v] = - [ F ] - V at E . (10.4.93) 

It is readily noticed that 

V - N = V - N = VXr = Vs (10.4.94) 

On substituting from (10.4.92) into (10.4.85) we arrive at the following result: 

§az = -UVx (10.4.95) 

where we have defined the so-called Hugoniot-Gibbs driving force % by 

% : = [W{F, 9) - (NE • T) • F • N ] . (10.4.96) 

This can also be written in the following alternate forms: 

U = [W(F, 6)] - (NE • T) • f = [W(F, 8) - tr ((T) • F) ] . (10.4.97) 
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To prove the last of these, we perform some simple manipulations which are 
more transparent in components, for we have: 

<N*T?>[F?„] = <N K T*) rNt f = N H < T ? ) f N i r = N „ ( T * ) [ F ^ ] . 

We also note that the quantity HVz can also be written as 

UV-z = m[V>(F, 6) - (i>tF)T : F ] , (10.4.98) 

where m is the mass flux and ip is the free energy per unit mass at the reference 
configuration. 

The second calculation consists of evaluating 

P(f£h) := f£h • V (10.4.99) 

from (10.4.90). We let the reader directly check that this yields (Maugin and 
Trimarco, 1994b) 

P(fx) = <ZE = -HVz , (10.4.100) 

where % is indeed given by (10.4.96) or (10.4.97). 
The results obtained deserve the following comments. First, there is no 

inertial term in the expression of % even in full dynamics. This agrees with 
Gibbs' and Duhem's views that only the thermodynamic equivalent of the me
chanical potential energy, here the free energy, should describe local changes 
in properties. As a matter of fact, in the unidimensional case where the (...) 
brackets may be ignored, the quantity within squared brackets in Eq. (10.4.98) 
is indeed the Gibbs free enthalpy per unit mass. But the expression of "H re
minds us of the Hugoniot relation appearing in the thermodynamic study of 
shocks in nonlinear elasticity (see, Maugin, Pouget et al, 1992, Chapter 4) ex
cept that it is the internal energy rather than the free energy which is involved 
there (unless one studies detonation waves). The power (10.4.100) appears 
to be a non-negative heat source localized at the transition front. The result 
(10.4.100) exhibits the relationship between Eqs. (10.4.89) and (10.4.90) as 
these two equations which, in fact, represent the time and space components 
of a single four-dimensional equation, can only be consistent with the condition 
(10.4.100). An equation such as (10.4.89) with a source term was pointed out 
by Stolz (1994), but this author did not remark the connection with the heat 
equation, nor did he use the pseudomomentum argument and the notion of 
thermal inhomogeneity force at all. Finally, what thermodynamics says here 
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is that f|.h and V, or % and Vn, must be related in such a way as not to con
tradict the second law of thermodynamics at E. Once H has been expressed 
in terms of VE, then the system of field and jump equations is entirely closed. 
Imagine that we know the solution of the thermoelastic problem at time t on 
each side of E. Then we can compute Ti, and Vs shall be such that the second 
law is respected. This dictates the sign of Vs along the unit normal to E, and 
thus the direction of progress of the front, i.e. which phase is progressing into 
the other. The progress can be studied incrementally in time, just as we study 
the progress of plastic zones in elastoplasticity or the extension of cracks in 
fracture (cf. Maugin, 1992a). 

Consider the case of quasi-statics and the front E propagates normally to 
itself. Thus, when Vj; is not zero, the two expressions (10.4.99) and (10.4.100) 
provide the following balance 

n + fr = 0, / S = f s
h - N , (10.4.101) 

between the Hugoniot-Gibbs driving or configurational force H and the surface 
thermal force of quasi-inhomogenities / s . In fact these two quantities have a 
different status: U is a field quantity, which can be computed once we know all 
fields on both sides of E, while /g is a constitutive quantity whose expression 
is given by a kinetic law, e.g. (10.4.77), i.e. a closure hypothesis respecting 
the second law of thermodynamics. This can be compared to the approach 
of Truskinowsky (1994) based on kink/shock solutions of the one-dimensional 
model (10.4.57). For a given functional dependence of the free energy (e.g. 
quartic in e), this author was able to find a functional relationship between the 
"force" / s and the speed Vs. This relationship depends on the nondimensional 
number u> defined by (10.4.54). The result is given in Fig. 10.4 in which we have 
also given the "Griffith" type (or perfect-plasticity type) of law (10.4.76). An 
adjustment of the pseudopotential of dissipation V* in (10.4.77) would permit 
one to reproduce the whole range of variation with u). 

The results given above for thermoelastic conductors can be generalized to 
the case of electromagneto-thermoelastic conductors of heat and electricity at 
some cost in computation. The results (10.4.95) and (10.4.87) are left formally 
unchanged but the expression of % will obviously be more involved due to the 
presence of electromagnetic fields. For instance, in perfect agreement with the 
elements of electroelastic fracture given in Sec. 9.12, it is shown for the case of 
the electroelasticity of dielectrics in the quasi-electrostatic approximation that 
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Fig. 10.4. Kinetic curves / j ; versus nondimensional Vj; for different values of U and a 
cubic <J\e) — after Truskinowski (1994). The graph represents a Griffith-like criterion 
corresponding to a plateau similar to plastic flow [lack of uniqueness in speed — Eq. (10.76)]. 

V. has an expression given by (Maugin and Trimarco, 1995, 1997): 

U = [W(E, <£, 9) - N • ( ( T £ + TF) • F - <©) ® C) • N ] . (10.4.102) 

Establishing this expression requires the exploitation of the jump relations as
sociated with the energy equation (9.12.258) and the first of the Eshelby stress 
tensors (9.12.267). Such a result can be used in a criterion for the progress 
of transition fronts in some ferroelastic materials which are also ferroelectrics 
(such materials admit two different order parameters; cf. Maugin, Pouget 
et al., 1992, Appendix). A similar development is given in elastic ferromagnets 
by Fomethe and Maugin (1997) with soft ferromagnets as special cases. Recent 
works consider the case of noncoherent fronts (nonvanishing [V]) — so that the 
fronts themselves present defects akin to dislocations (jump discontinuities in 
material displacement) — as also the effect of a surface tension akin to capil
larity at E. Both additional effects relate to the not necessarily normal growth 
of one phase with respect to another [only V r̂ was involved in the growth con
dition (10.4.75) or (10.4.95)], which in turn leads to the problem of the lateral 
stability of the fronts. 
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For the sake of completeness the reader may consult works such as those 
of Daher and Maugin (1986a,b; 1987) for the case of thermodynamic inter
faces which manifest various properties including surface tension, electric field, 
electric polarization and magnetization, etc., and for which a surface Clausius-
Duhem inequality is used. The resulting complicated modeling is not related 
to phase-transition fronts, per se, but it is particularly useful in the study of 
junctions in deformable semiconductors as a host of exchanges and interactions 
take place right on the interface. 
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acceleration wave, 248 
accompanying 

process, 83 
reversible, 88 

state, local, 83, 87 
accumulated polarization, 257 
actual configuration, 40 
adiabatic 

magnetization, 288 
membrane, 22 
transformations, 26 

adiabaticity, 70 
affine relationships, linear, 60 
aggregates, needle-like, 165 
agitation, Brownian, 277 
alignment tensor, 162 
alloy, shape-memory, 190 
analysis 

convex, 115 
delayed-wave, 250 

analytical continuum mechanics, 217 
anelastic 

behavior, 92 
strain, 142 

angular momentum, 43, 44 
anisotropic 

diffusion, 136 
elastic materials, 59 
fluid, 151 
homogeneous crystals, 60 

antiferroelectric media, 228 
antiferromagnetism, 228 
antiferromagnets, 285 
applied physics, branches, 6 

argument, energy, 215 
arrow of time, 5, 11 
associated 

plasticity, 175 
thermodynamic potentials, 35 

atomic coordinates, 20 
axiom 

of inaccessibility of states, 27 
of local state, 48, 283 
of thermostatics, 24 

axon, nerve, 302 

B.K.Z. fluid, 131 
backstress, 177, 183 
balance 

laws, material, 292 
of angular momentum, 43 
of momentum, 212 
of linear momentum, 42 
of pseudomomentum, 221 

Barkhausen 
jump, 189 
noise, 263 

behavior 
anelastic, 92 
finite-strain, 57 
nematogen, 150, 162 
nonlocal, 160 
viscoplastic, 118 

bilinear form, 60 
canonical, 90 

Bingham fluids, 171, 264 
Biot model, 171 
BKZ fluid, 144 
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body 
heterogeneous, 95 
isotropic elastic, 58 
magnetic, 259 
material, 39 
rigid, 236 

Born-Caratheodory 
formulation of second law, 11 
thermostatics, 24 

boundaries, phase, 313 
boundary condition, 98 
branch, 

applied physics, 6 
mechanics nonsensical, 6, 15 

breaking distance, 252 
brittle fracture, 198 
Brownian 

agitation, 277 
motion, 136 

bulk viscosity, 54 
Burgers' 

equation, 163, 298 
vector, 189 

burning fuse, 300 

canonical bilinear form, 90 
capillary effects, 311 
Caratheodory's system, 28 
cardiac dynamics, 303 
Carnot's theorem, 31 
Cauchy's stress tensor, 43 
Cayley-Hamilton theorem, 58 
center of symmetry, 55 
ceramics, 247, 258 
chain, Rouse, 139 
change of phase, 228 
characteristic 

lengths, 19 
numbers, 18 
scales, 8 
times, 18 

chemical reaction, 272 
chemiotaxis, 299 
Clausius-Duhem inequality, 5, 49, 64, 66, 

88, 107, 235, 286, 306 
Clausius-Planck inequality, 51 
closed systems, 21 
coefficient 
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diffusivity, 251 
dilatation, 70 
electro-optic, 280 
Lam6, 70 
stochiometric, 272 

coercive field, 254, 260 
coherence 

condition, 319 
length, 101 

collapse of polyelectrolytes, 279 
combustion problem, 300 
complementary laws, 55, 143 
complex flow, 163 
complex fluids, 129 
compliance, elastic, 93 
composites, elastoplastic, 190 
compressible Newtonian fluid, 53 
concentrated heat source, 206 
condition 

boundary, 98 
coherence, 319 
orthogonality, 175 
secularity, 251, 252 

conduction, 236 
current, 227 
electric, 236 
electricity, 228 
perfect, 266 

conductor 
electricity, 227 
high-temperature, 266 
perfect, 227 
semi-, 238 
thermoelastic, 220 

configuration 
actual, 40 
current, 40 
intermediate, 125, 142 
Lagrangian, 40 

configurational force, 321 
conformation, 104 

tensor, 144 
conformational transition, 156 
conservation 

law 
distributional, 219 

mass, 41 
constitutive equation 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 F
O

R
D

H
A

M
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/0
7/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



Subject Index 

functional, 188 
constitutive equations, 69, 79, 131 
constrained equilibrium, 83 
constraints, thermodynamical, 130 
contact transformation, 34 
continua, 36 

Cosserat, 97 
material deformable, 51 
micromorphic, 97 
micropolar, 97 

continuity equations, 53 
continuum mechanics 

analytical, 217 
contribution, non-Newtonian, 149 
converted 

time derivative, 132, 226 
convection, 51, 234 

current, 227 
convex 

analysis, 115 
function, 112 
function positive, 116 

convexifying, 123 
convexity of energy, 110 
Cooper, 103 
coordinate 

atomic, 20 
internal, 153 

corotational derivative, 137, 183 
correlation length, 101 
Cosserat continua, 97 
Coulomb criterion, 175 
coupled dynamical effects, 99 
couples, body, 43 
couplings 

magnetomechanical, 262 
thermomagnetic, 288 

crack 
progress criterion, 203 
propagation, 123 

creep, 183 
tertiary, 184 

criteria, plasticity, 175 
criterion 

Coulomb, 175 
crack progress, 203 
damage, 184 
Griffith's, 203 
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Hubber-Mises, 175 
crystals, 55 

anisotropic homogeneous, 60 
liquid, 160, 161 

nematic, 101 
single, 180 

current 
conduction, 227 
convection, 227 

curve 
kinetic, 322 
magnetization, 260 
polarization, 257 

cyclic plasticity, 183, 186 

damage, 183 
criterion, 184 
localization, 101, 187 

Deborah number, 49, 248, 250 
decomposition 

multiplicative, 125, 180 
polar, 57 

defect, 197 
energy of, 198, 219 

deformable 
ferromagnets, 281 
material continua, 51 
solids, 73 
superconductors, 15 

deformation 
macromolecular, 145 
viscoplastic, 188 

degrees of freedom, 20 
internal, 97, 223 

delayed-wave analysis, 250 
density, 39 

entropy, 108 
Hamiltonian, 217 
Lagrangian, 209 

derivative 
convected-time, 132 
corotational, 137, 183 
functional, 154 
Gordon-Schowalter, 137, 149 
Jaumann, 137, 161 
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material time, 38, 43 
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description 
hydrodynamical, 135 

dielectric relaxation, 246, 247 
dielectrics, 227 
diffusion, 7, 156, 266, 299 

anisotropic, 136 
polymer, 157 

diffusion-flux vector, 140 
diffusivity 

coefficient, 251 
dilatation 

coefficient, 70 
thermal, 93 

direct motion, 42 
directional properties, 165 
director, fluid with, 151 
discontinuity wave, 311 
dislocation sources, 88 
disordered phase, 102 
displacement, 52 

electric, 225 
dissipation, 5 

function, 62 
global, 198, 290 
inequality, 7, 83, 98, 108, 127, 157, 

243, 247, 284, 299, 306 
residual, 274, 283 

intrinsic, 108, 109, 143, 181, 287 
Joulean, 73 
maximal, 256 

principle, 174 
potential, 62, 81, 90, 92,113, 120, 

122, 123, 155, 240,307, 
process, 114 
pseudo-, 246, 255 
pseudo-potential, 114, 182, 203, 316, 

321 
thermal, 7, 51 
thermoelastic, 194 

dissipation-function, 90 
dissipative 

fluxes, 53 
structure, 270, 307 

distance, breaking, 252 
distortion 

energy, 175 
maximum, 175 

distribution, 217 

function, 162 
distributional 

conservation law, 219 
formulation, 217 

domain 
magnetic, 262, 282 
structure, 264 
wall, 262 

double-well energy, 112 
driving force, 316, 317 

Hugoniot-Gibbs, 319 
Drucker's inequality, 176 
dumbbell, 134 

linear elastic, 152 
dynamical 

effects, coupled, 99 
magnetic equation, 288 

dynamics 
cardiac, 303 
nerve-pulse, 301 
population, 297 

effect 
electrostriction, 277 
electrostrictive, 280 
galvanomagnetic, 238 
Hall, 237 
Joule, 237 
Kerr, 279 
mechano-chemical, 277, 278 
piezocaloric, 68 
relaxation, 99, 114 
surface, 100 
thermoelectric, 238 
thermo-galvanomagnetic, 240 

elastic 
compliance, 93 
ellipsoid, 152 
ferroelectrics, 285 
inhomogeneity, 209 
isotropic bodies, 58 
linear dumbbell, 152 
material, 281 

anisotropic, 59 
network, 134 
singularities, 213 
superconductors, 267 
stress (thermodynamic), 55 
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elasticity, 161 
Hookean, 149 
isentropic, 70 

elastomer, 143 
elastoplastic composites, 190 
elastoplasticity 

metals, 94 
with hardening, 245 

elastc-resistance, 226 
electric 

conduction, 236 
displacement, 225 
field, local, 273 
hardening, 254 
hysteresis, 253 
polarization, 225, 286 

electrically polarized solids, 245 
electricity 

conduction, 228 
conductor of, 227 

electroelastic fracture, 288 
electroelasticity, 288 
electromagnetic 

fields, 6 
materials, 223, 229 
media, 64 
potential, 267 
solitary waves, 301 
theory, 14 

electromagnetism, 223 
electromotive intensity, 227 
electron 

theory, 230 
superconducting, 270 

electro-optic coefficient, 280 
electrostatic interaction, 277 
electrostriction, 23 

effect, 277 
electrostrictive effect, 280 
element, volume, 191 
elementary 

heat received, 27 
work, 27 

ellipsoid, elastic, 152 
elongational flow, 146 
energy, 4 

argument, 215 
convexity, 110 

distortion, 175 
double-well, 112 
free, Helmholtz, 50, 57 
global, 198 
Hookean, 136 
of defects, 198, 219 
potential, 203 
release, dynamic, 207 
surface, 197 
-relase rate, 216, 317 

entanglement parameter, 153 
enthalpy, 35 

free, Gibbs, 320 
entropy, 5 

density, 108 
flux, 71 

equation 
Burgers', 163, 298 
constitutive, 69, 79,131 

functional, 188 
continuity, 53 
evolution, 60, 114, 152, 295 
evolution-diffusion, 73 
field, 69 
Gibb's, 239, 306 
Ginzburg-Landau, 270 
global energy, 198 
heat, 194, 297, 318 
hereditary, 131 
hyperbolic, 297 
kinetic, 302 
magnetic, dynamical, 288 
Maxwell's, 225 
parabolic, 134 
Rankine-Hugoniot, 312 
reaction-diffusion, 298, 311 
relaxation, 104, 137, 241, 248, 309 
state, 82 
superconductivity, 270 
telegraph, 301, 304 

equilibrium 
constrained, 83 
states, 37, 80 
thermodynamic, 23, 24 
unconstrained, 83 

Ericksen anisotropic fluid, 151 
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stress, 211, 291 
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tensor, 209, 221, 209 
Euclidean physical space, 40 
Bulerian 

representation, 40, 130 
variation, 211 

Euler's identity, 62, 113 
evolution 

equation, 60, 114, 295 
reversible, 27 
shear-band, 101 

evolution-diffusion 
equation, 73 
type, 104 

exchange heat, 26 
extended thermodynamics, 10, 47,72, 104, 

110, 164, 
extensive variables, 20, 22 

family tree thermomechanics, 4 
far-field solution, 249 
ferriefectric media, 228 
ferrimagnetism, 228 
ferrimagnets, 285 
ferroelectric 

media, 228 
phase, 285 

ferroelectrics, 280, 322 
elastic, 285 

ferrofluid, 287 
ferromagnetic 

hysteresis, 259 
phase, 282 

ferromagnetism, 228 
ferromagnet, 280 

deformable, 281 
field, 4, 254 

coercive, 260 
equation, 69 
far-
local electric, 273 
magnetic, 244 
optical, 280 
electromagnetic, 6 
material, 233 

finite 
speeds, 296 
strains, 64, 180, 210 

finite-strain 

Subject Index 

behavior, 57 
finite-strain tensors, 58 

first 
law of thermodynamics, 25 
order gradient theory, 98 
Piola-Kirchhoff stress, 51 

Fisher's model, 297 
FitzHugh-Nagumo model, 300, 305 
flow 

complex, 163 
elongational, 146 
potential, 94 
rules, 175 

fluid 
anisotropic, 151 
Bingham, 171, 264 
BKZ, 144 
complex, 129 
compressible, 53 
macroscopic, 139 
magnetic, 286 
micromorphic, 150 
Newtonian, 53 
non-Newtonian, 131 
polymeric, 133, 144 
simple, 131, 139 
Stockesian, 54 
viscosity, 164, 165 
with a director, 151 

fluidity, 129 
fluid, 127 
flux 

entropy, 71 
dissipative, 53 

force, 53 
configurational, 321 
driving, 316, 317 

Hugoniot-Gibbs, 319 
internal, 97, 198, 208, 290, 311 
material, 209 

global, 214, 216 
physical, 42 
random, 103 
thermal material, 221 
thermodynamic, 60 

form 
bilinear, 60 

canonical, 90 
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functional, 64 
Pfaffian, 125 

formalism, material, 89 
formulation 

distributional, 217 
weak, 217 

Fourier line, 5 
Fourier-Ohm laws, 276 
Fourier's law, 269 

of heat conduction, 54 
fracture, 14, 183, 197, 208 

brittle, 198 
electroelastic, 288 
rate, 317 
thermoelastic, 221 

Frank-Read, 88 
sources, 188 

free 
energy Helmholtz, 35, 50, 57 
enthalpy Gibbs, 320 

freedom degrees, 20 
internal, 97, 223 

Frenkel-Kontorova model, 306 
friction, 6 
front, noncoherent, 322 
function 

convex, 112 
positive, 116 

dissipation, 62 
distribution, 162 
indicator, 111 
wave, 103 

functional 
constitutive equations, 79, 188 
derivative, 154 
form, 64 
relations, 226 

functions 
Massieu, 36 
generalized, 198, 217 
homogeneous, 62 
isotropic scalar valued, 58 
test, 217 

fuse burning, 300 

Galilean 
invariance, 226 
transformation laws, 227 

galvanomagnetic effects, 238 
gauge invariance, 266 
generalized 

functions, 198, 217 
hydrodynamics, 153 
standard material, 117, 177 

Gibbs' 
equation, 239, 306 
free enthalpy, 320 
potential, 36 

Ginzburg-Landau equation, 270 
glassy polymers, 123 
global 

dissipation, 198, 290 
energy equation, 198 
irreversibility, 200 
material forces, 214, 216 
stability, 257 

Gordon-Schowalter derivative, 137, 149 
gradient 

first order theory, 98 
spatial, 100 

Griffith's criterion, 203 
group, orthogonal, 57 
growth 

laws, 313 
normal, 322 

gyromagnetic ratio, 243, 282 
gyroscopic effect, 238 

Hall effect, 61, 237, 238 
Hamiltonian density, 217 
hardening 

elastoplasticity, 245 
electric, 254 
isotropic, 177 
kinematic, 177 
mechanical, 254 
plastic, 184 
plasticity with, 175 

heat 
conduction Fourier's law, 54 
elementary, 27 
equation, 194, 297, 318 
exchange, 26 
source, concentrated, 206 

Helmholtz free energy, 35, 50, 57 
hereditary 
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equations, 131 
media, 64 

heterogeneous 
bodies, 95 
materials, 191 

hidden variables, 75, 78 
theory, 105 

Hodgkin-Huxley model, 308 
homogeneous 

crystals, anisotropic, 60 
functions, 62 
materials, 39 
system, 22 

Hookean 
elasticity, 149 
energy, 136 

Hooke's law, 70 
Hubber-Mises criterion, 175 
Hugoniot relation, 316 
Hugoniot-Gibbs driving force, 319 
hydrodynamical description, 135 
hydrodynamics, generalized, 153 
hyperbolic 

equations, 297 
model, 305 

hysteresis, 6 
electric, 253 
ferromagnetic, 259 
loop, 179, 253 
magnetomechnical, 253 

hysteretic phenomena, 179 

identity, Euler's, 62, 113 
Ilyushin's postulate, 177, 257 
impermeable membrane, 22 
inaccessibility of states, 11 

axiom, 27 
indicator function, 111 
induced ordering, 280 
induction, magnetic, 225 
inequality 

Clausius Duhem, 5, 49, 64, 66, 88, 
107, 286, 306 

Ciausius-Planck, 51 
dissipation, 7, 83, 99, 108, 127, 157, 

243, 247, 283, 284, 299, 306 
Drucker's, 176 
intrinsic dissipation, 109 
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Piola-Kirchhoff, 235 
residual, 274 

infinitesimal strain, 52 
infrared thermography, 194 
inhomogeneity, 209 

elastic, 209 
inhomogeneous material, 39 
instantaneous wave, 251 
integral, Rice-Eshelby-Cherepanov, 203 
intensity, electromotive, 227 
intensive variables, 22 
interaction 

electrostatic, 277 
nonlocal, 311 

interface thermodynamic, 323 
intermediate configuration, 125, 142 
internal 

coordinate, 153 
freedom, degrees of, 97, 223 
forces, 97 
variable 

relaxation, 296 
scalar, 152 

variables, 74, 77, 95, 305 
thermodynamics, 13, 47 
of state, 9 

intrinsic 
dissipation, 108, 143, 181, 287, 

inequality, 109 
irreversibilities, 37 

invariance 
Galilean, 226 
gauge, 266 

inverse motion, 42 
ion, macro, 271 
irreversibility 

global, 200 
intrinsic, 37 
thermal, 37 

irreversible process 
nonlinear, 120 
theory, 5, 47 

isentropic 
elasticity, 70 
process, 35, 70 

isothermal 
process, 35, 70 
transformations, 37 
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isotropic 
bodies, elastic, 58 
hardening, 177 
scalar valued functions, 58 

isotropic-anisotropic, 156 

Jaumann derivative, 137, 161 
Joule effect, 237 
Joulean dissipation, 73 
jump 

Barkhausen, 189 
relations, 318 

Kelvin-Voigt 
linear viscoelastic solid, 56 
model, 129, 169, 241 

Kerr effect, 279 
kinematic hardening, 177 
kinetic 

curve, 322 
equations, 302 

kinetics 
of phase-transition, 103 
reaction, 91 

Kronecker's symbol, 56 

L.A.S., 83, 87 
Lagrange 

multiplier, 72 
strain tensor, 59 

Lagrangian, 98 
configuration, 40 
density, 209 
variation, 211 

Lagrangian-Hamiltonian principle, 293 
Lame coefficient, 70 
Landau-Ginzburg theory, 102 
Landau's phase-transition theory, 103 
law 

balance, material, 292 
complementary, 55, 143 
conservation, distributional, 219 
Fourier-Ohm, 276 
Fourier's, 269 
Hooke's, 70 
normality, 115, 174 
of growth, 313 
of state, 109, 126, 239, 243, 283, 306 

Ohm's, 73, 269 
transformation, Galilean, 227 

layers, transition, 100 
Legendre 

transform, 62 
transformation, 34, 84, 57, 217, 232 

Legendre-Fenchel 
transform, 93, 116, 307 

length 
characteristic, 19 
coherence, 101 
correlation, 101 

Lie derivative, 137 
limit, yield, 85 
line, Fourier, 5 
linear 

affine relationships, 60 
elastic dumbbell, 152 
Kelvin-Voigt, 56 
linear viscoelastic solid 
momentum balance, 42 
viscoelastic solid, 55 
waves, transient, 296 

liquid crystals, 160, 161 
nematic, 101 

local 
accompanying state (L.A.S.), 83, 87 
electric field, 273 
stability, 256 
state, axiom, 48, 283 

localization 
damage, 101, 87 
of plastic strains, 101 

loop, hysteresis, 179, 253 
Lorentz, theory, 230 
Lorentz-Heaviside units, 225 

macrocracks, 210 
macrohomogeneity principle, 191 
macro-ions, 271 
macromolecular deformation, 145 
macroscopic 

fluid, 139 
scale, 20 
system, 17 
world, 40 

magnetic 
bodies, 259 
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domain, 262 
wall, 282 

dynamical equation, 288 
field relaxation, 244 
fluid, 286 
induction, 225 
internal variable, 264 
ordering, 282 
relaxation, 287 

magnetic-spin 
precession, 282, 285 
relaxation, 284 

magnetization, 225 
adiabatic, 288 
curve, 260 
magnetization residual, 242 

magnetizing process, 262 
magnetoelastic fracture, 288 
magnetomechanical 

couplings, 262 
hysteresis, 253 

magneto-plasticity, 262 
magnetostriction, 265 
magneto-thermo-elasticity, 228 
manifold, material, 213 
Massieu functions, 36 
material 

balance laws, 292 
body, 39 
continua deformable, 51 
elastic, 281 
elastic anisotropic, 59 
electromagnetic, 223, 229 
fields, 233 
force, 198, 208, 209, 290, 311 

global, 214, 216 
formalism, 89 
heterogeneous, 191 
homogeneous, 39 
inhomogeneous, 39 
manifold, 213 
Mooney, 59 
points, 39 
rubber-like, 59 
simple, 43 
standard, 117 

generalized, 177 
symmetry, 40, 59, 130 

thermal force, 221 
thermoelastic, 65 
time derivative, 38, 43 

maximal dissipation, 256 
principle, 174, 178 

maximum distortion, 175 
Maxwell-Cattaneo-Vernotte, 73 
Maxwell-Hadamard lemma, 313 
Maxwell's 

equations, 225 
model, 168, 169, 241 
relation, 93 

mechanical 
hardening, 254 
pressure, 53 

mechanics 
continuum, analytical, 217 
nonsensical, branch of, 15 
thermo-electro, 275 

mechanism, normal, 172 
mechano-chemical effect, 277, 278 
media 

antiferroelectric, 228 
electromagnetic, 64 
ferrielectric, 228 
ferroelectric, 228 
hereditary, 64 
thermodeformable, 124 

membrane, 301 
adiabatic, 22 
impermeable, 22 
rigid, 22 

metal plasticity, 188 
metals, elastoplasticity, 94 
microcraks, 183 
micro-macro transition, 194 
micromorphic 

continua, 97 
fluid, 150 

micropolar continua, 97 
microscopic 

definition, 61 
theory, 188 

microstructure, 41, 95, 133, 138 
migration, 156 

molecular, 156 
model 

Biot, 171 
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Subject Index 369 

Fisher's, 297 
FitzHugh-Nagumo, 305 
Frenkel-Kontorova, 306 
Hodgkin-Huxley, 308 
hyperbolic, 305 
Kelvin-Voigt, 129, 169, 241 
Maxwell, 168, 169, 241 
molecular, 133, 134 
plasticity, 88 
rheological, 172 
viscoelasticity, 241 

modes, normal, 20 
molecular 

migration, 156 
models, 133, 134 

moment of momentum, 43 
moments statistical, 92 
momentum 

angular, 43, 44 
balances of, 212 
linear, 42 
moment of, 43 
physical, 42, 44 

Mooney materials, 59 
Mooney-Rivlin, 143 
motion 

Brownian, 136 
direct, 42 
inverse, 42 
retarded, 136 

multiplicative decomposition, 125, 180 
multiplier 

Lagrange, 72 
plastic, 174 

needle-like aggregates, 165 
nematic liquid crystals, 101 
nematogen behavior, 150, 162 
nerve axon, 302 
nerve-pulse 

dynamics, 301 
transmission, 301 

network, elastic, 134 
Newtonian 

fluid, 53 
compressible, 53 

noise, Barkhausen, 263 
noncoherent fronts, 322 

nonconvex dissipation potential, 120 
non-equilibrium states, 80 
nonlinear irreversible process, 120 
nonlinearity, 102 
nonlocal 

behavior, 160 
interactions, 311 

nonlocality, 101, 188 
non-Newtonian 

contribution, 149 
fluid, 131 

nonsensical 
branch of mechanics, 6,15 

normal 
growth, 322 
mechanism, 172 
modes, 20 

normality law, 115, 174 
notion of temperature, 31 
number 

characteristic, 18 
Deborah, 49, 248, 250 
Reynolds, 163 

observable variable, 85 
Ohm laws, 73, 269 
Onsager 

relation, 240 
symmetry, 7 

Onsager-Casimir 
relations, 61 
symmetry relations, 60 

optical field, 280 
order parameter, 103, 281, 285 
ordered phase, 102 
ordering 

induced, 280 
magnetic, 282 

organized structures, 101 
orthogonal group, 57 
orthogonality 

condition, 175 
property, 256 
relation, 148 

oscillation 
relaxation, 120 
stick-slip, 120 
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parabolic equation, 134 
parameter 

entanglement, 153 
order, 103, 281, 285 
structural, 153 

parity, time, 61 
patterns, spatiotemporal, 296 
perfect 

conduction, 266 
conductors, 227 
plasticity, 175 

periodic structure, 95 
Pfaffian forms, 125 
phase 

boundaries, 313 
change, 228 
coherent, 311 
disordered, 102 
ferroelectric, 285 
ferro-magnetic, 282 
kinetics, 103 
ordered, 102 
theory, 266 

Landau's, 103 
transition, 102 
conformational, 279 

phenomena, hysteretic, 179 
phenomenological variables, 303 
physical 

-chemical processes, 75 
force, 42 
momentum, 42, 44 
space, Euclidean, 40 
velocity, 42 

piezocaloric effect, 68 
Piola-Kirchhoff stress, 234 

first, 51 
placements, 40 
plasma, 238 
plastic 

hardening, 184 
multiplier, 174 
strains, 177 

accumulated, 177 
cumulative, 177 
localization, 101 

plasticity, 167 
associated, 175 

criteria, 175 
cyclic, 183, 186 
metal, 188 
model, 88 
perfect, 175 
rate-independent, 85 
reversible, 190 
with hardening, 175 

points, material, 39 
polar decompositions, 57 
polarization 

accumulated, 257 
curve, 257 
electric, 225, 286 
residual, 245, 257 

polarized solids, 245 
polyelectrolyte, 144, 271 

collapse of, 279 
solutions, 104 

polymer diffusion, 157 
polymeric 

fluid, 133, 144 
solutions, 103 

polymers, glassy, 123 
ponderomotive torque, 231 
Ponter-Bataille-Kestin, 88 
population dynamics, 297 
porosity, 187 
positive convex function, 116 
post-Duhemian thermomechanics, 9 
postulate, Ilyushin's, 177, 257 
potential 

dissipation, 62, 81, 90, 92, 113, 120, 
122, 123, 155, 240, 307 

electromagnetic, 267 
energy, 203 
flow, 94 
Gibbs', 36 
pseudo-dissipation, 174, 246, 255 
thermodynamics, 34 

power 
virtual, 44, 293 

principle, 272 
Poynting 

theorem, 228 
vector, 228 

precession 
magnetic-spin, 282, 285 
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pressure, 35 
mechanical, 53 

principle 
Lagrangian-Hamiltonian, 293 
maximal dissipation, 174, 178 
macrohomogeneity, 191 
virtual power, 44, 272, 293 

problem 
combustion, 300 
thermomechanical, 187 

process 
accompanying, 83 
diffusion, 311 
dissipation, 114 
irreversible, 5 
isentropic, 35, 70 
isothermal, 35, 70 
magnetizing, 262 
nonlinear, irreversible, 120 
physico-chemical, 75 
reaction-diffusion, 103 
relaxation, 275 
reversible accompanying, 88 
thermodynamic, 23 
thermodynamically admissible, 64 
thermomechanical, 89 

progress rate reaction, 272 
propagation 

crack, 123 
speeds, 296 

properties 
directional, 165 
stability, 111 

property, orthogonality, 256 
pseudo-dissipation potential, 174, 246, 

255 
pseudomomentum, 209 

balance, 221 
pseudo-potential 

of dissipation, 114, 182, 203, 316, 
321 

quasi-static stress tensor, 292 

random force, 103 
Rankine-Hugoniot equation, 312 
rate 

energy-release, 216, 317 

of fracture, 317 
progress, 272 

rate-independent plasticity, 85 
ratio, gyromagnetic, 243, 282 
rational thermodynamics, 9, 47, 57, 63, 

168 
reaction 

chemical, 272 
kinetics, 91 
progress rate, 272 

reaction-diffusion 
equation, 298, 311 
processes, 103 
systems, 15, 296 

real systems, 36 
recovery variable, 304, 305 
relation 

functional, 226 
Hugoniot, 316 
jump, 318 
Maxwell's, 93 
Onsager-Casimir, 61 
Onsager's, 240 
orthogonality, 148 

relaxation, 236, 244, 286 
dielectric, 246, 247 
effect, 99, 114 
equation, 104, 137, 241, 248, 309 
internal-variable, 296 
magnetic, 287 
magnetic-spin, 284 
oscillations, 120 
process, 275 
times, 303 
type, 114 

release-rate, dynamic energy, 207 
representation, Eulerian, 40, 130 
reptation theory, 139 
residual 

dissipation inequality, 274, 283 
magnetization, 242 
polarization, 245, 257 

resistance, 226 
resistivity, 237 
retarded motion, 136 
reversal, time, 225 
reversible 

evolution, 27 
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plasticity, 190 
processes, accompanying, 88 
transformations, 27 

Reynolds number, 163 
rheological model, 172 
rheology, 13, 168 
Rice-Eshelby-Cherepanov integral, 203 
rigid 

bodies, 236 
membrane, 22 

Rivlin-Ericksen tensors, 159 
Rouse chain, 139 
rubber-like materials, 59 
rules, flow, 175 

scalar 
internal variable, 152 
valued isotropic functions, 58 

scale 
macroscopic, 20 
characteristic, 8 

scaling of temperature, 31 
second law 

(Caratheodory), 27 
of thermodynamics, 27, 83 

secularity condition 251, 252 
semiconductors, 227, 238 
shape-memory alloy, 190 
shear-band evolution, 101 
simple 

closed system, second law 
(Caratheodory), 27 
fluid, 131, 139 
materials, 43 
systems, 25 
waves, 296 
-wave solutions, 248 

single crystals, 180 
singularities, elastic, 213 
small strains, 124 
solid 

deformable, 73 
linear viscoelastic, Kelvin-Voigt, 56 
polarized, 245 
viscoelastic linear, 55 
viscoelasticity, 168 

solitary waves, electromagnetic, 301 
soliton structures, 307 

solution 
far-field, 249 
polyelectrolyte, 104 
polymeric, 103 
simple-wave, 248 
wavelike, 296 

source 
heat, 206 
Frank-Read, 188 

space, physical Euclidean, 40 
space-time transformation, 267 
spatial gradients, 100 
spatially uniform systems, 49 
spatiotemporal patterns, 296 
specific volume, 20 
speeds 

finite, 296 
propagation, 296 

stability, 167 
global, 257 
local, 256 
properties, 111 

standard material, generalized, 117, 177 
state 

accompanying local, 83, 87 
equations, 82 
equilibrium, 37, 80 
inaccessibility, 11 
laws, 109, 126, 239, 243, 283, 306 
local, 283 
non-equilibrium, 80 
thermodynamic, 23 
variables, 12, 74 

statistical moments, 92 
stick-slip oscillations, 120 
stochiometric coefficient, 272 
Stockesian fluid, 54 
strain 

anelastic, 142 
finite behavior, 57 
infinitesimal, 52 
tensor, Lagrange, 59 
finite, 64, 180, 210 
plastic, 177 

accumulated, 177 
cumulative, 177 
localization, 101 
small, 124 
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stress 
elastic (thermodynamic), 55 
Eshelby, 211, 291 
Piola-KirchhofT, 234 

first, 51 
tensor, 138 

Cauchy, 43 
Eshelby, 209, 221, 292 
quasi-static, 292 

structural parameter, 153 
structurally complex flow, 163 
structure 

dissipative, 270 
domain, 264 
organized, 101 
periodic, 95 

subdifferential, 11, 203 
superconducting electrons, 270 
superconductive pairs, 103 
superconductivity, 266 

equation, 270 
superconductors, 265 

deformable, 15 
elastic, 267 

superfluidity, 165 
surface 

effects, 100 
energy, 197 
tension, 322 
yield, 174 

suspensions, 150 
symbol Kronecker's, 56 
symmetry 

center, 55 
material, 40, 59, 130 
Onsager, 7 
relations, 60 

system 
Caratheodory's closed, 21 
FitzHugh-Nagumo, 300 
homogeneous, 22 
macroscopic, 17 
reaction-diffusion, 15, 296 
real, 36 
simple, 25 
spatially uniform, 49 
thermodynamic, 17, 21, 155 

T.I.P., 5 
T.I. V., 13 
telegraph equations, 301, 304 
temperature 

high, 266 
notion of, 31 
scaling of, 31 
thermodynamical, 71 
thermostatic, 81 

tension surface, 322 
tensor 

alignment, 162 
conformation, 144 
Rivlin-Ericksen, 159 
finite-strain, 58 
strain, Lagrange, 59 
stress, 43, 138 

Eshelby, 209, 221 
thermoelastic-coupling, 69 
term, diffusion, 136 
tertiary creep, 184 
test functions, 217 
theorem 

Carnot's, 31 
Cayley-Hamilton, 58 
Poynting, 228 

theory 
electromagnetic, 14 
electrons, 230 
first order gradient, 98 
hidden-variable, 105 
irreversible processes, 5, 47 
Landau-Ginzburg, 102 
Lorentz, 230 
microscopic, 188 
phase-transition, 266 

Landau, 103 
reptation, 139 

thermal 
dilatation, 93 
dissipation, 7, 51 
force material, 221 
irreversibilities, 37 

thermodeformable media, 124 
thermodynamic 

associated potentials, 35 
constraints, 130 
duality, 60 

373 
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elastic stress, 55 
equilibrium, 23, 24 
forces, 60 
interfaces, 323 
potentials, 34 
process, 23 
states, 23 
systems, 17, 21, 155 
temperature, 71 
velocities, 60 

thermodynamically admissible process, 64 
thermodynamics, 74 

extended, 10, 47, 72, 104, 110, 164 
first law of, 25 
rational, 9, 47, 57, 63, 168 
second law, 27, 83 
with internal variables, 13, 47 
zero principle, 31 

thermoelastic 
conductors, 220 
dissipation, 194 
fracture, 221 
materials, 65 

thermoelastic-coupling tensor, 69 
thermoelasticity, 56, 68 
thermoelectric effects, 238 
thermo-electro mechanics, 275 
thermo-galvanomagnetic effects, 240 
thermography infrared, 194 
thermomagnetic couplings, 288 
thermomechanical 

problem, 187 
processes, 89 

thermomechanics, 10, 229 
family tree of, 4 
post-Duhemian, 9 

thermostatic temperature, 81 
thermostatics, 23 

axioms of, 24 
(Born-Caratheodory), 24 

threshold, 263 
time 

arrow of, 5, 11 
characteristic, 18 
derivative 

material, 38 
converted, 226 

objective, 132 

Subject Index 

parity, 61 
relaxation, 303 
reversal, 225 

torque ponderomotive, 231 
traction, 42 
transform 

Legendre, 62 
Legendre-Fenchel, 93, 116, 307 

transformation 
adiabatic, 26 
contact, 34 
isothermal, 37 
laws Galilean, 227 
Legendre, 34, 57, 84, 217, 232 
reversible, 27 
space-time, 267 

transient linear waves, 296 
transition 

conformational, 156 
layers, 100 
micro-macro, 194 
phase 102, 279 

transmission, nerve-pulse, 301 

ultrasonic waves, 129 
unconstrained equilibrium, 83 
units Lorentz-Heaviside, 225 

variable 
Bulerian, 211 
extensive, 20, 22 
hidden, 75, 78 

theory, 105 
intensive, 22 
internal, 9, 13, 74, 77, 95, 305 

magnetic, 264 
scalar, 152 

Lagrangian, 211 
observable, 85 
phenomenological, 303 
recovery, 304, 305 
state, 12, 74 

vector 
Burger's, 189 
diffusion-Mux, 140 
Poynting, 228 

velocity 
thermodynamic, 60 

 T
he

 T
he

rm
om

ec
ha

ni
cs

 o
f 

N
on

lin
ea

r 
Ir

re
ve

rs
ib

le
 B

eh
av

io
rs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 F
O

R
D

H
A

M
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/0
7/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



Subject Index 375 

physical, 42 
virtual 

power, 44 
principle, 272, 293 

viscoelastic 
linear solid, Kelvin-Voigt, 56 
solid, linear, 55 

viscoelasticity, 304 
solids, 168 
models, 241 

viscoplastic 
behavior, 118 
deformation, 188 

viscoplasticity, 167, 180, 263 
viscosity, 129 

bulk, 54 
fluid, 164, 165 

Volterra, 154 
volume 

element, 191 
specific, 20 

vorticity, 158 

wall 

domain, 262 
magnetic domain, 282 

wave 
acceleration, 248 
delayed, 250 
discontinuity, 311 
function, 103 
instantaneous, 251 
linear transient, 296 
simple, 248, 296 
solitary 
ultrasonic, 129 

electromagnetic, 301 
wavelike solution, 296 
weak formulation, 217 
work, elementary, 27 
world macroscopic, 40 

yield 
limit, 85 
surface, 174 

zero principle of thermodynamics, 31 
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