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FOREWORD

Professor Paul GERMAIN will be 80 years old on August 28, 2000. The day
coïncides with the opening day of the 20th ICTAM in Chicago. This cannot be a
mere coïncidence since Paul GERMAIN is a former President of IUTAM. But if it is
a coïncidence at all, then the scientific children and grandchildren of Paul
GERMAIN have decided to mark that memorable day with a special publication that
reflects his direct influence on a successful scientific trend, the thermomechanics of
materials.

Paul GERMAIN has had an extremely fruitful scientific carreer in which he
contributed to so many various fields, including the study of peculiar partial
differential equations, its application to various regimes of aerodynamics,
transsonics, shock-wave structure, magnetohydrodynamics, the implementation of
asymptotic methods in fluid mechanics, and the general formulation of continuum
mechanics and thermodynamics. This he tells about beautifully in his own
contribution to this volume, a rather easygoing scientific autobiography. What also
emerges from that contribution is not only Paul GERMAIN's deep involvment in
Aeronautical Research at a critical time (1960s-1970s), but also his passion for
teaching, first mathematics, and then mechanics in its various guises. That a single
person should so much influence the teaching of a discipline - continuum mechanics
- in the whole of a medium-size country like France, and that, in turn, that spirit
spread over to a large part of the profession, worldwide, is simply amazing. The
thirty one contributions that make up the rest of this volume, reflect this influence to
the utmost. This is a tribute paid by the contributors to the special talent and
enthusiasm of a person they have tried to imitate, but often in vain. Professors
Monique PIAU, Cristian TEODOSIU and André ZAOUI could not provide a
contribution in time but they fully associate themselves to this hommage.

This volume has been prepared with the efficient help of Jean-Pierre GUIRAUD,
Eleni MAUGIN, and Prof. Graham M.L. GLADWELL. Our heartfelt thanks go to
them for their untiring efforts to improve all manuscripts.

The Editors

ix





My discovery of mechanics

Paul Germain
Emeritus Professor, Université Pierre et Marie Curie

Formerly, Professor of Mechanics at Ecole Polytechnique
Secrétaire Perpétuel Honoraire de l’Académie des Sciences de Paris

Some of my former students have been kind enough to dedicate to me for my
eightieth anniversary a volume of their original contributions and they asked me to write
a few lines as a preface. It was impossible to turn down this proposal. So I decided to
try and tell how I discovered this discipline to which I have devoted my professional
life, and how I became fascinated by some of its various aspects. The main reason is
that these discoveries have been made mostly with them and for them. Therefore, it is
quite natural to present this introduction to this volume as a testimony of my gratitude.

Ever since I was a teenager I have always intended to become a professor. I have
been happy enough to realise my dream. I am ready to agree with the statement of a
very interesting young boy who filled the tank of my car at the nearest gas station of
Brown University and who told me one day, “Let me be straightforward, a professor is
somebody who was put to school when he was five years old and who had not enough
imagination to get out”. It is true that there exists a great continuity between learning
and teaching. I was lucky enough to have enjoyed sometimes the feeling of having
discovered a new result or to be the first to solve a new problem. But I must confess
that probably my greatest satisfaction came from teaching. I spent many hours trying to
get a new and deeper understanding of a concept or of a method and to find the best way
to make them easily understandable by the students. What can be actually a greater
gratification than the one you feel when you realise that your teaching has been
meaningful, that your students experience themselves the deep beauty of the discipline
and, above all, when you see their joy when they obtain themselves new results, partly
thanks to some ideas you have tried to give them.

1. STARTING SITUATION

1.1 Researcher in mathematics?
I was very happy to be admitted to the “Ecole Normale Supérieure” in 1939. This
school has been created by the French revolution and its main purpose is to train young
people who aspire to become professors, teaching normally in the upper grades of our
“lycées”, and in particular in those that prepare students for admission - always a matter
of stiff competition - into one of the French “Grandes écoles”: Ecole Polytechnique,
Ecole Nationale des Ponts et Chaussées, Ecole Nationale d'Administration,.., and in
particular, the Ecole Normale Supérieure (ENS). This last is a very famous school

G.A. Maugin et al. (eds.), Continuum Thermomechanics, 1-24.
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because the selection is very hard. At that time, for the whole country and for all
scientific disciplines, only twenty students were admitted each year. I was delighted by
the perspective of teaching mathematics to the candidates to these difficult
competitions. The studies at ENS lasted three years. And then, war came. The times
were distressing and, needless to say, not very favourable for absorbing the new
mathematical and physical concepts, methods and knowledge. During the first year, we
were very few; only those who were not drafted; and later on we suffered the hardships
of the German occupation.

Consequently, in my class at ENS we missed many chapters of a good, modern
mathematical training in comparison with our older or younger fellows. Roughly
speaking, we covered the first two volumes of Goursat’s “Cours d’analyse” published
during WWI and also a few topics of differential geometry. In mechanics our
knowledge was pretty poor: kinematics and dynamics of rigid bodies, and Lagrange’s
equations.

In November 1940, the Germans closed for a few weeks the Sorbonne, the sciences
faculty where most of our courses were taught. The direction of the ENS advised us to
get in touch with a professor to work on some research mini-project. I saw Georges
Bouligand, a very enthousiastic professor, who suggested reading some chapters of the
famous four-volume treatise of Gaston Darboux, “Théorie des surfaces”. The
presentation was old fashioned; but the contents fascinated me, since geometry was my
pet topic. I succeeded to write a paper which improved and completed what was
written in Darboux, on a family of surfaces presenting some curious properties.
Georges Bouligand advised me not to accept, in October 1942, the position in a lycée
which was offered me, and to try rather to do some research in view of becoming, later
on, a university professor.

There were no regular seminars at the time. So, I spent many hours in one of the
best libraries in mathematics and I studied some papers, looking for a domain of
research opening more prospects than the classical theory of surfaces in three-
dimensional space. In February, I was strongly recommended to replace immediately a
professor, arrested by the Germans, who was teaching a class of students preparing the
competition for admission to one of the most renowned engineering schools. Nine
hours of mathematics and a lot of work! Nevertheless, I found the experience very
interesting and stimulating. At the end of the academic year, I had to work in a factory
in the eastern part of France, to fulfil my “Service du Travail Obligatoire”*. In
September 1944, this area was liberated and I went back to Paris.

1.2 The choice of mechanics
During the last eighteen months, I was thinking hard on what I wanted to do. I became
very dubious about my capacity to get the knowledge and the deep understanding of
modern mathematics – in fact, the Bourbaki literature – which would be necessary in
order to do fruitful research in this field. I was still tempted by teaching in a lycée, but
also to follow the suggestion of my friend Raymond Siestrunck, a physicist of my class

* “Compulsory Work Duty”, imposed by Vichy authorities in agreement with the Germans
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at ENS, who was beginning to work in aerodynamics. He thought that theoretical fluid
dynamics would be an attractive field for a student who was keen on geometry. He
gave me the book of Joseph Pérès, a mathematician who wrote a few books with
Voltera on functional analysis and who began to learn fluid mechanics when, at the age
of forty, in 1930, he was appointed director of the newly founded “Fluid Mechanics
Institute” at Marseille. The book deals with the theory of irrotational flows of an
inviscid and incompressible fluid – two-dimensional and axisymmetric mostly – and
also with Prandtl’s lifting-line theory. Finally, I decided to try this last proposition. I
met Joseph Pérès, Lucien Malavard and Raymond Siestrunck in their small laboratory
in the basement of ENS, where they were doing interesting work using electrical
analogy. Malavard proposed for me to study a numerical method described in a NACA
Technical Note, in order to compute the pressure distribution along a given airfoil. It
was based on a conformal mapping of the exterior domain of the airfoil onto the exterior
domain of a circle. Everything was straightforward and easy, except for the
computation of the imaginary part, on a circle, of an analytic function of a complex
variable, defined outside this circle, when its real part on the circle was known.
Analytically, the result is obtained through the Cauchy principal value of an integral.
Numerically, it is not easy, and in applications, all the accuracy of the method is greatly
affected by this operation. My contribution was to do this computation without using
the representation through a Cauchy integral, but by appealing to the special and very
simple behaviour of the operator acting on trigonometric functions. The gain of time
and accuracy was very significant.

I was just obtaining this result, when Pérès received a letter from Jacques Valensi,
who was a member of the French Scientific Mission, located at Carlton Gardens, in
London. Valensi was writing to him that he was working at NPL, the National Physical
Laboratory, and that he thought he might succeed to obtain for one of his research
assistants or collaborators the possibility to work at NPL during a few months, as a
temporary member of the French Scientific Mission. Malavard and Siestrunck declined
the offer. “Do you speak English?” asked Pérès. “Not a single word”, was my answer.
“Are you ready to go?” said Pérès with a smile. “Yes”, was my reply, quite surprisingly
for Pérès, my friends and also for myself. Deciding to go to NPL during the war,
knowing neither English nor fluid mechanics, was quite an adventure. In January 1945,
after two weeks in London, Valensi succeeded to have an appointment with the director
in charge of fluid mechanics, who sent me to the department dealing with theoretical
aerodynamics, headed then by Sydney Goldstein. With the help of Valensi, I tried to
describe the only thing I knew and I had done. “We also have a method to do this kind
of numerical computations. Come Monday morning, we will give you an example to
compute, and we will compare your result with ours”. The test was satisfactory.
Goldstein was not able to keep me in his laboratory that dealt with confidential
problems. But he recommended to the direction of NPL that I be admitted as a visitor.
This way, I was able to participate every day, for three months, at the NPL, in the team
headed by Dr. Falkner and men, for two months, in the team of Dr. W.P. Jones.
Fortunately, I had access to the library, where I spent much of my time. When
discussing with people, my complete ignorance of the basic concepts and methods of
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fluid mechanics was hidden by my extreme difficulty to understand and to speak
English. Back in Paris, in July, I finally wrote some reports on the questions I had
studied and explained to Pérès and to my friends what I had learned, without being able
to make the difference between what was new and what was known already for some
years. Then, after a really incredible combination of happy circumstances, I knew that I
could try to work in Mechanics.

2. MECHANICS, A GOOD FIELD FOR A YOUNG MATHEMATICIAN

During my first British experience, I had the happy occasion to read, on a
mimeographed pre-print, what is now well known as “Supersonic flow and shock
waves”. This celebrated book by Courant and Friedrich was a wonderful way to
convince me that a good classical mathematical training may lead to interesting
contributions in theoretical fluid dynamics. When I began to work, I was inclined to
attach more interest to the mathematical problems and their solution, than to their
mechanical origins and significance. My thinking and my research were therefore
rather mathematically oriented, but in a few years, progressively, my job and my
relations with other scientists brought about a reversal in my attitude. First, as early as
October 1946, I was appointed head of a small research team at the Office National
d’Etudes et de Recherches Aéronautiques (ONERA.) Second, I attended in 1948 the
International Congress of Mechanics in London, where, thanks to Goldstein I had the
good fortune to meet a large number of talented colleagues. With some of them,
particularly the British, it was the beginning of a long-lasting friendship. I must
namely mention the two invitations to spend one or two weeks in the famous
department of Applied Mathematics of the University of Manchester, headed in 1949 by
Sydney Goldstein and in 1951 by my old, much admired, and now regretfully departed,
friend, James Lighthill. With James I remained closely related until his dramatic death,
sharing in common the status of professor, the professional experience of being
directors of aeronautical research establishments in our respective country, and
becoming both members of the IUTAM bureau. Let me finally mention my
appointment as a senior lecturer at the University of Poitiers, to teach the subject of
compressible and incompressible fluid flows in a school of mechanics and aeronautical
engineering, a program which fitted very well with my work at the ONERA.

A paper devoted to my discovery of mechanics is not the place to spend too much
time on my research activity during this period. The two main themes of my research
were the mathematical linearised theory of supersonic aerodynamics and the theory of
transsonic flows. But, in fact, for my teaching and for answering some questions at the
ONERA. I was also led to work on other topics concerning subsonic aerodynamics and
gas dynamics.
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2.1 Linearised supersonic aerodynamics
In France, we had the quite old tradition of the “Doctorat ès Sciences”, closer to the
German Habilitationsschrift than to the American Ph.D. I worked hard to get my first
professorship at Poitiers, writing a thesis of some 200 pages, published by the ONERA.
and translated as a NACA Technical Memorandum, on the subject of conical supersonic
flows. The field was opened by a pioneering work by Buseman who proved that
mathematical solutions of the problem might be built through analytic functions of one
complex variable. Of course I was lucky, because I had do work on a part of
mathematics that I mastered. But I must recognise how much my training in fluid
mechanics was poor, when I started to work in the fall of 1946. I spent a lot of time
before understanding that, dealing with a linear problem, I had not to worry about the
non-linearity of the boundary conditions on the wing, a delta one, for a typical
application of special interest to engineers at O.N.E.R.A. I spent again a lot of time
hesitating about the choice of the proper solution, because I was actually not aware of
the role of the Kutta condition in supersonic flows and of the properties of the wake.

Anyway, when appointed in Poitiers, I was mature in fluid mechanics, but this is
not the place for reporting on some other of my works on linearised supersonic
aerodynamics. I will just mention the invitation to deliver a general lecture on that
subject at the Brussels’ 1956 International Congress. I chose to give a review of known
results, mainly by others than myself, trying to improve and unify them, using
Schwartz’s theory of distributions, which was not familiar to most scientists of the
mechanics’ community. Needless to say, my purpose was to stress that distribution
theory sheds light on many facets of supersonic wing theory, rather than to illustrate
distribution theory with some problems, like the one of minimum drag. I take this
opportunity to mention that most of my contributions were improvements of some
results found in literature or new results soon to be improved by another scientist.
Reading was very stimulating; it helped me to get a better understanding of the subject
matter, which proved very useful in teaching and building closer links with foreign
colleagues who became good friends.

2.2 Transsonic flow and equations of mixed type
During the early fifties I was involved in research about transsonic flows, a subject of
interest for aeronautical engineers and one which fascinated me as a mathematician. I
remember being enthusiastic while reading papers by the Soviet scientist Frankl, whom
I never had a chance to meet. I worked mainly on mathematical aspects of linear
equations of mixed type, which apply to steady, two-dimensional potential flow of an
inviscid fluid, in the hodograph plane. I paid also attention to some special equations
for which approximated solutions may be found, providing either special or
approximated solutions to, or shedding light on, problems of technical interest: nozzle
or jet flow, upstream flow around an airfoil; flow at Mach number one around a wedge;
behaviour near special points, like the one at infinity, or special lines like the sonic one
or the transsonic boundary. But my main interest was in mathematical problems proper,
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investigated with Roger Bader. They dealt with the Tricomi equation and its Euler-
Poisson-Darboux solutions, their evolution when the singular point crosses the
parabolic, i.e., the sonic, line, the singularity changing from logarithmic to Riemann’s
type; the theorem of maximum; a new proof of the existence theorem of the Tricomi
problem and its Green’s function.

All these topics gave me the great satisfaction of bringing me back to mathematics
and the occasion to have close and friendly relations with mathematicians, especially at
the Courant Institute. Mathematics, the beloved discipline of my youth has never
ceased to fascinate me and excite my admiration. But I felt the necessity to be
consistent with my choice and my decision and not to continue to use mechanics as an
excuse to do mathematics. It was time to get a good knowledge of what really was this
discipline.

3. GETTING A DEEPER INSIGHT INTO THE REALM OF MECHANICS

During the period 1952-1955, while pursuing my routine work, I was much concerned
with thinking about the concepts, the trends, the understanding, and the reasons that
sustained my vocation for mechanics. It was not only important for me, but also for the
students and scientists working with me, now, and even more, in the future. One might
feel that the example of my British colleagues could deliver an answer; but they would
not be able to understand my uneasiness. They grew up in the best tradition since
Newton’s times. They were doing mechanics as a natural thing, just like breathing. I
had to cope with the special situation of mechanics in France, at that time. During
many decades, and especially after WWII, most talented young scientists were attracted
either by pure mathematics or by hard physics, while mechanics was considered as
some reminiscence of the 19th century. As a consequence, I felt myself rather isolated
and I had to get, all by myself, an overview of what should be the discipline to which I
wanted to devote my efforts in research and teaching. Of course, I was not fully
conscious of this evolution in my mind, but at least three major events helped me in
elaborating meaningful answers and I want to report on them.

3.1 First contact with Paco Lagerstrom.
The first of these was my meeting with Paco Lagerstrom during the Istanbul 1952
International Congress. He was, like myself, the author of an important report on
conical supersonic flows. He started by studying Roman languages – I believe – in
Sweden, and then attended courses in pure mathematics at Princeton. At the time I met
him, he was professor at Caltech, in the department of aeronautical engineering, so that
both our cultural backgrounds were similar. He spoke to me about some questions
which he thought to be of the utmost importance for the understanding of fluid
mechanics and which might be ripe for solution at that time. One of them was the
mathematical basis of the boundary layer concept, discovered by Prandtl, nearly fifty
years before. Another one concerned the steady flow of an inviscid fluid as the limit of
a class of corresponding flows of the same fluid, involving a vanishingly small
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viscosity, so that, in some sense, solutions of the Euler equations might be related to a
class of solutions of the Navier-Stokes equations, through some limiting process. He
brought my attention to another of Prandtl’s discoveries, namely the constancy of
vorticity in a closed, streamlined, two-dimensional steady inviscid flow, as a result of
vanishing viscosity, acting during an infinitely long time. I began to foresee a new link
between mathematics and fluid mechanics, provided by asymptotic techniques; as a
matter of fact, not simply a link, but a way of thinking at an enormous variety of
problems. Needless to say that all this was opening avenues without a clear vision of
getting the right way in.

3.2 Visiting professor at Brown University
During the spring 1952, being invited to present a paper on transsonic flows at a small
colloquium held in Belgium, I had the chance to meet William Prager. A few days later
he mailed me an invitation to deliver a course in gas dynamics at Brown University. I
was grateful to him for this attractive and unforeseen proposal, but I asked to have it
postponed for a year, to give myself, in the meantime, the opportunity to improve my
English. I was very fortunate to spend the full academic year 1953-54 as a member of
the graduate division of Applied mathematics, which was very close to the division of
Engineering. For a mechanician, this was one of the best places in the world, providing
many good courses, covering most of the main fields of mechanics and running a
famous seminar attended by outstanding mechanicians from the United States and
abroad. I took the measure of some fantastic gaps in my knowledge while attending
these courses, mainly in solid mechanics, discovering plasticity, linear and non linear
elasticity and studying Truesdell’s papers, in which he gave the first systematic
treatment of continuous mechanics, starting from fundamental concepts. I also learned
a lot in fluid mechanics, boundary layer and viscous fluids, and even in hydrodynamics
and incompressible inviscid fluid flows. I also had the opportunity to discuss many
things with some of the best mechanicians in the world. Coming back to France, with
so much new material, I felt worthy to be named professor of mechanics.

3.3 Professor of rational mechanics
This is what actually happened in October 1954. I was appointed professor in the chair
of “rational mechanics” in the University of Lille – this is the third event that I have
announced. At that time, in France at least, rational mechanics was considered as a
branch of mathematics, dealing mostly with the application of the Newtonian theory to
rigid body motions and Lagrange’s analytical mechanics. Usually, a chair of rational
mechanics was a position for a mathematician who worked there in anticipation of
being appointed, as soon as possible, to a chair of calculus or of advanced geometry, or
still, advanced analysis. With the choice I had done, this could not be my prospect.
Actually, I had to understand more deeply the foundations of  Newtonian mechanics as a
mathematical model to the physics of the equilibrium and motions of bodies in the
neighbourhood of the Earth, of the solar system, and of the Universe. The system of
reference was a fundamental notion which was to be adapted to each situation. For the
first time I realised how wonderful was the mathematical schematisation of the
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reciprocal action of one body on another. That the fact had required nearly twenty
centuries to be recognised was not anymore a surprise to me! Lagrange equations for
systems of rigid bodies with perfect constraints were also very attractive for a man who
was very keen on geometry. I was able to cover nearly the whole classical programme
in less than the full academic year and then, to have about six to eight weeks to present
a topic, among the following ones: advanced analytical mechanics (Hamilton-Jacobi-
Maupertuis); basic notions of relativity theory; basic concepts of continuous media with
simple examples on incompressible inviscid fluid and classical linear elasticity;
vibration theory. I mentioned these three experiences because they set up the starting
point and the corner stone of what I have tried to build afterwards. I have discovered,
above all, new facets of mathematics. It is not enough to solve problems and to study
their solutions. One must also build the concepts and the models, which will be able to
offer a deeper view of the phenomena than the one given by mere observation, and even
by experiments. Mathematics has to build what I have called, in a talk at the Académie
des Sciences, “la mathématique du monde”. Moreover, these experiences have
contributed to enrich my own cultural personality. Mechanics was not anymore a thing
external to myself. It was becoming not only a part of my intellectual life but also a
constituent of my spirit which, since that time, shaped my deepest convictions.

4. MODELLING AND ASYMPTOTICS IN FLUID MECHANICS

Let me repeat what I intend to describe in this introduction. It is not the discoveries I
was able to make in the field of Mechanics – they are very limited. It is the progress of
my understanding during all my life of what is this discipline, more precisely by
discovering new problems, new ideas, new methods, new fields of applications. In fluid
mechanics this progress of understanding was due mostly to the close relations with
some colleagues and to the good knowledge of their works. Let me first mention some
favourable occasions that offered these possibilities. These were, my stay at Caltech
during four months near Paco Lagerstrom, Saul Kaplun, Julian Cole; later on, the
academic year spent by Paco in my laboratory; the two visits in Paris, for one full year
each, of Milton Van Dyke. I also benefited a lot from the long stay of W. Eckhaus in
my laboratory. All of them theorised on asymptotic singular expansions which I came
to use frequently. But, my best contributions to fluids were due to discovering, at the
end of 1955, Jean-Pierre Guiraud. I succeeded to convince him that fluid mechanics
was a very interesting topic and I asked the direction of ONERA. to recruit him to work
in my small research team. During six years we met at least once a week, often for a
full day. Jean-Pierre began to work for his doctoral thesis, on the small perturbation
theory applied to hypersonic flows. But we did not limit our discussions to this topic.
We exchanged our ideas about our recent readings, our small discoveries; we have
learnt together, we have built our views together; our vision on mechanics was very
similar. That was extremely stimulating and fruitful. In the beginning, I was the leader
of the discussions; but very soon the positions were reversed.
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4.1 Shock waves in gas dynamics and in MFD
Many of my personal studies dealt with flows of an inviscid fluid in which the variables
defining its kinematics and its physics, suffer discontinuities on some manifolds in
space-time. These are the shock waves. In order to explain my contributions, I must
give some reminders. Burgers' equation, as it is well known, is the very simple
mathematical model that gives the best physical meaning of this phenomenon. It
involves one unknown u – which may be interpreted as a velocity – one space variable
x, and one “viscosity” coefficient v. As shown by Hopf, one may write explicitly the
solution of this second order non-linear, partial differential equation which, for the
initial time takes a given value . It is a continuous and differentiable function
u(x, t). Now, let v tend toward zero; the limit is a “weak” solution of the inviscid
Burgers’ equation which, in general, presents discontinuities – that are shock
waves (in a point of discontinuity the x-derivative of u has to be computed by an
appropriate device, for instance, distribution theory). Locally, at a point of the shock,
the jump of u must check not only an equation J, as any weak solution, but also an
inequality which characterises a “shock solution” among all the “weak solutions”. Let
us recall also that, clearly, in this simple model, a shock wave appears as the result of
two conflicting influences, first the non-linearities of the propagation for the
inviscid Burgers’ equation, which tends to steepen the profile of the variations u along
converging characteristics and, second, the weakening effect on this profile, due to
viscosity.

One may now formulate the general situation, which is to be faced. It concerns the
motions of a fluid in which are present some physical mechanisms of dissipation – let
these motions be called P. These mechanisms may be mathematically schematised by
some terms and then the motions we are looking for may be described as solutions of a
general system of differential equations – let us call N this schematisation. But N also is
too complicated. If the dissipations are very small, a further modelling may be
considered by neglecting all the dissipations – call E the system of equations so
obtained. Some solutions of E may involve surfaces of discontinuity. One wants to
study the solutions of E which may be considered as limits of solutions of N for any
vanishing dissipations. The shock S appears, then, as the limit of a small layer – called
shock layer – of a solution of N which is the result of two mechanisms with opposite
effects, the steepening due to the converging progressive waves of the limiting inviscid
fluid and the weakening due to the dissipations. In order for it to be a shock solution of
E, on each point of the shock, the jumps have to check some equations J and some
inequality j.

In classical gas dynamics, the situation is clear and simple. The equations J are the
Rankine-Hugoniot relations and the inequality says that the specific entropy cannot
decrease when a particle crosses the shock. That is a necessary condition; it is also a
sufficient one, as it may be seen when one studies “the shock structure”. This can be
done by the same method that was applied to study the ordinary boundary layer. At a
fixed point of S and at a fixed time, a stretching variableis    introduced along the
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normal to S, becoming infinite when the dissipation coefficient tends towards zero, in
order to obtain a “significant degeneracy” – see below. The values of the variables on
the sides of the shock become the values for  and  according to the matching
conditions between the distal (outer) expansion (the original solution) and the proximal
(inner) expansion (for the stretched geometry). It is easy to show the existence of the
structure which is the solution of the N equations in the stretched geometry, when v
tends towards zero.

Everything we recalled above is very classical. But I felt necessary to do it in order
to understand the situation that is met when one wants to study shock waves within the
frame of the classical magneto-fluid-dynamics theory (MFD).

In the classical MFD, when all the dissipative effects are neglected, the jump
relations convey the conservation laws (mass, momentum, energy) and the Maxwell
equations. They can be written with four variables say q – which are
respectively the specific volume, the temperature, and the tangential components of the
relative velocity and of the magnetic induction. The four constants say C -
represent the quantities conserved across the shock. The jump relations J may be
written (k=l, 2, 3, etc.) on both sides of the shock. One may check that for
given values of the shock constants C, it is possible to define a function P which takes
in the q space stationary values at the two points, images of the values of the q on both
sides of the shock. One may show also that for given values of the constants C, there
exist at most four points in the q space, S1,S2,S3,S4 in which P is stationary, the index
of these points being chosen by non-decreasing values of the specific entropy.

One may be tempted to write the inequality condition  j by imposing that the
specific entropy cannot decrease when crossing the shock. That was the proposal of the
first authors working on this question. In order to see if the statement is correct, one
must investigate the structure of the shock, by taking account of the dissipation in the
proximal representation of the shock layer with the stretched distance to the inviscid
shock. In the most simple representation, one has to take into account the four
coefficients of dissipation – two for viscosity, one for Joule’s dissipation, one for heat
conduction – and assume the existence of a dissipative function as a linear combination

of say Consequently the shock structure equations may be written

The structure of the shock, defined by the two points Sa and Sb (a < b) is the integral

of the system connecting Sa and Sb along which increases from One has to
discuss the existence of such an integral and its limit when all the coefficients of
dissipation tend towards zero, independently. The MFD shock is admissible

only if this limit is Sa for and Sb for What is found is that for given
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constants of the shock, only two are physically admissible: the fast shock and
the slow shock Of course, if some of the dissipation coefficients vanish, the
structure of the shock may present a discontinuity which is called a subshock.

I have presented this question in some detail, because its result led me to some
conclusions of a more general nature which may be useful not only in fluid mechanics
but also in other modellings of macroscopic theories of physics. The first concerns the
significance of entropy. Roughly speaking, I would say: The non-decreasing property
of entropy is a necessary condition for a process to be physically admissible, but it is
not always sufficient.

Another comment concerns the validity of a simplified theory which gives rise to a
mathematical system S of equations. Such a system admits classical solutions which
must check the well-known Hadamard conditions: existence, uniqueness, continuous
dependence on the data. Inviscid fluid dynamics shows that the set of classical
solutions is too restrictive for the description of physical situations. One has also to
consider weak solutions; but now, the set of weak solutions may be too large in order to
have admissible solutions. Many papers have given conditions which may be imposed
to weak solutions in order to achieve a satisfactory requirement. What was proposed
above is to prescribe a “continuity” between the set of more or less refined theories
which may describe the behaviour of a physical situation.

A solution of a mathematical schematisation S of a physical situation is not
acceptable if it cannot be obtained by the limit of a solution of a more refined
schematisation S' when S' tends to S.

One may try to apply this statement in order to see how the previous results are the
limit of a more refined description. One possibility that has been investigated is to
introduce a model with two fluids – ions and electrons – and, for simplicity, to neglect
viscosity and heat-conduction dissipations. The differential system which rules the
structure involves three parameters: one that rules the Joule’s effect and the other two,
and which are respectively proportional to the product and the differences of the
densities of ions and electrons. When and are zero, one recovers the differential
system which governs the structure of a fast shock in the MFD model. Some interesting
situations have been noted: first, of course, subshocks may be present. Then,
oscillations may be found either in the front side or in the back side of the shock.
Finally, if Joule’s effect is neglected, one finds a structure which is a model of what is
called a “collisionless shock”, in plasma theory.

4.2 General theory of jump conditions and structures in gas dynamics
Kinetic heating during re-entry gave aeronautical engineers a strong impulse to improve
the boundary layer theory. But if viscosity and heat conduction have to be taken into
account outside the boundary layer, that means that the Rankine-Hugoniot equations
which rule the jump across the bow-shock wave have to be rewritten. A first result
given in the literature was roughly criticised by noting that one must take into account
the thickness of the shock. But the proposed evaluation was not completely
satisfactory. Both, Jean-Pierre Guiraud and I, we were convinced that the only way to
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get correct results was to apply matched asymptotic expansions. This is a quite
complicated problem, because the powers of the inverse Reynolds number which
arises, may be fractional and even more complex than the powers of the square root. I
do not intend to discuss the whole matter here; I prefer to restrict myself to the special
topic which has been worked out, namely the structure of the expansion when the sole
presence of the bow shock wave is taken care of. Here one has to deal with simple
n integer, powers. Two expansions are needed, the so-called outer one, the leading term
of which gives the inviscid solution, and the inner one, which provides the well known
internal shock structure, to leading order. It is possible to build the whole expansions, at
least formally, including matching. What is remarkable is that one may write out the
jump conditions to be applied to the whole of the outer expansion. This comes from the
conservative form of the Navier-Stokes equations. As a consequence, one may write
out jump conditions by a very simple process, like the one that leads from inviscid
conservation equations to jump conditions. Then viscous and heat conducting terms
appear to have been taken care of. But the result is illusory because one has to add a
contribution from the inner expansion. At least formally, this contribution may be
written straight to any order Of course, this is correct only for the terms of the

expansion which are forced out by the shock. To order  the jump conditions are
very easily written out when one knows the internal shock structure to leading order
only. This is very well documented. Of course, the boundary layer brings in half
powers. The result to order has found applications in kinetic re-entry heating.

4.3 Other topics involving singular asymptotics
I did not theorise on singular asymptotics but got a deep knowledge of this methodology
through teaching and research work. Let me mention a few examples.

The first one arose with a few lectures on progressive waves I had to deliver in
1970 at Stanford and Berkeley. I read a number of outstanding papers. I do not want to
choose among them here, but rather, to simply report on what was my view after that
reading. A progressive wave occurs generally when a physical phenomenon is thought
to be represented by the occurrence of steep gradients in one variable only, across three-
dimensional manifolds, in four-dimensional space-time, with much smoother gradients
in other directions. The mathematical structure of the representation looks like one of a
phenomenon in five-dimensional space-time. We need some notation in order to avoid
confusion. Let the phenomenon be quantified by an n-dimensional vector U and let t be
the time, and x be the position vector in three-dimensional space. Assume that the
manifold across which the gradients are steep is F(t,x) = Const. Then, the
mathematical progressive wave structure is so that is
considered as a fifth variable. There is apparently nothing in the equations, which
allows us to single out the dependency of U on But all is changed when we add the
ansatz that the proper physical solution may be obtained as an expansion with respect to
      t and x being fixed when proceeding to the limit of vanishing  As a matter of fact,
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the multiple scale technique, through the requirement of vanishing of secular terms,
provides the way, by means of which that dependency can be figured out. A key to the
existence of progressive waves is that U, supposed to be dependent on  only, at leading
order, exists as a planar wave solution ruled by a linear system with
obeying a dispersion relation. That relation defines a wave speed and may be
considered as an eikonal or Hamilton-Jacobi equation, the solution of which is built by
means of rays. The planar wave being a solution to a linear system is determined only
up to a scalar amplitude factor. This amplitude obeys an equation which is got when
going to higher order in the expansion and eliminating secular terms. The details
depend on the particular phenomenon considered, and there exist quite a variety of
situations that may be described mathematically by such a procedure. It is not my
purpose to enter into the details, but let me frame a few remarks. The small parameter
characterises the steepness of the transversal gradient. If the physical process is non-
linear, and non-linearity is measured by the order of magnitude of the amplitude and, if,
furthermore, the initial equations are first-order quasi-linear, as is the case with inviscid
gas dynamics, then the amplitude obeys a partial differential equation which is generally
an inviscid Burgers’equation along each ray. If there are second order derivatives
present in the equations, with a small coefficient, then the amplitude obeys a partial-
differential equation which is generally Burgers'. The role of time is played by the
distance along each ray, while the role of space is played by One may deal with third
order derivatives, and another small parameter, yielding then the Korteweg-de Vries
equation. Both phenomena may occur simultaneously. The equation for the amplitude
is called the transport equation. One may even treat cuspidal rays, corresponding to
caustics of the wave, and get a kind of Tricomi equation for the amplitude but I have to
stop here.

I have been too long and shall go faster with the other two examples. The second
one was an invitation to give a course in theoretical fluid mechanics at the famous
summer school in “Les Houches”, during the summer of 1973. I chose the topic
“Asymptotic methods in Fluid Mechanics”. I lectured to brilliant young physicists who
began to be somewhat attracted by mechanics and not simply by hard physics. As
physicists, they knew the usefulness of approximations and of non-dimensional scaling.
But they did not know that a systematic technique was available for building
approximate mathematical models and trying to measure quantitatively their validity. I
showed that the approximation is very often tied to the existence of a small parameter,
coming out from the non-dimensional form of the equations, and I intended to show that
the process is sustained by asymptotic singular expansions. I gave an account of the
various methods of building the approximations, as asymptotic expansions, and insisted
on the methodology, in particular the matching conditions and the concept of significant
degeneracy, recently created by Eckhaus. I liked very much this last one, because it
gives a systematic way to find out what should be the various stretchings. I thought that
this might be attractive to physicists, because it is a quasi-systematic way of comparing
the respective weights of various terms in the equations, which measure the physical
importance of phenomena they are likely to describe.
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The third and last example, which is quite recent, is issued from an invitation to
write a paper on the extraordinary heritage of Prandtl. I was not long to focus on two
topics, out of a large number initiated by this giant, namely, boundary layer and lifting
line theories. It was wonderful to read anew Prandtl’s original 1905 paper and to find in
it, not only the essentials of the boundary-layer theory, but yet more wonderful, the
query of Prandtl about separation, for which he run quite beautiful experiments. Of
course, the history of the boundary-layer theory provides a lot of crucial events, but the
most impressive one is the construction of the “triple deck” in 1969, independently, by
Stewartson and Neiland, through matched asymptotic expansions. A more systematic
alternative way to establish this beautiful “triple deck” would be to use the concept of
significant degeneracy. This construction which would, I think, have been impossible
without the matched asymptotic expansions gave, fifty-five years after the query by
Prandtl, a satisfactory explanation of separation, at least for steady laminar flows. The
lifting-line concept built by Prandtl in 1917-18 waited till 1964 to find, with Van Dyke
using matched asymptotic expansions, not only a justification but also directly one
approximate solution to the famous Prandtl's singular integral equation, which is
consistent with the order of approximation at which Prandtl's equation itself is
consistent. And it was yet more wonderful for me to discover that in 1991, eighty five
ears after Prandtl’s construction, two young French scientists, Guermond and Sellier,
gave a fascinating asymptotic approach to full lifting surface theory of high aspect ratio,
allowing, at least in principle, to build the expansion up to any order.

4.4 Final remarks on Fluid Mechanics
Looking back to the main ideas, methods and results I have related on above, I must
recognise that I have benefited a lot from them. My research field covered a very
limited part of the very large domain of Fluid Mechanics. There is nothing on very
important topics: turbulence, rarefied gas dynamics, hydrodynamic stability, to cite a
few. I have read many papers, particularly when I was the principal editor of the
“Journal de Mécanique” during seventeen years; and I have listened to many talks, in
particular at the regular seminar of my laboratory. But, after ten, fifteen, twenty years,
what remains is just a feeling of how fascinating it could be to understand deeply the
fundamental questions raised by many of these papers. Perhaps, I might say, what
remains is a very pleasant “cultural” feeling, something close to the statement of a
member of the Académie Française who said that “culture is what remains when
everything else has been forgotten”.

5. FORCES AND STRESSES VIA VIRTUAL POWER

5.1 General formulation
It is worth to relate the origin of this discovery. In a meeting with mathematicians and
physicists which was organised in order to discuss who will assume the task of teaching
mechanics to the students in their first two years of university, I had to explain the
programme proposed by the mechanicians. For rigid body mechanics, our proposal was
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to introduce the torsor (“torseur” in French) concept, which gives an adequate
mathematical representation of the action, exerted by exterior bodies on a rigid body.
This concept is very seldom introduced in the English speaking universities, which
prefer to start with the classical Newton laws. It is nevertheless an interesting concept,
because it may also be used to describe the kinematics of a rigid body. A torsor is a
field of moments and a resultant when it describes the forces. It is a velocity field and a
rotation-rate vector, if it describes the kinematics. At that meeting somebody asked me:
What is a “torsor” in a space of n-dimension? I was ashamed not to be able to answer
and, above all, not to have thought, myself, to ponder on this question. A few weeks
after this unhappy event, I found what I consider the best way to define the
mathematical representation of the action. Let us consider the “forces” exerted on a
given mechanical system by an outside system. It is based on the concept of virtual
motion introduced nearly two, or more, centuries ago. Roughly speaking, the
“mobility” of a system B at a fixed time t, in a given reference frame R, is the vector
space V of all the possible velocity field of the virtual motions, which one has decided
to consider. A system of actions F exerted on B is defined by a linear form on V – to
each motion there corresponds a scalar P – which is its virtual power. In other words
and briefly, F is an element of the dual of V defined by the linear form. The “force” is
the dual of the “mobility”!

This definition may, at first sight, look a little abstract. In fact, it is not and,
moreover, it presents many advantages. First, it is very natural: if you want to see if a
suitcase is heavy, you try to raise it a little bit. Second, it gives immediately the known
result for a system reduced to a material point [the virtual velocity is a vector; the force
is a dual vector], or for a rigid body [the kinematics of a virtual motion which keeps the
system rigid is a “distributor”defined by a field of the velocities vectors and its
associated rotation rate anti-symmetric second-order tensor and the forces are then
described by a “torsor”, a field of antisymmetric second order tensors field of moments
and its associated resultant force]. These two concepts, distributor and tensor, may be
identified only in the 3-dimensional space.

The concept of virtual motion was used in analytical mechanics since Lagrange. So,
it is not a new one. What is new, is, in addition to using it in order to write equations of
motion, its use from the very beginning, that is, in order to define the mathematical
representation of  “forces”. One must notice also that what is proposed is similar to
what is done in distribution theory when a function (and its generalisation to a
distribution) is defined by a linear and continuous functional in a space on “test
functions”. A virtual motion is a “test function”.

The concept is also very flexible. Given one system, you may choose the definition
of the mobility – if you refine the representation of the mobility, you will automatically
refine the representation of “forces”. You may also choose the linear functional. This
remark will find its best application in continuum mechanics.

5.2 “Stresses “ in continuum mechanics
When on deals with deformable bodies, it is convenient to introduce separately the
(virtual) power of exterior action Pe – exerted on the given body B by the system
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exterior to B – and the power of interior actions Pi mutually exerted by the elements of
B. In classical continuum mechanics the following axiom concerning interior actions
plays a fundamental role: For any rigid virtual motion of B, Pi is zero.

It is equivalent to state: The power Pi of internal forces is independent of the frame
in which the virtual motion is defined.

This axiom is another formulation of what is often called the principle of material
indifference.

The best way to build a continuum theory is to start by writing Pi. The most simple
choice is to consider Pi as the integral over B of a local pi and to assume pi as a linear
function of the local values of the velocity and of its space derivatives. The coefficients
of this function define the local representation of the interior forces, which may be
called the “stresses” inside the body B.

If B is a 3-dimensional mechanical system, pi is a linear function of the symmetric
part of the gradient of the (virtual) velocity field – The velocity field itself and the
antisymmetric part of the gradient cannot be present, on account of the axiom of internal
forces. Then the “stresses” here are simply defined by the field of the stress tensors,
i.e., symmetric second-order tensors. It is, of course, the classical result, but here it is
defined directly and in a rather simple way.

If B is a compressible fluid, a medium sensitive only to the rate of the specific
volume, the “stresses” are simply defined by a field of scalars – the pressure p.

If B is incompressible, for the virtual motions which satisfy this constraint, this rate
of the specific volume must be zero. The “stresses” are reactions to this constraint and
(if the constraint is ideal) are defined by a field of  “Lagrange multipliers”, i.e., pressures
– but the latter are not of the same physical nature as the pressure in a compressible
fluid.

The advantages are all the more important, when the situation is complex. For
instance, they are very appreciable in plate and shell theories. In the natural theory of
plates of small thickness, the mean plane being one may consider the virtual
velocity fields whose components are

which give for the components of the tensor of deformation rate

One may write

The “stresses” are defined by
membrane stresses, flexure stresses, shear forces

The Love-Kirchhoff theory considers virtual motions such that the small segments
perpendicular to the plate remain perpendicular to the mean surface in the (virtual)
deformation in such a way that Then, This theory
does not take shear forces into account.
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In the previous examples, one starts with the definition of the mobility. As
“mobility” and “forces” appear as a dual concept, one may also start by the definitions
of “forces”. In such a case, one must first derive what must be the rate of deformation
of the virtual motions and after that, what is the deformation of the medium.

Let us emphasise what is, maybe, the greatest advantage of the method of virtual
power. In classical presentations, one usually defines independently the “deformation”
and the “stress” and then one is not sure that the assumptions made to define them are in
agreement: one may be too refined compared to the other. The definition of  “stress” via
the virtual power avoids this difficulty.

In the above considered examples, pi was a linear function of the first derivatives of
the virtual velocity field – one says that these theories are of the first grade – except the
theory of Love-Kirchhoff for plates, which is a theory of the second grade. It shows
that one may refine a theory usually by assuming pi to be a linear function of first and
second derivatives of the velocity field.

One may also build the “stresses” of a micropolar medium, the local particle being
not a point of matter, but an infinitely small rigid body whose kinematics are defined by
a distributor (a velocity field and a skewsymmetric tensor, which represents the rotation
rate of the particle). A liquid crystal is an example of such a medium. One may also
build, by a similar process, a theory of micromorphic media by assuming that the
particle is no more rigid but deformable. A polymeric solution is an example of such a
medium.

Finally, let us note that Gérard Maugin and his co-workers have extended this
theoretical scheme to study continuous media in which, physical interactions other than
mechanical, are present, in particular electromagnetic interactions, as shown in many
papers of this author.

6. CONTINUUM MECHANICS AND CONTINUUM THERMODYNAMICS

This is a new way to look at mechanics, a way by which one discovers its deep unity:
mechanics of rigid bodies, fluid mechanics, solid mechanics, appear then as branches of
a large tree. To have participated in this adventure is for me a great satisfaction. Within
continuum mechanics, new physical phenomena receive a scientific treatment.
Continuum mechanics appears today as the foundation of macroscopic physics. I owe
Clifford Truesdell and Ronald Rivlin the first discovery of this field; in particular, I am
grateful to them for pointing my attention to the works of Pierre Duhem who, at the
beginning of the 20th century, had a clear and prophetic view of what it would be like,
but unhappily, without being heard in France at that time.

As I try to tell how I have discovered this new important field, I must stress again
that, above all for this point, everything that I have to report now was very closely
connected with my teaching. I think I may distinguish three steps, which will be called:
Mechanical interactions – Continuum thermodynamics – Mechanics of materials.
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6. 1 Mechanical interactions
One very important decision for the development of continuum mechanics in France
was the creation, in 1958, of a new curriculum called “licence de mathématiques
apliquées" in which a semester optional course on mechanics of continuous media
would be offered to the students in every university which would want to open such a
possibility. I had just been appointed professor in Paris, and I was asked to teach this
course. This was for me the occasion to develop a little what I had began to teach in
Lille. The course comprised three parts: (i) a general introduction to the Euler and
Lagrange representations of motion, deformation in a small-perturbation framework, (ii)
stress tensor and the conservation laws of mass and momentum, and then, (iii) some
examples of steady flows of an incompressible inviscid fluid and some examples of the
classical linearised elasticity for homogeneous and isotropic bodies. The principal goal
of these examples was to give the students an idea of the interest and usefulness of fluid
mechanics and solid mechanics.

Another decision, a few years later, was to give to universities the possibility to
organise more advanced courses in the curriculum towards a DEA (Diplôme d’études
approfondies). In Paris, it was not difficult to create a DEA in fluid mechanics because
competent professors were present in the department of mechanics. But solid
mechanics was not a very well developed discipline. A DEA in solid mechanics was
created as soon as the appointment of a new professor gave the department this
possibility. I was then in charge of the creation of a more advanced course in
continuum mechanics. To do that I had to learn new topics. Roughly speaking my
teaching dealt with the general concept of the discipline, much inspired by Truesdell,
Toupin, Noll, Coleman. I was using their notations, their reasoning and some of their
examples, in particular the marvellous theory of simple fluids and materials with fading
memory. But I included also, in the framework of small perturbations, applications of
theories of linear viscoelasticity with the use of the Laplace transform, and
elastoplasticity with a fixed yield surface in particular, in order to give notions of the
beautiful limit analysis.

6.2 Continuum thermodynamics
It was clear that thermomechanical interactions are involved in most of the evolutions of
the bodies that have to be considered in a general study of continuous media. It means
then that something like thermodynamics was needed. But how to build such a
satisfactory theory?

The principal basic question is to introduce the entropy and the absolute
temperature. In classical thermodynamics, dealing with systems in equilibrium, many
answers have been proposed, some of them, like that given by Caratheodory, very
satisfactorily. But mechanics considers systems in motion. There a true thermo-
dynamics is needed, and not the classical one, which, in fact, is thermostatics.

Two classes of answers were produced. In the first one, it is proposed to assume
that entropy and absolute temperature are primitive concepts – or at least, entropy. This
standpoint implies a drastic change in the concept of thermodynamics. In the second
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one, one wants to maintain what is known in thermostatics and to adapt the necessary
requirements needed by the new situation.

The starting point of both approaches is to write the three conservation laws: mass
and momentum, as above, and the conservation of energy, which implies the
introduction of the specific internal energy, and the heat flux vector. Among the
quantities involved in these five scalar density equations, some are the “principal
unknowns”, density, velocities and an (empirical) temperature; the others are “the
complementary unknowns” – for instance, in the classical theory, internal energy, stress
tensor and heat flux vector q. The main question is to write for a given medium the
constitutive equations which, with the conservation laws, will allow one to find all the
equations that need to be solved. In all the theories presented, the only basic statement
appears to be the Clausius-Duhem inequality.

After a long hesitation, during two or three years, I decided to adopt for my future
research and teaching the second standpoint. I have tried to explain this choice at an
international seminar in Portugal in 1973 and also in a review paper I was invited to
write with Quoc Son Nguyen and Pierre Suquet for the 50th Anniversary issue of the
Journal of applied mechanics, in 1983.

It is, maybe, worth recalling how I reached that conclusion. First, it was the
discovery, a few years after its publication, of a paper by H Ziegler in a volume of the
Progress in Solid Mechanics. Writing, as Lord Rayleigh did in fluid mechanics, the
function of dissipation, it was noted that it is a homogeneous function of order two for
viscoelastic materials, like for a fluid, but of order one only, for a perfect elastic plastic
material. For the professor I was, it was very interesting: it opened the possibility to use
the same procedure in order to derive basic constitutive laws for two different types of
materials. The second ingredient came from a wonderful note of Jean-Jacques Moreau
in the Comptes rendus de l’Académie des Sciences. Once again I must confess that it
took me at least some months in order to see that it contained what, in fact, I was, more
or less unconsciously, looking for: the possibility, at least for a large class of materials,
to introduce a pseudo-potential of dissipation. The third ingredient came from my
colleague and friend, Joseph Kestin. In my opinion, he is one of the few scientists who
had a deep understanding of what may be a correct extension of thermostatics to
thermodynamics, in order to deal with complex situations in physics. Most of what I
will report below finds its sources in the reading of his papers and in my fruitful
discussions with him.

I do not want to enter into the system of equations and into the conclusions which
permit to write the constitutive equations. But it may be worth answering the
fundamental question about entropy and absolute temperature in this theory. And for
that, I must comment a little on the significance of internal variables, a concept that
appears in any theory of continuum thermodynamics. We state the possibility to
introduce some variables describing some physical properties of the matter in the
neighbourhood of any particle of the given system – they may be scalars, vectors or
tensors – such that, with the variables which describe the deformation of the medium
near this particle, it may be considered as the set of normal variables of a local
thermostatic system associated to the particle, the l.a.s. (local accompanying state),
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when density and specific internal energy are the same as those of this particle. All the
physical properties of this l.a.s. will be considered as physical properties of the
neighbourhood of the particle of the given system. In particular, the entropy and the
absolute temperature at each point of this system depend on the modelling chosen for
describing the l.a.s.. Let us note the great flexibility offered for adapting this theory to a
particular situation. One can choose
1. the internal variables and their geometrical nature;
2. one thermodynamical potential for instance, the free energy to describe the
thermostatic properties of the l.a.s.. The derivatives of  with respect to the are the
forces A associated to the [equations of state];
3. one writes down the Clausius-Duhem inequality, which gives the dissipation -
composed of heat-conduction dissipation and internal dissipation. In the simplest case
[normal dissipation, standard material] one may choose a pseudo-potential of internal
dissipation, for instance a function of the time rate of the The derivatives give
A as function of - they are the complementary constitutive equations, which, together
with the equations of state, give the complete constitutive laws of the material.

The dissipation mechanisms which have to be kept in mind for a good description
of the system are those whose time rate derivatives have an evolution with time
comparable to the rate of deformation. Namely, a dissipation mechanism described by
internal variables such that is very small, may be, approximately, neglected,
because will keep its initial value during the deformation of the particle. Now, a
dissipative mechanism such that is very large, may also be neglected, because
reaches very quickly its asymptotic value and consequently, it is nearly constant during
the deformation of the particle. The entropy and the absolute temperature of the l.a.s.
depend on the number of mechanisms which are retained. Then, the entropy and the
absolute temperature are not physical properties of the particle itself; but they are those
of the l.a.s. which depends on the choice of the mechanisms of dissipation one wants to
take into account.

6.3 Mechanics of materials
The continuum thermodynamics, which have been defined in the foregoing section,
provide a frame that must be filled out by observations and experiments. The
thermodynamic potential – the free energy – describes principally the reversible and
elastic part of the behaviour. The pseudo-potential of dissipation describes principally
the main physical properties of the material.

In the simplest cases of standard materials,  and are convex functions. Many
unusual materials may be considered as standard. All their important physical
properties must appear in the expression of and For instance, in damage
mechanics, in the small-perturbation framework the  may be a quadratic function of
the deformation, as in elasticity, but its coefficients will be affected by a damage
variable, which is an internal variable. In plasticity, very often, the dual convex
function of  is the characteristic function of a closed convex set of the space of the A’s,
which, in many examples, is just the stress tensor. In such a case, one internal variable
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must be a tensor which represents a plastic deformation. Most of the physical properties
of the material can be read off the two convex functions and their dual variables which
describe completely the constitutive equations of the material.

7. TOWARD AN ANALYTICAL MECHANICS OF MATERIALS

I arrive now at a new facet of mechanics as a scientific discipline that I am presently
discovering or I have just discovered recently. I am not able to organise them in a
convincing way. Nevertheless, I will mention some of them briefly, without long
comments, because I think they may become important and also because it is now for
me a great satisfaction to learn something of these new developments.

I mention first what may be called the balance of material momentum, which may
be considered as a primary notion and is a most adequate concept to exhibit nicely the
material properties of a system, as shown by many recent publications of Gérard
Maugin. For me, one of the best ways to get this new look at the mechanics of any
system is due to Pierre Casal, in a not very well known paper of 1978, that I have, once
more, really understood many years later: you define at a fixed time, forces and stresses,
not by a virtual motion of the system, keeping fixed the reference configuration, but by
the virtual motion of this reference configuration, keeping the position of the system
itself, fixed. So, you obtain directly the Eshelby stress tensor and the suitable forces to
describe singularities and inhomogeneities inside the material. Pierre Casal obtained
directly a very elegant formulation and extension of the Rice integral to compute the
stress intensity factor at the tip of a crack.

I indicate now what concerns the global formulations of statics and dynamics of
structures, starting with the elegant presentation of energy theorems, variational
equations, Castigliano theorems for Lagrangian and Hamiltonian integrals and
equations in elasticity, including finite elasticity, and extended to a large class of
materials, in particular to standard materials. It is impossible to mention all the
questions which are treated: stability, buckling, rupture and all the industrial operations
on materials, stamping, forging... On account of my personal interest I will just note the
question of phase transition and shock waves and the possibility to extend significantly
the concept of a shock generating function. One general result worth mentioning here is
a kind of generalisation to systems of relations which have been introduced locally by
the continuum thermodynamics.

It explains, at least partially, one of the reasons of the success of what is often
called micro-macro description of the properties of the materials. The flawless case is
the homogenisation of periodic structures, introduced by Sanchez-Palancia. The most
evident is the study of a polycrystal as a collection of monocrystals. More generally, by
a self-consistent scheme of localisation-homogenisation, one may relate the variables
which appear in the constitutive equations at each point of the macrostructure, to
average values (or global values) of the physical properties of the local microstructure –
a representative volume element – in which one takes into account its own mechanical
properties described as above with the convenient material variables. But, a last remark
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is in order. The scale of the microstructure is very large in comparison with the scale
used by the people in solid-state physics, working with grains, dislocations and
disclinations!

I would be tempted to evoke many other questions. But it would not be reasonable,
because I cannot pretend to have for them a thorough understanding.

8. BEYOND THE SCIENTIFIC DISCIPLINE OF MECHANICS

Beyond the discipline or rather before the discipline, one has the community of men and
women who are doing mechanics, professors and researchers. We had in France many
important scientific societies: Société Mathématique de France, Société Française de
Physique, but no similar association in Mechanics. Joseph Pérès was the founder of the
“Association Universitaire de Mécanique des Fluides” a few years before his death in
1962. An “Association Universitaire de Mécanique des Solides” was created a few
years after. The unity of the disciplines of mechanics was only recognised in 1973,
with the foundation of AUM - “Association Universitaire de Mécanique”, fifteen years
after the introduction of continuum mechanics in the new curriculum of applied
mathematics and the creation of a laboratory of theoretical mechanics, (now Laboratoire
de Modélisation Mécanique) in the Sorbonne, the Paris faculty of science. That was, of
course, favourable to my “discovery” of mechanics, which was the main project of my
scientific activity.

But it was also in 1962 that a certain event has compromised greatly this project.
Despite my firm resolution to devote all my professional activity to my job as a
professor, I finally had to yield to friendly pressures and accept to become general
director of ONERA. I was not prepared to assume such a function. During five years,
this has taken up, approximately, two thirds of my time. I was able to continue with my
teaching, to take care of some students and to give time to my duties as the principal
editor of the Journal de Mécanique", a newly created journal, in order to give a tribune
to the researchers in mechanics, particularly to the younger ones. Needless to say that
during this period I have not been very active in research.

I tried to recover a little bit after this experience which gave me the opportunity to
have a direct contact with the aeronautical industry and with the new activity of the
country in space, by launching a new activity for increasing my knowledge and new
research projects in mechanics. One sabbatical year as Visiting Professor in Stanford,
thanks to an invitation of Nicholas Hoff, was very helpful. I had practically all the time
to learn and to have fruitful discussions with my colleagues and friends, especially Lee
and Van Dyke. I had, at that time, a big project: to publish a four-volume treatise for
graduate students and researchers on the “Mécanique des milieux continus”. The first
of them appeared in 1973.

Something that I had never anticipated led me to a new serious desertion of
mechanics. Our “Académie des Sciences"  needed an important reform (statutes had
received only slight modifications since 1816), A new Secrétaire Perpétuel had to be
elected, after the resignation of Louis de Broglie, in 1975. I had accepted to be the
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candidate of the fellows who wished to move forward this reform. I was elected. I
fulfilled the job during twenty years. I was, and still remain, convinced that a strong
Academy must be able to deliver independent advices with the highest vision of what
science must represent in the life and culture of a modem society. This decision meant
for me the need to give up definitely some personal research activity. I was led to leave
my laboratory and to take a professorship at the Ecole Polytechnique, without research
obligations. I had an office near the Laboratoire de Mécanique des Solides de l’Ecole
Polytechnique, one of the best research units in mechanics in the country and I used
this wonderful possibility to talk with my young colleagues and to discuss with them,
just as if I were a young student once again. This time I had to teach very well prepared
students, who had passed the arduous entrance examinations to this school. Just a few
hours were sufficient to give them the basic notions of mechanics, (rigid bodies, fluids,
solids) at the level of the first year graduate studies. My colleagues of the Laboratory
and the students helped me not to consume too quickly my capital of knowledge.

If I talk about this last period of my activity, it is because I had the opportunity to
discover something I feel important about mechanics. Two weeks after the signature of
the new statute of our Académie, in 1979, President Valéry Giscard d’Estaing asked
our Fellowship to write a report about the strengths and the weaknesses of the
mechanical sciences and industries in France, and to make the appropriate proposals.
The last report of the Académie had been written in 1916! By this demand, the
Président de la République wanted in particular to test whether the capacities of the
Académie were at the same level as its claims. With a small team, we worked very
hard, in order to give a satisfactory answer. But what is worth to be mentioned here is
that I have discovered that mechanics was at the same time a science, a technology and
an industry. Evident, of course! But an evidence I had never before realised. It is not
the place to discuss the conclusions and the consequences of this report – nearly six
hundred pages in length. It is certain that it had a big influence on the orientation of
many people working in mechanics, on scientists in universities and research
establishments, on engineers and directors of companies and on the orientation of long-
term programmes. A committee Haut Comité de Mécanique of twenty people (one
President, one secretary, six scientists, six engineers and six directors of companies)
was created in order to study together the many problems of the activity of mechanics in
France and to make suggestions in order to improve the mutual relations between these
different groups represented. After a lapse of some fifteen years, in 1997, twenty small
scientific and technical associations decided to join together in a single society, the
Association Française de Mécanique. I have been very lucky to be a participant to this
significant evolution of mechanics in France. Fifty years ago, you could not find
mechanics among the basic Curricula in Universities; you found some courses, but no
laboratories in most of the engineering schools, even in the most famous ones. The
mechanical and aeronautical industries were very weak. Now mechanics is a scientific
discipline which plays an important role in the present development of sciences and
which is directly connected with the industries that have to build goods and equipment
with the resources of modern technologies and new materials.
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As the famous motto we have adopted in France goes: “Mechanics? In the heart of
a moving world!”  And a professor of mechanics? One of the best spots to look at and
to participate in this moving world. That would be my answer today to the remark of
the nice guy who filled my tank in the gas station near Brown University.
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Abstract. - Equations of fluid mixtures are used in order to derive a set of equations governing the
motion of a moist, viscous and heat conducting, saturated air in presence of gravity. From these
equations, a model is constructed to exhibit the double diffusive behaviour of this system. As application,
we consider free convection in a shallow layer, by assuming small water concentration : the medium is,
in general, linearly stable, but two instability cases are exhibited : stationary instability exists for nega-
tive Rayleigh number, and oscillatory instability can exist for negative moist Rayleigh number. In realis-
tic cases, where the moist Rayleigh number is always small, the stationary instability is the only occur-
ring instability. Following the description of the problem of thermohaline convection, this instability
may be interpreted as moisture fingers in the medium.
Keywords : atmospheric moisture, fluid mixtures, stratified fluids, shallow convection, double diffusive
convection.

1. INTRODUCTION

For a long time, it was thought that, since the diffusivities of dry air and of water vapor
are almost equal, double diffusion has no important effect on moist atmospheric flows
[see, for instance, the review by Huppert and Turner, 1981]. In fact, this conclu-sion is
true in unsaturated air. In saturated air, because of the changes of phase superim-posed to
the diffusion, the role of the diffusivity of water vapor is considerably modified.

The role of saturated moisture in the atmospheric gravity waves has been studied
from the 1960s : Kuo [1961, 1965], Ogura [1963] considered models of cloudy
convection. Dudis [1972], Einaudi and Lalas [1973], Durran and Klemp [1982]
considered the influence of moisture on the Brunt-Väisälä frequency and trapped
mountain lee waves, more particularly taking into account the very important influence of
the stratification and the inhomogeneity of a background state. Bougeault [1981] studied
its effects on the atmospheric turbulence. In those works, however, the double diffusive
properties of the medium are either absent (in nondissipative cases), or not really
considered. Starting with the 1970s, there appeared papers exhibiting consequences of
diffusivity in dissipative atmosphere: Deardorff [1976] set up a rheological model based
on the microphysics of the medium, and exhibited the usefulness of the so-called "liquid-
water potential temperature" as well as the role of the total water concentration in the
equation of state. More recently, C.S. Bretherton and P.K. Smolarkiewicz [1987, 1988,
1989] considered motions in clouds, with view to study the appearance or disappearance
of clouds due to saturation. This work, however, neglects both properties of smallness of
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the water mixing ratio in the medium, and the stratification of the equilibrium state.
Because of the heterogeneity of a cloud (the cloud is a ternary mixture), the combi-

ned influences of heat conduction and vapor diffusion make the thermomechanical pheno-
mena in this medium multi-diffusive. Simplifying assumptions lead to a reduced double
diffusive problem. The first simplification, classical in cloud theories, deals with the
modeling of the liquid phase (water) as an aerosol. Practically, we assume that the velo-
city of the liquid water is the same as that of the whole mixture. By assuming, moreover,
that the medium is always saturated, the problem of ternary convection without cross
effects reduces to a convection in a binary mixture with cross effects. However, other
properties of the ternary mixture remain present in the model, as we will see later.

The aim of this paper is to use the rheological model described above, to exhibit
some cases where the double diffusive convection occurring in such a medium, combined
with the stratification of the background state, causes original effects. The paper is
organized as follows : in Section 2, the equations of motion are set up using the mixture
theory developed by Bowen [1976] : this theory allows one to express the diffusion in a
simple form, and it gives a systematic form of Fick's law. Moreover, the basic
assumption that the moist atmosphere is a continuous medium is applied. Neglecting the
density of the aerosol, we are led to describing it as a polytropic gas and the diffusion as
double diffusion.

In the Section 3, a linearized wave equation governing the motions is derived. The
study is made using the asymptotic framework of the Boussinesq approximation already
used in previous papers [Bois, 1991, 1994]. In shallow convection, this assumption
implies the existence of a (known) static state of the medium. This static solution is depic-
ted using a single variable, namely the altitude referred to the atmospheric scale. The cha-
racteristic vertical scale of the perturbation motion is small, compared to the atmospheric
scale, and the characteristic time of the motion is also scaled with the help of static data

: these assumptions follow the analysis of Spiegel and Veronis [1960].
In Section 4, we consider free convection in the medium. A moist Rayleigh-Bénard

problem is solved, using a Rayleigh number Ra and a moist Rayleigh number Rh. For
small water concentration, Rh is always small. Two properties are derived : first, contra-
ry to the case of pure fluids, stationary instabilities occur for negative values of the Ray-
leigh number ; second, an oscillatory instability may theoretically occur, but, since the
moist Rayleigh number of this instability is large, it does not occur in realistic cases. The
marginal regime exists only in conditions where the medium is statically stable. Moreo-
ver, the unstable motions are mainly motions of liquid water and dry air, so that they
characterize the existence of "moisture fingers" along the medium

2. RHEOLOGICAL MODEL

2.1. Elements of thermodynamics of fluid mixtures
We consider a mixture of three constituents : dry air, water vapor and condensed water.
The constituents are identified by the subscripts g (dry air), v (water vapor), L (liquid
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water). We also denote with the subscript w the quantities for total water. The densities
are denoted The density of the medium is  The corres-
ponding concentrations are denoted by and satisfy the relation

The velocity of each constituent is denoted the barycentric velocity
of the fluid is u. Denoting by the diffusion velocities we have

The variables defining the system satisfy the thermostatic Gibbs-Duhem equation

where the denote the free enthalpies of the constituents. For a reversible transforma-
tion of the medium, is zero, and, because of the saturation hypothesis, the two free
enthalpies and are equal. Since we have (2) may be written

For the left hand side of (3) is just the elementary reversible work in the
medium. In the course of a reversible evolution of a parcel, the dissipation reduces, as in
a pure fluid, to the term - p Hence, the elementary reversible work in the medium
is described using one equation of state only, say Note that, even if the
equations of state of the different constituents of the mixture are known, this equation of
state is not explicitly given here.

Following a classical approximation, we now neglect the pressure of the liquid
phase : this assumption allows us to consider it as a polytropic gas whose adiabatic
constant is zero. Moreover, we assume that the dry air and the water vapor are
polytropic gases, so that the whole medium is a mixture of polytropic gases. Under these
assump-tions, the relation (3) may be rewritten after some rearrangement, using the
enthalpy instead of internal energy, as

where denotes the heat capacity at constant pressure and concentrations, and
is the latent heat of vaporization.

2.2. The Clausius-Clapeyron equation
The saturation equation for a polytropic gas (Clausius-Clapeyron equation), is
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[see Zemansky, 1968]. Equation (5) is valid for any state of the saturated system. It is of
interest to examine particular forms of this formula, the partial pressure of the liquid
phase being neglected. The dry air, the water vapor and the whole mixture follow the
equations of state

where       and are two constants. The third relation (6) is the Dalton's law.
Let us now differentiate the third equation (6). Using the Clausius-Clapeyron

equation to eliminate we get the relation, valid everywhere

Along a reversible infinitesimal displacement of a parcel from an initial position,
in (3) and (7), and both equations (5) and (7) may be solved in order to provide

and dT (for instance) in terms of dp and  only.
Now, let us denote the heat capacities of the water vapor and the liquid water by

and respectively. The latent heat of vaporization can be written as

and being two constants. is the latent heat at the temperature Introducing (8)
in (5), we get a differential relation which may be integrated

Another relation between these parameters can be obtained in order to describe the
system. This relation proves the existence of a liquid-water potential temperature. A
difficulty is that it cannot easily be written using the classical variables (see Bougeault
[1981]). On the contrary, it is possible to deduce from Dalton's law and the equation (9)
a relation defining the existence of a so-called saturation concentration of the water vapor
in the gaseous phase, namely a function such that the property

is identically satisfied. The role of a saturation concentration will be further investigated.

2.3. The diffusion equations
For a moving system, we depict the barycentric motion of the system using the material



33

derivative We assume the validity of the local state hypothesis in the
barycentric motion, so that the relations (2), (5), (7) remain valid for material derivatives.
First, consider the balance of mass for the constituent (molecular diffusion equation)

where denotes the supply of density gained by unit of time by the  constituent
from the other constituents. Because of the necessary condition we deduce

from the equations (11) for the balance of mass in the barycentric motion

Since the supply vanishes, the equation (11) for dry air becomes

The diffusion velocities are themselves related to the gradients of concentrations by
Fick's law. For the mixture considered here, this law can be written in the form

As it is classically done, we now assume that the liquid droplets travel in the medium
with the barycentric velocity, and that their motion does not affect the motion of the
mixture. Hence Fick's law reduces to

where is the only nonzero diffusion coefficient. Thus, eliminating the diffusion
velocities, the relation (13) provides the equation

Consider now the first law of thermodynamics : for a moving mixture of dissipative
fluids, this law, written in terms of the enthalpy, provides the equation
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The left-hand side of (17) is just In the right hand side, the dissipation is
the sum of viscous dissipation thermal dissipation (k is the thermal conductivity),
and diffusive dissipation (the last term). Finally, using (3), (15) and (16), the equation
(17) becomes after some rearrangement

The simplifying assumptions made above and the equations (16) and (18) are cur-
rently adopted in the practice [Bougeault, 1981] from physical arguments. The equations
(16) and (18) are the only diffusion equations involving these variables. It is convenient
to write these equations with the same variables : hence, replacing by -
in (16) and using (5), then (16) becomes

In the same manner, eliminating in (18) with the help of (5) and (7) yields

The forms (19) and (20) are symmetrical forms of the diffusion equations : assu-
ming that dp/dt is known (it is the approximate consequence of the Boussinesq equation,
see Section 3) the real unknowns, in (19)-(20), are dT/dt and These equations can
be solved in two independent combinations of these quantities. Molecular diffusion and
heat conduction are present in the right hand sides, and they cannot be separately conside-
red. Finally, the equations of motion for the saturated mixture are the third equation (6),
and the equations (9), (12), (19), (20), to which we must add the balance of momentum

i.e. 8 scalar equations for Since we have left the equation (11) outside
the system, its coherence with the solutions must also be investigated.

3. BOUSSINESQ MOTIONS

3.1. Validity conditions and nondimensional equations
Because we are concerned with convective motions in shallow media, it is necessary to
rewrite the equations using the Boussinesq approximation. This approximation refers the
motion to a static state of the medium, in which the variables depend only on the altitude
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scaled by the so-called atmospheric height. The equilibrium equation  shows that
this scale is where and denote characteristic pressure and density,
respectively. The validity conditions of the Boussinesq approximation [Bois, 1991] first
imply that the characteristic length scale L of the motion is small compared to

and, second, that the characteristic time of the motion is We do not
discuss these conditions, which are assumed to be satisfied. We note, that, rewritten with
the relevant nondimensional parameters [see relations (29)], these conditions imply

The variables are now scaled by characteristic values : The sca-

ling pressure is and we have being the adiabatic cons-
tant of the dry air. Rewritten with nondimensional variables the equations become

In the equations (23)-(27) we use the following abbreviations:
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The diffusion parameters are the Prandtl number Pr and the Schmidt number
is defined in (9). The last two relations (29) are valid for polytropic gases.

In absence of water, the system possesses equilibrium solutions. If we take into
account the water condensation or vaporization, there is, in general, no exact equilibrium
solution. However, if we neglect terms of order  for given           and the
equations (24) and (27) are satisfied by the pressure, the density and the dry air
concentrations    which satisfy the equations

while the equations (9), (23), (25) and (26) are (at this order) identically satisfied. After
some rearrangement, we obtain the static version of the equation (7) as

3.2. Approximate equations
Following the Boussinesq procedure, we now expand the variables with respect to
[Bois, 1991], in the following form :

If the static terms in (23)-(28) are omitted, the perturbation equations form a quasi-
linear system with slowly varying coefficients. Its solutions can be sought in two ways :
(i) keeping the slowly varying coefficients in the system [see Kubicki 1999], we depict
deep convection behaviours in the medium; (ii) approximating the coefficients by their
values at a given altitude, the system describes shallow convection at this altitude : this
point of view is the one considered here. In what follows, we assume that the order of
magnitude of the water concentration, say is small. We assume, moreo-ver, that the
Schmidt number is also small of the same order we finally set

4. SOME ASPECTS OF THE MOIST BENARD PROBLEM

4.1. The linearized model
We are now interested in free convection in a shallow layer. The thickness of the layer is
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chosen as length L in the equations. Since we look only for terms of order 0 with respect
to the coefficients of the equations are approximated by their values at

The linearized equations associated with (23)-(27) are

The values of the parameters and have been given previously. The stability
parameters and (square of the Brunt-Väisälä frequency of dry air) are defined by

In a linear stability problem, we use a normal mode analysis to looking for solutions
periodic with respect to time ; we set

After some calculation, the equations reduce to an eighth-order differential equation
for W. This equation reduces itself to a simpler form by setting

Ra is the Rayleigh number, Rh is the moist Rayleigh number,  is the ratio of the
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diffusivities. Rewritten with these notations, the equation satisfied by W is

Finally, we note that, because of the assumption of shallow convection, the static
equation (31) becomes

Hence, the moist Rayleigh number is itself of order

4.2. Bénard convection with two free surfaces
Despite the academic character of free surface boundary conditions for the Bénard
problem, their interest is to allow one to exhibit simply analytical solutions. If we require
continuity of the temperature and the concentration at the boundaries, the other boundary
conditions are standard [see, for instance, Drazin and Reid, 1981] so that we assume :

Setting W = W W = const, the classical procedure for the Bénard
problem may be applied (see Drazin and Reid). We get the following conclusions:
(i) stationary solutions : stationary solutions of (42), exist if the following inequality
holds true

For realistic values of the parameters governing the problem, this inequality defines a
region of the (Ra, Rh) plane bounded by a straight line XY (see figure 1), the unstable
region corresponding mainly to negative values of Ra and positive values of Rh.
(ii) oscillatory solutions : two conditions must be satisfied : first, being given,
solutions exist only if the inequality

is satisfied. Second, is itself positive if the inequality :
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is satisfied. The domains of validity of the two instabilities are drawn on Figure 1 : the
inequalities (46) and (47) delineate a region (I) (the angular region UAW) of the (Ra, Rh)
plane. This region is the oscillatory instability region. The inequality (45) delineates a
region (II) (the half plane above the straight line XY), which is the region of stationary
instability. The three straight lines XY, UV, TW intersect at a single point A, which is the
polycritical point of the problem. For numerical values corresponding to data in the
terrestrial atmosphere, the coordinates of A are since the order of
magnitude is currently the validity condition  is not satisfied in the
region of oscillatory solutions, which are, hence, irrealistic. In the same manner, the only
realistic part of the region I is a neighbourhood of the Ra-axis, of thickness

4.3. The equation of state
Let us now return to the equation (28): with the same notations as those already used in
the equations (35)-(38), the linearized Boussinesq form of this equation becomes
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For vanishing the equation (48) becomes degenerate, because it becomes an
overabundant equation satisfied by the solution of the system (35)-(38). In order to avoid
this singu-larity, taking into account the homogeneous boundary conditions associated
with the system (35)-(38), we look for solutions of this system as

so that the perturbation of water vapor is assumed small, compared to the perturbation of
dry air (and, subsequently the perturbation of liquid water).

The starred variables are solutions of the same system (35)-(38) as the former, and
the degeneracy of (48) for vanishing  now takes the nondegenerate form

4.4. The saturation condition
It is now of interest to interpret the condition (10) : the function  in this relation,
is of order so that we set

where is some function which is here known only from the knowledge of the static
state of the medium. By combining (10), (27) and (28) we find

In the stability problem, the function is known only through the
knowledge of etc. and their derivarives with respect to     in By expanding
(52) with respect to the small parameter and taking into account the values (34), we
get

On the other hand, by expanding the equilibrium equation (31) with respect to
and taking into account the data (34), we get
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where Finally, the equation (10) allows one to relate the values of the
given parameters to the values of and its derivatives at the level of altitude where the
problem is set : the knowledge of  Ra, and Rh is equivalent to that of the temperature
gradient, the derivatives and respectively, at this altitude.

4.5. The moisture fingers configuration
As noticed above, the only instability of the system is a stationary instability occurring in
the region             of the parameter plane : in fact, it is wellknown [Durran and Klemp
1982, Bois 1994] that the moist Brunt-Väisälä frequency of the medium, say  is
given by the formula

so that the line of neutral static stability, in the (Ra, Rh) plane, is the straight line
Hence, the instability occurs only in the statically stable region.
Under those conditions, the unstable regime which sets in, is mainly constituted by a

perturbation of dry air and liquid water (the order of magnitude of the pertubations and

is 1, while that of is Hence, this motion is mainly a mixing of dry air and
liquid water, analogous to the wellknown "salt fingers regime" which occurs in the
thermohaline instability problem : therefore, we can call it a "moisture fingers regime".
Physically the cloud system organizes in cells or rolls as in the Bénard convection.

5. CONCLUDING REMARKS

To end with, note that some assumptions made in the present analysis are merely of
mathematical nature : for instance, the assumption of small Schmidt number is a
necessary condition for the existence of the double diffusive character of the problem,
when the water concentration is weak. In practice, this assumption should be discus-sed.
On the contrary, the assumption of small is very realistic. It is, sometimes, joined to
the assumption of large in such manner that remains of order unity [Einaudi
and Lalas, 1973] : such an assumption would not change the basis of our analysis, but
the conclusions would be slightly modified.

Nonlinear aspects of this problems can also eventually be considered, in particular in
the neighbourhood of the stationary instability : this problem must be studied using a
weakly nonlinear analysis [Knobloch and Proctor, 1981].
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Application of the theory of Cosserat media to the
elasto-plastic behaviour of poly crystals.

Maurizio Brocato*, Alain Ehrlacher†, Philippe Tamagny†

Abstract

Professor Germain has proposed in [Germain, 1973] a theory of Cosserat con-
tinua obtained through the principle of virtual power. We propose here an applica-
tion of that theory to the elastoplastic behaviour of polycrystals. We put forward a
model of continuum with microstructure representing a material body, the elements
of which are single crystals. Crystals may deform with elasto-plastic behavior, with
the plastic rules given through a multiple slip method.

The field of orientation of the crystal lattice is a microscopic kinematic descrip-
tor of the system; correspondingly the lattice spin is a kinematic unknown. As cus-
tomary in the theory of continua with microstructure, a balance condition for the
micro-momentum is associated with this unknown.

First we recall the main equations of Cosserat continua, then we present a kine-
matic description of polycrystals and, finally, we establish the constitutive equations
for the case at issue.

1 Introduction

The study of plastic deformations and texture evolutions in metals usually calls upon
continuum models of polycrystals. They can be built through a Cauchy theory of con-
tinua, with hidden constitutive variables needed to represent the crystal structure (cfr
e.g. [Rice, 1971], [Hill, 1972], [Mandel, 1972]), or through a theory of continua with mi-
crostructure (cfr [Germain, 1973], [Capriz, 1989], [Brocato, 1994], [Brocato et al., 1995]).

In this paper we investigate the second possibility; material elements are endowed
with a crystal microstructure. In addition to the three coordinates usually giving the
location of material elements in the Euclidean space, one needs a minimal set of La-
grangian coordinates to describe the microstructure. Correspondingly a field of kinematic
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unknowns, the microstructural velocity, enriches the usual description given by the gross
velocity field.

More precisely, we will adopt the point of view of multiple slip plasticity (e.g. cfr
[Mandel, 1965], [Hill, 1966], [Brocato et al., 1999c]) and model polycrystals as continua
of Cosserat type; the corresponding equations will be briefly presented in the next para-
graph.

According to the multiple slip theory of plasticity, the plastic flow occurs, in crystals,
along privileged crystallographic directions. Though plastic deformations most usually
modify the defectiveness of the crystal lattice, it is customary to assume, within the multi-
ple slip theory, that defects smooth out at the relevant scale of macroscopic processes, so
that planes and directions of slip are not influenced by the plastic flow. Given a perfect,
non defective crystal lattice, each material element of the polycrystal will be supposed
to have, at any time and through some reversible unloading process, a similar set of slip
systems. More precisely, following a classical approach, let us recall Mandel’s director
frame, isoclinic setting and plastic spin (cfr [Mandel, 1972], [Mandel, 1982]).

In perfect crystals (at least in the ideal multiple slip view) a privileged frame (or a
class of equivalent frames due to symmetries of the crystal structure) for the constitutive
description exists, which Mandel called the director frame: the crystal lattice—and thus
planes and directions of possible slip within the crystal—is represented through a given
list of parameters with respect to this frame.

For the constitutive description of polycrystals it is useful to refer to such a frame.
We will introduce a suitable decomposition of the gradient of transplacement: material
properties in any real setting result from a lattice structure which is stretched and rotated
from the ideal perfect setting; material elements are equally stretched and rotated but also
plastically deformed,

In the final part of this paper we discuss the consequences of this decomposition
through the conditions given by the Clausius-Duhem inequality. For this purpose we
assume the free energy to be an objective function of the elastic stretch and of the La-
grangian curvature of the lattice. Entering into further details, we will distinguish a re-
versible, though —in some sense— small, part of this curvature from a non reversible one.
Finally we will give an expression for the dissipated energy, depending upon the usual list
of plastic slips and the non reversible part of the curvature. An appropriate number of
constitutive relations will arise from these steps.

In the following sections we will use two mathematical notations, intrinsic and ten-
sorial, to avoid ambiguities when dealing with third order tensors. In tensorial notation
greek indexes operate on variables defined in a reference microstructure (a concept that
will be explained later), capital indexes operate on the initial configuration of the body,
lowercase indexes on the actual configuration.
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2 Cosserat continua
We briefly recall the theory of Cosserat (or micropolar) continua. In particular we re-
fer to results of [Germain, 1973], where the balance equations are obtained through the
principle of virtual power, and in [Eringen, 1999], where a general theory of continua
with microstructure is given. The equivalence of the two presentations can be explained
through arguments presented in [Capriz, 1989] and, under more general assumptions, in
[Tamagny, 1996].

For clarity we recall the kinematic description which is considered in the model. Ma-
terial points are placed in Euclidean space and are endowed with a lattice microstructure,
which is given through a lattice orientation field measured from a ref-
erence microstructure; correspondingly their kinematics is described through a velocity
of displacement u and a rate of lattice rotation—or lattice spin—W

Symmetries of the crystal lattice may reduce to a proper subgroup of (see
e.g. [Dluzewski, 1987], [Dluzewski, 1991] for fcc crystals).

Let grad denote differentiation in the present setting; the power of internal actions
per unit volume is given by

thus introducing the Cauchy stress tensor (not necessarily symmetric), the
equilibrated microforce (giving a torque per unit volume in the co-tangent
space to the orthogonal tensor N, i.e. the dual of the set obtained right-multiplying
by N) and the microstress s (a torque per unit surface).

Objectivity of implies and is implied by the following balance of moment of mo-
mentum

(where the left—or right—lowercase t exponent denotes the minor right—left—transpose
of a tensor and the capital T exponent denotes the complete transpose).

The external actions are modeled through the force fields b, acting on the unit mass,
and t, acting on the unit surface, and through the couple field acting on the microstructure
through the unit surface (we do not introduce here the corresponding field
per unit mass, null in most realistic cases when studying polycrystals).

To simplify matters we will not introduce inertial effects in the balance of momentum
and micro-momentum, thus reducing our analysis to quasi-static circumstances. Notice
that physical arguments on the purely geometric nature of the microstructure should any-
way induce us to take its kinetic energy as null: the crystal lattice represents a network of
sites, not a set of mass points, so that the kinetic energy related to its rotation should be,
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if any, negligible. Nevertheless the possible relevance of virtual inertial terms (as in the
theory of liquid with bubbles) should be noted.

The balances of momentum and micromomentum, written in terms of bulk and bound-
ary conditions, are at regular points:

Let be the mass per unit volume in the present setting,  denote the free energy per
unit mass and the dissipation per unit present volume. The Clausius-Duhem inequality
in isothermal conditions, for any possible evolution of the system, is

(4)

Expressing and in terms of, respectively, internal and flow variables and investi-
gating all possible consequences of inequality (4), one obtains the constitutive relations
needed to complete the Cosserat model. In the following part of the paper we will apply
this model to the study of polycrystals.

3 Kinematics of polycrystals

3.1 Decomposition of the gradient of the transplacement
Crystals display a periodic arrangement of matter, with an actual set of lattice directions
which, in general under stretch, is obtained from that given in a perfect, natural state
through an affine transformation.

In multiple slip plasticity the planes and directions of possible slip are related, through
some average procedure, to the periodic structure of crystals. Supposedly the evolution
of these planes and directions is given through an affine transformation which, in general,
differs from the transformation of material elements. Therefore it is natural to introduce
the assumption that a field of affine deformations of the lattice exists in any configuration
of the polycrystal.

Let us call the field of tensor giving the affine deformation of lattice in a reference
configuration (which may be initial with respect to the studied process); let G be the same
field in the present configuration.

Let F denote the usual gradient of the material transplacement from the initial to the
present setting.

In general F has to fulfill the compatibility conditions (Grad
denoting differentiation in the reference setting), but G has not.

If no plastic flow has occurred, then Otherwise we can define the plastic
transformation of the reference crystal as
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In multiple slip plasticity, the plastic flow presumedly does not alter the lattice direc-
tions, the changes of which are thus either reversible or due to rotation. To be precise, it
is useful to adopt a polar decomposition of G into a stretch and a rotation of lattice

(same relations for the stretch E will be assumed to be reversible (a state-
ment which will be precised later) and thus

According to this decomposition, the velocity gradient is

due to definition (5), is the rate of plastic transformation in the reference crystals.

3.2 Plastic flow in multiple slip

In a multiple slip theory it is customary to assume

where
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being the total number of possible slips within the crystal lattice,

and are orthogonal unit vectors identifying the slip system in the
reference microstructure is the normal to a slip plane and a direction of
slip within this plane),

is the rate of slip along this system.

To refer to previous works on polycrystals, note that, if the effects of and E are
negligible, is the rotation of the lattice from the initial to the present setting. In
general, the unit vectors parallel to and give the set of
slip systems in the present setting.

3.3 Lagrangian curvature of lattice

In continuum theories of dislocations and defects it is customary to introduce objective
measures of the defectiveness of a field of micromorphisms (such as the tensor G of lat-
tice deformation here). For instance in [Kröner, 1960], [Noll, 1972], [Capriz, 1979], one
finds the definitions of curvature, wryness and Burgers tensor. In this paper we intro-
duce a measure of the defectiveness of crystal lattice in the present setting which, though
different from the quoted ones, fits with our viewpoint.

Let us define the Lagrangian curvature of lattice as

(10)

the third order tensor can be represented through Ricci’s tensor as a
second order tensor:

3.4 Elastic energy

We have briefly noted the reversible nature of transformation E; we make this statement
precise by stating that the free energy depends on E locally and instantaneously.

Furthermore we assume that, if the Lagrangian curvature is almost null, the process
is reversible, while if this curvature becomes large enough, there are irreversible conse-
quences. To model this behaviour we take the following additive partition of curvature
into (small) elastic and plastic parts

and presume the free energy to depend, again locally and instantaneously, on
In conclusion we have
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3.5 Dissipation

We have defined the plastic flow as a function of the slip rates along given slip systems (cfr
(9)). We assume that the power dissipated by the process of slip is a positive homogeneous
function of degree one of the slip rates. This assumption is consistent with a Schmid law
of slip, with the critical shear stress;to simplify matters we take to be equal on all
systems and constant during the process.

We assume the dissipation also depends on the rate of plastic curvature In analogy
with classical theories of plasticity in Cauchy continua, we consider a convex set

in the dual of the vectorial space to which belongs.
Let us denote the running point into this set, its boundary and n the outward

normal to Let be an element of the boundary of the convex set, such
that is parallel to the outward normal n at this point. Uniqueness of  is implied
by strict convexity of

By assumption a convex set exists such that the dissipative working of is

i.e. is a positively homogeneous function of degree one of
Therefore the total dissipation is

4 Constitutive equations
In this section we establish the constitutive equations through the Clausius-Duhem in-
equality (4). Through assumptions (12) and (14), this inequality can be written as

For the purpose of establishing the constitutive consequences of (15) it is useful to
group terms as factors of the flow variables and therefore, in particular

Inequality (15) being true for all possible process, each term of the factorisation must
necessarily vanish.

Take the following decomposition of the working of Cauchy stress according to the
kinematic decomposition (8) and to assumption (9):
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similarly, we take for the working of microstresses the decomposition

and express the power of internal actions given through definition (1), accordingly.
Equation (4) becomes

which, being true for all processes, implies that each term of the sum vanishes:

– vanishing of the first term, due to arbitrariness of implies and is
implied by the objectivity condition (2 ),

– vanishing of the second term, due to arbitrariness of   implies the first law
of elasticity:

– vanishing of the third, due to arbitrariness of    implies the sec-
ond law of elasticity (notice that

The remaining terms of (19) give the laws of plasticity as it will be explained in the
remaining part of this section.

To express these laws in brief, let us first introduce the definition of the resolved shear
stress on system



51

and the stress of curvature (a material force which allows capturing the effects of lattice
defects, cfr [Maugin, 1995]):

this definition with (21) implies

Vanishing of the fourth term in (19) leads to the criterion of plasticity:

and thus to the flow rule:

Vanishing of the fifth term of (19) gives the criterion of plasticity:

and thus the flow rule:

where denotes the interior of and n is the outward normal to at m.

5 Relative rotations across a grain boundary

A grain boudary is a discontinuity surface of the orientation field. Let us call the
normal vector to the surface in the initial setting and the jump of a field a across the
surface (supposedly a continuous function on the surface).

Let us assume from now on that the grain boundary is a material surface: the discon-
tinuity is supported by a fixed surface in the initial setting and does not change during
the process.

Refering to the plastic lattice curvature behavior we have presented in the previous
paragraph, the function
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is a Dirac density of the time rate of plastic curvature on the discontinuity surface
(the elastic part of the curvature cannot induce lattice orientation discontinuities), and the
plastic dissipative working per unit surface of the grain boundary is given through the
same function (and thus ) as in (13):

or, introducing (29) in (30), through the function

where and defines a convex set
The balance of micromomentum and the Clausius-Duhem inequality written on the

grain boundary in the particular case we are studying (i.e. if the boundary is a material
surface and F is continuous across it) give (cfr [Brocato et al., 1999b])

Assumption gives the criterion of plastic evolution of the relative lattice
rotation across the grain boundary:

and the associated flow rule:

where is the normal to at point

6 Conclusion

We have given a Cosserat continuum model of a polycrystal, with constitutive equations
which take into account classical elasticity and elastic curvatures of lattice, plasticity—
through a multiple slip theory, and lattice curvature plasticity.

The plastic curvature term represents a non reversible, non uniform evolution of crys-
tal directions which leads, in processes, to the formation of grain patterning. Then the
model needs the analysis of discontinuous solutions, and, particularly, of the evolution
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of grain boundaries in the polycrystal. Steps have been taken in [Brocato et al, 1998],
[Brocato et al., 1999a], [Brocato et al., 1999c].
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From Clausius to finite anelasticity,
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Abstract: A general model of thermomechanical behaviour is introduced, based on
Bridgman’s perception of the role of thermodynamic forces, Eckart’s finite anelastic
deformation concept, Ziegler’s dissipation potential and a greatly simplifying
assumption of ‘small elastic deformation’. An apparently new non-linear extension to
the ‘thermorheologically simple’ viscoelastic model is obtained and a fairly
comprehensive elastoviscoplastic model presented.
Keywords: released state , anelastic potential, quasi-incompressibility, standard model.

1. INTRODUCTION

A great variety of physical mechanisms may contribute to the irreversible
thermomechanical behaviour of condensed matter, which continuum modelling broadly
divides into transport (or transfer) processes between neighbouring elements, such as
heat conduction, viscosity, mass diffusion and a wealth of more or less complex
processes confined to the material element viewed as a microsystem [Germain, 1986],
such as chemical reactions, phase changes, relaxation, solid friction, damage.

Whenever some of these mechanisms occur simultaneously, thermodynamics
offers, even by uniform temperature, the only rational approach to the study of their
combined effects. Up to now, all such fruitful thermodynamic models rest upon the
local form of the entropy inequality of the thermodynamics of irreversible processes
between the entropy density rate the entropy flux and the entropy production
density. In the absence of mass transfer, the entropy flux is quite generally taken to be

where T is the absolute temperature and the heat flux. Both relationships
combine into the so-called Clausius - Duhem inequality, after Clausius (1865), who
coined the (global) entropy and stated its famous growth law for an isolated system, and
Duhem (1903), who arrived at the inequality from phenomenological arguments
[Woods, 1982].

Since the fifties, the introduction of internal variables, first with and then without
reference to springs and dashpots ([Staverman and Schwarzl, 1952; Biot, 1954;
Meixner, a. 1954, b. 1972]) laid the thermodynamic foundation of isothermal linear

55

G.A. Maugin et al. (eds.), Continuum Thermomechanics, 55-62.
© 2000 Kluwer Academic Publishers. Printed in the Netherlands.



56

viscoelasticity according to Onsager relations. Ziegler proposed a non-linear extension
of these, while Valanis emphasised the importance of the frozen elastic response
concept for solids and brought to light the corresponding non-linear constitutive laws
more specially applicable to viscoelastic polymers [Ziegler, 1962; Valanis, 1968].
Along these lines, Sidoroff systematically studied the consequences of material isotropy
on the mechanical behaviour of viscoelastic materials with an ‘intermediate’
configuration [Sidoroff, 1974, 1975]. Independently, the ‘relaxed state’ concept, of
importance for plasticity, had been given a firm geometrical status within the frame of
finite deformation, although not such a convincing physical treatment in [Eckart, 1948].
Later on, new considerations on the elastoviscoplastic behaviour of metal and the
metallic single-crystal began to fill the gap [Kratochvil et al., 1970; Rice, 1971]. Since
then, many other constitutive properties and even damage as related to internal variables
have entered the realm of thermodynamics. Distributed heterogeneity, a difficult matter
under permanent investigation, still lags behind.

Oddly enough, Eckart applies on the basis of Cl-D inequality a formalism explicitly
intended for ductile matter to “one particular set of laws” which turn out to be, if any, of
viscoelastic type. Besides, cancelling for a check the mechanical dissipation in his
results fails to give back the thermoelastic equations! No matter, on the working
assumption of small (thermo)elastic deformation we shall in the following demonstrate
the usefulness of the formalism on the ground of both viscoelastic and elastoviscoplastic
behaviours. The material description will be preferred to the spatial one used by Eckart.

2. GENERAL FRAME

2.1 Frozen thermoelastic response and accompanying state
A widely adopted frame for constitutive laws for solids presupposes mechanical and
thermal state laws derived from a free energy

Here, is the symmetric Piola-Kirchhoff stress tensor, the initial location of the

particle, the deformation (tensor), the Cauchy tensor and
the transformation gradient from the reference configuration. The set of internal

variables obeys evolution laws, which according to [Bridgman,
1943] should only depend upon the mechanical control variables through the
thermodynamic forces:
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Thanks to the independent satisfaction of the heat conduction inequality and
to the conservation equations, the Clausius-Duhem inequality is automatically fulfilled
when the evolution laws are of the form:

for any The argument of conforms to Bridgman’s views.
While keeping frozen, we reassign by thought to the local stress and

temperature the values that they had in some previous “0” configuration

of the system (possibly different from the reference one). The deformation in the

accompanying state: is such that:

while and the ‘accompanying’ value of any other quantity is obtained

on substituting and T in the arguments of and the
other quantity. The present definition of the accompanying state differs from that in
[Meixner, 1971].

2.2 Small thermoelastic deformation
We now drop and since we are concentrating on a given element. Due to the
high frozen stiffness of the (supposedly undamaged) material compared to the stress and
the small temperature variation in most engineering applications, the frozen
thermoelastic deformation

often happens to remain small. Letting and similar expressions for

the coupling constant and specific heat, the expansion

up to second order with respect to then becomes a ‘simplified’ appro-

ximation to The simplified thermomechanical and ‘internal’ state laws follow:

In case of a stress free “0” state, relations (5) are found in [Brun, 1992]. The accom-
panying quantities f will then be termed released, instead of the ambiguous ‘relaxed’ of
Eckart, and be indexed accordingly. The released deformation becomes anelastic:
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In the sequel, we shall confine to isothermal processes from a stress free state.

3. THE VISCOELASTIC SOLID

Experimental qualitative viscoelastic solid behaviours of immediate significance are the
existence of a specific unstressed equilibrium state at any fixed temperature, which
deserves to be called natural, as in elasticity, and the inclination of the element to
spontaneously tend towards the natural state without oscillation, after the stress
has been released.

The modelling will achieve the existence and uniqueness property of the natural
state, if it requires that the free energy be bounded  from below and strictly convex with
respect to in some neighbourhood of The thermodynamic forces will
consequently vanish at the natural state as well:

Satisfaction of (3) by the evolution laws does not imply relaxation towards if
solid friction is present. Likewise, it does not ensure the non-
oscillatory behaviour if only internal viscous mechanisms are present, as simple
counterexamples show. A well-known sufficient condition to agree with the
observations consists in having derive from a dissipation potential:

with D being a strictly convex function of minimal at
To be specific, we adopt the symmetric positive definite form :

On the small elastic deformation assumption, the combination of (8) and yields:

If is the control variable, i.e. a given function of t, this is a set of differential

equations for the which allow their determination from the start. It still is, on
account of if is the control variable. The determination of the complete state
follows.

In both applications to come, the system is referred to the “0” configuration and the
latter is supposed to be natural.
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3.1 Linear isothermal viscoelasticity
The evolution of the system is further confined to the vicinity of where

(say), reducing to the quadratic form  with:

The coefficients are independent constants. Some, not all of course, of the

may be zero. Substituting from (10) into (9) results in equations which agree with

those obtained by [Biot, 1954] and, as a bonus, connects the terms of the latter to
released quantities.

3.2 Finite viscoelasticity: the anelastic deformation, internal variable
In the case of finite viscoelasticity, the deformation may not be small and relations

no longer necessarily hold. Instead, the assumption is now made that
the released deformation is an internal variable and, for the sake of simplicity, that there

are no others: The kinematic equations accordingly become:

where is the back stress. Since is a strictly convex function of in a

retardation test held constant), tends toward the unique solution of

and the deformation toward its corresponding equilibrium value.
Whenever the natural “0” configuration is one of material isotropy, is an

isotropic function of The frozen moduli accordingly take on the form

are functions of the

invariants The     ’s take on a similar form.

Let the anelastic Cauchy deformation be constrained by the incompressibility
condition: The deformation will accordingly be quasi-isochoric.

There follows from the kinematic counterpart of the identity

with that only such evolution laws are to

bring about incompressibility as satisfy : identically for any h,k. In case of

isotropy, the restricted form in terms of the functions a,b,d of  results:

with and a, b bound to satisfy identically, whatever  the relationship:
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Choosing d = d(T) and constant as only non zero moduli results in a simple non-
linear extension of the linear model of quasi-incompressible thermorheologically simple
isotropic solid. Besides, the constancy of the  makes the model thermodynami-
cally exact, instead of approximate.

4.THE STANDARD ANELASTIC SOLID

Viscoelasticity is the most elementary type of anelastic behaviour encountered in solid
polymers. Remarkably enough, loosening on specific points the assumptions that make
up the model described by Eqs (6) to (9) will suffice to set up an elementary ‘standard’
model, meant to reflect typical aspects of the, primarily plastic, behaviour of metallic
substances. Such aspects need be succinctly reviewed first.

4.1 About elastoviscoplasticity
The absence of a definite stress-free shape, hence of a natural state, differentiates the
plastic from the viscoelastic isothermal behaviour. This feature will be accounted for by
relaxing the strict convexity property of the relaxed free energy.

In viscoelasticity, no natural distinction can be operated among the internal
variables on the sole basis of the evolution laws. By contrast, nearly zero plastic volume
change is common place in engineering conditions, a property which solid state physics
of the metal traces back to glide mechanisms [Hill, 1950]. To these last the modelling
associates a set of internal kinematic variables [Brun, 1992] governed by a specific
set of evolution laws.

The existence of a yield surface in the stress space is another distinctive feature of
metal plasticity, which suggests the occurring of internal solid friction along the anelas-
tic deformation process. Demanding that alone derive from a potential with less
strict properties than the viscoelastic one will allow for this feature. Despite the
difficulty of defining the reference frame suited to follow the evolution of the yield
surface [Mandel, 1966], the shape of the surface is observed to change. A set of
intrinsic hardening variables is introduced as possible shape parameters next to the
responsible for the kinematic hardening.

A third set of variables , coupled with and may be necessary to specify the
evolution laws. Non kinematic variables will form the complementary set In brief:

Parallel to (14), the set of conjugate thermodynamic forces splits up into kinematic
and complementary forces: In the s.e.d. approximation, the internal state

laws apply and render the independent of the stress.
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4.2 The standard non-linear anelastic model
The foresaid facts combine into the following constitutive elements:

• The relaxed free energy a convex function in the broad sense (ductility);

• The function which I tentatively call ‘kinematic scheme’;
• The evolution laws governing the They derive from a kinematic dissipation

potential:

where is a differentiable, convex function of the minimal in a broad sense
when these last vanish. Dissipativity of the kinematic mechanisms: is implied,
viscoplastic mechanisms allowed by the loose minimum. Anelastic volume preservation
requires from the further condition:

• The evolution laws governing the of the form: involved

in the dissipation inequality:

4.3 Flow rule
The evolution law for the anelastic deformation, or flow rule, is obtained by substituting

for the evolution laws into When performing this operation, an important
property of the model easily follows from the thermodynamic forces being linear on the
stress, namely:

Here, the scalar results from substituting for the kinematic forces from the internal

state laws into The flow potential  or anelastic potential, is a convex function of
It takes on the same sequence of values as the kinematic dissipation potential along

the motion. The property applies to viscoelastic and elastoviscoplastic constitutive laws
as well. For the latter, it was first established in [Rice, 1971], on more restrictive
assumptions.
In case they are of viscoplastic type and provided the evolution laws satisfy conditions
which make them degenerate into plasticity when the control variable  accompanies
the yield surface motion, the anelastic potential becomes the plastic potential and the
property the principle of  maximum work [Hill, 1950].

 •  The state laws



5. FINAL REMARKS

The frame adopted has proved useful for modelling viscoelastic behaviour at little cost –
witness the non-linear extension to the thermorheologically simple model. Such imme-
diate outcomes seem improbable in elastoviscoplasticity, due to the complex interwea-
ving of geometry and physics. Existing applications to the metal, with the plastic
deformation being the kinematic variable, to the single-crystal (for a lagrangian
approach, see e.g. [Teodosiu et al., 1976; Brun, 1992]), with the non symmetric-plastic
transformation tensor playing the same role would be here out of place.
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Abstract : We consider a crack partially filled with a fluid. We show that the presence
of a lag avoids the appearance of pressure and velocity singularities. For the static
equilibrium, we recall the previous result on the Capillary Stress Intensity Factor which
provides a purely mechanical explanation of the Rehbinder effect, according to which the
toughness of the material can be lowered by humidity. For the steady state propagation
of a crack due to viscous fluid flow, we set the coupled system of non-linear equations.

Keywords:

1. INTRODUCTION

Most applications of  hydraulic fracturing of rocks are found in the petroleum industry.
To increase the out-flow of petroleum, one generates a multiple fracture in the rock-oil
by injecting a pressurized fluid in the well. This problem involves the analysis of  a fluid-
crack interaction, for initiation as well as for crack propagation. Most works known in
the literature are related to the Boussinesq model of 1D-fluid flow inside the crack [Abe
et al., 1976], [Bui et al., 1982], [Balueva et al., 1985]. One-dimensional flow models are
justified on almost all the crack length because of the smallness of the crack opening
displacement compared to the crack size. However it leads to some difficulties in the
vicinity of the crack tip. For example, the pressure in the 1D flow model is unbounded
at the tip. Therefore, to avoid a pressure singularity, one cannot ignore the two-
dimensional nature of flow near the crack tip, [Bui et al., 1982 ]. There is another
possibility for having a finite pressure, by assuming that a lag exists between the fluid
and the crack tip [Advani et al., 1997 ], [Garash et al., 1999].

The existence of a lag is a necessity for some physical reasons. As discussed in
[Bui, 1996], there is some physical and/or geometrical incompatibility near the crack tip
zone when the fluid completely fills the crack. This can be illustrated by an example. Let
us consider the following constants of a rock : Toughness Poisson's
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ratio Young's modulus Typically, the radius of curvature of
the crack opening displacement, corresponding to the critical toughness is given by

or i.e the size of two water molecules.
Therefore, from the physical point of view, a continuous description of the fluid-solid
may be questionable in models without a lag between the fluid and the crack tip.

The second reason is purely geometrical. Suppose that the incompressible viscous
fluid completely fills the opening crack and adheres to the solid wall. The no-slip
condition for fluid particles in contact with both crack surfaces implies singular velocity
and singular resistant hydrodynamic forces on the crack tip region, precluding its
propagation.

Some experimental results confirmed the lag assumption near the crack tip. This is
schematically shown in Figure 1, adapted from [Van Dam et al., 1999], representing a
hydraulic fracture in plaster, after splitting the sample over the fracture surface. One can
observe that the fluid front and the crack front are clearly separated by a lag, which is
about one tenth of  the crack radius.

In this paper we will discuss qualitatively different kinds of incompatibility,
physical or geometrical, and inconsistencies which exist near the crack due to simplified
assumptions introduced by models. We shall set up general equations for investigating
the particular case of Newtonian incompressible non-wetting fluid flow near the moving
crack tip, in the presence of surface forces.
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2. WHAT MODELS OF FLUID-FILLED CRACKS?

Coupled problems of fluid-filled cracks can be found either in elasticity or in poro-
elasticity. In a poro-elastic cracked medium, the system of equations are provided by
Biot’s consolidation theory for the porous solid. The crack is treated as a cavity, with a
sink or a source located inside the crack. The fluid flow in the crack is then analysed by
one-dimensional Boussinesq’s approximation. The whole crack faces are permeable and
the fluid can be assumed to occupy the whole crack and to be subjected to the difference
between the pore pressure of the crack and the fluid pressure in the medium. No
particular difficulties arise in the formulations and modelings of coupled hydro-poro-
elasticity systems even if the equations are more complicate than those in hydro-
elasticity, [Balueva et al., 1985].

When the crack surfaces are impermeable, the viscous fluid flow is parallel to the
crack. Some specific difficulties arise in the modelling of the coupled elastic-
hydrodynamic problems because there exists a moving interface S between the fluid and
the vacuum near the crack tip, where surface forces are present. If the flow is almost
one-dimensional in the main part of the crack, it becomes two-dimensional near the crack
tip zone. With a lag, in both cases of the Griffith crack and the Barenblatt crack, the
fluid rolls on the crack surface and can adhere to the solid at points B, B’ far away from
the fluid stagnation point and the opening crack tip. Very high velocity gradient and high
hydrodynamic stresses are then expected at the interface region S, of high curvature,
where surface force can not be neglected. Another difficulty arises in the modeling of the
common line between the fluid interface and the solid (the triple point in 2D).

2.1 The equilibrium Griffith crack
A fluid-filled Griffith crack in an infinite elastic medium, subjected to a remote tension

and a pore pressure p, has been investigated in [Bui, 1996], with a lag and a
surface tension force. The case of a non-wetting fluid-solid system, defined by a surface
tension coefficient and the contact angle at the triple point FSV (fluid-solid-vapor or
fluid-solid-vacuum) less than has been worked out. The contact angle at the triple
point, Figure 2, the slope of the crack opening displacement and the angle
of the convex meniscus are related by

Neglecting the slope of the crack opening displacement, we take
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This approximate equation makes it possible to derive a closed form solution of the
coupled systems of equations, given in [Bui, 1996]. The wet zone size 2c (< 2a the
crack length) is found to be a function of p. It is found that for vanishing remote tension,

a wetting crack exists for a well-defined pore pressure p which gives rise
to an initial stress-intensity factor,

This stress-intensity factor is due solely to the existence of a wet zone in the crack
and is refered to as the Capillary Stress Intensity Factor (CSIF). The plot of CSIF
versus the wet zone size c is shown in Figure 3. It increases as the wet zone size
increases up to a maximum value

This simple model explains why humidy can lower the toughness of materials
significantly, This is nothing but the well-known phenomenon

called Rehbinder’s effect. The explanation provided here by the CSIF, which lowers the
apparent critical stress intensity factor of wet materials is purely mechanical. It differs
from classical arguments based upon Van der Vaals’s interaction forces and chemical in
teractions between water molecules and atoms. In the classical interpretation of Rehbin-
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der’s effect, a water molecule can penetrate the crack tip cavity in glass because of its
size smaller than A link is broken between the atoms Si and O of ..Si-OH; another
one is broken in H-OH of water molecule. Then the two hydroxyls OH make new
chemical bonds with the silicium atoms giving two separate -Si-OH and resulting in a
new cavity or an additional crack length, [Michalske et al., 1988]. This mechanism
requires less energy than a direct separation of the bond of --Si-O-. The result is a
separation of atoms in glass. Water molecule is small compared to methanol or aniline.
As a matter of fact, the chemical influence of bigger molecules in the toughness of
materials is negligible since there is no room for interactions at the atomic level. In this
case, the lowering of toughess by the CSIF is one of the possibility.

There are approximations inherent to classical models of surface tension. Due to
surface tension force on the meniscus S, the solid deforms as a dimple at the FSV point.
In 2D elasticity, the displacement due to point force should be logarithmically singular.
However the ratio of surface force acting on S to the pressure acting on the wet zone is
of the order O(v(c)/a) <<1. Hence the effect on the stress intensity factor due to surface
force acting on the dimples is negligible, compared to the effect due to pressure. Perhaps
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the model is inconsistent regarding the appearance of a local singularity at the triple
points, but it gives a good idea of global physical quantities such as the stress-intensity
factors etc. The deficiency of the theory about the behavior near the triple point is
simply due to the approximations used in the model, such as linear elasticity, simple
theory of surface force etc. A better description of the triple point zone may be possible
with more elaborate models (non linear elasticity, second gradient theory of fluid/solid
interaction). But it is difficult to know a priori what kind of model to use for a
better modeling of specific quantities encountered in the coupled systems fluid-solid.

2.1 The moving triple point
A more elaborate model of the triple point has been provided in [Seppecher, 1989]
where the second gradient theory is used. The theory introduces a third order stress
tensor s, symmetric in its first two indices, generalizing the power of internal forces in a
fluid domain as follows

By relaxing the incompressibility condition, he succeeded in analysing the structure of
the density field in the vicinity of the stationary triple point. The iso-density lines
have a constant contact angle, outside the triple point zone, Figure 4.

Such a refined model, when extended to the moving interface, is expected to provide
better informations about the structure of the triple point.



69

Analyses of the moving interface fluid 1-fluid 2 along a solid wall have been worked out
theoretically and experimentally by many investigators, [Moffath, 1964], [Dussan et
al., 1974], [Durbin, 1989]. For example fluid 1 is the water injected in the well and  fluid
2 is the oil extracted from the crack tip. This system is very intricate even outside the
common line, as is shown in Figure 5, adapted from [Dussan et al., 1974]. Fluid 1 is
rolling on the rigid wall while fluid 2 is rolling off  at the triple point. Since the fluid
points of the moving interface map to the triple point P at certain angle, an ejected

line of fluid 2 is predicted (and observed experimentally) when rolling off the solid  wall,
going inside the domain There exists a multi-valued velocity singularity at  the triple

point due to model assumptions: incompressibility,  Newtonian fluid and no-slip
condition. It is observed experimentally that the no-slip  condition does not mean that
fluid particles can never leave the solid at some instant. The adherence condition is
stronger than the no-slip condition because it states that fluid particles can never leave
the solid wall.

In [Durbin, 1989] the no-slip condition is relaxed by introducing a slip zone to be
determined, with a constant shear. Durbin’s boundary condition avoids the appearance
of singularity in the fluid, just as the Barenblatt assumption of constant yield stress
eliminates the stress singularity in linear fracture mechanics.

For large surface tension or small capillary number the constant contact

angle may be a good approximation. Some arguments are given in [Dussan et al., 1974]
for a rapid change of the tangent to the interface near the wall, suggesting that the

fluid rolls on the solid wall smoothly and that the contact angle is constant just outside
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the contact line zone. Thus the structure of the fluid-fluid interface line near the contact
line seems to be very complex, since it depends very much on the boundary condition
used. In this discussion, we do not consider the deformation of the solid at the triple
point which can modify the flow.

Can the structure of flow near the contact line.be predicted by a refined theory ? Is
such a theory a necessity or not, regarding the question of determining the macroscopic
behaviour of the fluid-crack system ? These are still open problems.

3. A SIMPLIFIED MODEL OF FLUID-FILLED PROPAGATING CRACK

We consider a steady state propagation of a crack partially filled by an incompressible
viscous fluid. The absolute crack velocity is V. The geometry of the coupled system in
the moving frame is shown in Figure 6. Since the crack is propagating (inertial force
neglected), the geometry of the crack opening displacement in the vicinity of the crack
tip is well-defined by the toughness of the solid.

The fluid is separated from the crack tip by a lag (a vacuum), with the surface tension
the contact angle The boundary condition at the section AA’ is given by a parabolic
profile velocity, with a vanishing total flow rate and the velocity at the wall equal to –V.
The equations of the fluid-solid system are summarized below:

• Navier-Stokes equations :
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(where is the kinematic viscosity, p the pressure, the constant density)

• Capillary force:

• In-flow velocity (2h is the crack opening at A’A)

• Boundary conditions at the wall:

• Parabolic crack profile:

• Global equilibrium equation :

Equation (11) expresses the global relation between the stress-intensity factor in the
symmetric mode I, the applied loads on the cracked body and the pressure p on the
crack, without the point force at FSV. It corresponds to the matching between the outer
expansion solution with the asymptotic inner solution defined by Eqs (4) - (10). Such a
matching can only be made when the solution of (4)-(10) is obtained for any and p.

For low velocity, small crack opening and high viscosity, the Reynolds number
is small and the Stokes approximation may be justified. The above equations are still
non-linear, even if the linearized fluid equations are used, because the contact points B,
B’ are yet unknown and the pressure is coupled to the curvature of the meniscus.
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4. NUMERICAL RESULTS

In numerical computations, the value of the contact angle has been used, in order
to avoid either the appearance of velocity singularity at the triple point (no-slip
condition) or the consideration of a slip zone between the fluid and the solid (Durbin’s
boundary condition). This restriction is not essential since the magnitude of the point
force at FSV is small in comparison with the total force due to pressure acting on the
wet zone. The point force and the velocity singularity should have a little effect on the
overall behavior of the fluid-solid system. Instead of solving the complete nonlinear
system of equations, we are searching an approximate solution of Equations (4), (5), (7),
(8), (9), (10), for a fluid domain having an elliptical geometry and for given triple point
positions. Since the pressure and the radius of the meniscus are practically constant near
the stagnation point, the equation (6) is satisfied approximately, a posteriori, by
adjusting some constant This inverse fitting applies also to (11) where the toughness
is assumed to be related to the meniscus radius and to the loading.

The non-linear problem, without the Stokes approximation, is solved by an
iterative procedure. The computations are carried out, using the finite element method
provided by the non-linear computer code N3S of Electricité de France (3D Navier-
Stokes).

Numerical results are shown in Figure 7 for the stream lines and the pressure, which
decreases while approaching the crack tip.
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The stream lines patterns show clearly an interfacial motion similar to the moving
tractor tread described in [de Gennes, 1985].

5. CONCLUSIONS

1. In studying the coupling between a crack and a fluid, it seems reasonable to consider
only microscopic surface force phenomena having a significant effect on the
macroscopic response of the cracked solid. One can neglect microscopic details with
short range effects such as the dimple, the singular velocity at the triple point.

2. The pressure which is related to the curvature of the meniscus has long range effects
because it applies to the crack surface.

3. Simplified theory of surface force is used for investigating the main features of the
solution.
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Abstract: After two decades of intense activity on constitutive equations and integration
algorithms in the research laboratories, news methods are now available for engineers
who need numerical tools for the design of critical components working at high temper-
ature. Due to the increase of computer power, this approach (computation of the actual
stress-strain state, then creep–fatigue damage modeling) should progressively replace the
classical design method, based on elastic computations followed by plastic corrections,
and reduce the number of prototypes, thus the duration of the development. The present
paper shows an application of the method to the cylinder head of car engines.
Keywords: Elastoviscoplasticity, thermomechanical fatigue, aging, aluminium alloy, F.E.
structural calculation.

1. INTRODUCTION

The thermodynamic of irreversible processes [Ger73, GNS83] is a powerful tool which
allowed both famous theoretical developments, and a pragmatic approach to the modeling
of the materials. The courses taught by Paul Germain in the seventies [Ger75] can easily
be seen as an invitation to develop new material models in the laboratories and export
them to industrial applications. The purpose of the present paper relates to the second
part of Fifty Years of Continuum Thermomechanics, illustrating the development of the
material modeling in the eighties and of the numerical algorithms in the last decade. The
achievement of this cycle is now a new generation of Finite Element (F.E.) codes available
for industrial use.

The class of constitutive equations considered in the paper introduces internal vari-
ables to define the actual state of the material. It has been successfuly applied to the
modeling of viscoplastic behaviour, including cyclic thermomechanical loadings. The
present paper is devoted to the modeling of aging, with an application to an aluminium
alloy for a cylinder head, AS7U3G (ASTM 319). This material is classically used, due
to its low density, good thermal conductivity, and good casting properties. Nevertheless
it is also very sensitive to high temperature exposure, and microstructural evolution dras-
tically alters mechanical properties. The first section is then devoted to the description
of the cyclic viscoplastic behaviour including aging effects. The second section recalls
the principles of the numerical implementation in a finite element code. The third section
shows the calibration of the material parameters and the validation of the model on sim-
ple anisothermal tests. F.E. calculations of a Diesel cylinder head are finally shown in the
fourth section.
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2. CONSTITUTIVE EQUATIONS

Due to microstructural evolutions, many materials may exhibit strong variations of
their mechanical properties. Phase change is the most dramatical event (for instance
austenite-martensite transformation), and many theories are still in development to rep-
resent their effect under complex temperature or load histories. The present paper is
concerned by precipitation and coalescence phenomena in a copper bearing aluminium
alloy, affecting the hardening mechanisms, then the mechanical properties. Examples
of such studies can be found in the literature. In Ni-Base superalloys, transient over-
heating periods produce very large hardening due to the dissolution of large precipitates
followed by a fine precipitation [CC79]. The case of aluminium alloys has also been
studied in the past, for instance aging at room temperature of a AU4G1 alloy [Mar89],
or hardening-softening effect under temperature exposure of the same material [CEP95].
More recently, the thermomechanical fatigue of AS7U3G alloy has been studied from a
mechanical and microstructural point of view [SMS+99].

2.1 Experimental facts
After the classical work by Guinier [Gui56], the metallurgy of Al-Cu alloys has been
studied in details. This aspect is omitted here for the sake of brevity. The material of the
study has been submitted to a T5 treatment (5 hours at 210°C). The subsequent evolution
of the microstructure during operation corresponds to the sequence:

The evolution takes place for temperatures higher than 200°C, and the final product de-
pends on maximum temperature [ECG98]. The successive transformations produce larger
and larger precipitates, so that the matrix hardening becomes lower and lower.

As shown in fig. l, the effect of the transformations can be characterized either by
mechanical testing (fig. 1a) or by means of hardness measurements (fig. 1 b). The stress-
strain loops of figure 1a are obtained at 250°C, in three strain controlled tests at

The reference test is denoted T5, and corresponds to the initial state. After aging
periods at 250°C or 320°C, the maximum stress during the test at 250°C is only 100MPa
or 60MPa instead of 155MPa. On each loop, the center of the yield domain is marked
by a star: a large softening can be seen on isotropic hardening, but kinematic hardening
is affected too, the total amount of softening representing more than 150% of the initial
stress for aging at 320°C.

The purpose of figure 1b is to illustrate the evolution of hardening versus time. Hard-
ness measurements were found to be correlated with yield stress values, and give a good
view of the transformation rate. They are performed at room temperature, during aging
periods at various temperatures. The measurements confirm that the maximum soften-
ing is reached for aging at 320°C. On the other hand, a two-level test at 200°C then
320°C clearly demonstrates that the asymptotic value obtained during the preheating at
200°C is ”forgotten” by the material at the second level, and that the asymptotic value at
320°C is reached. Other tests [NB99] show that, in a complex temperature history, the
final asymptotic value depends first on the maximum temperature.



77

2.2 Thermodynamical framework
The models previously proposed to represent the behavior of aluminium alloys were de-
signed to represent hardening[Mar89], or hardening and softening[CEP95]. In the present
study, the model has to represent softening only. A very simple formulation is then cho-
sen, having in mind that the computational efficiency is a key point for industrial use.
Aging is represented by a scalar variable a, starting from zero, and tending to an asymp-
totic value depending on temperature. The model is written using the small perturba-
tion formalism, and assuming the partition between elastic and viscoplastic strains. The
thermoelastic part of the specific free energy takes its classical form [LC87], which is
not reproduced here; it is assumed to be decoupled from the viscoplastic+aging part
which is expressed as

where C, b, Q, L and  are material coefficients, is the state variable for kinematic
hardening, and r the state variable for isotropic hardening. At initial state, there is no
hardening, and the asymptotic value is also equal to zero, provided the temperature
is below the threshold which produces a microstructural evolution. On the other hand,
when temperature increases, the free energy increases also, and the microstructure of the
material element must change to recover a more stable shape. The state equations define
the kinematic variable the isotropic variable R and the energy Z associated with aging:
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The evolution of viscoplastic flow and of the hardening variables is defined in the frame-
work of standard models, using the successive definitions and notations:

The evolution of the aging variable linearly depends on Z, the aging phenomenon
being active only when the actual value of Z is negative (that is aging is lower than the
current asymptotic value):

Mechanical and aging terms are both present in the intrinsic dissipation

Denoting by the viscous stress we can decompose the first
term in eqn.11 into a viscous part and a friction part The second and the third
terms represent the dissipation associated with the nonlinearity of kinematic and isotropic
hardening terms. The last term represents the contribution of aging to the dissipation.
Each of these terms is positive, so that the dissipation is always positive.

In the previous equations, the material coefficients defining aging depend on temper-
ature, and the material coefficients in the purely mechanical part depend on temperature
and aging. An explicit expression is chosen for k(a, T):

Two kinematic variables are introduced, only one of them depending on aging:

so that the relation between the kinematic hardening variable and the corresponding state
variable in equation 2 uses and for the first variable,
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and for the second one:

Note that this new dependence introduces an additional term in
the expression of Z (equation 2), nevertheless the corresponding term in (equation 9),

can be made very small for large values of L, and will be neglected. The
problem could be reconsidered if a coupling between hardening and aging was present in
the experiments.

In a tension test, the tension curve is defined by  for the initial material and
for a fully aged material

3. NUMERICAL IMPLEMENTATION

The key point for a correct numerical implementation valid for non isothermal loadings
is to integrate the state variables, and not the hardening variables [CC96]. The model is
implemented in the F.E. system Z-set[BF98], using the user interface for the development
of constitutive equations Z-front[BLFC98]. In a finite element code, the section concern-
ing constitutive equations should be carefully kept independent from the ”global” system,
and can be treated at the level of the integration point. The purpose of the integration box
at this level is only to start with the actual value of the state variables, the increment of
external prescribed parameters (like temperature in a mechanical computation) and the
strain increment, and to provide the increment of state variables, the updated stress value,
and the jacobian matrix to evaluate the consistent stiffness matrix. In the present
case, the user interface is specially devoted to the implementation of models using inter-
nal variables, offering a number of  ”building bricks” to the developer. Several keywords
are available:
- the name of the material coefficients;
- the name of the internal variables;
- the section concerning the strain partition, defining the actual stress state from the elastic
strain;
- the section defining the explicit shape of the model, that is the value of the derivative of
the state variables;
- the (optional) section defining the jacobian matrix for a possible solution of the global
system.

In the present case, the variables are the elastic strain the two kinematic state
variables and the isotropic state variable r (or the acumulated viscoplastic strain
p), and the aging variable a. Note that, the evolution of aging being independent of
the mechanical variables, its history could also be obtained by a post-processing of the
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thermal computation, then aging would be considered as an ”external parameter” for the
mechanical computation. Due to the low amount of computation needed to compute this
evolution, the direct computation of a during the mechanical calculation, which avoids an
additional step in the numerical procedure, is the best solution. Two integration strategies
can be chosen in the code: Runge–Kutta integration with automatic time step definition,
and a In the first case, only the explicit expression of the derivatives has to
be introduced in the software: for the second one, a Newton method is used to solve the
following implicit system in terms of for given values of
(increment of mechanical strain) and

In the previous equations, variables like are expressed as and quan-
tities like f and are also expressed at the intermediate time so that the final
system may be quite complex. Note that time independent plasticity can be obtained as a
limiting case provided in equation 20.

4. IDENTIFICATION AND VALIDATION TESTS

4.1 Identification on isothermal tests
The data base needed to model the behavior of the real component covers a temperature
range from room temperature to 320°C. LCF tests are made until failure at constant
strain rate, and more complex histories, including several blocks of cycles at different
temperatures are also performed [NBEMMC99]. The cyclic hardening curve is obtained
either by incremental tests, with increasing strain range, or by a direct testing at a given
level. Due to aging, the incremental curves present a temperature history effect, the larger
strain ranges producing a lower maximum stress due to the longer temperature exposure.
This effect can be included in the modeling. The identification procedure consists in
two steps. In the first step, all the temperature levels are considered independently; the
results obtained in this case usually produce a set of coefficients which does not present a
consistent temperature dependence. A second step is then applied to finally get a smooth
variation of each coefficient versus temperature.

A typical simulation result is reproduced in figure 2, which shows a good agreement
with the experiment hysteresis loops at 320° C, in a test at for the initial state,
an intermediate value of aging, and for fully aged material.
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4.2 Validation on anisothermal tests
Having in hand a good modeling of  isothermal loading, the next step consists in checking
that the non isothermal behavior is also correctly represented. This will be the case if
there is no temperature history effect, so that the behavior of the material at temperature
T during a temperature transient is equivalent to the behavior in an isothermal test at
the same temperature, provided the proper value of the aging variable is introduced. The
assumption is then that the scalar variable a takes into account all the possible temperature
histories starting from T5 state.

Tests at variable temperature can classically be obtained on hydraulic machines, with
special procedures in order to impose thermal cycling and mechanical cycling. In the
present study, an alternative solution is proposed, adapting a thermomechanical fatigue
(TMF) testing device initially developed at ONERA [CCK81]. As shown by figure 3,
the specimen is a classical LCF specimen, heated by means of a radiation furnace. The
sample is constrained by three springs, and the mechanical load is produced only by the
constrained thermal expansion. In the hot part of the cycle, compressive stresses are
present, producing a compressive viscoplastic flow, so that the sample is in tension during
the subsequent cooling period. Three columns, with an adjustable cylinders, provide an
unilateral contact during tensile load. The test is run without any servohydraulic machine:
it can then be used for very long tests, but it is fully instrumented, with an extensometer
on the specimen, and strain gages on the springs to get the stress value.

The simulation can be made on a material element, using either the experimental strain
or the experimental stress in the center of the specimen to check the constitutive equation.
A full modeling can also be performed, with a Finite Element computation of the speci-
men (axisymmetric conditions), taking into account the axial temperature gradient and the
stiffnesses of the springs and of the columns, with the unilateral contact condition [NB99].
An example of such a simulation is given in figure 4. The prescribed temperature cycle is
70°C–320°C. The duration of the transient periods is 1 min, and the hold time is 3 min-
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utes. It can be seen that the width of the hysteresis loop, corresponding to the viscoplastic
strain range, increases during the test, due to aging effect.
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5. APPLICATION IN STRUCTURAL COMPUTATIONS

Having in mind an industrial use of the model, the target CPU time for one computation
should typically be about one night, that is about 15 hours. Performing many cycles with
a large number of degrees of freedom is nowadays out of reach with classical comput-
ers. This is why parallel computation is needed. The solver Zébulon of Z-set code has
been parallelised [FCR98] using a subdomain decomposition technique, with the FETI
method [FR94] to reconnect the different parts of the mesh. With such a method, the
CPU time for the solution of the global problem if proportional to the number of pro-
cessors. It has to be noted that the method remains efficient even if many processors are
used.

5.1 Stress and strain fields
The model is now applied to the cylinder head of a Renault engine. The calculations
have been made on the IBM-SP2 of Ecole des Mines de Paris, using 7 processors. The
mesh, shown in figure 5a, with the subdomain decomposition, represents one half of
the engine head, and has more than 70000 degrees of freedom. The boundary conditions
were taken from a preliminary elastic computation on the whole engine, and correspond to
prescribed displacements on specific node sets. The temperature fields are also prescribed.
The installation of the seats is simulated first, in order to get the initial residual stresses,
then the aging+mechanical computation is performed on 5 cycles. The duration of the
computation is about 10 hours per cycle. Three calculations have been made, one with
accelerated aging, in order to reach the saturated value after 5 cycles, named ”asymptotic
aging”; one with the properties of the initial material; one with an ”overaged” material

Since the maximum temperature in this test is only 250°C on aluminium, the max-
imum aging value (fig.5b) is 0.55. The aging distribution clearly relates to maximum
temperature; note that it would not be reasonnable to avoid aging calculation, as long as
some areas keep the mechanical properties of the initial material, and other ones are sub-
mitted to aging. The von Mises stress contours confirm the location of the most loaded
zone. It can be checked [NB99] that the larger principal stress is perpendicular to the
axis between admission and exhaustion valves, and that the stress level is maximum in
the chamber. The maximum stress value is 160MPa. It is quite different in the two other
computations (200MPa for the initial material, 110MPa for ”overaged” material), proving
again that aging effect must be taken into account.

5.2 Life prediction
The life prediction is performed using a classical creep–fatigue interaction model [LC87].
The number of cycles obtained corresponds to the initiation of a short crack of 0.2–0.5mm.
The value obtained (600 cycles, fig.6a) is consistent with tests made on the engine, with
very agressive temperature and regime cycles. The equations used are recalled in fig.6b.
This approach does not take into account the physical aspect of the crack initiation mech-
anism, which should be related with a microcrack growth from porosities and casting
defects, nevertheless it can be considered as a good engineering method.
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Abstract: The thermodynamics of irreversible processes, using the notion of local
state and internal state variables, is used for developing consistent constitutive and
damage equations. The Generalized Standard Models are recalled and some of
the induced limitations are discussed, both for non linear kinematic hardening in
viscoplasticity and for elasto-plastic damage couplings. In order to release some
of these constraints, a pseudo-standard approach is formulated and discussed, that
allows us to recover most of the classically used constitutive equations and damage
models.
Keywords: Thermodynamics - Internal variables - Constitutive equations - Damage
Mechanics - Viscoplasticity

1 INTRODUCTION

The use of the framework given by the thermodynamics of irreversible processes
for developing constitutive and damage equations has been an important progress
in the past 25 years. Since the pioneering theoretical works [Carathéodory, 1909],
[Truesdell and Noll, 1965], [Coleman and Gurtin, 1967], the development of a con-
tinuum thermodynamic framework , within a French school initiated by Germain
[Germain, 1973], [Germain, 1974], contributed to propose better and more consis-
tent inelastic and damage models of solid materials and structures. In particular,
the use of internal variables and the notion of Generalized Standard Models (GSM)
[Halphen and Nguyen, 1975] offer several significant advantages : (i) - some limi-
tations regarding the too wide space of possibilities for choosing material models,
(ii) - a guideline for incorporating temperature effects in the constitutive equations,
(iii) - the direct expression of energy dissipated as heat during irreversible processes,
an important aspect when dealing with coupled thermomechanical situations, (iv) -
stability properties of the corresponding boundary value problems.

However, there are some situations where the GSM approach introduces too
stiff constraints, so that there is need for a slightly softer definition of the gener-
alized normality rules. In the present paper, we discuss some of the corresponding
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limitations in the degrees of freedom, both for constitutive equations and for dam-
age models. Then we push towards a slightly less restrictive approach, called here
the Pseudo Standard Models, using several independent dissipation potentials and
several associated independent scalar multipliers. It was used implicitly in sev-
eral theories [Benallal, 1989], [Chow and Wei, 1991], [Hansen and Schreyer, 1992],
[Zhu and Cescotto, 1995] and is more general in the sense of less restrictive condi-
tions leading to larger modeling capabilities.

2 THE CLASSICAL FRAMEWORK

2.1 The state law

We assume the small perturbation quasistatic theory, with the additive decomposi-
tion of total strain :

where is the thermoelastic strain, is the thermal expansion and is the plastic
or viscoplastic strain. We follow the classical framework of Continuum Thermody-
namics of Irreversible Processes (CTIP) based on internal variables (that store the
effect of the whole history of observable variables), [Germain, 1974], [Sidoroff, 1975].
We use also the axiom of locality, the state of a material point (surrounded by an
infinitesimal volume element) being considered as independent of the state at neigh-
boring points. In other words, we do not consider any of the material lengths that
are introduced in Generalized Continua.

As irreversible processes we consider inelasticity (plasticity, viscoplasticity), as-
sociated hardening/recovery processes, aging effects corresponding to metallurgical
changes, and damage effects. Classical viscoelasticity is not discussed in itself, even
if it could be considered as a limit case of viscoplasticity [Chaboche, 1997].

The present state of the material is characterized by the knowledge of observable
variables, total strain temperature T; and by the internal state variables associated
with inelasticity and hardening, denoted the damage variables, denoted and
a set of variables that define the evolution of the non-damage domain, called We
do not consider the thermal gradient in the state potential, consistently with
the local state restriction.

The observable variable is the total strain, but for nonviscous elastic strain,
provided we use the strain partition (1), valid for small strains, it is sufficient to
consider the thermoelastic strain as the independent observable variable. We choose
the Helmholtz free energy as the thermodynamic potential : where
u is the internal energy, the entropy, and is assumed to depend on all the
independent state variables : Taking into account the
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conservation of energy, we reduce the second principle of thermodynamics to the
Clausius-Duhem inequality :

From a classical treatment [Coleman and Gurtin, 1967], we obtain the laws of state :

and by analogy, we set the following expressions for the conjugate thermodynamic
forces (or affinities) associated with the internal variables :

The choice of the signs in (4) is arbitrary. We set a minus sign for the affinities
because damage decreases strength. The remaining Clausius-Duhem inequality

is assumed to be separated into the intrinsic and thermal dissipation inequalities
[Truesdell and Noll, 1965] :

2.2 The Generalized Standard Model

In standard associated plasticity, Hill’s postulate of maximum dissipation, written
in the stress space, leads to the quasi-convexity of the yield surface, and defines the
direction of plastic strain rate as the outer normal to the yield surface. The same
applies for viscoplasticity, leading to the normality to the equipotential surface.

Considering thermoviscoplasticity, we can generalize such a postulate in order to
check the second principle automatically. Constitutive theories obeying such a prin-
ciple are called Generalized Standard Models [Halphen and Nguyen, 1975]. In the
dissipation inequality (5) we observe the duality between rates of dissipative fluxes
and the corresponding thermodynamic forces. Following Germain [Germain, 1973],
[Germain et al., 1983], we assume the existence of a pseudo-potential of dissipa-
tions : Here we do not incorporate the heat flux, which
has already been taken into account, leading to Fourier’s Law. is assumed to
be positive, convex in its variables, and to contain the origin. The thermodynamic
forces are obtained as follows :
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Applying to the Legendre-Fenschel transform, we
obtain the complementary dissipative potential in the generalized space of ther-
modynamic forces. Equations (6) are then replaced by

Such a generalized normality confers interesting properties on the constitutive equa-
tions. In particular, the second principle is automatically satisfied, provided
is positive and convex. Using also we can rewrite the intrinsic
dissipation (5-a) as

Remark : From the GSM, in the simple case where we neglect damage and
recovery effects (both dynamic and static recovery), it can be easily shown that
the state variables associated to the hardening (in a unified viscoplastic framework)
should be respectively the following [Chaboche, 1996] :

• the plastic strain itself, associated with the back-stress (kinematic hardening),

• the accumulated plastic strain, associated with the isotropic hard-
ening through the yield stress evolution,

• the square root of the accumulated viscoplastic work for the isotropic
hardening that uses the drag stress evolution (viscoplasticity).

For that, let us assume the isotropic case, a von Mises yield function and the simplest
viscoplastic behavior, using a power function for the viscoplastic potential. It leads
to

where the back stress the yield stress increase R, and the drag stress D are the
thermodynamic forces associated with some internal variables denoted respectively

The parameter k is the initial yield stress. The generalized normality
indicates that

leading to the announced results (if the drag stress D is assumed to be proportional
to the variable ).
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3 SOME OVERRESTRICTIVE CONSEQUENCIES OF GSM

3.1 Non linear kinematic hardening

The GSM framework is perfectly consistent with the use of linear kinematic hard-
ening. However, introducing non linear rules in the same framework is difficult.
The simple Armstrong-Frederick format, with a dynamic recovery term, constitutes
a typical example. In this form, widely used in many constitutive models (see
[Chaboche, 1989]), as the Non Linear Kinematic (NLK) hardening model, we re-
place (11-a) by

with where and are two fourth order positive definite tensors (the

classical formulations consider scalars).

In the rate independent formulation, we can assume the indicatrix function of
the convex dissipative potential to be of the form :

The function F is not identical with the function that defines the elastic domain. If
we assume to be the back stress we can choose f of the simplest Hill form :

where the norm is defined by Here we neglect isotropic
hardening. The generalized normality rule is then :

and it can be demonstrated that which leads to the expected form (12).
However, in the viscoplastic case we usually have (9), with then (11-a).
[Chaboche, 1983], [Germain et al., 1983] (see also [Lemaître and Chaboche, 1985])
used a viscoplastic potential of the form

with F given by
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in which is considered as a parameter. In that case we still obtain :

Provided the equality can be re-used in (17), respecting at each instant
F = f, we recover the normal viscoplastic rule with

However such a treatment appears as quite artificial. To some extent it obeys GSM,
using state variables as parameters [Germain et al., 1983].

3.2 The pure GSM form of the viscoplastic NLK rule

The choice made by Ladevèze [Ladevèze, 1992], within a purely GSM framework,
consists in retaining (13) in the viscoplastic case, with (16) as the potential. It
produces the expected NLK hardening rule (19) but at the price of a non vanishing
extra term in the expression for the true elastic domain :

in which the true elastic limit (when isotropic hardening is neglected) is :
Such a coupling term between the size of the elastic domain

and the back stress has a significant shortcoming. in (21) must be restricted
to be always positive, for obvious reasons. There are only two ways to satisfy this
constraint :

• take a very large value for k. This leads to a significant modification in the
mechanical response of the model compared to the reference version. Moreover
it greatly increases the initial value of the elastic limit (for around 0), which
is exactly the contrary to the line to follow if we want to respect experiments
and to be able to describe a very smooth elastic-plastic transition at the very
beginning of plastic flow.

• accept an experimental value for k ; in that case may vanish, and must be
artificially maintained at 0 for situations where In these

situations, even if the mechanical response could be acceptable, the model is
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no longer working in the GSM framework. We need to meet an additional
inequality like a flow condition :

This limits the evolution of the back stress, which retains a constant level
(given by ). In that asymptotic situation, flow occurs without further
hardening, the elastic domain being reduced to a single point (eqn. (21) with

). Figure 1 illustrates the uniaxial response of the model with only one
back stress. There is a discontinuity in the back-stress rate, as well as in the
stress rate itself (at least when the condition is attained before saturation
of the back stress). Moreover, such a description, under these asymptotic
conditions, does not respect GSM. Consistency imposes but

GSM leads to

3.3 Damage modeling

Using the GSM approach for damage modeling introduces important restrictions on
the set of possibilities. They affect both the shape of the multiaxial criterion and
the capability to separate inelastic processes and damage processes.
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If we consider a dissipation potential depending both on the conjugate forces
associated with plasticity and on those associated with damage processes

we can assume the following additive separation :
where dk plays role of parameters. In that case, the use of the

generalized normality (GSM) in the rate independent situation will lead to

in which we have the same plastic multiplier most often identical to the norm
of the plastic strain rate. Such a writing automatically induces, as in the models
developed by Lemaître [Lemaître, 1985] [Lemaître, 1992], a simultaneous evolution
of damage and plastic strain, at least when the thresholds appearing in and are
exceeded. Even if acceptable for ductile damage, this is certainly not true for other
situations. For instance, brittle creep damage can take place without significant
strain; damage in composites (or in concrete) very often develops (as microcracks)
without any plastic strain.

In order to dissociate plasticity and damage evolutions, we could consider, but
only for the rate dependent formulation, a dissipation potential being the sum of
two non linear functions, and constructed from and for instance with
power functions :

The rates of the state variables are then derived from this potential by the generalized
normality rule :

By proceeding in this way, we distinguish between the nonlinear effects contained
in the power functions (with, for instance, different exponents r and n). However,
this approach is restrictive as regards the form of the multiaxial damage criterion,
as in the Hayhurst multiaxial criterion [Hayhurst, 1972]. In practice, it is relatively
difficult to reconstruct a criterion in the space of forces which gives the isochronous
surface forms observed in creep. The only way of proceeding is then to consider that

also depends on the elastic strains, acting as parameters, and allowing the stress
to be introduced indirectly by the elastic constitutive law. In this case, the choice
of the expression of criterion in the stress space is again free. This approach is
purely standard, but is rather artificial.
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4 A PSEUDO STANDARD MODEL

4.1 Multiple independent potentials

The use of a single global potential in the GSM leads to overrestrictive conditions.
This is why we suggest the idea of a somewhat broader framework [Chaboche, 1997],
in which we accept the possibility of several independent potentials, corresponding
to different physical processes. In fact there is no reason why phenomena as different
as thermal dissipation, plastic dissipation, damage or metallurgical evolutions should
all derive from the same single potential.

To some extent the considered formulation represents a generalization of
the classical formalism of plasticity with multiple criteria [Mandel, 1964] and
was already implicitly used in a certain number of works [Benallal, 1989],
[Hansen and Schreyer, 1992], [Zhu and Cescotto, 1995]. Leaving aside the thermal
dissipation potential, we therefore define three independent potentials expressed in
the thermodynamic forces space :

associated with the plastic strain and related hardening processes, and
depending on ;

the slow (static) microstructural evolution potential, such as the static
recovery and aging (dissolution of precipitates or precipitations, for example),
depending on hardening forces Aj ;

the damage potential, in which damage mechanisms are considered as
acting on a scale larger than those of the plastic strains. This potential
depends on

Each potential may eventually depend also on state variables, considered as param-
eters. The main hypothesis of this extension is to express the generalized normality
rule in the following form :
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Of course, with the dependencies considered in the potentials, certain derivatives
are zero, and we get

As exemplified below, the multipliers can be defined independently as
Lagrange multipliers [Hansen and Schreyer, 1992], [Chow and Wei, 1991]. They can
depend on all variables, conjugate forces or state variables.

4.2 Example for the Unified Viscoplasticity

In order to recover the classical formulation of viscoplasticity, with Non Linear Kine-
matic hardening, we can choose the particular form :

where defines the elastic domain by (14). For the static potential, we may
assume a single thermal recovery format :

Using the Pseudo Standard Model, we then have

We note the easy separation between dynamic recovery and static recovery effects
and the fact that, contrary to the pure GSM, we have the non-modified elastic
domain in the viscoplastic strain rate (cf. the discussion in section 3.2). The formu-
lation easily degenerates to the rate independent plasticity format
with obtained from the consistency condition The method is valid for
more complicated hardening rules, including isotropic hardening or multi-kinematic
hardening with thresholds, as shown in [Chaboche, 1996].
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4.3 Example for plasticity coupled with damage

Let us recall the discussion of section 3.3, where the rate independent formulation
was unable to separate the damage growth from the plastic strain evolution. Now,
with the quasi-standard approach, we have two independent potentials, plasticity
and damage, associated respectively with the elastic domain (in the stress space)
and with the nondamage domain (in the space of damage conjugate forces) :

Bl is the set of variables that describes the actual position, size and shape of the non
damage domain, in the space of damage conjugate forces yk.. Some recent theories
[Voyiadjis and Kattan, 1999] introduce both the dilatation and the translation of
that domain. The damage variable dk can be used as a parameter in these func-
tions. For instance dk in fp can play a role through the effective stress concept
[Rabotnov, 1969], [Chaboche, 1977] (not discussed here). The indicatrix functions
of the two potentials are chosen as and The normality
rules then become

Multipliers and will have to be found by solving the consistency conditions
and Referring to Figure 2, they are determined independently

in the cases where plasticity is involved alone or when purely
brittle damage occurs without any plastic strain When both
processes are involved simultaneously, it is necessary to consider the possibility of
coupling between the two.
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In the rate dependent (or viscous) case there are also further possibilities. For
instance, when modeling creep damage processes, we can now express the multiaxial
damage rate directly in the stress space, using and
this leads to

where r and A are material and temperature dependent parameters. For example
the expression for fd can be chosen exactly to meet Hayhurst’s multiaxial criterion
[Hayhurst, 1972] (in the stress space). We can even take as linear in the space
of damage conjugate forces (let us assume only one tensorial damage variable) :

so that the damage rate becomes independent of Here the damage
variable has been supposed to be a second rank tensor and is a fourth rank ten-
sor, giving the effect of damage rate anisotropy (see [ and Chaboche, 1985],
[Chaboche, 1999]). In that case the anisotropic creep damage equation used by Mu-
rakami & Ohno [Murakami and Ohno, 1980] can easily be recovered.

5 CONCLUDING REMARKS

A thermodynamic framework for developing constitutive and damage equations has
been revisited. Based on the notion of internal variables and the local state hy-
pothesis, it limits the range of possibilities for these constitutive equations, in order
to meet the thermodynamic requirements. Within this framework, the Generalized
Standard Model is particularly discussed, considering some overrestrictive induced
properties, both for kinematic hardening and damage modeling.

In order to release these restrictions, a slightly less constraining approach is for-
mulated, using several independent potentials and several independent scalar mul-
tipliers, associated with the various considered physical proceses. Such a Pseudo
Standard Model allows us to incorporate some models that were not entering easily
into the GSM framework :

the non linear kinematic hardening (dynamic recovery), both in the rate inde-
pendent plasticity case and in the viscoplasticity case,

the thermal recovery, as well as aging effects or other metallurgical changes,

the separation between damage evolution and plastic strain rate, important
for brittle damage description,

the independence between directionality of damage rate and the shape of the
isochronous creep rupture surfaces.
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Abstract: A micromechanical model is developed to derive the overall behavior of
solids during martensitic transformation. The physical nature of martensitic
transformation allows us to introduce the concept of moving boundaries in the
framework of thermodynamics and micromechanics. The obtained results are specified
both in SMA and TRIP steels.

1.INTRODUCTION

In most heterogeneous materials, the thermophysical properties may be assumed
piecewise uniform at the mesoscale. These materials are constituted of different phases
and/or grains separated by interfaces called grain or phase boundaries. The interfaces
are in general stationary with respect to particles and often considered as perfect, at least
at low temperatures. This hypothesis corresponds to the continuity of displacement

and/or velocity fields as well as the stress vector where

denotes the jump of x across the interface. The continuity assumptions
extended to equivalent forms for the volume lead to the usual localization and
homogenization relations, from which the classical scale transition methods are
developed. The overall behavior of the Representative Volume Element (RVE) is then
deduced from the microstructure and the local behavior.
In various situations where the inelastic strains result from discrete physical
mechanisms like twinning, martensitic transformation, or recrystallization, the previous
hypotheses are partially not valid since one deals with the problem of evolutive
microstructures or moving boundaries whose velocities are different from those of the
particles. Consequently, the strain field and/or thermophysical properties undergo
discontinuities across moving boundaries and therefore:

• Additional terms in localization and homogenization relations have to be
introduced in the framework of local thermodynamics and micromechanics to
account for the moving boundaries.
•  Driving forces as well as the germination and growing laws describing the
evolutive microstructure need to be determined.
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The purpose of this paper is to present the basic results concerning the modeling of
martensitic transformation in Shape Memory Alloys (SMA) [Patoor et al., 1987] and
TRIP steels (TRansformation Induced Plasticity) [Cherkaoui et al., 1998].

1.1 Kinematics and martensitic phase transformation kinetics
Inelastic strain called transformation strain    produced by martensitic transformation,
results from two contributions: the Bain strain and the lattice invariant strain. The Bain
strain describes the geometrical transformation from the parent lattice (austenite) to the
product lattice (martensite). The lattice invariant strain is an accommodation step
relaxing, at least partially, the internal stresses generated by the Bain strain through a
shear along an invariant plane resulting in the formation of a habit plane. Wechsler,
Liebermann and Read were the first to formulate a geometrical theory giving the
possible crystallographic habit planes. This theory is based on the concept of inelastic
compatibility of the transformation strain assumed to be uniform within an
elementary transformed volume (plate or lath). Due to the high symmetry of the
austenitic lattice, several transformation strains are possible so that different martensitic
variants may be formed with the corresponding habit planes and transformation strains
given by

where and are the habit plane normal and the direction of the transformation,
respectively. g is the amplitude of the transformation considered as a material constant.
The local transformation strain is then piecewise uniform and written as

where are the Heaviside step functions for the different transformed domains I
and N their number.
For a single crystal with volume V subjected at its external boundary to a
displacement  and undergoing an inelastic field  within V, the
total strain is

where the elastic field arises both from E and the incompatibility of fields

and
For homogeneous elasticity with elastic constant C, one obtains directly the elastic part

of E as follows:
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where and corresponds to the macroscopic inelastic

strain arising from the plastic flow and the phase transformation.
Case of SMA

In such a case, one assumes that and the transformation strain becomes

Due to typical properties of the field one can distinguish two simplified forms

for :

• The microstructure of variants as well as the fact that is piecewise uniform
lead to

where are material constants, and internal variables subjected to the following
constraints:

• Since the transformation strain vanishes within the austenitic phase, (5) can be
written as

where is the total volume fraction of martensite, and the average

transformation strain over , which is now an unknown of the problem.
The time derivative of (5) shows the different mechanisms associated with martensitic
transformation in SMA which are not revealed through a simple “static” comparison
between the actual configuration and the reference one (austenite). Taking into account
the discontinuities of the field along the moving boundaries,
one has

and since , it follows that
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S represents all of the moving boundaries (austenite-martensite as well as boundaries
between the martensitic variants), and the velocity of the interface.
The “crystalline” description of the martensitic transformation (in analogy with crystal
plasticity) comes directly from (10):

where, actually, the distinction between transformation and exchange between variants
is not explicitly shown.
The different mechanisms are more explicitly described when one expands the time
derivative of (8)

In fact, the analysis of (12) allows us to distinguish the following phenomena:
• Transformation without deformation

• Transformation with deformation but without reorientation

• Deformation by reorientation without transformation

• Transformation, deformation and reorientation
Case of TRIP Steels

In such a case, the inelastic strain of the single crystal is

where describes simultaneously the plastic strain of an elementary volume
element at austenitic and martensitic states. For TRIP steels, the mechanisms of
reorientation and inverse transformation being insignificant, the progression of the
transformation can be described by the instantaneous growth of new plates or laths in
the austenitic phase. Therefore, one obtains the expression [Cherkaoui et al., 1998]:

• The first term describes the average plastic flow in the residual austenitic phase.
• The second term corresponds to the plastic flow in the pre-existing martensitic

phase.
• The last term expresses the formation of new plates or laths.

1.2 Thermodynamics and driving forces.
By limiting the study to quasistatic and isothermal processes, the change of free energy
associated with a martensitic transformation involves both volume and surface terms.
For the free energy, one has to account for the elastic energy (due to internal and
applied stresses), the chemical or crystallographic energy (due to phase transition) and
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the energy of interfaces between austenite-martensite and martensite-martensite. The
last contribution is usually neglected in martensitic transformations.
If we denote by and the chemical and elastic energy densities, the
Helmholtz free energy per unit volume V is given by

Since and w are discontinuous across the moving boundaries S, one has for
the expression

The volume integral in (16) is due to the change of Helmholtz free energy during the
evolution of the inelastic strain of austenite and pre-existing martensitic phase at the
current configuration. During this mechanism, the chemical energy remains constant (no
lattice change), i.e. Furthermore, the jump is calculated as a linear
approximation with respect to temperature T in the vicinity of the equilibrium
temperature B is a material constant.
By taking into account the properties of the field w, we may express the jump [w] for a
homogeneous elastic behavior as follows:

and due to the fact that one has for dw/dt

With the above results, (16) becomes

where corresponds to the moving austenite-martensite boundaries,
and those between the martensitic variants.
The calculation of the power of external forces

is transformed into a volume integral by taking into account the static conditions

as also the dynamics ones (Hadamard’s relations)

on the moving boundaries.
It follows that
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and the intrinsic dissipation becomes

This equation involves two quantities:
• the volumic driving forces associated with the plastic flow of both phases,

• the surface driving force associated with the moving

boundaries.
In (24), the surface forces are associated with the progression of a boundary where the
inelastic discontinuity arises both from plasticity and transformation. It is also possible
to deduce from (24) the driving force linked with a “flow” f if one simplifies the fields

and or (and) if further indications on nucleation and growth of a transformed
domain are specified.

2. BEHAVIOR OF SOLIDS DURING MARTENSITIC TRANSFORMATION

2.1 Mechanisms and different cases
Martensitic transformation is characterized by the existence of a macroscopic shape
change associated with modification of the crystalline structure. Growth of martensitic
plates within the parent phase produces an important stress field, and plastic
accommodation occurs if the yield stress of the parent phase (or the martensite one) is
reached. When plastic yield stresses are large enough, or when the strain energy is
weak, the transformation strain is accommodated in a fully elastic way and the plate
growth proceeds by a succession of thermoelastic balances. Different mechanical
behaviors associated with transformation plasticity find their origin in three basic
mechanisms:
• Orientation of the martensite variants by the applied stress. This effect is related to

the shear component of the phase transformation.
• Reorientation of the martensite variants by the applied stress. Interfaces between

these variants have a great mobility, and reorientation process may occur under
applied loading.

• Orientation of the plastic yielding around plates of martensite.

2.2 Pseudoelasticity of Shape Memory alloys
During martensitic transformation, the microstructure developed within the grain may
be analyzed at two levels:

.
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• The shape of the elementary transformed volume corresponds generally to that
of a thin plate. The corresponding internal variables are the volume fraction of each
possible variant and the aspect ratios of the plates.
• In the most common case, several domains, such as subgrains in which only one
variant is activated, are developed. The boundaries between these domains have to
be described by additional internal variables.

Using the compatibility conditions, the equilibrium equations and boundary conditions,
we find that eqn (15) leads to

where describes the internal stress field resulting from the incompatibilities
of the field

Due to the properties of , the interaction energy

may be also related to the mean internal stress for a variant I and the corresponding

volume fraction , so that

Finally, the free energy depends only on the control variables E and T, and

the internal variables , which are subjected to the conditions (7).
For a transformation microstructure in domains or subgrains, one has

where and are the volume fractions of the domains n and m; and are
the mean transformation strains over the corresponding volumes and ; is
the interface operator depending on the unit normal to the interface between n and m.
Due to the high mobility of interfaces between variants, is minimized with respect

to the volume fractions and and the unit normal
The result now is an interaction energy depending only on the

volume fractions and . The interaction matrix is related only to the

different transformation strains . Finally, the Helmholtz free energy is given by
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where are material parameters and are a total of 24 scalar internal
variables. The derivation of the thermomechanical behavior of a grain follows now from

a classical analysis where the driving forces on the volume fractions are

compared with critical values (assumed constant: no hardening). L is the
Lagrangian built from the free energy and the N+1 Lagrange multipliers introduced
from the constraints (7). Using a classical thermomechanical self-consistent model for
the transition toward the polycrystal, we find that the theoretical results are in good
agreement with the experimental ones on copper base alloys (Fig.l, Fig.2). Note that the
results have been obtained with no adjusting parameters.

2.3 Thermomechanical behavior of TRIP steels
The remarkable properties of ductility and strength of TRIP steels arise on the one hand
from the inelastic strain accompanying martensitic transformation, and on the other
hand from the internal stress field emerging from this phase change, leading to an
additional plastic flow known as the TRIP effect.
The calculation of the surface dissipation in (24) for any topology of S is complicated,
and can be realized only through numerical procedures. However, in many situations
(dislocation loops, martensitic plates, twinning) the moving boundaries S can be
simulated by ellipsoidal inclusions. This allows to use Eshelby’s relationships
concerning inelastic ellipsoidal inclusions, if the inelastic strain field is piecewise

uniform. Therefore, the jump of the inelastic strain is assumed uniform along 5.

Furthermore, the stress (not uniform along S) is linked to through the interface
operator Q(C, n)

and the jump of the inelastic strain across the moving boundary of a
microdomain belonging to a martensitic variant S, is given by
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where the plastic strains and on each side of the growing domain are taken to
be equal, according to the instantaneous growth hypothesis (Cherkaoui et al., 1998).

By accounting for eqns (30) and (31) and according to the uniformity of and

along , the surface dissipation becomes

The ellipsoidal growing hypothesis allows us to obtain the following result:

where is the volume fraction of the microdomain and is the corresponding
Eshelby tensor depending on the aspect ratio as well as on the orientation of the

microdomain; and correspond to the variation of and due to the
ellipsoidal growth. With (33), (32) leads to

The ellipsoidal growth hypothesis leads to a simple form of the surface dissipation,
which allows one to choose the volume fraction of a martensitic domain belonging to
each crystallographically possible martensitic variant as the internal variable describing
the evolution of martensitic phase change. The thermodynamic force acting on this
internal variable is deduced from (34) as follows:

where are given for the most favorable growing mode.
Eqn (35) gives the thermodynamic driving force for nucleation and growth of
martensitic microdomains belonging to different martensitic variants; it requires the
knowledge of stress inside the growing domains. In addition to overall applied stress,
this stress field contains several contributions due to different couplings between
plasticity and phase transformation at the microscale. In the following, several ways for
the determination of internal stresses are discussed from a micromechanics point of
view:
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a - The simplest way is to neglect any source of internal stresses. In such conditions,
Patel and Cohen have formulated the energy term resulting only from the interaction of
applied stress with transformation strains. This corresponds in (35) to the term

where is assumed equal to the applied stress and all the
other contributions are neglected.
b - It is possible to assume an ellipsoidal growth of a martensitic microdomain inside a
homogeneous stress field corresponding to the average stress over the austenitic phase.
At the current configuration of the RVE, if we denote by the average plastic strain
in the austenitic phase, and by the one over a martensitic variant which consists of
a set of microdomains, the interactions between plasticity and martensitic phase
transformation is taken into account through the average stress field in the
austenitic phase given by (Cherkaoui et al., 1998):

where N is the number of martensitic variants active at the current configuration of the
RVE and are the corresponding volume fractions.
With the instantaneous growth hypothesis, the stress inside a growing microdomain

belonging to a martensitic variant I is related to by the following simple form:

With (36) and (37), (35) leads to

In the thermodynamic force (38) one can distinguish two contributions:

• A long range internal stress effect through the term The

stress contains the effects of plastic strains of both phases, as well as of
transformation strains undergone by the pre-existing martensitic variants.
Depending on applied and internal stresses, plays the role of variant
selection (extended Magee effect),

• A self-internal stresses effect through the term

depending essentially on the morphology of the growing microdomain
c - The effect of the internal stress field, emerging from the plastic flow, on the
martensitic phase transformation is known as the strain induced martensitic phase
transformation phenomenon. Classically, the plastic flow at the grain level is described



by a homogeneous plastic strain through the plastic slip on crystallographic glide
systems. The intragranular stresses arising from this description correspond to second
order internal stresses. However, for ductile materials undergoing martensitic phase
transformation, the role of plastic strain in the phase transition is more complicated. In
fact, the martensitic plates nucleate at dislocation pile ups, dislocation dipole or
intersection of slip bands. In such a situation, the description of the strain-induced
martensitic transformation is insufficient through a homogeneous plastic strain. In other
words, a third order stress field emerging from the heterogeneity of plastic strain has to
be taken into account. Within a micromechanical model, one obtains the following
interaction matrix describing the strain induced martensitic phase transformation
through the third order internal stresses

is the Eshelby tensor depending on the morphology of the plastic “defect” and
corresponding to the initial shape of a martensitic nucleus; is given in eqn (1), and

the are the Schmidt tensors associated with the slip systems in the austenitic phase.
For the plastic flow in austenitic and martensitic phases, the associated driving forces
are the resolved shear stresses on slip systems in austenite and martensitic variants
given in a previous work (see Cherkaoui et al., 1998).
These driving forces are compared with critical forces describing the resistance to phase
transformation and plastic flow. The expressions for critical forces are based on
physical considerations, taking into account the hardening of austenite and martensite
due to their own plastic strains, and the hardening of the martensitic phase due to the
plastic strain inherited from the austenite. These results are combined with eqn (14) to
derive the constitutive equation of an austenitic single crystal from which the overall
behavior of polycrystalline TRIP materials is deduced by using the self-consistent scale
transition method.
We present numerical results for the behavior of a polycrystalline TRIP steel obtained
by this approach. The results are compared with the experimental data of Olson and
Azrin performed on a Fe-Ni base alloy. For the numerical simulation, 100 grains having
different crystallographic orientations describe the polycrystalline structure. The grains
are assumed to be spherical in shape and identical in size. The elasticity of the material
is considered as isotropic and homogeneous defined by the shear modulus
and the Poisson's ratio In such conditions, we have calculated the stress-
strain curve of the TRIP steel and martensitic volume fraction evolution at different
temperatures (Fig. 3 (a) and Fig. 4 (a)). The corresponding experimental results of
Olson and Azrin (1978) are plotted in Fig. 3 (b) and Fig. 4 (b). There is good agreement
between experimental and theoretical results.
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Abstract :  The paper addresses crucial issues concerning inelastic behaviour of quasi-brittle
solids, principally rock-like materials. Inelastic response for this class of solids results from the
evolution of a large number of micro- and mesocracks accompanied with frictional effects
regarding closed cracks for complex compression-dominated loading paths. Progressive
microcracking and frictional blocking/sliding induce anisotropic behaviour, volumetric
dilatancy and complex hysteretic effects due to crack opening/closure transition and plasticity-
like sliding evolution. These problems are explored and modelled in the framework of rate-type
constitutive theory with internal variables. The model is three-dimensional and
micromechanically motivated in its essential ingredients. Meanwhile it is built to provide a tool
for efficient structural analysis and, as such, represents a continuum damage approach coupled
with a form of plasticity. The settlement between apparently conflicting requirements of
physical pertinency on the one hand and of applicability of the model on the other hand, is
attempted through relative simplicity of the approach (a small number of material constants to
identify) and its modular character involving three increasing levels of complexity. The first,
‘basic’ level, concerns modelling of anisotropic degradation by multiple microcrack growth
generating volumetric dilatancy and permanent strain. The second level consists in accounting
for the ‘normal’ moduli recovery due to crack closure under predominantly compressive loads
(unilateral effect). These two levels are outlined briefly at the beginning of the paper. The text
focuses on the third level of modelling involving concomitant dissipative phenomena of damage
by microcracking and frictional sliding leading to complex hysteretic effects such as inelastic
unloading. The interaction of the two phenomena is successfully managed by the coupled
model.

Keywords: Anisotropic damage, Microcracking, Frictional sliding, Coupled effects, 3D model.

1. INTRODUCTION AND SCOPE

Crucial issues concerning inelastic response of quasi-brittle solids, principally rock-like
materials, are considered and modelled in this paper in the framework of rate-type constitutive
theory with internal variables. This methodology has largely proved its efficiency to deal with
essential features of structural rearrangements in engineering materials leading to non-linear
(dissipative) models. Germain is among the principal precursors who established rigourous
foundations for plasticity, viscoplasticity, damage and fracture modelling in this scope based on
sound thermodynamic background. In the context related to the present study the reader can
refer f.ex. to [Germain, 1986], [Germain et al., 1983].
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It is well confirmed nowadays that the non-linear behaviour of quasi-brittle, rock-like solids
results from emergence and growth of multiple internal micro- and mesocrack-like defects
under applied loading. The latter process generates progressive degradation of elastic moduli,
induces secondary anisotropy effects, volumetric dilatancy and other events, see f.ex. [Dragon
and Mroz, 1979], [Kachanov, 1982], [Horii and Nemat-Nasser, 1983], [Andrieux et al., 1986].
Opening and closure of microcrack-sets under varying loads lead to further complex phenomena
like recovery of some degraded moduli in the direction perpendicular to that of closed crack
systems and frictional blocking and/or sliding over internal crack surfaces. In particular, when
considering cyclic loading with some crack-sets constrained to closure, the initial unloading
process is frequently friction-locked, exhibiting a high apparent rigidity. Further unloading may
be dissipative if reverse multistage frictional sliding (reverse with respect to a loading branch)
becomes active. The inelastic unloading is just one specific effect generated by damage by
microcracking and a form of plasticity linked to frictional sliding on closed microcracks. It has
been, very recently, one of challenges for modelling involving necessarily a form of damage-
plasticity coupling.

The problem of modelling received some attention in the past, see e.g. [Walsh, 1969],
[Kachanov, 1982], [Horii and Nemat-Nasser, 1983], [Andrieux et al., 1986], [Ju, 1991],
[Krajcinovic et al., 1994], [Gambarotta and Lagomarsino, 1993], [Fond and Berthaud, 1995],
[Lawn and Marshall, 1998]. For the most part the texts cited represent pertinent
micromechanical studies, resulting in pleasant models capable to cover a limited range of stress-
strain paths (two-dimensional, axisymmetric, etc.). The purpose of this paper is to address, in a
synthetic manner, basic issues of the 3D – modelling proposed by the present authors [Halm and
Dragon, 1998], [Dragon et al., 1999] attempting to provide an efficient, macroscopic - whereas
micromechanically motivated – approach suitable for treatment of boundary value problems
involving joint process of anisotropic damage by microcracking and frictional sliding at closed
cracks. As mentioned above, the approach presented employs an internal variable formalism
founded on some micro-mechanical background.

The approach presented is based on an anisotropic damage model, the ‘basic version’,
proposed by [Dragon et al., 1994] and extended by [Halm and Dragon, 1996] to include the
unilateral effect concerning normal stiffness recovery with respect to a mesocrack system
constrained to closure. This extended version is summarized in Section 2 ; the reader interested
in more detailed account can refer to the quoted papers. The present study is focused on the
third level of modelling adding micro- and mesocrack friction plasticity effects to the extended
damage model by Halm and Dragon. The corresponding developments are given in Sections 3
and 4. First, crack-friction induced plasticity is introduced at any arbitrary damage state
(Section 3). Further (Section 4) damage and frictional sliding interaction is examined. Specific
hysteretic effects resulting from coupled non-linear behaviour are commented.

The crucial issue of the control of microcrack closure and opening is addressed through
Section 2-4. In Sections 3 and 4 the friction-induced stiffness recovery enters into consideration
next to ‘normal’ frictionless recovery considered before.

The central simplifying hypothesis, conveyed through the developments proposed, consists
in reduction of any real microcrack-set configuration to an equivalent configuration of three
mutually orthogonal systems of parallel cracks characterized by three eigenvectors

and three non-negative eigenvalues of the second-order damage tensor D. In such
a manner the damage-induced anisotropy is systematically limited to a form of orthotropy, see
also [Kachanov, 1992].
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2. ANISOTROPIC DAMAGE AND NORMAL UNILATERAL EFFECT

This section summarizes some essential features of the anisotropic damage model by [Dragon et
al., 1994], [Halm and Dragon, 1996], which forms the framework for further developments in
Sections 3 and 4. An objective of the damage model outlined below is to describe – in a realistic
manner applicable to structural analysis - the process of microcrack-induced anisotropic
degradation and relative inelastic behaviour of a rock-like quasi-brittle solid. It thus stipulates
evaluation of effective (degraded) elastic moduli and an adequate description of the damage
growth. The emphasis upon an ‘open’ formulation of the model has been made to allow further
extension and couplings. It is based on the hypotheses and developments ordered below in the
items from (i) to (v):

(i) A single damage internal variable is constituted by a symmetric, second-order tensor D
indicating orientation of microcrack set(s) as well as the dissipative mechanism under
consideration, namely generation and growth of decohesion microsurfaces :

The scalar density is proportional to the extent s of decohesion surface while the unit
normal vector describes orientation of the i-th set of parallel crack-like defects. The form (1)
is motivated by micromechanical considerations (see e.g. [Kachanov, 1992]) but in the context
further on here the density d(s) is reckoned as a macroscopic quantity. The expression (1) is in
itself a guiding microstructural interpretation of damage-related internal variable D. Since D is
a symmetric second-order tensor it has three positive eigenvalues and three
orthogonal eigenvectors This means that any system of microcracks (1), decomposed into
l,...,i,...n of subsystems of parallel mesocracks can be reduced to three equivalent orthogonal
sets of cracks characterized by densities and normal vectors

(ii) The expression of damage-dependent strain energy (free energy per unit volume)
generates a form of elastic orthotropy – in connection to the three eigensystems (2) - for
w is assumed a linear function of D and in this way corresponding to non-interacting cracks
hypothesis. On the other hand, it contains linear and quadratic terms in  A particular invariant
form given below (formula (4)) comprises a single linear term reading
corresponding to damage-induced residual phenomena. The damage induced macroscopic
residual stress for is thus explicitly obtained equal to gD. Inversely, for non-zero
residual strain is induced.

(iii) Under predominantly compressive loading, favourably oriented cracks close leading to
an elastic moduli recovery phenomenon in the direction normal to the closed cracks. It is called
here normal unilateral effect - in the absence of frictional sliding (the latter, when accounted for
later, will induce a ‘shear’ recovery effect as well) - and requires more involved damage
characterization. In fact, for a set of cracks constrained against opening a fourth-order tensorial
density is necessary for a rigorous, micromechanically motivated description. A compromise
solution has been advanced in [Halm and Dragon, 1996] between micromechanical
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considerations imposing an additional fourth-order damage variable and macroscopic modelling
efficiency. The formulation maintains the orthotropy of the effective, elastic properties - instead
of eventual more general anisotropy induced by a new fourth-order damage tensor - and the
complementary fourth-order entity necessary to account for the normal unilateral effect, is
directly assembled with the eigenvalues and eigenvectors of D and cannot therefore be
considered as a new damage internal variable:

(iv) A single scalar simultaneous invariant of and namely completes the
expression of the free energy (thermodynamic potential), with no additional
material constant with respect to the basic form postulated in (ii). Rigorous continuity
analysis in the framework of multilinear elasticity (for a given damage state), recast in [Halm
and Dragon, 1996], leads to a simple microcrack closure condition for an equivalent set,
namely : This condition is equivalent to that postulated in [Chaboche, 1992]. The
detailed expression of including the supplementary term allowing for normal unilateral
effect is:

where H is the classical Heaviside function ; are material constants related to modified
elastic moduli for a given damage state. and are conventional Lamé constants for elastic
(non damaged) solid matrix.

The corresponding damage-induced orthotropic elasticity representation and the
damage driving (thermodynamic) force are determined by corresponding partial derivation :

In spite of the presence of the Heaviside function and remain continuous
when passing from the open mesocracks configuration to the closed mesocracks configuration
and vice versa.

(v) The evolution of D, corresponding to the brittle, splitting-like crack kinetics, has been
found to follow the normality rule with respect to a criterion in the space of components of the
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proper thermodynamic force (affinity) The damage evolution is thus apparently following
the principle of maximum (damage) dissipation, and is related here to tensile (positive) straining

and to actual damage pattern. It should be stressed however that the particular damage
criterion is explicitly dependent on the part of the
driving force is the strain energy release rate term related to residual 'locked' effects :

represents the remaining recoverable energy release rate. The former term is
decomposed into the splitting part with a positive fourth-order
projection operator selecting positive eigenvalues from strain, and the non-splitting part

The damage criterion and rate-independent damage evolution law are thus as follows :

Remarks:

The damage criterion (7) transferred to stress-space (see [Dragon et al., 1994]) represents a
strongly pressure-sensitive surface with a marked dissymmetry of traction vs compression
limits.

The fourth-order tensor depends entirely on D (see definition (3)) ; it does not require a
separate evolution law.

In numerical calculations any loading path is considered as a collection of D-proportional
segments. The form of Eqn (6) is valid for such a segment, i.e. for a given configuration of
principal directions of D. Otherwise it should be completed to account for a novel configuration
of the tensor

A purely implicit numerical integration scheme has been applied for the model at stake.
Indeed it appears perfectly compatible with the latter. Not only the implicit scheme ensures
unconditionally stability properties of an algorithm but the value of can be determined at
each step as the solution of a linear equation (equation enforcing incremental damage
consistency) and does not require iterative procedure unlike for most of elastoplastic models,
see [Dragon et al., 2000].

The above non-linear and anisotropic model contains eight material constants :
and which can be relatively easily determined. This problem as well as the predictive

capacities of the model are illustrated and commented in [Dragon et al., 1994], [Halm and
Dragon, 1996], [Dragon et al., 2000]. It is shown in particular that volumetric dilatancy effects
resulting from pronounced damage are well evidenced and conformable to experimental data.
Furthermore, when examining loading programmes involving a compressive stage leading to
microcracks closure (e.g. the lateral overloading sequence following axisymmetric ‘triaxial’
compression test) one observes orderly stiffness recovery effects, [Halm and Dragon, 1996].
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3. MESOCRACK FRICTION INDUCED PLASTICITY

The unilateral normal effect included in the model summarized in Section 2 allows a moduli
recovery in the direction normal to the closed mesocracks. It fails to capture a shear moduli
recovery in the direction parallel to the crack plane, resulting from some blocking of mesocrack
lips displacement due to roughness and corresponding friction phenomena. Experimental data
involving loading-unloading cycles for specimens subjected to torsion and hydrostatic
compression for instance show hysteretic effects generated by such a blocking and subsequent
frictional sliding on closed mesocrack lips. The beginning of unloading is characterized by a
quasi-vertical curve while further decreasing slope is linked to progressive sliding, see for
example [Pecqueur, 1995]. Some attempts of micromechanical modelling of the phenomena
deserve attention. However they are not directly operational for an efficient structural analysis.
Earlier attempts [Kachanov, 1982], [Horii and Nemat-Nasser, 1983] consider the influence of
friction on effective moduli but do not provide satisfactory thermodynamic interpretation of
sliding evolution. Most of existing approaches are limited to two-dimensional analyses, as e.g.
[Andrieux et al., 1986], with the notable exception of the more recent work by [Gambarotta and
Lagomarsino, 1993].

3.1 Elastic-damage-and-friction response
Accounting for the global strain expression for a representative volume of a solid with
microcracks and, in particular, for the specific contribution of the system (i) of parallel cracks,
the sliding variable, for the set (i) at stake, is chosen in the form:

the symmetrisation being operated for the expression in parentheses. represents the amount

of sliding in the direction The similarity with (1) is striking : as for D, the form of

is motivated by micromechanics ; as for d(s) the quantity cannot be explicitly
calculated in the framework of a macroscopic model. Moreover, as any system of microcracks
represented by D reduces to three equivalent sets according to (2), the sliding tensor can be
written in the analogous manner :

where are D-eigenvectors.
The objective here is to argue for an enlarged form of the free-energy function

accounting for the frictional blocking and sliding effects for closed crack sets.

Let us consider the transition from open cracks to closed ones, assuming friction resistant
lips when in contact. The crack-open form of (4), applies for the former case. When the cracks
are closed and blocked by friction resistance at a given the shear modulus is recovered and
this should be properly reflected in the new modified expression The
governing the shear moduli degradation should be counterbalanced in this expression. The

having no influence on shear moduli, enters as before. Additional invariants including
can be only simultaneous -invariants as there is no sliding on crack lips in the absence of
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damage. As from (9) one infers and (for conservative damage axes), only
two simultaneous invariants of  and D convey useful information. They are : and

The argument for the quantity including in the last term of (4) was to restitute the
normal stiffness reduced by the term in the first line of (4), but since this latter term
is going to be counterbalanced, the former quantity has to disappear from w. Doing so allows
one to write the expression for closed friction-resistant crack lips in the form (for a
single crack system):

where and are material constants to be identified.
From the micromechanics viewpoint there are infinity of crack-closure paths possible

(straight, slantwise, mixed,...). The macroscopic model continuity requires continuity for
expressions of and for crack opening-to-closure (and reverse) transition. This leads
to the following condition at the closure-point:

The latter formula constitutes an initialization for the sliding variable and can be explained as
follows : at closure point, the sliding quantity is equal to the strain in the crack plane, the
matrix transmits its deformation to the crack.

According to the continuity conditions for multilinear elasticity [Wesolowski, 1969],
[Curnier et al., 1995] already employed in [Halm and Dragon, 1996] in the context of unilateral
normal effect, see eqns (4)-(6) Sect. 2, the jump of effective elastic stiffness between
open cracks (the corresponding energy is designated by below) and closed crack respective
configurations should be a singular operator. It is sufficient that its all second-order
determinants be equal to zero.

In the present context - eqn (10) at the very closure point, taking into account (11) –
is given as follows :

The above-mentioned singularity requirement and the additional stronger condition allowing no
stress jump in the strain space across the surface applied by [Halm and Dragon,
1998] (in the way similar as in [Halm and Dragon, 1996]) lead respectively to:
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The free-energy can now be written as follows (for either open or closed cracks):

The expression (13) can be generalized to three non-interactive equivalent crack sets
represented by eigenvectors associated with the principal components One can
select the k-th set using the following projection operator

This allows to write counterpart equations of (4)-(6) independently for each equivalent set, all
possible configurations being included (open or closed, sliding or non sliding sets):

As each equivalent set of the normal is to be considered independently, the corresponding
affinity (thermodynamic force) is :

The remark concerning eqn (6), Section 2, stating its validity for a D-proportional segment,
i.e. for a given configuration of principal direction of D, is still in force for eqn (17).
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3.2. Sliding criterion and evolution
The model herein considers frictional non-sliding/sliding phenomena on mesocrack lips on a
macroscopic scale, by an approach similar to that to damage, notwithstanding the
micromechanical background and interpretations of D and  So, the Coulomb criterion form,
function of the corresponding shear and normal tractions on a crack lip, employed in
micromechanical models ([Horii and Nemat-Nasser, 1983], [Andrieux et al., 1986],
[Gambarotta and Lagomarsino, 1983]), is methodologically less suitable in the present context.
The pertinent thermodynamic affinity governing frictional sliding on an equivalent system k,

is the entity defined above as the strain energy release-rate with respect to
The frictional non sliding/sliding complementary law is based on the hypotheses as follows :
(i) The sliding criterion depends explicitly on the norm of the tangential part of the

"force" and on the normal strain consecutively to the strain-related representation of
the energy w and the crack-closure criterion at stake

(ii) Contrarily to inconsistencies relative to the normality rule in the classical Coulomb
framework affected by appearance of a normal separating velocity (cf. for example [Curnier,
1984]) a standard scheme in the space of forces conjugate to keeps physical pertinence. The
normality rule appears to relate the frictional sliding rate to the tangential force indicating
its leaning to the crack plane (for a -proportional loading segment).

Consequently, the corresponding convex reversibility domain can be written as :

where is a material constant, a strain-related friction coefficient in the space and

The normality rule for is then

Detailed comments on salient aspects of the criterion in the strain space and in the
stress space are given by [Halm and Dragon, 1998].

By examining the complete set (15)-(21) of the equations of the model, one can see that the
frictional sliding does not sweep away the relative simplicity of the enlarged model (see the end
of Section 2). Only one additional constant adds to eight material constants
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4. DAMAGE AND FRICTIONAL SLIDING INTERACTION. COUPLED MODEL

The model completed in Section 3 incorporating friction-induced blocking and sliding on
equivalent mesocrack-sets is valid for a given ('freezed') damage state or for conservative
damage evolution ( -proportional loading paths). It has proved conclusive in representing
multistage loading-and-unloading dissipative cycles due to blocking-and-sliding sequences, see
[Halm and Dragon, 1998] for illustrations.

The splitting-like damage kinetics considered in Section 2 is approximately valid for closed
sliding mesocracks even when some branching occurs, see for example [Horii and Nemat-
Nasser, 1985] for some experimental insight. This type of kinetics will be still considered as the
predominant mechanism furthest for -non-proportional loading. This means the
complementary damage law (7)-(8) being reconducted for more complex stress-strain paths
involving varying orientations. However, as the frictional blocking-and-sliding is inevitably
affecting the stress-strain response, so the stress threshold corresponding to damage criterion

is subsequently affected.
This is mostly the sliding complementary rule (19)-(21) which needs to be perfected to

describe fairly the -non-proportional loading paths. If the principal axes of rotate the
orthogonality is no longer true and discontinuities may arise, especially for crack
closure-opening transition. So, an enhanced form of needs to account for the -axes

rotation. The form (19), depending on produced - via normality rule (21) - sliding in
the mesocrack plane. A judicious modification of this basic assumption should be compatible
with sliding and damage departure from the actual mesocrack equivalent plane. This is achieved
by means of the following partition of given below for a single crack set of normal

is the appropriate part of to enter the more general expression of suitable for the
model including -axes rotation. First, one obtains that for -proportional loading reduces
to (as ) and the new representation reduces to (19). Secondly, the
above-mentioned, crucial stress continuity problem is effectively dealt with. In fact, comparing
(11),(18),(20),(22), one can see that the closure-opening transition point for sliding crack-set can
be alternatively defined as :

Despite the fact that the above equation represents weaker condition than (11), it allows to
verify the singularity requirement for (cf. Section 3.1) leading to the stress continuity.

It can be remarked that though as equivalent crack-axes rotate, no additional
invariants are necessary in the strain energy expression (15). They are not required by the
continuity considerations (see above) and bring neither significant information. For example,
introducing and contributes to no more record on
shear moduli degradation than existing invariants and

The above considerations lead to the following improved expression for the sliding
complementary rule:
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The direction of is thus allowed to leave the equivalent crack-set plane consecutively to
the rotation of the latter. The incremental procedure leading to numerical integration of the
equations of the coupled model is summarized in [Dragon et al., 2000]

5. CONCLUSION

Two dissipative mechanisms, namely damage by microcracking and frictional sliding over
internal crack surfaces, are considered in the framework of the three-dimensional model
presented, applicable for quasi-brittle rock-like solids. The internal variable formalism
employed for the joint process under consideration is based on second-order tensorial
representation of damage and sliding effects respectively. The critical issue of the control of
microcrack closure and opening phenomena is dealt with in the spirit of continuum damage
approach associated with rigorous analysis of the stiffness recovery for closed microcracks. The
basic simplifying assumption, carried on through the proposed modelling, consists in
contraction of any real microcrack-set configuration (containing a number of sets) to an
equivalent configuration of three mutually orthogonal systems. The analysis has been restricted
furthermore to non-interacting crack systems regarding the energy expression even if the
microcrack related damage evolution depends on current damage state.

The model constitutes an attempt to construct a tool applicable for efficient structural
analysis through its relatively easy identifiability and algorithmic feasibility. In the same time a
strong micromechanical motivation is being preserved in corresponding developments. It can be
situated as an intermediary modelling approach between genuine micromechanical studies and
pure phenomenological ones.
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Abstract: It is now well established that the axial compressive strength of organic long-
fibre composites is limited by the development of a local instability of the fibres. This so-
called microbuckling depends strongly on the coupling of the fibre initial geometric imper-
fection with the resin non-linear shear behaviour. In addition, it has been demonstrated ex-
perimentally that failure strains also depend on some structural parameters at the ply scale,
the effect of which is less well known. We have been investigating this structure effect for
several years from both experimental and theoretical points of view. In the present paper a
model is proposed that is able to account for both local and structural parameters, with rea-
sonable computation amounts. Then, by comparing predictions from this model with exper-
iments, we demonstrate the necessity of accounting for the structure effect when designing
composites against compression. Eventually, the last parameter still to be determined is the
fibre initial imperfection which is thought to result from a fibre instability occuring during
cure. A viscoelastic micromechanical model is presented here which very well captures the
microbuckling of a single fibre induced by the resin thermosetting shrinkage.
Keywords: compressive strength, plastic microbuckling, structure effect, geometric im-
perfection, cure of composites.

1. INTRODUCTION

Predicting the mechanical behaviour of organic long fibre composites is in essence a diffi-
cult task. Especially, their compressive strength raises concerns both from experimental and
theoretical points of view. Indeed, although this problem has been extensively studied for
more than 30 years (since [Rosen, 1964]), predictions can rarely agree with experimental
results.

The compressive strength is usually determined using direct compression tests that are
very unstable and yield poor estimates. Conversely, bending fixtures yield higher strength
while ensuring controlled fractures. Through the use of bending-compression devices, the
influence of the structure at mesoscopic scale on the compressive failure of UD plies has
been clearly established. As an example, under a bending loading, T300/914 unidirectional
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plies can withstand compressive strains greater than 2 %, whereas under a pure compression
loading this strength is lower than 1.2%([t’Hart et al., 1991]). Furthermore, [Wisnom, 1991]
showed that thickening the specimen lowers the strength, while [Grandidier, 1991] estab-
lished that a high gradient of loading across the specimen thickness increases the compres-
sive strength. [Wisnom, 1997] and [Rahier, 1998] recently confirmed these results, using a
pin-ended buckling device in which hinge rotations can be restrained. Other experimental
works reported in the literature show that, in laminates, the larger the number of consecutive
plies in the loading direction, the lower their strength

From a theoretical point of view, early research traced the origin of failure to the devel-
opment of local plastic microbuckling ([Argon, 1972] [Budiansky, 1983]). The effect of the
structure at ply scale on the failure mechanism of laminated composites has been studied
only recently ([Grandidier, 1991] [Grandidier et al., 1992]). Since then, we have been ex-
tensively investigating such structure effects from both an experimental ([Grandidier, 1991]
[Grandidier et al., 1992] [Rahier, 1998]) and a theoretical point of view ([Grandidier et al.,
1992] [Drapier et al., 1996] [Drapier et al., 1999]). Here we aim at comparing predictions
from our plastic microbuckling model including structure effect, and experimental results.

Eventually, in the scope of quantitative predictions the imperfection must be properly
assessed, either measured or predicted. Since measurements on real composites are difficult
to carry out, a viscoelastic micromechanical model is presented as a first attempt to predict
the fibre imperfection initiated during the cure of the material.

2. STRUCTURAL MODEL FOR PLASTIC MICROBUCKLING

Although experimentally the structure effect has been demonstrated several times, it is very
seldom, or at the best incompletely, tackled in the literature. In order to account for the in-
fluence of the structure on the microscopic instability, a non-linear microbuckling model is
set at the mesoscopic scale. It aims at describing the failure mechanism with low compu-
tation amounts but accounting for every influential parameter ([Drapier et al., 1999]): size
and shape of the fibre initial geometric imperfection, drop of stiffness induced by the plastic
response of the matrix, and structural data across the laminate thickness.

2.1 Formulation of the mesoscopic problem
A bidimensional representation of a laminate is used (Figure 1) where e1 corresponds to the
loading direction Displacement along e1 is u(x) and displacement along e2 is v(x).
Stresses (second Piola-Kirchhoff tensor) are denoted S, and Green-Lagrange’s strain ten-
sor is Based on works of [Grandidier, 1991] and [Grandidier et al., 1992], a formulation
of the plastic microbuckling problem can be proposed. The corresponding equilibrium is
presented here under the form of the virtual powers principle written for any virtual dis-
placement field (1).
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where f is the fibre volume fraction, Ef is the fibre Young’s modulus, rgf is the fibre gyra-
tion radius and where F represents the external loading. The constitutive law (2) is anisotropic
the secant modulus tensor L being obtained from an explicit homogenisation formula based
upon the properties of the constituents ([Gardin and Potier-Ferry, 1992]). Only the unrein-
forced material is assumed to be non-linear such that the changes (softening) in the consti-
tuve law induced by fibre microbuckling are simply described. It follows an isotropic law
of J2 deformation type that yields good predictions of plastic buckling [Hutchinson, 1974].

This medium is not classical, due to the first term of (1) which represents the fibre bend-
ing stiffness and which is essential for predicting the effect of the structural data ([Gardin
and Potier-Ferry, 1992] [Drapier et al., 1999]). The presence of this bending term has been
justified by a homogenisation study using the multi- scale method ([Gardin and Potier-Ferry,
1992]) and also by comparing modes and buckling loads from this approach with micro-
heterogeneous modelling results ([Drapier et al., 1996]).

Considering mainly uniaxial loadings and representing the initial fibre misalignment
with a ’deflection field’ v0(x), we reduce the non-linear part of the strain tensor (3) to a
single axial component

where stands for the first derivative of any function X with respect to x1, and similarly
is the corresponding second derivative.

2.2 Mesoscopic approach
Usually a numerical approach can be deduced from the continuous formulation through an
adequate discretisation. In the present case, a further refinement is introduced which leads
to a tractable model to represent this local short-wavelength phenomenon at the ply scale.
The solution of the microbuckling problem is sought in the form of a displacement field
(Figure 1) evolving at the scale of the structure (denoted uG), very locally modulated by a
displacement field evolving at the ply scale (denoted uL) : u(x) = uG(x) + uL(x). With
the hypothesis of rapid variations of uL and slow variations of uG, the strain tensor can be
simplified (4) and reads :
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with the linear parts of the strain tensor, respectively associated with uG and uL.
Considering these approximations and assuming that displacement uG is a known solution
of the global equilibrium (1), we obtain the variational equation (5) describing the meso-
scopic equilibrium, the solution of which is uL(x) :

where In this mesoscopic formulation the external
loading appears through the global strain tensor which here is limited to its axial component
sufficient to represent compression or bonding-compression states:

2.3 Displacement approximation
In the framework of cellular instabilities, the displacement field approximation is chosen as
a product of amplitudes across the ply thickness with a few Ritz basis functions in the fibre
direction (6). This hypothesis also allows reduction of the bidimensional domain to a single
wavelength in the fibre direction, greatly reducing computations. Ritz basis functions are
selected so that both microbuckling elastic modes obtained in [Drapier et al., 1996] can be
reproduced, and that a quasi-constant buckling stress can be obtained.

where k is the wavenumber, and functions Ui(x2), Vi(x2) are the magnitudes of the dis-
placement field which are discretised by three-noded finite element of Lagrange type. The
imperfection v0(x) is represented similarly to v(x). There is thus no limitation to any strain
and imperfection distribution across the laminate thickness. This is important in order to
account for the influence of structural parameters. Conversely, the Ritz approximation in
the axial direction is more restrictive and this limits proper a representation of the post-
microbuckling behaviour. Consequently we focus on the response up to the maximum load
corresponding to the instability occurrence and associated with failure.

3. COMPARISON OF PREDICTIONS VERSUS MEASUREMENTS

This section is concerned with the prediction of microbuckling development in laminates.
The full laminate thickness is discretised and free-edge conditions are prescribed on both
top and bottom faces. The influence of imperfection distribution and structure effect on
the instability development are studied separately for the sake of simplicity. According to
the measurements from [Paluch, 1994], initial geometric imperfections are assumed to be
of waviness form along e1 with a wavelength of 0.9 mm and angles from to
The only unknown parameter is the imperfection distribution across the thickness which
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has never been measured. Following the understanding of imperfection presented in sec-
tion 4, a parabolic distribution is chosen with a maximum amplitude at mid-thickness. For
quantitative comparisons with experimental results, realistic constitutive laws are used for
the constituents.

3.1 Loading
The effect of loading that is known from an experimental point of view ([t’Hart et al., 1991],
[Grandidier, 1991], [Wisnom, 1991]) is demonstrated theoretically on a 3.2 mm thick UD
modelled, first under constant loading across the thickness (pure compression) and secondly
under a linearly varying loading (pure bending). Figure 2 shows that, for both loadings, the
larger the imperfection angle, the lower the compressive strength. Complementary inves-
tigations also showed that the imperfection wavelength could be as influential as the im-
perfection angle in predicting the compressive strength. But the main result is that for any
imperfection the compressive strength under flexural loading is larger than that for com-
pression loading. With an imperfection angle close to 0.5° the predicted strength agrees
very well with experimental measurements : 1.95% for bending and 1.2% for compres-
sion([t’Hart et al., 1991]). Predictions of kink-band models (here [Budiansky and Fleck,
1993]) are close to values commonly obtained with pure compression test fixtures.

The difference in strength for the two types of loading is almost constant whatever the
imperfection angle considered. This is due to stress and strain distributions across the thick-
ness that are characteristic of each loading and independent of the imperfection amplitude.
Under pure compressive loading, strain and stress distributions across the tickness are ho-
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mogeneous. Conversely under bending loading the plastic flow area is reduced to a third of
the total thickness, in the most compressed zone: the gradient of loading sets the transverse
characteristic length upon which microbuckling develops.

3.2 Thickness / Gradient of loading
The effect of the ply thickness on the characteristic transverse length, and thus on failure
strains, is characterised on UDs of various thickness. Both compression and bending load-
ings are considered, along with several imperfection angles (Figure 3).

Under pure compression loading, the thickness has very little influence on the compres-
sive strength since constant stress and strain distributions across the thickness cannot deter-
mine the transverse characteristic length over which microbuckling will develop. Only the
imperfection distribution across the thickness can induce a structural effect.

Conversely, under bending loading an increase in strength is observed for decreasing
thickness, or similarly for increasing gradients of loading. This influence of the loading gra-
dient on the compressive strength discussed by [Grandidier, 1991] has recently been con-
firmed experimentally by [Wisnom et al., 1997] and [Rahier, 1998], who used a specific test
fixture. In Figure 3 predictions from our approach appear to correlate well with experimen-
tal data from [Wisnom et al., 1997], who established on T800/924 material that as a first
approximation, the compressive strength is linearly related to the gradient of loading.

3.3 Stacking sequence
Here, the influence of both stacking sequence and transverse plies stiffness and is
investigated. Five laminates made up of 16 T300/914plies are considered ([016], [02, 452]2S,
[02, 902]2S, [0, 903]2S, [0, 90]4S) which can be gathered into three families depending on their
number of consecutive plies: 16, 2 and 1 ply. Whatever the loading, the thicker the
consecutive plies, the lower the laminate strength (Figure 4). The presence of or
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cross plies determines the characteristic transverse length by clamping transverse displace-
ments close to the interface with plies. Orientation of these cross plies has a similar neg-
ligible influence on the instability since [02, 452]2S and [02, 902]2S strength are very close.
In contrast the thickness of the transverse plies has a strong influence on the mechanism.
Although very few data are available, predictions appear to be of the order of magnitude as
the tests results from

4. FIBRE IMPERFECTION GROWTH DURING CURE

Predictions obtained through the previous model have been shown to depend strongly on
the fibre initial imperfections. Among the very few studies devoted to this phenomenon,
only [Paluch, 1994] traced this imperfection by a succession of cross cuttings for a volume
of   But predicting this key parameter seems to be more realistic than mea-
suring it. Indeed, not only the waviness must be known, but any variation of the waviness
amplitude through the ply thickness must also be characterised since it will induce a struc-
ture effect as stated previously. Based on a simple single-fibre model, we demonstrate that
the hypothesis commonly admitted of an imperfection induced during the cooling stage fails
and we propose a new approach.

4.1 Microbuckling instability during the cooling ?
assumed that the instability appears during the final cooling phase.

Theoretically, the mechanism which generates the instability may be due to the difference
between axial thermal dilatation coefficients of epoxy matrices (positive) and carbon fibres
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(negative). According to the consistency of the fibre-matrix interface, a compressive load-
ing is thus generated on the fibre during the cooling stage. As this phenomenon begins for
hot temperatures, the support provided by the matrix against fibre microbuckling is not suf-
ficient and leads to the wavy imperfection formation.

Here, the thermally-induced stress that acts on the fibre is compared with the critical
microbuckling stress, taking into account the change in matrix behaviour during cooling.
The applied thermally-induced stress (7-a) is evaluated by using a simple model in which
the laminate is seen as a stacking of stiff (fibre) and soft (matrix) layers. [Rosen, 1964] and
[Budiansky and Fleck, 1993] approaches (7 b-c) are then used to describe the fibre critical
microbuckling stress, for the matrix in either a rubbery state (7-b) or a glassy state (7-c), i.e.
above or below the glass transition temperature (Tg).

In is the gradient of temperature, Em is the matrix Young’s modulus, and and
denote respectively the axial thermal dilatation coefficients of epoxy matrix and carbon

fibre. In (7-c), G is the composite elastic shear modulus, is the initial inclination angle
of the kink-band, and the composite non-linear response is modelled through a Ramber-
Osgood constitutive law with strain hardening coefficient denoted by n and yield strain in
shear Matrix modulus change and thermal expansion were assessed during the cooling
by way of a Dynamical and Mechanical Thermal Analysis (DMTA).

Results show (Figure 5) that a misalignment angle of at least would be necessary for
the thermally-induced stress acting on the fibre to reach the critical microbuckling stress
(7 b-c). The impossibility of microbuckling occurring during the cooling stage has been
confirmed by single fibre cure tests carried out with different cure cycles, but having the
same final cooling stage. It was demonstrated that hot-stage microbuckling occurs only for
fast cure cycles, independently of cooling stages (see also [Ahlstrom, 1991]).

4.2 Microbuckling instability during the thermosetting reaction ?
Previous results lead us to consider that the microbuckling instability may be generated dur-
ing the resin thermosetting reaction. Indeed, the epoxy resin shrinkage observed during the
gelation (liquid/rubber phase change) reaction could induce a compressive loading on fi-
bres which receive very little support from the matrix in its viscous state. When studying
such a phenomenon, two main concerns arise. On the one hand, mechanical characteristics
of the resin change strongly during chemical reaction, and on the other hand the thickness
thermal gradient generated by the exothermic aspect of the reaction induces different het-
erogeneities in the conversion rates. Thus, the thermosetting reaction was investigated from
a physical and mechanical point of views to search for microbuckling possibilities.

The physical aspects of the epoxy resin thermosetting reaction were characterized by
DMTA analyses. Both elastic and viscous effects were characterised. The fundamental as-
pects of the physics involved are studied by examining a single carbon fibre embedded in
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an infinite matrix.

Experimental Cole-Cole plots were established during the cure cycle. After [Cazeneuve
and Prepin, 1984] a bi-parabolic Zener model can be used to represent the viscoelastic be-
havior of fully cured epoxy resins. In our case, this result is extended to the expoy resin be-
haviour during the thermosetting reactions, but in order to get a tractable model, a classical
Zener model is used. It is modified to account for the cylindrical area of matrix surrounding
the fibre and which is affected by the occurrence of microbuckling. This area was observed
experimentally through a polarized light, but it is quite complicated to follow during the
cure process. Therefore, the characteritic radius of this zone was computed by assuming
that the fibre axial strain can be approached through a Zener viscoelastic response involv-
ing a material with very low viscosity.

Except fibre properties that are supposed to remain constant during classical cure cycles
all terms of the model governing equations depend on time, temperature

and degree of cure. A fourth order Runge-Kutta scheme is employed to determine the vis-
coelastic matrix strain change. Then, the fibre axial strain and stress (through Hooke’s law)
can be estimated which eventually yields the load P(t) thus generated. Then the microbuck-
ling wavelength is estimated from [Bhalerao and Moon, 1996] who considered a perfectly
slipping fibre in an infinite viscoelastic matrix :

where Sf denotes the fibre cross-sectional area; vf is the fibre Poisson’s ratio. To simplify
this approach, we focused on the isothermal case. Results for this cure cycle are
plotted in Figure 6.

It can be postulated that after vitrification, the process of imperfection formation is al-
most fixed as far as the wavelength is concerned. Then, from Figure 6, before cooling the
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wavelength should not be lower than This result correlates well with the wave-
lengths observed experimentally on both single fibre specimens cured during 2h at 100°C
and 2h at 140°C (Direct 120°C isothermal cure is too much an exothermic reaction; it in-
duces epoxy darkennig which does not allow any optical observations). The experimental
wavelength measured is about with an amplitude around this validates the
present approach.

Results show clearly that the microbuckling instability is induced by the shrinkage prop-
erty of the thermosetting reaction. Of course, a post buckling analysis is necessary to deter-
mine fibre waviness amplitude. However, this work sets the basis for the mechanical model
that will be extended to fibre distribution in order to predict fibre waviness imperfections
remaining after cure. Finally, the fibre imperfection distribution which is thermally induced
is very likely to follow the thermal distributions observed in composites during cure which
is parabolic across laminates. The microbuckling approach can thus be considered as being
a good candidate for describing the residual stress state and thus demonstrates the structural
aspect of fibre imperfection distribution in composites.

5. CONCLUSION

A modelling approach of compressive failure has been established which allows for quan-
titative predictions with very little computational effort. It was established that whatever
the loading considered, the effect of the imperfection on the compressive strength is of the
same order. Results for UDs provide a reliable explanation of the high strength obtained
under bending loading. The characteristic length is the central parameter that controls the
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influence of the structural effects by determining the distribution of plastic microbuckling
across the thickness.

This transverse dimension can be influenced by a combination of loading and thickness,
which result in changing the gradient of loading. This effect was demonstrated through
quantitative comparisons with experiments. For cross-plies laminates the number of con-
secutive plies in the loading direction is the key parameter. More precisely, the total thick-
ness of these consecutive plies sets the characteristic transverse length.

The mechanism of failure in laminates under compression or bending is perfectly de-
scribed provided more information can be obtained on the geometrical imperfection. A sin-
gle fibre viscoelastic model was validated which was shown to describe properly the expoxy
resin shrinkage that initiates microbuckling. Relying on DMTA measurements, we showed
that predictions of this model compare well with experimental measurements made on sin-
gle fibre specimens.
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Abstract: We present a new method for optimizing the rate and direction of
fibers at each point in a composite structure for minimizing the compliance of the
loaded structure. We give anexistence theorem and a numerical algorithm. We
show an application to a two dimensionalelastic structure. The method can also be
applied to bending plates and shells.
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1 INTRODUCTION
Most composite structures are reinforced by using fibers or woven glass fabrics, but
their resulting mechanical behaviour is greatly modifiedd by varying the proportion
of fibers and their orientation at each point of the structure. Traditional design
considers these parameters piecewise constant, in the structure; but the geometry of
the structure and the type of loads may impose that they vary, and recent progress
in manufacturing techniques make it possible to fabricate composite structures that
have curvilinear fibers with spatially variable volume fraction. In these situations
one main difficulty is to determine the optimal direction and volume fraction of
fibers at each point of the structure; the answer can be given by experience, but this
way is not a scientific one-which is not necessarily a drawback-, but it is not easily
transmissible.

The method which is proposed here is systematic and can be operated by en-
gineers, even with little experience. It consists of minimizing a functional which
includes the compliance of the structure, the price and the weight of the structure,
and perhaps other parameters. It relies on variational formulations and theorems
associated with the potential energy. It is presented here for elastic structures, but
can be extended to other types of materials. Other authors ([6],[7],[8]) have been
working on this type of problems, but the numerical methods that they use lead to
very long computational times.
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The success of our algorithm, inspired by topological optimisation[l], comes from
the fact that it consists of two alternating minimisations: a local one and a global
one. The first one is to improve, at each point of the structure, the volume frac-
tion and the direction of the fibers; the second one is for solving a homogenized
structure problem when the homogenized constitutive relations are known.; some
other parameters can also be introduced, such as the type of fibers. The algorithm
is convergent because, at each step, the functional, which is positive, decreases.
The method quickly leads to an optimal composite structure. The optimal fibre
partition which is found creates a good stress distribution, in the critical regions
of the structure, in the sense that the Hill-Tsai criterion is greatly reduced. The
theory is given here for linear three-dimensional elasticity but it can be extended
to other types of constitutive relations. The method has a very wide field of ap-
plications: aeronautics, naval, automotive, civil engineering. Several examples are
given for two-dimensional elasticity structures, with or without holes, subjected to
different loadings. The method has also been developed for shells (see G. Terrel
thesis[11]),and applications are in progress in collaboration with aerospace industry.

2 PROBLEM STATEMENT

Consider an elastic structure in a region whose boundary is composed
of where the displacements are zero, and where we apply surface forces

Body forces f are given in If the elastic coefficients
satisfy the usual hypotheses [2], we know that there exists a unique

solution of the elasticity problem: displacements and stresses

In order to reinforce this structure, we introduce fibers, whose direction
and volume fraction may depend

on the point in order to minimize the compliance plus some cost function:
where

We have set The scalar value function is the local cost implied by the
introduction of fibers; it depends on and may take in account of the increase of
mass of the structure.

The function is strictly positive; this implies that it has a minimum GMIN.

We want to show that this minimum is reached for some In section
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3 we study the theoretical aspect of the problem and prove that, in an appropriate
function space, the minimum is reached for some field  In section 4
we give a numerical algorithm that leads to a numerical solution.

3 EQUATIONS AND VARIATIONAL FORMU-

LATIONS
We present the method in a three-dimensional composite elastic structure that oc-
cupies the open set described in the previous paragraph.

The equations and boundary conditions lead to the following system of equations
and relations,

where are the displacement and stress tensor field solution,
is the outer unit normal to the boundary are the elastic coefficients
which depend on and on some other parameters :
; the parameter defines the direction of the fibers at point

is the volume fraction of the fibers at x; other parameters may also refer,
for example, to the type of fibers. For convenience let us state that is
a vector function on We shall make the following assumptions on the coefficients

there exist two constants and strictly positive, such that

This implies also that the inverse matrix defined by
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satisfies a similar set of inequalities, say,

The problem that we state is the following: what are the functions such that
the loaded structure shows the highest stiffness (or the lower compliance), at the
smallest cost. The compliance is defined by

It appears to be the work done by the exterior forces under the solution displacement.
We shall see, from the variational formulation (or the principle of virtual work), that
we have

which shows that is also a measure of the global strain or stress solution.

In order to obtain a variational formulation of the problem (see [4] for details),
let us state the set of kinematically admissible displacement fields:

If u is the displacement field solution , then
Take any multiply by (1) and integrate over after integration by parts

and using (2), we get

where

Choosing in (11), we get

which shows that is always positive. Furthermore (11) is also equivalent to
(14) (see [2] for a proof),
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We can also get a variational formulation in term of the stress. Let us introduce the
set of statically admissible stresses:

If is the stress field solution, we have

Let us now write (2) in term of the strain to get

Now, for any multiply (16) by to get

where

We can prove that (17) is equivalent to

where

From (14) and (19) and the fact that u and σ are respectively the displacement
and stress fields solution, we get the double inequality (see [2], for a detailed proof),

Using (13) , we obtain

From this double inequality we shall get an algorithm.
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4 NUMERICAL ALGORITHM
We want to minimize or   plus some cost function which depends on the
functions say

Consequently, if we set

we have to find

where α appears in and in the stress field solution
From this remark, we can construct an algorithm : assume that we start with

an initial value of say We compute the stress field solution corresponding
to say In a second step, and for any we get which realises
locally

With this value we compute the corresponding stress field solution, say
which, according to (21), satisfies

and, consequently,

We can iterate these calculations : as in (24) , we obtain by

and then we compute the stress field solution corresponding to which
will satisty, as in (25)

and so on; at each step the functional decreases; as it is positive it must
converge to a finite positive value, say GMIN . This numerical algorithm will be used
in section 6, for numerical applications; it converges very rapidly.
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5 THEORETICAL RESULTS

5.1 Preliminary Remark

Since is positive, there exists GMIN such that,

Inf

and a minimizing sequence
This sequence is bounded in because and are bounded for

all points in Consequently this sequence has a subsequence, still denoted
by which converges in weak dual of We deduce easily that
the corresponding sequences and are bounded respectively in V and
then converge weakly to u and respectively, such that

Unhappily we do not know how to pass to the limit in

We stand in a situation mentioned in [9](Remarque 7.6, page 95).

5.2 Reduction of the problem

In order to avoid the previous difficulty, we shall look for a solution in a subset
of of functions that are piecewise constant. For that we make a partition
(P) of into N sub-domains such that

and we introduce the space of functions on whose restriction to each is constant,
with values in Such a function is nothing but an element of
and, since are bounded,  stays in a compact set K(P) of We then easily
obtain the following result:

Theorem 1 The restriction of the function to the subset K(P) takes its min-
imum value for and the associated will satisfy

Of course depends on (P), say
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Proof.  Let us set

and a minimising sequence; it has a sub-sequence, still denoted by αn,
which converges in K(P), to  The correspondingsequences and are
bounded respectively in V and and converge weakly to u and respectively,
such that

In addition we can pass to the limit in the sense of distributions in

because the convergence in K(P) implies pointwise convergence in  of the sequence
for any we state that

tend to zero, for is bounded in and is
bounded by a constant and tends to zero in each point, which implies that
tends to zero (Lebesgues theorem).

also tends to zero, because it is a sum of terms which are scalar products in
of a fixed element which tends weakly to zero in

Furthermore we easily get

1

which ends the proof of the theorem.

5.3 Remark 1

The solution obtained here is of the same type as the one that we get numerically
by using finite elements.
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5.4 Remark 2
The difficulty mentioned in [9] (Remark 7.6, page 95) can also be avoided by choosing
the control in a space of piecewise constant functions; in fact it solves the problem
from a practical point of view, but it does not explain the mathematical difficulty
encountered. A similar kind of problem appears in [10].

6 NUMERICAL APPLICATIONS
We have applied the method explained in section 3 for finding the optimal fiber
directions and volume fraction of fibres at each point in a rectangular plate in plane
deformation. The plate occupies the following region in

It is fixed along free on  and loaded on The plate is
composed of matrix and long fibers. The matrix is assumed isotropic, with Young
modulus Em , Poisson coefficient vm.Fibers are othotropic and transversly isotropic,
with

Young's moduli:
Poisson’s ratio:
shear moduli:
related by
The composite plate, where the volume fraction of fibers is is transversly

isotropic; the coefficients may be obtained either by homogenisation, which gives
a very precise but not explicit result, or by approximate formulas which are the
following:

Longitudinal Young’s modulus
Tranverse Young’s modulus

Shear modulus

Poisson’s ratio

The two-dimentional constitutive relation written in an orthotropy frame is given
by

The criterion to minimise is given by
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where

is proportional to fiber volume representing both the finantial cost of the fibers and
the increase of mass due to the fibers.

Four applications will be presented corresponding to
i) shear forces on a square plate,
ii) shear forces on a rectangular plate,
iii) oblique traction upward on a square plate with two holes,
iv) oblique traction downward on a square plate with two holes.

For each case, we indicate
i) the system of forces,
ii) the decrease of versus the number of iterations, when avalable,
iii) the Hill-Tsai criteria defined by

which must stay lower than one,
iv) the picture showing the optimal fiber orientations and volume fractions in

For each case the convergence of the numerical algorithm has been obtained in
less than twenty iterations, and the computational time is less than sixty seconds on
these simple examples. Of course for industrial problem the situation will be much
different, but will remain very reasonable.
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6.1 Shear forces on a square
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Influence of the size of the mesh (weak)

6.2 Shear forces on a rectangle

Orientations and fibers volume ratio
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6.3 Oblique forces (topward) on a square with two holes.
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6.4 Oblique forces (downward) on a square with two holes.

Orientations and fibers volume ratio (iteration 10)
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7 CONCLUSION

The method presented does not need long computations, but nevertheless, at least
on the relatively simple examples treated, leads to interesting results, which appear
in good agreement with what can be estimated intuitively.

In addition, the optimal fibre partition which is found leads to a stress field
which presents a maximum Hill-Tsai criterion that is much lower that an initial one
corresponding to a single fiber orientation in the structure. One can give an intuitive
explanation by noting that the optimal fiber orientations reduces the shear stresses.
It also shows the importance of using curvilinear fibers to get the maximal benefit
of using composite materials in the design of structures. This fact has not escaped
to the attention of aerospace engineers, and industrial applications are in progress.
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Abstract: The theories of plasticity and growth, as well as other theories of anelastic
behaviour, are shown to share the same formal structure. The unifying concept is that of
material evolution, rooted in the theory of material inhomogeneities. Particular attention is
given to models based on first and second-grade elastic prototypes. A detailed treatment of
the formal restrictions to be imposed on any possible evolution law is followed by the
formulation of balance equations in a volumetrically growing body. A short final section is
devoted to the discussion of thermodynamic inequalities and their consequences.
Keywords: Inhomogeneities, anelasticity, growth, evolution.

1. WHAT IS MATERIAL EVOLUTION?

In many anelastic material phenomena, such as plasticity, viscoelasticity and growth
[Maugin, 1992, 1995;Rodriguez et al., 1994;Taber, 1995], it can be observed, or assumed,
that, in spite of the radical structural changes taking place in the body, the material points
“remain the same” in some sense as far as their constitutive identity is concerned.
Specifically, in plasticity it can be assumed that the massive motion of dislocations leaves
the underlying local properties of the crystallographic lattice unchanged. Similarly, in a
theory of volumetric growth one may assume that new material of the same kind is
somehow squeezed in, thus possibly causing internal stresses, but leaving the material
properties essentially unchanged. What does then change or evolve?

The simplest possible theory of a material evolution of the kind just described is the
following [Epstein and Maugin, 1996]. The basic, unchangeable, material properties are
specified by means of the purely elastic response of a fixed “reference crystal” (Figure 1)
with a given constitutive equation:
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where H is a variable non-singular matrix representing the deformation of the reference
crystal, t is the Cauchy stress, and tc is the specific function describing the elastic response
of the reference crystal. This response function will remain unchanged, so as to represent
the intuitive idea that the material itself remains essentially the same throughout the process
of deformation and evolution. What may change with time is the way in which this
prototypical material element is inserted in the body at some fixed reference configuration.
This implant operation will be denoted by P. If the body is uniform (i.e., made of the same
material at all of its points), we can use the same reference crystal for each and every point.
This implant will naturally depend both on X (point in reference configuration) and t (time),
and will accordingly be written as This is then the essence of material evolution.
The model is still elastic, but, because of the possible time evolution of P, the functional
response of the body to a deformation gradient F is time dependent, namely:

as can be seen from Figure 1.

Denoting by the fixed density of the reference crystal, the density field of the reference
configuration at time t is given by
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where JP is the determinant of P(X, t). It follows that, unless JP is constant in time for each
point X, there will be material growth or resorption. One may then conclude that, at least
from the purely formal point of view, plasticity and growth differ only by the fact that the
condition

is satisfied by the former and violated by the latter. Other interpretations of this condition
are, of course, possible. In this presentation, however, we identify the volumetric growth
(net mass increase per unit volume and per unit time) as:

where a superimposed dot stands for the material time derivative, and tr is the trace
operator. The quantity can be legitimately called the gradient of the velocity

of evolution (or the inhomogeneity velocity gradient) at the reference crystal level. Its
counterpart at the reference configuration level is both tensors having the
same trace.

2. FORMAL RESTRICTIONS ON EVOLUTION LAWS

A complete constitutive theory in the context of material evolution will consist of two parts,
namely: (i) the specification of the constitutive functionals for the reference crystal (which
is elastic, in the above treatment), and (ii) the specification of a time evolution law for the
material implant operation P. In this section we will discuss some aspects of the second
item, since it is not included in standards treatments of continuum mechanics.

The simplest evolution law is a differential equation of the first order for P, of the
form:

where a represents a list of arguments (such as the stress tensor, the Eshelby stress, the
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deformation gradient, etc.). It is not difficult to show that the function f governing the
evolution cannot be completely arbitrary, but must be subjected to a number of formal
restrictions arising from physical considerations.

The first obvious restriction stems from the assumed uniformity of the body. If the
material, although evolving differently at different points, is assumed to remain essentially
unique, we must conclude that the list of arguments a cannot include X explicitly.

The second type of restriction to be imposed on the evolution law is of a more subtle
nature. It arises from the fact that the evolution law must, in some precise sense, be
independent of the reference configuration chosen for the body. Upon a change of reference
configuration the implant maps P(X) change by composition to

and, similarly, the time derivative changes to

Analogously, the list of arguments a will change in some specific way to a transformed list
which we symbolically indicate by Since the reference

crystal itself has not been altered, we demand now that the evolution law be valid for the
hatted quantities with the same function f, namely:

or, according to Equations (7) and (8),

identically for all possible changes of reference configuration Choosing, therefore,
instantaneously at an arbitrary point we conclude that the evolution law must
be of the form:
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where f is an arbitrary tensor function. In other words, the evolution law can only prescribe
the evolution of the inhomogeneity velocity gradient at the reference crystal level in terms
of the list of arguments pulled instantaneously back to the reference crystal.

Two further restrictions of the possible form of the evolution law stem from
considerations of material symmetry. Indeed, let be the symmetry group of the reference

crystal. Then, the collection P (X, t) of all implant maps equivalent to a given implant map

P (X, t) is given by If the evolution law is to prescribe a true structural

change, therefore, we must make sure that P does not move instantaneously within P,

making use of the degree of freedom afforded by the symmetry group. This is the same as
saying (“principle of actual evolution” [Epstein and Maugin, 1996; Epstein, 1999]) that the
values of the function f must not be attained within the Lie algebra of the symmetry group

For example, if the material happens to be a fully isotropic solid (for which the symmetry

group is the full orthogonal group, whose Lie algebra is the collection of all skew-symmetric
matrices), the evolution law should be such that the symmetric part of as prescribed

by Equation (11), never vanishes. In other words, for a fully isotropic solid the “spin” part
of the inhomogeneity velocity gradient is irrelevant. For other materials, however, the spin
part of can be meaningfully prescribed.

The final restriction to be mentioned here arises from symmetry considerations too.
Indeed, symmetry transformations can be imposed on the list of arguments to derive
identities for the function f, as done in the usual constitutive theory.

So far, we have presented the simplest example of material evolution, based on a
prototypical first-grade elastic reference crystal. A similar treatment can be extended to
second-grade elastic materials [Epstein, 1999], a feature that may be necessary in theories
of growth to account for mass diffusion. The main difference with the first-grade theory just
presented is that the implant maps consist not just of a 2nd-order tensor P, but also of an
independent 3rd-order symmetric tensor Q representing the second-gradient behaviour. The
evolution equations are now of the form:

and

A treatment analogous to the previous one shows that these equations can be reduced to the
form
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and

where the second-grade part of the inhomogeneity velocity gradient is given by

The transposition operation is naturally to be effected on the lower indices only.
As to the “actual evolution” restriction, it turns out to be exactly the same as before,

except that the Lie algebra is now to be understood in the more involved sense of the
extended material symmetry group of a second-grade elastic point [Elzanowski and Epstein,
1992; Epstein and de León, 1996]. A case of particular importance for the theory of growth
is that in which the second-grade character of the material is represented by just a
dependence on the density gradient. It is then possible to show that the symmetry group
associated with this property consists of all third-order symmetric tensors with zero trace
(the trace being taken by contracting the upper index of the tensor with either of the lower
indices). This is an Abelian group under addition, so it coincides with its own Lie algebra.
The principle of actual evolution in this case necessitates, therefore, that the function g have
a non-zero trace.

3. BALANCE EQUATIONS

Let be a fixed volume in a given reference configuration with density
which is allowed to vary with time. If II denotes a smooth volumetric mass source and M
is an assumed mass flux through the boundary, we may write the following non-standard
global equation of mass balance:

By Cauchy’s tetrahedron argument, there exists a vectorial mass flux M such that, on an
area with unit normal N, the scalar mass flux is given by The local Lagrangian
form of mass balance is then
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where Div is taken in the reference configuration. The corresponding Eulerian form is

where div is taken in space and where v is the velocity field. The Eulerian production and
flux quantities are related to their Lagrangian counterparts by the classical formulas
involving the deformation gradient F and its determinant J.

Because of the new mass generated during the process of growth, new sources of
momentum, energy and entropy need to be included in the respective balance equations. We
shall divide these sources into two classes. The first type (which somewhat imprecisely may
be called “reversible”) consists of those inputs carried by the entering mass assumed to make
its appearance with the same velocity, specific energy and specific entropy as the preexisting
local substratum. Those sources may then be written explicitly. Other sources, which may
be termed “irreversible”, and can easily be lumped as extra terms, as done in [Cowin and
Hegedus, 1976; Epstein and Maugin, in press], will be ignored here for the sake of brevity.
Under these conditions, the Lagrangian form of the balance of linear momentum reads:

where Grad is taken in the reference configuration and where fb is the volumetric body
force, and T is the first Piola-Kirchhoff stress. We omit the Eulerian version, which can be
obtained by means of the standard transformation of variables.

The balance of angular momentum yields the symmetry of the modified Cauchy
stress tensor given by:

Alternatively, in terms of the corresponding modified first Piola-Kirchhoff stress

the balance of angular momentum implies the symmetry of
The Lagrangian local form of the energy balance is obtained as:

where is the internal energy per unit mass, is the referential heat flux vector, and is
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the referential volumetric heat supply, if any. Note the presence of a “diffusive” term
involving the mass flux vector acting on the material gradient of the energy density..

The Clausius-Duhem inequality results in the following local form:

where is the entropy per unit mass, and is the absolute temperature. Following the
standard procedure, Equation (24) can be combined with (23) to eliminate the volumetric
heat supply term and to express the second law of thermodynamics in terms of the free
energy density

4. FURTHER CONSIDERATIONS

We have already established the need to specify a set of evolution equations for the implant
maps as an integral part of a theory of anelasticity or growth, and we have determined a
number of formal restrictions that those evolution laws must satisfy. To obtain a complete
theory it is necessary to specify also constitutive equations for the stress, the free energy,
the entropy, the heat flux and the mass flux. We will now see that, within the framework of
a set of adopted constitutive equation, some more restrictions impose themselves.

In a first-grade theory, the list of independent variables might consist of the
deformation gradient, the temperature and the temperature gradient. According to the same
philosophy which led us to write Equation (2), we will have similar formulas relating each
of the constitutive quantities at a point in the reference configuration with the prototypical
constitutive equation of the reference crystal. Thus, for example, the free energy per unit
mass is given by:

where is the free energy density of the reference crystal. Following the standard
exploitation of the Clausius-Duhem inequality, it is not difficult to show that the free energy,
in addition to being independent of the temperature gradient, acts as a potential for the
stress and the entropy. The residual dissipation inequality turns out to be the following
[Epstein and Maugin, in press]:
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where B is the Mandel stress [Mandel, 1971; Lubliner, 1990; Cleja-Tigoiu and Maugin, i.p.]:

It is interesting to note that the Mandel stress appears naturally as a result of differentiating
the free energy density with respect to the implant maps, as required by the chain rule of
differentiation coupled with Equation (25). The term represents the dissipation
associated with the mass flux. It is explicitly given by the following expression:

where indices have been used to avoid any ambiguity. The semicolon indicates covariant
differentiation with respect to the material connection [Noll, 1967], whose Christoffel
symbols are:

Since in a first-grade material the second gradient does not appear in the list of independent
variables, the inequality (26) implies that M must vanish, so that there can be no diffusive
effects. These effects are, however, possible in a second-grade theory, in which the second
gradient of the deformation is included ab-initio in the list of independent variables. In a
second-grade theory, a careful use of the chain rule of differentiation and the standard use
of the Clausius-Duhem inequality would yield a residual dissipation involving also Mandel
hyperstresses producing dissipation through the time derivative of the second-order implant
Q. In any case, we see that if the list of independent arguments in the evolution law is made
to include the Mandel or the Eshelby stresses, then the dissipation inequality imposes further
restrictions upon the evolution functionals.
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Abstract : The method of virtual power and continuum thermodynamics are used
to incorporate temperature and temperature gradients into the theory of second
grade solids settled by [Germain, 1973] in the isothermal case. In a second part, it
is shown that heterogeneous classical materials submitted to slowly-varying mean
fields can be replaced by a homogeneous equivalent medium including higher or-
der gradients of displacement and temperature. For that purpose, an asymptotic
analysis of thermoelastic heterogeneous periodic materials is performed. The form
of the derived effective properties are compared to the previous phenomenological
framework.
Keywords : second gradient, Cattaneo equation, virtual power, homogenization
theory, asymptotic method.

1. INTRODUCTION AND NOTATIONS

Although the mechanical and constitutive framework of second gradient theory has
been settled by Mindlin, the work of Germain [Germain, 1973] shows that the prin-
ciple of virtual power is a powerful and elegant tool to derive the balance equations
and boundary conditions for a medium modelled by the first and second gradients
of the displacement field.

In several works including recent ones like [Boutin, 1996] and [Triantafyllidis,
Bardenhagen, 1996], the need for such a theory arises in the mechanics of hetero-
geneous materials and in particular homogenization theory. The usual assumption
that the size of the heterogenities is much smaller than the size of the considered
structure inevitably leads to a classical first gradient Cauchy medium to model a
homogeneous equivalent medium (HEM). As soon as slowly-varying mean fields over
the heterogenities are possible (due to strong deformation gradients in a structure
for instance), the HEM, if it exists, must be regarded as a generalized continuum
[Pideri, Seppecher, 1997] [Forest, 1998]. In the case of periodic media, asymptotic
methods can be used to derive the effective properties of a second grade medium
[Boutin, 1996] [Triantafyllidis, Bardenhagen, 1996].
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The need for higher grade theories appears also in the thermomechanical frame-
work. For instance, strong stress gradients can develop in a structure made of
a heterogeneous material as a result of strong thermal gradients. Accordingly, a
thermoelasticity theory must be developed for second grade media. This has been
undertaken in [Cardona et al., 1998], where motivations and examples based on the
mechanics of heterogeneous materials are given. Part 2 of the present work shows
how the principle of virtual power combined with the thermodynamical principles
can be used to settle a thermoelasticity theory of second grade media. The linear
case is presented in part 3. In the last part, the asymptotic analysis of periodic
heterogeneous classical media of [Boutin, 1996] is extended to the thermomechan-
ical case, in order to show that the additional constitutive tensors arising in the
pheneomenological theory of part 2 can be computed explicitely as functions of
the classical thermomechanical properties of the constituents. In this sense, the
mechanics of heterogeneous materials provides an example of thermoelastic second
grade effective medium, for which balance and constitutive equations have the form
predicted by the basic principles of continuum thermomechanics.

An invariant notation is used throughout this work. First, second, third and
fourth order tensors are respectively denoted by and The gradient
and divergence operators are defined as follows

where the nabla operator and an orthonormal basis have been introduced :
The notations for the contraction of tensors are :

The gradient operator can be decomposed into its normal and tangent parts and
being the normal to a surface :

The gradient of the velocity field on a solid can be decomposed into a symmetric
and a skew–symmetric part :

For simplicity, the small perturbation framework is adopted, so that Lagrangian and
Eulerian configurations are not distinguished. That is why tensor will be replaced
by The boundary of body will be regarded as twice
differentiable and thus admits at each point a unique mean curvature R. The reader
is referred to [Germain, 1973] for the treatment of edges and corners.
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2. MECHANICS AND THERMODYNAMICS OF SECOND GRADE MEDIA

2.1 Principle of virtual power

The method of virtual power has proved to be an efficient tool for deriving balance
equations and boundary conditions and has been applied to several coupled me-
chanical problems. Following [Maugin, 1980], the first step consists in defining the
set of virtual motions relevant for the considered physical situation. Within the
present thermomechanical framework, velocity fields and temperature rates
are regarded as generalized virtual motions. It means that temperature is treated
formally as an additional degree of freedom. The set then contains the variables
that have to be introduced in a second grade theory :

The latter may be restricted to objective virtual fields and an additional set
is defined :

Since the small perturbation framework is used in this work, will be replace by
in the following. The principle of vitual power states that, in a Galilean frame, the
virtual power of inertial forces balances the virtual power of internal and external
acting forces, for all generalized virtual motions and for all subdomain D of body

The virtual power of internal (i), volume (d), contact (c) and inertial forces (a) are
supposed to admit densities according to :

The densities are then taken as linear forms on the appropriate set of generalized
virtual motions :

The quantities dual to the strain rate and strain rate gradient in the power density
of internal forces are the symmetric stress tensor and the hyperstress tensor

Volume forces volume couples and volume double and triple forces
and may exist in general. A traction vector and a normal surface double force
may act on the domain surface. The acceleration at a given material point reads
For the sake of generality, additional terms associated with virtual temperature

rates and their gradients have been systematically introduced. Note that a similar
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term should in principle appear in However it will be assumed that, if such
additional terms exist in the power of acceleration forces and in the expression of
the kinetic energy they are still such that :

Note that the homogenization procedure developed in section 4 and restricted to
the static case, should be applied to the full dynamical case in order to justify the
existence or not of additional terms in and

The application of the principle of virtual power and the successive use of Stokes
theorem for volumes and surfaces as shown in [Germain, 1973] and in [Cardona et
al., 1998] lead to the balance equations

and associated boundary conditions :

Note that the equations (15) and can be regarded as a definition of a and
depending on and thus the formulation does not require any additional partial
differential equation to be solved. In the classical first gradient theory, the term
could also be introduced in the power density of internal forces, but, for vanishing

it would have no counterpart so that the application of the principle finally
implies As a result, the proposed thermomechanical framework is relevant
for a second grade theory and reduces to the classical case if higher order gradients
are excluded. Similarily, the subsequent developments will show that a constitutive
dependence on temperature gradient that seems to be necessary for instance in the
modelling on some thermal treatments, can be introduced only within the framework
of a second grade theory for the displacement.

2.2 Energy and entropy principles

The global form of the energy balance equation on takes the forms :

where is the internal energy of the system and the total heat supply. In the
second form, the kinetic energy theorem (13) and the principle of virtual power (8)
have been applied. Introducing the specific internal energy the heat flux vector

and an inner heat production rate r,

a local form of the energy balance is obtained :
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where the expression (10) of the power density of internal forces is to be substituted.
The global form of the second principle reads : where S is the global

entropy of the system and is the total flux of entropy. Introducing the local
specific entropy s, the following relations are assumed to hold :

where Js is the entropy flux vector. A local form of the entropy imbalance is
adopted :

Combining (19) and (21) and introducing the Helmholtz free energy we
get the Clausius-Duhem inequality :

In the case of hyperelastic material behaviour, the specific free energy is a function
of The Clausius-Duhem inequality (22) can then be expanded
as follows :

from which the state laws can be deduced :

When compared to the isothermal second grade theory in [Germain, 1973], the pro-
posed thermodynamical framework takes full account of the introduction of variable

in the constitutive modelling. The main consequence is the modification of the
entropy by the term a(i) which, according to the balance equation (15), is nothing
but the divergence of the generalized thermodynamical force b associated with the
temperature gradient. As a result, dissipation is reduced to its thermal part :

2.4 Alternative formulations

Alternative thermodynamical formulations of second grade thermoelasticity exist
and some of them have been described in [Cardona et al., 1998]. The common
feature of the alternative formulations is to avoid the introduction of additional
terms in the power density of internal forces (10) and the modifications may then
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appear in the energy balance (thus extending the treatment of [Dunn and Serrin,
1985] in the isothermal case) or in the entropy flux as recommended in [Maugin, 1990]
for the introduction of gradients of internal variables in the constitutive framework.
According to the latter procedure, the and terms can be dropped in (10) and
an extra-entropy flux must be defined :

A reference thermomechanical state is considered
and the kinematic, balance and constitutive equations are linearized with respect
to this reference state. The small perturbation framework requires sufficiently small
strains, strain gradients, temperature changes and temperature gradients. The rel-
evant variables then are :

where the symmetric gradient operator e means The
free energy is then taken as a quadratic form in all these variables :

The state laws follow from (24) :

This framework however leads to the same state laws as (24), but the classical heat
conduction inequality is changed leading to a non-classical Fourier’s law modified
by the extra-entropy flux k.

3. SECOND GRADE LINEAR THERMOELASTICITY

The previous general framework is explicited in the case of linear thermoelasticity in
the static case and the associated constitutive properties are derived. The additional
terms arising then in the heat equation are discussed.

3.1 Linearized constitutive equations
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in which classical and additional terms can be recognized. In particular, there exist
a thermal eigenstrain and, in the same way, an eigen-(strain gradient)
the interpretation of which is given in [Cardona et al., 1998]. In the linearized
scheme, the introduced constitutive properties are independent from temperature.
The constitutive equations can be written as a single relation linking the effective
stress tensor and strain and temperature gradients :

where In this expression, second order strain gradients and second
order temperature gradients necessarily appear.

3.2 Linearized heat equation

The heat equation is deduced from the energy equation (19) and takes the form :

Substituting the linear state laws in (34) and taking the fact that a(i) is nothing but
the divergence of b(i) (setting b(e) to zero without loss of generality) into account,
the linearized heat equation is obtained :

In the isotropic case, all odd order constitutive tensors vanish so that the last term
disappears. It turns out that the proposed approach leads to an additional thermo-
mechanical coupling term in addition to the classical term

It can be noted that a generalized specific heat can be defined [Cardona et al.,
1998], the positivity of which is preserved at least in the present linearized case.
In the purely thermal case, the heat equation is also modified as indicated below.
Introducing a linear relationship between the heat flux vector and the temperature
gradient :

that still identically fulfills the positive thermal dissipation requirement (25). The
purely thermal part of the heat equation reduces, in the isotropic case, to :

where simply is the Laplacian operator. It is interesting to notice that this
equation is identical to the first Cattaneo equation presented for instance in [Müller
and Ruggeri, 1993]. Cattaneo’s argument is rather based on a modification of Fouri-
er’s law :

which may lead to up-hill heat diffusion, contrary to the present formulation. How-
ever Cattaneo proposed a second modification of Fourier’s law aiming at restoring
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the hyperbolic character of the heat equation. This modification falls into the frame-
work of extended thermodynamics and is not contained in our formulation.

4. ASYMPTOTIC ANALYSIS OF HETEROGENEOUS MATERIALS

The aim of this section is to show that the additional constitutive properties as-
sociated with higher order strain and temperature gradients that have been intro-
duced in a purely phenomenological manner in the previous sections, can be deduced
from an analysis of the effective properties of a heterogeneous material subjected to
slowly-varying mean fields. For simplicity, classical heterogeneous materials with
periodic microstructure are considered, in the static case. In a first analysis, the local
temperature field is assumed to be known and the fully coupled thermomechanical
problem is treated at the end. The main features of the constitutive framework for
thermoelastic second grade media proposed in section 2 and 3 are confirmed by the
following analysis but additional ones are pointed out in the last section.

4.1 Field equations at the local scale

The linear thermomechanical properties of a heterogeneous classical material, ade-
quately represented by a Cauchy continuum, are considered. The aim is to deduce
the global properties of an homogeneous equivalent medium from the local prop-
erties. The local and global (effective) variables (free energy, deformation, stress,
temperature, temperature change, specific entropy and heat flux) must be distin-
guished :

The heterogeneous material is described locally by the following free energy with con-
stitutive properties varying in space but independent from temperature (linearized
formulation) :

The local specific heat for constant deformation is related to parameter through :

The equations of the linear coupled thermomechanical problem P to be solved on the
heterogenous material are Hooke’s and Fourier’s laws and the balance of momentum
and energy :
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where q stands in fact for and for Fourier’s heat conduction
tensor divided by This convention holds for the remaining of this part. The
unknowns fields are the local displacement u(x) and temperature

In this part, the problem is restricted to an inifinite body, so that the additional
problems associated with boundary conditions are not addressed. Initial conditions
for the evolution problem close the formulation of P.

4.2 Dimensional analysis and asymptotic developments

For simplicity, it is assumed that the heterogeneous material admits a periodic
microstructure that can be described by a unit cell Y1 of characteristic size l. The
macroscopic scale is characterized by a typical wave length of variation of the
mean fields like overall stress and strain. In a finite body, may be of the order of
magnitude of its size L. The dimension analysis performed below provides the small
parameters involved in the thermomechanical problem, to be taken into account in
a homogenization procedure.

Dimensionless space coordinates, displacements, time and temperature, several
operators and constitutive properties can be defined :

where reference time and characteristic time and length have been introduced.
A dimensionless formulation P* of the thermomechanical problem P can then be
expressed on a dimensionless unit cell Y* :

The characteristic numbers of the thermomechanical problem then are :

Note that another characteristic length appears if boundary conditions like heat
convection are introduced but this is not treated here.

In the following a homogenization procedure is considered for which is the rel-
evant small parameter whereas and are regarded as constant and independent
from For that purpose and similarly to classical multiscale asymptotic meth-
ods used in periodic homogenization [Sanchez-Palencia, 1980], a series of problems
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is considered. Once the small parameter of the problem has been chosen
after considering the dimensionless problem P*, it is possible to define each on
Y

and the equations of are chosen to be the equations (43) and (44) in which
displacements, temperature, stress and heat flux have to be replaced by
and Each constitive tensor a appearing in these equations is to be replaced by

such that

The limiting case obtained for gives the balance and constitutive equations
of a homogeneous equivalent medium. This is recalled in the next section where the
corrections for non-vanishing are also investigated since they are relevant when
the macroscopic mean fields are not strictly constant but slowly varying. All fields
are regarded as functions of the two variables x and y, that can be expanded in a
series of powers of small parameter

where the terms of the series are Y-periodic with respect to the second variable. In
order to put these expressions into the balance and constitutive equations of the
gradient operator can be split into partial derivatives with respect to x and y :

c c

4.3 Derivation of the effective balance and constitutive equations

The expansion of stress and heat flux are introduced into the equations of balance
of momentum and energy. The terms can be ordered with respect to the powers of

Identifying the terms of same order, the different contributions in the expansions
(53) to (56) can be shown to be solution of the following auxiliary problems on Y :
Problem

Problem

Problem
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Problem

The solutions of problem are Problem gives
and The resolution of and corresponds to classical homogenization theory
applied to coupled thermoelasticity. The reader is referred to [Francfort, 1983] and
[Brahim-Otsmane et al., 1992] for a detailed solution. We simply give the form of
the solution :

where are concentration tensors, the existence of which is ensured by the
linearity of the problem.

4.4 Links with second gradient theory

Following the technique used for instance in [Boutin, 1996], the problems and
dealing with the correcting terms and can be solved in order to evidence some
links with second gradient theory. In this section and for simplicity, the analysis is
restricted to the thermomechanical problem for a given temperature field

The problem associated with the two first equations of can
then be interpreted as an elasticity problem with fictitious body forces that are
linear in and and

Accordingly, there exist 4 additional concentration tensors such that :

where the are constant translation terms. The concentration tensors can be
taken such that their average over the unit cell vanishes. These expressions are now
used to compute the local strain fields with the correctors :
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where concentration tensors modified by application of the symmetric gradient op-
erator have been introduced and the translation terms have been put into the first
term for simplicity. The mean stress is obtained by averaging the local stress
over the unit cell :

where < . > denotes the averaging process. This relation can be interpreted as the
effective constitutive equation for the homogenization problem up to order 3. The
involved constitutive tensors are related to the concentration tensors as follows :

It appears that the overall constitutive equations involve higher order gradients of
the overal strain and temperature fields. They are found to be identical to the
constitutive equations (33) of a linear thermoelastic medium, providing that the
mean stress is interpreted not as an overall Cauchy stress tensor but rather as the
“effective” stress of a second grade medium defined by (33). The mean stress can
be shown to fulfill the following effective balance equation :

which actually is the balance of momentum equation (14) satisfied by the “effective”
stress of a second grade medium. The identification of the homogeneous equiv-
alent medium with a second grade thermoelastic material should be closed by the
statement of the boundary conditions of the boundary value problem for the body
endowed with the properties of the HEM.

4.5 Coupled thermomechanical problem

The resolution of the fully coupled thermomechanical problem of heterogeneous
elasticity goes through the resolution in cascade of problems   to , for the dis-
placement end temperature fields and Note that, in each case, the thermal
and mechanical problems are decoupled, since the coupling term in the heat equa-
tion of problem involves the solution of problem only. The mechanical
part of the problem has been solved in the previous section. The partial differential
equation of each thermal problem in can be interpreted as a heat equation with
fictitious heat source terms linear in so that the solutions
for temperature can be proved to have the form :
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The thermomechanical coupling terms in problem   leads to the following addi-
tional contributions to the previous result (68) :

As a result, the expression of the overall constitutive equations for the effective
stress (70) must be complemented by additional constitutive tensors of the form

that are active only in the transient regime. Similarily,
the expression of the effective heat flux can be derived :

The expressions relating the introduced effective constitutive tensors and the con-
centration tensors appearing in (73) and (74) are not given here for conciseness. The
first term shows that, at the first order, Fourier’s law is retrieved at the macroscopic
level. Taking higher order terms into account leads to a generalized Fourier law in-
volving higher order temperature gradients and transient terms. Note that the dissi-
pation inequality remains fulfilled per construction at the macroscopic level, at least
up to the considered precision in New coupling terms arise then in the effective
heat equation : In addition to terms in and that are expected according

to the thermoelastic framework depicted in part 3, terms involving and
arise necessarily. This seems to indicate that an even more general phenomeno-

logical framework that the one proposed in part 2 should be considered for which
and should be introduced together. In particular the relations between the

term appearing then in the heat equation, and the second Cattaneo equation (see
[Müller, Ruggieri, 1993]) remain to be investigated.
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The power of the interior forces in solid mechanics

M. Frémond,
Laboratoire des Matériaux et des Structures du Génie civil,

2, Allée Kepler,
77420 Champs sur Marne, France, fremond@lcpc.fr

Abstract: In three-dimensional solid mechanics the power of the interior forces seems to
have a very fixed even intangible expression. Nevertheless it is possible to adapt it to the
problems under consideration. Four examples are given. The first example is devoted to
microscopic motions which modify the macroscopic properties of materials. This is the case
for materials which can be damaged or involve solid-solid phase changes. The second
example deals with new materials of civil engineering made of a large number of long fibres
buried in a solid. The fibres, for instance long textile fibres, apply non-local actions. The last
two examples are devoted to the old and complex problem of collisions of rigid and
deformable bodies. The basic idea which is developed is that the system made of a point
moving with respect to a rigid body is deformable since the distance of the point to the body
changes.

1. INTRODUCTION

In classical three-dimensional solid mechanics, the expression of the actual or virtual power
of the interior forces is often thought to be very fixed

where is the stress tensor, the strain rates tensor with

is the macroscopic velocity. Nevertheless it is possible to adapt it to the
problem under consideration. In the sequel four examples of unusual powers of the interior
forces related to important and practical topics of solid mechanics are given. In order for the
resulting predictive theories to be used for engineering purposes, only macroscopic quantities
are involved in the new powers of the interior forces.

The first example is devoted to microscopic motions which modify the macroscopic
properties of materials. There are many examples of such situations, damage, solid-solid or
solid-liquid phase changes,... To be specific, damage, for instance damage of concrete, is
chosen. Damage results from microscopic motions. Our basic idea is that the power of those
microscopic motions must be accounted for in a predictive theory. Thus we decide to modify
the expression of the power of the interior forces. We assume that this power depends on the
damage rate which is clearly related to the microscopic motions. Furthermore we assume that
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it depends also on the gradient of the damage rate to account for microscopic interactions.
This assumption leads to the basic equations of motion. Previous works related to this idea
can be found in [Maugin, 1980], [Frémond, 1985], [Frémond, 1988], [Maugin, 1990],
[Frémond et al., 1996 a] and [Frémond et al., 1996 b].

The second example deals with new materials of civil engineering made of a large number of
long fibres buried in a solid [Texsol, 1991]. On the macroscopic scale the solid-fibre mixture
appears as an homogeneous continuum. We investigate the mixture which we call the
material, on this scale. At any point of the material, the fibres apply actions at a distance. The
variation of the distance between two points describes the deformation due to the fibres. The
power of the interior forces we choose involves the power of the non local actions resulting
from the deformations of the fibres. The fibres can break when their tension is too large. We
use the volume fraction of unbroken fibres as a new macroscopic state quantity. The power
of the interior forces is completed by a term which accounts for the movements which
progressively break the fibres.

The last two examples are devoted to the old and complex problem of collisions of rigid or
deformable bodies. The basic idea which is developed is that a system consisting of a point
moving with respect to a rigid body is deformable, since the distance of the point to the body
changes. Because the system is deformable, we define a velocity of deformation and interior
forces. The latter are percussions and forces defined by their virtual work. The equations of
motion are derived from the principle of virtual work. The constitutive laws for the interior
percussions and forces are the other equations which describe the evolution of the system, in
particular the collisions which occur between the point and the body. Even if they are not
derived in this paper, let us mention that they account for multiple collisions, i.e. collisions
between two or more solids with multiple and simultaneous contact. An example, given to
illustrate the collisions of deformable solids, accounts for the micro-rebounds resulting from
rapid vibrations after a collision.

i

2. INTERIOR FORCES AND MICROSCOPIC MOVEMENTS

Let us consider a material with a microscopic structure, for instance concrete or a shape
memory alloy. Within the material there are microscopic motions which modify the
microscopic structure: the microscopic motions produce microfractures and microcavities in
the concrete which lead to a decrease in its stiffness; the microscopic motions produce the
austenite-martensites phase change in a shape memory alloy,... At the macroscopic level, the
engineering level, the microscopic state is represented by global macroscopic quantities, for
instance, the scalar is a damage quantity with value 1 when the concrete is
undamaged, and value 0 when it is completely damaged ; the scalars are the volume
fractions of the austenite and martensites in an alloy,... The power of these microscopic
motions must be taken into account in the power of the interior forces. Thus we choose the
power of the interior forces to depend, besides on the usual strain rates is the

macroscopic velocity), also on and grad These latter quantities are clearly related to

the microscopic motions. The gradient of damage is introduced to take into account the
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influence of the damage or the influence of a phase of the shape memory alloy at a material
point on its neighbourhood. The following description is made by referring only to damage in
concrete. The physical features of phase change in a shape memory alloy can be found in
[Frémond et al.,1996a].

The actual power of the interior forces which takes into account the microscopic movements
in a domain is chosen as [Frémond et al., 1993], [Nedjar, 1995], [Frémond et al.,1996 b],

Two new non-classical quantities appear : B, the interior work of damage, and the interior
work of damage flux vector. One can check that the axiom of the interior power is satisfied,

[Germain, 1973]: Pint = 0 for any rigid body velocity in such a motion because the

distance between material points remains constant). The actual power of the exterior forces
in the domain is defined by

The first two terms are classical and the last two are not. The quantity A is the volume
density of energy per unit of provided to the material from the exterior by microscopic
actions without macroscopic motion. By instance, A can be the energy provided by
irradiation or by an electrical or chemical action which modifies the microscopic bonds
(radiation damages metallic pieces in nuclear plants). The energy A can also describe the
energy provided by microscopic mechanical actions which are not taken into account by the
macroscopic strain rates, for instance very fast vibrations with vanishing amplitude. The
quantity a represents the surface density of energy per unit of provided by the exterior of
to without any macroscopic motion. The actual power of the acceleration forces is defined
by the classical formula

where is the macroscopic acceleration. The principle of virtual power gives two sets

of equations of motion :
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where is the outwards normal vector to and,

The equations (1) to (4) are the equations of motion. The relation (4) gives the physical
meaning of and a. In the chosen example, is the energy flux vector and a is the surface
density of energy provided to by surface microscopic actions due to the exterior of and
without macroscopic motion.

The equations (3) and (4) are new. They describe the effects of the microscopic motions at
the macroscopic scale. The equations of motion are completed by the constitutive laws which
take care of the properties of the material under consideration. Of course the constitutive
laws couple the equations of motions (1) and (3), taking care of the influence of the evolution
of the microstructure on the macroscopic properties. A careful treatment of the fact that the
damage quantities are proportions (i.e., quantities with values between 0 and 1) is involved in
the constitutive laws.

3. NON LOCAL INTERIOR INTERACTION FORCES

Consider a solid in which many long fibres are buried (for instance a mixture of sand and
textile fibres, [Texsol, 1991]). At any point, those fibres apply non-local actions. On the
macroscopic scale the solid-fibres mixture appears as an homogeneous continuum. We
investigate the mixture, which we call the material, on this scale. The variation of the
distance between two points describes the deformation due to the fibres. In the domain of
the part of occupied by a structure made of this material, the non-local actions on
are the non-local actions of the points of onto itself (the interior actions in and the
non-local actions of the points of onto (the exterior actions in The related
new interior forces are defined by their virtual power. These are forces acting along the line
connecting the two points. The sum of these forces at a point describes the action of the
fibres.

The interior forces in a domain contained into are defined by their virtual power which
is a linear function of the strain rates. The strain rates we choose are the classical ones,

and a new strain rate, the velocity of the square of the distance between the material

points of
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where is the velocity of the material point This strain rate describes how the fibres

lengthen or shorten. The virtual power of the interior forces in a domain is chosen
as follows :

The stress tensor arises from the local actions. The new interior force, the quantity
arises from the non-local actions of the points belonging to It is proportional

to the intensity of the two forces applied at the points and in the direction of the
segment the force at point and the force

at point An easy computation shows that

with, The unusual quantity in the

power of the interior forces is the power of the force which is the sum of all the
elementary forces applied at point The power of
the interior forces (5) satisfies the axiom of the interior forces, [Germain, 1973] :

for any rigid body velocity. The virtual power of the exterior forces is the

sum of the virtual power of the contact actions and the virtual power of the non-

local actions, which is itself the sum of the power of the actions exterior to and
of the power of the actions of the points of onto

The force arises from the non-local actions of the points of onto
One must note that this power depends explicitly on the structure The power of the
acceleration forces has the classical expression,

where is the acceleration and the macroscopic density. The definitions of the forces

and show that the sum is the
force applied at point by the whole set of points of It follows that
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The equations of motion arise from the virtual power principle,

They are,

where is the outwards normal vector to or by using (6),

Let us note a property of the type of material we consider: the force  is global
and related to the whole structure. It is related not only to the neighbourhood of a point as
usual. Relation (6) proves that there is only one equation of motion, the equation (8) which
does not depend on All the equations (7) which seem to depend on are equivalent to (8).
Let us note that the second relation (7) proves that the traction does not depend on

Note There is no necessity for Mint to be symmetric, One can note that only

the symmetric  quantity appears in the equation of motion.

When the fibres are pulled, they break progressively under the tension. To take this
phenomenon into account, we need a new quantity to describe the state of the fibres. Because
we have decided to remain at the macroscopic level, we choose the volumetric proportion of
unbroken fibres, The rupture of a fibre arises from microscopic motions. We decide
not to neglect the power of those microscopic movements. The only macroscopic quantity

which is related to their velocity is . Thus we add new terms to the power of the interior

forces :

Two new interior forces appear. The quantity Bint depends on It represents the non local
interactions due to the breaking or mending of the fibres connecting the points of to   For

the sake of simplicity, we assume that the interior force does not depend on Thus

describes local microscopic interactions due to the breaking or mending of the fibres.
The power of the external actions breaking or mending the fibres connecting the points of

to is taken into account by the power of the exterior forces which is,
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where represents the non local actions due to the breaking or mending of
the fibres connecting the points of to the local actions of on and

the action non-local of the exterior of Due to the definitions of Bint and Bext we
have

This result is again a consequence of the fact that the structure must be considered as a
whole and that the actions are global and not local. If the inertia effects in the microscopic
motion are neglected, the principle of virtual power yields

which are the equations of motion related to the microscopic motions which break the fibres.

The equations of motion are completed by constitutive laws which take care of the properties
of the material under consideration. Of course the constitutive laws couple the equations of
motions (8) and (9) taking care of the influence of the evolution of the fibres on the
macroscopic structure. For instance, a predictive theory describes a material in which the
fibres break only when they are submitted to large tension. Their rupture is irreversible: they
cannot mend by themselves, [Frémond,1993].

4. INTERIOR FORCES IN COLLISIONS OF RIGID BODIES

Let us consider a point with mass m, moving above a rigid plane and assume for the
sake of simplicity that the plane is fixed (figure 1). Both the point and the plane are rigid
bodies but let us note that the position of the point with respect to the plane changes: thus the
system made of the point and the rigid body is deformable (its form changes!)

[Frémond,1995 a], [Cholet, 1998]. The velocity of the point, is an appropriate

quantity to describe the way the system deforms ; thus we choose as the velocity of
deformation of the system. During its evolution the point can collide with the rigid plane.
The duration of a collision is very small compared to the duration of the flight of the point.
Because we choose not to focus only on the collision phenomenon, we assume that the
collision is instantaneous. It follows that the actual velocity is discontinuous in a collision:
there is a velocity before the collision and a velocity after the collision. Thus the
velocities are assumed to be functions of bounded variation [Moreau, 1988]. A virtual
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velocity is also a vector of bounded variation depending on the time t. Because the
system is deformable there are interior forces. We specify them by defining their virtual
work. In this setting the equations of motion arise from the principle of virtual work: the
virtual work of the acceleration forces between the times t1 and t2 is equal to the sum of the
virtual work of the interior forces and of the virtual work of the exterior forces between the
times t1 and t2,

We have to define those three virtual works. To be specific, let us consider the movement
shown on figure 1: at time t1 the point has position it collides with the plane at time t,
then slides on it. Due to the applied exterior force it leaves the plane smoothly to be at

position at time t2. For the sake of completeness, we assume an external percussion is
applied at time t.

Note In terms of mathematics, the force has a density with respect to the Lebesgue's measure dt and the

percussion has a density with respect to the Dirac’s measure Thus the total exterior action is

The virtual work of the acceleration forces is

where is the actual velocity, and is the discontinuity of velocity at the time
of collision. Note that the virtual work of the acceleration forces is such that the actual work
is the variation of the kinetic energy between the times t1 and t2. The virtual work of the
interior forces is a linear function of the velocity of deformation which is zero for any rigid
system motion. In our situation, because one element of the system (the plane) has been
fixed, the rigid body motions which do not change the form of the system are reduced to the
movements with velocity The work of the interior forces we choose is

where is a force and a percussion. It is obvious that  for any
rigid system velocity. During the short duration of a collision very large stresses and contact
forces occur. Those important forces are represented by the percussion The virtual
work of the exterior forces is
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The equations of motion follow easily from the principle of virtual work. They are,

almost everywhere,

at any time t.

The equations of motion of the rigid body are equations satisfied at any time t involving
and equations satisfied almost everywhere involving The constitutive laws

for the interior forces and allow one to deal with the various behaviours of
colliding solids. They easily describe multiple collisions occurring at different points of the
same solid or occurring between many solids like balls, rocks or elements of granular
materials, [Frémond,1995 b], [Cholet,1998]. Let us also mention that it can be proved that
the very irregular equations of motion of rigid bodies have solutions, giving a good
coherence to the theory.

Note A much more sophisticated theory assumes that the work of the interior forces depends on both

and

5. INTERIOR FORCES IN COLLISIONS OF DEFORMABLE BODIES.

When it is no longer possible to consider that the solid which collides with the plane is a
point, a similar theory dealing with a rigid body is built. Let us consider the more interesting
situation where the solid which collides the rigid plane is assumed to be deformable, for
instance because it vibrates after the collision [Stoianovici et al., 1996]. We keep the
assumption that the collision is instantaneous. Thus the velocity is discontinuous at
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the time t of the collision: there is a velocity before the collision and a velocity

after the collision. The velocities of the solid are assumed to be functions of
bounded variation of the time and piecewise differentiable functions of the space position.
The collision involves very large stresses and contact forces which are active during the very
short time of the collision. In order to take them into account, we choose the virtual work of
the interior forces as

This quantity involves the usual stresses, and contact forces between the solid and

the plane on the contact surface The very large forces which occur during
the short duration of the collision are represented by the new percussion stress and

the new contact percussion on the collision surface The virtual work of the
acceleration forces is

where the discontinuity of velocity is    Let us note again that
the actual work of the acceleration forces is the variation of the kinetic energy between the
times t1 and t2. The virtual work of the exterior forces, assuming no exterior percussion is
applied, is

The equations of motion follow from the principle of virtual work. They are at the time t of a
collision
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These equations are completed by constitutive laws, for instance,

and where is the non interpenetration reaction which is

zero when the normal velocity after the collision is strictly negative (contact is not
maintained) and negative when it is zero (contact is maintained). As an example, consider a
steel rod falling on a rigid support. After a first collision it vibrates. Since the vibration
velocity is large compared to the bouncing velocity, the rod hits the rigid support several
times before rising completely. This is the micro-rebound phenomenon. One can see the
micro-rebounds in figure 2 which shows the position of a point of the rod versus the time.

The velocities of the points of the rod after the first bounce are shown in figure 3 [Dimnet et
al., 1999].
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6. CONCLUSIONS

The different examples show the importance of adapting the expression of the power of the
interior forces to the problem under consideration. There are more examples of unusual
powers of interior forces for instance in contact theories [Frémond, 1988],
[Panagiotopoulos, 1993], [Frémond et al., 1996 c].
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Abstract: The concept of effective stress is adopted to identify a continuum damage
(microcracks) parameter in stress corrosion. During interrupted test, this internal
parameter is evaluated by two different methods. The results obtained are in good
agreement.
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1. INTRODUCTION

In recent years the key role of the strain rate as a mechanical variable is acknowledged
in the quantitative evaluation of certain environmentally influenced cracking process of
ductile alloys, especially those involving the joint action of stress and corrosion, so
called stress corrosion. It is well known that stress corrosion cracking (SCC) results
from a synergy under a mechanical stress and action of a specific agressive
environnement. This synergy is much more dangerous than a simple superposition of
the action of this two actions. Today, in SCC studies, two kinds of models exist: models
founded on SCC mechanisms like anodic dissolution, hydrogen embrittlement, surface
mobility, film induced cleavage, and predictive models based on experimental
observations allowing an estimate of crack propagation rates and time to failure. A semi
empirical model has been elaborated and applied [Maiya., 1985] that gives relations
between macroscopic strain rate and experimental results like time to failure or crack
propagation rate. This model is based on the existence of only one crack that leads to
the failure of the material. In stress corrosion studies, multi-cracking phenomena are
often met. Also, to build a realistic predictive model, it is essential to understand how
damage is developed because empirical laws used today in stress corrosion studies are
not always supported by a good and complete understanding of physical mechanisms.
Various means of observation of the stress corrosion effects on metallic materials or
alloys allow us to distinguish two separate processes leading to catastrophic failure.
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In a first stage, a densification of pittings appears on the surface of the material
which precedes the development of microcraks of small depth. A second stage consists
in an emergence of macrocracks which are induced by the microcrak coalescences
connected with the macrocrack propagation. This macrocrak propagation leads to the
failure of the materials [Desjardins et al., 92]. The first part of the stress corrosion
phenomenon is relevant to the continuum damage mechanics. The second one is
completely within fracture mechanics.

From the point of view of prediction it is of the utmost importance to be able to
apprehend the phenomenon and especially to quantify the density of microcraks which
overrun the part of volume near to the surface of materials. In fact, the end of this first
part of the phenomenon is an indicator, or a precursor, of the beginning of the
macrocraking which leads inescapably to the rupture of the material. A glimpse at the
phenomenology of stress corrosion processes is given section 2. From this
phenomenology, an internal parameter of surface damage is defined via an adaptation of
the theory of effective stresses (section 3).

This new damage parameter is experimentally detected. In the case of an austenitic
stainless steel Z3 CN 18-10 immersed in a concentrated solution of magnesium chloride
of 44% in weight and brought to the boiling point temperature e.g. 153° Celsius, the
experimental results are given.

2. PHENOMENOLOGICAL ASPECTS OF DAMAGE STRESS-CORROSION

The stress corrosion becomes apparent by the onset of the propagation of cracks without
general attack of the metallic material. The onset takes place on part of the material
isolated from aggressive media by a thin protective film. This film can be broken due to
the effect of mechanical actions then to rebuild on the surface material. This dissolution
- repassivation surface phenomenon induces a preferential attack (or pittings in metal)
occurring along the surface of the materials. With active stress effects these pittings are
transformed into microcracks [Desjardins et al., 92].

As far. as the microcrak propagation is concerned, two stages are distinguished
[Touzet et al., 1994]. Firstly, a slow propagation of microcracks, thin, independent in a
microvolume adjoing to the surface of material takes place. There are no, or not much,
interactions between the microcracks and no coalescence phenomenon of these. In the
case of stainless steel Z3 CN 18-10 immersed in Scheil reagent (magnesium chloride) at
153° Celsius and creep, a slow strain rate test to 200 MPa. The Scheil reagent is an
academic medium but it allows the formation of multiple cracks in a very short time. A
statistical study of the microcrack distribution in this first area at various stages of
damage (interrupted tests) shows that the depth of microcracks varies between 5
(minimal - size of observation and beginning of damage figure 1) and 200 a size
corresponding to the critical damage.

Secondly, a quick propagation of some macrocracks interacts greatly and leads to
rupture of the material. In this area the macrocracks are deep and may reach up to
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800 These macrocracks are sometimes the result of the coalescence of many
microcracks. The microcracking may be intergranular (figure 2a), transgranular or
mixed (figure 2b).

The general direction of micro or macrocracks propagation is perpendicular to the
stress direction. The features of rupture show a behaviour of  the fragile type, even in the
case of very ductile materials such as stainless steel.
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3. THEORETICAL ASPECT

Continuum damage mechanics is classically interested in the rise and growth of
microcracks or more generally various decohesion processes within the material, what
leads to the rupture of  the volume element (in the sense of continuum mechanics). This
corresponds to the consideration of discontinuities of which the dimensions are typically
small compared to the representative volume element of  the material [Maugin., 1999].

The theory of the effective stress has been introducted by Kachanov (1958). It is
based on the notion of effective resisting area. In the phenomenological development of
the effective stress concept, the term damage is used to denote a loss of effective area.
However, in the physical sense, one may choose to interpret damage in terms of some
other convenient macroscopic measure, such as the depth of microcrack penetration
(intergranular or granular stress corrosion cracking) and relate it to the
phenomenological description. This physical interpretation is adopted in the following
without loss of generality and without introducing any new notation for damage. Given
S a plane section area of the virgin material let the effective resisting area of the
damaged material The total area of  the set of defects (microcracks) taking into
account stress concentration effects and possible interaction is The damage
internal parameter is then defined by Thus the parameter D characterizes a
damage which is generally supposed to affect quasi uniformly all plane sections of the
damaged material. For the tridimensionnal case considered here, this definition of D is
valid for all plane sections perpendicular to the load. Then it is an internal variable
representative of a homogeneous volume damage. The constitutive law of damage
coupled with elasticity is written in a classical form (hypothesis of  equivalence in strain,
cf. [Lemaitre et al., 1990]):

where denotes the stress, is the Young modulus of  the virgin material, is the
elastic strain, and is the internal damage parameter.

In the stress corrosion case, the law (1) is not relevant because the effective
resisting area possesses the particular features described in Section 2. In the present
study, we consider (figure 3) an element of plane rectangular section of area S (half
thickness e by unit of  width) perpendicular to the load. The phenomenology allows us to
distinguish two areas of  different nature noted and (with ). The former

(thickness by unit of width) is located in the middle of the material and is not
affected by the microcracks (virgin material). The second part (width ) near to the
surface of the sample corresponds to the area of gradual saturation of the density of
microcracks.

As soon as a length of microcracks is greather than (we are then in the presence
of  a macrocrack) we observe a quick propagation of these. The length (critical length
of defects) is therefore, by definition, the boundary which separates the field of
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continuum damage mechanics from that of fracture mechanics. For a given level of
damage, we note the average depth of microcracks; the surface by unit of width of
these microcracks is therefore According to the classical definition of
damage, which here is contained only near to the surface of material, it is necessary to
define the parameter of damage of stress corrosion by  Moreover,
we set thus defining kind of a plane rectangular section of the sample so
that the half thickness is equal to It results from this that the concept of
effective resisting area leads to :

In so far as the parameter characterizes a damage developing in a microvolume
near the boundary of the material body, we call this phenomenon surface damage by
opposition to the volume one, D, previously described and which occurs in the whole
volume of the body. Thus in the case of stress corrosion, using the constitutive law (1)
leads to considering an "apparent" volume damage which is not achieved in reality.
Taking into account the relation (2) and the effective stress concept, it is more
convenient to write the elastic constitutive law coupled to damage, for stress corrosion,
in the form:
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4. EXPERIMENTAL RESULTS

The macroscopic observations described in the previous section show that for a stainless
steel Z3 CN 18-10 immersed in Scheil reagent ( at 153° Celsius) has a rough
estimate of Numerous creep tests at 200 MPa were performed
on plate samples by laser cutting in form of "I" of useful length L=30 mm, retangular
section and thickness 2e = 2 mm between heads Samples
were annealed at 1050° C for 30 minutes and then quenched. All the samples had
identical surface finishing e.g. an electrolytic polishing followed by an acid etching.
With these previous values we obtain the coefficient n = 5 in relation (3) then
These tests are interrupted at various level of  damage.

In a first step, the samples were equipped with extensometric gauges and put in a
test machine under neutral atmosphere and kept at room temperature. Specimens were
immersed in Scheil reagent for 2 hours before slow strain rate tests were performed at a
strain rate of The elastic response of each sample was investigated. The
analysis of load-unload elastic cycles gives via the constitutive law (1) the values of
damage shown in figure 4. These values are obtained according to the creep level
reached. Interrupted constant extension rate tests on specimens have been performed for
different strain rates. For each point in figure 4, 10 tests were carried out. At the elastic
range and beginning of  the plastic range (first point on figure 4, microscopic
observation shows attacks of slip planes and initiation of defects on the surface. No
crack traces can be seen over the longitudinal section. At the next point the
first crack traces appear. A stereoscopic study of these surface cracks show that their
depth does not exceed The localization of corrosion occurred and for the great
majority of cracks are initiated. After this point, it was possible to observe (third point

a saturation of the number of total crack traces. Their size remains small,
lower than The size of the maximum crack increases very slowly. At the
beginning of the fourth point the total number of crack traces remains the
same. A shift of the size of crack traces can be observed corresponding to the necking
phenomenon; the accomodation of the plastic deformation at the tip of a few cracks
(which leads to the failure of the specimen) certainly caused the arrest of the great
majority of cracks. The size of the longest crack increases very quickly, reaches 400

and then at the end the fracture occurs.
In the second step a series of cuts, orthogonal and parallel to the load, were

performed in each sample. A longitudinal section in the middle plane was obtained by
mechanical polishing. From the micrographs and microscopic observations the effective
resisting area was evaluated. So was the average depth of microcracks. The size of the
smallest crack observed was about Crack traces were counted on the two faces all
long the calibrated length L. The final distribution is the average of the two distributions
on the two faces of the specimens. We establish a good correlation between the
experimental measurements of obtained by strain gauges and the values of this
parameter given directly by the micrograph estimate of the average depth of
microcracks
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5. CONCLUSION

In this work we have shown that the parameter depends on the density of cracks that
have reached a given size. We have seen that the use of two related techniques to
characterize the damage in stress corrosion studies gives very interesting reults.

Following the surface internal parameter of damage provides first simple
predictive precursor of the failure of materials by stress corrosion.

It is possible to see when mechanical and electrochemical processes are
preponderant [Touzet., 1990], Also a thermodynamic formulation of this important
problem SCC taking into account coupling between mechanical and electrochemical
process is the object of further studies.
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Abstract

Our aim is to improve the macroscopic description of the wetting property.
Wettability characterises a capillary behaviour implying three partners : a
liquid a solid S and a complementary one which is the surrounding fluid

“What are the parameters adequate to describe such behaviour ?” A
first simple approach, lying on the statics of fluids and Laplace’s law, produces
a mathematical model for the equilibrium of a interface, in the
presence of a solid wall. That model induces a complementary experimental
approach for obtaining a phenomenological relation between three unavoidable
parameters intervening in the mathematical model: the spreading parameter

the contact angle and the contact mean curvature At the same time,
a thermomechanical research is implemented to obtain a general framework
of capillary behaviour ; it lies on the Cahn-Hilliard Fluid Theory, and leads
to the notion of Fluid with internal wettability.

Keywords : Capillarity, wetting, identification, second gradient, ODE.

1 INTRODUCTION

Wettability can be defined as a property shared by a solid and a liquid, which
reflects the ability of the liquid to spread out on the solid in the presence of a
second surrounding fluid. This phenomenon, which reveals in fact a behaviour,
plays a decisive part in numerous industrial processes : oil assisted recovery, coating,
napkin-diaper design, detergent efficiency, etc.

The macroscopic mechanical models usually proposed by engineers to take into
account the capillary situations, are based on Laplace’s and Young’s laws, which
involve the notions of interfacial tensions and contact angle ; this framework is
usually insufficient for obtaining well-posed problems.

Our objective is to improve the description of the wetting property. Several
approaches can be considered :
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• Identify the macroscopic parameters that are necessary for the completion of a
mathematical model (based on the general laws of the classical theory of continuous
media) ; these identifications usually need both a rigorous mathematical analysis
and adequate experimentation. This method is somewhat indirect.

• Direct research of the mutual behaviour ; the starting point is usually the
second principle of Thermodynamics, expressed with more or less subtlety, this al-
lows one to include some dissipation mechanism, which fits the physical phenomena
which are studied.

The three following sections of the paper relate to the indirect method which
was the initial approach of our group ; the second section proposes an inventory
of the static mechanical relations which are the starting points of the present study
[Marron, 1987][Jacquot, 1998]; the third one describes the experiments[Jacquot,
1998], [Csapo and al, 1999], directly inspired by the preceding relations ; they relate
to axisymmetric sessile drops ; their objective is to propose a realistic law, in order
to be able to identify the nature of the wetting dissipation ; another interest of
the experimental results is to find a phenomenological relation between the above-
mentionned parameters and The fourth section evokes some theoretical
results obtained about general cylindrical and axisymmetrical interfaces, which ones
can be completely characterised by a simple profile [Liraud, 1998]; from there, it is
proposed a realistic strategy, based on simple experimental measures, to obtain
relatively precises values of the parameters and

The fifth section relates a more fundamental and direct approach of wetting
behaviour ; it is based on the second gradient theory of the Cahn-Hilliard Fluid
and explains, how the corresponding law has to be modified in order to take into
account specific solid-fluid interactions near the wall boundary. A model of fluid
with internal wettability is built [Biguenet, 1998].

Lastly, in the conclusion, the complementary aspects of the precedent studies
are pointed out, and their common objective is emphasized.

2 BASIC STATIC MODELS

2.1 The general Bashforth and Adams relation

To identify the macroscopic parameters adequate for characterising the wet-
ting, it is useful to have a static model of the liquid / fluid interface The non-
dimensional BASHFORTH and ADAMS relation consists of a combination of the
static and the Laplace’s law governing fluids [Bashforth et al, 1892]; it leads to :
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where H(M) and x represent respectively the mean curvature and the altitude
(measured on a vertical upward axis) at the considered point M of the interface
; and are the interfacial tension and volume weight, relative to each fluid

(the sign of H(M) and the numbering depend on the orientation of the
normal vector) ; the BOND number is small, as the characteristic length L is
weak compared to the capillary one’s In the absence of gravity , in this
situation (1) shows that the mean curvature of  is a constant. If is an a priori
unknown contact line, intersection of with a solid wall, the relation (1) implies,
as a particular consequence:

When M describes the relation (3) leads to a universal, second-order partial-
differential equation, one solution of which defines the shape of the inter-
face Each particular imposed geometry has to be specified with the help of
adequate boundary conditions on Note that is precisely the contact line, in
the vicinity of which the wetting comes to light. It is also interesting to notice that
the connection between and the wall is necessarily characterised by the shape of

(i.e. the spreading of the liquid) and the contact angle of with the
wall. Lastly, to get rid of H(C), an unknown parameter in the equation (3), it is
reasonable to introduce the new “local altitude”:

which points to the importance of the parameter So, the formulation of
adequate boundary conditions and for when C describes
allows one to identify the wetting parameters.

2.2 Application to axisymmetric sessile drops

An axisymmetric drop can be characterised by its cross-sectionnal profile it is
sessile if its apparent weight (here is oriented towards the horizontal
solid support; we have then s = 1.

In this situation, it is reasonable to use the representation for the
profile we have here If we introduce the notation :

the change of variable (4)
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leads (after an analytic writing of to the differential
equation with the initial conditions

Remark 1 we recognize a Cauchy problem in (outside of  the axis r = 0),which ,
for any initial conditions specified by the parameters with admits
a unique local solution. However, in order to be realistic for the profile of a drop,
the function has to satisfy the following conditions :

a bounded positive number, such that :

(that expresses the fact that the drop is bounded by the height h and is axisymmet-
ric).
ii) The drop has given finite volume V, whence :

These two constraints imply two relationships between the three terms of
the initial conditions in the first one has to guarantee the closing of the curve

on the axis r = 0, which is singular for the problem (7) ; the second
relationship is :
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it comes from a first integral of (7).
An important consequence of i) an ii) is the necessary strict convexity of the

sessile drop ; this assertion is equivalent to Others consequences are the
following useful inequalities:

Remark 2 In the absence of gravity the change of variable (6) is no longer
valid, and the relationship (10) implies

which is, in that particular situation, the closing condition described earlier. It is
possible to determine and then, it appears that the interface is a portion of
a sphere ; the volume is now :

where G is an explicit, strictly increasing function of
The expressions (10) of V is a source of inspiration for experiments and for

physical interpretation of the fundamental parameters and In fact (because
wettability is defined as the ability of the drop to spread out on the solid) it seems
natural from (10) to measure the evolution of the contact area, when incremental
variations of the volume are imposed , it is then possible to deduce the link between

and V, let :

The a priori aim of this experimental study is to obtain information both about
the wetting dissipation and, [from (10)], a third phenomenological relation between

and ; this last one,

together with the other two relations, is supposed to achieve the determination of
via (7), when the history of V is given. Some experimental results about the law

(14) are presented in section 3.
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3 FIRST EXPERIMENTAL APPROACH AND ACTUAL RESULTS

As mentioned in the section 2.2, the principle of the experiments which have
already been carried out, is simple; it consists in measuring (contact area),
while controling incremental variations of the drop volume. First the volume is
increased from to then decreased from to ; cf. Fig. 2. It is usually
admitted that an hysteretic phenomenon is observed, for as well as however,
only the constant phases of are clearly seen: first when V decreases from to
a threshold phenomenological value (after which decreases with V), and again
when V increases from to a new threshold value (after which increases with
V). The respective loci (withdrawal and advanced curves) of and (as

and are modified by the experimentalists) are never specified ; it is only said
that is constant (equal to and along respectivly and ). We ourselves
have observed, with good repeatability, the following type of complete cycles shown
in Fig. 2 for all the triplets and S of fluids and solids we have studied.

After several attempts to identify linear or simple power laws for and we
are now able to conclude that two explicit behaviour laws are admissible. The first,
proposed by Jacquot / Lanchon-Ducauquis [Jacquot, 1999], although continuously
derivable, admits a threshold value its dimensionless, normalized version ( for

is
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with

and are respectively the dimensional slope and, ordinate at V = 0, of the
linear phase.

The second law, proposed by Cunat and Csapo [not yet published, 1999], has a
single expression; with the same normalization as (16) it can be written

Both these laws, depend on three phenomenological coefficients (either a
and b ; or C, D and P)
Remark 3 In the absence of gravity the theoretical relationship between

and V obtained from (13) is of the type :

However, in the laboratory it has been empirically observed that the powers
b and P in (16) and (17) are not equal but relatively close to
Remark 4 The confrontations between theoretical and experimental approaches
described above, although already well engaged, are not yet conclusive.

4 GENERAL CYLINDRICAL AND AXISYMMETRICAL INTER-
FACES

In the situations in which interfaces can be characterised by a simple profile, the
mathematical model is reduced to a second order differential equation with either
initial or limit conditions.

For general cylindrical interfaces, an analysis in the hodograph plane is
possible and the equation can be explicitly integrated with the help of elliptic
functions. In this favourable situation, there are three categories of solutions ,
depending on the value of the reduced mean curvature in a particular point
(not necessarily on the profile, but well characterised by the theory), compared
to the numbers The different types are characterised by

• The interfaces produced by a Whilelmy blade belongs to the second type.
• Those generated, either between two parallel vertical plates, or by a sessile

"cylindrical" drop (limit situations of liquid in a dihedron, when the angle tends to
are always in the third category.

• The interfaces relative to non sessile "cylindrical" drops are either of the first
type, if there are not convexe, or of the third type, if they are convexe.
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For general axisymmetrical interfaces, when neither the hodograph
analysis nor the direct integration of the differential equation is possible, but the
preceding study allows one, by analogy, to foresee some interesting qualitive prop-
erties. Anyway, for both situations, the main objective, which is to find sufficient
relations between the parameters : and is not yet rigourous even for the
cylindrical interfaces; in fact, in this last situation the elliptic functions which ap-
pear in the explicit expression of the solution are not really adapted to the present
objective ; A general strategy has then to be brought into play, in order to build
adequate relations ; this strategy can be briefly described by the following necessary
steps :

1. The choice of a characteristic length : adequate to make of a, more or
less small, variable parameter, but also to temporarily neutralize one of the other
parameters.

2. The choice in each situation of a simple experiment, the control could be
one of the following : the spacing between two plates (for cylindrical interfaces), the
diameter of capillary tubes or the volume of a drop ; the response to the control
variation has to be easy to measure, as for instance the rising height along the plates
and the tubes, or the spreading of a drop on the solid horizontal support.

3. A numerical computation, as rigourous as possible (either from explicit
solution or directly from the differential system), likely to provide a reference for
the behaviour (when is fixed) of different parameters in the function of ; a log-
log representation of this behaviour gives in fact a good idea of the order of these
parameters when tends either to zero or to infinity.

4. Each parameter of interest has an explicit approximation in powers of
with coefficients depending implicitly of ; the appropriate highest power of being
deduced from the preceding log-log study.

5. Asymptotic expansions of the same parameters in either or depending on
the initial or limit conditions of the differential system ; these expansions are used
for the identification of the coefficients in terms of in the approximating functions
proposed in the previous step.

6. Finally, the computations of the differences between the values of the pa-
rameters obtained, on the one hand by the preceding approximations (of orders 0,
1 or 2 ), on the other hand by the reference numerical solutions.

With the strategy described above, several significative results could be ob-
tained: a good first example is a clear improvement of Jurin’s law giving the
rising height of the liquid in a capillary tube as a function of its diameter d, the
contact angle and the capillary length ; another still more convincing ex-
ample is illustrated by the following table which exhibits from the experimental
data and measures V, (for axisymmetric sessile drops), four sequences of values
obtained for the contact angle and the mean curvatures and ; first by the nu-
merical computations, then by the approximating functions of orders one and two,
and finally by the experiments ; the percentage differences between these and the
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reference numerical values emphasize the efficiency of the approximations, but also
the extreme difficulty of obtaining realistic values of the contact mean curvature
by experiments.

5 THERMOMECHANICAL APPROACH TO WETTING BEHAVIOUR

We now embark on a more careful study on the physical phenomena involved
in wetting. We use the fluid with internal capillarity theory, also known as Cahn-
Hilliard’s fluid Theory [Cahn-Hilliard, 1958] [Casal - Gouin, 1985], developed in this
volume by P. Seppecher. An interface is considered as a transition layer, of finite
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thickness, through which the fluid properties vary rapidly but continuously. The
equations obtained with this model and formulated at the fluid-fluid interface, lead
to a limit relation (when the layer thickness tends to zero), known as Laplace’s
law. To obtain the property of wettability as a limit behaviour (when the distance
from the wall tends to zero), we introduce the notion of internal wettability in the
preceding theory ; this situation allows us to study the fluid-solid interfacial zone.
For simplicity, we consider only the case of a liquid in its vapor.

In a first step,  we recall that the theory of internal capillarity can be rigorously
introduced by the thermomechanics of continuous media ; the point of departure
is the notion that interfacial phenomena are due to non balanced intermolecular
forces acting on particles of the transition zone ; this leads to the idea of a local
internal energy e depending on the particle distribution near the considered point;
this dependency is expressed through the density gradient More precisely,
Gibbs’ equation is written as :

where T is the temperature, s the entropy, the chemical potential and the
capillary coefficient. The constitutive law is built with the local state assumption and
the Thermomechanics of Irreversible Processes method ; as a consequence, the use of
a second gradient theory appears as a necessity; the Cahn-Hilliard theory generates
then a finer, but more complex, description of the internal forces (represented by
two stress tensors: one of second order and the other of third order) ; it requires
a new formulation of the general laws. So, the fundamental principle of dynamics
becomes

For a non dissipative fluid, the constitutive law is :

where p is the usual pressure term and is the unit tensor of second order. Finally,
to complete this model, it is necessary to propose two state laws (for p and ).

In this second step, we extend the preceding model in order to take into
account the solid surface effects. Near the wall, a privileged direction appears
in the fluid, associated with the position of the wall. The internal energy of the
fluid loses its isotropic property, in such a way that two privileged directions exist.
Since the internal energy e is a scalar function, it cannot depend on the directions of
these vectors, but only on their magnitudes and scalar product (which characterizes
their relative directions). Consequently, following the precedent construction and
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this remark, we obtain the fluid with internal wettability model. For simplicity, we
consider only a plane solid surface; is then the constant unit normal to the wall,
and we have

In the simplified situation of a non dissipative fluid, the constitutive law becomes

This model requires three state laws which could be the expressions of the conju-
gated thermostatic terms p, and K as functions of the principal ones s, a
simplified molecular theory [Gouin, 1997] can be used to provide these expressions.
Our first application of this model consists in obtaining a limit law of wettability,
which could be integrated into a macroscopic model; however, this theory can also
be used to obtain further information. In fact, the substitution of (23) in (20), and
the state laws lead to a mathematical problem, where the unknown terms are the
density and the velocity fields. By determining these unknowns, we can deduce
the pressure field, as well as the network of isodensity surfaces (which localize pre-
cisely the transition zones). However, to solve such a problem, it is first necessary
to write down sufficient boundary conditions (compatible with the second gradient
theory and accounting for the solid effects) and then to use a numerical treatment.

In the particular case of a static axisymmetric drop, we obtain through this
limit procedure, far from the solid wall, the Laplace law. Moreover, the asymptotic
matched expansions of the equations near the triple zone seem to confirm that the
contact angle is a characteristic parameter of the wettability and that the influence
of the mean curvature term vanishes near the wall. But the limit procedure has not
yet given a law as simple as we have expected.

6 CONCLUSION

So many questions are raised from the two kinds of analysis of the wetting
phenomenon, that it is better to conclude with some basic remarks.

First of all, we have reinforced our a priori conviction that the contact angle
alone cannot represent the property of wetting ; it is in fact intimately coupled with
the contact mean curvature (represented by ) and, like this second parameter,
it is really difficult to measure it by experiments. We point out that the spreading
length is a real perceptible manifestation of wetting, while the mean curvature
of the interface, is a real perceptible manifestation of capillarity, even
far from a solid boundary. It is then natural to look to characterize the wetting
behaviour for a given triplet by an invariant grouping of the three
introduced parameters, in particular along an hysterese curve.
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Another  important remark concerns the perturbative part of the parameter
; this parameter represents the competition between capillarity and gravity; it is as

small as, the gravity is weak, or the characteristic length is small; it is omnipresent in
usual laboratory experiments but cannot be present in the expression of the wetting
behaviour ; in fact, this expression, in so far as a constitutive law is concerned, has to
be independent of the choice of any reference frame, and in consequence independent
of gravity.

Finally, another interesting remark concerns the common objective of all
the various approaches evoked above : the first method, combined conjugates math-
ematical arguments and experimental measurements; it is based on relatively simple
ideas; however, until now, it has been exclusively concerned with geometrical pa-
rameters. The second method follows the usual way of characterizing behaviour,
by the choice of appropriate thermodynamical variables and the description of the
type of dissipation; it is indispensable for providing some physical consistency to
the three parameters, and considered as crucial for the wetting description. Much
work has still to be done to achieve agreement between these two approaches.
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Abstract: The general way to derive constitutive equations for different phenomena,
coupled or not, is briefly described with an emphasis on the choice of state variables
and analytical expressions for the state potential and the (pseudo) potential of
dissipation by qualitative experiments. Quantitative experiments are used to determine
the numerical values of the materials dependent parameters. Applications are given for
anisotropic damage coupled to stress-strain behaviour of materials, for aging coupled to
plasticity and for magneto-mechanical couplings. A brief on
localisation phenomena is given as a conclusion.

1. INTRODUCTION

1975! When just started, it was clear that experiments should play a
major role in the development of mechanics of materials, but how to bridge the gap
between esoteric theories and pragmatic measurements? Up to that time, the worlds of
theoreticians of thermodynamics and the world of experimentalists were completely
disconnected, both writing for their own world without almost any mutual
understanding. against
Fortunately we were the children of Paul Germain; he spent much time making basic
thermodynamics clear in order to teach it in an understandable way to graduate students
(Germain, 1973). It became clear that any material behaviour can be stated as a
mathematical model, provided the second principle of thermodynamics is fulfilled and
provided a proper choice of state variables, a proper choice of an analytical expression
of a state potential and a proper choice of another analytical expression of a
dissipative (pseudo-)potential F are made (Lemaitre and Chaboche, 1994). In this
sentence the word is used three times. This means that Thermodynamics gives
the framework for building models, but not all the keys. Fortunately, human sensibility
still plays a role:

The choice of variables depends upon the purpose of modelling: which
phenomena should be modelled, under which conditions, and which predictions should
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be made. The observable variables and internal variables define the state of a
Representative Volume Element of any material. Each of them represents a mechanism
to be identified by observations either at a meso-scale or at a micro-scale and by
quantitative experiments. This is often a difficult task, since hidden variables
correspond to hidden mechanisms: elastic and plastic strains and isotropic and

kinematic hardenings r and damage D, phase change a* , anhysteretic and internal
magnetic fields

-      The choice of an analytical expression for the state potential taken as the specific
Helmholtz free energy (or its dual the Gibbs specific enthalpy if more convenient), a
function of all the state variables, is the second key to establishing the state laws. It
gives the definition of the state couplings between phenomena and allows one to
calculate the associated forces such that the product is the dissipated power
involved by the mechanism described by within the hypothesis of small strains:

Only experiments can help to make this choice.

-       The choice of an analytical expression for the dissipation potential is the third

key to writing the kinetic laws of evolution of the dissipative phenomena:

Here again experiments are needed in order to define the function Let us add
that the intellectual dexterity of the is also an important factor in obtaining
models easy to use. The choice of the analytical form may also depend on the way the
problem is numerically solved.
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2. QUALITATIVE AND QUANTITATIVE IDENTIFICATION

A Physical model is meant to describe observed phenomena and to be predictive for
situations that were not included in its construction and identification process. The few
experiments needed for the identification must be carefully chosen to represent basic
situations. The choice of the variables and the choice of the analytical expressions of the
potentials require a sensitive analysis that indicates trends and do not require a good
accuracy of the test results: this is qualitative identification. Conversely, the numerical
values of the material parameters need precise results for a good quantitative
identification.
For qualitative identification, the number of variables necessary to describe observed
phenomena should be a minimum and consistent with the continuum description if one
expects to use the models for design. Therefore, the route to the choice of these
variables is the identification of all the physical mechanisms involved in the situation.
This is based on experiments carried out on the Representative Volume Element but it
may be complemented by physical observations and/or by homogenisation procedures
whenever possible. Once all the mechanisms are exhibited, a variable is affected by
each of them. The state potential will be then dependent on all these variables. The
(pseudo-) dissipation potential will be dependent on forces but also on the variables

The first step in the construction of these potentials is the analysis of the interactions
between all the defined mechanisms. Experiments can be designed to check if a given
mechanism has or has not an influence on another, and what type of influence it is.
A state coupling is said to exist between mechanisms i and j if a change in state variable

induces a change in the associated force i.e. if: . If such a coupling

does not exist, then the state potential contains two independent terms in  and
Along the same lines, a kinetic coupling between two mechanisms i and j exists when a
change in implies a change in the rate of (Lemaitre and Marquis, 1992).
For quantitative identification, since the determination of the parameters is in general a
very difficult task (though many efficient optimisation techniques exist), the number of
parameters entering a model should also be kept to a minimum. Here again, well-
defined experiments on the Representative Volume Element (homogeneous behaviour)
should be used in order to be able to measure all the variables properly, directly or
indirectly. However, in many instances it is not possible to design experiments where a
significant part of the specimen is in a homogeneous state; in this case, quantitative
identification also requires the use of inverse procedures and corresponding algorithms.
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3. APPLICATION TO DAMAGE MODELLING

Let us consider how to make the three choices introduced in Section 1 when modelling
the progressive mechanical degradation of materials whatever their nature: metals,
polymers, concrete, wood, ceramics.

3.1. Choice of the variable
Physically, damage corresponds to the creation of new micro free surfaces inside a
Representative Volume Element at a meso-scale. A natural choice of the variable is the
relative density of these defects: volume fraction of cavities for ductile damage (Gurson,
1977), crack density for brittle damage and fatigue (Kachanov, 1958). To link the two
mechanisms in only one variable let us consider the maximum surface density of

in any plane of normal of the R.V .E.
If damage is isotropic, the intrinsic variable can be chosen as a scalar: D ; if not it is a
tensor: a fourth order tensor in the most general case (Krajcinovic, 1985), a second
order tensor if damage may be considered as orthotropic (Murakami, 1988). When
damage of metals is observed under a microscope it is always, or almost always,
associated with plasticity either at a meso-scale or at a micro-scale. Then, if damage is
governed by plasticity described by a second order tensor, damage can also be
represented by a second order tensor. Furthermore, the micro-mechanical analysis of an
array of randomly distributed cracks shows that the elastic strain energy is represented
by three terms that are dependent upon the crack pattern. The first term is a scalar; the
second a second order tensor; and the third a fourth order tensor, negligible with respect
to the other two terms (Kachanov, 1994). Thus, at least for two main reasons, the choice
of a second order tensor is reasonable (but not rigorous!).

3.2. Choice of the state potential
When modelling linear isotropic elasticity, and isotropic and kinematic hardening
plasticity, the free energy is a quadratic function of the elastic strain and the sum
of two non linear functions of accumulated plastic strain p and back strain
Many experiments have shown a decrease of Young’s modulus as damage progresses
either in ductile creep or low-cycle fatigue phenomena. Coupling damage with elasticity
is imposed by experiments, but how? One hypothesis, that is still a principle since it has
not yet been demonstrated in the general case, solves the problem (Lemaitre, 1971;
Lemaitre, 1978). The principle of strain equivalence states that any strain constitutive
equation of a damaged material is derived in the same way as for the virgin material if
the stress is replaced by the effective stress This effective stress is the stress acting
on the unit surface diminished by the surface of defects. Due to the definition of the
damage variable, in one dimension the effective stress is defined as:
In three dimensions with anisotropic damage it is more complicated because the simple
extension of the above statement does not yield the existence of an elastic potential
(Cordebois and Sidoroff, 1982). This difficulty is solved if the elastic energy is divided
into two parts, distortion and hydrostatic. By using the Gibbs energy with the
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second order damage tensor of mean value (Lemaitre et al, 1999), we
find

where,

and where denotes the mass density, E and the elastic constants of the virgin
material and a parameter that is required for a correct representation of experiments
concerning the variation of the contraction ratio. For several metals  and
corresponds to isotropic damage. This is the price to pay for phenomenology; the
parameter has to be measured to evaluate the components of damage, but it does not
appear in the damage kinetic law.
The law of elasticity derives from the Gibbs potential, so that

and the effective stress is defined as

The force associated with damage variable is the strain energy density release rate
tensor Y:

Since it is easier to introduce the coupling between damage and plasticity through the
dissipation potential, the plastic part of the state potential is not affected by
damage.

3.3. Choice of the dissipation potential
There is much more freedom to choose a «good» dissipation potential. This is the
reason why so many models of kinetic laws have been proposed!
It has been observed that:

- Ductile damage is governed by plasticity ;
- Fracture and ductile damage are influenced by stress triaxiality, which is related to

the ratio of the hydrostatic elastic energy to the distortion energy;



214

- Damage measurements by means of elasticity changes show that ductile damage
grows approximately proportionally to cumulative plastic strain, whereas fatigue
damage evolution evolves non linearly with stress or elastic strain.

Hence, the (pseudo-)dissipation potential F has to be a function of the corresponding
variables. Furthermore, since plastic constitutive equations must also be derived from
this potential F, it must include the yield criterion f. The coupling with damage is
introduced by means of the effective stress associated with the principle of strain
equivalence, so that

Here f denotes the von Mises function giving the plastic multiplier by the
consistency condition is the variable associated with isotropic
hardening R.
For isotropic damage the following choice of has given a damage law of evolution
extensively used with success for more than 15 years for ductile, quasi-brittle and
fatigue damage (Lemaitre, 1983):

where denotes the cumulative plastic strain rate:

Its extension to anisotropic damage imposes the choice:

where S and s denote material parameters, variable denotes the effective elastic

strain energy such that: and operator applied to a tensor means the

absolute value of the principal values. Finally, the damage evolution law appears as:

Two other material-dependent parameters must be introduced in order to fit
experimental observations:

- A damage threshold is introduced such that
- A critical value of the damage parameters is written in accordance with the

principle of strain equivalence on the largest principal value of the damage tensor.
This critical value is introduced such that

mesocrack intitiation.
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4. APPLICATION TO AGING AND PLASTICITY COUPLINGS

Among the many applications of this formalism to the modelling of the interactions
between the mechanical behaviour and the chemical and physical transformations of
materials, we present the modelling of an aluminium-copper alloy subjected to plastic
deformation during the aging process. Aging of these alloys takes place after a
dissolution heat treatment (1 hour at 500°C) followed by quenching in water at 20°C.
After this heat treatment, the copper atoms are in solution in the aluminium matrix, and
this configuration is not stable. Precipitates appear, and lead to a strong
hardening of the material. This aging process takes about 100 hours at 20°C. If the
material experiences some plastic deformation during the aging process, it is assumed
for sake of simplicity that the main interactions between the dislocations and the
precipitates lead to a modification of the aging kinetics. The set of constitutive
equations given hereafter is written for the isothermal case.
The state variables are the classical state variables of elasto-plasticity, and an aging
variable denoted by The limiting values for are 0 (absence of precipitates) and 1
(complete precipitation). To determine the state potential, the state couplings or
uncouplings are analysed. The only state coupling is the coupling between aging and
isotropic hardening due to the dislocations and precipitates interactions. The following
expression of the free energy is deduced:

The last terms (where C and L are material dependent parameters) lead to the state
coupling:

This expression shows that the higher the aging value, the higher the isotropic
hardening (or the yield stress).
The kinetic coupling of the plastic strain with the ageing mechanism is deduced from
the interaction between the diffusion rate of copper atoms and the density of
dislocations. The following expression of the potential of dissipation is deduced from
specific experiments (Marquis and Costa Mattos 1991)

where and denote functions of r and and where H is the
Heaviside function.
From these two potentials, the following set of constitutive equations is obtained:
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where f denotes the von Mises yield function with kinematic and isotropic hardenings
such that

where denotes the initial yield stress of the material, and the stress deviator.

The plastic multiplier is calculated from the consistency condition: and the
internal variable associated with the isotropic hardening is the cumulative plastic
strain.
From specific experiments on the material at different levels of plastic strain and aging,
the following expressions for the functions and are identified:

where and k denote material parameters, and denotes the maximum

equivalent plastic strain over the time interval, so that

The expression of the strain hardening function W"(r) is chosen to ensure the limitation
of the size of the elastic domain:

where b and denote material parameters.
The set of all numerical values of the material parameters is given below for the 2024
aluminium alloy considered in the application:
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5. APPLICATION TO MAGNETO-ELASTIC COUPLINGS

This section is devoted to some aspects of the complex couplings between the different
phenomena that are involved in real thermo-magneto-elastic behaviour of soft
ferromagnetic materials. The global (structural) couplings [Germain et al 1983, Maugin,
1980-1988] that involve the structural conservation laws viz. the heat equation, the
mechanical conservation equation and the Maxwell equations, are not discussed here.
The phenomena that are discussed here refer to the fact that the magnetic behaviour is
affected by stresses and conversely, to the fact that changes in the magnetisation
generate so-called magnetostrictive strains. One of the practical consequences of these
phenomena is the following: the magnetic behaviour of electrical machines is dependent
not only on the behaviour of the raw materials they are made of, but also on the stresses
induced in these machines by their manufacturing process and the in-service loadings.

A possible approach to developing coupled magneto-elastic constitutive equations
consists in using so-called homogenisation techniques [Buiron et al, 1999]. More
phenomenological models have also been proposed [see for instance: Maugin, 1991;
Jiles, 1995; Sabir, 1995]. The approach used herein is also phenomenological though
based on continuum thermodynamics.

5.1. Phenomenology at the mascroscopic scale
When subjected to a cyclic magnetic field, industrial materials exhibit a hysteretic
behaviour. However, by superimposing a slowly decaying alternative field on a
magnetic field of given amplitude, it is possible to reach the state of lowest internal
energy that corresponds to one point of the so-called anhysteretic curve. This
experimental procedure has been applied to an industrial non-oriented Fe-3%Si alloy
commonly used in electrical power engineering. During the tests, the 0.5mm thick
laminations were subjected to collinear uniaxial mechanical and magnetic excitations.
The experimental results presented in Fig.l show the influence of stresses on both the
magnetostriction strain measured in the direction of the applied field, and on the
magnetic response.

5.2. Microscopic behaviour
The magnetisation process can be sketched as follows. The material comprises
numerous microscopic magnetic domains. In each domain, the magnetisation is uniform
and oriented according to the local orientation of the crystal axes. The boundaries
between the domains are so-called domain walls and correspond to a few atomic
distances. At the macroscopic level, if no external field is applied, the average
magnetisation tends to zero. This demagnetised state is often taken as a reference for the
strain state of the material.
When an external magnetic field is applied, the domain configuration evolves: domains
oriented in the direction of the external field grow, whereas other domains tend to
shrink, so that both the average magnetisation and the average strain state change.
Moreover, after a certain level of mean magnetisation has been reached, the
magnetisation in each domain tends to rotate from the crystallographic axes to the
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direction of the applied magnetic field. The final stage of this evolution corresponds to
magnetic saturation: in Fig.1a this microscopically approximately uniform state has
been chosen as a reference for the strain state. During the magnetisation process, the
domain walls motions are restrained by all kinds of defects in the material (impurities,
grain boundaries, inclusions, local stresses, etc); these interactions lead to repeated
pinning, bulging and unpinning of the walls; this explains the hysteretic character of the
magnetic behaviour.
The anhysteretic behaviour corresponds to the behaviour that would be observed for a
material with no defect. Real materials may exhibit this ideal behaviour, which
corresponds to the state of minimum energy, if the domain walls are «shaken» for
instance by an alternating magnetic field so that an additional energy overcomes the
local energy barriers created by the various obstacles.

5.3. A magneto-elastic model (Hirsinger, 1994; Gourdin, 1998)
5.3.1 State variables

To model these mechanisms, and as sketched on Fig.2, it is proposed to make a partition
of the magnetic field into two contributions: the anhysteretic field
corresponds to the reversible behaviour and the internal variable  corresponds to the
dissipative phenomena. Further partitioning of the internal field enables us to take
account of the reversible bending of the pinned walls and irreversible jump to the next
obstacle that are respectively described by fields and

Besides, it is assumed that total strains are the sum of pure mechanical strains  pure
magnetostriction strains and thermal expansion strains so that when small strain
and linear elasticity assumptions are made, the following strain decomposition can be
used:

where and T respectively denote the elasticity moduli tensor, the stress tensor and
temperature. This relation is based on the following uncoupling hypothesis: the elastic
and thermal expansion moduli are unaffected by the magnetic field.

5.3.2 State potential

The specific free enthalpy is used as a state potential. This global state potential is
divided into several uncoupled contributions:
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where denotes the mass density.

The first term represents the state coupling via the magnetostriction strain; its
expression is postulated as

The second term is linked to the anhysteretic behaviour of the material, its
expression is postulated as

where subscript 0 refers to  and denotes the vacuum permeability.

The last term accounts for the hysteretic part of magnetic behaviour.

5.3.2 State laws

The mechanical and magnetic state laws are derived from the state potential:

where respectively denote the forces associated to

5.4 Experimental validation of the state (un)couplings
To complete the model, evolution laws for the internal variables must be postulated and
experimentally identified. These laws must satisfy the Clausius-Duhem inequality:

where s denotes the entropy.
However, before proceeding towards this last step it is worthwhile -when possible- to
validate the choices made when writing the state potential.

When written for anhysteretic evolutions, the Clausius-Duhem inequality shows that
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Differentiation of this relation with respect to stress followed by integration with
respect to H leads to

For isotropic materials, it is reasonable to assume that the magnetostriction strain tensor
takes the following form

where respectively denote a unit vector parallel to the
magnetisation M , magnetostriction strain in the direction of magnetisation, and
magnetostriction strain in perpendicular directions.

The results that are presented in Fig.3.a., correspond to the identification of
through a straightforward treatment of the experimental

results presented in Fig.l.a. The results that are presented in Fig.3.b are directly derived
from the experimental results presented in Fig. 1 .b; a finite difference scheme has been

used to compute the term It is worth noticing that both plots 3.a and 3.b are

directly derived from experiments and the expression of the state potential. In other
words, this procedure -comparison between the direct measurements of magnetostrictive
strains and the prediction of these strains from the magnetic response of the material
under different stress states– provides an example of the choices made in writing the
state potential.

6. LOCALISATION PHENOMENON AND ITS CONSEQUENCE

If, as mentioned above, Paul Germain was at the beginning of the story about the use of
thermodynamics in the modelling of the mechanical behaviour, we find him also at the
end. Indeed, the boundary value problems arising in non-linear solid mechanics (with
the type of constitutive equations sketched above, damage mechanics and non-
associated plasticity) may change their type locally during a loading process. It is well



222

established and understood now that various types of constitutive equations lead to a
rate-boundary value problem that may become hyperbolic at a certain stage of a loading
process, while it was elliptic at the beginning. This loss of ellipticity suggests the
appearance of discontinuity surfaces, and happens for example in the presence of
softening or for certain non-associative behaviours. Note however that none of these
features is necessary or sufficient. It is this type of change, this loss of ellipticity that is
used to describe localisation phenomena for rate-independent solids, phenomena that
are precursors to rupture. This sets the transition from a diffuse deformation behaviour
to a very localized one.
Most of the time this boundary value problem becomes actually mixed (elliptic and
hyperbolic at the same time). There are both an elliptic zone and a hyperbolic zone in
the structure just like in fluid mechanics and in the context of transonic compressible
flows where a subsonic zone coexists with a supersonic one, a field to which Paul
Germain has significantly contributed.
It is also known that this loss of ellipticity, when it occurs, leads to some kind of ill-
posedness in the sense that the boundary value problems may have an infinite number
of linearly independent solutions, and that these solutions may not depend continuously
on the data. This has led these last years to the reappraisal of generalised continuum
theories such as higher gradient theories, Cosserat continua and nonlocal models. Paul
Germain was also concerned by these theories. This reappraisal is meant to solve some
physical problems that the classical local continuum framework fails to describe. All
these theories bring in a way or another an internal length in the continuum that allows
for instance one to fix the wavelength of certain bifurcation modes and a thickness to
shear bands. The loss of ellipticity manifests itself in many ways: loss of ellipticity of
the field equations but also through a compatibility between these field equations and
boundary conditions or interfacial conditions (when the material is heterogeneous). See
[Benallal et al, 1993] for a detailed discussion.

REFERENCES

[Benallal et al, 1993] Benallal, A.; Billardon, R.; Geymonat, G.; Bifurcation and
localisation in rate-independent materials. Some general considerations, CISM Lecture
Notes N° 327 on Bifurcation and Stability of Dissipative Systems, pp. 1-44, edited by
Nguyen Quoc Son, Springer Verlag.
[Buiron et al, 1999] Buiron, N.; Hirsinger, L.; Billardon, R.; A multiscale model for
magneto-elastic couplings, J. Phys. IV France 9, pp. 187-196.
[Cordebois et al, 1982] Cordebois, J.P.; Sidoroff, F.; Endommagement anisotrope en
élasticité et plasticité, In JMTA Numero special, pp. 45-60.

Paris (France).
[Germain et al, 1983] Germain, P.; Nguyen, Q.S.; Suquet, P.; Continuum
Thermodynamics, J. Appl. Mech., 50, pp. 1010-1020.

[Germain, P.; 1973] Cours de Mécanique des Milieux Continus, Tome 1, Masson Ed.



223

[Gourdin, C., 1998] Identification et modélisation du comportement électromagnétique
de structures ferromagnétiques”, Thèse de Doctorat, Université Paris 6.
[Gurson, A.L., 1977] Continuum theory of ductile rupture by voids nucleation and
growth, J. Eng. Mat. Tech, 99, pp. 2-15.
[Hirsinger, L., 1994] Etude des déformations magnéto-élastiques dans les matériaux
ferromagnétiques doux, Thése de doctorat, Université Paris 6.
[Jiles, D.C., 1995] Theory of the magnetomechanical effect, J. Phys. D: Applied
Physics, 28, pp. 1537-1546.
[Kachanov, M., 1994] Elastic solids with many cracks and related problems, Advances
in Appl. Mech., Vol. 30, Acad Press Ed.
[Kachanov, M., 1958] Time of the Rupture Process under creep conditions, T. V.Z.
Akad. Nauk S.S.R. Otd. Tech. Nauk, 8.
[Krajcinovic, D., 1985] Continuous damage mechanics revisited. Basic concepts and
definitions, J. Appl. Mech., 52, pp. 829-834.
[Lemaitre, J. ; 1971] Evaluation of dissipation and damage in metals, in Proc. Int.
Conf. on Mechanical Behavior of  Materials, Kyoto (Japan).
[Lemaitre, J.; 1978] Théorie mécanique de l’endommagement isotrope appliquée à la
fatigue des métaux, Actes Matériaux et structures sous chargement cyclique, pp. 133-
144, edited by Halphen B. and Nguyen Q.S., Assoc. Amicale des Ingénieurs Anciens
Elèves de l’E.NP.C.
[Lemaitre et al, 1994] Lemaitre, J.; Chaboche, J.L.; Mechanics of Solid Materials,
Cambridge University Press, Cambridge (UK).
[Lemaitre, J., 1992] A Course on Damage Mechanics, Springer Verlag, Berlin
(Germany).
[Lemaitre et al, 1999] Lemaitre, J.; Desmorat, R.; Sauzay, M.; Anisotropic damage law
of evolution, European J. Mech../A Solids (accepted).
[Lemaitre, J., 1983] Un modèle linéaire d’endommagement plastique ductile, C.R.A.S.
Paris, t. 296 II, pp. 1359-1364.
[Lemaitre et al, 1992] Lemaitre, J.; Marquis, D.; Modeling Complex behavior of
metals by the «state-kinetic coupling theory», J. Eng. Mat. Tech, 114, pp. 250-254.
[Marquis et al, 1991] Marquis, D.; Costa Mattos, H.; Modeling plasticity and aging as
coupled phenomena, Int. J. Plasticity, 7, pp. 865-877.
[Maugin, G.A., 1980] The method of virtual power in continuum mechanics.
Application to coupled fields, Acta Mechanica, 35, pp. 1-70.
[Maugin, G.A., 1988] Continuum Mechanics of Electromagnetic Solids, North-
Holland.
[Maugin, G.A., 1991] Compatibility of magnetic hysteresis with thermodynamics, Int.
J. Appl. Electromag. Mat., 2, pp.7-19.
[Murakami, S., 1988] Mechanical modeling of material damage, J. Appl. Mech., vol.
55, pp. 280-286.
[Sabir, M., 1995] Constitutive relations for magnetomechanical hysteresis in
ferromagnetic materials, Int. J. Engng. Sci., 33, 9, pp.1233-1249.



On the thermomechanical modelling
of shape memory alloys

Ch. Lexcellent and M. L. Boubakar
Laboratoire de Mécanique Appliquée Raymond Chaléat,

UMR-CNRS 6604, Université de Franche-Comté,
24 chemin de l’Epitaphe, 25030 Besancon, France.

christian.lexcellent@univ-fcomte.fr
lamine. boubakar@univ-fcomte.fr

Abstract: On the one hand, at the scale of the crystal, a very “smart” mathematical
theory of martensitic transformation is described. On the other hand, two more classical
ones, the first at the mesoscopic scale (“meso-macro” self consistent integration), the
second at the macroscopic scale, based on the thermodynamics of irreversible
processes, are formulated. The basic foundations of these meso-macro and
phenomenological models are recalled with special attention devoted to the
discrepancies between them. This paper constitutes a challenge to reducing the gap
between the mathematical theory and the classical ones.
Keywords: Shape memory alloys, Martensitic phase transition, Thermodynamics of
solids, Finite strains.

1. INTRODUCTION

Over the past decade, decisive progress has been made in the theoretical research on the
martensitic phase transformation in shape memory materials [James and Hane, 2000].
An important step has been made from the very well known crystalographic theory on
martensitic transformation due to Weschler, Lieberman and Read [Weschler et al.,
1953] to the actual mathematical one [Ball and James, 1987, 1992]. These authors
formulate a free energy function that would produce the austenite-martensite interface
by energy minimisation, and relate it to crystal structure. One principal result of this
approach is the recognition that some of the common microstructures in shape memory
materials are possible (as energy minimising microstructures) only with exceedingly
special lattice parameters. However, their investigation is, at this day, restricted to the
“reversible” behaviour (i.e. without hysteresis and dissipation) of single crystals or
polycrystals [Bhattacharya and Kohn, 1996] under external stress free state conditions.
The more classical approaches such as the “meso-macro” self consistent modelling
[Patoor et al., 1993] [Sun and Hwang, 1993] or the macroscopical modelling within the
thermodynamical approach, although less rigorous (in the mathematical sense), seems
more predictive. Hence, important work on polycrystals [Siredey et al., 1999][Qidway
and Lagoudas, 2000], the geometrical linear theory [Roytburd and Slutsker, 1999],
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hysteresis [Huo and Muller, 1993], constitutive equations [Raniecki and Lexcellent,
1998][Leclercq and Lexcellent, 1996][Abeyratne and Knowles, 1993], and dissipation
[Peyroux et al., 1996] are reported in this general investigation.

This paper consists first part in a brief synthesis of the main results obtained from
the mathematical theory of the martensitic transformation as compared to the
experiments. In a second part, the basic foundations of the phenomenological models
are described with special attention to the discrepancies between them.

Tensors will be denoted by underlined capitals in direct notation. Their
juxtaposition implies the usual summation operation over two adjacent indices, while
double dots indicate the summation product. A superposed dot indicates the rate, a
superposed T the transpose, a superposed S the symmetric part and a superposed A the
skew-symmetric part. The tensor is the second-order identity tensor.

2. CONFRONTATION OF THE MATHEMATICAL THEORY OF THE
MARTENSITIC TRANSFORMATION WITH THE EXPERIMENTS

The observations of Chu and James [Chu and James, 1996] on a Cu-14Al-3.9Ni
single crystal revealed a transformed region consisting alternately of two different
variants of martensite. These variants form an internally twinned martensite region
which is needed to have an undeformed interface between austenite and martensite
(Figure 1).
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In this situation, this Cu-Al-Ni single crystal undergoes a martensitic transformation
from a cubic structure to an orthorhombic structure (2H). Six variant of
martensite are defined as :

If a, b, c are the lattices parameters respectively of cubic and orthorhombic phases,
the non-dimensional constants can be written as :

The interface compatibility equation is :

where is the twin rotation, is the shape strain vector and the unit
normal to the austenite phase; the thickness of the two variants and are

proportional respectively to and
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On the other hand, it is observed that in a Cu-25.63Zn-4.2Al single crystal
[Vivet and Lexcellent, 1999] the martensitic region does not consist of twins, but of an
“untwinned” martensite, as explained by Hane [Hane, 1999].

For these transformations, an undeformed interface exists between austenite and a
single variant of martensite. The single variant of martensite created in the mother phase
with an “exact” austenite-martensite interface is obtained under a radial loading

for a biaxial tensile test [Vivet, 1999] (Figure 2). With each loading
axis, the variant which appears among the twelve possible ones corresponds to the
maximum of shearing. The theoretical analysis of Hane [Hane, 1999] is useful in the
following sense: if the lattice parameter of the austenite and the lattice
parameters (a, b, c, of the monoclinic martensite are measured, for this Cu-Zn-Al
(and also some Cu-Al-Ni, Cu-Zn-Ga, ...), the shape strain and the normal vector to the
habit plane can be predicted in agreement with those obtained with the Weschler,
Liebermann and Read (WLR) theory. But, it is no longer necessary to introduce a shear
parameter k in order to achieve compatibility between austenite and a single variant of
martensite. This shear k is a means by which the shuffles in the unit cells of the long-
period stacking ordered structures can be obtained [Otsuka et al., 1976]. The “exact”
interface is obtained between the classical austenite cell and a new unit cell called
6M1. The term “untwinned martensites” which is used more often than “faulted
martensites”, has been proposed by Hane [Hane, 1999].
The simplest austenite-martensite microstructure is two adjacent regions, one with
gradient on the austenite energy well and the other with gradient on a single energy
well. The compatibility equation with the variant is :
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The mathematical theory of martensite transformation is useful also for
interpreting other observations, such as the presence of twin or untwinned martensites,
the geometry of wedge triangles and diamond micro-structure interfaces. But if external
loads are applied, the minimisation of the total free energy which is the starting point of
that theory leads to a difficult non-linear elasticity problem [James and Hane, 2000]. An
attempt to solve the case of a thin film constrained on its lateral boundaries has been
performed by Shu and Bhattacharya [Shu and Bhattacharya, 1998]. These authors
examine the link between the microstructure as “untwinned martensites” or the texture
in a polycrystal and the ability to obtain efficient recovery strains. Certain
microstructures can be built in thin film specimens used in the design of novel actuator
devices. Finally, textures can be suggested for improved shape-memory effect.

3. PHENOMENOLOGICAL MODELLING

Thermomechanical behaviour is often viewed in the framework of generalised standard
materials using the average volume fraction of martensite z for macroscopic scale on
single crystals or polycrystals or volume fraction of martensite variants N for
“meso-macro” approach on single crystal and the mean transformation strain over the
volume of martensite as internal variables.
The expression of the specific Helmholtz global free energy is nearly the same in the
different investigations

where represents the elastic part of . Its expression is:

This form is obtained by supposing that the elastic constants is the generalised
Hooke’s tensor) and the mass density of the austenite and the martensite are the same.
Experimental measures show that the Young modulus of austenite is in fact between
two or three times the one of the martensite but as the elastic deformation remains
very small in comparison with the deformation associated with the martensitic
transformation, this hypothesis appears to be reasonable.

The thermal part is expressed in the following classical way:
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The specific heat is supposed to be independent of the phase state. is a reference
temperature.

The chemical part       can be taken as (B is a material parameter):

The choice of the expression of the dissipation part remains a more opened
problem. It depends on interface and multiple interaction effects between martensite
platelets and the mother phase and also between the platelets themselves.

Within a macroscopic approach, the polycristalline microstructure is not taken
into account because only the volume fraction of martensite z is considered. The
distribution of the martensite variants inside a grain and the grain boundary interactions
are not examined. The choice:

(i) with for stress induced phase transformation austenite martensite in
the case of single crystal pseudoelasticity when only one variant is created (see
for instance the Cu-Zn-Al single crystal [Huo and Muller, 1993] and for the Ti-
Ni or Cu-Zn-Al polycrystal [Raniecki et al., 1992][Raniecki and Lexcellent,
1994] ( is non convex on z).

(ii) with in the special case of cubic to trigonal transformation austenite
Rphase for Ti-Ni [Lexcellent et al., 1994] is efficient is convex on z).

proves to be.

The following choice of the form of recently proposed by Qidway and
Lagoudas [Qidway and Lagoudas, 2000]:

where and are material parameters, is not consistent with
the local state postulate and cannot be used. The choice of the free energy expression
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does not depend on the direction of the phase transformation as it is also made by
Kamita and Matsuzaki [Kamita and Matsuzaki, 1998].

In order to extend the modelling to the case of non-isothermal behaviour i.e. the
recovery strain or stress, the volume fraction of martensite z is split into two
components: the self accommodated one ZT obtained under pure thermal action and the
untwinned one obtained under mechanical loading [Brinson, 1993]:

. With these two quantities chosen as internal variables a new form of

the energy component has been proposed by Leclercq and Lexcellent [Leclercq
and Lexcellent, 1996]:

Examining the behaviour of a grain, Siredey et al [Siredey et al., 1999] propose
the following form of using the volume fraction of each variant i of martensite as
internal variables (meso-macro investigation):

where constitutes the interaction matrix. in this case is chosen convex in the
internal variable

In a classical way, the shape memory material is considered as a “plastic” one but
with different behaviours in loading and unloading. The process of stress induced phase
transformation can be controlled by the addition to the specific free energy of two yield
functions: for the forward transformation austenite martensite and for the
reverse one martensite austenite with the consistency conditions and

For the process of martensite reorientation (self accommodated martensite
untwinned martensite a very classical model for plasticity can be used
[Roumagnac et al., 2000]

In another way, the examination of the intrinsic dissipation part in the Clausius-
Duhem inequality can be undertaken. In the case of pseudoelasticity (stress induced
phase transformation) with only one internal variable z, we establish that:

and form a couple of conjugate variables.
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In a somewhat restrictive hypothesis Peyroux et al. [Peyroux et al., 1996]
postulate that the intrinsic dissipation is negligible in regard to the latent heat, it means
that when phase transformation occurs One has to note that the slope in
the stress-strain diagram of is positive. The hysteresis is taken into account by
the local temperature effect calculated using the heat equation, (forward phase
transformation austenite martensite is exothermal whereas reverse phase
transformation martensite austenite is endothermal).

The choice of the form of the intrinsic dissipation is opened. As an example, in
the modelling of grain pseudoelastic behaviour within a meso-macro approach using

as internal variables, it can be established that [Lexcellent et al., 1996]:

and hence the criterion for forward and reverse phase transition of each variant s is
finally defined.

is a coefficient and is the memory volume fraction. is defined as the value
attained by just before inversion of the loading.

In the frame of this modelling, a crucial point is the choice of the expression of
the transformation strain rate. For a phenomenological approach at the macroscopic
scale, a common expression is in the spirit of Von-Mises:

with:

In order to take into account the asymmetry between tension and compression the
expression must be changed:

Qidway and Lagoudas [Qidway and Lagoudas, 2000] add the eventual influence of the
isotropic part of the stress tensor on the phase transformation (i.e. the pressure
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effect). At this day, it constitutes an opened problem as the triaxial experiments of Gall
et al [Gall and al., 1996] are not totally conclusive.

4. KINEMATICS FOR FINITE STRAIN ANALYSIS

It is well known that the pseudoelastic behaviour of shape memory materials is
characterised by large recoverable strains. Even so, constitutive models based on small
deformation theory have been developed and successfully used. Nevertheless, this
approximation becomes inadequate when large displacements and rotations occur.

To built constitutive models for finite strain calculations, we introduce the
following decomposition of the deformation gradient

The tensor represents the deformation gradient associated with the martensitic
transformation. It connects a reference configuration to a particular configuration
where a frame
attached to the material substructure preserves its initial orientation. It is the case, for
example, if we choose a direction along a habit plane. During deformation, this frame is
rotated by the rotation to an intermediate configuration from

which a pure elastic strain is finally applied. This decomposition is based on the fact
that the martensite and the austenite have the same elastic parameters as supposed
previously. In the case of small elastic strain the velocity

gradient leads to the following decomposition of the strain rate tensor and
the material spin tensor

is the rotational derivative of with respect to the rotation
Equation (15.a) expresses the additive decomposition of the strain rate tensor in

an elastic part and a part associated with the martensitic
transformation. This equation gives in the configuration
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with and  is defined as being the rotational
derivative of the strain measure with respect to

Equation (15.b) is a particularity of finite strains. If the material has no preferred
orientations, can be considered as the spin of a well chosen frame. The tensor

represents then the velocity of the medium with respect to this frame.

An objective frame family is given by

Where is the proper rotation derived from the polar decomposition of the
deformation gradient

Constitutive equations of the form of those developed under small deformation
hypothesis can then be established in the configuration supposing that the state of
the material is completely defined by the elastic strain the volume
fraction of martensite z and the temperature T [Boubakar et al., 1999].

5. CONCLUSION

Referring to the large number of publications, the thermomechanical modelling of shape
memory alloys seems to be a very exciting challenge. On one hand, there is the very
smart mathematical theory of martensite transformation with limited capacity for
engineering applications. On the other hand, the modelling based on the
thermodynamics of irreversible processes seems to be more predictive (one-way shape
memory effect, pseudoelasticity, recovery strain or stress under anisothermal loading).
But nowadays, the gap between the two approaches is obvious. Perhaps, the work of
Roytburd and Slutsker [Roytburd and Slutsker, 1999] i.e. a geometrical linear theory,
can constitute a link between the two investigations. However, some real problems such
as the non- proportional loading paths modelling are not yet solved. In fact the coupling
between the creation of martensite platelets and their reorientation under stress action,
must be investigated. Moreover, modelling the training of shape memory alloys i. e. the
two way memory effect constitutes an interesting goal.

Nota: The research field concerning shape memory alloys modelling is very dense.
Many important papers are not quoted in this brief synthesis. The authors present their
apologies in advance for this restriction.
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Abstract: A new thermo-mechanical framework is presented, able to deal with internal
state variables obeying a statistical distribution. That framework is used for modelling
flowing nematic polymers. In fact, we extend the Doi model, allowing the mean-field
potential acting on each molecule to depend on the gradients of orientation. The link
with the Ericksen-Frank-Leslie model is established without ambiguities, and we stress
on the differences of dynamic behaviour implied by the two models.

Keywords : Liquid Crystals, Polymer Melts, Smoluchovski Equation, Thermodynamics
of Irreversible Processes.

1. INTRODUCTION

As high strength materials, liquid crystalline polymers have a considerable
technological importance, but one still lacks of a theoretical model describing the flow
of these complex fluids. The issue is to estimate the degree of orientation order, its
modifications by various flows, and its feedback on the overall stress of the material.
The well-known Ericksen-Frank-Leslie (EFL) model (De Gennes and Prost 1993)
assumes a perfect and undisturbed order, and represents it by a unit vector, the so-called
director giving the locally preferred orientation. That model is generally thought to hold
when the orientation stays close to a uni-axial equilibrium distribution, and that means
for relatively slow flows. The Doi model is more recent (Doi 1981, Doi and Edwards
1986) : instead of assuming a more or less frozen order, a probability distribution is
introduced for the orientation and one considers its modifications in various flows. The
Doi model also assumes that the interaction between neighbour molecules can be
represented by a mean-field potential acting on each molecule and depending on its
orientation. However, there is no equivalent of the Frank elastic energy, which means
that the energy increase due to a spatially varying distribution of orientation is not taken
into account. We propose to amend the Doi model by supposing the mean-field
potential to depend not only on the orientation, but also on the orientation gradient. And
we want to compare the predictions of that extended model with those of the EFL
model. For that purpose, we will use a new thermo-mechanical approach, based on the
well-known thermodynamics of irreversible processes, but enlarged so as to cope with
internal variables of state distributed according to some probability law. General results
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for the entropy balance of liquid crystals are presented in section 2. The EFL model is
presented in a somewhat unconventional way in section 3. The proposed extension is
developed in section 4, followed by some concluding remarks and a comparison with
previous work in the last section.

2. THE GENERAL ENTROPY BALANCE OF LIQUID CRYSTALS

Liquid crystals obey the usual conservation laws for mass, momentum and total energy,

where is the convective time-derivative. One of the peculiarities of
liquid crystals is the presence of internal body couples and the absence of any intrinsic
angular momentum. This means the stress tensor is not symmetric but the density of
angular momentum is simply without any additional term, and the total energy
per unit mass is where the internal energy e does not include any spin
kinetic energy. For angular momentum to be conserved, one is led to introduce couple
stresses represented by a third-order tensor t, anti-symmetric in the exchange of its last
two indices, i.e. These couple stresses enter the expressions of the stress
tensor and the energy flux as

where is the symmetric part of the stress tensor, q is the heat flux and is the fluid
rotation rate. As a result, the balance of internal energy becomes

where D is the fluid strain rate The free enthalpy of a liquid crystal
is a function of its pressure p, of its temperature T and of the extra variables describing
the orientation order. The free enthalpy per unit mass is the chemical potential The
Gibbs relation of liquid crystals can be presented as

where s is the entropy per unit mass and depends on the orientational variables
only. That Gibbs relation holds not only at equilibrium but also out of equilibrium
provided one considers it in the frame moving with velocity v (De Groot and Mazur
1962). As a consequence, one deduces the general form of the entropy balance of a
liquid crystal
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where S is the entropy flux and I is the unit tensor. The right-hand side of this equation
represents the entropy production rate (multiplied by T). For it to appear in the expected
form of a sum of fluxes times thermodynamic forces, one needs a detailed expression
for the time derivative of in other words one needs to know what are the
orientation variables entering together with their evolution in time.

3. THE ERICKSEN- FRANK-LESLIE MODEL

The EFL model depicts the orientation order by a unit vector, the director n. A
distortional energy represents the energy penalty when distortions occur in the
orientation field n(r,t). depends on n itself, but is primarily a function of its gradient.
It is related to the chemical potential and its time derivative by

and

There is no difficulty when calculating in terms of dn/dt, but to present the result
in a simple form one needs to introduce the following four definitions :

One then obtains

together with the rotational identity that must be satisfied by any scalar expression for
(see eq. 3.110 of  De Gennes and Prost 1993)

where the superscripts s and a stand for the symmetric and anti-symmetric part of a
tensor respectively. Reporting the result (3.1) into the entropy balance (2.2), one
deduces that the heat flux is related to the entropy flux by
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while the right-hand side of the entropy balance becomes

At this point, the consequences of choosing n as the orientation variable of state have
been fully taken into account. What is needed now is the evolution equation for n. That
equation is generally written as

where I - nn is the projector on a plane orthogonal to n, while and are two
phenomenological coefficients. Taking that evolution equation into account, and
defining the viscous stress and the viscous couple stress by

the final expression for the entropy balance appears as

As a consequence, the coefficient must be positive. The overall stress tensor of the
nematic liquid crystal is related to the viscous stress and viscous couple stress as

where the invariance relationship (3.2) has been taken into account. The viscous couple
stress has always been neglected in previous studies. A detailed expression for
taking the uni-axial symmetry into account can be found in e.g. De Gennes and Prost
1993. It is noteworthy that many authors have included the non-dissipative stresses

 involving as well as the anti-symmetric stress in their definition of the viscous
stress. This is rather arbitrary and should be avoided. Moreover, the simultaneous
presence of in results (3.4) and (3.7) is less a manifestation of the Onsager symmetry
than a (more trivial) condition of elimination of from the entropy production.

4. THE EXTENDED DOI MODEL

As in the original Doi model [Doi 1981, Doi and Edwards 1986], a unit vector u depicts
the orientation of an individual polymer molecule. The orientation order is characterized
by the statistical distribution giving the number density of macromolecules
with an orientation u in a local environment described by Note that N is not a
probability as it was in the original Doi’s model, but that it is related to the number
density n of polymers as
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where is the elementary volume of the configuration state space. To
simplify the issue, we will suppose the macromolecules to move all with the same
velocity v, and will write the conservation law for the density distribution as

Integrating over the configuration phase-space, one recovers the expected conservation
law for the polymers number density

A mean-field energy is defined for each macromolecule and written as The
fluid energy depends on the mean value of U, but there is also an entropic contribution
coming from the distribution N itself, and finally, the chemical potential of the liquid
crystalline polymer appears as

where k is the Boltzmann constant. The trick when calculating the time-derivative of
(we henceforth delete the symbol) is to proceed in two steps. First, we consider as
a function of u and and we express as a function of du/dt and of the statistical
distribution N. In a second step, we use the evolution equation of u and get the final
expression for the time-derivative appearing in the r.h.s. of (2.2).

Taking the conservation equation (4.1) into account and after integration by parts, one
deduces from (4.2)

with defined as

We now change the order of the derivatives d/dt and in the second term between
brackets (a non-commutative operation !) and we replace everywhere du/dt by the co-
rotational derivative because  must be a Galilean invariant. We then
get an expression for which contains a contribution depending linearly on the
rotation rate That contribution must disappear because is a part of the
entropy production rate which cannot display terms linear in (but terms proportional
to the gradient of are allowed). As a result, we obtain the rotational identity
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with the definitions

The rotational identity (4.4) being satisfied, appears as

It is now evident, when comparing (4.4) and (4.6) with (3.1) and (3.2) that there is a
one-to-one correspondence between the extended Doi model and the EFL model. This is
not the case of the original Doi model which assumes the mean-field potential to depend
on the orientation only, and for which (4.6) simplifies into

while the rotational identity (4.4) (or its equivalent form (4.13)) amounts to the no-
torque condition

The second step of the calculation depends on the evolution equation for u. The
original Doi model assumes that u behaves like the orientation of a long and thin rigid
rod, acted upon by mean-field forces and Brownian diffusion forces

where Dr is the rotational diffusion coefficient and is defined in (4.3). A more
general evolution equation, which assumes no special molecular shape and which takes
the of  into account is

where is a third-order tensor, characteristic of the polymer shape, depending on u only
[Hinch and Leal, 1975], and symmetric in the exchange of its last two indices

The presence of in (4.8) is in fact necessary to have a positive entropy
production associated with the diffusion of orientation. When the above evolution of u
is introduced into (4.6), one finds
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with the following definition of the non-dissipative stress in the extended Doi model

The last operation consists in reporting (4.9) into (2.2). The elimination of the terms
under the divergence leads to (compare with (3.3))

and after defining the viscous stress and viscous couple stress by

the final expression of the entropy balance in the extended Doi model is

to be compared with (3.6). After taking results (4.10) and (4.11) into account, the total
stress becomes

Taking the identity (4.4) into account, one can present the total stress in a form easily
comparable to (3.7). It is important to remember that and depend on
defined in (4.3). This means that each integral in (4.12) gives rise to two different kinds
of integrals, the first one connected to the mean-field potential U, and the second one
independent of it. This is the main difference between (4.12) and the EFL result (3.7).
Let us call and H the quantities defined as in (4.5) but with replaced by U.
Then, it can be shown that the rotational identity (4.4) amounts to a condition to be
satisfied by the mean-field potential U(u, ) only

And the above overall stress tensor can be rewritten as
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To obtain more explicit expressions for the stress tensor, one needs an expression for
the mean-field potential. We propose below the simplest potential containing a
dependence. It stems from an extension of the trick used by Maier and Saupe [see de
Gennes and Prost, 1993, ch. II ] to find the equilibrium distribution of orientation, and it
reads

where gives the strength of the nematic interaction and L is a parameter with the
dimension of a length, presumably of the order of the polymer size. The mean-field
potential is made of two terms, the first one favouring a non-isotropic configuration
tensor <uiuj> and the second one penalising its spatial gradients. The symbol < > is
defined as the average over the configuration space

The above mean-field potential leads to the following distortion stress

which is symmetric and depending on the gradients of the configuration tensor only.
Moreover, one obtains for the molecular field H,

It is remarkable that this molecular field can also be deduced (Feng et al., 1999) from
the one-constant Marrucci-Greco (1991) potential

The above results have revealed the importance of the configuration tensor. Hence the
need to know its evolution in time, as a part of the modelling of liquid-crystalline
polymers. That equation is obtained by multiplying the i-component of (4.8) by uj, then
symmetrizing, and finally averaging. Separating the contribution of H to  one obtains
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where is the Jaumann or co-rotational derivative. The respective roles of the
shape tensor and the molecular field H are clearly seen. The initial Doi model
corresponds to the special shape factor In this case, the general
results (4.14) and (4.16) give as a particular case the model equations proposed by Feng,
Sgalari and Leal (1999). It is noteworthy that these authors have used the one-constant
Marrucci-Greco potential, and they paid a lot of attention to a careful generalization of
Doi’s principle of virtual work to obtain a distortion stress. The advantage of the above
thermodynamic approach is to deduce all the relevant quantities from a single
dependent mean-field potential.

5. Conclusions

The model proposed by Doi to describe the flow of liquid-crystalline polymers has
played a major role for the last fifteen years, because of its ability to describe in a
satisfactory way most of the experiments involving those complex liquids. Its only
shortcoming is the absence of distortional energy which precludes its use in situations
where the liquid-crystalline polymers display a spatially varying configuration. To solve
that issue, Edwards, Beris and Grmela (1990) proposed a model in which the free-
enthalpy was supposed to depend on <uiuj> and its gradients only. Their model
lies “midway” between the EFL model and our extended Doi model. However, it is far
from obvious that a mean-field potential exists such that (4.2) is expressible in terms of
the second moment of the distribution N only. And while the distortion stress (4.16)
obtained with the potential (4.15) comforts their assumption, the term u.Hu present in
(4.14) and (4.17) has many chances to introduce higher-order moments. Marrucci and
Greco (1991) have proposed an extension of the Doi-Maier-Saupe potential, and Feng,
Sgalari and Leal (1999) have incorporated the simplest form of that new potential into
the Doi theory to formulate a model containing distortion energy. Their approach is a
nice alternative to ours but we have a hunch it will be difficult to extend it to
anisotropic distortion energies. This is the reason why we prefer a mean-field potential
depending on the orientation gradient. This was the starting point of the present work,
and the use of a newly developed thermodynamic framework allowed us to deduce all
its consequences concerning the macroscopic equations of motion.
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Abstract : This paper presents, in a synthetic way, several works performed on shape
memory alloys (SMAs). Three scales of description are used according to whether one
seeks to numerically predict the possible microstructural configurations of phases in
equilibrium or the behavior of a mono- and polycrystal of SMA during a phase
transition.
Keywords: SMA, phase transition, thermomechanical coupling, multiscaling.

1. INTRODUCTION

Shape memory alloys (SMAs) may undergo remarkable microstructural transformations:
they may change the structure of their crystallographic lattice under mechanical and/or
thermal loading. This transformation, called martensitic transformation, is displacive in
the sense that it corresponds to a collective displacement of atoms. From a
thermodynamic point of view, it belongs to the family of first order phase transitions
insofar as it is accompanied by a latent heat of phase change. SMAs are being closely
studied at the present time, for various reasons. From a fundamental point of view,
researchers have found in the SMAs an amazing example of solid-solid phase transition,
the domain of which is generally close to room temperature and thus is relatively easy
to observe. From a more practical point of view, the number of industrial applications,
using SMAs properties, grows day by day.
Three length scales can be introduced to study the SMA behaviour. The microscopic
length scale corresponds to the crystal lattice, and is about several times the size of the
unit cell; it can also be related to the representative volume element (RVE) of the
continuous medium that is associated with the lattice. As for the mesoscopic and
macroscopic length scales, they correspond to the RVEs of mono and polycrystal,
respectively.
Since this transformation is able to generate a large variety of phase mixtures, some
authors have systematically studied the possible microstructural arrangements
(twinning) or rearrangement mechanisms due to straining (variants reorientation) when
the material is in mechanical and thermodynamic equilibrium [Ball et al., 1987].
(*) List of authors: P. ALART, X. BALANDRAUD, A. CHRYSOCHOOS, C. LICHT, O. MAISONNEUVE,
S. PAGANO, R. PEYROUX, B. WATTRISSE. name@lmgc.univ-montp2.fr.
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Others are interested in the phase transition itself and in its correlation with more
macroscopic effects: pseudoelasiticy, self-accommodation, one-way or two-way shape
memory effects, aging, etc. They are many experimental tests, mathematical modelling
or numerical works on these matters. Many of these studies are directly related to
engineering purposes and industrial applications, [Patoor et al., 1994].
This paper gathers and tries to synthetize the researches, performed by several teams at
LMGC, which concern the thermomechanical behaviour of SMAs. In section 2 we recall
the thermodynamic concepts and results used in this paper, then we will present
investigations into the three scales of description. In section 3, following works of Ball
and James, we show numerically computed examples of twinned microstructures. At
this scale of description, the symmetries of the crystal lattice and the material frame-
indifference principle will be invoked to introduce non-convex potentials having
multiple wells. Section 4 will be devoted to research performed at the mesoscopic scale.
Two examples of “micro-meso” passage will be pointed out ; they will be based on a
(quasi)convexification procedure of the thermodynamic potential. The goal here will be
the deduction, from microstructural considerations of section 3, of the properties of
mesoscopic (quasi-convex) potentials. A third example, more inspired by experimental
results obtained on monocrystalline samples, will deal with the pseudoelastic behaviour
of SMAs. We will underline the strong coupling that represents the mechanism of phase
change, and the important role played by the temperature variations, particularly those
induced by the latent heat. This model of monocrystal will be used, in section 5, to
numerically predict the behaviour of a set of grains considered as a RVE for the
polycrystal. Comparisons between calculations and experiments will be shown,
considering at the same time the mechanical, thermal, and energy aspects of the phase
transition.

2. A CONVENIENT THERMOMECHANICAL FRAMEWORK

Currently many physicists or chemists like to introduce phase transitions as unstable
thermodynamic phenomena [Kondepudi et al., 1998]. The instability is in the sense
defined by the Gibbs-Duhem criterion [Glansdorff et al., 1971] and is invoked in a wide
range of situations [Papon et al., 1999], Deduced from an analysis of the entropy source,
the thermodynamic instability is related to a change of the convexity of the
thermodynamic potentials and may consequently imply a non-monotonic mechanical
behaviour. In such a context, the reversibility assumption is necessary to derive the
famous equal-area rule due to Maxwell which enables us to determine the phase
diagram. These ingredients have been widely exploited for describing the martensitic
transformation [Müller et al., 1991], [Abeyaratne et al., 1993].
In what follows, we have chosen other ways for determining the microstructures
corresponding to the possible phase mixtures at equilibrium or for introducing the phase
change mechanisms in the constitutive equations. We will first assume that the phase
transition is a quasi-static process possibly accompanied by irreversibilities. A
convenient thermomechanical framework is the Continuum Thermodynamics [Germain,
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1973] that postulates the local state axiom. More particularly, we will use the formalism
of generalised standard materials [Germain et al., 1983] for which the constitutive
equations can be derived from a thermodynamic potential and a dissipation potential.
The interest of modelling phase transition into such a framework is at least twofold.
Theoretically, it gives a convenient mathematically consistent background to predict
phase change for any thermomechanical loading. In other words, it is able to include, in
the same model phase diagram, properties and kinetics of phase change induced by
stress and/or temperature variations. Of course, when only stable equilibrium states of
phase mixture are considered, the dissipation potential is no longer necessary and a
thermostatic framework is sufficient. Experimentally, energy balance construction
facilitates the interpretation of thermal and calorimetric phenomena accompanying the
phase change. Besides, it leads to a better understanding of certain pseudoelastic effects
such as the hysteresis loops of the stress-strain curves [Chrysochoos et al., 1993].
To describe the martensitic transformation at meso or macrolevel, the following
variables are often chosen to characterise the thermodynamic state of each volume
element : T the absolute temperature, a strain tensor and n variables
describing the phase mixture.
If W denotes the specific Helmholtz free energy, the Clausius-Duhem inequality defines
the intrinsic dissipation and the thermal dissipation both supposed to be
separately positive:

where is the Cauchy stress tensor, D the Eulerian strain rate tensor, the mass
density, and q the heat influx vector. The dot stands for the material time derivative.
The equality characterises reversible thermodynamic processes.
The intrinsic dissipation per unit volume is the difference between the inelastic

energy rate and the stored energy rate Deduced

from both principles of thermodynamics, the local heat conduction equation is

where denotes the specific heat capacity at constant and , while

stands for the external heat supply. The intrinsic dissipation , the thermoelastic
coupling term and the rate of latent heat have been collected in
the right hand member of the heat equation. Taking into account an isotropic conduction
of heat ( q = –k gradT), we underline that the left hand side becomes a partial
derivative operator applied to the temperature. This property has been experimentally
used to deduce the distribution of heat sources from temperature charts by the use
of infrared techniques [Chrysochoos et al., 2000]. The volume heat source is defined by
the equation :
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We emphasise that the rate of latent heat is here defined as the heat source related to the
thermomechanical couplings between temperature and state variables characterising the
phase mixture. An interesting property can be directly derived from the energy balance
when a mechanical hysteresis loop is associated with a thermodynamic cycle of
duration C. In [Peyroux et al., 1998], we showed that:

where is the energy associated with the hysteresis area. This result shows that the
presence of a mechanical hysteresis is not only due to dissipative effects, but also to
thermomechanical coupling mechanisms. The experimental investigations confirmed
the main role played by the temperature on the mechanical behaviour [Chrysochoos et
al., 1995]. In fact, even during quasi-static loading, the temperature variations induced
by the latent heat are of the same order of magnitude as the transition domain "width".
Consequently, we emphasized that these variations strongly modify the kinetics of an
apparent stress-induced phase change and we claimed that the transformation is to be
considered a priori as an anisothermal process. The thermomechanical couplings and
the heat diffusion generate a time-dependence on SMA behaviour, to which we will
return in the last sections of this paper.

3. ATTEMPTS AT MULTISCALE MODELLING

3.1. Microscopic scale

3.1.1. A variational model for microstructures

A neat description, which has its origins in the work of J. L. Ericksen, can be found in
[Ball et al., 1987], [Ball et al., 1992], [James et al., 1989] and roughly summarized as
follows. Under the Cauchy and Born rule [Ericksen, 1984], an abstract continuous
medium is associated with the crystalline lattice. This medium is assumed to be
thermoelastic. In the framework of the finite transformations, the free energy density
function W depends on the temperature T and on the gradient of deformation F . This
density function inherits some properties of a crystalline lattice encountering phase
transitions:

i) W is frame indifferent:

is the set of all rotations, the set of all square matrices of order 3 with positive
determinant,

ii) W has a finite number of potential wells:
at each T, there exists a finite number m(T) of symmetric, positive definite matrices of
order 3, such that the minimizers of W(.,T) are the orbits
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For instance at each temperature greater than the minimizers of

are corresponds to the existence of the austenite state at a

temperature greater than the transition temperature While at each temperature

lower than the minimizers of are corresponds to the

existence, at each temperature below of the martensite state which appears in k
variants, k being the index of the symmetry group of the martensite lattice in the
symmetry group of the austenite lattice. Of course, the minimizers of are the

k+1 orbits
Finding stable equilibrium configurations of a piece of monocrystal at a uniform
temperature T, with for instance a displacement boundary condition on its whole
boundary, leads to the determination of the exact minimizers of the total energy

on the reference configuration for all admissible deformations Here, the
temperature acts as a parameter, thus the variable T is, from now on, omitted in this
section. In many situations, because of the numerous potential wells, the previous
problem has no solutions. The (weak) limits of the minimizing sequences of I do not
minimize I , and they have to develop finer and finer oscillations. The fact that these
spatial oscillations correspond to the observed microstructures is the basic assumption
of this theory.
Our own contribution is confined to the determination of microstructures by numerical
energy minimization. The aim of our numerical experiments is to check if minimizers of
the discrete problems, which always exist, account for the microstructures. We denote
by Y the microscopic domain of observation, and F the mesoscopic gradient of
deformation (i. e. the average on Y of the microscopic gradient of deformation).

3.1.2. Numerical experiments at microscale

In contrast with most previous computations [Collins, 1993] we do not use, in this part,
either finite elements or gradient-like algorithms, but a method using a trigonometric
interpolation and a decoupling of the deformation fields from their gradients. Saddle
points of an augmented Lagrangian:

are obtained by an Uzawa algorithm:

This method is worthwhile, since a step of a relaxation procedure to minimize
involves a global linear problem of Laplace type, and local nonlinear problems of
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minimization of a quadratic perturbation of W in a suitable set of matrices. Moreover, to
compute the microstructures, we take advantage of being free to choose the domain of
computation and, to a certain extent, the boundary conditions. With Y cubic and a
boundary condition of place, we can use a trigonometric interpolation on a grid of order
N, rather than finite elements. This method avoids storing a stiffness matrix and the fast
Fourier transform algorithm (FFT) is faster than solving the linear system involved by
finite elements.
For our numerical two-dimensional experiments [Licht, 97] we have chosen an
Ericksen-like energy density function [Collins, 93]:

If the microstructure is unique
[Ball et al., 92] and is a single twinned laminate orthogonal to with phases

corresponding to the wells in proportions x, 1- x. Thus a valuable test of this
numerical method is to check if minimizers of the discretized problem account for
this microstructure.
Figures la (resp.lb) displays for the case x = 1/3 and N=16 (resp.N=32)
where, as proposed by [Collins, 93],

Except of course in the vicinity of where must satisfy the boundary condition

essentially takes the values and in vertical layers in
proportions x and (1 – x). Whereas depends strongly on N, the distribution of the

values of does not.
Thus, our numerical method gives the microstructure on the scale of the grid, but these
nice results were obtained through initial fields with oscillations of the same wavelength
as the expected microstructure. Random initialization (Fig.lc) gives a less regular
distribution of and but the horizontal proportions are still about x and (1– x).
Even with slowly decreasing random perturbation of the updating of the multiplier
we did not succeed in avoiding this kind of local minimum (Fig.1d), however the
average proportions of the vertical layers are x and (1–x). Figures le-lh concern the

case in which x = 1/2 and are replaced by When is compatible
with the grid, twinning is once more obtained.
Nevertheless trigonometric interpolation seems more flexible than piecewise affine
finite elements for capturing slanting oscillations, because of the Hadamard jump
condition. But as in [Collins, 93], we never succeeded in trapping laminates of order
two (layers within layers)!
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Similar results may be obtained with a more rudimentary model in the context of small
perturbations. Frémond’s model may be related to the Khachaturyan-Roytburd-Shalatov
theory; Kohn [Kohn, 1991] showed that this last theory is the geometrically linear
analogue of the one developed by Ball and James in the context of finite deformations
[Ball et al., 1992]. The free energy density function is then a function of the small strain
tensor The frequency of the oscillations of the layered microstructure depends on the
mesh. Due to the choice of the residual stress tensor (introduced below) parallel to I,
the orientation of the microstructure is arbitrary [Pagano, 1998].

3.2 Mesoscopic scale

3.2.1 Quasiconvexification and scale transition

If the material is assumed to be non dissipative, a first proposal for the mesoscopic
strain energy density function is the quasiconvexification of the microscopic density
function. The justification for this rests on the mechanical interpretation of two
mathematical properties of the minimizing sequences of the total energy that were
invoked in section 3.1.1, [Dacarogna, 82]. First their (weak) limits describe the average,
say mesoscopic, state of a grain due to the convergence of the gradient averages in every
subdomain. Next, these limits do not minimize the true total energy, but a total energy
whose density is the quasiconvexification QW of the true density W:
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QW(F) is the infimum of the average of the strain energy for deformations whose
average gradient is F. Thus the mesoscopic behavior of the monocrystal is not described
by the true (microscopic) energy density function W but by an apparent density QW.
The main difficulty with this approach is the computation of QW.
Another approach is to propose a strain energy density W through phenomenological
considerations and to check if it is quasiconvex (i. e. W = QW!).

3.2.2 An academic two-phase phenomenological modeling

Many phenomenological models of two-phase shape memory material incorporate a so-

called interaction term in the free energy; x is a phase proportion and h
a non-negative function of the temperature. Thus, if the material is assumed to be non
dissipative, the strain energy is not a convex function of the linearized strain This lack
of convexity generates controversies which may lead to a rejection of the previous

structure of ; we showed [Licht, 2000] that if h is not too large the previous
structure provides a good model.
We confine our attention to the case of two linearly thermoelastic phases with different
stress-free strains but with the same elastic stiffness A ; the energy density function
of  each phase is

and a common proposal for a family of free energies and strain energies of the mixture
is

(resp. is the convex combination in proportions x and (1-x) of (resp.

Let

Through Fourier analysis as in [Kohn, 91], it can be shown that
is convex if and only if

is not convex but quasiconvex if and only if

is not quasiconvex if and only if
Of course the second case does not occur if H=0, that is to say, if the stress-free strains
are compatible. Thus the good range for quasiconvex or convex) depends strongly
on the compatibility of the On the other hand, incorporating a term like in a more
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rational definition of the macroscopic energy of a mixture like

yields a free energy equal to Thus quasiconvexity of implies
which agrees with a proposal by [James et al., 1993 ] for mismatch energy.

Moreover, if , the function has a double-well structure for

suitable so that the total mechanical energy of a body subjected to a uniform surface
loading may have two strong local minimizers. Thus in some displacement-controlled
tests, a negative slope of the stress-strain response curve of a specimen can be observed,
while in some load-controlled test a kind of hysteresis occurs.
We also proved that approximations of the previous local minimizers can be obtained
by classical finite element methods.

3.2.3 D. C. algorithm: a convenient numerical tool

The previous approach may be extended to a three phase mixture, as is usual for some
models of SMAs with an austenitic phase (proportion ) and two variants of martensite
(proportions and ). We assume that the stress-free strain of the austenite is zero

and the stress-free strains of the martensites are opposite and
Similarly the term is equal to and we define

To relate this formulation with others ([Frémond, 1987,
Raniecki et al., 1992]), it is useful to introduce a residual stress tensor and to express
the stress-free strain with respect to it, to the elastic tensor A and a scalar  function

of the temperature: We have then 3 interaction terms between 2 phases,
and But it seems natural enough to suppose that By

choosing [Leclercq et al., 1996, Pagano et al., 1999], the previous
analysis about a two-phase mixture is preserved and the convexity and quasiconvexity
properties may be recovered with respect to the single parameter G. Consequently, a
family of free energies of the mixture may be expressed as follows:

where

Similarly to the 2-phase mixture, we can then distinguish 2 important values and
which are determined according to our assumptions. For a bidimensional modeling, the
isotropic elastic tensor ( and the Lame coefficients) and we have,
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by convexification and quasiconvexification of the bulk energy proposed by Frémond,
which corresponds to G equal to zero [Frémond, 1987]. By neglecting dissipative
effects, we define the bulk energy density as the marginal function of the free energy for
all admissible volume proportions belongs to the simplex C,

This bulk energy density is then a three-well or a two-well potential with five or three
regimes described below. For an efficient numerical treatment it is useful to split it into
the difference between two convex functions [Pagano et al., 1998]; the first is quadratic,
represents the bulk energy density of the austenitic phase and does not depend on G:

with

If the second convex function presents five regimes:

If we recover a two-well potential with three regimes:

To reproduce local instabilities inherent to phase transition [James, 1987, Zhong et al.,
1996], we search for only a local minimum of the total energy on a domain which
may still be split into two convex parts, including the bulk energy and the work of the
external loading l(v):

This decomposition leads us quite naturally to introduce a type Lagrangian according
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to the terminology of Auchmuty [Auchmuty, 1989], depending on the Fenchel
conjugate function of and associated with a min-min problem:

The D.C. algorithm [Stavroulakis et al., 1993] consists in constructing a minimizing
sequence of LII descending, alternately, in the primal variable and the dual one.

D.C. algorithm: given, with known, determine successively

as follows :

As an example of application (figure 2), numerical
simulations [Pagano et al., 1999] on a tensile test
showed a propagation of the phase transition
initialized at the connection zone of the sample and
spreading out over the gauge length in accordance
with some recent experiments.

3.2.4 The phase change: a thermomechanical coupling mechanism

In a previous paragraph, we pointed out the properties of the quasiconvex energy QW.
This energy was deduced from an analysis at a microscopic scale. Another way to
identify the mesoscopic potential is based on experiments on monocrystalline samples.
The phenomenological features we saw led us to consider a convex energy at this scale.
The confrontation between the micro and meso approaches and the phenomenological
one was profitable. In this section, we present the retained mesoscopic free energy

and the derived constitutive equations of the monocrystal, in order properly
to describe different phenomena such as pseudoelasticity, reorientation effect and
thermomechanical couplings accompanying the phase change.
The experiments [Balandraud, 2000] were carried out on a monocrystalline CuZnAl
specimen. First, uniaxial load-unload tests were performed in the “low temperature
region” (typically 22°C). The apparent permanent strain observed in Figure 3 can be
recovered by a heating-cooling process under zero stress. This effect, induced by
martensite variant reorientation, leads us to consider, at low temperatures, a non-strictly
convex property of the marginal energy :
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Note also that, once the reorientation strain is annealed, the stress, the strain and the
temperature recover their initial values. Therefore, and from a thermomechanical point
of view, we do not refer to plasticity to explain reorientation strain.

Another interesting test concerns pseudoelasticity. If the load-unload is imposed in the
“high temperature region” (typically 30°C), we can observe (Figure 4a) a hysteresis
loop in the strain-stress diagram that must be studied in the light of the thermodynamic
framework presented in part 2. Moreover, temperature variations of the sample can be
observed (Figure 4b) around the prescribed value (the temperature of the environmental
chamber). These variations, though small, are induced by significant heat sources.

Energy balance makes it possible to split the volume heat source into a part due to
dissipative effects and another one due to thermomechanical coupling mechanisms. In
all the tests performed, the first part was always small compared to the second (<2%).

Note that, for all uniaxial tests performed, we did not observe non-monotonous stress-
strain curves. In all cases where non-monotonous load-displacement curves occurred,
strain localization effects were seen (propagation of transformation band,
[Wattrisse,1999, Balandraud, 2000]). All these remarks lead us to consider phase
change in SMAs as an anisothermal process, and to use a quasiconvex energy density



259

function. For the sake of simplicity and without any data on multiaxial behaviour, we
chose a convex function to suitably describe the behaviour in terms of the kinetics of
phase change. The retained free energy W is

Here is the characteristic function of admissible values of  x, and

where the subscript pc stands for phase change, and

The values characterise the phase change strain associated with the variant k and
derive directly from microscopic studies of the crystallographic lattice.

with L the latent heat and the reference temperature.
Now, in the formalism of standard materials, a choice of a dissipation potential leads
to complementary laws, and the writing of intrinsic dissipation gives the expression for
the transition domain:

where stands for the partial sub-differential of  f  with respect to s.
In the particular case of a zero dissipation potential the last expression reduces to

and represents the transition domain in a temperature-stress plane ( is the zero stress
transition temperature). Figure 5 represents the numerical results obtained in a
pseudoelastic test by using this model. The hysteresis loop is correctly predicted, and
the temperature variations are consistent with experiment.
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Even if thermal effects due to dissipation are difficult to measure, it is legitimate to
suppose that a slight irreversibility accompanies the phase change. To test the influence
of slight dissipation, we chose

The existence of terms in in the expression for the transition diagram expresses a
dependence on the sense of transformation or Figure 6 shows that this
slight dissipation has significant effects on the size of the hysteresis loop area, while the
temperature evolutions with and without dissipation are hardly distinguishable.

These constitutive equations and the heat equation have been included in a finite
element program to simulate the fully coupled thermomechanical behavior of
monocrystalline SMAs [Peyroux, 1998, Balandraud, 2000]. It allows a correct
prediction of pseudoelasticity, reorientation effect and recovery strain, it predicts
phenomena such as asymmetry in tension-compression tests, time effects due to heat
diffusion, inducing “relaxation”.

3.3 Macroscopic scale; towards modeling of the polycrystal behaviour

3.3.1. Macroscopic variables

We now focus on the macroscopic behaviour of a SMA polycrystalline aggregate. We
suppose that each grain behaves as a monocrystal, and the aim of this part is to derive
the homogenized thermomechanical characteristics of the material.
The first assumption is that the macroscopic behavior can be derived from the
thermomechanical response of a representative volume element (RVE). The observation
of a polycrystalline sample by means of electronic and optical microscopy, allowed us
to gather data on the crystallographic texture, the shape and the statistical representation
of the grains in the RVE. (Figure 7)
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In the following, we will consider that all the grains differ only by their crystallographic
orientation.

It is established [Suquet, 1984] that for microscopic constitutive equations containing
internal variables, “the homogenized law does not reduce to a single equation” on the
macroscopic domain. “The knowledge of the macroscopic law requires as data the
(mesoscopic) state variables”. An alternative and pragmatic attitude is to link the
macroscopic thermomechanical variables together, by prescribing thermomechanical
loading and numerically solving the problems on the RVE. The RVE is considered as a
virtual sample, and the finite element code as a virtual thermomechanical testing device.

The set of variables used at the mesoscopic level is and additional variables
such as the stress tensor or the heat influx vector q, can be deduced from the initial
set owing to the transition diagram or the heat equation.
On the macroscopic level, we consider the classic and natural macroscopic strain and
stress tensors E and defined as average values of and

At first we assume a quasi-homogeneous mesoscopic temperature field, the value of
which is identified with the macroscopic temperature. Recall that the quasi-
homogeneity of the temperature field does not imply the homogeneity of its gradient.

At this point , part of macroscopic strain due to phase change, is given by

It remains to define X : macroscopic equivalence to the volume proportion of phase
change. Deriving macroscopic latent heat, from we can propose as a
definition of X : . This macroscopic proportion has to be regarded as an
energy indicator of the advancement of phase change. The value of X  is 0 if the
polycrystal is completely austenitic, and 1 if completely martensitic. On the other hand
a value between 0 and 1 can be reached under several microscopic configurations.
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3.3.2 Some numerical results on the macroscopic behavior of a polycrystalline SMA
A convenient set of macroscopic variables being established, we present in this part
some results of finite element simulations on the RVE.
First, we performed a so-called pseudoelasticity test consisting of a load-unload path at
a room temperature upper than and the different results are plotted in Figure 8. The
imposed strain is increased from point a to point d, and maintained at a certain level
between points b and c. In the particular stage bc, we can observe the role played by the
thermomechanical couplings. The material keeps on transforming (X increases), the
stress relaxes while the temperature returns to the imposed value. Now, concerning the
entire test, the evolution of the different variables is consistent with experimental results
obtained on polycrystalline SMA. This macroscopic behaviour is of course different to
the monocrystalline one and corresponds to the particular ordering of grains chosen in
the RVE.

From Figures 7 we can deduce some interesting points in the macroscopic transition
domain. If we perform this analysis at several room temperatures, we obtain isovalues
of transformation in the stress-temperature plane (Figure 9). An interesting result is that,
according to the slope of the isovalues, it appears to be difficult to reach a complete
transformation under reasonable stresses. In fact, some grains in the RVE have a non-
compatible crystallographic orientation with respect to the imposed stress, while others
transform easier. Note that taking into account a non zero dissipation leads to “moving
lines” with regard to the direction of transformation.
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The possibilities of this approach have been widely developed in [Balandraud, 2000].
For instance, low-temperature tests allowed determining the value of the macroscopic
recoverable strain due to variants reorientation at zero-stress. This numerical tool could
also be used to investigate multiaxial behavior of polycrystalline SMAs and to study the
influence of various dissipation potentials. Finally, this approach giving access to
mesoscopic behaviour, the evolution of phase change in each grain might be soon
correlated with optical observations to check the consistency of this multiscale
modeling.

4. CONCLUDING COMMENTS

We have tried to present the different points of view developed at the LMGC concerning
the understanding of the SMA behaviour. This variety of approaches comes from the
different analysis methods and from the chosen scales of description. Even though
certain theoretical concepts were borrowed from other works in the literature, all our
approaches led to original numerical tools. From an experimental point of view, the
LMGC has developed for more than ten years infrared image processing techniques
allowing us to perform calorimetric balances. For of SMAs, these tools made it possible
to observe the strong thermomechanical coupling that the martensite transformation
represents. At meso and macroscopic scales, the experiments highlighted the quasi-
static and slightly dissipative character of the kinetics of this solid-solid phase
transition.
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Abstract: Elastic-plastic fluid-saturated porous media with non-associative flow
rules may undergo strain localization and flutter. The simultaneous analysis of
the nature and evolution of acceleration and harmonic waves has revealed a clear
distinction between flutter instability and flutter ill-posedness. We show here that,
as for solids, regularization methods may evidence infimum wavelengths below which
any of these critical events is excluded.
Keywords: elasto-plasticity, porous media, flutter, regularization

1. INTRODUCTION

We consider fluid-saturated porous media in the framework of the theory of mix-
tures. The nature of the wave-speeds and of the propagation modes of acceleration
waves in these media were analyzed in Loret and Harireche [1991], and their growth
or decay were studied in Loret et al. [1997]. The nature of the speeds of harmonic
waves propagating in the same media was studied in Simões et al. [1999]. The speeds
of the acceleration waves are equal to the limit of the speeds of the harmonic waves
for infinitely small wavelengths or for infinitely small viscous damping associated
to Darcy’s law. In addition, situations exist such that the harmonic waves have a
growing time behavior that is controlled by a coefficient that equals, in the limit
of an infinitely small wavelength, the finite growth coefficient of the correspond-
ing acceleration waves, provided these propagate with real speeds: these situations
correspond to linear instability. On the other hand, situations exist such that accel-
eration waves are not real, and, simultaneously, harmonic waves have an exponential
growth in time that is unboundedly magnified as the wavelengths are decreased to
zero: these are situations of linear ill-posedness, in the sense of the definitions pro-
posed by Schaeffer [1990] and Benallal [1992]. The cases of complex wave-speeds are
known as flutter (instability or ill-posedness) and the non-associative character of
the plastic behavior of the solid skeleton is crucial for their occurrence. The onset of
ill-posedness due to strain localization corresponds to the occurrence of stationary
acceleration and harmonic waves.

To cure ill-posedness due to strain localization in solids, several regularization
methods have been attempted in the past. They essentially consist in introducing an
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internal length-scale in the appropriate constitutive equations. We show here that
these methods can also be used to cure strain localization and flutter ill-posedness in
fluid-saturated porous media. Notice that the material length-scale to be introduced
should address the source of the troubles, namely the behavior of the drained solid.
Notice also that a length-scale already exists in the field equations due to Darcy’s
diffusion. However it does not affect the acceleration wave-speeds, and consequently
it does not affect the onset of strain localization or flutter ill-posedness. Of course,
coupled effects between material and diffusion length-scales will exist, the latter may
even have a destabilizing effect, but, on its own, it will have no direct regularization
effect on ill-posedness.

2. FIELD AND CONSTITUTIVE EQUATIONS

The porous media we consider are made up of two constituents, a solid and a fluid,
namely water, which are viewed as two independent overlapping continua, see e.g.
Bowen [1976]. Phases (solid (s) and fluid (w)) represent the constituents when
viewed as part of the mixture. Each constituent has a mass and a volume

w, which make up the total mass and the total volume
of the mixture, which is also the volume of the solid phase. The intrinsic mass density
is defined as whereas the apparent mass density is defined by
hence where is the volume fraction of phase Since we consider
fluid-saturated porous media, the volume fractions satisfy The equations
of balance of momentum of the phases involve two (symmetric) partial stress tensors

and which make up the total stress tensor of the mixture
The partial stress tensor of the fluid phase is defined in terms of its partial or
intrinsic pressure as with I identity tensor. Each phase
  is endowed with its own (infinitesimal) apparent strain tensor defined as the
symmetrized gradient of its macroscopic displacement field. The constituents are
generally compressible but we restrict the present analysis to the case where both
constituents are incompressible. Then the rates of volume changes must satisfy the
linearized constraint in terms of velocities or strain-rates

For each phase, of the porous medium, the balance of momentum

(2)

involves, in addition to the usual terms present in single phase solids, namely the
divergence of the stress tensor, the body force per unit mass and the acceleration

the apparent mass density and the momentum supply to the phase  by
the rest of the mixture. Momentum supplies are subject to the closure condition
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The momentum supplies describe diffusion of the fluid through the solid
skeleton, via an isotropic Darcy’s law,  that introduces a
single constant material parameter proportional to the inverse of the perme-
ability. Since we envisage a linearized analysis around a natural equilibrium state,
the mass density in eqn (2) is fixed to its reference value and the acceleration
is approximated by the time derivative of the velocity

Due to the incompressibility condition (1), the fluid pressure is indeterminate
and the elastic constitutive equations specify solely Terzaghi’s effective stress

I in terms of the strain of the solid phase ,

For isotropic elasticity, the positive definite tensor moduli of the drained solid
are defined by the two Lamé constants and with  and

Plastic behavior emanates from the solid phase. However, both solid and fluid
phases will develop irreversible strains. The plastic properties are defined in terms of
the effective stress The yield function, with unit ouward normal Q, is defined in
the space of effective stresses where is a set of hardening variables.
The strain rates of the two phases are additively decomposed into an elastic part
and a plastic part, namely The plastic strain rate of the solid
skeleton is defined by the flow rule where is the plastic multiplier
and P a unit symmetric tensor indicating the direction of flow. In order to satisfy
the incompressibility constraint for both elastic unloading and plastic loading, the
plastic strain rate in the fluid phase is defined by the “plastic coupling equation”

where The evolution of the hardening variables
is introduced through the hardening modulus h. The plastic consistency condition

provides the plastic multiplier

where the modulus is supposed to be strictly positive. The resulting elastic-
plastic rate equations emerge as

Hence, both the elastic and plastic constitutive moduli associated to the effective
stress are equal to their drained counterparts defined by the drainage condition
0 or When the plastic potential and the yield function are of the Drucker-
Prager type, each of the unit normals P and Q is defined by a single parameter,
dilatancy angle for P and friction angle for Q, and

being the normalized deviatoric stress.
The subsequent analysis of harmonic waves will make use of the elastic and

elastic-plastic acoustic tensors of the drained solid,   and  respectively,  namely
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where p and q are vectors, and

3. HARMONIC WAVE ANALYSIS AND FLUTTER ILL-POSEDNESS

A linearized analysis of the stability of the flow in elastic-plastic fluid-saturated
porous media with incompressible constituents is performed. Compressibility of the
constituents does not affect the major qualitative features of the results presented
here, Simões [1997]. The dynamic growth or decay of a small plane harmonic per-
turbation is analyzed. Of particular interest is the limit behavior of the wave-speeds
and of the growth coefficient as the limit of a zero wavelength, corresponding to
acceleration waves, is approached.

The exclusive consideration of the plastic loading regime in the present linearized
stability analysis precludes an assessment of the full consequences of the detected
flutter instabilities, since the growing oscillatory nature of the flutter solutions leads
to situations of local elastic unloading that are quite distinct from the linearized
loading regime considered in this stability analysis. Nevertheless, it makes sense to
compare the results of the present harmonic wave analysis with those of acceleration
waves, because only the linearized constitutive equations for the plastic loading
regime are used in both analyses.

Assuming that the body forces are constant in time, we seek solu-
tions in terms of velocity fields
- that satisfy the constitutive equations (5), the incompressibility constraint (1) and
the rate form of the equations of linear momentum balance for each phase (2),
- and that represent plane harmonic waves of assigned wavenumber k propagating
with the (possibly complex) speed of propagation c along the direction n, namely:

where the are eigenvectors to be defined. The wavenumber k is
linked to the wavelength L by the usual relation Notice that Darcy’s
law introduces a characteristic length-scale in the field equations, namely

The indeterminate rate of the partial pressure in the fluid is also assumed to be
a periodic quantity:

Introduction of the rate constitutive equations (5) in the rate form of the balance of
momentum of the solid phase provides one set of three equations for the eigenmode

The rate form of the balance of momentum in the fluid phase provides
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another set of three equations while the incompressibility constraint (1) yields the
seventh relation. The resulting algebraic system can be cast in the form

The characteristic equation for the normalized wave-speed can be factorized
as a product of polynomials in X, namely F(iX)G(iX) = 0. G(iX) contains
only elastic information while F(i X) contains elastic-pastic information and it has
in general one purely imaginary root X, and two pairs of roots X symmetric with
respect to the imaginary axis, i.e. if is a root, so is
Both F and G depend on the nondimensional wavelength

One can show the following
Proposition 1: As  tends to zero, i.e. for infinitely small wavelengths or for in-
finitely small viscous damping associated to Darcy’s law, the harmonic wave-speeds
tend to the acceleration wave-speeds.

Assuming that during a deformation process the modulus (or equivalently
the plastic modulus h) decreases continuously starting from (elasticity), we
look for situations in which divergence or flutter-type growth occurs along at least
one direction n. As we already know, Loret and Harireche [1991], the viscous effects
due to Darcy’s law play no role on the determination of the onset of stationary waves
i.e. Since the solutions X are in general complex, transitions to divergence

can occur either when and (a stationary
wave) or when and see Figure 1. However in the last case
divergence occurs necessarily after the occurrence of flutter
We therefore do not investigate these events in detail and concentrate on flutter.
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Notice that, for elastic mixtures or for elastic-plastic mixtures with
associative plasticity (P = Q), the matrix in (10) is symmetric. Therefore the speeds
X are real or complex with negative imaginary parts, so that flutter is excluded. For
non-associative plasticity one of the roots X may become complex with
positive imaginary part, leading to an harmonic solution with flutter-type growth.
As already observed, only the plastic wave-speeds X that are roots of F(iX) = 0
may become complex leading to flutter. When the acceleration wave-speeds are real,
then, according to Proposition 1, The limit as of the
coefficient that controls the growing time behavior of the harmonic waves, namely

can be estimated by 1’Hôpital’s rule and the continuity
of After algebraic manipulations, this limit is found to be
equal to the coefficient that controls the growth or decay of the acceleration waves
obtained in Loret et al. [1997]. We can thus state
Proposition 2: In the regions of the parameter space where the acceleration waves
have real speeds, the corresponding harmonic waves are found to grow or decay at
the same rate when their wavelengths are decreased to zero.
On the other hand, if the normalized acceleration wave-speed X is not real, then
the limit as of is equal to and

So, complementary to the previous Proposition, we have
Proposition 3: Inside the regions of the parameter space where there are some
speeds of acceleration waves that are not real, the exponentially growing time be-
havior of the harmonic solutions is unboundedly magnified for vanishing small values
of the arbitrary wavelengths, and the problem becomes (linearly) ill-posed.
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In Figure 2, we represent the regions of divergence and flutter growth in the pa-
rameter plane is the normalized modulus), for two values
of one excluding flutter for acceleration waves, the other not, and for two
directions of propagation n belonging to the plane defined by the eigenvectors of

that correspond to the maximum and minimum eigenvalues, E1 and E3 respec-
tively, and we denote It can be seen that it is not possible to find,
for given normalized plastic modulus and diffusion length, an infimum wavelength
which would preclude linear ill-posedness. It can also be seen that the limit as

of the divergence boundary in the harmonic wave analysis coincides with the
onset of stationary waves in the acceleration wave analysis (point B). In contrast,
the region of flutter is discontinuous as the limit of the flutter region in the
harmonic wave analysis (line AB) is larger than the flutter region in the accelera-
tion wave analysis (line CD). This means that in the harmonic wave analysis for the
non-associative case, the viscous damping effects due to Darcy’s law may anticipate,
or even trigger, the occurrence of flutter relatively to the acceleration wave analysis
(the no-damping case).

Although the characteristic length introduced by Darcy’s law does not prevent
small wavelength unstable modes, the exponentially growing time behavior of the
unstable modes is unboundedly magnified for vanishing small wavelengths only when
values of are used such that non-real speeds of propagation exist for the cor-
responding acceleration waves. A clear distinction has thus been made between
(linear) ill-posedness and (linear) instability, precisely as defined in the Introduc-
tion. The regions AC and DB in Fig. 2-(b) are representative of linear instability,
while the regions CD and B to are representative of linear ill-posedness.

4. REGULARIZATION BY INTERNAL LENGTH

In the analysis of harmonic waves, we stressed the (linear) ill-posedness character of
the equations that govern the behavior of an elastic-plastic fluid saturated porous
medium for some ranges of the material parameters. On the other hand, it has
been long recognized that ill-posedness due to stationarity wave/strain localization
can be fixed by using some enriched constitutive descriptions of the continuum that
incorporate internal (or characteristic) lengths of the material. A related study
for a case of flutter ill-posedness but in the context of contact problems involving
the (non-associative) friction law of Coulomb was recently presented by Simões and
Martins [1998]. In the present context of flutter ill-posedness of incompressible fluid-
saturated porous media, we discuss now the effect of two classical enrichments of the
material behavior: the gradient plasticity theory, e.g. Mühlhaus and Aifantis [1991],
and the non-local plasticity theory, e.g. Bažant and Lin [1988].
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4.1 Gradient plasticity
We use here the simple modified form of the plastic behavior proposed by Mühlhaus
and Aifantis [1991] that consists of assuming that the yield function f at a point x
depends not only on the cumulated plastic strain but also on its
Laplacian all three arguments of f being estimated at x. The
strain decomposition into elastic and plastic components as well as the flow rule are
preserved: and The plastic consistency condition

provides the plastic multiplier

where keeps its classic form, eqn (4), and

The rate form of the elastic-plastic constitutive law (for the plastic loading regime)
reads:

with exactly as in (5). These are the equations that we wish to solve, together
with the equations (2) of linear momentum balance and the incompressibility condi-
tion (1). We seek harmonic solutions for them exactly of the form indicated in (10).
Note that the only calculations that are now different from those performed in Sec-
tion 3 are those involving the Laplacian of the cumulated plastic strain, present in
the term that makes the constitutive equation (16) different from (5). For monochro-
matic velocity and plastic strain-rate k,

with wavelength L and wavenumber k linked by it follows that

Insertion of these relations in (14) yields

with q defined in Section 2 and is a simple modification of
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If we now insert the above constitutive equations in the harmonic wave analysis
of Section 3, we easily observe that only the balance of momentum for the solid
phase is modified due to eqn (16) with given by (19). The algebraic system of
equations (10) providing the acceleration wave-speeds preserves its form, with the
only distinction that the acoustic tensor eqn (6), is replaced by

Thus the sole modification introduced in the plasticity model turns out to be equiv-
alent, for the propagation of harmonic waves, to replace the hardening modulus
by the modified value

The scalar b is assumed positive, eqn (15), it has dimension stress×length2 and
it introduces an internal length-scale

but recall that there is another length-scale induced by Darcy’s diffusion, namely
eqn (8).

The dependence of the occurrence of flutter and divergence on the wavelengths
is illustrated in Figure 3 for this gradient plasticity version of the material behavior
discussed in Section 3. The existence of an infimum wavelength for the occurrence
of flutter and divergence modes is made clear in those figures. As the wavelength
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L, and consequently decreases, the modified normalized modulus

becomes larger and larger, which explains the disappearance of flutter and diver-
gence modes. In fact, at a given wavelength, the critical moduli for any of these
events for the plasticity model, , and for the gradient plasticity model,

differ by a simple shift,

The assumption of a positive modulus thus implies the existence of an infimum
nondimensional wavelength Notice that the
infimum wavelength is independent of

4.2 Non-local plasticity
We provide here a non-local modification of the yield function with respect to the
classic elastic-plastic model. It turns out to be not as satisfactory as the gradient
modification. In fact, as shown by another modification of the plastic strain-rate in
Loret et al. [1999], the regularizing effects are very sensitive to the quantities that
are averaged.

The modification introduced here in the plastic behavior consists in assuming
that the yield function f at each point of the body depends of the cumulated plastic
strain k(x) at that point and on a weighted average of the cumulated plastic strains
in a neighborhood V(x) of that point:
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with

For the present calculations, we shall use as weighting function the normalized Gaus-
sian function

where is the characteristic length of this modified plasticity model. Again, it is
a consequence of the plastic consistency condition that

where The rate form of the elastic-plastic constitutive law (for the
plastic loading regime) reads:

The consideration of harmonic solutions for k, eqn (18), leads to

Then for the harmonic problem, the elastic-plastic rate constitutive equations can
be cast in the usual format with
and the sole modification with respect to the local formulation is due to the shift in
modulus,

The resulting modification of the governing algebraic system of equations (10) affects
the acoustic tensor of the drained solid only, as in (21), but with now replaced
by The moduli defining any critical event are related, similarly to (24), by,

Unlike for the gradient plasticity model, the modification due to small wavelengths
or large wavenumbers is finite and coincides with a shift of normalized plastic mod-
ulus equal to The existence of an infimum wavelength below which neither
flutter nor divergence would occur requires to be greater than any of
the critical moduli which may result in a large value of see
Figure 4. The same reasoning applies to individual critical events. For example, in
their one-dimensional analysis of strain localization, Vermeer and Brinkgreve [1994]
stress that the small wavelength regularization of strain localization requires, in our
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notation, h + b to be strictly positive. Moreover, the non-local problem is not ex-
actly similar to the local one as the shift in apparent modulus increases when the
wavelength decreases, so that one can tailor the material parameters b and to
imply prescribed critical wavelengths, or conversely.
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Abstract : Materials cutting during machining is an extremely complex thermo-
mechanical problem due to the severe physical conditions associated to materials
cutting mechanisms : very high elasto-viscoplastic strains and strain rates ; mate-
rial passes from room temperature to the heated state in milliseconds, with the heat
coming from internal dissipation and friction. Based on continuum thermomechanics
and including friction and large deformations in dynamics with viscoplasticity, a ma-
terials cutting three-dimensional numerical model is briefly described. Weak forms
of conservation laws are introduced in an Arbitrary Lagrangian Eulerian configura-
tion allowing for an arbitrary surface of separation of the material, and an automatic
and continuous rezoning. The Coulomb friction law is introduced to model the tool-
chip and workpiece-tool contacts, and heat generation and heat transfer at these
interfaces are taken into account. The flow stress including temperature and strain
rate effects is based on the Johnson-Cook law proposed for high strain rate condi-
tions. A three–dimensional example is shown when simulating the oblique cutting.
Finally, some needs for the future are detailed to improve constitutive laws as well
as friction, and to include more physics, for example chemical diffusion in workpiece
and tool.
Keywords : Continuum thermomechanics, viscoplasticity, friction, ALE, metal
cutting.

1. MACHINING AS A MULTI-SCALE PROBLEM

Despite significant technological progress in machining, today’s machining oper-
ations are very difficult to model so as to predict cutting parameters, and are still
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open to scientific challenge. New features on interactions between workpiece and
tool materials are welcome both from an experimental and computational point of
view, so as to know thermomechanical loading in dynamics accurately for both tool
and workpiece. Physical and chemical properties of useful materials for machining
are examined to improve performance. All these responses can then permit reaching
an expected machined surface and a tool life according to production requirements.
Many papers on machining are available in the literature, and a review has for
instance been published recently [Ehmann et al., 1997].

Materials cutting is a very complex forming process involving (within the work-
piece-tool system) high shear and friction mechanisms in dynamics, liberated as
heat. Therefore, thermomechanical coupling occurs at large strains and strain rates
in viscoplasticity. In addition, metallurgical and chemical transformations are often
happening inside the chips and possibly near the machined surface of the workpiece,
as well as dynamic phenomena produced by the cutting process. Chatter is often
observed between workpiece and tool, and this has to be avoided in order to reach
the expected final surface of the workpiece. Chips may be either continuous or
not, or serrated. Their metallurgical analysis will bring out important features on
material flow during cutting, cutting capability of a given material, as well as phase
changes ; plus chemical diffusion between chip and tool. It is clear that all the above
phenomena observed during the cutting process need appropriate reference scales
to be properly and consistently analysed by separating physical effects with great
length of variation from those with smaller length. We introduced three different
scales [Touratier, 1999] to consistently study the cutting operation :

• a microscopic scale at the material grain level. In addition, a nanoscopic scale
may be introduced at the material crystal level,

• a mesoscopic scale at the tool tip - workpiece material level (more often we
would call this the “tool-tip - chip” level),

• a macroscopic scale either at the workpiece-tool or machine tool structure
level.

The microscopic (or possibly nanoscopic) scale will be required : to analyse
the material microstructure ; to construct for example a polycrystalline thermome-
chanical constitutive law to include grain distribution ; to take into account phase
changes, chemical diffusion, damage, wear, ... The mesoscopic scale is classic to the
study of continuous chip flow, in three - dimensional form from numerical simula-
tions in order to predict chip geometry, stresses and temperatures, as well as cutting
forces. Finally, the macroscopic scale will be more appropriate to analyse dynamics
of the workpiece-tool system. On the production level, a megascopic scale should be
introduced to achieve corresponding studies. The main difficulty remains in some
cases how to find a consistent way to pass from one scale to another, due to various
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nonlinearities and also a big computational effort associated with the very different
scale sizes. The physical bases of cutting models are conservation laws including
phase change, diffusion ; and of course elastoviscoplasticity, friction, and damage.

2. MATERIALS CUTTING MODELING

The modeling of chip formation is extremely complex due to the severe physical
conditions associated with chip formation mechanisms : high viscoplastic strains

and strain rates residual state ; material passes from room
temperature to the heated state in milliseconds, with most of the heat
coming from friction between tool and chip, and tool and workpiece. Considerable
effort towards chip formation modeling is therefore still needed in order to bring out
all thermo-metallurgico-mechanical information concerning the cutting process and
to optimise it within the field of high - speed machining in turning, milling, drilling
and grinding. In addition, the modeling master can help to modify features of both
cutting tools and workpiece material in order to improve production.

In the past, Eulerian, Lagrangian and Arbitrary Lagrangian-Eulerian methods
have been adopted, see for example [Caroll et al., 1998], [Sekhon et al., 1993],
[Rakotomalala et al., 1993]. Hereafter, we will consider only predictive models which
allow for an arbitrary surface of separation between workpiece and chip. Models
based on a predetermined line of separation (a lot of these exist in the literature)
at the tool tip in the workpiece material are not useful as they are not capable of
predicting surface roughness and chip morphology, nor are they able to predict the
extremely large strains encountered near the tool tip inside the workpiece material.
The Arbitrary Lagrangian-Eulerian (ALE) formulation adopted in this section is
an extension of both classical Lagrangian and Eulerian formulations where grid
points may have an arbitrary motion. In such a description, material points are
represented by a set of Lagrangian coordinates spatial points with a set of
Eulerian coordinates and reference points (grid nodes) with a set of arbitrary
coordinates All physical quantities are computed at points occupied by grid
nodes at time t. All conservation laws must be expressed taking into account the
meshing evolution during the calculation.

Considering a space and time dependent quantity g, one must express all the
conservation laws using the material spacial and mixed time derivatives.
Conservation laws are usually written using material time derivatives in an Eulerian
formulation [Germain, 1986]. Therefore, we have to introduce the relationship below
between material and mixed time derivatives
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where is a convective term representing the relative velocity between
the material and grid velocities and represents the space derivative of g with
respect to Thus, the ALE method combines both the advantages of Eulerian
and Lagrangian representations in a single description which can be considered as
an automatic and continuous rezoning method. The model is ALE until the steady
state conditions are reached. This permits especially free and contact surfaces to be
updated. Once these conditions are obtained, then this model is equivalent to an
Eulerian one.

2.1 Discretised weak forms

Let be the domain to be considered in modeling at the current configuration
and its boundary. We denote by : the material velocity, the mesh (or
grid) velocity, the mass density, the external given body forces, the external
surface forces, the Cauchy stress tensor, d the strain rate tensor, e the specific
internal energy, w the given external body heat generation, Q the external given
heat and the heat flux. The unknowns are and constitutive laws have to
be found for and Supposing that e = e(T,t), the final unknowns will be

and the temperature T. The formulation of such an intrinsic problem requires
defining the following functional spaces :
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where is the Sobolev space of order one, and and are the boundary
parts, respectively, where material velocity and temperature are prescribed. To
achieve numerical results, we use a discretisation of the boundary value problem.
We then note and as approximated fields on and e respectively. The
superscript h refers to the association of spaces containing with
a mesh (or discretisation) of the continuous domain which is classically
parametrised by a characteristic length scale h, and refers to a finite element
or a finite volume, depending on the kind of discretization chosen. We also need to
introduce weighting function sets as follows :

Using both the relationship (1) between material and mixed time derivatives,
and its corresponding following expression

available for a volume integral of a function g, the dicrete weak forms associ-
ated respectively with the mass, momentum and energy conservation laws can be
expressed from classical Eulerian ones as :

i - find
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These functionals are strongly coupled. Thus, when the Updated Lagrangian con-
figuration is chosen : while if we choose the Eulerian we must take

Here, the suggested grid motion control algorithm has been previ-
ously proposed in [Donea et al., 1982]. If we adopt finite element approximations

of equations (9) to (11), then fields and will be interpolated by using the

same functions. Finite volume approximations will be equivalent to taking as
a unitary field. Writting the boundary value problem as given above by equations
(9) to (11) is very appropriate to an explicit approach that we will retain hereafter.
It will be used to solve our cutting problem, being a dynamic one.

2.2 Contact and friction

The explicit integration algorithm used hereafter allows taking the contact be-
tween the bodies into account by adding an external force to the contacting nodes.
This can be done by the introduction of such a force into the external surface load

described above. Normal components of this force vector are set equal to pre-
vent penetration, and the tangential component is set with respect to the Coulomb
friction law given by :

where is the coefficient of friction we would prefer to assume as depending on
the nature of the contacting bodies, and are respectively the tangential and
normal components of the stress vector along the interface, and is as defined
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below. Efforts to find such a coefficient from experiment associated to machining are
given in [Joyot et al., 1998]. The contact algorithm must also incorporate thermal
capacities. Heat generation and heat transfers at the interfaces between bodies have
to be taken into account.

The heat generation in the slipping contact surfaces is given by

where is the tangential slip relative velocity between contacting bodies. Ac-
cording to the explicit scheme, calculated heat flux is then re-introduced as an ex-
ternal thermal flux for each contacting node. Generated heat flux is shared among
bodies in contact in a ratio depending on their thermal and geometric features, but
this point of view is not sufficient since sliding motion occurs at the interface. In
addition, we may introduce a thermal resistance in order to represent the thermal
discontinuity at the interfaces, but the reality is as above with the shared coefficient.
Because of motion between contacting bodies, sharing thermal coefficient and ther-
mal resistance are very difficult to identify separately from the experiment. We will
come back later to this essential difficulty.

2.3 Constitutive laws

For the heat flux the Fourier conduction law is generally appropriate :

where is the conduction matrix available for an anisotropic material. It may
depend on temperature. Otherwise, the specific internal energy is usually linked
to the temperature by the following relationship (state law) :

where is the specific heat which may depend on temperature. Today, the
material constitutive law used in cutting modeling takes into account elasto-visco-
plasticity, temperature and strain rates within a standard plasticity formulation. In
large strains, the well known strain rate decomposition is allowed if elastic strains
are small as we will suppose below. The material constitutive law is then
written as :
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where is the deviatoric part of the Cauchy stress tensor is the Jau-
mann derivative of the stress tensor which depends on the spin tensor and on a
convective term in ALE. Otherwise, is the hydrostatic pressure which is deter-
mined from a polynomial expression. I is the second order identity tensor and is
the constitutive tensor defined as in [Soua et al., 1999]. Then, introducing the yield
function as

where is the Von-Mises equivalent stress and the flow stress, according
to the author’s knowledge, two different choices have been made in the past for
so as to simulate numerically chip formation within the above thermo-mechanical
requirements.

i- Johnson-Cook [Johnson et al., 1983] flow stress in [Joyot et al., 1998],
[Rakotomalala et al., 1993], [Pantalé et al., 1998] :

where is the equivalent plastic strain, is the equivalent plastic strain rate,
is the current temperature, is a reference temperature ; and A, B, C,

are material characteristics, while in order to normalise equation (19).
Note also that n is the hardening exponent, and m is the softening exponent.

ii- Lemonds-Needleman [Lemonds et al., 1986] hardening rule in
[Marusich et al., 1995] :

where is a softening coefficient, the yield stress at a reference plastic
strain, and the accumulated plastic strain.

3. MATERIALS CUTTING SIMULATIONS. AN EXAMPLE

In this section, results from an ALE model are represented to simulate three-
dimensional steady metal cutting allowing to take into account lateral expansion
of the chip and to represent oblique cutting avoiding any assumption on the chip
separation at the tool tip. The thermomechanical equations above discretised by
finite elements (momentum)/finite volumes (mass and energy) are kept strongly
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coupled. The Johnson-Cook hardening rule is used, contact conditions with friction
are included between chip and tool, and also workpiece and tool. Material properties
are given Reference [Pantalé et al., 1998] for a 42 CD-4 steel workpiece material, and
a tungsten carbide for the assumed rigid tool (SECO TPGN-160302 P10). The quite
coarse mesh created involves 5200 three-dimensional eight node finite elements (same
mesh for the finite volume discretization). Cutting conditions are given in Reference
[Pantalé et al., 1998] as well as thermomechanical boundary conditions. The time
integration of the above discretised equations is accomplished from an explicit central
difference scheme of the third order. The time increment is subject to the
Courant stability criterion defined by where is usually a function
of the sound and convective speeds. The ALE method also requires the use of an
appropriate grid (mesh) motion algorithm controlled by both space and time criteria,
coming here from [Donea et al., 1982]. Knowledge of the grid speed allow us to
compute the convective speed. Thus, integrating successively equations (9) to (11)
gives the unknown values of Finally, integrating
the material constitutive law given by equation (17) allow one to determine the
Cauchy stress tensor using an explicit elastic prediction and a radial return
algorithm. Of course, we also needed to take into account the Fourier conduction
law, the state law for internal energy and contact with friction as given above. We
assumed k, c, and m as constant. Figures 2 and 3 give results on three-dimensional
chip flow within oblique cutting conditions (angle between the edge of the tool and
the cutting speed direction equal to 75°), [Pantalé et al., 1998].

Comparing oblique and orthogonal chip flow based on a three-dimensional ap-
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proach, temperature distributions are found quite similar, but cutting forces and
advancing forces have been reduced by the oblicity while lateral forces increase in
a wide range. A very good agreement on forces are found for orthogonal chip flow
when comparing with available experimental results [Pantalé et al., 1998].

4. NEEDS FOR THE FUTURE

Chip formation and chip morphology during machining is mainly dependent on
very intense shear inside the chip in the so-called primary shear zone where shear
banding occurs. Crystal plasticity employing the fundamental principle of sliding
in crystalline slip systems can provide a better approach to model the phenomena
inside the primary shear zone and to capture shear band localisation. In addition,
this makes it easier to include induced plastic anisotropy which appears when mate-
rial is being machined. Finally, this seems to be the only way to reach an accurate
description of the material microstructure evolution and to control it during ma-
chining to improve product performance. The combination of the crystal plasticity
theory, techniques for measurement of texture, quantitative texture analysis and the
finite element method enables the study of gradients in deformation which follows
from the interplay of the material state and the boundary conditions. It is even
possible in this way to introduce inhomogeneous material if the number of grains
is not large or as soon as computational means will be adequate. Finally, a crystal
plasticity constitutive law provides a way to consistently pass from the microscopic
scale to the mesoscopic defined in the above Section 1.

The chip formation and morphology, as well as temperatures, cutting forces and
tool-chip contact length are found numerically very dependent on friction from a fric-
tion sensitivity analysis. Recently, a paper has been published [Oancea et al., 1997]
on a thermodynamically consistent formulation of thermomechanical rate-dependant
frictional sliding, within large deformations. A constitutive relationship has been
proposed for frictional traction including thermal softening of frictional response,
rate dependence, pressure dependent for contact thermal resistance across the in-
terface, and heat sinks on the interfaces created by trapped wear debris. Then, the
coefficient of friction is depending on the maximum temperature on the two surfaces
at the current point. To this coefficient of friction is surimposed a function which
controls the evolution of the frictional stress and which depends on a new state
variable to be determined from a supplementary equation derived from thermody-
namics. This state variable allow us to govern transitions of response between a
viscous dependence of frictional traction on sliding velocity and a dependence of the
coefficient of friction upon the sliding velocity. Finally, another quantity is surim-
posed to the coefficient of friction : it is a parameter which might be associated with
the viscoplastic shearing effects of the asperities tips.
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Several microstructural experiments have been done for 32CDV 13 martensitic
iron machined either by ceramic or cermet tools. Machining conditions may lead to
a white thin layer in the chip on the chip-tool side, not seen on many other tested
steels, among them stainless steel. This thin white layer of thickness near
is attributed to phase transformations and contains austenite as shown
from XR diffraction analysis. From a secondary ion mass spectrometry analysis,
chemical diffusion of titanium and nitrogen elements has been observed, both from
tool to chip, and tool to workpiece. To include chemical diffusion capability analysis
into the boundary value problem shown above one conservation equation has to be
added for the mass concentration. The main differences between mass conservation
and mass concentration laws are now that we need to express the diffusion flux of
the diffusing phase coming out the diffusing boundary, as a function of the con-
centration. A typical constitutive law for the diffusion flux may be expressed as
a Fick law. The diffusion between chip and tool changes the mechanical strength
of the tool, resulting in wear. Keeping all the above discretised weak forms and
adding a damage law to produce crack initiation, then crack propagation should be
an efficient way to study tool wear. Wear mechanisms during cutting may come
from mechanical effects : adhesion, abrasion, sliding/delamination, erosion, fret-
ting, . . . and from chemical effects : solution, diffusion, oxidation, corrosion, ...
Wear is a very important and difficult subject that we have to pursue in order to
master cutting, especially concerning tool wear which is an economic as well as a
workpiece surface quality challenge. Finally, metallurgical effects have also to be
included into the formulation of the boundary value problem to take into account
phase transformations. These will involve supplementary coupling when deriving
the corresponding discrete boundary value problem in order to simulate chip for-
mation. Corresponding features of the metallurgical model will include proportions
of metallurgical constituents and dilatations of various phases as functions of tem-
perature. Then, as above for friction and diffusion, new state variables have to be
introduced according to thermodynamic requirements.

REFERENCES

[Caroll et al., 1998] Caroll, J. T.; Strenkowski, J. S.; “Finite element models of
orthogonal cutting with application to single point diamond turning”. Interna-
tional Journal of Mechanical Sciences, Vol. 30, N°12, pp. 899–920.

[Donea et al., 1982] Donea, J.; Giuliani, S.; and Halleux, J. P.; “An Arbitrary
Lagrangian-Eulerian finite element method for transient dynamic fluid-structure
interactions”. Computer Methods in Applied Mechanics and Engineering, Vol. 33,
pp. 689–723.



288

[Ehmann et al., 1997] Ehmann, K. F.; Kapoor, S. G.; DeVor, R. E.; Lazoglu,
I.; “Machining process modelling”. ASME-Journal of Manufacturing Science and
Engineering, Vol. 119, pp. 655–663.

[Germain, 1986] Germain, P.; Mécanique. Ellipses-Paris, 1986.

[Johnson et al., 1983] Johnson, R.; Cook, W. K.; “A constitutive model and data
for metals subjected to large strains, high strain rates and high temperatures”. In
Proceedings 7th International Symposium on Ballistics, The Hague, pp. 541–547.

[Joyot et al., 1998] Joyot, P.; Rakotomalala, R.; Pantalé, O.; Touratier, M.; and
Hakem, N.; “A numerical simulation of steady state metal cutting”. Journal of
Mechanical Engineering Science, Vol. 212, pp. 331–341.

[Lemonds et al., 1986] Lemonds, J.; Needleman, A.; “Finite element analysis
of shear localization in rate and temperature dependent solids”. Mechanics of
Materials, Vol. 5, pp. 339–361.

[Marusich et al., 1995] Marusich, T. D.; Ortiz, M.; “Modelling and simulation
of high-speed machining”. International Journal for Numerical Methods in Engi-
neering, Vol. 38, pp. 3675–3694.

[Oancea et al., 1997] Oancea, V. G.; Laursen, A.; “A finite element formulation
of thermomechanical rate-dependent friction sliding”. International Journal for
Numerical Methods in Engineering, Vol. 40, pp. 4275–4311.

[Pantalé et al., 1998] Pantalé, O.; Rakotomalala, R.; Touratier, M.; “An ALE
three-dimensional model of orthogonal and oblique metal cutting processes”. In-
ternational Journal of Forming Processes, Vol. 1, N°3, pp. 371–389.

[Rakotomalala et al., 1993] Rakotomalala, R.; Joyot, P.; Touratier, M.; “Ar-
bitrary Lagrangian-Eulerian thermomechanical finite element model of material
cutting”. Communications in Numerical Methods in Engineering, Vol. 9, N°3, pp.
975–987.

[Sekhon et al., 1993] Sekhon, G. S.; Chenot, J. L.; “Numerical simulation of
continuous chip formation during non-steady orthogonal cutting”. Engineering
Computations, Vol. 10, pp. 31–48.

[Soua et al., 1999] Soua, A.; Touratier, M.; Polac, L.; “Computations of an
engine to analyse cylinder distorsion”. Engineering Computations, Vol. 16, N°l,
pp. 9–25.

[Touratier, 1999] Touratier, M.; “Computational models of chip formation and
chip flow in machining in a multi-scale approach. Present status and future needs”.
In Proceedings of the International Workshop on Modeling of Machining Opera-
tions, Nantes, pp. 1–29.



From Clausius-Duhem and Drucker-Ilyushin
inequalities to standard materials

Jean-Jacques MARIGO
LPMTM, Institut Galilée, Université Paris 13,

Avenue JB Clément, 93430 Villetaneuse (France)
marigo@lpmtm.univ-paris 13.fr

Abstract: We study the power of restriction of Clausius-Duhem and Drucker-Ilyushin
inequalities on the constitutive relations of several classes of materials, such as elastic,
elastoplastic, brittle damaging and viscous ones. The goal is to see whether these two
physical principles can justify the very useful but formal notion of standard materials.
Keywords : Thermodynamics, Constitutive relations, Stability

1. INTRODUCTION

Following P. Germain's lead, the french mechanics community embraced the concept of
(Generalised) Standard Material (GSM): Are my constitutive relations those of a standard
material? How can I change or present them in order to agree with the rule? The reasons
of this justified success clearly appear in the remarkable survey [Germain et al., 1983] :
(i) Its implementation is systematic — (ii) It can be generalised to any kind of thermo-
mechanical behaviour—(iii) It does not disagree with well established thermodynamical
principles and even permits to automatically satisfy the second law — (iv) It agrees with
the most usual constitutive relations — (v) It generally leads to “nice” initial-boundary
value problems with “good” mathematical properties —. In other words, choose a set of
state variables, define two (convex) thermodynamical potentials and you have obtained an
efficient constitutive law. This plug in and play instrument was a godsend for the engineer
in that it enabled him, with the help of faster and faster computers, to develop more and
more elaborate material models and to use them to design or to check the reliability of
engineering structures.

But the success of an approach should not prevent an investigation into the soundness
of its foundations. In the present case, the weakness of the GSM rule conies from its too
formal character. This can lead to excess. Moreover it proceeds from assumptions which
are not easily checked from experimental tests: How is one to find the relevant set of state
variables? Or the relevant forms of the free energy and dissipation potential? It would be
completely satisfactory and could even be promoted to the rank of a physical law, if we
knew how the approach is related to some more fundamental and well established physical
quantities or principles. What are the candidates? It is now clear that the usual universal
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principles, like material frame indifference or the second law of thermodynamics, give
valuable but very limited restrictions on constitutive relations for complex inelastic mate-
rials. In any case they alone cannot fill in the gap up to GSM. More interesting is Drucker
and Ilyushin's postulate on the positivity on the work that the external agency has to supply
to perform a cyclic loading. Indeed, when applied by its authors to elastoplastic materials
(the setting in which it was conceived), it implies the convexity of the yield surface and
the normality rule for the plastic strain rate, i.e., precisely the main properties required to
be a GSM. Equipped with mis cheering result, we must now apply it to various classes of
materials and examine whether it excludes any material which is not a GSM. This is the
main goal of the present paper, in which we limit our attention to the most usual types of
behaviour, elastic, elastoplastic, brittle damaging and viscoelastic materials.

2. CLAUSIUS-DUHEM AND DRUCKER-ILIUSHIN INEQUALITIES

In classical treatises on thermomechanics of continuous media, the second law of ther-
modynamics leads to the Clausius-Duhem inequality (CD-I), that is, to an inequality that
every material element will have to satisfy along every process that it will undergo. For a
simple material (in the sense of Noll) in isothermal processes, CD-I reduces to

where denotes the volume density of dissipated power,  the volume density of free
energy, and the stress and strain tensors.

Drucker [Drucker, 1951] introduced his stability postulate in terms of stress cycle
and of strain work of added forces. Specifically, denoting by and the initial and
current stresses of the material element, the postulate requires that in
any stress cycle C, that is in any stress path starting and ending at Uyushin [Ilyushin,
1961] formulated the stability postulate in terms of strain cycle and of total strain work by
requiring that

We will adopt Ilyushin's point of view and consider (2) as the work condition (essentially
because it can be more easily extended to general thermodynamical systems). However
the use of the postulate in its original form would lead to unsatisfactory results for some
classes of materials (like viscoelastic one, see Section 4.). We change it slightly by requir-
ing the positivity of the strain work during a strain cycle, i.e., Condition (2), only when
the material element starts from an equilibrium state. In our isothermal context, a state
(characterised by the values of the strain and of the internal variables) corresponds to an
equilibrium state if it evolves only when the strain does. In the sequel, this revised version
of the stability postulate will be referred to as Drucker-Ilyushin Inequality (DI-I).
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3. HOW THEY RESTRICT MATERIALS WITH ELASTIC RANGE

This section is devoted to materials that behave elastically in a certain strain range, like
elastic, elastoplastic or brittle damaging materials. Since their behaviour is rate-indepen-
dent, every state is an equilibrium state and, in the statement of  DI-I, (2) must be satisfied
whatever the initial state may be.

3.1 Elastic materials
First consider elastic materials, that is non dissipative materials in which the stress tensor
only depends on the strain tensor. We thus consider the class of materials such that

The question then becomes : Is any function f admissible? Let us first study the conse-
quences of DI-I. For elastic materials, the strain work can be seen as the circulation of the
field f along the strain path. Consequently, if the work along a cycle C equals W, then
it will be equal to –W along the reversal cycle As in both cases the work must be
positive, necessarily W = 0. In other words, DI-I requires that the strain work vanishes
in any cycle. But, a classical result for differential forms says that this is possible if and
only if the stress function f derives from a potential. Hence, DI-I requires that there exists
an elastic potential such that

where the symbol D stands for the derivative. Equation (4) characterises hyperelastic
materials. If we insert (4) into (1), we immediately deduce that that
is that, in the present isothermal context, the free energy is equal (up to a constant) to the
elastic energy. Conversely, if (4) holds, then the strain work vanishes along any cycle; we
have proved the following

Proposition 1 An elastic material satisfies DI-I if and only if it is hyperelastic. Moreover,
by virtue of CD-I, its free energy then corresponds to its elastic energy.

This first fundamental result merits several remarks.
The legitimacy of DI-I. Let us first show why the postulate of the positivity of the

strain work is legitimate for elastic materials. Assume that there exists a strain cycle C
such that the strain work W is strictly negative. In that case the “external agency” who
prescribes the strain loading will receive the energy amount –W at the end of the cycle.
By repeating the cycle n times, he will receive the energy amount –nW. By increasing
n at will, he could then recover as much energy as he wants. This material will then
constitute an unfailing energy source. If it were possible, then the energy question would
be solved for the entire universe. Clearly, such is not the case.

The relation between DI-I and usual stability criteria. Any hyperelastic material
satisfies DI-I. We have obtained no restriction on the elastic potential In particular no
usual dynamic stability condition, like convexity in linear elasticity or rank-one convexity
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in the case of finite strain. Conversely, we could define some dynamic stability proper-
ties for elastic (but not hyperelastic) materials. Consequently, if DM is related to some
material stability — as Drucker presented it —, it corresponds to an additional notion of
stability.

The role of  CD-I. The hypothesis and CD-I are only used to calculate the
free energy and to identify it with the elastic energy.

To emphasise the contribution of DI-I, let us now analyse the consequence of CD-I
alone by removing DI-I. Since this question is mishandled in the literature, we return to it
by insisting on the importance of the adopted definition for elastic materials.

In their pioneering paper [Coleman et al., 1963] the authors started from a different
definition of elastic materials by assuming that in such materials the stress and the free
energy are functions of the strain, that is and With this definition, (1)
becomes Since the inequality must be satisfied for every
and — this corresponds to the implicit assumption that one can prescribe any strain path
to the material element –, we immediately deduce that and conditions
which are exactly those of (non dissipative) hyperelastic materials. Thereby, a negligent
reader could conclude that CD-I, like DI-I, rules out the elastic but not hyperelastic ma-
terials. In fact, this is not correct because we started from a restricted definition. Here
the crucial (but somewhat hidden) assumption lies in the hypothesis that the free energy
depends only on the current strain.

Let us remove this assumption and adopt (3) as the correct definition for elastic mate-
rials. Then CD-I becomes an equality and permits us to compute the variation of the free
energy along the process: In particular, this relation shows that, for an elastic
but not hyperelastic material, the free energy depends on the entire strain history. In any
case, such a material is not in contradiction to the second law of thermodynamics. Even,
the hypothesis usually adopted, that the free energy is a function of state, is meaningless
as long as the set of state variables is not well defined. In the present case, it suffices to
set as the pair of state variables to abide by this rule. We can then summarise this
analysis of the consequence of CD-I by

Proposition 2 CD-I excludes no elastic material, but simply says that only the hyperelas-
tic ones possess a free energy which depends only on the current strain.

By comparison of Propositions 1 and 2, we immediately see the contribution of DI-I.

3.2 Elastoplastic materials
For the most part, the results presented in this subsection are those first published in
[Drucker, 1951]. We consider elastoplastic materials and assume that the stress-strain
relation is

where A is the stiffness tensor (assumed invertible, but not necessarily symmetric) and
the plastic strain which plays the role of a dissipative internal state variable. For its
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evolution law, we will essentially adopt the usual assumptions of a rate-independent law
based on the notion of yield surface. We depart from the custom only by the fact that, as
the strain is the controlled variable, we have to consider the elastic domain in strain space
rather than in stress space. It is of little importance, because we can deduce one from the
other by virtue of (5): if  denotes the current elastic domain in the strain space, its image
in the stress space is simply

Let us examine the consequences of DI-I. By considering elastic cycles, i.e., strain
cycles along which the plastic strain does not evolve, we easily deduce from Proposition
1 that the elasticity tensor A must be symmetric.

Let us now consider inelastic processes. Let and be the initial (total) strain,
plastic strain and elastic range of the material element, with Submit that element
to an elastic strain path, i.e., a path lying in in a such manner that the final strain
lies on the yield surface Then, apply an infinitesimal strain increment inducing an
infinitesimal plastic strain increment (with possibly a small change of Finally, end
the strain cycle by elastically returning to Let us compute the strain work needed in the
three parts of this cycle. The first (elastic) part easily yields

In a similar manner, the third (elastic) part yields
The second

(infinitesimal inelastic) part is evaluated at first order; we obtain
The total strain work performed along the cycle, to first order, is
DI-I requires that Thereby, by passing to the limit when  goes to 0, we finally
obtain the inequality in which and
represent the stresses at the end and at the beginning of the first elastic path respectively,
while denotes the plastic strain rate at the beginning of the inelastic path. Since can
be chosen arbitrarily in while can be chosen arbitrarily on and since evolves
only when lies on the previous inequality can be extended to any real process and
becomes

where and now denote the current stress, plastic strain rate and elastic stress do-
main respectively. Inequality (6) is nothing but the famous Hill's maximum dissipation
principle. We have then proved that an elastoplastic element satisfies DI-I only if it satis-
fies Hill's maximum dissipation principle. In return, it is well known, see [Marigo, 1989]
for a complete proof, that (6) is satisfied if and only if the elastic domain (and then
is convex, and the plastic strain rate follows the normality rule. We can then summarise
our analysis in the following

Proposition 3 An elastoplastic material satisfies DI-I only if its elasticity tensor is sym-
metric, its yield surface is convex and the plastic strain rate is normal to the yield surface.

Inequality (6) was obtained by using a particular infinitesimal inelastic cycle. The question
is to know whether we can obtain further restrictions on the constitutive relations from DI-
I by considering more general strain cycles. Clearly possible additional restrictions would
only concern the evolution of the elastic domain. So the question becomes : Are some
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hardening effects excluded by DI-I? We will not try to answer this question in its greatest
generality, but will merely prove that ideal plasticity agrees with DI-I. Specifically, assume
that is a fixed, convex set, that the normality rule holds, and that the elasticity tensor is
symmetric, positive. Let us consider an arbitrary strain cycle C and denote by and
the initial and final stress tensors, both in Then computing the strain work yields

Since the two terms on the right hand side of (7) are positive, by virtue of the assumed
positivity of A and by virtue of (6), and the result follows. We have then proved
the following

Proposition 4 Assume that the elasticity tensor of a given ideal elastoplastic material is
symmetric positive; that material satisfies DI-I if and only if the yield surface is convex
and the plastic strain evolution satisfies the normality rule.

At this step, nothing has been said about CD-I. Convexity of the yield surface and
normality rule are deduced from DI-I alone. Let us assume, as in the previous subsection,
that dissipation occurs only during inelastic processes. Then, by considering elastic pro-
cesses, we deduce that the free energy is  where depends
a priori on time and may only vary when does. We cannot continue the analysis with-
out an assumption about the dissipation during the inelastic phases. For example, if we
assume that for ideal elastoplastic materials the free energy equals the elastic energy, then

is a constant and the dissipation rate reduces to So, if we assume that DI-I (and
hence Hill's inequality) holds, then the positivity of is ensured provided contains the
null stress.

3.3 Brittle damaging materials
A part of the results of this subsection was first published in [Mango, 1989]. We con-
sider brittle damaging materials, that is materials with elasticity which evolves with time
through specific internal state variables, the evolution of which in turn follow a rate in-
dependent law based on the notion of yield surface, like that for elastoplastic materials.
We limit our analysis to materials for which the damage evolution can be described by a
scalar parameter, say Specifically, we assume that the stress-strain relation is

where is the current value of the stiffness tensor corresponding to the current damage
state The assumed inequality on the derivative of means that the stiffness
decreases when damage increases; this can be checked by micromechanical analyses when

is related to microcrack density. As in the previous subsection, the current elastic domain
which governs the evolution of is a connected closed domain in the strain space and

we assume that it always contains the natural unstrained state.
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Let us examine the consequences of DI-I. First, by considering elastic cycles, i.e.,
strain cycles along which the plastic strain does not evolve, we easily deduce from Propo-
sition 1 that the elasticity tensor must be symmetric. Let us now consider inelastic
processes by proceeding as in the previous subsection. Let and be the initial
(total) strain, damage state and elastic range of the material element, with Sub-
mit this material to an elastic strain path, i.e., a path lying in in such a manner that
the final strain lies on the yield surface Then apply an infinitesimal strain in-
crement in a manner such that _ leaves and induces an infinitesimal dam-
age increment — the sign of which is not a priori known — and a small change
of Finally, end the strain cycle by elastically returning to Let us compute the
strain work needed in the three parts of this cycle. The first (elastic) part easily yields

In a similar manner, the third
(elastic) part produces
The second (infinitesimal inelastic) part is evaluated at first order and one simply finds

The total strain work performed along the cycle reads, at first
order, as DI-I requires that
Therefore, by considering a small enough strain increment, we obtain the inequality

which holds for all and all From (9) we deduce the following

Proposition 5 A brittle damaging material in the sense of (8) satisfies DI-I only if its
damage parameter is an increasing Junction of time and if its yield surface is given by a
critical energy release rate criterion, i.e.,

Proof. (i) :  increases. Let us consider an arbitrary strain path. Let t be a time when
damage evolves, i.e., It suffices to put and

in (9) to obtain, by virtue of (8), that Since at the other times
the result follows.

(ii) : Determination of Let be a particular strain lying on the boundary of
the current elastic range and set Since  can only increase,
we deduce from (9) that Let us now consider another
point on By inverting the role of and we deduce from (9) that

Therefore we also get But both inclusions are possible if
and only if which yields the desired result.

The remarkable result is that DI-I forces the form of the elastic range by relating it to the
released elastic energy due to damage growth. Only the size of remains to be determined,
which is the role of the hardening parameter k. Can we obtain from DI-I restrictions on
the evolution of k with time? Part of the answer is given just below. Let us assume that
(10) holds true and let be an arbitrary strain cycle that the material can undergo. If we
remark that, at each time, either the computation of the strain
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work gives

Therefore, if is an increasing function of time, then and the right hand
side of (11) is positive, i.e., DI-I is verified. Thus, DI-I could fail only when decreases
on some time interval. But then certain strain cycles are not realisable and the analysis is
more complicated.

Let us now examine the restrictions due to CD-I. By considering first elastic (and
hence non dissipative) processes, we deduce that where  can evolve
only when does. If we consider a strain cycle starting and ending at since the
stresses also vanish at the ends of the cycle, we can suppose that, for such a cycle, the
strain work corresponds exactly to the dissipated energy. Under such an hypothesis, let us
consider an arbitrary inelastic strain path beginning at the state and ending at
the state We can always construct a cycle starting and ending at and
containing this inelastic path (it suffices to precede it by an elastic path going from 0 to
and to follow it by an other elastic one going from to 0). During this cycle,  can evolve
only during the inelastic stage, but, by virtue of our assumption, its final value must be
equal to its initial one, hence it remains constant. Thus the free energy coincides with the
elastic energy. Inserting this result into (1) leads to from which
we can deduce only that damage must grow. CD-I gives no information on the form of
the yield surface.

4. HOW THEY RESTRICT VISCOELASTIC MATERIALS

The results presented below have never been published. The interested reader should
however consult [Day, 1976] for the study of the consequences of a slightly different work
axiom, and, [Coleman et al., 1967] for the implications of CD-I.

4.1 The linear viscoelastic models of Maxwell
We first show why it is important to require (2) only when the material starts from an equi-
librium state. To this effect, we consider the (family of) well-known Maxwell model(s)
for linear viscoelastic material:

where is the viscous strain, A the stiffness tensor and B the viscosity tensor. For phys-
ical reasons, it is usually admitted that A and B must be symmetric and positive. In par-
ticular, owing to the positivity of B, when the strain remains constant the stress (asymp-
totically) relaxes to 0, while, if B was negative, it exponentially increases with time.

Since this model is well-established, no reliable general principle can rule it out.
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Therefore, let us first check that it is in agreement with DI-I. Following the definition,
an equilibrium state is a state at which the stress vanishes. Let us assume
that the material starts from such a state, submit it to a strain cycle and compute the strain
work. We obtain

Hence DI-I and Maxwell's models are compatible.
Let us now show that, if the material starts from a non equilibrium state, then there

exist strain cycles along which the work is negative. Let be the initial state with
Let us deform the material very quickly in such a manner that its strain evolves

from to while the viscous strain (nearly) remains at its initial value Thus, the
material arrives at in an equilibrium state. Then, let us return to the initial strain very
slowly, the stress remaining (nearly) at 0. The strain work performed during the cycle is
(nearly) equal to

4.2 Extended viscoelastic materials of Maxwell's type
We consider a class of viscoelastic materials more general than Maxwell's model. The
stress versus strain relation is now given by

where, for computational convenience, we prefer to consider the viscous stress rather
than the viscous strain as the internal state variable. Moreover, we assume
that the time parameter is positive and that the function f is a smooth one-to-one map
onto the space of symmetric matrices. The hypothesis on f is not essential, but permits us
to simplify the proofs. On the other hand, the assumed positivity of  plays a fundamental
role by allowing the relaxation of stresses. An interesting issue would be to see whether
this inequality is required by DI-I or CD-I.

The extension of  Maxwell's linear model. If we put in (12), then
the corresponding Maxwell model belongs to the studied class with (a linear
model). Now, with this extension, when the strain is held to a given value e, the stresses
do not generally relax to 0 but to and therefore the “delayed” elastic behaviour
is non linear.

Let us state the main result of this subsection

Proposition 6 An extended viscoelastic material (in the sense of (13)) satisfies DI-I if and
only if A is symmetric and f is the gradient of  a convex function.

Proof. (i) : Symmetry of A. It suffices to consider “instantaneous” strain cycles, i.e.,
limit cases of strain paths travelled at high speed, because the viscous part of the stress has
no time to evolve and remains at its initial value The stress versus strain relation
becomes We conclude by virtue of Proposition 1.
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(ii): f = Here we consider “infinitely” slow strain cycles. Thus the stresses
have enough time to relax and the stress versus strain relation becomes
The material behaves elastically and we conclude by virtue of  Proposition 1.

(iii) : Convexity of  Let be the initial strain and the associated relaxed
viscous stress, being the initial equilibrium state. We consider the following
cycle : first, the material is “instantaneously” deformed up to the strain ; then we main-
tain the strain a long time at this state so that the viscous stress (nearly) relaxes to
finally we get the material to return “instantaneously” to its initial strain state which
completes the cycle. Since the first and the third steps are (nearly) elastic and since the
strain work vanishes during the second one (because = 0), we easily compute the strain
work performed along the cycle and check, by virtue of DI-I, that

But, since and are arbitrary, (14) is nothing but the monotonicity of which is
strictly equivalent to the convexity of

(iv): Converse statement. Let us now assume that A is symmetric and f =
(with f one-to-one). We take an arbitrary equilibrium state as the initial
state of the material element and submit mat element to an arbitrary strain cycle We
denote by and the strain, viscous stress and total stress at time t, and set

Then the computation of the strain work yields

and, since both terms in the last right hand side are positive by virtue of the convexity of
the strain work is positive.

Let us now check CD-I and construct the free energy. For the sake of simplicity, we assume
a priori that only depends on and — though this can be deduced from a less brutal
assumption on the dissipation. By considering an instantaneous strain path (along which
the material does not dissipate any energy), we conclude that the free energy takes the form

Now consider a relaxation process, the material element
starting from a viscous stress state and the strain being fixed at By virtue of CD-I,the
free energy decreases with time until the viscous stress has relaxed to Since the
initial state can be chosen arbitrarily, we deduce that the function
reaches its minimum at Therefore, from the assumption that f is one-to-one, we
obtain as an optimal condition that and hence that is (up to an arbitrary
constant) the Legendre transform of i.e.,
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If we insert (15) into (1), we obtain the expression for the dissipation rate

its positivity being ensured by the convexity of

5. THEIR LINK TO STANDARD MATERIALS

In this concluding section we consider the results established in the two previous sections
concerning the power of restriction CD-I and DI-I so as to evaluate how close they take
us to a GSM. To that end, let us recall the main ingredients needed in the construction
of a GSM, see [Halphen et al., 1975] or [Germain et al., 1983] : (i) Choice of the state
variables, i.e., in the present context choice of the pair  representing the possible
(dissipative) internal variables—(ii) Choice of the (possibly convex) function free energy

as a thermodynamical potential giving the stress tensor and the
“thermodynamical internal forces” — (iii) Choice of a potential of
dissipation, convex function of a, giving the evolution law of the internal variables :

where the symbol D denotes the usual derivative when is differentiable,
a subgradient otherwise — Revisiting the two previous sections leads us to question
the notion of a convex dissipation potential governing the evolution of the internal state
variables. Indeed, that the free energy acts as a potential for the stress is always checked
(but maybe not the convexity of Let us examine each class of materials.

• Elastoplastic materials. We obtained the convexity of the yield surface and the
normality rule for Thus, for ideal plastic materials, upon assuming that the free energy
coincides with the elastic energy, we end up with a GSM. Indeed, in such a case, a =
and if we set as the indicator function of the closed convex set when

otherwise), then the normality rule forces to be a subgradient of at
More problematic is the case (for ideal plastic materials again) when

a situation that neither DI-I nor CD-I can exclude. In such a case
and the potential also depends on It seems however that in both

approaches the most important properties are the convexity of and the normality of

• Brittle damaging materials. In fact, this case is nearly identical to the previous one.
Indeed, now i.e., a is the energy release rate. Therefore if we consider
the interval and set as the indicator function of K, then the evolution law
deduced from CD-I and DI-I also reads as: (really, , which
corresponds to a GSM. However, since K can vary, is K-dependent. Furthermore the two
principles leave the evolution of K free of any constraint.

• Viscoelastic materials. For the linear Maxwell models, since and
we get and by introducing the evolution law

of reads as that of a GSM. The non linear cases are more involved. Indeed, in such a
case (now with (15) yields where e is the strain with
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associated relaxed viscous stress On the other hand, the evolution law is

This is not the desired form (except when is quadratic, i.e., except in the linear case).
Thus, the non linear viscoelastic materials allowed by CD-I and DM are not strictly GSM.
In order to abide by the rule, we could add as a variable in the potential. In any case,
the convexity of is ensured.

From this very partial analysis, it seems that DI-I is a good complementary principle,
which, coupled with CD-I, will imply important properties for real materials even if it can-
not completely fill in the gap up to GSM. Its application to more general thermodynamical
systems will be an interesting issue, but we will first need to generalise the formulation (by
adding for example thermal terms in the definition of the “strain work”). A nice challenge.
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Abstract: The exact description of the overall behavior of composites with nonlinear
dissipative phases requires an infinity of internal variables. Approximate models involv-
ing only a finite number of those can be obtained by considering a decomposition of the
microscopic anelastic strain field on a finite set of shape functions. The Transformation
Field Analysis of [Dvorak, 1992] is obtained as a special case of the proposed theory by
considering shape functions which are uniform within a given subdomain. The interest of
considering nonuniform shape functions is shown.
Keywords: Constitutive relations, internal variables, nonlinear composites, microme-
chanics, Transformation Field Analysis.

1. INTRODUCTION

Among all Paul Germain’s scientific achievements, his contribution to the formulation
of constitutive relations in the coherent framework of Continuum Thermodynamics has
a prominent place. His book Mécanique des Milieux Continus [Germain, 1973], con-
temporary with the seminal work of [Halphen et al, 1975] Generalized Standard Ma-
terials (GSM), opened a way which was further pursued, developed and illustrated by
many authors inside and outside France (see [Germain et al, 1983, Lemaître et al, 1988,
Lubliner, 1990, Maugin, 1992] for a review).

This theory relies on two fundamental concepts, the notion of internal variables, of-
ten denoted and the notion of thermodynamic potentials, the free energy and the
dissipation potential endowed with specific mathematical properties.

The internal variables at time t are supposed to contain all the relevant informa-
tion about the material history for times The choice of these variables depends
obviously on the constitutive relations under consideration. Some of these variables have
a purely macroscopic interpretation. Other variables are sometimes interpreted as mi-
crostructural variables but most often the equations governing their evolution are not re-
ally derived from micromechanical considerations.
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The aim of this paper is to give an example of an approximate micromechanical
scheme in which internal variables at the macroscopic level have a well understood mi-
cromechanical interpretation. More specifically, we consider a nonhomogeneous material
with elementary constituents which are standard is the simplest possible form. The only
internal variable is the anelastic strain. It is well known that the overall behavior of such
a composite has a GSM structure but with infinitely many internal variables which are the
fields of local internal variables. This result will be recalled in section 2 following the
presentation of [Suquet, 1985]. Similar ideas were already present in different forms in
the works of [Rice, 1970] and [Mandel, 1972] among others.

In practice it is necessary to reduce the number of internal variables by considering
that the local fields of anelastic strains depend only on a finite number of shape functions
describing the variations of the local plastic fields. This reduction is done in section 3.
It is remarked that the proposed method reduces to the Transformation Field Analysis
of [Dvorak et al, 1994], when the plastic strain fields are assumed to be uniform within
each individual phase. This corresponds to the case where the shape functions are the
characteristic functions of the phases. The proposed theory is more general in that the
shape functions are not required to be uniform within a given domain. The method is
illustrated in section 4 and its merits are assessed by comparison with the TFA.

2. STABILITY OF THE STANDARD STRUCTURE BY CHANGE OF SCALE

Consider a representative volume element (r.v.e) V of a nonhomogeneous material com-
posed of N different phases or subdomains. This r.v.e is subjected to an average loading
characterized by a given path in the space of overall strain or stress. Attention is limited
to isothermal evolutions and infinitesimal deformations. The overall Cauchy stress and
the overall infinitesimal deformation  are the averages of their local counterparts and

The local stress and strain fields are determined through the resolution of the local evo-
lution problem posed for the r.v.e. and consisting of equilibrium equations, boundary
conditions and constitutive relations. The boundary conditions are assumed to be such
that Hill’s micro-macro localization condition is satisfied: for any compatible strain field

and any stress field in equilibrium, both meeting the boundary conditions imposed on
the boundary of the r.v.e., the following equality holds

Examples of boundary conditions meeting (2) include uniform strains, uniform stresses,
periodicity conditions (see [Suquet, 1987] for more details). Periodicity boundary condi-
tions will be assumed in the following.
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2.1 Standard constitutive relations
The behavior of the individual constituent at point x is defined by a standard model,
i.e. by two thermodynamic potentials. The free energy defines (through the state
laws) the forces available in the system at rest to drive the dissipative mechanisms, and
the dissipation potential relates the rate of the dissipative mechanisms (complementary
laws) with the associated forces. For simplicity we shall consider that the only dissipative
mechanism comes through an anelastic strain (plastic or viscoplastic strain) and that
the free energy is a quadratic function of the elastic strain

Then the state laws and the complementary laws read respectively:

State laws:

Complementary laws:

The potentials and may depend on x (nonhomogeneity of the volume element) and
are assumed to be convex with respect to their other arguments.

2.2 Generalized standard structure of the overall constitutive relations
The free energy is an additive quantity or, in other words, the overall free energy of the
r.v.e. V is the average of the local free energy. As shown in [Suquet, 1987], the state
variables at the macroscopic level consist of the average strain  and of an infinite number
of internal variables which are the values of the anelastic strain field at every microscopic
point

The overall free energy reads

The forces associated with the state variables are

The first force can be computed using Hill’s lemma
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since Similarly, the set of forces coincides with the local stress

field The effective dissipation potential reads

With the choices (6) (7) (9), the effective constitutive relations of the composite have a
generalized standard structure:

State variables:

State laws:

Complementary laws:

2.3 Green operator
At rest (no evolution of the system) the stress and strain field in the r.v.e. solve the fol-
lowing linear elastic problem, with appropriate boundary conditions

The strain field solution of this problem is a nonlocal function of the anelastic strain
field and can be expressed as:

where

In this relation A(x) denotes the elastic strain-localization tensor, and the nonlocal op-
erator   gives the strain at point x created by an eigenstrain

at point denotes the nonlocal elastic Green operator which can be
expressed in terms of the derivatives of the Green function for the Navier equations with
elastic coefficients L. More specifically, given a field of eigenstress the solution of
the elasticity problem:
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can be expressed as:

has simple properties which will be useful in the sequel

3. REDUCTION OF THE NUMBER OF INTERNAL VARIABLES

3.1 State variables
In order to reduce the number of internal variables, we assume throughout the following
that the field of anelastic strains can be expressed as a function of a finite number of shape
functions

The reduced state variables of the model are the overall strain and the component of the
anelastic strain field on the shape functions:

A typical example of such shape functions is provided by the characteristic functions
of phases or subdomains within the same phase (we shall consider the subdomains as
separate phases even though a single mechanical phase can be divided into several subdo-
mains):

This specific choice leads to the Transformation Field Analysis of [Dvorak, 1992] where
the plastic strain field is assumed to be uniform over each individual subdomain How-
ever it may be interesting in certain circumstances to consider shape functions which
are richer than the characteristic functions to account for spatial nonuniformity of the
(anelastic) strain field within one phase or subdomain. The resulting theory will be called
the Nonuniform Transformation Field Analysis (NTFA).

It is assumed that the shape functions have their support entirely contained in a single
phase. In more mathematical terms it is assumed that

Therefore one can define and as the stiffness tensor and the dissipation potential
of the phase in which the shape function  has its support.
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3.2 State laws
With the decomposition (19), the effective free-energy (7) and the thermodynamic forces
associated with the state variables read as

The state laws can be more easily expressed in terms of the following generalized stresses
and strains :

Note that

Multiplying the local state law (4) by and averaging over V yields

Under the approximation (19), (14) becomes

Upon multiplication of equation (27) by and averaging over V, one obtains

where
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Similarly, incorporating (27) into (23b) yields

The state laws, expressing the forces and in terms of the state variables and
consist of (30), (26) with (28) and (25).

3.3 Complementary laws
Under the approximation (19), the dissipation potential (9) can be expressed in terms of
the rates of the internal variables

Then

Therefore the constitutive relations of the composite (in reduced form) have a gener-
alized standard structure defined by the state variables (20), the free energy (23) and the
dissipation potential (31).

There is however a difficulty in applying the complementary law (32) in exact  form.
This would require the knowledge of which cannot be expressed simply in terms
of the Another approximation has to be introduced. Note that thanks to the convex-
ity of one has:

The right-hand-side of (33) can be considered as an approximation of its left-hand-side.
Then

Therefore the complementary equations (32) can be expressed (in approximate form) as:
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3.4 Link with the Transformation Field Analysis
The link with the Transformation Field Analysis of [Dvorak, 1992] can be made by choos-
ing the shape functions to coincide with the characteristic functions (21) of the phases or
subdomains:

where is the volume fraction of phase and is the Kronecker symbol. The anelastic
strain is assumed to be uniform within each subdomain The generalized stress and
strains and reduce to the average stress and strain over the subdomain

The state laws (26) and the complementary laws (34) read:

where the average strains in the different subdomains are given by:

The fourth-order tensors and are the average strain localization tensors and
the influence tensors which are the basic ingredients of the TFA ([Dvorak, 1992]):

and

A few well known algebraic properties of these tensors are useful in their computations

4. EXAMPLES

The relative merits of the above models are assessed by means of the following two-
dimensional example. The r.v.e. consists of a square unit cell containing a square inclu-
sion (phase 1) located at its center (with volume fraction The unit cell is sub-
jected to periodic boundary conditions. The inclusion is linear elastic. The surrounding
matrix is elastic perfectly plastic (von Mises criterion with yield stress
The inclusion and the matrix have the same elastic moduli
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The unit cell is subjected to an in-plane overall stress

Attention has been paid to two specific cases, simple shear and uniaxial
tension The exact responses (up to numerical errors) of the unit cell
under the simple shear and uniaxial tension has been computed by the FEM. The TFA
and the NTFA have also been implemented.

Several subdivisions of the unit cell have been considered in the implementation of the
TFA. The cruder subdivision considers the plastic strain to be uniform in the matrix (Fig-
ure la). Finer subdivisions were also investigated in which the matrix was divided into
8 and 48 subdomains respectively, as shown in Figure 1b and 1c. The elastic properties
of the inclusion and of the matrix being identical, the elastic strain localization is trivial

The influence matrices are computed numerically by the Finite Element
Method using a regular mesh of 80 × 80 quadrilateral 8 nodes elements shown in Figure
2a. A uniform eigenstrain is prescribed to the subdomain and the average strain in
subdomain caused by this perturbation is computed. The corresponding relation yields
the influence tensor

Only three shape functions were used in the NTFA (more shape functions could have
been used but it is worth noting that satisfactory results can be obtained with relatively few
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shape functions). The first shape function is the characteristic function of the inclusion.
The second shape function is the flow mode in pure shear. The third shape function
is the flow mode under uniaxial tension. These modes and the corresponding influence
matrices were computed numerically by the FEM using the mesh shown in Figure
2a. Snapshots are shown in Figure 2b (pure shear) and 2c (uniaxial tension). Whiter
zones denote higher strains. Remarkably enough, the pattern flow mode under pure shear
shows zones with uniform strains. An exact solution for this problem can be constructed
in closed form. The strain field, solution of the elasto-plastic evolution problem, is a pure
slip solution which can be expressed in terms of as

where A denotes the inclusion, B denotes the subdomains located at the top right, top
left, bottom right, bottom left in Figure 1b, and C denotes the remaining subdomains in
Figure 1b.

The responses of the unit cell to the imposed loadings as predicted by the TFA and
NTFA models are shown in Figure 3. The predictions of the TFA with the cruder dis-
cretization i.e. with one subdomain for the inclusion and one subdomain for the matrix
are unrealistically stiff (this is well known [Suquet, 1997], [Chaboche et al, 1999]). When
the discretization is refined (the number of subdomains is increased), the predictions of
the TFA become more realistic. In simple shear, the exact solution is recovered by the dis-
cretization with 8 subdomains as follows straightforwardly from the exact solution (38).
But in general the convergence towards the exact solution can be slow as the number of
subdomains is increased. This is shown in Figure 3b where it is seen that, even with 48
subdomains in the matrix, the prediction of the TFA is not very accurate. The prediction
of the NTFA with only 3 modes is as accurate as the prediction of the TFA with many
more subdomains. This is due to the fact that the solution is nonuniform and that this
nonuniformity is built-in into the shape functions.

In conclusion, we have shown that the reduction of the number of internal variables
achieved by the TFA can be improved. We have considered a decomposition of the mi-
croscopic anelastic field on shape functions which are nonuniform and which capture the
expected nonuniformity of the exact fields.
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Abstract: Viscoplastic flow instability is an important mode of ductile failure of
structural elements. When impact loading conditions are considered, thermal effects are
significant and can lead to adiabatic shear banding. At very high rates of straining,
inertia effects have an increasing influence and can produce multiple shear banding. A
modeling of adiabatic shearing is presented here with special emphasis on the
experiments made with the torsional Kolsky bars set-up. Analogies with other types of
plastic instabilities will be occasionally discussed.
Keywords : viscoplastic instabilities, thermal effects, adiabatic shear banding, Kolsky
bars.

1. INTRODUCTION

The localization of plastic deformation is a phenomenon consisting in the development
of large deformations in narrow zones, and is the result of plastic flow instability. Such
a localization process can be a mode of ductile failure of materials sustaining large
plastic deformations. A typical example is provided by the wall breakage due to
localized necking during the deep drawing of metallic sheets. [Considère, 1885] was
the first to characterize the onset of necking in a bar under simple tension. The
fundamental solution consisting in the uniform deformation of the bar, becomes
unstable when the maximum of the tensile force is reached. Then a non-uniform mode
of deformation develops, leading to the neck formation. The Considère criterion
determines the critical tensile strain at the maximum force as being for a rigid
plastic material whose hardening law is of the form : is the tensile
component of the Cauchy stress, and it is supposed that the strain hardening exponent
n is positive. From this result, it appears that the onset of necking is delayed (and
therefore the plastic flow is more stable) in a material with strong strain hardening.
Other material parameters can have important effects on strain localization. Superplastic
materials are quite ductile, with elongation strains in simple tension tests as large as
1000% and more. This remarkably stable deformation process can be interpreted in
terms of the viscoplastic material response. More precisely the strain rate sensitivity,
characterized by the parameter (with being the strain rate), can be
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shown to stabilize the plastic flow. The large ductility of superplastic materials is
attributed to their large strain rate sensitivity

Plastic flow localization is also very sensitive to the loading conditions. When large
extension rates are considered, new phenomena are observed. Consider the example of
copper shaped charge jets used for armor penetration. The following values, typical of
the state of the jet at a given time of its history (diameter = few millimeters, length = 0.3
m , tip velocity = 7 km/s, tail velocity = 4 km/s) indicate that elongation rates of
straining are of the order of At these large values of the jet breaks up in
a multitude of fragments, contrary to what happens at low strain rates where a single
neck is observed. Multiple necking can be attributed to inertia effects which become
significant in the necking zones at large values of the overall strain rate. The jet
fragmentation can be interpreted as the consequence of the competition between inertia
effects which are stabilizing on long wave-length perturbations, and stress triaxiality
effects within necks which tend to stabilize small wave-length perturbations. The
outcome of this competition is the selection of the critical size of fragments that are
likely to be formed.

At high rate of straining, thermal effects play a crucial role in the development of
plastic flow instabilities. Examination of a metallic plate impacted by a spherical
projectile at the velocity of  reveals the existence of a family of narrow shear
bands with a thickness of the order of and a characteristic separation distance of
the order of 1mm, see the fig. 1.1 p.2 of [Bai and Dodd, 1992]. These bands, called
Adiabatic Shear Bands (ASB), emanate from the impacted surface and propagate
through the plate thickness. Very large localized shear strains can develop within the
bands ( depending on the test and on the material considered, values ranging from 1 to
10 and more, can be measured) accompanied by a significant temperature rise limited to
the band area (several hundred of degrees).

ASB are the result of a thermomechanical instability, which can be schematically
presented as follows. The instability process is initiated at a local stress concentration
due to a microscopic defect (geometrical or material defects) or related to boundary
conditions (e.g. stress concentration at the edges of a projectile entering into the target).
Localized plastic deformations are generated at stress concentrations, leading to a local
temperature increase - due to plastic work dissipation- which in turns produces a local
decay of the flow stress in a thermal softening material. This material weakening again
favors the development of localized deformations, producing a local growth of
temperature, and clearly an autocatalytic process is generated. Thus adiabatic shear
banding is the result of a thermomechanical instability.

Two important conditions have to be satisfied in order to produce ASB :
- the material must be thermal softening.
- strain rates must be high, because the local temperature rise is not possible in slow
processes where heat diffusion has enough time to make the temperature field uniform.
Heath transfer is reduced in high strain rate processes, but is not negligible near a band
where temperature gradients are large. The formation of an ASB is not really an
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adiabatic process although this terminology is commonly used to qualify this type of
shear banding.

Adiabatic shear banding is frequently at the origin of the catastrophic failure of
structures under dynamic loading. For instance in a plugging experiment, the energy
used for the piercing of a thin metallic plate by a projectile is much smaller than the
energy necessary to go through the plate, with the projectile used as a punch progressing
at a low speed. During plugging, adiabatic shear banding emanates from the edges of
the projectile and propagates through the plate thickness. The material within the bands
suffers from a dramatic drop in the flow stress, and offers only a weak resistance to the
progression of the projectile. Almost no plastic deformations are observed outside the
ASB in a plugging experiment. On the contrary, in quasistatic loading, the advance of
the punch is accompanied by plastic deformations spread over a large area, leading to
the formation of a dome until the plate is finally broken. For that reason the quasistatic
process is much more energy-consuming than the impact process. These observations
have a general character, and have important consequences for the security of impacted
structures.

Adiabatic shear banding is a phenomenon commonly observed in metals, polymers
and geological materials (e.g. ice). It is related to reaction-diffusion problems
encountered in combustion theory or in chemical kinetics (blow up of an explosive is
triggered by thermomechanical instabilities such as ASB). ASB are observed in high
speed metal forming processes such as forging, magneto-forming. In high speed
machining, ASB can lead to chip segmentation.

Adiabatic shear banding is a very rich physical problem, which will be discussed in
this paper, and used as a guideline to illustrate the process of viscoplastic flow
instability. In particular, the role of material parameters and of loading conditions on the
onset, development and propagation of ASB will be analyzed. Links and analogies with
other types of plastic instabilities will be occasionally discussed.

2. TORSIONAL KOLSKY BARS EXPERIMENTS.

Throughout this paper, the high speed torsion of a thin tube in a Kolsky bars set-up,
[Marchand and Duffy,1988] will be considered as the reference test. In these
experiments adiabatic shear bands are formed under well controlled conditions and
precise measurements.

The evolution of the shear stress in terms of the shear strain is reported in
fig.l for a HY100 steel sustaining a nominal shear strain rate of [Marchand
and Duffy, 1988]. Three stages in the deformation process can be defined. Except for a
local peak due to dynamical effects, most of the shear stress evolution during stage I
consists in a growth of the shear stress related to strain hardening. Plastic flow is almost
homogeneous. However the heat generated by the dissipation of part of the mechanical
work, produces a thermal softening which finally overcomes strain hardening when the
maximum value of the stress is attained, at the deformation . This maximum
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stress marks the onset of stage II, which is characterized by a slow decrease in the
stress due to the influence of thermal softening. In addition, a weak heterogeneity in the
plastic flow is observed. Finally stage III manifests itself by a sudden drop in the
bearing capacity resulting from the development of an adiabatic shear band. Ultimately
this band propagates along the tube circumference. A crack can be generated within the
band, leading to the fracture of the specimen. These different stages marking the onset
and evolution of adiabatic shear banding will be analyzed in the following.

Here again, it is essential to note the differences between dynamic and quasistatic
loading as they appear in fig.2. A HY100 steel has been sheared at different values of
nominal strain rate, and In dynamic loading, the fracture of
the specimen is obtained by ASB at the strain while in quasistatic loading,
fracture occurs at with no ASB. The energy absorbed during the test- which is
mostly the area delimited by the diagram- is much smaller in the dynamic test,
in agreement with the foregoing discussion of the plugging test.

3. MODELLING OF VISCOPLASTIC SHEAR AT HIGH STRAIN RATES.

To model adiabatic shear banding in Marchand and Duffy’s experiments, it is
convenient to consider that the tube is cut along a direction parallel to the rotation axis,
and that the surface of the tube is developed into a plane. The problem is modeled as
that of a layer infinitely extended in the shear direction x and in the out of plane
direction z, with finite thickness 2h in the direction y, see fig.3. In the Kolsky bar
experiments, it can be considered that the boundary conditions consist of constant
velocities parallel to the x direction, applied at the upper and lower surfaces :
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In most of the experiments the flow is laminar within the shear zone. Note however
that vortices have been observed in very thin bands obtained during the dynamic
compaction of two-phase materials at nominal strain rates of [Nesterenko et al.,
1994,1995b]. In a general context, two dimensional modes of instability have been
analyzed by [Molinari and Leroy,1991] and [Leroy and Molinari, 1993]. First restricting
the analysis to laminar flow, the problem is formulated in a one dimensional
framework, the variables depending solely upon the coordinate y and the time t. The
velocity of a particle is parallel to the shear direction x and is denoted by v. As high
strain rates are considered, adiabatic conditions can be assumed at the boundaries :

where is the temperature.

The problem is modeled by five basic equations. The balance of momentum and the
conservation of  energy can be expressed as :

where is the mass density, c the heat capacity, k the heat conductivity, the shear
stress and the plastic shear rate. The source term in the right side of the heat
equation represents the part (Taylor-Quinney coefficient) of the rate of plastic work
transformed into heat. The compatibility equation has the form :

where is the elastic shear rate. The viscoplastic flow law can be expressed in the
general form

where the strain is defined by

The dependence of the flow stress upon the plastic strain, strain rate and temperature, is
necessary to account for the strain hardening, strain rate sensitivity and thermal
softening effects observed in the experiments. A more physical approach would assume
that the flow stress depends on the whole deformation history ; however for analytical
convenience the simpler law (6) will be used here. Finally Hooke’s law
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with the shear modulus, completes the set of equations for the five unknowns,
In most of the applications considered, the elastic deformation can be

neglected (an exception is the analysis of shear band propagation). Therefore in the
following we shall have and

A homogeneous and time dependent fundamental solution exists because there is no
heat flux at the boundaries. This solution corresponds to homogeneous laminar flow
with uniform increasing temperature, and is denoted by

with When entering into stage II, the fundamental solution becomes
unstable. The onset of instability is described in the next section with use of a
perturbation method, [Clifton, 1978], [Bai, 1982], [Molinari, 1985].

4. THE ONSET OF HETEROGENEOUS FLOW.

Just after the maximum stress is passed, a weak flow heterogeneity is observed to
develop, [Marchand and Duffy, 1988]. This is the manifestation of a viscoplastic
instability which can be analyzed with a perturbation approach.

Consider a small perturbation of the fundamental solution, initiated at time and
evolving with time
By Fourier decomposition, can be seen as the superposition of elementary spatial
modes of the form :

characterized by the wave number Substitution of the perturbed solution

into the governing equations (3)-(6) and linearization
provide a linear system of first order equations for the amplitude of the perturbation :

where and are matrices, depends on the wave number and on time since the
fundamental solution evolves with time. In the particular problem considered here, the
matrix is a constant, but without more complications it could depend on the same
arguments as The system (9) has to be solved for a given value of the initial
amplitude of the perturbation :

Because of the time dependence of the system (9) is non-autonomous, and
therefore difficult to solve by classical means. Assume for a moment that the
coefficients of are frozen to their value at time Then the solution of (9) with

has the general form :
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where and are solutions of the eigenvalue problem :

are the complex roots of the characteristic polynomial which has
the form of a cubic equation :

The coefficients depend on the material parameters, on the wave number of the
perturbation, and on the fundamental solution. The coefficients in (11) are
determined so as to satisfy the initial condition (10)

Since satisfies equation (9) at the  together with the initial condition

it is related to the solution of  the non-autonomous system (9) by

In that sense, can be viewed as an approximate solution of (9) and (10) close to
the initial time of the perturbation The eigenvalues of the associated
autonomous problem, provide exact information on the rate of growth of the
perturbation at the initial time A negative real part of all the roots for
every wave-number implies the initial decay of any perturbation ; this situation will
be referred to in the following as linear stability at time A positive real part of one
root for a certain value of is sufficient for the existence of a perturbation
having an instantaneous growth; this will be referred to as linear instability at time

It should be noted that this absolute perturbation analysis with frozen coefficients
refers only to the instantaneous rate of growth of the perturbation at time  at which the
perturbation is introduced. Therefore limitations of the analysis appear as an immediate
consequence of the time-dependence of the fundamental solution : an instantaneous
growth of the perturbation is not a rigorous proof of a long-term instability since the rate
of growth evolves with time , can become negative at a later time and thus can lead to
an attenuation of the perturbation. However, in many circumstances of practical interest,
the instantaneous stability analysis provides useful indications.

When at a given time of a deformation process, a linear absolute instability is
detected, it is indicative of the onset of a possible critical phenomenon. Then one has to
pursue the same analysis and check the evolution of the rate of growth of the
perturbations from the calculation of the roots for . This analysis furnishes
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in general coherent information concerning the long range trends, although it is limited
to small perturbations and cannot give all the information needed for the description of
the final localization process.

Another circumstance of practical interest is that in which the instantaneous rate of
growth of the perturbation is large compared to the rate of evolution of the fundamental
solution ; then it is justified to consider the coefficients of the differential system as
frozen, and the analysis provides pertinent qualitative information.

In any case, a better evaluation of the intensity of the instability process is obtained
by normalizing the with the nominal strain rate, as for example in fig.4.

Now the initial development of the viscoplastic instability in the stage II is
analysed with a linearized perturbation method.

Onset of instability
The nominal strain corresponding to the maximum in the stress strain curve (fig.1) is
denoted by Calculations for different materials (CRS1018, HY100 steels) show in
all cases that for nominal strains smaller than all the real parts of the are
negative, indicating stability of the fundamental solution, as observed in the
experiments. On the contrary, as soon as the strain is larger than a root with positive
real part is detected, indicating the emergence of a critical phenomena. However the rate
of growth of the perturbation is rather small just after the shear strain is passed,
indicating a weak instability as observed by [Marchand and Duffy, 1988] at the
beginning of stage II.

A CRS1018 steel is now considered whose mechanical properties are provided by
[Clifton et al, 1984] ; the constitutive function is :

The strain hardening, the strain rate sensitivity and the thermal softening coefficients
have respectively the values : is a prestrain ;

Calculations show that [Molinari, 1988], in accordance
with experimental results. For a nominal strain of 0.15 and a nominal strain rate of

the dominant eigenvalue, which appears to be real, is represented in terms of the
wave number of the perturbation in the fig.4. The eigenvalue obtained while
disregarding inertia and conduction is also represented (upper horizontal line). Effects
of inertia and conduction are stabilizing respectively on large wavelength (small )
and small wavelength (large ) perturbations, [Molinari, 1985]. This leads to the
selection of a critical wavenumber for which the rate of growth of the perturbation is
maximum. Only a discrete set of wavenumbers is compatible with the boundary

conditions : h being half the thickness of the sheared layer. Fig.4

shows that the perturbation associated with the wavenumber (longest wavelength
compatible with the boundary conditions) is the one more likely to develop, since other
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modes have a lower rate of growth due to the stabilizing effects of heat conduction.
That information is in accordance with the wavelength pattern during stage II of the
Marchand and Duffy experiments, and with the fact that a single band is observed to
develop. Note that for the mode  the inertia effects are negligible, and the conduction
effects are small but not negligible (compare with the upper horizontal line
corresponding to the quasistatic and adiabatic process).

For larger values of the nominal strain rate, the picture of fig.4 is changed by
shifting the maximum of the curve to the right; thus the dominant mode of instability
has a smaller wavelength Then it appears that for high rates of straining, multiple shear
bands can be generated, [Molinari, 1988]. This point will be discussed further in the
following.

Influence of strain rate sensitivity
Another result directly obtained from the linearized stability analysis concerns the role
of the strain rate sensitivity parameter m. The analysis is made easier by considering the
particular case of no inertia and no heat conduction. Note that both can be reasonably
neglected at the nominal strain rate In that instance the leading eigenvalue takes
the form :

and reduces further, when considering the power law (14) :

The strain hardening (n > 0) and the thermal softening (v < 0) terms have respectively
stabilizing and destabilizing effects. vanishes at the stress maximum, for the value
of  the nominal strain :
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The eigenvalue (16) is proportional to 1/m. Thus a material with a very small strain
rate sensitivity m should exhibit a rapid development of the instability in stage II of the
test. An increase of the strain rate sensitivity has a stabilizing effect ; this is a general
feature in any localization problem in viscoplastic materials (see the discussion on
superplastic materials in the introduction). Actually, a non-linear analysis reveals that a
small strain rate exponent of the order m=0.01 is sufficient to create the latency period
that characterizes stage II.

Multiple shear banding
When the strain rate is increased, the possibility of multiple shear banding is revealed
by the linear stability analysis, as the result of the competition between the stabilizing
effects of inertia and heat conductivity, at small and large wavenumbers respectively.
While a single band was created in the Marchand and Duffy’s experiments, where strain
rates in the range of were applied, multiple shear banding was
observed in the tests performed by [Nesterenko et al., 1995] at nominal rates of the
order of These large values of the strain rate were obtained during the radial
collapse of thick-walled cylinders submitted to the external pressure generated by the
controlled detonation of an explosive. This technique was used to investigate the shear
band initiation and propagation in titanium and austenitic stainless steel under pure
shear deformation. Shear bands were reported to emanate from the inner boundary of
the cylinder, with spiral trajectories and regular spacing. The spacing at the initiation of
shear banding was found to be of the order of 1mm for the materials investigated.

Two different theoretical approaches have been proposed for characterizing the
shear band spacing. [Grady and Kipp, 1987] have obtained the shear band spacing by
accounting for momentum diffusion due to unloading within bands. [Wright and
Ockendon, 1996] and [Molinari, 1997] have used a perturbation analysis to characterize
the dominant mode of instability. It was argued that the wavelength associated with that
dominant mode corresponds to the most probable minimum spacing of shear bands. The
analysis of [Wright and Ockendon, 1996] is restricted to perfectly plastic materials, that
of [Molinari, 1997] includes the effects of strain hardening. In simple shear loading, the
shear band spacing was characterized in terms of the rate of loading and of the
material parameters as follows, [Molinari, 1997] :

is calculated by minimization over the strain For a non hardening material
and the minimization can be shown to be realized for i.e. at the

beginning of  the process :
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If in addition the material behavior is described by the power law (14) (with n = 0),
then

It has to be noted that in these results, represent the fundamental
homogeneous solution of the problem (3)-(6) with boundary conditions (1) and (2).
is the value of calculated with use of the fundamental solution.

The effects of material parameters and of the loading conditions are clearly
illustrated by these results. When the nominal strain rate is increased, the shear band
spacing is reduced, in agreement with experimental results. In addition, it appears that
the parameters which were shown to have a stabilizing effect on plastic flow
localization, such as the strain rate sensitivity m, the thermal conductivity k and the
heat capacity contribute here to increase the shear-band spacing. It is also the case
for inertia which is represented by the mass density in the denominator of the
relationship (20). The opposite effect is observed for the thermal softening parameter v,
known to be a destabilizing factor.

Results for a strain hardening material are presented in the fig.5, where the
stabilizing role of  n appears clearly.

Comparisons with the experimental results of [Meyers and Nesterenko, 1995] show
a good qualitative and quantitative agreement. For instance for a titanium alloy
sustaining a nominal strain rate of the shear band spacing was measured as

The results of [Grady and Kipp, 1987] and of [Wright and Ockendon,

1996] are : With inclusion of hardening [Molinari, 1997],
the perturbation analysis gives : To appreciate these results one has to
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remember the lack of exact characterization of the material behavior at the extreme
conditions of deformations and temperature considered here.

Fragmentation
An analogy can be traced between the analysis of multiple shear banding and the
fragmentation of a shaped charge jet. Using perturbation techniques it was found that
the fragment size was controlled by the competition between the stabilizing effects of
inertia, which prevail on long wavelength modes, and the stabilizing effects due to
stress triaxiality within the necking zones, which act on the short wavelength modes,
[Fressengeas and Molinari, 1994]. This is illustrated in fig.6 for a rapidly stretching
sheet. A non-hardening material was studied. The relative rate of growth of the
perturbation is shown in terms of the longitudinal wave number, see [Fressengeas and
Molinari, 1994] for details concerning the data. In fig.6 , the horizontal line (1)
corresponds to the results where inertia and multidimensional effects are both neglected
(a simple 1-D analysis is considered in which the axial stress is assumed uniform in a
cross-section). With these hypothesis, all the instability modes have the same growth
rate, controlled by the factor 1/m, where m is the strain rate sensitivity (note the
analogy with adiabatic shearing where the same factor appeared in formula (16)).
Multiaxial effects are accounted for in the curve (2) of fig.6, but inertia effects are
switched off. This result shows how short wavelength modes (large values of are
stabilized, [Hutchinson et al., 1978], while long wavelength modes are unaffected by
multiaxial effects. The curve (3) corresponds to the case where multiaxial effects are
switched off, while dynamic effects are accounted for. This shows how long wavelength
modes (small values of are stabilized by inertia.

When all effects are working together, the result shown by the curve (4) is
obtained. A dominant instability mode is selected corresponding to the maximum rate
of growth on the set of wavenumbers compatible with the boundary conditions (see the
similar discussion in the case of adiabatic shear banding). This selection of a dominant
mode provides information on multiple necking and on the fragment size. When the
nominal rate of straining is increased, the maximum is shifted to the right, see the curve
(5), indicating that the fragment size is decreasing. Thermal effects can also be included
in the modeling, see [Dudzinski et al., 1992].

Similar results have been recently obtained with use of a bifurcation approach for
rate independent plastic materials, [Shenoy and Freund, 1999].

5. THE ONSET OF LOCALIZATION.

During the stage II of the torsional test, the rate of the flow instability gradually
increases, until the stage III is entered, with a sudden stress drop marking the onset of an
intense strain localization. The development of strain localization cannot be analyzed
with the preceding linearized perturbation method, since nonlinear effects become
important at that stage of the process. With some simplified hypothesis, a nonlinear
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analysis of the localization process can be conducted, and full explicit analytical results
can be obtained, [Molinari and Clifton, 1983], [Molinari, 1985], [Molinari and Clifton,
1987], [Dinzart et al., 1993]. A simple example is first presented to illustrate some
difficulties in the analysis of thermoviscoplastic instabilities

5.1 A simple nonlinear analysis
The material is non-linearly viscous and thermally sensitive, with a constitutive law in
shear of the form :

where is a prestrain. The same geometry as in fig.3 is considered, except that now
the width l(y) might be variable, as in fig.7. Inertia and conduction effects are neglected

in this simplified analysis. These hypothesis are justified in a range of moderate strain
rates All quantities are assumed to depend solely on the position y and
time t. Equilibrium between two layers A and B of  width and can be written as

The energy equation has the form :

The case of no-strain hardening is considered in this subsection (n=0).
Elimination of between the constitutive law and the energy equation, leads to

By division term by term of the equations (24) considered at two different sections A
and B, use of the equilibrium condition (22) and integration, the following relationship
is obtained between the temperatures  and in the two sections :

with and being the initial values of the temperature.
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We shall say that a localization of the temperature occurs at B, if the temperature
tends to infinity at B, while it remains finite at all other sections A, [Molinari and
Clifton,1983], [Molinari, 1985] :

Clearly this condition is realized if there exists a temperature or a geometrical defect
and a scalar such that

For instance if the following power law is considered :

the conditions for localization are

For a thermal softening material v < 0 ; the linearized perturbation method predicts
flow instability. However the result (29) shows that localization can be forbidden if the
strain rate sensitivity is large enough, so that v + m > 0. The possibility of having
instability of the plastic flow, with no localization is related to the non-stationarity of
the fundamental solution, Molinari (1985).

5.2 Relative perturbation analysis
To have a better account of the time dependence of the ground solution, a relative
perturbation analysis can be developed in which one is interested in the evolution of the

relative temperature defect (with  the temperature given by the fundamental

solution) contrary to the classical linearized approach where the absolute defect  is
considered, see [Molinari and Clifton, 1983], [Molinari, 1985] and [Fressengeas and
Molinari, 1987]. The relative perturbation approach (relative defect theory) gives better
information concerning the occurrence of localized flow than the absolute perturbation
approach (absolute defect theory). Note that for a stationary fundamental flow, both
theories give identical results.
For a strain-hardening material, the absolute and relative perturbation analyses provide
the following conditions for instability (growth of the absolute defect  and relative
instability (growth of the relative defect  respectively:

For a non-hardening material, it appears that the criterion of relative instability (31) is
identical to the localization criterion (29).

5.3 Localization strain
An important result for engineering purpose is the value of the nominal localization
strain at which the bearing capacity of the structure suffers a sudden drop. The
localization strain in the Marchand and Duffy’s experiments corresponds to the
beginning of stage III ; it will be denoted by
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Considering the model of the preceding paragraph, one obtains a quantitative
evaluation of the localization strain by analytical means, [Molinari and Clifton,
1987]. Neglecting inertia and heat conductivity is a valid hypothesis for the analysis of
the onset of localization (end of stage II, beginning of stage III), as shown by finite
element computations. However at later times in the stage III, the stress decreases
rapidly and inertia forces may be accounted for. Heat conduction effects can also have
an important role in building the shear band morphology, as will be discussed later.

We shall consider separately the cases of strain hardening materials and materials
with no strain hardening. The following calculations of the localization strain are based
on a defect analysis.
No strain hardening
Providing that the localization condition (27) is satisfied, the relationship (25) implies
that localization will occur at the section B where the following function attains a

minimum value :

At localization, the temperature at any point A is given by the implicit relationship :

Using the energy equation, we calculate the strain at any point A at the moment of
localization. The case of an exponential dependence of the flow stress upon
temperature is analyzed here:

The results depend on the type of loading considered. For a stress-boundary condition
(constant shear stress applied at the boundaries), the critical strain at A when
localization occurs at B is given by

When constant velocities are applied at the boundaries, one has

where is the nominal strain rate. The stabilizing effect

of the strain rate sensitivity (m > 0) and the destabilizing effect of thermal softening
are easily analysed from these expressions.

The defect parameter is defined as
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For small defects the localization strain can be approximated, for a velocity
boundary condition, by

Thus, the critical strain at localization shows a weak logarithmic dependence upon the
defect parameter
Materials with strain hardening
Using similar lines, we can calculate the localization strain in a strain hardening
material [Molinari and Clifton, 1987]. For instance, considering the constitutive law
(21) and a constant velocity applied on the boundaries, we obtain the following
relationship between the strains in sections A and B :

As before, -localization occurs if and only if the integral on the right side of equation

(38) remains bounded as For  the condition for -localization
becomes

Note that v < 0 for a thermal softening material.
Using the relationship (38) with we can calculate the critical strain at

localization, and the nominal localization strain is obtained by spatial averaging,
[Molinari and Clifton, 1987], [Dinzart et al., 1994]. It was shown that has a
logarithmic dependence with respect to the initial imperfection in the specimen
geometry, fig.8. In the upper part of fig.8, the theoretical predictions(continuous line)
for a CRS-1018 steel [Molinari and Clifton, 1987], are compared with the experimental
data (dashed line) [Duffy et al., 1991]. Although the trends are similar, the theoretical
curve is shifted below the experimental curve. The calculations were made by assuming
a geometrical defect with a sinusoidal shape. With a different defect-shape, the
predictions can be improved [Dinzart et al., 1994].

The stabilizing influences of the strain rate sensitivity m and of the strain
hardening exponent n appear clearly in the condition (39). In addition, m has a strong
influence on the localization strain A small augmentation of the strain rate
sensitivity considerably increases the duration of stage II, i.e. the incubation time to
localization.

6. CONCLUDING REMARKS.

The development of adiabatic shear banding in a tubular specimen under high speed
torsion has been analyzed by using linear perturbation methods together with nonlinear
approaches. These methods were successful in describing by analytical means the weak
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flow instability after the maximum stress is passed (stage II of the process) and the early
stage of localization (beginning of stage III). Additional analyses are needed to describe
further stages in the localization process. The shear band builds up an internal structure.
A band-width can be defined and calculated by accounting for the competition between
destabilizing factors (e.g. thermal softening, non-linear effects) and stabilizing factors
(e.g. heat conductivity, strain rate sensitivity) which tend respectively to decrease and to
increase the shear band width, [Wright and Ockendon, 1992] and [Dinzart and Molinari,
1998].

At the end of the process the band is observed to propagate along the
circumference of the tubular specimen. Few works have been devoted to the analysis of
shear band propagation, see [Mercier and Molinari, 1998] for a literature survey
together with a new analysis of the stationary propagation of an adiabatic shear band.
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Abstract :This paper deals with an extension of the loss factor introduced by Ungar in
terms of energy concepts to evaluate, in view of design, damping in structures where
high damping is introduced by means of viscoelastic components.
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1. INTRODUCTION

The development of industrial softwares in order to improve passive damping capacities
of structures is still a topical question. The state of the art concerning damping may be
found in the pioneering book by Nashif & al. [Nashif, Jones & Henderson , 1985] or in
the more recent one by Sun & Lu [Sun & Lu, 1995].
The structures considered here are N-degree-of freedom (N-d.o.f.) elastic structures
subjected to harmonic excitations (whose circular frequency will be denoted by in
which damping is introduced by means of inclusions of linear viscoelastic parts whose
constitutive relations may be represented by so-called rheological models.
Such structures are not necessarily “close to a conservative system” and damping cannot
in this case be considered as an uncertain adjustment parameter, but has to be the subject
of an accurate evaluation. Damping in a structure depends not only on the intrinsic
material characteristics of its components, but also on its geometry, on its various
connections, and, unfortunately, on the applied displacements and/or external forces. For
design purpose, it would be better if a numerical investigation could define the individual
contribution of each of these factors.
It seems reasonable to think that any evaluation of damping must rest on an evaluation of
the dissipation in the structure. Thus, the dimensionless loss factor introduced in
the early sixties by Ungar [Ungar & Kerwin, 1962], namely

where is the dissipation per cycle and an “amplitude” of the instantaneous
elastic energy stored in the structure taken as a reference, will be the central tool to
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evaluate damping in this paper. This positive and homogeneous-of-order-zero functional
of the displacement field could be compared to some Rayleigh-quotient for the couple
{dissipation ; elastic energy} instead of the couple {elastic energy ; kinetic energy}.
One starts from the 1-d.o.f. oscillator with classical damping, which will be the subject of
the SECTION 2, to introduce some basic constants and state the notations, but also to
emphasize the essential unability of 1-d.o.f. structures to account for “directional
properties” of the displacement field which play an essential role in such a functional as
[1].
SECTION 3 is devoted to N-d.o.f. structures with classical viscous damping, which may be
considered as the first step towards viscoelastic damping (associated with Kelvin-Voigt
rheological model). When the damping is proportional, the structure may be considered
as the superposition of N independent modal oscillators, and [l] takes the form

where is the loss factor [1] associated with the p-th modal oscillator and is
the so called modal strain energy (that is the fraction of the total elastic energy stored by
this oscillator at the frequency The simplicity of this expression, where the
contribution of each one of the modal oscillators may clearly be identified, makes it a
remarkable potential numerical tool for suggesting what should be changed in such a
structure in order to improve its damping capacities. According to the author’s
knowledge, the use of [1] is not usual when the damping is not proportional. Some
questions raised by the use of [1] in this case are considered.
SECTION 4 deals with the case of damping by use of linear viscoelastic materials. By
using complex viscoelastic moduli, one shows that the typical system of governing
equations for the complex amplitude of the steady-state response of the structure
has, after discretisation by any finite element method, the form

where, as a consequence of the presence of complex viscoelastic moduli, the stiffness
matrix is now complex, with real and imaginary parts depending on

It is shown that, in this case, the loss factor [1] is given by the formula :

SECTION 5 is a brief conclusion for this paper proposing ideas for further research and
mentioning other emerging methods to evaluate damping in structures with viscoelastic
components.

2. BASIC CONSTANTS FROM THE 1 D.O.F. ELEMENTARY SYSTEM

The position at the time t of a classical 1-d.o.f. damped oscillator consisting of a
mass attached to a Kelvin-Voigt spring {elastic spring [stiffness ] in parallel with a
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dash-pot [coefficient of viscosity is governed, when the mass is excited by a
harmonic force by the well-known elementary equation :

From [5], one introduces the usual basic constants, namely the circular frequency of
the conservative associated system ; and the three equivalent constants [modal loss
factor] or [rate of critical damping] or [decreasing time of natural oscillations],
respectively defined by

The steady-state response (vibrating at the circular frequency of the excitation) is

where the amplitude is given by

Thus, and the amplitude of  W(t) is

so that the loss factor [1] of this 1-d.o.f. oscillator, defined for any is given by

so that, taking [6] into account, it can be written

A distinction has to be made between two concepts which will play an essential role in
the following analysis : the (rheological) loss factor of the 1-d.o.f. oscillator (a
function of the external frequency which depends on the material constants  and
only) and the (structural) modal loss factor (a constant which, according to [6],
depends on and Formula [11] clarifies the relation between them :

and this matching justifies the -factor in the definition [1]. But it is worth noting that
the amplitude given by [8] has been eliminated from the ratio [10] : in the 1-d.o.f.
oscillator, this ratio is independent of the external applied force.

3 BASIC CONCEPTS FOR N D.O.F. SYSTEMS WITH VISCOUS DAMPING

3.1 The classical system of equations
Let the position at the instant t of the N-d.o.f. structure be defined by the column-vector
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which will be noted Below, an (N×N) matrix will be noted and will note the
transposition of the quantity is the line-vector
The classical system we consider is

where is constant, and where the three matrices [mass], [damping] and
[stiffness] are assumed to be real, constant and positive-definite.
For this N-d.o.f. structure, one has now, for Dcycle and W0 respectively :

[15]

[16]

The N modes of the so called associated conservative system which are
associated with its eigenfrequencies are real (their components are in
phase) and satisfy the following well-known orthogonality relations :

3.2 Proportional viscous damping
Looking for a steady-state response (vibrating at the external pulsation in the form

and using the modal basis of the associated conservative system, one is led, after “modal
projection”, to the system of generally coupled differential equations :

in which the modal projections of the amplitude of the excitation has been introduced :

When the damping matrix satisfies the so-called hypothesis of proportionality :

the system [19] splits into a system of uncoupled equations for N independent 1-d.o.f.
oscillators :

Since Rayleigh [Rayleigh, 1945], various authors such as Caughey & al. ([Caughey,
1960], [Caughey & O’Kelly, 1965]), and, more recently, Liang & Lee [Liang & Lee,
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1991] have given more and more refined algebraic conditions for the matrix to satisfy
the hypothesis [21]. Alternately, Shahruz [Shahruz, 1990] contributed to the estimation of
the error made by cancelling roughly the in [19] so as to obtain an
approximated system satisfying [21].
Comparing [22] to [5], one introduces the same basic notations than in [7], [8] and [6] with
index 0 replaced by index p, so that [18] takes the explicit form :

By substituting [23] into [15] and into [16], and taking [21] into account, one is led to :

and, with an obvious choice for the “Amplitude”, to :

that is, taking [17] 2 into account :

Then, according to [l], one has :

By substituting the ap’s by their expressions from [6], one obtains :

and this expression appears to be the so-called modal strain energy formula [2] where
is the material loss factor [11] associated with the p-th modal oscillator and is

the modal strain energy, respectively given by :

REMARK l : It is worth noticing that and that, when one has :
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so that, except in the unusual case of a strictly unimodal excitation when
where one has exactly as in [12], may not be considered as

an interpolation of the modal loss factors

REMARK 2 : When the are (very) small, so that the contribution of

is confined to a (very) narrow peak located at one has But, even in
this case, the values of between and may appreciably deviate from a
smooth interpolation of the in other words, the knowledge of the only gives
an approximate information on damping (see Figure 1).

REMARK 3 : The possible strong variability of the from one mode to the next
reinforces Remark 1 : the elementary 2-d.o.f. symmetrical structure shown in Figure 2,
where the damping is proportional, has a first (symmetrical) mode (where the central
Kelvin-Voigt block moves as a rigid body) which is obviously nondissipative, while its
second (antisymmetrical) one is fully dissipative.

REMARK 4 : Due to the asymptotic behaviour of the when the
asymptotic behaviour of is linear, but this is generally irrelevant in case of modal
truncature because it does not belong to the domain of validity of the discretization.

REMARK 5 : In the structures (such as those for which, as a particular case of Rayleigh-
condition, the matrix is directly proportional to the matrix where all the loss
factors are equal to the same, the loss factor has, due to the obvious property

the same expression as the 1-d.o.f. loss factor [11].
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An example of application of [2] to the detailed analysis in the form of histograms of the
contribution of each mode and of each material to the damping in a composite shell
structure for design purpose may be found in Macé [Macé, 1991].
Below, it will be convenient to use the complex notation according to which [141 and [23]
should respectively be written as :

where one has introduced the complex amplitude which, in the case of
proportional damping, is then given by :

One may notice that, with this notation, if denotes the complex conjugate of the
non-linear expressions Dcycle and W0 have now respectively to be written as follows :

Actually, substituting first [32] in [34] 2 one has generally with this complex notation :

which renders [24], if, in addition, one takes into account the proportionality of damping
via [33] and [21].
In the same way, substituting [32] in [34]2 one has generally for this complex notation :

which renders [26] if, in addition, one takes the proportionality of damping into account
via [33] and [17]2

3.3 Non-proportional viscous damping
A first method should consist in using, here again, the modes of the associated
conservative structure and in looking again for a solution in the form [18]. If one sets :

where the matrix of coefficients aij is no longer diagonal, the system [19] takes the form :

Hence, from [15] and [16], the expression of the loss factor defined by[l] becomes :
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which renders [27] when the damping is proportional. Of course, the difficulty of this
method lies in the calculation of rp(t)’s which are no longer given by

but are solutions of the coupled differential system [38].

A variant of this first method should consist in using, the (complex) modes of the
dissipative structure itself. As one can find in the pioneering paper by Foss [Foss, 1958],
or in the more recent one by Veletsos & Ventura concerning earthquake mechanics
[Veletsos & Ventura, 1986], the search of solutions for free vibrations of the
structure with non-proportional damping in the form shows that s must be a
root of the 2N-degree-polynomial with real coefficients :

the 2N roots (si, s2,..., s2N) of which are N pairs of complex conjugates with negative
real parts [as before, one assumes “underdamping”], which may be written in the form :

to which N pairs of complex conjugates eigenmodes are associated.
The orthogonality relations [17] for the conservative structure are then to be replaced
by:

where denotes the conjugate of Although this method is not currently used

because of the difficulties of numerical manipulation of these complex modes, it could
be interesting to explore that idea.
A second method should consist in using the complex notation by searching for [31] a
steady-state response of the system under the form

where denotes now the complex amplitude of the forced vibration (without
reference to any modal basis as in [33]). Substituting directly [43] in [31] one is led to the
following algebraic system for

With this complex notation, the loss factor formula [l] has now to be calculated from
expressions [35] for D cycle and [36] for W0, and one gets :

4 SYSTEMS WITH VISCOELASTIC DAMPING

The pioneering paper concerning this approach to the evaluation of damping in
viscoelastic structures is by Johnson & Kienholtz [Johnson & Kienholtz, 1982].
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4.1 The structures taken into account
One is looking for the steady-state response of a three-dimensional structure S with
elastic parts E and linear viscoelastic parts V (such that S = E + V), excited by distributed
harmonic forces the amplitude of which may be complex (see Figure 3).

Denoting the displacement field by the (small) deformation field by and

the stress field by the steady-state three-dimensional response is in the form :

In the elastic parts E, the stress-strain relations are in the form :

where the matrix is independent of and, in the viscoelastic parts V :

where the complex stiffness matrix depends on
One will find for instance in P. Germain [P. Germain, 1964] a close and complete
demonstration of [48] starting from the classical stress-strain linear viscoelastic relations
which may be written

and concluding that the steady-state expression of due to a harmonic deformation
is in the form [48], where, if denotes the Laplace-Carson transform of

a (regular enough) function f(t), given by :

the complex stiffness matrix is given by

4.2 On the complex moduli
Introductions to rheological models (elastic springs and dash-pots in series or in parallel
connections) and to complex viscoelastic moduli can be found in Bland [Bland, 1960]
or in Flügge [Flügge, 1967].
For instance, in the case of an isotropic viscoelastic material, two elastic complex
moduli are required at each point of the viscoelastic domain V in the expression of the

such as the complex Young modulus and the complex Poisson ratio
(which may often be considered as constant).

Any viscoelastic relaxation modulus, for instance E(t), may be represented by a so
called relaxation spectrum, that is :
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so that, after reduction, it may always be written (cf Bland [Bland, 1960]) in the form :

where the relaxation times and the so-called creep times  are arranged as follows :

The usual rheological loss factor associated with given by :

is nothing else than the natural extension to a viscoelastic material of the rheological
loss factor [1] (for a Kelvin-Voigt material, for which one has its
expression agrees with [10]).
The dependancies of E’ and (whose equations are easy to obtain from
[53] and [55]) versus  have the same general aspect as those deduced from the three-
parameters solid model of  Zener obtained from [52] where K=l (see Figure 4):

4.3 Finite-element discretization
The discretized solution is in the form :

where the qp’s are the (complex) nodal displacements and the are the (real)

interpolation fields.
The elements of the stiffness matrix are given by :

so that, due to S = E + V,  splits up into , with :

where the matrix Ke
pq is independent of and :

so that
Thus, the discretized problem is in the general form :
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which includes the Kelvin-Voigt case :

According to [35] and [36], the loss factor [1] (depending on the resolution of [60] in
terms of is now given by formula [4], which turns into [45] in the Kelvin-Voigt
case [61].
The “frequency scanning method”, which consists in solving [60] for a narrow sequence
of values of is only possible for moderate numbers N of d.o.f. and intervals of
frequency : at each step, one has to invert the complex matricial system [60] and this
may rapidly lead to very heavy calculations.
In other methods, the interval of frequencies is cut into sub-intervals where the matrices

and may be approximated by simplifed expressions, often constant or
linear with respect to
Examples of application of [4] to the analysis of damping capacities of a sandwich plate
structure for design purpose may be found in Blanchard [Blanchard, 1995].

5 CONCLUSION

For further research, a close mathematical study of the properties of the basic system
[60], whose resolution is necessary to calculate should be welcome : the complex
stiffness matrix in [60] depends on through the complex moduli, and this
dependence is not arbitrary (cf [53]). What role does the associated conservative system :

with its associated so-called “non-linear eigenvalues problem” play ? What about the
“modes” of such a system ? In relation to this problem, it is worth mentioning that
Fergusson & Pilkey [Fergusson & Pilkey, 1992] have studied systems in the form :

It is also worth noting that the so-called “structural damping” approximation, which
leads to the solution of simplified problems in the form :

where the complex stiffness matrix is constant, may be used only in narrow bands of
frequencies : in a famous paper, Crandall [Crandall, 1970] has shown that such a model
for damping is not causal, so that using it in large bands of frequencies is not correct.
At last, it is worth mentioning alternative emergent methods to evaluate damping in
view of design, such as the use of fractional derivatives in the rheological models (cf
Rossikhin & Shitikova, [Rossikhin & Shitikova, 1997]) ; or the technique of modal
reduction proposed by Balmès ([Plouin & Balmès, 1998]).
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Abstract : Stability and bifurcation analyses are discussed here for time-independent
standard dissipative systems of materials and structures. This discussion is illustrated by
some simple applications in plasticity and fracture mechanics.
Keywords : generalized standard model, standard dissipative system, static or dynamic
stability, bifurcation, stability criterion.

1. INTRODUCTION

It is well known that the concept of energy and dissipation potentials, cf. for example [Ger-
main, 1973], [Halphen et al., 1975], [Lemaitre et al., 1985], [Maugin, 1992], leads to a general
framework in the study of dissipative effects in materials and structures. This framework is
considered again in order to derive an operational and general formulation of stability and
bifurcation criteria in the stability analysis of equilibrium of a time-independent standard
dissipative system.

It is recalled that in finite and isothermal deformation, a generalized standard material
admits as state variables and as energy density per unit volume The
dissipation is a product of force and flux: where and A denote
the associated forces Complementary laws must be introduced
to relate force and flux. These laws are written in terms of a dissipation potential as

It has been assumed that dissipation potential is convex
with respect to flux and may depend on the present state through the present value of
The dual function of D, obtained by Legendre-Fenchel’s transform as

permits an equivalent expression of complementary laws
When the strain path is given, the associated internal parameter can be obtained

from its initial value by solving the system of equations

which can also be written as a differential equation, called Biot’s equation cf. [Biot, 1965]
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The assumption of dissipation potential can be expressed with any pair of associated force
and flux. Indeed, the dissipation is

where S denotes any state-dependent linear operator, is the transported flux resulting
from this operator and G is the associated force. If there exists a dissipation potential

depending on the present state such that then the function
is a dissipation potential in the sense that The convexity of

is also equivalent to the convexity of since convexity is conserved in a linear
transformation. The dissipation potential is a priori state-dependent, the dependence on
the present state has been here omitted for the sake of clarity.

In particular, the notion of generalized standard materials is stable with respect to
a change of variables. Indeed, a change of variables leads to new force

while It is clear that and all the ingredients
of the model (energy potential, force, dissipation potential, convexity) remain valid.

For example, the model of plasticity with relaxed configuration, discussed by Lee and
by Mandel, cf. [Mandel, 1971], is a generalized standard model defined by state variables

with The energy density is in isothermal transformation. In
this case, the rate is associated with force while the rate
is associated with the stress The existence of a convex function (dual dissipation
potential) such that is strictly equivalent to the existence of a (state-
dependent) convex function such that The introduction of suitable
expressions of force and flux is only a matter of choice, principally motivated by physical
considerations.

The generalized standard model can be extended to a mechanical system of solids if
Biot’s equation is the governing equation of the system in a quasi-static transformation

If where u denotes displacement components and the internal parameters,
dynamic transformation of the system can be introduced with governing equation

where the generalized inertia force J depends linearly on ü.
By definition, such a system is denoted as a dissipative standard system. Dissi-

pative standard systems are governed in quasi-static transformation by Biot’s differential
equation (3), and in dynamic transformation by the second order differential equation (4).

If u is a reversible variable, then In this case, the governing equations in
quasi-static transformation can also be written as

or, in an equivalent way as the system of equations
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Equation gives an implicit representation  when the quadratic
form is positive-definite. In this case, let be the reduced energy
potential

The quasi-static evolution of the system is also described by the reduced equations of
evolution

The abstract equations (3) or (4) can be broadly understood by following the nature of
variables u and For discrete systems, these variables are vectors. But for continuous
systems, they may be vector functions defined on a curve, a surface or a domain. In
each case, it is sufficient to define the meaning of the differentiation operations and the
associated duality of force and flux.

If energy and dissipation potentials E, D are regular functions, a system of first-order
differential equations is obtained for quasi-static transformation. For example, the study
of the quasi-static evolution of a visco-elastic structure obeying a generalized standard
model of visco-elasticity and subjected to implied forces and displacements can be given
in this framework. Elastic visco-plastic or elastic-plastic materials however are associated
with non-smooth dissipation potentials. In this case, the concept of sub-differential of a
convex function can be introduced, cf. [Moreau, 1971], to generalize the operation of dif-
ferentiation and to write the governing equations of materials and structures in the same
framework.

2. TIME-INDEPENDENT STANDARD DISSIPATIVE SYSTEMS

2.1 Evolution equation
A non-viscous or time-independent behaviour arises when the dissipation potential is

positively homogeneous of degree 1 with respect to the flux:

Such a function is not differentiable at point but is sub-differentiable. The set C of
sub-gradients at this point

is a convex domain of admissible forces. The dual dissipation potential is in this case the
indicator function of the convex domain of admissible forces. Force-flux relation
can be written under the form of the normality law

which states that rate must be an external normal to the admissible domain at the
present state of force A. It is well known that this evolution law can also be equivalent to
the maximum dissipation principle which is classical in plasticity under the name of the
principle of maximum plastic work
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Governing equations (1) can be written as

or in an equivalent form

2.2 Rate problem
Let and be two histories of flux and force associated by the normality law.

Then, flux and force rate are related by the following proposition

Proposition 1 Let and denote a flux and force associated by the normality law
with a convex C of non void interior, depending on a given function for
If and .are piecewise continuous, then the following expressions hold for

right-hand-side (r.h.s.) derivatives

By definition, a rate is admissible if

The proof of this proposition follows simply from the maximum dissipation principle (12)
and can be found in [Nguyen, 2000]. As a consequence of the proposition, it should be
noted that, if the assumption of state-independence is satisfied, i.e. if the dissipation
potential does not depend on the present state, then the r.h.s. rates satisfy This
orthogonality property is classical in perfect plasticity and gives

Relations (15), (16), written for together with equations
0, lead to the following description of the rate problem which consists in obtaining the rate
response of the system as a function of rate data when the present state is assumed to
be known:

Proposition 2 The rate response is a solution of the variational inequality

If D depends on the present state, this variational inequality is symmetric if

In this case, the obtained variational inequality is also quadratic. The uniqueness of the
rate response is ensured if the following positivity is ensured for all admissible rates

The following proposition holds
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Proposition 3 Under the assumptions of symmetry (18) and of positivity (19), the rate
solution minimizes among all admissible rates the rate functional

Indeed, for all admissible rate

after (17) and (19). This functional is an extension of Hill’s functional to standard dissi-
pative systems. It is difficult however to eliminate the internal parameters as a function
of displacement components in order to obtain a rate functional of the displacement rates.
The existence of a solution is ensured for all under the condition

3. STABILITY AND BIFURCATION ANALYSIS

3.1 Stability criterion
Condition (21) can be interpreted as a criterion of stability of the current equilibrium

in a certain sense, cf. [Petryk, 1985], in relation to the notion of static or directional or
dynamic stability. Indeed, in a perturbation of the system out of equilibrium, the energy
injected by the external world in a time interval is

where denotes the kinetic energy of the system. Thus if is sufficiently small, the
expansion

can be associated with the expansion It follows from condition
(19) that it is necessary to inject energy initially into the system in order to remove it from
the considered equilibrium, i.e. static stability as well as directional stability, are obtained.
It is expected that the symmetry condition (18) is necessary to interpret this criterion as
a sufficient condition of dynamic stability of the considered equilibrium.

In some particular cases, the dissipated energy may be a function of the present state
if there exists a function such that
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These systems, denoted in [Ehrlacher,1985] as simple dissipative systems, are frequently
found in fracture and damage mechanics. Such a system is almost a conservative system
in the sense that a total potential energy exists:

but the rate must be admissible. For simple dissipative systems, condition (21) can be
written as

The following proposition holds, cf. [Nguyen, 2000]

Proposition 4 Condition (21) is a static or directional criterion of stability. This crite-
rion ensures also the dynamic stability of the considered equilibrium if the assumption of
state-independent potential is satisfied or if the system is a simple dissipative system.

3.2 Non-bifurcation criterion
The non-uniqueness of the rate response indicates a critical point and eventually a

bifurcation point. This idea leads to Hill’s criterion of non-bifurcation. This criterion is
available in the study of angular bifurcation as well as of tangent bifurcation.

Proposition 5 Condition (19) is a non-bifurcation criterion in the sense of Hill.

From the definition of admissible rates, the linear space V(A) generated by the external
normals to the convex of admissible forces C at the present value A can be introduced.
Since if the rates are admissible, the non-bifurcation condition
can also be written as

4. ILLUSTRATION IN PLASTICITY

The case of a generalized standard elastic-plastic material admitting as elastic domain
a non-smooth convex, defined by several inequalities:

is considered in order to illustrate the symmetry condition (18). Such a model is neces-
sary in the study of monocrystals for example, where plastic strains arise from different
gliding mechanisms obeying Schmid’s law. Functions are classically denoted as plastic
potentials. The normality law states that

The rate equations can be written after the computation of the plastic multipliers in
terms of For this, it can be noted that



349

It follows that must satisfy

This variational inequality gives in terms of in a unique manner if the matrix C
is positive-definite. However the explicit expressions of these relations cannot be derived
when Matrix C is not necessarily symmetric; its symmetry is ensured only if the
interaction matrix defined by

is symmetric. This matrix satisfies the relation

Indeed, the expression of the dissipation potential

gives after differentiation in the direction

Thus

The symmetry of the interaction matrix is exactly the symmetry (18). If I denotes the
set of index of active mechanisms, i.e. the plastic modulus
associated with these active mechanisms can be computed. Indeed since

it follows that with

where and are sub-matrices of C, B and related to active index I. It is concluded
that the plastic modulus admits the major symmetry if and only if the interaction matrix

is symmetric.

5. CRACK PROPAGATION, STABILITY AND BIFURCATION

The analyses of crack nucleation, crack propagation and crack stability are the objective of
fracture mechanics. In brittle fracture, the stability of a Griffith crack has been considered
in many discussions. Its generalization to study the propagation of a system of interacting
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linear cracks or of a plane crack of arbitrary shape in an elastic solid is relatively straight-
forward as a particular example of standard dissipative systems.

5.1 System of interacting linear cracks
We consider the equilibrium problem of a solid in two-dimensional deformation, i.e.

plane strain or plane stress, admitting in its volume V a system of linear cracks of lengths
undergoing small transformation under the action of implied forces and implied

displacements defined by a load parameter To simplify, it is assumed that surface forces
are applied on the portion of the boundary and on the complemenntary part

displacements are implied. If the solid is elastic, the response of the system
is reversible when there is no crack propagation and irreversible when the crack lengths
change. Variables thus describe the irreversible behaviour of the system and represent
the internal variables The set of admissible displacements of the solid depends on the
present state of cracks, and can be written as

where denotes the crack surfaces. If  is the elastic energy density, the total potential
energy of the system is

The displacement at equilibrium must satisfy the virtual work equation which can be
written in the form of a variational inequality in order to take into account the possibility
of unilateral contact, assumed to be frictionless, on crack surfaces:

If the energy is strictly convex, the equilibrium displacement must minimise the total
potential energy of the system, and permits the introduction of the energy at equilibrium

The associated generalized force is by definition the energy release rate asso-
ciated with crack length Griffith’s law states that

The critical surface energy is often considered as a constant of the material. In order
to interpret the resistance effects due to the presence of plastic strains, it has been also
assumed in certain appplications that the value can depend on the effective length of
propagation function describes the resistance curve. Such a
criterion introduces a domain of admissible forces:
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and a dissipation potential when The energy dissipated by
crack propagation depends only on the present state of
cracks. A system of simple dissipation is thus obtained with total energy

In order to obtain the description of the rate problem at a given state, let I be the set
of indices i such that the propagation limit is reached: Admissible rate
must satisfy for all The previous discussion leads to the following statements:

- Propagation rate is a solution of the quadratic and symmetric variational inequality

where denotes the symmetric matrix

This problem can also be written as a linear complementarity problem (cf. [Cottle et al.,
1992]) which consists of finding X such that

where X, F are respectively vectors of components and

- The present equilibrium state is stable with respect to crack propagation and to displace-
ment in the dynamic sense if matrix satisfies the co-positivity condition:

This condition can also be written as

- The present equilibrium state is not a bifurcation state if the matrix  is positive-definite..
The stability criterion is less restrictive than the non-bifurcation criterionsince positive-
definiteness is more restrictive than co-positivity.

The computation of matrix or of the second derivatives of energy has been dis-
cussed in [Nguyen et al., 1990], [Suo et al., 1992]. The difference between co-positivity and
positive-definiteness has been illustrated in many simple analytical examples, cf. [Nguyen,
2000].

5.2 Stability and configurational stability of plane cracks
This problem is of interest in various applications, for example in the debonding of

interface cracks, of surface coating by thin films, cf. [Berest, 1989], [Hutchinson et al.,
1992] [Jensen, 1995], in the delamination of multi-layer composites, cf. [Cochelin, 1994],
[Destuynder, 1987], [Pradeilles-Duval,1992], [Storakers,1988]. Moreover, the mechanical
modelling of brittle damage also leads to the study of the propagation of damage zones in
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an elastic solid, a problem of the same mathematical nature, cf. for example [Dems et al.,
1985], (Stolz, 1987].

For a plane crack, the crack surface is a plane domain of contour this domain
represents the irreversible variable The displacement at equilibrium leads again
to the energy of the system at equilibrium The generalized force associated with
the irreversible variable is defined from the partial derivative of energy at equilibrium with
respect to In order to compute this partial derivative, a rate of variation of the boundary
of domain can be described by the rate of normal extension. This normal rate, which
is a scalar function defined on the present contour is denoted as Since the crack
surface can only increase, it follows that

Let be the directional derivative of energy with respect to domain in the
direction This directional derivative is a linear form for plane cracks, and can be
expressed as

where G(s) is a function defined on the present contour By definition, the local value
G(s) is denoted as the local energy release rate, and the associated generalized force to the
crack extension or the crack driving force is function G.

The computation of the crack driving force G has been discussed for different particular
cases. For example, for a plane crack in a three-dimensional solid, G(s) is still given by the
limit value of the J–integral. The dissipation of the whole system due to crack extension
is

In particular, if is a constant, the dissipated energy by crack propagation is proportional
to the cracked surface. The system of solid with crack is then an irreversible system
of simple dissipation, of total energy and leads to the
variational inequality

where is the portion at yield of the contour. The rate problem is thus described by the
variational inequality

for all admissible i.e. satisfying on The general form of the rate problem
is then recovered. In particular, the stability criterion follows:

In particular, if is constant, the stability criterion is reduced to the co-positivity condi-
tion
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while the non-bifurcation criterion requires the positive-definiteness of the same quadratic
form.

The principal difficulty stems from the calculation of the rate following the crack
motion. Several analytical discussions have been given recently in the literature for the
circular crack problem, cf. [Gao et al., 1987], [Berest, 1987] or of the tunnel crack problem
cf. [Leblond et al., 1996], [Jensen et al., 1995]. For example, a circular crack may be stable
in displacement control, but stable bifurcation in a star-shaped mode can be observed.
The fact that the circular form may be lost is also known as a configurational instability
in the literature. For the tunnel crack, a bifurcated mode to a wavy form has been also
computed.

6. CONCLUDING REMARKS

For standard systems satisfying the symmetry condition, stability and bifurcation anal-
ysis leads to a general expression of stability and non-bifurcation criteria in terms of energy
and dissipation potentials. This is an extension of the classical second variation criterion
to dissipative systems.

The fact that stability and bifurcation analysis can be discussed in a satisfactory man-
ner in fracture mechanics and in plasticity is due principally to the symmetry of the rate
problem which permits a static analysis. For unsymmetric systems, for example in the con-
text of unilateral contact with friction, it is clear that a static analysis presents less interest
since stability must be considered in dynamics, in the same spirit as for non-conservative
systems, cf. for example [Nguyen, 2000] for a review on the subject.
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Abstract: Continuum damage mechanics is a framework for describing the variations of
the elastic properties of a material due to microstructural degradations. In this
contribution two issues are reviewed: the first one deals with standard damage models,
damage induced anisotropy and relations with other existing approaches such as
smeared crack models. The second issue is concerned with strain localisation due to
softening, which is inherent to continuum damage modelling of quasi-brittle materials.
Nonlocal approaches to damage are reviewed. We conclude with possible extensions of
these enriched damage models to the case of damage induced anisotropy.
Keywords: Damage, isotropy, anisotropy, strain localisation, nonlocality.

1 INTRODUCTION

Computational modelling and failure analysis of quasi-brittle materials and structures
require adequate constitutive models coupled to robust computational schemes. Some of
the issues which received most of the attention in this field over the past two decades
are progressive cracking and strain localisation due to the inherent softening of the
material. With respect to the first item, continuous damage models have become among
the most popular ones. Isotropic and anisotropic formulations were proposed. Whether
they derive from smeared crack approaches including the rotating crack models [see e.g.
Feenstra, 1993], microplane models [Bazant and Prat, 1988], or pure phenomenological
constitutive relations [Mazars 1984, Lemaitre 1992], the basic principle remains the
same: the compliance of the material can be seen as an internal variable, in the
thermodynamic sense, which is indexed on the state of microcracking of the material.

The issue of strain localisation due to strain softening is a bit more intricate since it
reflects on the ability of models to capture the inception of failure and its propagation
when solving boundary value problems. It became apparent at the end of the 70’s that
strain softening causes a loss of well posedness of incremental boundary value problems
and, more importantly, that it yields prediction of failure without energy dissipation
[Bazant, 1976, Rice 1976]. The remedy to this physically unrealistic feature was found
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in the early 90’s, surprisingly inspired by earlier theories of materials with
microstructure to situations where the material behaviour is not reversible anymore.
Among such models, called enriched models for failure analysis, are the nonlocal damage
model [Pijaudier-Cabot and Bazant, 1987], gradient plasticity approaches [de Borst and
Muhlhaus, 1992], Cosserat models [de Borst, 1991] and more recently gradient damage
models [Peerlings et al., 1996]. Their common feature is the incorporation in the
constitutive relations of an internal length which controls the failure process and thus
precludes any dissipative process to occur in a region of the solid of zero volume.

It is also interesting to observe that, in fluid mechanics, similar issues were faced
with transonic flow and boundary layer problems [Joseph et al. 1985]. The most
popular techniques for circumventing those problems were the introduction of a
characteristic time in the problem, for instance by considering that the fluid is viscous.
A small amount of viscosity (damping) provides a regularisation of the governing
equations. Similar solutions exist in solid mechanics. Needleman [1988] and Sluys
[1992] demonstrated that material rate dependency is a proper regularisation method,
i.e. that it restores well posedness of the BVP at the inception of softening. Although
the technique is very attractive, meaning that physical motivations for rate dependency
might be easier to provide than for nonlocality of constitutive relations, some
inconsistencies remain because the response of a quasi brittle material is slightly more
complex compared to simple fluids: rate dependency provides for instance an evolution
of the material strength for homogeneously strained specimens at different loading rates.
At the same time, it provides also a width of the fracture process zone and eventually
controls the fracture energy of the material. The fracture energy and the evolution of the
material strength with the loading rate are two characteristics which should be fitted
with a single parameter (the viscosity), which is not always in accordance with
experimental data.

In this chapter, we will concentrate on rate independent modelling of damage and on
two regularisation techniques: the nonlocal and gradient approaches. In the first part, we
will review standard damage models, isotropic and anisotropic. The second part will be
devoted to the integral and gradient enrichments of such models.

2 STANDARD DAMAGE MODELS

Let us consider, for the sake of simplicity, the case of tension dominated mechanical
actions. The development of microcracks results in a progressive degradation of the
material elastic stiffness. In the reversible (elastic) domain, the stress-strain relation
reads:

where is the stress component, is the strain component, and is the
stiffness coefficient of the damaged material. The simplest approach to material damage
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is to assume that the material stiffness (for isotropic materials) remains isotropic. The
stress strain relations becomes :

where and are the Young’s modulus and Poisson’s ratio of the undamaged
isotropic material, and is the kronecker symbol, d and D are two independent
damage variables which vary between 0 and 1. It should be pointed out that isotropic
damage means indeed two damage state variables. The subsequent assumption d = D
yields the stress-strain relationship used by Mazars (1984):

or

where is the stiffness of the undamaged material. According to this assumption, the
Poisson’s ratio is not affected by damage. The elastic (i.e. free) energy per unit mass of
material is:

This energy is assumed to be the state potential. The damage energy release rate is:

with the rate of dissipated energy:

The second principle of thermodynamics constrains the dissipation rate to be zero
or positive. In this constitutive relation (with a single damage variable), it means that
damage must either increase (irreversible response) or remain constant (reversible
response).

The thermodynamic framework depicted above allows also for the incorporation of
damage induced anisotropy. To this end, the free energy needs to be modified in order to
account for the directionality of damage. Another technique due to Fichant et al. (1997)
consists in an approximation of the effective stress
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where is the initial stiffness of the (undamaged) material. Let us define the relation
between the stress and the effective stress along a finite (or infinite) set of directions
defined by unit vectors

where and are the normal and tangential components of the stress vector
respectively. Here and are scalar valued quantities which define the influence
of damage on the relation between the effective stress and the stress vectors in direction

The overall resolved stress tensor is the solution of the virtual work equation:

find such that

where is a sphere of radius 1. This equation can be recast as follow:

find such that

where EN and ET are initial stiffness moduli which are functions of the Young's
modulus and Poisson’s ratio of the material. Eq. (11) is very similar to the equation
which relates the resolved stress to the microplane stress and strains in the microplane
model [Bazant and Prat 1988]. In fact, and can either be defined for each
angular directions independently, or can be interpolated by angular functions. In the
first form, one recovers a microplane damage model and the most general form of damage
induced anisotropy [Carol et al., 1991]. In the second form, damage induced anisotropy
is fixed by the angular functions defining and It is a restriction of the first
form which can be more efficient in computations as it involves less variables: a finite
number of directions only are needed in order to define the material stiffness. It
should be also noted that the integral form in Eq. (11) can be transformed again in order
to arrive to a format which is very similar to the multiple fixed crack model:
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where is a weighting factor (see for instance the review in [de Borst, 1999]).
The evolution of and for each direction must be consistent with the

second principle of thermodynamics. For isothermal conditions the rate of energy
dissipation must be positive or zero. Energy dissipation is slightly more complex than
for the scalar damage model (Eq. 7):

The evolution of damage is controlled by the same loading function f:

where is a hardening - softening variable. If the damage angular functions are
interpolated, e.g. with ellipsoidal functions, there are six scalar loading surfaces, one for
each principal direction and for each damage variable. The hardening-softening variables
are also angular functions which must be interpolated (with similar ellipsoidal
functions). In the more general microplane approach, there is one loading function and
one hardening-softening variable per microplane.

The loading function and the rate of the hardening-softening variable must comply
finally with the Kuhn-Tucker conditions:

3 NONLOCAL AND GRADIENT DAMAGE

We will first restrict attention to isotropic damage and consider a material which
contains growing voids with isotropic characteristics; the nonlocal generalisation of the
scalar damage model will be recalled first. Then, we will turn toward the gradient damage
model and the influence of the internal length on the bifurcation condition involved in
strain localisation analyses.

3.1 Nonlocal damage model

Consider for instance the case in which damage is a function of the positive strains
(which means that it is mainly due to micro cracks opening in mode I). The following
scalar called equivalent strain is introduced first (see for instance Mazars, 1984):
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where is the Macauley bracket and are the principal strains. In classical damage
models, the loading function f reads The principle of nonlocal
continuum models with local strains is to replace with its average:

where is the volume of the structure, is the representative volume at point x,
and is the weight function, for instance:

is the internal length of the non local continuum, replaces the equivalent strain (Eq.
16) in the evolution of damage. In particular, the loading function becomes

It should be noticed that this model is easy to implement in the context
of explicit, total strain models. Its implementation to plasticity and to implicit
incremental relations is awkward. The local tangent stiffness operator relating
incremental strains to incremental stresses becomes non symmetric, and more
importantly its bandwidth can be very large due to nonlocal interactions. This is one of
the reasons why gradient damage models have become popular over the past few years.

3.2 Isotropic gradient damage model

A simple method to transform the above nonlocal model to a gradient model is to
expand the effective strain into Taylor series truncated for instance to the second order:

Substitution in Eq. (17) and integration with respect to variable s yields:

c is a parameter which depends on the type of weight function in Eq. (17). Its
dimension is L2 and it can be regarded as the square of an internal length. Substitution of
the new expression of the nonlocal effective strain in the nonlocal damage model
presented above yields a gradient damage model. Computationally, this model is still
delicate to implement because it requires higher continuity in the interpolation of the
displacement field. This difficulty can be solved with a simple trick devised by Peerlings
et al. (1996): let us take the Laplacian of the right and left hand-sides of Eq. (20).
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Because the Taylor expansion in Eq. (19) was truncated to the second order, higher
derivatives can be assumed to be negligible. It follows that

Therefore, Eq. (20) becomes This implicit equation which
defines the nonlocal effective strain as a function of the local effective strain is easy to
discretise in a finite element scheme. The implementation of the gradient damage model
becomes in fact similar to the implementation of a thermomechanical (local) model in
which the nonlocal effective strain replaces the nodal temperatures. This type of model
has provided very good predictions of failure, for instance, of concrete structures
[Peerlings et al., 1998].

Gradient damage models have also been devised differently. Frémond and co-
workers (1993) started from the principle of virtual work adding the power of internal
forces involving higher order terms.

A more recent approach, inspired by the mechanics of porous materials, was
proposed by Pijaudier-Cabot and Burlion [1996]: assume that damage can be
characterised by the variation of volume fraction of material denoted as Failure is
reached when the volume fraction is equal to zero. Starting from a reference
configuration where the material is strain - free and the volume fraction is the
variation of the volume fraction of material is This variation of
volume fraction of material can be due to damage growth or straining. For constant
damage, the porous material is elastic and its behaviour is modelled using the theory of
elastic material with voids [Cowin and Nunziato, 1983]. The governing equations are (in
the absence of body forces):

where hi is the equilibrated stress vector, and g is the equilibrated body force. These
variables are related to the stresses due to centres of dilation made of three couples of
opposite forces without moments acting along three mutually orthogonal directions at
material points. Such forces correspond to the local pressures necessary to augment the
size of an existing void, in a reversible or irreversible manner and they create a local
stress distribution. These forces produce void growth and a variation of the overall
volume fraction of the body. The elastic (free) energy reads:

where are the overall stiffness coefficients of the porous material, and are
material parameters. Compared to the expression in Eq. (5), the free energy has two
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additional terms which correspond to the variation of the volume fraction of voids. The
thermodynamic forces associated to the variables are defined as:

where and are the values of the equilibrated body forces and equilibrated stress
vector in the reference state, respectively. Hence equilibrium in the reference (stress-
free) state yields:

As pointed out by Cowin and Nunziato, the stiffness coefficients and the material
parameters should depend on the reference volume fraction. In order to obtain an
extension of this model to the case of a damaged material, let us assume that whenever
damage grows, it modifies the volume fraction of the material in the reference
configuration. The variation of volume fraction is rewritten as:

where is the reversible variation of volume fraction, is the volume fraction of
the damaged material when it is free of loads, is the irreversible variation of volume
fraction due to the growth of damage measured when the material is free of loads and
is the initial volume fraction of the material, when damage is equal to zero. For the sake
of simplicity, we assume that is very small compared to as damage grows. The
free energy of the material is now:

Compared to Eq. (4), represents the variation of reversible energy due to an
irreversible variation of volume fraction. In order to comply with the second principle of
thermodynamics, the Clausius-Duhem inequality should be verified in all instances:
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The irreversible variation of  volume fraction is measured when the body is free of loads.
Therefore, we assume that and are expressed as follow:

The term A is the quantity which controls the irreversible variation of volume fraction
of the material from the initial state when loads are applied. is a model
parameter.

A simple (maybe simplistic) way to relate the variation of volume fraction to the
decrease of stiffness of the material is to assume that The relations which
follow from these assumptions are derived from Eqs. (22,24,25,29):

is defined by a loading function and an evolution equation:

if

where H is a hardening - softening modulus. In Eq. (31), denotes an invariant of the
strain genetically. Note that in Eqs. (30) has the dimension of a length squared. It is
there that an internal length has been introduced in the constitutive relations.

In the absence of body forces, the two governing equations, along with the
boundary conditions, are equivalent to the following conditions: find a displacement
field and a damage field d such that for any kinematically admissible virtual

displacement and damage field d*,

where are external applied forces. For the finite element implementation, the
displacement field components and damage field are discretised with different types of
polynomials, same as in coupled thermomechanical problems. A similar variational
principle can be obtained in an incremental fashion for the purpose of implementing the
model within a Newton - Raphson procedure and of solving this non linear set of two
coupled equations iteratively. It remains, however, that additional boundary conditions
are required for solving Eqs. (32):
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where is now the unit outward normal to the boundary of the solid The
meaning of the third (natural) boundary condition remains a problem to be solved.

This gradient damage model, the one which derives from Eqs. (19-21) and the
integral nonlocal model are very similar. The difference is that in the first one it is the
damage variable itself on which the nonlocal treatment is applied, while in the laters, the
nonlocal treatment is applied to the variable which controls damage. It follows that in
the finite element implementation the damage variable is interpolated in the first model
and that the nonlocal effective strain is interpolated in the second.

3.3 Strain localisation analysis

In order to exhibit the regularisation properties of the gradient damage model, we will
investigate the occurrence of bifurcation in an infinite body from a homogeneous state of
deformation and damage, denoted as Monotonic loading is assumed and body
forces are omitted. Apart from the trivial solution where the strain and damage remain
homogeneous, we look for velocities and a damage rate distribution of the
form:

where and D are unknown constants, is an unknown angular frequency,
is an unknown normal vector, and J is the imaginary constant such that

Substitution of Eqs (30,34) in the governing equations of equilibrium (Eqs. 33) yields
the following homogeneous system of equations:

P is a 4x4 matrix. This system admits non trivial solution if det(P)=0, which is the
bifurcation condition. The bifurcation condition should yield a normal vector for each
value of the angular frequency. One can check easily that if the solution is
independent of the angular frequency which can be fixed arbitrarily. The square root of

is an internal length of the continuum which selects the wave length of the localised
solution and scales the size of the localisation band. It plays exactly the same role as the
internal length in other localisation limiters.
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4 CLOSURE : EXTENSION TO ANISOTROPIC GRADIENT DAMAGE

In the anisotropic damage models devised in the first section of this contribution, the
evolution of damage is directional. For instance one loading function is considered
for each direction in Eq. (14). Combining Eq. (14) and the definition of the nonlocal
strain in Eq. (19-21) can be done: for each direction Eq. (14) can replaced by:

For each direction in which damage growth is defined, a nonlocal variable is introduced.
This extension is straightforward in the context of microplane models where directions

are defined arbitrarily and fixed in the analysis. There are as many nonlocal variables
as directions considered and these variables are interpolated throughout the finite
element mesh, same as for the isotropic gradient damage model. The usual set of
equilibrium equations is complemented with p × m equations where p is the number of
directions and m is the number of damage variable per direction [Kuhl et al., 1998].
For the orthotropic damage model proposed by Fichant et al., three directions are
considered only at each material point. The directional distribution of damage is
reconstructed by interpolation in between those principal directions. Hence, there is the
complexity that the directions change from one finite element to another and might
rotate in the course of loading too. A similar problem is encountered in nonlocal rotating
crack models [de Borst, 1999]. Conceptually, this feature does not change anything in
the discretisation, except that one has to keep track of the orientation of principal
directions of damage. This is in fact the price to pay for the reduction of equations (and
degrees of freedom) to be solved.
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Abstract: An interpretation of a non-equilibrium thermodynamic approach of
irreversible processes (called DNLR) in terms of the Hamiltonian principle of least
action is proposed. It is shown that one possible choice for building the Lagrangian
kernel is the material derivative of the internal energy density, obtained from the
generalised Gibbs relation. This general framework is illustrated for the transport
equations (heat and diffusion) and the rheology of solids.

Keywords: Thermodynamics of irreversible processes (TIP), Lagrange-formalism,
Rheology, Heat transfer, Diffusion.

1. LEAST ACTION AND THERMODYNAMICS OF IRREVERSIBLE PROCESSES.

In this contribution we look for a variational formulation that allows us to describe the
evolution of dissipative systems during non-equilibrium transformations. The study
involves the framework of the thermodynamics of relaxation, and specifically the
Distribution of Non-Linear Relaxations, called DNLR.
It may appear singular at the end of this century to continue to examine the problem of
the evolution laws for thermodynamic systems outside equilibrium from the point of
view of Hamilton’s principle of least action. This action

leads to the Euler-Lagrange equation:

in which the integrand represents the Lagrangian density that renders extremum
the Hamiltonian action S with respect to the variable q , i.e. with respect to
In fact, it is very often admitted that any attempt to reconcile Hamiltonian dynamics
with the thermodynamics of irreversible processes - TIP - must fail. To our knowledge,
one of the first conclusive attempts to reduce the principle of irreversible
thermodynamics to the general principles of the mechanics is probably due to

367

G.A. Maugin et al. (eds.), Continuum Thermomechanics, 367-378.
© 2000 Kluwer Academic Publishers. Printed in the Netherlands.



368

Helmholtz, [Poincaré, 1908]. This pioneer, whose works are abundantly mentioned by
Poincaré, has expressed the Euler-Lagrange equations under the following form:

with and K denotes the kinetic energy, is the potential energy
related to the internal forces and represents the external forces. The kinetic energy

obeys the particular relation: translating a homogeneous

dependence of degree –2 on time derivatives, Helmholtz divided the

variables into two categories: variables with slow (qa), or rapid (qb) variations.
He then introduced the notion of incomplete systems, which corresponds to the case
where the work of external forces vanishes, i.e. Helmholtz showed in
this case that the function L may be an odd function of and consequently odd in
time. Such an important result seems to open the way for the description of irreversible
processes on the basis of the Euler-Lagrange equations. However, Poincaré (1908)
underlined the limits of this analysis for isolated systems in which the forces are
zero, arguing that the equations of Helmholtz cannot explain the increase of entropy due
to the irreversible processes. In the end, he concluded that: “...les phénomenes
irréversibles et le théoréme de Clausius ne sont pas explicables au moyen des Equations
de Lagrange”.
Glansdorff et al. (1971) introduced the concept of the local potential (being for example

with representing the non-equilibrium forces and the dissipation variable
leading to the flux which in a certain manner accounts for the evolution of the
entropy production, in accordance with the Lyapunov stability principle.
Although not so many works are devoted to this subject - up to a point Lavenda (1993)
considered these works as sporadic -, the scientific community has been debating
fiercely these matters for more than a century. One can certainly consider that the
formulation of the principle of least dissipation of energy by Onsager in 1931
constitutes the cornerstone of the modem developments of the TIP. This last principle
brings a new light on the principle of least entropy production developed independently
by Prigogine in 1955. The controversy was initially raised by Ono in 1961 and then by
Gyarmati (1970); they showed that the Prigogine principle of least entropy production
for stationary states can be regarded as a special case of the generalised formulation due
to Onsager, called the principle of the least dissipation of energy.
The monograph of Gyarmati seems to be one of the few analyses that tries to sum up
and summarise the extremum principles applied to the thermodynamics of irreversible
processes. According to the author, the principle of the least dissipation of energy may
be formulated as follows:
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where Js represents the entropy flux, the entropy production defined as the scalar

product of the thermodynamic forces tied to irreversibility by the associated fluxes
One further introduces phenomenological relationships between  and the use of

one Onsager’s couplings allows one to write either of the alternative expressions

such that Starting from the

force representation at constant fluxes, Gyarmati deduced the Fourier equation, and
considered this as a sufficient basis for the fulfilment of a general formulation of
thermodynamics. Before formulating the integral principle in a general form, he
deduced the equation of heat conduction from a Fourier, an entropy, and an energy
picture, and finally from a more general representation (with

where T denotes the absolute temperature).

However, it is essential to note that the integral principle of thermodynamics of
Gyarmati refers to a force-variation at constant fluxes combined with the balance of
energy. It leads to Lagrangian densities having arguments which are not of the type

whereas the Hamilton principle refers to such a set of variables. Since the
corresponding Euler-Lagrange equations are formally of the type:

they are thus truncated from their temporal dimension, leading in fact to a non-
Hamiltonian action:

On the other hand, it is well known that the generalised Euler-Lagrange equations for a
continuum must be written in the form

Since the Hamiltonian dynamics looks incompatible with irreversible thermodynamics,
why then try this adventure?
The idea of this work germinated following a search pursued in a parallel manner by
Rahouadj and Cunat. It follows a first study suggested by Sidoroff, to position the
thermodynamic approach called DNLR developed in Nancy by Cunat (1996) with
respect to the pioneering work by Biot (1954). Both approaches led apparently to
constitutive equations that looked similar in form. Although, the DNLR approach relies
on a generalisation of the fundamental Gibbs relationship to situations outside
equilibrium, introducing internal variables, but does not need a pseudo-potential of
dissipation. The Biot’s approach involves both the thermodynamic and the dissipation
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potentials, this last one being equivalent to the dissipativity introduced by Rayleigh in
1873. The constitutive equations then follow from the setting up of a Lagrangian form:

in which V plays the role of a potential energy and D denotes the dissipation function,
while Q represents the thermodynamic generalised force associated with and q,
[Sidoroff, 1970]. This last usual form is often used nowadays in order to associate the
Lagrangian framework with the TIP. We can see for instance the clear statement by
Maugin (1990), who writes in particular:

where K represents the kinetic energy term, is the thermodynamic potential, the
velocity field, the “-“ in stands for the observable variables, is the temperature,
and is an internal variable. The last relation is supplemented by a dissipation function
D in the Euler-Lagrange equations:

where denotes the Euler operator, defined as:

with dq the total derivative with respect to q.
Having concluded the comparative study of Biot’s model and the DNLR, (paper under
preparation; Rahouadj, Sidoroff, Cunat), a bibliographical review concerning the use of
the Lagrange formalism for continua then led us to the theoretical developments by
Anthony (1986). This author indicates that the Lagrange formalism fails in traditional
TPI because of the non-self-adjointness of its fundamental field equations. Then, he
writes a principle of least action in the sense of Hamilton by doubling the set of
thermodynamic variables. So, for each of the original ones, a phase term is formally
defined. In this way, and in the special case of heat conduction, the thermodynamic
temperature T is directly replaced by a thermal excitation field

with a complex conjugate field such that the real-valued
temperature becomes:
In fact, this remark encouraged us to examine the constitutive equations arising from the
DNLR approach in the light of Hamilton’s principle.
The project to integrate the consideration of non-local phenomena within the DNLR
approach that we take up with J-F. Ganghoffer naturally fits within this perspective.
Since the constitutive equations of the DNLR are based on a generalised
thermodynamic potential, containing the whole thermodynamic information
by means of an exhaustive set of variables, it appears natural to consider the material

derivative as a good candidate for building a Hamiltonian action integral.
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The aim of this work is to assess the ability of this potential to produce the suitable
evolution equations involved in the irreversible processes, via a least action principle.
The framework of the DNLR approach is envisaged as a focus in the present
contribution.

2. THE THERMODYNAMIC POTENTIAL ACCORDING TO THE DNLR

The DNLR [Cunat, 1996] relies on the following
Postulate: The generalised Gibbs’ relation obtained by setting up internal variables
complementing the thermodynamic state variables is valid for thermodynamic
transformations outside equilibrium.
In fact, one can show that the internal variables are then completely governed by the
thermodynamic variables at equilibrium, whereas they can be considered as independent
for non-equilibrium. In other words, it is always possible to describe transformations
outside equilibrium from an ad hoc potential function. So, for instance, the
thermodynamic potential may be selected as the specific internal energy e:

(2.1)

where the generalised vector represents the set of extensive variables

(nk is the number of moles of the k-th species). The generalised vector denotes the
whole set of internal variables which are entirely controlled by the variables at the

thermodynamic equilibrium states, i.e. The symbols  and used
here and in the sequel allow one to distinguish the thermodynamic state variables from
the pseudo-thermodynamic variables. We may easily obtain from (2.1) the rate form:

The two terms and are the intensive dual variables associated with the

extensive variables and respectively, with
This postulate for non-equilibrium situations, induces a thermodynamic model similar
to that of the Rational Thermodynamics, specially by incorporating internal variables
(e.g. see [Coleman et al.,1967]).
The evolution equations, written in matrix form, are derived in a straightforward manner
from relation (2.2b):



372

where is the stability (coupling) matrix of Tisza (1966) for non-relaxed media,

(rectangular coupling matrix), and

To be solvable, the system (2.3) must be complemented by an equation of evolution for
the dissipative variables As inferred above, the usual formulations often involve a
convex pseudo-dissipation potential, D, which warrants a positive entropy production

However, this step is not mandatory, and it suffices to choose a suitable
kinetic phenomenological model. On the other hand, in the context of the DNLR
approach, the starting point can be a first order non-linear kinetic equation of the type:

in which the identification of is done from the stationary (or relaxed) condition
involving the thermodynamic force , (also called the affinity by De Donder (1920)):

In equation (2.4), represents a phenomenological matrix of coefficients or functions
whose reciprocity properties were proved by Onsager. Using this form has the
advantage that it leads to a linear TIP when the coefficients of the coupling matrices are
constant. The positivity of the entropy production is simply ensured by that of the

bilinear form, i.e. by the positivity of the relaxation time operator In fact, this
condition replaces the generalised normality rule established by Ziegler (1963).
Moreover, since Meixner (1949), it is well known that the entropy production,

can be mathematically written in different bases. In particular, it is

always possible to propose a modal formulation such that either the matrix or is

unity. De Groot and Mazur (1962) selected as the unity matrix and transferred the

multiplicity of dissipative modes onto the diagonalised matrix to account for some
relaxation phenomena most prominent in the field of linear TIP. Contrary to this, the

present approach selects as a unit-matrix in order to allow a distribution of relaxation

times by mean of the matrix This choice is consistent with the multiple modes of the
fluctuation theory, and it also permits the introduction of a shift relaxation spectrum
function inherent in non-equilibrium transformations. Various kinds of non-linearities

can be thus simply introduced into the coupling matrices and and their

components may depend – in a more or less complex manner – upon the variables and

At this stage of description, one leaves the general framework to deal with the specific
modelling of the behaviour of a given material under given thermo-mechanical loads. A
number of applications have been performed successfully; they concern for instance the
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modelling of the mechanical response due to multiaxial loads (e.g. the yield surface),
the non-linear viscoelastic behaviour of polymers, the thermal ageing of polymers near
the glass transition, [Rahouadj et al., 1999].
Moreover, it is relevant to attribute a physical sense to the internal variables, and to take
care of the significant processes that actually intervene at the scale of the
microstructure. For example, the viscoplastic behaviour of crystalline material has been
treated in this way, using the classical theory of dislocations [Faccio-Toussaint, 1997].
The response of polymers under finite strains has also been characterised using the
statistical spatial configurations of the macromolecular chains [Marceron ,1999].

3. THE LAGRANGE-FORMALISM AND THE DNLR APPROACH

The DNLR approach briefly presented above corresponds to the case of a uniform
representative elementary volume; it may be improved in order to account for the
gradients of intensive variables and the related boundary conditions; this is currently
under development.
Let now consider the following action integral:

The integrand is chosen to be the material derivative, of the specific internal energy.
In fact, this integrand represents a truncated version of a more general Lagrangian
density, which will be presented in a forthcoming paper. So, without gradients of fields,
one writes:

(3.2)

and the generalised co-ordinates, correspond to the well-known Lagrange co-

ordinates of the system. Note that the physical dimension of L is
power, i.e. time rate of work.
The set of Euler-Lagrange equations, which ensure the extremality of the action
integral, are

These equations directly lead to

which are strictly equivalent to the evolution equations (2.3), and will be
complemented by suitable boundary conditions for the generalised co-ordinates.
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4. EXAMPLES OF THE GENERAL SETTING

4.1) Application to pure heat transport
Let us examine the case of a generalised extensive variable, corresponding to the

specific entropy, s, its dual intensive variable is the temperature,

According to the relations (2.2a) and (3.2), the Lagrangian density relating to

the pure heat transport is As a consequence, the Euler-
Lagrange equation (3.4a) becomes

which may also be written

with the phenomenological relations and The Euler-

Lagrange equation (3.4b) governs the evolution of the non-equilibrium forces
associated with the extensive variables and they account for the relaxation
phenomena. Furthermore, considering the entropy balance,

where denotes the heat flux through the boundary of the system, the term of

exchange and the production one recovers the so-

called heat equation under the form

We obtain from (4.4) a generalisation of the Fourier heat equation, if the usual kinetic
relation between the heat flux and the temperature field is posed from the onset:

Following this condition, one has

So, even when the classical assumption of a linear relation between the force and the

flux is set up, the relaxation term due to different dissipation processes,
can lead to a hyperbolic like heat equation, the so-called telegraph equation. At this
level, the alternative used by Maugin, and corresponding to the
Cattaneo equation (similar to the kinetic relation of the DNLR, equation (2.4)), remains
possible. In any case, we have shown that in order to obtain a hyperbolic heat equation,
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it does not seem necessary to have recourse to the assumptions inherent in the extended
irreversible thermodynamics (EIT, [Müller, 1982]; [Jou et al., 1993],), i.e. by
complementing the physical description with additive non-equilibrium quantities taking
the form of fluxes.

4.2) Application to transfer of matter by diffusion:
When the current co-ordinates are identified with the number of moles nk of each k-th
species, the dual variables correspond to the associated chemical potentials,

i.e. In this case, the relation (3.4a) becomes

Moreover, the balance equation for the k -specie is such that:

where Jk represents the flux of diffusion for the k-th species, and is the internal

term due to chemical reaction. Using an Onsager type relation one
obtains from (4.7a,b) and (4.8) the relation:

One recovers a generalised Pick’s law, including Gyarmati’s formulation when the
source terms (chemical reaction) and the relaxation terms are negligible.

4.3) Classical examples of mechanical behaviour.
Using (2.4) and (2.5) and defining more specifically the relaxation time of the j-

process obeying to the equipartition of the entropy production, we can find the stress
response. The relaxation spectrum fundamentally depends on the applied load and its
history. But, near the equilibrium, according to the fluctuation theory, each process
contribution is expressed by its relative weight, in the overall spectrum, i.e.

with the normalisation condition and n the number of

dissipation processes. The evolution equations are obtained by combining (2.3), (2.4)
and (2.5), the matrices being eventually functions of the applied strain, and of the

internal variables, [Cunat, 1996]. One obtains the response for a strain-rate controlled
test, as the following tensorial equation written in rate form:
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i) Visco-elasticity under periodic load.
We consider a mechanical load under an imposed strain [Rahouadj et al., 1999]. The
perturbation      and the response correspond to and respectively. As an example
we may consider the visco-elastic behaviour in the simple case of small-applied
perturbations and pure shear stress near the thermodynamic equilibrium. We present the
dynamic response due to sinusoidally varying perturbations exp at the
applied frequency The response is obtained by integrating the above differential
relationship.
The non-linearities are incorporated into the spectrum of relaxation times

where the three shift functions stand
for the viscosity, deformation and temperature effects, respectively.
For small perturbations, we assume that the corresponding response is periodic and out of
phase. For instance, for a shear test, we have thus
where is the phase angle. We obtain

The complex modulus is evaluated as

It directly follows that its real and imaginary components are respectively

This modelling has been compared with other well-known approaches (e.g. [Cole-Cole,
1941] and [Havriliak et al., 1966]), and it proves successful for a wide variety of polymers
[Rahouadj et al., 1999].

ii) Visco-plasticity.
We now consider the example of creep, i.e. The perturbation and the response

correspond to and respectively. We find a coupling effect for multiaxial and
anisothermal solicitations, introducing strong non-linearities, especially by the temperature
dependence of the relaxation times
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where denotes the tensor of the thermal expansion coefficients. For isothermal creep

and under uniaxial applied stress [Marceron, 1999], and neglecting the entropic
coupling, the constitutive equation (4.14) becomes

where Eu is the instantaneous Young modulus; the constant applied stress is

To describe the primary regime of creep, one can simply use a Hookean modelling of the
relaxed stress In addition, by considering microscopic re-organisations
responsible for the softening of the relaxed stress, one can easily describe the secondary (or
steady) and the tertiary creeps. Indeed, the driving force expressed by the difference

in relation (4.16) depends directly on the phenomenological modelling
of the relaxed stress as a function of the history.

5. CONCLUSION

The goal of this work was to formulate the constitutive laws originating from the DNLR
approach within a variational framework, associated to Hamilton’s least action principle.
We have shown that or more generally a potential containing the whole
thermodynamic information on the continuum, is a good candidate for building a
Lagrangian which optimises the evolution during a fixed time interval, [t1,t2], even for
irreversible paths. At this stage, it is not necessary to specify the complementary laws that
we must introduce to close the system of equations.
The necessary main extension of the present work is the setting up of a complete
variational principle, which is under way, using a point of view different from Anthony’s.
This formalism will be able to describe nonuniform media, provided the gradients of the
thermodynamic (and pseudo-thermodynamic) variables are incorporated.
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Abstract. The second gradient theory is indispensable for describing a particu-
lar class of materials: when the energy depends on the second gradient of the
displacement. We show that trying to overcome the difficulty by using extended
thermodynamics is similar to trying to describe a linear elastic material without
invoking the Cauchy stress tensor. We illustrate the principal features of second
gradient theory with the example of Cahn-Hilliard fluids.

Keywords: Second-gradient theory, Cahn-Hilliard fluid, Extended thermodynamics

1. INTRODUCTION

Force and moment are the basic concepts in the mechanics of rigid bodies, but it
is well known that these notions are not sufficient for an accurate description of
internal forces in a deformable body. A great improvement in continuum mechanics
has been achieved with the introduction of the Cauchy stress tensor. The aim of this
paper is to show that, for some particular materials, a comparable improvement is
obtained by using the second gradient theory formalized by P. Germain in [Germain,
1973 a], [Germain, 1973 b]. This theory can be formulated only in the framework of
the principle of virtual power : one assumes that the power of internal forces
in a domain for any possible virtual velocity field can be represented by two
tensor fields S (of order two and three, respectively) as follows

n

If we assume that long range external forces can be represented by a volume density
f (e)

, the application of the principle of virtual power, after integration by parts,
leads to the local equation:
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where denotes the mass density. In this momentum balance equation, the tensor
plays the role of the Cauchy stress tensor. Using we may write

the power of internal forces as:

This power is not determined only by strain and the Cauchy stress tensor : an extra
flux appears. We focus on this main feature of the theory in section 4 while
we study boundary conditions in section 6.

The questions which naturally arise are i) what is the connection between this
theory and the Cauchy stress theory? ii) is there any material which needs for such
a theory? iii) is it possible to reformulate the theory without invoking the virtual
power principle, and what are the connections with interstitial working or extended
thermodynamics theories? iv) what are the principal mechanical features of this
theory? We illustrate the answers to these different questions by the example of
Cahn-Hilliard fluids.

2. SECOND-GRADIENT THEORY AND CAUCHY CONSTRUCTION OF
STRESS TENSOR

To understand how one can get out of the framework of Cauchy continua, we need to
reconsider the basic assumptions for Cauchy’s construction of the stress tensor : the
main postulate states that contact forces can be represented by a surface density of
forces which depends only on the normal to the boundary of the considered domain.
Noll’s theorem establishes this postulate under the implicit assumption that no edge
forces are present.

[Noll et al., 1990], [Dell’Isola et al., 1997] have considered the case of continuous
media in which edge forces are present : it has been proved that this presence
implies a dependence of contact surface forces on the curvature of the boundary of
the domain. To be precisely described, the contact forces need two stress tensors

Moreover, edge forces imply the presence of another type of contact forces
which cannot be interpreted in terms of forces or moments, and which correspond to
the double forces described by P.Germain in [Germain, 1973 a]. In other words, when
edge forces are present, a construction similar to Cauchy’s again leads to a second-
gradient theory. Moreover, as contact forces contain double forces (i.e. distributions
of order one), duality (i.e. virtual power principle) cannot be avoided.

As a matter of fact, edge forces are present in some particular materials, such as
Cahn-Hilliard fluids (see section 6).
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3. SECOND GRADIENT MATERIALS

Let us call a material with a free energy density which depends on the second
gradient of the deformation a second gradient material. We will see in the next
section why such materials need to be described in the framework of the second
gradient theory. Such materials do exist. Some have been studied for a long time
: the beam model introduced by Euler, Bernouilli and Navier is a one dimensional
second gradient material; the first 3D-model was introduced by Cosserat ([Cosserat
et al., 1909]). However, in these examples, the way the free energy density depends
on the second gradient of the deformation is special : only the gradient of the skew
part of the gradient of displacement plays a role. These special cases are called
incomplete second gradient materials in [Alibert et al., 1999].

More recently, a second gradient material has been introduced by Cahn and
Hilliard for describing capillary phenomena [Cahn et al., 1959]. In this model one
assumes that the free energy density depends on the gradient of mass density in
the simple form:

Note that, for sake of simplicity, we assume in this paper that the phenomena
occur in isothermal conditions. Clearly, the dependence on of the gradient of
the displacement shows that a Cahn-Hilliard fluid is a complete second gradient
material.

The simple form (4) is probably not sufficient for the study of complex fluids.
However, it allows one to investigate phenomena which otherwise could not be
studied in the framework of continuum mechanics : dependence of surface tension
upon the radius for very small droplets [Dell’Isola et al., 1995], stability of wetting
films [Seppecher, 1993], interpretation of Young’s law for contact angle in terms of
forces [Seppecher, 1989], removal of the moving contact line paradox [Seppecher,
1996], line tension phenomenon [Alberti et al., 1998], etc. The model can be used
also for numerical studies where it removes the difficulty of tracking interfaces.

In expression (4), W is a non-convex function. This is an important point. Any
energy described by a non convex function leads, in general, to ill-posed equilibrium
problems : minimizing under some mass constraint has, in general, no
solution. This phenomenon arises in every mutiphase problem, in damage or plastic-
ity theories, etc. Adding to the energy a term depending, in a convex way, on higher
gradient of deformation has two different interests : from a mathematical point of
view, it leads to well-posed “regularized problems”; from a mechanical point of view,
it gives a description of the transition zones which divide the phases.

Apart from their mechanical and mathematical interest, there is another reason
to require that any general theory of continuum mechanics be able to describe
second gradient materials. As continuum mechanics is a homogenized description
of materials which are heterogeneous at the microscopic level, it is natural to expect
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it to be stable under homogenization or asymptotic analysis procedures. Cauchy
continua do not enjoy this stability property : it is well known that the 1-D or 2-
D second gradient models of beams or plates are the asymptotic limits of Cauchy
models. It has recently been proved that homogenization of heterogeneous Cauchy
materials can lead to a 3-D incomplete second gradient material [Pideri et al., 1997].
The fact that a complete second gradient material, and more generally any n-th
gradient material, can be obtained in that way is, as far as I know, a conjecture.

In the next section we recall why second gradient materials cannot be considered
as classical Cauchy continua.

4. THERMODYNAMICAL PARADOX OF SECOND GRADIENT
MATERIALS

Let us write the laws of thermodynamics in a very general way. The first law states
that the variation of total energy is due to the mechanical power of the external

forces and a heat supply :

where and denote respectively the variations of internal and kinetic energies.
Taking into account the fact that the variation of kinetic energy coincides with the
power of internal and external forces

we get for the variation of internal energy:

The second law states that the variation of entropy is larger than the entropy
supply

If we accept the relatively weak assumptions that E, S, can be represented by
volume densities e, s, and the supplies by fluxes then inequality
(8) provides the Clausius-Duhem inequality :

and in isothermal conditions
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where denotes the volume free energy: and T the absolute tem-
perature. The thermodynamical paradox of second gradient materials lies in the
incompatibility of the Clausius-Duhem inequality (10) with the three following
assumptions:

The free energy density depends on the second gradient of the displacement,

(where denotes the Cauchy stress tensor).

which classically results from two assumptions: coincides with
the heat flux and coincides with the ratio of heat flux and absolute
temperature.

Indeed, under assumption the term div vanishes. Due to assumption
contains a term depending linearly on which cannot be balanced

by under assumption

This becomes clear when considering the example of Cahn-Hilliard fluids : when
the dependence of on the displacement is given by (4), can easily be
computed and, under assumptions and inequality (10) becomes

which cannot be assured by any constitutive equation for

As, for a second gradient material, is a basic assumption, the only possibil-
ities for solving the paradox involve revising or One can revise by
using the second gradient theory, assuming that has the form (1), i.e., in a local
form:

or, in the equivalent form (3),

One can revise in two ways: either, following [Dunn, 1986], by introducing
an "interstitial working" flux writing

or, as in [ Müller, 1985], by writing

In these two ways, which we can call extended-thermodynamics methods, one has
to search for constitutive equations for and which assure inequality (10) while,
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in the second gradient theory, one has to look for constitutive equations for and
S. Clearly, the two extended-thermodynamics methods are equivalent. The only
difference is a question of nomenclature : what is called “heat flux”.

At first glance, the second gradient method seems also to be equivalent to the
extended-thermodynamics methods. The term plays the role of and the
difference is a question of nomenclature: what is called “power of internal forces”.
This is not true. Constitutive equations for and S concern all admissible velocity
fields, and not only the real one; the second gradient theory is stronger. To make
this point clear, we show in the next section the consequences of an application of
extended thermodynamics to classical Cauchy continua.

Before showing this, let us conclude this section by writing possible constitutive
equations for a Cahn-Hilliard fluid. For the sake of simplicity we only recall the
non dissipative constitutive equations (for the dissipative case refer to [Seppecher,
1996]). Then inequality (10) is actually an equality,

which is satisfied if we set :
either, in the second-gradient theory,

or, in the extended-thermodynamics framework,

5. A WEAKNESS OF EXTENDED THERMODYNAMICS

In this section we show that applying the methods of extended thermodynamics
proposed in (14) or in (15) to Cauchy materials is a vain attempt to describe these
materials without invoking the Cauchy stress tensor. For this purpose, let us imagine,
for a moment, that we are beginners in continuum mechanics; we try to describe
a classical material, for instance a linear elastic one, and we make the following
(frequent) error : the divergence of the Cauchy stress tensor div corresponds to
the volume density of internal forces; denoting it by we write that the power
of internal forces is
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Is that really an error? If we use extended-thermodynamics methods (14) or (15),
we may introduce an extra flux (considering it, following the different points of
view, as an interstitial working or an extra entropy flux) and get the following set
of equations

where and are given by adequate constitutive equations.
It is remarkable that i) this set of equations is (with the right constitutive equa-

tions) totally equivalent to the classical set of equations (we let the reader compute
the right constitutive equations which give a set of equations totally equivalent to
the equations of linear elasticity), ii) in such a presentation the notion of Cauchy
stress tensor is not needed!

Actually, the only but important weakness of the formulation is that boundary
conditions cannot be written. Extended-thermodynamics is not able to detect the
original mechanical error (19). We claim that the same phenomenon occurs when
extended-thermodynamics are used to describe a second gradient material, i.e. when

and are used instead of and S for the representation of the mechanical state.
The set of local equations is the same in both cases, but only the second gradient
theory gives the right boundary conditions. We recall these conditions in the next
section.

6. BOUNDARY CONDITIONS IN SECOND-GRADIENT THEORY

Let us recall the boundary conditions given by the second-gradient theory (details
of computation can be found in [Germain, 1973 a] or [Seppecher, 1989]). Integration
by parts of the virtual power of internal forces given by (3) yields

where denotes the intrinsic surface divergence operator. As and are
independent fields on the dual quantities and

where n denotes the external normal to the domain A second integration by parts
on the boundary (assumed to be sufficiently regular) gives



386

should be given there. If the exterior is again a second-gradient material,
these quantities should be continuous across In all generality they are fixed by
external contact interaction:

The quantity corresponds to the surface density of forces exerted by the
material on the boundary. It is remarkable that, as depends on the curvature of

(i.e. on Cauchy’s postulate is not verified. When the curvature of the
boundary is very large, becomes singular; indeed when is piecewise regular,
a line density of forces appears on the edges in equation (23) one must add
the term

Here, n and the vector v, which is tangent to the boundary and normal to the edge,
are discontinuous across the edge and denotes their jump. On the edges the
line density of forces

is exerted. If the velocity vanishes on the boundary, the boundary conditions (24)
and (27) are replaced by the dual condition on but the condition (25)
remains valid.

The quantity has the dimension of a moment. Its tangent part actually
corresponds to a surface density of moment but the normal part is a surface density
of double forces.

For a non dissipative Cahn-Hilliard fluid, equation (17) leads to the boundary
conditions :

Note that a non-dissipative Cahn-Hilliard fluid can be subjected only to normal
double forces (just like a non-viscous fluid can be subjected only to normal
forces). Hence let us set The equilibrium state of a Cahn-Hilliard
fluid in a rigid container, in micro-gravity conditions, is then given by the following
equations:
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Let us compare these boundary conditions with the natural boundary conditions
which are obtained using the extended-thermodynamics method (18):

The first condition disappears when the velocity vanishes on the boundary, and the
second condition reads

This condition is close to (32), but becomes trivial in case of equilibrium. Equation
(32) is stronger as it implies an equation of type (35) for all admissible velocity fields
and not only the real one.

Clearly the equilibrium problem is well-posed only when the boundary condition
(32) is used. The effect of the value of on equibrium is quite important: it
tunes the value of Young’s contact angle. This parameter is characteristic of the
wetting properties of the wall of the container; this has been shown numerically in
[Seppecher, 1989] [Seppecher, 1996] and rigourously in [Modica, 1985].

The mechanical concepts of double forces and hyperstress are not purely theo-
retical concepts. The Cahn-Hilliard fluid provides an example of material for which
these concepts correspond to experimental evidence and are as useful as the classical
concepts of surface forces and stress tensor.
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Abstract: An elastic-plastic constitutive model is essentially based on the
decomposition of the deformation into elastic and plastic parts, with the corresponding
equations relating the elastic strain and plastic strain rate to appropriate stress tensors.
For large strain formulation, the identification of these dual stress tensors is an
important problem which has always been an important issue. The purpose of the
present paper is to present an overview of the past 30 years of research in this field with
duality as a guideline. It will be emphasised that each progress has resulted from an
extended interpretation of the same initial kinematic framework completed by a duality
analysis to obtain the elastic law and the dual stress tensor to be used in the plastic flow
rule. Some alternative models to the main trend will also be suggested.
Keywords : Thermodynamics, duality, elastoplasticity, large strain.

1. INTRODUCTION

For more than 30 years now and since the pioneering works of Green-Naghdi, Lee, and
Mandel, elastic plastic modelling at large strain has been an important and sometimes
controversial subject. From a fundamental point of view, the essence of elasto-plasticity
consists in an elastic behaviour (i.e. a conservative relation between strain and stress),
superimposed on a fluid-like behaviour (i.e. a dissipative relation between strain rate
and stress), which may be viscous (linear, Maxwell model), plastic (rate-independent) or
viscoplastic (the general case, with or without a threshold).

In case of small transformations (geometrical linearity, small strain and small
rotation) this superposition corresponds to an additive decomposition of the
infinitesimal strain tensor
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where is related to through an elastic law while the plastic strain rate is related
to through a viscous, viscoplastic or plastic law. This simple primary model (perfect
plasticity) may then be refined for instance through the introduction of  hardening.

These models are usually developed and presented within a thermodynamic
framework. This is natural because the distinction between elasticity and plasticity is of
thermodynamic nature : elastic = conservative, plastic = dissipative. This is also very
helpful for the development of new hardening models (generalised standard materials).
Thermodynamics within this framework therefore is natural and helpful. It is however
not essential and even if it has been extensively used by the French School under the
influence of P.Germain, [Germain, 1974] similar models have been developed
elsewhere without using it.

The situation however is quite different when dealing with geometrical non-
linearity and large transformations. Here the kinematic splitting of the deformation into
elastic and plastic parts is not so simple and even if there is now a general agreement
about the fact that the additive decomposition (1) has to be replaced by a multiplicative
one, there still are many possible interpretations for this decomposition.
Thermodynamics – or at least some part of it connected with duality – then becomes
essential for the translation of these interpretations into a complete consistent
constitutive framework and in particular to obtain both the elastic law and plastic strain
rate with its associated driving force which will be called here the plastic stress.

The purpose of the present paper is to present a survey of these 30 years of
development of elastic-plastic models at large strain within the light of this unifying
concept : thermodynamics or duality used for obtaining the elastic law as well as the
plastic stress and strain rate tensors. The presentation will follow the history starting
from the original isotropic models of Mandel, Lee and Green-Naghdi, following then
with the developments related to kinematic hardening and plastic spin. We shall also
mention some alternative formulations outside this main stream but which may be
helpful or instructing.

2. SMALL PERTURBATIONS

2.1 Perfect plasticity and isotropic hardening
Before dealing with large deformations, it is important to recall the small strain
formulation [Maugin, 1992]. From a methodological point of view this will show us the
way to proceed. This will also help us to clarify where and how thermodynamics and
duality are used.

In the basic plastic model with isotropic hardening the energy is assumed as
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where A is the stiffness tensor, and is the stored energy resulting from the

Since dissipation is associated to plasticity, the dissipation must vanish with so that
both forms give the elastic law and dissipation inequality as

Thermodynamics therefore has been used at two different steps of the procedure
i) to obtain (3), i.e. to derive the elastic law and to identify the dual variables to be used
in the plastic evolution law. This is essentially a duality concept.
ii) to postulate the evolution equations (normal dissipation). This is a constitutive
assumption which is often helpful but in no way essential. In particular it is now well
known that in anisotropic plasticity better results are often obtained by using a plastic
potential and a non-associated flow rule. This however has nothing to do with i) which
is still required to identify and as the dual variables to be related by the plastic
flow rule – whether associated or not.

It is this first contribution of thermodynamics which will be considered here and
our primary purpose in the following will be to derive the appropriate form of (3)
resulting from different kinematic interpretation of finite elastic-plastic deformations. Of
course, for a specific model, these equations will have to be completed by plastic flow
rules but these may take different forms according to the kind of model which is
considered (plastic, viscoplastic or viscous, associated or not) and will not be further
considered here. Since isotropic hardening is not concerned in this discussion we shall
forget about it and limit our attention to perfect plasticity

2.2 Kinematic hardening
Kinematic hardening corresponds to the translation of the yield surface and

therefore requires the introduction of a tensorial variable. Within the framework of
generalised standard materials it can be presented in two ways. The first one
corresponds to the Prager model introducing as hardening variable the plastic
deformation

with the following plastic flow rule

isotropic hardening variable p. Substitution in the dissipation inequality directly results
in two alternative forms
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The second approach uses as hardening variable a tensor with

Kinematic hardening then corresponds to

where the thermodynamic force X associated to a can be interpreted as the centre of the
yield surface (back-stress). The plastic evolution laws then directly follows as

showing that indeed is so that this model coincides with the Prager model with
and q identified to and The advantage of this second formulation lies in the fact
that it allows a non-associated generalised flow rule like for instance the so-called non-
linear kinematic hardening model.

3. THE ISOTROPIC CASE

3.1 Mandel's approach
Mandel's approach is based on the concept of an isoclinic stress free configuration

obtained from the actual configuration by local stress relaxation and restoring the initial
orientation of 3 director vectors related to the microstructure [Mandel, 1971]. In the case
of a single crystal [Teodosiu et al., 1976] these vectors clearly are the crystallographic
directions while in the case of a polycrystal their orientation is defined from some mean
value of the grain rotations.

From a kinematical point of view this corresponds to a multiplicative
decomposition of the deformation gradient F

where A and P respectively are the elastic and plastic part of the deformation gradient.
The elastic energy (2) is extended as

where is the elastic Green-Lagrange strain tensor. Denoting by T and the
Cauchy and Kirchhoff stress tensors, the dissipation is obtained as
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which is the appropriate extension of
According to the general scheme described in section 2.1 this provides the elastic

law and the dual plastic stress and strain rate.

It should be emphasised that the corresponding plastic strain rate and stress tensors are
non-symmetric and that the plastic flow rule must describe in addition to the usual
symmetric strain rate the skew symmetric part of the plastic velocity gradient
This is the so-called plastic spin equation to be discussed later.

This however disappears in the isotropic case for in this case commutes with
so that is symmetric and it can be proved that which must be an

isotropic function of is also symmetric.

3.2 Lee's approach
Lee also defines the plastic deformation [Lee, 1969] by

defining a stress free intermediate configuration which in contradiction to Mandel's
isoclinic configuration is only defined up to an arbitrary rotation. The elastic energy
therefore should not depend on this rotation which requires in fact an isotropic energy

where is the elastic left Cauchy-Green tensor. Starting from this isotropic elastic
energy and after some computation the dissipation is obtained as

which is the appropriate extension of The elastic law and dual variables are

which in fact is identical to the isotropic specialisation of Mandel's formulation
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3.3 Green-Naghdi's approach
Green-Naghdi's approach starts from an entirely different point of view [Green et

al., 1965] since it is based on an additive decomposition of the Green strain tensor and
an elastic energy postulated as

The dissipation inequality then obviously is

where S is the second Piola-Kirchhoff stress tensor. This is the appropriate extension of
directly leading to

In order to reconcile this with Lee's approach the plastic strain is interpreted as

and the energy is assumed to only depend on the elastic deformation, which in this
framework can be defined by [Sidoroff, 1973]

Substituting this isotropic form of the energy in (15) shows, after some computation,
that this model coincides with Lee's model as presented in section 2.2.

It should be noted that if w is not isotropic, then (19) still provides a consistent
model which can describe anisotropic plasticity. This is an alternative approach to the
currently developed model which will be mentioned below and which can probably be
interesting for further development.

4. ROTATING FRAME AND PLASTIC SPIN

4.1 Kinematic hardening
The isotropic elastic-plastic model therefore may be presented under different
formulations, but they all result in the same final model. The situation is much more
complex when some kind of anisotropy – either initial anisotropy or anisotropic
hardening – is involved even in a rigid plastic model without elasticity.

Kinematic hardening, as described in section 2.2 is the simplest case of anisotropic
hardening. Starting from the second formulation a tensor internal variable is
introduced with, in the isotropic case,
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with one material constant b. The evolution equation however cannot be directly
extended with the time derivative and an objective rate must be used. In order to
keep duality, this objective rate must be such that

Using von Mises yield criterion the evolution equation will then directly follow as

Among the usual objective rates the Jaumann rate is the only one to satisfy
condition (18) – the convected derivatives in particular would introduce complementary
terms in the dissipation and cannot be used here –. Since the Jaumann rate also naturally
appears in the isotropic case when deriving rate type constitutive equations [Sidoroff,
1982], it obviously seemed to be the right choice. Unfortunately it also leads just as in
the hypoelastic case to unreasonable oscillations. This difficulty is usually overcome
through the introduction of other objective rate satisfying (21), the rotated derivatives
defined as

where is a rotation rate which behaves like the rotation rate tensor W in a change of
frame and which may be chosen in two ways
i) directly from the kinematics, the most popular being the proper rotation or Naghdi's
derivative

resulting from the polar decomposition – but many other choices have been proposed.
ii) Through an appropriate constitutive equation for the difference

the so-called plastic spin equation which in the rigid plastic case can be considered as
the skew symmetric part of the evolution equation for in Mandel's approach
[Dafalias, 1983].

4.2 Initial anisotropy
A similar problem is encountered in case of initial anisotropy. Indeed the natural rigid
plastic large strain model is
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which in the isotropic case is the usual plastic model but cannot be used in case of
anisotropy due to lack of objectivity. A complete lagrangian formulation, on the other
hand, relating the second Piola-Kirchhoff stress S to the time derivative of the Green
strain tensor cannot be used either, due to the inadequacy of the total deformation for
describing a fluid-like behaviour. The proper formulation must be Lagrangian for the
orientation, in order to ensure objectivity, but Eulerian for the principal stresses and
strain rates which are physically meaningful [Dogui et al., 1986] . This suggests
replacing (21) by

i.e. formulating the anisotropic plastic flow rule in a rotated frame obtained from

the present configuration C(t) by a rotation Of course (22) is identical to (21) in
the isotropic case but will be objective if the rotation tensor Q is chosen in such a way
that it behaves like F in a change of frame

The simplest way to ensure this is to obtain Q from the differential equation

resulting in the corotational or Zaremba-Jaumann rotating frame [Anglès d'Auriac,
1970]. Similarly the proper rotating frame is defined from the polar decomposition by

More generally a rotating frame is defined by the following differential equation

where the "plastic spin" tensor is defined in and, therefore, is invariant in a
change of frame. In all known cases it is also assumed to be linear with respect to the
rotated deformation rate tensor, therefore ensuring rate-independence of the rotating
frame definition.

The kinematic hardening model as described in section 4.1 can also be formulated
in this way replacing (22) with
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Again this plastic spin can be treated as an ordinary constitutive equation [Dafalias,
1985], usually through the use of tensor representation theorem or directly postulated
from the kinematics [Dogui, 1988 ; Dogui et al., 1984].

5. PLASTIC STRAIN AS STATE VARIABLE

5.1 General framework
A basic feature in the physics of plasticity is the fact that elastic deformation is a state
variable while the plastic deformation is not. It is nevertheless found convenient in
many simple mechanical models, like for instance in the Prager model interpretation of
kinematic hardening, section 2.2, to use it as a hardening variable. It corresponds in fact
to the introduction of a tensor state variable which in a first approximation is assumed to
follow the plastic strain. Limiting ourselves to the isotropic case a corresponding large
strain formulation can be obtained starting from the intermediate configuration as
defined in section 3.3, the problem being to define an Eulerian plastic strain tensor.
Starting, just as in section 4.2 from the idea that the principal strains are the relevant
physical quantities, this can be done by using two different tensors

with obvious notations (C and B Cauchy-Green tensors, R rotation, V left stretch tensor
associated to the corresponding total, elastic or plastic deformations). These tensors may

also be considered as the left and right Cauchy-Green tensors associated to
[Sidoroff, 1984 ; Naghdi et al., 1974].

Two different elastic-plastic models can be defined by assuming the energy w as an
isotropic function or Using duality the constitutive equation can
be obtained in both cases from the dissipation

Using for instance , the elastic and plastic stress are, after some computations,
finally obtained as

which are non-trivial large strain extensions of (4). It should be noted that the first of
these two equations can be easily obtained from Green-Naghdi's approach (section 3.3).
Indeed w being an isotropic function of is also the same isotropic function of

or where has been defined in (16). Since can be expressed
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from C and , the energy w can also be considered as a – different – function of C and
so that Green-Naghdi's initial formulation can be used leading to

from which directly follows. Such an easy treatment however does not seem to
exist for and a detailed computation is required. Similar relations can be obtained

using

5.2 Applications
It is obvious from (27) that if the energy function is such that

vanishes for whatever may be, then also vanishes. This is less
obvious but also true when using This means that if this condition is imposed,
which will be assumed from now on, then the intermediate configuration is the local
natural stress-free configuration and the essential features of plasticity are maintained.

An important special case corresponds to the case where the energy can be split in
two parts

which corresponds to a natural extension of Prager's model [Dogui et al., 1985]. In this
case it directly follows from (27) that

Thus providing an alternate formulation for kinematic hardening.
More generally a Taylor expansion around gives

where as discussed above will account for kinematic hardening while the dependence
of the elasticity tensor A with respect to will account for induced elastic anisotropy.
Induced plastic anisotropy can be consistently obtained as well by assuming a
parametric dependence of the yield function f on the plastic strain

5.3 Poynting and Zener
Similar ideas are used in viscoelasticity (the so-called hyperviscoelastic materials used
for elastomeric materials). Two different kinds of models are considered, respectively
corresponding to the Zener and Poynting model [Maugin, 1992]. The model which has
been developed above directly provides the Poynting model (serial combination of a
spring with a Kelvin model) which is currently used with the uncoupling assumption
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(28). The Zener model (parallel combination of a spring with a Maxwell model) can be
obtained in a similar way from an energy The dissipation in this case finally
is obtained as

directly generalising the small strain linear formulation. The intermediate configuration
however loses us interpretation as a relaxed stress-free configuration.

6. CONCLUSIONS

The more complex case of a completely anisotropic elastic-plastic model is not yet
entirely clear and the extension of the rotating frame formulation presented in section 4
requires the definition of the rotating frame from the plastic deformation – which is
natural in Mandel's formulation but not so easy when dealing with a kinematic rotating
frame like for instance the proper rotation frame [Morando et al., 1988]. In this case
again, duality allows a correct identification of the appropriate stress tensors to be used
in constitutive modelling [Sidoroff et al., 1999].

Like in many other cases discussed in this volume, duality (and strictly speaking
not thermodynamics) is a basic tool for the formulation of constitutive models and for
identification of consistent generalised forces associated to the postulated internal
variables.
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Abstract: Determination of the evolution of a system is studied through the definition of
functionals presented here in the case of non linear dynamics. After a short account of the
necessary notions for the description of the motion and of the mechanical interactions, the
paper is devoted to the Hamiltonian functional of the system. The evolution of disconti-
nuities along moving surfaces generally generates an entropy production which is a linear
function of the speed of the moving interface. The thermodynamical force accompanying
this motion is an energy release rate, the expression of which is related to the gradient
of Hamiltonian of the system. The canonical equations of shock waves and moving dis-
continuities are established for any continuum. This provides a useful way of establishing
constitutive laws for moving interfaces.
Keywords : Hamiltonian, shock-waves, jump, discontinuity, energy-release rate.

1. SOME GENERAL FEATURES

In order to explain and to predict the motion and the equilibrium of bodies or structures
subjected to various physical interactions, a kinematical description of the motion is first
performed. Usually one looks for the motion of a material point M from a reference con-
figuration by describing its displacement u(M, t).

After the kinematical description of the body, one has to deal with the mechanical
interactions. Many statements permit the description of these interactions ; we can use
for example the virtual-power statement. This describes the mechanical interaction be-
tween each material point of the body with respect to a given loading distribution. For
sake of simplicity and conciseness of this presentation, a thermodynamical description of
interaction is adopted.

First, the local state is defined by a set of state variables such as the strain a set of
internal parameters and the absolute temperature The local interaction is defined by
a thermodynamical potential or the free energy per unit of mass. The thermo-
dynamical forces are defined by the state equations :

is the reversible stress, A is the thermodynamical forces associated to the internal vari-

401

G.A. Maugin et al. (eds.), Continuum Thermomechanics, 401-412.
© 2000 Kluwer Academic Publishers. Printed in the Netherlands.



402

ables, and is the entropy. In the case of reversibility, the knowledge of the free energy
is sufficient to determine the local state of equilibrium defined by the stress In
nonlinear mechanics, the internal state is generally associated with irreversibility. Then
the fundamental inequality of thermodynamics implies that the internal production of en-
tropy must be non negative. The equations of state do not provide the full constitutive
equations; some complementary laws are necessary to describe the irreversibility. In the
total dissipation, we distinguish the part due to the conduction and the part due to internal
forces. The two parts are assumed to be separately non negative. The mechanical part has
the form:

The state of stress during the evolution has been decomposed as Let us
assume that the behavior belongs to the class of the so-called generalized standard mate-
rials. This ensures the existence of a potential of dissipation The potential d is a
convex function of the variables, with a minimum value at the origin. The evolution of the
internal state is given by the normality rule :

this means that the subdifferential of d is the set of state such that:

for all admissible fields The existence of such a potential for the dissipation ensures
the positivity of the entropy production:

2. EQUILIBRIUM AND QUASISTATIC EVOLUTION

As time evolves the displacement field and the internal state must satisfy the following :

• the state equations :

• the conservation of the momentum:

• the evolution equations of the state variables.
• all the boundary conditions.

For the overall system the rule of the free energy is replaced by the global free energy:

In a global description the equations of state possess the same form as in the local one, but
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the state of the system is defined by fields of state variables. The equations of state are
relationships between fields of state variables:

for which the evolution is given in terms of fields of state variables as :

where the set is defined obviously by :

then we have for regular functions :

Let us consider that the external loading derives from a potential given in terms of traction
applied on the external surface of the body. Then, the global free energy can be replaced

by the potential energy of the system :

By combining all the equations in terms of fields of state variables, we can state the qua-
sistatic evolution in a global manner by the variational system :

These equations are defined on a set of admissible fields. The displacement is subject to
boundary conditions over These equations are general; they contain the
essential structure of a problem of quasistatic evolution. The first equation of this system
explains the conservation of the momentum taking into account the constitutive law, the
second explains the thermodynamic forces associated with the internal parameters.

3. THE DYNAMICAL CASE

The Hamiltonian is the total energy of the system [Stolz, 1988]:

These relations are obtained by the following definition: By using
the properties of the characterization of the evolution of the internal state and integration
over the body, we can define the dissipative function:
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The first term is the kinetic energy  is the
momentum, the second is the internal energy with the density: and the last is
the potential energy due to prescribed loading. The equation of motion are given by

Taking account of the decomposition of the stress of the conservation of the
momentum inside the volume and of the boundary conditions

we modify the expressions :

then with the relations :

we obtain the conservation of momentum in the Hamiltonian form:

Finally, the Hamiltonian formulation of the evolution of the system is obtained:

A conduction law must be given and the positivity of the entropy production must be ver-
ified to determine the evolution of the system :

For the real motion, the value of the Hamiltonian is the sum of the kinetic energy, of the
internal energy and of the potential energy of the external (given) load. The conservation
of the energy of the system can be easily rewritten as

where q is the heat flux, and we consider that no external volume heat source are prescribed.
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The definition of the Hamiltonian can be extended to generalized media. The pro-
posed description can be performed in all the cases in which we can define the behavior by
two potentials: a global free energy and a dissipative function. If some particular internal
constraints exist, this description must be revised.

4. MECHANICAL TRANSFORMATIONS ALONG MOVING SURFACES

We consider a moving interface along which mechanical transformation occurs [Pradeilles-
Duval et al, 1995]. Two materials coexist at any tune in the structure and the body is
heterogeneous. The evolution of the surface along which the transformation takes place
is characterized in the energy analysis. Some connections can be made with the notion of
configurational forces, [Gurtin, 1995, Maugin, 1995,Truskinovski, 1987,Grinfeld, 1980,
1991].

Let denote the domain, composed of two distinct volumes and which are
occupied by two materials with different mechanical properties. The perfect interface be-
tween them is assumed to be regular and is denoted by Material 1 changes to materials 2
along by an irreversible process. Hence moves with a normal velocity positive along

The state of the system is characterized by the displacement field u, from which a strain
field is derived The other parameters are the temperature the internal parameters
and the position of the boundary

When the surface propagates, with velocity (N normal outward to
mechanical quantities can have a jump, and all volume integrals

have rates defined by :

The mass conservation is defined by the continuity of the mass flux :

Then the conservation of energy and the entropy production are rewritten as

By the momentum conservation we have

This is true for all volume then we deduce the local equations of conservation :
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The entropy production takes the form:

The interface is perfect, then the displacement is continuous along the interface
and the temperature is assumed to be continuous

Some dissipation can occur along the moving surface. The mechanical discontinu-
ities must satisfy some constraints, they must be kinematically admissible and ensure the
positivity of the entropy production. The jumps of the mechanical quantities must verify
the Hadamard equations:

and the momentum equation:

Combining the local equations of conservation, we rewrite the production of entropy in
terms of volume and surface contribution:

where the quantity Along the surface, the production of entropy is defined
in a similar form as in a quasistatic thermomechanical coupled evolution by replacing the
tension along the surface by the mean tension, and as in an isothermal analysis the results
of Abeyaratne and Knowles [Abeyaratne et al.,1990].

The behavior of each phase is defined by the tree energy as a function of strain
temperature and a set of internal variables the evolution of which is governed by a

pseudo potential of dissipation a convex function of As before, the state equations
are

where A, the thermodynamical forces associated with the internal parameter satisfies :
The dissipation due to conduction is given by a conduction law.

As before, the variation of the Hamiltonian H determines the power heat supply. We
decompose the volume into the two volumes the normal outward to the
position of the surface is an internal variable and the Hamiltonian takes the form:

where
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The equations of motion are then

Each volume has a contribution to the global Hamiltonian:

And for the overall system we obtain the equation:

Making the distinction between volume and surface terms, we find

The gradient of the Hamiltonian with respect to the position of the moving surface deter-
mines the intensity of  the heat source due to the propagation of mechanical discontinuities.
This gradient takes the form of a release rate of internal energy :

The production of entropy has a surface term which is explained as

In the same spirit, the intensity of the source of entropy production is a release rate of free
energy divided by the temperature. Without more hypotheses
this term is not directly connected with the variation of the Hamiltonian.

In the isothermal case, the dissipation and the heat sources are related by the uniform
temperature, the heat flux is zero and The dissipation is a jump of entropy along
the moving surface given by defining the isothermal Hamiltonian by

the dissipation is expressed by the variation of the isothermal Hamiltonian:

By considering the surface and volume terms, we see that the energy release rate is the ther-
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tonian with respect to the position of the surface. The expression is recovered.

5. QUASISTATIC EVOLUTION

In isothermal evolution, complementary relations must be considered to describe irre-
versibility. An energy criterion is chosen as a generalized form of  the well known Griffith
theory. Then, we assume

otherwise.
This is a local energy criterion. At each equilibrium state, the interface can be decom-
posed into two subsets where the propagation is either possible or not Let denote by
the subset of where the critical value is reached. The evolution of the interface is
governed by the consistency condition, during the evolution of if, at the geometrical
point the criterion is reached

then the derivative of G following the moving surface vanishes This leads to
the consistency condition written for all point inside

otherwise With Hadamard relations this derivative takes on the final form

where In that case, the evolution is determined by the func-
tional :

Then the evolution is given by

for all v* kinematically admissible field, and The discussion of the
stability and bifurcation along an evolution process can be now investigated as proposed by
Pradeilles and Stolz [Pradeilles et al, 1995]. Consider the rate of displacement v solution
of the boundary value problem for any given velocity of propagation, v satisfies:

modynamical force associated with the velocity of  and is the derivative of the Hamil-
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and non classical boundary conditions on

Consider the value W of F for this solution
and the stability of the actual state is determined by the condition of the existence of a
solution

and the uniqueness and non bifurcation is characterized by

6. THE CANONICAL EQUATIONS OF SHOCK WAVES.

The local equations of shock waves will be derived from a thermodynamical potential and
a dissipation pseudopotential. The canonical equations rule the jump relations and the
constitutive behavior in a section of the shock [Germain, 1972]. Let us consider a shock
wave, we propose to study the evolution of the shock. Locally the surface of discontinuity
is replaced by its tangent plane, and one considers a frame moving with a velocity which
is the normal speed of the shock. Along the line of discontinuities, some relationships
between the jumps of quantities must be verified:

• for the momentum :

• for the energy :

• for the entropy production :

The quantity m denotes the mass flux and accounts for the mass conservation. The
shock is governed by the constants which are related respectively to the flux
of momentum and to the flux of energy. The jump conditions are rewritten as

The main problem is to determine the state if the state and the constant
are given while respecting the positivity of the entropy production in an anelastic material.
The jump conditions give us only the jump of entropy, but no direct relation between this



410

discontinuity and the jump of internal parameters. One must determine the loading path
or the history of all the quantities inside the shock; this describes the internal structure of
the shock.

To solve this problem we can consider the discontinuity surface as a layer normal to
the direction of the propagation of the shock ; one has to study the inner expansion of
all the quantities in a continuous process in the frame translating with the shock surface,
assuming that all quantities depend only on the local normal coordinate For
the inner expansion, X varies from to We are interested in a one dimensional
motion.

A constitutive law and a pseudo-potential of dissipation being given to describe the in-
ternal behavior, the dissipation is known inside the shock and therefore the jump of entropy
is given as

Using the other jump conditions expressed in terms of the given constant of the shock, we
can rewrite the jump of entropy as

This defines the shock generating function P:

in the steady state analysis, and P has the following form:

The jump of P is the total dissipation:

The function P is supposed to be a continuous function of X, and the value of P on a
section dX has the following form:

Then P is related to the Lagrangian defined on the section dX :

Defining the dissipative function D as previously :

we adopt a Fourier law for the thermal conduction
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The shock structure is determined by the canonical equations :

and we obtain the local property

If the temperature is continuous i.e. the jump of P is exactly related to the defin-
ition of Gs. If a continuous process governs the internal structure of the discontinuity, the
quantity Gs is a global characteristic of the moving discontinuity. When local behavior is
given in term of w and D, the behavior of all the jumps are given. This is a way to build
global behavior for shock waves or moving discontinuities inside a continuum. It is the
analogue of homogenization for dynamical behavior.

A typical example has been given in plasticity. In this case the determination of com-
patible states (+) and (-) is not easily studied from a general viewpoint. For propagation of
longitudinal waves, if we suppose that the loading process is monotonic, we obtain a curve
which gives the relation between the jump of the quantities, as in the adiabatic Hugoniot
curve in gas dynamics [Mandel, 1978]. This result is obtained by the assumption of a radial
loading path during the shock. This is the structure of the shock. But in a general case, the
internal structure for shock wave in plasticity must be studied as proposed by Germain and
Lee [Germain et al., 1973].

7. CONCLUSIONS

We have studied the thermodynamics of running discontinuities from a global point of view
and related all the quantities to a Hamiltonian principle generalized to nonlinear behavior.
In quasistatic evolution we have given a boundary value problem for the evolution of a
moving surface, the motion being governed by an energy criterion. Some connections
with fracture mechanics can be also given in the same formalism [Stolz et al, 1996; Bui et
al, 1987]. Finally the internal structure of discontinuities has been investigated to provide
a global behavior of the moving surface in agreement with the positivity of the production
of entropy.
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