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Preface 

In the preceding volume,l I identified necessary and sufficient conditions for 
the existence of a representation of given Newtonian systems via a variational 
principle, the so-called conditions of variational self-adjointness. 

A primary objective of this volume is to establish that all Newtonian 
systems satisfying certain locality, regularity, and smoothness conditions, 
whether conservative or nonconservative, can be treated via conventional 
variational principles, Lie algebra techniques, and symplectic geometrical 
formulations. This volume therefore resolves a controversy on the repre­
sentational capabilities of conventional variational principles that has been 
lingering in the literature for over a century, as reported in Chart 1.3.1.2 

The primary results of this volume are the following. In Chapter 4,3 I prove 
a Theorem of Direct Universality of the Inverse Problem. It establishes the 
existence, via a variational principle, of a representation for all Newtonian 
systems of the class admitted (universality) in the coordinates and time 
variables of the experimenter (direct universality). The underlying analytic 
equations turn out to be a generalization of conventional Hamilton equations 
(those without external terms) which: (a) admit the most general possible 
action functional for first-order systems; (b) possess a Lie algebra structure 
in the most general possible, regular realization of the product; and (c) 

1 Santilli (1978a). As was the case for Volume I, the references are listed at the end of this 
volume, first in chronological order and then in alphabetic order. 

2 All references to the preceding volume have the prefix" I ", e.g., Section 1.1.1, Equation 
(1.1.1.5). Script letter f is used to refer to elements within the Introduction to the present 
volume. 

3 To stress the continuity with the three chapters of Volume I, those of this volume are 
numbered 4, 5, and 6. 

Xl 



xii Preface 

characterize a symplectic two-form in its most general possible local and 
exact formulation. For certain historical reasons, indicated in the text, I have 
called these equations Birkhoff's equations. 

In Chapter 5 I present the transformation theory of Birkhoff's equations. 
Essentially, it emerges that, while Hamilton's equations preserve their 
structure only under special classes of transformations (the canonical and 
the canonoid), Birkhoff's equations preserve their structure under arbitrary, 
generally non canonical, transformations. I then present a step-by-step 
generalization of the Hamiltonian transformation theory. In addition, I 
point out that Birkhoff's equations can be obtained from Hamilton's 
equations via the use of non canonical transformations. The inverse reduction 
occurs instead via the use of Darboux's transformations of the symplectic 
geometry. This allows the proof in Chapter 6 of the Theorem of Indirect 
Universality of Hamilton's Equations, according to which conventional 
Hamilton equations are unable to represent Newtonian systems at large in 
the reference frame of their experimental observation; nevertheless, a 
representation can always be achieved via use of the transformation theory. 

As has been known since Galilei's time, physics requires that abstract 
mathematical algorithms admit a realization in the frame of the observer. 
The inability of Hamilton's equations to satisfy this fundamental requirement 
confirms the need for their Birkhoffian generalization. 

The analysis presented in these volumes therefore establishes that the 
treatment in the frame of the observer of Newtonian systems with unre­
stricted dynamical conditions requires the use of generalized analytic 
formulations for the most general possible first-order Pfaffian action and of 
generalized geometric formulations for the most general possible local and 
exact two-forms. These occurrences render inevitable a reinspection of Lie's 
theory (enveloping associative algebras, Lie algebras, and Lie groups) to 
achieve a form which is directly compatible with the generalized analytic 
and geometric formulations-that is, a form which is classically of non­
canonical character and quantum mechanically of predictable non unitary 
character. This study is conducted in the final stage of a program where the 
existence of generalized algebraic formulations is shown. These formulations 
essentially consist of a reformulation of Lie's theory that is directly applicable 
to the most general possible associative envelopes, the most general possible 
non-Hamiltonian/Birkhoffian realizations of the Lie product, and the most 
general possible noncanonical/nonunitary structures of the Lie groups. By 
keeping in mind that Lie's theory was developed for the simplest possible 
associative product XiXj of the envelope, the simplest possible form 
Xi Xj - Xj Xi of the Lie product, and the simplest possible structure exp (}iXi 
of the Lie groups, the need for the reformulation under consideration is self­
evident. I have called the emerging formulations isotopic generalizations, 
where the term" isotopic" expresses the preservation of the primary analytic, 
Lie, or symplectic character. 

In this way, we see the emergence of the foundations of a Birkhoffian 
Generalization of Hamiltonian Mechanics which 
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1. applies to a class of physical systems broader than that for which 
Hamiltonian Mechanics was conceived-systems with action-at-a­
distance, potential, self-adjoint forces, as well as contact, non­
potential, non-self-adjoint forces; 

2. is based on an isotopic generalization of the analytic, algebraic, and 
geometric methods of Hamiltonian Mechanics; and 

3. is capable of recovering Hamiltonian Mechanics identically when all 
non-self-adjoint forces are null. 

A number of applications to systems of ordinary differential equations in 
Newtonian Mechanics, Space Mechanics, Statistical Mechanics, Engineering, 
and Biophysics are presented during the course of our analysis, with more 
specific treatment appearing in Chapter 6. With the understanding that 
quantum mechanical profiles are beyond the scope of this volume, I have 
briefly indicated the existence of an isotopic generalization of Heisenberg's 
equations, as well as of a number of related quantum mechanical aspects, for 
the description of particles under action-at-a-distance, potential interactions, 
as well as contact, nonpotential interactions, which are conceivable under 
mutual wave penetration, and overlap. The rather old (and currently dormant) 
problem of the generalization of Quantum Mechanics is therefore brought 
to life in an intriguing and direct way by the Birkhoffian Generalization of 
Hamiltonian Mechanics. Regrettably, for the sake of brevity I have been 
forced to ignore several additional, equally intriguing developments such as 
the extension of Birkhoffian Mechanics to field theory-a study which has 
already been initiated in the literature.4 

The mathematically inclined reader should be informed from the outset 
that I have given priority of presentation to methods and insights, not only 
in local coordinates but also within a single fixed system of variables, those 
relative to the observer. The use of transformation theory is presented only 
as a second phase of study. Finally, generalization via coordinate-free, global, 
and geometric approaches is presented as a more advanced approach. This 
style of presentation implies a reversal of the priorities of contemporary 
mathematical studies, particularly those of geometric character, but it is 
dictated by specific pedagogical and technical needs. 

On pedagogical grounds, my teaching experience has suggested that it is 
best to expose students first to geometric structures in specific local variables 
and show that the essential geometric properties persist under arbitrary (but 
smoothness- and regularity-preserving) transformations of the local vari­
ables. Then the students may be brought, in a progressive motivated way, 
to advanced coordinate-free techniques. 

The technical reasons for giving priority to formulating the methods in 
local variables are even more pressing than the pedagogical ones. In fact, 
the crucial inability of conventional Hamilton equations to represent New­
tonian systems in the frame of the observer can be identified only via the 
local formulation of the theory because, at the abstract, coordinate-free level, 

4 Kobussen (1979). 
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Hamilton's and Birkhoff's equations are indistinguishable. At any rate, a 
primary function of the Inverse Problem is to provide methods for the 
computation of an analytic representation of specific differential equations 
in specific local variables. Clearly, this task can be accomplished most 
effectively via the local formulation of the theory. 

These priorities should not be interpreted as denying the need for global 
techniques. On the contrary, these techniques will be quite useful throughout 
our study, particularly in proving the main theorems. 

This work reflects the organization of Volume I: a main text, a series of 
charts,5 illustrative examples, and problems. The main text is devoted to 
the simplest possible presentation of the techniques in local variables. The 
charts complement the presentation through more advanced topics in 
Abstract Algebras, Functional Analysis, Differential Geometry, and other 
disciplines. The examples are intended to illustrate only the most important 
aspects. Finally, the problems are designed to test the student's understanding 
of the basic ideas and methods and to evaluate the student's capability for 
practical applications. 

The relevance of the analysis presented in this and the preceding volume 
can be indicated essentially as follows. Within the context of Theoretical 
Physics, the methods presented permit the identification and treatment of a 
new class of interactions called" closed non-self-adjoint" (Chapter 6). These 
interactions verify the conventional conservation laws of total quantities 
( closure), yet the internal forces are partially of action-at-a-distance, potential 
type and partially of contact, nonpotential type (non-self-adjointness).6 
The interactions of primary interest in contemporary physics (e.g., electro­
magnetic interactions and the unified gauge theories of weak and electro­
magnetic interactions) turn out to be of the closed self-adjoint type upon the 
extension of the methods to relativistic and field theoretical settings (Santilli 
1977a,b,c, and 1978b). 

In essence, the transition from closed self-adjoint to non-self-adjoint 
interactions is given by the replacement of point like constituents with 
extended constituents under sufficiently small mutual distances. Points can 
only interact at a distance, thus admitting only self-adjoint interactions. 
Extended objects, on the contrary, whether particles or waves, admit the 
additional contact interactions for which the notion of potential energy has 
no physical basis. Thus they are of the non-self-adjoint type. The former 
interactions are of Lagrangian/Hamiltonian type, while a necessary condi­
tion for the latter interactions to be truly non-self-adjoint is that they are not 
of Lagrangian/Hamiltonian type in the frame of the observer; yet they can 
be treated via the Birkhoffian Mechanics and related isotopic generalization 

5 As in Volume I, the term "chart" is used in its nautical sense of "guiding" the student 
through the main ideas of a more advanced topic, while providing selected references for sub­
sequent studies. 

6 For the reader's convenience, some of the theorems of self-adjointness of Volume I are 
reviewed in the Introduction and in Section 4.1. 
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of analytic, algebraic, and geometric methods. The conceptual and technical 
advances are self-evident. 

A rather forceful Newtonian example of closed non-self-adjoint inter­
actions is given by our Earth. If considered isolated from the rest of the uni­
verse, the Earth verifies the conservation of total physical quantities, but 
the interior motions are of the non-self-adjoint type, as is the case for satellites 
during reentry into our atmosphere, spinning tops with drag torques, etc. 

It is often argued that nonpotential forces are due to the "immaturity" of 
the Newtonian description, and that the local/potential/Lagrangian or 
Hamiltonian nature is recovered in full when passing to elementary con­
stituents of matter. This view has been criticized in recent times because it is 
based on the pointlike abstraction of the elementary constituents and because 
it ignores the experimentally established conditions of mutual wave over­
lappings for all interior problems under strong interactions, such as the 
structures of nuclei, of strongly interacting particles (hadrons), and of stars. 
At any rate, the idea that the experimentally established nonpotential 
Newtonian interactions can be reduced to a large collection of potential 
interactions has no practical computational value (owing to the large number 
of constituents of macroscopic bodies). It has no experimental support at 
this time, is therefore merely a scientific belief, and when subjected to an 
actual mathematical study, is afflicted by a host of consistency problems such 
as the need to recover nonpotential dynamics via a large collection of 
potential ones. 

In different terms, the Newtonian description of the structure of our Earth 
with its established potential and nonpotential forces in local or nonlocaF 
treatment, is a model of invaluable guidance in the study of the more complex 
structures of nuclei, hadrons, and stars, rather than knowledge to be by­
passed via pointlike abstractions of the elementary constituents. To put it 
quite candidly, I have conducted most of these studies because of the poss­
ibility that our Earth can be viewed as a Newtonian image of the structure of 
hadrons, in the same way as our solar system is seen as a Newtonian image 
of the structure of atoms. 

Once the closed non-self-adjoint interactions are acknowledged either as 
an experimentally established reality (classical mechanics) or as a possibility 
(particle physics), the relevance of the methods of these volumes becomes 
self-evident. In fact, by recalling that the broader interactions considered, by 
conception, cannot be directly treated via Hamilton's (or Heisenberg's) 
Mechanics, the methods employed in these volumes permit the use of 
rigorous analytic, algebraic, and geometric techniques which would otherwise 
be precluded. Besides the evident classical applications, the methods are 
potentially useful for the future experimental resolution of the problem ofthe 
structure of strong interactions; that is, whether the ultimate structure of the 

7 It should be stressed that this volume in general, and Birkhoff's equations in particular, 
treat local non-self-adjoint interactions. The non local non-self-adjoint interactions demand a 
generalization of Birkhoff/Lie/symplectic formulations, e.g., into the so-called Lie-admissible 
formulations (see Chart 4.7). 
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universe can be reduced to a collection of points, or a substantially more 
complex reality must sooner or later be acknowledged. 

The relevance of the methods in Engineering is equally self-evident. 
Engineering systems are non-self-adjoint as a rule and are self-adjoint only 
in very special cases. I am referring to computer or electric systems inclusive 
of internal losses, trajectory problems with follower forces, etc. The tech­
niques presented in these volumes allow the computation of an action func­
tional for all these systems, by treating them via well-established methods 
such as the canonical perturbation theory and the Hamilton-Jacobi theory. 

The reader can now see the relevance of the Inverse Problem for other 
disciplines, such as Space Mechanics, Statistical Mechanics, Biophysics, etc. 

This volume originated in the following way. In Volume I, I reported on 
studies of the integrability conditions for the existence of a Lagrangian as 
available in the literature and presented my own work on the independent 
existence of a Hamiltonian (i.e., existence of a Hamiltonian without prior 
knowledge of a Lagrangian). I also presented my methods for the computa­
tion of these functions from the equations of motion, when the integrability 
conditions are verified. I identified the capability of these functions to repre­
sent both potential and non-potential forces and treated a number of com­
plementary aspects. 

While conducting these studies, I became aware that the violation of the 
integrability conditions for the existence of a Lagrangian, or independently, 
of a Hamiltonian, is the rule in practical cases and that their verification is 
the exception. Although I have no available evidence, I believe that this 
restrictive character of the conditions of self-adjointness has been known 
since the early studies on the Inverse Problem in the last century, and this 
resulted in the subsequent lack of significant attention to the problem in 
both the mathematical and physical literature, as reported in the Introduc­
tion to Volume I. 

Clearly, in order to reach a level of practical effectiveness, I had to "solve 
the Inverse Problem." That is, I had to identify methods capable of turning 
all non-self-adjoint systems of the class admitted into equivalent self-adjoint 
forms for which an action functional can (at least formally) be computed. 

After a considerable library search (in addition to that reported in Volume 
I), I succeeded in tracing efforts back to Mayer (1896); additional relevant 
contributions were made by Davis (1931) and Havas (1957). All these con­
tributions deal specifically with the Indirect Lagrangian Problem and are 
reported in the Appendix along with the Newtonian reduction of my field 
theoretical studies on the topic (Santilli (1977c)). 

Even though the methods permitted the construction of Lagrangian 
representations for genuine nonconservative nonpotential systems, the lack 
of direct universality of the Inverse Lagrangian Problem was soon es­
tablished.8 This situation called for additional efforts. At this point the 

8 I should indicate from the outset that these limitations refer specifically to the Lagrangians 
of contemporary use in theoretical physics, those depending at most on the velocities (first-order 
Lagrangians ). 
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Independent Inverse Hamiltonian Problem became crucial. In essence, 
in Volume I, I had established the symbiotic character of the conditions of 
self-adjointness for first-order systems by ensuring: 1) the derivability from a 
variational principle, 2) the Lie algebraic character, and 3) the symplectic 
geometric structure. As indicated in Volume I, Hamilton's equations are 
only a particular case of these conditions of self-adjointness. The existence 
of more general equations preserving the analytic, algebraic, and geometric 
character was then ensured. I therefore proceeded to the identification of 
these broader equations as the most general possible form permitted by 
the conditions of self-adjointness. In this way, I "rediscovered" equations 
which had been proposed by Birkhoff (1927) without the algebraic and 
geometric techniques of the Inverse Problem. Their direct universality for 
systems of first-order ordinary differential equations resulted from an 
unexpected property identified by Havas (1973). Unlike second-order 
systems, first-order systems always admit (under sufficient topological 
conditions) a regular matrix of integrating factors which produces an 
equivalent self-adjoint form. The Birkhoffian representation of the systems 
is then consequential, and its explicit form can be computed via the Converse 
ofthe Poincare Lemma (Section 11.2). These studies are presented in Chapter 
4, jointly with a number of complementary topics such as the indirect 
Birkhoffian representation of Hamilton's equations, the algebraic signifi­
cance of the self-adjointness inducing and preserving transformations of the 
equations of motion, etc. 

The next step of my studies was predictable and consisted of reducing a 
direct Birkhoffian representation into an indirect Hamiltonian form through 
the transformation theory. By noting that the former is characterized by 
a general exact symplectic structure, while the latter is characterized by the 
fundamental one, the reduction is done simply by a Darboux's transforma­
tion. This is, in essence, the Theorem of Indirect Universality of the Hamil­
tonian Representations, presented in Chapter 6 by using variational self­
adjointness and its algebraic/geometric structures. Not surprisingly, the 
theorem was conceived first by Lie (1871) who, as part of the pioneering 
studies on the algebras and groups carrying his name, also probed the 
universality of their application to ordinary9 differential equations. Sub­
sequently, the problem was reinspected by Koenigs (1895), and the theorem is 
sometimes referred to in specialized literature as the Lie-Koenigs Theorem. 
This theorem is presented in this volume, however, for its direct geometric 
content (a manifestation of Darboux's theorem), rather than for its algebraic 
interpretation, as generally presented in the existing literature. 

Needless to say, seeing in this way that the Inverse Problem always admits 
a solution was rewarding for me, but, as the mature researcher well 
knows, whenever primary research objectives have been achieved, it is time 
to provide the utmost possible critical examination of the results. My sub­
sequent efforts have been devoted to the implications of the indirect nature of 

9 I am not aware of attempts by Sophus Lie to apply his theory to nonlocaljintegro-differ­
ential systems. 
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the universality of Hamiltonian representations. The results are presented 
as an application of the Theorem of Indirect Universality and consist of a 
technical identification of the fact that Galilei's relativity does not hold for 
Newtonian systems at large (closed non-self-adjoint systems of extended 
particles) and does hold for only a special class of systems (closed self-adjoint 
systems of particles admitting an effective pointlike approximation). This 
identifies the problem of the possible generalization of Galilei's relativity 
for closed non-self-adjoint systems via the isotopic generalization of con­
ventional Hamiltonian, Lie, and symplectic techniques, which is, perhaps, 
the most intriguing aspect of our analysis. 

My studies therefore confirm the traditional pattern of a continuing 
scientific process. The Theorems of Direct and Indirect Universality of 
Analytic Representations do indeed solve the most crucial aspects of the 
Inverse Problem. Jointly, however, the theorems identify new, rather funda­
mental, open problems, with particular reference to the relativity and under­
lying physical laws which are applicable to contact/nonpotentialjnon-self­
adjoint interactions. 

I can therefore conclude by saying that Newtonian mechanics, rather 
than having reached a terminal stage, is still open to new, potentially funda­
mental advances. 

March 26, 1981 
The Institute for Basic Research 
Cambridge, Massachusetts 

RUGGERO MARIA SANTILLI 
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Introduction 

The study of the systems of particles occurring in our environment has 
established the existence of a considerable variety of forces, such as 
Newtonian and non-Newtonian, potential and nonpotential, or local and 
non-local forces. 

La Newtonian and Non-Newtonian Forces 

Forces in Euclidean space E3 with local coordinates r (or in configuration 
space with generalized coordinates, qk, k = 1, 2, ... , n)l are called New­
tonian when they are independent of the accelerations and depend in 
general on time t, coordinates r, and velocities t, F = F(t, r, t) (or F = 
F(t, q, q)). The following are familiar examples of Newtonian forces: 

F = -kr; F = -yt; F = + QQ' r' 
- r3 ' (fl) 

Forces with an explicit dependence on the accelerations, F = F(t, r, t, r), 
are called non-Newtonian because they generally violate some of the 
principles of Newtonian mechanics (e.g., the principle that total accelera­
tion is given by the vectorial sum of the accelerations produced by each 

1 The notations of the preceding volume will be maintained throughout this volume (boldface 
letters for vectors, sum of repeated indices, etc.). They will be defined in footnotes only when 
necessary. Script letter of is used to refer to elements within the Introduction of the present 
volume. 
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individual force). Examples of acceleration-dependent forces occur in 
radiation damping, or in systems of coupled oscillators (where they are 
sometimes called acceleration couplings). 2 

I.b Potential and Nonpotential Forces 

A Newtonian force F(t, r, t) i~ said to be potential (non potential) when it 
verifies (does not verify) the integrability conditions for the existence of a 
potential energy U(t, r, t) according to the rule 

(f2) 

Potential forces represent action-at-a-distance interactions (e.g., Cou­
lomb interactions). Nonpotential forces represent instead contact inter­
actions (e.g., interactions occurring for motion within a resistive medium. 3 

I.c Local and Nonlocal Forces 

Consider a system of particles moving in vacuum at large mutual distances. 
In this case the shape and structure of the objects do not affect the dy­
namics. The objects can then be approximated as massive points. Under 
these conditions, the forces are local, in the sense that they occur at a 
number of isolated points. Nonlocal forces occur instead in the motion of 
extended objects within a resistive medium (e.g., a satellite in Earth's 
atmosphere) and in other systems whose dynamic evolution is affected 
by the shape and structure of the objects. In this case the forces call for a 
suitable integral form which represents the action occurring at all points 
of the surface (or volume) of the objects; e.g., 

F = - fff dr'K(t, r, r', t, t ', ... ), (f3) 

with the understanding that the non-locality can also be in time (see 
Mittelstaedt (1970) and, more recently, Trostel (1982». 

It is evident that local forces are often an approximation of nonlocal forces. 
In fact, forces of type (f3) are often approximated in mechanics via power-

2 For more details see Volume I, Appendix A.6. 
3 The reader should keep in mind the classification of Newtonian systems into conservative, 

dissipative, and dynamical (or nonconservative), given in Volume I, Appendix I.A, for which the 
total mechanical energy is conserved, monotonically non-increasing in time, and arbitrarily 
(but continuous) varying in time, respectively. Only the conservative systems of this classification 
admit potential forces. The forces of all the remaining systems are generally nonpotential. 
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series expansions in the velocities truncated at a power selected on the basis 
of experimental information, 

II ds K(t, r, t, ... ) ~ ytt + Y21tlt + Y3t2t + .... (.F.4) 

For instance, the simplest conceivable resistive force is given by the ex­
pression linear in the velocity F = - Y t t. A first improvement of the approxi­
mation can be accomplished by adding a term quadratic in the velocity, 
F = -ytt - Y2ltlt. The subsequent improvement, which is needed particu­
larly for high speed, is given by adding a term cubic in the velocity, F = 

-ytt - Y21tlt - Y3t2t, thus yielding a truncated power series of type (.F.4). 
The analysis of the preceding volume has been restricted to local New­

tonian forces which are either potential or non potential. The study of 
non-Newtonian and/or nonlocal forces will be excluded from this volume as 
well (apart from occasional mention). In Chapters 1.2 and 1.3 we established 
the integrability conditions for a force to be of potential type, which became 
known as the conditions of variational self-adjointness. The methods for the 
computation of a potential from the force, when all integrability conditions 
are verified, were also established. 

Reviewing the following elemental properties may be advantageous. 

Theorem J.l (Self-Adjoint Newtonian Forces, Theorem 1.2.2.2, p.1.67, 
and Charts 1.3.8 and 1.3.9, pp. I. 192-1.195). A necessary and sufficient 
conditionfor a local class ret Newtonianforce F(t, r, t) to be derivablefrom a 
potential U(t, r, t) according to Rule (J.2), is that theforce is at most linear in 
the velocity, i.e., it is of the type 

Fi = Pi/t, r);J + (Ji(t, r); i,j = x, y, z, (J.5) 

and all the following conditions of variational self-adjoint ness 

Pij + Pji = 0, (J.6a) 

OPij 0Pjk 0Pki 
ork + ori + orj = 0, (J.6b) 

OPij O(Ji O(Jj 
ot orj - ori ' 

(J.6c) 

are identically verified in a star-shaped neighborhood of a point (t, r). In this 
case the potential can be computed from the force according to the rule 

u= _rk fdrFk(t,rr,rt) 

= Bk(t, r)fk + C(t, r). 

(J.7) 

The relativistic extension of the theorem has been studied in Santilli 
(1978b) and the field-theoretic generalization in Santilli (1977a,b,c). 
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As clearly established by Theorem "'1, the conditions of self-adjointness 
constitute a mathematical tool for the rigorous treatment of the physical 
notion of potential. When all the conditions of the theorem are verified, we 
have a self-adjoint force F SA, and a potential exists. When at least one of the 
conditions of the theorem is violated, we have a non-self-adjoint force F NSA, 

and a potential does not exist. 4 

Corollary J,la, A necessary condition for a function U(t, r; r) to be the 
potential of a Newtonian force is that it is at most linear in the velocity. 

This property is clearly a consequence of condition (.,,5), and it is expressed 
via the last form of (.1".7). It has been recalled here because ofa tendency in the 
contemporary literature of theoretical physics (particularly in high energy 
physics) to call "potential" any sufficiently smooth function U(t, r, t). As we 
shall see, unless the condition of linearity in the velocity is met, the potential 
U(t, r, t) is really representative of nonpotential forces. 

When all forces are self-adjoint, the equation of motion for an uncon­
strained Newtonian particle in Euclidean space admits the so-called ordered 
direct Lagrangian representations (Section I.3.4) 

d oL oL _ .. FSA( ') 
dt or" - ork = mrk - k t, r, r , 

1 ,2 U( ') L =, 2 mr - t, r, r . 

k=1,2,3; 

with a natural generalization to a system of particles. 

(.,,8a) 

(.,,8b) 

The integrability conditions for the existence ofthese representations were 
studied in detail in the preceding volume for the more general case of local 
Newtonian systems with holonomic constraints, the so-called fundamental 
form of the equations of motion in configuration space (Section I. A. 7) 

k = 1,2, ... ,no (.1".9) 

Unconstrained Newtonian systems are a particular case of this form obtain­
able via the identification of the generalized coordinates qk with the Cartesian 
coordinates ri in a given ordering and of the term Aij with the mass tensor 

m(jij' 

4 One of the most general self-adjoint forces possible is the Lorentz force F = e( E + t x B). 
In fact, besides being linear in the velocity, the force has the most general possible structure 
verifying all the conditions of Theorem J.1 (see Example 1.2.7, p. 1.105, for detail). Non-self· 
adjoint forces are structurally more general than the Lorentz force because they are generally 
nonlinear in the velocity. Notice, however, that linear velocity-dependent drag forces F = -yt 
are non-self-adjoint because they violate conditions (J.6a). Notice also that velocity-independent 
non-self-adjoint forces are conceivable. 
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Lagrange's equations5 in configuration space are given by the familiar 
form 

d oL(t, q, q) oL(t, q, q) 

(flO) 

5 The reader should recall from the preceding volume that the equations customarily referred 
to as "Lagrange's equations" (and "Hamilton's equations") in the contemporary physical 
and mathematical literature are not the equations originally conceived by Lagrange and Hamil­
ton. The latter are those with external forces, i.e., 

doL oL 
-~ -~= Fk 
dt oil oqk 

.k oH 
q = op; 

oH 
1\ = - --. + Fk • 

oq 

Only since the beginning of this century have the "true" Lagrange's and Hamilton's equations 
been "truncated" via the removal of the external terms, by acquiring the form of conventional 
contemporary use. The methodological implications of this "truncation" are considerable. 
Hamilton's equations without external terms possess a Lie algebra structure, while those with 
external terms violate the conditions for a Lie algebra and verify instead those for a more general 
algebra called Lie-admissible (Santilli (1978c), Myung, Okubo, and Santilli (1978 a,b». This 
volume (as well as the preceding one) is devoted to the I nverse Lie Problem, that is, to the methods 
for the construction of a representation of given, generally nonconservative systems, via equa­
tions possessing a Lie algebra structure. The use of the equations originally conceived by 
Lagrange and Hamilton characterizes instead the more general Inverse Lie-Admissible Problem. 
This latter problem will not be considered in this volume, apart from a few incidental comments 
(see Chart 4.7). 

Finally we should indicate here that the extension of (J.lO) to field theory which is rather 
universally used in the contemporary physical literature, 

/1 = 0, 1, 2, 3, k = 1,2, ... , N 
k: _ oql 

CfJ# - ox# 

is erroneous under the known, internationally accepted meaning of the symbol %x# as repre­
senting partial derivatives. The correct equations are those with total derivatives d/dx# as in 
(. ~ 10) and are explicitly given by 

The erroneous character of the equations with a partial derivative has been established by San­
tilli (1977a,b,c) by proving that the equations are not self-adjoint, and therefore they are not deriv­
able from a variational principle, contrary to a rather popular belief. Note that for quadratic 
Lagrangians the equations formally yield correct equations of motion. However, for sufficiently 
nontrivial Lagrangian structures, the equations with partial derivatives yield wrong field equa­
tions, trivially, because of the omission of several terms. Predictably, this is an occurrence of the 
physical literature without a counterpart in the mathematical literature. For instance, the mathe­
maticalliterature in the calculus of variations for multiple integral path functions unanimously 
uses and stresses the need of total derivatives in the Euler's necessary condition. 



6 Introduction 

A crucial property for the existence of a representation of (5.9) with (5.10) 
is given by the following theorem. 

Theorem J.2 (Self-Adjointness of Lagrange's Equations, Theorem 
1.3.3.1, p.UlS). Regular class C(J2 Lagrange's equations (5.10) are always 
self-adjoint (tha,t is, they are self-adjoint for all possible Lagrangians 
L(t, q, q». 

A main result of the preceding volume was the following property. 

Theorem J.3 (Fundamental Analytic Theorem for Configuration Space 
Formulations, Theorem 1.3.5.1, p. 1.131, and Chart 1.3.11 p.l.196). A 
necessary and sufficient condition for a local system (5.9) which is well­
defined, of at least class C(J2, and regular in a star-shaped region fJf* of the 
variables (t, q, q), to admit an ordered 6 direct analytic representation in terms 
of Lagrange's equations in fJf*, 

d aL a1. _ . "i • 
dt ael - al' = Ak;(t, q, q)q + Bk(t, q, q), (5.11) 

6 The ordering refers to the equations of motion and to Lagrange's equations, under the 
condition that these independently selected orderings verify identities (..f.11). To elaborate on 
this important point, consider the equations of motion. The first step for the construction of a 
Lagrangian (or a Hamiltonian) is the selection of the ordering in which the individual equations 
will be treated. This ordering is quite important for the Inverse Problem, because the self­
adjointness or non-self-adjointness of a system is not necessarily invariant under permutations of 
the ordering. This property was illustrated in Volume I a number oftimes. For instance, system 
(1.3.4.13) or (1.3.4.19), pp. 1.125-1.126, i.e., 

{~j, + b~, + w:q , = 0 
l/2 - bq2 + W q2 = 0 

{ib - biI2 + W2l/2 = 0 

iii + biI, + w2q, = 0 

is non-self-adjoint in the ordering (q" q2) and self-adjoint in the permuted ordering (q2' q,). A 
fully similar sitation occurs for Lagrange's equations which are self-adjoint in the ordering 
k = 1,2,3,4,5, etc., but generally non-self-adjoint in an arbitrarily selected ordering, e.g., 
k = 5,4,1,2,3, etc. In conclusion, the left-hand side ofldentities (Ill) has the natural ordering 
k = 1,2,3, etc., while the right-hand side has, in general, a different ordering, always selected in 
such a way that Identitie (..f.11) hold for a given Lagrangian. This situation was illustrated in 
Section 1.3.4 with the example 

L = iI,iI2 + !b(q,Q2 - Q,q2) + W2Q,q2, 

where Lagrange's equations have the ordering (q" q2)' and the equations of motion have the 
inverted ordering (Q2, q,). It is hoped that these remarks provide more details on the notion 
of ordering introduced in Section 1.3.4. 
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is that all the following conditions of variational self-adjointness of the 
equations of motion are verified in ~*: 

aAij aAkj 
ail ail' 

aBi aBj {a 'k a } aqj + aqi = 2 at + q aqk Aij , 

aBi aBj _ 1 {a 'k a }(aBi aBj) 
aqj - aqi -:2 at + q al aqj - aqi . 

(fI2a) 

(fI2b) 

(fI2c) 

(fI2d) 

In this case a Lagrangian can be computed from the equations of motion 
according to the rule 

+ :t f d, f d,' 74 Aki(t, ,q, ,,' q)qi. (f13) 

Alternative methods for the computation of a Lagrangian were provided 
in Section 1.3.6. An interpretation of the structure of the Lagrangian was 
conducted in Section 1.3.7. A number of additional properties and examples 
completed the study. 

In order to complete the analysis of Volume I, in the Appendix of this 
volume we shall identify the limitations of Lagrange's equations, with partic­
ular reference to their inability to represent a sufficiently broad class of local, 
Newtonian, non-potential systems in the frame of the observer. These 
limitations have motivated the search for a generalization of the Hamiltonian 
Mechanics reported in the main chapters of this volume. 

It should be indicated from the outset that the limitations considered refer 
to Lagrange's equations of the contemporary literature, those in first-order 
Lagrangians (i.e., Lagrangians for which the maximal total derivative of the 
dependent variable is of first-order, L = L(t, q, q». As we shall see in Chapter 
4, if this restriction is lifted, and second-order Lagrangians (L = L(t, q, q, ij» 
are admitted, new possibilities arise. However, the physical implications for 
acceleration-dependent generalizations of conventional Lagrangians are 
predictably non-trivial. 

Also, the limitations considered exclude the use of velocity-dependent 
transformations, qk --+ q~(t, q, q), and imply the restriction of the transforma­
tion theory to the conventional point transformations of the contemporary 
literature. This restriction is suggested by a number of open problems 
inherent in velocity-dependent transformations, including the possible loss 
of the second-order character of the conventional Lagrange's equations. 

The following introductory remarks may be helpful for a better identifica­
tion of the limitations under consideration. 
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Consider an unconstrained Newtonian system with self-adjoint forces, such 
as the one-dimensional harmonic oscillator. The system verifies the condi­
tions of Theorem f3, a Lagrangian exists, and we can write 

d oL oL .. 
dt of - or == (mr + kr)SA' (J.l4) 

Suppose now that the system is represented more realistically by adding a 
drag force linear in the velocity. In this case the system becomes non-self­
adjoint, and a Lagrangian for its direct representation does not exist; i.e., 

doL oL [( - k) 'J - -. - -- i= . mr + r SA + yr NSA' 
dt or or 

(f1S) 

However, a Lagrangian can still exist for the representation of an equivalent 
equation of motion, provided that it is self-adjoint. In this way, the problem 
of the existence of a Lagrangian is reduced to whether a given non-self­
adjoint system admits an equivalent self-adjoint form. 

The latter problem can be studied with or without the transformation 
theory. We shall study it first without the transformation theory in order to 
identify the limits of representational capabilities of Lagrange's equations 
in the coordinates and time variables actually used in experiments (Section 
A.I). Once this has been achieved, we shall study the generalization of the 
methods with the transformation theory (Section A.3). 

The condition that the local variables (t, r, t) are not transformed restricts 
the possibilities of constructing equivalent systems to those provided by the 
multiplication of a regular matrix of factor functions, or integrating factors. 
The indirect Lagrangian problem within a fixed system of local variables can 
therefore be written in Euclidean space 7 

:t ~~ - ~~ == {h~(t, r, t)[(mri - /;Ct, r, t))SA - Fi(t, r, t)JNSAhA' (f16a) 

det(hi)(t, r, f)(~) i= 0, (f16b) 

with a self-evident generalization in configuration space under holonomic 
constraints. The regularity8 of the matrix (hi) ensures its invertibility and 
thus the capability of recovering the equations of motion as they originate 
from the second law. The equivalence between the original and the trans­
formed equations is then trivial. 

7 Notice that the multiplicative functions h{(t, r, t) do not depend on the highest derivative 
(accelerations) to preserve not only the origmal solutions but also the structure of Lagrange's 
equations. The same rule will be used for other types of representations considered later on. 

S The notion of regularity was introduced in Section 1.1.1 and will be elaborated upon shortly. 
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For the case of the linearly damped harmonic oscillator we have the fol­
lowing solution (Example 1.3.2, p.1.2I0) 

d oL oL _ {(y/m)t[(.. k) 'J} 
dt of - or = e mr + r SA + yr NSA SA, (f17a) 

L = e(y/m)t!(mf2 - kr2). (J.17b) 

As we shall see, despite the capability of representing a considerable class 
of Newtonian systems, the indirect Lagrangian representations are not 
universal, that is, capable of representing all Newtonian systems of the class 
admitted. This limitation motivates the Birkhoffian generalization of 
Hamiltonian mechanics to be studied in the subsequent chapters. 

The general assumptions used in this volume are the following. The analysis 
of the preceding volume was conducted for systems of second- (first-) order 
differential equations which are of class Cf/2 (Cf/l), as recalled in Theorem J.1 
(J.3). Unless otherwise specified, all systems considered in this volume will 
be assumed to be analytic, that is, admitting a convergent multiple power­
series expansion in the neighborhood of a point of the local variables.9 The 
condition is essentially suggested by the existence theory of partial differential 
equations which will be used in the proof of the main theorems. 1 0 For the 
reader's convenience, we have reviewed in Chart A.I (A.2) the notion of 
real (complex) analyticity and in Chart A.3 the Cauchy-Kovalevski theorem 
on the solution of partial differential equations. As we shall see, this theorem 
is often useful for the solution of the conditions of self-adjointness in the 
integrating functions hI. 

The smoothness condition above will be referred to a region in the space 
of the local variables, that is, an open neighborhood of a given point. Unless 
otherwise specified, the open region will be assumed to be star-shaped (and 
denoted with the symbol ~*) in order to comply with the converse of the 
Poincare lemma (Section 1.1.2). All points considered will be assumed to be 
regular points in the sense reviewed in Chart A.I. 

Finally, all systems considered will be assumed to be regular in ~*, that is, 
their functional determinant (Section 1.1.1) is non-null in the region con­
considered. The possible existence of a countable number of isolated zeros 
was considered in the preceding volume and will be ignored here. Recall that 
the functional determinant of fundamental form (f9) is given by 

Jff(~*) ,g, I Aij I (~*), (J.18) 

9 Clearly, the condition of analyticity includes that of class \&'''', but the converse is not neces­
sarily true. 

10 As presented in detail in Volume I, the equations to be represented (Newton's equations 
of motion) are ordinary differential equations, but the equations used for the representation 
(Lagrange's equations) are partial differential equations, as expressed by explicit form (flO) as 
well as by the conditions of self-adjointness (5.12). Equivalently, we can say that when a Lag­
rangian in identities (Ill) is known, the equations are ordinary, but when a Lagrangian must 
be computed from the equations of motion, the system to be solved consists of partial differential 
equations. 
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and that of Lagrange's equations is 

Jf(~*) = la:i2~qjl(~*). (.9'.19) 

These determinants are functions of the local variables (t, q, q) (or (t, r, t». 
The condition that they are non-null in ~* has a number of consequences, 
such as the applicability of the theorem on implicit functions (Theorems 1.1.1.1 
and 1.1.1.2 p. 1.18-1.20). The existence of the implicit functions for all systems 
(.9'.9) then follows; they are unique and can be written 

(.9'.20) 

The corresponding form of the equations of motion is given by 

(.9'.21) 

and was called the kinematical form (Section 1.1.1).11 
Two or more functionally different systems in the same variables will be 

said to be equivalent when their implicit functions fk coincide. This definition 
of equivalence is sufficient for the analysis ofthis volume. In fact, the existence 
theory for ordinary differential equations as presented in the mathematical 
literature (see Section 1.1.1 for a review) is based on the computation of the 
implicit functions, reduction of the system to a first-order form, and use of the 
various techniques for the solution. The identity of the systems of implicit 
functions then ensures the identity of the solutions. 

Two or more systems in different variables are said to be equivalent when 
the transformations connecting these variables are invertible, single-valued, 
smoothness-preserving, and leading to the same implicit functions for each 
considered set of variables. The preservation of the uniqueness of the implicit 
functions under a change of variables then ensures the equivalence of the 
systems considered. 

Throughout our analysis we shall use the notation SA (self-adjoint) or 
NSA (non-self-adjoint) for Newtonian forces (systems of differential equa­
tions) to denote the verification or lack of verification, respectively, of the 
integrability conditions for the existence of a potential (or a Lagrangian). 
Therefore, F SA implies the existence of a potential U according to Theorem 
.9'.1, while F NSA implies the violation of at least one condition of this theorem. 
Similarly, the notation 

(.9'.22) 

11 The kinematical form of unconstrained Newtonian systems is given by 

k = 1,2, ... , N. 

Recall from Section 1.2.2 that when the forces are self-adjoint, but the masses are different, the 
kinematical form is non-selfadjoint and, as such, cannot be directly represented via Lagrange's 
equations. This confirms the importance of the second law in Newtonian mechanics and the 
related form of the equations of motion, mi' - F = O. 
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indicates the property (or condition) that the system verifies Theorem J.3 
and that Lagrangian (J.13) exists. Similarly, the notation 

(J.23) 

indicates that the system violates at least one of the conditions of Theorem J.3. 
The analysis will be primarily conducted in terms of the independent vari­

able t, the dependent variables qk = qk(t), and their derivatives. Cartesian 
coordinates r will be used whenever useful to illustrate physical aspects. 



CHAPTER 4 

8 i rkhoff' s Equations 

4.1 Statement of the Problem 

As is well-known, the study of Newtonian systems in first-order form permits 
the achievement of a remarkable symbiosis among analytic techniques (e.g., 
canonical formulations of variational principles), algebraic techniques (e.g., 
theory of Lie algebras), and geometric techniques (e.g., the symplectic and 
contact geometries). The availability of these powerful mathematical tools 
then renders the study important for several aspects of mechanics, ranging 
from practical applications (e.g., treatment of systems via the Hamilton­
Jacobi theory) to formal problems (e.g., coordinate-free globalizations). 

Within the context of the Inverse Problem, the study of systems in first­
order form has an additional relevance for achieving universality, that is, the 
representation of "all" systems of the class admitted via a conventional 
variational principle. 1 A study of the problem reveals that the universality 
of the Inverse Problem is (at least) threefold. We have first a direct universality, 
that is, universality in the coordinates of the experimenter. We then have an 
indirect universality, that is, universality achieved via transformation theory. 

1 A considerable variety of" variational principles" exists in the literature, ranging from those 
constructed as particularization of "variational problems" (see Section 1.1.3 for details), to 
special versions whose variations satisfy subsidiary constraints (see footnote76 of Chart 5.7 for 
an example). The phrase "conventional variational principles" is used here to stress the fact 
that the variations are the conventional ones of Hamiltonian mechanics. The actions, on the 
contrary, have integrands with unrestricted functional dependence in the local variables. 

12 
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Finally, we have a coordinatejree universality achieved through coordinate­
free global geometric techniques. 

In Volume I we established the integrability conditions for the existence of 
a Hamiltonian representation without necessary prior knowledge of a 
Lagrangian (Independent Inverse Hamiltonian Problem); we worked out 
methods for the computation of a Hamiltonian from the equations of 
motion; and we identified the analytic, algebraic, and geometrical meanings 
of the integrability conditions which, predictably, turned out to be the condi­
tions of variational self-adjointness for first-order systems. 

In this chapter we establish the direct universality of the Inverse Problem 
for Newtonian systems which, besides being local, analytic, and regular, are 
otherwise unrestricted. This includes a large variety of systems of contem­
porary use in mechanics, such as trajectory problems, spinning and oscil­
latory motions with damping terms, etc.2 The direct universality is then 
extended to systems of arbitrary (but finite) order and dimensiol).ality, as well 
as arbitrary (i.e., not necessarily Newtonian) interpretation. Indirect uni­
versality is studied in the next chapter, and that of coordinate-free type is 
pointed out in the geometric parts of our analysis. 

In this section we review, for the reader's convenience, the main results of 
the preceding volume on first-order systems, and then reach a more detailed 
statement of the problem for each of the analytic, algebraic, and geometric 
profiles. The interrelations between these seemingly different aspects are 
pointed out too, to illustrate the unity of thought in mechanics. 

4.1.1 Reduction of Lagrange's Equations to the 
Hamiltonian Form. 

The reduction (studied in detail in Section 1.3.8) is trivial for conservative 
Lagrangians but not so for arbitrary Lagrangians, in which case a sound 
knowledge of the Theorem on Implicit Functions (Section 1.1.1) and its 
applications is essential. 3 

2 Note that the analysis of this volume excludes the more general non local (integral) non­
potential (non-self-adjoint) systems. These latter systems call for methods correspondingly more 
general than those of Lie-symplectic type, such as those of Lie-admissible type (see Chart 4.7). 

J During my experience as a teacher of mechanics for graduate students, I have found the best 
opening test of the students' knowledge of Lagrange's and Hamilton's equations is the following. 

Assign a Lagrangian with a structure more general than L = T - V and ask the students to 
compute the equations of motion or the Legendre transform. Unless the students have been speci­
fically exposed to the full form (..1.10) of Lagrange's equations or to the methods reviewed in 
Section 1.1.1 for the construction of the implicit functions, they often fail this seemingly simple 
test. The failure rate on corresponding tests in field theory was even greater, owing to the er­
roneous way that Lagrange's equations for continuous systems are often written in contemporary 
literature, as pointed out in footnoteS of the Introduction. This is not surprising, owing to a 
rather widespread tendency to remain at the level of a Lagrangian and ignore the equations of 
motion. The Inverse Problem is intended to prevent or otherwise minimize fundamental 
deficiencies of this type, because an in-depth knowledge of the structure of Lagrange's and 
Hamilton's equations is f cused rather naturally. 
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The reduction is centered in the well-known prescriptions for the char­
acterization of the new independent canonical momenta 

aL def ') Pk = afk = Mk(t, r, r , k = 1,2" .. , n, (4.1.1) 

under the regularity condition 

(aMi) ( a2L ) det afi (9P) = det afi afi (9P) # 0, (4.1.2) 

which, together with the assumed smoothness conditions, assures the exis­
tence of a unique set of implicit functions in the velocities 

(4.1.3) 

Once (and only once) implicit functions (4.1.3) have been computed 
explicitly, the Hamiltonian can be expressed in the canonical variables, 
according to the rule 

H(t, r, p) = fkPk - L(t, r, t) 

= Nk(t, r, P)Pk - L[t, r, N(t, r, p)], 

with underlying (invertible) properties 

yk = N k = aH 
apk 

oL aH 
~')rk = - ork 

i7L 
ot 

Lagrange's equations then become 

aH 
at 

doL , aL aH 
dt ayk= Pk = 00 = - ark' 

(4.1.4) 

(4.1.5a) 

(4.1.5b) 

(4.1.5c) 

(4.1.6) 

The combination of Equations (4.1.5a) and (4.1.6) yields the celebrated 
Hamilton's equations without external terms4 

(4.1.7) 

4 The reader should keep in mind from footnote 5 of the Introduction that Equations (4.1.7) 
are the "truncated Hamilton's equations." 
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which can be written in the unified form 

where 

'Il _ Ilv oH(t, a) - 0 
a W ::l -, 

vav 
J1. = 1, 2, ... , 2n, 

J1. = 1,2, ... , n, 

J1. = n + 1, n + 2, ... , 2n, 

(4.1.8) 

(4.1.9a) 

(4.1.9b) 

Equations (4.1.8) are of the contravariant5 type. The equivalent covariant5 

form is given by 

·V _ oH(t, a) _ 0 
wilva oa" -, (4.1.10) 

where 

( ) -(11 a.PII-1) _ ( Onxn wllV - W IlV - +1 
nXn 

(4.1.11) 

Throughout our analysis we shall ignore conventional form (4.1.7), as we 
did in the preceding volume, and consider Hamilton's equations only in their 
unified covariant and contravariant forms. This is done for several reasons. 
First, the conditions of variational self-adjointness can be readily formulated 
in the unified a notation, while they become rather impractical to handle 
in the disjoint (r, p) notation, as we shall see. Second, the use of the unified 
notation turns out to be particularly valuable for the identification of the 
desired generalization of Hamilton's equations (Birkhoff's equations). Third, 
Hamilton's equations in the unified notation exhibit in a rather transparent 
way the interrelation between the analytic, algebraic, and geometrical 
profiles according to the following lines. 

1. Analytic Profile. The well-known derivability of the equations from 
Hamilton's variational principle in phase space (Section I. 1.3) can be written 
in the unified notation as follows. Introduce the action. 

i l2 

deE) = dt[Pkf' - H(t, r, p)J(E) 
11 

i l2 

<)g dt[R~(a)aV - H(t, r, p)J(E) 
11 

RO = {Pv, 
v 0, 

v = 1,2, ... , n 

v = n + 1, n + 2, ... , 2n 
(4.1.12b) 

5 Since we have not yet introduced the symplectic geometry, the terms "contravariant" 
and "covariant" are used, for example, in the sense of the affine geometry of Charts I.A.12 and 
I.A.13. 
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where E is a possible path in phase space. The first-order contemporaneous 
variations with fixed end points then provides the following form of Hamil­
ton's principle, 

it2 {a a } c5d(E) = t1 dt c5al-' oal' + c5al-' oal-' (R~aV - H)(E) 

= 112 dt[(~Re aV _ OH)c5al-' + RO c5al-'] (E) 
oal-' oal-' I-' 

I, 

= 112 dt[(~Re aV _ OH)c5al-' _ ROc5al-'](E) 
13al-' oal-' I-' 

1, 

= 112 dt[(~'lRe _ OR~)av _ OH] c5al'(E) = 0 
I, cal-' oaV oal-' 

(4.1.13) 

which can hold identically if and only if Hamilton's equations hold, i.e., 

(4.1.14) 

where we have used the easily verifyable identities 

oRo oRo 
v I-' - 0) • 

oal-' - oav = I-'V' 
j.l, v = 1, 2, ... , 2n. (4.1.15) 

Note that the equations originating from the variational principle are those 
of the covariant type (4.1.10). 

2. Algebraic Profile. The contravariant tensor O)I-'V is called thefundamental 
Lie tensor (or fundamental cosymplectic tensor) because it characterizes a 
fundamental realization of the Lie algebra product, that via the conventional 
Poisson brackets, according to the structure of the time evolution law for 
functions A(a) in phase space 

. oA oA voH 
A(a) = --al' = -0)1-' -

oaP oal-' oav 

== oA oH _ oA oH ~ [A, BJ. 
ark OPk OPk ark 

(4.1.16) 

Note that the form of Hamilton's equations characterizing the algebraic 
profile is contravariant. 

3. Geometric Profile. 6 The covariant tensor O)I-'V is called the fundamental 
symplectic tensor, because it characterizes the fundamental symplectic 
structure on the cotangent bundle T* M with local charts (coordinates) I' 

_1 dl-' dV=d dk 0)2 - 2 Wuv a /\ a - Pk /\ r. (4.1.17) 

6 A more technical treatment of th,: geometric aspect is presented in Charts 4.4-4.6. 
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Note that the form of Hamilton's equations characterizing the geometric 
profile is covariant. 

The deep interrelation between the analytic, algebraic, and geometric 
profiles is now self-evident. For instance, one can consider the canonical 
one1orm 

(4.1.18) 

as (a component of) the integrand of the action 

II2 

.9I(E) = (R~ dav - H dt)(E) 
II 

(4.1.19) 

and thus of the variational profile. The fundamental symplectic structure is 
nothing other that the exterior derivative of one-form (4.1.18), i.e., 

dR~ = ! (OR~ _ OR~)dall A dav 
2 oall oav 

(4.1.20) 

The fundamental Lie tensor is then given by the elements of the inverse of 
the matrix of the fundamental symplectic tensor, i.e., 

(4.1.21) 

As we shall see in the next section, the formulation of Hamilton's equations 
according to Equations (4.1.8)-(4.1.21) sets the way for a quite natural 
generalization which is capable of preserving the underlying analytic, 
algebraic, and geometric characters. 

4.1.2 Reduction of Newton's Equations to a 
First-Order Form. 

Suppose that a Newtonian system is assigned as originating from the second 
law, i.e.,7 

k = 1,2, ... , n. (4.1.22) 

7 The generalization to a system of Newtonian particles with different masses is trivial and 
will not be presented here to avoid unnecessarily complex notations. Theorem 4.5.1 on the direct 
universality of the Inverse Problem, however, will be formulated and proved for Newtonian 
systems with different masses. 
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The Independent Inverse Hamiltonian Problem consists of the direct 
computation of a Hamiltonian, that is, without the intermediate computation 
of a Lagrangian and subsequent use of the Legendre transform. The problem 
(studied in detail throughout the preceding volume) is crucially dependent 
in the reduction of systems (4.1.22) to equivalent first-order forms. The 
reduction (studied in Sections 1.2.4 and 1.2.5) is based on the doubling of the 
number of equations which, in turn, demands the introduction of new 
independent variables. Since a Lagrangian is not necessarily known, canonical 
prescriptions (4.1.1) are not necessarily known. However, new independent 
variables, say, Yk' k = 1,2, ... , n, can be introduced via an arbitrary selection 
of n functions M k(t, r, t) 

(4.1.23) 

under the regularity condition 

(OM.) 
det oj-i' (~) i= 0 (4.1.24) 

which, together with sufficient smoothness conditions, ensures the existence 
and uniqueness of the implicit functions in the velocities, 

(4.1.25) 

Prescriptions (4.1.23) are conceived to have the same functional depen­
dence of canonical forms (4.1.1). The new variables are denoted with a symbol 
other than the traditionally used "p" to stress the fact that they are not 
necessarily canonical. The Independent Inverse Hamiltonian Problem can 
then be reduced to the integrability conditions for prescriptions (4.1.23) to be 
canonical. When this property has been ensured (and only then), the variables 
Yk are canonical, and one can use the identifications Yk = Pk without risking 
errors in elaborations or applications of the theory. 

Once prescriptions (4.1.23) have been selected (and understood), the 
reduction of system (4.1.22) to an equivalent first-order form is straight­
forward. In fact, we can write 

In view of the assumed regularity conditions, we have 

Yk = ..!.. °Yk (Fi - m oN.i Ni _ m ONi) 
m ONi or} ot 

~ 0k(t, r, y) (4.1.27) 



Statement of the Problem 19 

The combination of Equations (4.1.25) and (4.1.27) then yields the desired 
form which, in unified notation, can be written 

a" - 3/(t, a) = 0, Il = 1, 2, ... , 2n, (4.1.28a) 

Il = 1, 2, ... , n, 

Il = n + 1, n + 2, ... , 2n. 

(4.1.28b) 

The equivalence between forms (4.1.22) and (4.1.28) is ensured by the fact that 
the reduction is everywhere uniquely invertible, which the reader is en­
couraged to verify. 

Equations (4.1.28) are called the normal first-order form of the equations 
of motion, or Newtonian vector-field form. 8 A more general form can be 
achieved by multiplying a regular matrix of functions 

( h(1l(t, r, y)~ h(2l(t, r, y)ki)[fi - Ni(t, r, y)] = 
h(3l( ) h(4l( )i . 0 ( ) 0, t, r, Y ki t, r, Y k Yi - i t, r, y 

which can be written in the self-explanatory unified notation 

Il = 1, 2, ... , 2n, 

(4.1.29a) 

(4.1.29b) 

(4.1.30a) 

(4.1.30b) 

(4.1.3Oc) 

The above equations are called the general first-order form of the equations 
of motion. Their equivalence with Equations (4.1.22) is trivially ensured by 
regularity condition (4.1.30c), and the equivalence of form (4.1.28) with the 
original system. Note that the normal form is contravariant, while the general 
form is covariant.9 This is already sufficient to establish that only the general 
first-order form can be derived from a variational principle in a direct way (that is, 
without equivalence transformations), while the normal form cannot. 

Clearly, among all possible general forms, that which is important for the 
direct representation via Hamilton's principle is characterized by the identi­
fications ellv == wilV • The corresponding form can be written 10 

Il = 1, 2, ... , 2n, (4.1.31) 

8 We shall call the quantities 3 P Newtonian vector fields to distinguish them from the geo­
metric vector fields which are given instead by 3 = 3 P%aP• See in this latter respect Chart 4.4. 

9 Additional forms were considered in Volume I, such as the covariant normal form and the 
contravariant general form. For brevity, these latter forms will not be considered here. 

10 The fundamental symplectic tensor is not necessarily the lowering tensor of vector field 3 P• 

Equivalently (Chart 4.5), the vector field is not necessarily Hamiltonian. Equations (4.1.31) 
represents a scripture which is useful to see, in practice, whether or not the vector field considered 
is Hamiltonian. 
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and it is called the covariant normal form. In fact, Hamilton's principle in its 
conventional formulation is capable of recovering only the fundamental 
symplectic tensor W IlV , and not the more general tensors CIlV • 

To summarize, the reduction of second-order Newton's equations to an 
equivalent first-order form suitable for the Independent Inverse Hamiltonian 
Problem calls for the implementation of the following steps: (a) select 
prescriptions (4.1.23); (b) compute the corresponding normal form (4.1.28); 
and (c) write it in the" H amiltanian-type" form (4.1.31). Explicit examples 
are given at the end of Chapter 1.3. 

The degrees of freedom in reaching a general first-order form are clearly 
essential for the Inverse Hamiltonian Problem. Note that each given system 
(4.1.22) admits an infinite variety of equivalent normal forms, one per each 
selected set of prescriptions (4.1.23). As a result, each given Newtonian system 
admits a double infinity of equivalent general first-order forms, the first 
characterized by prescriptions (4.1.23) and the second by a multiplicative 
matrix. 

As we shall see, achieving the universality of the Inverse Problem is 
crucially dependent on these degrees of freedom. Notice that equations of 
motion in the second-order form admit only a simple infinity of equivalent 
forms, those characterized by a regular matrix of multiplicative functions, as 
in (f16). The reduction to a first-order form therefore doubles the degrees of 
freedom in writing the equations of motion, with self-evident advantages for 
the Inverse Problem. 

The reduction of third- (and higher) order systems to an equivalent 
first-order form will be considered in Chart 4.3. The reduction for the case of 
equations with an arbitrary interpretation in Mechanics, Engineering, 
Biology, and other branches of science is self-evident, and it will be left to the 
interested reader. 

4.1.3 Conditions of Variational Self-Adjointness 
for First-Order 

The conditions were studied, apparently for the first time, by Santilli (1978c), 
and then considered in detail in Volume I of the present work (Sections 
1.2.6,1.2.7, and 1.2.8). The quotation of the following theorem may assist the 
reader in avoiding excessive consultations of the literature. 

Theorem 4.1.1 (Self-Adjointness of the Covariant General Form, 
Theorem 1.2.7.2, p. 1.87). A necessary and sufficient condition for a class 
~1 system (4.1.30) to be self-adjoint in a region ;j of points (t, a) is that all 
the follOWing conditions 

CIlV + CVIl = 0, (4.1.32a) 

oCIlV oCVt oCtll _ 0 
oat + oall + oav - , 

(4.1.32b) 
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j.l, v, 1" = 1, 2, ... , 2n 

are identically verified in !!t. 

(4.1.32c) 

If at least one condition in Equation (4.1.32) is violated, system (4.1.30) is 
called non-self-adjoint. Note that the continuity conditions ellv , DIl E C6'1 are 
sufficient for the formulation and proof of the theorem. Nevertheless, its use 
throughout this volume will refer to the more restrictive condition of an­
alyticity. Note also that the conditions of self-adjointness are formulated for 
the covariant form because (as indicated earlier), this is the form derivable 
from a variational principle. Finally, note that conditions (4.1.32) do not 
require linearity of the equations in the local variables. 

The fundamental symplectic tensor wllV verifies identically conditions 
(4.1.32a) and (4.1.32b), as becomes transparent when written in form 
(4.1.15). The study of the self-adjointness of forms (4.1.31), either in a way 
independent from the preceding ones (as presented below), or via suitable 
particularizations of Theorems 4.1.1 or f 1, yields the following result. 

Theorem 4.1.2 (Self-Adjointness of the Covariant Normal Form, 
Theorem 1.2.7.3, p. I.88). A necessary and sufficient condition for a class 
C6'1 system (4.1.31) to be self-adjoint in a region!!t of points (t, a) is that all the 
conditions 

0'81l _ o'8v = 0 
oav oall ' 

are identically verified in !!t. 

j.l, v = 1, 2, ... , 2n, (4.1.33) 

We should stress that, at this stage, the tensor wllV is selected, independently 
from any geometric consideration, as a solution with constant elements of 
conditions (4.1.32a) and (4.1.32b). It is understood that this is a very special 
solution, and that more general solutions exist. This was pointed out in 
Volume I for the intent of studying it in more detail in this volume. 

4.1.4 The Independent Inverse Hamiltonian Problem 

This problem was studied in Section 1.3.10 through 1.3.12. The first step was 
the characterization of Hamilton's equations via the variational approach 
to self-adjointness. 

Theorem 4.1.3 (Self-Adjointness of Hamilton's equations, Theorem 
1.3.10.1, p. 1.170). Under the assumptions that the Hamiltonian H(t, a) is 
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of at least class C(j2 and regular 11 in a region &l of points (t, a), the covariant 
normal form (4.1.10) of Hamilton's equations is always self-adjoint in &l 
(that is, self-adjoint for all possible Hamiltonians). 

In essence, Hamilton's equations turn out to be self-adjoint in exactly the 
same measure as Lagrange's equations (Theorem J.2). This confirmed the 
expectation that the conditions of variational self-adjointness are the in­
tegrability conditions for the derivation of a system from a variational 
principle, regardless of its order and dimensionality. 

The second step was the introduction of the notion of ordered direct 
representation of a covariant normalform via Hamilton's equations (see Section 
1.3.11 for detail) 

J1 = 1, 2, ... , 2n. (4.1.34) 

Theorem 4.1.4 followed by recalling (1) the methods for the construction of 
the right-hand side of the identities; (2) the variational self-adjointness of 
left-hand-side; and (3) the use of the Calculus of Differential Forms for the 
computation of a Hamiltonian from the equations of motion. 

Theorem 4.1.4 (Fundamental Analytic Theorem for Phase Space Formu­
lations, Theorems 1.3.12.1 and 1.3.12.2, p.1.176). A necessary and sufficient 
conditionfor a local holonomic generally nonconservative Newtonian system 
in a covariant normal form (4.1.31), which is well defined and of (at least) 
class <6'1 in a star-shaped region &l* of the variables (t, a), to admit an ordered 

11 Recall from Section I.3.8 that a Hamiltonian is regular when 

and that 

det(~~!L) = [det(~)J-l. 
api apj ail' ail 

Thus the Legendre transform preserves the regularity of the functions. This notion of regularity 
oj the Hamiltonian Junction should be differentiated from the regularity oj Hamilton's equations 
when defined in terms of the Junctional determinant (Section 1.1.1). In fact, Hamilton's equations 
can be written 

• deC ., aH Kit, a, a) = w.,a - - = o. aa· 
The functional determinant is then given by 

(aK.) _ 
det -;- (dl) = det(w.,) = I, 

all' 

and it is always regular, regardless of the regularity or degeneracy of the Hamiltonian. This is no 
contradiction but only a differentiation of objectives. The regularity of the Hamiltonian is 
conceived for the construction of equivalent second-order forms in the sense of Section 1.3.8, 
while the regularity of Hamilton's equation is conceived in the functional sense of Section 1.1.1. 
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direct analytic representation in terms of Hamilton's equations is that form 
(4.1.31) is self-adjoint in Pit*-that is, all of conditions (4.1.33) are identically 
verified in Pit*. Under these conditions, a Hamiltonian exists and can be 
explicitly computed from the equations of motion according to the method 12 

(4.1.35) 

A more general result was achieved via the use of the Cauchy method 
(rather than the converse of the Poincare Lemma), and can be written (see 
Section 1.3.12, and footnote 79, p. 1.179, in particular) 

H(t, a) = (all - a~» f dr Sit, La + (1 - r)ao), (4.1.36) 

where the ao's are constants. 
Clearly, whenever Theorem 4.1.4 is verified, prescriptions (4.1.23) are 

canononical and Yk = Pk' Thus the theorem does provide the integrability 
conditions for the selection of canonical prescriptions as desired. This can be 
practically implemented according to the following steps: (i) select pre­
scriptions (4.1.23) with n arbitrary functions (and verify that the points 
under consideration are regular in the sense of Chart A.l); (ii) impose the 
conditions of variational self-adjointness (4.1.33) on the resulting covariant 
normal form to identify the n arbitrary functions; and, in case of a positive 
answer, (iii) compute a Hamiltonian via method (4.1.35) or (4.1.36). For an 
illustrative case worked out in detail, the reader may consult Example 
1.3.1, p. 1.206. 

An important point is that Theorem 4.1.4 does not ensure the existence of a­
Hamiltonian. The theorem merely provides the integrability conditions for 
its existence. 

It can be shown that Theorem 4.1.4 does not necessarily admit a solution. 
In fact, if such a solution would always exist, the Indirect Lagrangian 
Problem (,J',16) always admits a solution, which is not the case (see the 
Appendix). 

A moment of reflection is appropriate here. Recall that the existence of a 
Hamiltonian implies the applicability of an articulated body of established, 
analytic, algebraic, and geometric tools, ranging from the Hamilton-Jacobi 
equations (and related quantization) to the canonical realization of Lie's 
theory (and related symmetries), etc. If a Hamiltonian does not exist, all these 
formulations are not applicable in the coordinate and time variables of the 
observer. In turn, this has a rather profound physical meaning regarding the 
structure of the systems considered and the applicable relativity, as we shall 
see. 

12 The geometrical interpretation of Theorem 4.1.4 will first be reviewed in Section 4.3 and 
then treated in more technical details in Chart 4.6. 
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The following definition permits a classification of systems with respect to 
the integrability conditions for the existence of a (Lagrangian or a) Hamil­
tonian 

Definition 4.1.1. Local, analytic, regular, Newtonian, second-order sys­
tems are subdivided into the following three classes of increasing structural 
complexity and methodological needs. 

1. Essentially Self-Adjoint Systems (ESA). These are systems which verify 
the integrability conditions for the existence of a Direct Lagrangian 
Representation (fS) (Theorem f3) in their form originating from 
Newton's second law. The verification of the integrability conditions 
for the existence of a Hamiltonian (Theorem 4.1.4) can then be 
trivially proved. 

2. Non-Essentially Non-Self-Adjoint Systems (NENSA). These are 
systems which, as originating from the second law, violate the in­
tegrability conditions of Theorem ..1.3. Nevertheless, they admit an 
Indirect Lagrangian Representation (f16) (see Theorem A.Ll for 
details). The existence of suitable prescriptions (4.1.23) for a Hamil­
tonian representation can be proved, and Theorem 4.1.4 is verified. 

3. Essentially Non-Self-Adjoint (ENSA). These are systems for which the 
integrability conditions for the existence of a Lagrangian (Theorem 
A.Ll) or, equivalently, of a Hamiltonian (Theorem 4.1.4) are incon­
sistent within the coordinate and time variables of the experimenter. 

The increase in structural complexity can be illustrated as follows. ESA 
systems admit the conventional Lagrangian L = !mt2 - V ~f Lfree + Lint. 

The corresponding conventional Hamiltonian can be written H = H free 

+ Hint· 

In the transition to the NENSA systems, these conventional functions are 
insufficient, and structurally more general ones are needed. They have been 
written (see Section 1.3.7) L = Lint.ILfree + L int•II and H = Hint.IHfree 

+ H int•II where the multiplicative interaction terms originate from the 
matrix of integrating factors in (1.16). 

In the transition to the ENSA systems, even these generalized Lagrangians 
and Hamiltonians are insufficient to represent the motion. This is a sign that 
we have gone beyond the capabilities of conventional Lagrangian and 
Hamiltonian techniques, and that more general techniques are needed. 

It is hoped that the term "essentially self-adjoint," referred to as a vari­
ational property of systems of ordinary differential equations, does not create 
confusion with the same term used in the context of the theory of linear 
operators on vector spaces. Actually, this term has been selected precisely 
because of the parallelism between the variational and operational ap­
proaches to self-adjointness, as indicated in Section 1.2.8. Furthermore, the 
variational approach to self-adjointness, though ignored of late, is older than 
the corresponding operational approach; and the use of "essentially self­
adjoint" for a purely Newtonian setting is also intended to stress this 
historical aspect. 
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As a final remark, let us note that a number of systems which are essentially 
non-se1f-adjoint in our terminology have been identified by Douglas (1941). 
Some of them will be considered in Example 4.6. We shall then show that, 
for these systems, a Hamiltonian does not exist, yet the systems admit a 
Birkhoffian representation. 

4.1.5 Analytic, Algebraic, and Geometric Meaning of the 
Conditions of Variational Self-Adjointness 

Earlier in this section we reviewed the analytic, algebraic, and geometric 
properties of Hamilton's equations. Now, we review the result of the pre­
ceding volume according to which all these properties are expressed in a 
rather symbiotic way by the conditions of variational self-adjointness. In this 
chapter we show that the same conditions, and therefore, the same prop­
erties, are actually shared by equations structurally more general than 
Hamilton's equations. 

With reference to aspects (1), (2), and (3) considered earlier in this section, 
we have the following results. 

1'. Analytic Profile. The conditions of variational self-adjointness are the 
integrability conditions for systems of differential equations to be derivable 
from a variational principle, as established by the Fundamental Analytic 
Theorems in Configurations and Phase Space. 

A point which is particularly important for the analysis of this volume is 
that the conditions admit equations which are structurally more general than 
Hamilton's equations, as clearly illustrated by the difference between 
Theorems 4.1.1 and 4.1.2. 

In this way we reach the analytic statement of our problem, consisting of: 

1. the identification, via the conditions of variational se1f-adjointness, 
of a generalization of Hamilton's equations capable of preserving 
their derivability from a variational principle; 

2. the formulation of methods for the computation of the most general 
possible integrand of an action for equations of motion in first-order 
self-adjoint form; and 

3. the proof that the approach achieves the desired direct universality. 

2'. Algebraic Profile. Recall that the conventional Poisson brackets 

oA oR oR oA 
= ark OPk - ark 0Pk' 

det(w 'LV) = 1, (4.1.37) 
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are the simplest conceivable realization in Newtonian mechanics of a bilinear 
product satisfying the Lie algebra axioms 

[A, B] + [B, A] = 0, 

[[A, B], C] + [[B, C], A] + [[C, A], B] = 0. 

(4.1.38a) 

(4.1.38b) 

The most general known (regular) realization is given by the brackets13 

[ ]* _ oA rwv( ) oB 
A, B - oa" u t, a oav ' 

(4.1.39) 

where the O"v tensor is a generalization of the Hamiltonian form w"V such that 

[A, B]* + [B, A]* = 0, (4.1.40a) 

[[A, B]*, C]* + [[E, C]*, A]* + [[C, A]*, B]* = 0, (4.1.40b) 

in which case the brackets are called generalized Poisson brackets. 
Similarly, the conventional Lagrange brackets 

oa" oav 

{A, B} = oA w"v oB 

OPk ark OPk o~ 
= oA oB -- oB oA' 

(4.1.41) 

are the simplest conceivable realization of conditions 

{A, B} + {B, A} = 0, (4.1.42a) 

a a a 
oA {B, C} + aB {C, A} + oC {A, B} = 0, (4.1.42b) 

and they can be interpreted as the "inverse" of brackets (4.1.37) in the sense 
of the properties expressed in terms of 2n independent functions Ai(a) 

2n 

I [Ai. Ak]{Ak , A j } = bij. 
k=l 

(4.1.43) 

The most general known (regular) realization is given by the brackets 

(4.1.44) 

under the conditions 

{A, B}* + {B, A}* = 0, (4.1.45a) 

a }* a { }* a { }* _ ° oA {B, C + as c, A + oC A, B - . (4.1.45b) 

13 Note the appearance of the explicit dependence of the algebraic tensor n"' not only on the 
local coordinates a = (r, p) but also, in general, on time, while no such dependence appears for 
the conventional Poisson brackets_ As we shall see, this functional generalization is the basis for 
the direct universality of the Inverse Problem for local systems. 
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It is possible to prove that, if the generalized Lagrange and Poisson 
brackets are related by the rule 

(O"v) = (O"V) - 1, (4.1.46) 

they verify the generalized version of Equations (4.1.43). 
2n 

I [Ai' AkJ*{Ak' B j }* = Jij , (4.1.47) 
k=l 

by therefore preserving the property of one being the" inverse" of the other. 
Also, it is possible to prove that, if brackets (4.1.39) verify axioms (4.1.40), the 
generalized Lagrange's brackets constructed via rule (4.1.46) automatically 
verify condition (4.1.45), and vice versa. Put differently, under rule (4.1.46), 
conditions (4.1.40) and (4.1.45) are equivalent. 

These aspects were studied in detail in Section 1.2.9. Here we restrict 
ourselves to recalling the following properties: (a) that the integrability 
conditions for Lie's axioms (4.1.40) are given by 

O"V + OV" = 0, (4.1.48a) 

(4.1.48b) 

(b) those for conditions (4.1.45) are 

O"V + Ov" = 0, (4.1.49a) 

oO"v oOv, 00,,, _ 0' 
oa' + oa" + oav - , 

(4.1.49b) 

and (c) conditions (4.1.48) and (4.1.49) are equivalent because each set can be 
reduced to the other via simple algebraic manipulations. 

All these algebraic properties are contained in the conditions of se1f­
adjointness, as expressed by the following theorem. 

Theorem 4.1.5 Direct and Indirect Algebraic Significance of the Condi­
tions of Se1f-Adjointness, Theorems 1.2.9.1 and 1.2.9.2, p. 1.94). The 
direct significance of the self-adjointness conditions for first-order systems 
is that conditions (4.1.32a) and (4.1.32b) coincide with the integrability 
conditions (4.1.49)for brackets (4.1.44) to be generalized Lagrange brackets, 
that is, to verify axioms (4.1.45). The indirect significance is that conditions 
(4.1.32a) and (4.1.32b) are equivalent to the integrability conditions (4.1.48) 
for brackets (4.1.39) to be generalized Poisson brackets, that is, to verify 
Lie algebra axioms (4.1.40). 

Stated in different terms, the self-adjointness of a covariant general form 
ensures its Lie algebra character, in the sense that the brackets characterized 
by the inverse (C"V) of the matrix (C "v) are Lie. This algebraic meaning has 
been called "indirect" in Theorem 4.1.5 to emphasize that the conditions of 
self-adjointness are formulated for the covariant form, while a Lie tensor is of 
contravariant type. 
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The algebraic statement of the problem can now be formulated as follows. 
Recall that Hamilton's equations are expected to be one of the simplest 
possible forms of equations derivable from a variational principle (Profile 
(I'», and they characterize one of the simplest possible realizations of the 
Lie algebra product (Profile (2'». Upon identifying the largest possible 
class of equations that can be derived from a variational principle (analytic 
problem), we shall study its algebraic structure via the most general possible 
(regular) realization of the Lie algebra product in Newtonian mechanics. We 
shall then study the problem of whether or not such a generalization demands 
a corresponding reformulation of Lie's theory. This latter issue is created by 
the fact, as we shall see later, that the abstract treatments of Lie's theory have 
been historically patterned along conventional realizations of the Lie 
product. A nontrivial generalization of the product then raises the question 
of whether central theorems of Lie's theory (such as Lie's first, second, and 
third theorem, the Poincare-Birkhoff-Witt theorem, Ado's theorem, etc.) 
apply in their currently available formulation to the generalized realization 
of the product also, or if they need suitable reformulations. 14 

3'. Geometric Profile. In a way fully parallel to the algebraic profile, the 
fundamental symplectic structure (4.1.17) is one of the simplest possible 
closed and exact two-forms on T*M. The most general two-form verifying 
these properties can be written in local coordinates all at a fixed time t 15 

(4.1.50a) 

(4.1.50b) 

The geometric significance of the conditions of self-adjointness (identified 
in Chart 1.2.5) is that the integrability conditions for a two-form to be an 
exact symplectic form coincide with conditions (4.1.32a) and (4.1.32b). The 
ultimate symbiosis between geometric, algebraic, and analytic aspects is 
further illustrated by the following implications of the existence of a primitive 
one-form R 1 (# R?): (i) the exact symplectic character of the two-form; (ii) 
the Lie algebra character of the brackets of the time evolution; and (iii) the 
derivability of the equations of motion from a variational principle. 

These aspects can be better expressed by performing the extension from 
the symplectic geometry on the cotangent bundle T* M with local coordinates 
all to the contact geometry on the manifold IR x T* M with local coordinates 

jJ.=O 

jJ. = 1, 2, ... , 2n. 
(4.1.51) 

14 As we shall see in Chapter 5, the generalization of the Lie algebra product we are consider­
ing implies nontrivial generalizations of a truly central part of Lie's theory: the universal en­
veloping associative algebra. A reinspection then of Lie's theory is rather natural. 

15 The reader with a background in geometry will have noted an explicit time dependence in 
the symplectic structure. Such a dependence is not admitted, in general, in the current local 
formulations of the contact geometry. Nevertheless, as we shall see at the end of Section 4.2, the 
emergence of such a dependence is rather natural in practical applications. The geometrical 
implications will be indicated in Chart 4.6. 
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The local formulations 16 of contact two-forms which become necessary are 
of the exact type 17 

(4.1.52a) 

(4. 1. 52b) 

under the condition that the attached two-forms on T* M are closed, non­
degenerate, and exact (thus symplectic), but otherwise arbitrary, i.e., 

C2 IT*M = O2 = !Cllit, a)dall /\ dav 

= dR 1(t, a). (4.1.53) 

The integrability conditions for a tensorial two-form on ~ x T* M to be 
an (exact) contact form are given by 

5:lllll2A - 0 
U VtV2 L-jll,u2 - , 

where the generalized Kronecker symbols (Section 1.1.2) are given by 

c)lll c)lll c)lll 

I c)lll c)lll I v, V2 V3 

c)lllll2 = VI V2 c)Ill1l21l3 = c)Il2 c)Il2 c)Il2 

Vt V2 £5~~ c)ll2 ' VI V2V3 VI V2 V3 
V2 c)Il3 c)Il3 c)Il3 

VI V2 V3 

(4.1.54) 

(4.1.55) 

The ultimate geometric meaning of the conditions of self-adjointness is 
given by the fact that integrability condition (4.1.54), once written explicitly 
in disjoint coordinates t and all, coincide with the entirety of conditions of 
self-adjointness (4.1.32), as the reader is encouraged to verify. 

The geometric statement of the problem can now be made more precise. 
It essentially consists of establishing the direct universality of the contact 
geometry for local, analytic,18 and regular systems. By recalling the lack of 
direct universality of Theorem 4.1.4, this statement of the problem implies 
the search for a suitable generalization of Hamilton's equations, with cor­
responding reinspection of Lie's theory. 

16 Equations (4.1.52) illustrate rather clearly the local-differential character of the contact 
(and symplectic) geometry and the need for more general. nonlocal/integro-differential geometries 
for the treatment of systems of type (.J'.3). 

17 From now on we shall tacitly assume that, when the symbols at hand are written with an 
upper hat, e.g., a", C"V' etc., the greek indices run from 0 to 2n. When the upper hat is absent, the 
greek indices run from I to 2n. 

18 The smoothness condition used rather universally in the contemporary literature of the 
symplectic and contact geometries is that of class ((, "'. The study of systems which are of class 
'6 00 but are not analytic is expected to be complex as well as of limited practical value, and we 
shall ignore it. 
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4.2 Birkhoff's Equations 

The generalization of Hamilton's equations we shall study is given by 

[ORv(t, a) _ oRit, a)]av _ [OB(t, a) + oRit, a)] = 0 
oa" oav oa" at ' 

a = (r, y), J,l, = 1, 2, ... , 2n. (4.2.1) 

The following terminology su;gested by Santilli (1978c) will be used in this 
volume. Equations (4.2.1) are called BirkhojJ's equations for certain historical 
reasons reviewed at the end of this section. The function B(t, a) is called the 
Birkhoffian, because of certain physical differences with the Hamiltonian 
which will be indicated in the next sections. Finally, a representation of 
Newton's equations via Birkhoff's equations is called a Birkhoffian repre­
sentation when certain conditions, identified in detail in the next section, are 
met. 

Birkhoff's equations are clearly a generalization of Hamilton's equations 
because the latter are recovered from the former as in the particular case of 

{(ORv _ OR")av _ (OB + OR,,)} 
oa" oav oa" at y=p 

R=Ro =(p,O) 
B=H=H(t,r,p) 

In this section we shall prove that Birkhoffs equations 

(4.2.2) 

1. originate from the most general possible linear first-order 19 varia­
tional principle; 

2. characterize the most general possible regular realization of the Lie 
algebra product via the brackets of a classical time evolution; and 

3. admit the most general possible exact symplectic (or contact) struc­
tures in local coordinates. 

In order to study these important properties in the necessary detail, the 
introduction of the following terminology is advantageous. 

Definition 4.2.1. Birkhoff's equations (4.2.1) are called autonomous when the 
R" and B functions do not depend explicitly on time, in which case the equa­
tions assume the simplified form 

Q ( ).v _ oB(a) = 0 
"va a oa" ' (4.2.3) 

where 

(4.2.4) 

19 A linear first-order variational principle occurs when the integrand depends at most on 
first-order derivatives and the dependence is linear. 
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is called Birkhoff's tensor. They are called semi-autonomous when the RI' 
functions (the Birkhoffian) do not (do) depend explicitly on time, in which 
case we have the more general form 

n ( ).v _ oB(t, a) = 0 
UI'V a a oal' . (4.2.5) 

Birkhoft"s equations are called nonautonomous' when both the RI' and B 
functions have an explicit dependence on time, in which case we have form 
(4.2.1), which we rewrite 

Q ( ).v oB(t, a) oRI'(t, a) 
I'V t, a a - 0 - = O. (4.2.6) 

a!' ot 

They are called regular when their functional determinant is not null in the 
region considered: 

(4.2.7) 

They are called degenerate when their functional determinant is identically 
null in the region considered: 

(4.2.8) 

They are said to be covariant when they are of type (4.2.3), (4.2.5), or (4.2.6), 
in which case the corresponding tensor QI'V is called the covariant Birkhoffs 
tensor; and they are said to be contravariant, when the nonautonomous 
equations are written in the equivalent form 

'1' _ QI'V( )[OB(t, a) oRv(t, a)] = 0 a t, a Ol + Ol ' 
vaV vt 

(4.2.9) 

where the tensor 

QI'V = (1IQ~pll-l)!<' = (II ~~: - ~~; r 1 yv (4.2.10) 

is called the contravariant Birkhoff's tensor. Finally, Birkhoft"s equations are 
called strictly regular when, in addition to condition (4.2.7), the underlying 
contravariant normal form 

(4.2. 11 a) 

(4.2.11 b) 

verifies the regularity condition 

(ON') _ 
det OYj' (~) =1= O. (4.2.12) 

In this volume we shall study only strictly regular Birkhoft"s equations in 
their various forms (autonomous, semi-autonomous, nonautonomous, 
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covariant, and contravariant). Recall that Hamilton's equations are always 
regular when the definition of regularity is based on the functional deter­
minant. Yet the equations can be transformed into an equivalent second­
order form only when the Hamiltonian is regular. ll 

A similar situation occurs for Birkhoff's equations. In fact, the determinant 
of the covariant Birkhoff's tensor is the functional determinant of system 
(4.2.6). The condition of regularity (4.2.7) is, therefore, a generalization of 
the nondegeneracy of Hamilton's equations. However, condition (4.2.7) 
does not ensure the capability to transform Birkhoff's equations into an 
equivalent second-order form. In fact, this transformation demands the 
existence of implicit functions of type (4.1.23) which can exist (and be unique) 
only under the additional regularity condition (4.2.12).20 

The transformation of strictly regular Birkhoff's equations to their 
equivalent second-order form 2l is then straightforward. One can reduce 
the equations to the contravariant normal form (4.2.11) and compute the 
implicit functions Yk = Mit, r, i:) of the first set of equations ;Ok = Nk(t, r, y). 
The second-order equations are then given by eliminating the y-dependence 
from the second set of equations, Yk = 0k(t, r, y). For an illustration of the 
degenerate case, see Example 4.5. 

By recalling that we are primarily interested in the representation of 
second- (or higher) order equations of Newtonian (or arbitrary) interpreta­
tion, the need for the strict regularity as per Definition 4.2.1 is now self­
evident. 

The following Birkhoffian generalization of Hamiltonian properties (1), 
(2), and (3) which was pointed out in Section 4.1 holds. 

A. Generalized Analytic Formulations. The Hamiltonian action functional 

It2 

deE) = dt[R~(a)£iV - H(t, a)](E), 
tl 

RO = (P,O) (4.2.13) 

has a rather special integrand. The most general possible linear first-order 
action functional is given by the Pfaffian action 

It2 

deE) = dt[RvCt, a)£iV - B(t, a)](E), 
tl 

(4.2.14) 

which can be obtained by simply lifting all Hamiltonian restrictions on the 
functional dependence and physical interpretation of the functions Re and H. 

20 The degenerate Birkhoffian case is not related to Dirac's treatment for systems with 
subsidiary constraints. In fact, in the latter formulation, the Hamiltonian is regular. Degenerate 
Hamiltonians and Birkhoffians (the latter in the sense of breakdown of condition (4.2. 12}} may 
express the presence of subsidiary constraints according to a different approach, that via Lag­
range's multiplier rule (which is more developed in the literature of the calculus of variations, 
rather than that of analytic mechanics). 

21 The inverse transformation is the basis of the notion of Birkhoffian representation of 
second-order Newtonian systems and is studied in the next section. 
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The first-order contemporaneous variations with fixed end-points then 
reproduce Birkhoff's equations, via the following generalization of Hamil­
ton's principle 

bd(E) = f2dt{ba ll O~IL + baIL O~IL }(RvaV - B)(E) 

= i>{ (~:: aV - ~! )oaIL - RIL baIL }E) 

= f/2dt [(ORv _ ORIL)av _ (OB + ORIL)]baIL(E) = O. (4.2.15) 
11 oaIL oaV oa lL at 

As a result, Birkhoff's equations can be derived from a linear first-order 
variational principle in the same measure as that of Hamilton's equations, 
although in the most general possible way. This property indicates the 
existence of a Birkhoffian generalization of Hamiltonian formulations based 
on variational principles, such as the theory of canonical transformations, 
Hamilton-Jacobi theory, perturbation theory, etc. 

The state of the art on the latter studies is presented in the next chapters. 

B. Generalized Algebraic Formulations. The Birkhoffian time evolution for 
the semi-autonomous case is given by 

. oA oA oB 
A(a) = - aIL = - gILV(a)_ 

oa lL oa lL oav 

W [A, B]*. (4.2.16) 

The Birkhoffian tensor gILv verifies integrability conditions (4.1.48), as the 
reader is encouraged to verify (Problem 4.1). Therefore, the brackets [A, B]* 
verify the Lie algebra axioms (4.1.40). 

As we shall see, the tensor gILv turns out to be the most general possible 
tensor which verifies conditions (4.1.48). Thus Birkhoff's equations not only 
preserve the Lie algebra character of Hamilton's equations, but actually 
realize the Lie product in its most general possible regular form. 

The transition from the conventional to the generalized Poisson brackets 

[A B] = oA roILV oB -+ [A B]* = oA gILV(a) oB 
, oa lL oav ' oalL oav (4.2.17) 

has such nontrivial implications as to suggest the reformulation of Lie's 
theory in a form which is directly applicable to unrestricted realizations of the 
product (and of the enveloping algebra). 

The state of the art on these algebraic aspects will be presented in the 
charts of the next chapter. The intriguing case of the nonautonomous 
equations is studied in Chart 4.1. 



34 Birkhoff's Equations 

C. Generalized Geometric Formulations. In a predictable way, fully 
parallel to the algebraic case, the (regular22) Birkhoff's equations charac­
terize the most general possible, exact symplectic form in local coordinates. 
In fact, the exact character of the two-form implies the structure on T*M 

oRv 
Oz = dR 1 = d[Rv(a)daV] = -;- dal' 1\ dav 

ual' 

_ 1 (ORv ORI')d I' d v _ 11""\ ( )d I' d v -"2 oal' - oa'~ a 1\ a - ZUI'V a a 1\ a (4.2.18) 

which is characterized by Equations (4.2.5). 
More generally, Birkhoff's equations characterize the most general possible 

local formulation of an exact contact two-form. In turn, this is sufficient to 
establish that the contravariant Birkhoff's tensor characterizes the most 
general possible regular realization of the Lie algebra product in mechanics, 
owing to the known interplay between the Lie algebras and the contact (or 
symplectic) geometry. 

In fact, action (4.2.14) can be written in unified notation (4.1.51) 

tlE IR x T*M (4.2.19a) 

~ _ {-B, 
Rv - R 

v' 

v=O 
v = 1, 2, ... , 2n. (4.2. 19b) 

The exterior derivative of the one-form Rl characterizes the two-form on 
IR x T*M 

Oz = d[Rv(tl)dtlV] = ~ (~:; - ~~: )dtll' 1\ dtlv ~f tnl'v(tl)dtll' 1\ dtlv 

(4.2.20) 

which verifies the following properties: 

1. Oz is the largest possible local formulation of exact two-forms on 
IR x T*M, clearly, because ft.l has the largest admissible functional 
dependence; 

2. Oz is a contact two-form because (Chart 1.2.4) it is of covariant type, of 
maximal rank 2n, and its restriction to T* M (that is, form (4.2.18» is 
symplectic; and 

22 It should be stressed that the notion of strict regularity of Definition 4.2.1 is redundant 
for a symplectic two-form. In fact, the condition of regularity alone is sufficient for the char­
acterization of symplectic two-forms. This point is important in illustrating the fact, somewhat 
obscured in the abstract coordinate-free treatment of geometry, that the conventional non­
degeneracy of a twojorm does not guarantee the geometric characterization of a (regular, uncon­
strained) Newtonian system, because of the need for an additional regularity condition of type 
(4.2.12). 
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3. n2 is the geometrical structure of Birkhoff's equations. To see this 
latter point, one can write the tensor nllv in the disjoint coordinates 
(t, a) 

oB oRIl -+-oall ot 
(4.2.21) 

Birkhoff's equations can then be written in the unified notation on 
IR x T*M 

~ = 0, 1,2, ... ,2n (4.2.22) 

or, explicitly, 

( OB + ORv) 'V = ° /I = ° oav ot a , r 
(4.2.23a) 

( OB + ORIl) _ (OR v _ ORIl)av = 0, 
oall ot oall oa v 

~ = 1,2, ... , 2n. (4.2.23b) 

The first term is identically null (along a possible or actual path) 
because of the self-evident property that 

( OB + ORv)av = (OB + ORv)nva(OB + ORa) == 0. (4.2.24) 
oav ot oav ot oaa ot 

The last 2n terms of Equations (4.2.23) coincide with Equations (4.2.1). 

By recalling the symbiotic characterization of analytic, algebraic, and 
geometrical aspects by the conditions of self-adjointness, all the above listed 
properties of Birkhoff's equations can be synthetically expressed via the 
following property. 

Proposition 4.2.1 (Self-Adjointness of Birkhoff's Equations). Necessary 
and sufficient condition for a general nonautonomous first-order system 

~ = 1,2, ... , 2n (4.2.25) 

which is analytic and regular in a star-shaped region ~* of poin.ts oflR x T* M 
to be self-adjoint in ~* is that it is of the Birkhoffian type, i.e., 

C 'V D = (ORv _ ORIl) 'V _ (OB ORIl) - ° (22) Ilva + II - oal' oa" a oal' + ot -. 4 .. 6 

PROOF. Conditions (4.1.32) are the integrability conditions for two-forms (4.1.52), i.e., 

11 = 1, 2, ... , 2n, v = 0 

11, v = 1, 2, ... , 2n 
(4.2.27) 
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to be closed, i.e., 
(4.2.28) 

(see the review at the end of Section 4.1). The regularity condition implies that C2 is of 
maximal rank and, therefore, is a contact form. The applicability of the converse of the 
Poincare Lemma 1.1.2.2 implies that form C2 is exact, that is, a primitive one-form RI 
on IR x T* M exists such that 

(4.2.29) 

The use of Equations (4.2.20)-(4.2.24) completes the proof that Equation (4.2.25), under 
the conditions of se1f-adjointness, necessarily have Birkhoffian structure (4.2.26). The 
sufficiency is trivially established by the Direct Poincare Lemma 1.1.2.1 (Q.E.D.). 

Thus Birkhoff's equations are self-adjoint in a way parallel to the self­
adjointness of Hamilton's equations. However, while Hamilton's equations 
are a particular form admitted by the conditions of self-adjointness, Birkhoff's 
equations are the most general possible form. A direct verification that Birk­
hoff's equations verify all of conditions (4.1.32) is instructive (Problem 4.2). 

The Calculus of Differential Forms, as used for the proof of Proposition 
4.2.1, provides not only the integrability conditions for a two-form on IR x 
T* M to be an exact contact form, but also a solution for the primitive one­
form. A straightforward use of the techniques reviewed in Section 1.1.2 
(Equations (11.2.30) in particular) permits the proof of the following 
corollary. 

Corollary 4.2.1a (First 23 Method for Computing the Birkhoffian Func­
tions from the Equations of Motion). Under the condition of Proposition 
4.2.1, the Birkhoffian functions R = ( - B,R,J can be expressed in terms of 
Equations (4.2.25) according to the rules 

R,ia) = [f dT TCltiTa)]aV, J1 = 0, 1,2, ... , 2n. (4.2.30) 

We proved earlier in this section the contact geometric character of 
Birkhoff's equations. For completeness, we must also point out the following 
difference between contact two-forms of Birkhoffian type and those most 
commonly treated in the contemporary literature. The former possess, in 
general, an explicit time dependence in their symplectic substructure, while 
such a dependence is generally absent in the latter. 

The difference originates from the fact that contemporary treatments of 
contact two-forms have been usually patterned along the structure of 
Hamilton's equations. In this case, one starts from the fundamental sym­
plectic structure on T* M 

= 1,2, ... ,2n;k= 1,2, ... ,n (4.2.31) 

23 Additional methods will be presented in Sections 4.4 and 4.5. 
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and then performs the prolongation (Chart 4.4) into the contact two-form on 
~ x T*M 

o 

oH 
oalJ. 

oH 

fl, v = 0, 1, 2, ... , 2n 

(4.2.32a) 

a = (t, a) (4.2. 32b) 

which is the geometric structure of Hamilton's equations, as the reader can 
verify by particularizing Equations (4.2.21)-(4.2.24) for the canonical 
case R = RO = (p, 0). The point is that the symplectic structure (4.2.31) 
does not possess an explicit time dependence, and this feature persists under 
prolongation to form (4.2.32). 

The situation is altered by Birkhoff's equations. As we shall see in the 
next sections and in the examples at the end of this chapter, the computation 
of a Birkhoffian representation for given Newtonian systems can be generally 
achieved in practice via functions RIJ. with an explicit time dependence. 
Specific applications in mechanics therefore demand, in general, the initi­
ation of the geometric study via symplectic two-forms with an explicit 
dependence on time 

and this dependence clearly persists after prolongation to contact form 
(4.2.20). 

This difference between Hamiltonian and Birkhoffian contact two-forms 
is not trivial. In fact, it has a number of rather delicate technical implications 
which will be pointed out throughout our analysis. At this point, it is suf­
ficient to recall that the computation of the primitive one-form R 1 of an exact 
symplectic two-form O2 via the converse of the Poincare lemma demands 
the use of a star-shaped region oflocal variables, or a topologically equivalent 
region (Section 1.1.2). However, if a region of the variables (t, a(t)) is star­
shaped at a fixed value of time, this topological character is not necessarily 
preserved at a later time. This problem is solved in Chart 4.6 via the para­
metric interpretation of symplectic forms (4.2.33) and their definition in a 
region deformable to a curve. Additional technical aspects emerge within 
the context of the transformation theory, and they will be pointed out in the 
next chapter. 

Let us now consider the Lagrangian image of the Birkhoffian representa­
tions or, more precisely, the transformation of the Pfaffian action (4.2.14) on 
T*M into an equivalent action on TTM. This can be easily done (for strictly 
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regular Birkhoffian representations) via the knowledge of functional de­
pendences (4.2.11a), under which we write 

d = f dt[R/t, a)cill - B(t, a)] 

~ f dt[Rk(t, r, y)f< + Sk(t, r, Y)Yk - B(t, r, y)] 

= f dt{Rk[t, r, M(t, r, t)]f< 

k . (OMk oMk .i oMk .. i) . } + S [t, r, M(t, r, r)] ai- + ori r + ofi r - B[t, r, M(t, r, r) 

~f f dt ~(t, r, t),k + Wet, r, t)] ~ f dt L(t, r, t, r) (4.2.34) 

where the M's are the implicit functions in the y's, Equation (4.1.23), as 
characterized by the first set of Equations (4.2.11a) under regularity condition 
(4.2.12). One can see in this way that the Lagrangians are of second-order type 
(i.e., dependent on the accelerations), although of the totally degenerate 
type. 24 

The variation of action (4.2.34) then yields equations 

(4.2.35) 

which characterize a system of second-order differential equations, contrary 
to the expectation of their being of third-order. Furthermore, the system is 
linear in the acceleration whenever the V's are independent of the velocities. 

These results permit inspection of the Inverse Lagrangian Problem in a 
new light. In fact, the lack of direct universality of first-order Lagrangians 
may be due to the restrictions imposed by the first-order character. The direct 
universality of Birkhoff's equations and images (4.2.34) and (4.2.35) then 
make it possible for the Inverse Lagrangian Problem to become directly 

24 Recall that a totally degenerate Lagrangian occurs when each element of the Hessian is 
identically null. This is the case for second-order Lagrangians when they are linear in second­
order derivatives. 
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universal for systems of second-order differential equations under the 
enlargement of the Lagrangian to those ofthe second-order totally degenerate 
type, according to the structure 

d2 oL d oL oL _ . "i • 
- dt2 (}it + dt oil - oqk = Ak;(t, q, q)q + B(t, q, q), (4.2.36a) 

L = ~(t, q)il + W(t, q, q). (4.2.36b) 

The study of this problem is left to the interested reader (Problem 4.9). 
We conclude this section with a few historical remarks. Equations (4.2.1) 

have been studied, either in a direct or indirect/implicit way, by several 
authors. First, the equations coincide, as far as their structure is concerned, 
with Lagrange's equations in first-order, totally degenerate Lagrangians. In 
fact, by assuming for" Lagrangian" the expression 

L(t, a, a) = - R.(t, a)aV + B(t, a) 

Lagrange's equations coincide with equations (4.2.1), 

d oL oL _ (OR v ORIl) 'V (OB ORIl) 
dt oall - oa ll = oall - oav a - oall + at . 

(4.2.37) 

(4.2.38) 

However, the use of the terms "Lagrange's equations" for Equations 
(4.2.1) would be misleading, particularly for the analysis of this volume. In 
fact, our objective is to seek a generalization of phase space formulations, 
while Lagrange's equations were conceived for configuration space formula­
tions, and this spirit has persisted to this day.2s 

Additional studies more directly related to Equations (4.2.1) are those by 
Pfaff (1814). In fact, the primitive one-form leading to the equations is 
Pfaff's form (or action), as recalled in regard to Equation (4.2.14). However, 
it does not appear that Pfaff identified the true meaning of Equations (4.2.1) 
as bonafide analytic equations of mechanics. 

These latter properties were identified in full by Birkhoff (1927) who also 
provided explicit examples of applications to mechanical systems. Perhaps 
the best way to illustrate this historical point is through Birkhoff's original 
words (loc. cit., p. 89): 

"Suppose now that we take an extended Pfaffian variational problem 

(12) 

which leads at once to the system of ordinary differential equations of order 2m 

(i = 1, ... ,2m). (13) 

25 Lagrangians of type (4.2.37) represent first-order systems, and as such, they are along the 
phase space (rather than the configuration space) formulation of mechanics. 
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We propose to consider these equations in the case when there is an equilibrium 
point at the origin, under the assumption that the 2m analytic functions Xi are such 
that the schew-symmetric determinant 

I aXi _ aXj I 
aXj aX i 

is not 0 at the origin. The constant terms in the series for the functions Xi may 
obviously be omitted throughout. 

It is clear that the Hamiltonian equations appear as a particular case of these 
Pfaffian equations (12). As will be shown in the following chapter, this generalization 
of the Hamilton's equations possesses the same property of automatically fulfilling 
all of the conditions for complete stability, once the obvious conditions for first 
order stability are satisfied. Hence, from this point of view, the Pfaffian equations 
seem as significant for dynamics as the Hamiltonian equations, although more 
general in type. Moreover, they possess the additional advantage of maintaining 
their Pfaffian form under an arbitrary transformation of the formal group." 

Notice the clear identification of Equations (4.2.1) by Birkhoff as being (1) 
derivable from a variational principle; (2) a generalization of Hamilton's 
equations; and (3) "as significant for dynamics as Hamilton's equations". 26 

Specific illustrative applications were provided later on in Birkhoff's memoir 
and they are still recommendable for study. The extension to the nonautono­
mous case was provided soon after the quoted passage. 

For these reasons, Equations (4.2.1) were called "Birkhoff's equations" 
by Santilli (1978c) and this terminology was subsequently adopted by a 
number of authors. Additional studies on the equations which deserve 
mention are presented here. The equations were briefly indicated by Whittaker 
(1904) (which is the only reference known to the author for the period be­
tween the studies of Pfaff and Birkhofl). After 1927, the equations were 
studied in more detail by Feraud (1930). Lee (1945), Pauli (1953), and 
Martin (1959) studied them to a considerable extent, but primarily for quan­
tum mechanical considerations. More recently, Hughes (1961) considered 
the equations for relativistic treatments. 

All the references quoted above treat equations of type (4.2.1). The alge­
braic-geometric character of tensor (4.2.4) has been studied by numerous 
authors, beginning with De Donder (1927) and Cartan (1971). 

The variational self-adjointness of Equations (4.2.1) was identified by 
Santilli (1978c) by reaching the: first unified treatment of the analytic, alge­
braic, and geometric properties of the equations. This author also initiated 
the first study (see Santilli (1978b» of (a) the applications of the equations 
to the representation of local nonconservative Newtonian systems; (b) the 

26 Notice also Birkhoff's emphasis on the regularity of the equations. The reader can now see 
that Definition 4.2.1, apart a number of geometric and technical implementations, has been 
conceived to coincide with Birkhoff's original view as closely as possible. Notice also Birkhoff's 
mathematical elegance in expressing the regularity condition. In fact, it is expressed at the origin, 
with the tacit understanding that its preservation at other points is guaranteed under regular 
transformations. 
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equations' consequential role for the Inverse Problem; and (c) the identifica­
tion of their direct universality. The variational self-adjointness of the equa­
tions was subsequently studied by Sarlet and Cantrijn (1978) and Sarlet 
(1979) (following a private communication by Santilli). These authors also 
identified a Birkhoffian generalization of the Hamilton-Jacobi equations 
which will be reviewed in Chapter 6. Additional studies, e.g., on the trans­
formation theory of Birkhoff's equations, were conducted by Kobussen 
(1978 and 1979). 

The application of Birkhoff's equations to Space Mechanics was studied by 
Broucke (1979), while the application to Biophysics was studied by Lumsden 
and Trainor (1979). These and other applications are reviewed in Chapter 6. 

Furthermore, a quantum mechanical generalization of Heisenberg's 
equations which leads to Birkhoff's equations under the correspondence 
principle has been proposed by Santilli (1978d), and it is also reviewed in 
Chapter 6. 

Finally, the reader should keep in mind that Birkhoff's equations have 
been studied by the author and presented in this volume for the treatment of 
local non-potential forces (or interactions). In this way, the condition of 
derivability from a potential inherent in most of the Hamiltonian treatment 
is removed, but the locality condition persists. 

In principle, Birkhoff's equations might be studied for the possible repre­
sentation of non-local nonpotential systems (or interactions), via integro­
differential functions of the type 

flAp. = Rit, a) + L da'~I1(t, a, a'), 

f!}) = B(t, a) + In da'!EB'(t, a, a'), 

(4.2.39) 

which, via the reduction to second-order form presented earlier in this section, 
can represent non local nonpotential Newtonian systems of the type 

mr - F(t, r, f) - Ldr' K(t, r, r', f, f', ... ) = o. (4.2.40) 

This use of Birkhoff's equations, even though computationally con­
ceivable, is not recommended here for a number of reasons. A first reason 
is the nature of the underlying geometry, the symplectic or contact geo­
metry, which has been developed historically as a local-differential geo­
metry. No formulation of Birkhoff's equations of integro-differential type 
can acquire a true scientific value without the prior achievement of an 
integro-differential formulation of the underlying geometry. Additional 
reasons are pragmatic. The Inverse Birkhoffian Problem, as we shall stress in 
Section 4.5, already has a quite difficult practical solution for local systems, 
and these practical difficulties are expected to multiply for possible integro­
differential generalizations. 
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For these (and other) reasons, it appears advisable that non local non­
potential systems (or interactions) be treated with still more general equa­
tions, such as those of Lie-admissible type, according to the following chain 
of progressive, physical, and mathematical implementations.27 

Local potential Lie-Hamiltonian 
interactions 

~ 

formulations 

1 1 
Local nonpotentia~ Lie-Birkhoffian 

mteractzons formulations 
(4.2.41) 

1 1 
N onlocal nonpotential Lie-admissible 

interactions formulations 

In fact, the direct universality of the Lie-admissible formulations for all 
systems of type (4.2.40) has been established. The need for a suitable integro­
differential generalization of the underlying geometry emerges rather 
naturally in the approach. Last, but not least, the explicit computation of a 
Lie-admissible representation is truly simple for all systems considered 
because it is based on algebraic equations with known solution (see Chart 4.7 
for more details). 

Different criteria for selections (based on the need for antisymmetric or 
nonantisymmetric products and their relationship to closed or open systems) 
are indicated in Chapter 6. 

4.3 Birkhoffian Representations of Newtonian Systems 

In Section 4.1 we reviewed the method for reducing a second-order system 
to an equivalent first-order form. In Section 4.2 we introduced Birkhoff's 
equations as the most general possible equations derivable from a linear 

27 The reader should keep in mind that virtually all studies in contemporary theoretical 
physics are done along the first line of classification (4.2.41) (or its Lagrangian image). In fact, 
the contemporary theoretical models currently receiving the majority of attention (particularly 
in high-energy physics) are all dominated by the notion oflocal potential forces or interactions 
and corresponding Lagrangians or Hamiltonians. At this writing (late 1980), the restrictive 
character of the condition of potentiality appears to be propagating in both mathematical and 
physical circles, and the number of papers on local nonpotential interactions, along the second 
line of classification (4.2.41), is increasmg considerably. However, the need for the still more 
general nonlocal non potential interactions and their treatment along the third line of classi­
fication (4.2.41) (or some alternative possibility) is just beginning to be felt by mathematicians 
and physicists. 
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first-order variational principle. To proceed in our program, we must define 
the notion of "representation" of given equations of motion in terms of 
Birkhoff's equations. For this purpose, we first review the concept of repre­
sentation via Hamilton's equations and then point out its Birkhoffian 
generalization. 

Suppose that a Newtonian system (4.1.22) is given, prescriptions (4.1.23) 
have been selected, and the corresponding contravariant normalform (4.1.28), 
i.e., 

£iV = SV(t, a), (4.3.1) 

has been computed. The Newtonian vector field SV is said to possess a 
representation in terms of Hamilton's equations (or be of Hamiltonian type) 
in the neighborhood ;i of a (regular) point (t, a) of the variables, when there 
exist a function H(t, a), the Hamiltonian, such that all the following equations 
are identically verified in ;i28 

';::'V( ) _ oH(t, a) 
wl'V~ t, a - ::l ' val' 

J.l = 1, 2, ... , 2n, (4.3.2a) 

RO = (p,o). (4.3.2b) 

Under these conditions, the covariant normal version of equations (4.3.1) 
is self-adjoint (Theorem 4.1.2), and the following direct representation via 
the conventional Hamilton's principle in phase space holds 

fJ ft2dt(R~£iV - H)(E) = f t2dt[(Wl'v£iV - ~~) fJal'](E) 
tl tl a SA 

(4.3.3) 

Conditions (4.3.2) are the local-analytic version of a corresponding 
geometrical notion of the symplectic (and contact) geometry, that of the 
Hamiltonian vector field. The latter is expressed in coordinate-free form via 
the inner product (Chart 4.5) 

S-.J W 2 = -dH 

and can be explicitly written in local coordinates 

(4.3.4) 

(4.3.5) 

The equivalence of the geometric notion (4.3.4) with the analytic version 
(4.3.2) is then self-evident. Equation (4.3.5) also expresses the meaning of the 

28 For topological conditions, see Charts 4.4 and 4.5. 
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fundamental symplectic tensor wll' as the geometrical tensor of the Hamil­
tonian vector field, that is, as the proper tensor for the lowering ofthe indices 
of 3'.29 

The above definition of Hamiltonian representation is often restrictive in 
practical applications in the following sense. Suppose that, rather than a 
normal form, a general first-order form (4.1.30) is given, 

CIl,(t, a)£i' + Dit, a) = O. (4.3.6) 

By following Definition 1.3.11.1, we say that Equation (4.3.6) admits an 
indirect analytic representation in terms of Hamilton's equations when there 
exist (4n2 + 1) functions, a Hamiltonian H(t, a), and a regular matrix of 
multiplicative functions (h~ (t, a», such that the following identities hold: 

f.1 = 1,2, ... , 2n. (4.3.7) 

Clearly, the identities can hold if and only if 

(4.3.8) 

In this sense, definitions (4.3.7) and (4.3.2) are equivalent. However, definition 
(4.3.7) illustrates more clearly the generally indirect nature of the Hamil­
tonian representations. 

Note that the integrability conditions for all representations (4.3.2), and 
(4.3.7) are those ofTheorem 4.1.4, and, as stressed in Section 4.1, a Hamiltonian 
for a given system does not necessarily exist within a fixed system of local co­
ordinates. 

The Birkhoffian generalization of the Hamiltonian notions introduced 
above is straightforward. Consider a vector field 3'(t, a), and suppose that 
it is not Hamiltonian, that is, a functions H(t, a) verifying equations (4.3.2) 
does not exist. This means, geometrically, that the fundamental symplectic 
tensor wll' is not the lowering tensor of the vector field 3'. 

We shall say that the vector field 3' possesses a representation in terms of 
Birkhoff's equations (or is of Birkhoffian type) in a neighborhood ~ of a 
point (t, a), when Birkhoffian functions RIl(t, a) and B(t, a) exist such that all 
the following equations are identically verified in ~30 

n. ( )';;"'( ) _ oB(t, a) oRit, a) 
U Il' t, a ~ t, a - 0 + 0 ' 

all t 
(4.3.9a) 

(4.3.9b) 

29 The fundamental Lie tensor w· V is the raising tensor for the covariant form Ev. 
30 The preservation of the notation" a" in the transition from Hamilton to Birkhoff's equa­

tions may be misleading unless properly understood. Strictly speaking, one should use different 
notations, say, a = (r, p) for the former and b = (r, y) for the latter, to stress the differentiation 
between the independent variables p and y. This differentiation has not been implemented here 
to illustrate in a way as direct as possible the preservation of the analytic, algebraic, and geo­
metric character in the transition from Hamilton's to Birkhoff's equations. 
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The vector field SV(t, a) is nonautonomous. Representation (4.3.9) is there­
fore non-autonomous as well. However, following Definition 4.2.1, there may 
exist also the following semi-autonomous representation 

-v aB(t, a) 
nja).::. (t, a) = a ' all 

(4.3.10) 

in which the explicit time dependence is restricted to the Birkhoffian. Clearly, 
an autonomous Birkhoffian representation of a nonautonomous vector field 
does not exist. 

The situation for autonomous vector fields SV(a) is different. First, these 
vector fields may admit an autonomous Birkoffian representation which we 
write 

(4.3.11) 

However, a non-autonomous representation in this case cannot be excluded, 
because of the possibility that the explicit time dependences of the tensor 
nllv and of the Birkhoffian B "cancel out" in such a way to yield consistent 
equations (4.3.9).31 

To summarize, when the fundamental symplectic tensor w llV does not 
permit the achievement of consistent identities (4.3.2), the transition to the 
general symplectic tensor nllv allows a solution. The vector field, however, 
is not Hamiltonian. It has been called here a "Birkhoffian vector field," 
following the terminology introduced by Santilli (1978c), to stress the lack of 
Hamiltonian character while preserving a perfectly acceptable symplectic or 
contact structure. Illustrative examples are given at the end of this and the 
next chapter. 

When contravariant form (4.3.1) is Birkhoffian, it admits the covariant 
general form 

(4.3.12) 

which is clearly self-adjoint (from Proposition 4.2.1). The following direct 
representation of form (4.3.12) via the conventional Pfaffian principle then 
follows 

(j f2dt(RvaV - B)(E) = f
2
d{ (Ollvav - ;! -a:rllt/all}E) 

(4.3.13) 

The Birkhoffian representations are the analytic version of a corresponding 
geometric notion (studied in Charts 4.4-4.6) called the Birkhoffian vector field. 
This notion can also be introduced as a direct geometric generalization of the 

31 As we shall see, this case occurs rather frequently in practical applications. 
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notion of Hamiltonian vector field, via the inner product for the autonomous 
case 

(4.3.14) 

with corresponding generalizations for the semi-autonomous and the non­
autonomous cases. 

In the local coordinates needed for practical applications to specific 
systems, Equations (4.3.14) read 32 

(4.3.15) 

The generalization of Hamiltonian structure (4.3.5) so as to preserve the 
underlying geometry (and therefore, the algebra) is self-evident. 

As recalled earlier, first-order systems are generally given in form (4.3.6), 
in which case the Birkhoffian definitions given above do not apply directly. 
This limitation is resolved via the following definition. 

Definition 4.3.1. A general covariant form (4.3.6), which is well defined, 
analytic, and regular in a neighborhood ~ of a regular point of the variables, 
admits a representation in terms of BirkhojJ's equations when a regular 
matrix (h~(t, a)) of multiplicative functions which are analytic in ~ and a 
set of Birkhoffian functions Rit, a) and B(t, a) which are also analytic in 
fj exist such that the following identities hold in fj in a given ordering: 

[(ORv ORIL) 'V (OB ORIL)] _ a'v • 
oalL - oav a - oalL + at SA = [hiC"v a + D,,)NSA]SA, 

J1 = 1,2, ... , 2n. (4.3.16) 

The representation is called direct when (h~) is the unit matrix; otherwise, it 
is called indirect. Finally, the representation is called nonautonomous, semi­
autonomous, or autonomous when Birkhoff's equations are of the corre­
sponding type in the sense of Definition 4.2.1. 

It is understood that the integrability conditions for representations (4.3.9) 
and (4.3.16) are equivalent. 

4.4 Isotopic and Genotopic Transformations 
of First-Order Systems 

As indicated in the preceding section, particularly in Deffnition 4.3.1, the 
construction of a Birkhoffian representation is essentially dependent on the 
capability of writing first-order systems in a self-adjoint form, and, more 

32 It is important to stress even at this introductory geometric level that the differentiation 
between the Hamiltonian and Birkhoffian vector fields is lost for the global coordinate1ree formula­
tions of geometry. This point illustrates the need of local formulations and the insufficiency of 
the coordinate-free approach in mechanics, if considered alone. For more details, see the geo­
metric charts at the end of this chapter. 
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specifically, on the capability of turning a given non-self-adjoint system 
into an equivalent self-adjoint form. 

A technical context for the rigorous treatment of these transformations is 
provided by the theory of Abstract Algebras and, in particular, by the so­
called isotopies and genotopies. In this section we shall deal with the simplest 
possible part of the topic, that dealing explicitly with first-order systems. 
A more technical treatment within the context of Abstract Algebras will be 
provided in Chart 5.2. 

Definition 4.4.1. 33 An equivalence transformation of a system of differential 
equations (or first- or higher-order) is called self-adjoint (non-self-adjoint) 
isotopic or self-adjoint (non-self-adjoint) genotopic, depending on whether the 
transformation preserves, in the isotopic case, or induces, in the genotopic 
case, the self-adjointness (non-self-adjointness). 

This definition has been given for all possible equivalence transforma­
tions,34 including those characterized by the transformation theory. If we 
restrict the transformations to a fixed system of local variables, the only 
possible transformations are those characterized by the multiplication of a 
regular matrix of factor functions. The classification of all possible cases from 
the viewpoint of the variational self-adjointness, then leads to the following 
possibilities. 

(CI'VaV + DI')SA = 0 ..... (C:vav + D:)SA = 0, 

(Cl'vaV + DI')NSA = 0 ..... (C:vav + D:)SA = 0, 

(Cl'vaV + DI')NSA = 0 ..... (C:vav + D:)NSA = 0, 

(Cl'vaV + DI')SA = 0 ..... (C:vav + D:)NSA = 0, 

(4.4.1a) 

(4.4.1 b) 

(4.4.1 c) 

(4.4.1 d) 
(4.4.1 e) 

According to Definition 4.4.1, the above cases can be identified as follows: 

transformations (4.4.1a) are self-adjoint isotopic because they preserve 
the self-adjointness of the original system; 
transformations (4.4.1 b) are self-adjoint genotopic because they trans­
form a non-self-adjoint system into a self-adjoint one, by therefore 
inducing the self-adjointness; 
transformations (4.2.1c) are non-self-adjoint isotopic because they pre­
serve the original non-self-adjointness of the systems; and, finally, 

33 R. M. Santilli (1977c). With a minimal amount of linguistic license, the Greek for" isotopic" 
is I'am; TO'noc;, which means "same configuration." The term "genotopic" has been suggested 
to me by Mrs. Carla Santilli from the Greek 1'6VVIl('W TO'nov, me\lning "induce configuration." 

34 Note that the term "equivalence" does not possess the traditional mathematical meaning 
within the context of transformations (4.4.1) because, once an analytic and regular matrix h is 
selected, the equivalence character of the transformation also depends on the system con­
sidered. For instance, (hfCq» may generate an equivalence transformation of the second-order 
system Fk(t, q, q, ij) = 0 but not of the first-order system Fk(t, q, q) = O. Nevertheless, all trans­
formations considered in this volume are equivalence transformations by a construction. This 
implies all the necessary restrictions on multiplicative functions, ensuring the equivalence of the 
original and transformed systems. We shall therefore apply the term" equivalence transforma­
tion" to transformations of type (4.4.1) as well. 
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transformations (4.4.1d) are non-self-adjoint genotopic because they 
transform a self-adjoint system into a non-self-adjoint form, by therefore 
inducing the non-self-adjointness. 

A few examples may assist the reader in identifying the type of transform a­
tions under consideration. They are given below for the second-order case, 
with the understanding that the first-order case follows similar patterns. 

The equivalence transformation of the radial equation of a particle in a 
central force field (studied in Example 1.3.5, p. 1.212) 

(r # 0) 

--+ {~ [m2r3f - M2 + mr3 o~(r)] } 
mr ur NSA SA 

= [mf - M~_ + OV(r)] = 0, 
mr'! or SA 

(4.4.2) 

is a self-adjoint genotopic transformation. The inverse transformation is 
then of non-self-adjoint genotopic type. What is important for this analysis 
is that the multiplication of the equation of motion by the term l/mr3 clearly 
leaves the solution of the system unaffected (equivalence transformation), 
yet it is not trivial from the viewpoint of the existence of a Lagrangian repre­
sentation. In fact, this representation exists (and is well-known) for the self­
adjoint form of the equations of motion, yet does not exist for the equivalent 
non-self-adjoint form. Notice that the form of the equation of motion origin­
ating from Newton's second law (mf - F = 0) is self-adjoint in this case. 

The equivalence transformation of the equation of motion of a particle 
subject to a linear velocity-dependent drag force (studied in Example 1.3.1, 
p.1.206) 

[f + yf]NSA =: 0 --+ {~ [f + Yf]NSA} :;:: 0, 
r SA 

(4.4.3) 

(f # 0, m = 1) 

is a self-adjoint genotopic transformation. In this case the transformation 
inducing self-adjointness is provided by the factor l/f (which the reader can 
verify through (..1.12». Notice that, in this case, the equation of motion 
originating from Newton's second law is non-self-adjoint. 

For additional illustrations of the self-adjoint genotopic transformations, 
we refer the reader to the examples at the end of this chapter (as well as those 
at the end of Chapter 5 and of the Appendix). 

The case of self-adjoint isotopy is similar to that of self-adjoint genotopy. 
For instance, the equivalence transformation of the one-dimensional 
harmonic oscillator (conservative case), 

(4.4.4) 
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preserves self-adjointness. The reader is encouraged to verify this. The 
equivalence transformation of the particle with linear velocity damping 
(nonconservative case), 

[~ r + yJ = ° -+ {eytr[~ r + yJ } = 0, 
r SA r SA SA 

(4.4.5) 

also preserves self-adjointness. According to Definition 4.4.1, (4.4.4) and 
(4.4.5) are therefore cases of self-adjoint isotopy. 

Equivalence transformations which induce the non-self-adjointness are 
particularly useful in generalizing variational principles so as to represent 
directly non-self-adjoint systems, and they will be considered later. The same 
transformations are also useful for the non-Lie study of Newtonian systems 
(e.g., that of Lie-admissible type), but this latter approach will not be con­
sidered here. 

In conclusion, the behavior of a given system of differential equations 
under conditions of variational self-adjointness is highly sensitive to the way 
in which the system is written. In particular, the multiplication by a regular 
(and thus invertible) matrix of functions, while leaving the implicit functions 
(and thus the solutions) unaffected, generally alters the variational character 
of the system. 

Clearly, the transformations that are important for the Birkhoffian repre­
sentations are those of self-adjoint (isotopic and genotopic) type. Their 
integrability conditions are identified in the following theorem where the 
terms "self-adjoint transformations" represent both the isotopic and the 
genotopic ones. 

Theorem 4.4.1 (Self-Adjoint Transformations of First-Order Systems). 
Consider afirst-order system 

(X. = 1,2, ... , 2n (4.4.6) 

which is well-defined, analytic, regular, and either non-self-adjoint or self­
adjoint in a region ~ of the variables (t, a). A necessary and sufficient condi­
tion for the transformation in &l 
{h~(t, a)[Ca.(t, a)tiv + Da(t, a)]} = [C!.(t, a)tiv + D!(t, a)] = 0, (4.4.7a) 

ctv = h~CaV' D! = h~Da' det(h~)(9l) "# ° (4.4.7b) 

to be self-adjoint is that all the conditions 

C!. + C~1l = 0, 

oc:. OC~T oC:1l _ ° 
oaT + oall + oav - , 

oC:v oD: oD~ 
---at = oa' - oall' 

11, v, 'r = 1, 2, ... , 2n, 

are identically verified in ~. 

(4.4.8a) 

(4.4.8b) 

(4.4.8c) 
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As indicated in Section 4.1, in practice one often constructs first a covariant 
normal form (4.1.31) for the possible identification of a Hamiltonian. When 
this form is not self-adjoint (and a Hamiltonian does not exist), one can 
search for a Birkhoffian representation. In this case the following particu­
larization of Theorem 4.4.1 is useful. 

Corollary 4.4.1a. When system (4.4.6) is the (not necessarily self-adjoint) 
covariant normal form 

(4.4.9) 

conditions (4.4.8)for the construction of a self-adjoint genera I form 

{h~(t, a)[w"vaV - Sit, a)]}SA = [C!'v(t, a)aV + Dit, a)]SA, (4.4.10a) 

C!'v = h~w"v' D!, = -h~S", (4.4. lOb) 
reduce to 

h~w"v + h~w,,!, = 0, (4.4. 11 a) 

oh~ oh~ oh~ 
oat w"V + oa!' W"t + oav w"!' = 0, (4.4. 11 b) 

(4.4.l1c) 

Sometimes, self-adjoint transformations admit a tensor h~ with constants 
elements. The following particular case is then useful. 

Corollary 4.4.1h. Wren all elements of the matrix (h~) are constants, 
conditions (4.4.11) become 

(4.4. 12a) 

(4.4. 12b) 

(4.4.12c) 

The algebraic and geometrical implications of the self-adjoint transforma­
tions can be pointed out, in a prdiminary way, via the following theorem. Its 
proof is a direct consequence of the algebraic and geometric meaning of the 
conditions of self-adjointeness (Section 4.1) and, as such, is ignored here. 

Theorem 4.4.2 (Lie and Symplectic Character of the Self-Adjoint Trans­
formations). Under integrability conditions (4.4.8), transformed systems 
(4.4.7) have a Lie algebraic and a symplectic geometric structure, in the 
sense that the brackets 

[ B]* - oA C*!"'( ) oB A, - ;;-- t, a :lV' va!' va 
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are Lie, and the twojorms 

C* = IC* (t a)dall /\ dav 
2 2 IlV , (4.4.14) 

are symplectic. 

Recall that Theorem 4.4.1 applies whether or not the original system is 
self-adjoint. The following classification of Theorem 4.4.2 then follows. 

(A) Self-adjoint isotopic transformations. In this case the original brackets 

_ oA IlV oB 
[A, BJ - oall C oav ' 

are Lie, and the exterior two-form 

C2 = tcllv da ll /\ dav 

(4.4.15) 

(4.4.16) 

is symplectic. We therefore have the Lie algebra preserving transformation of 
the brackets 

(4.4.17) 

with corresponding symplectic preserving transformation of the twojorm 

C = IC dall /\ daV ~ C* = IC* dall /\ dav 
2 2 IlV 2 2 IlV • (4.4.18) 

(B) Self-adjoint genotopic transformations. In this case the original brackets 

oA oB 
(A, B) = oa ll CIlV oav (4.4.19) 

are not Lie, (e.g., the tensor ellV is not totally anti symmetric). Consequently, 
the tensorial two-form 

C2 = C IlV dall ® dav (4.4.20) 

cannot be reduced entirely to the exterior form (4.4.16)35 and, as such, is not 
symplectic. In this case we have the Lie algebra inducing transformation of 
the brackets 

(4.4.21) 

35 Recall from Section 1.1.2 that the tensorial product @ is neitheir symmetric nor anti­
symmetric, while the exterior product /\ is totally antisymmetric. It then follows that, whenever 
the tensor C., is antisymmetric, the tensorial two-forms reduce automatically to the exterior one, 
according to the rule 

C., da· @ da' = !(C., - C,.)da· /\ da' 

+ !(C., + C,.)da· x da' == C., da· /\ da'. 

If the tensor C., is not anti symmetric, this reduction is not possible, and the underlying geometry 
is not symplectic. 
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with corresponding symplectic-inducing transformation of the (tensorial) 
two-form 

c = C dal' 'X' daV -+ C* = l.C* dal' /\ dav 
2 I'V I(Y 2 2 I'V • (4.4.22) 

Note that all transformations (4.4.17), (4.4.18), (4.4.21), and (4.4.22) occur, 
by construction, within one single fixed system of local variables. As a result, 
the transformations express the algebraic and geometric degrees of freedom 
of the specific reference frame of the observer. Also, since no change of 
variables is involved, the transformations are a new algebraic and geometric 
type, which will be studied in more detail in Charts 4.2. 

It is remarkable that the identification and treatment of these new trans­
formations is a direct result of the conditions of variational self-adjointness. 

By comparing Theorems A.Ll and 4.4.1, we see a considerable similarity 
in the construction of self-adjoint transformations for second- and first­
order systems. Nevertheless, a deeper study reveals a rather profound dif­
ference at the basis of the universality of the Inverse Problem, as well as of a 
number of important properties .. 

As stressed in the Introduction, second-order systems do not necessarily 
admit a self-adjoint transformation within a fixed system of local variables. As 
a result, a Lagrangian or a Hamiltonian for the representation of a Newtonian 
system in the coordinate and time variables of the experimenter does not 
necessarily exist. 

The situation for first-order systems is different. (Havas (1973)). In fact, 
as we shall show, first-order systems always admit a self-adjoint transformation 
within fixed local variables. As a result, whenever a Hamiltonian does not 
exist, a Birkhoffian representation can be established. 

Theorem 4.4.3 (Universality of the Self-Adjoint Transformations of 
First-Order Systems). Local, analytic, regular and even-dimensional 
systems of first-order ordinary differential equations always admit at least one 
self-adjoint transformation in the neighborhood of a regular point of their 
variables. 

PROOF. To prove the theorem it is sufficient to consider the case when the functions 
h~ of Equations (4.4.10)36 possess an explicit time dependence. Equations (4.4.11) always 
admits a solution in the neighborhood of a regular point because they can be written 
in the equivalent Cauchy-Kovalevski form 

8h· 8 8_ 
---'!. = w·v -- (hP S ) - w·v - (hP.::. ) 8t 8a v Il P 8all v P' 

(4.4.23) 

and the functions Sp are analytic. Moreover, the intial conditions can be chosen in such 
a way that the tensor h~ w.v has a curl structure, say, C~v at the initial time t = to. Thus 
the Cauchy-Kovalevski theorem is verified. This ensures the existence of an (analytic) 

36 The proof deals with the particular case of Equation (4.4.10). Its extension to the general 
case (4.4.7) is left to the interested reader (Problem 4.3). 
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solution h~ such that h~w.v has a curl structure at all times, as can be seen in the formal 
expression 

ft ar' ft ar' 
n~v(t, a) = h~(t, a)w.v = dt --;;- - dt --i; + C~v' 

to aa to aa 
(4.4.24) 

All tensors of rank two with a curl structure verify Equations (4.4.11a) and (4.4.11b) (see 
Problem 4.2), and this completes the proof of the theorem. (Q.E.D.). 

Theorem 4.4.3 is remarkable inasmuch as it establishes that system (4.4.11) 
of partial differential equations in the unknown functions h~ for fixed terms 
w"v and 3" is always consistent, despite its overdetermined character, with a 
similar case occurring for the more general system (4.4.8). 

The geometric implications of the solutions are also intriguing. Recall that 
the systems considered are nonautonomous and that, as such, they can be 
more properly described via the contact geometry. Recall from Section 4.2 
that contact two-forms, in their current general formulation, have attached 
symplectic forms without an explicit time dependence. Theorems 4.4.1, 4.4.2, 
and 4.4.3 establish instead that the presence of an explicit time dependence 
in the symplectic form is rather natural in mechanics. 

The following method for the explicit construction of a self-adjoint form 
due to Hojman (1981) is important on both formal and practical grounds. 

Proposition 4.4.1 (A Method for the Construction of a Self-Adjoint 
First-Order Form). Consider a contravariant,first-order, normal form, 

ii" = 3Jl.(t, a), J.l = 1,2, ... , 2n, (4.4.25) 

which is analytic in the neighborhood ~ of a regular point of the variables, 
and suppose that 2n independent first integrals IJl.(t, a), 

. oIJl. oIJl. 
IJl.(t, a) = T + ~ 3 v = 0, 

ut uav 
(4.4.26a) 

det(oIJl./oav)(.~) =f 0 (4.4.26b) 

are known. Consider 2nfunctions GiI(a» such that 

d (OGJl. _ OGv)(~) 0 et or OIJl. =f. (4.4.27) 

Then the covariant general form 

(4.4.28a) 

(4.4.28b) 

(4.4.28c) 

is self-adjoint in :1. 
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The proof of Proposition 4.4.1 is left as an instructive exercise for the 
interested reader (Problem 4.4). The construction of the Birkhoffian func­
tions via the method of the proposition will be presented in the next section. 

The reader should keep in mind that (as was the case for Theorems 4.4.1 
and 4.4.2) Theorem 4.4.3 also applies whether or not the original system is 
self-adjoint. In the former case, an analytic representation already exists, 
while in the latter case, it is induced by the transformation. 

By recalling the remarks following Theorem 4.4.2, we can conclude this 
section by stating that the self-adjoint isotopic (genotopic) transformations 
preserve (induce) the derivability of the systemfrom a variational principle, its 
Lie algebra character, and its symplectic geometric structure. 

4.5 Direct Universality of Birkhoff's Equations 

Definition 4.3.1 and Theorem 4.4.3 are sufficient for establishing the direct 
universality of Birkhoff's equations. Nevertheless, for the sake of complete­
ness, we shall give below a more direct proof based on the Cauchy-Kovalevski 
theorem to establish the existence of the Birkhoffian functions. 

Theorem 4.5.1 37 (Direct Universality of Birkhoff's Equations for Local 
Newtonian Systems). All local, analytic, regular, finite-dimensional, un­
constrained or holonomic, conservative or non-conservative, and self-adjoint 
or non-self-adjoint systems in first-order form always admit, in a star-shaped 
neighborhood of a regular point of their variables, a representation in terms 
of Birkhoff's equations in the coordinate and time variables of the experi­
menter. 

PROOF. Unconstrained systems of the class admitted are given by the essentially non­
self-adjoint systems (Definition 4.1.1). In the (Cartesian) coordinate and time variables 
of the experimenter, they can be written38 

{[(marka - fka(t, r, t))ESA - Fka(t, r, t)JNENSA - ffka(t, r, t)}ENSA = 0, 
k = 1,2, 3, a = 1,2, ... , N, r E E3N (4.5.1) 

and they do not admit a Lagrangian (or a Hamiltonian) representation in the local 
variables considered. 

To reduce the systems to equivalent first-order forms, introduce the physical (gener­
ally non-canonical) linear momentum 

(4.5.2) 

37 The Lagrangian version of the theorem (see Chart 4.3) was formulated and proven by 
Havas (1973). Theorem 4.5.1 in the given Birkhoffian version, was given by Santilli (1978c). Note 
that the systems need not necessarily be Newtonian (e.g., they may have acceleration-dependent 
forces). The theorem is extendable to systems of order higher than one via the reduction to 
first-order form presented in Chart 4.3. 

38 In Equations (4.5.1). no summation on the repeated a index exists. 
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as a realization of prescriptions (4.1.23). The contravariant normal forms (4.1.28) are 
then given by 

( ~ ) ( Pka/ma ) . - ESA NENSA w;-ENSA = 0 (4.5.3) 
Pka f ka (t, r, p/m) + F ka (t, r, p/m + :#' ka (t, r, p/m) 

and can be written in unified notation 

a - Set, a) = 0, (4.5.4a) 

_ ( p/m ) 
(.::.) = fESA + FNENSA + ji'ENSA . (4.5.4b) 

Our proof of the theorem consists of showing that, under the assumed smoothness 
and regularity conditions, the fundamental equations (4.3.9) for a Birkhoffian repre­
sentation, i.e., 

[
ORv(t, a) 

oa" 
J1 = 1,2, ... , 2n (4.5.5) 

always admit a solution in the functions R" and B, that is, a solution exists for an arbitrary 
functional dependence of the vector field SV. As such, the proof automatically extends to 
arbitrary prescriptions (4.1.23) other than the physical selection (4.5.2), as well as to 
arbitrary second-order systems of the class admitted, e.g., holonomic systems in the 
general form ( . .1.9). By recalling particularization (4.2.2), the conventional Hamiltonian 
representation of systems with potential forces is a trivial subcase. 

Case 1. The Functions R" have an Explicit Dependence on Time (Non-autonomous Case). 
For any given function B, equations (4.5.5) are of the Cauchy-Kovalevski type, as one 
can see by writing them in the form 

oR" = (ORv _ OR,,)sv _ OB. 
at oa" oav oa" 

(4.5.6) 

Then, under the assumed smoothness, regularity, and locality conditions, Theorem 1 of 
Chart A.3 holds, and a solution always exists. 

Notice that this case applies also when the vector field is autonomous, by therefore 
being sufficient per se to prove the theorem. Nevertheless, to be in line with contemporary 
formulations of contact two-forms,39 the case of autonomous functions Ria), when 
applicable, is relevant. 

Case 2. The Functions R" do not have an Explicit Dependence on Time (Semi-autonomous 
and Autonomous Cases). The fundamental equations for a Birkhoffian representation 
are now given by Equation (4.3.10), for the semiautonomous case, and by Equation 
(4.4.11), for the autonomous case. However, both sets of equations are of the Cauchy­
Kovalevski form, as one can see by writing them in the form 

(4.5.7) 

under identification 

(4.5.8) 

and this completes the proof of the theorem. (Q.E.D.). 

39 See the remarks in Section 4.2 following Corollary 4.5.1 a. 
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A number of physical and mathematical properties deserve inspection. 
First, we would like to identify the nature of the "direct universality" of 
Birkhoff's equations. This can be done by identifying all the mathematical 
algorithms at hand, that is, the local coordinates t and a = (r, p), and the 
function B (the meaning of the functions R/l will be identified shortly). 

Coronary 4.5.1a. The direct universality of Birkhoff's equations for local 
unconstrained Newtonian systems in Euclidean space is characterized by 
the following properties. 

1. The local variables t and r can be the time and Cartesian coordinates 
actually used by the experimenter, 

2. The variables p can be the physical linear momenta mi, 
3. Thefunction B(t, a) can be the physical energy Etol' that is, the sum of 

the kinetic energy and of the potential energy of all self-adjoint forces. 

Note that the physical energy can be equivalently defined as the total energy 
of the maximal self-adjoint subsystem of (4.5.1). Needless to say, the total 
energy is generally non-conserved because of the presence of contact non­
potential interactions. The definition is also introduced to stress the distinc­
tion from the familiar canonical Hamiltonian (which, as pointed out in 
Chart A.ll, is often "conserved" while the system is nonconservative). 

The reader can now appreciate the importance of the direct universality of 
Corollary 4.5.1a. In fact, lacking a precise physical identification for all the 
mathematical symbols at hand, one risks drawing mathematically correct 
conclusions which are physically meaningless. This situation becomes even 
more pronounced when one confronts the problem of quantizing non­
potential interactions, as is expected for mutual penetration ofwa ve packets.40 

In this case the canonical momentum "p," the canonical angular momentum 
"M" = r x Pean' and the canonical Hamiltonian "H" do not represent the 
physical linear momentum, the physical angular momentum, and the physical 
energy, respectively, as a necessary condition for the existence of a Hamiltonian 
representation. But then, the attempt to preserve conventional quantum 
mechanical settings (e.g., the spectrum of" H" interpreted as "energy levels," 
or the spread" /).p" interpreted as "uncertainty in the momentum," etc.) 
risks being sterile. 

It is hoped that the reader will begin to see a reason for this volume's 
emphasis on achieving analytic representations of Newtonian systems first 
in the variables and functions of direct physical meaning. Once this has been 
achieved, one can then study mathematical topics (such as nonlinear, 
experimentally unrealizable transformations of the coordinates), by mini­
mizing possible physical inconsistencies. 

Corollary 4.5.1a essentially states that one can first identify the quantities 
t, r, p, and B = E tot directly with physical quantities, and then search for a 
Birkhoffian representation. But the quantity B represents, in this case, only 

40 This problem will be touched in tht: charts of Chapter 6. 



Direct Universality of Birkhoffs Equations 57 

potential forces. This creates the need for identifying the ways in which 
Birkhoff's equations represent the remaining non potential forces. At this 
point the geometric or algebraic structure of Birkhoff's equations acquires 
a direct dynamic content. 

Corollary 4.S.1b. Under the conditions of direct universality of Corollary 
4.5.1a, all nonpotential (non-self-adjoint) forces are represented by the 
covariant symplectic tensor 

(4.5.9) 

or, equivalently, by the contravariant Lie tensor 

(4.5.10) 

In particular, when the Birkhoffian represents kinetic energy only, all acting 
forces are entirely represented by the geometric or algebraic tensor. 

The difference between the Hamiltonian and Birkhoffian time evolutions 
(say, for the autonomous case) 

. _ oA I'V oB _ 
A(a) - oal' ro oa' - [A, H], (4.5. 11 a) 

. _ oA I'V oB _ * 
A(a) - oal' n (a) oav - [A, B] , (4.5.11b) 

can now be understood. In the conventional Hamiltonian case, all forces 
(whether potential or not) are represented by the Hamiltonian. In fact, the 
fundamental Lie tensor rollV has constant elements and therefore does not 
carry a direct dynamic content. In the transition to the Birkhoffian case the 
situation is different insofar as the Birkhoffian represents only part of the acting 
forces, while the remaining forces are directly embedded in the structure of the 
brackets of the time evolution. 

Equivalently, we can say that the direct universality of Birkhoff's equa­
tions, in the final analysis, is a consequence of the utmost possible use of the 
underlying geometry and algebra. When the realizations of symplectic two­
forms and Lie brackets are restricted to canonical forms, the capacity to 
represent unrestricted systems in the coordinates of the observer is lost. 

For an explicit illustration of this important function of the geometry and 
algebra, we recommend that the reader consult the examples at the end of this 
and the next chapters, with particular reference to Example 4.1 on the 
Hamiltonian and Birkhoffian representations of the (Newtonian) electro­
magnetic interactions. 

After having identified the admissible physical meaning of the local vari­
ables, the Birkhoffian functions, and the underlying geometric/algebraic 
tensors, the next objective is to characterize physically the space in which 
Birkhoff's equations act. The relevance of the characterization will be pointed 
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out soon. Note that, on mathematical grounds, the problem has been solved 
in Section 4.2 via the identification of the local variables all with a chart of 
the cotangent bundle T* M. It is advisable to compare the most salient 
physical properties of the carrier space of Birkhoff's equations with those for 
the Hamiltonian case. 

Corollary 4.S.1c. While the variables rand p of a Hamiltonian representa­
tion are canonically conjugated, i.e., they verify the canonical rule 

. oH 
r=-op (4.5.12) 

and span a phase space, the variables rand p of a Birkhoffian representation 
are not canonically conjugated because, in general, 

(4.5.13) 

As a result, the space of the Birkhoffian variables, a = (r, p), is not necessarily 
a phase space; it will be referred to as a "dynamic space." In particular, while 
the phase space can be equipped with a fundamental Lie algebra structure 
WIlV which represents directly the fundamental Poisson brackets 

+1) 0' (4.5.14) 

this structure is inapplicable to the dynamic space and must be replaced with 
the general Lie algebra structure, QIlV(a),41 which now represents the 
generalized fundamental brackets 

+1) O. (4.5.15) 

As a result, components of coordinates and moments with di.lforent indices 
commute in the phase space, 

i =P j, (4.5.16) 

but they do not generally commute in the dynamic space 

i =P j. (4.5.17) 

The loss of the conventional phase space and its replacement with a more 
general space has a rather deep impact in mechanics. For an idea, consider 
the problem of quantizing non-potential interactions when the classical 
equations are given by Birkhoff's (rather than Hamilton's) equations. Under 

41 We exclude the nonautonomous case because of the lack of algebraic character of Birk­
hoff's equations (Chart 4.1). 
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these circumstances, conventional physical laws for potential interactions, 
such as Heisenberg's uncertainty principle, 

(4.5.18) 

cannot even be consistently formulated, let alone applied, trivially, because 
of the loss of the quantum mechanical version of fundamental brackets 
(4.5.14). 

The differences between the dynamic space and the conventional phase 
space constitute one of the best mathematical formulations of the physical 
differences between the potential and nonpotential interactions. Jointly, the 
differences illustrate the essentially misleading nature of the Hamiltonian 
formulations when applied to nonpotential interactions, unless proper care 
is used for the physical interpretation of the algorithms at hand. 

In fact, if Hamiltonian representations are used for non-potential systems, 
conventional quantum mechanical images are expected to apply, leading to 
principle (4.5.18) (because now commutation rules (4.5.14) hold). This con­
clusion is mathematically correct, but its physical interpretation is in doubt 
because, as indicated earlier, a necessary condition for the existence of the 
Hamiltonian representation is that the quantity" p" does not represent the 
physical linear momentum. In the transition to the Birkhoffian representation 
of the same system, according to the direct universality of Corollary 4.5.1a, 
insidious physical occurrences of the type considered are removed by con­
struction. However, a generalization of basic physical laws which is more 
directly compatible with the underlying generalized algebra and geometry 
appears unavoidable. 

Occurrences of this type should not be surprising. Hamilton's equations 
(without external terms42) have been developed throughout this century for 
the study of potential interactions. Birkhoff's equations have been redis­
covered for the study offundamentally more general interactions. The fate of 
the underlying physical laws is then predictable. 

After having identified some preliminary physical aspects of Birkhoffian 
representations, the next objective is to determine methods for computing 
the Birkhoffian functions from the equations of motion. Notice that a first 
method is provided by Corollary 4.2.1a. However, the method is of somewhat 
formal inspiration and, as such, calls for reformulation into an operational 
version. The identification of additional methods and their interpretation is 
also desirable. 

Corollary 4.5.1d. Suppose that a second-order Newtonian system is given, 
and its equivalent contravariant first-order form (4.5.4) has been constructed 
via physical prescriptions (4.5.2). Some methods for the construction of the 
Birkhoffianfunctions R/L(t, a) and B(t, a)from the equations of motion are the 
following. . 

42 See footnote 5 of the Introduction. 
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Method 1.43 Identify B with the total energy Etot in the sense of Corollary 
4.5.1a, and then solve the Cauchy-Kovalevski equations (4.5.6) in the 
functions R/1' 

Method 2.43 Construct a selj~adjoint covariant general form 

[O/1.(t, a)£iV + r/1(t, a)]SA = 0 (4.5.19) 

via the methods of Section 4.4. The functions R/1 are then given by 

Rit, a) = [f d, ,O/1v(t, La)}v, (4.5.20) 

and the Birkhoffian is provided by the rule 

B(t, a) = -[f d,(r/1 + a:r/1)(t,La)]a/1. (4.5.21) 

Method 3.44 Suppose that 2n independent first integrals 1/1(t, a) (in the 
sense of Proposition 4.4.1) are known. Then functions R/1,from Equations 
(4.4.28b), are given by 

and the Birkhoffian is given by 

01" 
B(t, a) = - G" at. 

(4.5.22) 

(4.5.23) 

A few comments are in order. The first method is clearly inspired by the 
desire to have a direct physical meaning for all local variables and functions. 
However, the method leads to functions R/1 possessing, in general, an explicit 
dependence on time, as evident from Equations (4.5.6). The geometric 
implications of this dependence have been indicated in Section 4.2, and the 
algebraic implications are pointed out in Chart 4.1. The reader should be 
fully aware ofthese implications before passing to applications (e.g., quantiza­
tion). A method for attempting the elimination of the explicit dependence on 
time will be worked out shortly. 

The second method is recommended when no physical condition is 
imposed on the meaning of the Birkhoffian and on the prescriptions for the 
construction of the first-order form. It is often preferable in practice, clearly, 
because of the greater freedom in the Birkhoffian functions. Notice that, 
compared with Proposition 4.2.1, the method stresses the need to compute 
first the R-functions and then the Birkhoffian, as clearly expressed by the 
contribution of the former to the latter according to Equation (4.5.21). This 

43 Santilli (I978c). 
44 Hojrnan (1981). 
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necessary procedure is somewhat hidden in formal method (4.2.30).45 This 
second method is more readily set for the semi-autonomous case, that is, for 
the representation of nonautonomous vector fields by autonomous R-func­
tions and the consequential elimination of the problematic aspects of Chart 
4.1. 

The third method is conceived to provide a first interpretation of the re­
sults. In fact, it essentially emerges that the Birkhoffian functions are functions 
of a maximal independent set of.first integrals. 

It should be stressed that none of the methods guarantees the capability of 
actually constructing the Birkhoffian functions in the needed explicit form. In 
fact, the solutions are often expressed by power-series expansions. Theorem 
4.5.1 guarantees their convergence and therefore, the existence of a solution, 
but the computation of the sums in the needed explicit closed form may often 
turn out to be beyond practical computational capabilities. 

Example 4.4 has been included to illustrate the practical difficulties in the 
construction of the Birkhoffian functions. The possibility of constructing 
approximate Birkhoffian representations (that is, representations provided 
by the first terms of convergent power-series expansions) should not be over­
looked. In fact, Physics is intrinsically an approximation of nature. The 
important point is to identify the degree of approximation which can be 
accepted for the case at hand.46 This line of study is left to the interested 
reader (Problem 4.5). 

After the identification of the methods for the construction of the Birk­
hoffian functions, the next problem is to study their degrees of freedom, that 
is, their functional arbitrariness for fixed implicit functions (or solutions). 

Corollary 4.S.1e. A given second-order Newtonian system verifying the 
conditions of Theorem 4.5.1 always admits infinite varieties of equivalent 
Birkhoffian representations, all in the same time and coordinates of the 
experimenter. Some of the functional degrees of freedom are the following. 

Class 1. An infinite variety of prescriptions (4.1.23) exists, i.e., 

k = 1,2,3, a = 1,2, ... , N, (4.5.24) 

for the construction of equivalent normal forms, one for each selection of the 
arbitrary functions M ka (subject to regularity conditions (4.1.24)). For each 
of these infinitely different possibilities, Theorem 4.5.1 applies and the 
corresponding Birkhoffian representations are equivalent, in the sense that 
they can all be reduced to the same second-order system. 

45 Another important difference between methods (4.2.30) and (4.5.20)-(4.5.21) is that in the 
former, the r-factorization includes that of time, while such factorization is absent for the latter. 

46 For instance, the approximation of Newtonian systems via the functions L = T - V and 
H = T + V should be rejected because it literally implies the existence of perpetual motion 
in our environment. Along these lines, a (local, non potential) Birkhoffian approximation is more 
acceptable because it provides a quantitative treatment of the nonconservative character of 
the systems. The understanding is that by no means should such a Birkhoffian representation be 
considered terminal in character, owing to the more realistic non-local/integral and non­
potential/non-self-adjoint nature of the systems, as indicated at the end of Section 4.2. 
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Class 2. For each prescription (4.5.24) and each self-adjoint covariant 
general form, an infinite variety of different isotopic transformations exists 

det(h~)(.4l) # 0 (4.5.25) 

originating from the degrees of freedom of the solutions of system (4.4.8). For 
each of these self-adjoint forms, Theorem 4.5.1 holds. All corresponding 
Birkhoffian representations are then equivalent in the sense that they all 
admit the same vector field EV. 

Class 3. For each prescription (4.5.24), isotopy (4.5.25), and corresponding 
Birkhoffian functions RIl and B, an infinite variety of functions exists char­
acterized by the gauge transformations 

(4.5.26a) 

B(t, a) -+ B'(t, a) = B(t, a) - ~~. (4.5.26b) 

All the corresponding Birkhoffian representations are equivalent in the sense 
that Birkhoff's equations are the same for all possible functions (4.5.26), i.e., 

(OR~ _ OR~){i" _ (OB' + ~R~) 
oall oav oall at 

== (~Rv _ ORIl)av _ (OB + ORIl). (4.5.27) 
uall oav oall ot 

Note that degrees offreedom for Class 1 actually imply the initiation of the 
transformation theory. In fact, starting from the physical variables a = 
(r, p), p = mi', the degrees of freedom imply the transition to the different 
variables a' = (r, y) where y now is no longer subject to the condition of 
direct physical meaning. Clearly, the transition a -+ a' is a particular type of 
transformation in the cotangent bundle. As such, it will be studied in the 
next chapter. We have included the case here to stress the property that 
Theorem 4.5.1 is consistent for all possible prescriptions (4.5.24), whether 
physically inspired or not. 

The degrees of freedom of Class 2 are a direct result of the methodology of 
the Inverse Problem and can be constructed via the following rule of Birk­
hoffian isotopy 

(OR~ _ OR:) aV _ (OB* + OR~) 
oall oav oall ot 

== {hv[(8Rp _ ORv)ap _ (OB + ORv)] } . (4.5.28) 
Il oav oaP 8av ot SA SA 

Clearly, here we have a cotangent bundle image of the Lagrangian iso­
topies of the Appendix. Intriguingly, this image permits the achievement of 
the following new interpretation of the isotopic degrees of freedom (whose 
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Lagrangian counterpart is still unknown at this time). Recall from Section 
4.4 the construction of a self-adjoint form through the use of arbitrary func­
tions of independent first integrals (Proposition 4.4.1). Recall also from 
Corollary 4.5.1d that the construction results in a method for the computation 
of Birkhoffian functions (Equations (4.5.22) and (4.5.23». By reinspecting 
these results we see that different BirkhoffianJunctions which can be constructed 
via rule (4.5.28) can represent the arbitrariness oj Junctions G 1l(I) in the first 
integrals fa as well as the Junctional degrees oj Jreedom oj the first integrals 
themselves. 

The gauge degree of freedom of Class 3 is trivial and can be best proved by 
writing Birkhoff's equations in the Lagrangian form (4.2.32), where we have a 
situation similar to that of Equations (A.2.3), i.e., 

L = - R.(t, a)ciV + B(t, a) --+ L t = - RW, a)ciV + Bt(t, a) 

- Rvciv + B - G(t, a) (4.5.29a) 

d au aU d aL aL 

dt acill aall dt acill aall 
(4.5.29b) 

The applications of the degrees of freedom of the Birkhoffian representa­
tions are intriguing. Below, a few representative cases are given. 

In Chart 1.3.6 we recalled a rather old and controversial aspect of mech­
anics. It consists of the fact that, on one side, Hamilton's equations possess a 
symplectic structure in a rather clear and direct way while, on the other side, 
the variational principle from which the equations are derived, the con­
ventional Hamilton's principle in phase space 

(4.5.30) 

does not appear to possess a symplectic character in an equally clear way. 
Apparently, this is the basis of a tendency in contemporary circles of mathe­
maticians to ignore the treatment of mechanics via variational principles 
and restrict the geometrical study to the analytic equations themselves. 

Two seemingly independent resolutions of this controversy were proposed 
in the preceding volume. The first is given by the reformulation of Principle 
(4.5.30) via the unified notation a = (r, p) after which the geometric character 
of the integrand of the principle (as the contact canonical one-form) is 
expressed more transparently, together with the corresponding character 
of the analytic equations, i.e., 
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Independently from that, we introduced in Chart 1.3.6 a reformulation of 
Principle (4.5.31) with an explicit symplectic structure in the intengrand of 
the action itself, according to the equation 

I I2 - II2 [( 8H) J-b 11 dt[!aI'wllvaV 
- H(t, a)](E) = 11 dt wllvaV 

- 8all ball (E) = O. 

(4.5.32) 

Evidently, even though the inte£rands of principles (4.5.31) and (4.5.32) are 
different, the underlying analytic equations are the same, and we can write 

(4.5.33) 

Inspected within the context of Corollary 4.5.1e, this degree offreedom results 
in being trivially given by the gauge 

RO --+ ROt = RO 8G 
v v v + 8av' G = -rp (4.5.34) 

Another application of Corollary 4.5.1e is given by the possible removal of 
the explicit time dependence in the Ril functions. This can be done by trans­
forming non-autonomous representations Rit, a) and B(t, a) into an equivalent 
semiautonomous forms R~(a) and B'(t, a). A formal solution can be obtained 
via the degrees of freedom of Class 3, and reads 

G = {dt(B' - B). (4.5.35) 

In this way, one can first compute the functions Ril and B as they originate 
naturally from Corollary 4.5.1a (with an explicit dependence on time), and 
then attempt to eliminate such a dependence via rule (4.5.35). Note that if the 
original Birkhoffian represents total energy, the new Birkhoffian cannot 
preserve this physical meaning under transformation (4.5.35). 

The algebraic implications of this are nontrivial. As we shall see in detail in 
Chart 4.1, if B is identified with the physical energy Elot> the Birkhoffian time 
evolution for non-autonomous systems cannot have a Lie algebra character. 
If such algebraic character is desired, the Birkhoffian cannot represent 
physical energy. To state it in different terms, the Lie algebra character of the 
evolution and the direct physical meaning of the Birkhoffian, rather sur­
prisingly, turn out to be mutually exclusive in a number of cases of Birk­
hoffian representations. 

We end this section with the representation of Hamilton's equations in terms 
of Birkhoff's equations. Recall from Section 4.4 that the isotopic transforma­
tions are universal for first-order systems. As a result, they exist also for 
Hamilton's equations in all possible Hamiltonians. More explicitly, con­
sider Corollary 4.4.1a, and suppose that covariant form (4.4.9) is that of 
Hamilton's equations with Ell = 8H/8a". Theorem 4.4.3 establishes that 
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Equations (4.4.11) always admit a non-trivial solution in the isotopic func­
tions; that is, they admit a solution (h:) other than the identity for all possible 
Hamiltonians. In this way we reach the following property. 

Proposition 4.5.1 (Representation of Hamilton's Equations in Terms of 
Birkhoff's Equations). Hamilton's equations in all possible analytic and 
regular Hamiltonians H(t, a) always admit an indirect Birkhoffian repre­
sentation in a star-shaped neighborhood of a regular point of their variables 

( ORv _ ORIl).v _ (OB ORIl) == {h~( )[ '(1 _ oH(t, a)] } 
oall oav a oall + at Il t, a OJ~(1a oa~ SA SA' 

(4.5.36) 

Upon computation of the isotopic functions for each given Hamiltonian via 
the solution of Equation (4.4.11), the Birkhoffian functions are given by 

Ril = [fdT Th:(t, '!a)]OJ~(1a(1, (4.5.37a) 

(4.5.37b) 

We should stress that the universality of the isotopy exists for the transition 
from Hamilton's to Birkhoff's equations. The inverse case is not universal; 
that is,for arbitrarily given functions Ril and B, the decomposition of Birkhoff's 
equations into the Hamiltonianform according to rule (4.5.36) does not neces­
sarily exist. In fact, the direct universality of Birkhoff's equations for local 
Newtonian systems, as compared to its absence for Hamilton's equations, is 
due precisely to the lack of general existence of a reduction (4.5.36). 

In Corollary 4.5.1c we have stressed the fact that, in general, the conven­
tional phase space character ofthe carrier space of Birkhoff's equations is lost. 
Proposition 4.5.1 permits the identification of the following property. 
Whenever Birkhoff's equations with a tensor nll.(t, a) other than the funda­
mental symplectic tensor OJ IlV admit a factorization of Hamilton's equations 
according to rule (4.5.36), the variables a = (r, p) span a phase space, that is, 
the variables rand p are canonically conjugated. 

Proposition 4.5.1 opens up, at least in principle, new possibilities of re­
search for conservative systems such as the three-body system. In fact, as 
the study of these systems via Hamilton's equations can be considered as 
virtually exhausted at this time, the representation of the same systems via 
Birkhoff's equations permits the application of new, more general methods 
ranging from new first integrals to generalized perturbation techniques. 

In conclusion, the Birkhoffian generalization of Hamiltonian mechanics is 
useful not only for the non-potential systems for which it was conceived, but 
also for the more conventional potential systems. 
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Chart 4.1 Lack of Algebraic Character of Nonautonomous Birkhoff 
Equations 

As commonly understood in the contemporary theory of Abstract Algebras, 
an algebra U is a vector space of elements a, b, c, ... , over a field F of 
characteristic p (=0, or prime) with elements rx, p, /', ... , equipped with a 
bilinear (abstract) product ab satisfying the right and left distributive laws 

and the scalar laws 47 

a(b + c) = ab + ac, 

(a + b)c = ac + bc, 

(rxa)b = a(rxb) = rx(ab) 

(1 a) 

(1 b) 

(2) 
for all elements a, b, c E U, and rx E F. Additionally, when the associative 
law, 

[a, b, c] ~~ a(bc) - (ab)c = 0, (3) 

is verified for all elements a, b, c E U, we have an associative algebra; 
otherwise, we have a nonassociative algebra. In the contemporary 
liliterature, the term "algebras" generally represents "nonassociative 
algebras," and the same usage is adopted in this volume (unless the 
adjective" associative" is explicitly used). A truly large variety of algebras 
have been identified in the mathematical and physical literature. They 
are characterized first by the distributive and scalar laws (for the product 
to characterize an algebra), and then by additional, specific laws (also 
called identities or axioms). 

The algebras playing a relevant role for the analysis of this volume are 
the following. 

1. Lie Algebras. They are algebras Lover F characterized by the laws 

ab + ba = 0, (4a) 

a(bc) + b(ca) + c(ab) = 0. (4b) 

2. Lie-Admissible Algebras. They are algebras U over F such that the 
attached algebra U-, which is the same vector space as U equipped 
with the product 

[a, b]u = ab - ba (5) 

is a Lie algebra. Associative algebras A are clearly the simplest 
possible realizations of Lie-admissible algebras. Lie algebras L are 
also Lie-admissible because [a, b] L = 2 [a, b]A' However, there 
exists a large number of Lie-admissible algebras which are not Lie. 
Thus the Lie-admissible algebras constitute a generalization of the 
Lie algebras. 

3. Jordan Algebras. They are algebras J over F characterized by the 
laws 

47 The additional properties 

ab - ba = 0, 

[a 2 , b, a] = 0. 

(arx)b = a(brx) = (ab)rx = rx(ab) 

can be proved to be a consequence of law (2). 

(6a) 

(6b) 
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4. Jordan-Admissible Algebras. They are algebras U over F such that 
the attached algebra U+, which is the same vector space as U 
equipped with the product 

1{a, b}u = 1(ab + ba), (7) 

is a Jordan algebra. Again, associative and Jordan algebras are 
Jordan-admissible, but the inverse does not necessarily hold. Thus 
the Jordan-admissible algebras are a bona fide generalization of 
the Jordan algebras. 

5. Alternative Algebras. They are algebras U over F verifying the laws 

a2b = a(ab), ba 2 = (ba)a. (8) 

For recent mathematical and physical studies of these algebras, as well 
as for an extensive bibliography, we refer the interested reader to the 
proceedings of the second (1979) and third workshops (1981) on Lie­
admissible formulations. 

In physics, the abstract elements a, b, C, ... are realized via specific 
quantities, such as functions A(a) on T*M or operators A on a Hilbert 
space £'; the field is usually assumed to have characteristic zero (e.g., the 
field IR of real numbers or the field C of complex numbers); and the abstract 
product ab assumes an explicit form depending on the selected realization 
of the elements. Different realizations of the product then yield generally 
different algebras. An important (and often overlooked) point is that all 
possible realizations of the product must verify laws (1) and (2) to qualify 
as the product of an algebra. 

As an example, the product 

def oA 08 
A(a) 0 8(a) = -C~V(a) -

oa~ oav 

is a fully acceptable classical realization of an algebra 
T*M because it verifies laws (1) and (2). i.e.,48 

A 0 (8 + C) = A 0 8 + A 0 C, 

(A + 8) 0 C = A 0 C + 8 0 C, 

rx 0 A = A 0 rx = O. 

(9) 

of functions on 

(10a) 

(10b) 

(10c) 

To have a more specific algebra, suitable integrability conditions must be 
imposed on the tensor C~v. For instance, for the product A 0 8 to charac­
terize a Lie algebra, the tensor C~V must verify integrability conditions 
(4.1.48). 

Consider now the autonomous or semi-autonomous Birkhoffs equa­
tions (4.2.3) or (4.2.5). The brackets [A. 8]* of the time evolution of 
functions A(a) on T*M 

. oA 08 def 
A(a) = - Q~V(a) - = [A,8]* 

oa~ oa v 
(11 ) 

first, verify laws (1) and (2) and second, are Lie. We can then say that the 
autonomous and semi-autonomous Birkhoff's equations possess a con­
sistent algebraic structure and that such structure turns out to be that of 
Lie algebras. 

48 Under property (1Oe), law (2) (as well as those of footnote 47) is trivially 
verified. 
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This important algebraic property is lost for the non -autonomous 
BirkhoH's equations (4.2.6). In fact, time evolution (11) now takes the 
form 

. M (OB ORv) det A(a) = - QPV(t, a) - + - = A ,. B. 
oaP oav ot 

(12) 

It is easy to see that the" product" A ,. B does not characterize an algebra 
because it violates the right distributive and scalar laws 

A ,. (B + C) '" A ,. B + A ,. C, 

(A + B) ,. C = A ,. C + B ,. C, 

(rx ,. A) ,. B '" (A ,. B) ,. rx. 

(13a) 

(13b) 

(13c) 

As a result, the nonautonomous Birkhoff's equations do not have an 
algebraic structure in the sense that the brackets of their time evolution 
do not qualify as the product of an algebra. Note that it is not a breakdown 
of Lie algebras but, more profoundly, the breakdown of the very definition 
of algebras49. 

The occurrence is perhaps the most significant difference between the 
(nonautonomous) Hamilton's and Birkhoffs equations. In fact, the 
former have a consistent Lie algebra structure. 

As is familiar from the analysis of Sections 4.2 and 4.5, the occurrence 
originates from the explicit time-dependence of the Rp functions. In­
triguingly, the occurrence provides an algebraic motivation for the con­
temporary semi-autonomous form of contact two-forms (that is, without 
an explicit time dependence in the attached symplectic structure). 

A method has been presented in Section 4.5 (see Equations (4.5.35» 
for transforming the nonautonomous (nonalgebraic) time evolution (12) 
into the semi-autonomous (algebraic) form (11). Regrettably, however, 
the transformation does not allow the function B to represent the total 
energy. This can be easily seen by noting that, in general, the energy does 
not depend explicitly on time, while the nonpotential forces can have such 
a dependence. In this case, the only possible representation is the non­
autonomous one with nonalgebraic time evolution (12). 

This illustrate the statement of Section 5.5 to the effect that the direct 
physical meaning of the Birkhoffian function and the algebraic character 
of the time evolution are, in general, mutually incompatible. 50 

Chart 4.2 Algebraic Significance of Isotopic and Genotopic Trans­
formations 

Let U be an algebra with elements a, b, c, ... over a field F of characteristic 
p verifying the set of axioms 

Ik(ab) =0, k=1,2, ... , (1) 

49 This property was identified by Santilli (1979 b). 
50 In passing to the Lie-admissible generalization of Birkhoffs (and of Hamilton's) 

equations, this incompatibility is resolved. See in this respect Chart 4.7. Finally, note 
that, despite the breakdown of the algebraic character of law (12), the tensor fl"V is 
Lie, that is, it verifies integrability conditions (4.1.48). To state this in different terms, 
brackets (11) are algebraic and Lie regardless of whether or not the tensor fl-v 
depends explicitly on time. This algebraic character is then lost in brackets (12) 
because of the additive term in oR"lot and not because of the explicit time depen­
dence of fl"v. 
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where ab is the product. Construct the new algebra U* which is the same 
vector space as U but equipped with the new product 

a * b = (ac)b (2) 

where c is a fixed element of U. U* is called an isotopic extension or more 
simply, an isotope of U, when the new product a * b, besides preserving 
the distributive and scalar laws, also verifies the identities of U, i.e., 

(3) 

The isotopy is called regular (singular) when the element c is (is not) 
invertible. A regular isotopy is invertible in the sense that 

a r1 b = (ac)c- 1b = abo (4) 

More generally, we shall define isotopy as any51 transformation of the 
product of an algebra via elements of the algebra itself and/or of the field 
which preserves 1) the original algebra as vector field, 2) the distributive 
and scalar laws, and 3) the identities of the original algebra. 

As a simple example, let ,91 be the associative algebra of matrices 
A, B, C, ... over the field IR of real numbers, equipped with the conven­
tional product of matrices AB. Let C be an element of d. The transforma­
tion of the product 

AB ...... A * B = ACB (5) 

for all A, B E ,91 and fixed C characterizes an isotope .91* of the associative 
algebra .91 (Santilli (1978d)) because the new product A * B is still 
associative. I n this case there is no need to specify the association 
(AC)B or A(CB) because, from the associativity law, (AC)B = A(CB). 

As an example of nonassociative isotopy, let L be a Lie algebra of 
matrices A, B, C, ... over IR and product 

[A, B]d = AB - BA. (6) 

Let C be also an element of L. Then the transformation of the product 

[A, B]d = AB - BA -+ [A, B]d' = ACB - BCA (7) 

characterizes an isotope L * of the Lie algebra L. 
An example of algebraic isotopy in Newtonian mechanics is given by 

the transition from the conventional to the generalized Poisson brackets 
(Santilli 1978c) 

oA oB OA oB 
[A, B] (a) = oa~ w~V oav -+ [A, B] tal = oa~ Q~V(a) oav (8a) 

RO = (p, 0), (Q~V) = (Q v)-1 = (ORv _ OR~)-1 (8b) 
~ oa~ oav 

51 Several possibilities are conceivable, the first through the assumption of an 
association different than that of Equation (2), i.e., a*b = a(cb). Other possibilities 
are given by combinations of the type a*b = (ac)b + b(da), with c and d fixed 
elements either of the algebra, or of the field, or of both. 
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I ndeed, the generalized Lie tensor can be decomposed into 

QI'V(a) = h~(a)w'v (9) 

and therefore obtained as a modification of the original tensor via elements 
h~(a) of the algebra. 

Recall that the covariant tensors wllV and QIlV are the geometric tensors of 
corresponding general first-order systems. When both the original and the 
final systems are self-adjoint. the preservation of the Lie algebra is 
ensured by Theorem 4.4.2. 

The algebraic significance of the self-adjoint isotopic transformations 

[wllvclV + fll(t, a)]SA = 0 -+ {h~(a)[w.vclv + f.(t, a)]SA}SA = 0 (10) 

is therefore that of characterizing a regular Lie algebra isotopy. However, 
isotopy (10) is the basis of the generalization of Hamilton's into Birkhoffs 
equations. In this way we reach the following result. 

Proposition 1. The generc~lization of Hamilton's equations into the 
(autonomous or semiautonomous 52 ) Birkhoff's equations 

[ WllvclV - OH(t'lla)] = 0-+ [Qllv(aw - OB(t'll a)] = 0 (11) 
~ ~ ~ ~ 

is the analytic counterpart of the algebraic notion of Lie isotopy. 

As we shall see in Chapter 6, Proposition 1 turns out to be crucial for 
the identification of a possible quantum mechanical image of Birkhoffs 
equations. 

After identifying the analytic meaning of isotopy, our next task is to 
identify its meaning for symmetries, first integrals, and conservation laws. 
Recall from Chart A.1 0 that two Lie algebras Land L * are called isotopically 
related when they are symmetry algebras of two isotopically related 
Lagrangians leading to the same first integrals (or conservation laws). 
The algebras Land L * are generally non isomorphic; but (a) they have the 
same dimension r; (b) they are defined on the same carrier space (the 
configuration or phase space); and (c) they coincide as vector spaces; 
that IS, the generators of the two algebras are the same. The only possibility 
for the two algebras Land L * to be generally non-isomorphic therefore 
occurs when the products are different. Their isotopic relationship in the 
algebraic sense introduced in this chart is then consequential. 

An example is useful here. Consider Lagrangian (3) of Chart A.1 0, i.e .. 

L = 1[ (mx2 + my2 + mi2) - (kX2 + ky2 + kZ2)]. (12) 

It possesses the 50(3) symmetry algebra with conserved generators 

~k = (r x mr)k' 

and commutation rules 

r == (x, y, z). k = x, y, z, (13) 

Consider now the isotopically mapped Lagrangian (4) of Chart A.10, 
i.e., 

L* = 1[mx2 - my2 + mi2) - (kx2 - ky2 + kz2)]. (15) 

52 We exclude the nonautonomous case because of the loss of the algebra in the 
time evolution (Chart 4.1). 
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L * breaks the 50(3) symmetry and possesses instead Lorentz symmetry 
50*(3) = 50 (2.1) isotopically related to 50(3); that is, 50(2.1) is the 
symmetry of the new Lagrangian L * which leads, via Noether's theorem, 
to the conservation of the generators of 50(3). 

Now, the carrier space (the space of the Cartesian coordinates x, V, z 
and momenta Px' Py' p z) has remained unchanged by construction, and 
the Lorentz algebra 50 (2.1), to be consistently defined for the case at 
hand, must be defined in terms of the generators of 50(3) (that is, via 
the angular momentum components). This is possible if and only if 
50(2.1) is realized via an isotopy of the product of 50(3). 

A study of the case (Santilli (1979a)) indicates that a solution exists, and 
it is given by the commutation rules of 50(2.1) 

[Mz,M.J*=My (16) 

defined via the Lie isotopy 

oM oM 
50(3): [M M] = -' w#' -'-+ 50* = 50(21)· [M M]* ", oa# oa' . . " , 

= oM; Q#V oM, 
oa# oa' ' 

a=(r,p) (17a) 

°3x3 
(+:,0) 

°3x3 
( +~, 0) 

° +1 ° +1 (w#') = 

(-~, 0) 
-+ (Q#') = (-:,,) °3x3 °3x3 ° -1 

(17b) 

The reader can now see the nontrivial implications of isotopic general­
izations of the Lie product in regard to Lie's theory, as well as the need for 
a suitable reformulation of the theory itself. In fact. the needed broader 
theory must permit the formulation of a Lie group, say SO(2.1), in terms 
of the generators, the base manifold, and the parameters53 of a generally 
non isomorphic group, say SO(3). This is not readily permitted by the 
available conventional formulations of Lie's theory, as we shall see in the 
charts of Chapter 5. 

As stressed in Section 4.4, the self-adjoint isotopic transformations are 
only part of the transformations permitted by the conditions of self­
adjointness. A second important class is given by the self-adjoint geno­
topic transformations. The algebraic meaning of the latter transformations 
is the following. 

Let U be an algebra over a field F verifying axioms (1), where ab is the 
product. Construct a new algebra U# which is the same vector space as U 
equipped with one of the following new products 

a # b = (ac)b, a(cb), (ac)b + a(db), etc. (18) 

53 As we shall see in Chapter 5, the Lorentz group 50(2.1) not only must be 
defined in te[ms of the angular momentum components, but the parameters remains 
those of the group of rotations, that is, the Euler angles!. 
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where c, d, ... are fixed elements of U. U# is called a genotopic extension 
or simply a genotope of U when the new product a # b verifies the distri­
butive and scalar laws, but violates axioms (1) and verifies instead a 
different set of axioms 

I~(a # b) = 0, k = 1,2, .... (19) 

When the genotopy is invertible in the sense of Equation (4), it is called 
regular; otherwise it is called singular. 

More generally, we define as genotopy any transformation of the 
product of an algebra via elements of the algebra itself and/or of the field, 
which (1) preserves the original algebra as vector field; (2) verifies the 
distributive and scalar laws; and (3) satisfies a set of axioms different than 
those of the original algebra. 

As an example, consider a Lie algebra L of matrices A, B, C, and product 
(6). The following transformation of the product 

L: [A, B] = AB - BA ~ L #: (A, B) = ACB - BDA (20) 

where C and D are fixed elements of L, characterizes a genotope L # of L. 
In fact, L # coincides with L as vector space; the product (A, B) verifies 
the distributive and scalar laws, but. unlike the case of isotopy (7). the 
product (A, B) now violates the Lie algebra laws and verifies instead the 
conditions for a Lie-admissible algebra, because the algebra (U#) - with 
product 

[A, B]* = (A, B) - (B, A) = ATB - BTA, T = C + D, (21) 

is Lie. Thus Equation (20) characterizes a genotopy of a Lie algebra into 
the more general Lie-admissible algebra. 

An example of algebraic genotopy in Newtonian mechanics is given 
by the transition from the generalized Poisson (Birkhoff) brackets to non­
Lie, Lie admissible brackets (Santilli, 1978c,e) 

oA oB oA oB 
L:[A,B]* =-Q~V(a)-~L#:(A,B) =-S~V(a)-, (22a) 

(a) oa~ oaV (a) oa~ oaV 

( oR oR )-' (Q~V) = _v __ ~ , 

oa~ oav 
( oR' oR' )-' (S~V _ SV~) = _v __ ~ . 

oa~ oav 
(22b) 

Note that the brackets (A, B) are Lie-admissible because, according 
to the definition of Chart 4.1, they are non-Lie, yet the attached anti­
symmetric part is Lie. This can be equivalently seen by noting that the 
product (A, B) can be decomposed into the sum of two terms: a first term 
which is antisymmetric and Lie, and a second term which is symmetric 
and arbitrary, 

(23b) 

Note also that the notion of genotopy is a generalization of that of 
isotopy. In fact, isotopies (7) and (8) are particular cases of corresponding 
genotopies (20) and (22). 

Within the context of abstract algebras the genotopy is, essentially, a 
transformation of an arbitrary (nonassociative) algebra U into a different 
(generally non-associative) algebra U# under the condition that U and 
U# coincide as vector spaces. Within the context of the Inverse Problem, 
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a most important case occurs when the original algebra U is arbitrary, and 
the genotope U# is a Lie algebra. 

The algebraic significance of the self-adjoint genotopic transformations 

[C~v(t, a)aV + D~(t, a)]NSA = 0 ~ {h~(t, a)[C.p(t, a)aP + D.(t, a)]NSA}SA = 0 
(24) 

is therefore that of characterizing a regular Lie algebra genotopy, that is, 
of inducing a Lie algebra structure. In fact. as is now familiar, the original 
tensor C~v, (C~V) = (C~v)-1, is not Lie, while the final tensor C*~V(C*~V) = 
(h~ C.V ) -1, is Lie. This illustrates the reason why the Inverse Problem has 
been sometimes referred to as the Inverse Lie Problem. 

We are now in a position to identify the algebraic significance of all 
possible equivalence transformations of first-order systems which can be 
characterized via the conditions of self-adjointness. Besides the self­
adjointness-preserving and the self-adjointness-inducing transformations 
considered earlier in this chart, we have two additional transformations, 
according to 

Self-adjointness-preserving = Lie algebra isotopy 
Self-adjointness-inducing = Lie algebra genotopy 

Non-self-adjointness-preserving = non-Lie algebra isotopy 
Non-self-adjointness-inducing = non-Lie algebra genotopy 

(25) 

The direct universality of the Birkhoffian representation has the following 
algebraic counterpart. It essentially implies that a Lie algebra genotopy 
exists for all possible brackets (23) with a local tensor S~V(a). 

Equivalently, we can say that all local, analytic, and regular first-order 
systems can be treated via Lie algebra genotopies and isotopies. When 
considering the more general, non-local, integro-differential systems, the 
Lie-admissible genotopies and isotopies turn out to be possible, as we 
indicate in Chart 4.7. 

The notion of genotopy was introduced by Santilli (1978d), and was 
not found to be treated in the literature of Abstract Algebra, despite a 
rather laborious search. The notion of isotopy is considerably neglected 
in the contemporary mathematical literature. However, a search revealed 
that the notion is treated in the early literature of set theory and linear 
algebra. See in this respect Bruck (1958, Chapter III). As Bruck puts it 
(loc. cit., page 56), the notion of algebraic isotopy is "so natural to 
creep in unnoticed." For additional treatments by mathematicians, see 
McCrimmon (1965, Section 111.1). Myung (1982a), and Osborn (1982). 
The notion of isotopy was introduced in physics by Santilli (1978c,d,e and 
1979a,b) and subsequently considered by a number of authors, such as 
Sarlet and Cantrijn (1978), Kobussen (1979), and others. 

I hope that the term isotopy will not create confusion with other terms 
used in the physical literature, such as "isotopic spin." After due con­
sideration, I elected to preserve the term because the notion of "algebraic 
isotopy" was born considerably earlier than that of "spin isotopy." 

Chart 4.3 Havas's Theorem of Universality of the Inverse Problem 
for Systems of Arbitrary Order and Dimensionality 

In Section 4.5 we presented the universality of the Inverse Problem for 
analytic and regular systems of second-order ordinary differential equations. 
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This universality was essentially achieved by reducing the system con­
sidered to an equivalent first-order form and then proving that this form 
can always be written in a self-adjoint version via the multiplication of a 
matrix of genotopic functions. The conditions of analyticity and regularity 
were necessary to ensure the applicability of the underlying existence 
theory for implicit functions, partial differential equations, etc. 

The objective of this chart is to indicate that the universality of the 
Inverse Problem proved in the text is, actually, a particular case of a more 
general universality holding for systems of ordinary differential equations 
of arbitrary (but finite) order and dimensionality. 

Consider a system of differential equations of order s in r unknowns 
which is analytic and regular in a region of their variables 

Q(I)i = dlQi 
dtl ' 

i, k = 1, 2, ... , r, 

1= 0, 1, ... , s. 

(1 ) 

Then, the implicit functions in the maximal derivatives exist (and are 
unique), and we write 

Q(s)i = fi(t, Q(0)i, Q(1)i, ... , Q(s-1)i). 

Introduce now r new variables via the prescriptions 

Q11 ) = Y1°), 

(2) 

(3) 

or any more general form of type (4.1.23). System (2) is now reduced to 

Q~1) = Y~O), y~S-1) = fk(t, Q~O), y~O), YV), . .. , y~s-2». (4) 

The iteration of this procedure results in the reduction of the original 
system (1) into an equivalent first-order system of the normal type 

qk - Sk(t, q) = 0, k = 1, 2, ... , 2N, q = (Q, Y), (5) 

where the dimension 2N is rs, if rs is even, or rs + 1 if rs is odd, in which 
case the last equation can be of the type Yb1) = O. However, Equations (5) 
always admit an equivalent self-adjoint form of the type (Theorem 4.4.3) 

{hki(t, q)[qi - Si(t, q)]NSA}SA. (6) 

Thus an action functional 

J(E) = f2 dt[L(t, q, q)](E) 
t1 

(7) 

always exists for the representation of system (1). In this way we reach 
the following universality theorem proved by Havas (1973, Appendix A). 

Theorem 1. Any system (1) of ordinary differential equations of order s 
and dimension r which is analytic and regular in a neighborhood of a 
regular point of its variables can always be transformed into an equivalent 
self-adjoint system of first-order equations of dimension 2N = rs, if rs is 
even or 2N = rs + 1, if rs is odd, admitting the representation via the 
variational principle 

8 ft2dtL(t, q, q) = - ft2dt(:t~~k - ~Lk)8qk 
t1 t1 q q 

{2 dt{hki(t, q)[qi - Si(t, q)]}SA 8qk = o. (8) 
t 1 
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Note that the theorem holds without transforming the original variables. 
Thus it is in line with the general objectives of this chapter. Let us recall 
from Section 4.2 that the action functional under consideration here is 
totally degenerate (the integrand is linear in the first-order derivative). 
Thus, when this action is interpreted as being Lagrangian, it violates 
Legendre's necessary condition for an extremum, by exibiting a number 
of problematic aspects for the applicability of conventional tools of the 
calculus of variations or the optimal control theory. This is what stimulated 
the work in this chapter on the effect of interpreting (8) as a generalized 
Hamiltonian rather than Lagrangian type (as in the original Havas's 
approach). 

Chart 4.4 Rudiments of Differential Geometry54 

In Charts 1.2.1-1.2.5 we reviewed a few basic notions of the symplectic 
and contract geometries. In this and in the subsequent two charts we shall 
continue the study of geometry with particular emphasis on the local 
formulation of coordinate-free, global, geometric techniques; the global 
treatment of Hamilton's and Birkhoffs equations; and the coordinate-free 
treatment of the Inverse Problem. 

In these charts we shall also point out some rather fundamental 
physical differences which emerge when the same geometric algorithms 
are used for the treatment of conservative and nonconservative systems. 
Recall that the symplectic and contact geometries were developed much 
along the lines of the conservative Hamiltonian mechanics. Basic geo­
metrical tools, such as Lie's derivative, were then conceived and applied 
by and large to represent conservation laws. In these volumes we est­
ablish the universality of the contact geometry for local, analytic, and 
regular Newtonian systems. Within such a setting, the geometrical 
algorithms remain essentially the same, as we shall see, particularly in the 
coordinate-free formulation. The physical emphasis, however, is now in 
their use to characterize nonconservation laws (time rate of variation of 
physical quantities). Unless due care is provided for this physical aspect, 
one risks achieving mathematically correct coordinate-free global formula­
tions of mechanics which literally imply the perpetual motion in our 
environment. 

Let M be an n-dimensional '(lOO manifold with atlas {(Vi' qJ)}, qJi: Vi ~ 
qJi(V) E IRn (Chart 1.2.1). A set of local coordinates will be denoted by 
x = (x', ... , xn). For a point mE V c M, qJ(m) = (x', ... , xn), where 
each Xi is considered as a map from M to IR. 

Definition 1. A tangent vector Xm at a point m E M is a linear function 
from '(l~ (M) (the space of '(loo functions defined in the neighborhood of m) 
to R satisfying the rules 

Xm(rxf + pg) = rxXm(f) + PXm(g). 
Xm(fg) = f(m)Xm(g) + g(m)Xm(f). (1 ) 

VI, g E '(l~(M); rx, P E IR. 

54 The literature on differential geometry is rather extensive. The interested reader 
may consult, for instance, Dedecker (1957), Sternberg (1964), Abraham and 
Marsden (1967), Loomis and Sternberg (1968), Souriau (1970), Spivak (1970-73), 
Edelen (1977), Guillemin and Sternberg (1977), Thirring (1978). Arnold (1978) and 
Sniatycki (1979). 
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A number of alternative definitions of tangent vectors exist in the literature. 
The following (equivalent) definition is relevant for our objectives. 

Definition 2. A tangent vector Xm at m E M is an equivalence class of 
curves which are tangent to each other at m, i.e., Xm = [1']m and 1', = 1'2 
if and only if 

(2) 

By combining Definitions 1 and 2, we can interpret Xm as an operator 
performing the mapping rc;(M) -+ ~ for which 

Xm(f) = ad (f 0 1')(t) I ' l' E [1']m' (3) 
t t=O 

The tangent space T m M at m E M is the vector space of all tangent 
vectors at m. The 2n-dimensional manifold TM = UmEM TmM can be 
equipped with a rc'" structure in a natural way, and constitutes the tangent 
bundle over M, where the fiber at each point is the tangent space at that 
point. 

The cotangent space T';,M at m is the dual of T mM, and it is the 
space of all linear functionals on T m M. The 2n-dimensional manifold 
PM = UmEM T":"M can again be equipped with a rc'" structure, and it is 
called the cotangent bundle. 

If f E rc; (M). we can define an element of T":" M, called differential of f 
at m, by 

df 
df(m) = - (m)dxk(m) 

OXk 
(4) 

It can be shown that, if (x', ... , xn) are local coordinates defined in a 
neighborhood of m, then dxil m form a basis of T":" M. The basis of T m M, 
the dual of dxi 1m, is then given by (in the sense of Definition 1) Maxi 1m' 

Let Om E T":"M and Xm E TmM, then their local form can be given by 

X . 0 = XI(X)­
max; 

where the reference to the point m is understood. We also have 

.01 
X (f) = XI - E ~ 

m ox;' f E rc;(M). 

(5) 

(6) 

Let F: M -+ N be a rc'" map from a manifold M to another manifold N. 
We can associate to this map the tangent map TF: TM -+ TN by 

TF(Xm) = YF(m) , YF(m)(g) = Xm(F 0 g), 9 Erc;(M). (7) 

A tensor of contravariant order r and covariant order s, i·.e., of type 
(r, s) (Chart 1.2.1), on a vector space V is an (r + s)-multilinear map 

r-times s-times 
,-'-, ~ 

n~: V* x . , . x V* x V x ... x V -+ ~ (8) 

where V* is the dual of V. 
When V is identified with T m M, we have the tensor bundle T~(M) = 

UmEM T~(TmM), where T~ is the set of all (r, s) tensors over TmM. 
Clearly, Tb(M) = TM, T~ = T*M, and Tg(M) = ~. 
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An (r, s) -tensor field is a Cf/'" map 

b: M ~ T~(M). (9) 

Most important for our analysis are the (1.0) -tensor fields on M, called 
vector fields. They characterize a map from M to TM. Equally important 
are the (0, 1 )-tensor fields on M called one-forms. They characterize a 
mapping from M to T*M. 

The set of all p-forms on M (Section 1.1.2) is denoted by AP(M). 
Hence rx E AP(M) mean rx(m) E AP(T":"M). Equations (5) therefore give 
a local expression for vector fields X and one-forms e. In particular 

(10) 

A curve y: I ~ M at m is an integral curve of a vector field X at m if 
X(y(t» = Tit, I), for all tEl, where Ty is the tangent map of y. Suppose 
that (U, (fJ) is a chart at m, (fJ(m) = (xb, ... , x3), and ((fJ 0 y)(t) = 
(x'(t). ... , xn(t»). then x is an integral curve of X at m if and only if 
(x' (t), ... , xn(t» satisfies the system of first-order ordinary differential 
equations 

(11 ) 

In this way we reach the first contact with the analysis of this volume. 
As worked out in Volume I and reviewed in Section 4.1, Newtonian 
systems can always be written in the normal form 

a(O) = aD, a=(r,y) (12) 

via arbitrary prescriptions for the characterization of n new variables y. The 
quantities B~ have been referred to in the main text as vector fields, merely 
to express the Newtonian character of transforming as contravariant 
vectors. We now learn that they can be interpreted as vector fields in the 
geometric sense, that is 

(13) 

Equation (10) is then the differential equation corresponding to the 
(geometrical definition of) vector field B. 

We should keep in mind that, whether the Newtonian or the geometrical 
definition is used, these vector fields characterize autonomous non­
conservative systems. The extension to the nonautonomous case is self­
evident. Autonomous conservative systems are, of course, not excluded, 
as a particular case of this broader physical context. 

From the existence theory of ordinary differential equations (Section 
1.1.1) we can see that, at every point m E M, there exists a unique integral 
curve of a vector field X at m. For all m E U c M, these integral curves 
define a local, one-parameter pseudogroup of transformations on M which 
becomes a local, one-parameter group if the interval of time in which it is 
defined is independent of m, or it is the whole real line. The vector field X 
then acquires the meaning of generator of this pseudogroup. 

Suppose that a Cf/"'-map F: M ~ N is given. Then, a natural map from 
T2(N) to T2(M) exists called the pull-back of F and given by 

F*: T2(N) ~ T2(M), rx ~ F*(rx), rx E Ap(M), (14) 

(F:)(m)(X'm' ... ,Xpm ) = rx(F(m»)(TF(X,m). ... , TF(Xpm»' 
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F* maps p-forms into p-forms, and it is an (algebra) homomorphism with 
respect to the exterior product (also called wedge product in differential 
geometry). Notice in particular that. if F is a diffeomorphism, then 
(F*)-' = (F-')*. 

Given two vector fields X and Y on M, one can define a third vector 
field via the associative composition law 

(XY) (f) = X(Y(f)), W E ~OO(M). (15) 

The (nonassociative) Lie rule 

[X, Y] = XY - YX (16) 

then also defines a vector field which can be written in local coordinates 

( ~Y ~X) ~ [XY]= X_I_y::..:....:.L-
, i:>.· i:>.·:>,·· ux' ux' ux l 

(17) 

We see in this way that the set of all vector fields on a manifold forms a 
Lie algebra under brackets (16). 

Let X be a vector field on M and b an (r, s)-tensor field. Also, let Ft be 
the local one-parameter pseudogroup given by the integral curves of X 
for tEl. Then Ft : U ~ M maps every point m of U onto the point of M 
lying in the integral curve through m at t. 

The Lie derivative of the tensor field b with respect to the vector field X 
is defined by 

Lxb(m) = lim (Fi(b))(m) - b(m). 

t~O t 

If the tensor b is a scalar f, we have 

Lxf = df(X), 

if b is a vector field Y we have 

WE~OO(M); 

Lx Y = [X, Y]; 

and for the case of one-forms we have (locally) 

We also have the property 

Lx((J(Y)) = (LxO)(Y) + O([X, Y]). 

(18) 

(19) 

(20) 

(21 ) 

(22) 

Finally, by using the global formulation of the exterior derivative (Section 
1.1.2), we have 

Va E Ap(M). (23) 

The inner product of a vector field X and a p-form a, denoted by ixa or 
by X -.J a (Section 4.3) is the (p - 1) -form 

ixa(X" . .. , Xp) = pa(X, X" . .. , Xp_,) 

verifying the properties 

i~ = 0, ix(a /\ fJ) = (ix a) /\ fJ + (-1)Pa /\ (ixfJ) , 

ixdf = Lxf. 

(24) 

(25) 
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In this way we reach the following important property of the Lie derivative 

Lxa = ix(da) + d(ixa) 
== X ~ da + d(X ~ a), Va E Ap(M). (26) 

To establish a link with the treatment of this volume, it is significant to 
identify the explicit form of these properties in local coordinates. From 
the definitions given above, we have 

Thus 

and 

Therefore, 

(ixa) Y = 2a(X, Y), 

Cl 
X=XiJ.­

ClaiJ.' 

a E A2(M). (27) 

(28) 

(29) 

(30) 

This yields the expression of the inner product in local coordinates of 
Section 4.3, Equations (4.3.5) and (4.3.17), i.e., 

S ~ W = ~Dv,v2W SiJ. 2 daiJ., 
2 2 iJ.,iJ.2 v,v 2 

= WiJ. iJ. SiJ., daiJ.2, 
, 2 

S ~ n = ~Dv,v2 n {a}SiJ.2 daiJ., 
2 2 iJ.,iJ.2 v,v 2 

= niJ. iJ. {a}SiJ., daiJ.2. 
, 2 

The reader will recall that the following contractions 

(31 a) 

(31 b) 

WiJ.,1l2 SIl2 = SIl" nll ,1l2(a)SiJ.2 = SIl" (32) 

have played a rather crucial role in the main text for the construction of a 
Hamiltonian and a Birkhoffian representation, respectively. In this case, 
the forms w2 and n2 are the fundamental symplectic form, and a general 
(but local and exact) symplectic form, respectively. 

Chart 4.5 Global Treatment of Hamilton's Equations 

Let Mbe an n-dimensional, C(j'" manifold with local coordinates (q', . .. ,qn) 
(the configuration space of Newtonian Mechanics), and let TM and T*M 
be its tangent and cotangent bundles, respectively. The bundles TM and 
PM are customarily used for the characterization of the Lagrangian and 
Hamiltonian formulations of mechanics, respectively. We are here 
interested in the latter case. 

A point of PM consists of a couple (m, I). where m is a point of M, 
and I belongs to PM. The projection map (Chart 1.2.2) n: T*M -+ M 
maps the whole fiber (m, T! M) onto m. As a 2n-dimensional manifold, 
T*M can be equipped with a fundamental one-form, called a canonical 
form, as follows. Consider the mapping 

0: PM -+ T*(PM), OEA'(PM), (1 ) 
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defined by the following properties. Let X(m, I) be an arbitrary tangent 
vector to PM at (m, I). Then 

(2) 

where Tn: T(PM) -+ TM is the tangent map of the projection n. Let 
(a~) = (qk, Pk) be local coordinates for T*M. The vector field X(m.l) then 
acquires the local form 

for which 

that is, 

. 0 
Tn(X(m I)) = A' -., 

, oq' 

I(Tn(X(m, I))) = PiAi. 

The canonical form is then given by 

e(m, I) = Pi dqi = Rg(a)da~ = R?, 

(4) 

(5) 

(Rg) = (p, 0), (6) 

where e is the notation generally used in the literature of differential 
geometrY,54 while RO is that used in the literature of the Birkhoffian 
mechanics. Clearly, the two-form 

W = de = dPi /I dqi = }-W~V da~ /I dav = dR? 

-1 nxn) 
°nxn 

(7) 

is nowhere degenerate and closed. It is the familiar fundamental sym­
plectic form. The 2n-dimensional manifold T*M, equipped with the form 
W is a symplectic manifold (Chart 1.2.5). 

Let H = H(a) be a function defined on T*M. A Hamiltonian vector 
field is a vector field X verifying the condition 

ixw == X ~ w = -dH. (8) 

We recover in this way the definition of Hamiltonian vector field of 
Section 4.3, i.e., 

S ~ w2 = w~, ~2 S~, da~2 = S~ da~ = -dH. (9) 

Equations (8) constitute a global treatment of Hamilton's equations 
for autonomous systems. Indeed, they are the coordinate-free version of 
our local formulation (9). 

The explicit form of Hamilton's equations in local coordinates is 
recovered as follows, Recall from Chart 4.4 that 

isw = Bi dqi - Ai dPi == }-w~vSv da~. (10) 

Thus, if S is a Hamiltonian vector field, it admits the local form 

oH 0 oH 0 oH 0 
S = --. - -.'- == w~v __ , (w~V) = (w"v)-'. (11) 

oPi oq' oq' 0Pi oav oa~ 

But, from Equations (11) of Chart 4.4, we have 

(12) 
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Thus we reach Hamilton's equations in the conventional notation of 
differential geometry 

(13) 

or, in our unified notation, 
oH 

iJ~ = w~V_. 
oav 

(14) 

Let us recall a few basic properties of Hamiltonian vector fields from 
Abraham and Marsden (1967; see 1978 edition). 

Proposition 1 . Let X be an autonomous Hamiltonian vector field on a 
symplectic manifold T* M with fundamental form w, and let Ft be the 
one-parameter pseudogroup characterized by its integral curve (the flow 
of X). Then, for each t, Fiw = w; that is, Ft is simplectic and preserves the 
phase space volume (Liouville's theorem). 

Proposition 2. Let X be an autonomous Hamiltonian vector field on a 
symplectic manifold (T* M, w). Then H is constant along the integral 
curve of X, i.e., 

oH oH 
L H = [H, H] = - w~v - == o. 

x oa~ oav 
(15) 

Reca" here that Equation (15) is often referred in the mathematical 
literature as the "conservation of the energy." This interpretation is 
generally erroneous because the Hamiltonian does not necessarily 
represent the total energy 55 of the system. 

In fact, for conservative systems the Hamiltonian can be an isotopic 
image of the total energy (Section A.2). For instance, the conventional 
linear harmonic oscillator f + r = 0 (m = K = 1) can be represented 
either via the conventional Hamiltonian H = 1(p2 + r2) or via its isotopic 
image (Example 4.1) 

H* = In 1 r sec 1rp* I. (16) 

It is clear that Equation (15) does not represent the conservation law of the 
energy when used for Hamiltonian H*. 

For non conservative systems, the situation is created by the fact that the 
canonical Hamiltonian cannot represent the energy, as a necessary 
condition for the existence of a Hamiltonian representation. I n particular, 
non-conservative systems can be autonomous, thus admitting a Hamil­
tonian which does not dependent explicitly on time. In this case, Equation 
(15) does not possess the meaning of energy conservation. 

Let us look at the global characterization of Hamilton's equations of 
nonautonomous type (i.e., H = H(t, r, p)). This is customarily done by 
extending the cotangent bundle T*M to the (2n + 1) -dimensional 
manifold IR x PM, where IR represents time, and the canonical form (6) 
to the form 5 6 

{)H = () - H(t, r, p)dt = R~(a)da~ = R?, (17) 

Jl = 0, 1, 2, ... , 2n, (al') = (t, a), (RI') = (-H, R~). 

55 The notion of total energy was given in Appendix I.A and reviewed after 
Corollary 4.5.1.a. 

56 The notation ()H is often used in the mathematical literature, while the notation 
R?(a) is used in the main text of this volume. 
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The two-form 

W = de = dRo H H 1 (18) 

is then a closed (and exact) two-form of maximal rank. Thus it is a contact 
form (Chart 1.2.5). The 2n + 1-dimensional manifold IR x T*M equipped 
with form (18) is a contact manifold. 

A nonautonomous globally Hamiltonian vector field can then be defined 
as a characteristic vector field X of Ww that is, a vector field verifying the 
properties 

ix wH == X -.J wH '= ° 
dt(X) = 1. 

(19a) 

(19b) 

The equations above constitute a global treatment of our local formula­
tion of nonautonomous Hamilton"s equations, i.e., 

w~vda~ = 0, 11 = 0, 1, 2, ... , 2n, 

{a~} = {t, a} = {t, r, p}, 

11, v = 1, 2, ... , 2n, 

oH 
tVov = -wvo = oa"' 

(20a) 

(20b) 

(20c) 

(20d) 

Proposition 3. If X is a nonautonomous Hamiltonian vector field in a 
contact manifold IR x T*M with structure (22). then 

oH 
LxH=?;( (21) 

This property does not necessarily express a physical law. This is due to 
the fact that conservative systems may admit an explicitly time-dependent 
Hamiltonian. For instance, the conventional harmonic oscillator (f + r = 0) . 
admits the Hamiltonian (Example A.1) 

H = r(tan t)sec tl (ep ' cot 1t)cos t - In(ep ' cot ¥)COS t - 11. (22) 

In this case the Hamiltonian is not a first integral. i.e., H 4= 0, yet the total 
physical energy is conserved. 

If the system is nonconservative, Equation (21) also does not express 
the nonconservation of the energy. Indeed, for the damped oscillator we 
may have the Hamiltonian 

(23) 

and the Lie derivative (with respect to the Hamiltonian vector field) of this 
quantity is not equal to the variation of the energy in time (Example 
1.A.6): 

~ E = ~ ~U2 + r2) = F ; = -2y;2. 
dt t dt 2 NSA 

(24) 

A study of this occurrence indicates that this is the case for all Hamiltonian 
representations of nonconservative systems, whether essentially or 
nonessentially non-self-adjoint. 

Thus we conclude that, within the context of the global geometrical 
treatment of Hamiltonian mechanics, the Lie derivative is representative of a 
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physical law, the conservation of energy (15), only under certain re­
strictions on the nature of the systems, the physical meaning of the local 
coordinates, and the nature of the representation. 

Chart 4.6 Global Treatment of Birkhoffs Equations 

Theorp.m 4.5.1 establishes that all local Newtonian systems which are 
analytic and regular in a star-shaped neighborhood of a regular point of 
their variables 

{[mkrk - fk(t, r, f)]SA - Fk(t, r, f)}NSA = 0, 

admit an equivalent first-order self-adjoint form 

k = 1, 2, ... ,N, (1) 

fl = 1, 2, ... , 2n; n = 3N, 
a = (r, p), p = mr (2a) 

Q~v + Qv~ = 0, (2b) 

oQ~v + oQv, + oQ,~ = 0, 
oa' oa~ oav (2c) 

oQ~v _ or~ orv_ ------0 
ot oav oa~ , 

(2d) 

characterizing the closed and exact two-form 
(2n + 1 )-dimensional manifold IR x PM 

of maximal rank on the 

n2 = n~v(a)da~ /\ dav, dn2 = 0, 
fl, v = 0, 1, 2, ... , 2n 

n~v = Q~v' fl, v = 1, 2, ... , 2n, 

nov = rv = -nvo , v = 1,2, ... , 2n, 

(3b) 

(3c) 

Thus Theorem 4.5.1 can be equivalently formulated by saying that all 
Newtonian systems of the class admitted can be treated via the global 
contact geometry, in general, and by the symplectic geometry, in particular. 

In order to identify the analytic character of systems (2a), that is, their 
derivability from a variational principle we have represented them in the 
main text of this volume via Birkhoffs equations. I n this chart, we are 
interested in outlining the global treatment of these equations. For the 
reader's convenience, we shall considered separately, in the terminology of 
Definition 4.2.1, Birkhoffs equations in the autonomous form: 

{lORv(a) _ OR#(a)]av _ OB(a)} = 0; 
oa~ oav oa# SA 

(4) 

the semi-autonomous form: 

{[oRv(a) _ OR#(a)]av _ oB(t, a)} = 0; (5) 
oa# oav oa~ SA 

and the general nonautonomous form: 

{[ORv(t, a) _ oR#(t, a)]av _ [OB(t, a) + oR~(t, a)]} = O. (6) 
oa oav oa~ ot SA 
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Let M be a n-dimensional manifold with cotangent bundle T*M, and 
denote the local coordinates qi, with i = 1, 2, ... ,n (q = rfor systems (1)), 
and a~, with f1 = 1, 2, ... , 2n, respectively (a = (r, p) for systems (1)). 
We shall call PM an exact symplectic manifold when equipped with a 
nowhere-degenerate, closed, and exact two-form n, and we shall write 
(T*M, n). This implies that n = dR and thus dQ = O. 

We shall call a globally Birkhoffian vector field any vector field X on 
T*M verifying the property 

(7) 

for some function B on PM. The equations above are a global char­
acterization of autonomous Birkhoff's equations. In fact. Equation (7) is a 
global version of our local treatment of Section 4.3 

8 ~ n 2 = n~1~?8~1 da~2 = 8~ da~ = -dB. (8) 

The explicit form of the equations is recovered via a straightforward 
generalization of the Hamiltonian case of Chart 4.5. In fact, we have now 
the expression 

(9) 

Thus, if the vector field 8 is Birkhoffian, it must admit the explicit form 

?JB ?J 
-;:: = n~Y-­
~ ?JaY ?Ja~' (10) 

by therefore characterizing the autonomous Birkhoff's equations in their 
contravariant form 

(11 ) 

A comparison of Equation (7) above, with Equation (8) of the preceding 
chart establishes that in the transition from the local to the global co­
ordinate-free formulation of geometry, all distinctions between Hamiltonian 
and Birkhoffian vector fields are lost. In fact, the notion of a "Birkhoffian 
vector field" introduced in this volume coincides with the notion of a 
"Hamiltonian vector field" of the contemporary mathematical literature in 
symplectic geometry. This should not be surprising because the Birk­
hoffian generalization of Hamilton's equations have been conceived so as 
to preserve the underlying geometry, which is possible if and only if all 
distinctions are lost at the abstract, coordinate-free level. 

This illustrates quite clearly the physical differences of abstract mathe­
matical algorithms when realized in specific systems of local variables. In 
fact, we can introduce one abstract. coordinate-free notion and different 
realizations in local coordinates. For instance, we can call globally 
symplectic vector fields all vector fields satisfying Equation (7) above (or, 
equivalently, Equation (8) of the preceding chart). We then have Hamil­
tonian or Birkhoffian vector fields depending on whether the symplectic 
structure in a local chart is the fundamental one or a general exact one. 

Clearly, the Hamiltonian case is a particular case of the more general 
Birkhoffian one, as expressed by the fact that the fundamental symplectic 
(Hamiltonian) structure is of Birkhoff's type 

RO = (p,O). (12) 
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To outline the global treatment of Equation (5). perform the extension 
of the PM manifold to IR x PM. We shall say that such a (2n + 1)­
dimensional manifold is an exact contact manifold when equipped with a 
closed and exact two-form of maximal rank. If Q is an exact symplectic 
form, the contact form can be constructed by using the projection map 
n: IR x T*M -+ T*M for which one can define n*Q = n. The form 

Q 8 = n - dB /\ dt (13) 

for some function B on IR x PM can then be proved to be an exact 
contact form. 

A semi-autonomous globally Birkhoffian vector field is then any vector 
field X on (IR x T*M, (8) verifying the properties 

ix Q 8 == X ~ Q 8 = 0, 

dt(X) = 1. 

(14a) 

(14b) 

This is the desired global treatment of Equations (5). Indeed, according to 
Equation (13), the Birkhoffian has an explicit time dependence, but the 
substructure n does not possess, in local coordinates, such a dependence. 

Clearly, Equation (14) above and Equation (19) of the preceding chart 
are equivalent. No distinction can be made therefore between semi­
autonomous Birkhoffian vector fields and the nonautonomous Hamiltonian 
ones at the coordinate-free level. 

We consider now the general case of Equation (6), which includes 
all preceding cases, whether Hamiltonian or Birkhoffian, and introduce 
an arbitrary one-form R on IR x PM subject to the condition that the 
associated two-form via exterior derivative 

(15) 

is of maximal rank. We shall call a general, global, Birkhoffian vector field 
any nonautonomous vector field X on IR x T*M verifying the properties 

ix dR == X -.J dR = 0, 

dt(X) = 1. 

(16a) 

(16b) 

The equations above provide the desired global treatment of Equation 
(6). Indeed, the one-form R can be written in local coordinates 

R = R~(a)da~ = R~(t, a)da~ - B(t, a)dt, (17) 

and characterizes precisely the integrand of the variational principle for 
systems (1) (Section 4.2). The inner product of the vector field with the 
exterior derivative of form (15) then yields precisely Birkhoffs equations 
(6) in our unified notation 

j1 = 0, 1, 2, ... , 2n, a = (t, a), 

~ oR. oR~ 
Q =---

~v oa~ oav ' 
j1, v = 1, 2, ... , 2n, 

v = 1, 2, ... , 2n. 

(18a) 

(18b) 

(18c) 

The structure IR x T*M has been introduced for definition (16) mainly 
to keep in touch with the physical insight, that is, to associate time with IR. 
On more general geometric grounds, such an association is lost, in the 
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sense that the equations can be defined in an arbitrary (2n + 1) -dimen­
sional manifold M equipped with a closed and exact two-form of maximal 
rank. Time would be associated then with the space of the (null) co­
determinant of maximal rank, as we shall see better in Section 5.3. 

We shall now study the nonconservative nature of systems (1). The 
problem consists of identifying a geometric characterization of the energy 
rate of variation in time. This is achieved through the Lie derivative (Chart 
4.4). In general, the Lie derivative of the Birkhoffian B(t, a) with respect to a 
globally Birkhoffian vector field X is given, in local coordinates, by 

?JB ?JRv?JB 
L-B = _OIlV_ +-. 

x ?Jail ?Jt ?Jt 
(19) 

Now construct a Birkhoffian representation of systems (1) according to 
Corollary 4.5.1 a, whereby the Birkhoffian is the total energy 

B(t, a) = Etot(t, a) = Etot(t, r, p) = T(p) + U(t, r, p), (20) 

that is, the Birkhoffian is the Hamiltonian of the maximal self-adjoint 
subsystems of systems (1). This energy is necessarily nonconserved 
owing to the presence of nonconservative forces. The desired geometric 
characterization of the energy rate of variation in time is then given by the 
particularization of rule (19) 

?JE ?JR?JC E (t a) = L-E = -.!£! OIlV(t a) _v + -.!£! (21) 
tot ' X tot ?Jail ' ?Jt ot' 

- ?JE 0 
X = 0 -.!£! + -. 

oa ot 

An instructive exercise for the interested reader is to verify that law (21) 
may provide a description of the energy rate of variation. 5 7 However, the 
reader should keep in mind that law (21) does not possess a Lie algebra 
structure for the general non-autonomous case (Chart 4.1). 

Evidently, non conservation law (21) admits, as a particular case, 
conservation law 

Etot(a) = LXEtot = [Etot ' EtotJta) = O. (22) 

In this case, the law does possess a Lie algebra structure, but we are 
dealing with truly particular Newtonian systems (the autonomous, con­
servative, essentially self-adjoint systems in direct analytic representations). 

We consider now the peculiar aspect of the Birkhoffian realizations of 
contact two-forms mentioned in the text. that is, the explicit time de­
pendence of the symplectic substructure. This occurrence creates a 
number of technical problems, such as 1) the region of definition of the 
two-form; 2) the applicable version of the Poincare lemma, and 3) the 
proper formulation of the transformation theory. We consider here 
problems 1) and 2). Problem 3) is studied in the next chapter. 

Consider contact structure (15) in realization (18). It is rather natural to 
think of a star-shaped region in the variables all at each fixed value of time, 
but then one needs a mechanism whereby, as time varies, different regions 
at different values of time are smoothly connected. Also, as recalled in 
Section 4.2, a star-shaped region does not necessarily remain this type 
under an arbitrary transformation. 

57 This can be verified, for instance, by using the Birkhoffian representation of 
Example 4.2. 
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In order to overcome these difficulties, Sarlet and Cantrijn (1978a) 
introduced the notion of a "region deformable to a curve" -that is, one 
which (a) is topologically equivalent to a star-shaped region, (b) allows 
a smooth connection between regions at different values of time, and (c) 
preserves its topological character under arbitrary diffeomorphisms 
(transformations) . 

Note from the outset that the approach by Sarlet and Cantrijn is a 
natural generalization of the" deformability to a point" by Flanders (1963). 
We shall therefore take this opportunity to review the formulation of the 
direct and of the converse of the Poincare Lemma which apply to structure 
(15). This provides an alternative approach to that by Lovelock and Rund 
(1975) reviewed in Section 1.1.2 and which, as is now familiar, is based 
on the notion of star-shaped region. 

Let 0 denote an open subset of [Rm, and Fp(O) the set of all ~oo p-forms 
(Section 1.1.2) on O. An element Ap of FP(O) assigns to every a E 0 a 
p-linear alternating mapping 

Let rJ be a subset of [R x [Rm, and put 

~ t = {a E [Rm I (t, a) E rJ}. (24) 

Definition 1. rJ is smoothly deformable to a curve (monotonically 
increasing in the t-direction) if a family of mappings 

CPt: I x ~t~ ~t' 1= [0,1] 
(r, a) ~ CPt(T, a) = b E ~t 

(25) 

exists such that (i) cpt(1, a) = a, CPt(O, a) = ao' for all a E ~t and where 
ao = ao(t) is fixed on ~t; (ii) the map cP: I x rJ ~ rJ is of class ~oo with 
respect to all arguments. 

Clearly, the property of being smoothly deformable to a curve is pre­
served by all images rJ' of rJ under class ~oo, invertible transformations. 
Also, regions at different values of time are smoothly connected. Finally, 
the topological equivalence of Definition 1 with the notion of star-shape 
is also ensured. 

Starting from a family of p-forms Af E FP(~t) given by 

Ap = AP(a) = A (t, a)da~1 1\ ... 1\ da~p (26) 
t t ~1' .. ., ~P 

for each t such that ~t oF cp, where A~ 1, "', ~P (t, a) are given ~oo functions on 

rJ, we can define a parametric p-form on rJ, d p E ffP(rJ), by 

,r;-/P(t, a) = Af(a), V(t, a) E rJ. (27) 

As a straightforward extension of the definitions of Section 1.1,2, we 
have 

(28) 

that is, the exterior derivative of parametric p-forms can be written 
(actually, can be defined by) 

(c5dP ) (t, a) = (dAn (a), (29) 
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where d is the exterior derivative in FpCLt ). A parametric p-form .s!iP is 
exact when a parametric (p - 1) form .s!ip-1 exists, called primitive form, 
such that 

.s!iP = (j.s!ip-1. (30) 

Similarly, .s!iP is closed if and only if 

(j.s!iP = O. (31) 

The following property is a simple, direct generalization of Lemma 
1.1.2.1. 

Lemma 1 (Direct Poincare Lemma). Every exact parametric p-form 
is closed. 

The proof of the following property is, on the contrary, nontrivial. For 
brevity, we refer the interested reader to Sarlet and Cantrijn (loc. cit.). 

Lemma 2 (Converse of the Poincare Lemma). Let ~ be a subset of 
~ x ~m that is smoothly deformable to a curve. Let .s!iP be a parametric 
p-form of ~ that is closed. Then .s!iP is exact on ~. 

In conclusion, the existence theorems of the Inverse Problem studied 
in this volume, particularly those for Birkhoffian representations, can be 
subjected to a dual approach. One can first use conventional star-shaped 
regions in (2n + 1) -dimension for a contact approach to the forms con­
sidered. This is the case, for instance of Corollary 4.2.1 a. Alternatively, we 
can consider the forms at a fixed value of time. In this latter case the 
parametric approach outlined in this chart applies. This is the case of 
Theorem 4.5.1. This latter approach will be tacitly implemented throughout 
our analysis whenever considering symplectic structures with an explicit 
time dependence. 

Chart 4.7 Lie-Admissible/Symplectic-Admissible Generalization of 
Birkhoffs Equations for Nonlocal Nonpotential Systems 

In the text of this chapter we established the universality of the Lie algebras 
and of the symplectic (or contact) geometry for local Newtonian systems. 
A few words on the limitations of these mathematical tools in physics 
are now in order to prevent a possible expectation of their terminal 
methodological character. Stated explicitly, after having identified rather 
substantial capabilities, it is important to point out that the Lie algebras and 
the symplectic geometry do not provide the final formulation of mechanics. 
On the contrary, they characterize only one stage of an ever-continuing 
process of mathematical and physical advances. 

Consider the problem of interactions. The effectiveness of the Lie 
algebra and of the symplectic geometry for the treatment of the electro­
magnetic interactions is well-known. In Example 4.1 we shall show that 
the formulations considered apply to the characterization of the electro­
magnetic interactions, not only in their conventional (Hamiltonian) form, 
but also in their most general possible (Birkhoffian) form. This effectiveness 
persists for the more general interactions of contemporary physics, such 
as the unified gauge theories of weak and electromagnetic interactions. 

All these interactions, whether Newtonian or quantum field theoretical, 
are of local/differential and potential/self-adjoint type. In fact, all these 
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interactions are characterized by a conventional. local, Lagrangian func­
tion or operator-valued distribution Ltot = Lfree + Lint· 

Recent studies 58 have identified a number of insufficiencies of these 
interactions in several branches of physics. In fact, the systems of New­
tonian Mechanics are, more properly, of the non local type (Section 4.1), 
in the sense that they demand integro-differential equations to represent 
the interactions at all points of a surface volume. The systems of Statistical 
Mechanics, whether classical or quantum mechanical. are also non local 
whenever the extended character of the constituents is taken into account, 
together with their inelastic collisions. Along quite similar lines, the systems 
of Particle Mechanics are also nonlocal in their more adequate treatment. 
This is the case in particular for the strong interactions, because of the 
nee_d for mutual penetration of the wave packets of particles. 5 9 

When the Lie algebra and the symplectic geometry are considered in 
this context, they emerge possessing rather precise limitations. In fact, 
the symplectic geometry is, in the final analysis, a local/differential 
geometry, that is, a geometry which, when realized in a local chart, 
admits ordinary (or partial) differential equations. As a result, no possibility 
is known at this time for an effective treatment of nonlocal systems via 
the symplectic geometry in its current formulation. 

We can therefore say that the Lie algebra and the symplectic (or contact) 
geometry, rather than providing the ultimate formulations of mechanics, 
provide instead a mere approximation of the local/nonpotential type, with 
the understanding that more general algebraic and geometric structures 
are expected to exist for nonlocal/nonpotential treatments. 

In this chart we review the main ideas of the possibility of generalizing 
the Lie algebra and the symplectic geometry into the so-called Lie­
admissible algebras and the symplectic-admissible geometry. 

The most general form of unconstrained Newtonian systems in Euclidean 
space known at this time is given by the so-called integro-differential, 
variationally non-self-adjoint systems. These are systems with a super­
position of local/differential and nonlocal/integral forces which are 
derivable and nonderivable from a potential. By using a self-evident 
notation, the systems can be written 60 

{[ m):ka - fka(t, r, r) - Iff dr' kka(t, r, r', r, r', .. ·)lA 
- Fka(t, r, f) - f f f dr' Kka(t, r, r', r, r', ... )} = 0, (1) 

NSA 

a = 1, 2, ... , N, k = x, y, z, 

58 See the Proceedings of the Second Workshop (1979) and of the Third Work­
shop (1980) on Lie-admissible Formulations, and the Proceedings of the First 
International Conference on Nonpotential Interactions and their Lie-admissible 
Treatment (1982). An extended presentation of this chart is also provided in the 
monograph Santilli (1982d). For a mathematical study of flexible lie-admissible 
algebras, see the monograph Myung (1982b). For an introductory mathematical 
account, see Benkart (1982). For an historical mathematical account, see Tomber 
(1982). 

59 See Chart 6.1. 
60 Several ways exist of writing nonlocal forces. In Equation (1) we selected 

"bilocal" form with a kernel. For another form, see Equation (4.1.3). 
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and represent the motion of extended objects in a resistive medium with 
center of mass coordinates r, under local and nonlocal forces of action­
at-a-distance/potential type as well as contact/non-potential type. As 
indicated in Sections 4.1, the local nonpotential systems considered in 
this volume (and in the preceding one) are an approximation of systems 
(1) . 

Hamilton's equations (without external terms) are clearly insufficient 
in representing the systems considered because of their inability to achieve 
direct universality at the level of local approximations, let alone the full 
nonlocal treatment. Birkhoff equations are equally insufficient to represent 
systems (1) for a number of reasons, ranging from the lack of integro­
differential character of the underlying geometry, to the practical im­
possibility of computing a Birkhoffian representation. 

To overcome these (and other) difficulties, Santilli (1978c and e) 
proposed a generalization of Birkhoffs equations (and thus, of Hamilton's 
equations) which achieves a direct universality for all systems (1) via a 
generalization of the underlying algebra and geometry. 

I. Generalization of Lie Algebras into Lie-Admissible Algebras. In 
Chart 4.1 we pointed out the property that the Lie-admissible algebras 
constitute a genuine generalization of the Lie algebras. At the mathe­
matical level, this can be seen in a number of ways, such as the fact that 
the axioms characterizing a Lie-admissible algebra are a direct generaliza­
tion of the Lie algebra axioms, or that the Lie algebras are contained in the 
classification of all Lie-admissible algebras, or that all Lie algebras are 
Lie-admissible, but the opposite property is not necessarily true. 

At the physical level, the generalized character can be seen by noting 
that the product of a Lie-admissible algebra is neither antisymmetric nor 
symmetric. Thus it can always be decomposed into an antisymmetric and 
a symmetric part. The product verifies the conditions of Lie-admissibility 
when the antisymmetric part is Lie. Finally, Lie algebras are recovered as a 
particular case when the symmetric part is null. 

The realization in Newtonian Mechanics of the product of Lie-admissible 
algebras is given by 

OA oB OA oB OA oB 
(A, B) = - S~V(t. a) -_ = - n~v _ + _ pv_, 

oa~ oa v oa~ oav oa~ oav 

(2) 

where the underlying carrier space is the same as that of Birkhoffs 
equations (e.g., the cotangent bundle T*M), with the understanding that 
the use of suitable generalizations is not only possible but encouraged. 

Product (2) is Lie-admissible because its antisymmetric part is Birk­
hoffian and therefore Lie. The Poisson brackets are recovered via a double 
simplification. i=irst. one simplifies the product via the restriction T~v = 0, 
and second, one assumes the further simplification of the general Lie 
tensor n~v into the canonical form w~v. 

The separation of the product into an antisymmetric and a symmetric 
part is along rather precise physical motivations. The antisymmetric part 
can represent all possible forces and dynamic conditions which are 
treatable via Lie's theory along the existence theorems of this volume. The 
symmetric part can then represent all forces which are outside the 
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capability of Lie's theory, such as the nonlocal nonpotential forces. This 
separation of Lie and non- Lie dynamics subsequently results in being 
important in the quantitative treatment of the physical consequences due 
to the presence of non- Lie forces. 61 

The fact that product (1) is the most general possible regular realization 
of Lie-admissible algebras on T*M can be seen as follows. The axiom 
for the product (A. 8) to be Lie-admissible is given by62 

[A. 8, C] + [8, C, A] + [C, A, 8] 
- [C, 8, A] - [8, A, C] - [A, C, 8] = 0, (3) 

where 

[A. 8, C] = ((A. 8). C) - (A. (8, C)), (4) 

and result into the conditions on the tensor S~v 

+ (S'P - SP') O~P (S~V - SV~) = 0, (5) 

with the general solution 

(6) 

Recent studies have indicated that the generalization of Lie algebras 
into Lie-admissible algebras occur at a central methodological level of 
Lie's theory, that of the universal enveloping associative algebra. In turn, 
this permits a consistent exponentiation into a connected Lie-admissible 
group of transformations, i.e., a set of transformations which constitutes 
a connected group in the conventional sense, yet whose reduction in the 

61 One of the implications of the possible existence of a nonlocal, nonpotential 
component in the strong interactions is a departure from the electromagnetic 
characteristics of particles, 5 B such as magnetic moments, spin, parity, etc. (which, 
of course, can only be an internal effect of a closed system under strong interactions 
not detectable from the outside under long-range interactions). The separation in 
the theory of the local/potential part from the nonlocal/nonpotential component is 
for the computation of the deviations from the physical characteristics under the 
former part, due to the presence of the latter part. For consistency, it is important to 
begin the separation at the primitive classical level and to preserve it at all sub­
sequence levels of study. 

62 A first axiom indicating the antisymmetry of the attached product, i.e., 

[A. B)* - [B, A)* = 0, [A, B)* = (A. B) - (B, A) 

has been ignored here because the field has characteristic zero. Note that axiom (3) 
is a generalization of the Jacobi law. In fact, when (A. B) = [A, B), axiom (3) 
reduces to four times the Jacobi law. This illustrates the remark made earlier that the 
Lie-admissible axioms are a generalization of the Lie axioms. 
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neighborhood of the identity exhibits a non-Lie, Lie-admissible algebra. 
This can be seen in the following exponentiation of product (2): 

a' = exp (es#' oX ~)a = connected group (7a) 
oa' oa# 

da a' - a I oa oX 
- ~ -- = - S#' - = (a X) = Non-Lie, Lie-admissible 
de e 9" 0 oa# oa' 'algebra. (7b) 

These features indicate the possibility of constructing, il') due time, a 
Lie-admissible generalization of Lie's theory, including generalizations of 
the Poincare-Birkhoff-Witt Theorem, Lie's theorems, the representation 
theory, etc., and considerable research activity is currently under way 
along these lines. 63 

II. Generalization of the Symplectic Geometry into the Symplectic­
Admissible Geometry. The symplectic geometry is clearly unable to 
"geometrize" Lie-admissible algebras, e.g., because of the total anti­
symmetric character of the symplectic two-forms. To bypass this difficulty, 
Santilli (loc. cit.) proposed the development of the symplectic-admissible 
geometry as the geometry of manifolds equipped with tensorial two­
forms whose antisymmetric part is symplectic. By assuming for the 
manifold the cotangent bundle T*M, and for the local chart the variables 
a = (r, p), the tensorial two-form under consideration can be written 64 

S2 = S#,(t, a)da# ® da' = n~, da# 1\ da' + T~,da# x da', (8a) 

d(n~, da# /\ da') = 0, det(n~,) -+ 0, 

(8b) 

where ® is the tensorial product, 1\ is the exterior product, and x is the 
symmetric product. The geometrization of product (2) is achieved when 

(9) 

The integrability conditions are given by 

o 0 0 
7"t (S#, - S,#) + ~ (S" - S,,) + ~ (S,# - S#,) = 0 (10) 
oa ua~ ua# 

with the general solution 

S = ---( OR~ OR~) 
#' oa oa' 

(11 ) 

63 See the Bibliography by Tomber et al. (1979 and 1981). 

64 In Equations (8) we have distinguished the covariant tensors Q~, and T~, from 
their contravariant counterparts Q#' and P' because, in general, 

S"' = (1IS.pll-')"', S"' - S'" 4= (1IS.p - Sp.II-')"', 
S"' + S'" 4= (1IS.p + Sp.II-' )#'. 

Notice the appearance of an explicit time dependence in the two-form which is 
similar to the corresponding Birkhoffian case. This is an indication that the more 
adequate treatment is that on IR x T*M with corresponding contact-admissible 
extension. This latter aspect will not be considered here for brevity. 
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Tensorial two-forms whose antisymmetric part is symplectic were 
called symplectic-admissible two-forms in order to attempt a geometric 
counterpart of the algebraic definition of a Lie-admissible product (via 
the Lie character of the antisymmetric part). 65 The manifold T*M equipped 
with such a form was then called a symplectic-admissible manifold. The 
main motivation was parallel to that of product (2). In fact, the imple­
mentation of a symplectic two-form (or manifold) into the broader sym­
plectic-admissible structure permits the representation of local/differential 
equations via the symplectic part. and the possible treatment of the non­
local/integral terms via the symmetric part. A condition for studying this 
objective was the loss of the notion of (geometric) closure (that is, 
dS 2 oF 0)66. 

A few comments are in order. The full geometrization of nonlocal 
interactions calls for an "integro-differential geometry" which is expected 
to be considerably more complex than the "symplectic-admissible geo­
metry," beginning with its topological foundations. In fact. the needed 
geometry calls for abandoning the local notion of points in favor of suitable 
nonlocal/integral generalizations. The symplectic-admissible geometry 
has been suggested as an intermediary step, prior to such a full non local 
treatment. In fact, the geometry is patterned along the pragmatic formula­
tion of equations (1) whereby the center of mass coordinates r are purely 
local, and the non local effects are represented via additive forces. At the 
geometric level, this results in structures (8) consisting of local/differential 
exterior two-forms plus non local/integral symmetric two-forms. 

It should be indicated here for completeness, that the symplectic­
admissible geometry is apparently needed for reasons independent of 
those considered here. As is well-known, the canonical symplectic 
two-form 

(J)2 = 1w~v da~ /\ da v = dPk /\ drk (12) 

has been historically conceived for the geometrization of the Poisson's 
brackets 

[A,8] 
OA OS OA OS OS OA = _(J)~V_ = __ - __ . 
oa~ oav ork OPk ork oPk 

(13) 

However, as is also well-known, the primitive algebraic product in Lie's 
theory is that of the enveloping associative algebra. The Lie product is 
merely an attached product. 

The ultimate geometrization of the Poisson's brackets therefore 
demands its realization at the level of the envelope. This problem was 

65 If a contravariant tensor S·v is Lie-admissible, its covariant version S~" defined 
by Equation (9), is not necessarily symplectic-admissible, and vice versa. As a 
result, the joint condition of Lie-admissibility and symplectic-admissibility must be 
imposed. As we shall review in a moment (Equations (22) later on), a joint solution 
of this type exists, and it is directly universal for all systems (1). This is sufficient on 
physical grounds. On mathematical grounds, the situation is different. and much 
remains to be done. For instance, if a tensor Q~' is (regular and) Lie, its covariant 
form defined by Q., = (1IQ"PII-1)., is always symplectic, and vice versa. Studies are 
currently in progress via grading and other mechanisms to see whether or not the 
corresponding property at the more general Lie-admissible/symplectic-admissible 
level can be recovered. 

66 For additional geometrical studies, see refs. 58 [in particular, the contributions 
by Oehmke (1982), and Sagle (1982)]. See also the Index of the bibliography by 
Tomber et al. (1981). 
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formulated by Santilli (197Se), who pointed out that the envelope of 
brackets (13) is given by the nonassociative Lie-admissible product 

M 08 
A 08 =--. 

ork OPk 
(14) 

The primitive geometry, therefore, is not the symplectic geometry, but 
rather that geometrizing product (14). This leads in a rather natural way 
to the symplectic-admissible geometry as the primitive geometry of the 
envelope of Poisson's brackets with tensorial two-forms 

t~v = tv~' 

(15) 

The symplectic geometry then acquires a derived meaning, in the sense 
that symplectic form (12) is merely the attached antisymmetric fotm of the 
fundamental form (15). 

Finally, the independence of the symplectic-admissible character from 
the selected local variables should be indicated. As we show in detail in 
the next chapter, symplectic two-forms remain symplectic under arbitrary 
(but smoothness- and regularity-preserving) transformations of the 
variables. Explicitly, if the form Q 2 = Q~v da~ A dav is symplectic, the 
transformed forms under all possible new variables a'(a) 

(16) 

are symplectic. In turn, the independence of the symplectic character 
from the local variables is at the foundations of the coordinate-free 
globalization of the symplectic geometry. 

Santilli (loc. cit.) proved that the property above is, in actuality, a 
particular case of the more general property that the symplectic-admissible 
character of a tensorial two-form is independent of the selected local 
variables. Explicitly, if (Sa) is symplectic-admissible, all possible trans­
formed forms 

S'2 = S~v da'~ ® da'v, (17) 

are also symplectic-admissible. In turn, this feature gives hope of achieving, 
in due time, a coordinate-free globalization of the symplectic-admissible 
geometry.63.66 

III. Generalization of 8irkhoff's Equations into Lie-Admissible Sym­
plectic-Admissible Forms. After having identified the notions of Lie­
admissible algebras and of symplectic-admissible geometry, Santilli 
(loc. cit.) proposed a generalization of Birkhoffs equations which can be 
written in the contravariant/algebraic form 

oH(t, a) 
a~ - S~V(t a) --- = 0 , oav ' 

J1 = 1,2, ... , 2n, 

or in the covariant/geometric form 

S ( ) 'V _ oH(t, a) = 0 
~v t, a a ... ' 

ua~ 

(1S) 

(19) 

where the tensors S~v and S~v are Lie-admissible and symplectic-admissible 
in the sense of Equations (5) and (10), respectively, and interrelationship 
(9) holds. 
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The generalized nature of Equations (18) or (19) with respect to both 
Birkhoffs and Hamilton's equations is now trivial. 

The direct universality for the most general systems known at this time 
is also trivial. Equations (1) can be written in the first-order form 

a~ = :3~(t, a); (e~) = ( pjm ) + ( 0) (20) 
~ 'LOCAL FNONlOCAL ' 

and the integro-differential vector fields :3 are always Birkhoff-admissible. 
That is, a function H and a tensor S~, always exist such that 

(21) 

This property can be better seen by recalling that Equations (18) or (19) 
were proposed in order to reach a consistent algebraic and geometric 
characterization of the equations originally conceived by Hamilton, those 
with external terms. One of the simplest possible form of the generalized 
equations occurs when the Birkhoffian part reduces to Hamiltonian form, 
in which case we have the equations 

oH oH oH 
a~ = S~' - = (j)~' - + T~'-

oa' oa' oa" 
(22a) 

s = diag(FNsA/(p/m)), (22b) 

which can be written in the disjoint rand p coordinates 

(23) 
oH 

FNSA = -s -
k k; op;' 

by therefore coinciding with the equations originally conceived by 
Hamilton. 

The equations are written in form (22) rather than (23) because the 
latter do not admit a consistent algebraic structure, in that the product of 
the time evolution 

. d,' OA oH OA oH oA 
A(a) = A * H = --- - -- + -F (24) 

ork op k op k ork op k k 

violates the right distributive and the scalar laws, by therefore being 
unable to characterize a consistent algebra (Chart 4.1). On the contrary, 
Equations (22) admit the product of the time evolution 

OA oH OA oH oA oH oA oH 
..4(a)~' (A. H) = -S~'- = -- - -- + -s.- (25) 

oa~ oa' ork OPk OPk ork oP; '/oPj 

which does indeed satisfy the right and left distributive and scalar laws. 
Thus the product (A. H) characterizes an algebra, and this algebra turns 
out to be a Lie-admissible generalization of a Lie algebra. 

Notice that simplified Equations (22) already provide the explicit 
solution of the representation of all systems (1). The simplicity of repre­
senting non-local systems via Lie-admissible equations should be com­
pared with the complexity of the construction of a representation of the 
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simpler local systems via Birkhoffs equations. Notice also that Equations 
(18) possess a consistent algebra for the most general possible nonautono­
mous equations, which is not the case for Birkhoffs equations (Chart 
4.1). Finally, the reader should keep in mind that all symbols of Equations 
(18) or (19) readily permit a direct physical meaning; that is, t is the time 
of the observer, the r's are the center of mass coordinates with respect to 
the observer, the p's are the physical linear momenta mi', H is the total 
(generally nonconserved) mechanical energy, and SI'V represents all 
nonconservative, non-potential forces (or contact interactions). 

Generalized equations (18) or (19) appear to have rather intriguing 
implications for a number of open problems of mechanics, such as the 
relativity which is applicable to a Newtonian particle under unrestricted 
forces and dynamical conditions. Also, the equations have been extended 
to statistical mechanics, classical field theory, quantum mechanics, and 
other branches of physics, in each of which they have resulted in being 
directly universal. For these and related studies, we refer the interested 
reader elsewhere. (See footnote 58 on page 91.) 

EXAMPLES 

Example 4.1 

In this example we shall identify the Hamiltonian and Birkhoffian representations of the 
Newtonian electromagnetic interactions (charged particles under the Lorentz force). 
The idea is to indicate that the local formulation of the electromagnetic interactions 
is not only compatible with the conventional analytic/Lie/symplectic formulations 
but is actually compatible with these formulations in their most general possible 
(Birkhoffian) form. This sets the foundations of the methodological treatment of the 
electromagnetic interactions which persists, upon due technical implementations, at 
different levels of treatment (such as quantum mechanical), as well as for other inter­
actions which are similar in structure to the electromagnetic ones (such as the weak 
interactions but not necessarily the strong58). 

In Example 1.2.7 we proved the variational self-adjointness of the Lorentz force 
which we write in this example in the form for one charged particle 

{ .. [(oq> OAi) mn oAn "J } = mri - e ori - 7ft - /iij orm rl SA SA = 0, (1) 

i,j,m,n=x,y,z. 

We shall first review the conventional Hamiltonian formulation. We shall then 
identify the broader Birkhoffian approach. Later, in Example 6.1, we shall study the 
reduction of the Birkhoffian representation to the Hamiltonian form. In order to 
identify more clearly the implications in the transition from the Hamiltonian to the 
Birkhoffian representation (and vice versa), we shall consider the analytic, algebraic, 
and geometric profiles separately. 
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A. Conventional Hamiltonian representation. As presented in numerous treateses 
in Newtonian Mechanics, system (1) admits the Hamiltonian representation 

1 2 
HLorentz = 2m (P - eA) + eq>, (2a) 

P = mr + eA, (2b) 

often referred to as characterized by the so-called minimal coupling rule P -+ P + eA. 
Within the context of the Inverse Problem, this occurrence is trivial, owing to the 
self-adjointness of the system. 

Conventional Lie structure. The brackets of the time evolution law for the 
Hamiltonian representation are the conventional Poisson brackets67 

aA aB aA aB aA aB 
[A, B] = ab~ or abv = ~. ap - ap . ar ' (1) 

b = (r, P). 

Conventional geometric structure. The self-adjointness of system (1) implies the 
existence of the vector field 

;::; -;::;~ ~ 
-Lorentz - - (b) ab~ 

which is Hamiltonian, in the sense of Chart 4.5, i.e., verifies the rule 

SLorentz ~ {J)2 = - dH Lorentz 

with respect to the fundamental symplectic structure 

W 2 = !W~V db~ /\ db v = dPi /\ dri. 

(4) 

(5) 

(6) 

The underlying symplectic manifold is the cotangent bundle T* E 3 of the three­
dimensional Euclidean space E3 with local coordinates r. 

B. Birkhoffian representation. Rather than represent the Lorentz force via the 
Hamiltonian, we can represent it via the generalized Birkhoff's tensor. Among the 
possibilities at hand, we select that for which the Birkhoffian represents the total 
energy 

1 2 
BLorentz = 2m p + eq>, 

p = mr. 

(7) 

while the part of the Lorentz force originating from the vector potential is represented 
via Birkhoff's tensor (Sarlet and Cantrijn (1978a and b» 

Q = aRv _ aR~ 
~v aa~ cav ' 

(8a) 

{R~} = {p + eA,O}, a = (r, p). (8b) 

67 We use the variables b = (r, P) for the Hamiltonian representation to stress their dif­
ferences with the variables a = (r, p) to be used later for the Birkhoffian representations. 
The different variables also indicate that the two representations can be connected via suitable 
noncanonical transformations (Darboux's diffeomorphisms) as we shall see in Chapter 6. 
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The Birkhoffian representation then explicitly reads 

(9) 

Clearly, the representation above is fully equivalent on analytic grounds with 
representation (2). We simply have the transition from the conventional action 
principle 

1'2 
b dt(P· t - HLorentz)(Eo) = 0, 

" 
(10) 

to the generalized one 

1'2 
b dt[(p + eA) . t - BLorent.](Eo) = 0, 

" 
(11) 

Generalized Lie structure. The brackets of the time evolution law are now of the 
generalized type 

aA aB 
[A BJ* = _n~v_ , aa~ aav 

aA aB aA aB aA mn aAm aB 
=_·---·-+e-b;- ---ar ap ap ar ap;) arn apj 

(n~V) = ( 0 
--I 

1 ) -1 
e(aAJa0 - aAiar; = (n~v) . 

(12) 

Nevertheless, they are fully Lie in algebraic character, that is, they verify the Lie 
algebra laws. What is physically and mathematically significant is that the component 
of the Lorentz force originating from the vector potential enters directly into the 
algebraic structure ofthe approach. This feature is absent in brackets (3). Also, in the 
former case the local variables rand p = mt are the physical variables, while in the 
latter case only r is a physical coordinate (that is, used for the experimental detection 
of the system), while the canonical momentum P = mt + eA does not coincide with 
the physical linear momentum. This can be equivalently expressed by saying that, 
when the variables rand p of the algebraic brackets of system (1) represent the Eucli­
dean coordinates and the physical linear momentum, respectively, these variables 
are not canonically conjugate (Corollary 4.S.lc). In conclusion, the reformulation of 
the local variables 

r --> r, P = mt + eA --> p = mt (13) 

implies the reformulation of the algebraic tensor 

(14) 

The local variables do not span a phase space under such a reformulation. Yet the 
algebraic structure remains Lie, although expressed via generalized brackets. Most 
importantly, the Lie algebra product itself becomes representative ofthe Lorentz force 
by acquiring a direct dynamic content. 

Generalized geometric structure. System (1) admits an alternative representation 
as vector field .::: .::: a 

~ - ~~(a) 
~Lorentz - ~ aa~ (15) 
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which is now Birkhoffian (in the sense of Chart 4.5), i.e., it verifies the rule 

2Lorentz -.J Q 2 = - dBLorentz 

with respect to the nonfundamental, symplectic, exact, two-form 

Q 2 = Q~ia)da~ /\ dav 

(16) 

(17) 

The underlying symplectic manifold is still the cotangent bundle T* E 3 equipped with 
form (17). This broader geometric characterization of system (l) is, in essence, a local 
formulation of a global, non-Hamiltonian, approach to the electromagnetic inter­
actions recently advocated by a number of mathematicians (Souriau (1970) and 
others). 

A number of generalization then become possible. For instance, the replacement 
of E3 with the Minkowski space M 3.1 yields a geometric characterization of the 
Lorentz force in special relativity. Quantization can then be performed by geometric 
quantization (e.g., via a linear associated bundle from a principal bundle). See in this 
latter respect, Abraham and Marsden (1967) and Sniatycki (1979). Also, the extension 
of the electric charge to other "charges" currently used in high-energy physics (e.g., 
the isospin) can be performed via the non-Abelian gauge groups. Finally, the extension 
to field theory remains structurally the same, although now in infinite dimension. As 
such, the geometrical treatment becomes considerably more delicate and technically 
involved. 

Example 4.2 

In this example we illustrate how a known Hamiltonian representation of a non­
conservative system can be turned into a Birkhoffian representation. The one-dimen­
sional, analytic, regular, non-self-adjoint Newtonian system 

[(i' + r)SA + yf]NSA = 0, m = 1,0)2 = 1, (1) 

describes the linear damped oscillator. A Hamiltonian representation of this system 
has been computed in Example 1.3.2, and it is given by 

/1 = 1,2, (2) 

where 

W} = {r, P}, 

(3) 

Even though this representation is mathematically rigorous, it is not immune from 
problematic physical aspects. For instance, upon application of the conventional 
canonical quantization techniques, the physical meaning of the expectation values 
of the canonical operators P and H is in doubt owing to the fact that these quantities 
do not coincide with conventional physical quantities already at the classical level. 
The joint representation of system (I) via Hamilton's and Birkhoff's equations may 
conceivably be of assistance in studying these issues. 

The Birkhoffian representation of interest is therefore that for which the algorithms 
at hand have a direct physical significance, that is, 1) the local variables {aU} = {r, p} 
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represent the coordinates of the experimental detection of system (I) and the physical 
linear momentum, p = mr (m = 1, for simplicity); 2) the Birkhoffian B(a) represents 
the total physical energy, Etot = !(r2 + r2), i.e., the total energy of the maximal 
associated self-adjoint sybsystem as in Corollary 4.5.la; and 3) the symplectic tensor 
Qpv of Birkho/f's equations represents the nonconservative, non-self-adjoint force 
F = -yr. 

Such a representation can be constructed as follows. First, assume the prescriptions 
p = r for the reduction to an equivalent first-order system, under which Equation (I) 
assumes the non-self-adjoint form 

(4) 

The simplest possible matrix of self-adjoint genotopic function according to Theorem 
4.4.3 is given by (exp{yt}b;). This yields the self-adjoint normal form 

[( 0 -eY')(~) _ (eY'(r + YP))] = O. 
eY' 0 p eY'p SA 

(5) 

The construction of a Birkhoffian representation is now straightforward. Equations 
(4.5.20) and (4.5.21) give the expressions 

(6) 

This is not yet the desired representation because the Birkhoffian does not represent 
the total energy. Nevertheless, the use of the degrees offreedom (4.5.26) provides the 
desired result, which is 

aG 
B'=B·-­

at' 

(7) 

raP} = {r, p}. 

Notice that Birkho/f's tensor replaces the fundamental symplectic tensor with one 
of the simplest possible generalized form, that induced by a multiplicative function 
of time, i.e., 

(8) 

This mechanism allows the representation of non-conservative system (1) under the 
conditions that the Birkhoffian represents the total physical energy and the algorithm 
p represents the physical linear momentum.68 

68 Recovering the direct physical meaning of algorithms rand p has nontrivial implications, 
e.g., for a possible quantum mechanical description. For instance, it would imply the transition 
from the conventional fundamental commutation rules to suitable generalized form, much like 
the generalization of the classical rules (4.5.14) into the Birkhoffian form (4.5.15). In turn, this 
has far reaching implications, such as the need to generalize Heisenberg's principle. This 
illustrates the viewpoint expressed by Santilli (1978d) [see also Schober, Ed. (1982)] that 
quantum mechanics needs a suitable generalization in the transition from the arena for which it 
was conceived (local potential forces) to the different physical arena of the mutual wave over­
lapping of particles (strong interactions) and their local non potential approximation. 
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An alternative Birkhoffian representation of system (1) is given by 

{R~} = {!p + ~ r(e:' - 1) - tr; -!r + ~ p(1 - e- r,)} (9a) 

B = !(p2 + r2), (9b) 

in which case the symplectic tensor is still the fundamental one, i.e., 

aR~ aR~ 
---=()) 
aa~ aa" ~V' 

{a~} = {r, p}. (10) 

Nevertheless, Birkhoffian (9b) does not represent the total physical energy because 
the algorithm" p" does not coincide with the linear momentum. 

Another Birkhoffian representation can be constructed via the self-adjoint isotopic 
transformation of representation (2). This provides also an illustration of Proposition 
4.5.t: A matrix of isotopic functions in the equivalence transformation 

{(aR~' _ aR~')a" _ (aB m + aR~')} 
ab~ ab" ab~ at SA 

== {(h~)[())p"b" - a~J }, b = (r, P) (11) ab SA SA 

for the case y2 - 4 > 0 is given by 

(h~) = (lXe- 1/ 2'r - e"')(b~) (12) 

under the condition 
1 

IX + - = y. (13) 
IX 

The use, again, of Equations (4.5.20) and (4.5.21) then yields the Birkhoffian repre-
sentation: 

{R;'} = {!e"'p2; !lXeW r2} 

Bm = 1e(2"+(1/"))'p3 - !lXey'p2r (14) 
+ !e-(1/")'Pr2 _ 1IXe -(d(2/"))'r3. 

Notice, however, that in this case, the Birkhoffian does not represent the total energy. 
As a final remark, note that system (1) is autonomous, while all Birkhoffian 

representations (7), (9), and (14) depend explicitly on time. The question then arises 
of whether or not a Birkhoffian representation without an explicit dependence on 
time can be found for system (1) via Equations (4.5.35). This problem turns out to be 
rather involved in practice, because it calls for the solution of a parabolic, second­
order partial differential equation. This case illustrates the statement of Sections 4.4 
and 4.5 to the effect that Birkhoffian representations {R~(t, a), B(a)} with an explicit 
dependence on time for autonomous (nonconservative) Newtonian systems are, in 
general, easier to compute than those which do not depend explicitly on time. 

Example 4.3 

Consider the nonlinear, nonconservative, non-self-adjoint system in two-dimensions: 

= 0, 
k 
-=1. 
m 

(1) 
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To construct a Birkhoffian representation, we search for prescriptions (4.1.23) which 
are capable of yielding a symplectic tensor other than the fundamental one. The 
presence of the terms (r xfy - fxry) with opposite signs in the non-self-adjoint force 
suggests the study of the prescriptions 

(2) 

Theorem 4.4.1 applies by yielding the self-adjoint general form 

(Py - Px) -ry 

0 0 

0 0 

rx 0 

O)(fX) (0)1 -rx ry 0 
- =0 o Px Px . 

o Pr, Pr SA 

(3) 

Theorem 4.5.1 applies, too, by yielding in this case the closed solution 

(4) 

Example 4.4 

In this example we illustrate the technical difficulties for the practical construction of a 
Birkhoffian representation of Newtonian systems, even for the case of one (space) 
dimension. 

The known Van der Pol equation 

m = 1, k = 1 (1) 

characterizes, in the language of the Inverse Problem, a non-self-adjoint extension of 
the one-dimensional harmonic oscillator. We are searching here for a Birkhoffian 
representation of such a system under the condition that the prescriptions (4.1.23) 
characterize a physical quantity, the linear momentum p = f, (m = 1 for simplicity), 
and that the Birkhoffian represents the total physical energy, B = 1(f2 + r2). The 
construction of a Birkhoffian representation is then reduced to the search for a solu­
tion in R~ of the quasilinear system of first-order partial differential equations: 

( oR! OR2) 2 oR! - - - [r - e(l - r )p] - r - - = 0 
op or ot 

(2) 

(~R! _ OR2)p _ P _ oR2 = 0, 
op or ot 

which can be equivalently written 

2 OR2 oR! 
pEr - e(l ~ r )p] + [r - e(l - r2)p] - = pr + p-

, ot ot 
(3) 

OPt oR2 OR2 
p-=p-+p+-. 

op OZ ot 

Thus, in terms of an arbitrary function!, 

pRj = -e(1 .- r2)p2t + [r - e(1 - r2)p]R2 + f(q, p), (4) 
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and we reduce the problem considered to the computation of a solution of the quasi­
linear partial differential equation of the first-order 

aR2 aR2 aR2 2 r - + p - - - [r - 8(1 - r )p] + R2 -
at ar ap p 

af 1 2 - - + - f + P + 8(1 - r )pt = o. 
ap p 

(5) 

To illustrate the practical difficulties in computing such a solution in the desired 
closed form, suppose that R2 is of the form 

R2 = g(q, p)t (6) 

with g an unknown function. By substituting this into Equation (5) and with some 
manipulation, the problem reduces to the solution of the characteristic equations 

dr dp 

p -[r - 8(1 - r2)p] 

dg' 
g' = g + p. (7) 

-(r/p)g" 

The point is that the solution of this latter equation is equivalent to the solution of the 
original system. Thus the construction of a Birkhoffian representation of system (1), 
under the assumptions p = mr (m = 1) and B = !<,r2 + r2) and for time dependence 
(6) of the R2 function, calls for a solution of the non-linear equation of motion. 

Additional studies are left to the interested reader (Problems 4.5 and 4.6). 

Example 4.5 

In this example we illustrate the following important property (in the language of 
Definition 4.2.1): the condition of strict regularity is necessary for Birkhoff's equations 
to represent Newtonian systems. This will be demonstrated via given Birkhoff's 
equations which are regular and which cannot be turned into an equivalent second­
order form. 

Consider the autonomous covariant Birkhoff's equations 

for the case 

Birkhoff's tensor is then given explicitly by 

and it is regular, i.e., 

Jl = 1,2,3,4, 

a = (r, y) 
(1) 

(2) 

(3) 

(4) 
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Equations (1) are therefore regular and admit the contravariant form 

(5) 

This form violates the condition of strict regularity, Equation (4.2.12). In fact, it can 
be explicitly written 

{

fl - 1 = 0; 

f2 - 1 = 0; 

~l + rIiYl = 0; 

Y2 + r2/Y2 = O. 

(6) 

The implicit functions of the variables Yk cannot, therefore, be constructed from the 
first two equations, and system (1) cannot be turned into a second-order form. It is 
then a bona fide first-order system of four equations in four variables which does not 
admit an equivalent second-order form in the r-variables. 

Example 4.6 

In Volume I we reported (see the Introduction and Chart 1.3.14) the negative results 
by Douglas (1941) on the Inverse Problem, with particular reference to the proof of 
the existence of second-order two-dimensional systems of ordinary differential equa­
tions which do not admit a (first-order) Lagrangian. We also indicated that, perhaps, 
Douglas' results were responsible for the lack of subsequent interest on the Inverse 
Problem for a considerable period of time. 

In this example, we would like to report the result by Hojman and Urrutia (1981) 
according to which the following system, 

.X + y = 0, ji + Y = 0, (1) 

admits a Birkhoffian representation (in our language), while the system is essentially 
non-self-adjoint according to Douglas' proof and thus does not admit a Lagrangian 
representation. 

The construction of a Birkhoffian representation is, in this case, rather simple 
because the system is linear, therefore admitting an easily computable solution. Once 
a solution is known, it can be turned into first integrals. The Birkhoffian representa­
tion, in turn, can be computed from the first integrals via Method 3 of Corollary 
4.5.1d. 

System (1) admits the equivalent first-order form 

a~ = S~(a), 
Sl = a\ 

al = x, a2 = y, a3 = X, a4 = y, 
.:::2 = a4 , 8 3 = _a4 , 8 4 = _a2, (2) 
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which can be easily proved non-Hamiltonian. It is equally easy to see that the vector 
field is Birkhoffian. In fact, the general solution is given by 

a l = -C l sin t + Cz cos t + c3 t + C4 , 

a Z = C l cos t + Cz sin t, 

a3 = -Cl cos t - Cz sin t + C3 , 

a4 = -Cl sin t + Cz cos t. 

(3) 

The use of the theorem on implicit functions permits the computation of the c-con­
stants in terms of the t and a variables, which assume the meaning of first integrals, i.e., 

1 I = aZ cos t - a4 sin t, 

1 Z = aZ sin t + a4 cos t, 

13 = aZ + a3, 

14 = a l - a4 - (a Z + a3)t. 

(4) 

Equations (4.5.22) and (4.5.23) then yield the following Birkhoffian representation 
via simple manipulations: 

Rl = aZ + a3, Rz = 0, R3 = a4, R4 = 0, 

B = t[(a 3)Z + 2aZa3 _ (a4)z]. 
(5) 

The first-order Pfaffian action is then given by 

Douglas' result can now be easily illustrated. In fact, the transformation of the inte­
grand of action (6) to the original variables (x, y) yields a second-order action. 

Example 4.7 

The two-dimensional system 

x - iY = 0, 

y + 1Y - 1x = 0, 
(1) 

can be proved essentially non-self-adjoint. Their Birkhoffian representation has been 
computed by Hojman and Urrutia (1981) also via the method of Example 4.6, and it 
is given by 

d = J dt{e'[(6a4 - aZ)a l + (2a3 + 12a4 - 3al )aZ 

+ (18a4 - 4a4)a3 + (6a 3 + 3aZ)a4 + (a l )2 + ¥aZ)Z 

- 2(a3)z _ ~a4)Z] + e'/3[(3aZ + 2a4W 
+ (a l + 6a3 _ 4a4)a2 + (4a l - 2a4)a3 

- (6a 3 - 3aZ)a4 + !(a l )2 + i(az)Z + 2(a3)Z + tca4)Z]}, (2) 
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Note that system (1) of this example is linear while Equation (1) of Example 4.4 is 
nonlinear. The computation of the general solution is therefore readily achievable in 
the first case but is a rather complex undertaking in the second. In turn, the capability 
of computing a Birkhoffian representation is possible in the first case but is difficult 
to achieve in the second case. 

Problems 

4.1 Prove that the contravariant Birkhoff's tensor defined via Equations (4.2.10) 
verifies integrability conditions (4.1.48) for the characterization of Lie brackets. 

4.2 Prove that Birkhoff's equations (4.2.1) verify all conditions (4.1.32) of vari­
ational self-adjointness. In particular, prove that the solution of Conditions (4. 1. 32a) 
and (4.1.32b) can always be cast into a curl structure like Birkhoff's tensor (4.2.4). 

4.3 Extend the proof of Theorem 4.4.3 from particular case (4.4.10) to general 
case (4.4.7). 

4.4 Prove Proposition 4.4.1. 

4.5 Consider Duffing's equation, 

[(f + r)SA + wr3JsA = 0, w ~ 0, 

and search for an approximate Birkhoffian representation as follows. Assume for B the 
total energy of the unperturbed oscillator, B = 1<f2 + r2), and search for a solution in 
the R functions via the multiple power-series expansion in the parameter w 

R~ = R~ + wR~ + w2R~ + .... 
Prove that a solution for R~ is (p, 0), p = f, and compute a solution for R~. Compute the 
equations of motion characterized by the approximate solution R~ = R~ + wR~, and 
elaborate on the corresponding approximate character of the representation. 

4.6 Prove that Duffing's equation from the preceding problem admits the (exact) 
Birkhoffian representation 

B = tl(y2 + r2) 

4.7 The following Kepler system in a dissipative medium with nonlinear damping 
term 

r+- -- =0 [.( 1) f2] 
_ r2 SA r NSA 

admits the Birkhoffian representation 
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Since the system is in one dimension, a Hamiltonian exists (Corollary A. 1.1 a). Prove that 
the Birkhoffian representation above cannot be factored into a Hamiltonian form accord­
ing to rule (4.5.36). Compute a Hamiltonian for the system and an isotopic transforma­
tion of Hamilton's equations, with corresponding Birkhoffian form, by therefore 
illustrating that rule (4.5.36), when properly treated, does indeed hold. 

4.8 Prove that all self-adjoint symmetry breakings of Chart A.12 i.e., 

[( aH)ES JBS 
w~vav--~ -F~ =0, 

aa SA SA 

can be represented via the Birkhoffian gauge (Corollary 4.5.1e): 

° aG 
R~ = R/i + aa~' 

RO = (p,O), 

aG 
B=H-­at 

4.9 Identify the foundations ofthe second-order Lagrangian mechanics with particular 
reference to (A) the study of the possibility that the Inverse Lagrangian Problem is 
directly universal, as is expected from the direct universality of Birkhoff's equations and 
Lagrangian images of types (4.2.35) and (4.2.36). In particular, work out the methods for 
the computation of a Lagrangian from the equations of motion, as well as a few repre­
sentations of known systems (e.g., the Kepler problem). (B) Work out the transformation 
theory, as well as the theory of symmetries and first integrals, including the reformulation 
of Norther's theorem. In particular, see whether the isotopic transformations of second­
order Lagrangians coincide with those of Birkhoffian representations. (C) Identify the 
generalization of the Legendre transform for second-order Lagrangians which leads to 
Birkhoff's equations, that is, which preserves the Lie and symplectic character of 
Hamilton's equations. 



CHAPTER 5 

Transformation Theory of 
Birkhoff's Equations 

5.1 Statement of the Problem 

As is now familiar, an objective of this volume is to establish methodological 
foundations for the treatment of the most general known class of local inter­
actions, those of the variational non-self-adjoint type. The interactions can be 
essentially reduced to a superposition of action-at-a-distance, potential 
forces F SA, and contact forces F NSA for which the notion of potential energy is 
inapplicable, according to the systems 

.. fSA( .) F NSA( .) 0 marka - ka t, r, r - ka t, r, r = , (5.1.1) 

a = 1,2, ... , N, k = x, y, z. 

In Chapter 4, we established the insufficiency of conventional (Lagrangians 
and) Hamiltonian formulations for the treatment of the systems considered, 
because of their lack of direct universality, that is, their general inability to 
provide a description in the coordinate and time variables of the observer. 

We therefore reduced the systems to an equivalent first-order form of the 
type 

(';;/-') _ ( pjm ) 
~ - f SA + F NSA ' 

(5.1.2) 

J.l = 1, 2, ... , 2n = 6N, 
IJ(). 
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and established the direct universality of Birkhoff's equations 

( ORv _ ORIl)av _ (OB + ORIl) = O. 
oall oaV oall ot 

(5.1.3) 

In the same Chapter 4 we also established that the universality of Equations 
(5.1.3) implies that of the Pfaffian action principle (analytic profile) 

il2 

b dt[Rit, a)all - B(t, a)](Eo) = 0; 
11 

(5.1.4) 

the Lie algebras realized via the most general possible regular product 
(algebraic profile) 

[A B]* = oA OIlV oB 
, oall oav' 

and the contact geometry realized via the most general possible, exact, 
contact two-form on IR x T* M (geometric profile) 

~ _ ~ A AV _ 1 (ORv ORIl) All AV 

O2 - d(Rv(a)da ) -"2 Oall - oav da 1\ da, (5.1.6) 

(all) = (:11). (Rv) = (-B, W), /1, v = 0, 1,2, ... , 2n. 

In turn, these results established the applicability of rigorous analytic, 
algebraic, and geometric methods for the treatment of systems (5.1.1) in the 
reference frame of the observer. 

In this chapter we study the transformation theory of Birkhoff's equations. 
An objective is to establish that the derivability of the systems considered 
from a Pfaffian principle, their Lie algebraic character, and their contact 
geometric structure are independent of the selected reference frame (that is, 
they persist under the most general possible (but smoothness- and regularity­
preserving) transformations of the local variables). The fraijle independence 
of the primitive analytic, algebraic, and geometric characteristics then clears 
the way for coordinate-free globalizations. 

The single most important aspect of this chapter is that the transformation 
theory of local non-self-adjoint interactions in general and that of Birkhoff's 
equations in particular is noncanonical. This notion originates at the dynamic 
foundations of the theory, via the property that the time evolution of the 
systems 

all(t) = eIE'il/oa'all(O) (5.1.7) 

does not preserve the conventional fundamental Poisson brackets. It is then 
confirmed by the noncanonical character of the transformations preserving 
the Birkhoffian form of the equations of motion. Finally, the same notion 
reemerges in a number of diversified aspects. 
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By keeping in mind that contemporary theoretical physics has been mainly 
patterned (classically and quantum mechanically) along the theory of canon­
ical transformations, the noncanonical character of the Birkhoffian trans­
formation theory has a number of fundamental implications. For example, 
it implies the need for: 

1. a generalization of virtually all methodological tools of Hamiltonian 
mechanics; 

2. a generalization of conventional formulations of Lie's theory; 
3. a generalization of Galilei's relativity. 

At the quantum mechanical level, the implications are equally fundamental. 
In fact, the noncanonical character of the classical transformation theory is 
sufficient, per se, to render inevitable a generalization of quantum mechanics 
for the treatment of non potential interactions, such as those which are 
possible for one (particle) wave packet under conditions of penetration 
within other wave packets. Indeed, for evident consistency, the noncanonical 
character of time evolution (5.1.7) must result in the nonunitary character 
of the corresponding "quantum mechanical"l description. In turn, this 
demands the construction of a new theory which is form-invariant under 
nonunitary transformations, in the same way as Birkhoffian mechanics is 
form-invariant under noncanonical transformations. 

Needless to say, the problem of generalizing quantum mechanics goes 
beyond the objectives of this volume. We therefore limit ourselves to the 
indication of the algebraic notions which are expected to be common to both 
the macroscopic and the microscopic descriptions and refer the interested 
reader to the specialized literature on the subject for technical details. 

The three classes of transformations we consider are the following: 

(1) contemporaneous transformations on T* M, i.e., 

t - t' == t, Jl = 1,2, ... ,2n; (5.1.8) 

(II) contemporaneous transformations on IR x T*M, i.e.; 

t - t' == t, all _ a'll(t, a), Jl = 1,2, ... , 2n; (5.1.9) 

and 

(Ill) noncontemporaneous transformations on IR x T*M, i.e., 

t - t'(t, a), all _ a'l'(t, a), Jl = 1, 2, ... , 2n (5.1.10) 

or, in the unified notation of Equations (4.1.51), 

Jl = 0, 1, 2, ... , 2n. (5.1.11) 

1 The apparent departures from conventional ideas which are implied by the contact effects 
due to mutual penetration of particles are so deep as to render questionable the same terms 
"quantum mechanics." For these reasons Santilli (1978d) proposed the name Atomic Mechanics 
for the current mechanics (that is, the mechanics for the structure of atoms), and the name 
Hadronic Mechanics for the new mechanics (that is, the mechanics for the structure of hadrons 
as well as, more generally, closed systems under strong internal forces). 
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All transformations considered will be analytic in their region of definition, 
i.e., the new variables a'(a) or d'(d) are analytic functions of the old variables. 
However, recall that this is due to the existence theory of partial differential 
equations used in the analysis and that the transformation theory can be 
consistently formulated and often applied under weaker smoothness condi­
tions (e.g., a' E ~2). 

All regions of definition of the transformations, usually denoted with the 
symbol &t (91) for transformations on T* M (IR x T* M), will be tacitly 
assumed to be star-shaped or to satisfy topologically equivalent conditions 
(e.g., deformability to a curve, as indicated at the end of Chart 4.6). As now 
familiar, this is due to the need to apply the converse of the Poincare lemma, 
in order to ensure the existence of a Birkhoffian representation of the systems 
considered. Nevertheless, the transformation theory can be formulated and 
applied also in regions verifying weaker topological properties. 

Finally, all transformations considered will be assumed to be regular, 
that is, their Jacobian is non-null as a function, e.g., 

( oa'll) 
J(a) = det oa' (~) # o. (5.1.12) 

In particular, we shall tacitly assume that all points in whose neighborhood 
the transformations are considered are not isolated zeros of the Jacobian, 
that is, they are not solutions of the equation J(a) = O. As a consequence, all 
transformations considered are invertible in their regions of definition, i.e., 
whenever transformations (5.1.8), (5.1.9), and (5.1.10) are assigned, their 
corresponding inverses 

always exist. 

t' -+ t == t', 
t' -+ t == t', 
t' -+ t( t', a'), 

a'il -+ all(a') 
a'il -+ all(t, a') 
a'il -+ all(t', a') 

(5.1.13a) 
(5.1.13b) 
(5.1.13c) 

For the reader's convenience, as well as for notational and subsequent 
reference needs, we begin our analysis with a review of the theory of canonical 
transformations (Section 5.2). The transformation theory of Birkhoff's 
equations will then be constructed (Section 5.3) as a step-by-step generaliza­
tion of that of Hamilton's equations. Our subsequent analysis will be de­
voted to a number of related aspects, such as the underlying formulation of 
Lie's theory. 

The analysis will be primarily conducted for essentially non-self-adjoint 
systems, namely (Definition 4.1.1), systems which do not admit a Hamiltonian 
representation in the coordinate and time variables of the observer and for 
which the need of Birkhoff's equations is more transparent. Nevertheless, 
we shall not exclude the class of nonconservative systems admitting a 
Hamiltonian in the variables indicated (which are called non-essentially 
non-self-adjoint systems, also from Definition 4.1.1). The reader should keep 
in mind that the Inverse Hamiltonian (or Lagrangian) Problem has a particu­
lar methodological function for these systems. In fact, the knowledge of a 
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Hamiltonian permits the use of the entire body of methods of the canonical 
transformation theory, which would be otherwise precluded. 2 

In the final analysis, this is the spirit of these monographs: rather than 
assuming a given methodological setting and restricting the dynamics to 
simplified, compatible forms, we prefer to consider unrestricted dynamic 
conditions as the foundations ofthe theory (classically and quantum mechani­
cally), and then seek compatible methodogical tools. However, in doing so, 
the researcher should be prepared to abandon some familiar fundamental 
notions of contemporary physics and search for suitable generalizations. 3 

5.2 Transformation Theory of Hamilton's Equations 

One of the most salient properties of canonical transformations is that of 
preserving the structure of Hamilton's equations, i.e., 

(5.2.1) 

As a matter of fact, this can be assumed as one of the possible definitions of 
canonical transformations. 

A deeper study reveals that canonical transformations preserve the form 
of Hamilton's equations for all possible Hamiltonians. This suggests the 
definition of canonical transformations without any reference to Hamilton's 
equations and by using only the fundamental algebraic tensor WIlV or, 
equivalently, its geometric counterpart wilV • By recalling that these tensors 
transform according to the general rules for contravariant and covariant 
tensors, respectively (Chart LA.13), we have the following definition. 

Definition 5.2.1.4 Contemporaneous transformations (5.1.8) are called 
canonical when they preserve the value of the fundamental Lie tensor, i.e., 

8a'll 8a'v 
WIlV --+ Q'IlV = __ wP" __ == WIlV 

8aP 8a" 
(5.2.2) 

or, equivalently, of the fundamental symplectic tensor, i.e., 

8aP 8a" 
wllV --+ Q~v = 8a'll wP" 8a'v == wIlV · (5.2.3) 

2 As an example, lacking the use of the Inverse Hamiltonian Problem, the only possible 
treatment of the spinning top via the Hamilton~Jacobi equations is that under the perpetual­
motion approximation of conserved angular momentum. 

3 Heisenberg's vivid and inspiring words, stated in his memoir (1971, page 70). come to mind 
here: "In science, ... it is impossible to open up new territory unless one is prepared to leave the 
safe anchorage of established doctrines and run the risk of a hazardous leap forward." To this he 
added soon thereafter: " However, when it comes to entering new territory, the very structure of 
scientific thought may have to be changed, and that isfar more than most men are prepared to do." 

4 A considerable variety of definitions of canonical transformations exists in the literature. 
Some of them are given in Chart 5.6 along with a number of references. The reader should be 
aware that they are not all equivalent. 
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The equivalence of Definitions (S.2.2) and (S.2.3) is easily seen from the 
properties 

(S.2.4a) 

(S.2.4b) 

Thus whenever one of the two conditions is verified, the other follows. 
Definition S.2.1 implies the preservation of the conventional Poisson 

brackets, i.e., 

_ oA IlV oB _ oA' IlV oB' _ ' , 
[A, BJa) - oa" W oav - oa'il W oa'v - [A, B ](a')' (S.2.Sa) 

A'(a') = A(a(a')), B'(a') = B(a(a')). (S.2.Sb) 

In fact, the equations above can be assumed as (necessary and sufficient) 
conditions for a transformation to be canonical. In particular, property 
(S.2.Sa) implies that a time evolution which is Hamiltonian in one reference 
frame remains Hamiltonian under all possible canonical transformations. 

Recall from Section 1.2.9 (see also Equations (4.5.14)) that the funda­
mental Lie tensor represents in a unified way all fundamental Poisson 
brackets. Thus Definition S.2.1 is based on the preservation of these brackets 
in the transition from the old to the new variables, and we can write 

[ Il V] _ ['" 'V] _ IlV a ,a (a) - a ,a (a) - W , /1, V = 1,2, ... , 2n. (S.2.6) 

Another implication of Definition S.2.1 is the preservation of the conven­
tional Lagrange's brackets, i.e., 

(S.2.7) 

and this can be assumed as yet another definition of canonical transforma­
tions. 

Similarly, by recalling that the fundamental symplectic tensor wllV repre­
sents in a unified way all fundamental Lagrange's brackets, Definition S.2.1 
is based on the preservation of these brackets, and we can write 

{ Il V} _ {'" 'V} _ a ,a (a) - a ,a (a) - wll., /1, V = 1, 2, ... , 2n. (S.2.8) 

These properties imply the following transformation rule of Hamilton's 
equations under canonical transformations without an explicit time dependence 

(S.2.9a) 

(S.2.9b) 

H(t, a) -t H'(t, a') = H(t, a(a')). (S.2.9c) 
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The self-adjointness of Hamilton's equations in both the old and new 
variables is a consequence of Theorem 1.3.10.1 (see Theorem 4.1.3 for a 
review). The non-self-adjointness of the right-hand side is a consequence of 
the arbitrariness of the functional dependence of the new variables in the old, 
as the reader can verify through conditions (4.1.32). 

Note that scalar rule (5.2.9c) does not apply when the transformations 
depend explicitly on time, as we shall soon see. 

We now move to the study of more general transformations (5.1.9) which 
are still contemporaneous, yet possess an explicit dependence on time. For 
this purpose, we assume a definition of canonical transformation which is 
different than that of Equations (5.2.2) and (5.2.3). 

Definition 5.2.2.4 Contemporaneous time-dependent transformations 
(5.1.9) are called canonical when they preserve Hamilton's principle in the 
transition from the old phase space variables 

(5.2.10) 

to the new variables 

It2 

<5 dt[p~q'k - H'(t, q', p')](Eo) = O. 
t1 

(5.2.11) 

Definition 5.2.2 is broader than Definition 5.2.1 in that the former admits 
the latter as a particular case and, in addition, permits transformations such as 
the dilations, 

(5.2.12) 

and the reciprocity transformations, 

(q, p) --+ (q', pi) = (p, q), (5.2.13) 

which are canonical for Definition 5.2.2 but not for Definition 5.2.1.5 This 
is a good illustration of the subtle differences between the geometric approach 
(Definition 5.2.1) and the analytic approach (Definition 5.2.2).6 

Even though variations (5.2.10) and (5.2.11) are individually null, the 
difference between their integrand is not null. Nevertheless, such a difference 
can at most equal the total differential of a function F(t, q, p, q', pi) that ill 
analytic in all its variables (under our general smoothness conditions). 
In this way we reach the following fundamental identity: 

Pkqk - H(t, q, p) -- p~tj'k + H'(t, q', pi) = F(t, q, p, q', pi), (5.2.14) 

5 The reader can see now the differences between the definitions of canonical transforma­
tions of Chart 5.6. 

6 Transformations of type (5.2.12) and (5.2.13) are fully acceptable on analytic grounds. Yet 
on geometric grounds, they imply a change of the fundamental symplectic structure. As such, they 
have nontrivial technical implications. 
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that provides the means for the explicit construction of canonical transforma­
tions. 

The function F, called a generating junction, generally depends on the 
4n + 1 variables (t, q, p, q', p').7 However, only 2n + 1 of them can be inde­
pendent, owing to transformations (5.1.9). These 2n + 1 independent vari­
ables can be arbitrarily selected via any 2n-dimensional subset of the variables 
(q, p, q', p') and time. Thus many different cases of generating functions are 
possible. The most significant ones are the following six. 8,9 

Case 1: F = F 1(t, q, q'). Indentity (5.2.14) in this case reads 

'k_ H _ ' ',k H' _ oFl 'k OFl ',k OFl 
Pkq Pkq + - oqk q + oq,k q + ot' 

yielding the transformation laws 

OFl 
Pk = oqk' 

H' = H + O~l. 

(S.2.15) 

(S.2.16a) 

(S.2.16b) 

Case 2: F = F 2(t, q, p'). The use of the Legendre transform reduces F 2 

to F 1 (Problem S.2) 

F2 = Fl + p~q'\ 
resulting in the new transformation laws 

OF2 ,k OF2 
Pk = oqk' q = op~ , 

H' = H + O~2. 

(S.2.17) 

(S.2.l8a) 

(5.2. 18b) 

Case 3: F = F 3(t, q', p). The reduction via a Legendre transform 

F3 = Fl - Pkq\ 

yields the transformation laws 

(S.2.19) 

(S.2.20a) 

(S.2.20b) 

7 Note that one (necessary and sufficient) condition for a canonical transformation to depend 
explicitly on time is that the generating function exhibits such a functional dependence. This 
dependence, however, does not imply that the transformation is noncontemporaneous (that is, 
time is also transformed. This occurrence implies that Definitions 5.2.1 and 5.2.2, as well as all 
Definitions reviewed in Chart 5.6 do not incorporate thefull Galilei's transformations. Nevertheless, 
the definitions can be enlarged into IR x T* M) to include Galilei's transformations (see Chart 5.6). 

8 The existing literature generally presents only Cases 1-4. 
9 The more general construction of canonical transformations via Holder's principle is left 

as an exercise for the interested reader (Problem 5.1). 



118 Transformation Theory of Birkhoff's Equations 

Case 4: F = F 4(t, p, p'). The reduction 

F4 = FI - Pkqk + Pkq'\ (5.2.21) 

characterizes the laws 

,k OF4 
q = °Pk' 

(5.2.22a) 

H' = H OF4 + ot . (5.2.22b) 

Case 5: F = F 5(t, q', p'). In this case identity (5.2.14) yields 

( oqi ',k oqi "k) Cqi H "k H' of 5 .,k of 5 ',k of 5 
Pi oq'k q + OPk P + Pi at - - Pkq + = oq,k q + OPk P + at' 

(5.2.23) 

by characterizing the transformation laws io 

(5.2.24a) 

H' = H + OF5 _po oqi. 
ot I ot 

(5.2.24b) 

Case 6: F = F6(t, q, p). In this case we have 

'k ,(Oq'i.k oq,i 'k) , oq'i , _ of 6'k of 6. of 6 
Pkq - H - Pi oqk q + op" P - Pi at + H - oqk q + OPk Pk + at' 

(5.2.25) 

with the corresponding transformation laws 

(5.2.26a) 

, oF6 oqi 
H =H+-+p.-. 

ot I ot (5.2.26b) 

The use of the transformation laws given above is twofold. First, it is 
possible to assign a generating function F to any of the classes outlined. The 
corresponding canonical transformation can be then computed via the 
application of the theorem on implicit functions (Theorem 1.1.1.1).to the 
transformation laws of the class considered. This is due to the fact that, for 

10 Notice the appearance of new rules for the transformation of the Hamiltonian. In fact, we 
have scalar rule (S.2.9c) under contemporaneous transformations (S.1.8); we have the more 
general rules (S.2.l6b) and (S.2.24b) under the more general, but still contemporaneous trans­
formations (S.1.9); and, as we shall see in the next section, we have still more general rules for 
non-contemporaneous transformations (S.1.I0). 



Transformation Theory of Hamilton's Equations 119 

instance, transformation (S.2.16a) contains the complete sets of transforma­
tions q'(t, q, p) and p'(t, q, p) only implicitly. 

The second use of the transformation laws given above is the opposite of 
the preceding one. In certain instances, a canonical transformation is as­
signed, and the knowledge of the corresponding generating function is 
requested. In principle, such a generating function can be computed via the 
use of any of the cases above. A solution is given by reversing the procedure 
for the construction of a canonical transformation via a generating function, 
according to the following steps: 

(a) select a type of generating function to be computed (e.g., F 1); 
(b) turn the given canonical functions q'(t, q, p) and p'(t, q, p) into the 

corresponding form (e.g., for F l' one must write p(t, q, q') and 
p'(t, q, q'»; and 

(c) solve the corresponding transformation laws, now interpreted as 
partial differential equations in the unknown generating function. 

Within such a context, the integrability conditions for the existence of a 
generating function are relevant. The now familiar application of the con­
verse of the Poincare lemma yields the following integrability conditions for 
the existence of a generating function. 

Case 1: °Pi _ opj 
(S.2.27a) oq,j oqi' 

Case 2: °Pi oq,j 
(S.2.27b) 

opj oqi' 

Case 3: 
oqi opj 

(S.2.27c) oq,j °Pi 

Case 4: 
oqi oq,j 

(S.2.27d) 
opj °Pi 

Case 5: 

{ Ii ,j} - {"} - 0 q , q (q.p) - Pi> Pj (q,p) - , { Ii'} bi q , Pj (q,p) = j' (S.2.27e) 

Case 6: 

It is possible to prove that these conditions are automatically verified by 
canonical transformations as per Definition S.2.211 (Problem S.3). 

Equations (S.2.27a)-(S.2.27d) are better known in the existing physical 
literature as inversion formulae (see, for instance, Pars (196S». Indeed, 

II This is a remarkable property inasmuch as the conditions constitute an overdetermined 
system of partial difl"erential equations, that is, a type of system whose consistency study is, in 
general, rather complex. The remarkable point is that the preservation of the fundamental Lie 
or symplectic tensor or, more generally, of a variational principle, readily provide the integrability 
conditions of these difficult systems. 
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these equations produce the conversion of the fundamental Poisson brackets 
into the fundamental Lagrange brackets, and vice versa, i.e., 

In our unified notation, all integrability conditions (5.2.27) can be written 

oall oa'a 
- - OJ - OJPIl oa'P - pa oaP , (5.2.29) 

with inversion rule 

(5.2.30) 

We now study the integrability conditions for the existence of a new 
H ami/ton ian, for simplicity but without loss of generality, for transformations 
without an explicit time dependence. 12 For this purpose, we interpret the 
variables a'll(a) as ordinary functions in a-space, as well as new independent 
variables, yielding the expressions 

(5.2.31) 

which can be written 

(5.2.32) 

By using the converse of the Poincare lemma (Example 1.1.4 p. 1.50, in 
particular), the integrability conditions for the existence of H' are given by 

o2H' (}2H' 
-------=0 
oa'il oa'v oa'v oa'il ' 

~,v = 1,2, ... ,2n (5.2.33) 

and, when expressed in the space of the original variables, can be written 

By multiplying both terms by (oa'lljoaG)(oalVjoat ) and summing up the re­
peated indices, we have 

12 These transformations are studied by a number of authors. See, for instance, Sudarshan 
and Mukunda (1974). 
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By adding the identically null term, 

o2a'v oa"l. oH o2a'll oa 'a oH 
---w wY~-- - ---w wY~-- = O· 
oau oat va oaY oa~ oat oau Ila oaY oa~ - , 

finally, integrability conditions (5.2.35) can be written in the form 

a [(oa lV oa la
) OH] a r(oalll oala

) OH] 
oau oat W va oaY wY~ oa~ - oat L oaU W lla oaY wy~ oa~ = 0 

or, by introducing the Lagrange brackets, in the more concise form 

(5.2.36) 

(5.2.37) 

o~u [{at, aY}(a')wY~ ~~] - o:t [{aU, aY}(a')wY~ ~~] = O. (5.2.38) 

By inspecting these equations, we see that sufficient conditions for the 
existence of a new Hamiltonian are given by 

~,p = 1,2, ... ,2n (5.2.39) 

where N is a numerical constant. Indeed, in this case, Equations (5.2.38) 
reduce to 

namely, they reduce to the continuity property H E~2 up to a multiplicative 
constant. 

The differences between Definitions 5.2.1 and 5.2.2 now become clear. In 
fact, when N = 1 we have the former, while for N =P 1 we have the latter. 
Evidently, transformations of type (5.2.12) and (5.2.13) are admitted under 
the condition N =P 1. 

To see the necessity of conditions (5.2.40), we recall the crucial property 
indicated earlier that, for a transformation to be canonical, it must be so for 
all possible Hamiltonians. The necessity of conditions (5.2.40) originates 
from this property. In fact, when integrability conditions (5.2.38) are inter­
preted for one given Hamiltonian H, they characterize a different class of 
transformations (the so-called canonoid transformations to be introduced 
later in this section). 

We therefore conclude by saying that the use of the converse of the 
Poincare lemma within the context of the canonical transformation theory 
permits the identification of new meanings of the fundamental symplectic 
tensor wllv and fundamental Lie tensor WIlV. The former characterizes the 
integrability conditions for the existence of a new Hamiltonian, Equations 
(6.2.39), while the latter characterizes those for the existence of a generating 
function, Equations (5.2.28), up to multiplicative constants. 

For completeness, we now reinterpret from a Hamiltonian viewpoint a 
number of known transformations of Lagrange's equations that are reviewed 
in Section A.3 for the reader's convenience. 
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Consider first the point transformations of Lagrange's equations, Equations 
(A.3.1S). The direct Legendre transform applies to both Land L', yielding 
the Hamiltonians 

oL 
Pk = oi/" 

oL' 
Pk = oi/k' 

H = Pki/- L = H(t, q, p), 

H' = Pkq,k - L' = H'(t, q', p'). 

(S.2.41a) 

(S.2.41b) 

It is easy to see that the phase space images of point transformations are 
canonical transformations. Indeed, in view of the identities L = L' and 
H = H', we have 

(S.2.42a) 

(S.2.42b) 

The reader can verify by inspection that the underlying transformation 
{a} = {q, p} -? {a'} = {q'(q), p'(q, p)} is a particular case of the canonical 
transformations. Indeed, the new coordinates q'k depend only on the old ones 
by the very definition of point transformations in configuration space; for a 
canonical transformation, the new coordinates generally depend on both 
the old coordinates and momenta. Also, the new momenta, from Equations 
(S.2.42b), depend linearly on the old momenta, which is not necessarily the 
case for a canonical transformation. 

The transformations verifying rule (S.2.42) were called homogeneous 
contact transformations by Lie and subsequently renamed Mathieu's trans­
formations, or extended point transformations. 13 

On similar grounds, it is easy to see that the phase space images of the 
Newtonian gauge transformations are canonical. Indeed, the transformations 
considered are given by (Section A.3): 

L(t, q, q) -. L t(t, q, q) = L(t, q, q) + G(t, q), (S.2.43) 

and their phase space image is characterized by 

oL 
Pk = oq'" H = Pkqk - L = H(t, q, p), (S.2.44a) 

oLt 
Pt _ 
k - oqk' (S.2.44b) 

The reader can then see that the underlying transformation {a} = {q, p} 
-? {at} = {q, pt(t, q, p)} verifies conditions (S.2.2) or (S.2.3). Again, this time 
we have a particular subclass of canonical transformations in which the space 

13 See, for instance, Whittaker (1904). 
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coordinates are not transformed at all, while the new momenta are given 
by the rule 

t _ oG 
Pk - Pk + oqk' (S.2.4S) 

We remain with the problem of the phase space image of the isotopic 
transformations of a Lagrangian (Section A.2), i.e., 

( doL * oL *) _ [hi( d oL OL) ] 
dt oil - oqk SA = k dt oqi - oqi SA SA' 

(S.2.46) 

These transformations can be subjected to a dual phase space interpreta­
tion. First, we can apply the direct Legendre transform to both Land L*, 
yielding the rules 

oL 
Pk = oqk' 

oL* 
P* -k - oqk' 

H = Pkqk - L = H(t, q, p), (S.2.47a) 

H* = pNk - L * = H*(t, q, p*). (S.2.47b) 

It is readily seen that the phase space images of the isotopic transformations of a 
Lagrangian are not canonical. Indeed, the reader can determine by simple 
inspection that the underlying transformation {a} = {q, p} -+ {a*} = 
{q, p*(t, q, p)} does not verify conditions (S.2.2) or (S.2.3). Also, the Hamil­
tonian H*(a*) cannot be obtained, in general, from the old Hamiltonian 
H(a) via scalar rule (S.2.9c) or (S.2.24b), i.e., 

*( *) (( *» of oqk H t, a =1= H t, a a + at + at Pb (S.2.48) 

and thus transformation law (S.2.9a) of Hamilton's equations does not 
apply. 

In this way we learn the remarkable property that canonical transforma­
tions do not exhaust the class of all possible transformations capable of pre­
serving Hamilton's equations.14 Also, it is our first exposure to noncanonical 
transformations of direct meaning in analytic mechanics. It is therefore 
important to study the transformations under consideration in more detail. 

For simplicity, consider analytic and invertible transformations without 
an explicit time dependence, 

Jl = 1,2, ... , 2n, (S.2.49) 

and interpret them as functions in a-space. The time evolution law then reads 

oa*1l oa*1l oH a*1l = __ aa = maP -- __ . 
oaa oaa oaP (S.2.S0) 

14 Another remarkable property which will be pointed out in Section 6.3 is that the sym­
metries of Hamilton's equations (which are a subclass of the class of canonical transformations) 
do not exhaust all possible symmetries of the vector field represented by Hamilton's equations. 
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Suppose now that a new Hamiltonian H*(a*) exists such that 

(w~p oa*1l OH)(a*) = WIlV oH*. 
oa~ oaP oa*v 

(5.2.51) 

Then transformations (5.2.49) are called canonoid (i.e., not quite canonical), 
according to Saletan and Cromer (1971., page 187). 

It is easy to see that the phase space image of the isotopic transformations 
of a Lagrangian are precisely (a particular form of l5) the canonoid trans­
formations. Indeed, Hamilton's equations in the a*-coordinate system exist, 
while the Hamiltonian does not verify the conventional scalar rule, under 
these transformations. 

The integrability conditions for the existence of a canonoid transformation 
for a given Hamiltonian are easily computed via simple generalization of 
the integrability conditions for canonical transformations, and they are 
given by 

o ( oa*P OH) 0 ( oa*P OH) 
oa*v WIlPW~P oa~ oaP (a*) - oa*1l wvpw~P oa~ oaP (a*) = O. (5.2.52) 

The use of the Inverse Hamiltonian Problem then yields the new Hamil­
tonian according to the familiar rule 

H*(a*) = a*1l dr W w~fJ ---- (ra*). 11 ( oa*P OH) 
o IlP oa~ oaP (5.2.53) 

A few comments are in order. It should be indicated that integrability 
conditions (5.2.52) are, in actuality, the conditions for the variational self­
adjointness of the normal form 

(5.2.54) 

expressed in the a*-variables, i.e., 

(5.2.55) 

This is also the case of the integrability conditions for canonical transforma­
tions, Equations (5.2.38). However, a fundamental difference exists between 
the integrability conditions for canonoid and canonical transformations. In 
the former case the conditions hold for one given Hamiltonian, while in the 
latter they hold for all Hamiltonians, as indicated earlier. It is precisely this 
difference that renders the canonoid transformations generally noncanonical. 

Intriguingly, the canonoid transformations can clearly be canonical when 
they are canonoid with respect to all Hamiltonians. This is a first indication 

15 The canonoid transformations generally imply the transformations of both, coordinates 
and momenta, while the phase space image of the isotopic transformations of a Lagrangian does 
not transform, by assumption, the space coordinates. 
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of the existence of more general transformations admitting the canonical 
transformations as a subclass. Additional, noncanonical transformations of 
this type will be identified in Section 5.3. This situation confirms the expecta­
tion that the transformation theory of Hamilton's equations should not be 
restricted to canonical transformations. 

We shall now inspect the behavior of the regularity of the Hamiltonian 
under canonical transformations. Recall that a necessary condition for the 
applicability of the inverse Legendre transform is that the Hamiltonian 
verifies the regularity conditions (Section 1.3.8) 

(5.2.56) 

and this condition is equivalent to the corresponding regularity condition 
for the Lagrangian 

(5.2.57) 

Regularity property (5.2.57) is not preserved by canonical transformations. 
This is easily seen if one considers the property of canonical transformations 
of reducing a Hamiltonian H = 1p2 + V into a form which is linear in the 
momentum or a constant. When a Hamiltonian is degenerate, the inverse 
Legendre transform, as presented in Section 1.3.8, is inapplicable. In this case, 
the construction of an equivalent Lagrangian representation is rather in­
volved and belongs to the theory of systems with subsidiary constraints. As 
such, it will not be considered here (the problem is treated in the specialized 
mathematical literature of the canonical treatment of the calculus of varia­
tions, but it does not appear to be treated in the physical literature, to the 
author's knowledge 16). 

Notice that a fully equivalent situation occurs at the Lagrangian level, 
provided that the transformation theory is extended to include the configura­
tion space image of the canonical transformations, that is, the velocity­
dependent transformations. This occurrence confirms the equivalence of the 
Lagrangian and Hamiltonian approaches also with respect to the trans­
formation theory. 

We can therefore say that the transformation theory indicates the existence 
of the possibility of transforming given regular determined systems into equiva­
lent degenerate systems with subsidiary constraints. 

In this section we reviewed the contemporary approach to the theory of 
canonical transformations, which is rather universally restricted to trans­
formations of type (6.1.9). The reader should keep in mind, however, the 

16 The approach well-known in the physical literature as Dirac's mechanics transforms a 
degenerate Lagrangian into a Hamiltonian which can be proved to be (generally) regular in the 
sense of (5.2.56). The problem referred to in the text is the opposite of Dirac's, that is, the trans­
formation of a degenerate Hamiltonian into an equivalent, generally regular, Lagrangian image. 



126 Transformation Theory of Birkhoff's Equations 

need to consider the more general transformations (6.1.9), as established 
for instance by the structun: of Galilei's transformations 

{
t --+ t' = t + to 

r --+ r' = Rr + vot + ro, 
p --+ p' = Rp + mv 0 

R ESO(3), (5.2.58) 

as well as by other symmetries of systems in first-order form. The behavior of 
Hamilton's equations under these more general transformations will be 
studied in the next section, as a particular case of the transformation theory 
of Birkhoff's equations. 1 7 

In closing this section we note that the restriction of the transformation 
theory to canonical transformations prohibits the existence of indirect Hamil­
tonian representations. In fact, by their very definition, canonical transforma­
tions preserve the Hamiltonian character of a vector field. As we shall see in 
Section 6.4, this implies the inability to transform a given non-Hamiltonian 
vector field into an Hamiltonian form, by therefore preventing the construc­
tion of a Hamiltonian. The generalization of the transformation theory to 
arbitrary, generally non-canonical transformations is therefore mandatory 
for the Inverse Hamiltonian Problem. 

5.3 Transformation Theory of Birkhoff's Equations 

In this section we shall first establish the property that noncanonical trans­
formations transform Hamilton's equations into Birkhoff's equations. The 
preservation of the structure of Birkhoff's equations under unrestricted 
transformations will then be consequential. The generalization of the 
canonical transformation theory will be considered thereafter. 

For clarity, we shall consider first the contemporaneous transformations 
without an explicit time dependence, Equations (5.1.8), and then extend the 
results to transformations (5.1.9) and (5.1.10). Also, we shall study first the 
behavior of the Lie and symplectic tensors under the transformations con­
sidered, and then extend our findings to the complete analytic equations. We 
hope that in this way the reader can see the implications of each aspect of the 
theory. 

Let us begin our study by showing that an autonomous Lie tensor QILV(a) 
and its associated symplectic form Q/l.(a) = (1IQ<xPII-l )/lV preserve their Lie 
and symplectic character, respectively, under arbitrary transformations 
(5.1.8). In the language of Definition 4.4.1 and Chart 4.2, this important 
property can be formulated and proved as follows. 

17 The generalization indicated in Chart 5.6 is sufficient for the inclusion of the trivial trans­
lations t ..... t' = t + to. The generalization we are referring to in the text is that for the maximal 
possible functional dependence on IR x T*M of the new variables in the old, i.e., t' = t'(t, r, p), 
r' = r'(t, r, p), and p' = p'(t, r, p). 
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Lemma 5.3.1. All possible smoothness-preserving 18 and regular trans­
formations a ~ a'(a) of the local variables a = (r, p) of a cotangent bundle 
T* M are jointly Lie isotopic and symplectic isotopic. 

PROOF. Suppose that a rank two tensor Q~V(a) on T*M is regular, in the sense that 

(5.3.1) 

and Lie, in the sense of verifying integrability conditions (4.1.48), i.e., 

Q~V + QV~ = 0, (5.3.2a) 

(5.3.2b) 

Then, under all possible transformations which are regular and of the same continuity 
class of Q~v, 

a~ -+ a'~(a), det - (~) =I- 0, (aa'~) 
aaP 

(5.3.3) 

the transformed tensor 

riP" = QP"(a(a')) (5.3.4) 

is still regular, in view of the properties 

(aa'~) (aa'V) det(Q'~V) = det - det(QP")det - =I- 0 
aaP aa" 

(5.3.5) 

and it is still Lie, that is, it verifies conditions (5.3.2) in the new coordinate systems, 
because of the properties 

(5.3.6a) 

18 With the terms "smoothness preserving" we express the condition that a class «/00 or 
analytic manifold (Chart 1.2.1) is transformed into a manifold of the same continuity class. 
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which are ensured by their original form (5.3.2) (Problem 5.4). Therefore, all possible 
transformations (5.3.3) are Lie-isotopic, that is, the brackets characterized by the tensor 
n~v remain always Lie, and we write 19 

DA DB aA' OdP _ aa'u aB' 
[A B]* - __ n~v_-__ n~v __ 

, <aJ - -I ~ <aJ a v - a 'P a ~ a v a 'U ca a a a a a 

(lA' aB' 
= -- n'PU(a') - = [A' B']*'. Da'P aa'u '<a J' 

(5.3.7) 

The proof of the second part follows from the property that the tensor n~v associated 
with a Lie tensor n~v via the rule 

(5.3.8) 

is always symplectic (and vice versa). This property therefore persists for the trans­
formed tensor n'~v. Aside from that, suppose that a covariant rank-two tensor n~la) on 
T*M is regular, in the sense that 

det(n~v)(~) i' 0, 

and symplectic, in the sense of verifying conditions (4.1.49), i.e., 

Then, the transformed tensor 

n~v + nv~ = 0, 

~n~v + ann + an,~ = O. 
cia' aa~ i3av 

is still regular, in view of the properties 

( i3ap) (aaU) det(n;,v) = det - det(npu)det - i' 0, 
~ i3a'~ i3a'v 

(5.3.9) 

(5.3.lOa) 

(5.3.10b) 

(5.3.11) 

(5.3.12) 

and it verifies conditions (5.3.10) in the new reference frame in view of the properties 

i3aP i3au 
n~v + n;.~ = i3a'~ (npu + nup) i3a'v == 0, (5.3.13a) 

(5.3.13b) 

19 The symbol ["', ... ]*' indicates brackets different than ["', ., -J* although still of Lie 
type. (Recall that in our notation the symbol [ .. ',' .. ] denotes the conventional Poisson brackets, 
while the symbol [ .. " .. -J* denotes the generalized ones). 
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which are ensured by their original form (S.3.10) (Problem S.4). As a result, all trans­
formations of the class admitted are symplectic-isotopic, that is, the local symplectic 
two-forms characterized by the tensor Q~, remain locally symplectic, 

1 8a~ _ 8a' 
Q 2 = tQ~la)da~ /\ da' = 2" 8a'P Q~la') ad" da'P /\ da'" = Q~, (S.3.14a) 

dQ2 = dQ~ == 0, (S.3.14b) 

and this completes the proof. (Q.E.D.) 

The remarkable property expressed by Lemma 5.3.1 is not new. In fact, it 
can be considered at the foundation of the coordinate-free globalization of 
the symplectic geometry.20 The property has been merely expressed here in 
local variables. This also illustrates the pedagogical and technical significance 
of the local formulation of the theory, prior to passing to abstract, more 
advanced geometric approaches. 21 

The Lie and symplectic tensors of Lemma 5.3.1 are arbitrary. When they 
are the fundamental tensors we have the following particular case. 

Corollary 5.3.1a. The fundamental Lie tensor w~V and the fundamental 
symplectic tensor wllV preserve their Lie and symplectic character, re­
spectively, under all possible transformations (5.3.3). 

In this way we reach another important result. Recall from Definition 5.2.1 
that canonical transformations not only preserve the Lie character of the 
conventional Poisson brackets, but they actually preserve the value of the 
fundamental tensor wllV, i.e., 

vA vB vA' va'P oa'" oB' 
[A B] - IlV - IlV 

, (a) - oall w oav - oa'P oall w oav oa'" 

oA' oB' 
- P" - [A' B'] - oa'P w oa'" - , (a')' (5.3.15) 

We learn from Corollary 5.3.1a that, while the value of the fundamental 
tensor is not preserved, noncanonical transformations preserve in full the 
Lie character of the product 

oA oB oA' oa'P oa'" oB' 
[A, B](a) = vall WIlV vav = oa'P oall WIlV oav oa''' 

_ oA' Q'P"( ') oB' _ [A' B']*' 
- oa'P a oa'" - , (a')' (5.3.16) 

20 A representative list of references in this field is given in footnote 54 of Chart 4.4. 
21 Santilli (1978e) has shown that Lemma 5.3.1 is actually a particular case of the more 

general property that Lie-admissible tensors S"'(a) or symplectic-admissible tensors S",(a) on 
T* M (Chart 4.7) preserve their Lie-admissible or symplectic-admissible character, respectively, 
under all possible transformations of the class considered. 
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The geometric counterpart of this algebraic result is immediate. Canonical 
transformations (according to Definition 5.2.1) preserve the symplectic 
character of the fundamental structure via the preservation of the value of 
the tensor W IlV , and we write 

oall 
RO = RO(a)dall = p dl = RO - daft' = R'O(a')da'" = p'dr'k 

1 Il k Il oa'" " k, 

(RZ) = (p, 0), 

(R~O) = (p',O) (5.3.17a) 

1 (ORO ORO) 
W2 = dR? ="2 oa; - oa~ dall 1\ dav = dpk 1\ drk 

= d[R'O(a')da'''J = ~ (~7R~O _ OR~O)da'p 1\ da'" = dp' 1\ dr'k (5 3 17b) 
" 2 oa'P oa'" k' •• 

We learned from Corollary 5.3.1a that noncanonical transformations do not 
preserve the fundamental character of the two-form. Nevertheless, the form 
remains fully symplectic, and actually acquires the most general possible (but 
still exact, local, and autonomous) structure, i.e., 

R? = RZ(a)dall = Pkdrk = RZ ~:: da'" = R~(a')da'" =1= p~dr'k, 

oall 

R~(a') = RZ(a(a'» oa'" =1= R~O(a'), (5.3.18a) 

_ ° I' _ 1 (aRe ORZ) Il v 
W2 - d[RIl(a)da J -"2 oall - oav da 1\ da 

- d[R' ( ')d '''J - 1 (OR~ _ OR~)d 'P d '" _ rv - "a a -"2 oa'P oa'" a 1\ a - U2' 
(5.3.18b) 

The notion of Lie isotopy was introduced in Chart 5.2 to express any 
invertible modification of a given Lie product which preserves its Lie char­
acter. We have learned here that all possible modifications characterized by 
(regular) transformations of the variables are always isotopic. The notion has 
then been extended to that of (regular) symplectic isotopy as a geometric 
counterpart, with the understanding that the notion is a local realization of a 
corresponding global property of the symplectic geometry. The deep inter­
relation between algebraic property (5.3.16) and the geometric one (5.3.18) is 
remarkable. 

Once the transformation properties of the algebraic or geometric tensors 
have been identified, the extension of the results to the analytic equations is 
straightforward. In this way we reach the following transformation rule of 
nonautonomous Hamilton's equations into the semi-autonomous Birkhoff's 
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equations (Definition 5.2.1) under noncanonical, contemporaneous transforma­
tions without time dependence: 

t -+ t' == t, (5.3. 19a) 

[ 
'V oH(t, a)] 

wilva - ::l Il 
va SA 

== {[oR~(a) _ OR~(a)]a'v _ oH(t, a)} 
::l ::l a (5.3.19b) vall vav all SA 

= {oa'p {[oR~(a') _ OR~(a')]a't! _ oB'(t, a')}} = 0 
oall oa'P oa't! oa'P SA NSA ' 

(R~) = (p, 0), R~(a') = (::,: R~)<a')' (5.3.19c) 

B'(t, a') = H(t, a(a'». (5.3.19d) 

Equivalently, we can write the following transformation rule of Hamilton's 
principle into Pfaff's principle under the same class of transformations22 

112 

= [) [R~(a)dall - H(t, a)dt](Eo) 
11 

112 [oall ] 
= [) 11 R~(a(a'» oa'P da'P - H(t, a(a'»dt (Eo) 

II2 

= [) [R~(a')da'P - B'(t, a')dt](Eo) = O. 
11 (5.3.20) 

The transformation rule of Birkhoff's equations is then a trivial conse­
quence, and it is given by rule (5.3.19) via only the replacement of the canon­
ical functions (R~) = (p,O) in Equations (5.3.19b) with arbitrary functions 
Ril = Ria). In this way we reach the following important result. 

Lemma 5.3.2. The semiautonomous Birkhoff's equations preserve their 
structure23 under all possible smoothness-preserving and regular trans­
formations of the local variables a = (r, p) -+ a'(a) = (r'(r, p), p'(r, p». 

To express the result in different terms, we can say that, while Hamiltonian 
Mechanics demands the restriction of the transformation theory to certain 

22 Note that the integrand of the action in Equations (5.3.20) transforms identically, without 
the appearance of the Jacobian oa'P/oa" as in Equations (5.3.19). The equivalence of the two 
approaches is established by the property [)a'P = (oa'P/Da")[)a". 

23 It should be stressed here that the transformations under consideration are not symmetries 
of Birkhoff's equations. We therefore have a preservation of the "structure" of the equations, but 
we do not have their "form invariance." This latter problem will be studied in the next chapter. 
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special classes of transformations to preserve its structure (the canonical and 
canonoid transformations), the transition to the covering24 Birkhoffian Mech­
anics implies the removal of all restrictions on transformations for the preserva­
tion of its structure, except conventional smoothness and regularity restrictions. 

We shall soon discover that this important property is actually a particular 
case of a general property on IR x T* M with rather intriguing character­
istics, particularly from the viewpoint of the relativity which is applicable in 
Newtonian mechanics for unrestricted dynamic conditions. First, however, 
a study of the intermediary step of the contemporaneous, explicitly time­
dependent transformations (5.1.9) is recommended. 

It is easy to see that Lemma 5.3.1 also applies for transformations (5.1.9), 
apart from delicate topological aspects due to the explicit time dependence 
which can be handled, e.g., via the parametric approach to symplectic forms 
of Chart 4.6. For instance, a general symplectic tensor transforms according 
to the rule 

n ( ) = oR,(t, a) __ oRit, a) -+ 0' ( ') 
~~Il' t, a oall oa' Il' t, a 

= oaP (OR" _ OR p) oa" = oR~(t, a') _ _ oR--,:~,--(t,--' a_') 
oa'il oaP oa" oa" oa'il oa" 

, (5.3.21a) 

R~(t, a') = (::: Rp)(t, a'), (5.3.21b) 

where the upper bar indicates computation in the new variables. In particular, 
when the original tensor is time-independent, it generally acquires such a 
dependence under the transformations admitted, while preserving its exact 
symplectic character. 

The transition to the analytic equations is trivial. In this way we reach the 
following transformation rule of Hamilton's equations into the non-autonomous 
Birkhoff's equations via noncanonical, time-dependent, contemporaneous 
transformations: 

t -+ t' == t, (5.3.22a) 

= {oa'p {[OR~(t, a') __ oR~Ct, a')]il" _ [OB'Ct, a') oR~Ct, a')]} } 
oall oa'P oa'" oa'P + ot SA NSA 

= 0, (5.3.22b) 

24 The terms covering mechanics or theory are intended to express the generalization of an old 
theory into a new one under the conditions: (a) the new theory refers to a class of physical systems 
and dynamical conditions more general than those for which the old theory was conceived; 
(b) the new theory is based on a suitable generalization of the methods of the old theory; and, 
last, but not least, (c) the new theory recovers the old one identically when the physical systems 
considered are restricted to those of the old class_ The Birkhoffian Mechanics verifies all these 
conditions with respect to the Hamiltonian Mechanics and thus is a covering of the latter. 
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(R~) = (p, 0), R~(t, a') = (::,: R~ )(t, a'), (5.3.22c) 

, ') ( oalT.)(,) B (t, a = H - at RIT. t, a . (5.3.22d) 

with a corresponding transformation of the variational principle. 
The transformation rule of the nonautonomous Birkhoff's equations under 

the same transformations is then given by 

{[ORvCt, a) _ oRit, a)]av _ [OB(t, a) + oRit, a)]} 
oal' oaV oal' ot SA 

= {oa'p {[OR~(t, a') _ oR~(t, a')]a fe' _ [OB'(t, a') oR~(t, a')]} } 
oal' oa'P oa fe' oa'P + ot SA NSA 

= 0, (5.3.23a) 

R~(t, a') = (::,: RIT.)(t, a'), (5.3.23b) 

B'(t, a') = (B - °0~1T. RIT.)(t, a'). (5.3.23c) 

The implications of an explicit time dependence in the symplectic structure 
have been indicated in Section 4.2 and Charts 4.2 and 4.6. Methods for 
eliminating this dependence without altering the underlying dynamics have 
been identified in Section 4.5. Note, however, that even when the original 
symplectic structure in Birkhoff's equations does not depend explicitly on 
time, the corresponding structure under rule (5.3.23) generally acquires such 
a dependence. In order to prevent problematic aspects such as those of Chart 
4.1 (lack of algebraic structure of the time evolution), the explicit time 
dependence in the transformed symplectic structure can be eliminated by 
again using the methods of Section 4.5. 

Recall that structure (5.3.21) is invariant under the Birkhoffian gauge 

, (') t(') R' ( ') oG'(t, a') RI' t, a --+ RI' t, a = I' t, a - oa'l' ' (5.3.24a) 

B~(t, a') --+ Bt(t, a') = B'(t, a') + oG'~; a'). (5.3.24b) 

Under the conditions 

on~V 02 R~(t, a') 02 R~(t, a') _ 
-= - -0 

ot ot oa'l' ot oa'v - , (5.3.25) 
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an (analytic) function A'(t, a') always exists such that 

aR~ aA'(t, a') 
at = aa'il (5.3.26) 

The formal solution of gauge G'(t, a') to verify condition (5.3.25) is then given 
by25 

G'(t, a') = f~drA'(r, a'). (5.3.27) 

In this way we reach the following transformation rule of semi-autonomous 
Birkhoff's equations into semi-autonomous forms under noncanonical, con­
temporaneous, time-dependent transformations: 

t -+ t' == t, all -+ a'll(t, a), (5.3.28a) 

{[aR.(a) _ aRia)Jav _ aB(t, a)} 
aall aaV aall SA 

= {aa'p {[aR!(a') _ ~7R~(a')Ja'<1 _ aBt(t, a')}} = 0 
aall aa'P aa'<1 aa'P SA NSA ' 

(5.3.28b) 

Rt( ') = R' (t ') _ aG'(t, a') , ( ') (aaa )( ') pap , a aa'P' Rp t, a = aa'P Ra t, a , (5.3.28c) 

Bt(t a') = B'(t a') + aG'(t, a') 
, , at' B'(t, a') = (B - aa~a Ra)<t, a) 

(5.3.28d) 

G'(t, a') = {drA'(r, a'), 
aA'(t, a') aR~ 

aa'il at· (5.3.28e) 

We switch now to the study of Hamilton's and Birkhotl"s equations under 
the most general possible transformations, those of type (5.1.10). The study 
can be essentially carried out via the generalization of the symplectic frame­
work of Lemma 5.3.1 into the broader contact geometric setting. 

Lemma 5.3.3. All possible smoothness preserving and regular trans­
formations 

(all) = (t, a) -+ (a'll(a» = (t'(t, a), a'(t, a» 
= (t'(t, r, p), r'(t, r, p), p'(t, r, p» 

jJ. = 0, 1,2, ... , 2n (5.3.29) 

25 Sarlet and Cantrijn (1978a). 
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of the local variables of the (2n + 1 )-dimensional manifold IR x 
contact isotopic, that is, a contact tw010rm26 

O2 = !0l'ia)dal' 1\ dav, rank(0l'.) = 2n, 

151'11'20 - 0 
VI V2 JlIJl2 - , 

J1, V, J1l' J12' J13, VI' V2' V3 = 0, 1,2, ... , 2n, 

T*M are 

(5.3.30a) 

(5.3.30b) 

(5.3.30c) 

preserves its contact character under all transformations of the class admitted, 

1 ;'AI' _ ;'AV 
A _ lA (A)dAI' dAv _ va A (A') va dA,P dA,,, 
u2 - 2Io'l'v a a 1\ a - 2" oa'P ul'V a oa'" a 1\ a 

<W 1.A, (A')dAlP dA,,, _ A, 
- 2Up" a a 1\ a - U2' 

bP1P2 0' - 0 0'10'2 PIP2 - , 

(5.3.3Ia) 

(5.3.3Ib) 

(5.3.3Ic) 

PROOF. Preservation of the maximal rank is ensured by the regularity of the trans­
formations, while the preservation of properties (5.3.30b) and (5.3.30c) can be proved 
via the same argument as that for Lemma 5.3.1. (Q.E.D.) 

Lemma 5.3.3 provides the desired rules for the transformation of Birkhoff's 
equations, as well as of Hamilton's into Birkhoff's equations, under the 
desired most general possible transformations. However, in order to avoid 
insidious technical and conceptual aspects, it is important first to identify 
the" new time," that is, the variable which corresponds to t under transforma­
tions (5.3.29). 

Recall that contact two-form (5.3.30a) has the matrix structure 

000 0 01 ... 002n 

0 10 

e" 
... 

fi,," ) 

02nO O~nl ... 
02n2n 

(5.3.32) 

where the (2n x 2n)-matrix (- .. ) is symplectic and, as such, carries the maxi­
mal rank 2n. In particular, time is the variable associated with the diagonal 
element whose comatrix has maximal rank. For the case of structure (5.3.32), 
time is the variable aO. 

Now, a symplectic structure remains nondegenerate under regular trans­
formations in 2n-dimensions, but this is no longer necessarily the case when 

26 The generalized Kronecker·s symbols were introduced in Section 1.1.2, and are reviewed 
(in part) via Equations (4.1.55). 
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the transformations are in (2n + 1) dimension. Thus the new matrix 
(Q~v(t', a')) under transformations (5.3.29) is generally degenerate. In fact, the 
only regularity property ensured is that of the preservation of the maximal 
rank 2n, but there is no guarantee that this rank is necessarily preserved in 
the image of the original (2n x 2n) matrix. It then follows that the new two­
form (5.3.31a) has the structure 

( Oro .... ) nOll (". n~2n) 

n' /LO 
... 

0/L/L 
. .. n~2n (5.3.33) 

(nLo ... ) n' 2n/L 
(.:: . oLJ 

where the new symplectic substructure is given by the four matrices (- . -). 
If we preserve the original definition of time, for consistency, we reach the 

following property. 2 7 

Corollary 5.3.3a. The new time under transformations (5.3.29) can be any 
component (j'/L of the new variables, where J1 can assume anyone of the 
values 0, 1, 2, ... , 2n. 

The relevance of the result for the problem of relativity in Newtonian 
mechanics is self-evident and will be elaborated upon in Chapter 6. At this 
point we mention only that Corollary 5.3.3a identifies a form of equivalence 
of space and time variables which until now has been considered only within 
the context ofthe special relativity. In fact, the corollary establishes that, when 
one considers 

(a) the most general possible dynamic equations on IR x T* M, 
(b) the most general possible analytic equations, and 
(c) the most general possible transformations, 

the equivalence between space and time occur also in a purely Newtonian 
setting, although according to a structure considerably more complex than 
that of the special relativity. 

Consider now an exact contact structure, in which case we can write28 

(5.3.34) 

27 We imply here the use of dimensionless variables. When this is not the case, a dimensional 
scaling factor must be taken into account. 

28 As studied in Volume I and as reviewed in Section 4.1, two-form (S.3.20a) is an exact contact 
form whenever integrability conditions (S.3.30b) and (S.3.30c) hold in a star-shaped region of 
the variables. 
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The following property then holds. 

Corollary 5.3.3b. The transformation rule of a Pfaffian action on IR x T* M 
under the most general possible transformations is given, in unified notation 
ti,by 

}.l, a = 0, 1, 2, ... , 2n 

or, in disjoint notation a = (t, a), by 

Rit, a)da" - B(t, a)dt 

= [( RII ;::)ctl, a') - (B o~a)ctl, a')}ala 

[(B ot)( I ') ( oall) I I ] I - ot' t, a - RII 81 (t, a) dt 

~ R~(t', a')da,a - B'(t', a')dt' 

}.l,a = 1,2, ... ,2n 

(5.3.35a) 

(5.3.35b) 

(5.3.36) 

where the time variable in the new coordinate system is the element ti'll 
according to Corollary 5.3.3a, and the new Birkhoffian is the corresponding 
element R~(ti'). 

The last part of the corollary has been presented to stress the fact that 
familiar symbols such as t', H', B', even though mathematically well-defined, 
do not necessarily carry their familiarly expected physical meaning. 

To make the point more precise, let us consider the transformation of 
Birkhoft"s equations. The following property is a trivial consequence of 
Lemma 5.3.3. 

Corollary 5.3.3c. The transformation rule of Birkhoff's equations under 
the most general possible transformations on IR x T* M is given, in unified 
notation (4.2.23), by29 

(5.3.37a) 

(5.3.37b) 

(5.3.37c) 

}.l, v, p, (J = 0, 1, 2, ... , 2n, 

29 The treatment here is in terms of differentials dt't'", rather than derivatives dfl'"/dt', for two 
reasons. First of all, t' is not necessarily the "new time," as indicated earlier. Secondly, the 
approach permits a better focusing of the fact that, for noncontemporaneous transforma\ions, 
the integrands of action functionals transform as densities, rather than scalars. 
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or, in disjoint notation (t, a), by 

~ ((~:. + o~V)dav ) 

(QIL.(a)daV) = (ORv ORIL) v (OB OR, = 0, (5.3.38a) 
--- da - -+-dt 
oalL oav oalL at 

(::,: + o:,~)da,a ) 
= 0, (5.3.38b) 

(OR~ _ OR~)d 'a _ (OB' OR~)dt' 
oa'P oa'a a oa'P + at' 

, " (oalL at )(' ') Rp(t , a) = RIL oa'P - B oa'P t, a , (5.3.38c) 

'(' ') (B at R oalL)(, ') B t, a = at' - IL at t, a , (5.3.38d) 

Jt, v, p, (j = 1, 2, ... , 2n, 

where the new time and Birkhoffian are given by the elements a'lL and R~, 
respectively, whose comatrix in two-form (5.3.33) has rank 2n. 

The last statement can be proved as follows. Recall from Section 4.2 that 
the first term in Equations (5.3.38a) is identically null along all possible paths 
(which are not necessary solutions of the equations) owing, first of all, to 
the existence of the inverse 

QILV = (II ~~: - ~~; r 1 rv 
(5.3.39) 

and, secondly, to the trivial identities 

( OB + ORv)dav = (~B + O~v)Qva(~B + ORa)dt == 0. (5.3.40) 
oav at vaV vt vaa at 

The point is that the first term in the new equations (5.3.38b) is not necessarily 
identically null along all possible paths because of the lack of necessary 
existence of the inverse of the transformed matrix (Q~v(t', a')). Out of the 
(2n + 1) terms of Equations (5.3.38b), the only term which verifies properties 
corresponding to (5.3.40) is therefore that whose complement in two-form 
(5.3.33) has rank 2n. This identically null term will consist of a sum of terms 
in da'o, dlit, . .. ,da'2n less only one term, say that in da'lL for one given (fixed) 
J!. The new time is then a'lL and the new Birkhoffian is R~(t', a').30 

30 Note that, despite a contrary appearance, all the (2n + \) equations ofthe column (5.3.38b) 
have the same number of terms 2n, trivially, because of the antisymmetry of Birkhoff's tensor. As 
a result, Equations (5.3.38b) are fully "symmetric" in all variables {j' = (t; a') = (t', r', p'), and 
this symmetry is at the origin of the arbitrariness of the new time. 
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This confirms that the new variable t'(t, r, p) is not necessarily the new time. 
This is remarkable on relativity grounds for a number of reasons. As we 
shall see more clearly in the next chapter, Birkhoff's equation are generally 
form non-invariant under Galilei transformations (this is also a general 
property of Newton's equations of motion (Chart 4.12)). Their form invariance 
therefore calls for the identification of more general symmetries which must 
be a subclass of transformations (S.3.38). Now, dependences of the type 
t'(t, r, p) (= t"(t, r, t)) are typical of the special relativity, but not of Galilean 
relativity (for which t' = t + to). Their occurrence in Newtonian mechanics 
is therefore new. Second, in both the Galilean (and the special) relativity, 
the new time is simply the image t' of t as characterized by the transformations 
only. In the covering Birkhoffian Mechanics, the new time is characterized 
by both the transformations and the underlying dynamics, that is, the 
R-functions, and this is an additional novel feature. Last, but not least, Equa­
tions(S.3.38b) are fully symmetric in all variables a' = (t', r', p'), and this is 
also remarkably new in Newtonian mechanics. 

Lemma S.3.3 clearly contains the transformation rule of Hamilton's 
equations which is given below for the reader's convenience. 

Corollary S.3.3d. Under the most general possible transformations on 
IR x T*M, Hamilton's equations transform into Birkhoff's equations with 
the indicated prescription for the identification of the new time and Birk­
hoffian, and we write 

= '(aR~ ~~:;). :~ dt aH ) = (::: n~ia')da'U ) 
--- da --dt 
oal' oav oal' 

::' :;P 0 ( (::: + a:}," ~o, 
oal' oal' (OR' OR') (OB' OR') 

Oat oaP oa'; - oa': da'u - oa'P + 0/ dt' 

(S.3.41) 

where B' and R~ are given by Equations (S.3.38c) and (S.3.38d), respectively. 

The property above is also remarkable inasmuch it does not admit a 
Lagrangian counterpart in the following sense. Whether Hamiltonian or 
Pfaffian, first-order action principles on IR x T* M remain first-order under 
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the most general possible transformations. On the contrary, first-order 
Lagrangian principles on IR x T M do not preserve their first-order character 
under the most general possible transformations. In fact, the transformations 
are velocity-dependent and, as such, transform first-order Lagrangians 
(second-order Lagrange's e:quations) into second-order Lagrangians (third­
order Lagrange's equations31 ). 

The property expressed by Corollary 5.3.3d also indicates the (rather 
unpredictable) fact that Hamilton's equations preserve their analytic, 
algebraic, and geometric characters under the most general possible trans­
formations. 32 This aspect can be made mode precise by noting that Equations 
(5.3.30b) and (5.3.30c) are the conditions of variational self-adjointness for 
first-order systems.33 Lemma 5.3.3 therefore expresses the preservation of 
the variational self-adjoint ness under arbitrary transformations of the class 
considered. By keeping in mind the analytic, algebraic, and geometric 
meaning of the conditions of self-adjointness, we have the following 
property. 

Corollary 5.3.3e. All possible transformations on IR x T* M are self­
adjoint isotopic when the transformed system is that defined without the 
Jacobian, i.e., 

~ oaP ~ 
(Q"vdaV)SA = oa'" (Q~uda'U)sA = O. (5.3.42) 

As a consequence, Hamilton's and Birkhoff's equations preserve their 
derivability from a variational principle, and their Lie algebraic character 
and contact geometric structure under the most general possible trans­
formations. 

The frame independenc:e of the analytic/algebraic/geometric character­
istics then turns out to be at the basis of the coordinate-free globalization of 
the contact geometry, as presented in the specialized literature on this 
topic. 20 

Notice that the transformations of the equations of motion according to 
Corollary 5.3.3e preserve the self-adjointness, as well as the non-self-adjoint­
ness. Thus they are not intended for the Inverse Birkhoffian/Hamiltonian 
Problem, which demands the use of self-adjointness-inducing transforma­
tions. These latter transformations are readily given by a subclass of the 
transformations inclusive of the Jacobian, i.e., 

(C ".( a)daV)NsA = (C:i a')da'U)sA 

= [::: (C~ia')da'U)NsA lA = o. (5.3.43) 

31 See, in this respect, Equations (4.2.35). 
32 A moment of reflection on the unified notation fl is important here. In fact, the intuition of 

this result in the disjoint variables t, r, and p (let alone its proof) would be virtually impossible. 
33 See Section 4.1 for a review of the studies of Volume I on the topic. 
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These transformations, in particular, turn out to be "universal" in the sense 
that, given a system in the a-variables which is not Hamiltonian, transforma­
tions a --+ a'(a) always exist under which the transformed system defined via 
the inclusion of the Jacobian is Hamiltonian (see the Section 6.2.). 

We pass now to the study of the property that the canonical transformation 
theory admits a consistent step-by-step generalization of Birkhoffian type. 
It should be indicated that the property has been studied in local coordinates 
either implicitly or explicitly by a number of authors, such as De Donder 
(1927), Lee (1945), Pauli (1953), Martin (1959), Hughes (1961), Cartan 
(1971), Sudarshan and Mukunda (1974), Santilli (1978c), Sarlet and Cantrijn 
(1978a,b), Kobussen (1979), and others. From a global viewpoint, the 
property can be studied via the transformation theory on a contact mani­
fold. 20 

For this purpose, it is recommended that we reinspect the notion of 
canonical transformations within the context of the preceding analysis and 
return to the study of autonomous systems under contemporaneous trans­
formations without an explicit dependence on time. 

Definition 5.3.1.34 Transformations a --+ a'(a) of the local variables of 
T* M are canonical when they are Lie identity isotopic with respect to the 
fundamental Lie tensor ur or, equivalently, when they are symplectic identity 
isotopic with respect to the fundamental symplectic tensor wilV ' 

As is now familiar (see the remarks regarding Equation (5.3.15», the 
canonical transformations according to Definition 5.2.1 not only preserve 
the Lie algebra (Lie isotopy), but actually preserve the value of the funda­
mental brackets; that is, they preserve identically the realization of the Lie 
algebra product. These properties are expressed by Definition 5.3.1 via the 
notion of "Lie identity isotopy." A fully equivalent situation exists for the 
case of the" symplectic identity isotopy." 

Once these algebraic or geometric aspects have been understood, their 
generalization to the Birkhoffian case is straightforward. 

Definition 5.3.2.34 A generalized canonical transformation is a Lie identity 
isotopic transformation of the contravariant Birkhoff's tensor QIlV or, equiva­
lently, a symplectic identity isotopic transformation of the covariant tensor 
QIlV' 

Explicitly, this definition implies the transformation rule 

(5.3.44) 

as a natural generalization of rule (5.2.2), with the understanding that the Lie 
isotopy is always ensured by Lemma 5.3.1 and that the Lie identity isotopy 

34 Santilli (lac. cit.). 
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is obtained via the condition Q'IlV == QIlV. Thus generalized canonical trans­
formations are a subclass of all possible transformations on T* M. Also, a 
canonical transformation is not necessarily a generalized one, and vice versa. 
This is clearly the result of the fact that the Lie identity isotopy is obtained via 
conditions (5.3.44) for the former, and different conditions Q'IlV == (J)IlV for 
the latter. 

The transformation rule of the covariant, semi-autonomous, Birkhoff's 
equations under symplectic identity isotopic transformations is therefore 
given by the following particular case of rule (5.3.2) 

t -~ t' == t, all ~ a'll(a), (5.3.45a) 

= {oa'p {[aRia') _ ORia')] "(1 _ oB'(t, a')} 1 = 0 (5 345b) 
oall oa'P oa'(1 a oa'P SA f NSA ' •• 

Ria) ~ R~(a') = (::,: R~)<a') == RIl(a'), (5.3.45c) 

B(t, a) ~ B'(t, a') = B(t, a'(a». (5.3.45d) 

In this way we see that the notion of symplectic (and Lie) identity isotopy 
can be reduced to that of the preservation of the functional dependence of 
the primitive one-form, i.e., to the following particular case of rule (5.3.35) 

Rl = RIl(a)dall = Ria(a'» !:: da'~ == Ria')da'~. (5.3.46) 

However, at the level of these one-forms, the notion is always defined up to 
Birkhoffian gauges. Clearly, the notion of generalized canonical transforma­
tions is a covering of that of conventional canonical transformations, in the 
sense that all conditions of footnote 24 are verified. 

As indicated in the general assumptions of Section 5.1, all transformations 
are considered in a given region of the variables. It can be proved that the 
topological properties of these regions are preserved from the general 
smoothness and regularity conditions assumed in this work. However, the 
"range" of the new and old regions may be different, by therefore creating 
problematic aspects for the construction of realizations of Lie groups via 
both conventional and generalized canonical transformations. This situation 
suggests the following refinement of Definition 5.3.2. 

Definition 5.3.3.35 A transformation a ~ a'(a) of the local variables of 
T* M which is analytic and regular in a region ~ is called strictly Lie identity 

35 Sarlet and Cantrijn (loc. cit.). 
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isotopic with respect to Birkhoff's tensor QI'V(a) when Lie identity isotopy 
(5.3.44) holds and, in addition, the range of the old variables and its image 
under the transformations coincide, ill == ill'. 

The condition of preservation of the range here essentially refers to the 
condition that the numerical values admitted by the old and new variables 
coincide. For additional studies, we refer the interested reader to the work of 
Sarlet and Cantrijn. 35 

The extension of the results to the case of contemporaneous transforma­
tions with an explicit time dependence is straightforward and will be tacitly 
assumed from this point on. 

We move now to the study of the integrability conditions for the existence 
of generalized canonical transformations. 

Proposition 5.3.1. 35 A necessary and sufficient condition for a con­
temporaneous, time-dependent transformation t ---+ t' = t, a ---+ a'(t, a) to be 
a Lie identity isotopic transformation with respect to Birkhoff's tensor 
QI'V(t, a) is that a smoothness-preserving function F(t, a) exists such that 

I (') (') of(t, a') 
RI' t, a = RI' t, a + oa'l' (5.3.47) 

for all points of the region of definition. 

PROOF. By recalling the Birkhoffian gauges, Condition (5.3.47) implies that 

a a 
~a I [R~(t, d) - Rit, d)] - ~a [R:.(t, d) - R (t, d)] = O. a 11- a'v", f.A 

(5.3.48) 

Thus the one-form 
(Jj = [R~(t, d) - R~(t, d)]da'l' (5.3.49) 

is a closed parametric one-form (Chart 4.6), therefore implying Equations (5.3.47). The 
necessity of the conditions then follows from the exact character of the Birkhoffian 
two-forms, while the sufficiency is trivially proved from the same character. (Q.E.D.) 

The particularization of Proposition 5.3.1 to the case of canonical trans­
formations is instructive (Problem 5.5). Notice that conditions (5.3.47) do 
not characterize the function F uniquely. 

We move now to the study of the methods for the construction of general­
ized canonical transformations, via a step-by-step generalization of those 
for conventional canonical transformations. This also serves the purpose of 
illustrating the fact that Hamiltonian Mechanics admits a consistent covering 
of Birkhoffian type. 

Let us begin by reformulating the definition of generalized canonical 
transformations via a variational principle. The following generalization of 
Weiss's (or Holder's) principle for Birkhoff's equations 

J 1/2 [RI'(t, a)dal' - B(t, a)dt](Eo) 
11 

= (EPCP) = 1 Rit, a)Jal' - B(t, a)3t 1:7 (Eo), (5.3.50) 
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can be proved via a straightforward application of Equations (1.1.3.39) 
page 1.43 (with the identification q = a). Principle (5.3.50) is remarkable 
inasmuch it shows that the total differential of Birkhoff's action is equal to 
the integrand computed at end points. In turn, this property is relevant for a 
number of applications, e.g., the construction of the Hamilton-Jacobi 
Theory for Birkhoff's equations, the problem of symmetries and first integrals, 
etc. 

We now call a contemporaneous transformation a ~ a'(t, a) identity 
isotopic with respect to Birkhoff's equations when principle (5.3.50) holds 
in the new coordinates without altering the functional dependence of the 
R functions, i.e., 

$ It2 [RII(t, a')da'lI - B'(t, a')dt](£o) = 1 RII(t, a')$a'lI - B'(t, a')dt 1:;(£0)' 
tl 

(5.3.51) 

This latter condition is clearly essential in achieving the identity isotopy.36 
As for the canonical case, the difference between the integrands of principles 

(5.3.50) and (5.3.51) is not identically null, but can at most be equal to the total 
differential of a function F(t, a, a'). Thus we reach the following fundamental 
identity for the construction of generalized canonical transformations 
($ ~ d) 

R/t, a)dall - R/t, a')da'lI - B(t, a)dt + B'(t, a')dt = dF(t, a, a'), (5.3.52) 

which is clearly a direct generalization of Equations (5.2.14). Indeed, identity 
(5.3.52) is expressed in terms of Birkhoff functions, while it trivially recovers 
the canonical identity (5.2.14) for R = (p, 0). 

The function F of Equation (5.3.52) can thus be called the generating 
function of the generalized canonical transformations. This function, in 
particular, can be a function of any 2n-dimensional subset of the variables 
(a, a') and time. Assume first that F = F(t, a'). Then identity (5.3.52) can be 
explicitly written 

oall'lI 'II ( , oall) _ of 'II of 
Ril oa'lI da - Rllda - B + B + RIlTt dt - oa'lI da + at dt, 

(5.3.53) 

yielding the transformation laws 

, oall of 
RII = Ril oa'lI = RII + oa'Il' (5.3.54a) 

(5.3.54b) 

36 As was the case for conventional canonical transformations, we expect the existence of 
transformations which are generalized canonical in the sense of preserving variational principle 
(5.3.50), but not in the sense of a Lie identity isotopy (5.3.44). This aspect is left to the interested 
reader (Problem 5.6). 
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In this way we recover Equations (5.3.47). In particular, we see that relations 
(5.3.54) are a generalization of the case F = F 5 of the canonical trans­
formations (Equations (5.2.24)). 

Note that, besides case (5.3.47), there are numerous other possible cases, 
depending on the selected 2n-dimensional subset of the variables (a, a').37 

For the reader's convenience, as well as for further needs, we compute 
here the case of F = F 1 (t, q, q'). Identity (5.3.52) in this case is, for R = 
(Rk' Rk), 

Rkdqk + Rk(OP~ dqi + OPk. dq,i + OPk dt) 
oq' oq" ot 

- Rkdq,k - Rk(oPk. dqi + OPk. dqti + OPk dt) - B dt + B'dt 
oq' oq" ot 

_ of 1 d k of 1 d,k of 1 d 
- oqk q + oq'k q + ot t, 

R = R(t, q', p') (5.3.55) 

yielding the transformation laws 

(5.3.56a) 

(5.3.56b) 

B' = B + of 1 _ Ri 0Pi + Ri op; 
ot ot ot ' 

(5.3.56c) 

which are indeed a generalization of rules (5.2.16) for the Hamiltonian case. 
In particular, the latter rules are recovered identically for R = (p, 0), that is, 
for the Hamiltonian subcase. The generalization of the other Hamiltonian 
cases F 2, F 3, F 4, and F 6 is then straightforward, and it is left here to the 
interested reader, along with the study of other aspects (Problem 5.7). 

Note that the generating functions of canonical and generalized canonical 
transformations may coincide. Nevertheless, the corresponding transforma­
tions are different. 

This completes our study of the Birkhoffian generalization of the canonical 
transformation theory. We shift now to the generalization of the theory of 
canonoid transformations of the reduced type, which permits a Hamiltonian 
image of the isotopic transformations of a Lagrangian (Section A.2). 

37 All these dependences, however, can be reduced to the a' dependence through a generaliza­
tion of the Legendre transform of the canonical case. This reduction has been assumed in Propo­
sition 5.3.1. 
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Proposition 5.3.2. The phase space image of the isotopic transformations 
of a Lagrangian, L(q, q) -4 L *(q, q), given by the reduced canonoid trans­
formations 

(5.3.57a) 

{al'} -4 {a*l'} = {q\ p*(q, p)}, H*(a*) =f. H(a), (5.3.57b) 

verfies the chain rule 

= {:::~ [ (~~: - ~~:)aq - ~! ] sJ NSA 

= {~a:~ [h~(OJq~a~ - ~~) J} = 0, 
va va SA SA NSA 

(5.3.58) 

for some matrix (h~) of isotopic functions with respect to H. 

PROOF. A reduced canonoid transformation a ---+ a* (which is not the identity) is 
noncanonical, as is its inverse a* ---+ a. Thus Hamilton's equations transform into 
Birkhoff's equations under the inverse transformation, according to general rule 
(5.3.19). This proves the first step of rule (5.3.58), but the systems admit a Hamiltonian 
representation H(a) by assumption. The second step of rule (5.3.58) then follows from 
the self-adjointness of BirkhofI"s equations. The matrix (h~) is·then necessarily isotopic 
with respect to H. (Q.E.D.) 

The proposition establishes a rather natural emergence of Birkhoff's 
equations via the degrees of freedom of a Lagrangian induced by the in­
tegrability conditions for its existence. In turn, this has rather intriguing 
implications. In essence, Proposition 5.3.2 establishes that, under the 
integrability conditions for the existence of isotopically mapped Lagrangians, 
the same system can be represented with both, Hamilton's and Birkhoff's 
equations in the same local variables. This means that the acting forces are 
such to allow the following redefinitions at a fixed point of the a space 

vH vB 
OJI'V _ = QI'V(a)_ 

vav vav ' 
(5.3.59a) 

H(a) =f. B(a). (5.3.59b) 

In turn, this implies the lack of uniqueness of the time evolution law and 
related brackets, in the sense that, whenever a Lagrangian L(q, q) admits an 
isotopic image L *(q, q), the time evolution law admits the dual characterization 

I
vA I'V vH - [ ] 
~ OJ -;v - A, H (a), 

. vA va va 
A(a) = -al' = 

val' vA vB 
- QI'V(a) - = [A, B]~). 
val' vav 

(5.3.60) 



[oR~(a) _ ORZ(a)}v _ oH(t, a) = 0 
oal' oav oal' 

RO = (p,O) 

1 
I 

al' --+ a'l'(a) 
I 

1 
[ORp(a') _ OR~(a')] .,p _ oH'(t, a') = 0 

oaN' oa'P a oa" 

1 
I 

a'l' --+ a"l'(a') 
I 

1 
[OR~(a") _ OR;(a")] ."" _ H"(t, a") _ 

oa"P oa"" a oa"P - 0 

Figure 5.1. Construction of the Birkhoffian Mechanics via the transformation of the 
Hamiltonian Mechanics. This figure schematically represents the main idea of this 
chapter: that virtually all aspects of Birkhoffian Mechanics can be constructed via 
noncanonical transformations of the corresponding aspects of Hamiltonian Mechanics. 
The application of the rule begins with the birth of Birkhoff's equations, as schematically 
represented above. The rule then applies for the construction of the transformation 
theory of the new mechanics, as shown in Section 5.3. The rule will also apply for the 
construction of other aspects of the new mechanics, such as the generalization of the 
Hamilton-Jacobi theory, as we shall see in the next chapter. This rule should be kept in 
mind because it can be of considerable guidance in the construction of other aspects of 
Birkhoffian Mechanics, such as the generalization of the canonical perturbation theory. 
Particularly significative is the aspect established by the transformation theory that 
Birkhoffian Mechanics is the most general possible mechanics that can be constructed 
from Hamiltonian Mechanics via the transformation theory. In fact, Birkhoff's equations 
preserve their structure under the most general possible transformations (Lemma 5.3.1). 
The point serves also to illustrate the fact that the Birkhoff-admissible equations and 
related mechanics (Chart 4.7) are truly novel in the sense that they cannot be constructed 
from Birkhoff's equations via the transformation theory. This is a sign indicating the 
existence of new mathematical tools needed in the transition from Birkhoff's to Birkhoff­
admissible equations. These tools have been interpreted in this volume as being of Lie­
admissible genotopic type. It should be indicated here that the idea schematically 
expressed in this figure has implications far beyond Newtonian Mechanics. In fact, the 
idea is currently being applied to the construction of generalizations of other branches 
of physics, such as Statistical Mechanics and Atomic Mechanics, into forms compatible 
with the Birkhoffian Mechanics. For a review of these latter studies, see Santilli (1982). 
For a general treatment see the Proceedings of the First International Conference on 
Nonpotential.Interactions and their Lie-admissible Treatment (1982). For an indication 
of the main ideas, see the charts of the next chapter. 
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Redefinition (5.3.60) then implies the transition 

[A, H](a) --+ [A, B]~) (5.3.61) 

which is precisely a Newtonian realization of the Lie isotopy of Chart 4.2-this 
time, within a fixed system of local variables. 

Thus we confirm that, beside the general case of Lie isotopy under arbi­
trary transformations (Lemma 5.3.1), there is also a particular type of Lie 
isotopy of the brackets of the time evolution law within a fixed system of 
local variables. 

This situation has rather intriguing algebraic as well as group theoretical 
implications for Lie's theory, to be indicated in the charts of this chapter. 
At this point we simply remark that, a classical realization of the generators 
does not imply a unique Lie algebra, trivially, because the same generators 
can be equipped with different Lie products in the same space of the local 
variables. We therefore expect the possibility of characterizing non-iso­
morphic Lie algebras via the same generators and the use of different Lie 
products. As we shall see, this occurrence is an application of the isotopic 
generalization of Lie's theory and has a particular meaning within the con­
text of symmetries and first integrals. 

Chart 5.1 Need to Generalize the Contemporary Formulation of Lie's 
Theory 

The terms "Lie's theory" are referred today to an articulated body of 
sophisticated mathematical tools encompassing several diversified dis­
ciplines. Whether in functional analysis or in the theory of linear operators, 
the structure of the contemporary formulation of Lie's theory can be 
reduced to the following three parts 

/ 
Universal enveloping 

associative algebras d 

~ 
Lie Lie 
algebras G groups G 

As duly emphasized in the mathematical literature (see, for instance, 
Jacobson (1962), Dixmier (1977). and others). a truly fundamental part 
of Lie's theory is the enveloping algebra d. In fact, algebra d provides a 
symbiotic characterization of both the Lie algebras and the Lie groups. 
This is due to the fact that the basis of d (which is constructed via the 
Poincare-Birkhoff-Witt Theorem, to be reviewed in the next chart) is 
given by an infinite number of suitable polynomial powers of the gener­
ators Xi of G such as 

d: ~ E IF; Xi; XiXP::; J); XiXjXkU::; j::; k); . . . (1) 
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where the products X;Xj' etc., are associative. It then follows that the Lie 
algebra G 

G: [X;, X) = X;Xj - XjXk = C7j Xk, (2) 

is (homomorphic to) the attached algebra d- of d. The Lie group G of Gis 
then the infinite power series 

ek we j 
G: e okXk = ~ + - X + - XX + ... 

1! k 2! 'f 
(3) 

which, evidently, can be properly defined and treated only in the enveloping 
algebra (note that all terms from X;Xj on are outside the Lie algebra). 
One can then see why fundamental aspects of Lie algebras (such as the 
representation theory) are treated by mathematicians within the context of 
its enveloping algebra. 

On physical grounds, the role of the enveloping algebra is equally 
crucial, even though not sufficiently emphasized in the current literature. 
For instance, a frequent physical problem is the computation of the 
magnitude of physical quantities, such as the magnitude (eigenvalue) of 
the angular momentum (operator) M = II M 211' /2. While the components 
M; of M are elements of the Lie algebra 50 (3). the quantity M 2 is outside 
50(3) and can only be defined in the (center of) the enveloping algebra 
d(50(3)). Thus, while the Lie algebra 50(3) essentially characterizes 
the components of the angular momentum and their commutation rules, 
the envelope d(50(3)) characterizes: 1) the components M;; 2) their 
commutation relations via the attached rule .91- R; 50(3); 3) the magni­
tude of the angular momentum M 2; 4) the exponentiation to the Lie 
group of rotations; 5) the representation theory, etc. In short. we can 
state that a truly primitive part of the contemporary formulation of Lie's 
theory is its universal enveloping associative algebra. 

Once the mathematical and physical motivations of this occurrence 
are understood in full, the need for a suitable generalization of Lie's theory 
becomes unavoidable. Lie algebras emerge in Physics at the truly funda­
mental part, the brackets of the time evolution. The above remarks then 
imply that the primitive algebraic structure of the time evolution is the 
enveloping algebra. Santilli (1978e, pp. 1330-1334) points out that the 
enveloping algebra of the time evolution of Hamiltonian Mechanics is 
nonassociative, by therefore being not directly compatible with the 
contemporary formulation of Lie's theory. In fact. the author essentially 
indicated that the conventional Poisson brackets 

oK oK oK oK oK oK 
G: [K, K] = -' w#v -' = -' ---L - --1.. -' 

, foal' oav ark OPk ark OPk 

are the attached brackets of the algebra 

oK oK 
UU: (K, K) = _, _f 

, fork OPk 

(4) 

(5) 

which is nonassociative; that is, the vector space d of elements X; and 
their polynomial powers, over the field IR of real numbers equipped with 
product (5). is first of all an algebra in the sense of Chart 4.1 : it verifies the 
left and right distributive laws and the scalar law. Secondly, this algebra 
turns out to be nonassociative because of properties 

(6) 
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Since associative and nonassociative algebras are different algebras, with­
out a known interconnecting mapping, Santilli (loc. cit.) argues that the 
insistence on the associative character of the envelope would literally 
prohibit the conventional formulation of Hamiltonian Mechanics, that 
according to time evolution (4). He therefore advocates a dual generaliza­
tion of Lie's Theory (see the preceding paper, Santilli (1978c, pp. 298-375) 
as well as the memoir (1979a, Section 1.2) according to the following 
classification. 

I. 

II. 

III. 

Contemporary Formulation of Lie's Theory. This is the formulation 
available in the contemporary literature, and it is expressed via an 
envelope with conventional associative product XiX (e.g., the 
conventional product of matrices or operators). I 

Lie-Isotopic Generalization of Lie's Theory. This is a first general­
ization based on envelopes which are still associative yet are 
formulated via the most general possible associative product, say, 
Xi * Xi' whose attached product Xi * Xi - X * Xi is Lie. 
Lie-Admissible Generalization of Lie Theo/y. This is the largest 
possible generalization of Lie's theory conceivable at this time. 
It is based on envelopes that are Lie-admissible (Chart 4.1 ), that is, 
on envelopes with the most general possible nonassociative 
product, say, (Xi' X), whose attached product (Xi' X) - (Xi' X) 
is Lie. 

In subsequent charts we shall outline the state of the art on the Lie­
isotopic generalization of Lie's theory. The Lie-admissible generalization 
is currently under study at the yearly Workshops on Lie-Admissible 
Formulations (see the proceedings (1979-1981)) and will not be re­
viewed here. 

A few introductory remarks may help the reader to reach a better 
mathematical and physical understanding of the generalizations under 
consideration, as well as the truly intriguing (and substantial) research 
yet to be done. 

A difficulty generally experienced by mathematicians trying to see the 
need for a generalization of Lie's theory is that simple Lie algebras over a 
field of characteristic zero have been classified and are given by the well­
known Cartan classification. 38 In fact. the Poincare-Birkhoff-Witt 
theorem essentially ensures that all Lie algebras over a field of character­
istic zero can be obtained as the attached algebras of enveloping algebras 
with the conventional associative product Xi Xi . Thus the classification of 
Lie algebras has been already achieved by Formulation I. The point is that 
generalizations /I and 11/ are not intended for the classification. Instead, they 
are intended for the formulation of Lie's theory in the most general possible 
(rather than simplest possible) form, as a necessary condition for its 
direct applicability in physics. Generalizations II and III are, of course, 
expected to recover Cartan classification. But this is a minor aspect of the 
issue. The issue is that of abandoning the conventional mathematical 
treatment of Lie algebra, 

(7) 

38 It is appropriate to recall here that the classification of Lie algebras over a field 
of characteristics p4= 0 is far from complete. The generalizations of Lie's theory here 
referred to are intended primarily for the conventional case of characteristic zero 
which is the most important for current physical applications (in fact, no physical 
application is known at this time for algebras and/or fields of characteristic P "" 0). 
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where XiXj is the conventional associative product in favor of the most 
general conceivable product: 

(8) 

where (Xi' X) is a nonassociative Lie-admissible product. Only in this 
way does the theory acquire a form suitable for direct application to 
mechanics while possessing trivial realization (7) as a particular case. At 
any rate, while the formulation of Lie's theory for structure (8) includes 
that of structure (7) as a particular case, the opposite is not necessarily 
true. 39 As an example, the current formulation of the representation theory 
is inapplicable to Lie algebras (8) beginning from its foundations (necessary 
and sufficient conditions for a representation to be faithful, Ado's theorem). 
At a deeper analysis, it soon emerges that the alteration of the associative 
character of the envelope into a nonassociative form demands the reformu­
lation of the entire theory. 

Perhaps an effective way for a mathematician to see the need of re­
formulating Lie's theory is through a comparative analysis with the 
corresponding situation in the symplectic and contact geometries, for 
which no reformulation is needed. I n essence, these geometries, in their 
most abstract and general form (the coordinate-free form), present a body 
of notions, properties, and theorems which preserve their validity under 
a/l possible realizations of the symplectic and contact forms. For instance, 
all the parts of the symplectic geometry dealing with exact symplectic 
two-forms 

(9) 

preserve their validity regardless of whether the two-form is the canonical 
form, 

W 2 = dPk /\ drk, 

or the most general possible Birkhoffian form, 

Q = - - - -~ da~ /\ da V 1 (ORv OR) 
2 2 oa~ oa v ' 

(10) 

a = (r,p). (11 ) 

The crucial character of the theory, that of being applicable to all 
possible realizations, is lost for the contemporary formulation of Lie's 
theory. I n fact if the enveloping algebra is generalized from the trivial 
product XiXj to a more general product Xi * Xj (e.g., Xi * Xj = Xi TXi , with T 
fixed and nonsingular; see Chart 4.1), then the notion of Lie group (3) is 
generalized into structures, for instance, of the type 

Ok 8i8i 
G*'e6kXkIJ'=~+-X +-X*X+···. (12) . - 1! k 2! J J 

The fact that the notions, properties, and theorems developed for the 
conventional structure (3) are not necessarily applicable to the more 
general structure (12) is established, for instance, by the fact that ~ is no 
longer the unit of the envelope, trivially, because now ~ * Xi =f. Xi =f. 
Xi *~. 

39 As will be soon evident, nonassociative products exist which can be trivially 
reduced to an associative form. However, an associative product can never be 
reduced to a nonassociative form. 
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Remarkably, while the symplectic and contact geometries have been 
developed by keeping the most general possible realizations of the two­
forms in mind, the theory of Lie algebras has been developed for the sim­
plest possible realization of the Lie algebra product. The Lie-isotopic 
generalization of Lie's theory is advocated here in order to recover the 
compatibility of formulation with the symplectic and contact geometries, 
that is, to reach algebraic: notions, properties, and theorems which are 
directly applicable to the most general possible realizations, in exactly 
the same case as it occurs for the geometric counterparts. The Lie-admis­
sible generalization of Lie's theory, instead, is intended as the algebraic 
counterpart of the symplectic-admissible generalization of the symplectic 
geometry (Chart 4.7). 

A further point which should be clarified is that the Lie-isotopic 
generalization of Lie's theory is not directly applicable to the Hamiltonian 
as well as the Birkhoffian Mechanics. In fact, the envelope is still associ­
ative by conception, while algebra (5) is already nonassociative for 
Hamiltonian mechanics, and this algebraic character clearly persists for the 
covering Birkhoffian Mec:hanics. 40 The theory under consideration is 
merely an intermediate step prior to the full treatment of type III. Never­
theless, a possibility exists that the theory is applicable in a specific case, 
on account of the following property. Often, when structure (8) is worked 
out. it implies the possible reformulation 

[Xi' X)* = (Xi' X) - (Xi' X) = Xi * Xj - Xj * Xi' (13) 
An example (Charts 4.1 and 4.2) is given by the product (Xi' X) = 
XiRXj - XjSXi , with Rand S fixed and nonsingular, and XiR, RXj , etc., 
associative). Then we have 

(Xi' X) - (Xj , X) = (XiRXj - XjSX) - (XjRXi - XiSX) 
= Xi TXj - Xj TXi = Xi * Xj - Xj * Xi' T = R + S, 

(14) 

where Xi TXj is clearly isotopic associative. Thus, in certain instances, 
the intermediary Lie-isotopic generalization may be sufficient. 

For the case of the Hamiltonian Mechanics, one can attempt modi­
fications of product (5) into more general Lie-admissible forms of the type 

(K, K)* = .3Xi ~ + 3Xi (J,ij oXj + oXj p. oXj 
I / ork OPk ori ori OPi 1/ OPj 

(15) 

40 This point is self-evident from the generalization of Hamilton's into Birkhoff's 
tensor 

w~' = _P - -~ ~ n~'(a) = _P - -(1I oRO MOII-l)~' (11M M'II-l)~' oa' oaP oa' oaP 

under which the property 

] X) X oX oX N .. 
[Xi' Xi = (Xi' i - (Xi' Xi); ( i' X) = 0': oP~ = onassoclatlve product, 

necessarily implies the generalized one 

[Xi' xy = (Xi' X)* - (Xi' X)*; (Xi' X)* = Nonassociative product. 

In fact, [Xi' x'X] is a particular case of [Xi' X;J* if and only if (Xi' X) is a particular 
case of (Xi' )*. 
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that is, modifications which are such as to preserve the conventional 
Poisson brackets as the attached Lie brackets. With the understanding 
that modifications (15) remain nonassociative in general. 41 it may be 
that the associative law is regained in particular cases. The important point 
is that, even when the associative character of the envelope is regained 
via extensions of type (15), the enveloping algebra is not of the trivial 
type XiXj , but rather of the most general possible type Xi * Xj. As a 
result assuming that the associative character of the envelope of classical 
mechanics is regained via (still unknown) methods, the isotopic general­
ization of Lie's theory remains mandatory for its direct applicability. 
Lacking the generalization, one risks the application of existing theorems 
conceived for formulations I which are actually meaningless for physical 
models belonging to case II or III. 

Some of the most remarkable and intriguing implications are those for 
particle physics. The only time evolution known at this point with a 
structure truly of type I (that is, with an associative envelope with trivial 
product XiX) is that of Heisenberg's equations in quantum mechanics: 42 

.. 1 _ _ 1 _ _ __ 
A = -; [A. H] = -; (AH - HAL Aft = Associative product (16) 

I I 

(17 = 1) 

with fundamental brackets (in our unified notation a = (f, pL of course, 
now referred to as operators in a Hilbert space) 

HO = (p, 0). 

(17) 

The mere identification of the possibilities of generalizing Lie's theory 
according to types II and III immediately implies the possibility of general­
izing Heisenberg's equations accordingly. 

In fact Santilli (1978d, pp. 725 and 752) proposed the following 
Lie-isotopic generalization of Heisenberg's equations 

,.:, 1 _ _ 1 _ _ _ _ __ 
A = -; [A. H]* = -; (ATH - HTA) 

I I 
(18a) 

..----------
[a~, aV] * = in~V(a) = i (II ~:: - ~:: 11- 1 yv (18b) 

and the following Lie-admissible generalization (lac. cit., pp. 719 and 746) 
,.:, 1 _ _ 1 ___ _ __ 
A = -; (A. H) = -:- (ARH - HSA) 

I I 
(19a) 

(19b) 

41 One can easily see that the associative law cannot in general be verified for 
product (15) because, for instance, the expression ((Xi' X), Xk ) implies only 
first-order derivatives for Xk , while the expression (Xi' (X, Xk » implies second­
order derivatives for Xk • Nevertheless, restrictions on the fuinctional dependence of 
the generators are conceivable under which ((Xi' X), Xk ) = (Xi' (Xi' Xk ». 

42 From now on all quantum mechanical operators will be denoted with an 
upper tilde, e.g., A, R. etc. 



154 Transformation Theory of Birkhoff's Equations 

As a matter of fact generalizations of Lie's theory of types II and III were 
intended as mathematical tools for the proper treatment of the correspond­
ing generalized equations of type (18) and (19). The Lie-isotopic general­
ization of Lie's theory will therefore be outlined in the subsequent charts 
according to the motivations for which it was originally conceived, that of 
directly characterizing Equations (18). 

Independently from these studies, Okubo (1981 a) has proposed a 
generalization of Heisenberg's equations of the type 

.:.1 __ 1 __ -_ 
A = -:- [A, H]* = -:- [(A. H) - (H, A)], 

I I 
(20) 

where the product (..4. H) is nonassociative, flexible, and Lie-admissible. 
The generalization was motivated by the fact that the replacement of the 
associative envelope of Heisenberg's mechanics with a nonassociative 
one (but of flexible Lie-admissible type to preserve the differential rule) 
permits the avoidance of some of the problems of consistency of con­
ventional quantization. This was, after all, expected from the nonassoci­
ativity of the product (A. H) in Poisson's brackets (4).43 Also intriguing 
is the expected relationship between Equations (20) and (18) via rules of 
type (14) which, for the case of linear operator algebras, appears possible. 

As an example, one could assume in equations (20) the flexible 
Lie-admissible envelope 

(21 ) 

The reformulation of Equations (20) into Equations (18). and vice versa, 
is then given by 

[..4. H]* = (..4. H) - (H, A) = AH - HA == [..4. H] (22) 

Following this, we therefore use Equations (16) when dealing with 
generalizations of Lie's theory of type II, and Equations (19) when 
dealing with those of type III, with interconnecting mechanisms of type 
(14).44 

Chart 5.2 Isotopic Generalization of the Universal Enveloping 
Associative Algebra 

In this chart we shall first review the definition of universal enveloping 
associative algebra, and the methods for the construction of its basis 
according to the Poincare-Birkhoff-Witt theorem. We shall then present 
their isotopic generalizations, that is,45 generalizations which preserve 

43 Even though the algebras characterized by Hamilton's and Heisenberg's 
brackets are both Lie, their Elnvelopes are different because that of the former is 
nonassociative, while that of the latter is associative. Under these circumstances, 
the rigorous definition of quantization via a mapping is virtually impossible. For 
these and numerous other problematic aspects related to the quantization of 
Hamilton's into Heisenberg's equations, one may consult Santilli (1980a) and 
cited references. Additional problematic aspects (different than those related to 
the envelopes) are treated by Chernoff (1981). A theorem establishing the lack of 
the so-called full quantization is proved by Abraham and Marsden (1978, p. 435). 

44 See also the outlines of applications of the charts of Chapter 6. 
45 The Greek meaning of the work "isotopy" was related in footnote 33 of 

Chapter 4. 
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the associative character of the product. By keeping in mind the primitive 
character of the enveloping algebra in Lie's theory (Chart 5.1), the 
generalizations presented in this chart render inevitable a corrfilsponding 
reinspection of Lie algebras and of Lie groups (Charts 5.3 and 5.4). 

Definition 1. The universal enveloping associative algebra of a Lie 
algebra G is the set (d, T) where d is an associative algebra 46 and T a 
homomorphism of G into the attached algebra d- of d satisfying the 
following properties. If d' is another associative algebra and T' a homo­
morphism of G into d', a unique homomorphism )I of d into d' exists 
such that T' = T)I; i.e., the following diagram is commutative. 

d-~d'-

\/ (1 ) 

G 

Whenever an algebra d belongs to the context of the definition above, 
we shall write d(G). All Lie algebras are assumed, for simplicity, to be 
finite-dimensional. Also, all algebras and fields are assumed to have 
characteristic zero, and the basis of all Lie algebras is ordered. 

The construction of the enveloping algebra d(G) is conducted as 
follows. Consider the algebra G as a (linear) vector space with basis 
given by the (ordered set of) generators Xi' i = 1, 2, ... , m. The tensorial 
product G ® G is the ordinary Kronecker (or direct) product of G with 
itself as a vector space. Such a tensorial product constitutes an algebra 
because it satisfies the distributive and scalar laws (Chart 4.1). Also, 
the algebra is associative because the Kronecker product is associative. 
The most general possible, associative, tensor algebra which can be 
constructed on G as vector space is given by 

?7 = F~ EEl G EEl G ® G EEl G ® G ® G EEl ... , (2) 

where F is the base field and EEl denotes the direct sum. Let ~ be the ideal 
generated by all elements of the form 

(3) 

where [Xi' X) is the product of G. Then the universal enveloping algebra 
d(G) of G is given (or, equivalently, can be defined) by the quotient 

d(G) = ?7/~. (4) 

It is possible to prove that the algebra (4) satisfies all the conditions of 
Definition 1 (see, for instance, Jacobson (1962)). 

Of utmost importance for mathematical and physical considerations 
is the identification of the basis of d(G). The quantities 

M = X ® X ® ... ® X (5) 
s '1'2 IS 

are called standard (nonstandard) monomials of order s depending on 
whether the ordering 

(6) 

46 Note that no restriction is placed on the associative character of the algebra. 
Nevertheless, the definition is restrictive for reasons which will be identified via 
Definition 2 below and subsequent comments. 
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is verified (not verified). It is possible to prove that every element of d(G) 
can be reduced to a linear combination of standard monomials and (cosets 
of) 1. This yields the following fundamental theorem on enveloping 
associative algebras (Jacobson, loc. cit.). 

Theorem 1 (Poincare-Birkhoff-Witt Theorem).47 The cosets of 1 
and the standard monomials form a basis of the universal enveloping 
associative algebra d(G) of a Lie algebra G. 

The associative envelope d(G). as presented, is still abstract in the 
sense that the product of d(G) is the tensorial product Xi ® X, while the 
product used in physical (e.g., quantum mechanical) applicaiions is the 
conventional associative product XiX;. Consider then the algebra 

A(G) = F~ EB A(') EB A(2) EB ... 

A(s) = {X X ... X }, i, ~ i2 ~ ~ is' (7) 
'1'2 IS 

It is possible to prove that d(G) is homomorphic to A(G), in line with 
Definition 1. Thus the algebra A (G) can be assumed as the universal 
enveloping associative algebra of G with basis 

XI" X X, X X X , ... , 
'1 '2 '1 '2 '3 

(8) 
i, ~ i 2, i, ~ i2 ~ i 3 , 

and arbitrary elements 

(9) 

where the Ks are the generators of G. Notice that A(G) is infinite­
dimensional. The center of A(G) is the set of all polynomials P(X) 
verifying the property 

(10) 

for all elements Xi E G. Most important elements of the center are the 
so-called Casimir invariants of G. For additional study, we refer the inter­
ested reader to the mathematical literature on the topic, such as Jacobson 
(loc. cit.) or Dixmier (1977). 

We move now to the identification of the desired associative-isotopic 
generalization. 

Definition 2 (Santilli 1978c). The isotopically mapped universal 
enveloping associative algebra of a Lie algebra G is the set ((d, ,). 
d*, i, r*) where 

(i) (d, ,) is the universal enveloping associative algebra as per 
Definition 1; 

(ii) i is an isotopic mapping of G, iG = G*, as per Chart 4.2; 
(iii) d* is an associative algebra generally nonisomorphic to d; and 
(iv) r* is a homomorphism of G* into d*-, such that the following 

properties are verified. 
If d*' is still another associative algebra and r*' a homomorphism of 

G* into d*'-, a unique homomorphism y* of d* into d*' exists such that 

47 It should be indicated that the name" Birkhoff" in "Birkhoff's equations" and 
in "Poincare-Birkhoff-Witt theorem" refers to father (G, D. Birkhoff) and son 
(G. Birkhoff), respectively. 
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r*' = y*r*, and two unique isotopies i and l' exist for which ld = d* and 
i'd' = d*', i.e., the following diagram is commutative. 

y' 
d* - -----'---> d*'-

(11 ) 

Whenever an algebra d* verifies the conditions of the definition above, 
we write d*(G). Again, for simplicity, we assume that all Lie algebras are 
finite-dimensional, all algebras and fields have characteristic zero, and 
all Lie algebra bases are ordered. 

We are now in a position to elaborate on the insufficiency of Definition 1, 
and the need of Definition 2 for the physical and mathematical studies 
under consideration in these volumes. We shall indicate first the mathe­
matical aspect and then point out the physical profile. 

The main idea of Definition 1 is, beginning with the basis of a Lie 
algebra G, to construct an enveloping algebra d(G) such that [d(G)]­
~ G. The more general idea of Definition 2 is, beginning also with the 
basis of a Lie algebra G, to construct an enveloping algebra d*(G) such 
that the attached algebra [d* (G)] - is not, in general, isomorphic to G but 
rather is isomorphic to an isotope G* of G, and we write 48 

[d*(G)]- ~ G* '*' G. (12) 

The lack of unique association of a given basis with the envelope then 
ensures freedom in the realization of the associative product. Equivalently, 
we can say that within the context of Definition 1, a given basis essentially 
yields a single unique enveloping algebra and thus a single unique attached 
Lie algebra. On the contrary, within the context of Definition 2, a given 
basis yields all possible enveloping algebras and thus all possible Lie 
algebras. Still equivalently, we can say that, as is conventional in the 
contemporary formulation of Lie's theory, non isomorphic Lie algebras are 
expressed via the use of different generators and the same realization of 
the Lie product. On the contrary, within the context of the isotopic formula­
tion of Lie's theory, non isomorphic Lie algebras can be obtained via the 
use of the same basis and different realizations of the Lie product. We can 
therefore state that all possible enveloping associative algebras can indeed 
be introduced according to Definition 1, which is therefore suitable for the 
classification of Lie algebras (Chart 5.1). Definition 2 is more general 
inasmuch as, besides permitting the introduction of all possible enveloping 
algebras, it also permits us to construct non isomorphic algebras via the 
same basis, by therefore rendering necessary the use of the most general 
possible realizations of the associative product. 

On physical grounds, these mathematical mechanisms are at the 
foundation of the Lie isotopic generalization of Hamilton's and Heisen­
berg's equations for closed non-self-adjoint interactions (Section 6.3). 

48 Note that the scripture "'* (G) (rather than "'* (G*» is intended to stress 
precisely properties (12). 
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As now familiar, the definition of physical quantities is independent of 
whether or not the system possesses non potential interactions. When these 
interactions are admitted by the theory, they are represented via an alter­
action of the Lie algebra product. As a result, when the Hamiltonian 
description of a closed self-adjoint system 

. OA oE 
A(a) = [A E ] = - w~v-.!£! 

'tot oa~ oav ' 
(13) 

is generalized into a Birkhoffian form to represent the additional presence 
of internal, contact, nonpotential, interactions 

OA oE 
.4(a) = [A E ]* = - n~V(a) -.!£! 

'tot oa~ oav ' 
(14) 

the basis of the original Lie algebra remains unchanged, together with 
the underlying carrier space (IR x T*M) and the field, and only the real­
ization of the Lie algebra product (that is, the realization of the envelope) 
is permitted to change. As a result, the original Lie algebra G with basis 
Xi(a) over PM equipped with conventional Poisson brackets is mapped 
into the isotope G*, which preserves the original basis Xi(a) in the same 
local coordinates of T*M, although it is now equipped with the generalized 
Poisson brackets, i.e., 

G: [Xi' X)(a) = (Xi' X)(a) - (Xj ' X)(a) 

-+ G*: [Xi' X)ta) = (Xi' XXa) - (Xj ' X)ta)' (15) 

In the transition to the case of Heisenberg's equations, the situation is 
essentially the same and actually turns out to be more directly compatible 
with Definition 2. In fact for consistency of the theory with its classical 
image, during the generalization of Heisenberg's equations 

into the Lie-isotopic form 

,;, 1 _ _ 
A(a) = -: [A, H] 

I 

,;, 1 _ _ 
A(a) = -: [A, H]*, 

I 

(16) 

(17) 

the nonpotential forces due to charge overlapping are expressed via the 
Lie-isotopic generalization of the product 

G: [Xi' X) = XiXj - Xj' Xi -+ G*: [Xi' X)* = X/Xj - X/Xi' (18) 

Mechanism (18) is clearly along Definition 2 rather than 1. 
The alternative approach would be that of preserving the original 

simplest possible product and changing the basis in order to reach 
direct compatibility with Definition 1. However, this approach has a 
number of problematic aspects. First of all, it is centered on the loss of the 
direct physical meaning of the generators (e.g., the physical linear mo­
mentum in one dimension, p = m;, is replaced by abstract objects of the 
type p = IX exp fJr;). Secondly, the approach does not permit the achieve­
ment of the direct universality, as established in the preceding chapters. 
The removal of unnecessary restriction on the realization of the enveloping 
algebras is clearly preferable, both mathematically and physically. 

Owing to the relevance of mechanisms (15) and (18) for the program 
of these volumes, it is important to give an explicit example. To stress the 
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fact that the ideas are not necessarily restricted to nonpotential inter­
actions, we select an example of isotopy for the harmonic oscillator in a 
three-dimensional Euclidean space. 

In Chart 4.2 we pointed out that the nonisomorphic groups SO(3) 
and SO(2.1) are isotopic symmetries with respect to the Hamiltonians 

a = (r, p), m = k = 1, 

(19a) 

(19b) 

that is, they are symmetries leading to the same conservation laws of the 
components M b , b = x, y, z, of the angular momentum via the use of 
Noether's theorem. Let us review the case again and reinterpret it in light 
of Definitions 1 and 2. 

The Hamiltonian realization of the symmetry SO(3) of H(a) is based on 
the Lie algebra of conserved quantities 

80(3): [Mx' My] = M z ' [My, M z] = M x' [Mz ' Mx] = My (20) 

which is defined in terms of the conventional Poisson brackets 

[Mb , Mc] = (Mb , Mc) - (Mc' M b ) (21 a) 

(M , M ) = oMb e)' OMc; (bf ) = (+1 +1 0). 
b c orf J op J 

J ° +1 
(21 b) 

In the transition to the equivalent Hamiltonian H*(a), the conserved 
quantities Mb clearly remain conserved, but the SO(3) symmetry is 
broken and is replaced by the nonisomorphic symmetry SO(2.1). The 
problem now is the construction of a realization of the 80(2.1) algebra 
(the Lorentz algebra in (2 + 1) -dimensions) whose generators are those 
of the nonisomorphic 80 (3) algebra (the rotational algebra in three­
dimensions). This can clearly be achieved if and only if one alters the Lie 
algebra product. An explicit realization has been identified by Santilli 
(1979a) and is given by the well-known commutation rules 

80(2.1): [Mx' My]* = M z ' [My, M z ]* = -Mx' [Mz ' MJ* = My, (22) 

which are now expressed in terms of the generalized Poisson (Birkhoffian) 
brackets49 

(23a) 

oM oM 
(M M)* = __ b (Xi __ c 

b' cor; J op , 
J 

(23b) 

Note that the insistence in the preservation of the same realization of the 
Lie algebra product, in this case, would prohibit the representation of the 
conservation of the angular momentum via a symmetry of the Hamiltonian 
H*(a). 

The example considered therefore establishes that one given basis 
(the components of the angular momentum M = r x p, p = mi") can 
define a hierarchy of enveloping algebras and attached Lie algebras, 

49 See the Birkhoffian interpretation of the Hamiltonian isotopies of Section 5.3. 
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depending on the selected realizations of the products, which is fully in 
line with diagram (11) and Definition 2. The example actually establishes 
not only the insufficiency of Definition 1 but also that of Definition 2 itself. 
In fact the algebras (Mb , Me) and (Mb , Me)* are nonassociative, therefore 
demanding further generalization of Definition 1 for nonassociative 
enveloping algebras of type III (see the classification of the preceding 
chart), even though the existence of a realization within the context of the 
Lie-isotopic generalization is expected to exist. 

Stated in different terms, the example establishes the generalization of 
the conventional definition of the envelope of the Lie algebra of the 
group of rotations as per diagram (1) 

d-~.SII'-

\1 
50(3) 

into the Lie-isotopic form as per diagram (11) 50 

d*-~d*'-

(24) 

(25) 

which is expected for operator-type realizations (18). In addition, the 
example establishes that generalization (25) is only an intermediate step, 
prior to a more general nonassociative realization which is not considered 
here for the sake of brevity (see Definition 3.7.3 of Santilli (1978a, page 
354), as well as the more recent review (1979b, p. 1602». 

With a clear understanding of the new capabilities, as well as limitations, 
of the Lie-isotopic generalization, we pass now to the study of the general­
ization of Theorem 1. 

The construction of an isotope d*(G) of d(G) can be conducted as 
follows. Perform an isotopic mapping of the tensorial product Xi ® Xi 
of d(G), 

Xi ® Xi ~ Xi * Xi (26) 

that is, any invertible modification of the product ® via elements of d(G), 
of the base manifold, and of the field, which preserves the distributive 
and scalar laws (to qualify as an algebra), as well as the associativity of 
the product (to qualify as an isotopy), i.e., 

(27) 

50 By no means does diagram (25) exhaust all possible isotopies of the group 
of rotations. In fact, by recalling the properties of the isotopically related symmetry 
algebras from Chart A.10, we know that an isotope SO*(3) of SO(3) can even, in 
principle, be Abelian. 
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The product of two elements Xi * Xj and Xr * Xs is then given by 

(Xi * X) * (Xr * Xs) = Xi * Xj * Xr * Xs' (28) 

and no ordering ambiguity arises because of the preservation of the 
associative character of the original product. 51 

The isotope of the associative tensorial algebra Y can then be written 

Y* = F~ EB G EB G * G EB G * G * G EB . . . . (29) 

Let fJ1l* be the ideal of y* generated by 

(30) 

where [Xi' x.] * is the product in G*. An isotopically mapped universal 
enveloping a~sociative algebra d*(G) of a Lie algebra G can then be 
written. 

d*(G) = Y*/fJ1l*. (31) 

Structure (31) is, by construction, the universal enveloping associative 
algebra of G*, where G* is realized via an isotopic mapping of G. 

The remaining aspects of the theory of d*(G) are essentially given by 
an isotopic mapping of the corresponding steps for d(G) outlined above. 

The quantities 

M* = x. * x. * ... * x. , (32) 
s '1'2 's 

are called isotopically mapped standard (nonstandard) monomials 
depending on whether the following ordering condition 

i1 :::; i2 :::; ... :::; is (33) 

is verified (not verified). In the reduction of an arbitrary element of 
d*(G) 

(34) 

to standard monomials, a new feature arises, due to the fact that the 
emerging combinations of these latter monomials may occur via functions 
on the base manifold. This, in turn, is because the isotopy ® -+ * can be 
realized via functions of this type. We call these combinations F*-linear, 
to differentiate them from the F-linear combinations for the conventional 
case, that is, combinations only via elements of the field. As we shall see 
in the next chart, these F*-linear combinations have a precise interpreta­
tion within the context of the isotopic Lie's theory. Despite this general­
ization, the construction of the basis of d* (G) parallels that for d (G). 
because d*(G) is a conventional envelope for G*. The (inverse) isotopy 
then simply reduces G* to G. 

Theorem 2 (Isotopic Generalization of the Poincare-Birkhoff-Witt 
Theorem). 5 2 The cosets of ~ and the standard isotopically mapped 
monomials form a basis of the isotopically mapped universal enveloping 
associative algebra d*(G) of a Lie algebra G. 

51 Note that. for the more general nonassociative Lie-admissible generalization. 
the left- and right-hand sides of quantities (27) would be different. In this case all 
possible different orderings of the product must be taken into account. 

52 Santilli (1978c, Theorem 3.7.2. page 353) reprinted in Myung et al. (1978-1). 
See also Santilli (1979b. page 1580). 



162 Transformation Theory of Birkhoff's Equations 

The basis is thus given by 

XI', * XI' 2 , X * X * X '1 '2 '3 
(35) 

i,::;i2' i,::;i2 ::;i3 

The distinction between the tensorial realization and that used in practical 
applications is now lost. Indeed the mapping Xi ® Xj -+ XiXj can be 
considered, in the final analysis, a particular form of isotopy. 

The explicit form of the basis depends on the assumed type of isotopy 
® -+ *. In turn, this depends on the realization of the basis Xi of G, 
whether via matrices, quantum mechanical operators, or classical functions 
on phase space, etc. 

Suppose that the Ks are realized via matrices. Then an isotopy is 
provided by Equation (18). Let T be a polynomial on the Ks (not necessarily 
on the center of d* (G)). 5 3 Then the explicit form of basis (35) is given by 

X TX, X TX TX , ... 
'1 '2 '1 '2 '3 

(36) 

i, ::; i2 ::; i 3 , T = fixed. 

Needless to say, the isotopy XiXj -+ Xi TX is only one example of 
possible associativity-preserving modificatio~s of the product, and 
numerous additional forms exist. For instance, if W is an idempotent 
matrix (W2 = W), then another associative isotopy is given by54 

(37) 

The identification of additional isotopies is left to the interested researcher. 
A comment on the quantity ~ of Theorem 2 is in order here. As anticipated 

in the preceding chart, the element ~ E IF is no longer the unit element of 
the enveloping algebra under an isotopic mapping of the product. In 
fact, for isotopic envelope (36) the unit element (when it exists) is given by 

P = T-' (38) 

because only this quantity verifies the (left and right) rules ~ * * Xi = 
Xi * ~ * = Xi' Nevertheless, Theorem 2 has been formulated for the 
element ~ of d. This is to preserve the general rule of isotopy according 
to which the basis of the original algebra is preserved, including its unit 
element. The new mathematical (and physical) structure is represented 
via an isotopic alteration of the product. A reformulation of Theorem 2 in 
terms of the unit P is, of course, expected to exist, but its study is left 
to the interested researcher. For additional studies (within the context of 
the Lie-admissible generalization of Theorem 1) we refer the reader to 
Myung and Santilli (1979), where unit ~ is called the weak unit of the 
algebra. 

The mathematical aspect conveyed in this chart is that the knowledge 
of a given set of generators does not uniquely characterize a Lie algebra 
because of the freedom in the selection of the enveloping algebra. The 
physical aspect treated is that established in the text, that the knowledge 
of a Hamiltonian does not uniquely characterize the physical system 

53 In a number of applications, the element T cannot actually be expressed via 
F* -linear combinations of polynomials of the original basis, and as such, it is outside 
the original envelope. 

54 Intriguingly, isotopy (37) was introduced within the context of the studies for 
a possible isotopic generalization of Heisenberg's indeterminancy principle for 
strong interactions (see Chart 6.1). 
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because such a characterization also depends on the explicit form of the 
brackets of the time evolution. As we shall see, the implications are rather 
intriguing. For instance, the assumption of a Hermitian Hamiltonian H 
contrary to popular belief, does not ensure that the time evolution is 
unitary and thus does not' guarantees that H is observable. 55 

Chart 5.3 Isotopic Generalization of Lie's First. Second, and Third 
Theorems 

As is well-known, an effective historical, and technical way of presenting 
Lie groups and Lie algebras is according to their original derivation by 
Sophus Lie via his celebrated First. Second, and Third Theorems. In this 
chart we shall first review these theorems and then show that they admit a 
consistent Lie isotopic generalization which is compatible with the 
isotopic generalization of the enveloping algebra of the preceding chart. 
More specifically, the objective of this chart is to show that the notion 
of connected Lie transformation group admits a generalization such that, 
when reduced in the neighborhood of the identity, admits Lie algebras 
in their most general possible realizations of the product. 

The emerging isotopic generalization 56 of Lie's theory (that is, of the 
enveloping algebra, the Lie algebras, and the Lie groups) was used for 
the construction of the isotopic generalization of Galilei's relativity for 
closed non-self-adjoint systems of Section 6.3. Since the theory also 
admits operator-type realizations (Chart 6.1), its abstract formulation is 
expected to permit the joint treatment of closed, classical and quantum 
mechanical, nonpotential interactions, in much of the same way as the 
conventional abstract formulation of Lie's theory permits a joint treatment 
of closed classical and quantum mechanical interactions of potential/ 
Hamiltonian type. The underlying physical objective is therefore to 
achieve, in due time, the generalization of the contemporary notion of 
interactions, with corresponding generalization of relativities and physical 
laws (Appendix A.1 ). 

Definition 1. Let M be a Hausdorff, second-countable, analytic, 
N-dimensional manifold with local coordinates a#, J1 = 1, 2, ... , N (e.g., 
M = T*M or IR x PM). The set of transformations on M depending on 
r-independent parameters (]i, i = 1, 2, ... , r 

a --+ a' = I(a; (J) = W(a"; (Ji)} (1 ) 

55 The reader should keep in mind the physical arena of these volumes, that is, 
the study of systems with contact, non-self-adjoint forces. The Hamiltonian Ft can 
then represent the energy for, say, a proton in the core of a star. To avoid paradoxical 
situations (e.g., the setting up of the measuring apparatus in the core of a star), the 
theory should prevent conventional observability criteria, and call for a more 
adequate approach to measures under non-self-adjoint forces. 

56 Since the theory is fully Lie by conception, a number of researchers object at 
the term "generalization" and prefer different terms such as "reformulation." 
Others, on the contrary, believe that the mathematical and, most of all, physical 
implications are considerable and prefer the term" generalization." With the under­
standing that this is a question of semantics, and as such, immaterial for the objectives 
of these volumes, this author prefers the latter term, if for no other reason than to 
attract the researcher's attention to the need to formulate Lie's theory via rules more 
general than the simplest possible one of current use, [A. B] = AB - BA. where AB 
is the conventional associative product. 
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is called a Lie transformation group57 when the following conditions are 
verified. 

1. All functions F are analytic in their variables. 
2. For any given two transformations 

a' = f(a; 8), 

a set of parameters exists 

a" = f(a'; 8'), 

8"i = gi(8, 8') 

(2) 

(3) 

characterized by analytic functions gi called group composition 
laws, such that 

a" = f(a; 8"). (4) 

3. Transformations (1) recover the identity transformation at the 
null value of the parameters, i.e., 

a = f(a; 0). (5) 

4. Corresponding to each transformation (1), there is a unique inverse 
transformation 

a = f( a'; 8- 1 ), (6) 

and thus the transformations are regular. 
5. The combination of any transformation (1) with its inverse (6) 

yields the identity transformation. 
The number r of independent parameters is called the dimension of the 

Lie group. 

A central property of Lie transformation groups is that they are con­
nected; that is, they can be continuously connected to the identity. The 
primary idea of Lie's theorems is that, under the conditions indicated, the 
groups can be studied via their infinitesimal transformations, because a 
finite transformation can be recovered via infinite successions of infinitesi­
mal transformations. 

We shall review these ideas by following as closely as possible their 
original derivation. 5 7 Consider transformations (1) and their identity 

a' ,= f(a; 8), a = f(a; 0) (7) 

and perform the infinitesimal variations 

a' = a + da = f(a; 8 + d8); a + l5a = f(a; (58), (8) 

where d8 and 158 represent two independent variations of the parameters. 
We can then write 

d = Of(a; 8) d8 
a oe ' (9a) 

l5a = [Of( a; 8)] 158. 
()8 6=0 

(9b) 

57 The literature on Lie's theory is so large that it discourages even a partial 
outline. The most inspiring reading is the original work, e.g., Lie (1891, 1893, and 
1896). For a recent account, see Sagle and Walde (1973). 
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The transformation B + dB can be interpreted as the product of trans­
formations relative to Band bB, i.e., 

W + dW = q/(B, bB), (10) 

for which 

W + dBi = q/(B, 0) + [OqJi(B' (X)] bBi + . . . . (11) ° (XI "= 0 

Thus we can write 

dW = Ilj(B)bBi, i = [OqJi(B' (X)] . 
III .>. i v(X .= 0 

(12) 

The formula above represents a relation between dB and bB which can also 
be written 

bBi = }':(B)dBi, 

By putting 

I' = [Ofl'(a; B)] 
u i (a) oW ' 

8=0 

and by using Equation (13), Equation (4b) can be written 

dal' = u~(a)}.7(B)d8i. 

In this way we reach Lie's first theorem. 

(13) 

(14) 

(15) 

Theorem 1.57 When transformations (1) form a connected, m­
dimensional, Lie group, then 

oal' 
oBi = u~(a)}.7(B). (16) 

where the functions u~ are analytic. 

Let A(a) be an (analytic) function of the a variables. The infinitesimal 
Lie transformation a -+ a + da induces a variation of A(a) which can be 
written 

(17) 

The m-independent quantities 

° [Ofl'(a; B)] ° X = X (a) = ul'(a) - = -
k k k oal' oBk 8=0 oal' 

(18) 

are called the infinitesimal generators of the transformations (or of the 
group). For our later needs, we refer to the Ks defined by Equations (18) 
as the standard generators. 

We are now interested in the (necessary and sufficient) conditions for 
transformations (1) to constitute a Lie group. By using the converse of the 
Poincare lemma, they can be written 

02a'l' 02a'l' 

OBi oBi - oBi OBi' 
(19) 
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that.is 

(20) 

Thus 

oul' oul' 
= }/UV }..' _, - }/uv).l_k. 

I I 1 oaV 1 I I oaV (21) 

Therefore, 

(22) 

where 

k-rs r_ s ( O).k O).k) 
Gij - Ili ll j Oes oW' (23) 

The m 3 quantities G~ are independent from e. This can be seen by 
differentiating Equation (22) with respect to e. After some simple calcula­
tions, one then see that 

oGk 
~-O o()l - , i, j. k, I = 1, 2, ... , m. 

In this way we reach Lie's second theorem. 

(24) 

Theorem 2. If Xi' i = 1, 2, ... , m, are the generators of an m-dimen­
sional Lie group, they satisfy the closure relations 

[Xi' X)A = XiXj - XjXi = qjxk, 

where the quantities qj are called structure constants. 

(25) 

The symbol A in Equation (25) denotes an associative algebra with a 
conventional, associative product of operators XiXj . At closer inspection, 
this algebra emerges as being the universal enveloping associative algebra 
of the Lie algebra characterized by rule (25). 

The fundamental Lie's rule (25) can be explicitly written 

[Xi' Xj]A = [u:, O~I" u; o~vl = G~u~ o~., (26) 

where the product [Xi' X)A is Lie; that is, it satisfies the identities 

[Xi' X)A + [Xj' Xi]A = 0, (27a) 

[[Xi' X)A' Xk]A + [[Xj' Xk]A + Xi]A + [[Xk' Xi]A' X)A = O. (27b) 

By substituting into these expressions the explicit form of the Lie 
product in terms of the structure constants, Lie's third theorem is reached. 
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Theorem 3. 57 The structure constants of a Lie group in standard 
realization (1 8) obey the relations 

C7j + C~ = 0, 

C7jq, + CJ,qi + qqj = O. 

(28a) 

(28b) 

Theorems 1, 2, and 3 essentially provide the correspondence between a 
given (connected) Lie group G and its Lie algebra G. In particular, they 
allow the characterization of a Lie group in the neighborhood of the 
identity via the structure constants. We have here tacitly implied that 
different Lie groups may exist all admitting the same Lie algebra, that is, 
the same structure constants. However, among all Lie groups with the 
same Lie algebra only one is simply connected, called the universal 
covering group. For instance, group SU(2) (SL(2.C» is the universal 
covering group of the group of rotations SO(3) (the homogeneous 
Lorentz group SO(3.1». 

The inverse transition from a Lie algebra to a corresponding Lie group 
can be characterized via the inverses of Lie's first, second, and third 
theorems. We urge the interested reader to study the specialized literature 
on this topic, such as Gilmore (1974) and cited references. For the reader's 
convenience, we have outlined one of the simplest approaches, known as 
the exponential mapping. Write Equations (15) in the form 

oal' 
o8 i = u~(a),{7(8) = ,{7(8)Xk (a)a", 

and introduce the one-dimensional parametrization 

W = rrxk, a'" = a'''(8(T» = a"I'(T). 
Then we write 

a""(T) = T~(T)aV, 

To compute the elements T~(T). consider the equations 

da" = oa" dW = rxk,{r (8)X (a)a""(O) 
dT oW dT k r ' 

(29) 

(30) 

(31) 

(32a) 

(32b) 

However, a"V(O) are arbitrary initial values. Thus the solutions of the total 
differential equations 

(33) 

with initial conditions 

(34) 

can be written 

(35) 

yielding the exponential mapping 

a'" = e9kXk(a) IA a". (36) 
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If, instead of the variables of the base manifold, we have a function of the 
same variables, the procedure above also applies, and we can write 

A(a') = e6kXk(a) IA A(a). (37) 

In particular, the infinitesimal (standard) generators can be recovered by 
the rule 

x = [~ e 6ixi I ] . 
k oW A 6=0 

(38) 

Notice that the standard realization (36) of the group of transformations 
(1) is manifestly connected. The verification of the conditions to qualify 
as a Lie group is a simple but instructive exercise for the interested reader. 
Here we restrict ourselves to recalling that the product of two elements of 
group (36), 

(39) 

is characterized by the so-called 8aker-Campbel/-Hausdorff formula: 

Xp = X. + Xp + ·HX., Xp]A 
+ TI-[ (X. - Xp), [X., Xp]A]A + .... (40) 

It is significant for our program to indicate that a Lie algebra does not 
necessarily admit a corresponding Lie group. For specific examples of Lie 
algebras of this type, the reader may consult, for instance, Hurst (1968). 
In essence, the applicability of the exponential mapping in general, or the 
"integration" of a Lie algebra to a Lie group must satisfy certain (con­
vergence) conditions of the underlying infinite series, known as inte­
grability conditions. We also refer the reader in this respect to the special­
ized literature in the subject and, in particular, to Nelson (1959). 

We pass now to the Lie-isotopic generalization of Definition 1 and 
Theorems 1, 2, and 3. ThE) prior identification of the main objective may be 
useful here. Lie's crucial result is fundamental rule (25). This rule es­
sentially characterizes Lie algebras via the conventional associative 
product XiXj of vector fields Xi = u,({a) O/oa# on a manifold M. Our main 
objective is to generalize Definition 1 and Theorems 1, 2, and 3 in such a 
way as to characterize a Lie algebra via the most general possible associa­
tive product X. * X. of vector fields on a manifold. 

Of utmost i;"po:tance is the condition that the base manifold M with 
local coordinates a#, the parameters ei, and the generators Xi of the con­
ventional formulation of Lie's theorems are not changed in their isotopic 
generalization. This is due to physical requirements which are uncom­
promisable for the description under consideration. As we recalled earlier, 
the local coordinates of M customarily have a direct physical meaning 
such as the coordinates of the frame of the experimental setup; the 
parameters carry a direct physical meaning as measurable quantities such 
as time, angle, etc., and the generators directly represent physical char­
acteristics such as energy, angular momentum, etc. When the conventional 
description of self-adjoint interactions via Theorems 1,2, and 3 is broadened 
to permit the additional presence of the non-self-adjoint interactions, the 
frame of the experimental observer must be preserved; measurable 
quantities such as time and angles must be preserved; and physical 
characteristics such as energy and angular momentum must also be 
preserved unaltered. 

These objectives can be realized as follows. 
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Definition 2.58 Let 

G: a' ~ a" = f'(a; 8) (41 ) 

be an r-dimensional Lie transformation group G as per Definition 1. A Lie 
isotopic image or, simply an isotope G* of G is a set of transformations 
characterizable via a regular (N x N) matrix of analytic functions (g~(a; 0)) 
acting on (41) 

G*: a~ ~ a*~ = g~(a; 0W(a, 0) = f*~(a; 0) (42a) 

det(g~) i= 0, g~19=0 = (j~ (42b) 

which verify the following properties. (a) The transformations a* = f* (a; 8) 
constitute a Lie transformation group, by therefore verifying conditions 
1-5 of Definition 1. (b) The group G* is realized via the same base 
manifold, the same parameters and the same generators of G. (c) When 
reduced in the neighborhood of the identity transformation,59 the group 
G* can be characterized by a Lie algebra isotope G* of G. 

Condition (c) is introduced to avoid non-Lie, Lie-admissible algebras 
in the neighborhood of the identity transformations. As a matter of fact, it is 
precisely this possibility that permits the further generalization of Lie's 
theory of type III. 5 8 

Since the group of transformations f*~(a; 0) is a conventional, connected 
Lie group by assumption, it can be studied in the neighborhood of the 
identity as in the conventional case. The repetition of the analysis of 
f(a; 0) then yields the expressions 

da~ = u:~(a)).n8)dg; (43a) 

u:~(a) = I i:J~k g~(a; O)f'(a; 0) I . 
9=0 

(43b) 

In order to realize the isotopy, we then introduce the following reformula­
tion in terms of the quantities of G for given g~(a) functions 

det(g~) i= 0. (44) 

Note that the other possibility u:~ = g/uZ, even though conceivable 
(and actually more in line with Equations (43)), is excluded here be­
cause it would imply the redefinition of the generators Xk = u~(i:J/i:Ja~) ~ X: = g~u;(i:J/i:Ja~) which is contrary to the notion of isotopy under study. 
The analyticity of the transformations then trivially implies the following 
generalization of Lie's First Theorem. 

Theorem 4.58 If transformations (42) characterize an isotopic image 
G* of the Lie group G of transformations (41), then analytic functions 
g~(a) exist such that 

i:Ja*~ 
-. = gk(a)u~(a)).i 
i:J0' ' k " 

det 9 i= 0, (45) 

and the u~(a) functions are analytic. 

58 Santilli (1978c, Section 3.6, pp. 329-348), reprinted in Myung et al. (1978-1). 
See also Santilli (1979b, Section 1.2). 

59 The identity transformation of a Lie group should not be confused with the 
unit element of the universal enveloping associative algebra. As we shall see, the 
identity transformation of G* is preserved in a way compatible with the loss of the 
unit character of the element ~ for A*(G). 
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This theorem, though analytically trivial, has nontrivial implications. 
Indeed, it implies a modification of the structure of the group in the 
neighborhood of the identity, i.e., 

G: a'~ ~ a~ + (Puj(a) -+ G*: a*~ ~ a~ + (Jig{(a)uj(a), (46) 

which is precisely the desired situation. We must now identify the inte­
grability conditions under which such a behavior is still Lie in algebraic 
character, when expressed in terms of the generators and parameters of the 
original group. Under these conditions, we say that the quantities g{ of 
Equations (45) or (46) are isotopic functions with respect to G. 

The group G is Lie and thus admits the standard realization worked out 
earlier in this chart 

o 0 oa 
u~ - u~ - u~ - u~ = Ck u~ 
'oav / / oav I 1/ k oa~' (47a) 

(47b) 

(47c) 

(47d) 

The group G* is also Lie and thus can be realized in the standard form 

000 
u*v -- u*~ - u*v - u*~ = C*.kU*~-

I oav / / oav I 1/ k oa~ , (48a) 

( OA*k OA*k) C*k = J1*rJ1*s _r _ _ _ 5_ 

1/ I / o(}s o(}r' (48b) 

(48c) 

o 
X* = u*~-

k k oa~' 
(48d) 

However, this realization generally implies a change of the generators in 
the transition from G to G* 

o 0 
G: Xk = u~ - -+ G*: X* = u*~-k oa~ k k oa~ 

(49) 

and, as such, does not verify the conditions for isotopy. To achieve the 
objective under consideration, we introduce the following isotopy of the 
universal enveloping associative algebra, according to Chart 5.2, this 
time realized via functions on the base manifold. 

(50) 

Notice that this mapping does verify the conditions of isotopy, in the sense 
that it is realized via the generators of the original algebra, while preserves 
the associativity of the product, 

(51) 
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The fundamental Lie rule (47c) can now be rewritten 

00-
U V - * u~ - u~ - * u~ = Ck. u~ 

I oav J J Clav I IJ k 

Ck = C*rgk(a). 
1/ 1/ r 

(52a) 

(52b) 

The integrability conditions for the functions g~(a) to be isotopic, that is, 
to yield rule (52). can then be readily computed. Thus we reach the follow­
ing generalization of Lie's second theorem. 

Theorem 5. 58 Under the integrability conditions 

o 0 
gkuV _ g' - gkuV _ g' = grgsC' + C*rg' 

I k oav J J k Clav I J I rs IJ k (53) 

the generators Xi of an isotope G* of a Lie group G satisfy the isotopic rule 
of associative Lie-admissibility 

[Xi' X)A' = Xi * Xj - Xj * Xi = C7j (a)Xk, 

A*(G): Xi * Xj = g~XrgjXs' 

o 
X = u~(a)-

k k oa~' 

(54a) 

(54b) 

(54c) 

where the quantities C~(a). here called structure functions, are generally 
dependent on the (local) coordinates of the base manifold of the original 
group. 

In this way we reach an interpretation of the F*-linear combination of 
the isotopically mapped standard monomials of Chart 5.2. While in the 
standard realization (47c) the quantities Cfk are constants (the structure 
constants of a Lie group). the corresponding quantities which emerge 
after the reformulation of the same group G* in terms of the base manifold, 
the parameters, and the generators of G, acquire an explicit dependence 
on the local coordinates (the structure functions C7j (a)). This situation 
has numerous technical implications (e.g., from the viewpoints of the 
representation and classification theory) which are not considered here. 

The reformulation of Lie's third theorem is now straightforward. Indeed, 
the use of the Lie algebra laws for the isotopically mapped product (54a) 
yields the following property. 

Theorem 6. 58 The structure functions Cna) of the isotopic realization 
of a Lie group G* verify the identities ' 

C~ + C;, = 0, (55a) 

C~C~, + CJ,C~i + C~iC~j + [C~j,X']A' + [Ci"Xi]A' + [C~i,X)A' = O. 
(55b) 

The exponentiation from the Lie algebra to the Lie group can now be 
formulated in terms of the isotopic image of the exponential law (37). 
. 60 I.e., 

G· eOix., ~ G*' eOix., 
• I A ------r • I A*' (56) 

60 The proof that Equations (29)-(36) admit a consistent isotopic generalization 
is left to the interested researcher (Problem 5.10). 
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which is based on the following rule of Lie isotopy 

G: [Xi' X)A =, qjxk --+ G*: [Xi' X)A' = C7j(a)Xk (57) 

with consequential isotopically mapped 8aker-Campbell-Hausdorff 
formula 

X* = gX, (58a) 

X* = X: + X; + 1[X., Xp]A' + TI[(X. - Xp), [X., Xp]A']A' + . ", (58b) 

whose existence is ensured by that of the standard realization. The reader 
can now see the emergence of the F*-linear combination of the basis 
directly in the group composition law. Clearly, the enveloping algebra 
underlying expressions (57) is the isotope A*(G) of A(G). 

A simple example may be useful in illustrating the analysis of this chart. 
Consider the one-parameter group of dilations 

r' = f(r; 8) = e9r. 

The standard generator for this group is given by 

Indeed 

o 
X = r-. 

or 

(59) 

(60) 

e9r(Nor)r = [1 +~ (r~) +~ (r~)2 + .. . Jr = e9r. (61) 
1! or 2! or 

The group composition law is, in this case, trivial. i.e., 

(62) 

Consider now the one-parameter connected Lie group of nonlinear 
tra nsformations 

r* = f*(r; 8) 
r e9 

= '1 _ 8r = g(r, 8)f(r, 8), g = 1 - 8r' (63) 

with composition law 

r* r/(1 - 8r) r 
r** = f*(r*; 8') = 1 

- 8'r* 1 - 8'(1/r - 8r) 1 - (8' + 8)r 
(64) 

We are interested in realizing this group, as a necessary condition of 
isotopy, via the generator (60) of the different group (59). This implies the 
search for an isotopic function, that is, a function which multiplies gener­
ator (60) to yield the correct transformation law of f* as a solution of 
integrability conditions (53). Such a solution, in the case at hand, is 
simple and is given by r. Indeed, the isotopically mapped exponential 
law (56) yields the correct result 

eOr(r(o;or» = [1 + ~ (r2~) + ~ (r2~)2 + .. . Jr 
1! or 2! or 

r 
(65) 

1 - 8r 

Thus group (63) can be realized as an isotopic image of group (59). 
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The case considered above is trivial in the sense that all connected one­
dimensional Lie groups are (locally) isomorphic. Thus, to activate the 
truly non isomorphic character of the isotope with respect to the original 
group, one needs more than one dimension. Such a case is already pro­
vided by the realization of SO(2.1) as an isotope of SO(3), in Equations 
(23) of Chart 5.2. 

Chart 5.4 Isotopic Generalizations of Enveloping Algebras, Lie 
Algebras, and Lie Groups in Classical and Quantum 
Mechanics 

In this chart we shall first review the conventional realizations of enveloping 
associative algebras, Lie algebras, and Lie groups via Hamiltonian formula­
tions on a cotangent bundle PM (classical mechanics) and on a Hilbert 
space.Yf (quantum mechanics). We shall then present their Lie-isotopic 
generalizations and show that they constitute a realization of the general­
ized theory of Charts 5.1-5.3. 

The techniques of the I nverse Lie Problem presented in these volumes 
have established the universality of the applicability of Lie's theory to all 
local Newtonian systems satisfying certain topological conditions, 
without any restriction on their dynamics. In particular, the universality 
resulted in being of twofold nature. The first, essentially along Lie's original 
intuition, is established by Theorem 6.2.1 on the I ndirect Universality of 
Hamiltonian Formulations. The second is that established by Theorem 
4.5.1 on the Direct Universality of Birkhoffian Formulations, in which the 
universality is achieved without the use of the transformation theory. In 
this latter case, the underlying mechanics is necessarily of the generalized 
type, according to the following main lines 

Birkhoffian 
representation 

Hamiltonian 
representation 

P(t, a) 

oH(t, a) 
B~(t a) = w~V -.,c---'-, oav ' 

= 0, 

RO = (p, 0) 

oB(t. a) 
r~(t, a) = B~(t, a) + P(t, a) = Q~V(a) oav ' 

( li aR oR 11- 1 ) ~v Q~V(a) = _P - _. 
oa" oaP 

(1 a) 

(1 c) 

(1 d) 

(1 e) 

(1f) 

k = 1,2, ... ,N; a = x, y, z; /1, v = 1,2, ... , 2n = 6N; a E T*M. 
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A primary objective of this chart is not the indication that the Birkhoffian 
formulations constitute a realization of Lie's theory (which would be a 
trivial task). Instead, the objective is to indicate that the formulations 
constitute a Lie-algebra-preserving generalization of the Hamiltonian 
realization of Lie's theory. A fully similar situation exists at the level of 
operators in a Hilbert space, as we shall see. 

Part A: Classical Hamiltonian Realization of Lie's Theory. As reviewed 
in Chart 5.3, Lie's theory in its original conception is a theory of vector 
fields on a manifold. The classical Hamiltonian realization of the theory 
can therefore be identified via the following steps. 

(A.1). The manifold M is assumed to be the cotangent bundle T*M 
(phase space) with local coordinates a = (r, p), a = {aIL}, Il = 1,2, ... ,2n. 

(A.2) The vector fields are assumed to have the following Hamiltonian 
structure 

(2) 

where the G's are given functions on T*M. 
(A.3) The universal enveloping associative algebra of the vector fields 

has therefore the basis 61 

d:TI; XjXj ; XjXjXk ; •••. (3) 
i~j i~j5.k 

All other features of the theory can be derived as consequences of the 
above assumptions. I n fact. from Lie's First Theorem, one can derive the 
following canonical realization of the infinitesimal Lie transformations 

(4) 

From Equation (36) of Chart 5.3, one then has the canonical realization 
of the Lie transformation groups 

(5) 

which, in view of the convergent power series expansion, 

k 8k 8iOi 
eO Xk = n + - X + - XX + ... 

1! k 2! " ' 
(6) 

is clearly defined in the enveloping algebra d. The vector field character 
of realizations (2), (4), and (5) is self-evident. 

Not equally self-evident is the realization of the Lie-algebra product in 
terms of the conventional Poisson brackets 

G: [G j , G)PB = (Gj , G) - (Gj , G) = C7j Gk (7a) 

oG.oG 
(Gj , G) = -' -' = nonassociative (7b) 

ork OPk 

61 Note that the element ~ is the unit, trivially, because ~ Xk = Xk , and Xk ~ = 

o + Xk • Needless to say, the field of Hamiltonian realizations is the real lit 
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which, as indicated in Chart 5.1, has a nonassociative envelope. Thus it is 
not of the same algebraic type as the conventional Lie rule (25) of 
Chart 5.3, i.e., 

G: [X;, X)"" = X;Xj - XjX; = C7jXk , 

X;Xj = associative, 

oG a X. = w~v_,_. 
I oa v oa~ 

(8a) 

(8b) 

(8c) 

Realization (7) clearly calls for the Lie-admissible generalization of 
Lie's theory indicated in Chart 5.1 (that based on the nonassociative 
generalization of the enveloping algebra). With the understanding that a 
considerable amount of research remains to be done in order to reach a 
true technical understanding of the replacement of realization (8) with 
the conventional (7), we limit ourselves to the indication that the re­
placement appears to be in line with general property (14) of Chart 5.1, 
that, given a realization of a Lie algebra via a nonassociative envelope, an 
equivalent realization exists via an associative envelope, and vice versa. 62 

For completeness, as well as subsequent needs, we move now to a 
more detailed consideration of realization (4). Consider the one-param­
eter, contemporaneous transformations on PM, 

a~ -+ a'~ = a~ + beG~(t, a). (9) 

where the G's are analytic functions. The conditions that the transforma­
tions are identity isotopic with respect to the canonical Lie tensor (that is, 
canonical as per Definition 5.3.1) are given by 

oGV oG~ 
w~P - + - w'V = [a~, GV] + [G~, aV] = O. (10) 

oaP oa' 

The use of the converse of the Poincare lemma allows the computation of 
an explicit solution in the G~ functions, 

oG 
G~ = w~P - = [a~ G] 

oaP " 
(11 ) 

as well as the identification of the integrability conditions for transforma­
tions (9) to be identity isotopic, which can be written 63 

[a~, [aV, G]] + [aV, [G, a~]] + [G, [a~, aV]] = O. (12) 

By inspecting these latter equations, we conclude that the Jacobi 
identity can be interpreted as the integrability conditions for infinitesimal 
transformations to be canonical. This establishes an additional significance 
of the Jacobi identity in Newtonian Mechanics, besides characterizing 
the algebraic structure of Hamilton's equations. Integrability conditions 
(12) also indicate that the Lie algebra laws are at the very foundation of 
the infinitesimal canonical transformations. 

62 This is a conjecture at this time; that is, we know of a number of cases in which 
the property is true, but we do not know whether it is a general property for all 
possible realizations of Lie algebras. 

63 See Problem 5.12. 
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Each given infinitesimal canonical transformation characterizes a 
variation of a dynamical quantity in phase space, say A(a), given by 

OA 
()A = A(a + ba) - A(a) = - ba~ = be[A, G]. (13) 

oa~ 

However, infinitesimal first-order variations are first-order differentials 
(Section 1.1.3). We can therefore write 

dA 
de = [A. G]. (14) 

The scalar function G of Equations (13) or (14) has a rather crucial 
methodological function. It is called the generator of the infinitesimal 
canonical transformation,. in the sense that, whenever such a function 
is assigned, a (unique) infinitesimal canonical transformation is then 
characterized via either rule (11) or (13). 

We now review the following most important cases of infinitesimal 
canonical transformations. 

(a) Infinitesimal time evolutions. Assume that 

Then yve can write 

be = M, G=H. 

bqk = M[qk, H] = Mil, 

bPk = M[Pk, H] = MPk, 
()A = M[A. H] = MA. 

(15) 

(16) 

Thus the infinitesimal evolution in time of a Newtonian system represented 
by the Hamiltonian H can be described via an infinitesimal canonical 
transformation with the Hamiltonian as the generator and M as the 
parameter. 

(b) Infinitesimal space translations. Assume that 

G = Pi' i = fixed. (17) 

Then we can write 

bqk = bqi[qk, Pi] = bqk, 

bPk = bqi[Pk' pJ = 0, (18) 

()A = bqi[A. Pi] = bqi oA. 
oq' 

Thus an infinitesimal translation in the qi component can be described 
via an infinitesimal canonical transformation with the generalized mo­
mentum Pi as generator and bqi as parameter. 

(c) Infinitesimal space rotations. Assume now that 

(19) 

Equation (13) produces the known expressions of infinitesimal rotations 
in a plane 

bx = -yboc, 
by = xboc, 

bpx = -pyboc, 

bpy = pxboc. 
(20) 
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More generally, we can state that an infinitesimal rotation blX along an axis 
n in a three-dimensional Euclidean space can be described via an in­
finitesimal canonical transformation whose generator is the component 
of the angular momentum along n, M . n, and whose parameter is blX. 

We move now to a more detailed study of realization (5). Under 
infinitesimal transformations (4), the local variables transform according 
to the rule 

dall 

dB 
J.1 = 1, 2, ... , 2n. (21) 

Consider a (finite) canonical transformation to a new set of variables, say, 
a~. By recalling that these transformations are identity isotopic with respect 
to the conventional Poisson brackets, we can write (for details, see 
Sudarshan and Mukunda (1974, pp. 51-54)): 

dall 

dB 

However, 

dG 

dB 

We can therefore write 

(22) 

[G, G] == 0, (23) 

(24) 

The above equations can be interpreted as a system of 2n, first-order 
ordinary differential equations in the unknowns all with a~ as the initial 
conditions. Under our smoothness assumptions, a formal solution can be 
written via the power-series expansion 

B B2 
all = a~ +"1"! [a~, G](ao) + 2 [[a~, G](ao)' G](ao) + ... , (25) 

which represents the construction of a finite canonical transformation, 
a~ -> all, via an infinite number of successive infinitesimal transforma­
tions. 64 

Expansion (25) is customarily written in the closed form (5), i.e., 

all = exp (BW.P ~ ~)all , 
~a~ ~a~ 0 

The extension of Equation (26) to the transformation 
quantity in phase space is immediate and looks like 

( ~G ~ ) 
A(a) = exp Bw·P ~aP ~a. A(ao)· 

Suppose now that 

B = t, G = H, 

(26) 

of an arbitrary 

(27) 

(28) 

64 On a comparative basis with expansion (6), note that expansion (25) is on a 
nonassociative algebra, while (6) is on an associative algebra. It is remarkable that, 
despite this difference, the final exponential form is the same. 
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Equations (26) and (27) then become 

aP (t) = exp (tOfP oH ~) aP , 
oaP oa" 0 

( oH 0 ) A(a) = exp tofP -P - A(ao)' 
oa oa" 

(29a) 

(29b) 

Thus, besides infinitesimal time evolutions (16), a finite time evolution of a 
Newtonian system represented by the Hamiltonian H can be obtained via 
an infinite succession of infinitesimal canonical transformations with the 
Hamiltonian as generator and time as parameter. The extension of this 
occurrence to other finite transformations of physical relevance is 
immediate. 

Part 2: Classical Lie-Isotopic Realization of Lie's Theory. As indicated 
in Chart 5.3, the Lie-isotopic generalization of Lie's theory is a theory in 
which the vector fields on manifolds of the conventional formulation 
remain unchanged, and only the associative product of the envelope is 
altered in an associativity preserving way. With respect to steps A.1, A.2, 
and A.3, we can therefore characterize the theory via the following 
assumptions. 

(A*.1) The manifold PM and, most importantly, the local variables of 
the Hamiltonian formulation remain unchanged. 

(A*.2) The vector fields Xk and the parameters ()k of the Hamiltonian 
formulation also remain unchanged. 

(A*.3) The universal enveloping associative algebra.91 of the Hamilton­
ian description is changed into the isotope characterized by Theorem 2 
of Chart 5.2 and Theorems 4, 5, and 6 of Chart 5.3, i.e.,65 

.91*: ~; X' 
I' (30a) 

i5:j i'5.j'5. k 

(30b) 

det(gj) =I 0; 
oG 0 X. =wPV _ ' _. 

1 oav oaP 
(30c) 

The fact that the Birkhoffian generalization of Hamiltonian formulations 
is a realization of the theory is established by the following isotopic 
interpretation of the Birkhoffian vector fields according to rule (44) of 
Chart 5.3, i.e., 

oG 0 oG 0 X* = QPV(a) __ k _ == gi wPV _, _ 
k oav oaP k oa v oaP 

(31) 

where, of course, the g's verify the integrability conditions of Theorem 5 
of Chart 5.3. 

65 Note that we have omitted the functions gj on the left of the elements 
Xi' Xi * Xi' etc. This is permitted because the basis is defined via F*-linear com­
binations, that is, combinations via functions on the base manifold (Chart 5.2). Note 
that the element ~ is not the unit, but rather the weak unit (Myung and Santilli 
(1979». 
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We shall say that assumptions A*.1, A*.2, and A*.3, with the isotopic 
functions characterized by Equations (31), characterize a classical Lie­
isotopic (that·is, Birkhoffian) realization of Lie's theory. All other features 
can be obtained as a consequence of the specified assumptions. For 
instance, from Theorem 4, one can derive the following realization of 
infinitesimal Lie-isotopic transformations via generalized canonical 
transformations 

cG 
a~ --> a'~ = a~ + i5()kQ~v __ k. 

cav 
(32) 

Similarly, from Equation (56) of Chart 5.3, one has the following Birk­
hoffian realization of the Lie-isotopic transformation groups66 

(Jk * X ((Jk * X )2* G*: e9k ' Xk I = ~ + ___ k + k + . . . (33) 
d' 1 ! 2! 

which is clearly defined in d*. 
We do not exclude the reinterpretation of Equations (30) or (33) as 

providing a realization of the conventional formulation of the enveloping 
algebra and of Lie's theory, that based directly on the Birkhoffian vector 
fields X:' In fact. this interpretation is quite natural. However, we are 
primarily interested in identifying tools for the theoretical treatment of 
the physical implications of non- Hamiltonian forces, and this can best be 
done by identifying the departures from Hamiltonian formulations, as 
indicated earlier in this chart. 

The Lie-isotopy applied to rule (7) yields the Birkhoffian realization of 
Lie algebras 

G*: [G i , G)~PB = (G i , G)* - (Gj , G)* = C7j (a)G k , 

(G i , G) * = non associative isotopic 

(34a) 

(34b) 

which, again, has a nonassociative envelope. The corresponding associa­
tive isotopic rule is given by 

G*: [Xi' X)d' = Xi * Xj - Xj * Xi = C7/a)Xk (35a) 

Xi * Xj = associative isotopic. (35b) 

The argument is now clear. Since rule (34) is characterized by the 
non associative isotopy (G i , G) --> (G i , G)*, we must have, for con­
sistency, a corresponding associative isotopy XiXj --> Xi * Xi" Nevertheless, 
let us state again that a full understanding of the transition from rule (35) 
to (34) will be achieved only after the development of the Lie-admissible 
generalization of Lie's theory. 

We move now to a more detailed study of the infinitesimal transforma­
tions (32) for the intent of showing that they provide a step-by-step 
generalization of the infinitesimal canonical transformations. 

66 Expansion (33) can be written in a number of ways. Explicitly, the expansion 
reads 

(Jigrx fJigrX (JigsX 1+--'-'+ I r 15+ ... 

1! 2! 
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The conditions that transformations (9) are identity isotopic with 
respect to Birkhoffs tensor n~V(a) (that is, generalized canonical'as per 
Definition 5.3.2 or 5.3.3) can be written 

[a'~, a"na) = n~V(a). 

and, to first-order in the parameters, are given by 

oGv oG~ on~v 
n~p - + - npv + GP -- = o. 

oaP oaP oaP 

(36) 

(37) 

Thus, compared with the Hamiltonian case (10), we see the appearance 
of an additional term due to the a dependence of the n-tensor. Despite 
that. the generalization of the Hamiltonian case is straightforward. The 
use of the converse of the Poincare Lemma yields the solution 

G~ = n~v oG. 
oav 

(38) 

The function G can therefore also be called the (infinitesimal) generator 
of the transformation. 

The integrability conditions are then predictably given by the Jacobi ~ 
law for the generalized product, i.e., 

[a~, [a V , G] *] * + [aV, [G, ~] *] * + [G, [a~, aV] *] * = O. (39) 

As a direct generalization of the Hamiltonian case, we have the following 
variation of a function A(a) on T*M 

OA 
bA = - (ja~ = MJ[A G]* 

oa~ " 
(40) 

with the following important cases. 

1. The Birkhoffian B can be interpreted as the generator of the 
infinitesimal translation in time 

bA = M[A. B]*. (41 ) 

2. The linear momentum component Pk can be interpreted as the 
generator of translations in the q'< component 

(42) 

3. The angular momentum component M . n can be interpreted as 
the generator of a rotation along the axis n 

bA = (ja[A. M . n]*. (43) 

The Birkhoffian generalization of the finite transformations (26) is also 
straightforward. Transformations (32) imply 

da~ 
de = [a~, G]ra)· (44) 

By repeating the analysis according to Equations (23)-(25), one reaches 
the formal solution 

() (}2 
a~ = a~ + 11 [a~, G]rao) + 2! [[a~, G]ra)' G]* + . . . (45) 
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which can be written in closed form (33), i.e., 

all = exp(e * wOP oG ~)I all = exp(eg(a)w"P oG ~)I all (46) 
oaP oa" d' 0 oaP oa" d 0 

g(a)w"p = naP. 

Thus, as it occurs for Hamiltonian formulations, the finite time evolution 
of Birkhoffian vector fields can be obtained via an infinite succession of 
infinitesimal generalized canonical transformations with time as the 
parameter and the Birkhoffian as the generators, i.e., 

all(t) = exp (t * wop oB ~) I all 
oaP oa" d' 0 

A(a) = exp(t * wop o~ ~)I A(a o). 
oa oa d' 

(47a) 

(47b) 

The direct universality of the above time evolution from Theorem 4.5.1 
should be kept in mind. 

We move now to an aspect of our analysis which is particularly im­
portant, both classically and quantum mechanically. It is given by the 
identification of the implications of nonpotential forces in the algebra 
of physical quantities. 

We shall conduct the analysis for the algebra which is at the foundation 
of Galilei's (as well as Einstein's special) relativity: the algebra of the 
group of rotations SO(3) in an Euclidean three-dimensional space 
M = £(3). First. let us consider the conventional Hamiltonian case for 
closed self-adjoint systems i.e., conservative systems (see Section 6.3 for 
detail). In this case the Lagrangian and Hamiltonian have the conventional 
structure 

Lf~tv = Lfree(r) + Lint(r); Hf~tV = Hfree(p) + Hint(r); (48) 

the canonical momentum coincides with the physical linear momentum 

(49) 

the canonical angular momentum also coincides with the physical one, 

M = Mean = r X pean == MphyS = r X mr (50) 

yielding the transformation rule 

(51) 

The canonical realization of the Lie algebra and of the Lie group of rotations 
are then given by the familiar rules 

i, j = x, y, z (52a) 

SO(3): exp ekw"p __ k - , ( oM 0) 
oaP oa" 

a=(r,p) (52b) 

where the e's are Euler's angles. 
However, as indicated a number of times, the insistence on the preserva­

tion of equations of conservative type is literally equivalent to the accept­
ance of the perpetual motion in our environment. When excessive approxi­
mations are avoided, the systems are closed, essentially non-self-adjoint 
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for which the canonical formalism is not directly applicable, yet conven­
tional total conservation laws are valid (Section 6.3). 

We are interested in achieving a theory of rotations for the latter systems 
which, while being still of Lie type, is formulated in terms of quantities 
possessing a direct physical meaning. Both conditions are achieved by the 
Lie-isotopic/Birkhoffian formulations under which the transformation of 
physical quantities is given by 

M = MJ· [A, MnPB' 

while the isotopically mapped Lie algebra and Lie group are 

80*(3}: [Mi' M)~PB = C1;(a}Mk , 

SO*(3}: eXP(OkQ'P(a} oMk ~). oaP oa' 

(53) 

(54a) 

(54b) 

The important point is that. in the transition from the theory of rotations 
of closed self-adjoint systems to that of more general closed non-self­
adjoint ones, all physical quantities, r, p, M, etc., remain unchanged. Once 
this point is understood, one can see the implications of the nonpotential 
forces for the theory of rotations. In fact. isotopes (54) depend explicitly 
on the nonpotential forces and vary from system to system. Also, recall 
that. in general, 80*(3} is not isomorphic to 80(3}, as expected. Finally, 
recall that 80*(3} is a covering of 80(3} in the sense of footnote 24, as 
desired. 

The extension of isotopes (54) to other transformations, such as 
translations in space and time, boosts, etc., then leads to the notion of 
isotopic generalization of Galilei's group. The further conditions that 
such a group leaves invariant the system leads to the isotopic generaliza­
tion of Galilei's relativity of Section 6.3. 

The relativistic extension of these ideas is under study. 

Part 3: Quantum Mechanical/Heisenberg's Realization of Lie's Theory. 
For completeness, we briefly indicate the main ideas of Heisenberg's 
Mechanics when seen from the viewpoint of the preceding analysis. With 
the understanding that the rules given below are insufficient for the 
characterization of quantum mechanics, those relevant for Lie's theory 
and its physical interpretation are the following. 

(B.1) The carrier space is given by a Hilbert space :Yt and Hermitian 
operators i', p, R, lVI, etc., possessing a unique, direct, physical interpreta­
tion (position operator, linear momentum operator, energy operator, 
angular momentum operator, etc.}.67 

(B.2) The vector fields of Lie's theory are realized via said Hermitian 
operators 

(55) 

67 No rigorously established rule exists for identifying the physical meaning of 
given operators. The issue is settled either via an ad hoc assumption, or, more 
credibly, via arguments of similarity with the classical case. In this latter case, the 
complete set of observable must be taken into account. For instance, the operator 
ji = iO/or cannot be claimed to represent the physical linear momentum unless the 
Hamiltonian operator has the conventional structure H = -"iiP + V. In fact. if the 
Hamiltonian has a generalized structure, say H = jif(r)jj + e(f), one can establish 
that the classical quantity p does not represent the linear momentum. Regardless of 
whether or not one uses the realization p = i%r, the mathematical algorithm jj 
cannot represent, for consistency, the quantum mechanical linear momentum. 



Transformation Theory of Birkho/f's Equations 183 

(B.3) The universal enveloping associative algebra is then given by 68 

(56) 
i~i ;5,j5. k 

Unlike the Hamiltonian case, the enveloping algebra identifies directly, 
without redefinitions, the Lie algebra of the observables 

(57) 

Explicitly, in this case we do not have to reinterpret Lie's rule of associative 
Lie-admissibility, Equations (8), with Hamilton's rule of nonassociative 
Lie-admissibility, Equations (7). In fact, the universal enveloping associa­
tive algebra.9} truly sets the entire realization of Lie's theory, beginning 
with the Lie algebra G as the attached algebra .9}-. 

The realization of Lie groups is then given by the following unitary 
transformations 

(58) 

Again, a subtle but important difference with the Hamiltonian case exists. 
The carrier space on which Hamiltonian group (27) acts is a conventional, 
one-sided module (a left module, according to the conventional application 
of expansion (5) to the right). The carrier space on which Heisenberg's 
group (58) acts, is actually a bona fide two-sided module. 69 In fact, both 
the left and right actions are needed to reach, in this case, a Lie algebra 
in the neighborhood of the identity. 

We hope that these remarks indicate the structural differences between 
Hamilton's and Heisenberg's realizations of Lie's theory. In turn, these 
differences may be of value in understanding the lack of achievement until 
now of a resolution of the problem of quantization. 43 

Keeping an open mind on this, we can say that the conventional 
realizations of physically relevant Lie algebras in Hamilton's and Heisen­
berg's mechanics are similar. For instance, for the case of the Lie algebra 
of rotations, we have 

SO(3): [Mi' M).J = isijkMk; IV! = r x p (59) 

which should be compared with rules (52a). 

Part 4: Lie-Isotopic Generalization of Heisenberg's Realization. For 
completeness, we will briefly indicate the rule of Lie-isotopy which was 
used by Santilli (1978c) for the generalization of Heisenberg's equations 
given by Equations (18) of Chart 5.1 (description of particles in mutual 
penetration). Evidently, the isotopy is algebraically similar to that for the 
transition from Hamilton's to Birkhoffs equations and can be expressed 
according to the following rules. 

(B*.1) The Hilbert space of Heisenberg's formulation, and, more 
particularly, the local operators of direct physical meaning r, p, are 
preserved, although in a predictable generalized way (Chart 6.1). 

(B*.2) The generators Xk and the parameters (}k of Heisenberg's 
formulation are also preserved in a generalized meaning (Chart 6.1). 

(B*.3) The enveloping associative algebra .J of Heisenberg's formula­
tion is changed into the isotope 

.9}*.~. X' X*X' X*X*X···· ., k f i jf I j k' 

Xi * Xj = X/Xi' r = fixed. (60) 

68 The field is now, evidently, that of complex number IC. 
69 Santilli (1979c). 
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Unlike the Birkhoffian case, the enveloping algebra ;}* now directly 
characterizes the Lie algebra via the rule of isotopic associative Lie­
admissibility 

<3*: [Xi' X)"". = C~(a}Xk· (61) 

The isotopic realization of Lie groups is then given by 

(62) 

which clearly preserves the two-sided structure on :Yt'. The isotopic 
realization of the Lie algebra of rotations is then given by 

(63) 

which should be compared to rule (59). 
The nontriviality of the generalization can be indicated via the fact, for 

instance, that transformations (62) are not necessarily unitary, trivially 
because the operators rand Xk do not necessarily commute. In turn, the 
nonunitarity of the theory confirms that it is the desired "quantum 
mechanical image" of the Birkhoffian Mechanics. In fact. as stressed 
earlier, this mechanics is of the noncanonical type. 

The state of the art on the studies for a possible generalization of 
quantum mechanics along the lines under consideration here was pre­
sented at the First International Conference on Nonpotentiallnteractions, 
held at the Universite d'Orleans, France, from January 5 to 9, 1982. We 
refer the interested reader to the proceedings of the conference (1982). 
as well as to those of the preparatory workshops on Lie-Admissible 
Formulations (1979, 1981). For a brief and rudimentary review of the 
main ideas see Chart 6.1. 

Chart 5.5 Darboux's Theorem of the Symplectic and Contact 
Geometries 

For the reader's convenience, we formulate here (without proof) Darboux's 
Theorem, which plays an important role for Theorem 6.2.1 of indirect 
universality of Hamilton's equations (as well as for quantum mechanical 
considerations). We shall present this theorem, first, within the context of 
the symplectic geometry, and then within the context of the broader con­
tact geometry. 

Theorem 1. (See, for instance, Abraham and Marsden (1967, 1978 
edition, page 175.) Suppose 02 is a nondegenerate two-form on a 2n­
dimensional (analytic, for the context of this volume) manifold M. Then 
the form 02 is closed, d0 2 = ° (and thus symplectic) if and only if a 
chart (U, qJ) exists at each mE M such that qJ(m} = 0, and with qJ = 
(x', . .. , xn, y" . .. , Yn) we have 

021U = w2 = dYk /\ dxk = ~~vda~ /\ dav (1) 

k=1,2, ... ,n; /l,v=1,2, ... ,2n; a=(x,y}, 

(w~.) = (~nxn 
nxn 
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The formulation of this theorem in local coordinates has also been 
studied by Pauli (1953), and called Pauli's theorm in Jost (1964). In the 
language of this volume, this formulation can be expressed as follows. 

Theorem 2. Given an analytic and regular Birkhoff 's (symplectic) tensor 
on a 2n-dimensional manifold with local coordinates a = (r, p) 

(2) 

smoothness- and regularity-preserving transformations of the local 
variables 

a~ -+ a'~ = a'~(a) (3) 

always exist under which tensor (2) reduces to the fundamental form, i.e., 

(4) 

It is significant to point out that Darboux's charts, or reductions (4). are 
not unique. 

Corollary 2a. The transformations of reduction (4) are always defined 
up to the infinite family of all possible canonical transformations. 

Indeed, canonical transformations are identity isotopic with respect to 
w 2 ; that is, they preserve the values of the tensor w~v (Definition 5.2.1). 
This implies the existence of an infinite family of possible transformations, 
all capable of performing reduction (4). for each given tensor (2). 

Also, the reader should keep in mind that Darboux's theorem is local in 
character. This is precisely in line with Theorem 6.2.1, as we shall see. 
We consider now the extension of Darboux's theorem to the contact 
geometry. 

Theorem 3. (See, for instance, Abraham and Marsden (1967, loc. cit., 
1978 edition, page 372). Let (M, ( 2 ) be an exact contact manifold 
(Chart 4.4) with primitive form R l' dR 1 = O2 , Then. at each point m E M, 
a chart (U, <p) always exists with local coordinates <p = (t', X1, ... , xn, 

y l' ... , y n) and a function H on M, such that 

R 1 I U = Yk dxk - H(t', x, y)dt'. (5) 

We have formulated the theorem for exact contact manifolds. As pointed 
out in Section 1.1, the condition is essential to compute the action 
functional of self-adjoint first-order systems. 

Also, the reduction customarily considered in the available treatises of 
differential geometry is of the particular type 

(6) 

where the Hamiltonian is clearly H = 1. The discrepancy with Equation 
(5), however, is only apparent. Forms (5) and (6) are indeed related, 
by a canonical transformation. 
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Finally, we should indicate the fact that (whether or not the contact 
manifold is exact), the transformations (charts) of Theorem 3 treat time 
and the a variables on equal footing; that is, they are of the type 

a = (t, a) = (t, r, p) -+ a' = a'(a) = (t'(t, r, p), x(t, r, p), y(t, r, p)). 

(7) 

The reformulation of Theorem 3 in the language of this volume is then 
self-evident. 

Theorem 4. Given an analytic Birkhoff's tensor in (2n + 1) -dimension 
and of maximal rank 

0 
dB dR v 
-+-
dav dt 

(n~v) dB (8) 
da~ 

dR~ dR v dR~ 

dt da~ daV 

analytic and invertible transformations (7) always exist under which the 
tensor assumes the Hamiltonian form 

dH) da'V . 

OJ~v 

(9) 

Theorem 4 above, once matched with Theorem 4.5.1 (Direct Univer­
sality of Birkhoffian Formulations) provides the proof of the indirect 
universality of Hamiltonian formulations given in Section 6.2. 

In this way we confirm that, given a system which is non-Hamiltonian 
in the local variables (t, r, p) of the observer, the system can be reduced to a 
Hamiltonian form in new variables (t', r', p') via the use of a Darboux's 
transformation and" intermediate use" of the Birkhoffian representations. 
In particular, the new Hamiltonian, if needed, can assume a conventional 
form in the new variables, including the "free" form H' = 1P'2. As a 
result, Darboux's transformations are useful for the quantization of non­
self-adjoint systems, in the sense that they permit the use of the con­
ventional Heisenberg's equations (as well as other equations of quantum 
mechanics) in the new variables. 

However, let us stress that the approach implies the necessary loss of 
direct physical meaning of the local variables and the functions defined 
on them (e.g., H would not represent the energy of the system). If the 
experimenter insists in the preservation of the local variables actually 
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used in the measures, one is forced to transform the Hamiltonian repre­
sentations in (t', r', p') into an equivalent form in the original variables 
(t, r, p), via the inverse of Darboux's transformation, but this transforma­
tion is noncanonica/, as we know from this analysis, and the return to the 
Birkhoffian representation is then unavoidable. Needless to say, the 
situation which is expected at the quantum level is the use of a non unitary 
transformation under which the conventional associative product of 
quantum mechanical operators is mapped into an isotopic form of the 
type presented in the preceding charts. In turn, this would confirm that 
the quantum mechanical treatment of non-self-adjoint systems appears to 
call for a suitable generalization of quantum mechanics, perhaps along 
the line of the Lie-isotopic generalization of Lie's theory indicated earlier. 

Chart 5.6 Some Definition of Canonical Transformations 

A considerable variety of definitions of canonical transformations exists 
in the physical and mathematical literature. A few representative definitions 
are collected here for the reader's convenience. 

(1) A transformation 

q -+ q'(t, q, p), p -+ p'(t, q, p) (1 ) 

is canonical when a new Hamiltonian H(t, q', p') exists for which 

oH oH 
i/ = op" p' = - oq'· 

This definition was adopted, for instance, by Goldstein (1950, 
page 239) and by Landau and Lifshitz (1960, page 146). 

(2) A transformation (1) is canonical when the difference P~ dq'k 
- Pkdqk is the total differential of a function. This definition was 
adopted, for instance, by Whittaker (1904, page 234). 

(3) A transformation (1) is canonical when the identity 

fJp'dq' - dp' fJq' = fJpdq - dpfJq 

holds for any two independent variations fJ and d. This definition 
was adopted by Pars (1965, page 434). 

(4) A transformation (1) is canonical when it is canonoid with 
respect to all Hamiltonians. This definition was adopted by Saletan 
and Cromer (1971, page 188). 

(5) A transformation (1) is canonical when the fundamental Poisson 
(Lagrange) brackets transform contravariantly (covariantly) and 
invariantly. This definition was adopted, for instance, by 
Sudarshan and Makunda (1974, page 40). 

(6) A transformation (1) is canonical when it characterizes a Lie 
identity isotopy (symplectic identity isotopy) of the fundamental 
Lie tensor or (of the fundamental symplectic tensor W~V). This 
definition was adopted by Santilli (1978c) (see also Section 5.3). 

(7) Let (M,w 2 ) be a symplectic manifold and (lRx"M,w 2 ) the 
corresponding contact manifold. A smooth mapping F: IR x M 
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--+ IR x N is called a canonical transformation if and only if each of 
the following holds: (i) F is a diffeomorphism; (ii) F preserves 
the time, i.e., F * t = t; and (iii) a function KF E (t"" (IR x M) exists 
such that F * W'2 = W 2 + dK F /\ dt. This definition was adopted, 
for instance, by Abraham and Marsden (1978, page 138). or 
Loomis and Sternberg (1968, page 560). 

(8) A diffeomorphism T* (M) => U 1 !4 U 2 C T* (N) that takes the 
fundamental symplectic form w21u1 to w21u2 is called a local 
canonical transformation. If U 1 = U 2 = P (M , then l/I is called 
a canonical transformation. This definition was adopted by 
Thirring (1978. p. 78). 

It should be stressed that these definitions are not equivalent among 
themselves. 

For instance, Definitions (1) and (5) are not equivalent but Definitions 
(5) and (7) are equivalent. Note that, to incorporate Galilei's transforma­
tions,7 one can generalize Definition (7) above to the form F * dt = dt on 
IR x PM. Similar generalizations hold for other definitions. 

Chart 5.7 Isotopic and Genotopic Transformations of Variational 
Principles 

As is now familiar, the Fundamental Analytic Theorem establishes that 
the conditions of variational self-adjointness are the integrability re­
quirements allowing a (quasilinear) second-order system of differential 
equations to be directly represented with a conventional action principle, 
such as Hamilton's principle. For the case of unconstrained Newtonian 
systems in Euclidean space, we have the ordered direct representations 
of systems with potential forces 70 

J. t 2 [( d oLconv OLconv) ] - dt - ~ -~ i5rk (£) 
dt O;k ork 0 

t1 SA 
(1 ) 

The idea that all forces are potential implies an excessive approximation 
of nature. 71 The inclusion of nonpotential forces is therefore necessary 
for more closely representing the Newtonian physical reality. Theorem 
A.1.1, which covers indirect Lagrangian representations, permits the 

70 A review of the calculus of variations with particular reference to variational 
principles is provided in Section 1.1.3. 

71 The restriction of mechanics to descriptions of type 1) is essentially equivalent 
to the acceptance of perpetual motion in our environment. 
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representation via a conventional action principle of a class of systems with 
potential and nonpotential forces according to the structure 72 

J'2 
dt{h~(t, r, r)[(mfj - fj(t, r, r))SA - Fj(t, r, r)]NSA}SA 

, 1 

x (Eo)Drk(Eo) = 0 

(2) 

The equations emerging from these representations, however, are not 
in the form originating from Newton's second law but in an equivalent 
form, characterized by a regular matrix of multiplicative functions (called 
the self-adjoint genotopic functions in Section 4.4). This often creates 
uneasiness in students without a sufficient exposure to nonpotential 
interactions. 

In this chart we shall show that the indirectness of (2) results from 
unnecessary restrictions on the D-variations. If these restrictions are 
lifted, then more general variations exist (denoted by D*, to be identified 
shortly) under which all non-self-adjoint systems verifying the inte­
grability conditions of Theorem A.1.1 admit the ordered direct representa­
tions 

D*A*(Eo) = [D* (2 dtLf;t(t, r, r)] (Eo) 

J'2 dt[(~ oLf;t - oLf;t) D*rk](E) 
dt O;k ork 0 (3) '1 SA 

1'2 dt[(mfk - fk(t, r, r))SA - Fk(t, r, r)]NSA 
, 1 

x (Eo)Drk(Eo) = 0 

proposed by Santilli (1977c) for the field theoretical case, and presented 
here for its Newtonian version. 

The transition from principle (2) to the generalized form (3) implies a 
transition from a self-adjoint variational principle 72 to a non-self-adjoint 
form. For this reason the transition is called here a non-self-adjoint 
genotopic mapping of Hamilton's principle. 

To present a derivation of principle (3). we return to the generalized 
coordinates qk, with the understanding that they can represent the 
Cartesian coordinates in a given ordering, as well as any other needed set 
of variables in applied mathematics, physics, and engineering. 

The (first-order) variations Dqk customarily used in Analytic Mechanics 
are of the simple type 

£ ::::; 0 (4) 

72 Principles (1) and (2) are called self-adjoint variational principles (Chart 1.3.3). 
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and are often called weak variations in the literature of the calculus 
of variation. 73 Actually, the variations of a given path qk can have either 
an implicit or an explicit dependence in the independent variable, or both, 
provided that the desired continuity and end-point conditions are met 
(Section 1.1.3). 

The explicit functional dependence in which we are interested is of 
the type 

bqk = (bqk) (t, q, q), (5) 

under the condition that the variations verify the fixed end-point properties 

s = 1,2, (6) 

as well as our continuity assumptions (analyticity in the indicated local 
variables 74). 

Using the language of Section 1.1.3, variations (6) are infinitesimal, 
first-order, abstract, and admissible with fixed end points. Among all 
their possible realizations, we are interested in the particular form 

(7) 

When these variations are computed along a possible path, they 
recover the customary dependence in the independent variable only, 
but now of the "transformed" type 

b*qk(Eo) = g7(t, q, q) IEobqi(t) = h7(t)bqi(t) 

= eg7 (t) r,i (t) = epk (t). 
(8) 

It is easy to see that variations (8) verify the fixed end-point conditions 
whenever variations bqk are those of the conventional Hamilton's 
principle. Also, under the assumed regularity condition of the g matrix, 
variations (8) are" invertible" in the sense that they allow the formulation 
of the conventional (weak) variations 

bqk (t) = hf (t, q, q)b*qi (t, q, q), (h) = (g) -'. (9) 

The proof of the following reformulation of the fundamental lemma of 
the calculus of variations (Lemma 1.1.3.1) is then trivial. 

Lemma 1 . If the functions f3 i (t) and g~ (t), i, k = 1, 2, ... , n, are of 
(at least) class ceo and det(g) ¥- 0 in the (closed) interval [t" t 2 ]. and if 

f'2 
dtg~(t)f3i(t)r,k(t) = 0 

" 
(10) 

for all functions r,k (t) of (at least) class ceo in the same interval, which are 
identically null at end points 

s = 1,2, (11 ) 

73 See, for instance, Ewing (1969, page 90). 

74 These smoothness properties are highly rendundant from the viewpoint of the 
calculus of variations. Indeed, the proper treatment of the so-called Weierstrass 
necessary condition for an extremum demands the use of variations of only class 
'(/0, in order to allow for the presence of corner points. Nevertheless, the analyticity 
of the variations in their local variables is in line with the general treatment of this 
volume. 
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then 

k = 1,2, ... ,n, (12) 

for all values t E (t" t 2 ). 

The following condition for all variational principles with fixed end­
points will be tacitly implemented: 

(13) 

The lemma permits the non-self-adjoint genototopic mapping of 
Hamilton's principle (Santilli, lac. cit.) 

b*A(Eo) = - rt2 dt[g~(dd ~~i - ~Li) ] (Eo)bqk(Eo) = O. 
Jt , tuq uq SA NSA 

(14) 

The underlying analytic equations are Lagrange's equations, not in their 
conventional (self-adjoint) form (14), but rather in the equivalent 
non-self-adjoint form 7 5 

{ i (t .)[.!!.- aL(t, q, q) - aL(t, q, q)]} = 0 
9 k ,q, q d a .. a . . 

t q' q' SA NSA 

(15) 

The representation of non-self-adjoint systems as in (3) then follows from 
the identification of the matrix (g~) with the inverse (hn -, of the matrix 
solution of Principle (2), according to the rule 

(16) 

An application of the techniques of this chart which deserves mention 
is the transition from the I nverse Problem (based on Lagrange's or 
Hamilton's equations without external terms) to the equations originally 
conceived by Lagrange and Hamilton, with external terms (see footnote 5 
of the Introduction). As the reader can verify, these latter equations are 
non -self -adjoint for all external terms F k which cannot be derived from 
a potential, i.e., 

[( d OL OL ) . ] 
dt a;kB - arka - Fka 

SA NSA 

= O. (17) 

75 The case of degenerate equations of this type is intriguing from the viewpoint 
of the theory of systems with subsidiary constraints. Indeed, the degenerate character 
can be achieved by 

1. a degenerate Lagrangian L and a regular matrix (g); 
2. a regular Lagrangian L and a degenerate matrix (g); or 
3. a degenerate Lagrangian L and a degenerate matrix (g). 

These cases are not studied in this volume. Equivalence transformations of Lagrange's 
equations have been studied by several authors; nevertheless, their analytic character 
(that is, their derivability from a variational principle) has been pointed out, appar­
ently for the first time, by Santilli (1977c). 
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As result. the transition under consideration can best be studied via the 
formulation of the Inverse Problem in terms of the non-self-adjoint 
equations (15), according to the direct representations 

[ ( doL' OL' ) ] 
g~ba dt 0;; b - or; b 

SA NSA 
- [(:t o~~a - :'~a tA - FkaJ NSA 

- [(mk;ka - 'ka)SA - Fka]NSA" (18) 

For a study of this transition see Santilli (1978c). In this way we reach the 
conclusion that Lagrange's equations with external terms can be derived 
via a non-self-adjoint, genotopically mapped principle 

<5* it2 dt Lgen = - it2 dt[!!'- OLfgt" v - oLfgt" v - F ] <5qk = 0 (19) 
tot dt oq'k oqk k t, t, NSA 

provided that they are non-essentially non-self-adjoint. This derivation 
should be compared with the alternative forms available in the current 
literature 76. 

The generalized principle (14) does indeed achieve the desired 
objective. In fact. the principle permits the representation of (a class of) 
Newtonian systems with nonpotential forces as they originate from 
the second law, in the coordinate and time variables of the experi­
menter.? 7 It should be stressed that (14) does not enlarge the class of 
systems verifying Theorem A.1.1. I n fact, the integrability conditions of 
this theorem are the integrability conditions for the existence of principle 
(3).78 

The direct universality can, of course, be reached by applying the 
techniques of this chart to Birkhoffs equations. Let a# <5 = 1, 2, ... , 2n, be 
the local coordinates of the cotangent bundle T*M (or, equivalently, the 

76 For instance, Goldstein (1950, pp. 38-40), proposes the following principle 

<5f t2dt(L + W) = - it2dt(~ o~ -~ - F )i5qk = 0, 
dt oqk oqk k 

t1 t, 
(a) 

which however holds only under the subsidiary condition 

(b) 

Thus, principle (a) is not a conventional variational principle as commonly under­
stood. On the contrary, principle (2) achieves the representation of a nonconservative 
system via a conventional variational procedure. Only the structure of the Lagrangian 
is generalized in line with the calculus of variations (Section 1.1.3). The objective of 
this chart was therefore to achieve direct analytic representations of nonconservative 
systems without recourse to procedures, such as subsidiary constraints (b), outside 
the conventional formulation of the calculus of variations. 

77 Variational principle (14) illustrates more clearly an aspect of Section 1.3.4 
to the effect that analytic representations of Newtonian systems of N particles in a 
three-dimensional Euclidean space demand, in general, the knowledge of (3N) 2 + 1 
functions, (3N) 2 factor functions, and a Lagrangian. The proof that the matrix ot the 
factor functions of principle (14) induces, in general, a non-self-adjoint structure, 
is an instructive exercise for the interested reader. 

78 The reader interested in variational problems (rather than variational principles) 
should keep in mind that in this chart we have simply proved the equivalence of the 
genotopic or isotopic images of Hamilton's principle with the conventional version 
of this principle. The extremal aspect of the analysis, particularly the implications of 
variations (8) for the necessary or sufficient conditions for an extremum, will not 
be considered here. 
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dynamic space defined in Section 4.5), and let A(Eo) be the Pfaffian 
action (4.2.14). Then principle (14). when reformulated for Birkhoff's 
equations, reads 

b*A(Eo) = b* f2dt[RIl(t, a)a" - B(t, a)](Eo) 
t 1 

= ft 2dt{g;[(OR: _ OR;·)a. _ (O~ _ ORv)] } ba"(Eo) = 0 
t oa oa oa ot SA NSA 

1 (20) 

and implies the following direct universality for first-order systems: 

b*A(Eo) = f2 dtW - 3"(t, a)]ba,,(Eo) 
t 1 

ft2 -- ; -p 1m -(br) dt ka ka k ka (E) = 0 
t1 Pka - ~:(t, r, p) - F~;A(t, r, p) bPka 0 ' 

---- - (21) 

that is, the direct representation of non-self-adjoint first-order systems in 
their contravariant form, originating in the reduction from the second­
order form (Section 4.1). Representation (21) evidently occurs when 
matrix (g;) is the inverse of Birkhoff's matrix (Q"J. 

The non-self-adjoint character of (20) permits a number of additional 
applications. We mention her-e the direct representation of the Birkhoff­
admissible equations via a Pfaffian action principle which we write in the 
notation of Chart 4.7: 

b*A(Eo) = 1t2 dt{g~[Qv.(t, a)a" - OB(t~ a) - oRv(t, a)] } ba"(Eo) 
t oa ot SA NSA 

1 

= ft2 dt{Sllv(t, aW - OH(t~ a)} ba"(Eo) = O. 
t1 oa NSA 

(22) 

The algebraic implications are as follows. The conventional b-variations 
in Pfaff's principle (4.2.15) characterize covariant equations (Birkhoff's 
equations) whose contravariant form has a Lie algebra structure (when 
the R functions do not depend explicitly on time). The generalized b*­
variations in (22) characterize covariant equations (the Birkhoff-admissible 
ones) whose contravariant forms have instead a more general Lie­
admissible algebraic structure. Actually, we see that all Lie-admissible 
equations can be derived via a Pfaffian principle, provided that they verify 
the locality, continuity, and regularity conditions considered here. 

As concluding remark, recall that the existence of a representation 
for a Newtonian system within a fixed system of local variables demands 
that the implicit functions of both the equations of motion and the analytic 
representation coincide. This condition is satisfied by all analytic 
representations considered here and ensures the preservation of the 
solutions in the transition from the equations of motion to their analytic 
representation. This is the mathematically essential part of the Inverse 
Problem. The way in which the equations of motion are written (whether 
in the form originating from the second law or in an equivalent form) is 
purely a matter of personal preference, and not of mathematical rigor. In 
fact. replacing a direct representation with an indirect one and vice versa, 
can be accomplished through the degrees of freedom of the variations. 
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EXAMPLES 

Example 5.1 

For later need, it is useful to recall the following examples of canonical transformations 
identified in currently available textbooks on the subject. 
(a) Identity transformation l-> q'k = land Pk -> PI. = Pk' The generating function 
(Section 5.2) is 

(1) 

(b) Total Inversions l-> q'k = -l and Pk -> pIc = -Pk' The generating function 
is, in this case, 

(2) 

(c) Born reciprocity transformations l-> q'k = Pk and Pk -> pic = - qk in which case 
the generating function is 

(3) 

(d) Born counter-reciprocity transformations qk -> q'k = - Pk and Pk -> pIc = qk with 
generating function 

(4) 

(e) Scale transformations l -> q'k = e'qk and Pk -> pic = e - 'Pk with generating 
function is 

(5) 

(f) Born scaled reciprocity transformations l-> q'k = e'Pk and Pk -> pic = e-'qk 
with generating function is 

Note that the transformation 

is canonical if 

in which case 

q' = ff(q)cos p, P' = ff(q)sin P 

aff 
ff-= 1 aq , ff2 = 2(q + c), c = const., 

q' = [2(q + C)]1/2 cos p, P' = [2(q + c)] 1/2 sin p, 

and the generating function is 

F = F 3 = -tq'2 tan P + cpo 

The transformation 

is canonical if 

[ ag aff] -,1, ff - + 9 - = 1, 
aq aq 

-,1,ffg = q + c, c = const., 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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with a solution 

(13) 

Other cases of canonical transformations can be constructed via the methods of 
Section 5.2. Needless to say, an in-depth knowledge of these techniques is essential 
before initiating a serious study of the generalized canonical transformations of the 
Birkhoffian mechanics, according to the methods of Section 5.3 (see also Problem 
5.7). 

Example 5.2 

In this example we illustrate (a) the construction of Hamiltonian representations via 
the transformation theory, (b) the need that the transformations are not canonical 
whenever the original system is non-self-adjoint, and (c) the capability of Hamiltonian 
representations, when achieved, of preserving the derivability from a variational 
principle under noncanonical transformations. 

The equation of motion in configuration space 

m=1 (1) 

is non-self-adjoint, and the equivalent vector field under the prescription p = r, i.e., 

Sia) 8~P' (Sp) = (_:2jp), (aP ) = (r, p) (2) 

is non-Hamiltonian. 
To construct an indirect Hamiltonian representation we need a transformation of 

the local coordinates 

(aP) = (r, p) ---> (a'P) = (r'(r, p), p'(r, p» (3) 

such that the transformed vector field 

( 8a" ) 
S~(a') = 8aP S. (a') (4) 

is self-adjoint, i.e., 

8S~ = 8S~ 
8a'v - 8a'P 

(5) 

A study of the case indicates that a solution is given by 

a'P: r = r'p', (6) 

under which the self-adjoint vector field is given by 

(
_r'1/2p'3/2) 

(S~(a'» = ,3/2 ,1/2 . -r p 
(7) 

The Hamiltonian is then computed via rule (5.1.35), yielding the expression 

H'(a') = a'P f dT S~(Ta') = - ~r'3/2p'3/2. (8) 
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It is easy to see that transformations (6) are (necessarily) noncanonical, e.g., 

[r,p](r',p)) = _r'3/2p'!/2 oft 1. (9) 

In fact, only a noncanonical transformation can turn a non-Hamiltonian vector field 
into an equivalent Hamiltonian form. 

Now that a Hamiltonian representation has been achieved, it is also easy to see 
that its derivability from a variational principle persists under arbitrary noncanonical 
transformations (of the admitted class of continuity and regularity conditions). It is 
understood here that in the process the Hamiltonian character of the variational 
principle is lost in favor of the Birkhoffian (Pfaffian) one. 

Consider the variational principle for Hamiltonian (8) 

It2 

t5 dt[R~(a')a'Jl - H'(a')](E~) 
t1 

= t5 (d{P'i" + ~ r'3/2p'3/2}E~) = o. (10) 

Under the inverse transformation (6), this principle becomes 

It2 

t5 dt[R,(a)a' - B(a)](E) = 0 
t, 

by therefore preserving the derivability of the system from a variational principle. 

Example 5.3 

In this example we shall illustrate how the construction of canonical transformations 
via generating functions admits a simple and direct generalization into the generalized 
canonical transformations of Birkhoffian Mechanics. 

Born reciprocity transformation (Example 5.1) can be constructed via the generat­
ing function 

F! = qq', (1) 

and Hamiltonian rules (5.2.16), i.e., 

of! " of! 
P = aq = q, p = - 8i = -q. (2) 

In the transition to the covering Birkhoffian formulations, we have rules (5.3.56). 
Suppose, for simplicity, that (RJl) = (p, r), r, p E \R!. Then, the latter rules become, for 
the same generating function (1), 

q'p' = -q' (3) 

yielding the generalized canonical transformation 

q' = qp, p' = (4) 
p 
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A similarly straightforward generalization occurs for all other canonical transform­
ations, as the reader is encouraged to verify. 

Problems 

5.1 The analytic treatment of the theory of canonical transformations is generally 
done in the existing literature via Hamilton's principle. Prove that the replacement of 
principle (5.2.10) with Holder's principle (Section 1.1.3) in phase space, i.e., 

J fdt[Pk£/ - H(t, q, p)](£O) = IPkJl- HJtI:~(£O) 
" not only permits a consistent theory of canonical transformations, but that the under-

lying generalization ofIdentity (5.2.14) permits the joint derivation of (a) transformation 
laws such as those for F I , as well as (b) Hamilton's equation in both the old and new 
coordinates (which are not derivable via the conventional theory reviewed in Section 
5.2). 

5.2 Prove that a Legendre transform reduces the generating function F I (t, q, q') 
to (5.2.17). 

5.3 Prove that canonical transformations as per Definition 5.2.2 verify the 
inversion formulas (5.2.27a)-(5.2.27d). 

5.4 Prove Equations (5.3.6) and (5.3.13). 

5.5 Reformulate the integrability conditions for the existence of canonical 
transformations via a particularization of Proposition 5.3.1. 

5.6 Identify the transformations which are generalized canonical in the sense of 
preserving generalized variational principle (5.3.50), but are not identity isotopic in the 
sense of equations (5.3.44). Show that these transformations contain as particular cases, 
transformations (5.2.12) and (5.2.13). 

5.7 Construct the Birkhoffian generalization of the Hamiltonian generating 
functions F 2, F 3' F 4, F 5' and F 6 along the lines of the method (5.3.56) for Fl' 

5.8 Prove that the time component of Galilei's relativity (Chart 1.A.1) 

( 8H 8 ) a' = exp tow'P -p- a 
8a 8a' 

is always canonical, that is, it is canonical for all possible Hamiltonians. 

5.9 Prove the following property. 

Theorem. Necessary and sufficient conditionJor the time evolution 

a' = exp(to::::'(a) ~)a 
8a' 

to be noncanonical, that is, to violate the condition oj preservation oj the Jundamental 
Poisson brackets, is that the vector field:::: is non-Hamiltonian 

5.10 Prove that equations (29)-(36) of Chart 5.3 admit a consistent generalization 
for the isotopic generalization of Lie's theory, resulting in exponentiation (56) of the 
same chart. 
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5.11 The SU(2) Lie algebra of the Pauli's matrices, when realized on the con­
ventional associative envelope, admits the commutation rules 

SU(2): [aI' a2]A = 2ia3' [a2' a3]A = 2ia l , [a3' a l ] = 2ia2' 

Find the operator T of equations (36) of Chart 5.2 as a polynomial expression of the a's. 
under which the following isotope SU*(2) of SU(2) holds 

SU*(2): [al> a2JA' = 0, [a2' a3]A' = -2i, [a3' aIJA' = O. 

5.12 Prove that equations (39) of Chart 5.4 are the integrability conditions for 
transformations (9) to be infinitesimal generalized canonical transformations. Discuss 
the particular canonical case. 



CHAPTER 6 

Generalization of 
Galilei's Relativity 

6.1 Generalization of Hamilton-Jacobi Theory 

One of the most speculative yet intriguing implications of Birkhoffian 
Mechanics is the possible generalization of Atomic Mechanics (the ordinary 
quantum mechanics) into a form specifically conceived for strong interac­
tions and known as H adronic Mechanics. 

As is well known, Hamiltonian and Atomic Mechanics can be considered, 
in the final analysis, as two different realizations of Lie's theory, the first via 
functions in phase space and the second via operators on a Hilbert space. 

In the preceding chapter we showed that Birkhoffian Mechanics is a 
classical realization of the more general Lie-isotopic theory. Hadronic 
Mechanics is therefore predicted as the operator realization of the same Lie­
isotopic theory. At any rate, until the identification of an operator mechanics 
which admits Birkhoffian Mechanics as a classical image has not been 
accomplished, our description of the microscopic world will be incomplete 
because the atomic theory is unable to reach Birkhoffian Mechanics under 
the correspondence principle. 

The proposal to construct Hadronic Mechanics was submitted by Santilli 
(1978d). The studies conducted since that time have been collected in the 
reprint volumes edited by Schober (1982). The identification of the state of the 
art in the experimental, theoretical, and mathematical studies of the new 
mechanics was conducted at the First International Conference on Non­
potential Interactions and their Lie-Admissible Treatment (see the Pro­
ceedings (1982)). 

199 
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This volume on Birkhoffian Mechanics would be incomplete without the 
indication of the basic ideas which led to these developments. Predictably, 
these ideas are of algebraic character and are centered on the Lie-isotopic 
generalization of Heisenberg's equations (see equations (18) of Chart 5.1), as 
the operator image of Birkhoft"s equations. However, for Hadronic Mech­
anics to be a genuine covering ofthe atomic one, it must admit consistent and 
compatible generalizations of other dynamic equations of Atomic Mechanics. 

Thus, we come to the problem of generalizing Schrodinger's equations so as 
to achieve compatibility with the Lie-isotopic generalization of Heisenberg's 
equations, on the operator side, and with Birkhoft"s equations, on the classical 
side. This problem was studied by Santilli (1982a) via a Birkhoffian general­
ization of the Hamilton-Jacobi theory we shall review in this section. These 
studies were inspired by work by Mignani (1981 and 1982). The identification 
of the structure of the underlying Hilbert space, and a first axiomatization, 
were achieved by Myung and Santilli (1982a and b), including the proof ofthe 
equivalence of the hadronic generalizations of Heisenberg's and 
SchrOdinger's equations. Additional research can be found in Schober 
(loc cit.). 

The conceptual foundation of the theory is the Newtonian property that 
the potential energy has no physical basis for contact interactions. Since all 
strongly interacting particles (called hadrons) have a size (charge radius) 
which is of the order of magnitude of the range of the strong interactions 
(about 10- 13 cm= 1F), the possible existence in the strong interactions of a 
component of contact non-Hamiltonian type is then rather natural. In turn, 
this brings to the assumption of Birkhoft"s equations as the basic classical 
equations representing a superposition of conventional, potential, action-at­
a-distance forces, as well as contact, non-Hamiltonian ones. 

The classical theoretical foundation is provided by the transformation 
theory of Section 5.3. In fact, this theory has permitted the construction of 
the desired generalization of the Hamilton-Jacobi equations in a way fully 
parallel to the conventional Hamiltonian case. 

The operator foundation of the theory is given by a suitable reformulation 
of the Hilbert space in a way which is directly compatible with the Lie­
isotopic theory (Chart 6.1). Note that this aspect will not be considered in 
this section, and we limit ourselves to presenting the hadronic generalization 
of SchrOdinger's equations, in much the same historical (rather than con­
temporary) way that the original equations were presented during the first 
part of this century. 

Regrettably, in the interest of brevity, we are unable to treat a number of 
additional aspects, such as the Birkhoffian generalization of the canonical 
perturbation theory, and the corresponding operator image expected within 
the context of Hadronic Mechanics. We hope, however, that the methods 
identified in this volume for constructing the Birkhoffian generalization of 
specific aspects of Hamiltonian Mechanics are applicable also to other aspects. 
The same methods, based essentially on noncanonical transformations, are 
applicable to the construction of the hadronic generalization of Atomic 
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Mechanics upon suitable operator reformulation in terms of nonunitary 
transformations. An example of this latter aspect is indicated in the next 
section. 

Part A: Hamilton-Jacobi Theory 

Let us begin by reviewing, for notational purposes as well as for comparison, 
the conventional formulation of the Hamilton-Jacobi theory. Suppose that 
Hamilton's equations are known, 

(6.1.1) 

(R~) = (p, 0), fl = 1, 2, ... , 2n. 

The Hamilton-Jacobi problem consists of the identification of a canonical 
transformation which is invertible, is of the same continuity class of H, and 
has a generating function F under which the transformed Hamiltonian 

t --+ t' == t, (6.1.2a) 

of 
H --+ Ho = H(t, a(t, ao» + at == 0, (6.1.2b) 

is identically null. Equations (6.1.1) in the new frame become 

(6.1.3) 

with general solution 

ab = ab(t, a) = const. (6.1.4) 

The solution of the original equations (6.1.1) is then given by the inverse 
transformation, 

all = all(t a ) , 0, (6.1.5) 

in which the ao's play the role of the arbitrary constants. 
A formal solution for the generating function is given by the action 

F = F 1 = A(Bo) = II dt[R~(a)all - H(t, a)](Bo) 
10 

= II dt[Pkf' - H(t, r, p)](Bo). 
10 

(6.1.6) 
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Weiss's principle (see Section 1.1.3) then yields the end point contribution 

dA = d It dt[Prf' - H](Eo) = IPkdrk - Hdtl:o(Eo) 
to 

ro = r(to) 

Po = p(to)· 
(6.1.7) 

The use of partial derivatives finally yields the celebrated Hamilton-Jacobi 
equations 

aA at + H(t, r, p) = 0, 

aA 
Pk = ark' 

aA 
POk = ---;1(. 

uro 

(6.1.8a) 

(6.1.8b) 

We should indicate, for completeness, that form (6.1.8) of the Hamilton­
Jacobi equations is not unique, and several additional forms exist. This is 
clearly due to the fact that the desired canonical transformation can be 
constructed via any generating function, not necessarily F 1 = A. By recalling 
the existence of a large number of possible generating functions, a corre­
sponding number of different Hamilton-Jacobi equations follows. 

For instance, for the case of a generating function F = Fs = Fs(t, ro, Po), 
one can prove that (6.1.8) is replaced by 

aF 5 iJrk 
Tt- + H(t, r, p) + at Pk = 0, (6.1.9a) 

or i aFs 
POk - "?lf Pi = --;-T; 

uro uro 
(6.1.9b) 

The study of additional forms of the equations for some other type of 
generating function is instructive but is left to the interested reader (Problem 
6.1). Needless to say, all these possible different forms of the Hamilton­
Jacobi equations are equivalent, because they are related by the same 
Legendre transforms which interconnect different generating functions 
(Section 5.2). 

Before passing to the identification of the Birkhoffian generalization of 
(6.1.8), it is important to point out a "reformulation" which is permitted by 
the techniques presented in these volumes. 

The following generalization of action (6.1.6) 

A +(E) = rdt[R~+(a)all - H(t, a)](E), 
to 

was introduced in Chart 1.3.6. We can easily see that the equations char­
acterized by contemporary variations with fixed end points are exactly given 
by Hamilton's equations (6.1.1). Thus action (6.1.10) permits generalized 
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variational principles while leaving the underlying analytic equations un­
changed. 

In Section 4.5 we pointed out that the transition from action (6.1.6) to 
generalized form (6.1.10) is given by the Birkhoffian gauge for the particular 
Hamiltonian case 

G = -r·p. (6.1.11) 

The preservation of the original equations (6.1.1) is then trivial. However, 
the generalization of (6.1.6) into (6.1.10) is not trivial from the viewpoint of 
the Hamilton-Jacobi theory and, inevitably, from the viewpoint of 
SchrOdinger's Mechanics. This can be seen by noting that the original action 
(6.1.6) is independent of the momenta (velocities), e.g., 

oA 
-=0, 
OPk 

k = 1,2, ... , n, 

while the new action (6.1.10) is indeed dependent on p, i.e., 

oA+ 
-#0. 
OPk 

(6.1.12) 

(6.1.13) 

A reformulation of(6.1.8) is then expected, with nontrivial quantum mechan­
ical implications, as we shall see. 

The construction of the desired reformulation of (6.1.8) is straightforward. 
When (6.1.10) is subjected to the same variations of principle (6.1.7) (non­
contemporaneous variations with variables end points-see Section 1.1.3 for 
details), we obtain the principle 

dA + = d it [R~+(a)da" - H(t, a)dt](Eo) = IR~+(a)da" - H(t, a)dtl:o(Eo) 
to 

= R~ + (a)da" - H(t, a)dt - s~ + (ao)da:J. 

The use of partial derivatives then yields the equations 

oA+ 
at + H(t, a) = 0 

(6.1.14) 

(6.1.15a) 

(6.1.15b) 

which are a reformulation of the Hamilton-Jacobi equations induced by the 
gauge degrees of freedom (6.1.11). 

Some important differences and similarities between (6.1.8) and (6.1.15) 
are the following. Under the condition that the Hamiltonian depends 
explicitly on all the values 8A/8rk = Pk' k = 1,2, ... , n, equations (6.1.8) can 
be reduced to a single, generally nonlinear, partial differential equation in 
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oA/ot and oA/ork, plus subsidiary conditions given by the second of equations 
(6.1.8b), 

oA ( OA) at + H t, r, ar = 0 

oA 
POk = - -0 k· 

ro 

(6.1.16a) 

(6.1.16b) 

Note that if the Hamiltonian does not depend on one of the p's, say OH/OPi 
= 0, i = fixed, then the equations Pi = oA/ori must be kept as a subsidiary 
condition. 

We can see that reduction (6.1.16) is fully applicable also to (6.1.15) under 
similar conditions. In fact, suppose that H depends explicitly on all values 
oA/oal', J1 = 1, 2, ... , 2n, then (6.1.15) can be reduced to a single, generally 
nonlinear, partial differential equation in oA + /ot and oA + /oaf.l plus sub­
sidiary conditions given by the second set of equations (6.1.15b), 

oA+ oA+ ( OA) oA+ at + H(t, af.l) = at + H t, _2w f.l V oav = at + H(t, r, p) 

= - + H t, -2 -, 2 - = 0 (6.1.17a) oA+ ( oA OA) 
at op or 

oA+ 
(6.1.17b) 

If oH/oav = 0 for v fixed, then the expression Re + = oA + /oav must be kept 
as a subsidiary constraint in exactly the same way as it occurs for the con­
ventional Hamiltonian case. 

Thus, on methodological grounds, the primary difference between the 
conventional formulation of the Hamilton-Jacobi equations and reformula­
tion (6.1.17) is the extension of the partial differential equation to include the 
terms oA + /OPk. 

The reader should keep in mind that (6.1.15) and (6.1.17) are a direct 
consequence of the Birkhoffian generalization of the Hamiltonian formula­
tions. As a matter offact, equations (6.1.1) are written in the version which is 
the Hamiltonian particularization of Birkhoff's equations. 

The classical relevance of (6.1.15)-(6.1.17) will be self-evident in a monent. 
The quantum mechanical relevance can be anticipated here via the 
following remark. While quantization of (6.1.16), as is well-known, is based 
on a wave function depending only on time and coordinates t{!(t, r), the 
quantization of equations (6.1.17) is expected to imply the existence of a 
reformulation based on a "wave function" which depends also on the 
generalized momenta, t{!(t, r, p). In turn, the existence of the reformulation is 
expected to be useful to study still open problems of (conventional) quantum 
mechanics, such as the problematic spreading of the wave packets of particles, 
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the equivalence (or nonequivalence) of Heisenberg's and SchrOdinger's 
representations, the still controversial issues of quantization and classical 
limits, etc. We should stress that the reformulation of Schrodinger's equations 
referred to here is intended specifically for Atomic and not for Hadronic 
Mechanics (i.e., for electromagnetic and not strong interactions). 

Part B: Birkhoffian Generalization of the 
Hamilton-Jacobi Theory 

We can show that the Hamilton-Jacobi theory generalizes in its entirety into 
a consistent Birkhoffian form. Consider the semiautonomous Birkhoff's 
equations 

n .(a)aV _ oB(t, a) = (oR.(a) _ oR,ia»)av _ oB(t, a) = O. (6.1.18) 
Il oall oall oav oall 

The Birkhoffian generalization of the Hamilton-Jacobi problem! consists of 
identifying an identity isotopic transformation (generalized canonical trans­
formation) under which the transformed Birkhoffian is identically null, i.e., 

t --+ t' == t, all -+ a~(t, a), (6.1.19a) 

B(t, a) -+ B~(t, a~) = (B - 0;0 Ra )(t, ao) == O. (6.1.19b) 

Equations (6.1.18) then reduce to 

nll.(ao)a~ = O. (6.1.20) 

By assuming that Birkhoff's tensor nllv is regular, i.e., 

det --- #0 (ORv ORIl) 
oall oav , (6.1.21) 

1 A second statement of the problem can be reached through the Birkhoffian formulations 
and consists of the search of a transformation a ---> ao(t, a) under which the 2n-vector R. becomes 
identically null, i.e., 

R~(t, ao) = (aa' R,)(t, ao) == o. 
aag 

Note that we can use 2n + 1 independent functions (the transformations ao(t, a) and a gauge 
function). Thus one can ask for the additional condition that the Birkhoffian becomes also 
identically null, 

( aa' ) 
B'(t, ao) = B(t, aCt, ao» - at R, (t, ao) == O. 

This alternative formulation, which is applicable also for Hamilton's equations, will not be 
explored here for brevity. Note that, since the transformation does not preserve the Birkhoffian 
(or the Hamiltonian) tensor, it is not generalized canonical. 
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one can see that this regularity property is preserved by the transformation 
theory. The solution of (6.1.20) is also given by constants al) as in the Hamil­
tonian case. The solution of the original equations (6.1.18) is then given by 
the inverse transformation all(t, ao), also in full analogy with the canonical 
case. As a result, the generalized problem considered can provide a solution 
of the equations of motion, at least on formal grounds, in a way fully parallel 
to the conventional case. 

It can be proved that a formal solution for the generating function of 
transformation (6.1.19) is given by the Pfaffian action 

F = F 1 = Ag(E) = II dt[Ria)till - B(t, a)](E) 
10 

~ II dt[Pk(t, r, p)f< + Qk(t, r, P)Pk - B(t, r, p)](E) (6.1.22) 
10 

which is clearly a generalization of actions (6.1.6) and (6.1.10). The corre­
sponding generalization of (6.1.7) and (6.1.14) is given by2 

dAg(Eo) = d II [Ria)dall - B(t, a)dt](Eo) 
10 

= 1 RIl(a)dall - B(t, a)dt l:o(Eo) 
= Ria)da~ - B(t, a)dt - Riao)dal); al) = a~l/o' (6.1.23) 

2 Owing to the importance of principle (6.1.23) for the hadronic generalization of Schro­
dinger's Mechanics, it may be valuable here to indicate its derivation. The principle is a particular 
form of a well-known property of the calculus of variation reviewed in detail in Section 1.1.3. 
Given a Euler function 

L = Ria)li" - B(t, a), (a) 

the first-order variation of the action functional in L with variable endpoints, when computed 
along an arbitrary path E (of the topological conditions admitted), characterizes the variational 
problem 

f~ I~ (~ ) I~ OA(E) = dtL"(E)ba" + "ba" - "Ii" - L bt (E). 
'1 oa oa '1 

(b) 

When path E is a possible or an actual path Eo, the Euler's equation L.(Eo) = 0 coincide with 
Birkhoff's equations (6.1.18), and therefore they are identically null. Variational problem (b) 
then yields the variational principle (6.1.23), i.e., 

_ _ I oL - (OL ) - 1'2 -OA(Eo) = - c5a" - - Ii" - L c5t (Eo) 
oa" oa" '1 

== IRia)ba" - B(t, a)btl:~(Eo). (c) 

The property is fundamental, classically and" quantum mechanically." Classically, we learn that 
the total differential of an action functional is equal to the integrand computed at end points 
under the condition that such integrand is of first-order type (that is, Pfaffian). In turn, this 
property is at the foundation of a number of aspects of the Birkhoffian Mechanics, such as the 
Birkhoffian generalization of the canonical transformation theory, Noether's theorem, etc. 
The quantum mechanical relevance of the property will be self-evident in a moment. 
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The use of partial derivatives finally yields the desired Birkhoffian generaliza­
tion of the Hamilton-Jacobi equations which can be written in the form 

oAg 
at + B(t, a) = 0, (6. 1. 24a) 

(6.1.24b) 

We can also prove that (6.1.24), under the conditions oB/oall =1= 0, fJ = 
1,2, ... , 2n, can always be reduced to a single partial differential equation in 
oAg/ot and oAg/oall in a way fully parallel, although generalized, to that of 
(6.1.16) and (6.1.17). 

To see it, note that regularity property (6.1.21) does not imply that of the 
matrix (oRIl/oa"). Consider, then, the case in which 

det - - - =1= 0 ( ORv ORIl) 
oall oa" ' 

( ORIl) det oa" = o. (6.1.25) 

However, a Birkhoffian gauge transformation 

(6.1.26) 

always exists under which 

( OR+) det oa~ =1= o. (6.1.27) 

In fact, for this purpose, selecting an arbitrary function G(a) such that 

(6.1.28) 

is sufficient. Once the regularity property 

( ORIl) det oav =1= 0 (6.1.29) 

has been ensured, one can perform the change of coordinates of (6.1.24a) from 
the Birkhoffian ones all to the new ones RIl(a) 

(6.1.30) 

under which we have 

oAg oAg oAg 
- + B(t, a(R)) = ---;- + !!J(t, R) = ---;- + !!J(t, pet, r, p), Q(t, r, p)) = o. 
at ut ut 

(6.1.31) 
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Thus the 2n-components of the vector RIl(a) appearing in the original 
equations (6.1.18) are assumed as the new variables of(6.1.31), of course, upon 
selection of the gauge in which regularity property (6.1.29) holds. Note that 
this was exactly the case for the Hamiltonian form (6.1.17). In fact, the original 
vector R~(a) does not verify property (6.1.29), trivially because of its structure 
(R~) = (p, 0). However, the" gauged" vector R~ + (a) = -twilvav does verify 
property (6.1.29), by therefore permitting the change of coordinates all -+ R~. 
This, in turn, permits the achievement of the single partial differential 
equation (6.1.17a). 

The reduction of (6.1.24) to a single partial differential equation in Ag 
(plus subsidiary conditions) is now self-evident. It is given by 

(6.1.32a) 

(6.1.32b) 

Needless to say, if the Birkhoffian does not depend on some of the a 
variables (e.g., when B = tp2), the missing terms must be kept as subsidiary 
conditions, in exactly the same way as it occurs for (6.1.16) and (6.1.17). 

Notice that the Hamiltonian particularization of (6.1.32) is given by the 
gauge H amilton-} acobi form (6.1.17) and not by the original form (6.1.8). In 
fact, the particularization Ria) = (p, 0) implies the violation of regularity 
condition (6.1.29), under which (6.1.32a) becomes singular. On the contrary, 
the Hamiltonian particularization 

(6.1.33) 

preserves regularity property (6.1.29), as indicated earlier. 
By no means do equations (6.1.24) exhaust all possible Birkhoffian general­

izations of Hamilton-lacobi equations. In fact, a class of equations equivalent 
to (6.1.24) can be constructed via the Legendre transform of the generating 
function, in a way fully parallel to the conventional case. 

To illustrate this, we recall that the generalization under consideration 
was studied by Sarlet and Cantrijn (1978b) who reached the equations 

of oaa 
at + B(t, a(t, ao)) + at Ria(t, ao)) = 0 

( oaa) of 
oalI Ra (t, ao) - oab (t, ao) = Riao)· (6.1.34) 

The generating function of these equations can be shown to be Class 5, 
while that of(6.1.24) is of Class 1. As a result, equations (6.1.34) are a general­
ization of (6.1.9) rather than (6.1.8). Our preference of generalized form 
(6.1.24) is due to quantum mechanical considerations. In fact, the classical 
equations at the foundations ofSchrMinger's Mechanics are equations (6.1.8). 
It is therefore important to achieve a Birkhoffian generalization of the 
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Hamilton-Jacobi equations in their form directly used for quantum mech­
anical purposes (see Problem 6.2 for additional forms). 

Furthermore, (6.1.34) cannot be reduced to a single partial differential 
equation in F (Sarlet and Cantrijn, loco cit., p. 1597). This implies severe 
technical difficulties in attempting the construction of a generalization of 
Schrodinger's equations via form (6.1.34). Equations (6.1.24), on the con­
trary, bypass this problem by permitting reduction to form (6.1.32a). 

As a final remark, let us note that the Birkhoffian generalization of the 
Hamilton-Jacobi theory for the case of the nonautonomous equations 

[ORv(t, a) _ oRit, a)]av _ [OB(t, a) + oRIl(t, a)] = 0 (6.1.35) 
oa ll oav oall ot 

will not be considered here for a number of reasons. The first is that (6.1.35) 
can be reduced to an equivalent semiautonomous form (6.1.18) in the same 
local variables via the use of a gauge transformation (see Section 4.5). 
Therefore, the study of (6.1.18) is sufficient for our purposes. Deeper reasons 
also exist. Our primary objective is to indicate a conceivable" Schrodinger­
type" analog of the isotopic generalization of Heisenberg'S equations. These 
equations, in turn, are an image of the semiautonomous equations (6.1.18) 
and not of (6.1.35), because the latter equations do not admit a consistent 
algebraic structure in the time evolution (see Chart 4.1). 

Part C: Schrodinger's Equation 

Consider a conservative system in the contravariant form 

aV = 3 1l(a), k = 1, 2, ... , N; a = x, y, z 

(6.1.36) 

such as a Kepler system in vacuum. The construction of Hamilton-Jacobi 
equations for these systems is trivial. It is based on the conventional Hamil­
tonian structure 

N 1 
H = L -2 p~ + VCr) 

k=l mk 
(6.1.37) 

with the direct physical meaning of total energy. Since the potential energy 
does not depend on the velocity (and no contact interaction exists by assump­
tion), one can prove that the canonical momentum coincides with the physical 
momentum 

(6.1.38) 

Under the conditions considered, the canonical angular momentum Mk 
coincides with the physical angular momentum. 

Note that representation (6.1.37) is not unique. Among all possible analytic 
representations, we have selected the unique, direct, canonical representation 
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of the system in the frame of the observer (no transformation theory!), under 
which all canonical quantities have a direct physical meaning. 

The celebrated canonical quantization rules 

oA a -
-H=---+i-= -H 

at at ' 
h = 1, (6.1.39) 

readily turn Hamilton-Jacobi equation 

oA oA N 1 oA oA 
at + H(r, p) = at + k~l 2mk o~ . o~ + V(r) = 0 (6.1.40) 

into the familiar Schrodinger's equation 

i ~ I/J(t, r) = H(r, p)I/J(t, r) = [- f -21 Ak + V(r)JI/J(t, r) (6.1.41) 
at k=l mk 

Without any claim of mathematical rigor,3 the quantization satisfies the 
correspondence principle in the sense that, under the wave function 

and for large (e.g., macroscopic) values of the action, 

1 
-~O 
A ' 

. a oA 
l-~-

at at' 

(6.1.42) 

(6.1.43) 

the zero-order term of the expansion of Equation (6.1.41) in terms of I/A 
coincides with the Hamilton-Jacobi equation (6.1.40) identically. First­
order terms then yield continuity equations and other properties which are 
ignored here for brevity. 

A fundamental feature of conventional wave equation (6.1.41) is that it 
complies with the quantum mechanical Galilei's relativity. Intriguingly, this 
condition is necessary to verify the correspondence principle because the 
original system is compatible with Galilei's relativity to begin with. 

This feature has numerous direct or indirect implications at virtually all 
levels of treatment. It can be expressed initially by noting that the eigen­
function I/J(t, r) must be a Galilei scalar. In turn, this sets the structure 

I/J(t,r) = fdECP(E)eif(Pkdrk-Hdt) (6.1.44) 

which characterizes a fundamental notion of quantum mechanics, that of 
wave packets (or Greenfunction). In turn, (6.1.44) constitutes one way to est­
ablish the indeterministic nature of quantum mechanics, 

(6.1.45) 

3 See footnote 43 of Chapter 5. 
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Indeed, the widths of the amplitude cp and that of the wave packet ljJ are 
inversely related, yielding (6.1.45) after simple elaborations. 

Part D: Hadronic Generalization of 
Schrodinger's Equations 

As is well known, the conventional notion of wave packets according to 
(6.1.44) is only a crude approximation, because it applies only under the 
condition that the particle can be considered as nearly free over a distance of a 
number of wavelengths. In an attempt to improve the approximation, particu­
larly for particles under intense forces within the distance of one wavelength 
(as expected for the strong interactions), we search for a generalization of 
(6.1.44) into the form 

ljJ(t, r, p) = ljJ(t, a) = f dBcp(B)ef (RILdaIL - Bdt) 

(6.1.46) 

The physical implications of the Pfaffian generalization of the action func­
tional now come to light. In fact, the transition from wave packet (6.1.44) to 
generalized form (6.1.46) is clearly based on the replacement of the canonical 
action with the Pfaffian one. The transition from a wave function depending 
only on time and coordinates to one depending also on momenta is then self­
evident (as anticipated earlier in this section). 

The hadronic generalization of SchrOdinger's equations is attempted in 
this section in such a way as to generalize the historical process which lead to 
structure (6.1.44), that is, so as to admit a classical limit into the Birkhoffian 
generalization of the Hamilton-Jacobi equations. The formal solution is the 
following. 

Consider a nonconservative, non-self-adjoint implementation of system 
(6.1.36) 

a" - 3 1l(a) - pet a) = o. (P) = ( 0 ) 
, , F~aSA(t, a) 

(6.1.47) 

in which the non-self-adjoint forces can be considered, for instance, as 
corrections to (6.1.36) due to the extended nature of the particles. Represent 
the system with equations (6.1.32), i.e., 

(6.1.48a) 

(6.1.48b) 
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We can easily see that the following Birkhoffian quantization rules4 

oAg 0 _ 
-B=--+i-= -B 

ot ot ' 

oAg 1 0 _ 
R =--+--=R 

Il oall i oall Il 
(6.1.49) 

yield the desired hadronic generalization of Schrodinger's equations 5 

o - (10) i ot t/J(t, a) = B(t, a)t/J(t, a) = fJI t, i oa t/J(t, a) (6.1.50) 

where a suitable symmetrization of the Birkhoffian functions B or fJI and 
all(R) appearing in (6.1.31) is understood. 

Under the wave function 

and values 

1 
Ag ~ 0, 

1 0 oAg 
--;-:l/i ~~, 
I va va 

1 0 oAg 
--~­
i ot ot' 

(6.1.51) 

(6.1.52) 

the zero-order term of the expansion of (6.1.50) in 1/ A g reproduces the classical 
(6.1.48) identically, as the reader is encouraged to verify. The first-order term 
then yields a continuity equation of equally easy derivation. 

We should indicate that hadronic wave packet (or Green function) (6.1.46) 
is the general solution of(6.1.50) under the most general possible combination of 
(local, analytic, regular) potential and nonpotential interactions. By compari­
son, no general solution of Schrodinger's equation of Atomic Mechanics 
is known under arbitrary potential forces in such a simple way. 

A few concluding remarks are in order. First, conventional Schrodinger's 
equations (6.1.41) are not a particular case of (6.1.50) owing to the use of the 
Birkhoffian gauge which is absent in the former equations. The atomic 
particularization of (6.1.50) (i.e., the particularization when all nonpotential 
forces are identically null) is given by a suitable reformulation of (6.1.41) 

4 To avoid possible misrepresentations, we point out that the commutativity of the operators 
R. is illusory for Hadronic Mech~nics.Jn fa:!, tEe c~nventional associative product R.R, must 
be replaced by the isotopic one R. * R, = R. T(a)R,. As a result, conventional commutators 
[R • .! R",t = R.}v_:: R,R. must be replaced by the isotopic com!:lutators of Chart 5.1, [R., R,J* 
= R. T R, - R, T R •. It is then easy to see that the op!;rat,9rs R. are generally noncommuting 
for Hadronic Mechanics, in the sense that, in general, [R., R,J* # O. To put it in different terms, 
the isotopic product has no meaning in Atomic Mechanics, in that the conventional product 
must be used for the computation of magnitudes, eigenvalues, etc. By the same token, the con­
ventional product has no meaning for Hadronic Mechanics, and the isotopic one must be used 
unless one desires the atomic particularization. 

5 An empirical rule for reaching hadronic equations (6.1.50) (as well as several other hadronic 
aspects) is the following; it is based on the identification of the generalization occurring in the 
transition from the canonical to the Pfaffian actions. As is now familiar, the rule is characterized 
by the replacement of the Hamiltonian quantities r\ Pk' and H with the corresponding Birk­
hoffian ones a·, R., and B. At the operator level, this is given by the replacement of the atomic 
operators ft, Pk = (lji)(iJjiJrk), and H(t, i', p) with the hadronic ones ii·, R. = (lji)(iJjiJa·), and 
B(t, ii(R». Several atomic properties can then be readily generalized into a hadronic form via 
this simple rule, once properly implemented (e.g., by keeping in mind that, while the atomic 
operators i'k commute, this is not the case for the hadronic ones a·-see footnote 4). 
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obtained via quantization of (6.1.15). This reformation is identified in 
Problem 6.3, and its study is left here to the interested researcher. 

We therefore have the following implication for conventional potential 
forces. The structure of the contemporary formulation of Atomic Mechanics 
can be expressed via the dynamic equations of Figure 1 and their inter­
relations with the understanding that several additional approaches exist, 
e.g., that of path-integral type, Lagrange type, etc. Another understanding is 
that the achievement of consistent quantization-correspondence processes 
is still open at this moment and that the equivalence of the two representa­
tions of the figure has been proved only in very special cases. 

Hamilton's Equations H amilton-J acobi Equations 

ill" = [aI", H] oA 
canonical at + H(r, p) = 0 

[aI", aV] = Wl"V transformation 

a = (r, p) 
oA 

p=-
or 

canonical 
quantization or 
correspondence 

Heisenberg's Equations Schrodinger's Equations 

. 1 _ o _ 
al" = --:- [aI", H] i ot ljJ(t, r) = HIjJ(t, r) 

I 
unitary 

[aI", aV] = iOr transformation fi = fi(r, j) 

a = (r, p) 1 0 
p=--

i or 

Figure 1 

When the function H represents a conservative system H = T(p) + V(r) 
and all quantities have a direct physical meaning, a set of deeply interrelated 
and mutually compatible atomic laws emerges as valid, in full agreement 
with experimental data on electromagnetic interactions. These laws can be 
depicted according to the scheme in Figure 2. Galilei's relativity is considered 
of fundamental character not only for the impact of any relativity in the 
physical description of nature, but also because, out of all the principles of 
Figure 2, it is the only setting which persists at the Newtonian limit. 

By inspecting the formulations of Figure 1 the following aspect soon 
emerges. Hamilton and Hamilton-Jacobi formulations are defined in the 
cotangent bundle T* M with local coordinates rand p. Heisenberg's 
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Heisenberg's Indeterminacy Planck's 
Principle Constant 

Galilei's / 
Relativity 

~ 
de Broglie's Wavelength Einstein's Frequency 

Principle Principle 

Figure 2 

formulations are defined in terms of (Hermitian) operators which can be 
considered as polynomial expressions in i and p while the states are cor­
responding elements of the underlying Hilbert space. In the transition to the 
SchrOdinger representation, the situation is somewhat altered, inasmuch 

Hamilton's Equations 

all = [all, H] 

[all, a>] = roll> 

a = (r, p) 

Heisenberg's Equations 

- 1 H a = --;- [all, ] 
I 

[all, a>] = i6)ll> 

a = (i, p) 

Figure 3 

canonical 

transformation 

canonical 
quantization or 

correspondence 

unitary 

transformation 

" Gauged" H amilton-J acobi 
Equations 

oA+ 
- + H(t a) = 0 

ot ' 
oA+ 

RO+(a) = --21ro a> = --
Il Il> oall 

a = (r, p) 

"Gauged" Schrodinger's 
Equations 

o _ 
i at ljJ(t, a) = HljJ(t, a) 

H = H(t, - 26)1l> 0:» 
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as the states (wave functions) are now dependent only on r (and time). The 
consistency of the formulation is out of the question, as indicated earlier, 
and at any rate is permitted by the fact that the second set of Hamilton­
Jacobi equations implies only the p variable (see property (6.1.12». 

However, the form of the Hamilton-Jacobi equations used historically 
in the construction of Schrodinger's mechanics is by far nonunique, and 
several equivalent forms are possible, as indicated in this section. This situa­
tion opens the problem, indicated earlier, which we now reformulate in Figure 
3. As one can see, Hamilton's and Heisenberg's equations are left unchanged, 
and only the Hamilton-Jacobi and Schrodinger equations are" gauged" in 
the Birkhoffian sense. Needless to say, all the basic physical laws, principles, 
and relativities of Figure 2 are expected to preserve their wlidity under the 
"gauged" reformulations of Figure 3. 

When passing from the atomic-electromagnetic setting to that of strong 
interactions, the forces may become more complex than those representable 
by the simplistic Hamiltonian H = T + V, because of the mutual penetration 
of hadrons one within the space occupied by others. A generalization of 
Atomic Mechanics onto Hadronic Mechanics is then conceivable. 

Birkhoffian Generalization 
of the Hamilton-Jacobi 

Birkhoffian Generalization Equations 

of Hamilton's Equations oAg 
generalized at + fJI(t, R(a» = 0 

all = [all, B]* canonical 

transformation 

[all, aV]* = QIlV(a) oAg 
RIl(a) = oall 

a = (r, p) 

det(~~:) # 0 

Birkhoffian 
quantization or 
correspondence 

H adronic Generalization 
H adronic Generalization of Schrodinger's Equations 
of Heisenberg's Equations 

o -
. 1 _ generalized i ot I/J(t, a) = fJll/J(t, a) 
a = -:- [all, B]* unitary 

1 transformation - -( 10) 
[-Il -V]* 'gIlVC) fJI=fJlt--
a,a =1 a ' i oa 

a = (r, p) _ 1 0 
R =--

Il i oall 

Figure 4 
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In this and in the preceding section, we have indicated only two aspects of 
the current efforts to construct the Hadronic Mechanics, those of Birkhoffian/ 
Lie-isotopic type, with the understanding that additional efforts (e.g., 
of Birkhoffian-admissible/Lie-admissible type) are under way. The efforts 
considered can be summarized as in Figure 4, where the nonunitary (general­
ized unitary) transformation interconnecting the formulations has been 
studied by Myung and Santilli (lac. cit.) via the isotopic generalization of the 
Hilbert space and the operations defined on it (including unitarity). 

Despite their tentative character, a number of aspects related to the had­
ronic formulations has emerged quite clearly. In particular the mathematical 
structure turns out to be based on the isotopic generalization AB --+ A * B = 
ATB of the envelope of Atomic Mechanics (Chart 5.1). 

An aspect which may appeal to researchers interested in the pursuit of 
novel physical knowledge is that the generalization AB --+ A * B inevitably 
implies the possible existence of a hadronic generalization of all physical 
laws, principles, and relativities of Atomic Mechanics, which we can sche­
matically depict as in Figure 5. 

This occurrence is evident from a mere inspection of the hadronic wave­
packets (6.1.46) on a comparative basis with the atomic ones (6.1.44). Its 
ultimate roots are, predictably, of Newtonian character and can be identified 
with the fact that the systems of our environment, when restricted to the 
frame of the observer, break Galilei's relativity according to one or the other 
of the mechanisms classified in Chart A.12. 

We reach in this way one of the most important objectives of these volumes: 
the attempt to construct a generalization of Galilei's relativity in Newtonian 
Mechanics which is directly universal, that is, applicable to all systems of the 

Hadronic Covering 
Hadronic Covering 

of Heisenberg's 
Uncertainty 

of Planck's 

Principle 
Constant 

~ / Hadronic Covering 
of Galilei's 

/ Relativity 

~ 
Hadronic Covering Hadronic Covering 

of de Broglie's of Einstein's 
Wave-length Frequency 

Principle Principle 

Figure 5 
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class admitted (local, non-Hamiltonian, analytic, and regular) in the frame 
of the observer. The hope is that the generalized classical relativity may be 
valuable in the study of its hadronic image, as well as of all other hadronic 
generalizations of Figure 5. 

The construction of the generalized relativity will be conducted as follows. 
In the next section we identify the Hamiltonian reduction of Birkhoff's 
equations via the use of the transformation theory. The reduction is clearly 
useful to identify an hypothetical frame in which non-Hamiltonian and 
Galilei-noninvariant systems acquire a Hamiltonian and Galilei-invariant 
form. The use of the inverse transition studied in Chapter 5 will then permit 
the identification of the structure of the relativity which is applicable in the 
frame ofthe observer. This latter task will be conducted in Section 6.3. By keep­
ing in mind that detailed treatments of quantum mechanical aspects are 
beyond the scope of this volume, the problem of the expected operator image 
of the generalized relativity will be referred to the existing literature, except a 
few incidental remarks. 

6.2 Indirect Universality of Hamilton's Equations 

In Section 5.3 we showed that noncanonical transformations map Hamilton's 
equations into Birkhoff's equations. In this section we show that, under 
certain topological conditions, Birkhoff's equations can always be reduced 
to the Hamiltonian form via the transformations of Darboux's theorem of 
the contact geometry (Chart 5.5). The direct universality of Birkhoff's 
equations (Section 4.5) therefore permits the establishing of the indirect 
universality of Hamilton's equations. These results can be expressed via the 
formulation and proof of the following theorem. 

Theorem 6.2.1 (The Theorem of Indirect Universality of Hamilton's 
Equations). All analytic and regular systems of ordinary differential 
equations of jirst- (or higher) order admit, in a star-shaped neighborhood of 
a regular point of the variables, an indirect Hamiltonian representation. 

GEOMETRIC PROOF. In Section 4.1 and Chart 4.3, we showed that systems of dif­
ferential equations of second (or higher) order can be reduced to an equivalent, regular 
first-order form. Theorem 4.5.1 establishes that all first-order systems of the type 
considered admit, in a star-shaped neighborhood of a regular point of their variables, a 
representation via Birkhoff's equations 

/1 = 0, 1, 2, ... , 2n, 

{a~} = {t, a~} = {t, l, pd, 

~ aB aRv ~ 
00v= aav+Tt= -Ova' V= 1,2, ... ,2n, 

n = aRv _ aR~_ 
~v aa~ aav - O~v, /1, v = 1,2, ... , 2n, 

B = B(a) = B(t, a), 

(6.2.1a) 

(6.2.1b) 

(6.2.1c) 

(6.2.1d) 

(6.2.1 e) 
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where n~. characterizes the closed two-form of maximal rank (except contact form) 

/1, v = 0, 1,2, ... , 2n. (6.2.2) 

From Darboux's theorem for the contact geometry we know that, under the assumed 
smoothness and regularity conditions, an analytic and regular transformation always 
exists, 

fi~ -> fi'~ = fi'~(fi), /1 = 0, 1,2, ... , 2n, (6.2.3) 

under which form (6.2.2) reduces to the canonical form (see Chart 5.5) 

612 = tw~.dfi'~ /\ dfi'·, /1, v = 0, 1,2, ... , 2n, (6.2.4a) 

oH' 
610 • = oa'~ = -61.0 , v = 1,2, ... , 2n, (6.2.4b) 

/1, v = 1, 2, ... , 2n, (6.2.4c) 

(6.2.4d) 

This ensures the reduction of Equations (6.2.1) to the Hamiltonian form 

/1 = 0, 1,2, ... ,2n (6.2.5) 

and completes the geometric proof of the theorem. (Q.E.D.) 

Theorem 6.4.1 was first studied by Lie (1871) and Koenigs (1895) (see also 
Whittaker (1904, pp. 275-276). Subsequently, the theorem has been studied 
by a number of authors. See, for instance, Kerner (1964). 

It may be advantageous for the applications of the Inverse Problem to have 
an alternative proof of Theorem 6.2.1. In this way, the interested reader is 
equipped with alternative approaches for attempting the explicit computa­
tion of a Hamiltonian for a given system. 

PFAFFIAN PROOF. Theorem 4.5.1 establishes that the systems considered, under the 
conditions assumed, admit an analytic representation in terms of action functional 
(4.2.14) with integrand 

ft.! = R~(t, a)da~ - B(t, a)dt 

= Pk(t, q, p)dl + Qk(t, q, P)dPk + B(t, q, p)dt, (6.2.6) 

but the Pfaffian problem of reducing form (6.2.6) to the canonical form 

ft.? = pkdq'k - H'dt, 
pic = Pk(t, q, p), q'k = q'k(t, q, p), H' = H'(t, q', p'), (6.2.7) 

always admits (at least) one solution. This is sufficient to establish the existence of an 
indirect Hamiltonian representation for all systems considered. (Q.E.D.) 

The literature on Pfaff's problem is quite extensive. For historical as well as 
detailed accounts, the reader may consult for instance, Forsyth (1890) and 
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Goursat (1922). A number of approaches have been studied for the solution 
of Pfaff's problem. For the reader's convenience, we have outlined a method 
originally due to Clebsh (see Forsyth, loco cit., pp. 210-214), and more 
recently reelaborated by Hill (1966)). 

The solution of the Pfaff's problem consists of the identification of the 
invertible, contemporaneous, but explicitly time-dependent transformations 

under which 

This implies that 

t ~ t' == t, 
{all} = {q\ Pk} ~ {a'll} = {a'll(t, a)} 

= {q'\t, q, p), p~(t, q, p)}, (6.2.8) 

(6.2.9) 

(6.2.10) 

As a result, Birkhoff's tensor nllv can be interpreted as representing the 
Lagrange brackets 

(6.2.11) 

It then follows that the contravariant form 

(6.2.12) 

yields the conventional Poisson brackets 

(6.2.13) 

The Poisson brackets between any two functions in a-space, say, C(a) and 
D(a), can be reinterpreted as follows 

(6.2.14) 

The necessary and sufficient conditions for the solution of Pfaff's problem 
can be obtained via the use of Equations (6.2.10) and (6.2.14) and can be 
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written (for brevity, we refer the interested reader to the quoted references 
for the rather lengthy proof): 

o ,k 
O/,vR .!L = ° (6.2.15a) 

v oall ' 

IlV oq'i oq,k _ 
n oav oall - 0, (6.2.l5b) 

nllvR opi = ' 
v oall Pk, (6.2. 15c) 

nllV opi opi = ° 
oav oall ' 

(6.2.15d) 

o ,i 0 ' 
nllv!L.!!l = (ii .. (6.2. 15e) oall oaV J 

The integration of these equations yields the desired solution. Specifically, 
the integration of Equations (6.2.15a) and (6.2.15b) yields the functions 
q,k(t, q, p), while the integration of Equations (6.2.15c), (6.2.15d), and (6.2.15e) 
yields the functions pi(t, q, p) under which the general symplectic tensor 
nllv reduces to the fundamental form WIlV' i.e., 

(6.2.16) 

or, more explicitly, 

oRv oRIL oaP oRa oaa oaP oRp oaa 
------+-------
oall oav oa'il oaP oa" oa'il oaa oa" 

(6.2.17) 

A rather crucial aspect of the Pfaffian problem is the proof that Equations 
(6.2.15) always admit solutions under the conditions considered. Regrettably, 
this historical proof is rather lengthy and involved. We shall therefore omit it 
here and content ourselves with the geometrical proof given above. 

The reduction of Birkhoff's equations in the (t, a) variables to Hamilton's 
equations in the (t, a') variables is now completed via the rule 

[(OR V ORIl) 'V (OB ORIl)] [oa'p ( "a OH')] 
Gall - Gav a - Gal' + ------at SA = Gal' wpaa - Ga'p SA NSA = 0, 

(6.2.1 Sa) 

H' = H'(t, a') = B(t, aCt, a')) - (oG~~ R~ )(t, a'), (6.2.1Sb) 
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which is the desired inverse reduction of transformations of type (5.3.22). 
Notice that the Birkhoffian does not transform into the Hamiltonian accord­
ing to a scalar rule, but transforms instead according to rule (6.2.18b), due to 
the explicit time-dependence of the transformations. 

Almost needless to say, the geometric and the Pfaffian proofs are ulti­
mately equivalent. The former deals with the reduction of exact, contact, 
two-forms to the canonical form, while the latter deals with the same reduc­
tion, but for primitive one-forms. Nevertheless, these proofs are based on 
different methods, and as such, they can be of assistance for practical applica­
tions. 

A difference exists in the proofs given above that should be indicated. The 
transformations via the use of Darboux's theorem for contact geometry, 
Equations (6.2.3), imply that the "time" of Hamilton's equations depends on 
the time, coordinates, and velocities of the original Newtonian system as 
experimentally detected. Indeed, these transformations can be explicitly 
written 

t -t t' = t'(t, q, p) = t'(t, q, pet, q, q», 
k ,k ,k(t ) ,k(t ( .» q -t q = q , q, p = q , q, P t, q, q , 

Pk -t p~ = p~(t, q, p) = p~(t, q, pet, q, q». 

(6.2.19a) 

(6.2.l9b) 

(6.2. 19c) 

On the contrary, the transformations via the Pfaffian problem, Equations 
(6.2.8), are contemporaneous, even though explicitly time-dependent (for 
the non-autonomous case). Clearly, this latter approach may be preferred 
over the former in practical cases. 

When the Pfaffian proof is reinspected within the context of the symplectic 
(rather than contact) geometry, it emerges dealing with the canonical reduc­
tion of simplectic forms with an explicit time dependence, i.e., 

n = 1.n (t a)da/1 1\ da V -t W = 1.w da'/1 1\ da'v 2 2 /1V , 2 2 /1V (6.2.20) 

which, strictly speaking, should belong to the contact geometry under proper 
prolongation into 2n + 1 dimension. 

The fact that reduction (6.2.20) can be properly treated within the context 
of the symplectic geometry is established by the parametric approach to 
symplectic forms of Chart 4.6. Consider a representation of the systems 
admitted according to Theorem 6.2.1, and select the region R of definition of 
Birkhoff's equations to be smoothly deformable to a curve monotonically 
increasing in time. Under transformations (6.2.8), Birkhoff's equations 
transform according to Equations (5.3.23), i.e., 

R/1(t, a) -t R~(t, a') = (::,: Ra)(t, a'), (6.2.21a) 

B(t, a) -t H'(t, a') = B(t, aCt, a» - ea~a Ra)(t' a'). (6.2.21b) 
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When the transformations verify all the needed smoothness requirements, 
the image region R' preserves the topological character of R. Then trans­
formations (6.2.8) always exist under which Birkhoff's equations acquire 
the Hamiltonian form, that is, such that 

(6.2.22a) 

(6.2.22b) 

as guaranteed by the application of Darboux's theorem of the symplectic 
geometry to nondegenerate, closed, and parametric forms. 

We conclude this section with a number of remarks. First, it may be of 
some significance to indicate that Theorem 6.2.1 admits an infinite number of 
different solutions. Indeed, the transformations which reduce a contact 
structure to a fundamental structure are always defined up to an infinite 
number of possible identity isotopic (that is, canonical) transformations of 
the fundamental tensors WIlV or w ilV • In conclusion and as anticipated earlier 
in our analysis, canonical transformations constitute a sort of "degree of 
freedom" of the Theorem of Indirect Universality of the Inverse Problem,6 
although, they have no constructive role. 

The condition of analyticity of Theorem 6.2.1 is due largely to the methods 
we have selected for the proof of Theorem 4.5.1 on Birkhoffian representa­
tions, while the condition of infinite differentiability is sufficient for Darboux's 
theorem. Thus, in principle, Theorem 6.2.1 could be reformulated and proved 
for systems of class '{joo only. 

It should be recalled that the point of the local variables of Theorem 6.2.1 
must be regular in the sense of Chart A.l and must not be a possible zero of 
the determinant of the matrix (OIlV)' Also, a neighborhood of such a point 
must be star-shaped (or topologically equivalent) to ensure the applicability 
of the converse of the Poincare lemma. 

A comparison of the nonlinearity inherent in the geometric and Pfaffian 
approaches is instructive. The geometric approach demands the solution 
of non-linear systems of partial differential equations (6.2.4d) or (6.2.17). In 
the transition to the Pfaffian approach, such non-linearity generally persists. 
Indeed, Clebsh's Equations (6.2.15) are also nonlinear, though of a different 
type. 

Notice that the systems of partial differential equations for the Hamiltonian 
reduction are not, in general, of the Cauchy-Kovalevsky type, nor can they 

6 Note that, on purely formal grounds, these degrees of freedom can be used for the solution 
of the equations of motion. In fact, one can attempt to identify a Darboux's transformation 
plus a canonical transformation, under which the new Hamiltonian is identically null, by 
therefore implying that a' = Co = constant. The use of the inverse transformation a' -> a(a') 
would then produce the solution of the system. 
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be readily transformed to a Cauchy-Kovalevsky form. The lack of consequent 
applicability of the contemporary existence theory for partial differential 
equations confirms the rather crucial methodological function of the 
symplectic and contact geometries. 

As an historical note, the reader may be interested in knowing that Dar­
boux's theorem is sometimes called Pauli's theorem in the literature (see 
Jost (1964)). As a matter offact, a study of the original paper by Pauli (1953) 
(as well as its elaboration by Jost (lac. cit.)) is recommended, because it is 
directly relevant for the Inverse Problem, although understandably not 
intended for such a purpose. In essence, "Pauli's theorem" can be inter­
preted as a reformulation of Darboux's theorem, and this is sufficient to 
indicate the relevance of Pauli's studies for the Inverse Problem. 

Needless to say, Theorem 6.2.1 is an existence theorem. As such, it guar­
antees that a Hamiltonian exists under the conditions indicated, but it does 
not guarantee that such a Hamiltonian can be computed in the needed 
closed form. In fact, the technical difficulties related to the Hamiltonian 
reduction of Birkhoff's equations can be rather considerable, as we shall 
illustrate in the examples at the end of this chapter. 

Despite this restrictive character, Theorem 6.2.1 has an important meaning 
for mechanics. In fact, the theorem establishes that, on formal grounds, all 
possible Newtonian systems verifying the conditions of the theorem can be 
treated via the canonical version of analytic, algebraic, and geometric 
formulations. 

On more explicit grounds, the systems represented by Theorem 6.2.1 are 
of the following three classes: (a) essentially self-adjoint; (b) non-essentially 
non-self-adjoint; and (c) essentially non-self-adjoint. For class (a), the 
theorem is actually redundant because the systems admit a conventional 
Hamiltonian representation (although the use of the techniques of the 
theorem may be equally useful for the problem of symmetries and first 
integrals). For class (b), the theorem is applicable, although only in the simpli­
fied version without the intermediary use of Birkhoff's equations. Clearly, for 
the most general possible class of systems, those of class (c), the theorem is 
applicable in its most general possible formulation, including the necessary 
intermediate use of Birkhoff's equations. 

As indicated in the Preface, achieving the primary research objectives by 
no means allows the relaxation of the critical examination of the results. 
Part of the next section will therefore be devoted to the critical examination 
of the physical implications of the theorem. 

We conclude this section by pointing out that Theorem 6.2.1 suggests 
rather forcefully the Lie-isotopic structure of the hadronic generalization of 
Atomic Mechanics (Section 6.1). The property was identified by Santilli 
(1978d, 1979b, and 1982b). A simple presentation of the argument is the 
following. 

The objective is to show that Heisenberg-type treatments of contactjnon­
Hamiltonian interactions among extended particles in conditions of mutual 
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penetration (as in the strong interactions) do not admit the conventional 
associative enveloping algebra of operators A, B, ... , with product AB, but 
rather its isotopic generalization, e.g., of the type .1* B = ATB, with T a 
fixed nonsingular operator satisfying all needed conditions (Hermiticity, 
positivity, etc.). 

For this purpose, consider a classical, essentially non-self-adjoint first­
order form 

( i - p ) p _ eSA _ FNSA = 0, m = 1, (6.2.23) 

which, as is now familiar, is non-Hamiltonian by assumption. Theorem 6.2.1 
establishes that, under the assumed topological conditions, the systems can 
be transformed into an equivalent form in new variables t' = t, r', and p', 
which not only is Hamiltonia, but is actually "free," e.g., it admits the trivial 
Hamiltonian H' = tp'2, i.e., 

. o. ( i' - p') = 
p' 

(6.2.24) 

Now quantize this system into Heisenberg's equations 

(6.2.25a) 

A' = A'(i", p'), Ii = 1 (6.2.2Sb) 

by conventional techniques. However, variables r' and p' are not realizable 
via experiments (because they are nonlinear functions of the physical co­
ordinates rk and linear momenta Pk actually used by the experimenter). 
Thus, in order to achieve an operator description in the frame of the observer, 
one must identify the inverse transform from system (6.2.24) to (5.2.23), 

r' --+ r( r', p'), p' --+ p(r', p'), (6.2.26) 

and the corresponding operator form 

_, _(_' 1 ) r --+ r r, i Vr , , -, -(-' 1 V ) p --+ p r, i r' • (6.2.27) 

Since the original system is essentially non-self-adjoint, transformations 
(6.2.26) are necessarily noncanonical (Section 5.3). For the consistency of 
the theory, the operator image (6.2.27) must therefore be nonunitary. 

Our objective is then achieved by noting that, under a non unitary trans­
formations, Heisenberg's equations (6.2.25) transform into the isotopic form 
(18) of Chart 5.1. To see it, suppose for simplicity, but without loss of general­
ity, that transformations (6.2.27) are expressible via the non unitary operator 
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exp(W.2), where e is the parameter and .2 is a non-Hermitian operator 
(zt =1= Z). Then we have the formal rule 

~ dA 
iA = i- = [A B]* = ATB - BTA dt' , 

A = ei6zA'e-i6zt, B = ei6ZH'e-wzt 

[A, B]* = eWZ[A', H']e- i6zt 

T = ei6zte-wZ = Tt. 

(6.2.28a) 

(6.2.28b) 

(6.2.28c) 

(6.2.28d) 

Equations (6.2.28) confirm the existence of an operator realization of the 
Lie-isotopic theory. In addition, they confirm the apparent, rather general, 
physical meaning of isotopy at the various levels of mechanics (Newtonian, 
statistical, particle, etc.). We are referring here to the capability of the isotopic 
mapping of the enveloping algebra or of the Lie product to represent con­
tact/non-Hamiltonian interactions. 

Intriguingly, the hadronic generalization (6.1.50) of Schr6dinger's 
equations is equivalent to the isotopic generalization (6.2.28a) of Heisenberg's 
equations (Myung and Santilli, 1982a). 

6.3 Generalization of Galilei's Relativity 

In this section we review the canonical foundations of the contemporary 
formulation of Galilei's relativity. We then show that such relativity is 
applicable to a rather restricted class of systems. Finally, we identify the 
rudiments of a possible generalization of Galilei's relativity of Lie-isotopic 
and symplectic-isotopic type which is applicable to local Newtonian systems 
with potential and non-potential forces. A good knowledge ofthe Lagrangian 
treatment of symmetries and first integrals (e.g., as reviewed in Charts A.6 
through A.12) is assumed. 

Definition 6.3.1. A first-order system of ordinary differential equations 7 

dt 
dt 

da ll 

dt 

in the vector-field form on IR x T* M 

e(A) _ ell(!l)~ _ -;:::Il( )~ ~ ~ a - ~ u oall - ~ t, a oall + ot 

(6.3.1) 

(6.3.2) 

7 We continue to use the notation whereby the index J1 runs from 1 to 2n for a" and from 0 
to 2n for <i". The same notation is used for other quantities, such as R" and R". We pass liberally 
from one notation to the other, depending on whether or not the separation of the time de­
pendence is important. 



226 Generalization of Galilei's Relativity 

is said to possess a symmetry under smoothness preserving and regular 
transformations 

(6.3.3) 

when it is form-invariant according to the rule 

(6.3.4) 

The symmetries of a vector field can be classified into manifest, nonmanifest, 
discrete, connected,finite, infinitesimal, contemporaneous, noncontemporaneous, 
etc., in essentially the same way as that of the symmetries of second-order 
systems (Chart A.6). 

Definition 6.3.2. A function lea) = let, a) = let, r, p) is called afirst integral 
of vector field (6.3.2) when its total time derivative along the direction of the 
vector field is identically null, i.e., 

(6.3.5) 

A first integral is called a conservation law when the quantity lea) directly 
represents a physical quantity, such as the total energy, the total linear 
momentum, etc. 

Several differences between first integrals and conservation laws were 
presented in Chart A.8 for the second-order case, and they are readily adapted 
to the first-order one. 

Theorem 6.3.1 (lnvariance Property of First Integrals). A first Integral 
lea) of a vector field 3 is invariant under infinitesimal transformations with 
3/1 as generators and Jt as parameter. 

PROOF. 

(6.3.6) 

(Q.E.D.) 

This property was identified by Sophus Lie. For historical notes as well as 
a presentation of the topic and related aspects, the reader may consult 
Hagihara (1970, pp. 291-293). To restate the property in different terms, we 
can say that the infinitesimal transformations 

t -+ t' = t + Jt, (6.3.7) 
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constitute a symmetry of the vector field on account of the properties 

I(t, a) = I(t(t'), a(t', a')) = 1'(t', a') == I(t', a') (6.3.8) 

which are ensured by rule (6.3.5). 
Under the assumed topological conditions, it is also possible to prove the 

inverse property, that is, if a function I(t, a) is form-invariant under trans­
formations (6.3.7), then it is a first-integral with respect to S. 

Definition 6.3.3. A set of functions v;.(t, a), k = 1,2, ... , m ~ 2n are called 
invariant relations with respect to the vector field S when the identities 

(6.3.9) 

hold along the solution ao of the system at one given value of time to and can 
be satisfied for all values of time. 

The difference between first integrals and invariant relations is instructive, 
as well as important for the objectives of this section. In essence, for the case 
of first integrals, the relation j == 0 holds identically; that is, it holds for all 
possible paths a which are not necessarily solutions of the system. An 
invariant relation, on the other hand, holds only along the solution of the 
system. As a result, the quantity I is not necessarily an invariant relation 
i.e., j #- V. The (2n + 1 - m)-dimensional hyper surface on ~ x T* M 
characterized by Equations (6.3.9) is called the hypersurface of the invariant 
relations. For additional properties, one may consult, for instance, Hagihara 
(loc. cit.). 

A set of physical quantities X k(t, a), k = 1,2, ... , can therefore be conserved 
in more than one way. First, the total time derivatives can be identically null 
along the direction of the vector field, i.e., 

(6.3.10) 

in which case they are first integrals. Secondly, a regular matrix of functions 
A~(t, a) may also exist such that 

(6.3.11) 

in which case the X's are conserved by virtue of the invariant relations. In 
the former case we say that quantities X k are strongly conserved, while in the 
latter case we shall say they are weakly conserved. Also, the strong equality 
will be denoted with the symbol == used in Equations (6.3.10), while the 
weak equality will be denoted with the symbol ~ used in Equations (6.3.11). 

A simple example is given by the total energy Etot(a) of a conservative 
system. When the equations considered have no initial conditions, the energy 
can assume an arbitrary constant value C; Etot(a) is a first integral; and we 
can write the strong equality Elola) == C. However, if we assume a given 
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fixed value Co of C, then the relation Etot(a) = Co can only hold weakly, 
that is, V = Etot(a) - Co is an invariant relation.s In fact, the assumption 
of the value Co of the energy at one given value of time causes the system to 
preserve the same energy at all subsequent times. 

Note that invariant relations can occur for all possible vector fields and not 
necessarily only for conservative ones. The understanding is, however, that 
the physical interpretation of relations (6.3.11) becomes considerably more 
abstract for nonconservative systems. 

We now restrict the vector field to be Hamiltonian in the sense of Equa­
tions (4.3.5), i.e., 

';;/1(t ) _ /1V vH(t, a) 
~ ,a - W vav (6.3.12) 

and review the conventional definition of symmetry within the context of 
canonical formulations. 

Definition 6.3.4.9 A contemporaneous smoothness-preserving regular 
transformation. 

t -+ t' == t, (6.3.13) 

is a symmetry of Hamilton's equations when it is, first, Lie identity isotopic 
(that is, canonical), 

(6.3.14) 

and, in addition, leaves the Hamiltonian form-invariant, i.e., 

H(t, a) -+ H'(t, a') = H(t, a(a'». (6.3.15) 

Consider the case when the symmetry is constituted by an r-dimensional 
Lie group of infinitesimal transformations Gr. The condition that these 
transformations are canonical demands that they have the structure (see 
Chart 5.4 for detail) 

(6.3.16) 

where the w's are the infinitesimal parameters and the X's are the generators 
of Gr. 

B The case Etot = Co is also referred to as a particularized first integral. 
9 The extension of the definition to the noncontemporaneous case is given later as a particu­

larization of the more general notion of symmetry of Birkhoff's equations. Note that the sym­
metries of Hamilton's equations do not recover all possible symmetries of the represented vector 
field. The proof of this property is left as an instructive exercise for the interested reader (Problem 
6.4). 
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However, the image of the Hamiltonian under transformations (6.3.16) is 
given by 

oH oX 
H'(t, a') = H(t, a) + wk oafl WflV oa: = H + wk[H, X k]. (6.3.17) 

The following (well-known) important property for the autonomous case 
then follows. Its extension for the non-autonomous case is not considered for 
brevity. 

Theorem 6.3.2 (Integrability Conditions for Hamiltonian Symmetries). 
A necessary and sufficient condition for transformations (6.3.16) to be 
symmetries of a Hamiltonian H(a) is that the conventional Poisson brackets 
of the Hamiltonian with all the generators Xk(a) are identically null, i.e., 

[H, X k] = 0, k = 1,2, ... , r. (6.3.18) 

The evident distinction between Lie transformation groups and Lie sym­
metry groups should be kept in mind. Also, one should remember that, if a 
given Lie group is a symmetry group for one given Hamiltonian, the same 
group is not necessarily a symmetry group for another Hamiltonian. 

The use of Lie's theory, with particular reference to Lie's theorems and the 
universal enveloping associative algebra (reviewed in the charts of Chapter 5 
for the reader's convenience) then permits the following important conse­
quence of Theorem 6.3.2. 

Corollary 6.3.2a. The Lie algebra Gr of an r-dimensional Lie symmetry 
group Gr of a Hamiltonian H is given by the vector space (over the field IF of 
real numbers) of the generators X k on T* M verifying conditions (6.3.18), 
equipped with the conventional Poisson brackets as the realization of the Lie 
product, and obeying the following closure rules expressed in terms of the 
structure constants C~j (from Lie's second theorem) 

[Xi' X j] = CtXk' (6.3.19) 

It is understood that H can be one element of Gr. It is also understood that 
G r can be infinite-dimensional. Nevertheless, most Lie algebras of symmetry 
groups relevant in physics are finite-dimensional. This is the case particularly 
for space-time symmetry groups such as the ten-dimensional algebra of the 
Galilei's group on IR x T* E(3) 10 

G(3.1) = [SO(3) EB T,(3)] EB [Tb(3) + Tt(l)] (6.3.20) 

10 We restrict ourselves for simplicity here and in the following, to presenting the simplest 
possible form of Galilei's group, that without scalar extension. For a study of broader structures, 
see, for instance, Levy-Leblong (1971). See also Sudarshan and Mukunda (1974, Chap. 19). 
The reader must be aware that a Poisson brackets realization of algebra (6.3.20) exists for the case 
of null mass, and that the use of the scalar extension is needed to treat the case of non-null 
mass. For similar reasons, the subsequent exponentiation (6.3.28) must be interpreted as occur­
ring for subgroups and conditions not demanding the scalar extension. It should be stressed that 
similar occurrences are expected for the isotopic generalization of Galilei's relativity. 
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of Galilei's group of transformations 

{ 
t ---+ t' = t + to, 

G(3.1): r ---+ r' = Rr + vot + ro, 

p ---+ pi = Rp + mvo, 
(6.3.21) 

where 80(3), T,(3), T b(3), and T t(1) are the Lie algebras of the groups of 
rotations, translations in space, Galilei's boosts, and translations in time, 
respectively; and the symbols + and Et> denote direct and semidirect sums, 
respectively. 

The preceding elements are sufficient to illustrate that the notions ex­
pressed by Definiton 6.3.4, Theorem 6.3.2, and Corollary 6.3.2a are offunda­
mental relevance in contemporary theoretical physics. In fact, the notions 
are the basis of Galilei's relativity in Newtonian mechanics as well as, upon 
a number of technical implementations, Galilei's relativity in quantum 
mechanics, Einstein's special relativity in classical discrete mechanics, 
quantum mechanics, or quantum field theory, etc. 

The following definition has been conceived to focus attention on some 
of these methodological foundations. 

Definition 6.3.5. Consider a local, analytic, regular, unconstrained, con­
servative, Newtonian system of N particles in the unique, normal, first-order 
form expressed in the local variables of its experimental observation 

J1. = 1, 2, ... , 2n = 6N, k = 1,2, ... , N, a = x, y, z, 

with the ten total conservation laws 

Eiol = T(p) + V(r) = X 1, 

N N 

Ptot = L Pk = L mkPk = {X2' X 3 , X 4 }, 
k= 1 k= 1 

N 

M lot = L: rk x Pk = {Xs, X 6 , X 7 }, 
k=1 

N 

Gtot = L: (mkrk - tPk) = {Xs, X g , XlO}' 
k=1 

(6.3.22) 

P = mi 

(6.3.23a) 

(6.3.23b) 

(6.3.23c) 

(6.3.23d) 

Then, Galilei's relativity11 can be defined as a 12 form-invariant description of 
the closed self-adjoint character of the system, that is, as the symmetry of 

11 A number of references on Galilei's relativity have been given in Chart I.A.I, beginning 
with Galilei's historic work. 

12 As indicated in Chart A.12 (see also Problem A.lO) Galilei's symmetry is not necessarily 
the sole symmetry capable of characterizing conservation laws (6.3.23) via Noether's theorem, 
owing to the existence of the isotopically mapped symmetries. 
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the equations of motion under the ten-parameter Lie transformation group 
G(3.1) (form-in variance ): 

G(3.1): all ---+ a/Il(a), a = (t, a) (6.3.24a) 

.... (A) .... "(A) 0 _"( ) 0 0 .::. a =~,.. a -A- = .:/''' a - + -
oall (Jail ot 

(6.3.24b) 

whose ten generators X k represent the conservation laws of total quantities 
(6.3.23), i.e., (closed self-adjoint character): 

k = 1, 2, ... , 10. (6.3.25) 

The relativity is characterized by the following formulations. 

I. Analytic formulations essentially consist of the representation of the 
equations of motion via the conventional Hamilton's equations 

(6.3.26a) 

RO = (p,O) 

(6.3.26b) 

and related canonical formulations (canonical transformation 
theory; canonical perturbation theory; Hamilton ~ J aco bi equations; 
etc.). 

II. Algebraic formulations essentially consist of the universal enveloping 
associative algebra d(G(3.1» of Galilei's algebra 

f7 
d(G(3.1» = fYi' (6.3.27a) 

f7 = IF EEl G EB G ® G EEl "', (6.3.27b) 

f!Il: [Xi' Xj] - (Xi ® Xj - Xj ® XJ, (6.3.27c) 

G(3.1) ~ [d(G(3.1»r: [Xi' Xj] = C~jXk' (6.3.27d) 
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the canonical realization of Galilei's group13 

(6.3.28a) 

(6.3.28b) 

and related Lie's theory (representation theory, etc.). 
III. Geometric formulations essentially consist of the characterization of 

the (autonomous) equations of motion as a Hamiltonian vector field 

:=:.J W 2 = -dH (6.3.29) 

with respect to the fundamental symplectic structure 

W 2 = - -- - - da 1\ da = dpk 1\ dr 1 (OR~ OR~) Il v ka 

2 (Jail oav a 
(6.3.30) 

and related symplectic and contact geometric formulations (Lie's 
derivatives, etc.). 

A few comments are in order. First, we should stress the restriction of the 
applicability of Galilei's relativity only to closed self-adjoint systems. This 
restriction is based on the notion of (physically) exact symmetry of Chart 
A.l2 applied to the case at hand. In fact, we have the combination of the 
mathematical condition of Hamiltonian form-invariance and related first 
integrals, with the physical condition that the first integrals directly represent 
laws of nature. The conservative character of the forces is then a consequence, 
e.g., of the conservation of the energy. 

We can say in different terms that Definition 6.3.5 applies only for systems 
of Newtonian particles verifying the following conditions. 

(1) Closure condition: The system can be considered as isolated from the 
rest of the universe in order to permit the conservation laws of the 
total mechanical energy, the total physical linear momentum, the 
total physical angular momentum, and the uniform motion of the 
center of mass. 

13 The "time component" of canonical realization (6.3.28) of Galilei's relativity 

a' = exp twOP - - a ( JH J) 
aaP aa" 

characterizes the time evolution of the system and should not be confused with the time transla­
tion. In particular, the latter acts on time, t -+ t' = t + to, while the former acts on the a variables, 
aCt) -+ aCt + to). Also, the latter is unique, while the former depends explicitly on the 
Hamiltonian, and therefore its explicit form is different for different systems. The proof of the 
canonicity of the time component has been left as an exercise for the interested reader 
(Problem 5.8). (See also footnote 10 on page 229.) 
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(2) Selfadjointness condition: The particles can be well approximated as 
massive points moving in vacuum along stable orbits without 
collisions,14 in order to restrict all possible forces to those of action­
at-a-distance, potential type. 

The existence of physical systems obeying these conditions is unequivocal. 
For instance, our solar system in Newtonian approximation is indeed a 
system of this type, and, as such, obeys all conditions for the applicability 
of Galilei's relativity. 

Nevertheless, the applicability of Galilei's relativity is the exception, and its 
violation is the rule in Newtonian mechanics for several reasons. The most 
important is that Newtonian "particles" can be well approximated as 
"massive points" only under very special conditions. In fact, Newtonian 
systems generally imply motions of extended objects (e.g., a satellite) in a 
resistive medium (e.g., Earth's atmosphere), in which case their reduction to 
massive points would imply excessive approximations (e.g., the approxima­
tion of the satellite orbiting in our atmosphere with a conserved angular 
momentum). 

When the extended character of the objects is represented together with 
their general motion within media, the dynamic conditions become un­
restricted. As a result, the equations of motion break the Galilei's symmetry 
according to one of the mechanisms of the classification of Chart A.l2 
(isotopic, self-adjoint, semicanonical, canonical, and essentially self-adjoint 
breakings). 

Equivalently, we can say that, if Galilei's relativity is imposed in the 
exact meaning of Chart A.l2, it generally implies an excessive restriction of 
the acting forces, with consequentially excessive approximations of the 
perpetual-motion type. 15 

14 A few rudimentary remarks on the problem of the global stability of the system and that of 
the orbits of each constituent will be presented momentarily. 

15 The considerations suggesting a generalization of Galilei's relativity for non potential 
interactions are numerous, both within the context of Newtonian Mechanics, as well as in rela­
tion to other disciplines, such as statistical mechanics or quantum mechanics. Within the context 
of Newtonian Mechanics, the breaking of Galilei's symmetry by the systems of daily life (recalled 
earlier) is only one aspect, and several additional considerations exist. For instance, it can be 
proved (Problem 5.9) that systems with non potential forces evolve according to a noncanonical 
law. In turn, this implies the inapplicability of virtually all methodological foundations of 
Galilei's relativity, as reviewed in Definition 6.3.5. It can also be proved that, if one imposes the 
canonical character of the time evolution in the variables t, r, and p = mr of the experimental 
observation, all non-self-adjoint forces are identically null. This is, perhaps, one of the most 
direct ways to see that Galilei's relativity does not permit the representation of contact forces. 
The need for a suitable generalization is then consequential. In the transition to other disciplines, 
the need reemerges perhaps even more forcefully. For instance, a statistical system of particles 
obeying Galilei's relativity, in the strict sense of Chart A.l2, prohibits a consistent formulation of 
thermodynamics, e.g., because of the in variance of the equations of motion under time inversion, 
with consequential inability to account for the entropy (see Chart I.A.4 on the arrow of time and 
the entropy). One can therefore see the need to reach a relativity which, while preserving the 
conventional description of total conservation laws and global stability, is consistent with 
experimentally established thermodynamic laws. Additional arguments exist within the context 
of quantum mechanics because of the inability of Galilei's relativity to describe effectively wave 
packets in mutual penetration and overlapping. The generalization of Galilei's relativity 
presented later on in this section has been conceived to solve or at least alleviate these problems. 
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In the following, we shall identify the rudiments of a possible generalization 
of Galilei's relativity which is more generally applicable to local Newtonian 
systems. The research attitude needed for this task is the opposite of the con­
ventional one. Customarily, one first assumes an established relativity, and 
then restricts the dynamics to that compatible with the relativity assumed. 
On the contrary, we advocate here first the assumption of dynamic conditions 
as identifiable in nature, and then the search for a compatible relativity. This 
research attitude can be implemented according to the following three 
steps: the identification of the largest possible class of systems with un­
restricted dynamics, the identification of the methods for the treatment ofthe 
systems considered and of their symmetries, and the identification of the 
covering relativity. 

Step I: Closed Non-Self-Adjoint Systems. When a system of particles is 
isolated from the rest of the universe, it must necessarily obey the ten con­
servation laws (6.3.25); that is, it must be closed. However, this does not 
necessarily imply that all internal forces are of the potential, action-at-a­
distance type. In fact, closure conditions (6.3.25) are compatible with internal 
forces of contact, non potential, non-self-adjoint type due to internal collisions 
and/or motion within resistive media. This leads in a natural way to the 
notion of closed non-self-adjoint systems 16 reviewed in Chart A.8 for the case 
of second-order systems. Their formulation for first-order systems can be 
presented as follows. 

Implement closed self-adjoint systems (6.3.22) with an unrestricted col­
lection of local, analytic, Newtonian forces. These additive forces can be 
classified into self-adjoint17 and non-self-adjoint, resulting in the following 
systems 

(fa) 
(al") = . = (P(t, a)) = (31"(a)) + (P(t, a)) 

Pka 

(Pka/mk) ( 0 ) 
= f~~(r) + F~~(t, r, p) + Ji':A(t, r, p) . 

(6.3.31) 

The total energy will be modified in this implementation, trivially, because 
of the additional presence of potential forces, 

EIOI = T(p) + V(r) + U(t, r, p), (6.3.32a) 

r SA __ av 
k - a~' 

(6.3.32b) 

(6.3.32c) 

However, all the other total quantities (6.3.23b)-(6.3.23d) remain unchanged. 

16 Santilli (1978d). 
17 As implicit in the treatment of Chart A.l2, a Galilei form-noninvariant force need not be 

non-self-adjoint. In fact, several self-adjoint forces of common use in mechanics break Galilei's 
symmetry either in part or in full. 
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In fact, as indicated during the course of our analysis, physical quantities such 
as the total linear momentum Ptot are defined in a way independent from the 
acting forces which, clearly, can only affect their behavior in time. 

Definition 6.3.6. The most general possible class of local, analytic, closed, 
non-self-adjoint Newtonian systems is given by the class of all possible, con­
sistent, generally overdetermined and constrained systems 

( • 11) _ _ (rll( )) _ ka k (rka) ( p 1m ) 
a - . - t, a - SA SA ObNSA ' 

Pka fka(r) + Fka(t, r, p) + .'!/'ka (t, r, p) 

(6.3.33a) 

. ax· ax· x( ) - I'll 1-0 i t, a - -;-- a - -;- - , 
vall vt 

(6.3.33b) 

Xl = Etot = T(p) + V(r) + U(t, r, p), (6.3.33c) 

N 

{X2' X 3, X 4} = Ptot = L mkPk' (6.3.33d) 
k=l 

N 

{Xs, X 6 , X 7 } = M tot = L rk x Pk' (6.3.33e) 
k=l 

N 

{Xs, X 9, X 10 } = G tot = L (mkrk - tPk)' (6.3.33f) 
k=l 

Jl = 1, 2, ... , 6N, k = 1,2, ... , N, a = x,y,z 

i = 1, 2, ... , 10. 

The primary difference between closed self-adjoint and non-self-adjoint 
systems is the same as that for the second-order case; namely, the conservation 
laws of total quantities are first integrals of the equations of motion for the 
former, while they are, in general, subsidiary constraints for the latter. 

The physical existence of closed non-self-adjoint systems is established by 
a simple observation of nature. For instance, the Earth, when considered as 
isolated from the rest of the universe and inclusive of its atmosphere, is 
precisely a closed systems with unrestricted internal forces. 

The mathematical existence of the systems is established by the existence 
theory of overdetermined systems. As indicated by Santilli (loc. cit.) in his 
original proposal, a hierarchy exists of classes of consistent systems (6.3.33) 
with a dynamics of increasing complexity and methodological needs. 

Definition 6.3.7. Closed non-self-adjoint systems can be classified into: 

Class IX: when the conserved total physical quantities are first integrals 
of the vector field; 

Class {3: when the conserved total physical quantities constitute invariant 
relations of the vector field; 

Class y: when the conserved total physical quantities constitute bona 
fide subsidiary constraints of the vector field. 
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For brevity, we limit ourselves to the illustration of class IX. The existence 
of the more general classes f3 and y will be only indicated. 

Assume for simplicity that the additive self-adjoint forces in Equations 
(6.3.33a) are null. This implies that the original total energy (6.3.23a) persists 
during the implementation of the systems with internal contact forces. We 
now impose the conservation laws to be first integrals of the new systems 
according to the strong equality 

. oX· ax· 
Xi(t, a) = oal" P + at' 

(6.3.34) 

but the original equations (6.3.25) are verified by assumption. Thus condi­
tions (6.3.34) reduce to 

oXi P = oXi cJZ" = 0. 
;'l I' ;'l .'.1'ka - , 
ua uPka 

(6.3.35) 

that is, the non-self-adjoint forces must be null eigenvectors of the matrix 
(OXi/OPka). When all ten conservation laws are worked out in detail, they 
imply the following conditions on the non-self-adjoint forces 

N 

L Pk . F~SA == 0, (6.3.36a) 
k= 1 

N 

L F~SA == 0, (6.3.36b) 
k=l 

N 

L rk x FrSA == 0. (6.3.36c) 
k= 1 

Note that these are conditions on non-self-adjoint forces for total physical 
quantities to be first integrals. As a result, conditions (6.3.36) are only 
sufficient for the consistency of systems (6.3.33) and not necessary. 

It is now trivial to see that consistent systems of class ()( do indeed exist. In 
fact, the consistency of systems (6.3.33) has been reduced to that of systems 
(6.3.36). These are functional systems of seven equations in 3N unknown 
functions §"~aSA violating the integrability conditions of Theorem A.l.l. 
Solutions in the functions §"~:A exist beginning with N = 3. The case N = 2 
is a special one, inasmuch as the closure forces the orbit to be in a plane. The 
number of equations (6.3.36) therefore reduces to five, while the number of 
functions §"~:A is four. Despite the lack of sufficient degrees of freedom, 
a solution still exists, and it is presented in Example 6.3. It essentially demands 
the abandonment of the restriction that the contact forces are of Newtonian 
type and the acceptance of more general, acceleration-dependent, contact 
forces. As a result, the case of the two-body, closed, non-self-adjoint system is 
particularly instructive in Newtonian mechanics, as well as for possible 
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quantum mechanical and quantum field theoretical generalizations (Chart 
6.1). 

The N-body, closed, non-self-adjoint systems of class IX (N ~ 3) are equally 
instructive at all levels of study. For instance, conditions (6.3.36) might 
conceivably be derived via arguments of global stability of the system achieved 
via unstable orbits of the constituents. More explicitly, the global stability of 
a closed self-adjoint system is essentially achieved via the stability of the 
orbits of each constituent, as is typically the case, say, in our solar system or 
in atomic structure. In the transition to the closed non-self-adjoint systems, 
the situation is fundamentally different inasmuch as global stability is achieved 
without prohibiting internal collisions with the consequential instability of 
the orbits of each constituent, as is evidently the case with the sun, for instance. 

In fact, condition (6.3.36a) (which ensures the conservation of the total 
energy) is clearly a first condition for global stability via unrestricted internal 
exchanges of energy; condition (6.3.36b) (which ensure the conservation of 
the total linear momentum and the uniform motion of the center of mass) is a 
clear expression of the additional condition of global stability via unrestricted 
action and reaction effects with null total value; and condition (6.3.36c) 
(which ensure the conservation of the total angular momentum) is clearly the 
last expectable condition for global stability.ls 

However, as indicated earlier, conditions (6.3.36) are only sufficient for the 
systems considered. When the broader class f3 is admitted, equations (6.3.34) 
are generalized into the weak equality 

(6.3.37) 

that is, they are expressed via invariant relations according to Definition 
6.3.3. In turn, conditions (6.3.37) themselves are only sufficient, inasmuch as 
the most general class ofthe systems (class y) is that for which the conservation 
laws are bona fide subsidiary constraints of the equations of motion. The 
study of these latter systems is left here to the interested researcher. 

In closing step 1, the reader may recall (Chart A.8) that closed non-self­
adjoint systems were proposed as structure models of hadrons with extended 
internal constituents and non-Hamiltonian structural dynamics. 

Step II: Symmetries, First Integrals, and Conservation Laws of Birkhoff's 
Equations. As is well-known, Galilei's relativity in its contemporary inter­
pretation is an expression of some of the most advanced analytic, algebraic, 
and geometric techniques of Hamiltonian Mechanics. But a necessary condi­
tion for a closed system to be non-self-adjoint is that the vector field is not 
Hamiltonian in the variables (t, r, p), p = mr, of its experimental observation. 
This implies that, for systems (6.3.33), not only do we have the general lack of 
Galilei form-invariance, but we actually have the lack of applicability of the 
methodological foundations of the relativity. In turn, this creates the need to 

18 A first statistical study of closed non-self-adjoint systems has been conducted by Tellez­
Arenas, Fronteau, and Santilli (1979). 
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identify covering methods before any attempt at the construction of a 
covering relativity can acquire scientific value. 

The direct universality of Birkhoff's equations for the representation of all 
closed non-self-adjoint systems was established in Chapter 4, together with 
the methods for the construction of the Birkhoffian representation from 
the equations of motion, as well as the identification of the underlying 
degrees of freedom. The representation can be constructed according to the 
equations 

( ORv _ ORIl)p(t a) = oB + oRIl 
oall oav ' oall ot' 

J1 = 1,2, ... ,6N, (6.3.38) 

where the Birkhoffian can be the total energy, 

B = T(p) + VCr) + U(t, r, p), (6.3.39) 

and the R-functions are obtained via the solution of one of the Cauchy­
Kovalevski equations (4.5.6) or (4.5.7), or via one of the three methods of 
Corollary 4.5.1d. In this way, while all self-adjoint forces are represented by 
the Birkhoffian (as it occurs for the Hamiltonian), all non-self-adjoint forces 
are represented via the generalization of the canonical tensor (J)IlV into the 
Birkhoffian form nllv (which is not possible in Hamiltonian formulations). 

In the preceding chapter we have established that the Birkhoffian trans­
formation theory is a bona fide covering of the Hamiltonian one. Thus 
Birkhoffian Mechanics is a natural candidate for attempting a generalization 
of Galilei's relativity. In order to conduct this task, the problem remains of 
generalizing the methods underlying symmetries, first integrals, and con­
servation laws. 

Definition 6.3.8. The most general possible transformations on IR x T* M, 

tiP -+ a'll(a), J1 = 0, 1, 2, ... , 6N, (6.3.40) 

are said to constitute symmetries of Birkhoff's equations (5.3.38), i.e., 

(6.3.41) 

when they are identity contact isotopic with respect to the (2n + 1) x 
(2n + 1) tensor 0llv(a). By recalling that all transformations (6.3.40) are 
contact-isotopic (Lemma 5.3.3), we have a symmetry when the following 
particularization of transformation laws (5.3.31) holds 

V Ala. 

A (A)dAV = ~ AI (AI)dAIP 
u llV a a oall uap a a 

(6.3.42a) 

(6.3.42b) 
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or, more explicitly, when the following particularization of transformation 
rules (5.3.38) holds, 

-+- a ( OB ORv)d v 

oav at 

( ORv _ ORI")dav _ (OB + ORI")dt 
oal" oav oal" at 

Rit', a') = (RI" ~:: - B o~a )(t" a'), 

B(t', a') = (B ::' - RI" °o~)(t" a'). 

(6.3.43a) 

(6.3.43b) 

(6.3.43c) 

Equivalently, we have a symmetry when the primitive one-form of Birkhoff's 
equations (the integrand of the Pfaff's action) is form-invariant up to 
Birkhoffian gauges, 

(6.3.44a) 

R'(A') = (R Ofll")(A') a a I" ofl,a a. (6.3.44b) 

The covering nature of Definition 6.3.8 over 6.3.4 is established by the fact 
that the symmetries of Hamilton's equations are a particular case of the 
symmetries of Birkhoff's equations, in exactly the same way as the trans­
formation rule of Hamilton's equations is a particular case of that of 
Birkhoff's equations (Corollary 5.3.3d). 

Most important is the property that the new time t', in general, can be not 
only a function of all old variables t'(t, r, p), but also the image of any old 
variable (Corollaries 5.3.3a and 5.3.3c). 

We move now to the identification of the generalized methods for the 
construction of first integrals from known symmetries· of Birkhoff's equa­
tions. For this purpose we suppose that given Birkhoff's equations possess 
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the following Lie symmetry group of infinitesimal transformations 

G:: (al') = (:1') -+ (a'l') = (::1') = (al' + bal') = (al' + Wirtr(a» 

( t + wiP;(t, a) ) 
= al' + wi~r(t, a) , 

where, again, the w's are the infinitesimal parameters. 

(6.3.45) 

Then, by recalling rules (6.3.44) or, equivalently, via the direct use of the 
variational techniques of Section 1.1.3, the Pfaffian action under transforma­
tions (6.3.45) transforms according to 

bA = [ Ria)dal' - [ Ria')da'l' = - [d[bG(a)], (6.3.46) 
JD, JD,. JD,. 

where D t is the original (closed) interval of time, and Dt • is its image under the 
transformations. 

By recalling generalized variational principle (5.3.50), we can write along 
a possible or actual path 

b [ dtRia)61' = [ dtnl'.(a)6Vbal' 
JD, JD, 

= - L,dt :t [Ria)bal' + bG(a)](EO) 

= _Wi L,dt :t [Ria)&r(a) + G;(a)](EO) 

. [ d 
= -w' JD,dt dt 

x [Rit, a)~r(t, a) - B(t, a){W, a) - Gi(t, a)](EO). 

(6.3.47) 

In this way we reach the following result. 

Theorem 6.3.3 (Noether's Theorem for Birkhoff's Equations). If 
Birkhoff's equations admit a symmetry under an r-dimensional connected 
Lie Group G: of infinitesimal transformations, then r linear combination 
of Birkhoff's equations exist along an admissible path which are exact 
differentials, i.e., 

d ~. 
dt li(a) = nl'v(a)aV&r, (6.3.48a) 

li(a) = RiQ)&r(a) + Gi(a) 
= Rit, a)~r(t, a) - B(t, a){J;(t, a) + Gi(t, a), i = 1,2, ... , r. 

(6.3.48b) 
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A quite simple, alternative proof can be formulated via (a) the property 
that Noether's theorem (Chart A.9) also applies to first-order totally de­
generate Lagrangians L(t, a, a); (b) the property that Birkhoff's equations 
coincide with Lagrange's equations in L(t, a, a) according to Equations 
(4.2.38); and (c) the specialization of Equations (6b) of Chart A.9 to the case 
at hand. This alternative approach gives rise to the quantities 

L(t, a, a) = R,lt, a)all - B(t, a), (6.3.49a) 

aL - (aL )--I = aall ball - aall all - L & + bG(t, a) 

= RIl3all - (Rilall - Rilall + B)3t + 3G 

= wi[RIl(t, a)~r(t, a) - B(t, a)Pi(t, a) + Gi(t, a)], (6.3.49b) 

which are equivalent to those of Equations (6.3.48b). 

Corollary 6.3.3a. The quantities (6.3.48b) are first integrals of Birkhoff's 
equations. 

In fact, the properties along a possible or actual path 

:r li(a) lao = QllvCa)aV&r(a) lao == 0 (6.3.50) 

are equivalent to Equations (6.3.5), where S is the vector field represented by 
Birkhoff's equations. 

The covering character of Theorem 6.3.3 over Hamiltonian formulations 
is expressed by the fact that, when the Pfaffian form becomes the canonical 
one (i.e., for R = RO = (p, 0) and B = H), we have 

aL Aka (aL ·ka L) A G 
= arka l1i - arka r - Pi + i (6.3.51) 

which is the Hamiltonian formulation of the conventional Noether's theorem. 
Additional properties (such as the lack of necessary independence of the r 

first integrals (6.3.48b), the lack of their necessary direct physical meaning, 
etc.) can be obtained via the extension to a Birkhoffian context of the analysis 
of Chart A.9. 

We now progress to the identification of the Lie algebra structure of an 
r-dimensional symmetry G~ of Birkhoff's equations. By recalling the lack of 
algebraic structure of the general nonautonomous case (Chart 4.1), we must 
restrict ourselves for this purpose to semi-autonomous equations (Definition 
5.2.1). The capability of reducing all nonautonomous equations to this form 
was proved in Section 4.5 (see also Section 5.3) and will be tacitly assumed 
here. Also, we assume the reader is familiar with the problematic aspects 
related to the physical meaning of the Birkhoffian under the reduction con­
sidered. Finally, we shall assume that Theorem 6.3.3 is applied to the reduced 
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semi-autonomous form (rather then the original nonautonomous form), 
because symmetries are not necessarily preserved under the reduction 
considered. 

An inspection of the notion of symmetries of Birkhoff's equations soon 
reveals that they are a particular form of the generalized canonical transforma­
tions; that is, in general, they are not canonical transformations. The canon­
ical structure (6.3.16) is therefore generally not applicable. Instead, the neces­
sary and sufficient condition for infinitesimal transformations (6.3.45) to be 
generalized canonical transformations is that they have the form 

. ax· 
a'il = all + w'QIlV(a) oa: (t, a), (6.3.52a) 

(6.3.52b) 

where the w's are, again, the infinitesimal parameters and the X's the gener­
ators of G: (see Chart 5.4 for details). 

The necessary and sufficient condition for a transformation of this type 
to be a symmetry is therefore that it leaves the Birkhoffian invariant, i.e., 

JB. ax· . 
B'(t, a') = B(a) + ~ w'QIlV :1 : = B(a) + w'[B, XJ* 

oa va 

== B(a). (6.3.53) 

Thus we reach the following covering of Theorem 6.3.2. 

Theorem 6.3.4 (Integrability Conditions for Birkhoffian Symmetries). 
Necessary and sufficient conditions for infinitesimal, generalized canonical 
transformations to be symmetries of the autonomous Birkhoff's equations 
are that the generalized Poisson brackets of the Birkhoffian with all the 
generators Xi(a) of the transformations are identically null, i.e. 

[B, XJ* == 0, i = 1,2, ... , r. (6.3.54) 

The use of the isotopic generalization of Lie's theory worked out in the 
charts of this chapter then yields the following covering of Corollary 6.3.2a 
(see, in particular, the generalization of Lie's structure constants qj into the 
structure functions ct(a) of Chart 5.3). 

Corollary 6.3.4a. The Lie algebra G: of an r-dimensional Lie symmetry 
group G: of Birkhoff's equations is given by the vector space (over the field 
IF of real numbers) of the generators Xi verifying Equations (6.3.54) equipped 
with the generalized Poisson brackets as the applicable realization of the Lie 
product, and verifying the following closure rules expressed in terms of the 
structure functions C~ia) 

(6.3.55) 
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In closing step II, we can therefore say that each and every aspect of the 
Hamiltonian formulation of symmetries, first integrals, and conservation 
laws can be consistently generalized into a Birkhoffian form. 

Step II I: Construction of the Covering Relativity. At this point we define 
the intended covering relativity and then identify the additional methods 
needed for its construction. 

Definition 6.3.9. The isotopic covering of Galilei's relativitl 9 is a descrip­
tion of physical systems verifying the following primary conditions: 

1. the relativity provides a form-invariant description of closed systems 
of extended particles under action-at-a-distance self-adjoint inter­
actions as well as contact non-self-adjoint interactions; 

2. the relativity is based on the isotopic generalization of the methodo­
logical formulations of Galilei's relativity, that is, on the Birkhoffian 
generalization of Hamiltonian mechanics, on the isotopic generaliza­
tion of Lie theory, and on the symplectic and contact geometries in 
their most general possible local and exact realizations; and 

3. the generalized relativity recovers the conventional one identically 
when the systems are reduced to pointlike constituents with conse­
quentiallack of contact non-self-adjoint interactions. 

By keeping in mind the conditions for a new theory to qualify as the 
covering of an existing one (see footnote 24 of Chapter 5), property 1 ensures 
that the new relativity applies to a physical arena broader than that of the 
conventional one; property 2 ensures that the new relativity is based on a 

19 We present here a Lie-isotopic particularization ofthe more general Lie-admissible covering 
ofGalilei's relativity proposed by Santilli (1978c, pp. 390-394; see also 1978e and 1982d) for open 
non-self-adjoint interactions. The particularization has been made possible by the mathematical 
property that Lie-admissible formulations contain the Birkhoffian formulations as a particular 
case, as well as by the physical property that closed systems are a particular subclass of the open 
ones, trivially, when the time rate of variation of total quantities is identically null. The main 
difference between the Lie-admissible covering and the Lie-isotopic covering of Galilei's rela­
tivity is that symmetries are used in theformer case to represent time rate of variations of physical 
quantities, while in the latter case symmetries are used to represent their conservation. The transi­
tion from the Lie-isotopic to the more general Lie-admissible treatment of mechanics therefore 
implies a rather profound departure from contemporary conceptual settings, including those of 
the generalized relativity presented here. The Lie-isotopic and the Lie-admissible coverings of 
Galilei's relativity turn out to be considerably more compatible and complementary than 
expected. In fact, the Lie-isotopic relativity is currently used for the description of a closed 
system as a whole, in which case the emphasis must be on the total conservation laws, while the 
Lie-admissible relativity is currently used for the characterization of each individual constituent 
of the said closed systems, in which case the emphasis must be on the time rate of variation of 
physical quantities. The complementarity and mutual compatibility of the two relativities is 
then self-evident. The need of both relativities, one for the global (exterior) treatment and one 
for the constituent (interior) treatment, does not exist for closed self-adjoint systems (because 
the same relativity can trivially characterize both the state as a whole and the constituents), 
but it becomes mandatory for the more general class of closed non-self-adjoint systems. In fact, 
a variety generally exists of dynamic effects (e.g., those of nonlocal type) which dominate each 
constituent, while their total effect is nUll, much along Equations (6.3.36b). As a result, the use of 
the exterior relativity for the characterization of the constituents, even though conceivable, is 
generally restrictive and potentially erroneous. This duality of mutually compatible relativity 
was proposed by Santilli (loc. cit.). 
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generalization of the methods of the conventional one; and property 3 
ensures the compatibility of the new relativity with the conventional one. 

On more specific grounds, property 1 is realized via the construction of a 
ten-parameter Lie transformation group G*(3.1) which verifies the form 
in variance of systems (6.3.33a), i.e., 

G*(3.1): a -+ a'(a), a = (t, a) (6.3.56a) 

_ r~la(t.I) 0 _ "(AI) 0 
- u oa'a =.1 a oa,a ' (6.3.56b) 

f = (1, pet, a)), 

and whose generators X;(a) represent directly the conservation laws of total 
quantities (6.3.33c )-( 6.5.33f), i.e., 

Xia) = 0, i = 1,2, ... , 10. (6.3.57) 

Property 2 is realized via the following formulations. 

I. Isotopic generalization of Hamiltonian formulations essentially con­
sist of the representation of the equation of motion via the semi­
autonomous Birkhoff's equations 

{[oRv(a~ _ ORia)Jav _ oB(t, a)} = ° 
oa ll oav oa ll SA 

(6.3.58) 

and r·!lated Birkhoffian generalization of Hamiltonian formulations 
(generalized canonical transformations, generalized Hamilton­
Jacobi equations, etc.). 

II. Isotopic generalization of Lie's theory essentially consist of the 
isotopically mapped universal enveloping associative algebra 
d*(G(3.1)) of Galilei's algebra G(3.1) and attached isotopic algebra 
G*(3.1) 

/T* 
d*(G(3.l)) = fJ£*' (6.3.59a) 

(6.3.59b) 

(6.3.59c) 

G*(3.1) ~ [d*(G(3.1))r : [Xi' X j]* = C~j(a)X, (6.3.59d) 
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the Lie isotopic realization of the symmetry group G*(3.1)10, 

G*(3.1): afl --+ a'fl = exp(ekO~P(a) ~~; a:~)afl, (6.3.60a) 

(6.3.60b) 

and related theory (generalized representation theory, etc.). 
III. Isotopic generalization of canonical geometries essentially consist of 

the characterization of the (autonomous) equations of motion as a 
Birkhoffian vector field 

r .J O2 = -dB (6.3.61) 

with respect to the exact but otherwise unrestricted symplectic 
structure 

o = - - - _fl da fl /\ dav 1 (aRv aR) 
2 2 aafl aav , 

(6.3.62) 

and related symplectic as well as contact geometric formulations 
(Birkhoffian realization of Lie's derivatives, etc.). 

Finally, property 3 is realized via the additional condition that, together with 
the reduction of systems (6.3.33a) to the self-adjoint and Galilei form­
invariant form 

(r fl) I (Pka/mk) (Pka/mk) (~fl) 
,j'NSA=O = jSA + c1bNSA = jSA = ~ , (6.3.63) 

ka .5'- ka ,FNSA = 0 ka 

we have the reduction of the group G*(3.1) to Galilei's group G(3.1), i.e., 

(6.3.64a) 

When all these conditions are met, group G*(3.1) is called the isotopic 
covering of Galilei's group. 

A rather direct way of arriving at the covering relativity is the following. 
When confronted with equations of motion violating Galilei's form-invari­
ance, a frequent attitude is that of transforming the equations in a new co­
ordinate system in which the applicability of familiar notions is recovered. 
In the preceding sections of this chapter we have established that this is 
always possible. In fact, Theorem 6.2.1 on the Indirect Universality of 
Hamilton's equations has the following consequence (which can be proved 
via the superposition of a Daurboux's and a canonical transformation). 
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Corollary 6.2.1a. Consider a non-self-adjoint and Galilei form-non-in­
variant system (6.3.33a). Then a transformation always exists under which 
the transformed system is Galilei form-invariant. 

Consider, for simplicity, the case of autonomous equations (6.3.33a). 
Then, Corollary 6.2.1a establishes that a transformation 

(6.3.65) 

always exists under which the new system acquires the "free" structure 

(6.3.66) 

with consequential form-in variance under Galilei's group 

G(3 1) . a*fl -+ a*'fl = exp ekw"p __ k -- a*fl ( ox* a ) 
• (a*)' oa*P oa*" . (6.3.67) 

However, this way of recovering Galilei's relativity is mathematically 
consistent but physically illusory. In fact, one of the uncompromisable 
conditions for the physical meaning of abstract mathematical algorithms is 
that they admit a realization in the frame of the experimental observation. It 
is easy to see that the variables r*(r, p) and p*(r, p) in which relativity (6.3.67) 
holds are generally nonrealizable experimentally. In fact, the functional 
dependence of the new variables in the old is generally nonlinear (Section 6.2), 
therefore implying the inability of setting measuring apparata along tra­
jectories of the type r* = IX exp f3r . p, etc. 

This deficiency can be easily bypassed by transforming symmetry (6.3.67) 
from the mathematical coordinates r*, p* to the original physical ones r, p via 
the inverse a* -+ a(a*) oftrasformations (6.3.65). However, these transforma­
tions must be necessarily noncanonical, trivially, because the original vector 
field is non-Hamiltonian by assumption. We can then easily prove that, 
under such an inverse transformation, the conventional relativity (6.3.67) 
in the mathematical coordinates transforms into the isotopic covering 
relativity in the physical coordinates. In fact, under noncanonical transforma­
tions, Hamilton's equations transform into Birkhoff's equations; the con­
ventional Poisson brackets transform into the generalized ones; and the 
conventional canonical realization of Galilei's group transforms exactly into 
its isotope (6.3.60a) according to the formal rules 

ekw"P ax: _0_ == ekn."P(a) oXk ~ 
oa*fJ oa*" oaP oa" 

(6.3.68a) 

X k = X:(t, a*(a». (6.3.68b) 

We can therefore conclude by saying that the covering relativity emerges 
rather naturally from the analysis of these volumes, provided that excessive 
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approximations of perpetual-motion type are avoided, and the local variables 
are those of the frame of the experimental observation. 

The preceding remarks also provide afirst method for the formal construc­
tion of the generalized relativity according to the following procedure. 
(a) Identify the closed non-self-adjoint system under consideration (whether 
of class IX, p, or y), by making sure that the local variables have a direct 
physical meaning (e.g., "p" is "mr "), that the vector field in these physical 
variables is non-Hamiltonian, and that the total physical quantities are 
indeed conserved. 
(b) Construct a semiautonomous Birkhoffian representation of the vector 
field via the methods of Chapter 4. 
(c) Construct a Darboux's transformation of the type of Corollary 6.4.1a, 
by therefore reducing Birkhoff's equations to a Hamiltonian, Galilei form­
invariant form. 
(d) Construct the canonical realization of Galilei's relativity in the trans­
formed reference frame, via the explicit computation of the infinite series of 
Equations (6.3.67). 
(e) Transform this Galilean symmetry G(3.l)(a*) into its isotope G*(3.l)(a) via 
the inverse of Darboux's transformation, and see whether it does indeed 
provide a form-invariant description of the system considered in the sense of 
Definition 6.3.9.20 

A second method can be identified via the use of the "inverse Noether's 
Problem" within the context of Theorem 6.3.3, that is, the construction of a 
Birkhoffian symmetry from known conserved quantities. 21 A third method 
can be identified via Lie's construction of the symmetries of given equations 
of motion (Chart A.7), of course, upon its suitable reformulation for non­
Hamiltonian/Birkhoffian vector fields, as well as for the selection of the 
symmetries obeying the crucial condition (6.3.64).22 The study of these, as 
well as other conceivable methods, is left here to the interested researcher. 
Particularly recommended is the geometric analysis by Schober (1981 and 
1982). 

We would like to close this section with a few remarks. First, the researcher 
should keep in mind that, while Galilei's relativity applies to structurally 
simple forces and is a manifest symmetry, this is not the case for the general­
ized relativity. In fact, one of the first examples provided by this author 
following the original proposal of the generalized relativity was that the 
generalized symmetry transformations can be non manifest to the point of 
being expressed via transcendental functions. This is a reflection of the fact 

20 In studying this problem, the reader should keep in mind that a vector field is always form­
invariant under the time evolution induced by itself(Problem 6.5). As a result, the form-in variance 
of the closed non-self-adjoint systems under the time component of group (6.3.60a) is always 
verified. As a matter of fact, the computation of a Birkhoffian representation of the system, and 
its exponentiation, is sufficient to provide the desired form-in variance for the time component, 
without necessarily going through all of steps (a)-(e). The situation for the remaining nine com­
ponents of group (6.3.60a) is different, owing to the current lack of solution of the so-called 
Inverse Noether's Problem (see below). 

21 See Problem 6.6. 
22 The initiation of this study for the more general Lie-admissible (rather than Birkhoffian) 

realization of symmetries has been conducted by G. E. Prince et al. (1979). 
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that the complexity of the admitted dynamics carries over to the applicable 
relativity. 

A second new aspect is related to the contemporary tendency to express a 
relativity via a unique symmetry, e.g., (6.3.21). This is no longer possible 
under contact non potential interactions. In fact, these interactions are 
represented via the Birkhoffian generalization nILv of the canonical tensor 
WILV. As a result, they appear directly in the structure of the covering sym­
metry, equations (6.3.60a). In turn, this means that different non-self-adjoint 
forces generally imply different relativities. As a result, Definition 6.3.9 
actually treats an infinite variety of possible generalizations of Galilei's 
relativity. The coordinate-free globalization of all these generalized rela­
tivity is expected to be unique (and actually to coincide with that of 
Galilei's relativity23). However, the reduction of the infinite local symmetries 
to only one generalized form would imply, again, unnecessary restrictions on 
the dynamics, or the abandonment of the form-invariant description of 
physical systems (which is at the basis of all relativities, whether conventional 
or generalized). 

A further new aspect is related to another contemporary tendency, that of 
expressing relativities in inertial reference frames. As is well-known, inertial 
frames are of conceptual more than experimental value because they are 
not available to the contemporary experimenter, nor are they expected to be 
in the foreseable future. The covering relativity as per Definition 6.3.9 was 
conceived for noninertial frames, as one way to represent the actual non­
inertial character of all available experimental frames. This feature is neces­
sary whenever one imposes the condition that the local variables are those of 
the experimenter and persists under transformations (6.3.60). To stress this 
important point, one should not restrict the study to the observation that 
transformations (6.3.60) are non inertial. Instead, one should begin the study 
with the observation that the experimental frame in which the relativity is 
constructed must necessarily be noninertial to comply with physical reality, 
and then take the necessary precautions that this noninertial character is 
preserved by the class of symmetries admitted.24 

A number of additional aspects (such as the apparent characterization by 
the covering relativity of a class of privileged frames, those at rest with the 
closed non-self-adjoint system considered) are under study at this moment, 
and we refer the interested reader to the literature on the subject. 

23 As indicated in the geometric charts of Chapter 4, the coordinate1ree globalization of the 
symplectic and contact geometry implies the loss of distinction between Hamilton's and Birkhoff's 
equations. The globalization of Galilei's relativity has been studied by a number of authors (see, 
for instance, Souriau (1970». Even though these studies were specifically and strictly intended 
for conventional Galilean/Hamiltonian/Lie settings, they may be more suitably expressed to 
include all possible relativities of the same mathematical class, that is, the isotopic covering of 
Galilei's relativity. 

24 All frames on Earth are known to be noninertial due to the gravitational, Corio lis and other 
forces inherent in the Earth's rotations. The situation clearly persists for laboratory frames in 
orbit around the Earth as well as on the Moon, When interplanetary travel becomes feasible in 
the future, even this will not provide a laboratory frame which is truly inertial. In fact, our entire 
galaxy (let alone our solar system) is in apparent accelerated motion in our universe. 
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The most intriguing implication of the isotopic covering of Galilei's rela­
tivity is clearly the possibility of stimulating the construction of a corre­
sponding generalization of Einstein's special relativity in classical and 
quantum mechanics, and of Einstein's general relativity for the interior 
problem of gravitation. 

Einstein's special relativity in its contemporary formulation is compatible 
with the conventional Galilei's relativity, as is well-known, but not with its 
isotopic covering. This can be seen, for instance, from the fact that closed 
non-self-adjoint systems demand noncanonical time evolutions at the 
classical level and non unitary time evolutions at the quantum mechanical 
level. This creates the need of generalizing Einstein's special relativity so as to 
recover the isotopic covering of Galilei's relativity for low speeds. Expectedly, 
such covering relativity could permit the description of contact nonpotential 
interactions which, being instantaneous by nature, cannot be described via 
existing relativistic formulations. 

Einstein's general relativity for the interior problem appears to be in 
equally pressing needs of generalization. In fact, the systems studied in these 
volumes (such as satellites in Earth's atmosphere; spinning tops with drag 
torques; etc.), strictly speaking, are interior systems of the problem of 
gravitation. As is familiar from our analysis, a necessary condition for 
avoiding excessive approximations of the perpetual-motion type is that these 
systems admit unrestricted forces. It is possible to show that these forces 
are outside the technical possibilities of Einstein's general theory of gravita­
tion, as well as of other existing generalizations, e.g., of so-called gauge or 
supersymmetric type. This is established by the fact that all these relativities 
do not permit unrestricted non-self-adjoint forces in their Newtonian limit. 
Equivalently, the situation can be seen from the fact that all existing theories 
of the interior problem of gravitation are locally Lorentz in character, while 
a direct representation of satellites with nonconserved angular momenta 
can best be achieved via theories which are not locally Lorentz in character, 
evidently in order to permit the local breaking of the symmetry under the 
group of rotations. More generally, the situation can be seen by noting that 
interior problems of the Earth, sun, and physical systems at large are non­
local, thus requiring an integro-differential geometry for their adequate 
treatment. On the contrary, all geometries currently used for the interior 
problem of gravitation are of local-differential character. 

In the transition to quantum mechanics and quantum field theory, the 
need to construct covering relativities appears to be even more pressing. In 
fact, as stressed earlier, the interior of stars, hadrons, and nuclei is actually 
constituted by extended particles in necessary conditions of mutual penetra­
tion and overlapping, resulting in the most natural as well as most general 
possible class of closed, integro-differential, variationally non-self-adjoint 
interactions. The complexity of these systems is such that they are simply 
outside the technical capabilities of existing relativities for the micro­
scopic world, such as Einstein's special relativity in quantum kinematics 
and quantum field theory. 
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The need to generalize existing relativities appears rather natural if one 
meditates a moment on the limitations of their conceptual foundations. In 
fact, apart from technical differences, all existing relativities are based on 
the notion of the point like constituent, as conceived by Galilei and Newton 
and, more recently, embraced by Lorentz, Poincare, Einstein, and others. 
The originators of the notion argued that when extended objects move in 
vacuum, their actual shape and structure do not affect the dynamics. Under 
these conditions, the objects can be well approximated as massive points. 
This produces the Galilean or Newtonian approximations of the sun, Earth, 
and all other planets as points, which were subsequently used by Lorentz, 
Poincare, and Einstein, for the relativistic description of massive and charged 
particles.25 

The development of contemporary relativities from this primitive notion 
can be understood via the techniques of these volumes. In fact, systems of 
pointlike constituents, by their very conception, demand that the interaction 
is localized at a collection of isolated points. This implies the local-differential 
character of the geometries, from the symplectic to the Riemannian geo­
metry. Furthermore, pointlike particles, also by their very conception, 
demand that all admissible interactions are of action-at-a-distance, potential 
type. This implies the derivability from a conventional variational principle 
of all admitted systems, whether in Euclidean or Riemannian space. In short, 
the assumption of point like constituents implies the restriction of physical 
systems to those of closed self-adjoint type. The transition from one relativity 
to another is then performed on the basis of data which do not depend on the 
structure of the constituents and on the acting forces (see Figure 6.1 for 
more details). 

However, while the Earth can be well approximated as a massive point for 
the description of its trajectory in the solar system, the same approximation 
becomes excessive with respect to a satellite in Earth's atmosphere or to a 
proton in the core of a star. In fact, the dynamic evolution of these latter 
systems is directly affected by their actual shape and structure. The funda­
mental notion of the isotopic covering of Galilei's relativity is therefore that 
of extended constituent. The generalization of the closed self-adjoint systems 
into the closed non-self-adjoint ones is a mere consequence of the extended 
character of the constituents. In fact, the moment the constituents acquire a 
dimension in space, contact effects due to collisions and other interactions 
become unavoidable. But the notion of potential energy has no physical 
basis for contact forces. The existence of closed non-self-adjoint interactions 
then becomes inevitable. The understanding, stressed a number of times 
during our analysis, is that our local non-self-adjoint treatment must be 

25 The reader is urged to study the original contributions by Lorentz (1904), Poincare (1905), 
and Einstein (1905). He will discover that the restriction to pointlike particles moving in vacuum 
under long-range, action-at-a-distance interactions is expressed quite clearly in these limpid 
writings. These fundamental restrictions have often been omitted in subsequent studies by other 
authors. 
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considered a first approximation of an expected sequence of technical 
improvements of the description of extended particles. 

The isotopic covering of Galilei's relativity has therefore been presented 
in these pages as the first, most rudimentary possible treatment of the 
generalization of the GalileanfNewtonian conception of point-like particles 
into extended particles. The existence of a chain of generalizations of other 
contemporary relativities then becomes rather natural. 

Put explicitly, the covering relativity has been presented in these pages not 
as the end, but rather as the beginning of new advancement. It is a manifesta­
tion of my conviction that Physics is a science that will never admit terminal 
theories. 

Chart 6.1. Applications to Hadron Physics 

As is well known, Hamiltonian Mechanics is at the foundation of a number 
of branches of contemporary physics, ranging from statistical mechanics 
to field theory, to particle physics, etc. The existence of a Birkhoffian 
generalization of Hamiltonian Mechanics is therefore of fundamental 
relevance inasmuch as it implies the possible existence of corresponding 
generalized formulations in all branches of physics (as well as of science 
at large) currently treated with Hamiltonian methods. The advantage of 
the generalization can be anticipated from the analysis in these volumes; 
it consists of removing unnecessary restrictions on the structure of the 
systems represented, with consequential possibility of representing 
nature more realistically. 

This volume would therefore be incomplete without an indication of 
the implications of Birkhoffian Mechanics for non-Newtonian branches 
of science. This chart is devoted to the basic ideas regarding applications 
to strongly interacting particles (hadrons). Needless to say, this is a volume 
on Newtonian mechanics and no in-depth treatment of other fields should 
be expected. The ideas are presented in their simplest possible current 
understanding and are supplemented by primary references for a technical 
study of the issues. 

To begin, let us recall that quantum mechanics was conceived for the 
structure of atoms and for electromagnetic interactions at large. For this 
reason, the mechanics will be referred to herein as Atomic Mechanics. 
Its validity in the arena where it was conceived has been established by an 
impressive amount of experimental evidence and is assumed here. 

Nevertheless, authoritative doubts on the final character of the mechanics 
have been expressed since its inception, and a number of them remain 
unresolved. We cite here the historical doubts by Einstein on the terminal 
character of Heisenberg's indeterminacy, Jordan's doubts on the associ­
ative character of the enveloping algebra of operators, Fermi's doubts on 
the applicability of conventional geometries (and relativities) within the 
region of space occupied by a proton or a neutron, etc. A review of these 
doubts can be found in Section 2.1 of the memoir (Santilli, 1979b). 

With the passing of time, Atomic Mechanics has shown more and 
more limitations in effectively representing physical conditions which are 
increasingly different from those it originally described (point-like 
particles under mutual, long-range, electromagnetic interactions). We 
limit ourselves here to the observation that in the transition from the atomic 
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to the nuclear two-body problem, suppression of the energy spectrum 
occurs. In fact, while the hydrogen atom (or the positronium) has the 
well-known infinite spectrum of energy, no exited level has been identified 
to date for the deuteron (a minimum of five nucleons are needed to attain 
a nuclear structure admitting an energy spectrum reminiscent of the 
atomic one). 

This fact alone could be sufficient to motivate the construction of a new 
mechanics specifically conceived for the structure of nuclei, under the 
condition that Atomic Mechanics is admitted not only as a particular case, 
but also for (the peripheral states of) heavy nuclei. In much the same way, 
Atomic Mechanics recovers its classical origin not only under the cor­
respondence principle, but also for (the peripheral states of) heavy atoms 
(or for sufficiently large orbits). Deeper scrutiny allows one to see that 
Atomic Mechanics has been unable to achieve a quantitative, satis­
factory representation of several aspects of nuclear physics (such as the 
total magnetic moments or even the total values of spin), even though the 
emergence of a meaningful first approximation is not denied. Most of all, 
despite over half a century of research, Atomic Mechanics has failed 
to produce the solution of the ultimate problem of nuclear dynamics: the 
nature of the nuclear forces. 

In the transition to the deeper level of hadron structure, the limitations 
of Atomic Mechanics have emerged more clearly. For instance, even 
though the atomic two-body system is generally unphysical for the 
deuteron, at least it admits positive energies. In the transition to a hadronic 
two-body system of the type needed for the lightest known hadrons, the 
nO meson, even the positivity of the energy is generally lost. In fact, in 
this case we need very light constituents as compared to the total energy. 
Under these circumstances, no negative binding energy is generally 
possible via the (nonrelativistic) Schrodinger's equation, and the admissible 
values of the total energy become generally complex. 26 This is only the 
beginning. When the current status of hadron physics is examined objec­
tively, a host of unresolved fundamental problems emerge. In nuclear 
physics, we can say that the use of Atomic Mechanics, while leaving 
unresolved the problem of the nuclear force, at least has permitted the 
final identification of the nuclear constituents. When applied to hadron 
physics, Atomic Mechanics has left unresolved not only the basic dy­
namics, but-essentially-the problem of the hadronic constituents, 
despite one of the most massive (financially and humanly) efforts in the 
history of physics. In fact, the conjecture that hypothetical particles called 
quarks are the constituents of hadrons, faces a number of still unresolved 
basic problems. 27 At any rate, on sound scientific grounds, we cannot 
claim today that the problem of the structure of hadrons has been resolved 
in a way comparable to that of the structure of nuclei and atoms. 

The construction of a new mechanics, specifically conceived for the 
hadronic structure, is therefore advocated. This mechanics has been 
tentatively called Hadronic Mechanics by Santilli (1978d, p. 756) and 
the same terminology will be adopted here. By conception, the new 
mechanics must admit a simpler specialization called by the same author 
Nuclear Mechanics (loc. cit.). In turn, Nuclear Mechanics must admit 

26 See R. M. Santilli (1974, Appendix C) and quoted references. 
27 For a review of some of the problematic aspects of contemporary hadron 

physics, the reader may consult R. M. Santilli (1981 c). 
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conventional Atomic Mechanics as a particular case, according to the 
enclosure properties 

Atomic Mechanics c Nuclear Mechanics c Hadronic Mechanics. (1) 

In the study of this chain of generalizations, several new, rather intriguing, 
mathematical, physical, and experimental problems emerge. The first 
problem is, predictably, of conceptual nature and consists of the identifica­
tion of the physical differences between the atomic, nuclear, and hadronic 
forces. If Atomic Mechanics is used, all these forces are structurally the 
same, i.e., they are all of potential type. If a hierarchy of covering mechanics 
is advocated, this simplistic condition can be relaxed, opening the way to 
the study of broader physical structures. The analysis in these volumes, 
even though (or perhaps because) classical, can be valuable for this 
problem. In fact, our methods permit the identification of the following 
hierarchy of interactions of increasing structural complexity and methodo­
logical needs. 

Class I: Closed, Local, Self-Adjoint Interactions: These are inter­
actions which verify the conventional cons~rvation laws of total quantities 
(closure), which occur at a finite number of isolated points (locality), 
and which verify the theorems of the Inverse Problem as being of action­
at-a-distance, potential type (self-adjointness). The great majority of 
interactions of contemporary physics are of this type, of course, upon 
extension of the techniques of the Inverse Problem to relativistic and field 
theoretical settings. For instance, the electromagnetic interactions at their 
various levels of study, as well as the unified gauge theories of weak and 
electromagnetic interactions, are of closed, local, and selfadjoint type 
(Santilli (1978b)). 

Class II: Closed, Local, Non-Self-Adjoint Interactions: These are inter­
actions which are closed and local as those of Class I, but whose internal 
forces are structurally more general than those of the first class, inasmuch 
as they admit contact, nonpotential forces (non-self-adjointness), 
besides conventional, potential forces. A rather forceful example is given 
by Earth when considered as isolated from the rest of the universe. The 
system is closed, but the internal forces are generally nonderivable from a 
potential. 

Class III: Closed, Nonlocal, Non-Self-Adjoint Interactions: These are 
interactions which are closed and non-self-adjoint as those of Class II, 
but which generally occur at all points of a volume or surface (non locality), 
therefore demanding the transition from conventional, ordinary (or 
partial) differential equations (Classes I and II) to integro-differential 
generalizations. The interactions occur whenever the extended size of the 
constituents cannot be ignored, e.g., for the motion of a satellite in Earth's 
atmosphere. Therefore, with deeper study, the Earth is a system of the more 
general Class III. Its treatment under Class II is a good approximation 
because, even though the non-locality is lost, the existence of contact, 
nonpotential forces is preserved. On the other hand, the use of interactions 
of Class I would lead to excessive approximations of perpetual-motion­
type (e.g., motion of a satellite in our atmosphere with a conserved 
angular momentum). 

In other words, the methods of the Inverse Problem identify the fact that 
the contemporary characterization of interactions via the selection of a 
Lagrangian or a Hamiltonian implies a fundamental, often excessive 
simplification of nature. 

By recalling that atoms are systems of Class I, one can readily see that 
nuclei could be studied within the setting of Class II, while hadrons may 
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likely demand the still more general treatment of Class III. The argument is 
quite simple. Clear experimental evidence establishes that protons and 
neutron (as well as all hadrons) have a finite charge radius which is of the 
order of 10- 13 cm (= 1 F). Once they are members of a nuclear structure, 
protons and neutrons are in average conditions of mutual penetration of 
the order of 10- 3 units of their volume. This clearly suggests contact 
interactions for which the notion of potential energy has no physical basis. 

The fundamental physical hypothesis for the construction of Nuclear 
Mechanics is therefore that the nuclear forces have a non-Hamiltonian 
component which, as such, is outside the technical possibilities of Atomic 
Mechanics. The construction of a covering theory then becomes manda­
tory. The fundamental approximation is that the non-Hamiltonian com­
ponent is still local. The transition to full Hadronic Mechanics can be 
anticipated and consists of assuming a dynamics which is not only non­
Hamiltonian, but also nonlocal, with the understanding that a local 
approximation may be meaningful for the structure of light hadrons. 

Once the basic physical conditions have been identified, the next logical 
step is the identification of the mathematical tools for their treatment. As 
recalled in Section 6.1, Atomic Mechanics is, in essence, an operator 
realization of Lie's theory. The need to achieve a generalization of Lie's 
theory for the treatment of non-Hamiltonian forces is then inevitable. 

This problem has been studied at the yearly Workshops on Lie-admissible 
Formulations of 1978-1981 (see the Proceedings of 1979 and 1981) by a 
number of pioneering mathematicians identified in Chart 4.7. The studies 
have resulted in two progressive generalizations of Lie's theory, one of 
Lie-isotopic type (which has been indicated in the charts of Chapter 5), 
and a more general one of Lie-admissible type (touched on in Chart 4.7). 

The next problem is to identify the arena of applicability of these 
mathematical tools. At this point, new features emerge without counter­
part in Atomic Mechanics. Within that theory, one single formulation is 
sufficient for the characterization of a bound state as a whole as well as its 
individual constituents (the point was elaborated upon in this volume for 
the case of closed, variationally self-adjoint, classical systems). This is not 
so in the more general class of closed, variationally non-self-adjoint 
systems, because specific dynamic effects at the constituent level (e.g., 
due to non local forces) may" cancel out" in the treatment of the system 
as a whole (see equations (6.3.36b)). As a result, the mechanics which is 
effective for the exterior treatment of a bound state is not expected to be 
equally effective for the interior treatment, i.e., the description of the 
constituents. The use of two different but complementary mechanics is 
then advocated, one for the" global" treatment and one for characterizing 
the constituents. 

The primary algebraic character of the two mechanics can be identified 
as follows. Assume that the time evolution for both mechanics is expressed 
by an algebra with product A x H where the operator H represent the 
energy, 

A = c(A x H), C E C. (2) 

When the exterior description of a closed system is considered, the primary 
emphasis is on the conservation of total quantities, such as the total 
energy H = Htot ' In this case, the product of law (2) must necessarily be 
antisymmetric, that is, a product A * Htot must exist such that 

A = c(A x Htot ) = c(A * Htot - Htot * A). (3) 
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In fact, only an antisymmetric product is capable of permitting the con­
servation of the total energy 

(4 ) 

Further arguments (e.g., related to the integrability conditions for the 
transformation theory, much along the lines of Chart 5.4) suggest the use 
of the Jacobi law as an additional condition. As a result, the product 
A * Htot must be Lie-admissible, that is (Chart 4.1), it must be such that 
the attached product A * Htot - Htot * A is Lie. In this simple way we 
reach the conclusion that the exterior treatment of a/l mechanics, whether 
for the structure of atoms, nuclei, or hadrons, is expected to have a Lie 
algebraic character. However-and this is equally important-the Lie 
algebraic character suggested by total conservation laws is not re­
quired to be of the conventional type A x Htot = [A, Htot ] = AHtot 
- HtotA. where AHtot is the conventional associative product. One can 
therefore see naturally the possibility of constructing a hierarchy of 
generalizations of Atomic Mechanics along hypothesis (1) via the use of a 
corresponding hierarchy of enveloping Lie-admissible algebras, as we 
shall indicate below. 

When passing to the interior description, the situation becomes funda­
mentally different. In this case, the energy of the particle considered, 
H = H art' is now strictly nonconserved. A necessary condition of con­
sistency is therefore that the product A x H part is not antisymmetric, that 
is, it must be non-Lie: 

A = c(A x H ) = NON-LIE 
pa rt ' 

C E C. (5) 

In fact, only an algebra for which A x Hpart =F -Hpart x A can account 
for the time rate of variation of the energy 

Hpart = c(Hpart x Hpart ) "1= 0, (6) 

but the interior and the exterior treatment of the same closed system 
must be compatible. This condition can be expressed, at the algebraic 
level, through the requirement that the antisymmetric part of the interior 
product coincide with the exterior product, i.e., A x B - B x A == 
A * 8 - 8 * A. Thus, for the case of the interior description (5). the 
product A x H art is expected to be a nonassociative, non-Lie, Lie­
admissible product (some classical forms were presented in Chart 4.7). 
It is then easy to see that a hierarchy of interior hadronic mechanics can 
be constructed via a hierarchy of the algebras indicated. 

In this chart. we cannot possibly review all the studies dealing with the 
application of this dual algebraic approach to Hadron Mechanics. These 
studies include (directly or indirectly) work by an increasing number of 
physicists: 

• experimental physics (team leaders): R. J. Slobodrian (Universite 
Laval, Quebec), H. E. Conzett (Lawrence Berkeley Laboratory, 
Berkeley), H. Rauch (Atominstitut. Wien, Austria), and others; 

• theoretical physicists (besides this author): G. Eder (Atominstitut, 
Wien, Austria). R. Mignani (Universita di Roma, Roma, Italy). 
S. Okubo (University of Rochester, Rochester), E. Kapuscik 
(I.N.F. Warsaw, Poland), Chun-Xuan Jiang (Peking, China). 
A. Schober (I.B.R., Cambridge). J. Kobussen (Universitat ZOrich, 
CH), R. Trostel (Technische Universitat, Berlin, W. Germany), 
D. P. K. Ghikas (University of Patras, Greece), J. L6hmus, M. Koiv, 
and L. Sorgsepp (Estonian Academy of Science, USSR). J.Fronteau 
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and A. Tellez-Arenas (Universite d'Orleans, France), S. Guia~u 
(Universite de Quebec). J. Salmon (Conservatoire Nationale. 
Paris). and others. 

The interested reader may consult the four volumes of the Proceedings of 
the First International Conference on Nonpotentiallnteractions and their 
Lie-admissible treatment (1982) held at the Universite d'Orleans, France. 
as well as the volumes of the reprint series edited by A. Schober (1982). 

I n this chart we shall limit ourselves to the review of few basic ideas 
underlying the branch of the Hadronic Mechanics that is more in line 
with the Birkhoffian Mechanics of the main text. By recalling that the 
latter is a classical realization of the Lie-isotopic theory, the selection of 
the (local) Lie-isotopic branch of Hadronic Mechanics is evident. 

We have thus narrowed our objective to the second line of Diagram 1. 

Diagram 1 

Classical Operato; 
Theory Realization Realization 

Lie's Hamiltonian Atomic 
Theory Mechanics Mechanics 

Lie-isotopic Birkhoffian Exterior branch of 
Theory Mechanics Hadronic Mechanics 

Lie- Birkhoffian- I nterior branch of 
Admissible Admissible Hadronic Mechanics 
Theory Mechanics 

On more specific grounds, we shall indicate the generalization of the 
Hilbert space structure which seems advisable in order to represent 
closed non-Hamiltonian systems, according to the axiomatic studies by 
Myung and Santilli (1982 a and b). 

Consider a Hamiltonian description of particle interactions as provided 
by Atomic Mechanics, with Hilbert space Ye, unit 1= 11- 1 ; basis la); 
normalization <a 1 a') = Daa ,; enveloping algebra ~ of operators A. B, ... 
with conventional associative product AB; attached Lie algebra ~- with 
product [A. B] = AB - BA. etc. 

The construction of the exterior closed treatment of Hadronic Mechanics 
is based on the selection of a suitable isotopy operator T(r, p, ... ) 
verifying all needed topological conditions (positivity, Hermiticity, etc.). 
under which the algebra ~ is mapped into the isotope ~* with product 
A * B = ATB, with T fixed. The attached Lie algebra is then given by the 
isotope (Charts 5.1-5.5) 

[~*]-: [A. B]'lI' = A * B - B * A = ATB - BTA, (7) . 

with the understanding that possible. more general isotopes are not 
excluded. 

The generalization of ~ into ~* essentially implies the generalization of 
Planck's unit I = 11- 1 into a bona fide (left and right) operator unit 

1* * A = A * 1* = A, 1* = T-1 (8) 
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with the understanding that its space-time average can approach fI-1 as 
closely as desired. The physical objective is to attempt a representation 
of the increased physical complexity of the processes of absorption and 
emission of energy in the transition from the structure of atoms (where 
electrons can freely" jump" from one orbit to the other), to nuclei (where 
nucleons cannot freely" jump" from one orbit to the other owing to the 
densely occupied volume of nuclei). 

The alteration of the unit has rather profound implications for virtually 
all physical and mathematical aspects. We mention here only a few 
generalizations that are consequential. Since the unit is no longer I, 
normalizatibn must be generalized accordingly, e.g., to the form 

<al * la') = <aITla') = <5:a , = 1*<5 aa ,· (9) 

A similar generalization occurs for the decomposition of probability, 
expectation values, etc. 

Under certain restrictions (particularly, the positivity of T) the generalized 
product <a I * I a') is still an inner product, and the underlying space is 
still a Hilbert space we shall call :Yf*. However, :Yf* does not act linearly 
on the conventional field of Atomic Mechanics, that of the complex 
numbers IC. In order to preserve the crucial linearity (clearly necessary to 
preserve the Hilbert character of the space), the field C is generalized into 
the operator form 

C* = {c*lc* = I*c, (10) 

where the" numbers" c* are called T-scalars. 
The isotopic generalization of all conventional operators of Atomic 

Mechanics (Hermitean, anti-Hermitean, unitary, antiunitary, etc.) is then 
predictable. Here we mention only the conditions for an operator U to be 
nonunitary but T-unitary: 

U * U- 1 = U- 1 * U = 1*. (11 ) 

The admittance of the conventional atomic case as a particular case is 
evident. 

The picture of basic generalizations is completed by that of traces 

(12) 

and of determinants 

detTA = (detAT)I*. (13) 

In this way we reach the following isotopic generalization of the 
eigenvalue equations 

H * I) = HT I) = c* * I) = c 1 ) (14) 

also proposed by Myung and Santilli (loc. cit,). Its capability to represent 
non-Hamiltonian forces has been established as follows. One first notes 
that the hadronic-isotopic generalization of Schrodinger's equations 
can be written 

.0 
I-I) = B * I ) 

ot 
(15) 

and constitutes a reformulation of equations (6.1.50) in :Yf*. Non­
Hamiltonian forces then follow from the fact that the classical image of 
(6.1.50) is given by the Birkhoffian generalization of Hamilton-Jacobi 
equations (6.1.24). 
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Since the enveloping algebra of operators 21* is still associative, suitable 
generalizations of the various theorems of Lie's theory related to ex­
ponentiation are possible (Poincart3-Birkhoff-Witt theorem, Nelson 
theorem, etc.). The time evolution can therefore be characterized also via 
the finite, Lie-isotopic group of T-unitary operators 28 

A (t) = l*eiTH * A (0) * e-iHTI* (16) 

whose local expression is the hadronic-isotopic generalization of Heisen­
berg's equations (equations (18) of Chart 5.1). i.e., 

iA = [A. 8]m. = A * 8 - 8 * A. (17) 

Under certain conditions, (15) and (17) are equivalent in that they are 
connected by a T-unitary transformation of the type 

U = e- itBT. (18) 

Particularly significant is the fact that unitary (and antiunitary) operators 
of Atomic Mechanics do not constitute, in general, symmetries of Hadronic 
Mechanics because they alter the structure of the isotopic product, i.e., 

U[A. 8]m.U-1 = U(AT8 - 8TA)U-l 

= [A', 8']m.· = AT8' - 8TA'. (19) 

On the contrary, a necessary condition for operators to constitute sym­
metries of Hadronic-Isotopic Mechanics is that they are T-unitary (or 
T-antiunitary). In fact, under this condition, we have the rule 

U * [A. 8]m. * U-l = UT(AT8 - 8TA)TU-l 
= [A', 8']m. = A'T8' - 8'TA'. 

(20) 

The construction of the hadronic-isotopic symmetries then follows the 
same conceptual pattern as the Birkhoffian symmetries introduced in 
Section 6.3. Particularly important is the emergence of a possible hadronic­
isotopic generalization of Galilei's relativity via T -unitary operators as the 
operator image of the generalized relativity of Section 6.3: 

(21) 

This confirms that Hadronic Mechanics demands a generalization not 
only of the basic structure of Atomic Mechanics, but also (and perhaps 

28 We refer here to a particular case of the Lie-admissible generalization of 
Heisenberg's equations proposed by Santilli (1978d). A more recent formulation of 
the generalized equations is as follows. First. consider the open interior problem 
of strongly interacting particles, that is, the study of one hadron under external strong 
interactions, in much the same way Dirac conceived his equation for the electron. 
Second, differentiate the isotopies depending on whether the motion is forward or 
backward in time, and denote them with the time symbols c> and <J, respectively. 
This implies the differentiation of all notions indicated in the text, including forward 
and backward Hilbert spaces ]f"" and ""]f. The generalization of Heisenberg's 
equations under consideration can then be written 

A(t) = /""e drPH c> A(O) <J e-iH<Jr<J/, 

and its local form is given by the Lie-admissible product (19) of Chart 5.1, i.e., 

iA = (A, H) = A <J H - H c> A. 

(a) 

(b) 

Note for subsequent needs the intrinsically irreversible character of the law, that is, its 
violation of the time-reversal symmetry regardless of the symmetry properties of the 
total energy operator. For more detail, see Santilli (1982c). 
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more importantly) of the very notion of symmetry. In fact. the structure of 
the symmetry groups is generalized into the Lie-isotopic form, predictably, 
in order to hold under non- Hamiltonian forces. 

These ideas are sufficient to indicate the existence of a suitable isotopic 
generalization of the basic axioms and postulates of Atomic Mechanics, 
such as those related to states, observables, probabilities, etc. The cor­
responding generalization of the basic laws and principles is then con­
sequential, with particular reference to Heisenberg's uncertainty principle, 
Pauli's exclusion principle, Einstein's frequency law, etc. 

The nuclear and atomic particularizations are now self-evident and can 
be expressed as follows. Hadronic Mechanics reduces to Nuclear 
Mechanics whenever space-time averages of the isotopy operator Tare 
possible, and it recovers Atomic Mechanics when these averages not only 
are possible, but yield the value h. 

The experimental verification of the new mechanics is encouraging at 
this writing, although understandably tentative, with particular reference to 

• a violation of the time-reversal invariance recently measured by 
Slobodrian, Conzett. et aI., which is in remarkable agreement 
with the structure of Hadronic Mechanics; 

• a small deformation of the charge distribution of hadrons under 
impact (and strong interactions) with nuclei, recently measured by 
Rauch and associates, which is predicted by Hadronic Mechanics; 
and 

• a very small penetration of the wave packets of incident neutrons 
within the neutron core of the tritium, also indicated by Rauch and 
associates, which would imply a departure from Pauli's exclusion 
principle much in agreement with Hadronic Mechanics. 

For these and additional experimental studies, we refer the interested 
reader to the specialized literature cited herein. 

With an open mind toward the pursuit of new knowledge, we can say 
that the Hamiltonian restriction of the systems considered, which has con­
ditioned science for over three quarters of a century, appears to be 
lifted, and the way is open to a variety of refreshingly new developments. 

Chart 6.2. Applications to Statistical Mechanics 

Some of Atomic Mechanics' most serious problems of consistency (when 
applied to physical arenas different from those for which it was conceived) 
are perhaps outside the realm of particle physics and rest in the current 
lack of unity in physics, as well as of science at large. In fact. all systems 
except particle physics are non- Hamiltonians. We are referring to systems 
in Newtonian Mechanics, Statistical Mechanics, Plasma Physics, Solid­
State Physics, Engineering, Biophysics, etc. 

The reduction of these experimentally established non-Hamiltonian 
systems to the conjectured Hamiltonian character of its particle com­
ponents, according to Atomic Mechanics, is plagued with rather serious 
problems whenever quantitative studies are conducted. For instance, 
recall that the time evolution of Newtonian systems in our environment is 
noncanonical (Problem 5.9). If Atomic Mechanics holds for the descrip­
tion of the particle constituents of the Newtonian system, the noncanonical 
time evolution must be reduced to a large collection of unitary time 
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evolutions. No serious theoretical study of the consistency of this reduc­
tion, assuming that it can be established, is available at this moment. 29 

Clearly, the most natural idea suggested by the unity of physics is that 
the interactions of particles, even though Hamiltonian under electro­
magnetic interactions, may be non- Hamiltonian under contact, short-range 
interactions, that is, actual contact among molecules, atoms, nuclei, and 
hadrons. In fact, this idea permits a self-evident compatibility of different 
branches of science, as depicted in Diagram 2, that would be otherwise 
lacking. 

Diagram 2. 

Non-Hamiltonian 

Statistical ~ 

/ 
Mechanics 
"----

I compatible I I compatible I 
,,/ "'" 

Non- Hamiltonian Non-Hamiltonian 
~ compatible ~ Newtonian Particle 

Mechanics Mechanics 

Under these conditions, we would regain unity in science not only on 
the nature of the forces, but also on their mathematical structure, to the 
point that different theories would merely be different realizations of the 
same abstract mathematical structure. 29 

At any rate, the unequivocal irreversibility of the macroscopic reality sees 
its most natural origin in the nonpotentiality of systems. This view is 
embraced today by a number of researchers in Statistical Mechanics. 

I. Prigogine (University of Texas at Austin and Universite Libre de 
Bruxelles, Belgium) and his associates B. Misra, C. George, F. Henin, 
F. Mayne, and others (Universite Libre de Bruxelles, Belgium) have 
established the nonconservative character of Statistical Mechanics at both 
the classical and operator level. 30 The mathematical structure of their 
time evolution is unknown at this writing. Nevertheless, it is likely to be 
of Lie-isotopic type. In fact, the operator structure of the theory can be 
expressed via a nonunitary transform of a conventional (atomic) time 
evolution of densities. This would yield the Lie-isotopic structure via 
the use of rule (6.2.28). 

The advancement of Prigogine's statistics over preceding ones is 
remarkable and self-evident. Nevertheless, the problem of whether the 
nonconservativity is a collective property of systems or it originates at 

29 For a recent analysis of the problem of the unity of physics, consult Santilli 
(1982a). 

30 See, for instance, I. Prigogine (1977) and cited references, and B. Misra, 
I. Prigogine, and M. Courbage (1979). 
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the level of each individual particles, is left essentially unresolved in the 
theory. 

A second group of statisticians, including J. Fronteau and A. Tellez­
Arenas (Universite d'Orleans, France), S. Guia~u (Universite du Quebec, 
Canada), J. Salmon (Conservatoire National. Paris, France), M. Grmela 
(Ecole Poly techniques, Montreal. Canada), and others,31 have indepen­
dently studied the problem. This group begins the study from the experi­
mentally established non-Hamiltonian character of Newtonian systems 

(1 ) 

and their representation, not with Hamilton's and Liouville's equations 
of the contemporary literature, but rather with the equations conceived 
by their originators, that is, the" true" Hamilton's equations 

;j~ - - w#\'- + r~ - k ( ;k) (OH ) ( oH/op ) 
( ) - Pk - oa l' NSA - -(oH/ork) + FrSA (2) 

and the "true" Liouville's theorem 

~ log IJ I = [div FNSA] = [OFNSA] , 
dt t P 't,Pt op 

r t , Pt 

(3) 

J t = D(St)/D(=-o)' 

The emerging statistical mechanics is therefore non-Hamiltonian by 
conception, in the sense that the time evolution of densities 

op + [p, H] + FNSA ~ + p div FNSA = 0 
ot k OPk P 

(4 ) 

cannot be entirely represented via the Poisson brackets but demands more 
general algebras. Intriguingly, the use of Lie-admissible algebras turns 
out to be directly universal for the statistical case considered, in full 
analogy with the Newtonian and particle cases, according to the rules 

op dt + (p, H) = 0, 

(S~V) = C~ ~). S = diag (non- Hamiltonian terms/ (p/m)) (5) 

Irreversibility, entropy, and other aspects of Statistical Mechanics and 
Thermodynamics are then derived accordingly, The compatibility of the 
theory with physical reality is remarkable. Equally remarkable is the 
compatibility of such (Lie-admissible) Statistical Mechanics with the 
current experimental indications of the irreversible character of nuclear 
interactions (Chart 6.1). Clearly, the possible experimental finalization 
of nuclear irreversibility would imply a profound revision, not only of 
Atomic Mechanics, but also of Statistical Mechanics. Finally, note that the 
statistical studies by the two groups considered here are likely to be 
compatible, owing to the compatibility of the Lie-isotopic and Lie­
admissible approaches (Chart 6.1). 

31 See the memoir Fronteau (1979) and the papers by the same authors in the 
Proceedings of the First International Conference on Nonpotential Interactions 
(1982) . 
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Chart 6.3 Applications to Space Mechanics 

The accuracy with which spaceships today can travel in the solar system 
and reach distant planets at the expected time and position is remarkable. 
Equally remarkable is our inability to make accurate predictions for the 
much shorter trajectory of a spaceship within our atmosphere. 

We hope that the analysis in these volumes has clarified such differences. 
The former system is Hamiltonian and, as such, treatable with the body of 
methodological tools of Lie's theory. The second system, on the contrary, 
is non-Hamiltonian. The space mechanicist, therefore, simply does not 
possess directly applicable Lie-type tools. 

We also hope that Birkhoffian Mechanics can fill this methodological 
gap, once developed up to the diversification needed for space applications 
including the Birkhoffian generalization of the canonical perturbation 
theory. This need has been anticipated by R. Broucke (1979). who 
has worked out several Birkhoffian generalizations of conventional 
Hamiltonian formulations for Space Mechanics (called Pfaffian by this 
author). Particularly remarkable is the completely identical rule of time 
and space coordinates emerging from these studies (see Section 5.3). The 
effectiveness with which nonpotential forces can be incorporated in the 
theory is also remarkable, as is the diversification of its applications to 
solar wind problems, optimization of flight paths, Galissot problem, etc. 

Chart 6.4 Applications to Engineering 

In this chart we shall outline applications to modern engineering. Let us 
emphasize from the outset that these studies are rather numerous. The 
objective of this chart, therefore, is mainly to outline some of the most 
representative contributions of which I am aware. Also, the review will be 
mainly conceptual, and the interested reader is urged to study the literature 
cited for the technical profile. Finally, the techniques developed by 
engineers appear to be relevant for fields other than engineering. We 
hope that this chart will be of some value in promoting a dialogue between 
engineering, physics, and applied mathematics. 

Let us begin by outlining the studies independently conducted by 
H. H. E. Leipholz. Engineering systems are generally nonconservative 
in the sense of mechanics, and non-self-adjoint in the sense of the 
calculus of variations. Typical examples are fast-moving objects in viscous 
media or fast-moving viscous media in containing bodies (e.g., aircrafts, 
submarines, transportation vehicles, pipelines, etc.). The forces rendering 
the systems nonconservative are called follower forces, in the sense that, 
being frictional forces tangential to the surface, they follow the surface 
itself. For general treatments on the follower forces the reader may consult 
Bolotin (1963), Ziegler (1968). and Leipholz (1970). 

Leipholz realized the power of the techniques of classical mechanics, 
calculus of variations, and optimal control theory. He conducted a series 
of studies aimed at rendering non-self-adjoint engineering systems treat­
able via variational techniques. 

A modification of classical variational principles was studied by Leipholz 
(1977 and 1978a) and consisted of adding non-holonomic virtual work 
terms caused by the follower forces to the variation of kinetic and potential 
energy. Even though advantageous from the viewpoint of practical 
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engineering calculations, this modification remained unsatisfactory 
because, as known from mechanics, variational principles modified in this 
way cease to be stationary principles. 

A first way for constructing equivalent self-adjoint forms of non-self­
adjoint systems was identified by Bateman (Chart 1.3.13) and consists of 
adding to the system considered its adjoint, expressed in terms of new 
variables. This technique was identified in engineering circles by a number 
of authors, including van Dungen (1945), Ballio (1967), and Prasad and 
Hermann (1969). A systematic study of this approach for the case of 
follower forces was conducted by Leipholz (1972). The approach was 
based on generalized Lagrangians and Hamiltonians, providing a joint 
representation of the system considered and its adjoint. It allowed the 
direct variational treatment of non-self-adjoint systems. The approach 
also allowed the development of hybrid equations of Ritz-Galerkin type 
(Leipholz, 1977), as well as the extension of classical stability theory 
(Leipholz, 1972). 

This second approach remained unsatisfactory because of the duplica­
tion of the number of variables, with consequential duplication of the 
boundary conditions. Additional difficulties emerged within the context 
of a Liapunov-type stability theory because of the general lack of sign­
definite character of the action functional. 

Owing to this situation, Leipholz initiated a third stage of studies con­
sisting of a generalized notion of self-adjointness (Leipholz, 1974a) 
which allowed the treatment of follower forces via a generalized Rayleigh 
quotient, with such applications as that to the PflUger's rod. Further 
studies (Leipholz, 1974-b) pointed out the preservation, for non-self­
adjoint systems which are self-adjoint in a generalized sense, of a number 
of features typical of conservative systems, such as the property that the 
systems become unstable by divergence. The possibility of having sign­
definite functionals under generalized self-adjointness was pointed out by 
Leipholz (1976). 

A comprehensive comparative analysis between conventional and 
generalized self-adjointness was studied by Leipholz (197 4c). Conven­
tiona� self-adjoint and conservative systems were first considered with 
particular reference to the following properties. (1) Their eigenvalues are 
real so that they become unstable by divergence. (2) Their energy is 
conserved. (3) Their energy functional may be used as a Liapunov 
functional. (4) They possess a Rayleigh quotient with extremum properties. 
These systems were called conservative systems of the first kind. Secondly, 
nonconservative non-self-adjoint systems with follower forces were 
selected so as to be generalized self-adjoint and to possess a sign-definite 
functional as a generalization of the energy functional. In particular, it was 
shown that properties (1 )-(4) can all be preserved via the replacement of 
the energy functional with the generalized functional. Under these condi­
tions, the systems were called conservative systems of the second kind. If 
the generalized functional is sign indefinite, the systems were called 
conservative systems of the third kind (Leipholz, 1980). I n this latter case. 
some of the properties of conservative systems are preserved and others 
not. For instance, the system may have complex eigenvalues and may 
thus become unstable by flutter. For an outline, as well as' a detailed 
presentation of the generalized variational principles under consideration, 
the reader may consult Leipholz (1978a). 

Further studies based on generalized adjointness and self-adjointness 
with the treatment of the convolution theorem and of the follower forces, 
are given in Leipholz (1978b and c). An interpretation of the new theory 
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as basic to the finite element method and the final, most abstract. presenta­
tion of the new theory, involving the notion of linear function spaces with 
semi-scalar products, is given in Leipholz (1980). 

Next, we would like to bring to the physicist's attention the research 
well known in engineering circles by K. Huseyin (see the recent paper by 
this author (1982) and cited references, as well as the monograph by the 
same author (1975)). These studies have brought into focus the rela­
tionships existing between instabilities, bifurcations, and catastrophes 
for some of the most general possible classes of systems, those of non­
linear and nonpotential type. The underlying methods appear to be applic­
able to a number of situations in Newtonian, Statistical, and particle 
mechanics. 

The studies by Huseyin also cover a considerable number of practical 
cases, including conservative, pseudo-conservative, gyroscopic, and 
circulatory systems under the presence of dampings. The critical divergence 
conditions that lead to instabilities are analyzed via general and critical 
points within the context of a unified theory. 

Additional aspects are related to the study of fold, cusp, etc., cata­
strophes, as well as flutter instability, Hopf bifurcation, etc. which have 
been identified in conservative systems, and extended by Huseyin to more 
general systems. (The unity of the analytic methods underlying all sciences 
which emerges in the study of engineering research is remarkable.) 

We would like to indicate also the studies conducted by a group of 
engineers at Drexel University, including L. Y. Bahar, H. G. Kwatny, 
F. M. Massimo, and others. See the publications by these authors of 
(1977, 1978a and b, 1979a and b). The main line of these studies has 
been the reduction of a non-self-adjoint system into an equivalent self­
adjoint form (see Appendix A). The main application has been to inter­
connected electrical power systems. 

The need to bring dissipative systems into the framework of the classical 
theory applicable to conservative systems stems from the fact that, in the 
reduction of the original large-scale physical system to several subsystems 
of simpler nature, the reduced order system must retain the essential 
physical features of the original system. 

While several alternative methods for preserving physical structure have 
been proposed, the studies considered here adopted the definition of 
retention of physical structure as being synonymous with preserving the 
canonical representation throughout the reduction process. Thus a 
reduced system retains the physical structure of the original canonical 
system if it can be represented by a set of Hamiltonian canonical equations. 
The Hamiltonian characterizing the original systems is, in general. different 
from that of the reduced system, but they must both include the dissipative 
effects that are ever present in the large-scale interconnected electric 
power systems. 

Finally, we would like to bring to the reader's attention the studies by 
V. M. Fatic and W. A. Blackwell (1979a and b, and references cited there­
in). These studies were applied to network theory and were centered on the 
construction of variational principles for non-self-adjoint systems accord­
ing to the following specializations: 

(i) generalization of the image method to the linear discrete systems 
and networks with time-varying parameters; 

(ii) extension of the multiplier method to a class of nonlinear discrete 
systems with one degree of freedom; 

(iii) derivation of variational principles for the lossy transmission line 
with constant parameters by the multiplier and the image method; 
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(iv) broadening of the conventional framework of variational principles 
to include Lagrangians containing path-dependent integrals. 

Particularly instructive for the physicist is the analysis of nonlocal 
(integro-differential) models by a number of engineering studies indicated 
in this chart. 

Chart 6.5 Applications to Biophysics 

In this final chart. we would like to indicate the related studies in bio­
physics by C. J. Lumsden, E. H. Trainor, and E. O. Wilson. In this way the 
reader can see that the applications of the methods considered in these 
volumes go beyond physical science as commonly understood and 
involve biophysics as well as other fields (such as economics) which are 
not reviewed here. 

There are many biophysical and biological systems which can be 
effectively treated by local, first-order, ordinary (or partial) differential 
equations (vector fields) 

k = 1,2, ... , N (1 ) 

For a general study, the reader may consult the recent monograph by 
C. J. Lumsden and E. O. Wilson (1981). 

Phenomenological models like these are applied routinely in many 
disciplines with which biophysics makes contact. including biochemistry, 
molecular biology, physiology, ecology, and the social sciences. For 
example, chemical concentration variables in the Lotka biochemical 
oscillator follow rate laws of the form 

x, = (X, + fJ,e X2 

x2 = (X2 + f3 2 ex " 
(2) 

while the number of animals alive in certain two-species ecosystems can 
be modeled by the dynamics 

x, = (X,x, + fJ, Y2eX2 

x2 = (X2X2 + fJ 2 /',e x ,. 
(3) 

Since most organisms display a high degree of self-regulation, the vector 
fields X(x) of greatest interest in models like (1) are nonconservative and, 
in fact, highly dissipative. This dissipation can express itself in simple 
forms, as in isolated attractor points (biologic "thermostats ") or limit 
cycles (biologic "clocks ") but, models with two or more degrees of 
freedom, can easily slip into a complex nonconservative dynamic" chaos." 

To date, the exposition of rate law models has proceeded in mathe­
matical biology and biophysics more or less independently of advances 
in Newtonian dynamics. An esprit even exists to the effect that such 
models can have no contact with Newtonian or Hamiltonian structures 
because the latter deal only with conservative systems and have nothing 
to say about problems of biological relevance. Such a position must. of 
course, be fundamentally revised. 
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In a new set of papers on Hamiltonian structures in biology, Lumsden 
and Trainor (1977, 1979a, b, and 1980) have identified several major 
benefits to be gained from systematic study of biological equations of 
motion using the Inverse Problem approach. Until recently, the Inverse 
Problem and its generalizations have been left unexplored in all but a few 
conservative biological models. It is becoming clear, however, that 
analysis of a broad spectrum of such models using the inverse problem 
approach can contribute directly to the classification and enumeration of 
biologically relevant vector fields X(x). A major enterprise in mathematical 
biology, the production of these vector fields in local coordinate form, has 
somewhat outstripped the set of techniques available for their qualitative 
analysis. The Inverse Problem, by connecting such vector fields to 
Lagrangian and Hamiltonian dynamics, is clearly a useful new tool. 

A second key advantage recalls that for many applications the com­
plexity of real organic systems cannot be ignored and that N, the number of 
equations in (1), is very large. Lumsden and Trainor are especially con­
cerned with this problem of biophysical complexity and with adapting 
methods from many-body theory to predict the collective properties which, 
in analogy to physical properties like temperature and pressure, define 
an organic system's overall structure and function. These properties cor­
respond to the model's phenotype and are of crucial biological significance. 
Although many of the tenets of Statistical Mechanics do not require a 
Hamiltonian framework, such a frame of reference is useful in deciding 
the correct handling of biophysical models which combine great com­
plexity with dissipation, self-regulation, and self-reproduction. 

Lumsden and Trainor also point out that mathematical biology has a 
direct as well as an inverse problem. In the direct problem, questions 
about optimal design and efficiency in living systems lead to important 
applications of variational principles and Hamiltonian structures, usually 
within the framework of optimal control theory. Given the established 
significance of this type of reasoning in the life sciences, the generalized 
inverse problem takes on a further role. For every successful inverse 
construction from (1) ending in a variational principle, a new candidate for 
a principle of optimal organic design has been discovered. 

Lumsden and Trainor start from the suggestion that in biological 
applications a natural" Lagrangian" for (1) which has local existence 
properties and is attached to the variational principle 

f t2 
(j Ldt=O 

t 1 

(fixed end points) (4 ) 

would be first-order in the rates Xk : 

(summation convention). (5) 

Explicit time dependence of the functions Uo(x) and Uk (x), k = 1, ... ,N 
can occur in dissipative systems. For example, a linear Lagrangian cor­
responding to the conservative biochemical oscillator (2) is 

L = 1(X1X2 - X1X2 ) - (<X 1X1 + P1ex,) + (<X 2 X2 + P2 eX2) (6) 

while that for the dissipative, self-regulating ecology (3) is 

(7) 
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Due to the everywhere singular structure of the linear Lagrangian (recall 
Chart 1.3.8), 

II 0:k2~Xi" = 0, 
(8) 

a standard canonical Hamiltonization, and Statistical Mechanics has 
remained an elusive goal for mathematical biophysicists. Lumsden and 
Trainor have now shown that considerable explicit Hamiltonian content 
can be synthesized for such systems by directly using the singular 
properties of L. Two Hamiltonian structures have been obtained and used 
to extend many-body theory to biological applications. 

Both structures are generalizations of the standard Hamiltonian 
algorithm. Lumsden and Trainor point out that there is a Lie bracket 
induced by the linear Lagrangian that makes (1) equivalent to a general­
ized Poisson bracket (GPB) dynamics: 

Xk = [xk ' Uo(x)] 

L .] = pm 01 • om' 

rim = _II oUI _ oUm 11-' 
OXm OXI 

(9) 

which is exactly the Birkhoffian time evolution, here denoted (BIR), of this 
volume. 

An attempt to "Hamiltonize" (5) using the standard algorithm ends 
abruptly with the momenta Pk related not to the velocities X. but to the 
configuration coordinates xi by the set of phase space constr~ints 

k = 1, ... , N (10) 

so that in a 2N-dimensional phase space of coordinates (x" ... , X N' 
P" ... , PN) the system must move on a hypersurface .It defined by the 
vanishing of the functions 

(11 ) 

Lumsden and Trainor have shown that the linear Lagrangian (5) and the 
constraint system (11) are sufficiently simple to be treated by Dirac's 
theory of generalized Hamiltonian dynamics (DIR). In their work the Dirac 
theory has its first biophysical and many-body applications. 

For the linear Lagrangian, a Dirac total Hamiltonian 

induces the canonical dynamics 

xk ~ [xk ' JfTJ 

Pk ~ [P k ' Jf TJ 

(12) 

(13) 

on the 2N-dimensional (x, p)-phase space. In this symbolism [', .J is the 
standard Poisson bracket and ~ are the weak equalities. They mean that 
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the phase flow is constrained to vii by allowing the CfJ k to vanish after the 
P8's have been fully evaluated. 

Because there can be other Hamiltonization procedures (call them 
CAN) leading to canonicalization of the biodynamics (BD) (1) without 
a singular Lagrangian, DIR and GPB do not exhaust the range of pos­
sibilities. Lumsden and Trainor have shown, however, that such possibil­
ities are linked in a framework 

BD~T 
BIR (14) 

I 
CAN, 

where the diagram is commutative. Mathematical biology has thus been 
equipped with a structure which brings the known routes from (1) to 
explicit Hamiltonian models to bear in a unified way. 

These dynamic results prepare the ground for models which are large-N . 
complex. Lumsden is currently studying the vector fields induced by (14) 
on sets of macrovariables A 1 (x), ... , AM(x), M ~ N, which model the 
collective properties of (1). In an ensemble theory, (14) yields generalized 
Liouville equations, such as 

atp ~ .!l'p 

.!l' = [Jf T' .J 
and generalized Langevin equations with the formal structure 

Am = Km(A) +f"" Qm(x)Am(x)dx + Fm(t) 

(15) 

(16) 

in the macrovariables. One must deduce for which types of organic 
system and under what boundary conditions the A-dynamics in (16) 
closes into Am = Y m (A), sealing off the A-level of the system from all but 
residual stochastic influence from the x-variables. When this occurs, the 
macrovariables and boundary conditions define a new regime of lawful 
pattern and order in the system. Biological systems are characterized by 
many such levels of pattern and order, and one of the great unsolved 
mysteries of modern biology is to understand why and through what 
mechanisms these various levels of organization arose during the long 
course of evolution by natural selection. 

EXAMPLES 

Example 6.1 

Consider the equation 

r+- -- =0 [(.. 1) ;'2] 
r2 SA r NSA 

(1) 
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which can represent a hadron (with unit mass and charge) under a self-adjoint 
Coulomb force l1r2 and a resistive non-self-adjoint force f21r due, for instance, to the 
penetration of the hadron within the region of space occupied by other hadrons (e.g., 
for a proton moving in the core of a star). 

Birkhoffian representation (6.1.24) can be written 

(2) 

but it is not suitable for the representation of the system via the hadronic generaliza­
tion of Schr6dinger's equations (Section 6.1) because it violates regularity conditions 
(6.1.29). This deficiency is soon remedied via the Birkhoffian gauge 

(R~) ~ (R;) = (R~ + :~) = (P(1 +~), rJ 
(3a) 

G = rp (3b) 

under which (1) remains unchanged, as the interested reader is encouraged to verify. 
The representation of the system via generalization (6.1.24) of the Hamilton-Jacobi 
equation is then given by (ignoring subsidiary conditions) 

oAY 
-+!l + r= 0 ot 

(R ) = (P(1 + ~)) = (O~Y) = (OAY). 
~ . oAY oa~ 

r -op 

(4a) 

(4b) 

To reach a form which is better suited for "Birkhoffian quantization," one can reduce 
the equations to a single partial differential form. This is accomplished via the change 
of coordinates (6.1.30), 

Q = r, (5) 

under which (4) becomes 

oAY + ~ p2 + r = oAY + ~ (~)2 + Q = oAY + ~ [O~Y 00~Y12 + oAY. (6) 
at 2 at 2 Q + 1 ot 2 oAY + 1 op 

op 

The use of rules (6.1.49) then yields the formal hadronic representation (Santilli (1982b)) 

.----------
o 1 or op 0 

[(
00)2 1 

i at I/I(t, r, p) = 2 ~ + 1 + op I/I(t, r, p) (7) 
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where proper symmetrication is understood. Note that the zero-order term of (7) in 
I/Ag under conditions (6.1.52) reproduces (6) identically. 

It is important to note that hadronic equation (7) does not admit the conventional 
Schr6dinger's equation (6.1.41) as a particular case. This can be seen from the property 
indicated earlier that classical equation (6.1.32a) does not recover the conventional 
equation (6.l.17a) at the canonical particularization (R~) = (P,O). 

Example 6.2 

The reduction of Birkhoffian into Hamiltonian representations (Theorem 6.2.1) can 
be illustrated in a simple but important way in the case of Newtonian electromagnetic 
interactions. Consider the Hamiltonian and Birkhoffian representations of a charged 
particle under the Lorentz force as identified in Example 5.1 

{
I 2 

HLorentz = - [P - eA(t, r)] + eqJ(t, r), 
2m 

(R~) = (P; 0), P = mt + eA, 

{
I 2 

BLorentz : 2m p +. eqJ(t, r) _ . 

(R~) - (p + eA, 0), p - mr. 

(la) 

(lb) 

It is easy to see that the familiar transformation characterizing the minimal 
coupling rule 

(a~) = (r, p) -+ (bP) = (r, P), P = p + eA (2) 

is a Darboux's transformation because it transforms the Birkhoffian into the Hamil­
tonian representation 

( Ga' ) 
R~ = Gb~ R. (b) == R~ (3a) 

B' = BLorentia(b» = HLorentib). (3b) 

Note that transformation (2) is not canonical. 

Example 6.3 

We illustrate here the notion of closed non-self-adjoint systems (Section 6.3) for the 
particular case of two-particle constituents. The equations of motion under considera­
tion are given by a non-self-adjoint generalization of conventional two-body systems 

(1) 
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under closure conditions (6.3.36), i.e., 

2 

'\' FNSA = 0 ~k k -, 
k=l 

2 

L Pk' F~SA = 0, 
k=l 

2 

L rk x F~SA = O. 
k=l 

(2a) 

(2b) 

(2c) 

The model was proposed by Santilli (1978c, pp. 623-633) and the results can be 
reviewed as follows. Constraint (2a) implies that F~SA = - F~SA ~ FNSA. Thus the 
motion is in a plane as for conventional self-adjoint two-body systems. The systems 
can then be written 

MR=O, /1r - fSA(r) - FNSA(r, t) = 0 

t· F NSA = 0 

r x F NSA = 0 

(3a) 

(3b) 

(3c) 

The conservation of the total linear momentum and the uniform motion of the center 
of mass are now ensured. Equations (3b) and (3c) then ensure the conservation of the 
total energy and of the total angular momentum, respectively. 

It is easy to see that the force 

FNSA = gr, g = const. (4) 

is one of the simplest possible solutions of conditions (3b) and (3c). Note that force (4) 
is non-Newtonian and that the only admissible orbit is the circle. 

The model was also studied by Tellez-Arenas, Fronteau, and Santilli (1979) who 
examined the solution. 

(5) 

where <p is a continuous function with simple zeros. It is easy to see that the con­
straints restrict the admissible <p-functions and the trajectories to those for which 
<peE) = O. The statistical implications are intriguing but, for brevity, will not be 
reviewed here. 

Example 6.4 

We illustrate here the form-in variance of a vector field (or, equivalently, of a 
system of first-order differential equations) under the Hamiltonian and the Birk­
hoffian time evolutions which are at the basis of the time component of Galilei's 
relativity and of its isotopic generalization, respectively. 

Consider first the free particle of unit mass 

:; _:;~ a 
-0 - -o(a) -a ' 

a~ 
/1 = 1,2 (1) 
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with Hamiltonian representation 

oH r;::# _ wl'V_ 
~o - oav ' 

(2) 

The canonical realization of the time component of Galilei's relativity in this simple 
case reads 

A ' [, oH 0 ] (alt(t» = exp tOJ~V - -- (a~(t)) oav oa~ 

(

r + i, [r, H] + i2, [[r, H], H] + ... ) 
= 1. 2 . = (r + iP) 

I i2 P 
P + 1! [p, H] + 2! [[P, H], H] + ... 

(3) 

and implies the trivial form-in variance 

= 0 --> . - = o. (r) (p) GA) (p) 
p, 0, i 0; 

(4) 

The understanding (indicated in Section 6.3) is that the explicit form of the time 
evolution is different for different Hamiltonians. Thus the form-invariance under 
consideration is characterized by a variety of transformations, one per each given 
(conservative) system. 

We consider now the following non-self-adjoint generalization of system (l), 

(';::;1') _ ( P ) 
~ - pNSA(r, p) , J.1 = 1,2, (5) 

where possible self-adjoint forces are ignored for simplicity (but without loss of 
generality in the results). The Birkhoffian representation of systems (5) reads (Section 
4.3) 

(6) 

Galilei's time component (3) is then generalized into the isotopic form 

[ oB 0 ] (a~(i)) = exp iQ~V(a) - - (a(t» oav oal' 

=(' + :; [" Bj' + :: [[" Bj', BJ' + ... ) 

P + 1! [p, B]* + 2! [[P, B]*, B]* + .. . 

(7) 

and verifies the form-in variance 

(8) 

under sufficient topological conditions here ignored (Problem 6.5). 
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Illustrations oflaw (8) have been given by Santilli (1978e) for a number of specific 
cases. Consider first the particle with linear velocity damping force 

(31') = ( p). 
-yp 

Then series (7) converge to the closed form 

I . r = r - - p(e- yt - 1) 
y 

under which we have the form-invariance 

( 
dr) (dr A) --p --p 
dt di 

= 0 -> = O. 
dp dp A 

Tt+ yp di + yp 

(9) 

(10) 

(11) 

Consider next the case of the particle with a nonlinear (quadratic) damping force 

(31') = ( p 2)' 
-yp 

Then series (7) converge in this case to the closed form 

1 • 
i' = r + - In(1 + ytp) 

y 

A P 
p = -:-:--~ 

(1 + yip) 

for which we have again the form-invariance 

( dr ) (dr A) dt - P di - p 

= 0 -> = O. 
dp 2 dp 2 

dt + yp di + yp 

A similar case occurs for other examples of systems (5). 

(12) 

(13) 

(14) 

Note the variation of the symmetry with the system. Note also that this is not new, 
inasmuch as it is inherent in the canonical realization of Galilei's relativity. 

As a final note, it should be indicated that the examples recalled here were worked 
out for the still more general Lie-admissible generalization of Galilei's relativity 
proposed by the author. 

Example 6.5 

It is well known that the meaning of relativity is a form-invariant description of the 
physical characteristics of the systems admitted. For the case of Galilei's relativity, 
Galilei's form-invariance is an expression of the closed self-adjoint character of the 
systems (Section 6.3). In this example we illustrate the fact that the Galilei-isotopic 
relativity carries exactly the same physical content. A main difference is the removal of 
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unnecessary restrictions on the nature of the forces. The understanding is that, under 
such condition, conventional space-time symmetries are broken (Chart A.l2). In 
the final analysis, this breaking is a prerequisite for a genuinely new relativity. 

Let us consider the canonical realization of the component of Galilei's relativity 
dealing with the rotation of a system in E(3) around the third axis. By denoting with 
M 3 the generator (third component of the conventional angular momentum), the 
component under consideration can be written 

A [OM 3 a] (a') = exp aaf" - ~ (a') 
oa" oa~ 

( 00,0 sin a 

~)(;:) -~in a cos 0 

0 

;)G:), 
k = 1,2,3, CJ. = 1, 2, ... ,6. 

(00" 
- sin a 

sin a cos a 
0 0 

(1) 

The underlying form-in variance is then similar to that of Example 6.4 and reads 

(;:) - (F{:(rJ = 0 ~ G:) - (F/:(r)) = o. (2) 

As stressed in the charts of the Appendix, symmetry (1) is broken under non-self­
adjoint forces, as necessary, say, for spinning tops under drag torques. In this case, 
the breaking is a manifestation of the nonconservation of the angular momentum. 

However, the generalized relativity proposed in Section 6.3 is intended to express 
the following more general situation: 

(a) conservation of the total angular momentum; 
(b) breaking of the rotational symmetry under non-Hamiltonian internal forces; and 
(c) validity of the isotopic covering of the rotational symmetry. 

The objective of this example is to illustrate the last case. 
One of the simplest classes of Birkhoffian tensors is given by the factorization into 

the canonical form 

Q~" = Kw~" (3) 

where, of course, the quantity K can be a function of the local coordinates, as well as 
any other physical quantity (pressure, density, viscosity, etc.). 

Hamiltonian symmetry (1) is now generalized into the isotopic form 

[ oM 3 a] fl' = exp aQ~" ---- a' oa" oa~ 

(4) 
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The case under consideration here is when the non-Hamiltonian generalization of the 
Galilean system (2) is form-invariant under the covering transformations (4), accord­
ing to the rule 

G:) - (F~A(r) /~rSA(r, p») = 0 ---> G:) - (F~A(r) /~rSA(t, P») = O. (5) 

To see this, it is sufficient to consider the case when the quantity K of (3) does not 
depend on the r- and p-variables (but can depend on other quantities). Then, it is 
easy to see that transformations (4) are no longer a pure rotation. Instead, they are 
given by a combination of a rotation and a dilatation of the type 

( 1'1) (K 0 0)( cos e sin e o)(rl) :2 = 0 K 0 - sin e cos e 0 r2' 

r3 0 0 1 0 0 1 r3 

(6) 

The underlying physical situation is then given by the case when the angular 
momentum is conserved while the spherical symmetry is broken due to deformations. 
This is one of the simplest conceivable cases for which the generalized relativity of 
Section 6.3 is intended. 

The example has been proposed as a classical analog of the current studies in 
particle physics according to which the charge distribution of strongly interacting 
particles could be deformed under impact with other particles, resulting in a breaking 
of the rotational symmetry, while the third component and the magnitude of the total 
angular momentum remain the conventional ones. For details, see Santilli (1978d), 
Eder (1981), and the third volume of reprints edited by Schober (1982). 

Problems 

6.1 Recall that the conventional form of the Hamilton-Jacobi equations, form 
(6.1.8), is characterized by an F 1 generating function, while form (6.1.9) is characterized 
by an F s function. Construct the form of the equations for the remaining generating 
functions F 2, F 3, F 4, and F 6 (Section 5.2). Identify the form of all these equivalent 
Hamilton-Jacobi equations under Birkhoffian gauges (Section 4.5). 

6.2 The Birkhoffian generalizations of the Hamilton-Jacobi equations for the 
cases of generating functions FI and Fs are given by equations (6.1.24) and (6.1.34), 
respectively. Identify the generalizations for the cases of generating functions F 2, F 3, 

F 4, and F 6 (Section 5.3). Identify the form of all these equations under Birkhoffian 
gauges. 

6.3 Study the following reformulation of the conventional Schrodinger's equations 

a a - -Ot i - t/I(t, r, p) = i - t/I(t, a) = H( -2orRv )t/I(t, a) at at 

= (~1 ~k (:J2 + v( -2 :p) )t/I(t, r, p) (a) 

which can be obtained via canonical quantization rules 

oA a 
---->i- = -iI, at at 

(b) 
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applied to gauged Hamilton-Jacobi equations (6.1.15) or (6.1.17). By recalling that the 
classical equations (6.1.15) are equivalent to the conventional form (6.1.8), see whether 
the operator equations (a) are equivalent to the conventional Schr6dinger's form (6.1.41). 
In particular, identify the implications of the Birkhoffian gauge for basic atomic notions 
such as states, expectation values, probability, energy spectra, etc. 

6.4 Prove the following theorem, e.g., via the Birkhoffian representation of 
Hamilton's equations (Section 4.5). 

Theorem. Consider a Hamiltonian vector field 

';::~(t ) = ~v oH(t, a) 
- , a W oav ' 

Then the contemporaneous symmetries of Hamilton's equations according to Definition 
6.3.4 

= oa~ w.p oH(t, a') 
- ca'" oa'P 

do not recover all the possible contemporaneous symmetries of the equations of motion 
according to Definition 6.3.1, i.e., 

oa~ [oa' ] S~ = - - SP (t d) 
oa" oaP , 

oa~ 
-.( ') == -;--.::. t, a . 

ua'a 

6.5 Prove the following property. 

Theorem. Under sufficient topological conditions, a vector fieldS(a) always verifies the 
jorm-invariance rule 

_ _ a _ ,oa'" a 
.::.(a) = d(a) - = d(a(a» ---

oa# oa# ad' 

= S'"(d) ~ == S'(a') ~ 
oa'" oa' 

where 

Note that the property holds whether the vector-field is Hamiltonian, Birkhoffian, or 
Lie-admissible. It therefore establishes the form-in variance of the time component of 
Galilei's relativity as well as of its Lie-isotopic and Lie-admissible coverings. 

6.6 Establish whether the following conjecture is correct or erroneous. 

Conjecture. (Construction of Symmetries from First Integrals ofBirkhoff's Equations). 
Ifr junctions X;(a) are first integrals ofautononomous Birkhoff's equations, i.e., 

. ax. oB 
X· = _'Q~V_ = [X B]* = 0 

I oa~ oav " , 
i = 1,2, ... ,r 
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then an infinitesimal symmetry G: always exists which leads to quantities Xi via Theorem 
6.3.3 and this symmetry is explicitly given by 

. ax; 
G:: a~ --> a'~ = a~ + w/Q~V -. oav 

Apply the results to the construction of the isotopic covering of Galilei's relativity. 



APPENDIXA 

Indirect Lagrangian 
Representations 

A.1 Indirect Lagrangian Representations within 
Fixed Local Variables 

In this appendix we study methods for the possible reduction of a quasi­
linear, second-order, non-self-adjoint system of ordinary differential equa­
tions in the fundamental form 

k = 1,2, ... , n, (A.Ll) 

into an equivalent self-adjoint form, under the general regularity and 
continuity conditions assumed in this volume (see the Introduction). A 
number of complementary aspects are also considered, such as the degrees 
of freedom of a Lagrangian, the existence theory of partial differential 
equations, Lagrangian symmetries and their breakings in mechanics, etc. 
These aspects can be considered as a continuation of the analysis in Volume I 
and are recommended as an introduction to the Birkhoffian generalization 
of Hamiltonian Mechanics presented in this volume. 

In this first section we are interested in transforming systems (A.Ll) into 
an equivalent self-adjoint form without altering the local coordinates (the 
inclusion of the transformation theory will be done in Section A.3). This 
essentially restricts the analysis to the use of regular matrices of multiplicative 
functions, according to the equivalence transformation 

hi(t, q, q)[Aij(t, q, q)iji + Bi(t, q, q)] = O. (A.l.2) 

281 
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Since we are interested in the possible construction of a Lagrangian, the 
transformations of primary relevance here are the self-adjoint genotopic ones, 
that is, in the language of Definition 4.4.1, transformations (A.1.2) which 
induce the self-adjointness. One should keep in mind the existence also of 
the self-adjoint isotopic transformations (see next section), as well as others 
(see Charts 4.1 and 4.2). 

Consider an (analytic and regular) system (A.l.1) which, as given, is non­
self-adjoint. According to Theorem J.3, a Lagrangian for its ordered direct 
representation does not exist, but (f11) is a particular case of the more general 
indirect representations (J.16) (see Section 1.3.4 for details). Thus one can 
attempt the construction of a Lagrangian for the non-self-adjoint system 
considered by searching for the self-adjointness-inducing equivalence trans­
formations. Theorem f3 can then be reformulated for the equivalent form of 
the system. Finally, Theorem 1.3.6.1 provides a method for the explicit 
computation of a Lagrangian when the integrability conditions are verified. 
This procedure is summarized in Theorem 4.2.1 for the reader's convenience. 

Theorem A.I.I1 (Generalization of the Fundamental Analytic Theorem 
1.3 to Indirect Lagrangian Representations within Fixed Local Variables). 

A necessary and sufficient condition for a finite-dimensional second-order 
system of ordinary differential equations, 

k = 1,2, ... , n (A. 1. 3) 

which is analytic and regular in a region fJIt of points (t, q, q) to admit an 
ordered indirect representation in terms of Lagrange's equations without 
transforming the coordinates and time variables 

d oL oL .. . 
dt oqk - oqk == hic[Aijiji + B;], det(hk)(fJIt) i= 0 (A. 1.4) 

is that the system admits at least one self-adjoint transformation which verifies 
the smoothness conditions of the Converse of the Poincare Lemma (Lemma 
1.1.2.2 and Chart 4.6). That is, all the following conditions of self-adjointness 
on the functions hi (for fixed Aij and B j terms) 

At = At, (A. 1. Sa) 

(A. 1. sb) 

(A.1.5c) 

1 The study of indirect Lagrangian representations has been conducted by a number of 
authors, including Mayer (1896), Davis (1931), Havas (1957), Santilli (1977b,c), and others (see 
the Introduction of Volume 1 for a comprehensive bibliography). We follow the Newtonian 
reduction of the field theoretical studies by Santilli (1977c). 
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(A. LSd) 

A0 = h7Aki' Bt = h~Bk' (A.LSe) 

are identically verified in a star-shaped subregion fJli* c: fJli. When these 
conditions are met, a Lagrangian exists and is given bi 

L *(t, q, q) = K<I«t, q, q) + Dt(t, q)ll + C*(t, q), (A.1.6a) 

K* = i/ fdr'{[fdrA0(t, q, rq)}i}(t, q, r'q), (A.1.6b) 

Dt = [fdHzti(t, rq)}i, (A.1.6c) 

C* = [f drWt(t, rq)}k, (A.1.6d) 

(A.1.6e) 

1 (OB!" OB'!') ( 02 K* 02 K* ) Z0 = 2: Oq~ - Oq~ + oqi oqi - oqi oqi (A.1.6f) 

oD!" oK* 02 K2 [ 02 K* 1 (OB!" OB'!')] 
wt = at- - Bt - oqi + oqi ot + oqi oqi + 2: Oq~ - Oq~ qi. 

(A.1.6e) 

On practical grounds, this theorem can be implemented according to the 
following steps. 

1. Verify that the system is analytic (in the sense of Chart A.I) and regular. 
Then select, for the region of definition, a neighborhood of a regular point 
(also in the sense of Chart A.l). Notice that this smoothness condition 
excludes the presence of discontinuous forces, such as the impulsive forces 
(Chart 1.A.3), and is more restrictive than the condition of class C(Joo. 

2. See whether the system admits a self-adjoint genotopic transformation; 
that is, whether (A.1.9) admit a solution in the functions h1 3 . 

3. In the case of an affirmative answer, compute a Lagrangian according 
to (A. LlO). Alternative methods (such as those of Chart 1.3.11) can be used in 
case of difficulties in computing the integrals in the needed closed form. 

This tacitly assumes that the reader is familiar with the applications of 
Theorem .Y.3 to direct Lagrangian representations, as well as with the 
methods for the computation of a Lagrangian (Section 1.3.6, in particular). 

Clearly, the major difficulty for the practical application of Theorem A.1.I 
is whether (A.1.9) in the unknowns hI is consistent or not, and, if so, whether 
a solution can be explicitly computed in the needed closed form. 

2 Notice that method (A.UO) is different than that of (.f.13). 
3 The conditions of self-adjointness of Theorems .1.3 and A.1.l are the same. Nevertheless, 

their interpretation and use are different. For Theorem .1.3. conditions (.f. 12) are restrictions on 
the equations of motion-that is, on the Aki and Bk terms. For Theorem A.U, conditions 
(A. 1.9) are restrictions on the integratingJactors ht for given fixed terms Aij and Bi • 
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The following remarks are in order in this respect. First, (A. 1.9) constitutes, 
in general, an overdetermined4 system of partial differential equations in the 
unknowns h{. These systems are not, in general, consistent. Thus the Inverse 
Lagrangian Problem (A.1.8) is not" universal"; that is, a solution of (A. 1.9) 
for a given system (A.l.7) does not necessarily exist. 

The methods used to ascertain whether a given system of differential 
equations is consistent or not are often referred to as existence theory. The 
case of determined systems has been studied extensively in the mathematical 
literature. In Chart A.3 we present one of the most important theorems for 
the case of determined systems of partial differential equations, the Cauchy­
Kovalevski theorem. The case of overdetermined systems is still open in the 
mathematical literature to a considerable extent. An interested reader may 
consult, for instance, Goldschmidt (1967), Spencer (1969), and Gasqui 
(1975). 5 

In a number of cases of practical interest, system (A.1.9) can be reduced 
to a determined system by the appropriate selection of a subset of the 
functions hi. In this case, according to Theorem 1 of Chart A.3, the reduced 
system is consistent if it can be written equivalently in the Cauchy-Kovalevski 
form, i.e., in the form of Equations (3) of Chart A.3. At this point the condition 
of analyticity of Theorem A.Ll acquires its true significance. Indeed, the 
Cauchy-Kovalevski Theorem applies specifically to analytic systems of 
partial differential equations. Thus, even though Theorem A.Ll can indeed 
be formulated and proven under weaker smoothness conditions (as for 
Theorem J.3), practical applications outside the class of analytic systems are 
generally confronted with the nontrivial extension ofthe Cauchy-Kovalevski 
Theorem to non analytic systems. 

Notice that when the Cauchy-Kovalevski Theorem is applicable to 
system (A.l.9), the solutions are also analytic, and therefore the needed 
smoothness conditions for the equivalent self-adjoint form of the equations 
of motion are automatically verified. 

Finally, it is appropriate to recall that, even when system (A.1.9) is con­
sistent, the possibility of readily computing a solution h{ in a closed form is 
not guaranteed. This creates additional difficulties. Indeed, the methods of 
the Inverse Problem refer to the computation of a Lagrangian, when it 
exists, in an explicit form. When the solution h{ of systems (A.1.9) can only 
be established via multiple power-series expansions which are convergent 
but of an unknown sum, a Lagrangian cannot be computed explicitly. 

In conclusion, the practical application of Theorem A.l.1 is complicated 
by a number of technical difficulties which are typical of overdetermined 

4 A system of differential equations is called determined, overdetermined, or undetermined when 
the number of equations is equal, bigger, or smaller, respectively, than the number of unknowns. 

5 The outline presented in Section 1.1.2 on the calculus of differential forms and the converse 
of the Poincare Lemma can also be used to study the consistency of overdetermined systems of 
partial differential equations (see Examples 1.1.3-1.1.6). Thus, whenever system (A.1.9) cannot 
be reduced to a determined form, one can still attempt a study of its consistency via the methods 
of Section 1.1.2. The bibliography on the theory of partial differential equations is rather vast. 
A partial listing is given in Chart A.3. 
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systems of partial differential equations.6 Nevertheless, Theorem A.Ll is 
significant for a number of cases in which it does indeed provide an explicit 
Lagrangian representation. 

For one-dimensional systems, conditions (A.I.9) reduce to a single partial 
differential equation in only one unknown, h, which can be written in the 
Cauchy-Kovalevski form 7 as 

oh = B-1{~ . ~}(hA) _ B-1 oB h 
oq at + q oq oq 

(A.I.7) 

which originated from (A.I.9c). The condition of analyticity then ensures the 
existence of a solution via Theorem 1 of Chart A.3. 

Corollary A.1.1a. Analytic, regular, and one-dimensional systems always 
admit a self-adjoint transformation. Thus a Lagrangian always exists for 
their indirect representation. 

This is the universality for the existence of a Lagrangianfor one-dimensional 
systems which was proven for the first time by Darboux (1894). A more 
detailed presentation of this case is given in Chart A.4. 

Another significant subcase of Theorem A.U occurs when the original 
system is in kinematical form. 

Corollary A.1.1b. When system (A. I. 7) is of the kinematical form 

iik - fk(t, q, q) = 0; k = 1,2, ... , n; qk = q\ (A.lo8) 

the integrability conditions for the existence of a self-adjoint transformation, 
Equations (A.lo9), reduce to 

(A.I.9a) 

(A.I.9b) 

b This is one of the motivations for the search for an alternative approach to the Inverse 
Problem that is capable of providing universality, that is, capable of providing a representation 
through a conventional variational principle for all systems of the class admitted. In this way, 
half of the difficulties of Theorem A.l.l (the study of whether the integrability conditions are 
verified or violated for each given system) would be absent. The remaining difficulties-those 
related to the explicit computation of a solution in the desired closed form-would persist 
however. As we shall see in Section 4.5, this is precisely the case for Birkhoff's equations. 

7 When the function B is analytic, the function B- 1 is locally analytic only under certain 
technical conditions (see Chart A.I and quoted references). Clearly, for the Cauchy-Kovalewski 
theorem to be applicable to Equation (A.1.11), the function B- 1 must be analytic together 
with all other functions appearing in the right-hand side (i.e., B and A). The verification of these 
(and other) conditions is tacitly assumed here. 
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In particular, when the implicitfunctions are all independent of i/, a necessary 
condition for the existence of a self-adjoint transformation is that the multi­
plicative functions hi are conserved along the solution of the system, i.e., are 
first integrals. 8 That is, 

:t hij(t, q, q) = 0; i,j = 1,2, ... , n. (A.l.10) 

The last part of the corollary can be easily proved by using (A.l.13b) and 
(A.l.13c), as well as the identification along a solution of the system it ==fk. 

Corollary A.l.1b proves useful in illustrating the interplay between the 
fundamental and kinematical forms of the equations of motion or, for that 
matter, any system of ordinary second-order differential equations. In fact, 
the corollary is centered in the transition from the unique kinematical form 
to one equivalent fundamental form, i.e., 

ijk - fk(t, q, q) = 0 --+ hki(t, q, q)[iji - fi] ~ Akiiji + Bk = O. (A.l.1I) 

This transition is trivial from the viewpoint of the existence theory for ordin­
ary differential equations but not trivial from the viewpoint of the existence 
of a Lagrangian. 

In essence, the kinematical form of a system is necessarily non-self-adjoint 
when the implicit functions are nonlinearly dependent on the velocities.9 

As such, they do not admit, a direct Lagrangian representation. The only 
possibility is to search for an indirect representation. The factor functions 
hi then produce a fundamental form. Even though the existence of an indirect 
Lagrangian representation is not ensured, the representation is in principle, 
possible. In particular, the transition removes the restriction of the linearity 
in the velocities because the conditions of self-adjointness for the funda­
mental form do not demand the linearity of the Au and Bi terms in the 
velocities. 

In conclusion, Corollary A.l.1b deals essentially with the transition from 
the unique but generally non-self-adjoint kinematical form to at least one 
equivalent self-adjoint fundamental form.10 

This analytic procedure has nontrivial physical implications. Let us recall 
that, apart from the multiplication of the mass tensor, the kinematical form 
originates from Newton's second law (for the case of unconstrained systems). 
When the implicit functions (the Newtonian forces) are self-adjoint, the 
kinematical form can be directly represented by Lagrange's equations and 
is written in Cartesian coordinates 

doL oL 
dt of' - ol == [rk - h(t, r, t)]SA' m=1. (A.l.12) 

B The notion of the first integral is reviewed in Chart A.8. 
" This is explicitly stated in Theorem J.t ; see Section I.2.2 for details. 

10 Another significant subcase of Theorem A.I.1 occurs when the matrix of factor functions 
is diagonal, i.e., of the type 

hij = hJiij (no sum). 

This case has been investigated in detail by Havas (1957). 
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This is the conventional way of representing systems with forces derivable 
from a potential and produces the conventional Lagrangian (as well as 
Hamiltonian) structure11 : 

L = L~:t"v = Lfree(f) + Lint(t, r, f) 

H = H~:t"v = Hfree(p) + Hint(t, r, p) 
L _l·i~·j 1 .. free - 2r Uijr, H free = ZPi 6!Jpj , 

Lint = Bi(t, r)fi + CCt, r), Hint = Di(t, r)Pi + E(t, r), 

aL 
H = fk Pk - L, Pk = a~' 

(A.U3a) 

(A.U3b) 

(A.U3c) 

(A 1.13 d) 

(A.1.13e) 

The physical context of Corollary A.1.1 b is fundamentally different. We 
are referring here to systems which are assumed to violate the integrability 
conditions for direct representations (A.1.16). Under conditions (A.U3), the 
only Lagrangian representations possible without transforming the local 
coordinates are those of the indirect type 

d aL aL _ {h ( ')["i fie .)] } dt a~ - ark = ki t, r, r r - t, r, r NSA SA' (AU4) 

In this case, the functions hI become acceleration couplings and produce a 
generalization ofthe conventional Lagrangian structure ofthe type identified 
in Section 1.3.7; i.e.,12 

L = Lr:t" = Lint,l(t, r, f)Lfree(f) + Lint,n(t, r, f) 

H = Hr:t = Hint,l(t, r, p)Hfree(P) + Hint,n(t, r, p) 

(A. USa) 

(Al.1Sb) 

11 Upon suitable quantum mechanical and quantum field theoretical extensions, Lagrangian 
structures (A.1.17) persist in some of the most advanced parts of contemporary theoretical 
physics, such as quantum electrodynamics and quantum chromodynamics (a theory currently 
under study for strong interactions). In fact, in all these theories the forces (or couplings) are 
of the potential type. With a deeper analysis under the conditions of variational self-adjointness 
and upon inclusion of symmetries and conservation laws, the theories indicated here emerge as 
part of the so-called closed selFadjoint interactions, as we shall see in Chart A.8, Section 6.3 and 
Chart 6.1. 

12 Generalized Lagrangian or Hamiltonian structures (A.1.19) have been proposed by Santilli 
(1977a,b,c, 1978a,b,c, 1979b) for the study of strong interactions. According to clear experi­
mental evidence, all strongly interacting particles (hadrons) have a charge size of the order of 
10- 13 em (1 F); they are composed of wave packets, and their size coincides with the range of 
strong interactions. As a result, a necessary condition for the activation of strong interactions is 
that the wave packets of hadrons penetrates one within the other, at least up to their charge 
radius. Strong interactions are therefore expected to call for non local/integral and non potential 
forces. The nonlocal nature is needed to ensure the existence of the interaction at all points of 
the volume of overlapping (rather than at a few isolated points, as in theories currently preferred). 
The non potential character is due to the fact, stressed throughout our analysis, that the notion of 
potential has no physical foundation for contact interactions. This does not exclude the possible 
existence in the strong interactions of action-at-a-distance, potential terms. The important point 
is the existence of at least one non-local non potential term. Also, approximations of the local 
power-series type (.1.4) are not excluded, provided that, again, the expansion contains nonpoten­
tial terms. When all terms realizing the strong interactions are reduced to those of the potential 
type, we have only action-at-a-distance and no genuine representation of the contact effects due 
to mutual penetration. Notice that models of type (A.1.19) are open (nonconservative). Therefore, 
they are particularly suited for the study of one strongly interacting particle, while the rest of the 
system is considered external. The extension of the system to include all particles leads to a 
generalization of the contemporary notion of interaction called closed non-self-adjoint inter­
actions, which will be reviewed in Chart A.8, Section 6.3 and Chart 6.1. 
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where the multiplicative interaction terms to the term representing free 
motion are necessary whenever the kinematical form is non-self-adjoint. In 
turn, these multiplicative interaction terms have a number of nontrivial 
physical implications, both classically (e.g., for symmetries and conserved 
quantities 13) and quantum mechanically (e.g., for the emergence of spin­
spin and spin-orbit interactions which multiply the free term14). 

In conclusion, the structure of the Lagrangian or Hamiltonian which 
emerges through the Inverse Problem techniques is of the generalized type 
(A.Ll9) and not of the conventional type (A.Ll7). 

Until now we have been interested in illustrating Theorem A.Ll for the 
indirect representations of non-self-adjoint systems. Conditions of self­
adjointness (A.I.9), however, do not necessarily demand that the original 
system is of this type. Theorem A.Ll therefore also applies to indirect 
representations of self-adjoint systems, which are useful for the study of the 
"degrees of freedom" of Lagrangian representations (Section A.2). In this 
way we reach the following classification of the representational capabilities 
of Theorem A.I.I. 

Corollary A.1.tc. Under integrability conditions (A. 1.9), the indirect 
analytic representations (A.1.8) can be either self-adjoint genotopic or self­
adjoint isotopic; i.e., by the variational approach to self-adjointness, repre­
sentations (A.1.8) can be classified according to the following, 

d oL oL . . 
dt ail - oqk == [h~(Aijijl + B)NSA]SA' (A. 1.1 6a) 

d oL oL . . 
dt ail - oqk == [hHAijijl + B;)SA]SA' (A.1.16b) 

It seems wise to introduce a specific name for the" integrating factors" 
hi considered in this section, so as to distinguish them from other factors we 
shall encounter during the course of our analysis. From now on we shall call 
the solutions hi of Equations (A.I.9) self-adjoint isotopic or self-adjoint 
genotopic functions (or, simply, isotopic or genotopic junctions) depending 
on whether the original system is self-adjoint or not, respectively. 

13 See Charts A.6-A.l2. 
14 In conventional quantum mechanics (studies based on models of type (A. 1.17» spin-spin 

and spin-orbit interactions are represented by additive terms in the Hamiltonian. The realiza­
tion of the same interactions in the same electromagnetic way for the different case of strong 
systems is faced with a number of problematic aspects (e.g., the inability to reach a real value of 
the mass of a bound state when the masses of the constituents are smaller than the total masses, as 
expected in the structure ofthe pion and other hadrons). These and other problems appear to be 
resolved if one realizes spin-spin and spin-orbit interactions via terms which multiply the 
kinetic energy (upon suitable symmetrization, of course). In turn, this has several implications. 
First, one reaches spin-spin and spin-orbit interactions of "strength" and dynamical implica­
tions different than those of the additive electromagnetic type. Second, the multiplicative 
nature of the term ensures a true representation of contact interactions. Finally, the approach 
appears to resolve the problem of real total mass indicated earlier and permits Bohr-type 
consistent structure equations for the light hadrons (e.g., the mesons). For these quantum 
mechanical aspects, the interested reader may consult Chart 6.1. 
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A.2 Isotopic Transformations of a Lagrangian 

After having identified the integrability conditions for the existence of indirect 
Lagrangian representations, the next problem is to study their "degrees of 
freedom." 

The equivalence transformations of a Lagrangian can be classified as 
follows: 

I. those occurring within a fixed system of local variables, 
II. those induced by coordinate transformations at a fixed value of 

time, and 
III. those induced by more general transformations (e.g., involving 

time), 

as well as by any combination of these transformations in a given ordering. 
In this section we shall study the transformation of type I. Those of type II 
will be studied in Section A3, and those of type III will be indicated in 
Chapter 5. Our study should not be interpreted as exhausting all possible equi­
valence transformations. We are merely interest in identifying the transforma­
tions which are important for our program. 

A first subclass of the equivalence transformations of a Lagrangian within 
a fixed system of local variables is expressed by the mappings 

L(t, q, q) -+ L \t, q, q) 
.' . 8G' k 8G = L(t, q, q) + G(t, q) = L(t, q, q) + 8qk q + at' (A.2.la) 

d 8(; 8(; 
--k - -k == 0 (A2.1b) 
dt 8q 8q 

which are often referred to as Newtonian gauge transformations. 15 

Mappings (A2.1) imply a change in the functional dependence of a Lag­
rangian, illustrated by the following" gauging" of the conventional Lagrang­
ian for a one-dimensional harmonic oscillator: 

L = t(q2 - q2) -+ L t = 1[q2 + (t + q)q _ q2 + q], 

G = t(tq + tq2). 

(A2.2) 

Nevertheless, mappings (A2.1) are trivial from the viewpoint ofthe equations 
of motion and of the integrability conditions for the existence of a Lagrangian. 

15 The term" gauge transformation" is customarily associated with the transformations of 
the electromagnetic four-potential in Minkowski space 

A" --> A'" = A" + aX/ox", 

which leave invariant the electromagnetic tensor F"v = oA"/ox' - oAv/ox". Additional gauge 
transformations exist in field theory within the context of the unification of weak and electro­
magnetic interactions. It should be stressed here that gauge transformations customarily used in 
Newtonian Mechanics are not the Newtonian limit of these field theoretical transformations. 
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Indeed, Lagrange's equations in L and in L t coincide for all gauge transforma­
tions,16 

(A.2.3) 

As a matter of fact, one can define two functionally different Lagrangians 
L(t, q, q) and L t(t, q, q) to be related by an equivalence transformation of 
gauge type when Lagrange's equations in L and those in L t coincide. 

On physical grounds, mappings (A.2.l) are sometimes interpreted as 
induced by forces which do not work. 17 This can be seen, for instance, by 
interpreting G(t, q) as a (generalized) potential. The (generalized) work is 
then identically null, i.e., 

bW = - - + - - bq = 0, ( aU d au) k_ 

aqk dt aqk U = - G(t, q). (A.2.4) 

The Newtonian gauge transformations do not exhaust the equivalence 
transformations of class I. This can be seen by the following transformation, 
also for a one-dimensional harmonic oscillator 18 

L = t(q2 - q2) ~ L * = iq3 cos t + tqq2 sin t - q2q cost t (A.2.5) 

which is clearly of the non gauge type; that is, the difference L * - L cannot 
be expressed as a total time derivative of a function G which depends on time 
and coordinates only. Equivalently, Lagrange's equations in L and in L * 
do not coincide. Nevertheless, these two equations are equivalent because 
they characterize the same implicit function (.1".20). The reader is encouraged 
to verify this. 

Another example is provided by Lagrangians for a one-dimensional 
particle with linear velocity damping (identified in Example 1.3.1): 

(A.2.6) 

Again, these Lagrangians are not related by a gauge transformation, yet 
they are equivalent because they both yield the (unique) implicit function 
of the system and thus the same solution. Nevertheless, the two Lagrangians 
are profoundly different in structure (as well as in symmetry, as we shall see 
later on). 

In conclusion, the examples presented should be sufficient to indicate that, 
besides the known Newtonian gauge transformations, an additional class of 
equivalence transformations within fixed local variables exists, which pro­
duces a nontrivial change in the structure of a Lagrangian, with a consequen­
tial nontrivial change of the manifest symmetries. Since these symmetries 

16 The maximal admissible functional dependence for a function G to be a .. gauge function" 
is understood to be that in time and (generalized) coordinates l. Also, the function G in map­
ings (A.2.1) is understood to preserve the continuity of the original Lagrangian. The preserva­
tion of the regularity is ensured from the linearity of G in the derivatives it 

17 See Wintner (1941, page 112). 
18 See Example A.1 for the construction of this transformation. 
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yield first integrals via Noether's theorem (Chart A.9), the study of the latter 
transformations is significant for our program. 

Definition A.2.t. Two analytic and regular but functionally different 
Lagrangians, L(t, q, q) and L *(t, q, q), are said to be isotopically related. 19 

and the mapping L -+ L * is called an isotopic transformation, when a (smooth­
ness- and regularity-preserving) matrix of isotopic functions h{(t, q, q) exists 
with respect to L (or equivalently, hi- Ii with respect to L *, (hi- Ii) = (h{) - I), 

such that all the following identifications 

[ d 8L* 8L*] _ [hi(d 8L 8L)] 
dt 8qk - 8qk SA = k dt 8qi - 8qi SA SA' k = 1,2, ... , n, (A.2.7) 

or their equivalent forms 20 

[:t ;~ - ;~ lA - [hk-
1i(:t 88~: - 88~:)sJSA' (A.2.8) 

hold in the (common) region of definition for Land L * in a given ordering. 
By recalling the analysis of Section 4.4, the reason for selecting the term 

"isotopic transformations" is self-evident. Indeed, these transformations 
are based on a self-adjointness-preserving equivalence transformation of 
Lagrange's equations, rule (A2.7) or (A2.8). 

The integrability conditions are already provided by Theorem Al.l. They 
need only to be better identified for the reader's convenience. 

Recall from Equations (Al.20b) that Theorem A.l.1 can also provide an 
indirect Lagrangian representation for self-adjoint systems. Thus integrabil­
ity conditions (A.l.9) constitute necessary and sufficient conditions for the 
existence of an isotopically mapped Lagrangian through the identifications 

(A2.9a) 

(A2.9b) 

19 The equivalence transformations under consideration were introduced, apparently for 
the first time, by Saletan and his collaborators with conventional techniques (other than those 
ofthe Inverse Problem) and under the name of "fouling transformations." See Currie and Saletan 
(1966), Gelman and Saletan (1973). and Marmo and Saletan (1978). See also, Kilmister (1967, 
page 119). We follow here the studies by Santilli (I 977c, 1978c and I 979a) in the use of the Inverse 
Problem. This approach provides the necessary and sufficient conditions for the existence of the 
equivalence transformations under consideration, as well as methods for the explicit computa­
tion of the new Lagrangian (or Hamiltonian), and a methodological perspective for identifying 
the implications and possible applications. 

20 The isotopic transformations, when they exist, are always invertible. In particular, if a 
matrix (hD is isotopic with respect to a Lagrangian L, its inverse (hD- I = (hi: Ii) is isotopic with 
respect to P, as clearly indicated in Equations (A.2.7) and (A.2.8). 
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A Lagrangian L * can then be computed by method (A. 1.10). If method (f.13) 
is used instead, we can write 

L*(t, q, q) = :t fdr' fdHqi[ (h~ O:k2~qj)(t, rq, n'q)]qj 

kIl [i(dOL OL)] ... - q 0 dr hk dt oqi - oqi (t, rq, rq, rq). (A.2.lO) 

The mechanism of the Lagrangian isotopy can be made more precise by 
the following lemma, whose proof is left to the interested reader (Problem 
A.2). 

Lemma A.2.t. A necessary and sufficient condition for two functionally 
different Lagrangians L(t, q, q) and L *(t, q, q) within a fixed system of local 
variables to be isotopically related is that the systems of implicit functions 
of Lagrange's equations in L and in L * coincide in a given ordering. That is, 
all the following equations 

k _ ki( o2L.j o2L OL) 
f - P oqi oqj q + oqi ot - oqi 

.( o2L* . o2L* OL*) 
== p*kl oqi oqj ql + oqi ot - oqi (A.2.11a) 

(pki) = (o~:~qif\ (p*ki) = (:;kL;qif
1 (A.2.11b) 

are identically verified in the (common) region of definition. 

The preservation of the implicit functions then ensures the property that the 
Lagrangian isotopies leave the dynamics of the system unaffected. In fact, 
not only the solution but also the first integrals and the conservations laws 
are unchanged, as we shall see. 

Needless to say, a given Lagrangian does not necessarily admit an isotopic 
image. The techniques ofthe Inverse Problem merely provide the integrability 
conditions for its existence. Nevertheless, Lagrangians for one-dimensional 
systems always admit an isotopic image because, under the smoothness 
conditions admitted, Equation (A.2.11) must always admit a solution. 

Corollary A.2.la. Analytic and regular Lagrangians for one-dimensional 
systems always admit at least one isotopic transformation other than the 
the identity. In particular, a first integral always constitutes an isotopic 
function for these transformations. 

The above property can be called the universality of the Lagrangian isotopy 
for one-dimensional systems. It is lost in the transition to systems of more 
than one dimension. However, when an n-dimensional system admits a 
(direct or indirect) Lagrangian representation, the Lagrangian is never 



Isotopic Transformations of a Lagrangian 293 

unique, and the isotopic mappings become possible. This is due to the fact that 
the conditions for the existence of a Lagrangian are given by a system of 
partial differential equations. These systems, when consistent, are known to 
admit considerable degrees of functional freedom in their solutions. 

When reinspected from the viewpoint of self-adjointness, these degrees of 
freedom imply the existence of different, yet equivalent, self-adjoint forms. 
More specifically, the techniques of the Inverse Lagrangian Problem are 
capable of producing not only one Lagrangian representation (when it 
exists), but all possible Lagrangian representations. 

Lemma A.2.2. Under the smoothness conditions for the applicability of 
the converse of the Poincare Lemma, the class of all possible isotopic trans­
formations of a Lagrangian exhausts the class of all possible equivalent self­
adjoint forms of the system. 

This property implies that conditions (A.L9) can admit afamily of solu­
tions in the integrating functions, say hil)i' hi2)i' ... , each of which induces 
a Lagrangian, say, L(l)' L(2)' .••• All these possible equivalent (but different) 
Lagrangians can be related by a rule of chain isotopy; that is, isotopic 
functions must exist such that 

(A.2.l2) 

where we have assumed L = L(l)' L * = L(2), etc. The first identities are 
generated by the trivial solution o{ = hti. The corresponding mapping 
L ~ L* = L is called the identity isotopic transformation.2l For an illustra­
tion of this occurrence, see Example A.L 

We are now equipped to study some physical implications of the Lagrang­
ian isotopies. As indicated earlier, the techniques of the Inverse Lagrangian 
Problem produce a Lagrangian in the abstract mathematical form (A.l.lO). 
The same techniques produce the isotopic degrees offreedom of a Lagrangian 
according to additional mathematical forms (A.2.9) or (A.2.l0). In order to 
identify the implications of these structure for the problem of interactions, 
the use of generalized Lagrangians (A.1.19) is advantageous. In fact, these 

21 The possible existence of a family of isotopic matrices admitting the identity and an inverse 
is strongly suggestive of the possible existence of a group structure. The study of this aspect is 
left to the interested reader. 
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structures clarify the point that the interactions of the physical universe can 
be represented not only by additive terms to the free Lagrangian term (as 
generally used in contemporary physics), but also by a combination of 
additive and multiplicative interactions terms. 12•14 

We must now study the degrees of freedom of these additive and multi­
plicative interactions terms. For this purpose, the first task is the reinterpreta­
tion of generalized Lagrangians (A.1.19) through mathematical structures 
(A.2.9). This is easily accomplished by noting that, to avoid unnecessary 
degrees of freedom, the additive interaction term must be linear in the 
velocities, 

Lint,n = Dk(t, r) . r' + C(t, r). (A.2.13) 

This is a necessary condition for conventional Lagrangians (A.1.17) (Corol­
lary J.1a). Since the term representing the free motion is unique, 

(A.2.i4) 

restriction (A.2.13) yields a unique reformulation of each structure (A.2.9) 
according to the rule 

Lr:t = K(t, r, t) + Dk(t, r) . r' + C(t, r) 

= Lint,l(t, r, t)Lrree(t) + Lint,n(t, r, t), 

Lint,l = K/L rree · 

(A.2.i5) 

Our problem is the identification of the degrees of freedom of the multi­
plicative and additive interaction terms within a fixed system of local 
variables. By again ignoring gauge transformations (which involve trivial 
degrees of freedom of L int.n), the problem consists of reinterpreting the notion 
of Lagrangian isotopy for generalized Lagrangians (A.2.i5). By assuming 
that the Lagrangian isotopies do not change the free term, we have the fol­
lowing property. 

Lemma A.2.3. The class of all possible isotopic transformations of a 
Lagrangian exhausts, up to Newtonian gauge transformations, the class of 
all possible pairs of multiplicative and additive interaction terms of a general­
ized total Lagrangian characterizing the same system of implicit functions. 
We shall then write22 

22 The quantization of isotopically mapped Lagrangians (or, more precisely, their Hamil­
tonian images) has rather nontrivial implications. For these, see Marmo and Saletan (1978) and 
Santilli (1978d, Section 4). At a quantum field theoretical level, the implications appear to be 
even more intriguing. Indeed, at least in principle, a Lagrangian (density) which apparently 
cannot be renormalized might be reduced via mechanism (A.2.l6) to a simpler structure which 
can. 
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As an illustration, we have the following Lagrangian isotopy for the 
linearly damped particle in one dimension. 

Liofen = q In q - yq, L* - 21 . int,) - -; n q, 
q 

Lint,II = 0, (A.2.17a) 

Ltnt,II = -yq. (A.2.17b) 

Lemma A.2.3 refers to the largest possible class of Newtonian systems 
verifying the integrability conditions of Theorem A.1.1. For the case of the 
conventional systems with forces which can be derived from a potential, we 
have the following corollary expressed in the language of Definition 4.1.1. 

Corollary A2.3b. When the system represented is essentially self-adjoint, 
the class of all admissible multiplicative and additive interaction terms of a 
generalized total Lagrangian admits the case Lint,) = 1, i.e., the following 
reduction is always possible: 

It is understood that such a reduction is prohibited when the system con­
sidered possesses forces not derivable from a potential (but is non-essentially 
non-self-adjoint). 

As we shall see, Lagrangian isotopy (A.2.18) can be used in more than one 
way. First, when a conventional structure is known, a generalized structure 
is useful to, say, search for new first integrals (see Chart A.lO). On the other 
hand, when a generalized Lagrangian structure is known, one can use reduc­
tion (A.2.18) to search for a simpler structure, with self-evident physical 
implications at classical, quantum mechanical, and quantum field theoretical 
levels. 

Stated explicitly, when a given Lagrangian has a generalized structure, it 
is not sufficient to guarantee the presence of forces which cannot be derived 
from a potential. In this respect, the reader may consult Example A.l. The most 
effective way to see whether or not non-self-adjoint forces are present is to 
compute explicitly the equations of motion, construct the form originating 
from Newton's second law, and verify its behavior under the conditions of 
self-adjointness. 

In conclusion, the Inverse Problem suggests a sort of return" ad originem" 
in Newtonian Mechanics. The fundamental dynamic quantities are Newton's 
equations of motion, while the admissible Lagrangians for their analytic 
representation have a primarily methodological function of the type indicated in 
the Preface. In particular, the selection of any given specific Lagrangianfrom 
among all possible Lagrangians which can be constructed through the techniques 
of the Inverse Problem is merely a question of personal preference, rather than 
mathematical consistency, whether or not the forces are self-adjoint. 

We pass now to a reinspect ion of the isotopic transformations of a Lagrang­
ian within the context of generalized principle (14) of Chart 5.7. As pointed 
out Theorem A.Ll may also apply to Newtonian systems with potential 
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forces. The theorem therefore establishes the integrability conditions for the 
following generalized variational principle 

= _ dt - _1_o1 ___ 1_o1_ (jrk (E ) It2 [( d oL *conv oL *conv) ] 

d O'k 0 k 0 
t, t r r SA 

(A.2.19) 

in which the Lagrangian is the generalized type and the representation is 
indirect. If a direct representation of a self-adjoint system is desired via a 
generalized Lagrangian, Lemma A.2.1 allows the following principle 

= _ dt g' - _1_o1 ___ 1_o1_ (jrk (E ) Jt
2 {[. (d oL *conv oL *conv) ] } 

t, k dt ofi ori SA SA 0 

(A.2.20) 

called a self-adjoint isotopic mapping of Rami/tons' principle. In this way, the 
Lagrangian's isotopic degrees of freedom can be interpreted as a form of the 
degrees of freedom of the variations. 

We note, incidentally, that conventional (self-adjoint) variational principles 
can be turned into non-self-adjoint form by the simple rule 

It2 [(d oL OL) ] (jA(Eo) = - tl dt dt of' - ork SA (jrk (Eo) 

(A.2.21) 

Similarly, when the Lagrangian considered admits an isotopic image, we 
have the self-explanatory reformation 

It2 It2 
(j dt L(t, r, t) = (j* dt L*(t, r, t) 

tl tl 

(A.2.22) 
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as well as the equivalent form 

i t2 it2 
D* dt L(t, r, t) = D dt L *(t, r, t). 

t2 t2 

A.3 Indirect Lagrangian Representations via the 
Use of the Transformation Theory 

(A.2.23) 

The transformation theory in configuration space studies the possibility of 
representing the equations of motion in an infinite variety of different co­
ordinates, say, q'\ q"\ ... , and times, say, t', til, .... A central requirement is 
that the equations of motion in the original variables and those in the new 
variables are equivalent. This equivalence is ensured by a number of condi­
tions on the transformations, comprising the invertibility and the preserva­
tion of the continuity properties of the original system. Since the systems 
studied in this volume are analytic, we shall assume from here on that all 
transformations considered are analytic in the region assumed. 2 3 Neverthe­
less, the reader should keep in mind that most ofthe results can be formulated 
under weaker smoothness conditions. Also, the transformations considered 
will be assumed to be single-valued (namely, one-to-one), although this 
requirement too can often be relaxed (see the Introduction for additional 
aspects). 

The following classes of transformations are particularly relevant for the 
Inverse Problem: 

A. velocity-independent transformations of the coordinates at a fixed 
value of time 

t ---> t' == t, (A.3.1a) 

IJ{I(9l) = I ~~: 1(91) # 0, (A.3.1b) 

often called point transformations,24 to stress their local character, or 
contemporaneous transformations,24 to stress the lack of time trans­
formation. 

B. velocity-independent transformations of the coordinates and time 
variables, i.e., 

t ---> t' = t'(t, q), (A.3.2) 

sometimes called noncontemporaneous transformations. 24 

23 All regions of definitions for the transformations considered are assumed to be topologically 
equivalent to a star-shaped region to ensure the applicability of the converse of the Poincare 
lemma. This is due to the fact that, unlike conventional treatments, the transformation theory 
is used in this volume for the construction of the analytic representations of Newtonian systems 
and, as such, must possess the needed topology. Further details will be provided later. 

24 The literature on point transformations in configuration space is rather vast. See, for 
instance, Lanczos (1949) and Pars (1965), 
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C. velocity-dependent transformations of the coordinates and time 
variables, i.e., 

t --? t' = t'(t, q, q), (A.3.3) 

The analysis of this section will be restricted to point transformations. The 
most general possible noncontemporaneous, velocity-dependent transforma­
tions is studied in Chapter 5 within the context of Hamiltonian formulations 
and related Birkhoffian generalizations. 

Velocity-dependent transformations in configuration space do not appear 
in the literature of Newtonian mechanics, while they are only occasionally 
treated in the literature of differential geometry25 and the calculus of varia­
tions. 26 This is due to a number of technical difficulties, in both the formal 
study and applications, which are either absent or become manageable in 
the transition from second-order to first-order systems. 

The' reader should keep in mind that a comprehensive velocity-dependent 
transformation theory of second-order systems and Lagrange's equations 
remains an important problem of mechanics for the following (and other) 
reasons. 

1. Galilei transformations (Chart LAI) depend explicitly on velocities 
as a parameter. Thus, the inclusion of the velocity dependence is 
important for relativity profiles. 

2. The symmetries of the equations of motion leading to first integrals 
via Noether's theorem (Charts A6-A.ll) are generally dependent on 
velocities in an explicit way. Thus the Lagrangian formulation of the 
problem of symmetries and first integral demands, for completeness, 
the use of velocity-dependent transformations. 

3. The configuration space image of the familiar canonical transforma­
tions has an explicit dependence, in general, on the velocities, trivially 
because the canonical transformations generally depend on the 
momenta. As a consequence, the Lagrangian image of the transforma­
tion theory of Hamilton's equations is crucially dependent on an 
explicit dependence on the velocities. 

We should indicate from the outset that point transformations are impor­
tant for the practical application of the Inverse Lagrangian Problem, 
although they do not enlarge the representational capabilities of Theorem 
Al.l. In order to achieve an analytic representation of essentially non­
self-adjoint systems via the transformation theory, the use of velocity-de pen­
dent transformations is essential. However, a generalization of Lagrange's 
equations (flO) will be essential too, as shall be seen.27 

The reader can now anticipate the technical difficulties of velocity-depen­
dent transformations. In fact, the transformations do not preserve, in general, 
the second-order Lagrangian character of the equations, apart from a special 

25 See, for instance, Caratu et al. (1976). 
26 See, for instance, Gelfand and Fomin (1963, page 81). 
27 At this point the reader may keep in mind third-order Lagrange's equations in second-order 

Lagrangians (see Section 4.2). The velocity dependence of the transformations is expected to 
increase the order of the Lagrangian by producing, in general, higher order equations. 
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class which expectedly consists of the Lagrangian image of the canonical 
transformations. 

We shall now study the transformation of Newton's equations of motion 
under point transformations. Let the system considered be of the funda­
mental form, i.e., 

(A.3.4) 

Since the point transformations do not depend explicitly on velocities and 
time, the velocities in the old and new system of coordinates are linearly 
related, i.e., 

.k oqk 'Ii 
q = oqli q . 

The following properties then hold 

ail oqk 
Ott = oqli 

d oqk oil 02qk "j 
dt oqli = oq'i - oqli oq'j q . 

The accelerations therefore transform according to the rules 

(A.3.5) 

(A.3.6a) 

(A.3.6b) 

02qk ',i"j oqk "Ii (A 3 7) 
oqli oq'j q q + oq'i q , .. 

but the A and B terms of the equations of motion transform according to 
(Chart 1.A.13) 

~ _ iJq' iJqs 
Aij = A,s oq'i oq'j' 

A,s = A,s(t, q', q') = A,s(t, q(q'), q(q', q'», 

~ _ oq' 
Bi = B, iJq'i' 

Br = Br(t, q', q') = Br(t, q(q'), q(q', q'». 

(A.3.8a) 

(A.3.8b) 

(A.3.8c) 

(A.3.8d) 

In this way we reach the following trariformation law of the fundamental form 
of Newtonian systems under point transformations: 

o Ii 
Aklt, q, q)i/ + Bk(t, q, q) = iJ:k [A;/t, q', q')q,j + B;(t, q', q')] = 0 (A.3.9) 

where 

(A.3.l0a) 

(A.3.l0b) 
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Notice that the B' terms possess a dependence also on the A terms, according 
to Equations (A.3.10b), whenever the point transformations are nonlinear. 
Notice also that the existence of the inverse transformations 

oqk 
A;/t, q', q')q'i + B;(t, q', q') = oq,i [Ait, q, q)q + Bk(t, q, q)] = 0 (A.3.11) 

is ensured by the regularity of the Jacobian (A.3.1b). 
The transformation law of the kinematical form of Newton's equations of 

motion is a particular case of that oflaw (A.3.9), i.e.,28 

.. F( ') - q q b q "'i f'( , .') - 0 (A 312) o ,i [0 r 0 S ] 

qk - Jk t, q, q - oqk oq,i rs oq'i q - i t, q, q -, .. 

where the new implicit functions are given by 

o i 0 r 02 s 
f ' F( (').(' "» q q b q "i ·,1 i = J i t, q q , q q , q Oq,i - Oq,i rs oq'i Oq,1 qq. (A.3.13) 

As we shall see in Chart A.6, transformation laws (A.3.9) and (A.3.12) will 
be particularly useful in identifying the notion of symmetry of Newton's 
equations of motion and forces, respectively. 

Our next objective is to identify the behavior of Lagrange's equations under 
points transformations. This is easily accomplished by the scalar rule29 

L(t, q, q) = L(t, q(q'), q(q', q'» = L'(t, q', q') (A.3.14) 

and the use of Equations (A.3.6), under which we have the following trans­
formation law of Lagrange's equatio1Js under point transformations 

28 Notice that Equations (A.3.12) can be written 

.. 1"( .) _ ol "'i 1"( (').(' ")) o2qk ',j "i 
qk - Jk t, q, q - oq'i q - Jk t, q q , q q, q + oq'i oq,j qq. 

(A.3.15) 

However, this alternate does not indicate the proper transformation of the metric tensor of 
configuration space according to the rule 

oq' oq' 
Dij ..... giq) = Oq,j,)" oq,r 

This rule, in turn, indicates the existence of a number of geometrical implications of point trans­
formations. some of which will be indicated later in this section. 

29 It should be anticipated from Chart A.6 that rule (A.3.14) does not hold for noncontem­
poraneous transformations. In this case a Lagrangian transforms as a density rather than as a 
scalar. For details, see Definition 2 of Chart A.6. 
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As expected, we have the same transformation law as that for Newton's 
equations. The corresponding transformation of variational principles is 
con seq uen tial. 

A few comments are in order. Recall that, for the case of unconstrained 
Newtonian systems in a three-dimensional Euclidean space, laws (A.3.9) or 
(A.3.12) read 

(A.3.16a) 

orjc orjc 02rld 
F' - F ( (') O( , 0')) b b o,ueo,t! ib - jc t, r r , r r, r orib - ordb jl cd Or,ue or,t! r r , (A.3.16b) 

k, i, j, I, s, t, u = 1, 2, ... , N; a, b, c, d, e,f = x, y, z 

by therefore providing the transformation law of Newtonian forces under point 
transformations. Notice in this respect that, if the original forces Fk are con­
servative and the transformations are nonlinear, the transformed forces 
F~ are quadratically dependent on the velocities, by therefore acquiring the 
structure of "non-conservative" forces in the transformed reference frame. 
Likewise, nonconservative forces Fk which are quadratically dependent on 
the velocities may, in principle, be reduced to forces F~ of" conservative type" 
via nonlinear point transformations. 3D 

These dynamic effects of point transformations on the structure of the 
Newtonian forces are due to the geometry of nonlinear point transformations. 
Indeed, starting from a region (J£ in a (flat) Euclidean space, the image region 
(J£' under nonlinear point transformations belongs to a curved space 
(Chart I.A.14). In particular, the transformations considered do not map 
straight lines into straight lines. The emergence of velocity-dependent terms 
in the transformation of Newtonian forces is then consequential. As we 
shall see later in this section, these effects of point transformations on the 
structure of Newtonian forces are, in essence, the basis for the effectiveness 
of the transformation theory for the Inverse Problem. Indeed, under the 
integrability conditions of the Inverse Problem, the theory is capable of 
transforming a class of non-self-adjoint forces in the reference frame of their 
experimental identification, into structurally different forces which can be 
derived from a potential, but in a new reference frame. 

The structure of an admissible Lagrangian under point transformations 
also deserves a comment. In essence, if one starts with a Lagrangian with the 
conventional structure 

(A.3.17a) 
N 

L free = I 1mkjok· jok, Lint = - U(t, r, t), (A.3.17b) 
k=l 

30 Intriguingly, cases exist in which the transformed force is identically null (see Example 
A.6). 
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the transformed Lagrangian according to scalar rule (A3.l4) can be inter­
preted as being of the generalized structure (A1.19a) in the new reference 
frame, i.e.,31 

L' L' (')L' (.') L' (., .,) = int, I r free r + int, II t, r , r (A.3.18a) 

(A.3.18b) 

This occurrence also indicates the capability of the transformation theory of 
reducing a generalized Lagrangian into a conventional one, under the 
integrability conditions identified below. 

Another aspect which deserves comment is the reinterpretation of the 
generalized Lagrange's equations (15) of Chart 5.7 within the context of the 
transformation theory. An inspection of the transformation law of Lagrange's 
equations indicates that such a law actually transforms the conventional 
Lagrange's equations into generalizations of type (15) of Chart 5.7; that is, 
those with a regular matrix offactor terms. In particular, such a factor matrix 
assumes the meaning of the Jacobian of the transformation. Furthermore, 
the generalized variations and action principles of Chart 5.7 and Section 
A.2 emerge quite naturally within the context of the transformation theory. 

In order to identify the relevance of the transformation theory for the 
Inverse Problem, we must now reinspect the preceding analysis from the 
viewpoint of variational self-adjointness. Our primary objective is to see 
whether a non-self-adjoint system can be transformed into an equivalent 
self-adjoint form through point transformations. This task depends on the 
definition of a transformed system. In particular, we have the alternative of 
applying the conditions of variational self-adjointness to the right-hand side 
of transformation law (A3.9) without and with the Jacobian matrix. The 
following property, expressed in the language of Definition 4.4.1, is useful for 
the resolution of this alternative. 

Lemma A.3.t. Under the assumption that the transformed system is 
defined by 

A, ( , ")"'i + B'( , .') - 0 ii t, q ,q q i t, q ,q - , (A.3.l9a) 

, _ oqr oqS 
Aii = Ars oq'i oq'i' 

oro r 02 S 
B~ = B -.!L A q q "i'" 

I r oq,i + rs oqi oq'i oq" q q , (A.3.19b) 

all point transformations of the class admitted here are self-adjoint isotopic.32 

PROOF. Under the conditions of the lemma, the original system is self-adjoint and 
thus of Lagrangian type. The self-adjointness-preserving character of the point trans-

31 Interpretation (A.3.18) is purely formal and inspired by the simple evidence of lack of 
curvature in the Newtonian physical reality. However, when a curved space is admitted, Lagrang­
ian (A.3.18b) is not admissible for free motion because, in this case, the trajectories are not 
geodesic. 

32 That is, the self-adjoint isotopic character occurs for all possible functional dependences 
of the transformations. 
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formations then follows from the fact that, from law (A.3.15), all transformed systems 
(A.3.19) are self-adjoint. (Q.E.D.) 

Lemma A.3.1 describes the variational character of the transformation 
law of Lagrange's equations, which we now rewrite 

[d oL OL] {Oqti [d OL' OLI]} 
dt oil - oqk SA = oqk dt oi/ - oqti SA NSA = 0. 

(A.3.20) 

Evidently, this law coincides with that of self-adjoint systems under the condi­
tion (here tacitly implemented) of the applicability of the converse of the 
Poincare lemma. 

On equivalent grounds, it is possible to prove that, if the original system is 
non-self-adjoint and the transformed system is that without the Jacobian of 
the transformations, the point transformation do not induce a self-adjoint 
structure. Thus the definition of the transformed system according to Equa­
tions (A.3.19) is not effective for the Inverse Lagrangian Problem. 

However, when the transformed system is defined to include the Jacobian 
matrix, 

o Ik 
A*'( I .') •• 'j B*'( I .') - q [A' ( I .') •• 'j B'( I .')J ij t, q ,q q + i t, q ,q = oqi kj t, q ,q q + k t, q , q (A.3.21) 

the situation is different. In this case, the Jacobian matrix performs a role 
equivalent to that of matrix (hi) of the integrating factors of Section A.I. In 
particular, under definition (A.3.21) of the transformed system, point trans­
formations can induce an equivalent self-adjoint form, starting from an 
originally given, non-self-adjoint system. This possibility is illustrated by 
Equations (A.3.20). Lagrange's equations in the Lagrangians Land L' are 
self-adjoint from Theorem f2. Nevertheless, the right-hand side of Equations 
(A.3.20) is generally non-self-adjoint. 

Thus the characterization of the transformation law of Lagrange's equa­
tions via the conditions of self-adjointness brings into focus the following 
remarkable property: the self-adjoint or non-self-adjoint character of a system 
is not necessarily preserved in the transitionfrom one referenceframe to another, 
provided that the transformed system is defined according to rule (A.3.21). No 
contradiction arises in Equations (A.3.20) from the self-adjointness of the 
left-hand side and the non-self-adjointness of the right-hand side, because 
these two members refer to different reference frames, as do the conditions 
of self-adjointness. For illustrations, the reader may consult the examples at 
the end of this chapter. 

Of course, the particular case in which the right-hand side of Equation 
(A.3.20) is self-adjoint is not excluded. In this way, we reach the following 
classification of the variational character of point transformations: 

[Akiil + BkJSA = [At/it + BtJSA = 0, 

[Akiii + BkJNSA = [At/iiti + BtJSA = 0, 

[Akiiii + BkJNsA = [At/ii'i + BtJNSA = 0, 

[Akiiii + BkJSA = [At/ii'i + BtJNSA = 0. 

(A.3.22a) 

(A.3.22b) 

(A.3.22c) 

(A.3.22d) 
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Thus, in full analogy with Equations (4.4.1), point transformations can be 
either self-adjoint or non-self-adjoint, and each of these types can be either 
isotopic or genotopic. Notice that, as was the case for the genotopic functions 
of Section A.1, if a given point transformation is self-adjoint genotopic for 
one system, the same transformation does not necessarily exhibit the same 
character for a different system. 

The integrability conditions for point transformations to be self-adjoint 
are given, again, by the conditions of variational self-adjointness and are 
provided in Theorem A3.1 for the reader's convenience. 

Theorem A.3.133 (Generalization of the Fundamental Analytic Theorem 
in Configuration Space with the Inclusion of Point Transformations). 
Necessary and sufficient conditions for a holonomic non-conservative 
Newtonian system 

k = 1,2, ... , n (A3.23) 

which is analytic and regular in a region 9f of the variables (t, q, q) to admit an 
ordered indirect analytic representation in terms of Lagrange's equations 
in a new system of variables (t, q', q') 

doL' oL' _ A*'( I ")"Ii B*'( I ") 

dt oq'k - oq'k = ki t, q ,q q + k t, q , q (A.3.24a) 

I oq'i _ oqr oqS _ oqS 
Ati = Oqk Ars oq'i Oq'i = Aks Oqli' (A.3.24b) 

02 S 

B*' = Ii +.If q 'Ii"i k k ks Oq'i oq'i q q , (A.3.24c) 

is that the transformed system is defined and self-adjoint in a star-shaped 
region 9f*' of the variables (t, q', q'). That is, it verifies conditions (A. 1.9) in 
9f*', in which case a Lagrangian is provided by Equations (A.1.10). 

Theorem A.3.1 essentially states that, under integrability conditions 
(A. 1.9), the Jacobian matrix of point transformations can play the role of the 
matrix of integrating factors of Theorem A1.1. In this sense, Theorem A.3.1 
is a reformulation of Theorem A.2.1 for the case when the integrating factors 
hl depend only on the coordinates. Indeed, when the conditions of Theorem 
A.3.1 are verified, a Lagrangian L' exists in the new coordinates. This implies 
the existence of a Lagrangian L in the old coordinates via the inverse of trans­
formation (A3.1S) and thus the verification of the conditions of Theorem 
Al.1. 

In conclusion, Theorem A3.1 as formulated does not broaden the arena 
of applicability of Theorem A1.1. Nevertheless, the former theorem often has 
a pragmatic value because of the technical difficulties in solving partial 

33 Santilli (1977). This paper treats the corresponding formulation of the theorem within 
the context of field theories in Euclidean or Minkowski space. 
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differential equations (A.1.9). In fact, when these conditions have a difficult 
solution in one given reference frame, their solution can be attempted in a 
different reference frame via point transformations. In particular, one can 
attempt the joint use of Theorems A.Ll and A.3.l, that is, the use of point 
transformations and integrating factors according to Equation (A.3.3).34 

Notice that Theorem A.3.l is formulated for both self-adjoint ness-inducing 
and preserving transformations. Thus it includes the case when the original 
system is self-adjoint. In this case, the theorem provides a relevant alternative 
for the possible construction of the isotopic transformations of a Lagrangian 
(Section A.2). 

It should be stressed that Theorem A.Ll is broader than Theorem A.3.1. 
This is due trivially to the fact that the integrating factors of the former can 
have an arbitrary functional dependence on (t, q, 4), while the elements of 
the Jacobian matrix of the latter can depend at most on (q'). 

In turn, this situation indicates the restrictive character of point transforma­
tions from the viewpoint of the Inverse Problem and suggests in a rather 
natural way the broadening of the transformation theory to noncontem­
poraneous velocity-dependent transformations of type (A.3.3).35 

Chart A.1 Analytic Newtonian Systems 

In Volume I we introduced the notion of class ~m Newtonian system, 
(m = 0, 1, 2, ... , 00). In particular, the minimal continuity conditions for 
the existence of a direct Lagrangian (Hamiltonian) representation emerged 
as those of class (e2 (~1). I n order to formulate and prove the existence 
theorems for indirect analytic representations (of Lagrangian, Hamiltonian 
and Birkhoffian type), we need continuity and smoothness restrictions 
stronger than those of class (6''''. 

We shall say that a Newtonian force F (t, q, q) is analytic at the point 
Po = (to' qo' cjo) when it admits the convergent, multiple, power series 
expansion in the neighborhood36 (Po). of Po 

F(t, q, cj) a . (t - t )i 1 
'1' ... , '2n+ 1 0 

. if= 1 
/=1.2 ..... 2n+l 

X (ql - qiY2' .. (qn - q~)in+l(cjl - cj6)in+2' .. 

X (cjn - cj~)i2n+l. (1 ) 

An unconstrained Newtonian system is called analytic when all its forces 
are analytic. A constrained holonomic Newtonian system in the funda­
mental form of (IS) is called analytic when all the functions Aij and Bj are 

34 The joint use of Theorems A.3.l and A.U is not "commutative." That is, if a self-adjoint 
form is induced via a) the use of a point transformation, and b) a matrix (h) of integrating factors, 
the inverse procedure using the same transformation and the same matrix (h) (but now computed 
along the old coordinates) does not necessarily produce a self-adjoint system. 

35 For a treatment of the transformation of Lagrange's equations under the contemporaneous 
transformations t -> t' = t, qk -> q'k(t, q), see Kilmister (1967, page 129). 

36 For a definition of the neighborhood of a point, see page ..1.16. 
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analytic in the sense indicated above. Of course, the analyticity or non­
analyticity property of a given Newtonian system does not depend on 
whether or not the system is self-adjoint. 

For a review of the convergence conditions of power series particularly 
suited for practical applications, we refer the reader in particular to 
Rektorys (1969, Chapter 15). Notice that series (1) can be absolutely and 
uniformly convergent in (Po).' Nevertheless, the nature of the conver­
gence, as well as the largest possible domain in which it occurs, are not 
required by our analysis. This is because the existence theorems for 
partial differential equations we shall use (see Chart A.3) apply to any 
type of convergence and are local in character-that is, they hold in the 
neighborhood of a given point. 

Quite often, we shall assume analyticity in the neighborhood of the 
origin, in which case Equation (1) becomes 

F(t, q, cj) = 
"" 
I 

i j = 1 
j=I.2 .... ,2n+l 

It is easy to prove that 

2n+l 
k = I ij' 

j= 1 

(2) 

(3) 

Thus analyticity implies continuity of the partial derivatives of all orders 
(class ~""), Nevertheless, the inverse property does not necessarily occur. 
In this sense, the analyticity condition is stronger than that of class ~"", 

The sum, product, and the quotient of analytic functions are analytic 
(under certain conditions), Also, analytic functions of analytic functions 
are analytic, Thus, if a Newtonian system in any second-order form is 
analytic, its equivalent first-order form (Section 4.1) 

a = (q, y), II. = 1, 2, ... , 2n (4) 

constructed via prescriptions for the introduction of n new independent 
variables, e,g" 

(5) 

is also analytic at a point P = (t, a), provided that prescriptions (5) are 
analytic at P. Equivalently, we shall say that the Newtonian vector field 
3~ is analytic at Po = (to' ao) when it admits the convergent, multiple 
power-series expansion in the neighborhood (Po) r 

"" 
I 

. ij =1 
}=1, ... ,2n+l 

x (a 1 - a~y2 ... (a 2n - a~n)i2n+l, (6) 

Throughout our analysis we shall only consider analytic vector fields. 
The notion of analyticity introduced in this chart is that of real analyticity 

(also called Weierstrass analyticity), in the sense that it deals with the 
the analyticity of real valued functions of real variables. This is clearly 
needed for the case of Newtonian systems. A sell-known treatise on this 
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subject is that by Bochner and Martin (1948). For a more recent treat­
ment, the interested reader may consult, for instance, Gunning and Rossi 
(1965), H6rmander (1966), and Griffits and Harris (1978). 

The need for an analytic continuation of the vector fields S"'(t, a) to 
complex variables z = t + it' and w'" = a'" + ia'''' may originate for a 
number of technical aspects of the Inverse Problem. In this case the 
notion of complex analyticity (also called holomorphy) is needed, that is, 
the existence of an absolutely convergent multiple power series expansion 
in the neighborhood of the point considered 

a'" , (z - Z )i 1 
'1' .. " '2n+ 1 0 

j.= 1 
j=1, 2! .... 2n+1 

X (w1 - Wb)i2 ... (W 2n - w~n~i2n+1. (7) 

It is understood that such an analytic extension can be performed in 
only some of the variables (say, some of the a's) while leaving the others 
real (e.g., time), and that 

lim S"'(z, w) = S"'(t, a) 
Imz=Q. 
Imw=Q 

(8) 

The point P = (t, q, cj) or P = (t, a) in the neighborhood where the 
techniques of the Inverse Problem are applied must be selected with care. 
In particular, it must be a regular point in the sense of the theory of 
differential equations (see, for instance, Coddington and Levinson (1955». 
This important restriction will be implemented, often tacitly, throughout 
our analysis. 

As an indication of the type of undesiderable points for the application 
of the Inverse Problem, consider the case of linear vector fields in their 
holomorphic extension 

dw'" 
- = A"'(z)w' dz • . (9) 

A point Zo of z is called a singular point when the A functions have a pole 
in it. When the Poincare rank of the singularity is 0 or ~ 1, Zo is called a 
singular point of the first or second kind, respectively. When the A's have 
an isolated singularity at z, the fundamental matrix <IJ(z) of systems (9) 
(that is, the 2n x 2n matrix composed by 2n rows of independent solu­
tions) admits the decomposition 

<IJ(z) = S(z)(z - ZO)M = S(z)exp M log(z - zo) (10) 

where S is (single-valued and) holomorphic at Zo and M is a constant 
matrix. If S has at most a pole at zO' then Zo is called a regular singular 
point; otherwise it is called an irregular singular point. 

All these singular points, as well as their extension to the case of non­
linear equations, together with any other type of singularity (or irregularity) 
are excluded from the analysis of this volume. 

Chart A.2 Analytic Extensions of Lagrangian and Hamiltonian 
Functions to Complex Variables 

I n Chart A.1 we introduced the simplest and most conventional notion of 
analytic extension to complex variables. In this chart we shall indicate 
the existence of a broader notion which is particularly significant from 
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the viewpoint of symmetries and conserved quantities. We shall therefore 
deal specifically with a Lagrangian, with the understanding that the 
results trivially extend to a Hamiltonian (as well as a vector field). The 
presentation of this chart is also intended to be elementary; more advanced 
treatments will be indicated in the selected references. 

Let L (q, q) be a Lagrangian of a (non-essentially non-self-adjoint) 
Newtonian system in a region []f of the variables (q, q), assumed to be all 
nonignorable. 37 We introduce the complex extensions 

Zk = qk + iq'k, z = qk - iq'k, 

(1 ) 

of variables (q, q) in a complex extension C of []f. 

Definition 1. An extension to complex variables of a Lagrangian 
L (q, q) is a function l (z, i; t, i) of the variables (1) such that 

lim l = L (2) 
Imz=O.lmi=O 

where the limit holds if and only if, for every I: > 0, a b > ° exists such 
that I L(Z) - L(Q) I < B for all values of Z such that I Z - Q I < band 
Z i=- Q, and where Z and Q represent the sets of variables (z, i; t, z) and 
(q, q), respectively. 

Notice that the extension l of L can also be considered a function of the 
4n real variables (q, q; q', q') in a 4n-dimensional prolongation []f' of []f. 

Definition 2. A complex-valued function F(z, t; i, z) in the complex 
variables (z, t; i, z) is analytic in a region C of their variables when it is 
the sum of an absolutely convergent, mUltiple power-series expansion 

F(z, t; z, z) = F'(q, q; q', q') 
00 

I ai1 .... i4n (p1 - pb)i1 ... 
ij= 1 

j=1.2 ..... 4n 

p = (q, q; q', q') 

in the neighborhood of every point of C. 

(3) 

It should be stressed that Definitions 1 and 2 above are broader than 
the corresponding ones of the contemporary literature in the field, because 
the latter are generally restricted to the dependence on z and t only. 

A convenient type of neighborhood for a point is the family of polycircles 

C(p, Po; r) = {pllpk - p~1 < rk; rk> 0, k = 1,2, ... , 4n}. (4) 

This definition is preferred to the one on page J.16 because it introduces 
a basis of open sets and thus a topology in the space of the local variables. 

Definition 3. Let L (q, q) be a Lagrangian which is (re9.ular and) 
analytic in a region []f of the variables (q, q). Then an extension L (z, i; Z, z) 
= l'(q, q; q', q') of L to complex variables is an analytic extension of L 
when it is analytic in the sense of Definition 2. 

37 For a definition of ignorable and nonignorable coordinates, see page 1.239. 
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From the viewpoint of complex variables, the analytic extensions can 
be classified as follows. 

CLASS I: Extensions analytic in the complex variables (z, i) only. If all 
the conditions 

o[ 1 (0[' 0[' ) o[ 1 ( o[ , 0[' ) 
OZk = 2' oqk + i oq'k = 0, OZk = 2 Oil + i oq'k = 0, 

k = 1, 2, ... , n, (5) 

hold in 1[;, then [ is analytic in IC. independent of (z, l) (that is, [ = [(z, i)). 
it admits the conventional decomposition of a complex analytic (i.e., 
holomorphic) function 

[(z, i) = [1 (q, q; q', q') + i[2(q, q; q', q'), (6) 

and the following rearrangement of the power-series expansion exists: 

These extensions will be called complex analytic extensions. 
CLASS 2. Extensions analytic in the real variables (q, q; q', q') only. If 

all the conditions 

o[ 
azk =1= 0, 

o[ 
OZk =1= 0, 

or 
Oik =1= 0, 

or 
OZk =1= 0, k = 1,2, ... ,n 

(8) 

hold, then [ has an essential functional dependence in all the 4n complex 
variables (z, i; z, z), decomposition (6) does not hold, and instead of 
Equation (7), we have the rearrangement 

i' = La. . q1 i ; •.. qninq1in+l ... qni2n+l 
'1' .," '4n 

X q'1i2n+1 ... q'ni3nq"i3n+l ... cj'ni4n 

= "b . z1 ii ... zn in j,in+ 1 ... Zn i2n 

1.... i l' .. " '4n 

X Z,i2n+l ... In i3n Z1 i3n +1 ... Zni4n = l. (9) 

These extensions will be called real analytic extensions. The difference 
between a real analytic and a complex extension is meant to stress the 
property that the notion of analyticity in the real and imaginary com­
ponents of the local variables is broader than that of analyticity in the 
complex variables only (holomorphy). Indeed, the former implies the 
latter as a particular case, but the converse is generally not true. 

CLASS III. Extensions of the mixed analytic type. This is the case when 
[(z, t; z, z) is real analytic in some variables and complex analytic in 
others. 

The implications of the analytic extensions introduced in this chart 
from the viewpoint of symmetries and conserved quantities are self­
evident. Suppose, for instance, that the original Lagrangian L(q, q) is 
invariant under the orthogonal group in n-dimensions, O(n). Then, the 
complex analytic extension [(z, i) of [ will be invariant under the complex 
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analytic extension O(n, q of O(n), while the real analytic extension 
l (z, t; z, z) = l'(q, q; q', q') of L will be invariant under the unitary group 
in n dimensions, U(n). The nonequivalence of the real and complex 
analytic extensions then follows from the fact that the symmetry groups 
O(n, q and U(n) are nonisomorphic (actually, they have different 
dimensionalities and connectivity properties). 

The classification of analytic extension to complex variables of this 
chart was introduced by Santilli and Roman (1971) for the case of the 
vacuum expectation values of the product of field operators, although 
the methodology trivially applies to Lagrangians (or Hamiltonians) of 
Newtonian systems. For further studies along these lines, see also 
Santilli et al. (1972), and Santilli and Ktorides (1973). This latter reference 
may be consulted, together with the specialized references quoted therein, 
in case the need arises to reinterpret the region of definition of the analytic 
extension as an algebraic variety. 

Chart A.3 The Cauchy-Kovalevski 38 Theorem 

I n Section 1.1.1 we outlined the existence theory of ordinary differential 
equations. In Section 1.1.2 we then reviewed one of the central methods 
for the study of the integrability conditions for partial differential equations, 
the calculus of differential forms, and the converse of the Poincare lemma. 
These mathematical tools were sufficient for the studies of the preceding 
volume, but they are insufficient for the studies of this volume, owing to 
the more direct need of the existence theory of partial differential equations. 

For earlier textbooks on this subject, we recommend Goursat (1891) 
and Forsyth (1906, Volumes V and VI). For more recent treatments see, 
for instance, Bernstein (1950), Garabedian (1969), and Rektoris (1969). 
For more advanced approaches see, for instance, Langer (1961), Carroll 
(1969), and John (1975). 

For the reader's convenience we recall, without proof one of the 
central theorems of the existence theory for partial differential equations, 
the Cauchy-Kovalevski Theorem, according to the presentation by 
Goursat (loc. cit., page 2); (see also Rektoris loc. cit., page 862). 

Theorem 1. Suppose that the system of n first-order partial differential 
equations in n unknown functions Uk, k = 1,2, ... ,n, and in m independent 
variables ri, i = 1, 2, ... , m, m ~ n 

( 
du' du' dun dun) 

Sk r', ... ,rm'dr1'···'drm'···'diI'·"'drm =0, 

k = 1,2, ... ,n (1 ) 

subject to the n initial conditions 

Uk (0, r2, ... , rm) = hk(r2, ... , rm) (2) 

admits, in the neighborhood Pe of the point P = (r', ... , rm), the equiva­
lent form 

(3) 

38 In western literature, the name of Madame Kovalevski is often presented in 
different versions, such as Kovalewski or Kowalewski. 



Indirect Lagrangian Representations via the Use of the Transformation Theory 313 

called the Cauchy-Kovalevski form. Suppose also that functions A 8, C, 
and h are real analytic at P. Then a unique solution u', ... , un of the 
initial value problem (1) and (2) exists which is real analytic at P. 

The above theorem is frequently used in the text (e.g., Theorems 
A.1.1 and 4.5.1, although in the simpler version without initial conditions. 
Once a system of partial differential equations is assigned and the study of 
the consistency is necessary, a pragmatic way of using Theorem 1 is the 
following: a) select a regular point (Chart A.1); b) see whether the system 
admits an equivalent Cauchy-Kovalevski form; and, in case of affirmative 
answer, c) see whether the A- 8- and C-functions are analytic. When 
these conditions are met, the system is consistent; that is, it admit a 
solution. From Theorem 1 we also learn that the number of arbitrary 
functions of such solution is equal to the order of the system and that these 
arbitrary functions involve one less independent variable than the number 
appearing in the system (for the case with initial conditions). 

A few remarks are in order here. The proofs of Theorem 1 most com­
monly presented in the literature are those based on convergent, multiple 
power-series expansions in the sense of Chart A.1. This is the reason we 
restrict the application of Theorem 1 to the case where the condition of 
real analyticity is met. We assume that the reader is familiar with the fact 
that Theorem 1 does not ensure that the solution is readily computable 
in a closed form. 

If the system under consideration involves partial derivatives of an 
order higher than first, it can be reduced to a system involving only 
first-order partial derivatives via techniques similar to those used in the 
reduction of second-order Newtonian systems to first-order forms (Section 
4.1). However, a crucial new aspect must be taken into consideration. The 
invertibility of the reduction for the partial differential case does not readily 
occur as for the case of ordinary differential equations. In turn, this may 
affect the equivalence of the original system with the reduced one. (For 
a treatment of this aspect we refer the reader to Garabedian (loc. cit., 
page 11). For the reader's convenience, we quote the following extension 
of the Cauchy-Kovalevski Theorem according to Petrovski (1954). 

Theorem 2. Suppose that a system of partial differential equations 
can be written in the Cauchy-Kovalevski form 

On;u. ( OkU) 
(or')~; = F; r', ... , rm, U" ... , un' (or')k, .. . i(orm)km'··· , 

i,j=1,2, ... ,n, k, +"'+km=ksnj' k, <nj , n~m 

under the initial conditions 

OkU; _ k 2 m) 
(or' )k - ({J; (r , ... ,r , k = 1, 2, . , . , n; - 1. 

(4) 

(5) 

If all the functions F; are analytic in the neighborhood of a point 
(r', ... , rm, ({J7, k 1" k m' ... ) and if all the functions ({Jf are analytic in the 
neighborhood of the point (r2, ... , rm ), then a unique analytic solution 
u" ... , un exists in the neighborhood of the point (r', ... , rm). 

The theorems presented in this chart (as well as a number of reformula­
tions in the literature) are the result of a fundamental contribution by 
Madame Kovalevski of 1875 (certain textbooks, such as Rektorys (1969, 
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page 862), refer to the Kovalevski Theorem); the presentation adopted 
here is crucially dependent on the Cauchy initial value problem, (hence 
the name Cauchy-Kovalevski Theorem). For almost three quarter of a 
century, the approach remained the only existence theory for partial 
differential equations. Nevertheless, the limitation of the theory (originating 
from the restriction to analytic functions) more recently stimulated 
the study of extensions applicable under less restrictive continuity 
conditions. This recent effort, conducted by a number of mathematicians, 
has resulted in the contemporary existence theory of partial differential 
equations. However, it does not achieve the technical maturity and 
completeness of the corresponding theory for ordinary differential equa­
tions and calls for technical aspects beyond the level of presentation 
intended for these monographs. 

In essence, these are the reasons behind the formulation and proof of 
the central theorems of this second volume for analytic systems; the 
extension of the theorems to less restrictive continuity conditions is 
encouraged. 

Chart A.4 Kobussen's Treatment of Darboux's Theorem of Universal­
ity for One-Dimensional Systems 

In Section A.1 we proved the universality of the Inverse Lagrangian 
Problem for one-dimensional systems. This result was obtained, ap­
parently for the first time, by Darboux (1894, page 53). In this chart we 
outline Darboux's theorem according to the reformulation by Kobussen 
(1979) because of its considerable value for our applications. 

Darboux studied the Inverse Lagrangian Problem for one-dimensional 
systems in the kinematic form possessing an explicit dependence on 
velocity. This dependence renders the system non-self-adjoint (Corollary 
1.2.2.2a). and we write 

[q - {(t, q, £1)]NSA = O. (1 ) 

Rather than seeking indirect analytic representations (A.1.8), Darboux 
looked for the solution in L of the one-dimensional, quasi linear, second­
order partial differential equation 

o2L o2L o2L OL 
-{+ --£1 + -- - - = O. 
o£12 o£1 oq o£1 ot oq 

(2) 

He proved that such a solution (under the needed smoothness conditions 
expressed here in terms of the analyticity of the implicit function) always 
exists; that is, it exists for all possible implicit functions f. 

Darboux's proof3 9 was formulated in the mathematical language of his 
time 40 and is presented in Example A.5 for the general case of explicit 
dependence on time. In this chart we present the treatment by Kobussen 
(loc. cit.) formulated, as we shall see, in the current physical language 
via the use of constants of motion (or, more technically, first integrals). 
Our analysis will be restricted to implicit functions {which do not depend 

39 For an alternative treatment of Darboux's theorem in its original formulation, 
the interested reader should consult Akhiezer (1962, page 165). 

40 For instance, Darboux used the expression of the solution of the system in the 
implicit form characterized by two first integrals. 
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explicitly on time. The extension to the case of an explicit time dependence 
is left to the interested reader (Problem A.S). 

A general solution of Equation (1) in L can be written 

L = cjF(q, cj). (3) 

By writing x instead of q and y instead of cj, and by denoting the partial 
derivatives of F with respect to q and y as F q and Fy' respectively, Equation 
(2) with" ansatz" (3) can be written 

-y2FXY - f(x, y)(2Fy + YFyy) = ° (4) 

which is a first-order, linear, partial differential equation of hyperbolic 
type in G = Fy ' and can be rewritten 

2 
yG + f(x, y)Gy = - - f(x, y)G. 

x y (5) 

A standard method for solving this equations is called the" characteristic 
method."41 Consider the transformation 

x ~ I(x, V), y ~ S(x, V). 

Then 

and Equation (5) becomes 

a a a 
ax = I'M + Sx as 

a a a 
-=I-+S -ay Yal YaS' 

(6) 

(7) 

2 
(ylx + f(x, y)/y)Gx + (yS, + f(x, y)Sy)Gy = - yf(x, y)G. (S) 

Assume now that I(x, y) is a solution of the characteristic equation 

ylx + f(x, Y)/y = o. (9) 

Equation (S) becomes a partial differential equation in two variables, and 
we have 

2 
(yS + f(x, y)Sy)G = - - f(x, y)G. 

x y y (10) 

Characteristic equation (9) does not fix transformation (6). We can there­
fore assume that y is not transformed, i.e. 

S(x, y) = y. 

Then S, = 0, Sy = 1, and Equation (10) becomes 

with the solution 

f(x, y) ( Gy + ~ G) = 0, 

1 
G(I, y) ="2 £(1). 

y 

41 See, for instance, Rektorys (1969). 

(11 ) 

(12) 

(13) 
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where £(1) is an arbitrary function. One can easily see that, if I(x, y) is a 
solution of characteristic equation (9), so is £(/(x, y». Thus, without loss 
of generality, we can say 

Also, Equation (9) implies 

d 

G(I, y) 
I(x, y) 

dt I(q, q) = Iqq + V = Iqq + IqCi = O. 

(14) 

(15) 

Thus I(q, q) is a first integral of the equations of motion. The desired 
solution of Equation (2) is then given by 

L( .) - . Ie) d I(q, y) 
q, q - q y--2-' 

o y 
(16) 

In this way, according to Kobussen's method, the solution of the 
Inverse Problem for one-dimensional systems is turned into the knowledge 
of one first integral. Indeed, the construction of a Lagrangian for the 
system considered is provided by Equation (16), in which the only 
unknown is a first integral. 

Notice that the Lagrangian representations are indirect. The use of 
different first integrals then yields isotopically mapped Lagrangians 
(Section A.2). The use of a lower limit of integral (16) greater than zero 
yields gauge transformations. The proof of the equivalence of this ap­
proach with that of the main text is left to the interested reader (Problem 
A.1 ). The following differentiation between these two methods is relevant, 
particularly for quantum mechanical considerations. Recall that the system 
considered is non-self-adjoint by assumption. Thus it is nonconservative. 
The method outlined in this chart essentially yields Lagrangians without 
an explicit dependence on time for the representation of autonomous, 
nonconservative systems. The method of Section A.1 provides, in general, a 
Lagrangian with an explicit time dependence for the representation of the 
same systems. All these different Lagrangians are equivalent (Lagrangian 
isotopy). As such, they can all be useful in classical mechanics. The situa­
tion in quantum mechanics appears to be different. Here the problems are 
(at least) twofold: first is the problem of quantizing one analytic representa­
tion so that it complies with the correspondence principle; then there is 
the problem of quantizing isotopically related Lagrangians (or, more 
precisely, Hamiltonians, when the quantization is done via the Hamilton­
Jacoby equation). When the problem is seen from this profile, it appears 
that Lagrangians and Hamiltonians with explicit time dependences for 
the representation of autonomous non-conservative systems are preferable 
for a first quantization to those without such explicit dependence. Indeed, 
the former imply a breaking of the canonical realization of the symmetry 
under translations in time which becomes directly representative of the 
non-conservative nature of the system. In turn, this sets the proper 
methodological context for quantization, in order to avoid a quantum 
mechanical treatment which is formally conservative and, as such, would 
violate the correspondence principle. However, additional reasons exist 
for preferring an explicit time dependence in the analytic representation, 
expressed by the need to reach a covering quantum mechanical descrip­
tion-that is, one which identically recovers conventional conservative 
quantum mechanical settings at the limit of null non-conservative forces. 
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Lagrangians without and with an explicit time dependence behave 
differently under this limit. For instance, for the case of the damped 
oscillator, 

(m = 1, w 2 - ~ > 0, r; > 0), (17) 

we have two isotopically mapped Lagrangians (Example 1.3.2) 

(18a) 

L *(r,;) = tg- 1 
2; - yr (2; + yr ) 

2rvw2 - y2/4 2rJw 2 - y2/4 

(18b) 

Lagrangian L does indeed recover trivially that of the conservative linear 
oscillator under the value FNSA = -y; = 0, that is, under y = O. However, the 
isotopic image L * does not. 42 In any case, the problem of the quantization 
of Lagrangian L * appears to be substantially more complex than that of 
Lagrangian L. As a result, Lagrangians Land L * both have significance on 
classical analytic grounds. However, for quantum mechanics, the Lag­
rangian L appears preferable to its isotopic image L *. Also, the non-con­
servative character of system (17) is transparently exhibited by Lagrangian 
L, while the technical characterization of this physical property via the 
isotopically mapped Lagrangian L * is not that trivial. In fact, in the latter 
case, we have a Lagrangian which is invariant under translations in time; 
nevertheless, the total energy is not conserved by assumption (see Charts 
4.10-4.12). 

Chart A.5 Vanderbauwhede's Functional Approach to the Inverse 
Problem 

As indicated in Volume I (Introduction and Charts 1.3.16 and 1.3.17), the 
branch of Functional Analysis dealing with nonlinear operators on 
Banach spaces provides a rigorous mathematical ground for the study of the 
Inverse Problem. Such a functional approach constitutes a valuable 
alternative to the variational approach adopted for the main lines of these 
volumes. Even though the explicit forms of the integrability conditions 
for the existence of a Lagrangian identified by these two approaches 
coincide, the functional approach allows the rigorous mathematical 
treatment of aspects which are not naturally focused upon by the varia­
tional approach. On the other hand, the variational approach enjoys a 
pragmatic effectiveness which is not possessed by the abstract structure 

42 For FNSA = 0, L * becomes an isotope of the conventional Lagrangian for the 
harmonic oscillator. The point is that the quantization of the isotopic images is 
unknown at this time for the conservative case. Also, the transition from a Lagrangian 
to one of its isotopes is expressed, at the quantum mechanical level, by a non­
unitary transformation. As is well-known, conventional quantum mechanical laws 
(those for conservative systems) are not preserved by non-unitary transformations 
(see Santilli (1979b) for a detailed analysis). This confirms the non-trivial character 
of the problem considered here. 
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of nonlinear operators on Banach spaces. The reader with a serious interest 
in the Inverse Problem is urged to study it from all relevant aspects, 
including the functional. 

The functional approach to the Inverse Problem was initiated by 
Vainberg (1964) as part of what is, by now, a fundamental contribution 
to the theory of non-linear operators. However, it took, a number of years 
for these studies to propagate in mathematical and physical circles. As 
mentioned in the Preface, this was partly due to the fact that Vainberg's 
approach was so abstract that it remained inaccessible to many applied 
mathematicians and engineers (Atherton and Homsy, 1975). This 
situation was remedied by Tonti who, in a series of contributions (1968, 
1969a and b, 1982) brought the methodology to a level suitable for a 
broader audience. Additional contributions were made by a number of 
authors, such as Atherton and Homsy (lac. cit.) and Magri (1976). 
More recently, Vanderbauwhede (1978) reinspected the problem from a 
number of yet open aspects, including the methods for explicit computa­
tion of a Lagrangian. This chart consists of a review of Vanderbauwhede's 
analysis. 

Let X, Y, ... denote (real) Banach spaces and X*, Y*, ... their dual, 
with canonical pairing <x*, x), <y*, y), ... , X EX, x* E X*, etc. Let 
F: X -+ Y be a map between two Banach spaces induced by a nonlinear 
operator. The Gateaux differential (Chart 1.3.16) of F at the point x E X in 
the direction hEX will be denoted with DF(x; h), while the symbol DF(x) 
is reserved for a Gateaux derivative for which the map h -+ DF(x; h) is 
continuous and linear from X to Y. In this latter case we shall write 
DF(x; h) = DF(x) . h. The Gateaux differential of a functional f(x): X -+ R 
will be written as an element Df(x), of X*, and we shall use the notation 
Df(x) . h = <Df(x). h). 

Consider a map F: X -+ X*, and let Xo be a closed subspace of X. F is 
called a potential operator with respect to X O ' if a functional f: X -+ R 
exists such that i) Df(x) exists for all x E X and ii) <Df(x), h) = <F(x). h) 
for all x E X and all hE Xo C X. Thus the notion of potential operator is 
the equivalent (in the language of the functional approach to the Inverse 
Problem) of the notion of a self-adjoint system of ordinary differential 
equations (in the language of the variational approach to the same prob­
lem). as we shall discuss more fully later. 

Let X = C 2n ([t 1, t 2], Rm) be a Banach space referring to a given 
compact time interval with nand m given non-negative indices, and 
introduce the following notations: 

i = 1,2, ... ,m; 
d"q 

q(.) =-
dt" 

IX = 0, 1, ... , 

q = {q, q(1), ... , q(n)}, q = {q(n+1), ... , q(2n)}, 

ij = {q, q(1), ... , q(2n)}, q = {q(2n+1), . .. , q(4n)}, 

q = {q, q(1), . .. , q(n-1)}, ~ = {q(n), ... , q(2n)}. 

(1 ) 

The Inverse Problem for systems of ordinary differential equations of 
arbitrary (finite) order can be defined, within the context of the functional 
approach, as follows. Let f be a class rt/'" functional 

J. t 2 
f = f(q) = dt L(t, q), 

t 1 

q EX. (2) 
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Its Gateau derivative at q E X, in the direction of a function 

cP E Xo = {q E XI q(·)(ts) = 0, s = 1,2, IX = 1, ... , n - 1} (3) 

gives rise to the (Euler- ) Lagrange equations, since we have 

d f I' 2 {n (d" OL) } <Off(q),cp)~ dt I(-1)' dt"o (') (tij) CPk(t). 
" '=0 qk 

(4) 

Consider now an element 

FE C""([t" t 2 ] X [R(2n+')m, [Rm), 

and the associated operator 

(t, ij) ""* F (t, ij) E [Rm (5) 

.'i(q)(t) = F(t, ij(t)). (6) 

Then, ff(q) can be identified with an element of X*, via the introduction of 
the following canonical pairing between X and CO([t" t 2 ], [Rm) 

1'2 
<ff(q), cp) = dt ffk(q) (t)CPk(t)· 

" 
(7) 

The functional approach to the existence theory of the Inverse Problem 
consists of finding necessary and sufficient conditions on F such that ff, 
considered as operator from X to X*, is potential with respect to X*, i.e., 

<Off(q), cp) = <ff(q), cp), 

and so that <Off(q), cp) is of form (4) for some 

L E ~""([t" t 2 ] x [R(n+')m, [R). 

(8) 

(9) 

This latter condition emphasizes that L does not depend on q('), IX = n + 1, 
n + 2, .... This is the generalization to higher orders of the condition 
that second-order differential equations, Equations (,.1.3), are represented 
via fist-order Lagrangians, Equations (.Jf.18). Incidentally, this condition 
was not met by Vainberg's original formulation. 

Theorem 1. Let FE~""([t" t 2 ] X [R(2n+')m, [Rm), and define ff via 
Equations (6). Then the following statements are equivalent: 

1 . ff is potential with respect to X 0; 
2. <Off(q)' 1j;, cp) = <Off(q) . cP, 1j;), (10) 
3. the following conditions 

I (-1 )PCP[:::_'. (:~~))J (t, ij, q) = :~:) (t, ij) 
P=. q, qk 

(11 ) 

are indentically verified for all t E [t" t 2 ], ij E [R(2n+')m, q E [R2nm, 

IX = 0, 1, ... , 2n; i, k = 1, ... , m. 

This theorem clearly shows that the functional and variational approaches 
to the Inverse Problem produce exactly the same integrability conditions, 
Equations (11), as first pointed out in Chart 1.3.17. Indeed, for second­
order equations, conditions (11) coincide with conditions (,.1.12) (see 
Section 1.2.2 for details). The higher order case can be proved by simply 
extending to higher order systems the variational approach to self­
adjointness of Section 1.2.1. Notice the simplicity of the variational 
techniques, compared to the abstract language of the functional approach. 
The latter approach is preferred on the grounds of formal mathematical 
rigor. 
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The problem of the explicit construction of a Lagrangian, under condi­
tions (10) or (11). can be studied by searching for the action functional 

J. t 2 
ff'(q) = dt L(t, q(t» t, (12) 

such that 

(Dff'(q), qJ) = (ff(q), qJ) (13) 

not for all qJ E Xo' but instead for qJ satisfying the more restrictive boundary 
conditions, 

qJ(a) (ts ) =0; s=1,2; 1X=0,1, ... ,2n-1 (14) 

(from the q-dependence of L). Unfortunately, this implies that ff' is 
insufficient to characterize a potential operator ff with respect to X o' The 
proof of the following property calls for a considerable amount of further 
study which, for brevity's sake, is not reported here (see Vanderbauwhede, 
loc. cit.). 

Theorem 2. Under the hypotheses of Theorem 1, if any of the state­
ments of that theorem is equivalent to Equation (4), then a functional de­
pending only on q exists 

(15) 

such that 

Fk(t, q) = f (-1)a (ddt: ,.()~a))(t' q) 
a=o uqk 

(16) 

for all k = 1, 2, ... , m, t E [t" t 2], q E 1R(2n+')m. Such a Lagrangian 
functional is explicitly given by 

2n-1-iX 

L 
P=o 

(17) 

where 

A(a,p) = )' (-1)yCP-- ___ k_ 
2n-a d Y- P ( ()F ) 

ki y~;. Y dt'-P ()q)"+P) . 
(18) 

Note that, for the case n = 1 (corresponding to second-order differ­
ential equations), Equations (17) coincide with the formula proposed by 
Engels (1978): 

d (' l' - (it 1 dr: dr:' r:qiAij(t, r:q, r:r:'ci)cii 
o 0 

(19) 

(see Equation (J, 13». Thus Theorem 2 of this chart provides a natural 
generalization to the case of arbitrary order of the methods presented 
in these volumes for computation of Lagrangians, 



Indirect Lagrangian Representations via the Use of the Transformation Theory 321 

The interested researcher may wish to note that studies on the functional 
approach to the Inverse Problem are far from over. What appears to be 
well established is a mere existence theory in functional language. Yet as 
stressed in the Preface, physical systems generally violate such an existence 
theory. Thus additional studies are essential before the functional approach 
is of true value in direct, practical applications. We are referring here 
to the methods studied in this chapter for turning a non-self-adjoint 
system into an equivalent self-adjoint form, as well as the reformulation 
in the language of functional analysis of the proof of the universality of the 
Inversa Problem studied in the Chapters 4, 5, 6. Additional problems, not 
yet studied in the functional context, are associated with the degrees of 
freedom of the Lagrangian representations, particularly with the isotopic 
transformations. 

Chart A.6 Symmetries 

Undoubtedly, the studies of symmetries of physical systems constitutes 
one of the most physically significant mathematically instructive, and 
aesthetically appealing topics in physics. Symmetries often represent 
physical laws and, as such, are at the foundations of the relativities of 
mechanics. Mathematically symmetries permit the computation of first 
integrals which are important for the possible solution of equations of 
motion via quadratures. Aesthetically, our efforts to represent physical 
reality are often guided by simple beauty. In short symmetries are im­
portant for the reduction of physical systems to primitive group theoretic/ 
algebraic notions. 

Owing to these (and other) features, many studies have been devoted 
to the topic 43 , particularly to Noether's celebrated theorem (reviewed in 
Chart A.9). These studies, however, have been restricted mainly to systems 
admitting conventional Lagrangian (and Hamiltonian) representations. 

The Inverse Problem is clearly useful in the study of symmetries. In fact. 
knowledge of a Lagrangian for given equations of motion permits the use 
of Noether's theorem and other techniques which would otherwise be 
precluded. The Inverse Lagrangian Problem is therefore a prerequisite for 
the practical applicability of Noether's theorem. At a deeper level, the 
Inverse Problem permits an enlargement of the formulation of symmetries 
and first integrals, as the attentive reader already has been able to ascertain 
by inspecting the isotopic transformations of a Lagrangian (Section A.2). 

In this and the remaining charts of this chapter we shall present the 
rudiments of the problem of symmetries, first integrals, and conservation 
laws for all Newtonian systems verifying the integrability conditions for 
the existence of an indirect Lagrangian representation (Theorem A.1.1), 
whether conservative or not. We shall attempt to clarify a number of 
misconceptions lingering in the current literature, which become apparent 
when the application of Noether's theorem is enlarged from conservative 
systems to all possible systems admitting a Lagrangian. For this purpose, 
we shall attempt as much as possible to separate the mathematical aspect 
of the theory from its physical interpretation. A prior minimal knowledge 
of the topic is assumed. 

43 The number of references in the field is large enough to discourage even a 
partial outline. 
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Definition 1. Newton's equations of motion for an (unconstrained, 
regular, and analytic) system in Euclidean space 

k = 1,2,3 (1 ) 

is said to possess a symmetry under point transformations 

t ~ t' == t, r ~r' = r'(r), (2) 

when the equations are form-invariant under these transformations; that 
is, the equations of motion preserve their form under the transformations 
considered, up to the Jacobian of the transformation. By recalling trans­
formation law (A.3.16) we shall then write 

orl orm 
9 = - b - = (i (3b) 

II oll 1m or'f - if' 

orf orf 02rl 

F;(t, r', n = or'i F/f, r(r'), r(r', n) - Or'; (if I or'm or'n ;'m;'n 

== F;(t, r', n. (3c) 

More generally, a quasi linear, second-order system of ordinary differential 
equations (say, Newtonian systems with holonomic constraints) 

k = 1,2, ... ,n (4) 

is said to possess a symmetry under the point transformations 

t ~ t' == t, q~ q' = q'(q) (5) 

when the system preserves its form under the transformations up to the 
Jacobian. By recalling transformation law (A.3.9), we write 

o ' 
Ak;(t, q, q)it + 8 k(t, q, q) = 0:: [A;/f, q', q')q'f + 8;(t, q', q')] = 0, 

A' (t "') oqr oqs A (t (') '(' ")) ;/' ,q, q = ~ ~ rs ,q q ,q q, q uq I uql 

== A;f(t, q', q') 

8 ' ( "') - oqr 8 (t (') . ( , ")) i t, q, q - oq'; r ,q q ,q q, q , 

+ A (t q(q') q'(q' q")) oqr 02qs q"mq"n 
rs, , , oq'; oq'm oq'n 

== 8;(t, q', q'). 

(6a) 

(6b) 

(6c) 

An equivalent definition holds for transformations more general than 
(2) and (5) although the transformation laws are predictably more 
involved. 44 

44 See Chapter 6. 
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Definition 1 illustrates the difference between transformation laws 
(A.3.16) or (A.3.9) and symmetry laws (3) or (6). Both transformations 
are equivalence transformations (in the sense of Section A.1). Neverthe­
less, symmetries comprise only a subset of the equivalence transformations 
because of the condition of form-invariance of the system. Notice that 
Definition 1 is purely mathematical in that it deals with a property which 
is independent of the possible physical nature of the system considered 
and its transformations. 

Definition 2. A Lagrangian L(t, q, cj) is said to possess a symmetry 
under the transformations 

t -+ t' = t'(t), q -+ q' = q'(q), (7) 

when the new Lagrangian constructed according to the rule 

L(t, q, cj)dt = L'(t', q', cj')dt' (8) 

preserves its original functional dependence up to the possible addition of 
terms with null Lagrange's equations, i.e., 

L'(t', q', cj') = L(t', q', cj') + ; G(t', q'), (9a) 

d ()G ()G 
dt' ()cj'k - ()q'k == O. (9b) 

Notice that we have enlarged the class of transformations by including 
time (although in a way independent from that of the generalized co­
ordinates). This has been done to recall that a Lagrangian, in general, 
does not transform according to a scalar rule L(t, q, cj) = L'(t', q', cj'), but 
rather according to density rule (8). This condition ensures the equivalence 
of the action principles in the new and old coordinates. 

Under the integrability conditions of Theorem A.1.1 (or A.3.1), Defini­
tions 1 and 2 are equivalent. In fact by assuming for simplicity t' = t, 
symmetry law (6) implies law (9) and vice versa; i.e., 

d M ()L A ( .). B ( .) 
dt ()cjk - ()qk -+ ki t, q, q q' + k t, q, q 

()q'i (d M' . M') 
== ()qk dt ()cj'i - ()q\ 

_ i)q'i , 0' "'i ' ., = ()q* [Aij(t, q, q)q + Bi(t, q, q)]. (10) 

The" gauge" degree of freedom in law (9) is clearly a consequence of the 
fact that all functions G(t', q') have null Lagrange's derivatives according 
to Equations (A.2.1 b). 
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Definition 3. Symmetries of Newton's equations of motion, or of Lag­
range's equations, can be classified as follows: 

1. manifest symmetries, which can be identified by simple means 
(usually a visual inspection) and generally have a simple functional 
dependence of the new variables in the old (e.g., of linear type); 

2. non-manifest symmetries, which demand special mathematical 
techniques for their identification and generally possess a complex 
functional dependence (e.g., of the nonlinear type); 

3. discrete symmetries, when the transformations are discrete (e.g., 
space and time inversion); 

4. connected symmetries, when the transformations can be con­
tinuously connected to the identity (e.g., rotations); 

5. finite symmetries, when the transformations are finite; 
6. infinitesimal symmetries, when the transformations are infinitesimal 

(of the first-order); 
7. contemporaneous (noncontemporaneous) symmetries, when the 

transformations do not (do) include that of time (t ~ t' '" t); 
8. without (with) gauge, when the function G(t', q') of law (9) is 

identically null (non-null); 
9. pure space, pure time, and mixed space-time symmetries, which 

are characterized by transformations involving space coordinates 
only, time only, and mixed space and time variables. 

As a simple example, the conventional two-body Lagrangian 

L - ~( . 2 + . 2) + k -2m,r, m2r2 
Ir, - r21 

(11 ) 

possesses the following symmetries: a) a symmetry under rotations 
r; = Rri , R E SO(3), i = 1, 2, which is manifest, connected, contem­
poraneous, finite, without gauge, and of pure space character; b) a 
symmetry under time inversion t' = -t, which is manifest discrete, non­
contemporaneous, and of pure time character; and c) a symmetry under 
Galilei boosts r; = r i + vt (Chart 1.A.1) which is manifest, connected, 
contemporaneous, with gauge, and of mixed space-time character. 

Additional examples of symmetries will be provided later, jointly with 
the important concepts of "exact symmetry" and" broken symmetry." 

Chart A.7 Lie's Construction of Symmetries of Given Equations of 
Motion 

Clearly, manifest symmetries are the simplest possible symmetries pos­
sessed by physical systems. These symmetries generally do not permit 
the identification of the first integrals needed for solution by quadrature, 
which creates the problem of finding a method for the general construction 
of symmetries of given equations of motion without any restriction on the 
type of symmetries (as well as equations) admitted. 

To my best knowledge, this problem was identified, studied, and solved 
by Lie (1891). Regrettably, Lie's method was subsequently ignored to a 
considerable extent apart from rare exceptions (such as the treatment 
by Ince (1926». Only recently has a systematic study of Lie's method been 
initiated by C. J. Eliezer and associates (for a review and a complete list of 
these latter studies see Eliezer (1979». I n the following, I shall review 
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Lie's method along Eliezer's presentation and then implement it via the 
techniques ofthe Inverse Lagrangian Problem in orderto render it applicable 
to Noether's theorem. 

As we shall review in the charts of Chapter 5, a one-parameter connected 
Lie group of finite transformations of the generalized coordinates and 
time can be written in the exponential form 

(1 ) 

where e is the group parameter and X is the so-called generator. When X 
does not depend explicitly on the velocities, it can be written in the vector­
field form 45 

a a 
X(t, q) = fJ(t, q) at + ~k (t, q) aqk' (2) 

where fJ and ~k are functions satisfying certain smoothness conditions 
(e.g., being of class CCOO ). 

The infinitesimal first-order transformations can then be written 

t' = t + fJ(t, q)e, q'k = qk + ~k (t, q)e, e ~ o. (3) 

When these transformations are known (that is, when the functions fJ and ~ 
are known), one can construct finite transformations (1) by the techniques 
of Lie's theory (" exponentiation" of an infinitesimal transformation to a 
finite form) or, more empirically, via the solution of the system of differential 
equations 

dt' dq'l dq'n 
--- = = ... = --- = e. 
fJ(t, q) ~1 (t, q) ~n(t, q) 

(4) 

Variations in derivatives higher than the first can be constructed via the 
extended generators 

a a a a X(m) = pA _ + C;k __ + C;k __ + ... + C;k -- (5a) 
at '/(0) aq(O)k '/(1) aq(l)k '/(m) aq(m)k' 

dC;k d A 

C;k (t q(O) q(m») = .:2i!!!..::..!l - q(m)k J!... (5b) '/(m) , , ... , dt dt' 

(5c) 

Lie's method is essentially based on the following condition for trans­
formations (3) to be symmetric of the given equations of motion in the 
kinematic form 

X(2)[qk - fk(t, q, £1)] = 0, (6) 

which is a condition on the unknown functions fJ and ~k. More specifically, 
the implicit functions fk are known. Thus the only unknown quantities in 
Equation (6) are functions fJ and ~k. 

The extension to the case of an r-dimensional symmetry group G, is 
straightforward. We write the infinitesimal transformations in the form 

i = 1, 2, ... , r (7) 

45 The notation of Section 1.1.3 is used here, according to which noncon­
temporaneous variations are denoted with the symbols Ii and ~k, while the con­
temporaneous variations (Ii == 0) are denoted with 1)*. 
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with the corresponding group form 

(8) 

The underlying r generators Xi' each with corresponding extensions of 
type (5), follow. 

Note that condition (6) constitutes a system of partial differential 
equations in functions P and ~. These systems (when consistent) admit 
solutions with considerable degrees of functional freedom. As a result, r 
functionally different sets of solutions Pi and f;~, (i = 1, 2, ... , r) yield 
an r-dimensional symmetry group Gr' 

As an explicit example, Lie's method for the case of the Kepler problem 
in the plane (x, y) 

r 
r+-=O 

1 r 13 ' 
r == (x, y) (9) 

permits the identification of the following generators for a three-dimen­
sional symmetry group (Eliezer (loc. cit.» 

(10) 

X = t ~ + ~ (x ~ + y~). 
3 (Jt 3 (Jx (Jy 

One easily recognizes X 1 as the generator of translations in time and X 2 as 
the generator of rotations. Simple elaborations show that X 3 is the 
generator associated to the Runge-Lenz vector. 

We refer the interested reader to the review by Eliezer (/oc. cit.) and 
quoted papers for numerous additional examples worked out in detail. 

As we shall see in Chart A.9, a necessary condition for the applicability 
of Noether's theorem is that the equations of motion are in the Lagrangian 
form. This situation creates something of a gap between Lie's method and 
its application to the computation of first integrals via Noether's theorem. 
In fact, Lie's method was conceived for arbitrary (not necessarily Lag­
rangian) systems of differential equations. It is tempting to speculate that 
perhaps this general lack of Lagrangian character is responsible for the 
lack of interest in Lie's method which prevailed until recently. 

The Inverse Lagrangian Problem clearly provides the technical means 
for establishing a continuity of thought in the transition from Lie's method 
to Noether's theorem. This can be achieved by imposing Lie's condition 
(6) on an equivalent system in the self-adjoint form (Section A.1) 

X(2){hki (t, q, cj) [qi - fi(t, q, cj)]NSA}SA 

= X(2)[Aki (t, q, cj)qi + Bk(t, q, cj)]SA = 0, 

(11 ) 

Equivalently, when a Lagrangian has been computed via Equations 
(A.1.10), one can impose the symmetry condition 

X(1)L + (~P)L + ~G = 0 
dt dt 

(12) 
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where G is the gauge function from Definition 3 of the preceding chart 
(see Chart A.9 for more details). 

Notice that, when L is the Lagrangian for the representation of the self­
adjoint equations of motion in conditions (11), Lie's methods (11) and 
(12) are equivalent. 

Let us stress here that the class of manifest symmetries of Newton's 
equations of motion is generally larger than that of one Lagrangian for its 
analytic representation. This is clearly due to the fact that, in the transition 
from condition (6) to (11), some of the original manifest symmetries can 
be lost because of the genotopic functions hki . As a specific example, the 
equation for a particle in one dimension, 

(13) 

has two manifest symmetries: those under translations in time and those 
under translation in space. Two self-adjoint forms provided by the 
Inverse Problem (Example 1.3.1) are given by 

[eYt(f + Y;)NSA]SA = 0, 

[~ (f + Y;)NSA] = 0, 
r SA 

with corresponding Lagrangians 

L, = eytV2 

L 2 =;ln;-yr. 

(14a) 

(14b) 

(15a) 

(15b) 

Clearly, the symmetry under translation in time is not possessed by 
Lagrangian L, and the symmetry under translation in space is not pos­
sessed by Lagrangian L 2. 

It should be stressed that this situation is due to the restriction on the 
symmetries to be manifest. If this restriction is lifted and arbitrary, generally 
nonmanifest symmetries are admitted, the equivalence between the class 
of symmetries of the equations of motion and that of a Lagrangian for its 
analytic representation can be recovered, as we shall indicate in Chart 
A.10. 

Chart A.a First Integrals and Conservation Laws 

Symmetries are often applied in physics for the characterization of 
conservation laws. However, symmetries generally represent first integrals 
without any direct physical meaning. This is particularly true when the 
restriction to conservative systems is lifted and arbitrary Newtonian systems 
are admitted. To prevent misrepresentations of the problem of symmetries 
and conservation laws, it is therefore important to understand the dif­
ference between the mathematics and possible physical interpretation, 
beginning with the differentiation between first integrals and conservation 
laws. 

Definition 1. A function I(t, r, i") is a first integral of an (unconstrained) 
Newtonian system in Euclidean space, 

(1 ) 
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if it is a constant when computed along the solution of the system, that is 

dl 01 01 01 
- = - + _;k + - F 1m =: O. 
dt ot ork O;k k 

(2) 

A similar definition applies for a first integral I(t, q, q) of a system in 
configuration space 

(3) 

in which case we write 

dl 01 01 01 
-=-+-qk+-fk=:O 
dt ot oqk oqk 

(4a) 

fk = (1IA,mll-')kiBi . (4b) 

Clearly, the notion of first integrals is of mathematical character, in the 
sense that a quantity I(t, r, r) is, in general, an arbitrary function of local 
variables without any necessary direct physical meaning. This mathematical 
character is illustrated further by the following additional properties. 

Definition 2. A set of m (::o:;2n) first integrals li(t, q, q) of a system of n 
second-order ordinary differential equations are said to be independent 
when the rank of the m x 2n matrix, 

(~) oa~ , a = (q, q), (5) 

i = 1,2, ... , m; J-l = 1, 2, ... , 2n, 

ism. 
Without proof, we quote the following theorem. 

Theorem 1 (Maximal Number of Independent First Integrals). A 
system of n second-order ordinary differential equations can admit at most, 
2n independent first integrals in the neighborhood of a point of the local 
variables: 

J-l = 1, 2, ... , 2n. (6) 

All possible additional first integrals can always be expressed as function 
of the /' s in the neighborhood of the point considered. 

The knowledge of 2n independent first integrals allows the solution of the 
system by quadratures. Under the condition that the rank of matrix (5) is 
2n, the Implicit Function Theorem 1.1.1.1 can be applied to Equation (6) 
to yield coordinates and velocities as functions of time and the 2n arbitrary 
constants, c's, 

qk = qk(t, c), (7) 

In this way, the solution of the system is provided by algebraic manipula­
tions of the first integrals. 

Needless to say, 2n independent first integrals are not known, in general, 
and their identification often turns out to be as difficult as the solution of 
the system itself (see, for instance, the historical case of the three-body 
classical problem, as presented in Hagihara (1970)). Nevertheless, the 
knowledge of as many independent first integrals as possible is important 
because they reduce the dimensionality of the systems and thus, the 
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difficulties in their solution. For this and related aspects, we refer the 
interested reader to the literature in ordinary differential equations, 
including Hagihara (loc. cit.). 

We move now to a separate problem: whether a given first integral 
can be interpreted as a physical quantity, and law (2) or (4) as a physical 
conservation law. 

Definition 3. A Newtonian system is called conservative when it is 
closed-that is, when it can be considered as isolated from the rest of the 
universe. A Newtonian system is called nonconservative when it is open­
that is, when it cannot be isolated from its environment, which is then 
considered as external. 

The Inverse Lagrangian Problem clearly permits the application of 
Noether's theorem and related techniques to conservative as well as 
nonconservative systems. 

Definition 4. A quantity I(t, r, r) is a physical quantity (such as 
energy, linear momentum, angular momentum, etc.) of an unconstrained 
non-self-adjoint Newtonian system, 

(8) 

when it is a physical quantity of the maximal, essentially self-adjoint 
subsystem. 

This definition is based on the idea that physical quantities are unique 
and do not depend (in their definition) on non-self-adjoint forces. These 
forces are merely responsible for the behavior in time of a given physical 
quantity. For instance, the physical46 linear momentum is given by p = mr, 
whether or not the forces are potential. Similarly, the physical angular 
momentum is uniquely given by M = r x mr and the possible presence 
of nonpotential forces may only affect its time evolution. More insidious 
is the case of the physical energy which, according to Defintion 4, is the 
(mechanical) energy of the maximal, essentially self-adjoint, subsystem; 
that is, the sum of the kinetic energy and the potential energy of all self­
adjoint forces (Theorem J.1 and Corollary J.1 a). The insidious character 
is that a Hamiltonian for the entire system (8) may exist and be interpreted 
as "energy." The point is that the notion of potential energy has no 
physical foundation for contact forces. 

It is clear that the physical energy of system (8) is not conserved. This is 
the case for the systems of everyday life, such as spinning tops with drag 

46 The term" physical" is introduced here to stress the important differentiation 
from" canonical" momentum Pcan = oL/Ot (which can be an arbitrary function of 
the local variables, e.g., Pcan = IXreprt). The reader should recall the distinction 
between physical and canonical quantities whenever studying non-potential 
forces, from both a classical and quantum mechanical viewpoints. In fact, the 
differentiation is important to discourage the belief that mathematically consistent 
algorithms of the type /1rl'1p ~ -'2fi necessarily represent an indeterminacy occurring 
in nature (which is the case if and only if the operator" p .. can be proved to represent 
the physical linear momentum and a number of other conditions are met; e.g., the 
consistency of the associative character of the operator enveloping algebra with 
the underlying dynamics). The interested reader may consult Santilli (1978d) for 
these quantum mechanical aspects. 
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torques, trajectory problems in atmosphere, damped oscillators, etc., 
which all admit action-at-a-distance potential forces and contact non­
potential forces according to structure (8). 

Inspection of physical reality therefore establishes the existence of 
conservation laws and non-conservation laws, depending on the physical 
case considered. The former can be first integrals (see below for counter­
examples). The latter are not first integrals. We can therefore introduce the 
following definition. 

Definition 5. A first integral is a physical conservation law when it 
represents directly a physical quantity of the maximal. essentially self­
adjoint subsystem. 

A few examples are in order. The Kepler problem in two-dimensions, 
Equation (9) of Chart A.7, admits the first integral 

(9) 

which coincides with the total mechanical energy (the system is, in this 
case, essentially self-adjoint and conservative). The damped particle in 
one dimension, Equation (13) of Chart A.7, admits the first integral (a 
Hamiltonian of Example 1.3.1) 

H = ; In; + yr (10) 

which does not coincide with the energy of the system (the system is, in 
this case, non-essentially non-self-adjoint and nonconservative). The 
maximal. essentially self-adjoint subsystem is that of free motion. Physical 
energy is then given by the kinetic energy T = ~p, which is now non­
conserved. 

As a result, Hamiltonians (9) and (10) possess the mathematical 
property of being first integrals. However, only Hamiltonian (9) repre­
sents a physical law, while the" conservation" of Hamiltonian (10) has 
no direct physical meaning. Additional illustrations for energy as well as 
other physical quantities are given throughout our analysis. 

We conclude that a first integral does not represent, in general, a con­
servation law, because Newtonian systems are generally non-conservative. 

Intriguingly, a conservation law does not constitute, in general, a first 
integral. The Inverse Lagrangian Problem and underlying conditions of 
self-adjointness are again important for understanding this property. 

The conventional notion of a conservative (closed) system is of a 
system of particles moving in vacuum at large mutual distances under 
internal action-at-a-distance, potential forces. Strictly speaking, the only 
example known at this time is given by the (Newtonian) treatment of our 
solar system, inclusive of satellite motion but excluding interior problem 
motions. The system is essentially self-adjoint and verifies the known ten 
Galilean conservation laws (of the total energy, linear momentum, angular 
momentum, and uniform motion of the center of mass). These conserva­
tion laws are indeed represented by first integrals of the equations of 
motion. We shall write the equations of motion and the first integrals in 
the self-explanatory notation: 

[mk'ka - fka(r)]sA = 0, k = 1,2,3, 
CPs(t, r, i") = 0, s = 1, 2, ... , 10. 

a = 1,2, ... , N (11 a) 

(11 b) 

As indicated earlier, no Newtonian system exists which is truly type 
(11) besides our solar system (unless very brief periods of time and major 
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approximations are admitted). This indicates that structures (11) are too 
simplistic and restrictive to represent physical reality. 

A more general class of closed systems has been identified by Santilli 
(1978b,c and d), and can be presented as follows. Consider the Earth 
isolated from the rest of the universe (by ignoring planetary and other 
external interactions). The system is thus closed, that is, it verifies con­
servation laws (11 b). Nevertheless, the internal forces are non potential, 
as established by the systems of our environment. Under these conditions, 
the conservation laws are not first integrals but rather subsidiary con­
straints, and we write in the self-explanatory notation 

{
{[mkika - fka(t, r, r)]SA - Fka(t,_r, r)}NSA = 0, _ 

k - 1, 2, 3, a - 1, 2, ... , N, 

4>s(t, r, i") = 0, s = 1,2, ... ,10. 

In this way we reach the following important definition. 

(12a) 

(12b) 

Definition 6. A closed self-adjoint system is one whose ten Galilean 
conservation laws are first integrals of the equations of motion or equiva­
lently, one with self-adjoint internal forces. A closed non-self-adjoint 
system is one whose ten Galilean conservation laws are subsidiary 
constraints to the equations of motion or, equivalently, one with a combina­
tion of self-adjoint and non-self-adjoint internal forces. 4 7 

The study of systems with subsidiary constraints is quite involved 
technically and goes beyond the objectives of this text. Noether's theorem 
will therefore be studied for unconstrained systems, that is, for either 
closed self-adjoint systems or, more generally, for open non-self-adjoint 
systems. 

Closed non-self-adjoint systems constitute a rather intriguing class of 
physical systems, particularly from the viewpoint of symmetries, conserva­
tion laws, and relativities. In fact the systems considered disprove a 
number of beliefs lingering in contemporary theoretical physics. 

It is generally believed that when a system of particles verifies a given 
relativity, that same relativity applies to each constituent. To be more 
specific, when a Newtonian system of particles verifies the Galilean 
conservation laws of total quantities, it is generally believed that Galilei's 
relativity applies to the dynamic evolution of each constituent and, in 
particular, that the equations of motion are Galilei form-invariant. Similarly, 
at the relativistic level, it is generally believed that, when a composite 
system of particles on a Minkowski space verifies, as a whole, all the 
conditions of Einstein's special relativity, the relativity (and underlying 
physical laws) also apply to the characterization of the structure and 
dynamic evolution of each constituent. 

47 The notions of closed self-adjoint and non-self-adjoint systems were intro­
duced primarily in an attempt to differentiate technically between closed systems 
with electromagnetic internal forces (e.g., atoms) and those with strong forces and 
other internal forces (e.g., hadrons). The main idea was to generalize the contem­
porary notion of interactions to unrestricted forces, while preserving conventional 
total conservation laws. The consistency of the model (e.g., existence of non-self­
adjoint forces under which model (12) verifies the existence theorem of a solution) 
was proved via the existence theory of overdetermined systems. The model was 
subsequently studied in its statistical generalization by Tellez-Arenas et al. (1979), 
and it is currently studied in the yearly Workshops on Lie-Admissible Formulations 
(see the proceedings). 
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These beliefs are disproved by the considered class of systems in the 
following sense. No doubt, systems exist in nature where the whole 
systems and their constituents can be effectively treated via the same 
relativity. At the Newtonian level, this is clearly the case for our solar 
system. At the relativistic level, the possibility is established by the structure 
of atoms. An inspection of Equation (11) and Definition 6 shows that this 
is the case for all closed self-adjoint systems. In fact, as we shall see better 
via Noether's theorem, the ten conservation laws (11 b) are a direct 
consequence of the symmetry of equations of motion (11 a) under the ten­
parameter Galilei group. The transition to relativistic, quantum mechanical, 
or quantum field theorerical settings implies increased technical complexity, 
although the fundamental physical ideas remain the same. 

The important property expressed by Definition 6 is that systems exist 
in nature which violate this dual compatibility with the same relativity. 
At the Newtonian level, the property is established rather forcefully by 
our Earth. When seen by an outside observer, it is a Galilean system-that is 
a composite system whose center of mass dynamic evolution conforms 
to Galilei's relativity, as clearly expressed by the ten Galilean conservation 
laws of total quantities. However, when the dynamic evolution of each 
constituent is considered, a necessary condition for unrestricted forces, 
is that the equations of motion be, in general, not form-invariant under 
the Galilei group.48 This is exactly the case of the more general closed 
non-self-adjoint systems. By recalling that Einstein's special relativity 
recovers Galilei's relativity for v ~ c, the occurrence is also expected, 
for consistency, at the relativistic level, and studies to this effect are in 
progress (see Santilli (1982d) and De Sabbata and Gasperini (1982)). 

Admittedly, the situation being considered has not been experimentally 
established yet at the quantum mechanical level. Nevertheless, the problem 
of the relativity applicable to a particle under strong interactions is still 
open at this time on both experimental and theoretical levels. Thus the 
results outlined in this chart establish that strict compliance with Einstein's 
special relativity for a composite particle under long-range interactions 
(e.g., a proton in a particle accelerator) does not necessarily imply that the 
same relativity is applicable to the characterization of the constituents. 49 

In fact, if the constituents of the protons have the same characteristics of 
all known strongly interacting particles (a wave packet with a charged 
radius on the order of the range of the strong interactions 12.14), then each 
constituent moves within the medium constituted by the other particles, 

48 The imposition of any symmetry (whether Galilean or not) implies restrictions 
on the functional dependence of the forces. 

49 For the case of hadrons, we have the following two alternatives. If a hadron is 
a closed self-adjoint system, the center of mass dynamics conforms with the 
Lorentz transformations, and in addition the constituents are a suitable representation 
of the Lorentz group. In this case, we essentially have the same physical ideas and 
mathematical formulations as those for the atomic structure, only subjected to 
suitable additions (e.g., the addition of unitary internal symmetries). On the contrary, 
if a hadron is a closed non-self-adjoint system, the center of mass dynamics still 
conforms with the Lorentz transformations. However, the constituents would not 
be a representation of the Lorentz group but considerably more complex entities 
(e.g., two-sided representations of possible Lie-admissible generalizations of the 
Lorentz group). In this latter case, the generalization of the physical ideas and 
mathematical formulations in the transition from atoms to hadrons would perhaps 
be comparable to those in the transition from classical mechanics to quantum 
mechanics. 
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resulting in a structure which is substantially more complex than that of 
Equation (12). A few concluding remarks related to the connection of 
Definition 6 with the Inverse Problem are now in order. 

Definition 7. A closed system is said to be non-self-adjoint when the 
equations of motion of the constituents generally violate the integrability 
conditions for the existence of a direct Lagrangian representation in the 
coordinate and time variables of the observer. 

The reasons are evident. Imposing system (11 a) to verify the conditions 
for an indirect Lagrangian representation (Theorem A.1.1) implies a 
substantial restriction on the forces, which may be contrary to nature. 
Therefore, a closed non-self-adjoint system is truly achieved when the 
existence of a Lagrangian representation is prohibited and thus the 
applicability of Hamiltonian mechanics in the coordinate and time 
variables of the observer is also prohibited. 50 Only when the researcher 
technically realizes these conditions can he see the dichotomy of rela­
tivities under consideration; that is, he can realize the applicability of 
conventional relativity for the dynamic evolution of a system as a whole 
(exterior problem) and the need of generalized formulations for the 
dynamic evolution of its constituents (interior problem). 

The implications of these results are intriguing. For instance, a theory 
of the interior problem of gravitation is expected to permit a consistent 
description of simple interior motions (such as a satellite in the Earth's 
atmosphere) when the theory is not locally Lorentzian 51 in character and 
cannot be derived from a conventional (say, Riemannian) action principle. 

In Chapter 6 we again study closed non-self-adjoint systems, this time 
in their equivaitlnt first-order form. We will work out their Birkhoffian 
representation, symmetries, and conservation laws, and touch on the 
problem of the applicable relativity in more detail. 

Chart A.9 Noether's Construction of First Integrals from Given 
Symmetries 

In Charts A.6-A.8 we reviewed the notions of symmetries and first integrals 
in ways as disjoint as possible. In this chart we shall review the construc­
tion of first integrals from the given symmetries of a Lagrangian system, 
according to Noether's theorem. The topic is also called Direct Noether's 

50 As we indicate in Chart 6.1, the Birkhoffian generalization of Hamiltonian 
mechanics is applicable to the treatment of the system as a whole (exterior problem), 
while the Lie-admissible generalization of the Birkhoffian mechanics is applicable to 
each constituent (interior problem). 

51 One implication of the local Lorentz character of any gravitational theory 
for the interior problem is the locally exact character of the symmetry under the 
group of rotations, and this appears to be in irreconciliable disagreement with the 
local nonconservation of the angular momentum in interior motions (e.g., for a 
satellite in Earth's atmosphere). This can be expressed equivalently via the property 
that closed self-adjoint systems are based on the stability of the orbit (e.g., for 
planetary motions or atomic constituents), while closed non-self-adjoint systems 
are based on the instability of the orbits of the constituents, as apparently necessary 
under contact interactions 
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Problem to distinguish it from the Inverse Noether's Problem, which is the 
problem of constructing possible symmetries from known first integrals 
of a given Lagrangian. This latter topic is still open (and controversial), 
and we will not consider it at this time. 

Consider a connected 52 r-dimensional Lie group,53 Gr , of infinitesimal 
transformations of the first order 

k = __ oq'k I 
~i "" i ' 

vB '=0 

k = 1, 2, ... ,n; i = 1, 2, ... ,r; Bi ~ 0. 

(1 a) 

(1 b) 

According to Definition 3 of Chart A.6, a Lagrangian L (t, q, q) possesses 
a symmetry under transformations (1) if a gauge function SG(t', q') exists 
such that 

L(t, q, q)dt = L'(t', q', q')dt' 

[

A A A d~ ] 
= L (t + bt, q + bq, q + bq) + dt' oG(t', q') dt', (2) 

SG ~ GBi. , 
By using a Taylor expansion and rearranging the terms, expressions of 
type (12) of Chart A.7 can be reached. 

Lemma 1. A necessary and sufficient condition for a Lagrangian 
L(t, q, q) to possess a symmetry under transformations (1) is that the 
following condition is identically verified: 

A dAd A 

bL + L - (bt) + - bG = 0, 
dt dt 

(3a) 

(3b) 

A symmetry of a Lagrangian implies the following property of the 
action functional 

1t2 dt L(t, q, q) - f2 dt' L(t', q', q') = ft2 dt' :r, Gi(t', q')Bi. (4) 
t 1 t 1 t 1 

The left-hand side is the first-order noncontemporaneous variation of the 
action, Equation (1.1.3.39), i.e., 

SA = - ft2dt(~~ - ~)bqk + 
dt oqk oqk 

t 1 

ft2 d 
dt-J, 

t1 dt 
(5) 

[ oL (OL. ) A ] • del . J = - tik - - qk - L p. B' = J.B' oe/ 'I, oel ' , ' Sq = Sq + qSt, (5b) 

52 We exclude here discrete transformations (e.g., time and space inversions) 
because they cannot be incorporated in the context of Noether's theorem. Also, 
throughout this book the term" connected" always refers to the identity and not to 
possible additional. internal connectivity properties of a global group. 

53 The rudiments of Lie's theory are oljtlined in the charts at the end of Chapter 5. 
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where J is the first-order end-point contribution. In view of the indepen­
dence of the parameters of Gr , a necessary condition for Equation (4) is 
that the coefficients of the parameters are equal. In this way we reach 
the following property. 

Theorem 1 (First Noether's Theorem 54 ). If a Lagrangian L(t, q, cj) 
possesses a symmetry under an r-parameter connected Lie group Gr of 
infinitesimal transformations of the first order, then r distinct linear 
combinations of Lagrange's derivatives exist along an admissible path 55 

which are exact differentials, i.e., 

Lk (q)'11 = ~ Ii' i = 1, 2, ... , r, (6a) 

Ii = J i + Gi = li(t, q, cj), (6b) 

( dOL OL) 
Lk(q) = dt Ocjk - oqk (q), (6c) 

and which, when computed along an actual or possible path £0' char­
acterize r distinct first integrals, i.e., 

d 
- /.(£0) == o. dt I 

The following comments are in order. 

(7) 

1. Theorem 1 clearly demands prior knowledge of a Lagrangian. The 
Inverse Lagrangian Problem is therefore a prerequisite for its practical 
applicability. On formal grounds, the reader should keep in mind that, if 
Theorem A.1.1 is not applicable, the Theorem of Indirect Universality of 
the Hamiltonian of Chapter 6 holds and establishes a form of" universality" 
for the applicability of Noether's theorem to "all" Newtonian systems of 
the class admitted (regular and analytic). On practical grounds, the study of 
additional methods for constructing first integrals is advantageous, 
particularly when the computation of a Lagrangian is difficult, if not 
practically impossible. 

2. Theorem 1 also demands the prior knowledge of a symmetry. This is 
clearly an additional limitation which confirms the advisability of studying 
alternative approaches for constructing first integrals. Lie's method has 
been reviewed in Chart A.7 and presented as one of the most effective 
methods available for the prior identification of symmetries. Again, on 
formal grounds, the method is expected to give all possible symmetries, 
but the practical situation may be different because of the known technical 
difficulties in solving the underlying quasi linear partial differential equa­
tions. Also, it is not known at this time, even formally, whether or not Lie's 
method can produce all symmetries needed for the solution of a system by 
quadratures. 

54 Noether (1918). The theorem is called "first" because of additional theorems 
proved by Noether in the same paper. 

55 According to the definition of Section 1.1.3, an "admissible path" is an 
arbitrary path (not necessary a solution of the system) possessing the same continuity 
property of the solution. A "possible path" is a solution of the system without 
initial conditions and thus depends on arbitrary constants. The" actual path" is the 
solution of the system subject to all needed initial conditions. 
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3. As originally formulated by Emmy Noether, Theorem 1 deals with a 
strictly mathematical property, the construction of first integrals. The 
problem of whether or not first integrals represent physical conservation 
laws demands the explicit computation of the equations of motion, and 
the resolution of whether or not the first integrals are directly representative 
of physical quantities of the maximal, essentially self-adjoint subsystem 
(Chart A.S). 

4. Theorem 1 is applicable to all Lagrangians of the class admitted, 
including generalized Lagrangians of type (A.1.1S). Thus the theorem 
applies in general for non-conservative systems, without excluding its 
conventional applicability to conservative systems as particular cases. 
This confirms the expectation that first integrals originating from Theorem 1 
do not represent, in general, physical laws. 

5. The quantities Ii verify Equations (7) by virtue of the equations of 
motion, as necessary for first integrals. In fact, we can write 

d 
- /.(Eo) = Lk(Eo)l]k = O. dt I I 

(S) 

6. The r first integrals which can be constructed from an r-dimensional 
Lie symmetry via Theorem 1 are not necessarily independent among 
themselves. This property can easily be proved by considering a free 
particle in Euclidean space. The Lagrangian L = 1mr2 is invariant (at least) 
under the ten-parameter Galilei group. Theorem 1 then yields ten different 
first integrals. These quantities, however, cannot all be independent 
among themselves because the maximal number of independent first 
integrals admitted by the system is six. A study of this situation is instruc­
tive (Problem A.S). 

7. Theorem 1 can be formulated in terms of contemporaneous trans­
formations only. In fact, only the quantities 

(S) 

enter into the formulation of Noether's identity (6a). We have chosen the 
formulation presented above mainly for pedagogical reasons. In fact, the 
symmetries of a Lagrangian are generally noncontemporaneous, particu­
larly when originating from the use of Lie's method. Also, transformations 
involving time are particularly important in physics for a number of 
relativity aspects, and a formulation of Noether's theorem for generally 
noncontemporaneous symmetries appears advisable. 

Celebrated examples of Noether's theorem are provided via the con­
nected components of Galilei's transformations. By returning to the use of 
Cartesian coordinates in a two-dimensional (for simplicity) Euclidean 
space, connected Galilei's transformations in their (first-order) infinitesimal 
form can be written 

(Ri) = (0 
J \ 1 

-1) 
o ' i, i = 1,2 (10) 

where Mo ' oro' oV6' and MJo are infinitesimal constants. For the case of 
translations in time, 

(11 ) 
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the necessary and sufficient conditions (3) for the existence of symmetry 
become 

OL 
-=0 ot 

and first integral (6b) becomes the Hamiltonian 

OL 
-I = -----:;i - L = const. 

0;' 

For translations in the ri coordinate (i fixed). 

condition (3) becomes 

OL 
-=0 
ori ' 

(12) 

(13) 

(14) 

(15) 

and first integral (6b) is given by the ith component of the generalized 
momentum: 

For the case of rotations 

OL 
1= -----: = const. 

0;' 

ri --+ r'i = ri + MJoRjri 

condition (3) becomes 

i = 1,2, 

Assuming for simplicity a conventional structure for the Lagrangian, 

L = 1mi"2 - V(r), 

the term 

R' OL. R' , ',-r1 = ',m;,;1 
10F l' 

(16) 

(17) 

(18) 

(19) 

(20) 

is identically null (because of the antisymmetry of Ri and the symmetry of 
;/i). Condition (3) then reduces to 1 

(21) 

that is, to the condition that the total torque is null. Integral (6b) then 
becomes the angular momentum 

OL, 
I = R' - r1 = r' p - r 2p = const. 

1 O;i 2 , 
(22) 

For the case of Galilei's boosts, 

(23) 

condition (3) becomes 

bvi (t OL + OL) + ~ bG = O. 
o ori O;i dt 

(24) 
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For a free particle, the condition becomes 

d 
m(bVo . r) + dt bG = 0, bG = -mbvo . r, (25) 

and first integrals (6b) are given by 

I = mr - pt = const. (26) 

The reader should keep in mind that these examples are mainly illustra­
tive. For unrestricted Newtonian systems, conditions (15). (16). (21). 
and (24) are generally violated. Even when some of them are verified, 
the corresponding first integrals do not necessarily represent a physical 
quantity, as we shall see in Chart A.11. 

Chart A.10 Isotopic Transformations, Symmetries, and First Integrals 

As indicated in the text of this appendix, whenever the integrability 
conditions of Theorem A.1.1 are verified, a large variety of functionally 
different, yet equivalent. Lagrangians exists. They can be constructed 
via any of the following means and their combinations: 

a) gauge transformations (Section A.2); 
b) isotopic transformations (Section A.2); and 
c) transformation theory of the local variables (Section A.3). 

The degrees of freedom of a Lagrangian are clearly important for the 
identification of as many symmetries and first integrals as possible. In 
fact. symmetries which are not manifest for one given Lagrangian may be 
turned into manifest symmetries for an equivalent Lagrangian. 

An example is provided by Lagrangians (15) of Chart A.7 for the particle 
with damping. In this case two independent first integrals are needed for 
the solution by quadratures. Suppose that these first integrals have to be 
identified via manifest symmetries and Noether's theorem. Knowledge of 
only the first Lagrangian, L 1 = (exp yt)·~p, is insufficient for this task, 
because its only manifest symmetry is that under space translation. The 
problem can be solved by including the second Lagrangian, L 2 = ; In ; - yr, 
which is manifestly invariant under translations in time, thus yielding the 
needed second first integral. 

In this chart we outline the studies by Santilli (1978c and 1979a) on the 
enlargement of the problem of symmetries and first integrals through the 
inclusion of isotopic transformations of a Lagrangian within a fixed 
system of local variables. The corresponding study of additional gauge 
transformations and transformations of local variables is left to the 
interested reader. 

Consider rule (A.2.7) for the isotopically mapped Lagrangians, i.e., 

(1 ) 

and let (hI: 1 i) be the inverse of the matrix (h~) of isotopic functions. 
The following property results: 

:r' = Lk(q)bqk = Li(q)h~h";lkbqj = Lk*(q)b*qk, 

(2) 
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From the validity of first integrals by virtue of the equations of motion, 
we can state the following lemma. 

Lemma 1. Functions I;(t, q, cj), which are first integrals for one given 
Lagrangian L (t, q, cj). remain first integrals for all possible isotopically 
mapped Lagrangians L *(t, q, cj). 

The considerable alteration of the structure of the Lagrangian under 
isotopic transformations on the one hand, and the preservation of the 
first integrals on the other hand suggest the possibility that the same first 
integral may be derived from fundamentally different symmetries. To 
investigate this possibility, Santilli (loc. cit.) introduced the following 
definition. 

Definition 1. Two Lie symmetry groups, G, and G;, of (infinitesimal 
or finite) transformations of the same dimension r are called isotopically 
related symmetry groups when they constitute symmetries of two iso­
topically related Lagrangians, L (t, q, cj) and L * (t, q, cj). respectively, 
which lead to the same (ordered) set of first integrals via Noether's 
theorem. 

To illustrate this, let us consider the linear harmonic oscillator in three 
dimensions. The Lagrangian 

L = 1[(mx2 + my2 + mi2) - (kX2 + ky2 + kZ2)] (3) 

possesses a symmetry under the group of rotations G3 = SO(3) which 
leads, via Noether's theorem, to the conservation of the physical angular 
momentum. One of the simplest possible isotopic images of L is given by 

L * = 1[(mx2 - my2 + mi2) - (kX2 - ky2 + kz2)]. (4) 

This new Lagrangian is no longer invariant under G 3' Yet the angular 
momentum conservation persists for L *. We then expect the existence 
of a new symmetry, G;, which leads to the conservation of the angular 
momentum via Noether's theorem. A study of the problem reveals that 
the symmetry G; exists and is given by the Lorentz group in (2 + 1) 
dimensions, SO(2.1). This is the manifest symmetry of L * which replaces 
SO(3) for the characterization of the angular momentum conservation. 
Thus SO(3) and SO(2.1) are isotopically related symmetry groups with 
respect to the harmonic oscillator. The algebraic structure of the group 
isotopy is indicated in Chart 4.2 and turns out to be induced by a structural 
change in the Lie product. 

As indicated earlier, the Inverse Noether's Problem (construction of 
symmetries from first integrals) is still quite controversial. The situation 
for isotopically mapped symmetries is different, however, because an 
original symmetry G, leading to first integrals I; is assumed to exist. The 
Inverse Noether's Problem is, in this case, restricted to the identification 
of the symmetry G; leading to I;. The integrability conditions for the 
existence of G; result in being always verified under the existence of the 
original symmetry G,. 

Theorem 1 (Existence Theorem for Isotopically Mapped, First-Order 
Symmetries). Suppose that an (analytic and regular) Lagrangian L (t, q, cj) 
admits an r-dimensional symmetry G, of infinitesimal transformations of 
the first order with related first integrals I;, i = 1, 2, ... , r. Then, an iso­
topically mapped Lagrangian L * (t, q, cj) always admits a symmetry G; of 
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infinitesimal transformations also of the first order in the same parameters 
leading to the same first integrals. 

This theorem is formulated specifically for the first-order case. The 
study of its extension to finite transformations is left to the interested 
reader. It is sufficient for our analysis to know that finite, isotopically 
mapped symmetry groups exist (this is the case for the symmetries SO(3) 
and SO(2.1) of the harmonic oscillator). 

A simple inspection of the examples of isotopically related symmetries 
establishes the following property. 

Lemma 2. Two isotopically related symmetry groups are not necessarily 
isomorphic. In particular, the isotopic transformations do not necessarily 
preserve the Abelian or non-Abelian, compact or noncompact, and semi­
simple or non-semi-simple character of the original symmetry. 

This property is sufficient to indicate that the isotopic transformations 
of a Lagrangian have a rather profound impact on symmetries, as expected. 
In fact, starting from Lagrangian (3) with the non-Abelian, compact, and 
semi-simple symmetry group SO(3), its isotopic image can, in principle, 
be an arbitrary three-dimensional Lie group, including the Abelian case 
(SO(2.1) is still non-Abelian and semi-simple but not compact; yet it is 
only one possibility). 

Intriguingly, these changes in the structure of the symmetries have 
their origin in the integrability conditions for the existence of a Lagrangian. 
In this way we begin to see some of the implications of the Inverse 
Problem beyond those for the computation of a Lagrangian. 

Chart A.11 Lack of a Unique Relationship between Space-Time 
Symmetries and Physical Laws 

The existing literature sometimes explicitly states or implicitly assumes 
that conventional physical laws, such as the conservation of energy, 
linear momentum, and angular momentum (and charge), are uniquely 
characterized by known space-time symmetries, such as, translations in 
time, translations in space, and rotations (and field-theoretical gauge 
symmetries), respectively. This belief has been disproved by the Inverse 
Lagrangian Problem. 

The best way to illustrate the situation is by explicit examples from 
Santilli (1978b and 1979a). The examples may also suggest caution in 
attributing physical meaning to a given space-time symmetry. The physical 
quantities considered are those defined in Chart A.8 and should not be 
confused with canonical quantities. 

Occurrence 1. When the total physical energy of a system is con­
served, a Lagrangian (for its analytic representation) may violate the 
symmetry under translations in time. The total physical energy of the 
harmonic oscillator 

(f + r)SA = 0, m = 1, k = 1 (1 ) 

is conserved. Nevertheless, this system admits a Lagrangian (Example A.1) 

L = 1/3 cos t + 1rP sin t - r2; cos t (2) 

which is explicitly dependent on time and, as such, violates the sym­
metry under translations in time. 



Indirect Lagrangian Representations via the Use of the Transformation Theory 341 

Occurrence 2. When the total physical energy of a system is not 
conserved, a Lagrangian may be invariant under translations in time. The 
linearly damped oscillator 

(3) 
is nonconservative. Thus its total energy decays in time, according to 
experimental evidence. Nevertheless, the system admits the Lagrangian 

L = ; In; - yr (4) 

which does not possess an explicit time dependence and is therefore 
manifestly invariant under translations in time. 

Occurrence 3. When the total physical linear momentum is conserved, 
a Lagrangian may violate the in variance under translations in space. The 
total linear momentum of the system 

( X - Ii + 2X) = 
.. + .. 0, 
x Y NSA 

(5) 

is conserved, as manifestly expressed by the second equation. Nevertheless, 
the system admits the Lagrangian 

L = 1X2 + xy + W2 - X2 (6) 

which violates the symmetry under translations in space (trivially, because 
it does not depend on the difference of the coordinates alone). 

Occurrence 4. When the total physical linear momentum is not 
conserved, a Lagrangian may be invariant under translations in space. The 
physical linear momentum of the damped particle is manifestly not 
conserved. Nevertheless, the system admits the Lagrangian 

(7) 

which is independent of coordinate r and, as such, is manifestly invariant 
under translations in space. 

Occurrence 5. When the total physical angular momentum is con­
served, a Lagrangian may violate the symmetry under rotations. The 
physical angular momentum of the three-dimensional harmonic oscillator 

(mi' + kr)SA = 0 

is conserved. Nevertheless, the system admits the Lagrangian 

L = -tm(x2 - y2 + i) - -tk(X2 - y2 + Z2) 

r = (x, y, z) 

which is manifestly noninvariant under rotations. 

(8) 

(9) 

Occurrence 6. When the total physical angular momentum is not 
conserved, a Lagrangian may be invariant under rotations. Consider the 
motion of a particle in two dimensions in a dissipative medium (a liquid 
or a gas) by ignoring action-at-a-distance (conservative) forces: 

[(X) (.1.XX2 + yxy - .1.XY2)] 
+ g ~ .2 . . ~. 2 = 0, 

Y SA 2 YY + xxy - 2 YX NSA 
r=(x,y). (10) 

Owing to the nonlinear dependence of the forces in the velocity, the system 
is in highly nonconservative motion. In particular, the physical angular 
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momentum M h = r x mr is nonconserved (as the reader is invited to 
verify). Nevertheless, the system admits the Lagrangian (Example A.3) 

L = exp(~ (x2 + y2»)1(X2 + y2) (11) 

which is manifestly invariant under rotations. 

Occurrence 7. The symmetry of a Lagrangian under Galilei's trans­
formations does not necessarily imply the validity of the conventional 
conservation laws of total physical quantities (energy, linear momentum, 
etc.). This is a consequence of Occurrences 2, 4, and 6. The illustration of 
the additional case of the lack of uniform motion of the center of mass, but 
invariance of a Lagrangian under Galilei's boosts, is left to the interested 
reader. The implications of the occurrence from a relativity viewpoint is 
self-evident. In fact, the mere existence of the symmetry under Galilei's 
group is not sufficient to establish the validity of Galilei's relativity as 
customarily intended in the physical literature, that is, as representative of 
physical laws. In turn, this illustrates a number of aspects presented in 
these volumes, such as the need of a return" ad originem." We are referring 
here to the assumption of Newton's equations of motion and their possible 
conservation laws as the physical foundations of the theory, and then the 
use of their Lagrangian representations, symmetries, and Noether's 
theorem as mathematical treatments. If the opposite approach is followed 
(assumption of symmetries and Lagrangian representations as funda­
mental). the physical content is not ensured. Indeed, all conventional 
space-time symmetries of examples 2, 4, and 6 produce first integrals 
via Noether's theorem. The point is that these first integrals have no 
physical meaning as conservation laws. 

The examples above establish the following properties: (I) when 
conventional space-time symmetries hold, the conventionally expected 
physical laws do not necessarily hold; and (II) when conventional 
physical laws hold, the conventionally expected space-time symmetries 
do not necessarily exist. The use of the techniques of the Inverse Lagrangian 
Problem establishes that the lack of any unique relationship between 
space-time symmetries and physical laws is even deeper. In fact. we have 
the following property from Santilli (loc. cit.). 

Theorem 1 (Lack of Unique Space, Time, and Space-Time Character 
of a Symmetry). The conservation law of a physical quantity cannot 
necessarily be derived from a symmetry of unique space, time, or space­
time character. 

This property is best illustrated by a specific example. Consider the 
harmonic oscillator (1). The conservation of the energy is often believed 
to be derivable only via symmetry of pure time character i.e., time transla­
tion (Definition 3 of Chart A.6). This belief is erroneous. Consider La­
grangian (2). Even though the symmetry under time translations is broken, 
an isotopic symmetry exists from Theorem 1 of Chart A.11, leading to the 
conservation of energy. Explicit calculations show that the symmetry is 
characterized by the following transformations (see Example A.7) 

(12) 

p* = OL */oq, H* = p*q - L *, r:J. = q cos t + q sin t 
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in which we see a combination of translations in space and time to produce 
the conservation of energy. The interested reader should work out the 
isotopic image of the symmetries under translations in space and rotations 
of the preceding examples. He will see again the lack of unique space 
character for the characterization of the conservation of linear momentum 
and angular momentum. The lack of uniqueness of the field theoretical 
gauge symmetry for the conservation of the charge has been pointed out 
by Santilli (loc. cit.). together with the identification of the field theoretical 
extensions of the properties above. 5 6 

56 Consider a charged scalar particle in interaction with an external electro­
magnetic field. The equations are given by 

{(~ 1) [(0 + m 2) <p) (eA.A'<p + 2iA.<P:')] } ° (0 + m2) iii + e eA.A'cp - 2iA.cp:' NSA SA = 0, 
(a) 

IX = 0, 1, 2, 3 

and the conserved, physical, charge current is 

J" = ie(cp<p;" - cp;"<p) + 2eA"cp<p. (b) 

This conservation law is customarily presented as one which can be derived from 
the invariance of the conventional Lagrangian 

2 = (cpj, + ieA") (<p;" - ieA") - m2«J<p 

under the (Abelian, in this simple case) gauge transformations 

(c) 

(d) 

To illustrate the lack of uniqueness of the gauge symmetry for the characterization 
of the charge conservation, Santilli (1978b and 1979a) constructed the following 
isotopically mapped Lagrangian 

2* = ~e2ieX"A"[cp:"cp~ - (m2 - e2A"A")] + ~e-2ieX"A" [<p;"<p,; - (m2 - e2A"A")]. 
(e) 

The physical charge current (b) is still conserved for 2*. Nevertheless, the symmetry 
under gauge transformations is now manifestly broken. The lack of uniqueness of the 
gauge symmetry is of even deeper nature in that it extends to the internal character 
of the transformations (lack of participation of the Minkowski coordinates). In 
fact, the isotopic image of the gauge symmetry was constructed and can be given by 
the transformations 

x" -+ x'" = x" + bx", 

(;) ~ (;:) = (;) + (;t)bX" + (::;x;~:~~i;:~A'») E. (f) 

One can see that the conservation law of an internal quantity such as the charge can 
be derived via a symmetry which is of mixed space-time and internal character. 
Notice that these results extend to the minimal coupling rules. In fact, Lagrangian 
(e) represents electromagnetic interactions with a manifest breaking of the minimal 
coupling rule. Incidentally, the appearance of an explicit dependence of Lagrangian 
(e) in the Minkowski space-time coordinates fully conforms to physical laws. 
In fact, the electromagnetic field is external for system (a), which is therefore open 
and exhibits a rate of variation in time of the energy-momentum tensor. This 
space-time non-conservation law is fully reflected in the explicit dependence of 
2* in the Minkowski coordinates. Therefore, the invariance of the conventional 
Lagrangian 2 under space-time translations is physically illusory. The nature of the 
symmetry breaking is identified in Chart 4.12. 
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In summary, Theorem 1 establishes that not only is the symmetry 
capable of representing a given physical law via Noether's theorem not 
unique, but the lack of uniqueness actually extends to the physical 
structure of the symmetry, whether of space, time, or space-time character. 

Chart A.12 Classification of the Breakings of Space-Time Sym­
metries in Newtonian Mechanics 

In the preceding charts we introduced the mathematical notion of 
symmetry through the form-invariance of the equations of motion or one 
of its Lagrangian representations. We then identified the methods for 
constructing first integrals from a known symmetry of a given system. 
Finally, we identified a possible physical meaning of the theory-that of 
representing physical conservation laws. Our primary emphasis was for 
conventional space-time symmetries, such as symmetries under transla­
tions in time, space, rotations, etc. 

An unprejudiced inspection of our Newtonian reality reveals, quite 
firmly, that the breaking of conventional space-time symmetries is the rule 
and their preservation is the exception. In fact, unless the symmetries 
are "broken" in one way or another, we would have oscillators oscillating 
forever, spinning tops spinning forever, and satellites orbiting forever. 

ln the transition from these open non conservative systems to their 
closed form, including their environment, total conservation laws are 
recovered. Yet the space-time symmetries remain generally broken, as 
established by the closed non-self-adjoint systems through the property 
that total conservation laws are not first integrals of the equations of 
motion (Chart A.8). 

It follows that the study of "broken symmetries" at large and that of 
"broken space-time symmetries" in particular are of fundamental 
relevance, mathematically and physically. Some of the problems inherent 
in this study are (A) classification of the mechanisms of breaking a given 
symmetry; (B) study of the time rate of variation of given physical 
quantities, as a generalization of the particular case of conservation; and 
(C) search for generalized symmetries which (a) hold when the conven­
tional symmetries are broken, (b) are representative of the rate of variation 
of physical quantities, and (c) when conventional conservations are 
recovered, recover the conventional ones. 

The study of these (and related) problems was initiated by Santilli 
(1978c and e) in an attempt to generalize Galilei's relativity for application 
to Newtonian systems with unrestricted forces and dynamic conditions. 
The study has been continued in the Workshops on Lie-Admissible 
Formulations (see the proceedings of 1979 and 1981). 

In this chart we review the studies related to Problem (A) only, that is, 
the classification of all possible ways in which a given symmetry can be 
broken, as presented in Santilli (loc. cit.; see also 1978b and 1979a). 

Definition 1. A symmetry of a Lagrangian is said to be physically 
exact, or simply exact. not only when the Lagrangian is form-invariant ac­
cording to the mathematical definition of Chart A.6, but also when the first 
integrals characterized by Noether's theorem are directly representative of 
physical conservation laws. The same symmetry under the same conditions 
is said to be physically broken, or broken, when either the original form­
invariance of the Lagrangian or the original conservation laws or both are 
no longer valid. 
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The primary emphasis of the definition is on the historical motivation 
for the introduction of symmetries in physics-their representation of 
physical laws. Mathematical aspects are considered too, of course, but 
only subordinated to this physical objective. Notice that, according to the 
definition, a given space-time symmetry is broken when it is mathematically 
exact but the conventional physical conservation laws are lost. Also, the 
same symmetry is broken when the form-invariance is lost but the 
conventional physical conservation laws are preserved. Explicit illustrations 
of these intriguing occurrences follow. 

I. Isotopic breaking. Consider a conservative Newtonian system in 
Euclidean space which possesses an exact space-time symmetry (ES) G; 
a (physical) conservation law I(t, r, r); and a Lagrangian L(r, i"), i.e., 

G: [mi' - f(r)Hl = 0 

L: L = Lfree + Lint' L = ~mr2 
free 2 ' 

01 01 01 f 
I: 1= - + -' r + -' - == 0, ot Or or m 

f = OL int 
Or' 

(1 a) 

(1 b) 

(1 c) 

as is the case, say, for a Coulomb system in vacuum, where G is given by 
the symmetry under translations in time and I is the total energy. 

The "weakest possible" (yet instructive) breaking is that for which 
the original symmetry is broken (BS) in such a way to leave the conserva­
tion law unchanged. This type of breaking is related to the rule of Lagrang­
ian isotopy (Equations (A.2.7)) and occurs when the isotopic functions 
are not invariant under the original symmetry G. We shall then write 

(2) 

The breaking is called of "isotopic type," 'in the sense of Chart A.10, to 
stress the fact that no actual change of the physical system takes place 
(that is, the forces are the same), and the only variations occur in its 
mathematical treatment. 5 7 

The breaking is instructive particularly for relativity profiles (Problem 
A.1 0). In fact, Galilei's group G (3.1) is now lost as the symmetry group of 
conventional physical laws and is replaced by a different, generally non­
isomorphic (Chart 4.10) symmetry group G* (3.1). This can easily be 
illustrated by considering a sufficiently complex isotopy of the Lagrangian 
for the free particle, and it shows that, even when Galilei's relativity is 
verified, its contemporary formulation is not unique. 

II. Self-adjoint breaking. Suppose that system (1) enters a dissipative 
medium (say, our atmosphere) by acquiring new forces F (t, r, r). The 
originally conserved quantity (say, the energy) is now no longer constant 
in time, but acquires a (non-null) time rate of variation. This is a necessary 
consequence of the presence of contact-type forces created by the 
medium, and we can write the nonconservation law 

. 01 01 01 f 01 F 
I = - + - . r + - . - + - . - =I O. ot Or or m or m 

(3) 

57 A Newtonian example is provided by the time-dependent Lagrangian ot the 
harmonic oscillator, Equation (2) of Chart A.11. One can see that the Lagrangian 
acquires an explicit time dependence, without affecting the conservation of the 
energy, because the isotopic function is explicitly dependent on time. 
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The loss of the original first integral is sufficient to establish the breaking of 
the original symmetry in the physical sense of Definition 1. 

The method for the classical breaking of a symmetry, which is used 
rather generally in contemporary literature, is given by the addition of a 
symmetry-breaking potential in the Lagrangian (or Hamiltonian). i.e. 

F - OL ~t _ d OL ~t 
-()r dt Tr' (4) 

When reinspected within the context of the conditions of variational 
self-adjointness, this breaking is called "self-adjoint type" because it 
implies the addition of self-adjoint forces to equations (1). and we write 

{[mY -- f(r)H~ - F(t, r, r)}~; = o. (5) 

However, Newtonian forces are generally not derivable from a potential, 
particularly when they are of contact type. Conventional symmetry breaking 
(4) is therefore one of the simplest possible mechanisms of symmetry 
breaking, and additional, more realistic mechanisms exist. 

III. Semicanonical breaking. The simplest nonpotential forces verify 
the integrability conditions of Theorem A.1.1 (non-essentially non-self­
adjoint forces). In this case, mechanism (5) is generalized into the form 

{h~[(mfi - f)U - F;l~~A}~~ = O. (6) 

The underlying Lagrangian is no longer of conventional type, but rather of 
generalized type (Section A.2) 

L = Lint.I(t, r, i')Ltree(i') + Lint.ll(t, r, i'). (7) 

Often, the forces responsible for the time rate of variation (3) are still 
form-invariant under the symmetry G, and the same situation occurs for 
the genotopic functions h~. Under these circumstances, generalized 
Lagrangian (7) is still invariant under G. Yet, the original physical meaning 
of the symmetry is lost. This type of breaking is called" semicanonical" 
in the sense that the canonical formalism of the symmetry can still be 
introduced. Yet, it loses the meaning of representing a physical law. 

Clearly, semicanonical breakings are still restrictive. Nevertheless, they 
occur in a number of cases frequently considered in the literature, particu­
larly when the symmetry breaking forces are approximated by linear 
velocity forces. 

As an example, suppose that system (1) is a free particle, symmetry G 
is under space translation, the conservation law is one of linear momentum, 
I = m;, and nonconservative extension (6) is given by 

(8) 

In this case we have a semicanonical breaking of the space translation 
symmetry because L is still invariant under the original symmetry, while 
linear momentum m; is no longer conserved. 58 

58 A field theoretical example of semicanonical breaking of the symmetry under 
space-time translations is given by the conventional Lagrangian for the charged 
scalar field under an external electromagnetic field, Equation (c) of footnote 56. 
The Lagrangian is indeed invariant under space-time translations, but this symmetry 
is not representative of the conservation of the energy-momentum tensor because 
the system is open. Notice that we call this type of breaking "semicanonical" 
rather than" self-adjoint" because the Lagrangian is of the simplest possible-yet 
generalized-type, with ..'l';nt I being represented by a permutation, as expressed in 
Equation (a) of footnote 56. For more details on this point see Santilli (1977b). 
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An additional example is provided by the physical spinning top (the 
spinning top with drag torques responsible for the decay in time of the 
angular momentum). The drag torques are usually assumed to depend on 
angular velocity alone, therefore preserving the original symmetry under 
rotations. Nevertheless, the angular momentum is no longer conserved. 
This yields a semicanonical breaking of the symmetry under the group of 
rotations SO(3) (see Example A.3). 

IV. Canonical breaking. This class consists of systems whose non­
potential forces still permit an indirect Lagrangian representation yet 
are no longer form-invariant under the original symmetry. We write 

(9) 

This class of breaking is called "canonical" in the sense that the 
canonical formalism can still be introduced (because of the existence of a 
Hamiltonian). However, the canonical formalism of the symmetry G 
is now inapplicable. The increase in the complexity of the forces therefore 
ensures the loss not only of the original conservation law but also of the 
original space-time symmetry. 59 

This type of symmetry breaking is more realistic than the preceding ones 
(although still restrictive). In fact. an inspection of system (8) clearly 
indicates that a more realistic treatment of the contact forces calls for an 
explicit dependence on space (e.g., because of variations in the density of 
the medium) 

(10) 

which implies a canonical breaking of the space translation symmetry.60 
Similarly, a deeper inspection indicates that drag torques of spinning 

tops may depend on the angle of rotation. If the torques verify Theorem 
A.1.1, we have a canonical breaking of the symmetry under the group 
SO(3), in the sense that tops can still be treated via the canonical formalism 
(e.g., via the Hamilton-Jacobi equations). Nevertheless, the formalism 
breaks down at the specifical level of the SO(3) symmetry. 

V. Essentially non-self-adjoint breaking. This is the most general 
mechanism of breaking conventional space-time symmetries which can be 
identified via the techniques of the Inverse Problem. In this case the forces 
not only break the original symmetry but actually violate the integrability 

59 Field theoretical examples of the canonical breaking of the symmetry under 
the Lorentz group are given by generalized Lagrangian models of the type 

Despite superficial impressions that terms of the type (qJ~qJ;") 2 are invariant under 
the Lorentz group, the symmetry is broken because the fields themselves, that is, 
the solutions of the field equations, do not transform covariantly under the Lorentz 
group. Notice that the breaking in this case is canonical and not semicanonical. 
Notice also that models of this type are expected as field-theoretical images of 
systems Cf.3), namely, as field theoretical extensions of the contact effects of 
mutual wave penetration, with underlying non local interactions approximated by 
power-series expansions of type Cf4) (see footnotes 12 and 14). 

60 The breaking is canonical because a Lagrangian (and, therefore, a Hamiltonian) 
exists by virtue of Corollary A.1.1 a. 
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conditions of Theorem A.1.1.61 In the language of Definition 4.4.1, we 
therefore write 

{[mi' - f(r)H~ - F(t, r, r)}~~SA = o. (11 ) 

The methodological implications of this type of breakings are rather 
deep. Not only is the canonical formalism of the original symmetry 
broken, but in actuality, the entire canonical formalism is inapplicable 
in the local variables of the experimenter, as established by the lack of 
existence of a Hamiltonian. This implies, in particular, the impossibility of 
introducing a Lie algebra via the brackets of the time evolution in the local 
variables of the observer. 

In this case the breaking of conventional space-time symmetries in 
general and Galilei's relativity in particular are brought to the level of 
inapplicability of the mathematical foundations, that is, Lie's theory. This 
becomes readily understandable and acceptable if one recognizes that 
contact forces in mechanics (whether discrete or continuous, classical or 
quantum mechanical, etc.) are not only of nonpotential type, but actually 
of nonlocal type. 

This is a further indication that the problem of the relativity applicable 
in Newtonian mechanics (no relativistic, gravitational, and quantum 
mechanical extensions!) is still fundamentally open at this time. 6 2 

EXAMPLES 

Example A.l 

All the following Lagrangians and Hamiltonians 

L = t(42 _ q2), 

L! = 2 ~ arctan ~ - In<q2 + q2), 
q q 

qt = 2 ~ arctan q~ + ~q - In(q2 + q2), C = const., 
q q - qc 

H = t(p2 + q2), 

H! = 21n Iq sec tqp* I, 

(Ia) 

(Ib) 

(Ic) 

(Id) 

(Ie) 

(If) 

61 Examples of essentially self-adjoint breakings of the Lorentz symmetry in 
field theory are given by equations of the type 

(0 + m2)rp + rpkrp:· + (rpkrp:.) 2 + ... = 0, 

for which the integrability conditions for the existence of an indirect Lagrangian 
representation (Santilli (1977a,b,c» are inconsistent. In this case, the field equations 
are not form-invariant under the Lorentz group (because the solutions are not 
compatible with the representations of the group), and, in addition, the canonical 
formalism is not directly applicable. 

62 This problem is studied in Section 6.3 (see also footnote 19 of the same 
section). 
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H!t = 2lnl q secG qpt - arctan~)I, (1g) 

H~ = q(tan t) sec t I (eP' cot tt)CD'! - In(eP ' cot tt)CD'! - 11, (lh) 

_ oL * _ oL! t _ oqt , oL~ 
P - oq' p - ail' p - 84' p oq 

represent the one-dimensional harmonic oscillator 

q + q = 0, m = 1, (2) 

that is, they all characterize the same implicit function f = - q, Thus the analytic 
equations in all functions (1) admit the same solution; any particular function of 
expressions (1) is admissible for the analytic representation of the system; and the 
selection of one representation versus another is therefore a matter of personal 
preference or practical convenience, 

The example under consideration is intended to illustrate that the techniques of 
the Inverse Problem allow the construction, at least in principle, not only of a 
Lagrangian (or a Hamiltonian) when they exist but also of all possible Lagrangians 
(or Hamiltonians) for the analytic representation of equivalent self-adjoint forms of 
the system considered, These" degrees of freedom" are then used to study the possible 
identification of new first integrals, as well as for other applications (Charts A6-A.12), 

The methods for constructing representations (1) are the following, The trivial 
function (la) is that producing the customary direct analytic representation 

doL oL 
- ----;- - - == (q + q)sA' 
dt oq oq (3) 

All other Lagrangians produce an indirect representation; that is, they verify the rule 

d oL* oL* 
dt ail - aq == [let, q, q)(ij + qhAJSA (4) 

where, in accordance with Corollary A.l.la, the quantities I(t, q, q) are first integrals. 
For instance, Lagrangians L! and L! are constructed via the first integrals 

respectively. 

11 = q cos t + q sin t, 

12 = (q2 + q2)-I, 

(5a) 

(5b) 

Lagrangians L, L! ,and L! are related by a chain of isotopies according to Equations 
(A.2.l2). Lagrangians L! and L!t are related, instead, by a Newtonian gauge trans­
formation, rule (A2.l) or (A.2.3), because 

2q C d fq c c. Lr - L! = - arctan - = -d dz - arctan - = C(q), 
q q t qo Z Z 

(6) 

All Hamiltonians of Equations (1) can be constructed via the Independent Inverse 
Hamiltonian Problem, that is, the methods for computing a Hamiltonian without 
any necessary prior knowledge of a Lagrangian (Sections 1.3,8-1.3.l2 and Chapter 4). 
Hamiltonians H, H!, and H!t are the Legendre transform of Lagrangians L, L!, and 
L!t, respectively. The Hamiltonian corresponding to L! and the Lagrangian corre­
sponding to H~ have not been given in Equations (1). Notice that the coordinates of 
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all Hamiltonians of Equations (1) are the same. Nevertheless, their generalized 
momenta are different, even for the case of the gauge transformations. The relationship 
between these Hamiltonians is shown in Chapter 5. 

The explicit computation of Lagrange's and Hamilton's equations with functions 
(1) is a truly instructive exercise for the interested student because it permits a knowl­
edge of the structure of these fundamental equations which is often overlooked. We 
refer, for instance, to the proper use ofthe total time derivative appearing in Lagrange's 
equations according to the full structure (.1".10), or the crucial role of the theorem on 
implicit functions (Theorem 1.1.1.1) for the construction ofthe second-order equations 
of motion from (first-order) Hamilton's equations (and vice versa). In turn, a sound 
knowledge of the structure of Lagrange's and Hamilton's equations at the Newtonian 
level is almost a necessity before passing to more complex branches of physics, such 
as field theory.63 

In closing this example, I would like to express my gratitude to Eugene Saletan 
who taught me the possible varieties of admissible Lagrangian representations for a 
given system. In particular, the functions L!, L!t, H!, H!t, and H~ were computed 
for the first time by Currie and Saletan (1966) via conventional techniques. 

Example A.2 

The following two-dimensional conservative system (undamped and unforced 
oscillators with acceleration couplings) 

{m,~, + mC~2 + k,q, + kcq2 = 0, 
mcq, + m2q2 + kcq, + k2q2 = 0, 

k" k2, kc =f. 0 

(la) 

(lb) 

is self-adjoint, as the reader is encouraged to verify with the use of Equations (4.1.12). 
The methods for the construction of a Lagrangian are trivial in this case, yielding 

the function 

When system (1) is written in the equivalent kinematic form 

ilk - fk(q) = 0, k = 1,2 (3a) 

(3b) 

(3c) 

it becomes non-self-adjoint. Thus a Lagrangian for the direct representation of 
Equation (3a) via conventional Lagrange's equations does not exist. Nevertheless, 

63 The erroneous way of writing Lagrange's equations in field theory (pointed out in foot­
note 5 of the Introduction) is often d\le to lack of sufficient study at the Newtonian level. 
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system (3a) can still be directly represented by a variational principle. Indeed, the 
following genotopy of the conventional Hamilton's principle (Section A.2) 

(4a) 

c5qi = el1(t), e ~ 0 (4b) 

(4c) 

produces the representation desired. 
The example is intended to illustrate the following aspects. 
1. The acceleration couplings are often needed to reach a Lagrangian representa­

tion, in the sense that when they are elimitated via the theorem on implicit functions, 
the emerging equations are often non-self-adjoint. This property has been illustrated 
here with a conservative system. The reader should therefore expect an even greater 
occurrence of the property for non-conservative systems. 

2. When the acceleration couplings are used, they necessarily result in a generalized 
structure of a Lagrangian even for conservative systems, with an understanding that 
such a generalized structure is necessary for Newtonian systems with non-self-adjoint 
forces. Indeed, Lagrangian (2) is of type (A.2.15) because the extra term 1-mclillh does 
not represent free motion and cannot be incorporated into the additive term Lint. II, 

because of its nonlinearity. 
3. The genotopically mapped Hamilton's principle (4a) does indeed allow the 

representation of equations of motion in their non-self-adjoint form, but in a purely 
formal treatment, in the sense that the Lagrangian, for the case considered, necessarily 
remains generalized. 

Example A.3 

The following equations describe the motion of a Newtonian particle in a Euclidean 
two-dimensional space with Cartesian coordinates 

{mx + Y(XX2 + 2yxy - xl) = 0, 

my + y(yy2 + 2xxy - yx2 ) = O. 
(1) 

Such a motion is highly nonconservative as a result of nonlinear velocity-dependent 
drag forces. The use of Equation (.f.l2) confirms the expectation that the system is 
non-self-adjoint. The use of Theorem A. 1. 1 establishes that the system is non-essentially 
non-self-adjoint. A system of genotopic functions is given by 

(2) 

The corresponding Lagrangian induced by Equation (A.UO) is 

L = exp(!; r2 )!mr2, r = (x, y). (3) 

Predictably, this Lagrangian is of the generalized type; that is, it exhibits an essential 
multiplicative term to that representing free motion, while the additive interaction 
term is, in this case, null (up to gauge as well as isotopic transformations). A methodo­
logically significant aspect of this example is that the orbit of the particle is unstable. 
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because of nonlinear velocity-dependent drag forces (e.g., motion in a viscous 
medium). Thus the physical angular momentum is not conserved, i.e., 

d d 
- M = - (r x mt) #- 0. 
dt dt 

(4) 

Nevertheless, Lagrangian (3) is invariant under rotations. The example therefore 
illustrates semi-canonical breaking of the symmetry under the group of rotations, in 
the sense of Chart A.l2. 

Example A.4 

The analytic, regular, nonlinear, and nonconservative system 

(3'2")" (1'2")" Y"3 Y" 3 -rq1 + q1q2 q1 + -rq2 + q1q2 q2 - 3 q2q1 - 3 q1q2 

+ y(41 + 42 + 1)(!424f + !414~ + M~ + Mn = 0, 

!4fq1 + !4~q2 
+ y(41 + 42 + 1)(!424f - !414~ + i4~ - MD = 0, 

(1) 

is non-self-adjoint, as the reader can verify. The only possibility (see Problem A.l) 
for the existence of a Lagrangian representation in the coordinate and time considered 
is that the system is of non-essentially non-self-adjoint type. In other words, Equation 
(1) admits consistent conditions of self-adjointness (A. 1.9) in the genotopic functions 
h~. A study of these equations confirms that this is indeed the case. One solution in the 
genotopic functions is given by 

(hi) = !eY(Ql+q2+t)G _~). (2) 

As expected from the Cauchy-Kovalevski Theorem, this solution is analytic too. 
Theorem A.l.1 then applies and yields as one Lagrangian 

(3) 

The study of the possible existence of different genotopic functions, and thus different 
Lagrangians, isotopically related to (3) is left to the interested reader. 

Notice the need of five functions-four genotopic functions and one Lagrangian­
for the construction of the analytic representation being studied. 

Example A.5 

Darboux's construction of a Lagrangian in its original formulation (Darboux, 1894) 
is illustrated here for the case of the one-dimensional, non-self-adjoint system 

q - f(t, q, 4) = 0, f = 2 (t4 - q) 
t2 . 

The problem is to identify a solution L of the second-order quasilinear partial differ­
ential equation 
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which is consistent (because it verifies the condition of Theorem 2 of Chart A.3). 
In this case the characteristic equations can be written 

dt dq dq dM 

1 q 2(tq - q) 2M/t 
t 2 

a2L 
M = aq2' 

The first integrals are 

tq - q 
-t-2 - = u; 

2' 
t q - q = v; Mt 2 = m = F(u, v) 

1 

and the solution for M can be written 

a2 L F(u, v) 1 [(tq - q) (2q .)] 
M = aqz = a(t; u, v) = t'2 F -t-2 - ; t - q 

where F is an arbitrary function of its arguments. 
The solution for L is then 

1 r [(tz - q) (2q )] L(t, q, q) = t'2 Jo (z - q)F -t-2 - ; t - z dz 

+ C(t, q) + D(t, q)q, 

and the consistency conditions for C and D become 

ac aD 
---=0. 
at aq 

Assume now, for simplicity, F = 1, C = D = O. Then 

Thus 

1 . 2 
L = __ ·2 + qq _ ~ 

2t2 q t3 2t4 

a2L a2L a2L aL 
aq2 ii + aq aq q + aq at - aq 

3q aL 
t4 ' aq 

1.. 1, 2q 3q q q 
= -t'2 q +t1 q +(3"-"(4-t1+t'4 

= - {~ [ii - 2(tq ;- q)] } . 
t t NSASA 

It should be stressed that Lagrangian (Sa) is not unique. 

(4) 

(5) 

(6) 

(7) 

(Sa) 

(Sb) 

(9) 

A comparison of Darboux's approach with that used in these volumes is'instructive. 
The problem, according to Equation (A.1.S), is to solve h of the condition of se1f­
adjointness (A.1.11) for an equivalent self-adjoint form. 
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One solution is given by h = l/t2• This function is well defined on a star-shaped 
region centered at the origin because trivially, the star-shaped condition refers only 
to the q and q variables. Method (A.1.10) for the construction of a Lagrangian then 
applies, yielding Lagrangian (8a). 

By recalling that Darboux's approach is equivalent to that presented here (Problem 
A.l), in the former we must solve a second-order partial differential equation in a 
Lagrangian, while in the latter we must solve a first-order equation in the genotopic 
function h and then compute a Lagrangian through integrals (A.1.10). As a result, 
when the use of anyone of these methods presents technical difficulties, one can 
attempt to bypass them by using the other one. 

Example A.6. 

We shall illustrate here a property (Section A.3) according to which coordinate 
transformations can be self-adjoint genotopic, that is, capable of transforming a given 
non-self-adjoint system into an equivalent self-adjoint form. 

The one-dimensional system of the general second-order form 

is non-self-adjoint, yet the point transformation 

q -> q' = tq2 

turns system (1) into the equivalent self-adjoint form 

d d 
(ij')SA = 0, ij' = dt (q') = dt (qq) = qij + qz. 

At the Lagrangian level this case can be expressed as follows 

( d oL' OL') 
dt oq' oq' SA 

= (ij')SA 

[Oq (d oL OL)] [1 ] = - - - - - = - (q2ij + qq)~AR = 0 
oq' dt oq oq SA NSA q NSA 

(1) 

(2) 

(3) 

(4) 

and illustrates Equations (A.3.20). Note the crucial role of the Jacobian in the trans­
formation from a self-adjoint form to an equivalent non-self-adjoint one. Notice that 
it is also possible to obtain the Lagrangian representation in the original system by 
using Theorem A.l.1 with integrating factors. Thus the use of point transformations 
does not broaden the representational capabilities of Theorem A.I.I. Yet, these 
transformations are often useful in practical applications, e.g., by turning a system of 
partial differential equations (A.I.9) in one coordinate frame into a possibly more 
manageable form in a new coordinate frame. 

Example A.7 

We study here the relationship between the conservation of the (physical) total energy 
and the symmetry under translations in time for the simple one-dimensional harmonic 
oscillator 

ij + q = 0, m = 0, w=O (1) 
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The transformation under considerations is 

t --> t' = t + to (2) 

where the constant to is, at this point, finite. The corresponding transformations of 
the q-coordinate is given by 

q(t) --> q(t) = q(t - to) 

The equations of motion is trivially form-invariant under this transformation 

q(t) + q(t) == ij'(t') + q'(t') 

which, therefore, constitutes a symmetry of the equation of motion. 
We now introduce the familiar Lagrangian 

L = t(q2 _ q2) 

Its form-in variance is expressed by 

L(q, q) == L(q', q'), 
at' 
-= I 
at 

(3) 

(4) 

(5) 

(6) 

Thus, transformation (2) characterizes a finite, exact, noncontemporaneous symmetry 
of L. 

To use Noether's Theorem for the identification of the underlying conservation 
law, we must restrict transformations (2) to be infinitesimal of the first order. This can 
be simply achieved by assuming to = W E Oe. The transformation is of pure time-type. 
Noether's theorem then yields the (first-order) conserved quantity 

I = - (q ~~ - L )W = - H(q, q)w (7) 

which represents the physical total energy of the system. 
As established in Section A.2, Lagrangian (5) is highly non-unique. Among all 

possible isotopically mapped Lagrangians we consider the form (Example A.1) 

(8a) 

d au au (d aL aL) ----=ct(t)---- ct=qcost+qsint 
dt aq aq dt aq aq' 

(8b) 

Since this Lagrangian is now explicitly dependent on time, the original symmetry is 
broken without affecting the conservation law of the total energy. This can be proved 
by ignoring all Lagrangian representations and verifying the following rule within 
the context of the equation of motion 

. aH aH 
H = - q + -. f = qq - qq == 0 

aq aq 
(9) 

Theorem I of Chart A.1O holds and a new symmetry which leads to the same conserva­
tion law exists. This new symmetry can be identified by noting first that the con­
temporaneous variation associated with transformations (2) which, in this case is given 
by b 1 q = - qw and it is the variation appearing in the Noether's identity for the 
original Lagrangian. 

We then construct the corresponding (still contemporaneous) variation b!q 
associated with L· via the methods of Chart A.IO, which is given by 

1 3 1 q 
b. q = ct(t) b q = - ct(t) w (10) 
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A solution the (first order) inverse Noether's problem is then given by 

oU q 
H+--oq lX(t) A • 

L. == P.(t, q, q)w (lla) 

(llb) 

(llc) 

The symmetry above is of mixed space-time type. This first proves that the conserva­
tion of the total energy is not uniquely associated with the symmetry of the Lagrangian 
under translation in time and, second, illustrates Theorem 1 of Chart A.ll, namely, 
that the isotopical image of the a pure time transformation can be of mixed space­
time type. In fact, for a pure time translation we must have the condition 

(12) 

which is violated by symmetry (11) as expressed by (llc). 

Problems 
A.1 Prove that the formulation of the Inverse Lagrangian Problem by Darboux 

(1891), Douglas (1941), and others, 

is equivalent to that used in these volumes, 

d oJ.) oL' .. 
dt oqk - al == [hki(q' - 1')], det(h) =f. 0, 

that is, the existence of a solution L(t, q, q) in one approach implies the existence of a 
solution L (t, q, q)in the other approach and vice versa, up to equivalence transformations 
within fixed local variables, such as the gauge and isotopic transformations of 
Section A.2. 

A.2 Prove Lemma A.2.1. 

A.3 Prove that, if a Lagrangian L admits two different isotopic images according 
to the rules 

= {h~2)i[h!i)j(~ o~ _ o~) ] } 
dt oq oq SA SA SA 
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the following reformulations of Hamilton's principle hold 

A.4 Study the equations of variations of the generalized Lagrange's equations 
(15) of Chart 5.7. Identify the conditions under which the equations of variations reduce 
to an equivalence transformation of Jacobi's equations (Section 1.3.3) 

. [d aJ aJ] gk(t) dt alji - a'1i = 0, 

J=1.[~.i.j 2~·ij ~ ii]. 
2 ail ail '1 '1 + ali aqj '1 '1 + aqi aqi '1 '1 , 

finally, prove for the one-dimensional case that, when the function h is a first integral, 
the equations of variations coincide with their adjoint (i.e., are self-adjoint, according to 
the terminology of these volumes). 

A.5 Construct a Lagrangian representation for the non-self-adjoint Bessel 
equation (see also Problem 1.2.2) 

[t2ij2 + t4 + (tz - n2)q]NSA = 0, t i= O. 

A.6 Prove that the genotopic transformations 

{hl(t)[Q(t)ij + b(t)4 + C(t)q]NSAhA = 0 

{hzCt)[a(t)ij + b(t)4 + c(t)q - d(t)]NSA}SA = 0 

are verified by functions 

1 {II bet)} hi = -exp dT-
a(t) 0 aCT) 

{I I bet) - d(T)} 
h2 = exp dT , 

o aT 

da 
d(T) =-. 

dT 

A.7 Prove that the following systems are non-essentially non-self-adjoint, and 
compute a Lagrangian representation according to Theorem A.l.1: 

{~I + 2/'(~1 + ~Z)~I + 2/,qlqz + qz = 0, 
q2 + 2/,(ql + q2)q2 + 2/,qlq2 + ql = 0, 

{

ijl + ty4i + /'4143 = 0, 

q2 + t4~ + /'4243 = 0, 

q3 + ty(43 - 4i eyq , - 4~ em) = O. 
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A.8 Extend the analysis of Chart A.4 to the case with an explicit dependence on 
time. 

A.9 Consider a free particle in a three-dimensional Euclidean space and the ten 
first integrals which can be constructed through the use of the Galilei's symmetry 
(Chart A.9). Prove that only six first integrals are independent. 

A.lO Consider a Lagrangian for the free motion in three-dimensions, L = tmt2, 

its symmetry under the Galilei group G(3.l), and the related ten conservation laws 
i;(t, r, t) = O. Construct an isotopic image L * of L via the techniques of Section A.2, 
and then compute the infinitesimal symmetry G*(3.1) of L * which is isotopically related 
to G(3.1), that is (Chart A.lO), which leads to the same conservation laws i; = O. 
Identify the type of breaking of the original G(3.1) symmetry along the lines of Chart A.l2. 
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