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Preface 

The objective of this monograph is to present some methodological 
foundations of theoretical mechanics that are recommendable to graduate 
students prior to, or jointly with, the study of more advanced topics such 
as statistical mechanics, thermodynamics, and elementary particle physics. 

A program of this nature is inevitably centered on the methodological 
foundations for Newtonian systems, with particular reference to the central 
equations of our theories, that is, Lagrange's and Hamilton's equations. 
This program, realized through a study of the analytic representations in 
terms of Lagrange's and Hamilton's equations of generally nonconservative 
Newtonian systems (namely, systems with Newtonian forces not necessarily 
derivable from a potential function), falls within the context of the so-called 
Inverse Problem, and consists of three major aspects: 

I. The study of the necessary and sufficient conditions for the existence 
of a Lagrangian or Hamiltonian representation of given equations of 
motion with arbitrary forces; 

1. The identification of the methods for the construction of a Lagrangian 
or Hamiltonian from the given equations of motion; and 

3. The analysis of the significance of the underlying methodology for 
other aspects of Newtonian Mechanics, e.g., transformation theory, 
symmetries, and first integrals for nonconservative Newtonian 
systems. 

This first volume is devoted to the foundations of the Inverse Problem, 
with particular reference to aspects I and 2. The second volume deals 
with some generalizations and applications of the Inverse Problem, with 

xi 
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particular reference to aspect 3, and the problem of the construction of 
equivalent forms of the equations of motion that satisfy the conditions for 
the existence of a Lagrangian or Hamiltonian representation. 

I had several motivations for undertaking this task. The first motivation 
came to me as a teacher. Indeed, the decision to study the analytic representa
tions of systems with arbitrary Newtonian forces grew out of my uneasiness 
in teaching a graduate course in classical mechanics in the conventional 
manner. Typically, an articulated body of interrelated methodological 
formulations (i.e., analytic, variational, algebraic, geometrical, etc.) is 
presented; but in the final analysis, in view of the lack of knowledge of the 
methods for computing a Lagrangian for systems with more general 
Newtonian forces, these formulations are nowadays applicable only to 
systems with forces derivable from a potential function (basically, con
servative systems). My uneasiness was ultimately due to the fact that, 
strictly speaking, conservative systems do not exist in our Newtonian 
environment. As a result, the Lagrangian representation of conservative 
Newtonian systems is, in general, only a crude approximation of physical 
reality. 

A few remarks are sufficient to illustrate this point. For instance, the 
entire conventional theory of the Lagrangian representation in the space of 
the generalized coordinates of conservative Newtonian systems subject to 
holonomic constraints, is based on the often tacit assumption that the 
constraints are frictionless. But in practice, holonomic constraints are 
realized by mechanical means, e.g., hinges, rods, etc. Therefore, the presence 
of frictional forces is inevitable whenever holonomic constraints occur and, 
in turn, a Lagrangian representation that does not reflect this dissipative 
nature can only be considered a first approximation of the systems considered 

Owing to the fundamental nature of the knowledge of a Lagrangian or 
Hamiltonian, the above limitation of the conventional approach to 
Newtonian Mechanics is present at virtually all levels of the theory. For 
instance, the theory of canonical transformations for the one-dimensional 
harmonic oscillator is well known. But the extension of this theory to the 
more realistic case of the damped oscillator is not treated in currently 
available textbooks, again because of the lack of methods for constructing a 
Hamiltonian when damping forces are present. Similarly, the Hamilton
Jacobi theory of the frictionless spinning top is well known, but its extension 
to the system which actually occurs in our environment, namely, the spinning 
top with damping torque, is unknown at this time to the best of my knowl
edge. Therefore, the analysis presented in this monograph, the analytic 
representations of nonconservative Newtonian systems, grew out of my 
attempts to more closely represent Newtonian reality. 

Other motivations for undertaking this task came to me as a theoretical 
physicist. As we all know, the significance of Newtonian Mechanics goes 
beyond the pragmatic aspect of merely studying Newtonian systems, because 
its methodological foundations apply, apart from technical rather than 
conceptual modifications, to several branches of physics, such as quantum 
mechanics and elementary particle physics. As soon as I became aware of 
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new methodological prospectives within the context of purely Newtonian 
systems, I became intrigued by their possible significance for other branches 
of physics. 

Predictably, it will take a considerable amount of time and effort by 
more than one researcher to ascertain the possible significance of the 
Inverse Problemfor non-Newtonian frameworks. Nevertheless, to stimulate 
research along these lines, a few remarks are presented in the Introduction. 

Owing to the lack of recent accounts of the Inverse Problem in both the 
mathematical and the physical literature, one of the most time-consuming 
parts of my program has been the identification of the prior state of the art. 
Indeed, it was only after a laborious library search, which I conducted over a 
three-year period by moving backward in time to the beginning of the past 
century, that I came to realize that the methodological foundations of the 
Inverse Problem were fully established in the mathematical literature by 
the first part of this century within the context of the calculus of variations. 
This was the result of the contributions of several authors, such as Jacobi 
(1837), Helmholtz (1887), Darboux (1891), Mayer (1896), Hirsh (1898), 
Bohem (1900), Konisberger (1901), Hamel (1903), Kurshak (1906), and 
others. The most comprehensive account of which I am aware is the thesis of 
D. R. Davis in 1926 at the Department of Mathematics of the University of 
Chicago, under the supervision of G. A. Bliss, subsequently expanded and 
published in three articles in 1928, 1929, and 1931 (see References). Since 
that time, regrettably, the problem remained largely ignored in both the 
mathematical and physical literature, with only a few exceptions known to 
me, which I shall indicate in the Introduction. 

In this volume I present the results of my search in specialized mathemati
cal and physical literature, and of my efforts on aspects such as the use of 
the Converse of the Poincare Lemma for the proof of the central theorem on 
the necessary and sufficient conditions for the existence of a Lagrangian, 
the methods for the construction of a Lagrangian from the given equations 
of motion, the independent treatment of the Inverse Problem for phase space 
formulations without the prior knowledge of a Lagrangian, and the alge
braic or geometrical significance of the necessary and sufficient conditions 
for the existence of a Hamiltonian. However, owing to the vast accumulation 
of literature in classical mechanics, calculus of variations, and other 
disciplines over the centuries, I make no claim to originality. 

I make no claim to mathematical rigor, either. I concentrated my efforts 
primarily on presenting and illustrating the basic concepts in as simple a 
manner as possible. In essence, by specific intent, this volume should be 
readable by first- or second-year graduate students without major diffi
culties. In writing this monograph, I have also attempted to render it self
sufficient-extensive reference study is needed only for certain complemen
tary aspects, such as for certain problems of the theory of differential 
equations or for certain geometrical interpretations, and a sound knowledge 
of undergraduate mechanics is the only prerequisite. 

I have also made an effort to adopt the most widely used notations and 
symbols. When necessary, new notations are identified by footnotes. 
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Equations are referred to by notation of the form (1.2.3a), where 1, 2, and 
3a indicate the chapter, the section, and the equations therein, respectively. 

The references are listed at the end of the volume in chronological and 
then alphabetical order. My list of textbooks must be considered as purely 
representative, though incompletely so, of contributions in theoretical 
mechanics and related disciplines. However, for specialized topics not 
treated in currently available textbooks, I have listed all the relevant ref
erences of which I am aware. 

January 3, 1978 

Lyman Laboratory of Physics 
Harvard University 
Cambridge, Massachusetts 

Ruggero Maria Santilli 
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Volume Organization 

In the Introduction, I formulate the Inverse Problem of the calculus of 
variations, point out its reduction to a Newtonian context, and indicate all 
the relevant references on such problem of which I am aware. 

In Chapter 1, I outline the rudiments of three disciplines, ordinary 
differential equations, calculus of differential forms, and calculus of vari
ations, which are prerequisites for the methodology of the Inverse Problem. 

In Chapter 2, I introduce the central mathematical tool of the analysis, 
the so-called variational approach to self-adjointness, and I specialize it to 
the most important forms of Newtonian systems. 

In Chapter 3, I work out the central objectives of this monograph, which 
consist of the necessary and sufficient conditions for the existence of a 
Lagrangian or, independently, a Hamiltonian, the methods for their com
putation from given equations of motion, and an analysis of those Newtonian 
forces that are admissible by a Lagrangian or Hamiltonian representation. 

In Appendix A, I review those concepts of Newtonian Mechanics .that 
are useful for the analysis of the main text, to avoid excessive reference to 
the existing literature. 

The presentation is organized into a main text, a series of charts, a set of 
examples, and problems. In the main text, I treat the essential concepts and 
formulations of the approach. In the charts, I present those complementary 
aspects which, even though not essential for the basic lines of the approach, 
are valuable for a deeper insight, and I touch on topics of more advanced 
nature for subsequent study by the interested reader. The examples are 
intended to illustrate the basic concepts introduced in the text only. The 
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problems are intended to test the student's understanding of the given 
methodology and then his capability to work out specific applications. 

The generalization of methodology of the Inverse Problem for the con
struction of a Lagrangian or Hamiltonian representation of systems of 
ordinary differential equations which, as given, violate the integrability 
conditions, is treated in Santilli (1979). 



Use Suggestions 

This book can be used as a textbook for a one-term graduate course on the 
Inverse Problem or on Nonconservative Newtonian Mechanics. 

For the use of this book as a reference book for a section of a regular 
graduate course in classical mechanics devoted to the Inverse Problem, the 
instructor is recommended to work out a summary presentation of Chapters 
2 and 3. 

For graduate students in physics, I recommend first reading the main 
text, verifying the illustrative examples, and working out the problems. 
Subsequent study should then incorporate the charts and quoted references. 
A prior inspection of the Appendix A might be recommendable. 

For graduate students and instructors in mathematics, this book can be 
complemented by currently available treatises on the calculus of variations, 
optimal control theory, differential geometry, and other topics to formulate 
the Inverse Problem in these disciplines. 

xix 



Introduction 

At present, there are several well-established and interrelated methodological 
formulations for describing Newtonian systems with (local) forces derivable 
from a potential, i.e., l 

k = 1,2, ... , N, (1.1 a) 

(1.1 b) 

For instance, by simply emphasizing the most significant aspects under 
consideration, we can distinguish among2 

1. analytic formulations, e.g., Lagrange's and Hamilton's equations, 
Hamilton -Jacobi theory, etc. 3 ; 

2. variational formulations, e.g., variational problems, variational prin
ciples, etc.4 ; 

3. algebraic formulations, e.g., infinitesimal and finite canonical trans
formations, Lie algebras and Lie groups, symmetries and conservation 
laws, etc.5 ; 

1 For a review of basic concepts, see the Appendix. 
2 For each of the listed topics there exists a vast bibliography. We quote below only a few 

representative references. 
3 Whittaker (1904), Goldstein (1950), Pars (1965). 
4 Lanczos (1949), Rund (1966). 
5 Saletan and Cromer (1971), Sudarshan and Mukunda (1974). 



2 Introduction 

4. geometric formulations, e.g., symplectic geometry, canonical structure, 
etc.6 ; 

5. statistical formulations, e.g., Liouville's theorem, equilibrium and 
nonequilibrium statistical mechanics, etc.7 ; 

6. thermodynamic formulations, e.g., irreversible processes, entropy, etc. 8 ; 

7. many-body formulations, e.g., stability of orbits, quadrature problems, 
etc. 9 ; 

and so on. 
In practice, a particular formulation is selected according to actual needs. 

For instance, when dealing with a small number of particles, analytic 
formulations may be used instead of, say, the statistical formulations. How
ever, when dealing with a large number of particles, the opposite selection may 
be preferable. 

One reason for constructing such a variety of formulations is that a 
sufficient depth in studying a given system is reached only when a sufficient 
number of aspects are taken into consideration. Physical reality is polyhedric, 
to say the least, in relation to our capability to represent it. Therefore, the 
level of our knowledge depends on how many aspects are considered and how 
deeply each ofthem is analyzed. This does not imply, however, that theoretical 
formulations are compartmentalized. Actually, all the above-mentioned 
formulations are so deeply interrelated that they form a single articulated 
body of methodological tools. As a set, they could be called by a single name, 
e.g., "the methodological formulations for Newtonian systems with (local) 
forces derivable from a potential." 

This interrelationship is due to the fact that the various formulations are 
centrally dependent, in either a direct or an indirect way, on the fundamental 
analytic equations of the theory, namely, the conventional Lagrange's 
equations: 

L tot = T(t) - U(t, r, t); 

and Hamilton's equations: 

H tot = T(p) + U(t, r, p); 

6 Jost (1964), Abraham and Marsden (1967), Guillemin and Sternberg (1977). 
7 Gibbs (1948), Katz (1967). 
8 Sommerfeld (1956), Tisza (1966). 
9 Wintner (1941), Khilmi (1961), Hagihara (1970). 

(L2a) 

(I.2b) 

(I.3a) 

(I.3b) 



with their interconnecting Legendre transform: 

aLtot 
Pk= ark' 
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(1.4a) 

(I.4b) 

The assumption of Equations (1.3) implies a unique characterization of the 
time evolution law in phase space: 

(1.5) 

where 10 

aA aB aA aB 
[A, Bll = :l_k· -;- - -;-. :lJ: 

ur- uPk uPk ur-
(1.6) 

are the Poisson brackets. Then, methodological tools such as canonical 
transformations, Liouville's theorem, etc. can be characterized in a sequential 
manner. 

An aspect of central methodological significance is that the algebraic 
structure which underlies the above-mentioned formulations is a Lie algebra. 
This is due to the fact that Poisson brackets (1.6) satisfy the Lie algebra 
identities 

[A, Bll + [B, A]cl = 0 (I.7a) 
and 

[[A, Bll , Cll + [[B, Cll, All + [[C, All, Bll = O. (l.7b) 

As a matter of fact, the methodological significance of Lie algebras is so 
prominent that the theory considered here can well be called the" Lie algebra 
approach to Newtonian systems." 

Methodological formulations 1-7 have a significance which goes beyond 
the description of Newtonian systems (1.1). Indeed, they are the foundations 
of virtually the entire current theoretical knowledge for the representation of 
non-Newtonian systems, such as quantum mechanical and quantum field 
theoretical systems. 

For instance, in the transition from Newtonian to quantum mechanical 
systems ll we have, in essence, the transition from functions in phase space 
A, B, ... obeying the time evolution law (1.5) to a Hilbert space· of Hermitian 
operators A, B, ... satisfying the Heisenberg law: 

. 1 
A(r, p) = iii [A, Htot]qm (1.8a) 

H H + H _1i2 ~ L\k + U 
tot = free int = L., 

k= 1 2mk 
(1.8b) 

10 The familiar convention on the sum of the repeated (Latin and Greek) indices, unless 
otherwise stated, will tacitly used throughout our analysis. 

11 For the problem of quantization see, for instance, van Hove (1951), Prosser (1964), 
Kostant (1970), and Souriau (1970). 
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Poisson bracket Equation (I.6) is then replaced by the algebraic product, 

[A, B]qm = AB - BA, (I.9) 

with the interconnecting limiting procedure (for polynomial functions) 

lim .1h [A, B]qm = [A, BJcl' 
/i-O I , 

(1.10) 

The releyapt aspect here is that the algebras characterized by brackets 
(1.6) and (I.9) coincide as abstract algebras. Thus, the theory considered here 
can also be called the" Lie algebra approach to quantum mechanical systems." 

In the transition from Newtonian to classical continuous systems, the 
methodology essentially demands a generalized form of the Lagrangian, i.e., 
the Lagrangian density12 : 

k = 1,2, ... , N, 

ff'tot = ff'rree(ql, 0llq>k) + ff'int(q>k, 0llq>k) 

Oq>k 
011 q>k = oxll ' p. = 0, 1, 2, 3, ... 

(1.11) 

x = r, 

where ff'rree represents the free systems and .Pint is an additive term which 
couples the fields; the independent variables are now both the time and space 
coordinates, and the fields q>k(t, r) take the place of the coordinates rk(t). The 
basic analytic equations of the theory are now Lagrange's equations for con
tinuous systems: 

(1.12) 

or Hamilton's equationsfor continuous systems: 

(1.13a) 

(I.13b) 

where the canonical momentum density 1tb the Hamiltonian density Jlfto\> 

the energy-momentum density ()OO, and the functional derivative [) are 
defined by 

off'tot 
1tk = O(Oq>k/ot)' 

(I.14a) 

(I.14b) 

12 See, for instance. Goldstein (1950) and Roman (1969). 
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(} IlV _ aft'tot av _ /" ft' 
- a(all (l) nk g tot> (1.14c) 

D.n"tot a.n"tot 
Dnk ank ' 

(1.14d) 

and 

a.n" tot a.n" tot d a.n" tot 

Dcpk = acpk - dr . a(acpkjar)" 
(I.14e) 

Here, the relevant aspect is that the time evolution law is again law (1.5), only 
written in the fOfm 

. _ [ ] _ f 3 (bA DHtot _ DA bHtot ) A - A, H tot - d r .;; k .;; .;;.;; k 
v ucp unk u1rk ucp 

(USa) 

(I.1Sb) 

Therefore, the underlying algebraic structure is still a Lie algebra. 
In the transition from classical to quantum field theory, 13 there is essentially 

a transition from the space offunctions cpk(t, r) to a space of operator-valued 
distributions. But, again, the algebraic structure of the theory remains a Lie 
algebra. 

A fundamental physical property common to all systems represented by 
structures (I.3b), (1.8b), and (I.14b), is that the acting Newtonian, quantum 
mechanical, or quantum field theoretical forces (or CO\liplihgS! are (local and) 
derivable from a potential. A central contention of this Ifibnograph is that 
these systems do not exhaust the physical reality. As a result, the study of the 
methodological formulations for more general systems is needed. 

For instance, the Newtonian systems of our everyday experience are not of 
type (U) because their forces are generally not d6fjvable from a potential. 
This is the case, for instance, of the motion of particles with drag forces
damped and forced oscillators, spinning tops with drag tdtques, etc. Indeed, 
a more general (local) Newtonian system is characterized by a collection of 
forces some of which are derivable from a potential and some not, and we write 

(1.16) 

where the fk(~k) forces are the collection of forces derivable (not derivable) 
from a potential, i.e., 

. au d au 
fk(t, r, r) = - ark + dt ark' (I.17a) 

. au d au 
~k(t, r, r) =1= - ark + dt ark' (1.17b) 

13 See, for instance, Streater and Wightman (1964). 



6 Introduction 

At a quantum mechanical level, the force responsible for the atomic 
structure, the Coulomb force, is known to be derivable from a potential. 14 

Thus, Hamiltonian (1.8b) produces a fully satisfactory representation of the 
atomic phenomenology. The situation is somewhat different at the nuclear 
level. The current representations of the nuclear forces as derivable from a 
potential are known to produce an excellent agreement with the experimental 
data. Neverthless, the nature of the nuclear forces is a problem which is still 
open to a considerable extent at this time, while the study of nonconservative 
nuclear processes has lately been increased. The situation is still more different 
at the level ofthe structure of the hadrons, i.e., the strongly interacting particles 
such as mesons, nucleons, etc., where the need of forces more general than 
the atomic and nuclear forces is conceivable, and its study is, in any case, 
recommendable. 

At a quantum field theoretical level, structures of the Lagrangian densities 
of type (1.11) are known to produce a physically effective representation of the 
electromagnetic interactions. The same structure, once implemented within 
the context of the so-called gauge theories, has also produced a physically 
effective unification of the weak and electromagnetic interactions. Neverthe
less, the problem of whether the same structure can also produce a physically 
effective representation of the strong interactions is still open today. 

These remarks are intended to indicate that the study of the methodological 
formulations for systems with forces not necessarily derivable from a poten
tial, besides its direct physical significance in Newtonian mechanics, might 
prove to be significant for other branches of physics, too. In any case, a study 
of this nature first demands the identification of the necessary methodology 
within the arena of our best intuition- Newtonian Mechanics. In turn, as 
indicated earlier, such methodology is centrally dependent on the assumed 
analytic equations. 

At this point, an alternative of major methodological implications occurs: 

1. Use of the equations originally conceived by Lagrange and H ami/ton, 
i.e., those with external terms. 

(U8a) 

(1.18b) 

(1.18c) 

H tot = Pk .. r' - L tot 

#k = '#'k(t, r, p) = Y;k(t, r, t). (1.18d) 

t4 Notice that Equations (I.\) contain, as a particular case, the more general Lorentz force. 
In this respect, see, for instance, Goldstein (1950). 
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In essence, Lagrange l5 ,16 and Hamilton 17 were fully aware that the 
Newtonian forces are generally not derivable from a potential. 
Therefore, to avoid an excessive approximation of the physical reality, 
they formulated their equations with external terms. Oddly, only since 
the beginning of this century have Lagrange's and Hamilton's equations 
been" truncated" with the removal of the external terms, by acquiring 
the form of Equations (1.2) and (1.3), which is primarily used in the 
current physical literature. Notice that for Equations (1.18b), the 
Hamiltonian can characterize the total energy, i.e., the sum of the 
kinetic and potential energies of all forces admitting a potential 
function 18 

H tot = T + V, (1.19) 

while all forces that do not admit a potential function are represented 
by the external terms. The methodological implications of Equations 
(1.18) are nontrivial. To illustrate this aspect, it is sufficient to note that 
the time evolution law for Equations (1.18b) is now given by 

. _ _ oA oH tot oA oH tot oA di; 
A(r, p) - (A, H)c1 - ;'1-k' -;'1- - ;;---. ~ + ;;---·.'#'k (1.20) 

ur- uPk UPk ur uPk 

while brackets (A, H) violate the Lie algebra laws, Equations (1.7). 
By taking into account the central role of Lie algebras in physics, as 
recalled earlier, this is an indication of deep methodological implica
tions in the transition from systems with forces derivable from a 
potential to systems with forces not derivable from a potential. This 
approach to systems (1.16) is explored in Santilli (1978, Vols. I, II, and 
III). Here, let us only indicate that, when properly written, Equations 
(1.18b) and (1.20) characterize an algebraic covering of Lie algebras 
called Lie-admissible algebras. 19 Predictably, this broader algebraic 
character has implications at several levels of the theory, e.g., the 
underlying geometry is no longer of symplectic type but rather of a 
broader type which has been called symplectic-admissible geometry 
(Santilli, 1978, Vol. II). 

2. Use of Lagrange's and Hamilton's equations without external terms, i.e., 

d oLr~t" oLr~t" 
dt ork - orI' = 0, (1.21a) 

(1.21 b) 

(I.21c) 

and 
(1.21d) 

15 Lagrange (1788). 
16 For historical notes see, for instance, Whittaker, (1904) and Pars (1965). 
17 Hamilton (1834). For historical notes see also Whittaker (1904) and Pars (1965). 
18 Notice that here we are referring to the notion of total energy for a nonconservative system, 

i.e., a system which does not conserve such energy by assumption. For a treatment of the case of 
damped-oscillator systems see, for instance, Symon (1960). 

19 Santilli (1968,1969,1970,1978). 
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In essence, systems with forces derivable from a potential can be 
effectively treated with only one type of analytic equation, i.e., Equations 
(1.2) or (1.3). The case of systems with forces not derivable from a 
potential is different. In this latter instance, two types of equations 
are admissible-those with and without external terms. However, 
when Equations (1.21) are used for systems (1.16), the Lagrangian or 
Hamiltonian structure is not longer oftype (1.2b) or (l.3b), respectively. 
Instead, these functions must possess generalized structures which, as 
we shall see in Section 3.7, can be written in the form 20 

N 

Lr:t = L L L!~~~I(t, r, r)L~~:Wka) + L int,lI(t, r, r), 
k=1 a=x,Y,z 

L (ka) _.1 (')2 
free - 2mk rka , (1.22) 

with a corresponding form for the Hamiltonian. The aspect of this 
second alternative, which is relevant here, is that time evolution law 
(1.5) is insensitive to the explicit functional dependence of the Hamil
tonian. As a result, the analytic brackets of the approach are still 
Poisson brackets (1.6) and the underlying algebraic structure is still a 
Lie algebra. In conclusion, when the conventional Lagrange's and 
Hamilton's equations can be used for the representation of non
conservative systems (1.16), the methodological profile is basically that 
for systems with forces derivable from a potential, in the sense that the 
analytic equations, the time evolution law, the underlying algebraic 
and geometrical structure, etc. remain formally unchanged. Neverthe
less, the nonconservative nature of the represented systems is reflected 

20 Notice that generalized Lagrangian (1.22): (a) demands the use of 3N + I interaction terms, 
3N multiplicative and one additive to the terms representing the free motion; (b) is a covering of 
conventional structure (1.2b) in the sense that it is a nontrivial generalization capable of re
producing structure (1.2b) at the limit when the multiplicative interaction terms reduce to unity 
(i.e., all the acting forces are derivable from a potential); and (c) does not necessarily possess the 
dimension of the energy. (1.22) yvill be studied further in Chapter 3. At this stage, the following 
example may be useful to illustrate the concept under consideration. One of the simplest systems 
with forces not derivable from a potential is the particle under a drag force which is linearly 
dependent on the velocity. Assume that the motion is in one dimension. The equation of motion is 
then given by 

mi'+yr=O, ;-#0. 

As we shall see in Example 3.1, the above system admits a representation in terms of Lagrange's 
equations (I.2Ia) and (at least) the following two nontrivially different Lagrangians. 

2 r 
LI:,I I = -; In -, . r c 

L;ol.lI = 0 

L;OI,lI = - '1cr, c = const. 

Since the acting force! = -yr is not derivable from a potential, both Lagrangians contain an 
essential term which multiplies the term for the free motion. In particular, Lagrangian Lr:t has 
the dimension of energy, while Lagrangian L::'~·o has not. Notice also the differences involved 
to recover the case! = O. For a study of the differences between these two Lagrangians from the 
viewpoint of the transformation theory, see Santilli (1979). 
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in a number of aspects. For instance, a necessary condition for Equa
tions (I.2lb) to represent nonconservative system (1.16) is that the 
generalized Hamiltonian does not represent the total physical energy 
[Equation (1.19)J, because otherwise it would imply the absence of 
forces not derivable from a potential. On equivalent grounds, one can 
see that, under the same conditions, the canonical momentum P of pre
scriptions (I.2lc) does not represent the physical linear momentum 
p = mr, or that the canonical angular momentum Mean = r X P does 
not represent the physical angular momentum M = r x p, etc. 

To summarize, a dual methodological profile appears to be conceivable for 
systems with forces not derivable from a potential, as induced by the use of 
analytic equations with external terms (alternative 1 above) or without 
external terms (alternative 2 above). 21 In the former case, the underlying 
methodology is generalized but the fundamental quantities of the approach, 
such as the Hamiltonian R tot , the momentum p, and the angular momentum 
M = r x p, possess a direct physical significance. In the latter case, the op
posite situation occurs, namely, the methodology is the conventional one, 
while the indicated fundamental quantities of the approach lose their direct 
physical significance. It is hoped that a judicious interplay between these two 
complementary approaches to the same systems will be effective on methodo
logical as well as physical grounds. On the former grounds, certain aspects 
which are difficult to treat within the context of one approach could be more 
manageable within the context of the other approach, and vice versa. On the 
latter grounds, the two complementary approaches could be useful for the 
identification of the physical significance of the algorithms at hand, which is 
one of the most insidious aspects of the study of nonconservative systems. 22 

21 See chart A.9 (of the Appendix) for a dual formulation of Liouville's Theorem. 
22 One of the best examples to illustrate this aspect is given by the problem of the quantization 

offorces not derivable from a potential which, despite initial efforts, is still an open question today. 
As is well known, in order to comply with the correspondence principle, the familiar quantization 
rule 

h 
Linear momentum ---+ - V 

i 

must be applied to the canonical momentum [Equation (I.21c)]. The comparison of the pre
diction of the theory with the experimental data is then based on expectation values of the quan
tum mechanical operator (hjOV. Within the context of systems with forces derivable from a 
potential, the approach is fully consistent on both mathematical and physical grounds. The 
corresponding situation for the case of systems with forces not derivable from a potential appears 
to be consistent on mathematical grounds. Nevertheless, its physical consistency demands a 
specific study. Indeed, we are now dealing with the expectation values of the operator (hji)V, 
whose Newtonian limit under the correspondence principle, Equations (I.21c), is not representa
tive of the physical linear momentum, i.e., it is a mathematical quantity of the type 

'Y, fI = const. 

Clearly, until the problem of the identification of the quantum mechanical representative of the 
physical linear momentum p = mr is not resolved, the physical consistency of the theory in 
general, and the comparison of its prediction with the experimental data in particular, are in 
question. Notice that the same problem also occurs for other dichotomies, e.g., the canonical 
Hamiltonian-vs-total physical energy and the canonical angular momentum-vs-physical 
angular momentum. For a study of these quantum mechanical aspects of nonconservative sys
tems, see Santilli (1978, particularly Volume III). 
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The reader should be aware that a rather sizable methodological gap 
exists between systems (1.1) and (1.16), and that several conceptual, methodo
logical, and physical aspects which are fully established for systems (1.1) need 
a reinspection for systems (1.16). To illustrate this situation, it is sufficient to 
indicate that systems (1.16) are nonconservative by assumption and, thus, 
they generally violate all Galilean conservation laws (for the energy, linear 
momentum, angular momentum, and uniform motion of the center of mass). 
Besides, the forces not derivable from a potential do not transform form
invariantly, in general, under the Galilean transformations. As a result, the 
problem of the applicable relativity demands a specific study [see Santilli 
(1978), particularly Vol. II]. 

This monograph is devoted to the following aspects of alternative 2. 

(a) The necessary and sufficient conditions for the existence of a rep
resentation of systems (1.16) in terms of conventional analytic 
Equations (1.21) 

(b) The methods for the construction of a Lagrangian or Hamiltonian 
from given equations of motion when their existence is ensured by the 
integrability conditions 

(c) The identification of the most general (local) Newtonian forces that 
are admissible by Equations (1.21). 

Other methodological aspects are studied in Santilli (1979). 
The analysis will be conducted within the context of the so-called Inverse 

Problem of the calculus of variations, which, for the case of single integral path 
functionals, can be formulated as follows. 

Given the totality of solutions y(x) = {yl(X), ... ,y"(x)} of a system of n 
ordinary differential equations of order r,23 

(i) _ diy 
y --d" x' 

i = 1,2, ... , r, 

determine whether there exists a functional 

k = 1,2, ... , n, 

A(y) = dxL(x, y(O), ... , y(r-l) IX 2 

XI 

which admits such solutions as extrema Is. 

(1.23) 

(1.24) 

This problem is based on the study of the conditions under which there 
exists a function L(x, y(O), y(1), ... , y(r-l) such that Euler's equations24 of 

23 That is, the nr-parameter family of solutions of Equations (1.23). 
24 Euler (1736 and 1765). For historical notes see, for instance, Dugas (1950). 
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functional (1.24) coincide with system (1.23), i.e., 

r-1 . di oL 
L(-1)'-d i~=Fk' 

i=O x oy 
(1.25) 

To refonnulate this problem within a Newtonian context, suppose that the 
order r of Equations (1.23) is two, the independent variable x is the time t, 
and the n dependent variables lex) are the generalized coordinates qk(t) 
(see Appendix) or, in the absence of holonomic constraints, the n = 3N 
Cartesian coordinates {let)} = {dt)} in a given ordering. System (1.23) can 
then be interpreted as a system of Newton's equations of motion in configura
tion space, i.e., 

. dq 
q = dt' k = 1,2, ... , n. (1.26) 

The Inverse Problem then consists of studying the conditions under which 
there exists a Lagrangian L(t, q, q) such that Lagrange's equations25 in L 
coincide with system (1.23), i.e., 

k = 1,2, ... , n. (1.27) 

On physical grounds, the primary significance of the Inverse Problem 
rests on the fact that the acting forces of Newtonian system (1.26) need not 
necessarily be derivable from a potential. Therefore, the Inverse Problem 
allows one to study the Lagrangian representations of systems with arbitrary 
(i.e., generally nonconservative but local) Newtonian forces. 

This problem constitutes the central objective of this monograph. It 
should be indicated in this respect that our analysis is restricted primarily to 
the problem of the existence of a Lagrangian or, independently, a Hamiltonian, 
and that the extremal aspect is ignored. For further study, the interested 
reader may consult some of the readily available textbooks on the calculus of 
variations. 

In the rest of this Introduction we shall outline of the prior state of the art. 
It should be stressed here that the following quotations must not be inter
preted as historical notes, which are left to interested historians, but simply as 
a report on my findings. 

25 Throughout the course of our analysis we shall use the term "Lagrange's equations" 
rather than" Euler-Lagrange equations," as often (although not universally) used, whenever 
the function L is the Lagrangian of a Newtonian system. 
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Apparently, the case n = 1, r = 2 was first solved by Darboux (1891) with 
conventional techniques, because it consists of one partial differential 
equation, i.e., 

d iJL iJL iJ2L .. iJ2L. iJ2L iJL F ... 
- dt iJq + iJq = - iJq2 q - iJq iJq q - iJq iJt + iJq = (t, q, q, q) (1.28) 

in one unknown, i.e., the function L. Under certain continuity and regularity 
conditions, the theory of partial differential equations guarantees the existence 
of a solution. Similar conclusions can be reached for the case n = 1 and r > 2. 

The case n > 1, r = 2 is not trivial. This is due to the fact that in this case 
the problem consists of n partial differential equations, i.e., 

d iJL iJL n (iJ2L. iJ2L .) iJ2L iJL 
- dt iJil + iJqk = - i ~1 iJqk iJqi ij' + iJqk iJqi q' - iJqk iJt + iJqk 

= Fk(t, q, q, ij), k = 1,2, ... , n, (1.29) 

in only one unknown, i.e., again the function L. As a result, the system is 
overdetermined and a solution in this case does not necessarily exist despite 
continuity and regularity assumptions. A similar situation occurs for n > 1 
and r > 2. 

The necessary and sufficient conditions for the existence of a solution L 
of system (1.29) were apparently formulated for the first time by Helmholtz 
(1887)26 on quite remarkable intuitional grounds. In essence, Helmholtz's 
starting point was the property of the self-adjointness of Lagrange's equations, 
i.e., their system of variational forms coincides with the adjoint system (see 
Chapter 2 and following). This is a property which goes back to Jacobi 
(1837).27 Without providing a rigorous proof, Helmholtz indicated that the 
necessary and sufficient condition for the existence of a solution L of system 
(1.28) is that the system Fk = 0 be self-adjoint. 

The problem was subsequently studied by several authors, including 
Mayer (1896),28 Hirsch (1897 and 1898),29 Bohem (1900),29 Konisberger 
(1901),30 Hamel (1903), Kurshak (1906), Davis (1928, 1929, and 1931),31 

26 Helmholtz did not consider an explicit dependence of the equations of motion on time. 
Subsequent studies indicated that his findings were insensitive to such a dependence. 

27 The equations of variations of Lagrange's equations or, equivalently, of Euler's equations 
of a variational problem, are called Jacobi's equations in the current literature of the calculus of 
variations. We shall use the same terminology for our Newtonian analysis. 

28 This author apparently attempted the first proof of sufficency. The proof of necessity is self-
evident from the self-adjointness of Lagrange's equations. 

29 These authors apparently conducted the first studies for n > 1 and r > 2. 
30 This is the first detailed and comprehensive account on the problem. 
31 These references contain the best treatment of sufficiency known to me, and one of the 

first studies of the indirect representations, namely, the representations of equivalent systems 
rather than the original systems as given. These papers are an elabroation of Davis's thesis at the 
Department of Mathematics of the University of Chicago in 1926 under the supervision of G. A. 
Bliss. Oddly, there is no direct quotation in Davis's papers of the previous crucial results by 
Helmholtz and Mayer. 
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de Donder (1935),32 and Rapoport (1938).33 These studies provided major 
contributions toward the proof that Helmholtz's condition, namely, the 
condition of variational self-adjointness for the system Fk = 0, was indeed 
both necessary and sufficient not only for the case n > 1 and r = 2, but also 
for the general case of arbitrary (but finite) dimensionality and order of the 
system. Neverthless, as we shall see, a number of technical aspects still 
remained open. 

A somewhat different but rather laborious approach was subsequently 
provided by Douglas (1941).34 The remaining and most recent studies on the 
Inverse Problem known to me are those by Dedecker (1949 and 1950),35 
Havas (1957),36 Klein (1962),37 Vainberg (1964),38 Edelen (1969),39 Tonti 

32 See page 204 of de Donder. Rather unpredictably, this is one of the very few treatises in the 
calculus of variations with a treatment of the Inverse Problem that I have been able to identify, 
despite a laborious search. 

33 This author apparently confronts, for the first time in a direct way, the problem of con
structing a Lagrangian once its existence is ensured by the conditions of self-adjointness. 

34 Rather than using the conditions of self-adjointness, this author uses the so-called Riquier 
theory of partial differential equations for the case of a system with n = r = 2, by reducing it to a 
completely integrable system. 

35 This author conducted a detailed analysis of a prolongation method previously introduced 
by Bateman (193i). 

36 In this reference, the case of indirect representations is studied to a considerable extent. It 
should be indicated here that this study has a central significance on practical grounds, because 
Newton's equations of motion are generally non-self·adjoint. The problem of the existence oftheir 
Lagrangian representation is then reduced to the problem of finding equivalent self-adjoint forms. 
The article quoted here also constitutes one of the very few accounts on the Inverse Problem in 
the physical literature known to me. 

37 The memoir by this author which is quoted here constitutes, to the best of my knowledge, 
the first comprehensive attempt at a geometrical interpretation of the integrability conditions for 
the existence of a Lagrangian, as identified by Helmholtz (1887). The context is that of metric 
differential geometry, with particular reference to certain applications ofthe theory of generalized 
Finsler manifolds to analytic mechanics via the use of the calculus of differential forms. The 
significance of this memoir for the Inverse Problem is that it reduces the integrability conditions 
for the existence of a Lagrangian to primitive geometrical concepts. 

38 The monograph by this author which is quoted here constitutes, to the best of my knowl
edge, the first operational attempt at the integrability conditions for the existence of an action 
functional within the context of modern functional analysis. The generally nonlinear nature of the 
considered operators is essentially rendered treatable with the conventional theory of linear 
operators on function spaces via the use of the Frechet derivative. A significance of this mono
graph for the Inverse Problem is that it provides a basis for the study of the relationship between 
the variational and operational approaches to self-adjointness. 

39 The monograph by this author which is quoted here deals with the case of continuous 
systems. Even though, in this reference, there is no explicit use of the conditions of self-adjoint ness, 
the author reaches the rather remarkable result that a Lagrangian density for the representation 
of linear integro-differential systems of second-order partial differential equations always exists. 
In a subsequent monograph (Edelen, 1977), this author provides a detailed study of noncon
servative nonholonomic systems in terms of the calculus of differential forms. 
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(1968),40 Horndeski (1974),41 Atherton and Homsey (1975),42 Allcock 
(1975),43 and Santilli (1977a, b, and C).44 

The Inverse Problem can be studied today with a variety of modern and 
sophisticated mathematical tools which (as emerges from the footnotes to 
this Introduction) include the use offunctional analysis, prolongation theory, 
and differential geometry, to cite only a few. 

However, the emphasis of the analysis of this monograph is on physical 
content as well as simplicity of presentation, rather than mathematical 
completeness. As a consequence, I have selected what apparently is the simplest 
but most effective mathematical approach to the integrability conditions for 
the existence of a Lagrangian-the variational approach to self-adjointness, 
with an economical use of its prerequisites, e.g., the existence theory of differ
ential equations, the calculus of differential forms, and the calculus of varia
tions. Other approaches quoted in this Introduction will be outlined, for the 
reader's convenience, in the charts of Chapter 3 [as well as those of Santilli 
(1979)]. 

40 Vain berg's study on the integrability conditions of the Inverse Problem (1964) was con
siderably abstract, to the point of remaining either unknown or inaccessible to the broad audience 
of applied mathematicians. Tonti's merit is that of having recognized the significance of Vain
berg's studies by developing a reformulation of the operational approach to the Inverse Problem 
of considerable practical applicability. A significance of the memoir quoted here is that the inte
grability conditions for the existence of an action functional, as'derived within the context of the 
operational approach, coincide with those obtained via a variational approach, i.e., they are in 
both cases the conditions identified by Helmholtz (1887). This renders the two approaches 
equivalent. 

41 To the best of my knowledge, this author initiated the use in the Inverse Problem of the 
cohomology theory and co chain complexes. A point which is significant for our analysis is that 
the emerging integrability conditions for the existence of a Lagrangian again coincide with those 
obtained with the variational approach to self-adjointness [Lovelock and Anderson (1976) 
private communication)]. This indicates that the same integrability conditions can be expressed 
in a variety of different, but equivalent, mathematical languages. For further studies, see also 
Horndeski (1975). 

42 These authors made significant contributions within the context of the operational ap
proach to the Inverse Problem. The paper quoted here also contains a summary of previous 
contributions along the same lines of study. 

43 This author considers the problem of the existence of an action functional within an alge
braic-geometric setting consisting of the reduction of a Pfaffian linear differential form on a 
manifold to a locally Hamiltonian form via the use of certain properties of the Lagrange brackets. 
This approach, which is equivalent to the variational approach to self-adjointness for vector 
fields on manifold, is particularly significant, e.g., for the extension of the Inverse Problem to the 
case of nonintegrable subsidiary constraints. 

44 In these papers I studied the Inverse Problem in classical relativistic field theories and 
initiated the study of the application of this problem to transformation theory. These papers are 
based on a variational approach to self-adjointness complemented by the use of the calculus of 
differential forms in general and the Converse of the Poincare Lemma in particular, on account of 
the known effectiveness of these latter mathematical tools in studying integrability conditions. 
The Newtonian analysis of the Inverse Problem presented in this monograph closely follows the 
field theoretical analysis presented in these papers. 



CHAPTER 1 

Elemental Mathematics 

1.1 Existence Theory for Implicit Functions, Solutions, and 
Derivatives in the Parameters 

In this section, we shall study some aspects of the theory of ordinary differ
ential equations, which will later playa central role in several aspects of our 
analysis. 

The first objective of this section is to review the existence theorems for 
implicit functions. Later, these theorems will be useful }or the study of topics 
such as the Legendre transform, the construction of equivalent forms of the 
equations of motion, and others. 

The second objective of this section is to recall the existence theorems for 
solutions with or without initial conditions. These theorems are useful to 
ascertain whether a given system of ordinary differential equations is con
sistent and, thus, whether or not it represents a physically admissible motion. 

As a third objective of this section, we shall outline the theorems for the 
embedding of a solution into a parametric family of solutions and the theorems 
of the existence and continuity of the derivatives of such solutions in the 
parameters. Later on, this third aspect will turn out to be useful for the char
acterization of the necessary and sufficient conditions for the existence of a 
Lagrangian, namely, the variational forms, their adjoint system, and, finally, 
the conditions of variational self-adjointness. 

15 
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Consider a system of n second-order ordinary differential equations in the 
generalized coordinates qk,1 i.e., 

F;(t, q, q, q) = Fi(t, qi, ... , qn, qi, ... , qn, qi, ... , qn) = 0, 

i = 1,2, ... , n, (1.1.1) 

where 

(1.1.2) 

are the first- and second-order time derivatives, respectively. 
In general, we shall use ~m to denote the class of functions possessing 

continuous partial derivatives of order 0, 1,2, ... , m on a region R of their 
variables. In particular, we shall say that the (real-valued) function Fi of 
Equations (1.1.1) are of class ~m in a region R 3n + 1 of the (real-valued) 
elements (t, q, q, ij) when they possess continuous partial derivatives up to and 
including the order m everywhere in R 3n + 1, and we shall write 

(1.1.3) 

Notice that this property, when it holds, implies that partial derivatives up 
to and including the order m exist, are continuous, and "commute," e.g., 

(1.1.4) 

m1 + mz = m3 = 0, 1, 2, ... , m. 

When the functions Fi are of class ~o in R 3n + 1, they are continuous at all 
points of (but their derivatives are not necessarily continuous in) R 3n + 1. 

A point Po of R 3n + 1 is a set of3n + 1 values (to, qo, qo, ijo). A neighborhood 
(P 0)' of Po is the totality of points P = (t, q, 4, ij) satisfying the inequalities 

It - tol ::; s, 14 - qol ::; s, Iq-qol::;s. (1.1.5) 

" A neighborhood of a given value to of t will be denoted by (to),' The same 
notation will also be used for other neighborhoods. 

In general, the region of definition R for the functions we shall consider in 
this volume will be a connected set. Unless otherwise stated, such a set will 
be tacitly assumed to be open, e.g., t 1 < t < t 2' Our" minimal" region will be 
a point and its neighborhood. 

In this chapter, we shall first consider the local aspect of the existence theory 
(for implicit functions, solutions, and derivatives with respect to parameters) 
by restricting the values of t to those lying in a neighborhood (to), of a given 
value to. Then we shall touch on the problem of the global existence theory, 

1 This chapter is formulated for the reader's convenience specifically in terms of generalized 
coordinates. The results, however, trivially apply for differential equations Fk(x, y, y', y") = 0 
in 3n + 1 arbitrary variables x and lex), y'k(X), y"k(X), y' = dy/dx, y" = dy'/lix, k = 1,2, ... , m. 
For a review of the concept of generalized coordinates, see the Appendix. 
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that is, when t can take all the values of an interval t I ~ t ~ t 2' By writing 
t E (tl, t2) we mean the totality of values of t on the interval (t I, t2), including 
the end times. 

The matrix 

;?e- -' -(OF.) 
- oiji -

aFI aFI 

oql ... oqn 

oFn oFn 
oql ... oqn 

(1.1.6) 

is termed the functional matrix2 of Equation (1.1.1). Since Equations (1.1.1) 
are not necessarily linear in the accelerations, the elements oFi/oqj can, in 
general, be functions of (t, q, q, q), and we shall write, symbolically, 

(1.1.7) 

The determinant 

(1.1.8) 

is called the functional determinant of system (1.1.1) and it is, in general, also a 
function of the 3n + 1 elements (t, q, q. ij). 

Definition 1.1.1. System (1.1.1) is called regular (degenerate)3 when its 
functional determinant (1.1.8) is everywhere non-null (null) in a region R 3n + 1 

of points (t, q, q, q), with the possible exception of a (finite) number of isolated 
points. 

In nontechnical terms, we can say that two possibilities exist for deter
minant (1.1.8). Either it is identically null as a function, in which case the 
system is degenerate, or not, in which case the system is regular. The fact that 
determinant (1.1.8) is not null as a function, however, does not exclude the 
possible existence of isolated zeros, i.e., the solution of the equation I ;?e I = O. 
This yields functional determinants which are null at their zeros, but not in the 
neighborhood of the same zeros. Thus, according to Definition 1.1.1, the 
systems are regular in this case. Alternatively, we can say that for a system to 
be degenerate, its functional determinant must be null at a point of its variables 
and in its neighborhood. For illustrations, see Examples 1.3 and 2.6. 

2 This terminology has been derived from the calculus of variations. See, for instance, Bliss 
(1946). Matrix (1.2.6) is also called the Jacobian matrix or, sometimes, the Hessian matrix when 
related to Lagrange's equations. 

3 It should be mentioned that the above terminology of regular and degenerate systems does 
not appear to be universally adopted and several different terms exist, such as standard and 
nonstandard; and regular and singular. We believe that the term" singular" is inappropriate for 
our context because the singularities of a system of differential equations, e.g., of the type w' = 

A(z)w, are customarily associated with the singularities of A(z) and not with the properties ofthe 
functional matrix of the system [see, for instance, Coddington and Levinson (1955, Section 4.2)]. 
Levi-Civita and Amaldi (1927, Vol. II, part 2) called a system normal when I Yf I #- O. Within the 
context of the calculus of variations for single integrals, such a condition is equivalent to the 
Legendre condition [see, for instance, G. A. Bliss (1946, page 23)]. The case of an infinite number 
of nonisolated zeros is not considered for simplicity. 
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A subcase of degeneracy is significant for our analysis. System (1.1.1) will 
be called totally degenerate when each and every element of its functional 
matrix is identically null. In this case, (1.1.1) reduces to a system of n first
order ordinary differential equations. 

In this book, we shall study the inverse problem for the case of systems 
(1.1.1), which are regular. The extension of the results to totally degenerate 
system is straightforward and will be indicated in the charts of Chapters 2 and 
3. However, the extension of the methodology to the case of degenerate sys
tems is considerably more delicate and will not be considered. For a better 
identification of the arena of applicability (and nonapplicability) of the 
analysis of this book, see the end of Section 2.1. 

Theorem 1.1.1 (Local Existence of Implicit Functions).4 Suppose the 
following conditions hold. 

(1) The functions Fi(t, q, q, ij) are of class rem, m 2: 1, in a neighborhood 
(P 0), of a point Po = (to, qo, qo, ijO),5 i.e., 

m2:1. 

(2) The functional determinant I Yf I is nonzero at Po, i.e., 

IYfI(Po) # 0. 

(3) The point Po satisfies all Equations (1.1.1), i.e., 

Fi(tO, qo, qo, ijo) = 0, 

Then there exists a unique system 

i = 1,2, ... , n. 

iji = P(t, q, q) 
such that 

(1.1.9) 

(1.1.10) 

(1.1.11) 

(1.1.12) 

(a) thefunctionsfi are single-valued and continuous in a neighborhood 
(N 0), of No = (to, qo, qo), i.e., 

P E reO[(N 0),], (1.1.13) 

(b) the values (t, q, q, f) E (Po), satisfy Equations (1.1.1), i.e., 

Fi(t, q, q, f) = 0, (t, q, q, f) E (Po)" (1.1.14) 

(c) there exists a constant c5 such that for each element (t, q, q) E 

(No)" the set (t, q, ij, f) is the only solution of Equation (1.1.1) 
satisfying the inequalities 

P - c5 < iji < fi + c5, (1.1.15) 

4 See, for instance, Bliss (1946, Appendix A), Rektorys (1969), Loomis and Sternberg (1968). 
For an alternative formulation, see Chart 1.1. 

5 It should be stressed that the theorem holds under the weaker assumption that the functions 
Fi are continuous and possess continuous partial derivatives with respect to all q, q and ij in 
(Po)" but not necessarily with respect to t E (to), (Bliss, 1946). Other authors (e.g., Rektorys, 1969) 
prefer continuity assumptions of the type of expression (1.1.9). We have selected the latter type of 
assumptions because the occurrence of the former in Newtonian mechanics is rather problematic 
and we shall not encounter it in this book. 
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(d) at Po, the identities 

(1.1.16) 

hold, and 
(e) in a sufficiently small neighborhood (No), of (to, qo, qo), the 

functions fi(t, q, q) have continuous partial derivatives of as many 
orders as are possessed by the functions Fi in (Po)" i.e., 

(1.1.17) 

The functions P(t, q, q) are customarily termed implicit functions. System 
(1.1.12) will be termed the kinematicalform in configuration space.6 

Theorem 1.1.1 essentially indicates that if a solution Po = (to, qo, qo, qo) 
of Equations (1.1.1) is known and conditions (1) and (2) above are verified, 
then P can be considered as part of a larger, continuous set of solutions. 

In turn, it is possible to prove that when the conditions of Theorem 1.1.1 
hold at each and every point of a region R 3n + 1, then the solutions P can be 
considered as part of a larger set defined in the interior 7 of R 3n + 1. 

In the following, if T is a set of values of time t, the notation 7b indicates 
the set of points t characterized by It - to I :s; b with at least one value 
to E T, and similarly for the case of more variables. 

Theorem 1.1.2 (Global Existence of Implicit Functions).8 Let R 3n + 1 be a 
set of points (t, q(t), q(t), ij(t» defined by a set of functions qk(t), qk(t), and 
qk(t), which are single-valued and continuous in a bounded and closed region 
T of t space. Suppose that 

(1) the functions F;(t, q, q, ij) are of class ~m, m ~ 1, in a neighborhood 
(R 3n + 1), of R 3n + 1, i.e., 

( 1.1.18) 

(2) the functional determinant I~I is non-null everywhere in R 3n +1, i.e., 

(1.1.19) 

(3) Equations (1.1.1) are identically verified in R 3 n+ 1, i.e., 

(1.1.20) 

6 We must mention the fact that Equations (1.1.12) are customarily referred to as the canonical 
form of system (1.1.1) [see for instance, Rectorys (1969, page 817)]. This terminology, however, 
could be misleading in our context due to the fact that in mechanics the term" canonical" relates 
to phase space formulations, while Equations (1.1.12) belong, by assumption, to configuration 
space formulations. The term kinematical form for Equations (1.1.12) has been suggested to me 
by A. Shimony. The term normalform will be used for systems ofjirst-order differential equations 
in the form dyk/dx = fk(x, y) [see, for instance, Rektorys, (1969, page 818)]. 

7 This restriction avoids certain delicate aspects related to frontier points which are not 
essential for our analysis. 

8 See, for instance, Bliss (1946). 
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Then there exists a bounded and closed region B2n + 1 C R 3n + 1 with points 
(t, q, q) and neighborhoods 

(B2n+1),5 = {t, q, 411t - tol ::; b, Iq - qol ::; b, Iq - qol ::; b}, (1.1.21) 

and a unique system 

i/ = Pet, q, q), (1.1.22) 

such that the following holds. 

(a') The functions P are single-valued and continuous in (B2n + 1),5, i.e., 

(1.1.23) 

(b') The points (t, q, q, f) which they define in R3n + 1 satisfy Equations 
(1.1.1), i.e., 

Pi(t, q, q, f) = 0, (t, q, q, f)E(R 3n + 1),. (1.1.24) 

(c') There exists a constant 8 such that for each (t, q, q) E (B2n+ 1),5 the set 
[t, q, q, f(t, q, q)] is the only solution of Equations (1.1.1) satisfying the 
inequalities 

P - 8 ::; i/ ::; fi + 8. (1.1.25) 

(d') At all points of B 2n + 1, i/ coincide with fi(t, q, q), i.e., 

il = Pet, q, q), (1.1.26) 

(e') In a sufficiently small neighborhood (B2n+ 1),5, the functions P have 
continuous partial derivatives of as many orders as are possessed by the 
fi . P··R3n + 1 · unctIOn i In , I.e., 

fi E "6'm[(B2n+ 1 )~]. (1.1.27) 

In practice, region (1.1.21) can often be reformulated in terms of two values 
oftime, t 1 and t 2, in the interior of R 3n + 1. Then the implicit functions Pet, q, q), 
when they exist, can be defined for all values t, q(t), q(t), tE(t1, t2) in the 
interior of R 3n + 1. 

On practical grounds, when a given system (1.1.1) is assigned, it is often 
advisable to first check whether the conditions of Theorem 1.1.1 or 1.1.2 are 
verified. Indeed, when this is the case, the system can be transformed into the 
equivalent form of Equations (1.1.12), which is particularly significant in view 
of its uniqueness guaranteed by the same Theorem 1.1.1. 9 

From a Newtonian viewpoint, the implicit functions are often proportional 
to the acting forces. When this is the case, the anticipated restrictions on the 
implicit functions for the existence of a Lagrangian are restrictions on the 
acting forces (see Section 3.7). 

9 This uniqueness of Equations (1.1.12) should be compared with the non uniqueness of 
Equations (1.1.1) in the sense that there may exist different functions F; such that the totality of 
solutions of Fi = 0 and F; = 0 (when definable) coincide. 
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The existence, uniqueness, and continuity theorems for solutions10 are 
generally formulated for systems of first-order ordinary differential equations. 

Customarily, one introduces 2n variables, say all, J.l = 1, 2, ... , 2n, defined 
by 

a" = {qll J.l = 1, 2, ... , n 
y"- n J.l = n + 1, n + 2, ... , 2n, 

and 2n functions, say 81l(t, a"), defined by 

';;Il _ {yll J.l = 1, 2, ... , n, 
~ - j"-n J.l = n + 1, n + 2, ... , 2n. 

Then the system of 2n first-order equations in the normal jorm ll 

a" - 8 1l(t, a") = 0 J.l = 1, 2, ... , 2n, 

(1.1.28a) 
(1.1.28b) 

(1.1.29) 

(1.1.30) 

is equivalent to system (1.1.12) and, thus, to system (1.1.1). We shall now study 
the question of the existence, uniqueness, and continuity of solutions for 
systems of type (1.1.30). 

We must mention, for completeness, that prescriptions more general than 
Equation (1.1.28) exist, are equally admissible, and are often advisable for our 
context. 

Suppose, for instance, that n new variables y~ and a set of prescriptions 

Gi(t, q, q, y') = 0 (1.1.31) 

are assigned in such a way as to have a one-to-one mapping of points (t, q, q) 
of the region R2n + 1 into points (t, q, y') of an "image" region ipn+ 1. This 
implies that the functions Gi of Equation (1.1.31) satisfy Theorem 1.1.1, so 
that the normal forms 

(1.1.32) 

exist and are unique, single-valued, and of class "6'1. The substitution of 
Equation (1.1.32) into Equation (1.1.1) with the identifications 

a" = {
qll 
y'" 

(1.1.33) 

then yields a system of 2n first-order equations in the variables all, which can 
be reduced to a form of type (1.1.30) [but, in general, with functions 8" 
different from those of Equations (1.1.29)]. 

We must stress the fact that, in the above approach, the variables (q, y) are 
not necessarily canonically conjugate in the sense that Equations (1.1.30) are 
not necessarily derivable from Hamilton's equations. 

10 See, for instance, Bliss (1946, Appendix A), Brauer and Nohel (1969, Chapter 3), Akhiezer 
(1962, Section I.9), and Rektorys (1969, Chapter 17). For a more advanced account see, for in
stance, Coddington and Levinston (1955) and Friedrichs (1965). Alternative versions are also 
given in the charts at the end of this chapter. 

11 See footnote 6 on page 19 for this terminology. 
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However, alternatives (1.1.28) and (1.1.33) are patterned along the canoni
cal approach. Indeed, when system (1.1.1) can be represented in terms of 
Lagrange's equations with a Lagrangian L(t, q, q), then prescriptions (1.1.31) 
become 

oL 
Gi = Pi - oqi = 0 Yi = Pi (1.1.34) 

and, in this case, the variables (a It) = (q, p) are indeed canonically conjugate. 
In particular, when a Lagrangian for Equations (1.1.12) exists, then 

prescriptions (1.1.34) may reduce to the form (1.1.28b), i.e., 

Gi = Pi - qi = 0, (1.1.35) 

and in this case the variables (alt) = (q, p) are again canonically conjugate. 
Therefore, our approach consists of constructing the not necessarily 

canonical system12 of 2n first-order ordinary differential Equations (1.1.30), 
which is equivalent to system (1.1.1). However this system is constructed in 
such a way that when a Lagrangian (or a Hamiltonian) exists, the variables 
alt can be embodied in a canonical structure 13 without any formal modifica
tion of the procedure. 

We shall term Equations (1.1.30) the normal form of system (1.1.1). We shall 
term Equations (1.1.30) the normalform in phase space only when the existence 
of a canonical structure is either established or assumed. 

By a solution (integral) of Equations (1.1.30), we mean a set of functions 
alt(t) that are (at least) of class {fa1 on (at least) a neighborhood (to), of to and 
which, when substituted together with their derivatives in Equations (1.1.30), 
all such equations are identically satisfied in (to).. 

By the general solution (general integral) of Equations (1.1.30), we mean the 
system of functions 

(1.1.36) 

depending on 2n constants cit, which are continuous together with (at least) 
their (time) derivatives alt(t; c) on (at least) a neighborhood (to), of to, and 
which satisfy Equations (1.1.30) identically for all values of t E (to), and for 
all values of cit in neighborhoods (c~), of given values c~. 

Let the modulus of a be defined by the Euclidean norm 

[ 2n J1 /2 
mod a = 1t~0 (a lt )2 • (1.1.37) 

Without proof, we quote the following theorem. 

Theorem 1.1.3 (Local Existence of a Solution Through Initial Conditions). 
Suppose the follOWing conditions are satisfied. 

12 That is, a system of2n first-order equations which is not necessarily representable in terms 
of Hamilton's equations. 

13 A geometrical definition of canonical (or symplectic) structure will be given later on in 
Chart 2.3. 
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(1) The functions 3 1l(t, a) are single-valued and continuous in a neighbor
hood Ie of point I = (to; co)· 

(2) There exists a constant k such that for every pair of points (t, a), 
(t, a') E If. the Lipschitz condition 

12P(t, a) - 31l(t, a') I < (2n~1/2 mod(a - a') (1.1.38) 

is verified. Then there exists in Ie one and only one set of2nfunctions 
all(t), which is the solution of Equations (1.1.30) in the interior of It and 
which satisfies the initial conditions 

(1.1.39) 

The relationship between a solution all(t) and the initial conditions (1.1.39) 
is made clearer by the following theorem. 

Theorem 1.1.4 (Local Embedding of a Solution into a 2n-Parameter Family 
of Solutions). If the functions 3 1l(t, a) satisfy conditions (1) and (2) of 
Theorem 1.1.3, and if all(t) is a solution of Equations (1.1.30) in Ie satisfying 
the initial conditions (1.1.39), then at a value t E It there exists one and only 
one solution 

all = all(t; c) (1.1.40) 

of Equations (1.1.30) which passes through every point (t; c) E It. 
The functions all(t; c) and till(t; c) are continuous and satisfy Equations 

(1.1.30) identically for all (t; c) E Ie. 

In essence, the above theorem establishes that when a solution is known 
and conditions (1) and (2) of Theorem 1.1.3 are satisfied, then such a solution 
can always be embedded in a family of solutions characterized by neighboring 
initial points. 

The reformulations of Theorems 1.1.3 and 1.1.4 in configuration space is 
straightforward. 

For instance, when prescriptions (1.1.28) are used, the solution all(t; c) can 
be explicitly written 

a~ t· c = "( ) {qll(t; u, v) 
, it-net; u, v) 

with initial conditions 

ok( ) k q to;u,v = vo, 

(1.1.41a) 

(1.1.41b) 

(1.1.42) 

where cll and cg have been separated into the values (u, v) and (uo, vo), 
respectively. 

When the more general prescriptions of type (1.1.33) are used, one can 
arrive at equivalent results, usually through simple algebraic manipulations. 



24 Elemental Mathematics 

The family (1.1.41a) of solutions depending on the 2n parameters (u, v) will 
be referred to as an 00 2n family of possible paths in configuration space, and will 
be denoted by 

rli~q) = {qlq = q(t; u, v), t E (to)" (u, v) E (uo, vo),}. (1.1.43) 

The family (1.1.40) is then also an 002n family of possible paths and will be 
denoted by 

(1.1.44) 

When the family rli~q) is restricted to satisfy all 2n initial conditions, we shall 
call it the actual path. 

The existence and uniqueness Theorem 1.1.3 is of local character, that is, 
it deals with solutions in a neighborhood I, of the point I = (to; co). 

We shall now briefly consider the question of the global existence of a 
solution, e.g., when joining two distinct points. 

Consider a region j{2n+ 1 of points (t, a) such that all points of the closed 
box 

'82u + 1 = {(t, a)llt - tol ~ KO, lau - a\) I ~ Ku} (1.1.45) 

for (to, co) E j{2n+ 1 and for suitably chosen constants KO and Ku lies entirely 
in the interior of j{2n+ 1. 

Examples of open boxes are the "entire space" - 00 < t, aU < + 00, the 
"half space" 0 < t < + 00,0 < aU < + 00, or the "infinite strips" - 00 < 
t < + 00, -I K I < aU < + I K I, where K is a number. Examples of closed 
boxes can be constructed in a similar way. 

All considered paths aU(t) for, say, t E (t1, t2), are such that all admissible 
elements (t, a) are in the interior of j{2n+ 1. 

The following existence theorem holds. 

Theorem 1.1.5 (Global Existence of a Solution Through Initial Conditions). 
Let 

(1) 31' and i.33ujaaV be continuous in the closed box '82n + 1, i.e., Equation 
(1.1.45),for some positive constants KO and Ku, 

(2) the bounds 

13u(t, a)1 ~ M, I a3u(t, a) I < M 
aa V -

(1.1.46) 

be everywhere verified in '82n + 1, and 
(3) (J be the smaller of the numbers KO and KujM. Then the sequence of 

successive approximations 

a\)(t) = c\), 

a~(t) = cb + it dt 3 u[t, abet)], 
to (1.1.47) 

a~(t) = Cb + It dt 3 u[t, a~-l (t)] 
to 
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converges (uniformly) in the interval I t - to I < (J to a unique solution14 

all(t) of Equations (1.1.30), which satisfies the intial conditions 

(1.1.48)-

Notice that the assumptions of continuity of gil and iJglljiJav in jj2n+ 1 

assure the fulfillment of the Lipschitz conditions (1.1.38) (however, the inverse 
statement is not generally true; namely, a function which satisfies the Lipschitz 
condition need not be of class ~1). 

In essence, assumptions (1), (2), and (3) of Theorem 1.1.5 guarantee that the 
initial value problem 

iJP = gll(t, a), J1 = 1,2, ... , 2n 

all(to) = cll 
(1.1.49) 

is equivalent to that of finding continuous functions all(t) defined in some 
interval containing to that are the solution of the integral equations of Volterra 
type, 

all(t) = cll + It dt gll(t, a). 
to 

(1.1.50) 

Then, such assumptions guarantee the uniform convergence of sequence 
(1.1.47). 

The uniqueness of the solution can be proved under weaker continuity 
conditions than those of Theorem 1.1.5. But such refined results are not 
needed for our analysis. Besides, a single set of conditions which guarantees 
both the existence and the uniqueness of the solutions of Equations (1.1.30) is 
advantageous from a practical viewpoint. 

Embedding Theorem 1.1.4 can also be formulated at large: 

Theorem 1.1.6 (Global Embedding of a Solution into a 2n-Parameter 
Family of Solutions ). Suppose that the initial value problem (1.1.49) admits a 
solution all(t)for all t in an interval (t 1, t2 ) containing to. Ifin some neighbor
hood (R2n+ 1), of(t, a(t»for t E (t 1 , t 2 ) allfunctions gil are of class ~1, then 
all( t) can be embedded in an 00 2n family i~~ a) of solutions all( t; c) for all values 
of cll in a neighborhood (cll), of cll, only one element of which satisfies the 
initial conditions. 

It should be noted that the above theorem is often formulated by demanding 
that the functions gil are continuous and satisfy the Lipschitz condition 
(1.1.38) for some Lipschitz constant K. 

The formulation of Theorem 1.1.6 is based on the fact that in our analysis 
of Newtonian systems we shall not encounter functions gil which satisfy the 
Lipschitz condition but are not of class ~1, or which are of class ~1 in aa but 
not in t. 

14 Here a "solution" is a set of functions a"(t) such that a"(t) satisfies Equations (1.1.30) 
identically in the considered box for all t with It - to I < a, 
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To properly deal with the equations of variations of system (1.1.1) (to be 
introduced in Chapter 2) we finally need the existence theorem of the partial 
derivatives with respect to parameters of a solution of Equations (1.1.49). 

Theorem 1.1.7 (Global Existence ofthe Derivatives with Respect to Param
eters)Y Suppose that the initial value problem (1.1.49) admits an 002n_ 

parameter family of solutions all(t; c)for all t in an interval (t 1, t2) containing 
to and all cll in a neighborhood (cID, of cli. If all functions 3 11 are of class 'tim, 
m> 1, in a neighborhood (ipn+1), of the solution (t, a(t», tE(t1' t2), then 
all( t; c) possess continuous partial derivatives up to and including the order 
m with respect to all parameters cll in (cli), at all times t E (t 1, t2)' 

In the following, for convenience of notation, we shall refer to all theorems 
quoted in this section as the existence theorems or existence theory. 

It should be mentioned that our analysis of Newtonian systems can es
sentially be conducted on the basis of Theorem 1.1.2 on the global existence, 
uniqueness, and continuity of the implicit functions, Theorem 1.1.6 on the 
global existence, uniqueness, and continuity of a solution through initial 
conditions, and Theorem 1.1.7 on the global existence and continuity of the 
derivatives with respect to the parameters. 

For the reader's convenience, we give in Charts 1.1, 1.2, and 1.3 a simplified 
version of the above theorems and outline their application to Newtonian 
systems. 

1.2 Calculus of Differential Forms, Poincare Lemma, and Its 
Converse 

The problem ofthe existence of a Lagrangian can be reduced, as we shall see in 
Chapter 3, to the study of the integrability conditions for a certain system of 
partial differential equations. 

One of the most effective mathematical tools for the stud y of the integrability 
conditions is the calculus of differential forms in general and··the so-called 
Converse of the Poincare Lemma in particular. 

In this section, we review some basic aspects of the calculus of differential 
forms specialized, for the reader's convenience, to the case where the local 
coordinates are the generalized coordinates qi.1t should be indicated from the 
outset that all the formulations considered in this section also apply to the 
case where the local coordinates are the generalized velocities qi or, for that 
matter, any set of (independent) variables. 

Our review closely follows the presentation by Lovelock and Rund (1975). 
Due to the elementary nature of our analysis, the interested reader is urged to 
study this reference (or some other reference 16) for an in-depth treatment of the 
subject. 

15 See, for instance, Akhiezer (1962, Section 1-8). 
16 See, for instance, Flanders (1963). 
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Let Mn be a differentiable manifold 1 7 with local coordinates qi, i = 1, 
2, ... , n. A generic tensor on Mn with r contravariant and s covariant indices 
is customarily written T~: :::;: and termed a tensor of type (r, s). In particular, 
a scalar is a (0, O)-tensor, a covariant vector is a (0, 1)-tensor, a contravariant 
vector is a (1, O)-tensor, etc. 

The contraction of an infinitesimal displacement dqi, i.e., a (1, O)-tensor, 
with a (0, 1)-tensor Alq), 

(1.2.1) 

is termed a 110rm (or Pfaffianforms).18 The addition of 1-forms is carried out 
according to the conventional rule, e.g., 

(1.2.2) 

The multiplication of 1-forms, however, demands a new operation, called the 
exterior product and often denoted by the symbol /\, which preserves the 
distributive law of ordinary multiplication but obeys the anticommutative 
rather than the commutative law according to the rule: 

A(l) /\ B(l) = (Ai dqi) /\ (Bj dqj) 
= AiBj dqi /\ dqj 
= -AiBj dqj /\ dqi 
= !(AiBj - BiA) dqi /\ dqj. 

The structure emerging from the above product is termed a 21orm. 

(1.2.3) 

Repeated use of the exterior product then induces the so-called p10rms 
(p s n), which are scalars characterized by the contraction of the antisym
metric dqi' /\ .... /\ dqip, (p, O)-tensor with a (0, p)-tensor Ai, ... ip(q), i.e., 

(1.2.4) 

The ordinary concept of a derivative is now generalized to that of the 
exterior derivative of a p-form, which is defined by the scalar (p + 1)-form 

dA(p) = oAi, ... ip dqk /\ dqi' /\ ... /\ dqip. 
oqk 

For the case of a 1-form, we have 

(1) oAi · . 
dA = ~-. ' dq'2 /\ dq" 

oq'2 

oA i · . = _ ~-. 2 dq'2 /\ dq" 
oq" 

=! (OAi, _ OA!,) dqit /\ dqi2, 
2 oq" oq'2 

'7 For differentiable manifolds, see Chart 2.1. 

(1.2.5) 

(1.2.6) 

'8 It should be indicated that a I-form or. more generally, a p-form, need not necessarily be a 
scalar. For references on Pfaffians. see von Weber (1900). Goursat (1922), and Cartan (1922 
and 1937). 
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where the last equality results from the antisymmetric nature of the (2.0)
tensor dqi /\ dqk. Equation (1.2.5) can thus be written, more generally, 

dA(p) = (_1)poAi'."iPdqi' /\ ... /\ dqip /\ dqip+, 
oqP+1 . (1.2.7) 

The algebraic manipulation of p-forms and their exterior derivatives is 
considerably simplified by the use of the so-called generalized Kronecker 
delta. This is a (p, p )-tensor defined by the determinant 

~i.,···ip = 
U J , ... Jp p:::; n. (1.2.8) 

For p = 1, we recover from the above definition the ordinary Kronecker 
delta D}. However, for p = 2 we have 

(1.2.9) 

For an arbitrary p(:::;n), D}~·:.:1;, is the sum of p! terms, each of which is the 
product of p ordinary deltas. 

If any two contravariant (covariant) indices are identical, then the general
ized Kronecker delta is null from a known property of determinants. For 
p > n, at least two indices must coincide and, therefore, 

~i,···ip - 0 
uil"'jp = , p> n. (1.2.10) 

When the contravariant and covariant indices are pairwise equal, the 
normalization rule 

(1.2.11) 

can be proved.19 The determinant of a p x p matrix (m}) can be written 19 

I ii - 1 ~i, ... i it j mj - p! uit ... r;,mi, ... mi:' (1.2.12) 

Finally, the identities 

~i.'···ip dqit /\ ... /\ dqjp = pi dqi' /\ ... /\ dqip 
U J , •.. JP • (1.2.13) 

also hold. 19 

By using Equations (1.2.9), we can now write a 2-form as follows. 

A(2) = 11 A-. - A- . ) dqi' /\ dqi2 
2\ 1112 'Zl1 

1 .. . . 
- - ~I,12 A d I, d J2 - 2! uiti> i,i2 q /\ q . (1.2.14) 

'9 See Problem 1.4. 
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More generally, a p-form (1.2.4) can be written in terms of the generalized 
Kronecker delta, 

A (p) - 1 s:i, ... i A d i, d i - p! uh···J;, h···ip q /\ ... /\ qp. 

Similarly, for the exterior derivative (1.2.6) we have 

dA(l) = ~ (OA!2 _ OA!,) dqh /\ dqi2 
2 oq" oq'2 

1 .. oA.. . 
= _ {)'."7 --~, dqll /\ dqJ2 

2! JIl2 oq'2 ' 

and, more generally, for the exterior derivative (1.2.7) we can write 

(1.2.15) 

(1.2.16) 

It then follows that the necessary and sufficient conditions for a p-form 
(1.2.15) or for its exterior derivative (1.2.17) to be null are 

respectively. 

s:i,···i A 0 
U h··· J;, h··· ip = , 

s:i,· .. i +, oAi'''.ip - 0 
U· P -J, ... Jp+' oqip+, ' 

jl, ... ,jp+l = 1,2, ... ,n, 

(1.2.18a) 

(1.2. 18b) 

The above property can easily be seen for the case of a 2-form (1.2.14). 
Indeed, we can write 

A(2) = 11 A .. - A . . ) dqh /\ dqi2 
2\ '1'2 1211 

1 .. . . 
- - S:"'2 Ad" d J2 - 2! Uilh i,i2 q /\ q 

= L (Ai,i2 - Ai2i ,) dqh /\ dqil = O. (1.2.19) 
it <i2 

The conditions 

{)i'i2 A - A A - 0 hh i,i2 - hi> - hi< - , (1.2.20) 

follow from the linear independence of the elements dqi' /\ dqil for i l < i2. 
Equations (1.2.20) then recover the known property that a necessary and 
sufficient condition for the contraction of a tensor Ai,il with an antisymmetric 
tensor, say Bi,i2, to be identically null is that A i ,i2 be symmetric in its indices. 
Conditions (1.2.18) are then a generalization of the above familiar case to 
higher orders. 
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We are now equipped to formulate the Poincare Lemma. For this purpose, 
we recall that a p-form (1.2.15) is termed exact if there exists a (p - I)-form, 
say B(p- 1), called a primitive form, such that 

(1.2.21) 

Also, a p-form (1.2.15) is termed closed whenever its exterior derivative is 
identically null, i.e., 

dA(p) == O. (1.2.22) 

We then have the following. 

Lemma 1.2.1 (Poincare Lemma). Every p{orm A(p) = Ail"'ipdpil /\ ... /\ 
dq'p on an n-dimensional differentiable manifold Mft with local coordinates 
qi(i = 1,2, ... , n), which is exact and of (at least) class C6'1 in a region Rft of 
points qi, is closed in Rft. 

PROOF. From the assumption that A(p) is exact, it follows that 

dA(P) = d(dB(P-l» 

a2Bil"'ip_, dl 1 A dqk2 A dqil A •.. A dqi p- , = 0 
all al2 ' 

(1.2.23) 

where the last equality results from the symmetry of the tensor aBi, ... ip _ Jaqk l al2 in 
the kl and k2 indices. Q.E.D. 

A simple illustration of the above lemma is given by the case p = 1, for 
which 

= d -. dq" = . . dq" /\ dq'2 = 0 ( 8cjJ . ) 82 cjJ . . 
8q" 8q'l 8q'2 

(1.2.24) 

This is equivalent to the well-known property that (under the minimal 
continuity conditions indicated above) the curl of the gradient of a scalar is 
identically null. Equations (1.2.22) then express the generalization of this 
property to higher orders p = 2, 3, 4, .... 

As indicated at the beginning of this section, what is particularly significant 
for the study of the integrability conditions is the Converse of the Poincare 
Lemma, rather than the Lemma per se. In order to formulate and prove the 
Converse, we need a more adequate characterization of the region of defini
tion of the p-forms. 

A region20 R*n on Mft is termed star-shaped when,jointly with a given open 
and connected set of points qi(i = 1,2, ... , n), all points q'i = 74, 0 ~ ! ~ 1, 
are also contained in R*ft. Notice that such a region contains the local origin 
qi = O. 

20 For the definition of a region, see page 16. 
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Lemma 1.2.2 (Converse of the Poincare Lemma). Every p:form A(p) = 
Ai""ip dqi' 1\ •.• 1\ dqi~ on an n-dimensional differentiable manifold M n 

with local coordinates q'(i = 1,2, ... , n) which is closed, well defined, and of 
(at least) class ~1 in a star-shaped region R*n on Mn, is exact on R*n. 

PROOF. Introduce the following operation on p-forms 

ffiA(P)= IC-IY-l[Ildrrp-IAi''''i/rq)]qi'dqi, A·" 1\ dqi,~, A dqi'+1 A'" A dqip 
r~ I 0 

- 1 [lid p-I C)] h <:i, ... i d h d j -(p-l)! 0 rr Ai""iprq q Uj, ... J;, q A"'A qp. (1.2.25) 

Its exterior derivative reads21 

d(9A(P» = I (- IY- I dr rP /1/: rq qi, P [II vA· ( )] 
r~1 0 vq 

dqk A dqi' A ... A dqi,., A dqidl A ... A dqip 

(1.2.26) 

But we can also write 

~(dA(P» = - I (-IY- I [Ildr TP VAi, ... ;(Tq)]qi' 
r~ I 0 vq 
dl A dqil A ... A dqi,~, A dqinl A ... A dqip 

[I
I VAi ···i (Tq)] k . . + 0 dT TP 'vi q dq" A ... A dq'p. (1.2.27) 

Therefore, under the assumptions that the p-form is well defined and of (at least) class 
'/lIon R*", the following identity holds. 

= Ai, '" ip dqil A ... A dqip 

= A(p). 

Under the additional assumption that the p-form is closed, we have 

d(fM(P» = A(p). 

This establishes the existence of a primitive form 

B(p-l) = 9A(P) 

such that 

and completes the proof of the lemma. Q.E.D. 

21 See Problem 1.8. 

(1.2.28) 

(1.2.29) 

(1.2.30) 

(1.2.31) 
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A few comments are now in order. First of all, it should be stressed that on a 
comparative basis with respect to the Poincare Lemma, its converse demands 
a new condition, namely, that the p{orms are well behaved on a star-shaped 
region rather than an ordinary region. This condition is needed to ensure the 
existence of the integrals of Equations (1.2.25)-(1.2.28). This is clearly a 
restriction on the types of p-forms for which Lemma 1.2.2 applies. The problem 
of the removal of such a restriction would go outside the scope of this mono
graph. Therefore, we shall content ourselves with differential forms that obey 
such a requirement. 

Under the condition that the A(P) form is of (at least) class ~1 in R*R, the 
integrability condition for the existence of a primitive form R(p-1) is that the 
A (p) form be closed, i.e., that each and everyone of the conditions 

>:i,···i +, oAi, ... ip - 0 u· P -J, ... Jp + , oqip + , ' j1> ••• ,jp+1 = 1,2, ... ,n (1.2.32) 

are everywhere identically satisfied in R*R. 
To summarize, the conditions for the existence of a primitive form (1.2.30) 

are that 

1. The A(P) form is of (at least) class ~1 in a star-shaped region R*R, 
namely, that the tensor Air ... i,,Cq) satisfies this continuity requirement; 

2. The A(p) form is well behaved in R*R and, thus, the integral of Equation 
(1.2.25) exists; and 

3. The A(P) form is closed, namely, that each and everyone of the integ
rability conditions (1.2.32) are identically satisfied in R*R. 

The Converse of the Poincare Lemma is, therefore, centered on the identi
fication of the conditions under which a primitive form exists. As a con
sequence, such a lemma will be crucial for the study of the conditions under 
which a Lagrangian exists, as we shall see in Chapter 3. For initial illustrative 
applications, see the examples at the end of this chapter. 

The significance of Lemma 1.2.2, however, goes beyond the identification of 
the integrability conditions. Indeed, it also provides a solution for the primitive 
form. More specifically, given a p-form satisfying conditions 1,2, and 3 above, 
rule (1.2.30) provides a solution for the primitive R(P- 1) form. As we shall see 
in Chapter 3, this property will playa crucial role in the methodology of 
computing a Lagrangian. 

It should be stressed that such a solution is not unique. Indeed, given a 
solution (1.2.30), one can construct an infinite family of forms according to 
the rule 

(1.2.33) 

all of which satisfy Equation (1.2.31) identically in view of property (1.2.23). 
This fact is significant for the problem of the "degrees of freedom" of a 
Lagrangian, namely, the construction of equivalent Lagrangians [see Santilli 
(1979)]. 
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1.3 Calculus of Variations, Action Functional, and Admissible 
Variations 

The calculus of variations originated in the eighteenth century with the 
problem of determining the maxima or minima of definite integrals of known 
functions. Subsequently, the significance of this problem was identified for 
several branches of mathematics, physics, and engineering, and the calculus of 
variations was developed up to the present degree of sophistication, which 
includes disciplines such as functional analysis, differential geometry, and 
algebraic topology. 

In this section, we shall review the rudiments of the branch of the calculus 
of variations which, as Caratheodory puts it,22 is the "servant of mechanics." 
This review appears to be advisable on the following grounds. (a) The 
subject of this monograph, the Inverse Problem, was originally developed 
within the context of the calculus of variations, as indicated in the Introduc
tion. A review of the rudiments of this discipline is, therefore, useful to provide 
a proper methodological perspective. (b) The approach we have selected for 
the study of the integrability conditions for the existence of a Lagrangian or 
Hamiltonian (to be introduced in the next chapter) is based on variational 
techniques. Therefore, it is useful to identify the admissible variations within 
their proper methodological context, the calculus of variations. (c) Later, we 
shall be involved with variational principles [see the charts of Chapter 3 and 
of Santilli (1979)]. Therefore, it is appropriate to recall that the variational 
principles customarily used in analytic mechanics are, actually, a particular
ization ofthe more general methodological context of the variation problems. 

As indicated in the Introduction, we an~ primarily interested in the meth
odology which underlies the variational problems, rather than these problems 
per se. More specifically, in this section we shall review certain aspects related 
to paths, path functionals, and their variations, which are of direct significance 
for our subsequent analysis, while the extremal aspect ofthe methodology will 
be referred to the several excellent treatises on the subject. 23 

For unity of notation throughout this volume we shall use the symbol t to 
denote the independent variable and the symbols qk(t), k = 1,2, ... , n, to 
denote the dependent variables, although the symbols more commonly used 
in t~e calculus of variations are, instead, x and lex), respectively. 

A path (or path segment) is the set of values 

(1.3.1) 

for given functions qk. The values tl and t2 are termed the end points, with 
t 1(t2) being the initial (final) point. The values qk(ts), s = 1,2, are called end 
values, with qk(t ,)(qk(t2)) being the initial (final) value. A path E is of class 
qjm in the (closed) interval (t\> t2), when each and every function qk(t), k = 1, 

22 Caratheodory (1935, preface). 
23 See, for instance, Caratheodory (1935), Bliss (1946), Gelfand and Fomin (1963), Rund (1966), 

and Hestenes (1966). 
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2, ... , n, is of class I{jm in it. A similar definition applies for the case of an (open) 
region RI • 

The set of all possible paths forms a rather large space S(E), called function 
space. A subset of S(E) constituted by paths El, E2, ... of class I{j0 in (tl> t2), 
when equipped with the nonnegative number 

(1.3.2) 

called the norm, constitutes a normed function space of class I{jo, %O(E). 
When paths El, E2, ... of order I{jm, m > 0, are considered, the norm of order m, 

{ 
m I diEk I } IIEkllm = i~O Max. value dti ' t E (t 1, t2) , 

applies with the properties 

IIEkllm = 0 if and only if Ek = 0, 

IlcEkllm = IclllEkllm, c = const., 

IIEi + Eill m ~ IIEillm + IIEillm, i,j, k = 1,2, ... , 
yielding a normedfunction space of class I{jm, %m(E). 

(1.3.3) 

(1.3.4a) 

(1.3.4b) 

(1.3.4c) 

The norm allows the characterization of the distance of order m between 
two paths El and E2, given by 

(1.3.5) 

In turn, the concept of distance allows the characterization of the neighborhood 
of order m of a given path E, which is the space of all paths E' = E + DE whose 
distance of order m from E is less than s > 0, i.e., 

(1.3.6) 

The path E' so characterized is the varied path. From these definitions, we see 
that the continuity properties of a path E and those of its varied path E' = 
E + DE can be different, e.g., E E 1{j2 and E' E I{j0. Within the context of the 
calculus of variations, the neighborhood of order zero of a given path is 
customarily considered. This is essential to study certain aspects ofthe extre
mal problems, such as the so-called Weierstrass necessary condition. Within 
the context of the Inverse Problem and, more specifically, the variational 
approach to self-adjointness, the minimal continuity conditions for paths and 
their variations can be unified for simplicity but without loss of generality, and 
assumed to be that of class 1{j2 for configuration space formulations (and of 
class I{jl for phase space formulations). This implies that we shall be dealing 
with paths E 1, E2, ... which are of at least class 1{j2 and their neighborhoods 
also of class 1{j2 (i.e., E' 1, E'2, ... E 1{(2). This also implies that the variations 
DEI, DE2, ... have the same continuity properties of El, E2, .... From a 
Newtonian profile, these continuity assumptions imply the study of tra
jectories {qk(t)} and their variations {Dqk(t)}, which possess continuous 
derivatives up to and including that of order two, i.e., not only the velocities, 
but also the accelerations and their variations are continuous. 
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A path functional is a correspondence which assigns a (real) number A(E) 
to a given (real) path E. Several types of path functionals for a given path E can 
be conceived. The correspondence which is of central relevance for the cal
culus of variations, as well as for the Inverse Problem, is given by the quantity 

It2 It2 
A(E) = dt L(t, q, q) IE = dt L(t, E, E). 

II II 

(1.3.7) 

When the integrand function L(t, q, q) is a Lagrangian of a Newtonian sys
tem, path functional (1.3.7) is generally (although not universally) called the 
action functional, or action for short. 

The so called simplest variational problem essentially consists of finding the 
path Eo satisfying the end conditions 

(1.3.8) 

along which the functional A(E) affords an extremum (i.e., either a maximum 
or a minimum).24 Such a path Eo i~ then called the extremal path of problem 
(1.3.7). 

Notice that the continuity of a given function L(t, q, q) can be different than 
that of the path E along which it is computed. Throughout our analysis, we 
shall only consider functions L(t, q, q) that are of at least class ~4 in a region 
R 2n + 1 oftheir variables. Within a Newtonian context, these functions will be 
called admissible Lagrangians. A path E will be called an admissible path and 
its varied path E' = E + bE an admissible varied path (or its variation bE, 
admissible variation) when E and E' (or bE) are of at least class ~2. 

Path functional (1.3.7) is called regular or degenerate (also regular or 
singular, and standard or nonstandard) in a region R 2n + 1 when the integrand 
L is regular or degenerate in it in the sense of Definition 1.1.1. Throughout our 
analysis, we shall only consider regular path functionals. 

Path functional (1.3.7) is said to possess an absolute maximum or an 
absolute minimum along Eo when the inequalities 

A(E) - A(Eo) ::; 0 (1.3.9a) 

and 

A(E) - A(Eo) Z 0 (1.3.9b) 

hold, respectively, for all paths E satisfying certain continuity properties 
(usually E E CO). The fundamental quantity for the study of the variational 
problems is, therefore, A(E) - A(Eo). 

Of particular significance is the study of the relative maximum or minimum, 
which occur when inequalities (1.3.9a) and (1.3.9b), respectively, hold for all 
paths E in the neighborhood of Eo of order zero, 6"°(E)E. If the case E E 6"1 (E)Eo 
is considered, inequalities (1.3.9a) and (1.3.9b) characterize the weak relative 
maximum and minimum, respectively. 

24 The problem we refer to here is also called the variational problem with fixed end points. 
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An absolute extremum is also a relative extremum and a weak relative 
extremum, but the inverse property does not necessarily hold. This is due to 
the fact that if A(E) has an extremum along Eo for functions E of class ~o, 
the same property will be satisfied with paths of class ~m, m ~ 1, but the inverse 
property does not necessarily hold. 

The comparison of the above continuity conditions for the extremal 
problem and the corresponding sufficient conditions for thdnverse Problem 
(or the variatidp~l'principles) is instructive. 

The total variation of path functional (1.3.7) is given by 

AA(E, bE) = A(E + bE) - A(E), (1.3.10) 

and it is a functional of both E and bE. Notice that AE(E, bE) is not a linear 
functional of bE. 

A path functional A(E) is said to be differentiable when AA admits the 
decomposition 

lim IX = 0 
1101011°-+0 

(1.3.11) 

where b1 A, called the first-order variation of A, is a linear functional of bE. 
Without proof, we quote the following theorem. . 

Theorem 1.3.1 (A First Necessary Condition for an Extremum). A neces
sary condition for a differentiable path functional A(E) to have a relative 
extremum at E = Eo is that its first-order variation b1 A vanishes for E = Eo 
and for all variations bEo of at least class ~o, i.e., 

(1.3.12) 

As we shall see, the above theorem characterizes a methodological context 
of variational principles. 

A path functional is said to be twice differentiable if AA admits the decom
position 

lim f3 = 0 
110£110 -+0 

(1.3.13) 

where b2 A, called the second-order variation of A, is a quadratic functional of 
bE. 

Also without proof we quote the following theorem. 

Theorem l.3.2 (A second Necessary Condition for an Extremum). A 
necessary condition for a twice differentiable functional A(E) to have a 
relative extremum at E = Eo is that one of the inequalities 

c5 2 A(Eo• c5Eo) ~ O. 

,j2 A(Eo• c5Eo) ~ 0 

holds for all variations c5Eo of at least class et°, 

(1.3. 14a) 

(1.3. 14b) 
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This second fundamental theorem of the calculus of variations has no 
counterpart in contemporary analytic mechanics. This is essentially due to the 
fact that this discipline considers the customary variational principles only, 
which are first-order principles from the viewpoint of the calculus of variations. 
Therefore, higher-order variations of the It-ction are customarily ignored. 

As we shall see during the course of our analysis, this analtyic context is 
modified by the methodology of the Inver!l~ Problem because the use of the 
second-order variation of the action functional will be necessary for the 
study of the conditions under which a Lagrangian exists or not. In turn, this 
implies an implementation of the customary variational principles into 
second- (as well as higher-) order forms. 

In summmary, of fund~mental importance for the Inverse Problem is the 
study of both the first- Jnd the second.-order variation of path (or action) 
functionals, even within the context where the extremal aspect of the problem 
is ignored. The rest of this sectioIi is primarily devoted to the identification of 
these variations. 

First, we shall identify the first- and second-order variations of the path 
(action)functional with fixed end points, i.e., variations for which 

bE(ts) = {bqk(tsn = 0, s = 1, 2. (1.3.15) 

If we assume the following explicit forin of the variations, 

bqk{tj == e,,(t), 

bqk(t) = er,(t) = :t bqk(t), (1.3.16) 

often called weak variations, Equations (1.3.13) can be explicitly writteni5 

~A(E, bE) = el ~ A(E + bE)IE=O + ;~ 1 ~: A(E + bE)IE=O + P(llbEIIO)2 

il2 (8L 8L) ~ dt;)k bqk + ~ bi/ 
I, uq q E 

1 il2 (82 L .. 82 L ., 82 L ..) + "2 dt ~ i ~ j bq'bql + 2 8 i 8 .j bq'bt( + 8·i 8ni bilbt( . 
I, uq uq q q q '1 E 

(1.3.17) 

The first- and second-order variations under consideration at this time are 
then given, respectively, by 

1 il2 (8L b k + 8L b:.k) b A(E, c5E) = dt 8"k q ~ LJ , 
I, q q E 

(1.3.18a) 

1 il2 (82 L 82 L ., 82 L ..) 
b2 A(E, bE) = -2 dt ~ i ~ j bqibqj + 2 8 i 8 . j bq'bqJ + 8·i 8ni bq'bt( 

I, uq uq q q q '1 E 

(1.3. 18b) 
Without proof, we quote the following lemma. 

25 See, for instance, Bliss (1946). 
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Lemma 1.3.1 (A Fundamental Lemma of the Calculus of Variations). IJ 
the Junctions Pk(t), k = 1,2, ... , n, are oj class ~o in (tl' t 2 ), and if 

(1.3.19) 

Jor all Junctions 1Jk(t) oj at least class ~o in the same interval, which are 
identically null at end points, 

s = 1,2, (1.3.20a) 

then 

k = 1,2, ... , n (1.3.20h) 

By integrating by parts Equation (1.3.18a) and using Equations (1.3.15), 
Theorem 1.3.1 and Lemma 1.3.1 imply the following theorem. 

Theorem 1.3.3 (Euler's Necessary Condition). A necessary conditionJor a 
path Eo oj at least class ~I to be an extremal offunctional (1.3.7) is that the 
Euler equations 

( d oL OL) 
Lk(Eo) = dt ~ - ~ = 0, 

q q Eo 
k = 1,2, ... , n, (1.3.21) 

be identically verified along Eo. 

As indicated in the Introduction, Equations (1.3.21) will be referred to as 
Lagrange's equations whenever the function L is a Lagrangian of a Newtonian 
system, as customarily used in the recent literature of analytic mechanics. A 
more adequate term would, however, be Euler-Lagrange equations. 

For later use in Chapter 3, let us recall that if the path Eo is of class ~o, the 
integralform oj Euler's (Lagrange's) equations 

( OL f' OL) ~ - dt~ = Ck = const. 
q " q Eo 

(1.3.22) 

must be used to treat possible corners of Eo, i.e., points with discontinuous 
first-order derivatives. Clearly, the total derivative with respect to t of Equa
tions (1.3.22) reproduces Equations (1.3.21) identically. Thus, Equations 
(1.3.21) and (1.3.22) are equivalent for paths of at least class ~1. 

The fundamental variational principle of analytic mechanics, Hamilton's 
principle, 

(1.3.23) 

follows from Theorem 1.3.3. 
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Of particular importance for the extremal problem A(E) is the study of the 
so called accessory extremal problem. This consists of the study of the second 
order variation (1.3.18b) as a variational problem per se. Theorem 1.3.3, 
applied to this problem, yields 

(1.3.24a) 

and 

1 ( rPL "" iJ2L "" o2L "") 
J = 2 oqi oqi Jq'Jql + 2 oqi oqi Jq'bii + oi/ oqi J{j'Jil· (1.3.24b) 

The underlying equations, 

J(JE)- (~~-~) -0 k 0 - dt o(J(/) O(Jqk) !JED - , 
(1.3.25) 

are called Jacobi's equations in the literature of the calculus of variations and 
their solutions are referred to as the accessory extremals. The study of ac
cessory problem (1.3.18b) is essential for the characterization of the behavior 
of the second-order variations within the context of Theorem 1.3.2 and results 
in the so-called Jacobi's necessary condition. A review of this condition (which 
is centered on the theory of the so-called conjugate points) would bring us 
considerably outside the scope of this monograph; therefore, we urge the 
interested reader to study the literature on the calculus of variations. 

For our needs, it is sufficient here to recall that, when the variations are 
restricted to satisfy Jacobi's equations, the varied path of an extremal path 
is also an extremal. This can be seen with the Taylor expansion 

L (E JE ) = (~ oL(t, q + Jq, q + Jq) _ oL(t, q + Jq, q + Jq») 
k 0 + 0 dt a ·k a k q q ED+iiED 

= (~ oL(t, q, q) _ oL(t, q, q») 
dt oqk oqk Eo 

( d oJ(t, Jq, Jq) oJ(t, bq, Jq») 
+ dt O(Jqk) - O(Jqk) !JED + ... 

= Lk(Eo) + Jk(JEo) + ... 
= Jk(JEo) + ... = 0, (1.3.26) 

where we have used Euler's condition (1.3.21). This point also illustrates the 
deep relationship between Euler's equations and their associated Jacobi's 
equations. The latter are uniquely characterized by the former. Also, while 
the latter are always linear, the former are generally nonlinear. Finally, the 
regularity or degeneracy properties of the latter and those of the former coin
cide, owing to the value of the functional determinant 

(1.3.27) 
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Regrettably, Jacobi's equations are customarily ignored in the current 
literature of analytic mechanics. As we shall see in Chapter 3, these equations 
will playa fundamental role in the identification ofthe necessary and sufficient 
conditions for the existence of a Lagrangian. This is a reason why the Inverse 
Problem also demands the use of second-order variations. It is in this sense 
that, even though the extremal aspect can be ignored within the context of the 
Inverse Problem, the methodology of the calculus of variations plays a 
fundamental role in it. 

When the independent variable t represents the time, the variations con
sidered until now are often called contemporaneous variations, because they 
occur at a fixed value of time. The total contemporaneous variation of a path 
can then be expanded: 

I1E = E'(t) - E(t) = {q'k(t) - qk(t)} = {Jl (jsqk(t) + 0;+ l}, (1.3.2Sa) 

1 (jsqk(t) = _ (jlW-lqk(t)), (1.3.2Sb) 
s 

by characterizing in this way the contemporaneous variations of order s = 1, 
2, 3, ... , of a path, i.e., (jsqk(t). The total contemporaneous variation of a path 
functional can be subject to a corresponding expansion, 

m 

I1A = A(E') - A(E) = L (js A + 0':':+ 1, (1.3.29a) 
s= 1 

(jSA = ! (jlW- l A), (1.3.29b) 
s 

by characterizing the contemporaneous variations of order s of A(E), (jsA. For 
the case s = 1, we recover Equation (1.3.1Sa). However, for the case s = 2, 
we have the expression 

(j2 A(E, (jE) = ! (jl«jl A) = ! (jlII2dt(o~ (jlqk + o~ (jlll) 
2 2 I, oq oq E 

= ! II2dt(~ (j i(j j 2 ~ (j i(j .jo2L (j 'i(j .j) 
2 ~ i ~.j q q + ~ i ~.j q q + ~'i ~.j q q 

I, , uq uq uq uq uq uq E 

112 (OL 2 k oL 2.k) + dt 8" (j q + a:" (j q , 
11 q q E 

(1.3.30) 

which exhibits the presence of the two additional terms in the second-order 
variations of the path, which we had ignored in Equation (1.3.lSb) because 
they are not essential for the accessory extremal problem.26 The computation 

26 By using an integration by parts and the fixed end point conditions, the last integral of 
Equation (1.3.30) becomes 

and, as such, it is identically null along the extremal path Eo. 
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of higher-order variations can then be done by using iterative formula 
(1.3.29b). 

The above variations are a particular case of the more general noncon
temporaneous variations, i.e., those also involving a variation of time. The 
total noncontemporaneous variation of a path can then be written and expanded 
as follows. 

llE = E'(t') - E(t) = {q'k(t') - qk(t)} 

= ttl (jSqk(t) + 6;+ I}. (1.3.31 a) 

$Sqk(t) = ~ $l($S-l qk(t» (1.3.31b) 
s 

m 

At = t' - t = L bSt + 6~+ 1, (1.3.3lc) 
s= 1 

(1.3.31d) 

The noncontemporaneous variations of order s of a path can then be computed 
with the iterative formulae 

(1.3.32a) 

$2qk = t$l($ll) = t$l(jlqk + (/$l t) 

= (j2 qk + t(jlqJ'$lt + t(jl(tb 1t + tq\b1t)2 + tqk :t ($l t)$l t 

(1.3.32b) 

This also yields the relationship between the contemporaneous and non
contemporaneous variations. Notice that the operations of variation and 
derivative commute for the former, i.e., (jl qk = (d/dt)(jlq\ while they do not 
for the latter, i.e., $lqk =1= (d/dt)$lqk. 

On similar grounds, the total noncontemporaneous variation of a path 
functional can be written and expanded as follows. 

It2 It2 
llA(E, bE) = ,dt' L(t', q', q') - dt L(t, q, q) 

tl t 1 

m 

= I JSA + 6~+1, (1.3.33a) 
s= 1 

(1.3.33b) 
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By using the reduction 

dt' [ d A ] dt' = dt dt ~ dt 1 +dt (J 1t) (1.3.34) 

the first-order noncontemporaneous variation of A(E} is given by 

= dt - J1 t + - J1 qk + - J1(l + L - (J 1t) 112 [OL A oL A oL A d A ] 

I, ot ol o(l dt E 

= 112dt [OL J1 qk + o~ J1(t + ~ (Lb1t)] 
I, oqk oqk dt E 

= f2
dr[J 1L + :t (Lb 1t)]E' (1.3.35) 

where we have used Equations (1.3.32a). 
The second-order noncontemporaneous variation of A(E) is then given by 

(1.3.36) 

Higher-order variations can then be computed with iterative formula (1.3.33b). 
For these more general variations, the concept of neighborhood according 

to Equation (1.3.6) is insufficient. This is due to the need for using a concept of 
distance between two paths E and E' of different end values. An extended 
definition of distance of order m, often used in the literature of the calculus of 
variations, is given by27 

fjm(E1, E2} = IIE1 - E2 11 m + IE1(t~} - E2(t'l} I 
+ IE 1(t2} - E2(t2}I + It'l - til + It2 - t21. (1.3.37) 

This yields the extended definition of a neighborhood of order m: 

i(E'}E = {E'IE' = E + bE, fjm(E', E} < B}. (1.3.38) 

When considering noncontemporaneous variations, we shall always 
assume an extended neighborhood (1.3.38) of at least order two. 

27 Gelfand and Fomin (1963). 
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When the independent variable t does not necessarily represent time, the 
more general variations considered here are referred to as variations with 
variable end points, and they characterize the so-called variational problem 
with variable end points. In this case, by integrating by parts, the first-order 
variations with variable end points of A(E) can be written 

where we have used Equations (1.3.32a). The quantity 

(EPC)1(E) = 1 ~~ J1 qk - (~~ i/- L )J1t I::(E) (1.3.40) 

is called the first-order end-points contribution. 
When Equation (1.3.39) is computed along an extremal (and thus a 

possible) path, we have the so-called Weiss's principle28 (also called Holder's 
principle29) of analytic mechanics, 

112 
J1 A(Eo, JEo) = J1 dt L(t, q, q) lEo = (EPC)1(Eo), 

11 

(1.3.41) 

which is clearly a generalization of Hamilton's principle (1.3.23). This 
broader principle is particularly significant in analytic mechanics for a 
number of methodological aspects, such as the derivation of the Hamilton~ 
Jacobi equation, the computation of conserved quantities, etc., as can be seen 
in Santilli (1979). 

The inclusion of the Inverse Problem will inevitably demand the use of 
higher-order noncontemporaneous variations. The second-order variation 
with variable end points of A(E) can be written 

where the quantity 

(EPC) (E) = -. D q - -. q - L D t - ~ - q - - (D t) 2 IOL '2 k (OL. k ) '2 1 (OL. k OL) '1 2 
oqk oqk 2 oqk ot 

oL ~1 k'1 1 o2L '1' "1 '1' "1 + - D q D t + - -. ~.' (D q' - q'D t)(D qJ - qJD t) 
oqk 2 oq' oqJ 

+ ~ oo.:~ .j (J1 qi - qi$1 t)(J1qj - ijjJ1t)lt2 (E) (1.3.43) 
q q tl 

is called second-order end-points contribution. Higher-order variations and 
end-point contributions can then be computed with an iterative procedure. 

28 See, for instance, Sudarshan and Mukunda (1974). 
29 See, for instance, Pars (1965). 
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The variations (lqk(J'qk) will be referred to as the abstract contemporaneous 
(noncontemporaneous) variations oj order s oj a path. They can have an arbitrary 
explicit and/or implicit dependence on the independent variable, the path, 
and its first-order derivative, i.e., 

(J'qk = ~'qk(t, q, q), J'qk = $·t(t, q, q), 

fjm(E + $E, E) < e, 

(1.3.44a) 

(1.3.44b) 

which is admissible by the assumed continuity conditions. When variations 
(1.3.44) are computed along a given path, they reduce to the explicit depend
ence on the independent variable only, i.e., 

~'qk(t, q, q) IE ~ ~'qk(t), 
. $'qk(t, q, q) IE ~ J'qk(t). (1.3.45) 

When an explicit functional dependence in Equations (1.3.44) is assumed, 
we have a realization oj an abstract (admissible) variation. For instance, weak 
variations (1.3.16) are a simple realization of abstract variations (1.3.44). 
However, they ar:e not the only admissibie form, and any other functional 
dependence which characterizes varied paths in the neighborhood (of the 
considered order) of the given path is equally admissible. 

The use of the broader functional dependence of the variations according 
to Equations (1.3.44) will playa crucial role for the broadening ofthe direct 
representational capability of Hamilton's principle [see Santilli (1979)]. 

Chart 1.1 A Theorem on the Existence, Uniqueness, and Continuity 
of the Implicit Functions for Newtonian Systems 30 

This simplified version of Theorem 1.1.1 is often useful fdr practical 
applications in Newtonian Mechanics. 

Theorem. Given a system of ordinary second-order differential 
equations 

i=1,2, ... ,n, (1 ) 

let: 

(1 ) the point Po = (to' q 0' iTo' ii 0) satisfy all the equations of system 
(1) ; 

(2) the functions Fj be of class C(fm, m ~ 1, in the neighborhood of Po; 
and 

(3) the functional determinant I Jfl = I dF/diijl be different from 0 
at Po' 

30 See Rektorys (1969). 

Nota Bene: The continuity conditions in the accelerations qi can be ignored for 
system (3) due to their linearity in such variables. The functional determinant for 
Newtonian systems in configuration space is the determinant of the factor terms Aki • 

Unlike the case. for system (1), such a determinant is always independent of the 
accelerations. Notice the vital role of the regularity condition IAij I f 0 for the very 
existence of the implicit functions. Indeed, when such a condition is violated, the 
inverse (Au) -1 does not exist and the set of all implicit functions fi does not exist, 
either. 
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Then in a neighborhood of (to' qo' qo) there exists a unique system of 
functions fi(t, q, q), termed the implicit functions, of class t'(jm such that 

iji = fi(t, q, q) (2) 

for all (t, q, q) in the neighborhood of (to' qo' qo)· 

The application of the above theorem (or, similarly, of Theorems 1.1.1 
and 1.1.2) to Newtonian systems is straightforward. Consider such systems 
in theirfundamental form in configuration space (A.7.5) (oftheAppendix), 
i.e., 

(3) 

Let: (a) the point P = (to' qo' qo' Cio) satisfy such equations, (b) the 
functions Aij and Bi be of class rem, m ~ 1, and (c) the functional 
determinant 

(4) 

be different from zero at (to' qo' qo)· Then the implicitfunctionsfi exist, are 
unique and of class rem in a neighborhood of (to' qo' qo)' and are given, 
trivially, by 

(5) 

Chart 1.2 A Theorem on the Existence, Uniqueness, and Continuity 
of a Solution of a Newtonian Initial Value Problem 3 ' 

The following simplified version of Theorem 1.1.5 is particularly useful for 
Newtonian systems. 

Theorem. If all the functions S"(t, a) are of (at least) class t'(j' in a region 
R2n+' of points (t, am), then the initial value problem 

a" = S"(t, a), 
a"(to) = ~, J1 = 1, 2, ... , 2n, 

(1 ) 

admits a unique solution ~(t) in any interval of ~me (t" t 2 ) containing to 
for which all points (t, a (t» lie in the interior of R 2n +' and such a solution 
is continuous in (t" t 2 ). 

If the region R2n+' is the entire space -00 < t, a" < +00, then a 
solution exists provided its norm remains finite. This remark is useful to 
determine whether a Newtonian system admits a solution for all values of 
time in the interval (-00, +(0). For configuration space formulations of 

3' Akhiezer (1962). 
Nota Bene: The theorem of this chart also holds under the weaker continuity 

conditions that all Ell. and iENfla v are continuous. However, the case when a 
discontinuity of the Ell. functions in their time dependence occurs, is rather problematic 
within a Newtonian context and, as such, we shall ignore it. Notice also that to avoid 
certain delicate aspects related to frontier points, we have assumed that the interval 
(t" t 2 ) and all elements (t, a(t» are in the interior of R2n+'. 
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Newtonian systems (Appendix A), the requirement of the above theorem is 
that. for instance, the implicit functions fi(t, q, q), are of at least class 'C' 
in a region R2n+' = {t q, q}. Then the solution qk (t) of the initial value 
problem, 

i, k = 1, 2, ... , n, 
(2) 

exists, is unique, and is of class 'C' in any interval (t" t 2) containing to such 
that (t, q(t). q(t)) lies in the interior of R2n+'. But along such solutions, 
ijk = fk (from the theorem on implicit functions) and the f's are continuous 
functions oftime in (t" t 2). Thus, qk (t) possesses continuous second-order 
derivatives in (t" t 2) (see also the last statement of Theorem 1.1.4), namely, 
not only the generalized coordinates and velocities but also the generalized 
accelerations are continuous in (t" t 2 ). 

Chart 1.3 A Theorem on the Existence, Uniqueness, and Continuity 
of the Derivatives with respect to the Parameters of 
Solutions of Newtonian Systems 32 

For the reader's convenience, we shall again give a simplified version of 
certain aspects of the "existence theory," this time of Theorems 1.1.4 
and 1.1.7. 

Theorem. When the conditions of the theorem of Chart 1.2 are met, 
and the 3~ functions are single valued, then through every point of the 
neighborhood I, = (to' co), there passes one and only one system of 
functions of time and 2n parameters c~. a~ = a~(t; c). which. together with 
a~ = oa~ / at satisfy system (1) of Chart 1.2 identically. are continuous 
functions of t E (t,. t 2 ) and possess continuous first-order partial deriva
tives with respect to a/l c~ E (c~). 

Again, the application of this theorem to Newtonian systems is straight
forward. Suppose that the initial value problem 

iji = fi(t. q, q), 

= v'O ' i = 1,2, ... , n (1 ) 

satisfies the conditions of Chart 1.2 and, in addition, the implicit functions 
fi are single-valued. Then the solution qi (t) exists, is unique, and can be 
uniquely imbedded into a 2n-parameter family of solutions qi(t; u, v). 
only one element of which satisfies system (1). Furthermore, such solutions 
possess continuous partial derivatives up to and including the second
order with respect to all values t E (t" t 2 ), ui E (u'O)' and Vi E (vo)i. 

32 Akhiezer (1962). 

Nota Bene: The appearance of the additional condition of single-valuedness 
should be indicated here but not overemphasized. In essence, such a condition can be 
related to the uniqueness of the imbedding of a solution into a 2n-parameter family of 
solutions. Such uniqueness, however, will not be crucial for our analysis. What will 
turn out to be of primary importance, particularly for the conditions of self-adjointness 
(Section 2.1). is the continuity of the derivatives of the solutions with respect to the 
parameters, namely, that the variations (2.1.2) and (2.1.3) be continuous. Such 
variations, however, are never unique in the sense that for system (1) there always 
exists a family of admissible variations. 
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Chart 1.4 A Relationship between Local and Global Solutions for 
Conservative Systems 33 

Consider a one-dimensional system of one particle of mass m and co
ordinate x(t) moving on the half-line (0, 00) under the action of a con
servative force with potential Y·(x(t)). The Hamiltonian is H = ~mx2 + 
1"'(x) and the equations of motion are 

x = v, 

101'" 
v= -m~' 

(1 ) 

Suppose that 01'" lox E (~o, Lips) uniformly on every compact subset of 
(0, 00). Then system (1) admits a unique local solution x°(t) > ° in the 
neighborhood of each value to > O. 

It is possible to prove that the only case where the local solution XO(t) 
does not extend to a global solution is when the particle runs into zero or 
off to infinity in a finite time. If none of these two possibilities occurs, the 
motion represented by Equations (1) in (0, 00) is called complete. We can, 
therefore, say that under the assumption that the motion is complete, a local 
solution of Equations (1) always extends to a global solution in (0,00). 

Without proof, we quote the following theorem. 

Theorem. Suppose that 01'" lox E (~O, Lips) uniformly on each com
pact subset of (0, 00). Then: 
the motion is not complete at ° if 1'" is bounded above in 0,; 
the motion is not complete at 00 if 1'" is bounded above for x ;;::, 1 and 

r -jN ~xr(x) < 00 

for some N > Sup 1"'(x), x 2: 1. 

Significance: The above properties are significant both within the 
framework of classical mechanics as well as in conducting a comparative 
study of the corresponding case in quantum mechanics. In the latter case, 
the Hamiltonian is the (symmetric) operator -(112m) d 21dx2 - 1"'(x). 
Then, it is possible to show that the classical and quantum mechanical 
motions are not equivalent when the potential 1"'(x) is complete at 00 both 
classically and quantum mechanically and 01'" lox is "too large" compared 
to 1"'. 

Chart 1.5 Hilbert Space Approach to Newtonian Mechanics 34 

It is generally assumed that Hi/bert spaces appear only within a quantum 
mechanical context. However, recent studies indicate that Newtonian 
systems can also be studied within the framework of such spaces. In this 
chart, we touch on certain background questions only. The Hilbert space 
approach to the Inverse Problem will be considered in Charts 3.16 and 3.17. 

33 Reed and Simon (1975. Vol. II. Appendix to Chapter X.1). 
34 Reed and Simon (1975. Vol. II. Section X-14). 
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Hamilton's equations characterize a generally nonlinear system of 2n 
first-order ordinary differential equations in the finite-dimensional phase 
space of the a = {q, p} variables. In order to introduce a Hilbert space, such 
equations must be turned into an equivalent linear system of equations in an 
infinite-dimensional space. This can be acomplished by considering first a 
map m(ao' t) = a(t) from the (2n + 1) -dimensional R2n+' space of 
initial data ao and time t to the 2n-dimensional space R2n of the solutions 
a(t) of Hamilton' equations satisfying such initial data, and then intro
ducing complex valued functions f on R2n through the action of an oper
ator U t according to the expression 

Then we can write 

(U/)(a) = f(m(a, t)). 

d(U/) I = {f, H}; 
dt t=O 

f fj da~ h{f, g} = f D, da~{h, f}g; 

f, g, hE C""(R2n), 

(1 ) 

(2) 

where {f, g} is the Poisson brackets and the last property can be proved by 
using an integration by parts. The Liouville form and Liouville operator 
are defined, respectively, by 

r 2n 
I(f, g) = J J] da~{f, g}H 

and 

Lf = {f, H}. (2) 

It is then possible to prove that (a) the Liouville form is skew-symmetric, 
i.e., I(f, g) = -/(g, f), (b) if H E '6" and f, g belong to the domain of L, then 
(f, Lg) = I(f, g). and (c) - iL is a symmetric operator. If the theorems for the 
existence, continuity, and uniqueness of a global solution of Hamilton's 
equations hold, then it is also possible to prove the Liouville Theorem, 
namely, that U t is a unitary operator. In this case, U t characterizes a one
dimensional unitary group whose infinitesimal generator is -iL, and -iL is 
essentially self-adjoint on C""(R2n). 

However, Hamilton's equations do not generally possess global 
solutions (e.g., when there are forces due to collisions), in which case it 
is not possible to extend -iL to a self-adjoint operator. As a result, self
adjointness properties can be more easily established in quantum mechanics 
than in Newtonian Mechanics (in their operational sense). This confirms 
a predictable difference in the treatment of these two disciplines within the 
context of Hilbert spaces. Indeed, even for simple conservative systems, 
the classical Hamiltonian H = T(q) + V(q) can be unbounded from below 
or above, while the corresponding quantum mechanical Hamiltonian can 
be bounded on account of the Uncertainty Principle. Besides, possible 
singularities of the potential V (e.g., the Coulomb potential) are made 
worse in the Newtonian case because they enter into the definition of L, 
with the overall consequence that they can be better handled in a quantum 
mechanical context. Despite (or, if you like, because of) these and other 
technical difficulties, the Hilbert space approach to Newtonian Mechanics 
remains intriguing and potentially effective. 
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EXAMPLES 35 

Example 1.1 

The equation F(q, ij) = ij - q2/3 = 0 is regular (Definition 1.1.1) in any region R2 
of points (q, ij) because its functional determinant I of /oii I = 1 is a numerical con
stant. The function F(q, ij) is continuous in R2 (of class ~o), but it does not possess 
continuous derivatives nor does it satisfy the Lipschitz conditions in q for any region 
R2 that includes the value q = O. Therefore, its solutions exist but are not unique. In
deed, both integrals 

q = 0 and q = Nt - 2)3 (1) 

are solutions of the equation satisfying the initial conditions 

to = 2. (2) 

The solution q = 0 is then called a singular integral (Rektorys, 1969, page 737) 
because the uniqueness condition is broken. 

Example 1.2 

The equation 

F(4, ii) = ij - l = 0 (1) 

is regular and satisfies the existence and uniqueness theorem. Indeed, its integral is 
given by 

and it is unique. 

Example 1.3 

The system 

4=--, 
C - t 

C = const. 

iii + iiY2 + rx2q2 - rxq:/2 = 0, 

iii - ii~/2 + rx2q2 + rxq:/2 = 0, 

rx oF 0, ii2 oF 0 

(2) 

(1) 

satisfies the existence and uniqueness theorems for implicit functions and, therefore, 
can be reduced to the kinematic form 

iii = fl = -rxq2, 
ij2 = f2 = +rxql, 

The system also satisfies Theorem 1.1.5. Its solutions can be written 

ql = (c i cos !rxt + C2 sin !rxt)e(l/2)., + (C3 cos !rxt + C4 sin !rxt)e-(l/2)·, 
q2 = (CI sin !rxt - C2 cos !rxt)e(l/2)., + (-c3 sin !rxt + C4 cos !rxt)e-(1/2).,. 

(2) 

Theorem 1.1.7 is satisfied, too, for an interval of time (t l , t2 ), say, in the interior of 
(0, n/2rx). Then qi, 4i and iii' i = 1, 2 are continuous and possess continuous derivatives 
with respect to the four constants of integration. 

35 For references on differential equations with extensive applications see, for instance, 
Rektorys (1969) or Brauer and Nohel (1969). 
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Example 1.4 

Consider the I-form A(!) = A;(q) dqi and suppose that it satisfies all conditions (1). 
(2) and (3) given at the end of Section 1.2 (page 32) for the applicability of the Con
verse of the Poincare Lemma. Integrability conditions (1.2.32), in particular, read 

(1) 

Then Lemma 1.2.2 ensures the existence of a O-form, i.e., a scalar function 4J(q), such 
that its exterior derivative coincide with A(!). By using Equation (1.2.25), such a 
scalar is given by 

(2) 

The above statements are a reformulation, in the language of the calculus of differ
ential forms, of the known property according to which a necessary and sufficient 
condition for a vector to be the gradient of a scalar is that its curl vanishes. Besides a 
more rigorous formulation of this property, the use of the calculus of differential forms 
also provides a solution for the scalar function. It should also be indicated that, in the 
ultimate analysis, this is a solution of the system of partial differential equations in the 
unknown 4J, 

o4J 
Ai-~=O, 

oq' 
i = 1,2, ... , n, (3) 

which is overdetermined (because the number of equations exceeds the number of 
unknowns). One of the most significant applications of this case to Newtonian 
Mechanics is that when Ai represents an acting force Fi(q). Then, the above integra
bility conditions are the necessary and sufficient conditions for such force to be con
servative, i.e., Equations (A.4.7) (see Appendix). The extension of the case to a differ
entiable manifold with local coordinates il (rather than l) yields the necessary and 
sufficient conditions for the existence of a power function, i.e., Equations (A.5.U). 
Notice that the method also provides a solution for the primitive form. 

Example 1.5 

Consider the 2-form A(2) = Ai1i2 dqil /\ dqi2 with antisymmetric (2, D)-tensor 
Ai,i,( = - Ai2i ,), and suppose that it satisfies all the conditions of Lemma 1.2.2. Then 
the integrability conditions read 

(1) 

They are the familiar necessary and sufficient conditions for an antisymmetric tensor 
to be the curl of a vector, say Bi(q). Indeed, Lemma 1.2.2 guarantees the existence of the 
I-form B(l) = Bi dqi such that dB(l) = A (2). In this case, the underlying system of 
partial differential equations in the unknown Bi is 

(2) 
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and its solution, again by using Equation (1.2.25), is given by 

Bi = 2[{dr rAik(rq)]qk. 

Notice that this solution is not unique because of the" degree of freedom" 

B(O) = cj>(q), 

(3) 

(4) 

for which dB'(I) == dB(!). Notice also that the formulation of the problem within the 
context of the calculus of differential forms is more restrictive than that of the ordinary 
approach, because of the condition that the tensor Ai'il(q) be well behaved in a star
shaped region R"* of points q. In turn, this guarantees the existence of the integral of its 
solution. One of the most significant applications of this case to classical mechanics is 
that when the tensor Ak,k2 represents the electromagnetic field F ~v in the variables 
(l) = (t, r), (c = I). The method provides not only the necessary and sufficient 
conditions for F ~v to be the curl ofthe 4-potential (A~) = (cp, A), but also a solution for 
Aw 

Example 1.6 

Consider again a 2-form A(2) = Ai, i2 dqi' 1\ dqi2 which satisfies all the conditions 
of Lemma 1.2.2, but suppose now that the tensor Ai,i2 is symmetric, i.e., Ai,il = Aili ,. 
Our problem is that of identifying the necessary and sufficient conditions for a sym
metric tensor Ai,i2 to be derivable from a vector Bi according to 

(1) 

This problem can be solved by usrng Lemma 1.2.2 twice. The I-form 

(2) 

is closed if and only if 

dQ .. = _._"'_3 __ ._"'_3 d i, 1\ d i3 = O. ( o2A. . 02A..) 
"'l oq'4 oq'3 oq'4 oq" q q 

(3) 

When the above conditions hold, there exists a O-form ri,il = - r ili , 36 for which 

(4) 

From the first use of Lemma 1.2.2, we then have the identities 

oAi,i3 oAili3 
-----
oqi2 oqi' 

(5) 

Now introduce the I-form 

(6) 

36 According to footnote 18 of page 27, this is a case in which a tensor, without any contraction 
with the differentials of the variables, is considered as a zero-form. 
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This form is closed, i.e., droi, = 0, in view of 

(OAi~i' _ OAi~i') dJ/z A dJ/' = Ori~iz dqiz A dJ/'. 
Oq'2 oq'2 oq" 

(7) 

From the second use of Lemma 1.22, then, a O-form Bi exists such that 

(8) 

i.e .. 

(9) 

By interchanging the i l and i2 indices and summing up, the desired relation holds in 
view ofthe antisymmetry ofthe ri,iz terms. The integrability conditions are then, from 
tIni ,;, = 0, 

(10) 

A significant application of this case is that when the symmetric tensor Alliz rep
resents the strain tensor of the Theory of Elasticity. 

Problems 

l.l Consider the second-order ordinary differential equation 

ttl 10 t - q - tq 10 3, = o. 
Identify an interval of time for which the theorem of Chart l.l (for the existence of the 
implicit functions) holds. Prove that in such an interval tlK; theorem of Chart 1.2 (for the 
existence of a solution) also holds and identify such a solJtion. 

1.2 Consider the foUowing variation of the system of Example 1.3. 

til + tl2 + (1.2q2 - a.q~/2 = 0, 

tl2 + iil + (1.2q2 + a.q~/2 = 0, 

(1. :F 0, tl2 :F O. 

Prove that for such a system both implicit functions / I and /2 do not exist. 

1.3 Compute a solution at large of the system 

iii - ql + q2 = 0, 

iii + il2 - ql = O. 

1.4 Prove properties (1.211). (1.212), and (1.2.13). 

1.5 Prove that the generalized Kronecker delta (1.28) can be written in terms of 
the contravariant and covariant Levi-CiiJita tensors as follows 

1.6 Prove that the exterior product of a PI-form with a P2-form satisfies the rule 

AUO" A AUO" = (-I)"'P'AUO" A AUO" 
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1.7 Prove that the exterior derivative of the exterior product of problem 1.6 
satisfies the rule 

d(A{j'I) 1\ AIP2) = (dAIPI) 1\ Alp2) + ( -1)P1 Alpl) 1\ (dAIP2) 

1.8 Prove the identities 

iJ i1 p-l _ i1 P iJAil ... i,(r:q) 
iJ¢ 0 d1: 1: Ail ... i,,( 1:q) - 0 d1: 1: iJ¢' 

which have been tacitly used for Equations (1.2.26). 

1.9 By using the Poincare Lemma, prove that the exterior derivative of the ele
ments dqil 1\ ••• 1\ dt/" is identically null. 

1.10 Prove Equations (1.3.39) and (1.3.42). 



CHAPTER 2 

Variational Approach to 
Self-Adjointness 

2.1 Equations of Motion, Admissible Paths, Variational Forms, 
Adjoint Systems, and Conditions of Self-Adjointness 

In this chapter we introduce a methodological tool of central relevance for our 
analysis, the conditions of variational self-adjointness, which will later result 
to be necessary and sufficient conditions for the existence of a Lagrangian or 
Hamiltonian (Chapter 3). 

This section is devoted to a presentation ofthe basic ideas as close as possible 
to their original derivation, l i.e., for systems of second-order ordinary differ
ential equations that are generally nonlinear in the second-order derivatives 
and, as such, generally non-Newtonian (see Appendix A). The specialization 
of these ideas to the various Newtonian forms of differential equations will be
worked out in the subsequent sections. The comparison of the variational 
approach to self-adjointness and that for operators acting on linear spaces will 
be considered in Section 2.8 and Chart 3.16. The algebraic significance of the 
variational approach to self-adjointness will be worked out in Section 2.9, 
while its geometrical significance will be indicated in the Charts at the end 
of this chapter and in Chart 3.18. 

Throughout this section we consider a system of n second-order ordinary 
differential equations 

F;(q) = F;(t, q, q, ij) = 0, i = 1,2, ... , n, (2.1.1) 

I See, for instance, Frobenius (1878), Helmholtz (1887), Mayer (1896), Kurshak (1906), and 
Davis (1929). 

54 
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which is generally nonlinear in all the variables q\ i/, and il, and we assume 
that it satisfies the global existence theorems of Section 1.1 in such a way that 
the 00 2n-family of solutions r&~q) exists, is unique, is of (at least) class C62 in 
(t 1, t2 ), and possesses continuous derivatives with respect to the 2n parameters 
in the neighborhood of given values. 

Our objective is the identification of the conditions of variational self
adjointness without the necessary knowledge of the solutions. This will 
allow us later (Chapter 3) to compute a Lagrangian, when it exists, also with
out the necessary knowledge of the solutions. By recalling that the systems 
considered are generally nonlinear, this is clearly a central requirement for the 
practical effectiveness of the methodology of the Inverse Problem. 

This objective is achieved by 

1. Considering the functions Fi rather than the equations Fi = 0; 
2. Computing these functions along a one-parameter path f1jJ = {qk( t; w)} 

t E (tl' t2 ), WE Ot' k = 1, 2, ... ,n, which is of (at least) class C62 in t 
and of class C6 1 in W but is not necessarily a solution of Equations (2.1.1); 

3. Applying the variational approach to self-adjointness to the functions 
F i along f1jJ, i.e., F( f1jJ). 

More generally and in line with the assumptions of Section 1.3, we shall 
call the family of admissible paths that characterized by all one-~rameter 
functions qk(t; w) satisfying the indicated continuity conditions. The function 
Fi can then be computed along any element of this family. 

To implement the variational approach to self-adjointness we begin with 
the construction of the variations of the admissible paths, which can be 
defined by2 

k _ Oqkl 1] (t) - ;;- , 
uW W~O 

k = 1,2, ... , n. (2.1.2) 

From the viewpoint of the calculus of variations (Section 1.3), quantities 
(2.1.2) are, in essence, the finite part of the contemporaneous first-order 
variations of qk. Indeed, we can write Jlqk = 1]k(t)W, WE Ot. 

It is readily seen that, by construction, the variations 1]k(t), considered as 
function~ oftime, have the same continuity properties of qk(t; w), namely, they 
are of (at least) class C62 in (tl' t2). This implies that the derivatives 

~k(t) = oil I ' ~k(t) = oil I oW W~O oW W~O (2.1.3) 

exist and are continuous in (t1' t2). 

2 The analysis can be equivalently carried out for w in the neighborhood of any (finite) 
value woo 
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Our second step is that of constructing the so-called system of (first
order) variationalforms of Equations (2.1.1). This can be done by computing 
the functions F; along a one-parameter admissible path, by differentiating 
with respect to wand letting w = O. In this way, we reach the system 

M.( ) = dF; I = of; I k + of; I ·k + of; I ··k 
I I] k I] . k I] .. k I] , 

dw w=o oq w=o oq w=o oq w=o 
(2.1.4) 

which, from the viewpoint of the calculus of variations, can be considered as 
the finite part of the contemporaneous first -order variations of F;, i.e., 
b1 F; = M;(I])w, WE 0 •. 

Notice again the distinction between the variational forms M;(I]) and the 
associated equations M;(I]) = 0, called equations of variations. These latter 
equations essentially restrict the class of variations along which the forms M; 
are computed.3 This restriction, even though not excluded, is not necessary 
for the variational approach to self-adjointness and, therefore, we shall not 
assume it. 

Since the original functions F; are known and the path [JjJ along which they 
are computed is also known, all coefficients of the variations in Equations 
(2.1.4) are known, and we shall write 

(2.1.5) 

where (at w = 0), 

(2.1.6) 

Notice that, given a system offunctions [Equations (2.1.1)] not necessarily 
linear in q\ i/, and il, their variational forms (equations) are always linear 
in I]k, ~k and rt 

The variations I]k(t), as defined by Equations (2.1.2), are not unique. We 
shall call the family of admissible variations that family characterized by the 
variations (2.1.2) of all possible admissible paths. This means, in practice, that 
all functions I]k( t) of at least class rtj2 in (t 1, t 2) are admissible. Two or more 
elements of this family can be constructed by considering two or more ad
missible paths, say qk(t; w), il(t; w), etc. Equations (2.1.2) then yield the 
variations 

~k = ~(ll , ... , 
uW w=o 

(2.1.7) 

which are admissible because of class rtj2 in (t b tz). 

3 It is significant to note that, when the original system (2.1.1) is consistent, so is the system of 
equations of variations (see Problem 2.11). 
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We shall call the family of admissible ordinary variational forms that family 
characterized by the computation of the forms Mi along all admissible 
variations, Le., 

where the term "ordinary" is introduced to stress the fact that the procedure 
is here referred, specifically, to ordinary differential equations.4 

Our next step can be characterized by the following definition. 

Definition 2.1.1. A system of (ordinary) variational forms M;(ij) is termed 
the adjoint systemS of forms Mi(rO defined by Equations (2.1.5) when there 
exists a function Q('1, ij)6 such that the Lagrange identity 7 

(2.1.9) 

holds for all admissible variations. 
To identify a possible structure of the adjoint system Mi(ij) and of the 

functions Q('1, ij), consider the relations 

j d (-ib ) i d2 (-i , -n-n .. +n-nC-j 
·f dt ·f 'J 'f dt2 'f , 

d [-ib j -i . j j d (-i )] + dt '1 ij'1 + '1 cij'1 - '1 dt '1 Cij • 

4 For the extension to partial differential equations, see Santilli (1977a). 
5 The term adjoint was, apparently, proposed by Fuchs (1873). 
6 Q('1, ~) is sometimes called the bilinear concomitant. 

(2.1.10) 

7 Condition (2.1.9) was, apparently, introduced by Lagrange. See Bocher (1917, page 23) and 
Ince (1927, page 124), Notice that this condition can also be turned into an integral form. This 
yields the Green identity: 

Our analysis will be based on the Lagrange rather than the Green identity due to certain uniqueness 
problems related to the latter. 
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Thus, Mi(ij) and Q(1], ij) can be given, respectively, by 

M- (-) -k d (-kb) d2 (-k ) 
i 1] = 1] aki - dt 1] ki + dt 2 1] Cki (2.1.11a) 

and 

Q( -) _ -ib j -i j j d (-i 
1], 1] - 1] ij1] + 1] cij1] - 1] dt 1] Ci)' (2.l.l1b) 

Theorem 2.1.1 (Uniqueness of the Adjoint System). Every system of 
(ordinary) variational forms Mi which is a continuous function of time in 
(tl' t2 ) possesses one and only ones adjoint system Mi' 

The idea of the proof is the following. Suppose that there are two adjoints 
Mi(fj) and M;(fj) for each given form Mi(1]). This implies the existence of two 
functions Q(1], fj) and Q'(1], fj), such that 

Then we can write 

But the integral 

-iM iM- Q' -i i -, ., 
1] i - 1] i = , 1] Mi - 1] Mi = Q (2.1.12) 

(2.1.13) 

(2.1.14) 

must be independent of the path in (1], /1)-space. This can be so, in view of the 
continuity conditions, if and only if Mlfj) = M;(fj). 

Notice that the above argument excludes also the trivial degrees offreedom 
£1; = Mi + Ci,Ci = constant. 

Theorem 2.1.1 can also be studied under weaker continuity conditions of 
the forms M i(1]), but we shall not indulge in analyzing this aspect at this 
time.9 

Notice that the actual functional dependence of Mi is in the elements 
(t, 1], ~, ~) and, thus, the notation M i (1]) must be considered symbolic. The 
function Q is also, in general, a function of the elements (t; 1], fj; ~, {t). 

Clearly, under the assumed continuity and regularity conditions, the con
cept of adjointness is reciprocal and involutive. It is reciprocal in the sense 

8 The uniqueness is referred here to the functional structure of the forms !Wi and not to the 
variations I]i along which they are computed. 

9 However, we must indicate that, as we shall see more clearly later, when the variations 
I]k are of class <em, m < 2, in the considered region of time there exist considerable difficulties for 
the conditions of self-adjointness. This is a reason for our restriction to equations of motion 
which possess solutions of at least class <e2 • 
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that if Mk(~) is the adjoint of Mk(rJ), then Mk(rJ) is the adjoint of Mk(~). It is 
involutive in the sense that if applied twice it reproduces the original form 
identically. 

We are now equipped to introduce a concept of central significance for 
our analysis. 

Definition 2.1.2. A system of (ordinary) variational forms M;(rJ) is termed 
self-adjoint when it coincides with its adjoint system M;(rJ) for all admissible 
variations, i.e., 

i = 1,2, ... , n, (2.1.15) 

The conditions of self-adjointness can be derived by imposing the identity 
between forms (2.1.5) and (2.1.11a), i.e., 

d d2 
k b·k ··k k ( kb ) (k) aikrJ + ikrJ + CikrJ = rJ aki - dt rJ ki + dt2 rJ Cki , 

which yields 

bik + bki = 2Cki' 

aik - aki = Cki - hki · 

(2.1.16) 

(2.1.17a) 

(2.1.17b) 

(2.1.17c) 

We shall call Equations (2.1.17) the conditions of selfadjointness of the 
variational forms (2.1.5). 

A system of ordinary differential Equations (2.1.1) is called self-adjoint 
when its variational forms are self-adjoint. By substituting definitions (2.1.6) 
into Equations (2.1.17), we obtain the relations 

oFi oFk 
ail oii' 

oFi + oFk _ 2~ oFi _ ~ (OFi + OFk) 
ail oqi - dt ail - dt ail oii' 

oFi oFk d [d (OFk) OFkJ 
oqk - oqi = dt dt. ail - oqi 

1 d (OFi OFk) 
= 2. dt oqk - oqi ' 

(2.1.18a) 

(2.l.l8b) 

(2.1.18c) 

which must be satisfied everywhere in the considered region R4n + 1 of points 
(t, q, q, ij, q). We shall call Equations (2.1.18) the conditions of self-adjoint ness 
for systems of ordinary second-order differential equations. To my best knowl
edge, such conditions were first identified by Helmholtz (1887). 

Theorem 2.1.1 and Definition 2.1.2 imply the following theorem. 
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Theorem 2.1.2 (Self-Adjointness of Systems of Ordinary Second-Order 
Differential Equations). A necessary and sufficient condition for a (regular) 
system of second-order ordinary differential equations (2.1.1) to be self-adjoint 
in a region R 411 + 1 of points (t, q, q, q, ii) is that all conditions (2.1.18) are 
everywhere satisfied in R411 + 1. 

When at least one of the conditions (2.1.18) is violated, we shall call the 
system non-self-adjoint. 

In practice, given a (regular) system (2.1.1), one first sees whether the 
functions F; are of at least class qj2 in a region R 311 + 1 of points (t, q, q, q).10 

When this is the case, for the self-adjointness of the system it is sufficient that 
all Equations (2.1.18) are identities among functions. Notice that Equations 
(2.1.18) imply, in general, third-order time derivatives of t/. Thus, even though 
the continuity condition F" E fG2 is sufficient, when Equations (2.1.18) are 
computed along a path (rather than considered as identities among functions), 
such a path is assumed to be of at least class fG3 • For later use (see next section), 
notice also that, if the functions F" are linear in the ij's, then no third-order 
derivative of t/ appears in Equations (2.1.18), and their computation along 
a path of class fG2 is sufficient. 

A most important property is that, according to Theorem 2.1.2, the self
adjointness or non-self-adjointness of system (2.1.1) can be ascertained with
out any knowledge of the solutions. Indeed, it is sufficient to ascertain whether 
conditions (2.1.18) are satisfied as identities among functions (without 
necessarily considering tpeir computation along given paths), as we shall 
illustrate with the examples at the end of this and the next chapter. 

This is a rather remarkable occurrence. In more explicit but nontechnical 
terms, we can say that the machinery of the variational approach to self
a<ljointness, after producing the central conditions (2.1.18), can be ignored in 
practical applications. We are referring here to: (1) the family of admissible 
paths, (2) the family of admissible variations, (3) the systems of variational 
forms (and equations), (4) the systems of adjoint forms (and equations), and 
(5) the self-adjoint or non-self-adjoint systems of variational forms (or equa
tions). All these tools play ~ crucial role in the derivation of conditions (2.1.18). 
Nevertheless, the net result is a set of conditions on the original functions F; 
that can be directly tested without any need of variational techniques and 
without any knowledge of the solutions of the system considered. As indicated 
earlier, the latter occurrence will allow us to ascertain whether a Lagrangian 
exists and, in case of affirmative answer, to compute it, without any knowledge 
of the solutions of the system considered. 

For completeness, however, it should be recalled that the terms self-adjoint 
or non-self-adjoint systems of ordinary differential equations refer to systems of 
ordinary differential equations whose systems of variational forms are self
adjoint or non-self-adjoint. 

10 This is due to the fact that conditions (2.1.18) involve second-order partial derivatives. 
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We are now in a position to identify the arena of applicability of the methods 
considered in this book. This can be done by considering the following five 
different classifications of Newtonian systems. The emerging restrictions on 
the applicability of the methods under consideration then trivially extend to 
ordinary differential equations of non-Newtonian interpretation (e.g., those 
ofthe Optimal Control Theory). 

Classification I: Holonomic or Nonholonomic Systems 

This classification arises from the nature of the acting constraints (see 
Appendix). Its significance for our analysis rests on the fact that the meth
odology for the problem of the existence of a Lagrangian demands a con
siderable amount of technical implementation in the transition from holono
mic to nonholonomic systems. The analysis of this volume is restricted 
to holonomic systems that can be written in configuration space according to 
fundamental form (A.7.5): 

F,,(q) = A,,;(t, q, q)it + B,,(t, q, q) = 0, 

k = 1,2, ... , n. (2.1.19) 

If the constraints are nonholonomic, the reduction to the configuration space 
of the generalized coordinates cannot be performed. We are dealing, then, 
with a system of second-order ordinary differential equations (i.e., Newton's 
equations of motion) subject to a system of subsidiary constraints. The 
methods of this book are expected to be extendable to this latter class of 
systems. Nevertheless, such an extension will not be considered at this time. 

Classification II: Local or Nonlocal Systems 

In principle, a Newtonian system can be nonlocal, in which case it demands 
the use of integro-differential equations. These systems are excluded by the 
analysis of this -volume, which is restricted to local ordinary differential 
equations, i.~ ,equations oftype (2.1.1). It should be indicated in this respect 
that this latter claSs is sufficient for our needs because it includes conservative, 
dissipative, and dynamic systems according to their conventional inter
pretation as reviewed in the Appendix. Notice that the problem ofthe existence 
of a Lagrangian or Hamiltonian is trivial for (holonomic) conservative 
systems but is not trivial for arbitrary local systems. From now on, we shall 
tacitly assume that fundamental form (2.1.19) represents a holonomic system 
with arbitrary (but local) Newtonian forces. When the holonomic constraints 
are absent, we shall tacitly assume that the variables q", k = 1,2, ... , n = 3N, 
represent the Cartesian coordinates ria, i = 1, 2, ... , N, a = x, y, z (in a given 
ordering) of the considered systems of N particles in a three-dimensional 
Euclidean space. 
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Classification III: Systems of Class ((jm, m ~ 2 or of Class ((jm, 

m < 2 in Their Region of Definition 

This classification arises from the integrability conditions for the existence of 
a Lagrangian, which, as we shall see in Chapter 3, are the conditions for self
adjointness (2.1.18) and, as such, exhibit the presence of second-order partial 
derivatives. From now on, we shall restrict our analysis to systems (2.1.19) 
which satisfy the continuity conditions 

A . B E rtjm(R2n+ 1) kl' k , m ~ 2. (2.1.20) 

The above assumption, together with the condition of regularity, 11 also 
guarantees 12 the consistency of the system considered, (Le., the existence of a 
physically acceptable motion). When a Lagrangian for the representation of 
systems (2.1.19) exists, conditions (2.1.20) correspond to the assumption that 
such a Lagrangian is of at least class rtj4 in R 2n + 1, an assumption rather 
familiar in the calculus ofvariations.13 It should be indicated that the problem 
of the existence of analytic representations for systems (2.1.19) can also be 
considered with the minimal continuity conditions, 

m ~ 1, (2.1.21) 

by means of their reduction to normal forms (Section 2.4) and the identi
fication of a Hamiltonian (Section 3.12), rather than a Lagrangian. The 
Hamiltonian would then be, when it exists, of class rtj3, a minimal continuity 
assumption which is also familiar in the canonical formulation of the 
calculus of variations. 13 

Notice that the assumed continuity conditions exclude impulsive motions. 

Classification IV: Regular or Degenerative Systems 

This classification arises from the nature of the functional determinant 
(Section 1.1). Its significance rests on the fact that the methodology for the 
existence of a Lagrangian is highly sensitive to the regularity or degeneracy of 
the functional determinant. The analysis of this volume is restricted to systems 
(2.1.19), which satisfy the regularity condition 

(2.1.22) 

11 This condition is requested for the existence of the implicit functions which, in turn, allow 
the reduction of Equations (2.1.19) to the normal form (Section 1.1). If the condition of regularity 
is violated, continuity assumptions (2.1.20) are not even sufficient to guarantee the existence of a 
solution. 

12 Assumptions (2.1.20) are actually redundant for this purpose, with their weaker form 
(2.1.21) being more familiar (see Chart 1.2). 

13 See, for instance, Bliss (1946, page 7). 
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at every point (t, q, q) of the considered region of definition. It should be 
indicated here that, on practical grounds, it is sufficient to demand that the 
functional determinant is non-null as a function of (t, q, q). However, this 
does not exclude possible zeros of such a function along the path considered. 
To avoid occurrences of this type we shall, from now on, tacitly assume that 
the region of definition of systems (2.1.19) is selected in such a way that its 
functional determinant is everywhere non-null in it. For an illustration of this 
point, see Example 2.6. 

Classification V: Self-Adjoint or Non-Self-Adjoint Systems 

This classification arises from the use of conditions (2.1.18) and it will be 
shown to be crucial for the problem of the existence of a Lagrangian. The 
analysis of this volume is restricted to self-adjoint systems. [The problem of 
the existence of analytic representations for nonselfadjoint systems is treated 
in Santilli (1979)]. 

2.2 Conditions of Self-Adjointness for Fundamental and Kine
matic Forms of Newtonian Systems 

Under the restrictions of the preceding section, the central objective of this 
volume is the study ofthe necessary and sufficient conditions for the existence 
of a Lagrangian representation of (local) Newtonian systems in the funda
mental form: 

Fk = Aki(t, q, q)i/ + Bk(t, q, q) = 0, 

Aki , BkEI(j'2(R2n+l), 

IAijl(R2n + 1) "# 0; 

or in the equivalent kinematic form, 

it - fk(t, q, q) = 0, 

fk E 1(j'2(R2n+ 1), 

where, from the theorem on implicit functions, 

(2.2.1a) 

(2.2.1 b) 

(2.2.lc) 

(2.2.2a) 

(2.2.2b) 

(2.2.3) 

This objective demands the specialization of the conditions of self-ad
jointness (2.1.18) to Equations (2.2.1a) and (2.2.2a). Let us begin with the 
former case. Assume that for Equations (2.1.1) all conditions (2.1.18) hold. 
Then the system is necessarily linear in the accelerations it This is due to the 
fact that, since the left-hand side of Equations (2.1.18b) is independent of {t, 
all terms of;/oi/ must be independent of the accelerations. Therefore, we 
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reach the important conclusion that a necessary (but not sufficient) condition 
for a system (2.1.1) to be self-adjoint is that it is of the Newtonian type (2.2.1 a). 

Conditions (2. 1.1 Sa) now read simply 

(2.2.4) 

Since the coefficients of the qi terms of Equation (2.1.1Sc) must vanish, we have 

(2.2.5) 

The above conditions, together with Equations (2.2.4), imply that the ex
pressions fJAilJfJi/ remain unchanged under all permutations of the indices 
i,j, k. 

From Equation (2. 1.1 Sb), by using Equation (2.2.1a) and properties (2.2.5), 
we obtain 

(2.2.6) 

Equations (2.1.1Sc), by using Equations (2.2.5), can be written 

(2.2.7) 

which can hold identically if and only if the following separate sets of identities 
hold. 

(2.2.Sa) 

(2.2.Sb) 

Equations (2.2.Sa) are not independent, since they can be obtained from 
Equations (2.2.6) and (2.2.5).14 Equations (2.2.Sb), however, constitute an 
independent set .of conditions. 

14 See Problem 2.7. 
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In this way, we obtain the following sets of independent conditions. 

(2.2.9a) 

(2.2.9b) 

(2.2.9c) 

(2.2.9d) 

i, j, k = 1, 2, ... , n, 

which must hold everywhere on R2n+ 1 for system (2.2.1) to be self-adjoint. 
We shall call Equations (2.2.9) the conditions of self-adjointness for the 
fundamental form. 15 

The above situation can be summarized by the following theorem. 

Theorem 2.2.1 (Self-Adjointness of the Fundamental Form). A necessary 
and sufficient condition for a holonomic Newtonian system, 

k = 1,2, ... , n, 

satisfying the continuity and regularity conditions 

Ak;, BkE~m(R2n+l), m 2: 2, 

(2.2.10) 

(2.2. 11 a) 

(2.2.11b) 

in a region R 2n + 1 of points (t, q, q) to be self-adjoint in R2n+ 1, is that all 
conditions (2.2.9) are satisfied everywhere in R 2n + 1. 

We must stress again that, strictly speaking, when conditions (2.2.9) hold, 
system (2.2.10) has self-adjoint variational forms. When at least one of con
ditions (2.2.9) is violated, we shall call the system non-self-adjoint. 

Essentially, continuity conditions (2.2.11a) guarantee the existence and 
continuity of all derivatives appearing in Equations (2.2.9) everywhere in 
R2n+ 1.16 Regularity condition (2.2.11b) plays a crucial role in Theorem 2.2.1. 
Indeed, the study of the corresponding theorem for degenerate systems is 
considerably more delicate. 1 7 

15 Conditions (2.2.9) have apparently been derived for the first time by Mayer (1896) and then 
worked out in more details by Davis (1928 and 1929). 

16 Notice that, strictly speaking, the conditions Aki E <gl and Bk E <g2 are sufficient. Nevertheless 
this occurrence, as compared with the unified condition (2.2.11a), has little practical significance 
in Newtonian mechanics. 

17 Basically, the difficulties are due to the fact that, when the condition of regularity is relaxed, 
the continuity conditions (2.2.11a) alone are not sufficient to guarantee the existence of a solution. 
This, in turn, affects the question of the existence of the adjoint system as well as its uniqueness, 
both of which are needed to properly define the conditions of self-adjointness. 
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Another aspect which we must stress is that conditions for self-adjointness 
(2.2.2) or (2.2.9) do not imply the linearity of the system either in qk or it 

When the 00 2n family of possible paths qk(t; u, v) for t E (t 2, t 2) and (u, v) E 

(uo, vo), is known, and conditions (2.2.9) are verified, we can alternatively say 
that system (2.2.1) is everywhere self-adjoint along all possible paths q(t; u, v). 

For an illustration of Theorem 2.2.1, see the examples at the end of this 
chapter as well as those in Chapter 3. As a trivial (but significant) example, 
consider conservative systems of the type18 

where 

.. or ( ) .. 011 0 
miri - :#' i r = miri + ~ = , 

uri 
(2.2.12) 

m 2: 2, i = 1,2, ... ,N. (2.2.13) 

Then conditions (2.2.9) reduce to the single set of conditions 

(2.2.14) 

which are implicit in continuity properties (2.2.13). Thus, when the acting 
forces are derivable from a potentiaI1l(r) of (at least) class rtJ2, the systems in 
the form (2.2.12) are self-adjoint. 

We now study the sets of all independent conditions of self-adjointness for 
the kinematical form (2.2.2a). Conditions (2.1.18a) are always identically 
verified for systems in this form. Conditions (2.2.2b) become 

01'. Of. 
_~_i' + _~_J i - 0 
oqJ Oil- (2.2.15) 

and constitute a first independent set. Conditions (2.2.2c) can be written 

and can hold identically if and only if the following distinct sets of conditions 
hold. 

(2.2. 17a) 

(2.2.17b) 

18 We assume here no summation on repeated indices. 
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In this way, we obtain the following sets of all independent conditions 

oJ; ofi 1 {o 'k 0 } (OJ; Ofi) 
oqi - oqi = 2 ot + q oqk oqJ - oqi ' 

(2.2. 18a) 

(2.2.18b) 

(2.2.18c) 

which must be verified everywhere in R 2n + 1 for system (2.2.2a) to be self
adjoint. We shall call Equations (2.2.18) the conditions of self-adjointness for 
the kinematical form. 

From Equations (2.2.18a) and (2.2.18b), we see that a necessary (but not 
sufficient) condition for system (2.2.2a) to be self-adjoint is that it is linear in 
the velocities,19 i.e., of the type 

iii - Pij(t, q)qi - ait, q) = 0. (2.2.19) 

Then equations (2.2.18a) for system (2.2.19) become 

Pij + Pii = 0, (2.2.20) 

and Equations (2.2.18c), in view of Equations (2.2.20), can be explicitly 
written 

(~~T + ~~¥ + ~{)l + (~;~ - ~:{ - ~:/i) = 0. (2.2.21) 

Clearly, Equation (2.2.21) can hold everywhere in R 2n + 1 if and only if each 
term within the parentheses individually vanishes. We obtain, in this way, the 
following theorem. 

Theorem 2.2.2 (Self-Adjointness of the Kinematical Form). A necessary 
and sufficient condition for a Newtonian system in the kinematical form 

iii - /;Ct, q, q) = 0, i = 1, 2, ... , n, 

J; E 'fjm( R 2n + 1 ), m ~ 1 

(2.2.22a) 

(2.2.22b) 

to be self-adjoint in a region R 2n + 1 of points (t, q, q) is that the system is 
linear in the velocities, i.e., of the type20 

iii - PuCt, q)qi - ait, q) = 0, 

m ~ 1, 

19 Problem 2.5. 

(2.2.23a) 

(2.2.23b) 

20 We assume the minimal continuity conditions (2.2.23b) in view of the appearance of only 
first-order partial derivatives in conditions (2.2.24). 
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and all the conditions 
Pij + Pji = O. 

VPij VPjk OPk; _ 0 
ik/ + Oqi + oqi - • 

va· va· , • J 

vqj - oqi' 

(2.2.24a) 

(2.2.24b) 

(2.2.24c) 

are satisfied everywhere in the subregion R"+ 1 E RZ"+ 1 of points (t, q). 

When at least one of the conditions of the above theorem is not verified, we 
shall say that the kinematical form is non-self-adjoint. 

When the implicit functions represent the acting forces, the conditions of 
self-adjointness fRr the kinematical form are ultimately restrictions on the 
acting forces. ~btlce '.that conditions (2.2.24) do not imply linearity in the 
coordinates t. 

The analysis of this section relates to an arbitrary number n of dimensions. 
For n = 1, we have the following corollaries. 

Corollary 2J.la. A neceS!j(lTy and sufficient condition for a holonomic one
dimensional k ewtonian system in the fundamental form 

A(t, q, q)q + B(t, q, q) = 0, 
(2.2.25) 

to be self-adjoint in a region R3 of points (t, q, q) is that the condition 

(2.2.26) 

holds everywhere in R3. 

Corollary 2.2.28. A necessary and sufficient condition for a one-dimensional 
holonomic Newtonian system in the kinematical form, 

ij - f(t, q, q) = 0, 

m ~ 1, 
(2.2.27) 

to be selfadjoint in a region R3 of points (t, q, q) is that the implicit function is 
independent of the velocity q. 
By comparing conditions of self-adjointness (229) for the fundamental 

form (2.2.1a) and conditions (2.224) for the kinematical form (222a), an 
asPect of considerable methodological significance emerges. Let us first recall 
that a (regular holonomic) Newtonian system in the fundamental form can be 
e~ivalently written in its kinematical form. The aspect in which we are inter
ested at this point is that, despite the abOve equivalence, if the system in the 
fundamental form is self-adjoint, the same sYstebl in its equiv3lent kinematical 
form is not nece$S8rily self-adjoint, and vice versa. 
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Let US illustrate this propeH:y with a simple example. Consider the con
servative system (22.12) under the assumption that the potential function is 
not linear in the coordinates. Its kinematic form is21 

.. 1 iJ"Y 
r i + - :l.. = 0, 

mi Vii 
(2228a) 

(2.2.28b) 

Le., it is of type (2.2.23), where all p's are identically null. Then conditions 
(2.2.24) for Equations (22.28) reduce to 

1 iJ2"Y 1 iJ2"Y 
-------=0 
mi Ori Orj mj Orj Ori ' 

(2.2.29) 

and system (2.228a) is self-adjoint if and only if all masses are equal. 22 

Therefore, if we start with a conservative system (2.2.12) of N particles, all 
with different masses (~ =/; mj), which is self-adjoint when written in the 
fundamental form (2.2.12), after performing the transition to its equivalent 
kinematic Corm (2.2.28) the system is no longer self-adjoint In this case, we 
can say that the ~imple operation of "division by the ~:iiSes" applied to 
system (2.212) is insufficient to break its self-adjointness. 

More generally, we have the following property. 

Lemma 2.2.1 (Independence of the Solutions from Self-Adjointness 
Properties of the Equations). Systems of ordinary differential equations 
that are equivalent to a self-adjoint system are not necessarily self-adjoint. 

This property will turn out to be crucial for the construction of an analytic 
representation of non-self-adjoint systems [see Santilli (1979)]. 

The variational approach to self-adjointness presented in Section 2.1 and in 
this section extends to systems of ordinary differential equations of arbitrary 
order. A unified approach to the conditions of self-adjointness for systems of 
ordinary differential equations of arbitrary (finite) order is presented in 
Chart 3.10. The following theorem for the first -order case is significant for our 
analysis. 

Theorem 2.2.323 (Self-Adjointness of First -Order Differential Equations in 
Configuration Space). A necessary and sufficient condition for a system 
of ordinary jirst-order differential equations in configuration space, 

F ,Jt, q, q) = 0, k = 1,2, ... , n, 

21 We assume here no summation for repeated Latin indices. 
22 See also Example 3.5. 

(2.230) 

23 See Mayer (1896) and Havas (1973, Appendix 8). For the field theoretical case, see, for 
instance, Santilli (1978, Vol. I). 
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which is of at least class C(J2 in a region R2n+ 1 of points (t, q, q), to be self
adjoint is that the system is linear in the velocities, i.e., of the type 

Fk = Xdt, q)qi + }k(t, q) = 0, 

and all the conditions of self-adjoint ness, 

X ki + X ik = 0, 

oXij OXik OXki 
oqk + oqi + oqi = 0, 

oY; _ oy; 
oqi oqi' 

(2.2.31) 

(2.2.32a) 

(2.2.32b) 

(2.2.32c) 

are identically verified in the subregion R"+ 1 E R2n+ 1 of points (t, q). 

PROOF. Conditions (2.2.18) for system (2.2.30), after simple manipulations, become 

o2Fi o2Fk 
ail oqj - Oqi i4J = 0, (2.2.33a) 

OFi oFk 
~+-=O 
ol Oqi ' 

OFi oFj 1 {o .k 0 } (OFi OFj) 
oqj -oqi = 2. it + q oqk oqj - oqi . 

(2.2.33b) 

(2.2.33c) 

The combined use of Equations (2.2.33a) and (2.2.33b) demands that the system be linear 
in the velocities (Problem 2.5). Conditions (2.2.32) then follows by specializing Equations 
(2.2.33) to system (2.2.31). Q.E.D 

Let us recall that system (2.2.30), in the terminology of Section 1.1, is 
totally degenerate. The above theorem indicates that the variational approach 
to self-adjointness for regular second-order systems can be trivially extended 
to the case when these systems are totally degenerate. The reader should, 
however, be alerted that the extension of the analysis to the case of "bona fide" 
degenerate systems of second-order differential equations is not trivial, owing 
to the presence of subsidiary constraints. See, in this respect, footnote 17 of 
page 65. In any case, this extension demands specific investigations that will 
not be considered in this book. 

The important property that the Lorentz force is variationally self
adjoint is presented in Example 2.7. 

2.3 Reformulation of the Conditions of Self-Adjointness within 
the Context of the Calculus of Differential Forms 

As indicated earlier, our study of the integrability conditions for the existence 
of a Lagrangian will be based on the calculus of differential forms in general, 
and the Converse of the Poincare Lemma in particular. This requires a 
reformulation of the conditions of self-adjointness within such a context. 
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The Lagrangian representations of Newtonian systems in their fundamental 
forms (2.2.1a), i.e., the identifications 

d oL oL 02L .. k 02L. 02L oL 
dt oill - oqkl = oill oil2 q 2 + oill oqk2 1/'2 + ai/l ot - oqkl 

= Aklk2 il2 + Bkl 

kl = 1,2, ... , n 

demand the validity of the following separate equations 

02L 
~ ·kl ~ .ki = Aklk2 , uq uq, 

02L 02L oL 
---;,.----;- ·k2 + B 
oill oqk2 q oill at - oqkl = kl· 

(2.3.1) 

(2.3.2a) 

(2.3.2b) 

Suppose a particular solution, say K(t, q, q), of Equations (2.3.2a) exists. From 
the continuity and regularity conditions of Equations (2.2.1), it follows that 
such a solution must be of (at least) class l6'4 and nonlinear24 in the velocities. 
The most general solution L of Equations (2.3.2a) can then be written 

L(t, q, q) = K(t, q, q) + Dk(t, q)qk + C(t, q). (2.3.3) 

Indeed, if K is a particular solution of Equations (2.3.2a), then so is function 
(2.3.3), because of the appearance in such equations of the second-order 
partial derivatives in the velocities. 

We now substitute structure (2.3.3) in Equations (2.3.2) and obtain the 
equations 

02K 
ail' Oil2 = Ak ,k2' (2.3.4a) 

( ODkl _ oe) + (ODkl _ ODk2) .k2 _ B + oK _ 02K _ iPK .k2 
at oqkl oqk2 oqkl q - kl oqkl o,tl at oqkl oqk2 q , 

(2.3.4b) 

where we have written all terms involving the K function on the right-hand 
side because they can be assumed to be known from the solution of Equations 
(2.3.2a). But the left-hand side of Equations (2.3.4b) is linear in the velocities. 
By differentiating with respect to qk2, we obtain the equations 

ODkl ODk2 OBkl {a .k, a} 02K 02K 02K 
ol2 - oqkl = oqk2 - at + q oqk' oill oil2 + oqkl oqk2 - oqkl oqk2 

(2.3.5) 

24 The regularity condition implies that at least some of the second-order derivatives of the 
function K in the velocities must be non-null and this, in turn, can occur if and only ifthe function 
is at least quadratic (and, thus, nonlinear) in the velocities, 
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which constitute a second independent set of equations for identifications 
(2.3.1) to hold, jointly, with Equations (2.3.4a). 

By assuming that a solution Dk of these equations exists, we can substitute 
Equations (2.3.5) into (2.3.4b), yielding the equations 

(2.3.6) 

which constitute the third (and last) independent set of conditions for identi
fications (2.3.1) to hold,jointly with Equations (2.3.4a) and (2.3.5). 

Suppose now that all conditions of self-adjointness (2.2.9) are verified for 
system (2.2.1a). Then, by using Equations (2.3.4a) and (2.2.9c), the system of 
equations (2.3.4a), (2.3.5), and (2.3.6) can be written 

(2.3.7a) 

(2.3.7b) 

ac aDk, aK aZ K [aZ K 1 (aRk, aRk2)] .k2 
aqk' = at - Rk, - aqk' + ail' at + aqk' ail2 + 2: ail2 - ail2 q 

== w", (2.3.7c) 

where the right-hand side of each of these equations at this point is assumed 
to be known. 

Equations (2.3.7a) constitute a generally overdetermined system of second
order differential equations in only one unknown, the function K. Since the 
partial derivatives are in the velocities only, we can assume that the t and qk 
variables are fixed. The underlying differential form is then defined on it 
(differentiable) manifold with local coordinates i/ and can be written (see 
Section 1.2) 

1 .. k k - b"'2 Ad·' d· 2 - 2! k,k2 i,i2 q 1\ q . (2.3.8) 

The conditions of self-adjointness (2.2.9a) then imply that this 2-form is 
identically null. Indeed, Equations (2.2.9a) can be rewritten in terms of the 
generalized Kronecker delta (1.2.9), 

kl' kz = 1,2, ... , n. (2.3.9) 
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We consider now the exterior derivatives of a (not necessarily null) form 
(2.3.8). From Equations (1.2.5) and (1.2.17), we can write 

8A dA(2) = ~ d 'k3 d 'k l A dq'k 2 8i/ 3 q A q 

1 '" 17k. 
= - b"'2 ' 3 ~ dq'k , A dq'k 2 A dq'k 3 3! klk2k3 8q'3 . (2.3.10) 

Conditions of self-adjointness (2.2.9b) then imply that this exterior derivative 
is identically null, as the reader can verify by a simple inspection, because they 
imply the identities 

(2.3.11) 

From now on, whenever working within the context of the calculus of 
differential forms, we shall use conditions of self-adjointness (2.3.9) and (2.3.11) 
rather than (2.2.9a) and (2.2.9b). 

Next, we consider Equations (2.3.7b), which also characterize a generally 
overdetermined system of, in this case, first-order partial differential equations. 
Since the partial derivatives appearing in these equations are in the coordi
nates, the underlying differential form is defined on a manifold with (local) 
coordinates q\ and can be written 

Z(2) = Z dqkl A dqk2 klk2 . (2.3.12) 

The closure condition in this case is 

(2.3.13) 

and it identically holds if and only if 

(2.3.14) 

But the Z-terms are antisymmetric in their indices. Therefore, conditions 
(2.3.14) reduce to (see Example 1.5) 

(2.3.15) 

By substituting the values of the Z terms from Equations (2.3.7b), the above 
equations take the explicit form 
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where we have used the continuity properties of the K function. By again 
using the generalized Kronecker delta, the above equations can be written 

. . . 02B,. 
(j'l'2'3 '- 0 klk2k3 oqi2 oi/3 - , 

(2.3.17) 

Consider, now, three sets of conditions of self-adjointness (2.2.9d) in the 
pair of indices (k 2 , k3)' (k 3, k1), and (k 1, k2 ). By differentiating them with 
respect to i/', il2, and i/'. respectively, and adding up, we obtain the ex
pressions 

(2.3.18) 

From the commutativity of the second-order derivatives in the velocities and 
the antisymmetry properties of the generalized Kronecker delta, it follows 
that Equations (2.3.18) are identically null. Therefore, under the conditions 
of self-adjointness, integrability conditions (2.3.17) hold and the 2-form 
(2.3.12) is closed. 

We now consider Equation (2.3.7c), which again characterizes a generally 
overdetermined system of first-order partial differential equations in the 
unknown function C. Since the partial derivatives are again in the qk variables, 
the underlying differential form is defined in a manifold in such (local) 
coordinates and can be written 

w(l) = l¥" dqk. 

The related closure conditions read 

and can identically hold if and only if 

.. o~ 
(j"'2 --' - 0 k,k2 ::l i - , uq 2 

k 1, k2 = 1,2, ... , n. 

(2.3.l9) 

(2.3.20) 

(2.3.21) 

By substituting the explicit form of the ~ terms from Equations (2.3.7c), 
we obtain the relations 

which, from Equations (2.2.9d), can be written 

.. oW,. 1. . . 02B,. k 
<5'112 __ I = _ b'11213 1· 3 - 0 

klk2 oqi2 2 k,k2k3 oqi2 oqiJ q - (2.3.23) 
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and they identically hold whenever Equations (2.3.17) hold. Therefore, under 
the conditions of self-adjointness, I-form (2.3.19) is closed. Notice that the 
closure conditions for Equations (2.3.7b) and (2.3.7c) are equivalent. 

Finally, for consistency, the right-hand sides of Equations (2.3.7b) and 
(2.3.7c) must be independent of the velocity. By differentiating these equa
tions with respect to i/3 and after some simple algebra, we obtain the re
spective consistency conditions 

(2.3.24a) 

and 

(2.3.24b) 

which are clearly equivalent among themselves. But, as indicated in Section 
2.2, Equation (2.3.24a) can be derived from Equations (2.2.9b) and (2.2.9c). 
Therefore, under the conditions of self-adjointness, consistency conditions 
(2.3.24) identically hold. 

We now summarize the contents of this section: 

1. The most general structure of the Lagrangian for the representation of 
Newtonian systems in their fundamental form (2.2.1) is given by 
structure (2.3.3). 

2. The underlying system of independent partial differential equations for 
the existence of such a Lagrangian is given by Equations (2.3.7). 

3. The reinterpretation of the conditions of self-adjointness within the 
context of the calculus of differential forms leads to the following 
closure and consistency conditions. 

(2.3.25a) 

(2.3.25b) 

(2.3.25c) 

(2.3.25d) 

It should be stressed that all conditions of self-adjointness (2.2.9) enter into 
the reformulation (2.3.25). Also, when conditions (2.2.9) hold, Equations 
(2.3.25) are automatically verified and there is no need to reinspect them. 

Finally, it should be stressed that Equations (2.2.9) and (2.3.25) are not 
equivalent. What we have proved is simply that the former equations always 
imply the latter. This is sufficient for our needs (see Chapter 3). 
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The. interpretation of the conditions of self-adjointness (22.24) for kine
matic form (2.223) within the context of the calculus of differential forms is 
left to the interested reader (see Problem 2.8). 

2.4 ]be Problem of Phase Space Formulations 

As is well known, the transition from configuration space to phase space of a 
Newtonian system (2.2.1) requires the knowledge ofthe Lagrangian L(t, q, q) 
and is based on the prescriptions for the canonical generalized momenta PI:, 

aL 
GI:(t, q, q, p) = PI: - aqk = 0, k = 1,2, ... , n. (2.4.1) 

However, at this stage of our analysis we do not know yet whether a Lagran
gian capable of representing system (2.2.1) exists and, thus, we are not yet in a 
position to introduce canonically conjugate variables (q, pl. 

In order to treat this aspect, we shall first transform Newtonian systems of 
either one of the forms (2.21) or (2.2.2) into equivalent, not necessarily 
canonical systems of2n first-order equations. This is done in this section. We 
shall then express these systems in a more adequate tensor notation (Section 
2.5). 

Let us introduce a set of prescriptions for the characterization of new 
variables YI:' which are linear in the velocities, i.e., of the type 

(2.4.2) 

where aij and Pi represent known functions. 
In order to avoid cases rather delicate to handle, we assume that pre

scriptions (2.4.2) are selected in such a way as to produce a one-to-one 
mapping of points (t, q, ti) of the region R 211+ 1 onto points (t, q, y) of an 
"image" region R211 + 1. We shall fulfill this requirement by assuming that the 
functions aiit, q, y) and PI:(t, q, y) are single-valued, of class ee2 in R211 + 1,25 

and are such that the determinants 

lOG-I laG-I a;) = laijl and a) (2.4.3) 

are non-null everywhere in their respective regions of definition. 
These assumptions imply that the normal forms 

YI: = gl:(t, q, q) (2.4.4a) 

and 
ql: = (Mt, q, y) (2.4.4b) 

exist and are unique, single-valued, and at least of class ee2 in R 211 + 1 and 
R211+ I, respectively. 

25 This assumption will later be consistent with class <c3 Hamiltonians_ 
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We should stress the fact that the 2n variables (q, y) are not necessarily 
canonically conjugate. Nevertheless, the above approach is useful for the 
reduction of the system of n second-order equations (2.2.1) to an equivalent 
system of 2n first-order equations in the variables (q, y). 

Indeed, under the above assumptions, the second-order derivatives 

(2.4.5) 

exist (and are continuous). Therefore, they can be substituted into Equations 
(2.2.1a), yielding the following equation26 in the y. 

(a-i a-j a-k) 
F;(t, q, y, y) = Aiit, q, g) a:k g" + a~k Yk +:r + Bi(t, q, g) 

== (X/(t, q, Y)Yj + Pi(t, q, y). (2.4.6) 

The system of2n first-order equations linear in il and Yk so constructed, i.e., 

Gi = (Xiit, q, y)qi + Pi(t, q, y) = 0, 

Fi = (Xij(t, q, Y)Yj + Pi(t, q, y) = 0, 

(2.4.7a) 

(2.4.7b) 

is equivalent to system (2.2.1). Indeed, the procedure is everywhere invertible. 
Kinematic form (2.2.2) can be reduced accordingly. 
In should be mentioned that when a canonical structure exists, prescrip

tions (2.4.2) do not coincide in form with the conventional prescriptions (2.4.1) 
(with Yk == Pk)· However, when the functions (Xij reduce to the Kronecker bij , 

then the resulting form, i.e., 

(2.4.8) 

must coincide with the normal form in qi of Equations (2.4.1) for such a 
canonical structure to exist. 

More generally, in view of the assumed regularity conditions, prescriptions 
(2.4.2) can always be written in the "factorized" form 

(2.4.9a) 

(2.4.9b) 

Thus, when a canonical structure exists in the space of (q, y) variables, in 
view of the regularity and continuity of the (Xij functions, Equation (2.4.9a) 
is equivalent to the normal form in qi ofthe conventional prescriptions (2.4.1). 

The reasons for selecting prescriptions (2.4.2) or (2.4.9) linear in qi rather 
than an equivalent form of type (2.4.1) (i.e., linear in Yi) are related to certain 
properties of the conditions of self-adjointness, and will be discussed later on. 

26 We want here to obtain equations which contain time derivatives of Yk variables only. 
Therefore, we substitute the i/' terms with the iI functions of Equations (2.4.4b). 
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2.5 General and Normal Forms of the Equations of Motion 

In this section we implement a second step which will be crucial for the 
necessary and sufficient condition for Equations (2.4.7) to admit a Hamil
tonian representation. This step essentially consists of the identification with
in Equations (2.4.7) of two forms of first-order equations termed general and 
normal, each one expressible in either contravariant or covariant form. The 
problem of the analytic representation of the normal forms in terms of 
Hamilton's equations will be studied in Chapter 3. [The significance of the 
general tensorial forms for the problem of equivalent canonical formulations 
are studied in Santilli (1979)]. 

The reader should be aware of the fact that the proper handling of these 
tensorial forms, or of any tensorial quantity in general, inevitably demands a 
geometrical analysis, with particular reference to transformation theory, as an 
essential tool for the same characterization of the tensors considered. 

This program will be implemented in sequential steps. In this section we 
shall simply identify such tensor forms on somewhat empirical grounds 
without reference to their geometric significance or their transformation 
properties. In the charts at the end of this chapter, we shall point out the 
geometric interpretation of such tensor forms for the primary objective of 
identifying the differentiation between the contravariant and covariant 
versions of the same forms. The program is completed in Santilli (1979) when 
studying the phase space transformation theory. 

The ultimate significance of the tensorial forms, however, will be trans
parent only after the introduction of Hamilton's equations (Chapter 3). 
Indeed, one of the most effective ways of expressing the canonical equations is 
precisely in terms of contravariant and covariant normal forms. In turn, such 
formulations will playa crucial role in the problem of identifying the neces
sary and sufficient condition for the existence of a Hamiltonian capable of 
representing Equations (2.4.7). 

Introduce the vector aJl with 2n components 

J1 = 1, 2, ... , n, 
J1 = n + l,n + 2, ... ,2n 

and the matrices 

(c (t aU)) = (ait, aU)) On x n ) 
JlV , 0 (/1( "))' nXn ai t, a 

( ( U)) (f3;(t, aU)) 
DJl t, a = f3;(t, aU) , 

(2.S.la) 
(2.S.1b) 

(2.S.2a) 

(2.S.2b) 

where the functions rxij and Pi are the functions appearing in prescriptions 
(2.4.2) and the functions rx;j and f3; are defined by Equations (2.4.6). Then 
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system (2.4.7) can be written in the form 

C,jt, a")aV + DIl(t, a") = 0, (2.5.3a) 

m ~ 2, (2.5.3b) 

(2.5.3c) 

11, v = 1, 2, ... , 2n, 

which we shall call the general first-order form of a Newtonian system, or 
general form for short. 

Owing to the linearity of the derivatives as well as regularity condition 
(2.5.3c), the normal form of system (2.5.3) can be identified easily. 

It is convenient, for reasons to be illustrated later, to denote the matrix 
elements of the inverse matrix (C) - 1 with upper indices, i.e., 

Then, in view of the identities 

system (2.5.3) can be written in the equivalent2 7 form 

all - 21l(t, a") = 0,11 = 1,2, ... , 2n, 

m ~ 2, 

which we call the normalform. 28 

(2.5.4) 

(2.5.5) 

(2.5.6a) 

(2.5.6b) 

(2.5.6c) 

Notice that system (2.5.6) is of the type considered for the existence theorems 
of Section 1.1. 

Clearly, an inspection of systems (2.5.3) and (2.5.6) indicates the need for an 
interpretation of the significance of the upper and lower indices as well as the 
identification of~a tensor of rank 2 suitable for raising and lowering such 
indices. 

The geometrical framework is undoubtedly the best arena for analyzing 
these problems. However, as indicated at the beginning of this section, we shall 
not consider the geometric aspect at this point, but we refer the interested 
reader to Chart 2.5. Essentially, we shall now proceed to a characterization of 
the above tensor forms suitable for the identification of their conditions of 
self-adjointness. 

27 In the sense that systems (2.5.3) and (2.5.6) characterize the same family of possible paths. 
28 See footnote 6 of Chapter 1 for this terminology. 
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For reasons to be justified later (primarily from the conditions of self
adjointness), we assume the elements ofthe matrix29 

as the tensor needed for lowering the index of the a" vector. 
By inspection, we note the following. 

1. The elements wllV are numerical constants given explicitly by 

{ 
0 for Jl, v :$; n, Jl, v ~ n, 

wllV = + 1 for v:$; n, Jl = v + n, 

- 1 for Jl:$; n, v = Jl + n, 

and, thus, are independent of the paths in ipn + 1. 

2. The matrix (wIlV) is antisymmetric: 

(2.5.7) 

(2.5.8) 

(2.5.9) 

3. The inverse matrix (W"V) == (WIlV) -1 exists [because (wIlV) is regular] 
and is given explicitly by 

(2.5.10) 

Thus, the properties 

(2.5.11) 

always hold.30 

4. The transition from the a/J. = (q, y) coordinates to a new set of co
ordinates all defined by 

(2.5.12) 

preserves the equivalence with configuration space formulations, in the 
sense that the equations with lower indices that can be constructed with 
the tensor wllV from Equations (2.5.6) are also equivalent to the cor
responding equations in configuration space. 

5. The tensor wllV (or W"V) is independent of the Lagrangian or the 
Hamiltonian and, thus, can be introduced at this stage of our analysis. 

29 The initiated reader has eventually identified the introduction of a symplectic structure 
in the space ofthe coordinate a = (q, y) through the inverse of matrix (2.5.7) (for more details, see 
Chart 2.3). 

30 In the language of matrix theory we can say that the matrix (roP') is unimodular, antisym
metric, and orthogonal, i.e., 

IwP'1 = 1, (w)T + (w) = 0, (W)T(w) = (W)(w)T = 1, 

where T denotes the transpose. 
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We now introduce the quantities 

(2.5.13) 

By contracting equations (2.5.6) with rollV and by using definition (2.5.12), we 
obtain the system 

all - 3it, a") = 0, (2.5.14) 

which constitutes another form for representing Newton's equations (2.2.1). 
On similar grounds, one can construct a fourth form of the type 

CIlV(t, a")av + DIl(t, a") = O. (2.5.15) 

It should be mentioned at this point that the tensor for raising or lowering 
the indices of the normal form does not necessarily apply to the general form 
because, in this case, a suitably generalized tensor with a possible path 
dependence is, in principle, admissible. Therefore, the form (roIlV) is not 
unique. 31 

By construction, all tensor forms (2.5.3), (2.5.6), (2.5.14), and (2.5.15) are 
equivalent among themselves as far as the characterization of the solutions in 
qk is concerned. However, they have different algebraic (or geometric) 
properties which will be indicated later on. 

By anticipating some of these properties, we shall label all equations with 
upper (lower) indices contravariant (covariant). Explicitly, we shall call 
Equations (2.5.3) and (2.5.15) the covariant and contravariant general forms, 
respectively, and equations (2.5.6) and (2.5.14) the contravariant and covariant 
normal forms, respectively. 32 

Notice that the above forms can be related in a "crosswise" way, in the 
sense that the theorem on implicit functions applied to the contravariant 
(covariant) general form gives rise to the covariant (contravariant) normal 
form. Alternatively, we can write the factorizations 

CIlVaV + Dil = Cllv(aV - 3 V
) = 0 

CIlVav + Dil = CIlV(av - 3 v) = 0 

in which the" crosswise" relationship is transparent. 

(2.5.16) 

Again, we must stress the point that the forms considered in this section are 
not necessarily embodied in a canonical structure owing to the independence 
of prescriptions (2.4.2) from the existence of a Lagrangian. 

31 See Section 2.7, the comments after Theorem 2.7.3. 
32 This terminology is introduced from the geometrical significance of the upper and lower 

indices as indicated in Chart A.13. In particular, Equations (2.5.6) characterize contravariant 
vector fields and, similarly, Equations (2.5.14) characterize covariant vector fields (Chart 2.2). 
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2.6 Variational Forms of General and Normal Systems 

Consider a covariant system of the type 

r/l(t, aa., aa.) = 0, 11 = 1,2, ... , 2n, 

r /l E ~m(R4n+ 1), m ~ 2, 

I ~:: I(R4n + 1 ) # 0, 

(2.6.1a) 

(2.6.1b) 

(2.6.1c) 

which is not necessarily linear in all. Let a/l(t; w) denote a one-parameter 
family i(~, a) of admissible paths which is of at least class ~2 for all t E (t 1, t2 ) 

and possesses continuous first-order derivatives with respect to w in a 
neighborhood 0,. 

Then the variations (see Section 2.1) of ill,a)' 

aa/ll '1/l =-aw w=o' 
(2.6.2) 

exist and are continuous together with their derivatives, 

(2.6.3) 

for all t E (t1' t2)' 
The (first -order) variational forms of system (2.6.1) can be written 3 3 

(2.6.4) 

where 

(2.6.5) 

and they are of covariant type. 
In view of the identity 

~/lM/l('1) = ~/lc/lV;'v + ~/l d/lv'1v 

= [,,/l d/l v - :t (,,/lC/lv)]'1V + :t (,,/lc/lv'1V), (2.6.6) 

which hold for all admissible variations (Section 2.1), the adjoint system of 
Equations (2.6.4) is 

_ d 
M/l(") = ~v dV/l - dt (WCV/l)' (2.6.7) 

Indeed, by introducing the scalar 

Q('1, ,,) = ,,/lc/lv '1" (2.6.8) 

33 Notice the need for the proper characterization of the equations of variation of considering 
a" covariant" (" contravariant") system (2.6.1) in the" contravariant" (" covariant") variables a. 
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the identity 

holds for all admissible variations. 
When system (2.6.1) is the covariant general form 

r" = C"v(t, aO)aV + D,,(t, a") = 0, 

the quantities (2.6.5) are given by 

d _ vC"a'a vD" 
"V - vav a + vav 

(2.6.9) 

(2.6.10) 

(2.6.11) 

and Equations (2.6.4), (2.6.7), and (2.6.9) are correspondingly defined. 
When system (2.6.1) is the covariant normal form 

(2.6.12) 

quantities (2.6.5) become 

(2.6.13) 

and system (2.6.4) with its adjoint system (2.6.7) are correspondingly defined. 
Notice that both systems (2.6.10) and (2.6.12) are" covariant" systems with 

a functional dependence on the "contravariant" vector a". These systems 
originate in a natural way from the reduction of Equation (2.2.1) to a first
order form and, as such, they constitute the most direct framework for the 
study of the conditions of self-adjointness. 

The condition of self-adjointness can, however, be equivalently studied for 
the contravariant forms when considered as functions of the covariant 
vector a". 

Indeed, for a contravariant system of the type34 

r"(t, a", a,,) = 0, f.1 = 1,2, ... , 2n, 

one can also introduce the variations 

(2.6. 14a) 

(2.6.14b) 

(2.6.14c) 

(2.6.15) 

34 From now on, symbols of the type R4n+ 1, and R 4n + 1 will denote regions in the contravariant 
and covariant variables, respectively. 
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Then the contravariant variational forms are given by 

MIl(rf} = CIlV~v + dllV'1v 

where 

and the adjoint system 

satisfies, for all admissible variations, the identity 

where 

Q'('1, ~) = ~ 11 CIlV'1v' 

Consider now the contravariant normal form 

all - 3 1l(t, aU) = O. 

(2.6.16) 

(2.6.17) 

(2.6.18) 

(2.6.19) 

(2.6.20) 

(2.6.21) 

In order to obtain an expression suitable for the construction of the equations 
of variations, we must re-express its dependence in terins of the covariant 
vector all' This can be done by using the quantities 

(2.6.22) 

for which 

(2.6.23) 

where the prime emphasizes the fact that the functions 3 1l(t, aU) are now 
regarded as new functions on ap • 

Quantities (2.6.17) for systems (2.6.23) become 

(2.6.24) 

Then system (2.6.16) and the adjoint system (2.6.18) are defined accordingly. 
For the contravariant general form, notice that in the transition from the 

matrix (C/lv(t, aU» to its inverse (CIlV(t, aU», the functional dependence of its 
elements remains on the contravariant vectors aU. 

In order to be in a form suitable for the study of the conditions of self
adjointness, the contravariation general form (2.5.15) must be rewritten as a 
function of the covariant vector ap ' i.e., 
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For such a system, definitions (2.6.11) become 

oC'lLa OD'IL 
dILv - . - -;:,-aa + -;:,-. 

vav vav 
(2.6.26) 

System (2.6.16) and adjoint system (2.6.18) then follow accordingly. 

2.7 Conditions of Self-Adjointness for General and Normal 
Systems 

We now study the conditions under which the covariant system 

r it, aCT, aCT) = 0, J.l = 1, 2, ... , 2n 

rILE ~m(i~4n+ 1), m :?: 2 

l or~ I(R4n+ 1) =1= 0 
oav 

(2.7.1a) 

(2.7.lb) 

(2.7.1c) 

is self-adjoint in a region R4 n+ 1 of points (t, aCT, aCT). This is the case, according 
to D~finition 2.1.2, when the system of variational forms (2.6.4) coincides with 
adjoint system (2.6.7) for all admissible variations, i.e., 

Mirf} == Mirf}, 

The above conditions explicitly read 

I] E ~2 

·V v _ -v d v 
cILvl] + dILvl] = I] dILv - dt (I] CVIL)' 

(2.7.2) 

(2.7.3) 

and they can hold identically for all admissible variations if and only if the 
properties 

CILV + CVIL = 0, 

dILv - dVIL = eILv , 

J.l, v = 1, 2, ... , 2n 

(2.7.4a) 

(2.7.4b) 

are satisfied everywhere in the interval (t1, t2). We shall call Equations (2.7.4) 
the conditions of self-adjointnessfor a covariant first-order system of variational 
forms. 

By substituting definitions (2.6.5) into Equations (2.7.4) for cILV and dILv , 
we obtain the identities 

orlL orv _ 0 
oav + oa lL - , 

orlL orv d orlL 
oav - oalL = dt oav' 
J.l, v = 1, 2, ... , 2n, 

which must be satisfied everywhere in R4 n + 1. 

(2.7.5a) 

(2.7.5b) 
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Theorem 2.7.1 (Self-Adjointness of a Covariant First-Order Ordinary 
System in Tensor Notation). A necessary and sufficient condition for a co
variant system (2.7.1) to be self-adjoint in a region R6n + 1 of points (t, a~, a~, ii~) 
is that all conditions (2.7.5) are satisfied everywhere in R6 n+ 1. 

It should be recalled that the conditions of self-adjointness (2.7.5) do not 
demand the knowledge of a solution for their applicability to systems (2.7.1). 
This point will be tacitly implied from here on. 

Notice the significance of continuity conditions (2.7.1 b) for the right-hand 
side of Equations (2.7.5b) to be well defined. Conditions (2.7.5b) explicitly 
read 

(2.7.6) 

Since the left-hand sides of these equations are independent of ii~, we see 
that a necessary (but not sufficient) condition for system (2.7.1) to be self
adjoint is that it is linear in the first-order derivatives, i.e., it is of the type35 

m ~ 2, 

(2.7.7a) 

(2.7.7b) 

(2.7.7c) 

We shall now derive the sets of all independent conditions of self-adjoint
ness, specifically, for this form. 

Conditions (2.7.5a) for system (2.7.7) read 

(2.7.8) 

namely, the matrix (Cl'v) must be antisymmetric. Let us now recall that an 
m x m matrix which is antisymmetric is (is not) necessarily singular when the 
dimension m is odd (even). Therefore, property (2.7.8) is consistent with the 
regularity condition (2.7.7c) because its dimension is always even. 

Conditions (2.7.7b) for system (2.7.7) become 

(acl'~ _ aCv~)a~ + ~DI' _ ~Dv = acl'v + acl'v a~ 
aav aal' aaV aal' at aa~ 

and they can hold identically if and only if the conditions 

acl'v + acv~ + ac~1' = 0 
aa~ aal' aav 

and 

acl'V 
at 

aDI' _ ~Dv 
aav aal' 

(2.7.9) 

(2.7.10a) 

(2.7.10b) 

35 This is the reason for selecting prescriptions (2.4.3), which are linear in the first-order 
derivatives. 
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are satisfied everywhere in ipn+ 1, where for conditions (2.7.10a) we have 
used properties (2.7.8). 

In this way, we obtain the following theorem. 

Theorem 2.7.2 (Self-Adjointness of the Covariant General Form). A 
necessary and sufficient condition for the covariant system 

CIlV(t, aa)£p + Dit, aa) = 0, jl = 1,2, ... , 2n, (2.7.11a) 

Cllv,DIlEC(jm(R2n+1), m;;::l, (2.7.11b) 

(2.7.11c) 

to be self-adjoint in a region ipn + 1 of points (t, aa) is that all the conditions 

CIlV + CVIl = 0, 

oCIlV oCvp oCpll _ ° 
oaP + oall + oav - , 

oCIlV 
ot 

oDIl oDv 
oav - oall' 

jl, v, p = 1, 2, ... , 2n, 

are satisfied everywhere in j{2n+ 1. 

(2.7.12a) 

(2.7.12b) 

(2.7.12c) 

When at least one of the conditions (2.7.12) is violated, we shall call the 
system (2.7.11) non-self-adjoint. 

Notice that conditions (2.7.5) or (2.7.12) do not imply linearity in all and 
that continuity conditions (2.7.11b) with m ;;:: 1 (rather than m ;;:: 2) are now 
sufficient for Equations (2.7.12). 

Again, strictly speaking, conditions (2.7.12) are the necessary and sufficient 
conditions for system (2.7.11) to possess a self-adjoint system of variational 
forms. When the general solution all(t; c) of system (2.7.11) is known and 
conditions (2.7.12) hold, we can say that the system is self-adjoint everywhere 
along all possible paths. For an illustration of Theorem 2.7.2, see the examples 
at the end of this chapter as well as those of Chapter 3. 

We now introduce the w structure defined by Equation (2.5.7) and trans
form system (2.7.11) into the covariant normal form 

wilvav - Sit, aa) = 0, (2.7.13a) 

SIlEC(jm(R2n+1), m;;:: 1, (2.7.13b) 

Our problem is to study the conditions of self-adjointness, specifically, for 
system (2.7.13). This can be done by using either conditions (2.7.5) or con
ditions (2.7.12). In the latter case, expressions (2.7.13) can be interpreted as a 
subcase of Equations (2.7.11), with the substitutions 

(2.7.14) 
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Conditions (2.7. 12a) then become 

(2.7.15) 

and they are always identically satisfied because the matrix (wll.) is antisym
metric by assumption. Conditions (2.7.12b) identically hold because 

OWIl• = 0 oau - , 

also by assumption. Finally, conditions (2.7.12c) become 

in view of substitution (2.7.14) and the assumptions 

OWIl• = 0 at . 
Thus, we have the following theorem. 

(2.7.16) 

(2.7.17) 

(2.7.18) 

Theorem 2.7.3 (Self-Adjointness of the Covariant Normal Form). A 
necessary and sufficient condition for the covariant system 

wll.a' - SIl(t, aU) = 0, /1 = 1,2, ... , 2n, (2.7.19a) 

Sil E"6'm(1Fn+ 1), m~1 (2.7.19b) 

to be self-adjoint in a region j{2n + 1 of points (t, aU) is that all the conditions 

OSIl _ as. _ 0 
oa' oa" - , 

are satisfied everywhere in j{2n+ 1. 

/1, v = 1, 2, ... , 2n (2.7.20) 

We are now in a position to comment about the assumption of Section 2.6 
for the wil • tensor as the lowering tensor of the contravariant normal form. 

In essence, the matrix (wll.) is selected (independently from any geometrical 
consideration) to comply with the conditions of self-adjointness of the 
covariant normal form, or, more specifically, the matrix (wll.) is identified as a 
solution with constant elements of conditions of self-adjointness (2. 7.12a) and 
(2.7.l2b).36 Since these two sets of conditions also admit solutions with an 
explicit dependence on time and path, the above situation illustrates the 
comment after equations (2.5.15) related to the non uniqueness of the W 

form. 37 

36 The geometrical significance of the form w has been indicated in footnote 29 of this chapter. 
Here we would like to stress the fact that the selection of w has been done to comply with the 
conditions of self-adjoint ness and, thus, quite independently from a symplectic structure. Not 
surprisingly, the symplectic approach and our differential approach converge to the same non
degenerate anti symmetric form w. See Charts 2.1 to 2.5 for more details. 

37 This is an aspect of typical geometrical significance. In this respect, see also Charts 2.1 to 2.5. 
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On similar grounds, one can study the conditions of self-adjointness for the 
contravariant forms when considered as functions of the covariant vector all' 
This is left as an exercise for the interested reader. 

A problem of particular algebraic significance, as we shall see in Section 2.9, 
is the following problem. 

Given a self-adjoint covariant general Jorm in all, what are the differential 
properties oj the corresponding contravariant general Jorm when considered as a 
Junction oj all, too? 

In turn, this problem is centered on the properties of matrix (CIlV(t, aa» 
when its inverse (CIlV(t, aa» is a regular 2n x 2n matrix satisfying the identities 
(2.7. 12a) and (2.7.12b). 

As is known from matrix theory, the inverse of a (regular) anti symmetric 
matrix is also antisymmetric. Thus, conditions (2.7.12a) imply that 

CIlV + CVIl = o. (2.7:21) 

To identify the properties that correspond to Equations (2.7.12b), consider 
the relation 

(2.7.22) 

then the identity 

oC oCa.v Ila. ca.v C 0 
oaP + Ila. oaP = (2.7.23) 

can be written 

ocav oC Ctp __ = CtPca.acvll~. 
oaP oaP (2.7.24) 

By permuting the indices and summing up, we can write38 

ocav oCVt oCta cvp __ + cap __ + cvp __ 
oaP oaP oaP 

= CTPCaa.CVIl(OCIla. + oCa.p + OCPIl ) == 0, 
oaP oall oaa. 

(2.7.25) 

which is identically null in view of conditions (2.7.12b). 
In this way, we obtain the following theorem. 

Theorem 2.7.4 (A Connection Between Covariant and Contravariant Self
Adjoint Structures). A necessary and sufficient condition Jor a matrix 
(CIlV(t, aa» to be the inverse oj a 2n x 2n matrix (CIlV(t, aa» satisJying the 
continuity and regularity conditions 

m ~ 1, (2.7.26) 

38 W. Pauli (1953). 
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and the identities 

CIl• + C'1l = 0, (2.7.27a) 

(2.7.27b) 

in a region ipn+ 1 of points (t, aO), is that all the conditions 

(2.7.28a) 

(2.7.28b) 

are satisfied everywhere in R2n + 1. Conversely, the necessary and sufficient 
conditions for a matrix (CIl.(t, a"» to be the inverse of a 2n x 2n matrix 
(CIl'(t, aCl», which satisfies equations (2.7.28) in a region R2n + 1 in which it is 
of at least class ~1 and regular, is that all conditions (2.7.27) are satisfied 
everywhere in R2n+1. 

In essence, the above theorem indicates that conditions (2.7.27) and (2.7.28) 
are equivalent in the sense that, under the assumed continuity and regularity 
properties, each set of conditions uniquely implies the other, and vice versa. 

But we can have, as a particular case, CIl• = roll'. The theorem then 
illustrates a relationship between the contravariant and covariant forms roll' 
and roll'. We can also say, more generally, that the forms (C Il.) and (roll') are 
solutions of Equations (2.7.27) satisfying conditions (2.7.26), while their 
inverses (CIl') and (roll') are solutions of Equations (2.7.28), satisfying cor
responding continuity and regularity properties. 

2.8 Connection with Self-Adjointness of Linear Operators 

The concept of self-adjointness which is nowadays familiar in theoretical 
physics is that for linear operators acting on vector spaces. Such a concept, as 
we shall now see, is closely related to the variational approach to self-adjoint
ness considered in this chapter. 

For simplicity (but without loss of generality), consider a finite-dimensional, 
real linear space S over the field F of real numbers. Let S be of dimension n 
with elements Uj, Wi' etc. Consider an operator Aij which transforms an n 
vector u into an n vector w according to 

(2.8.1) 

or, in symbolic notation, 

w = Au = A(u). (2.8.2) 
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Define the inner product of S: 

(w', w) = (w', A(u» = w;Aijuj. (2.8.3) 

Consider another operator, Aij , which transform a vector v into a vector z, i.e., 

or 

Z = Av = A(v) 

The operator A is called the adjoint operator of A when 

(v, A(u» - (u, A(v» = viAijuj - uiAijvj = 0 

(2.8.4) 

(2.8.5) 

(2.8.6) 

Clearly, the definition of an adjoint system for a system of second-order 
differential equations (Section 2.1), 

(2.8.7) 

can be considered as a generalization of condition (2.8.6). An operator in S is 
called selfadjoint (or Hermitian) when it coincides with its adjoint. 39 For the 
space under consideration, the adjoint operator A is simply the transpose of 
A, i.e., 

(2.8.8) 

Thus, an operator A in S is self-adjoint when it coincides with its transpose, i.e., 

Aij = Aji . (2.8.9) 

Conditions of self-adjointness (2.2.9) can clearly be considered as a gener
alization of conditions (2.8.9). Indeed, within the framework of our variational 
approach to the self-adjointness of Newton's equation (2.2.1 a), at the limit 
when the functions Bk are identically null and all Aij are independent of t, q\ 
and il, the quantity Q becomes identically null, definitions (2.8.6) and (2.8.7) 
formally coincide, and conditions (2.2.9) reduce to conditions (2.8.9). 

Notice that the above correspondence holds, as mentioned before, for 
systems of" second-order" differential equations. 

It is of some interest, then, to note that when considering the case of" first
order" differential equations, instead of the symmetry property (2.8.9) we have 
the antisymmetry property C IlV = -CVIl or wllV = -WVIl • Thus, in this case, 
the conditions of self-adjointness can be considered as a generalization of the 
concept of skew-Hermiticity. 

For additional informations on the relationship between the operational 
and variational approach to self-adjointness, see Charts 3.16 and 3.17. 

39 For a recent account, see Reed and Simon (1975). 
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2.9 Algebraic Significance of the Conditions of Self-Adjointness 

An algebra U is a vector space of elements, say, A, B, C, ... (e.g., operators) 
over a field F of elements N h N 2, N 3, ... (e.g., complex numbers) equipped 
with a product AB satisfying the right and left distributive laws (also called 
axioms or identities) 

A(B + C) = AB + AC, 

and the scalar law 

(A + B)C = AC + BC, 

N(AB) = (NA)B = A(NB), 

(2.9.1) 

(2.9.2) 

for all A,B,C E U and N E F. In essence, laws (2.9.1) and (2.9.2) ensure 
that the product AB is bilinear. 

A major classification of algebras is that into associative and nonassociative 
algebras, depending on whether the product AB verifies or does not verify, 
respectively, the associative law 

(AB)C = A(BC) (2.9.3) 

for all elements A,B,C E U. 
As recalled in the Introduction, some algebras of particular relevance in 

physics are the Lie algebras. These are the nonassociative algebras L which 
verify the laws 

AB + BA = 0, 

(AB)C + (BC)A + (CA)B = 0, 

(2.9.4a) 

(2.9.4b) 

called the anticommutative and Jacobi law, respectively, for all elements 
A,B,C E L. It is here understood that the product AB, in order to properly 
characterize a Lie algebra, must first obey the distributive and scalar laws 
(that is, it must first constitute an algebra as commonly understood) and then 
verify laws (2.9.4). In this respect, it should be noted that Lie algebras verify 
the particular form of the scalar law 

AN = NA = ° (2.9.5) 

for all A ELand N E F. Lie algebras also verify, in the realizations used in 
physics, the differential laws 

(A 0 B)C = (AC) 0 B + A 0 (BC) 

A(B 0 C) = (AB) 0 C + B 0 (AC), 

where A 0 B is the associative product. 

(2.9.6a) 

(2.9.6b) 

It should be stressed that in all the above identities the product AB is 
intended as the abstract product of the algebra L. 

Among all possible realizations of the algebra L and of its abstract product 
AB, we are now interested in those significant for Newtonian systems. Sup
pose that the quantities A, B, etc. are functions of the 2n-component con
travariant vector aP, II. = 1,2, ... ,2" and, possibly, of time. Suppose also that 
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such functions, A, B, etc., are of class C(jm, m ~ 2 in a region ipn+ 1 of points 
(t, a"). 

In a set ( of such functions A, B, etc., introduce the composition law 

[ A B]* = CIlV( ") oA oB 
, t, a oall oav' 

m ~ 1, 

(2.9.7a) 

(2.9.7b) 

(2.9.7c) 

Clearly, the "product" [A, B]* satisfies bilinearity laws (2.9.1) and (2.9.2), 
. 40 I.e., 

[NlA + N 2 B, C]* = Nl[A, C]* + N 2 [B, C]*, 

[A,NlB + N 2 C]* = Nl[A,B]* + N 2 [A,C]*, 

rules (2.9.6), Le.,40 

and laws (2.9.5), Le., 

[AB, C]* = [A, C]*B + A[B, C]*, 

[A, BC]* = [A, B]*C + B[A, C]*, 

[A, N]* = [N, A]* = o. 

(2.9.8a) 

(2.9.8b) 

(2.9.9a) 

(2.9.9b) 

(2.9.10) 

If, in addition, the set ( and the matrix (CIlV) are selected in such a way that 
the closure law 

[A, B]* = C, A, B, CE(, (2.9.11) 

also holds for all (ordered) pairs of elements A and BE" then we have a 
(finite-dimensional or infinite-dimensional) closed algebra. 

In order for such an algebra, to be a Lie algebra, the product [A, B]* must 
obey Equations (2.9.4). Antisymmetry law (2.9.4a) implies that 

(2.9.12) 

In order to obtain the (necessary and sufficient) conditions to satisfy the 
Jacobi law (2.9.4b), notice that such a law must hold for arbitrary elements A, 
B, and C. Therefore, one can select for those elements the components at, 
all, and aV of the vector a resulting in the equations 

[at, [all, aV]*]* + [all, [aV, at]*]* + [aV, [at, all]*]* 

OCIlV oCt ocrll 
= Ctp -- + CIlP - + cvp - = 0 (2.9.13) 

oaP oaP oaP 

Clearly, Equations (2.9.12) and (2.9.13) express the Lie algebra identities 
(2.9.4) for the "product" [A, B]*. 

40 Here we revert to the conventional notations whereby NA and AB are the ordinary 
(associative) products. 
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When axioms (2.9.12) and (2.9.13) are satisfied, [A, B]* is called the 
generalized Poisson brackets41 and, in view of the anti symmetry law (2.9.12), 
it can also be written 

[A, B]* = I CIlV (OA oB _ oA OB) 
ll,v=1 oalloaV oaVoall (2.9.14) 

Il<V 

Clearly, the simplest solution of Equations (2.9.12) and (2.9.13) is given by 
the now familiar matrix (ar). The related product, 

·oA oB 
[A, B] = rollV oall oav ' (2.9.15) 

is then the conventional Poisson brackets in tensor notation. To see this, 
suppose that the vector all represents the canonically conjugate generalized 
positions qk and momenta Pb i.e., all == (q, p). Then 

[A B] = rollV oA oB = 2n rollV (OA oB _ oA OB) 
, oall oav Il'~ 1 oall oav oav oall 

oA oB oA oB 
ol 0 Pk - OPk oqk' 

For later use, notice the important property 

(2.9.16) 

(roIlV) = ([all, aV]) = ([q:, qi]) ([qi, Pi])) = (_ Onxn 

[(P,qi]) ([Pi,pJ) Inxn 
+ In x n) (2.9.17) 

On Xn 

namely, the matrix (roIlV) represents the fundamental Poisson's brackets. 
By inspection, we see that Equations (2.9.12) and (2.9.13) coincide with 

conditions (2.7.27) which, in turn, are equivalent to conditions of self
adjointness (2.7.28) (Theorem 2.7.4). Thus, conditions of self-adjointness 
(2.7.28) are the necessary and sufficient conditions for generalized brackets 
(2.9.7) to satisfy Lie algebra identities (2.9.4). This property can also be seen 
on a more direct basis by noting that 

raY, [a<X, aP]*]* + [a<X, raP, a'']*]* + raP, raY, a<X]*] 

= crycp<xc"p (OCp" + oC"r + OCrp) = 0 (2.9.18) 
oar oaP oa" 

We can thus state the following theorem. 

Theorem 2.9.1 (Indirect Algebraic Significance of the Conditions of Self
Adjointness). Necessary and sufficient condition for the brackets 

[A B]* = CIlV(t a<X) oA oB 
, , oall oav 

(2.9.19) 

41 The asterisk in the notation [A, B]* stands for the generalized nature of the brackets. For 
brackets [A, BJ* see, for instance, Pauli (1953). 
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characterized by the contravariantfactor tensor CIlV of the (regular holonomic) 
Newtonian system, 

CIlV(t, a<X)[av - 2v(t, a<X)] = 0, 

CIl",2vE<6'm(ipn+l), m;;::: 1, ICIlVI(R 2n +1) i= 0, 

j1, v = 1, 2, ... , 2n, 

to satisfy the laws of the generalized Poisson brackets, 

(2.9.20a) 

(2.9.20b) 

[A, B]* + [B, A]* = 0, (2.9.21a) 

[A, [B, C]*]* + [B, [C, A]*]* + [C, [A, B]*]* = 0, (2.9.21b) 

in a region R2n + 1 of points (t, a<X) is that the covariant version of system 
(2.9.20) satisfies all the conditions of selfadjointness (2.7.27) everywhere 
inR2n+l. 

Other brackets that are particularly significant in classical mechanics are 
the Lagrange brackets, 

(2.9.22) 

or the generalized Lagrange brackets, 

(2.9.23) 

where (CIlV) is the inverse of the matrix (CIlV) of the generalized Poisson 
brackets. 

For brackets (2.9.23), Equations (2.9.1) are replaced by 

{A, B}* + {B, A}* = 0, (2.9.24a) 

o~ {B, C}* + o~ {C, A}* + o~ {A, B}* = ° (2.9.24b) 

and they can be written 

CIlV + CVIl = 0, (2.9.25a) 

oCIlV + oCvp + oCPIl = 0. 
oaP oall oav (2.9.25b) 

Clearly, the above axioms coincide with conditions of self-adjointness 
(2.7.28), and the following theorem holds. 

Theorem 2.9.2 (Direct Algebraic Significance of the Conditions of Self
Adjointness). Necessary and sufficient condition for the brackets 

oall oav 
{A, B}* = CIlV(t, aa) oA oB' (2.9.26) 
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characterized by the covariant factor tensor CIlV of the (regular holonomic) 
Newtonian system 

CIlV(t, a")[aV - 3V(t, a")] = 0, 

C ,;:;,v E C(jm(jpn + 1) 
/.lV' ....... , m ~ 1, 

ICIlVI(R2n+l) #- ° 
to satisfy the laws of the generalized Lagrange brackets 

{A, B}* + {B, A}* = 0, 

a { C}* a { }* a { * _ aA B, + aB C, A + ac A, B} - ° 

(2.9.27a) 

(2.9.27b) 

(2.9.27c) 

(2.9.28a) 

(2.9.28b) 

in a region R 2n + 1 of points (t, a"), is that the system satisfies conditions of 
self-adjointness (2.7.27) everywhere in R2n+ 1. 

Notice that the identity 

[Ai' AkJ*{Ako Aj }* = tJ ij , (2.9.29) 

i,j = 1,2, ... , n, 

hold. In this sense, each of the brackets [A, BJ * and {A, B} * can be considered 
as the" inverse" of the other. 

To make a crude summary of the contents of this section, we can say that, 
under suitable technical implementations, the conditions for self-adjointness 
guarantee the existence of a Lie algebra structure. 

Chart 2.1 Hausdorff, Second-Countable, oo-Differentiable Mani
folds42 

A geometric approach to Newtonian systems can be formulated by 
representing the equations of motion in their first-order forms (Sections 2.4 
and 2.5), by interpreting these forms as vector fields on suitably selected 
manifolds, and then by using the so-called symplectic geometry. In this 
chart, we shall outline certain basic concepts of point-set topology and 
identify the needed notion of manifold. In Chart 2.2, we shall outline the 
interpretation of Newtonian systems as vector fields on manifold. The 
symplectic geometry will be outlined in Chart 2.3. The concept of contact 
manifold will be indicated in Chart 2.4. Finally, in Chart 2.5 we shall point 
out the geometrical significance of the conditions of variational self
adjointness for Newtonian systems in theirfirst-orderforms. The geometrical 
interpretation of the integrability conditions for the existence of a Hamil
tonian are also treated in Santilli (1979). The interested reader is urged 
to consult the quoted literature for all technical details. 

A topological space M is a set, together with a collection of subsets ° 
called open sets, such that M EO, if 0,,°2 EO, then 0, () 02 EO and the 

42 See, for instance, Abraham and Marsden (1977). 
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union of any collection OJ of open sets is open. The relative topology on a 
subset M, EM is given by OM = {O, n M, 10, EO}. A basis of the 
topology is a collection D of open sets such that every open set of M is a 
union of elements of D. This topology is called first-countable if and only 
if for each element mE M there is a countable collection {Nj(m)} of 
neighborhoods of m, such that for any neighborhood N(m) of m there is a 
set M, such that NM(m) c N(m). The topology is called second-countable 
if and only if it has a countable basis. 

A topological space M is called Hausdorff if and only if each two distinct 
points have disjoint neighborhoods. Alternatively, a first-countable space is 
Hausdorff if and only if all sequences have at most one limit point. 

A local chart (M" cp) is a bijection cp from a subset M, EM to an open 
subset 0 of a (finite-dimensional, real) vector space M. M, is then called 
the domain of M. An atlas on M is a family of charts A = {Mi' cpJ such 
that M = U M j • Two atlases are equivalent if and only if their union is an 
atlas. A differentiable structure n on M is an equivalence class of atlases 
on M. 

A differentiable manifold can be conceived as a topological space M 
equipped with a differentiable structure n, and we shall write M(Q). 
Throughout our analysis, we shall consider only oo-differentiable manifolds. 

Consider a map f: M ---> M', where M and M' are two (differentiable) 
manifolds. Let (V, '1') be a chart of M' with f(m) E V for m E M and (U, '1') 
be a chart of M with mE U and f(U) E V. The local representatives (or 
local coordinates) of f can be introduced as q = fto/! = 'I' . f· t-'. 

The notion of manifold, which is often used in the study of Newtonian 
systems, is that of a Hausdorff, second-countable, oo-differentiable 
manifold M. An example of this type of manifold, which is relevant here, 
is given by the configuration space of a Newtonian system (see, Appendix 
A) with (local) coordinates qk, when equipped with the indicated topology 
and restricted to satisfy the indicated differentiability properties. 

Chart 2.2 Newtonian Systems as Vector Fields on Manifolds43 

Let M be a (Hausdorff, second-countable, oo-differentiable) manifold 
realized in terms of the configuration space of a Newtonian system with 
(local) coordinates q. This manifold is insufficient to characterize the 
system because, for instance, nonequivalent trajectories may pass through 
each point of M. In this chart, we shall indicate the additional notions 
needed to achieve a characterization of a Newtonian system. 

Let V, and V 2 be (finite-dimensional, real) vector spaces. An open sub
set of V, will be denoted with O. A (local) vector bundle is the Cartesian 
product 0 x V 2 with 0 being the base space. Let the points of 0 be 
denoted with q. A fiber over q E 0 is the product {q} x V 2' In essence, 
o x V 2 is an open subset of V, x V 2 and, as such, it is (locally) a manifold. 
Thus, a vector bundle is, at least locally, a manifold with a vector space 
attached to each of its points. For the case of Newtonian systems, therefore, 
the notion of vector bundle allows complementing the generalized co
ordinates q with, say, the generalized velocities q. 

A (local) vector bundle isomorphism is a rtf'" map cp: 0 x V 2 ---> 0' x V~. 
A (local) bundle chart is a pair (0, cp) where rtf is the bijection (fJ: 0 ---> 0' x 
V~ for an open subset 0 of a set S. A vector bundle atlas on S is a family 

43 See, for instance, Abraham and Marsden (1967), Herman (1973), and Caratu 
et al. (1976). 
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{Oi' (Pi} of local bundle charts which covers S and whose overlap is a local 
vector bundle isomorphism. A vector bundle structure on S is an equi
valence class of vector bundle atlases. A vector bundle can now be 
reinterpreted as a pair (S, 8). where S is a set and 8 is a vector bundle 
structure. 

A ~m section of a map n: 8 1 --> 8 2 of a vector bundle is a class ~m map 
p: 8 2 --> 8 1 such that for each bE8 2 , p(n(b» = b. The set of all ~m 
sections of a map n will be denoted by rm(n). It should be indicated here 
that the {gm sections form a linear space, though this is not necessarily the 
case for other ~m maps. 

A curve at a (local) point qo of a manifold M is a map q: I --> M of (at 
least) class ~1 from an open interval I of the field of real numbers IR such 
that for to E I, q(to) = qo· The tangent space of Mat qo is the set of all 
equivalence classes of curves at qo, T qo M. The tangent bundle TM of Mis 
the union of all tangent spaces of M, TM = U T M for all q E M. The 
tangent bundle projection is the map 'eM: TM --> Nf. 

As is known, given a vector space V, one can form new vector spaces by 
means of tensors T~ of contravariant index r and covariant index s (Chart 
A.13). The procedure can be extended to tensors n on manifolds. This 
leads to a generalization of the notion of tangent space TM. The vector 
bundle of tensors non M is the tangent bundle of contravariant index rand 
covariant index s, Ps (M). In particular, the ordinary tangent bundle TM is 
given by n)M). The quantity T?(M) is called the cotangent bundle and is 
denoted with T'M. 

A tensor field on a manifold M is a ~oo section of Tf(M). A contravariant 
vector field is an element of roo (T'6(M». A covariant vector field is instead 
an element of roo(T?(M». All operations of tensors apply to tensor fields 
fiberwise. 

Consider a Newtonian system in the kinematical form in configuration 
space (2.2.2), i.e., 

qk - fk(t. q, q) = 0, fkE~oo, k = 1,2, ... , n. (1) 

The first possibility of reinterpreting this system as a vector field on a 
manifold M with local coordinates q is through the use of the tangent 
bundle TM of M via the association, e.g., of the velocities q at each point q 
and the interpretation of the functions 3 of the normal forms (2.1.30), i.e., 

iJ - 3(a) = 0, (2) 
a = (q, V), y = q, 3= (y,f)E~oo, 

as elements of roo(T~(M». The underlying mechanism is called the 
lifting of M to TM. 

In Section 2.4 we have stressed that the transition from Equation (1) to 
Equation (2) is not unique because it depends on the assumed prescrip
tions for the characterization of the new variables y. It then follows that the 
lifting from M to TM is not unique and many different liftings can be con
ceived for the interpretation of a Newtonian system as a vector field on a 
manifold. Notice that the lifting from M to TM is of contravariant character, 
e.g., in the sense that it associates the contravariant quantities qk to qk, 
k = 1,2, ... , n. 

A second important lifting is that to the cotangent bundle T?(M) = 
T* M. Suppose that a Lagrangian for the representation of system (1) is 
known. The conventional canonical prescriptions Pk = OL/oqk then allow 
the association of new quantities, the covariant canonical momenta Pk ' 

to qk. The construction of the generally different normal form for Equations 
(1) in terms of P k then leads to the lifting to T* M, i.e., the interpretation of 
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Newtonian systems as vector fields in T'M. If different Lagrangians for the 
representation of the same systems in the same generalized coordinates are 
known [see Santilli (1979)], this leads to different liftings to T* M. There
fore, the lifting to T'M is also not unique and other alternatives are 
possible. This situation can be schematically represented with a com
mutative diagram of the type 

(TMr. «(!' • (T*M)' 

~
!f P 
(TM)~(T*M) 

r' ~t r*' 

M 

where (jJ and (jJ' are (fibre preserving) diffeomorphisms. Notice that the 
diagram implies the existence of mapping from functions 8 on TM to 
functions 8* on T* M. 

Chart 2.3 Symplectic Manifolds 

The geometrical, coordinate-free generalization of the conventional 
phase space of Analytic Mechanics for autonomous systems (i.e., systems 
that do not depend explicitly on time) is characterized by the so-called 
symplectic manifolds. 

Consider a contravariant tensor field of rank 2, Q(2) on the cotangent 
bundle T*M of a (Hausdorff, second-countable, oo-differentiable) mani
fold M. When restricted to exact differentials, it induces the structure in 
local coordinates 

Of og 
Q(2)(df, dg) = (1. g) = ~ Q~'(a) 

ua~ oa' 
(1 ) 

satisfying the properties 

(f. c) = 0 (2) 

c = const. 

Q(2) is nowhere degenerate if it is nondegenerate at all points of T'M. 
This is possible if and only if the dimension of T* M is even. By writing 
Q(2)(f, g) = A(g) a covariant tensor field of rank 2, Q(2)' can be uniquely 
associated to Q(2) (under the assumption of nowhere degeneracy) through 
the equations Q(2)(f, g) = Q(2)(A(, A ) which, when restricted to exact 
differentials, can be written in local c~ordinates 

(3) 

An even-dimensional manifold M, equipped with a covariant nowhere 
degenerate tensor field of rank two, Q(2)' is called a symplectic manifold, 



100 Variational Approach to Self-Adjointness 

and we shall write M(O), when structure (1) satisfies the additional 
properties 

J(f, g) = (f, g) - (g, f) = 0, (4a) 

J(1. g, h) = (I. (g, h» + (g, (h f) + (h, (I. g» = O. (4b) 

0(2) (0(2» is then called a symplectic structure (cosymplectic structure) 
Conditions (4) essentially ensure that brackets (1) satisfy the Lie algebra 
identities (Section 2.9), i.e., (f, g) = [f, g]* are the generalized Poisson 
brackets. Then <f, g) = {I. g}* are the generalized Lagrange brackets. 
It should be indicated that this connection with conventional notions of 
Analytic Mechanics occurs through the introduction of local coordinates, 
while the full geometrical treatment is coordinate-free. 

Theorem 1 (Darboux). Suppose that 0J2) is a nondegenerate 2-form on 
a 2n-dimensional manifold M. Then U(2)' when restricted to exact 
differentials, satisfies Equations (4) if and only if there is a chart (U, rp) at 
each mE M such that rp(m) = 0 and, with cp(t) = x1 (t), ... , xn(t), 
Y1 (t), ... , Yn(t), we have 

(5) 

or, in matrix form, 

( 
°nxn 

(U,~):0(2)~W(2) = +1 
nxn 

(6) 

The product A of Equation (5) is the exterior product of Section 1.2. 
The form W(2) is sometimes called the fundamental symplectic form. 

The analytic counterpart of Darboux's theorem is offered by the following 
property , 

Theorem 2 (Pauli). To every point m of a 2n-dimensional cosymplectic 
manifold M(O) there exist local, canonical coordinates a = (q, p) such 
that 

oa'~ oa'· 
O~· (a) ~ O'~· = - OP" - = w~·. 

oaP oa" 
(7) 

In essence, Pauli's theorem provides the possibility of reinterpreting 
Darboux's lheorem in terms of the conventional transformation theory of 
analytic mechanics. The connection of Theorem 1 or 2 with the conventional 
canonical fprmulations is that under a Darboux char;J or under a Pauli 
transformation, brackets (1) become the conventional Poisson brackets 
and then brackets (3) become the conventional Lagrange brackets 
(Section 2.9). It then follows that vector fields (Chart 2.2) on a symplectic 
manifold can be locally Hamiltonian. This i~ tile case when, given a vector 
field E on M(O) and a point mE M, there exists a neighborhood N(m) of m 
and a function H on N(m) such that Ls(f) = [f, H]* for all f on N(m), 
where Ls. is the so-called Lie derivative. If, in particular, we have Ls(f) = 
[f, H] for all f on N(m), then the vector field is called globally Hamiltonian 
(or Hamiltonian for short). In this case, 

(jH 
"0;' =,., "0;" ""a"'" "0;' ""a"'" ""H=-""a" -(1) "",..... ", -" ", u, ()a" u, . (8) 
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Alternatively, the conn~ction between symplectic geometry and canonical 
formulations can be seen from the fact that Hamilton's equations char
acterize a symplectic manifold M(w). For the explicit form of Hamilton's 
equations with the fundamental symplectic structure w, see Section 3.9. 
For the necessary and sufficient conditions for a vector field to be globally 
Hamiltonian, see Section 3.12.44 

Chart 2.4 Contact manifolds45 

We now consider the case Qf nonautonomous systems (i.e., systems 
with an explicit dependence on time). In this case, the base manifold is 
generalized into a (2n + 1) dimensional manifold IR x M, where IR is 
representative of the time variable. The odd dimensionality of the base 
manifold then demands a suitable generalization of the notion of sym
plectic manifold. 

A contact manifold M(fi) is a (2n + 1) -dimensional (Hausdorff, secondo. 
countable, co-differentiable) manifold IR x TM equipped with a covariant 
two-form Q(2) o! maximal rank (i.e., 2n) which, when restricted to TM is 
symplectic, i.e., Q(2)(d! dg) 1 TM = Q(2)(d1. dg) = (1. g) is symplectic in the 
sense of Chart 2.3. Q(2 is then called a contact structure and, in local 
coordinates, it induces the more general form of the generalized Lagrange 
brackets 

~ oa" oa V 

Q(2)(d1. dg) = {1. g}* = M Q"v(t, a) og (1 ) 

Despite the presence of an explicit time dependence, the !\_2) structure 
can still be reduced to a fundamental structure W(2) by means ot a Darboux 
chart 

(2) 

Alternatively, there exist the more general Pauli transformations t ~ t' and 
a ~ a' under which 

Q(2) l(t.a) ~ W(2) l(t., a') (3) 

This allows the connection with conventional canonical formulation. 

44 We have here mostly followed Jost (1964), It should be indipate~ that this 
author calls a symplectic structure Q(2) a nowhere degenerate contravariant two
structure which is only skew-symmetric. i.e., it does not necessarily satisfy Jacobi 
identity (4b). When condition (4b) is included. Jost calls Q(2) a canonical 
structure. We have preferred the name of symplectic structure over that of canonical 
structure because it appears to be more generally adopted, Also, we have called 
symplectic structure the covariant two-form Q(2)' rather than the cdhtravariant form 
Q(2) as in Jost. because it is more widely accepted. See, for instanoe, Sternberg (1964) 
and Abraham and Marsden (1977). The formulation of the bdrbbUx theorem has 
been deriNed from the latter authors, Theorem 2 is that presented by Jost (1964) with 
reference to Pauli (1953). The notion of symplectic structure will be more properly 
presented in Chart 2.5 via the concept of closure. The purpose of this chart (which 
was, perhaps, Jost's objective) is restricted to the indication of the deep interelation 
between symplectic geometry and Lie algebras. As a final note. the reader should be 
aware that a symplectic structure (or manifold) is often called canonical or Hamil
tonian structure (or manifold) in the literature of differential geometry, 

45 Abraham and Marsden (1967). 
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A given vector field 2 can be globally Hamiltonian at a point (t, m) E 

IR x T* M when there exist a neighborhood N(t, m) of (t. m) and a function 
H on N(t, m) such that L=.(f) = [f, H] + Of/ot for all functions f on 
N(t. m). This recovers the more general time evolution law 1= [f, H] + 
Of/ot. Alternatively, Hamilton's equations for nonautonomous systems 
characterize a contact manifold M(w). In essence, mappings (2) or (3) 
allow the representation of Hamilton's equations in terms of the funda
mental structure w irrespective of whether the Hamiltonian is explicitly 
dependent on time or not (Section 3.9). 

Chart 2.5 Geometrical Significance of the Conditions of Self
Adjointness 

We are now equipped to study the geometrical significance of the con
ditions of variational self-adjointness 

C#, + C '" = 0, (1 a) 

oC", oC 'P OCpII _ --+--+ --0 
oaP oa" oa' ' 

(1 b) 

oC", = 00" 00, 
ot oa' oall ' 

(1 c) 

jl. v, p = 1, 2, ... , 2n 
for first-order systems 

(2) 

Consider first the autonomous case for which C"v = C#,(a) and 
0" = O#(a). One of the fundamental properties of a symplectic structure 
Q(2) is that, when written as the 2-form Q(2) = Q", da" /\ da', is closed (in 
the sense of section 1.2), i.e., dQ(21 = 0. As a matter of fact, one can 
equivalently define a symplectic structure as a nondegenerate, closed 
2-form on a 2n-dimensional manifold M (Abraham and Marsden (1967, 
page 95)]. The geometrical significance of conditions of self-adjointness 
(1a) and (1b) is then straightforward: under the indicated continuity and 
regularity conditions, they are the necessary and sufficient conditions for 
the tensor C", to characterize a symplectic structure or, equivalently, for 
the vector field (2) to be embodied in a symplectic manifold. This is a 
consequence of the fact that Equations (1 a) and (1 b) are the necessary 
and sufficient conditions for the form C", da" /\ dav to be closed (Example 
1.5). 

In the transition to nonautonomous systems, the closure property of a 
contact structure persists, although it is now referred to as a (2n + 1)
dimensional space IR x M with local coordinates ai, i = 0, 1, 2, ... , 2n, 
aO = t. As a matter of fact, a contact structure can be equivalently defined 
as a closed 2-form of maximal rank on a (2n + 1) -dimensional manifold 
[Abraham and J. E. Marsden (1967, page 132)]. In this case, the full set of 
conditions (1) must be considered, and their geometrical significance is also 
straightforward. 

I ntroduce the tensor 

Q#V = C #V' ,v = 1, 2, ... , 2n, 

Q o# = -0#. = -Q#o' Q oo = ° (3) 
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Then conditions (1) are necessary and sufficient conditions for the 2-
form Q(2) = n, da i /\ dai , i, j = 0, 1, 2, ... , 2n to be closed. Thus, the 
conditions of Ivariational self-adjointness for vector fields (2) are the 
necessary and sufficient conditions for the tensor C~V to characterize a 
contact structure or, equivalently, for vector fields (2) to be embodied in a 
contact manifold. 

The connection between the geometrical and algebraic significance of 
the conditions of self-adjointness (1) is also significant. The necessary and 
sufficient conditions for the closure property of a symplectic form can also 
be proved by using Equations (4) of Chart 2.3 [Jost (1964)]. But these 
equations are the Lie algebra identities for the brackets Q( 2) (df, dg) = 
[f, g]*. On the other side, conditions (1a) and (1b) are equivale!1t to the 
Lie algebra identities (Section 2.9). Thus, the conditions of self-adjointness 
(1) can be interpreted as the analytic counterpart of the necessary and 
sufficient conditions for either the brackets Q(2)(df, dg) = [f, g]* to 
characterize a Lie algebra or for the 2-form Q(2) = nii da i /\ dai to be a 
contact (symplectic) structure for autonomous (non autonomous) systems. 

As we shall see in Section 3.12, conditions (1), when restricted to 
covariant normal forms, are the necessary and sufficient conditions for the 
existence of a Hamiltonian. We can, therefore, say that the integrability 
conditions for the existence of Hamilton's equations, as expected, are also 
the integrability conditions for the (classical realizations of the) Lie 
algebra identities and for the symplectic structure. 

In conclusion, the Inverse Problem for Hamilton's equations results to be 
an effective arena for the study of the deep relationships that exist between 
canonical formulations, Lie algebras, and differential geometry. 

EXAMPLES 

Example 2.1 

The kinematical form for the one-dimensional harmonic oscillator, 

x + w5x = 0, 
2 k 

Wo =
m 

is self-adjoint,46 since it satisfies Corollary 2.2.2a. However, if for x =I- 0 the same 
equation is written in the form 

then it is non-self-adjoint. 

Example 2.2 

X 2 - + Wo = 0, 
x 

The kinematical form for a particle under a drag force 

x +]lX = 0 

46 When the region R2n + I in which a system is self-adjoint (non-self-adjoint) can be arbitrarily 
selected for all finite values of (t, q, q) we shall ignore it and simply call the system self-adjoint 
(non-self-adjoint). 
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is not self-adjoint. However, if the same equation is written in the form 

then it is self-adjoint. 

Example 2.3 

x 
-+},=O x ' 

The equation for the one-dimensional damped oscillator, 

x + 2{Jx + w~x = 0, 

is non-self-adjoint. 

Example 2.4 

The fundamental form 

mlxl + meX2 + klxl + keX2 = 0 

meXq + m2X2 + keXI + k2X2 = 0 

can represent a system of two linear, coupled, and undamped oscillators with ocupling 
constants me and ke. For me = ke = 0, the two oscillators are decoupled (i.e., they do 
not "interact" between themselves even though each individual particle "interacts" 
with its own elastic force field). 

Since the system is in more than one dimension, its regularity must be checked 
prior to studying its self-adjointness. 

The functional determinant in this case is 

Therefore, the (necessary and sufficient) condition for the system to be regular is that 

By inspection, we then see that conditions (2.2.9) are satisfied and the system is self
adjoint. 

Example 2.5 

Consider the Whittaker equations (Problem 2.9) 

ii2=ql' 
Assume for prescriptions (2.4.2) the functions 

i = 1,2. 
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Then the equations can be written in the equivalent first-order form 

ql = Y1, 
qz = Y2, 

YI = ql, 

yz = Y1. 

By introducing tensor notation (2.6.23), we can write 

Therefore, contravariant normal form (2.6.23) holds with the following functions 

By inspection, we see that the conditions of se1f-adjointness, i.e., the contravariant 
version of Equations (2.7.20), are violated and such a normal form is non-self-adjoint. 
However, this does not preclude the possible existence of other prescriptions (2.4.2), 
for which the corresponding normal form is self-adjoint. 

Example 2.6 

The system 

fiil + iiz + JI(t, q, q) = 0 

iii + iiz + Jz(t, q, q) = 0 

is regular because its functional determinant 

1£1 = I: ~ I = t - 1 

is non-null as a function. However, at the value t = 1, such a determinant is null. 
According to the assumption of Section 1.1, we then consider the system in any 
interval of time that does not contain the value t = 1. Notice that the existence of the 
zero t = 1 of the functional determinant is in line with Definition 1.1.1 of regularity. 
Indeed, according to such a definition, for a system to be degenerate it must be null at 
least at a point and in its neighborhood, which is not the case for the system considered. 

Example 2.7 

In this example, we shall indicate the important property according to which the 
LorentzJorce is variationally self-adjoint, and identify in more detail the objective of 
this monograph. 
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Consider for simplicity, but without loss of generality, the case of one particle of 
mass m and charge e moving in a three-dimensional Euclidean space with Cartesian 
coordinates ri, i = x, y, z, under the action of an electric field E and a magnetic field 
B in Gaussian units. We also assume, for simplicity, that the speed oflight c = 1. The 
Lorentz force is then expressed by the familiar equations of motion 

= e(t x B + E) 

= et x V x A - e ( V <P - ~~), 

where A and <p are the electromagnetic potentials. The components ofFL can be written 

i = x, y, z 

where bijn is the generalized Kronecker delta (Section 1.2). 
It is easy to see that the Lorentz force satisfies all the conditions of Theorem 2.2.2 

and, therefore, it is variationally self-adjoint. To see it, we first note that FL is linear 
in the velocity and, as such, it satisfies the first part of Theorem 2.2.2. Secondly, by 
using the notation of Equations (2.2.23a), we can write 

(J. = _e(O<P _ OAi) 
, or' at 

It is a matter of simple algebra to see that the above realization of the Pij and (Ji terms 
satisfies all the conditions of self-adjointness (2.2.24), and this concludes our proof.4 7 

It is significant here to indicate that the property of variational self-adjointness ofthe 
Lorentz force persists in the transition to relativistic, field theoretical, and gravita
tional generalizations. The proof of this property, of course, demands the generaliza
tion of the methods of the Inverse Problem to Minkoswki space, field theory, and 
Riemannian manifolds. As a result, we can say, more generally, that t1~e forces or 
couplings of the electromagnetic interactions (satisfying the needed minimal con
tinuity conditions) are variationally self-adjoint. Still more generally, we can say that 
the couplings of the recently unified gauge theories (of Abelian or non-Abelian type) 

47By taking into account the geometrical significance of the conditions of self-adjointness 
(Chart (2.5), the property indicated essentially implies, on geometrical grounds, that the terms 
Pij of the Lorentz force characterize a symplectic structure under even-dimensionality and no
where-degeneracy conditions. Indeed, conditions of self-adjointness (2.2.24a) and (2.2.24b) are 
the necessary and sufficient conditions for the (nowhere degenerate) two-form 

,mn aAm . . 
P(2) = eVij - dr' /\ dz', 

arn 
i,j = x, y, 

to be closed. Similarly, the terms Pij and (Jj of the Lorentz force characterize a contact structure, 
in which case the full set of conditions (2.2.24) is used (see Chart 2.5 for details). 
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of weak and electromagnetic interactions are all variationally selfadjoint. Indeed, 
all these couplings or forces are linear in the derivative terms and satisfy the con
ditions of variational self-adjointness in the appropriate form. For a detailed study 
we refer the reader to Santilli (1978 I, II, and III). As we shall see in Chapter 3, the 
variational self-adjointness of the Lorentz force essentially implies that this force 
possesses the structure of the most general (acceleration independent) Newtonian 
forces derivable from a potential. Indeed, for the Lorentz force, we have the familiar 
expressions 

U = -ecp + eA· r = U(t, r, r), 

yielding the most general functional dependence of a potential function in Newtonian 
mechanics. 

It is significant at this point to indicate that this monograph and the forthcoming 
second part (Santilli 1979) are devoted to the study of Newtonian forces which are 
analytically more general than the Lorentz force, that is, nonderivable from a potential. 
Indeed, this is the dominant analytic character of the Newtonian forces, in general, as 
recalled in Appendix A. Besides this Newtonian profile, the analysis could be of some 
value also for other physical aspects. For instance, an initial study of the problem 
whether the strong interactions can be interpreted in terms of forces analytically more 
general than the Lorentz force (variationally non-self-adjoint strong forces) has been 
conducted by Santilli (1978 I, II, and III; for a review, see the quoted articles in the 
Hadronic Journal). Additional studies by a number of authors on this intriguing 
physical problem are currently in progress. 

Problems 

2.1 Prove the following table of conditions of self-adjointness for one-dimensional 
systems 

Equation 

A(t, q, q)ij + B(t, q, q) = 0 

A(t, q)ij + B(t, q) = 0 

a(t)ij + b(t)q + c(t)q + d(t) = 0 

ij + f(t, q, q) = 0 

Condition of self-adjointness 

oB oA . oA 
oq = at + q oq 

d 
-A=O 
dt 

d 
- a(t) = b(t) 
dt 

of 
-=0 
oq 
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2.2 Prove that the Bessel equations, when they are written in the form 

t Z + nZ 
tij + q + ---- q = 0 

t ' 
t # 0, 

are non-self-adjoint and that, when they are written in the equivalent form 

they become self-adjoint. 

2.3 Consider this variation of the system of Example 2.4: 

mix i + mcxz + klxl + kcX2 = 0 

m;'xi + m2xZ + k;'xi + kZX2 = 0 

Prove that it is non-self-adjoint. 

2.4 Select an interval of time in which the system 

ijl (sin wt + ~:) + ij2 cos wt + II (t, q, q) = 0, 

ijl cos wt + ij2 + 12(t, q, q) = 0 

is everywhere regular. 

2.5 Prove that Equations (2.2.1Sa) and (2.2.1Sb) imply the linearity of the related 
functions in the velocities qi. 

2.6 Consider the harmonic oscillator ij + q = O. Assume for prescriptions (2.4.2) 
the functions 

G = y + clq + C2 = 0, 

G' = qy + clq + Cz = 0, 

with C I' C Z = constants. Construct the corresponding contravariant normal form (2.6.23) 
as functions of the covariant vector a~, and prove that for prescription G(G') such a 
form is self-adjoint (non-self-adjoint). 

2.7 Prove that Equations (2.2.Sa) can be obtained from Equations (2.2.6) and 
(2.2.5). 

2.S By following the analysis of Section 2.3, reinterpret the conditions of self
adjointness (2.2.24) of the kinematical form (2.2.23) within the context of the calculus of 
differential forms. 

2.9 Determine whether the system of equations (sometimes called Whittaker 
equations) 

is self-adjoint or non-self-adjoint 

2.10 The Mathieu equations 

d2 1J 
-2 + (a - 2b cos 2z) = 0, 
dz 
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where 

z = trot, 

can represent an inverted pendulum with an applied force proportional to cos rot, a 
moment of inertia /, and a downward acceleration of the applied force lXo cos rot. Deter
mine whether the system is self-adjoint or non-self-adjoint. 

2.11 Prove that, when a system F;(t, q, 4, q) = 0, satisfies the (local or global) 
existence theorems for solutions, so does its system of equations of variations, M;(y/) = O. 



CHAPTER 3 

The Fundamental Analytic Theorems 
of the Inverse Problem 

3.1 Statement of the Problem 

We consider now the conventional analytic equations! in configuration space, 
i.e., Lagrange's equations: 

L ( ) = ~ oL(t, q, q) _ oL(t, q, q) = 0 
k q dt oqk oqk ' (3.1.1) 

k = 1,2, ... , n. 

Our problem is to identify the necessary and sufficient conditions for regular 
holonomic Newtonian systems in their fundamental form (2.2.1) to admit a 
representation in terms of Equations (3.1.1). 

This problem can be studied first by searching for the conditions under 
which a Lagrangian L exists that satisfies each of the identifications 

d oL oL A ( .)"i B ( .) dt oqk - oqk = ki t, q, q q + k t, q, q , 

k = 1,2, ... , n. 

(3.1.2) 

But Equations (3.1.1), after expanding the total time derivative, explicitly read 

o2L "i o2L'i o2L oL 0 
oqk oqi q + oqk oqi q + oqk at - oqk = . (3.1.3) 

1 We shall use the term "conventional" when referring to Equation (3.1.1) to avoid possible 
confusion when we encounter other types of analytic equations in Santilli (1979). 
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From the linearity in the accelerations i'l of both the equations of motion and 
the analytic equations, it then follows that identifications (3.1.2) demand the 
validity of each of the equations (Section 2.3) 

iJ2L 
ail Oi/ = Aki , 

(3.1.4a) 

(3.1.4b) 

By inspection, we see that this is a system of n2 + n partial differential 
equations in only one unknown, the Lagrangian L, and as such it is over
determined. From the current literature on the subjectl, we know that, in 
view of the overdetermined nature of the system, a solution L does not 
necessarily exist irrespective of any assumption concerning the regularity and 
continuity of the system. 3 

Our analysis of this problem will proceed as follows. In Chapters 1 and 2 
we have studied certain methodological aspects related to the equations of 
motion, i.e., the right-hand side of identifications (3.1.2). The first sections of 
this chapter are devoted to the extension of this study to the left-hand side of 
identifications (3.1.2), i.e., to Lagrange's equations. In particular, we shall 
first study (Section 3.2) the basic continuity, regularity, and consistency con
ditions for Equations (3.1.1). Secondly, we shall analyze (Section 3.3) 
Lagrange's equations from the variational approach to self-adjointness as 
introduced in Chapter 2. In this way, we will complete our analysis of certain 
basic properties of each separate member of identifications (3.1.2). In order to 
combine those results, we shall then give an appropriate definition of the 
concept of analytic representation in configuration space (Section 3.4). The 
problem of the necessary and sufficient conditions for the existence of a 
Lagrangian will then be treated in Section 3.5. Section 3.6 will be devoted to a 
method for the construction of a Lagrangian. A reinterpretation of the results 
for ascertaining the most general form of Newtonian forces admissible by a 
Lagrangian representation will be given in Section 3.7. 

2 See, for instance, Goldschmidt (1967), Spencer (1969), and Gasqui (1975). 
3 It is significant here to point out the dual nature of Lagrange's equations depending on 

whether one considers the Direct Problem or the Inverse Problem of Newtonian Mechanics. The 
Direct Problem is essentially the conventional approach whereby one first assigns a Lagrangian 
and then computes the equations of motion through Lagrange's equations. Within the context of 
this problem, Lagrange's equations are ordinary second-order differential equations in the q's. 
The Inverse Problem, on the contrary, as by now familiar, consists of assigning the equations of 
motion and then computing a Lagrangian through identifications (3.1.4). Within the context of 
this latter problem Lagrange's equations are partial second-order differential equations in the 
unknown L. On methodological grounds, the existence theory for ordinary differential equations 
reviewed in Section 3.1 is, therefore, sufficient to ascertain the consistency of Lagrange's equations 
in the context of the Direct Problem. As we shall see in this chapter, the theory of differential 
forms reviewed in Section 1.2 (which is essentially centered on the study of partial differential 
equations) is sufficient to study the integrability conditions of the fundamental identifications 
(3.1.2) of the Inverse Problem. These remarks illustrate the need for both methodologies, i.e., those 
for ordinary and partial differential equations, although from different profiles. 
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The remaining sections of this chapter are devoted to the independent 
Inverse Problem of phase space formulations. After reviewing the Legendre 
transform (Section 3.8), we shall study the equivalence of Lagrange's and 
Hamilton's equations (Section 3.9) and establish the self-adjointness of 
Hamilton's equations (Section 3.10). The concept of an analytic representa
tion in phase space will be treated in Section 3.11, and the study of the neces
sary and sufficient conditions for the existence of a Hamiltonian, treated in a 
manner independent from that of a Lagrangian, will be presented in Section 
3.12. 

3.2 The Conventional Lagrange's Equations 

Let us recall that Lagrange's equations are linear in the accelerations it (but 
not necessarily linear in the qk and il variables) and, as such, they are of 
"Newtonian type" (in the sense of the Appendix, Section A.7). Their con
tinuity properties can thus be studied, as was the case for Newtonian systems, 
in a region R 2n + 1 of points (t, q, q). 

By inspection we see that for the second-order partial derivatives of 
Equations (3.1.3) to exist and be continuous, the Lagrangian L(t, q, q) must 
be at least of class r.&2 in a region R2n + 1 of its variables. However, such an 
assumption corresponds to Newtonian system (A.7.S) whose functions Aki 

and Bk are only of class r.&0 in R2n + 1, and, as such, it is insufficient to guarantee 
the uniqueness of the solution. 

For consistency with the continuity assumptions of Section 2.1, we shall 
assume from now on, unless otherwise specified, that all Lagrangians are of 
at least class r.&4 in a region of their variables, i.e., 

(3.2.1) 

The above assumption implies that all partial derivatives, up to and including 
fourth-order, exist, are continuous, and" commute," i.e., 

omL omL 
(oqi)ml(oqjr2 (oqj)m2(oqir (3.2.2) 

ml + m2 = m = 0, 1, 2, 3, 4. 

The functional determinant of Equations (3.1.1), also called the Hessian 
determinant, is given by 

(3.2.3) 

and it is also defined in a region R2n + 1 of points (t, q, q) in a way similar to the 
corresponding Newtonian determinant (Chart 1.1). 

In line with Definition 1.1.1, we then have the following definition. 
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Definition 3.2.1. The Lagrangian L(t, q, q) or Lagrange's equations (3.1.1) 
are called regular (degenerate)4 in a region R 2n + 1 of points (t, q, q) when the 
functional determinant (3.2.3) is non-null (null) in it, with the possible 
exception of a (finite) number of isolated zeros. 

Again, let us stress that, according to the above definition, determinant 
(3.2.3) must be null at a point (t, q, q) and at least in its neighborhood (t, q, q) 
for a Lagrangian (or Lagrange's equations) to be degenerate (Section 1.1). In 
practice, a simple inspection as to whether the Hessian is non-null or null as a 
function is sufficient to ascertain the regularity or degeneracy of a Lagrangian. 
If the Hessian is non-null as a function, this does not prohibit the possible 
existence of its zeros. Such zeros, when they occur, render the value of the 
Hessian null only at a (finite) number of points and not in their neighborhoods. 
Such a Lagrangian is then still regular according to the above definition. 5 

More generally, we can say that when Hessian (3.2.3) admits a (finite) number 
of isolated zeros, the Lagrangian is still regular. From here on we shall 
tacitly assume that the region of definition of a Lagrangian has been selected 
in such a way as to avoid possible zeros of the Hessian (see Problem 2.4). 

Identifications (3.1.2) demand, through identities (3.1.4a), that 

I a2L .1(R2n + 1) = IAool(R 2n + 1) aq' aqJ 'J' 

This clearly implies the following theorem. 

(3.2.4) 

Theorem 3.2.1 (A Necessary Condition for the Existence of a Lagrangian). 
A necessary conditionjor regular (degenerate) Newtonian systems (A.7.S) to 
admit an analytic representation (3.1.2) in a region R 2n + 1 ojpoints (t, q, 4), is 
that the Lagrangian be regular (degenerate) in it. 

It should be emphasized here that the condition of the above theorem is 
necessary but not sufficient. 

A path (or path segment) 

(3.2.5) 

will be called a possible path when it is a solution of Equations (3.1.1). Such 
a path is often called regular or degenerate (also nonsingular or singular) 
depending on whether the Lagrangian is regular or degenerate along it, that is, 
Hessian determinant (3.2.3) is null or non-null along (t, E, E). 

4 See footnote 3 of Chapter 1 for comments on this terminology. 
5 Let us recall that, according to our definition (Section 1.1), a "region" is an open and con

nected set. Thus, the minimal region of definition of a Lagrangian is constituted by a point 
(t, q, q) and its neighborhood. 
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We shall call the actual path, and denote it with Eo the solution of Lagrange's 
initial value problem 

!!.- oL _ oL = 0 
dt oil oqk ' 

qk(to) = ut, 

L E C6'4(R2n+ 1), (3.2.6a) 

(3.2.6b) 

In essence, with the terms" possible path" and" actual path" we intend to 
indicate the fact that the former, since it is a solution of Lagrange's equations 
without initial conditions, depends on 2n arbitrary constants and, as such, it 
does not necessarily represent the actual trajectory of the system. The latter, 
however, is the solution of Lagrange's initial value problem (3.2.6); it does not 
depend on arbitrary constants and, as such, does represent the actual tra
jectory of the system in the space of the q's. 

We shall call the 002n family of possible paths the family 

rfr~q) = {EIE = {qk(t; u, v), tE(tb t2), UkE(ut)" VkE(vt),} (3.2.7) 

induced by the general solution of Equations (3.1.3) for all admissible values of 
the parameters. 

Given a Lagrangian L(t, q, q), after computing the indicated partial deriva
tives, Equations (3.1.3) become ordinary differential equations. Therefore, 
under the assumption that the Lagrangian is of (at least) class C6'4 and regular, 
all the theorems of the existence theory of Section 1.1 apply. We then say that 
the assumed continuity and regularity conditions guarantee the consistency of 
Lagrange's equations, namely, the representation of a physically admissible 
motion. 

Suppose that all admissible paths (including actual and possible paths) are 
of (at least) class C6'1 in a given interval of time. This corresponds to the ex
clusion of an impulsive motion6 or any type of discontinuous force. Then, for 
class C6'4 regular Lagrangians, Equations (3.1.1) are equivalent to the so
called integral form of Lagrange's equations (1.3.22), i.e., 

oL fl oL if" - dt ""jk = Ck = const., 
q 11 q 

(3.2.8) 

everywhere in the interval considered. Indeed, under the continuity properties 
L E C6'4(R2n+ 1) and E = {qk(t; u, v)} E C6'1(t1' t2) with t1 and t2 in the interior 
of R2n + 1, the continuity of L along the possible path E is ensured.7 Then, the 

6 See Chart A.3 (Appendix). 
7 It is essential in this respect to differentiate between the continuity of L as a function of the 

variables (t, q, 4) and the continuity of L when computed along a given path E. because the 
former does not imply the latter. For instance, the Lagrangian L = 43 - q3 is of class <tiro in 
(q, 4),butwhen such a Lagrangian is computed along the path E = q = Iltll.tE( -to. +to).to * O. 
then L(E, E) is discontinuous at t = O. Our restriction that all paths are of at least class <til 
eliminates occurrences of this type. 
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total time derivative of Equations (3.2.8) exists and is continuous everywhere 
in (t 1, t 2 ), yielding 

d (OL It oL ) d oL oL 
dt oil - tldt oqk - Ck = dt oil - ol' (3.2.9) 

A similar situation exists for the inverse transition through an integration. 
Despite the assumptions E E 1(11 and L E 1(14, we are still left with the prob

lem of the continuity properties of the accelerations c/. This problem is 
solved by the so-called Hilbert Differentiability Theorem, which indicates the 
deep relationship existing between the continuity of (possible or actual) paths 
and the regularity of the Lagrangian. 

Theorem 3.2.2 (Hilbert Differentiability Theorem).8 Suppose that the path 
E is of class 1(11 in a neighborhood (to). of a point to and satisfies Lagrange's 
equations (3.1.1) or (3.2.8)for a given L(t, q, q). Then, in the neighborhood of 
every point (to, E(to), £(to)), in which the Lagrangian is of class I(1m+2, 
m> 1, and regular, the path E is of class I(1m in (to),. lfthe assumptions hold 
everywhere in an interval (t 1, t2), so do the conclusions. 

The proof can be outlined as follows. Equations (3.2.8) can be interpreted as 
a system of first-order differential equations, i.e., 

oL It oL 
Fk(t, q, q) = ~ - dt ~ - Ck = O. 

q tl q 
(3.2.10) 

In the neighborhood of a point Po = (to, q(to), q(to)), the Implicit Function 
Theorem 3.1.1 holds for Equations (3.2.10) with respect to qk if and only if its 
functional determinant 

I ~:; I = I O:i2~qj I (3.2.11) 

is different from zero at Po. But the Lagrangian L is regular by assumption in 
(Po),. Thus, Theorem 1.1.1 holds and from property (e) of the same theorem it 
follows that qk has the same continuity properties of Fk, namely, qk E I(1m-l(to), 
and, thus, qk E I(1m(to),' 

It should be stressed that the regularity condition plays a crucial role in the 
above theorem. Indeed, if such a condition is removed, the conclusions of the 
Hilbert Theorem 3.2.2 do not necessarily hold. 

Without proof, we also quote the following reformulation of Theorem 1.1.6 
for Lagrange's equations. 

Theorem 3.2.3 (Embedding Theorem for Solutions of Lagrange's Initial 
value Problem).9 Every regular actual path Eo = {q I qk = qk(t; Uo, vo), t E 

(t 1, t 2), k = I, 2, ... , n} of Lagrange's initial value problem (3.2.6) can be 

8 See, for instance, Bliss (1946), Akhiezer (1962). 
9 See, for instance, Bliss (1946), Sec. 1.7. 



116 The Fundamental Analytic Theorems of the Inverse Problem 

embedded in a 2n-parameter family of possible paths E = {qk I qk = qk(t; u, v), 
t E (t 1, t2), Uk E (ut)., vk E (vt)., k = 1,2, ... , 3n} whose functions qk possess 
continuous partial derivatives of at least the second order for all values 
t E (t 1, t2), Uk E (ut)., vk E (vt)., and the determinant 

iV oqi 
ou j oJ 

D(t; u, v) = 
oli oqi (3.2.12) 

ouj ovj 

is everywhere non-null along E. 

Unless otherwise stated, all Lagrangians considered from here on will be 
regular and of at least class ~4 in their region of definition. 

3.3 Self-Adjointness of the Conventional Lagrange's Equations 

Consider a class ~2, regular, holonomic Newtonian system (2.2.1). The 
problem of the existence of a Lagrangian for its representation (3.1.2) 
centrally depends on the variational characteristics of both members of these 
identifications. 

In Chapter 2, we established that systems (2.2.1) can be either self-adjoint or 
non-self-adjoint. In this section, we shall investigate the corresponding 
properties of the conventional Lagrange's equations. 

Let us begin by constructing the equations of variations and variational 
forms of Lagrange's equations. Consider a one-parameter family of possible 
paths 

(3.3.1) 

which are solutions of the equations 

( d oL OL) 
Lk(E) = dt oqk - oqk (E) = 0, (3.3.2a) 

LE~4(E), (3.3.2b) 

(3.3.2c) 

From the existence theorem of Section 1.1 and Theorem 3.2.2, we know that 
thepathsqk(t; w)areofclass~2 in(tl' t2)' Theorems 1.1.4 and 1.1.7 then apply, 
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and qk(t; w), It(t; w), and il(t; w) possess continuous derivatives with respect 
to all w E Oe. 1 0 Thus, the variations 

::l'k 1 'k uq 
'1 =-ow w=o' 

o "k 1 "k q '1 - ow w=o (3.3.3) 

exist and are continuous in (t1, t2)' 
Equation (3.3.2) can be more explicitly written 

"{d 0 0 } Lk(£) = dt oi;.k- oqk L(t, q(t; w), q(t; w», (3.3.4) 

where now both Land q are known. By differentiating with respect to wand 
by putting w = 0, we obtain the system 

which, as is the case for all equations of variations (see Section 2.1), is linear 
in '1i, ~i, and ~i. 

By introducing the function 

_ ( .)_1(02L 'i 'i 202L 'ii 02L ii) 
J - J t, '1, '1 - 2" oqi oqi '1 '1 + oqi oqi '1 '1 + oqi oqi '1 '1 , 

Equations (3.3.5) can be written in the form (1.3.25), i.e., 

d oj oj 
Jk('1) = dt O~k - O'1k = 0, 

1 0;2:~i I(Rfr~~J» = [I 0:i2~qi I(Rfr~;.h)l=o # O. 

(3.3.6) 

(3.3.7a) 

(3.3.7b) 

These are the equations of variations of Lagrange's equations, also called 
Jacobi's equations (see Section 1.3). When the forms Jk('1) are computed along 
a variation '1 which is not necessarily a solution of Equations (3.3.7), we 
shall call them variational forms of Lagrange's equations in line with the 
assumption of Section 2.1. 

Equations (3.3.7) are similar in structure to Lagrange's equations. Never
theless, it must tie recalled in this respect that the former are always linear in 

10 The analysis ofthis section can be equivalently carried out for w in the neighborhood of any 
(finite) value woo 
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'1 i, ~i, and iii while the latter are linear only in iji but not necessarily in qi and 
ii as well. 

We are now equipped to prove a theorem of major significance for our 
analysis. 

Theorem 3.3.1 (Self-Adjointness of the Conventional Lagrange's Equa
tions)Y Under the assumptions that the Lagrangians L(t, q, q) are of (at 
least) class qj4 and regular in a region R 2n+ 1 of points (t, q, q), the conven
tional Lagrange's equations are always self-adjoint in R 2n+ 1. 

PROOF. The variational forms 

Ji(~) = [~(a;i2~l) - a;i2~l}k 

+ [d ( a2L) a2L a2L ]'k a2L"k 
it ali all + ali al - aqi all ~ + ali ail' ~ , 

(3.3.8) 

under the assumed continuity and regularity conditions, always coincide with the adjoint 
system (see Section 2.1) 

(3.3.9) 

- ~ {~k [~ (a;k2 ~q) + a;: ~qi - a;: ~qi]} + :t22 (~k a;: ~q) 
everywhere in R2n+l. Q.E.D. 

In essence, Theorem 3.3.1 states that, under the indicated continuity and 
regularity assumptions, Lagrange's equations are self-adjoint for "all" 
possible Lagrangians. 

Notice that the continuity property L E qj3(R2n+ 1) is sufficient to establish 
the existence and continuity of Jacobi's forms (3.3.8). However, such a 
continuity property is insufficient to establish the self-adjointness of Lagrange's 
equations because adjoint system (3.3.9) demands the use of partial derivatives 
up to the fourth order. The emerging minimal continuity condition L E 

qj4(R 2n + 1) then coincides with the minimal continuity conditions Aki> 
Bk E qj2(R 2n + 1) to study the self-adjointness of Newtonian systems in their 

11 As indicated in the Introduction, this property goes back to Jacobi (1837). For a subsequent 
proof see, for instance, Davis (1929). For an extension to relativistic field theories see Santilli 
(1977a, Theorem 7.1). Notice that Theorem 3.3.1 deals with the variational self-adjointness of 
Lagrange's equations. The self-adjointness of the Lagrange operator 

d 0 0 

dt oil oqk 

is a well-known property, but it demands a different treatment. Therefore, the approach to self
adjointness which is followed in this monograph is variational rather than operational in nature. 
For the latter approach, see Vainberg (1964). For the equivalence of the operational and varia
tional approach, see Charts 3.16 and 3.17. 
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fundamental form (Sections 2.2 and 2.3). Indeed, when the Lagrangian is of 
class ~4, Lagrange's equations are of class ~2. 

Theorem 3.3.1 can also be proved by showing that Equations (3.1.3) satisfy 
all the conditions of self-adjointness (see Problem 3.1). 

It should be stressed that Jacobi's equations (3.3.7) are intimately linked to 
Lagrange's equations in the sense that they demand the prior knowledge ofthe 
latter. The combination of Lagrange's equation and the related Jacobi's 
equations puts the conventional analytic framework in a different light. The 
need for the joint use of these equations to properly characterize an analytic 
representation in configuration space will be indicated in the next section. Its 
significance for the problem of the existence of a Lagrangian will be pointed 
out in Section 3.5. However, the joint use of Lagrange's equations and the 
related Jacobi's equations might have a significance that goes beyond the 
problem of the existence of a Lagrangian. This is due to the fact that while 
Lagrange's equations are generally nonlinear, and therefore their general 
solution is usually unknown/ 2 the related Jacobi's equations are always 
linear and, as such, their general solution can be computed with conventional 
techniques. To the best of my knowledge, the possible significance of the 
joint use of these equations for nonlinear systems has not been investigated 
until now. 

As a final remark, we would like to stress that the knowledge of a solution of 
Lagrange's equations is not necessary for establishing the self-adjointness of 
the same equations, as can also be seen, for instance, by proving Theorem 3.3.1 
along the lines of Problem 3.1. This is the reason why we have used, in the 
proof of Theorem 3.3.1, the variational forms Jk(t/) and their adjoint iit/) 
rather than the corresponding variational equations Jk(t/) = 0 and ik(t/) = o. 
This point has a crucial relevance for our analysis owing to the generally 
nonlinear nature of the equations of motion considered. 

3.4 The Concept of Analytic Representation in Configuration 
Space 

As previously stated, a central objective of this monograph is to consider a 
given system of Newton's equations of motion and then study the conditions 
under which a Lagrangian capable of" representing" such a system exists. In 
order to achieve this objective it is essential to clarify the concept of an 
"analytic representation in configuration space," namely, the representation 
of the system in terms of Lagrange's equations. 

In principle, we can say that a system of Newton's equations of motion 
admits a representation in terms of Lagrange's equations for a given Lagrang
ian when the solutions of those two systems coincide. Predictably, this 

12 We are referring here to exact solutions. Approximate solutions of nonlinear equations can 
be computed, e.g., with numerical methods. 
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approach encounters severe practical difficulties because the equations of 
motion are generally nonlinear. 

In order to overcome these difficulties, we introduce the following de
finition. 

Definition 3.4.1,13 A class C(j2, regular, holonomic, system of Newton's 
equations of motion admits an analytic representation in configuration space 
in terms of the conventional Lagrange's equations in a region R 2n + 1 of the 
variables (t, q, q) when there exist n2 functions h~(t, q, q) which are of (at 
least) class C(j2 and whose matrix (hD is regular in R2n + \ such that the con
ventional Lagrange's equations coincide with the equations of motion up to 
the equivalence transformation induced by such a matrix (hi), i.e.,14 

d oL oL . . 
dt oqk - oqk = hHAijiJl + Bi), 

h~ E C(j2(R 2n + 1), 

Ih~I(R2n+l) i= 0, 

k = 1,2, ... , n, (3.4.1a) 

(3.4.1 b) 

(3.4.1c) 

or, equivalently, when the equations of motion coincide with the conventional 
Lagrange's equations up to the equivalence transformation induced by the 
inverse matrix (hk- 1 i) == (hD - 1, i.e., 

_li(dOL OL)_ .. j 
hk dt oqi - oqi - Akjq + Bk, (3.4.2a) 

(hi: 1 i) = (hD-1. (3.4.2b) 

A few comments are in order here. First of all, let us note that the right-hand 
side of definition (3.4.1a) is indeed an equivalence transformation of the 
equations of motion, precisely in view of the assumption of regularity of the 
matrix (hD. Assumptions (3.4.1 b) are introduced to preserve the minimal 
continuity condition of the equations of motion in their fundamental form. 
The functional dependence h~ = h~(t, q, q) is the maximal functional de
pendence of these functions, which is admissible within the context of 
Definition 3.4.1. Indeed, any additional functional dependence of these 
functions on the accelerations would not preserve the Newtonian character 
of the equations of motion, namely, their linearity in the accelerations 
(Appendix). Finally, the equivalence of definitions (3.4.1) and (3.4.2) is also 
self-evident from the assumed regularity of the matrix (hD. From now on, we 
shall refer to this matrix as the matrix of the factor functions. 

The first significant implication of Definition 3.4.1 is that, given a system of 
Newton's equations of motion, the knowledge of only one function, i.e., the 

13 Santilli (1977a). 
14 Notice that these identities are not set equal to zero because they must hold along any 

admissible path. 
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Lagrangian L, is generally insufficient to characterize an analytic representa
tion because n2 additional functions, i.e., the factor functions hi, are generally 
needed. This fact, which will have an impact at several levels of our analysis, 
will be illustrated later in this section. 

To better elaborate the significance of the factor matrices, we now introduce 
the following definition. 

Definition 3.4.2.15 The analytic representation of Definition 3.4.1 is called 
direct (indirect) when the matrix (hi) of the factor functions is (is not) the unit 
matrix «(ji). 

We therefore have a direct analytic representation when the equations of 
motion are represented as given, without any equivalence transformation. 
But, as will be evident later, the Lagrangian for this type of representation 
exists only under special circumstances. As a consequence, one remains in the 
general case with the study of the analytic representations of equivalent 
systems, rather than the original system as given. This indicates the significance 
of the concept of indirect analytic representations, particularly when non
conservative forces occur. However, it should be pointed out that this type of 
analytic representations is also significant for the case when all acting forces 
are conservative. 16 

It is useful here to illustrate the concepts of direct and indirect analytic 
representations with a simple example. Consider the self-adjoint system of 
two uncoupled harmonic oscillators with the equations of motion 

41 + W 2q1 = 0, 

42 + W 2q2 = 0. 
(3.4.3) 

A well-known Lagrangian for the representation of this system is given by 

(3.4.4) 

By computing Lagrange's equations with this Lagrangian, we obtain the 
identity 

15 Santilli (l977a). 

d oL oL 
dt oq1 - oq1 

d oL oL 
dt oq2 - oq2 

(3.4.5) 

16 This is because conservative Newtonian systems can also be given in non-self-adjoint forms 
[see in this respect Equations (2.2.28) or Example 3.5], in which case a Lagrangian for their 
direct analytic representation does not exist, as follows from the Fundamental Analytic Theorem 
of the next section. 
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where the symbol SA stands for self-adjointness. Therefore, we have in this 
case, according to our terminology, a direct analytic representation of the 
equations of motion (3.4.3). 

But an equally acceptable Lagrangian for the representation of system 
(3.4.3) is given by17 

(3.4.6) 

By again computing Lagrange's equations with this new Lagrangian, we now 
have 

d oL* oL* 
dt oq! - oq! 

d oL* oL* 
dt oq2 - oq2 

(3.4.7) 

This is precisely an indirect analytic representation of system (3.4.3), where 
the factor function hi, in this case, characterizes a permutation ofthe indices. 
Indeed, a simple inspection of Lagrangian (3.4.6) indicates that Lagrange's 
equations, say, in the (q1' q2) variables, reproduce the equations of motion in 
the (q2, q!) variables, and vice versa. This did not happen for Lagrangian 
(3.4.4). Another inspection also indicates that both Lagrangians (3.4.4) and 

17 A brief digression to the field theoretical case is significant here. Under the transitions 

Equations (3.4.3) become those of the complex scalar field, i.e., 

(0 + m2 )qJ = 0, 

(0 + m2 )q; = O. 

The Lagrangian density customarily used in field theory for the representation of these equations 
is precisely one of type (3.4.6), i.e., 

J.1. = 0, 1,2,3, 

ocp 
cp"; = ox" 

while the Lagrangian corresponding to structure (3.4.4), i.e., 

!£' = t(cp"; cp"; - m2cp2) + t(cp"; cp"; - m2cp2), 

even though it is fully acceptable on grounds of its real-valued ness and capability of reproducing 
the considered field equations, is usually ignored. Oddly, this position in field theory is opposite 
to the corresponding position in Newtonian Mechanics, where Lagrangian (3.4.4) is generally 
assumed, while its equivalent form (3.4.6) is customarily ignored. In actuality, this multiplicity of 
the functional structure of the Lagrangian has rather deep implications within the context of both 
Newtonian Mechanics [see Santilli (1979)] and field theory [see Santilli (1978, Vol. I)]. 
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(3.4.6) are regular, as they must be from Theorem 3.2.1, in view ofthe values of 
the corresponding Hessians 

I o2L I 11 ~ 1= 1, oiloqi = 0 
(3.4.8) 

I o2L* I 10 ~1=-1. oiloqj = 1 

Strictly speaking, Lagrangian (3.4.4) alone is capable of representing the 
considered system in the form (3.4.3), while representation (3.4.7) demands the 
knowledge of Lagrangian (3.4.6) and four elements of the factor functions h~. 
Notice that in this simple case the question of whether the representation is 
direct or indirect is, in the final analysis, immaterial because it is merely 
related to the assumed order of the equations of motion. For instance, 
Equations (3.4.3) can be assigned in their reverse order. In this case, re
presentation (3.4.7) becomes direct, while representation (3.4.5) is indirect. 
What will be significant for our study of the transformation theory [see 
Santilli (1979)J is the possibility that the same system admits both a direct and 
an indirect analytic representation. 

The combined use of Definitions 3.4.1 and 3.4.2 is still insufficient to 
characterize properly, according to our needs, the behavior of the equations 
of variations. To fulfill this last requirement, we introduce the following 
definition. 

Definition 3.4.3,18 The analytic representations of Definitions 3.4.1 and 
3.4.2 are termed ordered (nonordered) when the left-hand and right-hand sides 
of Equations (3.4.1) or (3.4.2) coincide (do not coincide), member by member, 
for all values of the index k = 1,2,3, ... , n in a given ordering. 

In essence, the concept of ordered direct analytic representations implies 
that Lagrange's equations and the equations of motion not only coincide as 
systems, but also coincide member by member for a given ordering of the 
index k. In this case, we shall write 

k = 1,2, ... , n. (3.4.9) 

On the contrary, the concept of nonordered direct analytic representations 
implies that the left-hand and right-hand sides of the above equations only 
coincide as systems, with no reference to their respective orderings. In this 
case, we shall write 

(3.4.10) 

18 Santilli (1977a). 
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Clearly, the only possible differences between the left-hand and the right-hand 
sides ofthe above identifications are permutations ofthe indices. For instance, 
Equations (3.4.5) characterize an ordered direct analytic representation of the 
equations of motion (3.4.3) in the ordering q = (qt> q2), while Equations 
(3.4.7) characterize an ordered indirect analytic representation of the same 
system in the same ordering. If the condition of ordering is removed, then 
both Lagrangians (3.4.4) and (3.4.6) characterize nonordered direct analytic 
representations of the equations of motion (3.4.3). 

From the viewpoint of our objective of studying the necessary and sufficient 
conditions for the existence of a Lagrangian, the condition of ordering plays 
a crucial role. Indeed, the term "ordered direct analytic representation" 
implies that each of the following three sets of identities for class C(J2 and 
regular Newtonian systems hold in the assumed ordering: 

Lagrange's equations Equations of motion 

(3.4.11a) 

Jacobi's equations Equations of variations 
of the equations of motion 

Jk(r,) - Mk(rf), (3.4.11b) 

Adjoint system of Adjoint system of the 
Jacobi's equations equations of variations 

Jk(~) - Mk(~)' (3.4. 11 c) 

This is a consequence of the uniqueness of the variational forms and their 
adjoint system as identified in Section 2.l. 

Similarly, the terms "ordered indirect analytic representation" implies 
that each of the following three sets of identities, again for class C(J2 and 
regular systems, also hold in the assumed ordering: 

Lagrange's equations Equivalent equations of motion 

Lk(q) - Fi/(q) = hiFlq), (3.4.12a) 

Jacobi's equations Equations of variation of 
the equivalent system 

Jirf) - Mi/(rf), (3.4.12b) 

Adjoint system of Adjoint system of the 
Jacobi's equations equations of variations 

Jk(~) - M:q(~). (3.4.12c) 
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It is essential to illustrate the above remarks with an example. Consider the 
simple generalization of system (3.4.3), 

(~1 + b~l + W:q1) = (1 0) (~1) + (b 0) (~1) + (W2 O2) (ql) 
ql - bq2 + W q2 0 1 q2 0 - b q2 0 W q2 

= (Ckiqi) + (bkiqi) + (akiqi) 

= 0, (3.4.13) 

which exhibits the presence of a nonconservative force F = ( - bq 1, + bq 2).19 

This is a two-dimensional linear system of ordinary second-order differential 
equations with constant coefficients. The conditions for self-adjointness 
(2.1.17) now become 

(3.4.14a) 

(3.4. 14b) 

(3.4. 14c) 

Since Equations (3.4.14b) are violated, system (3.4.13) is non-self-adjoint. 
By anticipating the Fundamental Analytic Theorem of the next section, one 
might, therefore, conclude that a Lagrangian for the representation of such 
a system does not exist. This conclusion, however, is erroneous. Indeed, an 
analytic representation of system (3.4.13) is known in the physics literature 
and is given by the Morse-Feshbach Lagrangian20 

(3.4.15) 

Our objective here is that of identifying the behavior of the analytic re
presentation characterized by such a Lagrangian from the viewpoint of the 
equations of variations and their adjoint system. 

By computing Lagrange's equations with Lagrangian (3.4.15), we can 
write 

d oL* oL* 
dt oql - iJql 

d iJL* iJL* 
(3.4.16) 

19 Notice that this force is not dissipative, because while the component -bql is passive, the 
component +bq2 is active. 

20 Morse and Feshbach (1953). 
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Therefore, we have an ordered indirect analytic representation of the 
equations of motion. 

A striking apparent discrepancy, however, emerges between the left-hand 
and right-hand sides of the above identifications. This is because Lagrange's 
equations, from Theorem 3.3.1, are expected to be self-adjoint, while equations 
of motion (3.4.13), as indicated earlier, are non-self-adjoint. This indicates the 
need to inspect the variational behavior of this analytic representation in 
order to ensure that a structure of type (3.4.12) actually occurs. 

Let us first verify that Theorem 3.3.1 is indeed satisfied by Lagrangian 
(3.4.15). Jacobi's equations for such a Lagrangian are 

The adjoint system of Jacobi's equations is, from Equations (3.3.9), 

But Lagrangian (3.4.15) is trivially of class C6°O. Therefore, systems (3.4.17a) 
and (3.4.17b) coincide, i.e., 

(3.4.18) 

and Lagrange's equations for Lagrangian (3.4.15), i.e., the left-hand side of 
representation (3.4.16), is self-adjoint, as expected. 

To complete our analysis, we must now inspect the right-hand side of the 
same representation. This is easily achieved by rewriting such a system in the 
form 

=0. (3.4.19) 

A simple inspection then indicates that such an equivalent form of the 
equations of motion does indeed satisfy all conditions (3.4.14) and, therefore, 
it is self-adjoint. All Equations (3.4.12) for this representation then hold. 

The variational significance of the analytic representation characterized by 
the Morse-Feshbach Lagrangian (3.5.15) is therefore that of transforming the 
equations of motion from the original non-self-adjoint form (3.4.13) to the 
equivalent self-adjointform (3.4.19) through a simple permutation of the indices, 
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which we symbolically write2I 

d oL* 
dt oql - oql 

d oL* oL* 
dt oq2 - oq2 

where NSA stands for non-self-adjointness. 
If the ordering condition is removed, then simple calculations yield, instead 

of Equations (3.4.12), the equations 

{L*( )} = {iiI + hqI + W2q I} = {F ( )} kq .. b' + 2 kq, q2 - q2 W q2 

{Jt(IJ)} = {MiIJ)} , 

(3.4.21a) 

(3.4.21b) 

(3.4.21c) 

where the curly brackets indicate, in line with notation (3.4.10), that the en
closed quantities are considered as systems rather than term by.term. We can, 
therefore, conclude that the elimination of ordering in this case does allow the 

21 A digression to the corresponding field theoretical case is significant here. Under the 
transitions 

b 
- --> - ieAP 
2 

Morse-Feshbach Lagrangian (3.4.15) becomes 

5l'* = f/Jp: ip": - ieAP(f/Jp;ip - f/Jip,,:) - (m 2 - e2 A" A ")f/J.p 

= (f/J": + ieApf/J)(.p": - ieA"ip) - m2 f/J.p. 

and represents one of the central models of contemporary gauge-invariant field theories, namely, 
that of the interaction of a complex scalar field with an external electromagnetic field. As a 
matter of fact, Lagrangian (3.4.15) was originally derived precisely through a Newtonian limit of 
the above field theoretical Lagrangian (Feshbach, private communication 1976). The variational 
behavior of the field theoretical case closely follows that of the corresponding Newtonian case 
[see San'tilli (l977a), particularly Appendix C]. Besides its variational significance, this example 
has rather deep physical implications characterized by the fact that the Newtonian limit of the 
couplings appearing in the gauge-invariant Lagrangian of the complex scalar field in interaction 
with an electromagnetic field is of nonconservative type. The significance of the nonservative 
forces for our description of Newtonian systems as they actually exist in our environment is 
stressed in the Appendix. The above example indicates that such nonconservative forces also have 
a physical role within the context of elementary particle interactions. Indeed, they occur already 
at the level of the electromagnetic interactions of charged particles. The current unified gauge 
theory of weak and electromagnetic interactions preserves such a "nonconservative" character 
of the couplings. Therefore, "nonconservative couplings" also occur within the context of weak 
interactions. It is then conceivable to suppose that the same type of" nonconservative couplings" 
also occur for strong interactions. In this latter case, however, it is equally conceivable to suppose 
that the ultimate characterization of the strong interactions will demand a further generalization 
of the nonconservative character of the couplings. The above remarks put the analysis in this 
monograph in a different perspective. Indeed, the Newtonian analysis of the nonconservative 
forces presented in this monograph appears to be an advisable step prior to any attempt at a 
generalization of the couplings of the electromagnetic and weak interactions along these 
"nonconservative" lines. The hope to reach some insight along these lines for the problem of the 
strong interactions was one of my primary motivations for undertaking this task. For studies 
along these lines, see Santilli (1978, Vols. I, II, and III). 
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existence of an analytic representation even though the system is non-self
adjoint. This clearly affects the necessity of the conditions of self-adjointness 
for the existence of a Lagrangian. 

The above remark illustrates the significance of the ordering in the concept 
of analytic representations. From now on, unless explicitly stated, all our 
direct or indirect analytic representations will be assumed to satisfy the 
ordering condition. 

The subsequent Sections 3.5, 3.6, and 3.7 will be devoted to the study of the 
fundamental type of analytic representations, namely, the ordered direct 
analytic representations. [The indirect representations are studied in Santilli 
(1979)]. 

As indicated earlier, system (3.4.13) is a simple nonconservative generaliza
tion of system (3.4.3). The Morse-Feshbach Lagrangian (3.4.15) appears to be 
a generalization of Lagrangian (J.4.6). A significant question is whether a 
generalization of Lagrangian (3.4.4) for the representation of system (3.4.13) 
also exists. 

An inspection of the problem22 indicates that such a Lagrangian does in
deed exist and is given by23 

(3.4.22) 

22 For a derivation of this Lagrangian, see Santilli (1979). 
23 A digression to field theory is also significant here. By performing the same transitions as in 

the previous cases, the Lagrangian density which corresponds to Equation (3.4.22) is given by 

2 = e-2iexoA"t[cp.;cp.; _ (m2 _ e2A.A")cp2] 
+ e + 2ie x oAoH ip.; ip.; _ (m2 _ e2 A. A.)ip2]. 

It also represents the complex scalar field in interaction with an external electromagnetic field, 
with the only difference that now the factor functions, rather than characterizing a permutation, 
are nontrivial. By ~omparing the above Lagrangian density with the conventional form of gauge 
theories, the reader can identify the following rather puzzling breakings. 

(l) The so-called minimal coupling rule ofthe electromagnetic interactions, i.e., the substitutions 

no longer hold for the Lagrangian 2. 
(2) The invariance of 2 under the gauge transformations 

weD" 

which is at the basis of the customary derivation of the charge conservation law, no longer 
holds for 2. 

(3) The invariance of 2 under translations in space-time 

x lJ -+ x'll = Xli + all, 

which is at the basis of the customary derivation of the energy-momentum conservation 
law, no longer holds for 2. 

The existence of this new Lagrangian density with the above-indicated underlying breakings 
is, in the final analysis, a consequence of our definition of ordered indirect analytic representations 
because of the freedom in the explicit form of the factor functions. The existence of two different 
Lagrangian densities for the representation of the same system indicates the existence of degrees 
offreedom, which become intimately linked to the methodology that underlies the problem of the 
existence of a Lagrangian. For an analysis of these and other aspects see Santilli (1978, Vols. I, II, 
and III). 
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with the underlying ordered, indirect analytic representation 

d 8L 8L 

and factor functions 

. (ebto) 
(hD = ° e- bt ' Ihil = 1. (3.4.24) 

A few comments are now in order. Within a Newtonian context, Lagrangian 
(3.4.22) could be interpreted as more "natural" than Lagrangian (3.4.15) for 
the representation of the system considered,24 because its explicit dependence 
on time directly indicates the underlying nonconservative nature of the 
system.25 This aspect is somewhat hidden in Lagrangian (3.4.15) because of its 
lack of explicit time dependence. Indeed, the attentive reader, after an initial 
inspection of Lagrangian (3.4.15) only, might arrive at the erroneous con
clusion that, in view of its invariance under time translations, the total 
mechanical energy is conserved.26 An inspection of the equations of motion, 
however, indicates that this is not the case, owing to the presence of the 
nonconservative force F = (-bql' +bq2)' 

On practical grounds, the selection of Lagrangian (3.4.15) or (3.4.22) is a 
question of personal preference, because both Lagrangians lead to fully 
admissible analytic representations of the same system, with the only differ
ence given by the explicit form and functional dependence of the factor 
functions. 

On methodological grounds, what is significant is the existence of the 
different Lagrangians (3.4.15) and (3.4.22) for the representation of the 
same system. Indeed, this indicates a possible significance of the concept of 
analytic representations introduced in this section within the context of 
transformation theory. This aspect is investigated in Santilli (1979). 

24 This is not necessarily the case for the corresponding situation in field theory. 
25 For an elementary approach to the problem of symmetries and conservation laws, the 

interested reader can consult Chart A.2. For details, see Santilli (1979). 
26 It should be indicated here that the quantity related to Lagrangian (3.4.15), 

aL* 
I = oil il - L *, 

is indeed conserved owing to the in variance of the Lagrangian under time translations. However, 
the above quantity does not represent the total mechanical energy [see Santilli (1979) for more 
details]. 
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Another aspect of the concept of analytic representations is that it indicates 
the existence of a generalized form of Lagrange's equations, as is exhibited by 
the left-hand side of Equations (3.4.2). [This aspect is also investigated in 
Santilli (1979)]. 

Finally, the reader should be aware that the definition of analytic re
presentation (3.4.1) implies that the actual path, die implicit functions, and 
the conserved quantities of the equations of motion coincide with those of 
their Lagrangian representation. 

3.5 The Fundamental Analytic Theorem for Configuration 
Space Formulations 

The fact that Lagrange's equations in class ~4 and regular Lagrangians are 
self-adjoint (Theorem 3.3.1) constitutes a property of central methodological 
significance with implications at several levels of analytic mechanics. In this 
section, we shall study the implications of this property for the existence of an 
ordered direct analytic representation of Newtonian systems. In order to 
formulate and prove our main theorem, we remain with the problem of 
identifying a suitable region of definition of the analytic representation under 
consideration. 

Let us recall in this respect that both Newton's equations of motion in their 
fundamental form and Lagrange's equations can be defined in a region R2n + 1 

of the variables t, q\ and qk only, where the dependence of these equations on 
the accelerations ;'l can be ignored owing to their linearity. Thus, the con
dition that a fundamental form be of (at least) class ~2 can be reduced to the 
condition that the Aki(t, q, q) and Bk(t, q, q) functions are of class ~2 in R 2n + 1 

or, equivalently, that the Lagrangian L(t, q, q) is of class ~4 in R 2n + 1. 

As a consequence, the ordered direct analytic representations of class ~2 
and regular Newtonian systems can be defined, at least in principle, in an 
arbitrarily selected region R2n + 1. However, this position is insufficient for our 
intent offormulating and proving our main theorem within the context of the 
calculus of differential forms. 

Let us recall from Section 1.2 that the Converse of the Poincare Lemma 
(one of the most effective tools for studying the integrability conditions in 
general) demands the use of a star-shaped region R* rather than an ordinary 
region R, according to the formulation of Lemma 1.2.2. Therefore, we shall 
restrict the analytic representations to be defined in a star-shaped region 
R*2n+ 1 of the variables (t, q, q), namely, an open and connected set of points 
(t, q, q) where all points (t, <:q, <:q), ° :::; <: :::; 1, are interior points. Notice 
that there is no restriction on the values of the time variable, and that such a 
star-shaped region contains the (local) origin qk = 0, qk = 0, k = 1, 2, ... , n. 
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We are finally equipped to formulate and prove the following important 
theorem. 

Theorem 3.5.127 (Fundamental Analytic Theorem for Configuration Space 
Formulations). A necessary and sufficient condition for a local, holonomic, 
generally nonconservative Newtonian system in the fundamental form 

k = 1,2, ... , n, (3.5.1) 

which is well defined, of (at least) class tfj2, and regular in a star-shaped region 
R*2n+ 1 of the variables (t, q, 4), to admit an ordered direct analytic re
presentation in terms of the conventional Lagrange's equations in R*2n+ 1, 

(3.5.2) 

is that the system of equations of motion is self-adjoint in R*2n+ 1. 

PROOF. Since the equations of motion are of (at least) class ,&2 and regular in R*2n + 1, 

the Lagrangian L must be (at least) of class <fj4 and regular in R*2n+ 1 (Theorem 3.2.1). 
Then Theorem 3.3.1 applies and Lagrange's equations are self-adjoint in R*2n+ 1. This 
proves the necessity of the condition of self-adjointness of the equations of motion for the 
existence of the ordered identifications (3.5.2) in view of the self-adjointness oftheir left
hand sides. 

To prove sufficiency, we shall show that, under the conditions of self-adjointness 
(2.2.9) of the equations of motion in R*2n+ 1, i.e.,28 

(3.5.3a) 

OAik oA jk 
oqj cqi ' (3.5.3b) 

(3.5.3c) 

(3.5.3d) 

i,j, k = 1,2, ... , n, 

27 A list of all the most relevant references on this theorem known to me has been given in the 
Introduction. The formulation and proof presented here follow the field theoretical version given 
by Theorem 2.1 or Santilli (1977b). The most significant difference between this formulation and 
those of the quoted references lies in the use of the Converse of the Poincare Lemma with con
sequent restriction of the region of definition to a star-shaped region. For comments on this 
point, see Section 3.6 and Santilli (1979). 

28 This is the form of the conditions of self-adjointness which is customarily used for the proof 
of the theorem. See, for instance, Davis (1929). 
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their reformulation (2.3.25) within the context of the calculus of differential forms apply, 
. 29 I.e., 

(3.5.4a) 

(3.5.4b) 

(3.5.4c) 

(3.5.4d) 

and a Lagrangian L(t, q, q) for ordered identifications (3.5.2) always exists. 
Let us recall that the most general structure of the Lagrangian for the representation 

of regular systems is given by Equation (2.3.3), i.e., 

L(t, q, q) = K(t, q, q) + Dk(t, qW + C(t, q), (3.5.5) 

where the "kinetic term" K is nonlinear in r and all terms K, Dk and Care of (at least) 
class cr in a (star-shaped) region of their variables. 

By substituting structure (3.5.5) in identifications (3.5.2) the problem of the existence 
of It Lagrangian can be reduced to the study of the set of the generally overdetermined 
system of partial differential equations (2.3.4a), (2.3.5), and (2.3.6) which, under the 
conditions of self-adjointness (3.5.3), reduce to system (2.3.7), i.e., 

o2K 
oqi oqj = Aij, (3.5.6a) 

ODi oDj 1 (OBi OBj) (02K o2l( ) 
oqi - oqi = 2 oqj - oqi +. oqi oqi - oqi oqi == Zjj, (3.5.6b) 

OC oDk oK o2K [ o2K 1 (OBk OBi)]'i 
al = at - Bk - oqk + ollot + oqk oqi + 2 oqi - oqk q (3.5.6c) 

== W',.. 

Our proof of sufficiency consists of showing that conditions of self-adjointness (3.5.3) 
are the integrability conditions of system (3.5.6). 

1. Integra~ility conditions of Equatio/1s (3.5.6a) 

Introduce the quantities 

oK 
7;., = oqk" (3.5.7) 

29 This is the alternative form of the conditions of self-adjointness which I have used in the 
proof of the theorem within a corresponding field theoretical context [Santilli (1977,b)). It 
should be recalled here that Equations (3.'.3) imply Equations (3.5.4) but the inverse property 
does not necessarily hold. This has no bearing on our proof because the conditions of self
adjointness, in their implied form (3.5.4), will be used for the proof of sufficiency only. 
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and consider the system of first-order partial differential equations 

kb k2 = 1,2, ... , n (3.5.8) 

with underlying I-form 

(3.5.9) 

From the Converse of the Poincare Lemma, reformulation (3.5.4b) of conditions of 
self-adjointness (3.5.3b) are the integrability conditions for Equations (3.5.8). Thus, 
under the assumptions ofthe theorem, a solution of Equations (3.5.8) always exists and is 
given, from Equations (1.2.30) and (1.2.25), by 

(3.5.10) 

The additional condition of self-adjointness (3.5.3a) or (3.5.4a) then ensures the proper 
symmetrization of this solution, i.e., the joint validity of Equations (3.5.8) with the 
additional system 

(3.5.11) 

The next step is to consider Equations (3.5.7), i.e., 

aK iiK [fl ( .)] 'k ail' - 1/" = ail' - 0 d1: Aklk2 t, q, 1:q q 2, (3.5.12) 

with underlying I-form 

(3.5.13) 

The integrability conditions in ihis case are30 

=0 (3.5.14) 

and they identically hold in view, again, of conditions (3.5.4a) and (3.5.4b). Therefore, 
under the assumptions of the theorem, a solution of Equations (3.5.6a) always exists and, 
again froni Equations (1.2.25), is given by 

K(t, q, q) = qk ,fd1:'{[fd1: Ak1k2(t, q, 1:q)]qk2}(t, q, 1:'q), (3.5.15) 

where the curly brackets indicate that the function of qk resulting after integration with 
respect to 1: must be computed along 1:' qk prior to the integration with respect to 1:'. 

This completes the first part of our proof of sufficiency. 

30 For the iast terms of Equations (3.5.14), see Problem 1.8. 
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2. Integrability conditions of Equations (3.5.6b) and (3.5.6c) 

We consider now, independently from each other, Equations (3.5.6b) and (3.5.6c), i.e., 

8C 
~k=~' 
8q 

The underlying differential forms are, respectively,31 

Z(2) = Zklk, dl l 1\ dl', 

W(!) = ~dq\ 

with related integrability conditions 

(3.5.16a) 

(3.5.16b) 

(3.5.17a) 

(3.5.17b) 

(3.5.1Sa) 

(3.5.1Sb) 

As indicated in Section 2.3, upon substituting the explicit values of the Z and W terms, 
the above conditions reduce to 

(3.5.19a) 

(3.5.19b) 

and they identically hold under conditions of self-adjointness (3.5.3) in view of their 
reformulation (3.4.4c). 

Therefore, under the assumption of the theorem, independent and sequential32 

solutions of Equations (3.5.6b) and (3.5.6c) exist and, also from Equations (1.2.25), are 
given by 

DkJt, q) = [fdr rZk1k,(t, rq)]qk', 

C(t, q) = [fdr ~(t, rq)]l. 

This completes the second part of our proof of sufficiency. 

3. Compatibility of Equations (3.5.6) 

(3.5.20a) 

(3.5.20b) 

To complete our proof, we must first show that, for consistency, the right-hand sides 
of Equations (3.5.6b) and (3.5.6c) are independent of derivative terms. By differentiating 

31 In line with Example 1.5, the form which underlies Equations (3.5.16a) is now a 2-form due 
to the antisymmetric nature of the indices. 

32 During this second stage of our proof, Equations (3.5.6b) and (3.5.6c) are considered inde
pendently from each other. Therefore, Equations (3.S.6b) must be solved first because the D 
functions appear on the right-hand sides of Equations (3.S.6c) and, as such, are assumed to be 
known. 
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these equations with respect to il3 , we obtain the respective conditions 

~ ~ (ORkl _ ORk2) _ (OAklk3 _ OAk2k3) = 0 
20il3 oil2 01/" ot2 ot' ' 

[~ ~ (ORkl _ ORk2) _ (OAklk3 _ OAk2k3)] ·k2 = 0 
2 oil3 oil2 01/" ot2 ot' q .' 

(3.5.21a) 

(3.5.21b) 

which identically hold under conditions of self-adjointness (3.5.3) in view of their 
redefinition (3.5.4d). 

This completes the first part of our proof of compatibility and shows that Equations 
(3.5.4d) guarantee that the right-hand sides of Equations (3.5.6b) and (3.5.6c) are 
independent of derivative terms. Our proof of the theorem will be completed by showing 
that Equations (3.5.6) are compatible among themselves. 

Since Equations (3.5.6a) must be solved first, the proof of compatibility can be reduced 
to the proof that Equations (3.5.6b) and (3.5.6c), under identifications (3.5.6a), are 
compatible among themselves. Let us rewrite these equations in the form 

(3.5.22a) 

(3.5.22b) 

where 

(3.5.23) 

After partial differentiation with respect to t and t 2, we can write 

02Dkl OZklk2 02Dk2 -----+--oqk2 0t - ct ot'ot' (3.5.24a) 

a2Dkl aw~, aCkl -----+-oqk2 ot - ot2 ot2 . (3.5.24b) 

Therefore, the necessary conditions for the compatibility of Equations (3.5.22) are 

OZklk2 OW;', OW;'2 
~= ot2 - ot" (3.5.25) 

where we have used Equations (3.5.22b). To prove that Equations (3.5.25) are also 
sufficient, consider Equations (3.5.22) for fixed values of the indices kl = ki and k2 = 
k'2( # kJ.). Then, in view of the continuity properties of the Z and W' functions, the 
existence theorem for linear partial differential equations33 applies and a solution 
Dk~' Dk~' and C exists. W, now substitute such a solution into Equations (3.5.22) 
according to 

(3.5.26a) 

(3.5.26b) 

33 See, for instance, Forsyth (1906, Vol. V, Articles 160-161). 
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These equations are compatible provided that 

(3.5.27) 

But the above conditions reduce to Equations (3.5.25) after use of Equations (3.5.22b). 
Thus, Equations (3.5.25) are the necessary and sufficient conditions for the compatibility 
of Equations (3.5.22). 

We must now inspect Equations (3.5.25). By substituting the explicit values of the Z 
and W' functions from Equations (3.5.6) and (3.5.23), Equations (3.5.25) can be written 

[ a (OBk2 OBk,) a (OBk, OBk')]'k + oqk' oil' - oil2 + aqk2 oil' - oil' q' = O. (3.5.28) 

In view of condition of self-adjointness (3.5.3d), they become 

(3.5.29) 

and are identically verified in view of Equations (3.5.4c). 
This completes the third part of our proof and shows that the Equations (3.5.4c) are 

not only the integrability conditions for Equations (3.5.6b) and (3.5.6c), but are also the 
necessary and sufficient conditions for their compatibility. 34 

34 Our proof of compatibility of Equations (3.5.22) closely follows that of Davis (1929). It 
might be of some relevance to point out that Davis' crucial Theorem 2, p. 377, could be contro
versial in its formulation and proof. This theorem states the following. 

A necessary and sufficient condition that there exists a solution of a system of differential equations 
o/theform (3.5.22) where C, Zk,k,' Dk" W~,(k" k2 = 1,2, ... , n) arefimctions oft, q', ... , q", and 
Zk,k, = - Zk,k" is that Equations (3.5.25) hold identically in t, ql, ... , i/" for every pair of values Qf 
k, and k2 • 

The proof of the theorem then proceeds along the lines of part 3, from Equations (3.5.22) to 
(3.5.28), namely, of what we have called compatibility of Equations (3.5.22). The point is that 
Equation (3.5.25) is indeed the necessary and sufficient condition for the compatibility of 
Equations (3.5.22), but this aspect alone is insufficient to guarantee the existence of a solution of 
the same equations owing to the need for the additional closure conditions of the underlying 
differential forms, i.e., Equations (3.5.18). In other words, the proof ofthe consistency of Equations 
(3.5.22) under the conditions of self-adjointness demands the verification of 

(a) the integrability conditions of Equation (3.5.22a), i.e., (3.5.18a); 
(b) the integrability conditions of Equation (3.5.22b), i.e., (3.5.l8b); and 
(c) . the compatibility conditions of Equations (3.5.22a) and (3.5.22b), i.e., Equation (3.5.25). 

This more accurate proof was formulated, in Santilli (1 977b ) and indicates the effectiveness of the 
calculus of differential forms for the study of the integrability conditions (Davis' approach in his 
paper of 1929 was based on the conventional-for that time-methods of the theory of partial 
differential equations). Rather unpredictably, and this indicates the peculiarity of the problem of 
the existence of a Lagrangian, a more detailed analysis indicates that the integrability and com
patibility conditions of Equations (3.5.22) are all ultimately equivalent to Equation (3.5.25), 
as clearly exhibited by their explicit forms (3.5.19) and (3.5.29). In turn, this indicates that the 
proof of compatibility of Equations (3.5.22) could also be considered as redundant (e.g., from 
the need of computing the solutions of Equations (3.5.22a) and (3.5.22b) in a sequential way). 



The Fundamental Analytic Theorem for Configuration Space Formulations 137 

Thus, when all the conditions of variational self-adjointness (3.5.3) are identically 
verified for the equations of motion, their reformulation (3.5.4) holds, Equations (3.5.6) 
always admit a solution, and a Lagrangian according to structure (3.5.5) always exists. 

Q.E.D. 

Notice that all the conditions of self-adjointness (3.5.3) enter, without 
redundancy, into the proof of the theorem. Therefore, when the equations of 
motion in configuration space are non-self-adjoint, they cannot be directly 
represented by the conventional Lagrange's equations. It should be recalled, 
in this respect, that a system is non-self-adjoint when at least one of the con
ditions of self-adjointness is violated. 

The reader should be aware of the fact that when the conditions of Theorem 
3.5.1 are not met this does not necessarily imply that an analytic representation 
of the equations of motion does not exist, because this theorem deals specific
ally with direct analytic representations. Indeed, when the equations of 
motion are non-self-adjoint, one can seek an indirect analytic representation. 
[This aspect is considered in Santilli (1979)]. 

The significance of the ordering condition in Theorem 3.5.1 is now self
evident. If the ordering condition for identifications (3.5.2) is relaxed, the 
conditions of self-adjointness are only sufficient for the existence of a La
grangian.35 This point is clearly exhibited by example (3.4.20), where a 
permutation of the order of the equations of motion render the system non
self-adjoint. Nevertheless, a Lagrangian for .its (nonordered) representation 
still exists. 

Theorem 3.5.1 can be easily generalized to the second-order differential 
equations 

Fk(t, q, q, q) = 0, k = 1,2, ... , n, (3.5.30a) 

FkE~2(R3n+l), I ~:J I(R3n + 1) "I= 0, (3.5.30b) 

which are not necessarily linear in the accelerations. This was, ultimately, the 
original problem considered by Helmholtz (1887). Indeed, conditions of self
adjointness (2.1.18) demand the linearity of Equations (3.5.30) in the ac
celerations, as shown in Section 2.2. Therefore, Theorem 3.5.1 can be equi
valently formulated and proved either in terms of the Newtonian form (3.5.1) 
with underlying conditions of self-adjointness (3.5.3) or in terms of the 
more general form (3.5.30) with underlying conditions of self-adjointness 
(2.1.18). 

Theorem 3.5.1 can also be applied to the particular case of the kinematical 
form of the equations of motion, i.e., Equations (2.2.2), for which 

(3.5.31) 

This is left as an exercise for the interested reader (see Problem 3.2). 

35 The ordering condition within the context of the Inverse Problem was introduced in 
Santilli (1977a and b). 
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Another significant application of Theorem 3.5.1 is for the analytic re
preseQtation ofjirst-order equations, in which case the Lagrangian, according 
to our terminology, is totally degenerate, i.e., 

02L 
oqi oqi == 0, i,j = 1,2, ... , n. (3.5.32) 

This case is worked out in Chart 3.9. 
The case of a bona fide degenerate Lagrangian, i.e., 

I 02L I 2n+l 
oqi oqi (R ) = 0, (3.5.33) 

will not, however, be considered in this volume. This is because these 
Lagrangians imply the presence of subsidiary constraints which, in turn, 
demand a careful reinspection of the variational approach to self-adjoint
ness. 36 

A somewhat special subcase of Theorem 3.5.1 is the one-dimensional case 
for which identifications (3.5.2) become37 

02L 02L 02L oL 
oq2 ij + oq oq q + oq at - oq == A(t, q, q)ij + B(t, q, q). (3.5.34) 

This was, ultimately, the problem considered and solved by Darboux (1891). 
There is, however, a potentially misleading aspect of problem (3.5.34) which 

36 The condition of regularity is introduced in the Inverse Problem in Santilli (1977a and b). 
In the early references on the Inverse Problem listed in the Foreword, the only condition which is 
(sometimes) considered is that of continuity. My attitude is mainly precautionary in nature, and it 
is due to the need to specifically inspect the problem. A few remarks are in order. First of all, when 
the Lagrangian is degenerate, one of the central parts of the Inverse Problem, the extremal part, 
becomes vacuous. This is because one of the necessary conditions for an extremum, i.e., the 
Legendre condition, is violated by degenerate Lagrangians [cr., Bliss (1946, p. 23) or Rund 
(1966, p. 358)]. 

The second point is that, when the Lagrangian is degenerate, Lagrange's equations can be 
inconsistent (i.e., a solution does not necessarily exist) despite the required continuity condition 
[cf. Dirac (1964)]. 

The third point is that, while for regular Lagrangians the consistency of Lagrange's equations 
implies the consistency of their equations of variations, the corresponding case for degenerate 
Lagrangians is quite delicate to handle. Therefore, in line with Section 1.1, a first step which seems 
to be advisable prior to the extension of Theorem 3.5.1 to degenerate Lagrangians is the study of 
the conditions under which degenerate Lagrange's equations are consistent, to a void the handling 
of systems which are ultimately vacuous on physical grounds. Oddly, to the best of my knowledge, 
this aspect is virtually ignored in the recent literature on degenerate systems (both physical and 
mathematical), with the only exception known to me being the paper by Shanmugadhasan (1973). 
A second advisable step is the study of the equations of variations and adjoint systems of con
sistent degenerate systems (and related aspects, e.g., the uniqueness of the adjoint). A third 
advisable step is the reinspection of the calculus of differential forms and the Converse of the 
Poincare Lemma in particular, for the case of degenerate systems. My preliminary unpublished 
investigations indicate that, with a careful handling of these and other problems, the extension of 
Theorem 3.5.1 to class ~2 degenerate, consistent Lagrange's equations does indeed hold. 

37 Notice that the concept of ordering is inessential for one-dimensional systems. 
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deserves a comment. Since identity (3.5.34) constitutes one linear partial 
differential equation in one unknown, the Lagrangian L, one might be 
tempted to conclude that, in view of the assumed continuity and regularity 
conditions, a solution always exists. This is so if and only if the right-hand 
side of identity (3.5.34) is self-adjoint. Indeed, two equations can be identical 
if and only if they both are either self-adjoint or non-self-adjoint. 38 This is the 
property which is ultimately at the basis of the necessity of the conditions of 
self-adjointness in Theorem 3.5.1. 

If the right-hand side of identity (3.5.34) is non-self-adjoint, then such a 
direct representation is inconsistent, but one can search for an indirect 
representation of the type [see Santilli (1979)J 

d iJL iJL 
dt iJq - iJq == [h(t, q, q)(Aq + B)NSAJSA (3.5.35) 

with a factor function h as an integrating factor. It is within this broader 
context that Darboux's result on the "universality" of the existence of a 
Lagrangian for one-dimensional systems (under the assumed continuity and 
regularity conditions) can be formulated in the context of our approach. 39 

Another peculiarity of the one-dimensional case is due to the fact that, since 
system (3.5.34) is determined, it can be treated with standard existence 
theorems of the theory of partial differential equations without recourse to the 
conditions of self-adjointness. As indicated in the Introduction, this was 
precisely Darboux's approach to the problem.40 Indeed, the conditions of self
adjointness become crucial whenever n > 1 because, in this case, the under
lying system of partial differential equations for the existence of a Lagrangian 
is overdetermined. The point we would like to bring to the reader's attention 
is that, even though problem (3.5.34) can be solved with conventional tech
niques, the use of the conditions of self-adjointness is advisable to formulate it 
properly. 

To close this section, we would like to indicate that the methodology which 
underlies the formulation and proof of Theorem 3.5.1 is ultimately variational 
in nature. There are several reasons for this. First of all, Lagrange's equations, 
as a variational algorithm, are the Euler equations of the action functional 
(Section 1.3). This is, ultimately, Hamilton's Principle (1.3.23). Thus, Lagrange's 
equations originate within the context of first-order variations of the action 
functional. This framework, per se, is insufficient for the proof of the theorem. 
Indeed, the conditions of self-adjointness can be derived within a variational 
context only by using second-order variations. This is implicit in the use of the 

38 Rather unpredictably, we can see in Santilli (1979) that this crucial property fails to hold if 
the two equations are considered in different coordinate systems. 

39 For more details, see Santilli (1979). 
40 It might be of some significance here to indicate that Darboux (1891) does not mention the 

prior publication by Helmholtz (1887). 
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Figure 3.1 A schematic view of the Fundamental Analytic Theorem for configuration 
space formulations. The equations of motion in their fundamental form are constructed 
from Newton's second law. Whenever they satisfy each of the conditions of self
adjointness, they are self-adjoint. Lagrange's equations in class 'iC4 and regular Lagran
gians, on the contrary, are always self-adjoint. This establishes both the necessity and the 
sufficiency of the conditions of self-adjointness for the existence of a Lagrangian accord
ing to the formulation and proof of Theorem 3.5.1. As a result, the conditions of self
adjointness emerge as a central mathematical tool of the Inverse Problem. The existence 
theory for ordinary differential equations is a prerequisite to the approach because of the 
need to ensure the consistency of the considered system. The calculus of differential forms 
is a complementary aspect to the approach in view ofthe fact that it constitutes one of the 
best arenas for the study of the integrability conditions in general, and ofthe existence of 
a Lagrangian in particular. The net result is a methodological perspective which, in view 
ofthe elemental nature of the problem of the existence of a Lagrangian, has implications 
at several levels of the theory considerably beyond the original objective of identifying a 
Lagrangian, as indicated in Santilli (1979). 
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equations of variations of Lagrange's equations, i.e., Jacobi's equations 
(3.3.7), which are of second-order variational nature, as recalled in Section 1.3. 

Alternatively, the variational nature of the formulation and proof of 
Theorem 3.5.1 is expressed by our concept of "ordered direct analytic 
representation" as introduced in Section 3.4. Indeed, this concept implies the 
identification not only of Lagrange's equations with the equations of motion 
(first-order variational techniques) but also of Jacobi's equations and their 
adjoint system, with the equations of variations of the equations of motion and 
their adjoint system, respectively (second-order variational techniques), 
according to Equations (3.4.11). 

Another point we would like to make is that the formulation and proof of 
Theorem 3.5.1, even though ultimately variational in nature, is insensitive to 
whether the action functional affords a (relative or absolute) extremum or not. 
This point has been crucial for the organization of this monograph in which, 
as indicated in the Introduction, the extremal aspect of the Inverse Problem is 
ignored. 

Nevertheless, the Fundamental Analytic Theorem of this section indicates 
that, despite a rather general belief to the contrary, the methodology of the 
calculus of variations has a rather profound impact in Newtonian Mechanics 
which goes beyond the framework of Hamilton's Principle and its applica
tions. For a schematic view, see Figure 3.1. 

3.6 A Method for the Construction of a Lagrangian from the 
Equations of Motion 

Our proof of Fundamental Analytic Theorem 3.5.1 provides not only the 
the system of partial differential equations for the construction of a Lagrang
ian but also one of its solutions. This result is a direct consequence of the use 
of the calculus of differential forms in general and the Converse of the Poin
care Lemma in particular. Indeed, it is a simple restatement of the proof of 
Theorem 3.5.1 to obtain the following theorem. 

Theorem 3.6.1 (A Method for the Construction of a Lagrangian).41 A 
Lagrangianfor the ordered direct analytic representation oflocal, holonomic, 
generally nonconservative Newtonian systems that are well defined, of (at 
least) class '(j2, regular and self-adjoint in a star-shaped region R*2n+ 1 of 
points (t, q, q), 

k = 1,2, ... , n, (3.6.1) 

is given by 

L = K(t, q, q) + Dk(t, q)qk + CCt, q), (3.6.2) 

41 Santilli (I 977b). 
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where the n + 2functions K, Dk , and C are a solution of the linear, generally 
overdetermined system of partial differential equations 

02K 
oqkl oqk2 = Ak1k2(t, q, q), (3.6.3a) 

== Zklk2(t, q), (3.6.3b) 

oC _ ODk' B oK 02K 
oqkl - at - kl - oqkl + oqkl at 

[ 02 K 1 (OBkl OBk2)] 'k2 
+ oqkl oqk2 +"2 oqk2 - oqkl q 

(3.6.3c) 

== w,,(t, q), 

given by42 

K(t, q, q) = qkl f dr' {[f dr Ak1k2(t, q, rq)] qk2 }(t, q, r'q), (3.6.4a) 

Dk, = [fdr rZklk2(t, rq)]qk2, (3.6.4b) 

C = [fdr w,,(t, rq)]qk. (3.6.4c) 

42 It is significant here to elaborate on the fact that Equation (3.6.4b) possesses a factor r in the 
integrand, while Equations (3.6.4a) and (3.6.4c) do not. Basically, this situation originates from 
the order p of the underlying differential form because the r factor in the integrand of the solution, 
from Equations (1.2.25), is equal to r P - '. The form that underlies Equation (3.6.3c) is clearly a 
I-form. As a result, rP-' = 1. This case is, therefore, straightforward. The situation for the other 
two sets of Equations (3.6.3) is not, however, equally transparent. First of all, since Equation 
(3.6.3a) is of second order, one might be tempted to assume a 2-form as the underlying form. This 
would yield the solution 

K = 24k' I' dr' {[I'dT TA k1k2(t, q, T4)] 4k}t, q, T'4) 
which, strangely enough, produces the desired result for terms Ak1k2 , which are independent of 
the velocities. In this case, we can write 

K = Ak1k2(t, q)24k' I'dT'{[I'dT T]4k}T'4) = t4k'Ak,k2(t, q)tt' 

by producing a "kinetic" term K which is quadratic in the velocities and with the correct 
coefficient 1. However, the above alternative solution is erroneous in the general case. Indeed, 
when the Aklk2 terms depend on the velocities, e.g., n = 1, A = 4m, we have 

K = 2qfldT'{[fldTTm+l]qm+I}(r'q) = 2 qm+2, 
o 0 (m + 2)(m + 3) 
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For illustrations of this theorem, see the example at the end of this chapter 
and, in particular, Example 3.6. 

A few comments are in order. The first point which must be stressed is that 
Theorem 3.6.1 does not demand the knowledge of a solution of the underlying 
equations of motion for the computation of a Lagrangian. This point is 
significant for practical applications in view of the generally nonlinear nature 
of the considered class of equations of motion. 

Secondly, under the assumptions of the theorem, there is no need to 
verify the consistency of system (3.6.3). Indeed, the proof of sufficiency of 
Theorem 3.5.1 is precisely centered on the fact that the conditions of self
adjointness are the integrability conditions for system (3.6.3). Therefore, for 
practical applications, one must verify that the given system of equations of 
motion is well-defined, of (at least) class ~2, regular, and self-adjoint in a 
star-shaped region R*2n+ 1. When such conditions are met, a solution of 
Equations (3.6.3) exists and is given by Equations (3.6.4). 

Notice that the solutions of Equations (3.6.3) must be computed in the 
given order, namely, one must first solve Equation (3.6.3a) from the knowledge 
of the Aklk2 functions of the equations of motion according to Equation 
(3.6.4a). The knowledge of a solution K of such equations jointly with the Bk 

terms of the equations of motion then allows the computation of the Dk 
functions through Equation (3.6.4b), and, finally, the knowledge of the K, 
Dk , and Bk functions allows the computation of the C function through 
Equation (3.6.4c). 

Almost needless to say, solutions (3.6.4) are local in nature, as is the case for 
all applications of the calculus of differential forms. 

The reader should also recall that the velocity independence of the Z and W 
functions is guaranteed by the conditions of self-adjointness and should be 
aware that the integrals of Equations (3.6.4) are insensitive to the variables of 
the integrands other than those multiplied by the r variables. Specifically, in 
the integrals of Equation (3.6.4a), the t and qk variables of the A functions are 
assumed fixed and the integration is performed only on the double (rqk) 
dependence. Similarly, in the integrals of Equations (3.6.4b) and (3.6.4c), 
the t variable of the integrand is assumed to be fixed and the integration is 
performed only in their (rqk) dependence. 

which is not a solution of Equation (3.6.3a) in view of the incorrect numerical coefficient. The use 
of Equation (3.6.4a), on the contrary, yields 

K = qf'dr'{[f'dr rmJqrn+ '}(r'q) = I qrn+2, 
o 0 (m + I)(m + 2) 

which is the correct solution. This illustrates the reason that, in line with our proof of Theorem 
3.5.1, Equation (3.6.3a) must be solved twice through the use of the Converse of the Poincare 
Lemma. This yields the use of I-forms twice. which. in this way, do not produce the r factor in the 
integrand. The situation of Equations (3.6.3b) is somewhat the opposite. This equation is 
of first' order, and thus one might be tempted to assume a I-form as the underlying differential 
form with consequent lack of factor r in the integrand. However, such a position would be 
erroneous in view of the antisymmetric nature of the equations themselves (Example 1.5). 
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It should be stressed here that solutions (3.6.4) are not necessarily unique. 
This is a primary reason why we have and shall always refer to the problem 
of the existence of "a" Lagrangian rather than "the" Lagrangian. Indeed, 
while the solutions of systems of ordinary differential equations generally 
depend on a number of free parameters, the solutions of systems of partial 
differential equations often depend on arbitrary functions, rather than param
eters. As a result, system (3.6.3) can ultimately characterize a family of 
Lagrangians rather than one Lagrangian. When this is the case, each element 
of this family is an acceptable candidate for the analytic representation under 
consideration. The problem of the "degrees of freedom" of the analytic 
representations for a given system of equations of motion are considered in 
Santilli (1979). 

Notice that the method for the computation of a Lagrangian according to 
Theorem 3.6.1 is computerizable, as intended. 

We now come to a crucial as well as delicate point of our formulation and 
proof of Theorems 3.5.1 and 3.6.1. This is the assumed restriction that the 
equations of motion should be well behaved in a star-shaped, rather than an 
ordinary, region. 

Before commenting on this point, let us note that on practical (although 
nonrigorous) grounds one can ignore any distinction between star-shaped 
and ordinary regions and simply verify that the system is well behaved and of 
(at least) class '(j2 for all the values of qk and (/ in the interval with fixed q~ and 
·k qo 

O~r~1. (3.6.5) 

Notice that this interval is closed. This implies that the equations of motion 
must also be well behaved at the local origin qk = (l = ° as well as at the 
values q\ i/ # 0, k = 1,2, ... , n. When the above conditions are met, one 
can compute integrals (3.6.4). On rigorous grounds, however, the notion of 
the star-shaped region must be used to ensure the existence ofthese integrals. 
As a matter of fact, the primary reason for restricting the formulation and 
proof of Theorems 3.5.1 and 3.6.1 to a star-shaped rather than an ordinary 
region is precisely that of ensuring the existence of the integrals of Equations 
(3.6.4). 

The attentive reader is by now aware of the possibility that the conditions 
for the equations of motion to be well behaved for all values (3.6.5) can be 
violated in practical cases, e.g., when terms such as log q, etc. appear. How
ever this does not necessarily imply that in such instances a Lagrangian does 
not exist. Indeed, as indicated earlier, the Converse of the Poincare Lemma 
has a local character only. This allows for redefinition of the variables, e.g., 
the translations 

or the more general point transformations [see Santilli (1979)J 

qk -+ q'k = q'k(q), 

aiming at a removal of possible divergences. 

(3.6.6) 

(3.6.7) 
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To put this situation in a different perspective, it is significant to point out 
that Theorem 3.6.1 ultimately provides only one method for the computation 
of a Lagrangian and that different methods for solving Equations (3.6.3) 
are conceivable. Indeed, the conditions of self-adjointness do not necessarily 
need a star-shaped region to be well defined, as the reader can verify with a 
simple inspection. Other alternatives for solving Equations (3.6.3) are, 
therefore, conceivable whenever the equations of motion are self-adjoint in an 
ordinary region.43 Among these alternative approaches, the most notable is 
that offered by the use of the Clauchy integral, as outlined in Chart 3.11, which 
does not require the use of a star-shaped region. For further comments, see the 
alternative methods for the computation of a Hamiltonian in Section 3.12. 
This aspect is reconsidered in Santilli (1979) within the context of the trans
formation theory. 

In conclusion, it appears that under the conditions of self-adjointness, a 
Lagrangian could exist in an arbitrary region, in which case the Fundamental 
Analytic Theorems could be formulated without restriction to a star-shaped 
region. The rigorous proof of this expected property would, however, bring 
us outside the objectives of this book owing to the need of additional mathe
matical tools (e.g., algebraic topology or global differential geometry). 
Therefore, we content ourselves with the formulation and proof ofthe Funda
mental Analytic Theorems as given and the presentation of the methods for 
the computation of a Lagrangian with and without the restriction to a star
shaped region (i.e., that of Theorem 3.6.1 and of Chart 3.11).44 

We now consider the case of the ordered direct analytic representations of 
Newtonian systems in their kinematical form (Problem 3.2). Under the 
conditions of self-adjointness, such a form reduces to the form (2.2.23). 
Therefore, the problem reduces to the identifications 

a2L .. k2 a2L .k2 a2L aL 
oil' oil2 q + oil' oqk2 q + oil' ot - oqkl 

== qkl - Pk,k2(t, q)il2 - (Jkl(t, q), (3.6.8) 

with underlying conditions of self-adjoint ness (2.2.24), i.e., 

Pklk2 + Pk2kl = 0, (3.6.9a) 

aPkk'k2 + OPkk2k3 + O;kk3kl = 0, (3.6.9b) 
oq 3 oq I uq 2 

OPklk2 
ot 

This is a particular case of Theorem 3.6.1, with the identifications 

43 See Example 3.1 for an illustration of this point. 

(3.6.9c) 

(3.6.10) 

44 For a recent study of star-shaped regions the reader may consult Staneck (1977) and quoted 
references. 
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From Equation (3.6.4a), we have 

K = tlIfdr'{[fdr DkIk2] qk2} (r'q) 

= qkl [f dr' rJ qk2DkIk2 

1 'kl . = '2q qkl 

(3.6.11) 

by recovering in this way the familiar structure of the kinetic term. The 
following corollary then trivially follows. 

Corollary 3.6.tA.45 A Lagrangian density for the ordered direct analytic 
representations of local, holonomic, generally nonconservative Newtonian 
systems in their kinematical form 

k = 1,2, ... , n (3.6.12) 

which are well defined, of (at least) class <6'1, and self-adjoint in a star-shaped 
region R*2n+ 1 of points (t, q) is given by 

(3.6.13) 

where the n + 1 functions Dk and C are solutions of the linear, generally 
overdetermined system of partial differential equations 

(3.6.14a) 

(3.6.14b) 

given by 

(3.6.15a) 

(3.6.15b) 

The above corollary can be simplified further.46 Conditions of self-adjoint
ness (3.6.9a) and (3.6.9b) imply that the PkIk2 functions must have the structure 
of a curl (Example 1.5). Therefc-e, under the assumed conditions, a set of 
functions, say r k(t, q) such that 

45 Santilli (l977b). 
46 Santilli (l977b). 

(3.6.16) 
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exists. The conditions of self-adjointness then reduce to Equation (3.6.9c) 
only, the Dk functions are trivially given by 

(3.6.17) 

and Lagrangian (3.6.13) takes the form 

L = !il'qk, + rk,(t, q)qk' + C(t, q), (3.6.18) 

where the only unknown function C is a solution of corresponding Equation 
(3.6.14c), i.e., 

kIl ( ark) C = q 0 dr (Jk + at (t, ra). (3.6.19) 

One of the best illustrations of Corollary 3.6.1A is that given by the 
equations of motion of a charged particle under the Lorentz force, which, as 
proved in Example 2.7, is variational self-adjoint. In this case Equations 
(3.6.12) become 

[ .. . B E] -" ,mil aAm . j (acp aAi) - 0 mr - er X - e ithcomponent - mri - eUij or" r + e ari - at - , 

(3.6.20) 

i = x, y, z, 

and, after computing integrals (3.6.15), one re-obtains the familiar Lagran
gIan 

L = !mt2 + eA· t - ecp, (3.6.21) 

which is precisely of type (3.6.18). 
This concludes our analysis of the problem of constructing a Lagrangian 

once its existence is assured by the validity of the underlying integrability 
conditions. Alternative methods are presented in Chart 3.11. 

3.7 The Implications of Nonconservative Forces for the 
Structure of a Lagrangian 

Our analysis of the Inverse Problem for ordered direct analytic representa
tions in configuration space would not be complete without attempting a 
physical interpretation of the results from the viewpoint of the nature of the 
acting forces (i.e., along the lines of the Appendix), and then a reinterpretation 
of the same results from the viewpoint of the concept of Newtonian inter
actions (i.e., along the lines of the Introduction). 

Our first objective is the study of the following problem. 

What is the role of conservative Newtonian forces within the context of the 
problem of the existence of a Lagrangian? 
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This problem can be more technically formulated by asking what the role of 
conservative forces is within the context of the integrability conditions for 
the existence of a Lagrangian, namely, the conditions of self-adjointness for 
the considered form of the equations of motion. 

It has been rather surprising for me to see that, within the context of the 
Inverse Problem, the problem under consideration is marginal because no 
condition of self-adjointness is capable of restricting the acting forces to be 
conservative. 

The possible forms of the equations of motion in configuration space are 
either the fundamental form or the kinematical form. The nonconservative 
nature of the fundamental form is clearly exhibited by the generally non
linear dependence on the velocities which is allowed by the conditions of self
adjointness (Section 2.2). Therefore, the problem under consideration reduces 
to the study of the analytic representations of the kinematical forms. 

But under the conditions of self-adjointness the kinematical form reduces to 
the form of Equation (2.2.23) (Theorem 2.2.2). Therefore, the problem under 
consideration further reduces to the study of the role of conservative forces 
within the context of the integrability conditions (3.6.9) for identifications 
(3.6.8). A simple inspection then indicates that the conditions of self-adjointness 
(3.6.9) are unable to restrict the acting forces to be conservative. 

Indeed, the generally nonconservative nature of the represented system is 
clearly expressed by the admissible velocity dependence of the equations of 
motion. As a result, the ordered direct analytic representations of Newton's 
equations of motion in their kinematical form generally characterize non
servative systems. 

This fact is remarkable, particularly in view of the simplicity of identifica
tions (3.6.8). The functionsA of the kinematical form (i.e., the implicit functions 
of the system) are often proportional to the acting forces through the multi
plication of the inverse of the masses.47 One would, therefore, expect that the 
conditions of self-adjointness (which in this case are the conditions of the 
functions fk and, thus, of the acting forces) restrict these forces to be con
servative. The fact that, contrary to any different belief, this is not the case, is 
exhibited by the nonconservative nature of identity (3.6.8). 

By including in the analysis the more general fundamental form, we can 
conclude by saying that the integrability conditions for the existence of a 
Lagrangian are insensitive to whether the acting forces are conservative or not. 
As a matter of fact, this is one of the most intriguing aspects of the Inverse 
Problem, which ultimately dispels the rather general belief that the Lagrangian 
for the representation of Newtonian systems exists only when the acting forces 
are derivable from a potential function (Chart 3.1). 

Obviously, conservative forces are admissible by the Inverse Problem. To 
see them, consider a system of particles of unit masses which is unconstrained 
and represents the assumed type of coordinates (e.g., Cartesian) with the qk 

47 From Newton's equations of motion mi' - F(r, r, r) = 0, the implicit functions are simply 
given by f = F/m. 
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variables in a given order. Suppose that in identifications (3.6.8) the Pk!k2 

functions are identically null. Then the conditions of self-adjointness (3.6.9) 
reduce to 

aUk! _ aUk2 = 0 
aqk2 aqk! ' 

(3.7.1) 

and they coincide with the integrability conditions for the existence of a 
(conservative) potential function, i.e., Equations (A.4.7). Indeed, in view of 
the assumption of unit masses, the implicit functions (represented in this case 
by the Uk functions) coincide with the acting forces. 

The point is that there is no need to impose the requirement that the Pk!k2 

functions are identically null for identifications (3.6.8) to exist and to be 
consistent. As a result, conditions of self-adjointness (3.6.9), even though they 
do include conservative forces as a particular case, are unable to restrict all 
of the acting forces to be of this type. 

In this way, we arrive at a most crucial point of the analysis of this mono
graph, which can be stated simply by saying that Lagrange's equations can 
represent Newtonian systems as they actually are in physical reality, namely, 
generally nonconservative. 

Our second problem of this section, which is an immediate consequence of 
the above result, can be formulated as follows. 

What is the most general admissible form of the acting forces within the 
context of the analytic representations of Newtonian systems? 

For simplicity, but without loss of generality, we shall consider the case of 
an unconstrained system of N particles of unit masses represented in a reference 
frame characterized by the l variables, k = 1,2, ... , n = 3N. Suppose, as a 
first step, that these particles are free. The equations of motion are trivially 
given by 

k = 1,2, ... , n. (3.7.2) 

A Lagrangian for their analytic representation (see Equation (3.6.11» can be 
written as48 

n 

L = I !(qk)2 = L free . (3.7.3) 
k=l 

Our problem is to study the most general form of coupling these free particles 
that is admissible by a Lagrangian representation, i.e., by Theorem 3.6.1. 

48 By no means should this Lagrangian be considered as unique. For instance, an equally 
acceptablejamily of Lagraogians for the indirect representations of Equations (3.7.2) is given by 

" 
L= IWt+2, n = 0, 1,2, .... 

k=l 
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First, let us review the most general form of Newtonian couplings,49 i.e., 
the most general form of couplings that preserves the linearity in the acceler
ations. Such a form is given by the superposition of each of the following three 
classes of couplings. 

I. Time-dependent generally nonlinear couplings in the coordinates 
The equations of motion (3.7.2) are modified in this case to the form 

qk - fit, q) = o. (3.7.4) 

This class of couplings contains as a subclass [when the functions fk do not 
depend explicitly on time and satisfy integrability conditions (3.7.1)] the class 
of conservative couplings. 
II. Time-dependent generally nonlinear couplings in the velocities 

Equations of motion (3.7.2) are modified in this case to 

qk - f~(t, q) = O. (3.7.5) 

This class does not contain conservative couplings as a subclass. If couplings 
of classes I and II are combined, then equations of motion (3.7.2) are modified 
to what we have called the kinematical form, i.e., 

(3.7.6) 

III. Time, coordinates, and velocity-dependent couplings that are linear in the 
accelerations 

In this case the equations of motion (3.7.2) are modified to 

(3.7.7) 

The collection of all couplings of classes I, II, and III then leads in a natural 
way to what we have called the fundamental form of the equations of motion, 
i.e., 

(3.7.8) 

It is relevant to stress that the acceleration couplings, in their most general 
form, demand that both the diagonal and off-diagonal terms of the matrix (A) 
are non-null. 

An example is useful to indicate the need, in general, for all of the above 
three classes of couplings as well as of the nonlinearity of couplings I and II. 

Consider the case of a system of oscillators. Linear, time-independent 
couplings of type I produce the familiar form 

(3.7.9) 

This conservative formulation, however, is insufficient to represent the system 
as it actually occurs in our environment owing to the inevitable presence of 
dissipative forces. A natural generalization of Equation (3.7.9) is then given by 
the inclusion of time-independent linear couplings of type II by obtaining in 

49 Here the term" coupling" is used as a way of referring to the acting forces. 
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this way the familiar form of the coupled and damped oscillators. 

qk + bk/i + Ckiqi = O. (3.7.10) 

This dissipative formulation, however, is insufficient because, as is well known 
in the theory of coupled oscillators, couplings of type III also occur. The next 
simple generalization then yields the familiar form of the linear system with 
constant coefficients, 50 

(3.7.11) 

Notice that the acceleration couplings occur precisely because the off
diagonal as well as the diagonal elements of the matrix (aki) are non-null. 

This indicates the need to consider all three classes of couplings I, II, and 
III for the representation of a system of oscillators. Equations of motion 
(3.7.11), however, still constitute an approximation of physical reality. Indeed, 
as is well known, they are valid only for small oscillations precisely in view of 
the linear nature of couplings I and II. The removal of this restriction in
evitably brings the equations of motion from the linear form (3.7.11) to the 
fundamental form (3.7.8), where the possible presence of applied forces (which 
are, in practice, essential to preserve the motion for a sufficiently long p~riod 
of time) can be incorporated in the B terms. 

This indicates the need to consider nonlinear couplings of types I and II. 
Their time dependence can then be inferred on other grounds (e.g., the 
variations of the parameters in time due to temperature, etc.). 

Thus, the above example of a system of coupled oscillators indicates that, 
whenever a more accurate description of physical reality is needed, equations 
of motion of type (3.7.11) must be abandoned and the fundamental form of the 
equations of motion must be adopted. This conclusion holds irrespective of 
our interpretation and classification of the Newtonian couplings. 

The fundamental form of the equations of motion, therefore, represents an 
arbitrary collection of the most general Newtonian couplings I, II, and III, 
although in a somewhat hidden form. Specifically, the couplings oftypes I (II) 
are represented by the time and generally nonlinear coordinate (velocity) 
dependence of the A and B terms, and the couplings of type III are repre
sented by the non-null values of the off-diagonal, as well diagonal, terms Akb 

jointly with the indicated functional dependence of these terms. 
At this point one can argue that the acceleration couplings are inessential 

for the equations of motion because, under the assumption of regularity, the 
fundamental form (3.7.8) can always be reduced to the kinematical form (3.7.6) 
through the identifications 

I' A-liB Jk = - k i, (3.7.12) 

Indeed, the reduction from Equations (3.7.8) to (3.7.6) is true from the 
Theorem ofImplicit Functions (Section 1.1). As a consequence, the statement 
that Equation (3.7.6), without acceleration couplings can equivalently 

50 See, for instance, Symon (1960). 
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represent the system is also true. Thus, within the context of the theory of 
ordinary second-order differential equations, the acceleration couplings are 
indeed inessential for representing the motion. 

However, within the context of the problem of the Lagrangian representa
tion of the equations of motion, the situation is substantially different. It is 
precisely at this point that the integrability conditions for the existence of a 
Lagrangian, i.e., the conditions of self-adjointness, playa vital role. 

Indeed, Newton's equations of motion in the kinematical form (3.7.6) are 
non-self-adjoint (unless trivial forms of couplings are assumed) and, therefore, a 
Lagrangian for their ordered direct analytic representation, from Theorem 
3.5.1, does not exist. This is because the conditions of self-adjointness restrict 
the kinematical form to the simpler form (3.6.12), which can represent the 
most general form of couplings of type I, but the couplings of type II are 
restricted to be linear in the velocities, and the couplings of type III are 
absent. 

In order to represent such equations of motion, one is forced, as one 
possibility, to study the indirect representations, i.e., the representations of 
equivalent systems of the type 

{h~(t, q, q)[iji - /;(t, q, q)JNSAhA = 0, (3.7.13) 

and use the freedom of the factor functions h~ to induce a self-adjoint struc
ture. 51 If one of these equivalent self-adjoint forms of the equations of motion 
exists, a Lagrangian for their analytic representation exists from Theorem 
3.5.1. 

The point which must be stressed is that the net effect of the" integrating 
factors" h~ is precisely that of retransforming the equations of motion from 
the kinematical form (3.7.6) to the fundamental form (3.7.8), with the con
sequent restoration of the acceleration couplings .. 

At this point, the reader is urged to inspect the conditions of self-adjointness 
for the fundamental form, i.e., Equations (3.5.3). It is then easy to conclude 
that, unlike the case of the kinematical form, the conditions of self-adjointness 
for thefundamentalform do allow a collection of general couplings of types I, II, 
and III. This is due to the fact that such conditions allow an explicit time 
dependence of the equations of motion, a generally nonlinear dependence in 
both the coordinates and the velocities, and non-null as well as nontrivial 
values of the off-diagonal and diagonal elements of the matrix (A). 

Our findings, therefore, can be stated simply by saying that Lagrange's 
equations can represent equations of motion with (local) arbitrary Newtonian 
forces, i.e., with an arbitrary collection of conservative, dissipative, and applied 
forces of types I, II, and III. 

To summarize, the acceleration couplings are not essential for representing 
the motion under arbitrary Newtonian forces within the context of the theory 
of ordinary second-order differential equations, but they are necessary within 
the context of their Lagrangian representations. If such acceleration couplings 

51 This problem is investigated in Santilli (1979). 
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are ignored within this latter context, the net effect is a considerable restriction 
of the type of admissible Newtonian forces. 

Our third objective of this section is the study of the following problem. 

What is a generalform of modification of Lagrangian (3.7.3)for free motion 
capable of representing the same system when subject to an arbitrary collection 
of couplings I, II, and III or, equivalently, to arbitrary Newtonianforces? 

First, it is advisable to reproduce the conventional structure of the Lagrang
ian for interacting Newtonian systems within the context of Theorem 3.6.1. 

Corollary 3.6.1B.52 A total Lagrangian for the ordered direct analytic 
representation of local, holonomic, generally nonconservative, interacting 
Newtonian systems 

.. + [orkl(t, q) _ ordt, q)] ·k2 _ (t) = 0 (S 714) 
qk oqk2 oqkl q G'kl' q , .. 

k = 1,2, ... , n, 

which are well defined, of (at least) class ~1, and self-adjoint in a star-shaped 
region R*2n+l of points (t, q), is given by 

n 

L tot = Lfree(q) + Lint(t, q, q) = I M~~e + Lint, k=l 
where 

L (k) = l.iq.k )2 
free 2\" 

Lint = rit, q)qk + C(t, q), 

and the function C is given by 

kIl ( ark) C = q 0 dr G'k + at (t, rq). 

(S.7.1S) 

(S.7.16a) 

(S.7.16b) 

(S.7.17) 

It should be stressed that within the context of the above corollary, the 
term Lint can have only a linear dependence on the velocities. 

The general case can also be derived as a reinterpretation of Theorem 3.6.1 
according to the following corollary. 

Corollary 3.6.1C.53 A general structure of the total Lagrangian for the 
ordered direct analytic representation of local, holonomic, generally non
conservative, interacting Newtonian systems in the fundamental form 

k = 1,2, ... , n, (3.7.18) 

which is well defined, of (at least) class ~2, regular, and self-adjoint in a 
star-shaped region R*2n+ 1 of points (t, q, q), is characterized by n + 1 

52 Santilli (l977b). 
53 R. M. Santilli (1977b). 
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interaction terms, n multiplicative terms, and one additive term to the 
Lagrangian for the free motion of each particle, according to the generalized 
structure 

n 

Lgen( .) - " Vk) ( ')L(k) L ( .) tot t, q, q - L. int,I t, q, q free + int,II t, q, q , 
k=l 

where the terms Kl~{, .. L}~~e, and Lint, II admit the decompositions 

L!~LI = Klk)(t, q, q) + Dl~)(t, q)qi + C\k)(t, q), 

L}~~e = -!-(qk)2, 

(3.7.19) 

(3.7.20a) 

(3.7.20b) 

(3.7.20c) 

and can be expressed in terms of solutions (3.6.4) of Equations (3.6.3) by 
means of the identifications 

I' 

K(t .) "L(k) L(k) + K , q, q = L. int,! free II, 
k=l 

C = CII . 

(3.7.21a) 

(3.7.21b) 

(3.7.21c) 

Here the multiplicative interaction terms are necessary for the representa
tion of the motion under forces not derivable from a potential. Indeed, when 
such terms are reduced to unity (jointly with the restriction that L int ,II be 
linear in the velocites), the net effect is that of eliminating the acceleration 
couplings with consequent restriction of the types of admissible couplings, 
as indicated earlier. Notice that all interaction terms can now have a generally 
nonlinear dependence on the velocities (as well as the coordinates). 

It should be stressed that structure (3.7.19) is by no means unique and other 
generalized forms are equally admissible. Along these lines, another signifi
cant generalized structure of the total Lagrangian is given by the following 
simple reinterpretation of structure (3.6.2), which emerges directly from the 
Fundamental Analytic Theorem54 

Lr:t"(t, q, q) = K(t, q, q) + Dk(t, q)qk + C(t, q) 
= 1[qiGij(t, q, q)qi + 2qiFi/t, q)qi + qiEij(t, q)qi]. (3.7.22) 

By inspecting the transition from the Lagrangian for free motion to the above 
generalized structure, we clearly see that the crucial role of representing the 
acceleration couplings is here played by the Gij tensor. Indeed, whenever the 
matrix (Gij) reduces to the unit matrix (c5ij), Lagrangian (3.7.22) reduces to 
Equation (3.7.15).55 

54 This structure of the Lagrangian appears to be more promising than structure (3.7.19) from 
the viewpoint of possible quantization due to the underlying need for symmetrization. It should 
be recalled that, to the best of my knowledge, the problem of quantization of arbitrary Newtonian 
couplings is far from being solved at this time [Santilli (1978)]. 

55 The extension of structure (3.7.22) to field theories is closely related to the so-called chiral 
Lagrangians. For more details, see Santilli (1977b and c). 
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We can, therefore, conclude that any generalized structure of the Lagrangian 
is capable of representing systems with arbitrary Newtonian couplings provided 
that such a structure contains the representatives of the acceleration couplings. 

It might be of some significance here to point out that the Morse-Feshbach 
Lagrangian (3.4.15) is precisely of type (3.7.22), and not of type (3.7.15), 
despite the linearity of the velocity couplings, in view of the identifications 

(Gi ) = (~ ~), 

(F i) = (+~ -~), 
(E i) = (_~2 _~2). 

(3.7.23) 

Indeed, the represented form of the equations of motion, i.e., the right-hand 
side of Equation (3.4.16) is precisely a simple version of the fundamental form 
according to the identifications 56 

(Aij) = (~ ~), 
( -bq2 

(Bk ) = +bql (3.7.24) 

However, the Aki terms in this case do not represent genuine acceleration 
coupling, because their diagonal values Akk are null. This is reflected by the 
simplicity of the couplings of the equations of motion. It is, then, conceivable 
that any further generalization of the couplings of this system will inevitably 
lead to bona fide acceleration couplings, i.e., to less trivial values of the Gij 
tensor of structure (3.7.22).57 This aspect will be illustrated in the examples at 
the end of this chapter, as well as in those of Santilli (1979). 

The extension of the above analysis to the case of regular Newtonian 
systems with holonomic constraints is straightforward. Consider, first, the 
case of a systems of N free particles subject to 3N - n holonomic constraints. 
Their equations of motion in configuration space can be represented by 
Lagrange's equations in the kinetic energy (A.4.10), i.e., 

L free = T(t, q, q) 
= tqiZi/t, q)qi + Zk(t, q)qk + Zo(t, q). 

(3.7.25) 

56 Let us recall from footnote 21 ofp. 127 that this system is the Newtonian limit of the inter
actions of a complex scalar field with an external electromagnetic field, i.e., a central model of 
gauge theories. Therefote, the field equations which are represented in these theories are a 
generalization of structure (3.4.16). For more details, see Santilli (1977a, b, and c). 

57 Within a field theoretical context, this problem ultimately constitutes one of the central 
problems of contemporary theoretical high-energy physics, the study of the generalizations of the 
unified gauge theories of the electromagnetic and weak interactions aiming at an effective in
clusion of the strong interactions. For studies along these lines, see Santilli (1978, Vols. I, II 
and III), 
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Figure 3.2 A schematic view of the classes of Newtonian couplings that are admissible by a 
Lagrangian representation. In view of Fundamental Analytic Theorem 3.5.1, all ad
missible couplings must induce self-adjoint forms of the equations of motion. The 
simplest class of couplings, i.e., those of class I, are not necessarily conservative because 
the conditions of self-adjointness are unable to restrict the acting forces to be conservative, 
although the case is obviously admissible. The second class of couplings, i.e., those in 
both coordinates and velocities, is considerably restricted by the conditions of self
adjointness, because only a linear dependence on the velocities is admitted, whenever the 
equations of motion are written in their kinematical form. The third class of couplings 
is the largest admissible by a Lagrangian representation and it does allow nonlinear 
couplings in both the coordinates and the velocities, provided the equations of motion 
are written in their fundamental form. The net effect is the necessary presence of the 
acceleration couplings, which results in the presence of interaction terms in the total 
Lagrangian of both multiplicative and additive type to the free Lagrangian. Owing to the 
limited nature of the couplings of class Il, generalized structures of the total Lagrangian 
emerge as necessary for a closer representation of the Newtonian physical reality. 

156 
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Notice that, despite the lack of acting forces, 5 8 the structure of this Lagrangian 
closely follows structure (3.6.2) or (3.7.22), with the only functional difference 
characterized by the velocity independence of the Zij tensor. 

When all the acting forces are derivable from a potential, structure (3.7.25) 
is modified into the familiar form 59 

Ltot = T(t, q, q) - U(t, q, q). (3.7.26) 

If some of the acting forces are not derivable from a potential, then the above 
structure is insufficient60 to represent the motion. The extension of the analysis 
conducted previously in this section then leads to the conclusion that 
generalized structures, e.g., of the type (3.7.22), can indeed represent regular 
holonomic systems with arbitrary Newtonian forces. Notice that this is 
equivalent to the only additional velocity dependence, in structure (3.7.25) for 
free motion, of the Zij tensor. Other equivalent forms of representing the 
motion are 

Lf:t = R(t, q, q)T(t, q, q) + S(t, q, q), 

Lf:t = R(t, q, q) [T(t, q, q) + S'(t, q, q)], 

(3.7.27a) 

(3.7.27b) 

and they again indicate the presence of both multiplicative and additive 
interaction terms in the kinetic energy. 

For a schematic view of the content of this section, see Figure 3.2. 

3.8 Direct and Inverse Legendre Transforms for Conventional 
Analytical Representations 

We consider now the transition to phase space formulations for the (ordered) 
direct identification 

d iJL iJL ( .)". ( .) 
dt iJqk - iJqk == Aki t, q, q q' + Bk t, q, q , 

IAijl(R 2n + 1) = I iJ:i2~qj I(R 2n + 1) =p O. 

(3.8.la) 

(3.8.lb) 

(3.8.1c) 

The conventional canonical prescriptions for the characterization of the 
generalized momenta Pk are 

iJL 
Gk(t, q, q, p) = Pk - iJqk = O. 

58 At this stage, even the frictional forces of the constraints are ignored. 
59 See Problems 3.3 and 3.4. 

(3.8.2) 

60 Under the assumption that T is the kinetic energy and U the potential. When these physical 
restrictions are removed, then each function Tor U can ha ve an arbitrary functional dependence. 
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The transition from the Lagrangian L to a new function, the Hamiltonian 
H, is done through the Legendre transform, 

L -+ H ='Pki/ - L(t, q, q) = H'(t, q, q, p), (3.8.3) 

which possesses the following important properties 

1. Expression (3.8.3), as written, is a function of the 3n + 1 variables 
(t, q, q, p). Its reduction to a form depending only on the 2n + 1 
variables (t, q, p) demands the computation of all the implicit functions 
of systems (3.8.2) with respect to qk' i.e., 

qk = iJk(t, q, p), k = 1,2, ... , n. (3.8.4) 

When the set of all such functions exists, their substitution into 
Equation (3.8.3) produces the desired reduction, i.e., 

H(t, q, p) = PkiJk - L(t, q, iJ) = H'(t, q, iJ, p). (3.8.5) 

A point of central methodological significance is that the set of all 
functions (3.8.4) exists and is unique if and only if Implicit Function 
Theorem 1.1.2 can be applied to prescription (3.8.2) with respect to 
the qk variables everywhere in the region of interest. But from assump
tion (3.8.1b), the functions Gk of Equation (3.8.2) are (at least) of class 
~3, and condition (1') ofTheorem 1.1.2 holds. Condition (3.8.1 c) implies 
that the functional determinant of Equation (3.8.2) with respect to qk is 
regular in R 2n + 1, i.e.,6l 

I ~~; I = -lo~i2~qj I, (3.8.6) 

and condition (2') of Theorem 1.1.2 holds. Then the functions iJk of 
Equations (3.8.4) must be such that 

(3.8.7) 

and this ensures the fulfillment of condition (3') of Theorem 1.1.2. 
Thus, under assumptions (3.8.1b) and (3.8.1c), Implicit Function 
Theorem 1.1.2 holds and all functions iJ\ k = 1,2, ... , n exist and are 
unique. Then, Hamiltonian (3.8.5) is unique.62 

2. Assumptions (3.8.1b) and (3.8.1c) imply, from Theorem 1.1.2, that all 
implicit functions iJ\ besides existing and being unique, are single
valued. In turn, such properties imply that Legendre transform (3.8.3) 
induces a one-to-one mapping 

(3.8.8a) 

61 In Equation (3.8.6), Pk and ilk are independent variables. 
62 The implication of degeneracy should be indicated at this point. Basically, when the 

Lagrangian is degenerate in R 2n + 1, besides the breakdown of Hilbert Differentiability Theorem 
3.2.2, there is the lack of applicability ofImplicit Function Theorem 1.1.2 to system (3.8.2) with 
respect to the /j's. This implies that the set of all implicit functions (3.8.4) cannot be computed. A 
different methodology must then be used for the mapping to phase space. See, in this respect, 
Dirac (1964). 
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from the original region R2n + 1 of points (t, q, q) to an "image" region 
ipn+ 1 of points (t, q, p). Furthermore, the (open) region R2n + 1 is 
unrestricted for transform (3.8.3). Therefore, when R2n + 1 is the space 
M t ® M(Q,4) of all possible values oft, qk> and qk, its "image" region is 
the Kronecker product 

- 2 + 1 M n = Mr ® M(q,p) (3.8.8b) 

of the space Mtspanned by the time variable and the phase space M(q,p) 

of the 2n canonical conjugate variables qk and Pk' Furthermore, under 
the above assumptions, the variables qk and Pk are all independent63 

and the "image" path of (E, E) is the path (or path segment) in phase 
space E = {qk = qk(t), Pk = Pk(t)}. 

3. Since, under the above assumptions, H can be regarded either as a 
function of (t, q, q, p), Equation (3.8.3), or as a function of (t, q, p), 
Equation (3.8.5), the total differential of those two functions must 
coincide, i.e., 

dH'( .) 'k d oL d k oL d t, q, q, P = q Pk - oqk q - at t 

== dH(t, q, p) (3.8.9) 

oH k oH oH 
= ~dq + ~dpk + ;;-dt 

uq UPk ut 

Therefore, the following identities, involving the old and new func
tions64 

oL oH 
(3.8.l0a) oqk - oqk' 

iJL iJH 
(3.8. lOb) 

ot -at' 

qk = gk(t, q, p) = ~H (3.8.lOc) 
Pk 

hold everywhere in their respective regions of definition. 
4. Under assumptions (3.8.lb) and (3.8.lc), the new function H(t, q, p) 

induced by the Legendre transform has the same continuity properties 
of L, but in the "image" region R2n + 1, i.e., 

(3.8.11) 

63 Notice, in this respect, that prescriptions (3.8.2) are of nonintegrable type, i.e., functions 
G~(t, q, p) such that Gk = G~ do not exist. Therefore, they cannot be used to decrease the number 
of independent phase space coordinates. This case is somewhat similar to that of nonholonomic 
velocity constraints (Section A.3), which, since they are nonintegrable by assumption, do not 
affect the independence of the q coordinates. For degenerate systems, the above independence of 
q. and p. is lost due to the appearance of constraints. See Dirac (1964). 

64 In view of the structure of Equations (3.8.10), the variables t and qk are sometimes called 
passive variables, and the variables 4k and Pk are called active variables. 
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Indeed, all left-hand sides of Equations (3.8.10) are of (at least) class 
rtj3. Then oH/ot, oH/oq\ and OH/OPk are of class rtj3 and, thus, H is of 
class rtj4(R2n+ 1). In particular, when L does not depend explicitly on 
time, neither does H. 

5. Condition (3.8.1c) implies that 

I o2H I(R2n+l) =I- O. 
op; OPj 

(3.8.12) 

Indeed, by differentiating equation (5.8.10c) with respect to qJ we 
obtain65 

.; o2H o2L 
(5 j = op; OPk oil oqj' (3.8.13) 

where we have used Equation (3.8.2). Therefore, 

1 ~I(R2n+l) = {1~I(R2n+l)}-1 
OP;OPj oq'oql 

(3.8.14) 

and property (3.8.12) follows from assumptions (3.8.1c). 66 Thus, we can 
say that property (3.8.12) is the phase space "image" of condition 
(3.8.1c) under a Legendre transform and, as such, it can be used 
equivalently to define the regularity of the represented system67 

6. Condition (3.8.1c) implies that the Hamiltonian as defined by Equation 
(3.8.3) cannot identically vanish. Indeed, suppose that 

oL 'k _ 
oqk q - L = O. (3.8.15) 

Then, differentiating with respect to qi, we obtain 

o2L 'k 0 
oqk oqj q = , 

which can hold for qk =I- 0 if and only if 

I o;:~qj 1= O. 

65 See, for instance, Rund (1966, p. 18). 

(3.8.16) 

(3.8.17) 

66 For degenerate Lagrangians, this procedure does not apply because all Equations (3.8.10c) 
cannot be defined with a conventional Legendre transform. 

67 In the following, we shall say that a Hamiltonian is regular or degenerate in a region R2n+ 1 

depending on whether condition (3.8.12) holds or not in this region. The problem of the behavior 
of the regularity condition of a Lagrangian or a Hamiltonian under transformations of the 
coordinates is studied in Santilli (1979). It is significant to recall here that the conventional 
canonical transformations do not necessarily preserve regularity conditions (3.8.12). As a result, 
the concept of regularity is customarily restricted to that of a Lagrangian only in the current 
literature on Analytic Mechanics. As we' can see in Santilli (1979), the configuration space image 
of these regularity-violating transformations exists. As a result the concepts of regularity of a 
Lagrangian and a Hamiltonian, besides their equivalence within a fixed system of variables as 
indicated by Equation (3,8.14), will emerge equivalent even within the context of the transforma
tion theory, 
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7. The Legendre transform (3.8.3) applies for an arbitrary functional 
dependence of the Lagrangian and, as such, is insensitive to whether 
the represented system is conservative or not. 

Properties (1)-(7) above do not exhaust the methodological profile of the 
Legendre transform. A further property, which is particularly significant for 
our analysis, is that the Legendre transform is an involution, namely, a 
transform which, when applied twice, reproduces the original function. This 
implies that instead of first assigning a Lagrangian and then computing the 
Hamiltonian, one can inversely first assign a Hamiltonian and then compute 
the Lagrangian. 

To avoid possible confusion, we shall call the transition from L to H the 
direct Legendre transform, and the transition from H to L the inverse Legendre 
transform. 

Suppose that a Hamiltonian H(t, q, p) satisfying the continuity and 
regularity properties 

H E ~4(i'Pn + 1 ), 

I 02 H I (i'Pn + 1) =1= 0 
0Pi OPj 

is assigned. The inverse Legendre transform is characterized by 

G-k( .) 'k oH 0 t, q, q, P = q - ~ = , 
UPk 

H -+ L = C/Pk - H(t, q, p) = L'(t, q, q, p), 

(3.8.l8a) 

(3.8.l8b) 

(3.8.l9a) 

(3.8.l9b) 

where Equations (3.8.l9a) and (3.8.l9b) are in lieu of Equations (3.8.2) and 
(3.8.lc), respectively. 

It is easy to see that the" inverse" of properties (1 )-(7) holds. 

1'. The reduction of function (3.8.19b) to a form depending only on the 
variables (t, q, q) demands the computation of all the implicit functions 
of Equation (3.8.19a), i.e., 

Pk = gk(t, q, q), k = 1, 2, ... , n. (3.8.20) 

Assumptions (3.8.18) then ensure the applicability oflmplicit Function 
Theorem 1.1.2 to Equation (3.8.l9a) with respect to Pk and, thus, the 
existence, uniqueness, and single-valued ness of all implicit functions 
(3.8.20). In this case, instead of Equation (3.8.6), we have the functional 
determinant 

1
0Gii I 02H I 
OPj = 0Pi OPj , 

(3.8.21) 

and its regularity is ensured by assumptions (3.8.l8b). Once all implicit 
functions (3.8.20) have been computed, their substitution in function 
(3.8.19b) produces the desired reduction, i.e., 

L = qkgk - H(t, q, g) = L(t, q, q). (3.8.22) 
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In essence, for the direct transform one must turn prescriptions (3.8.2) 
"inside out" to compute functions (3.8.4). For the inverse transform 
an equivalent procedure applies. A point which must be stressed is that 
prescriptions (3.8.2) and (3.8.l9a) are equivalent. More specifically, 
Equations (3.8.2) and (3.8.19a) are two different ways of writing the 
same equations. The former provide the implicit functions of the p 
variables, while the latter express the same prescriptions but in terms 
of the implicit functions in the q variables. Then, Lagrangian (3.8.19b) 
is unique and the Legendre transform is involutive. Indeed, by apply
ing first a direct and then an inverse Legendre transform (under the 
above continuity and regularity assumptions), one recovers the 
original function identically.68 Notice the key role played again by 
regularity condition (3.8.18b) for the existence of all implicit functions 
(3.8.20). 

2'. In view of the existence, uniqueness, and single-valuedness of all 
implicit functions (3.8.20), inverse transform (3.8.19) induces the 
one-to-one mapping 

(3.8.23) 

of the region iP"+ 1 of points (t, q, p) to an "image" region R 211+ 1 of 
points (t, q, q). Again, the region iP"+ 1 is unrestricted, and when 
iplI + 1 is the entire space (3.8.8b), the" image" region is the Kronecker 
product 

M 211+ 1 = M t ® Mq ® Mq. (3.8.24) 

3'. The differentials of functions (3.8. 19b) and (3.8.22) are again identical, 
i.e., 

dL'( .) d'k oH d k oH d t, q, q, P = Pk q - oqk q - at t 

= dL(t, q, q) (3.8.25) 

oL "" oL 'k oL 
= oqk d'l. + oqk dq + at dt. 

The properties 

oH oL 
oqk = - oqk' (3.8.26a) 

oH oL 
= ot - at' (3.8.26b) 

( ') oL Pk = gk t, q, q = oqk' (3.8.26c) 

&8 We here ignore the degrees offreedom of the functions Land H represented by multiplicative 
and/or additive numerical constants. 
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then hold identically. In particular, Equation (3.8.26c) guarantees that 
original prescriptions (3.8.2) are indeed recovered. 

4'. The function L, from Equations (3.8.26) and assumption (3.8.18a), 
is of class ~4 in R 2n + 1. When H is independent of time, so is L. 

5'. Condition (3.8.18b) and prescription (3.8.19a) ensure that the Lagrang
ian L is regular in R 2n + 1. Indeed, by differentiating Equation (3.8.26c) 
with respect to Pj' we obtain 

, iPL o2H 
(jJ = -, -k --. (3.8.27) 
, oq' oq OPk OPj 

Then Equation (3.8.14) follows and property (3.8.1c) holds from 
assumption (3.8.18b). 

6'. Under assumptions (3.8.18), the Lagrangian cannot be identically 
null, for suppose that 

oH 
;;:- Pk - H = O. 
VPk 

Then, by differentiating with respect to Pj' we obtain 

o2H 
~Pk=O, 
VPk VPj 

(3.8.28) 

(3.8.29) 

which cannot hold for Pk '1= 0 unless assumption (3.8.18b) is violated. 
Notice, in this respect, that equivalent regularity condition (3.8.1c) or 
(3.8.18b) implies that the Lagrangian cannot be linear in the velocities 
and the Hamiltonian cannot be linear in the momenta.69 

7'. The inverse transform (3.8.19) is also insensitive to the nature of the 
acting forces and, thus, it applies irrespective of whether the considered 
Hamiltonian represents a conservative, dissipative, or dynamical 
system. 

On practical grounds, when a class ~4 regular Lagrangian L has been 
assigned and a direct Legendre transform is requested, the following se
quential steps can be implemented. 

1. Identify a region R 2n + 1 which contains no zero of the functional 
determinant. 

2. Introduce prescriptions (3.8.2), 'compute all the implicit functions 
(3.8.4), and identify the image region R2n+ 1 of R2n + 1. 

3. Introduce the direct transform (3.8.3) and compute the Hamiltonian 
through the use of implicit functions (3.8.4). 

There is no need to inspect all other aspects [e.g., the one-to-one nature of 
mapping (3.8.8a), the involutive character of the transform, etc.] because they 
are guaranteed by the same continuity and regularity assumptions. 

69 In essence, this reflects the structure of the kinetic energy for regular systems. 
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If the Lagrangian is of class C(;m, m = 2,3, and regular, all the properties 
indicated in this section apply in full without any modification. Indeed, in this 
case from Hilbert Differentiability Theorem 3.2.2, the accelerations qk are 
continuous for all possible paths of at least class C(;1; Lagrange's equations are 
continuous; the generalized momenta Pk' from Equation (3.8.2), are of class 
C(;m - 1 ; and the Implicit Function Theorem 1.1.2 can be applied to prescription 
(3.8.2). Thus, the direct Legendre transform holds. 

The case when L is only of class C(;1 will not be considered. It generally 
implies the breakdown of the above indicated properties of the Legendre 
transform due to the fact that the functions Gk of Equation (3.8.2) fail to 
possess the continuity properties needed for the applicability ofTheorem 1.1.2. 
Then the implicit functions (3.8.4), when they exist, are not necessarily unique. 

Therefore, the minimal continuity property of the Lagrangian, which we 
shall assume for the validity ofthe direct Legendre transform, is L E C(;2(R 2n + 1). 

If a Hamiltonian H(t, q, p), which is of at least class C(;2 and regular 70, is 
assigned and an inverse Legendre transform is requested, then steps (a), (b), 
and (c) can be equivalently implemented. Again, if H is of class C(;m, m < 2 
and/or degenerate, then the inverse Legendre transform in its conventional 
formulation does not apply. 

For illustrations of the above properties, see the examples at the end of this 
chapter [as well as those of Santilli (1979)]. 

The most significant aspects studied in this section can be summarized 
with the following theorem. 

Theorem 3.8.1 (Direct and Inverse Legendre Transforms). Given a 
Lagrangian L(t, q, q) satisfying the continuity and regularity properties 

m ~ 2, 

I 02L I 2n+ 1 
oil oqj (R ) =f. 0, 

in a region R2n + 1 of points (t, q, q), the direct Legendre transform 

oL 
Gk(t, q, q, p) = Pk - oqk = 0, 

H = Pkqk - L = H(t, q, p), 

(3.8.30a) 

(3.8.30b) 

(3.8.31a) 

(3.8.31b) 

induces a one-to-one mapping from R 2n + 1 to an "image" region R2n + 1 of 
points (t, q, p) and defines a unique non-null new function, the Hamiltonian 
H(t, q, p), which satisfies the continuity and regularity properties 

70 See footnote 67 of p, 160, 

HE C(;m(R2n+ 1), m ~ 2, (3.8.32a) 

I a2H ICR2n + 1) =f. O. 
api apj 

(3.8.32b) 
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Conversely, given a Hamiltonian H(t, q, p) which satisfies properties (3.8.32) 
in a region ipn+ 1 of points (t, q, p), the inverse Legendre transform 

-k( .) 'k oH 0 G t, q, q, P = q -;;-- = , 
UPk 

L = i/Pk - H = L(t, q, 4) 

(3.8.33a) 

(3.8.34b) 

induces a one-to-one mapping from R 2n + 1 to an "image" region R 2n + 1 of 
points (t, q, 4) and defines a unique non-null new function, the Lagrangian 
L(t, q, 4), which satisfies continuity and regularity properties (3.8.30). 

Corollary 3.8.IA. For functions that are of at least class C(j2 and regular, the 
Legendre transform is involutive. 

Theorem 3.8.l provides the foundations for the equivalence of configura
tion and phase space formulations of class C(j2, regular, and holonomic 
systems which will be studied in the next section after introducing Hamilton's 
equations. 

Corollary 3.8.1A emphasizes an aspect of central methodological signifi
cance according to which the Legendre transform characterizes the configura
tion and phase space formulations on equivalent footing, in the sense that 
each of those formulations can be assumed as "primary" and the others as 
"derived." This implies the existence of the following alternatives for the 
representation of regular holonomic Newtonian systems in terms of analytic 
equations. 

Alternative I, which consists of first identifying a Lagrangian and then 
computing the Hamiltonian through the direct Legendre transform. 

Alternative II, which consists of first identifying a Hamiltonian and then 
computing the Lagrangian through the inverse Legendre transform. 71 

In relation to alternative I, the identification of a Lagrangian for self
adjoint systems has been studied in Section 3.5 through 3.7. [the case of non
self-adjoint systems is studied in Santilli (1979)]. Once a Lagrangian has been 
identified with those techniques, then the metho.dology of this section can be 
used to compute the Hamiltonian. 

In relation to alternative II, we shall study in the rest of this chapter [also 
see Santilli (1979)] the prior identification ofa Hamiltonian. The methodology 
of this section can then be used to compute a Lagrangian. 

71 There exists another alternative, which consists of the independent identification of both the 
Lagrangian and the Hamiltonian. Notice that the functions Land H so obtained are not neces
sarily related by a Legendre transform (even though they represent the same system by con
struction) in view of the freedom of the prescriptions for the construction of the normal forms. 
Therefore, this third alternative is significant for the study of equivalent analytic representations 
[Santilli (1979)]. 
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Predictably, the two alternatives above will turn out to be equivalent. 
Nevertheless, their independent study is significant (e.g., for transformation 
theory) because their equivalence indicates the existence of certain" degrees of 
freedom" of analytic formulations, which are somewhat "hidden" in the 
conventional approach for conservative systems. 

3.9 The Conventional Hamilton's Equations 

We consider now the conventional analytic equations in phase space, i.e., 
Hamilton's equations 

m 2:: 2, 

I o2H lopn+l) #- 0, 
0Pi OPj 

(3.9.1a) 

(3.9.1b) 

(3.9.1c) 

(3.9.1d) 

which can be derived, for instance, from prescriptions (3.8.2), properties 
(3.8.10c), and Lagrange's equations. 

Let us recall from the Hilbert Differentiability Theorem 3.2.2 that when a 
path E is of (at least) class ~1 in (tl, t2) and the Lagrangian is regular and of 
class ~m, m 2:: 2 in R 2n + 1, then E is also a class ~m in (t 1, t2)' 

Theorem 3.9.1 (Relationship between Paths in Configuration and Phase 
Space).72 If the path 

E={q,plqk=qk(t), Pk=Pk(t),tE(t 1,t2 ), k=1,2, ... ,n} (3.9.2) 

in configuration space is a class ~m(t 1, t 2), m 2:: 2, solution of Lagrange's 
equations 

(3.9.3a) 

(3.9.3b) 

(3.9.3c) 

72 See, for instance, Gelfand and Fomin (1963, Chapter 4). 
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then the image path 

E = {q, plqk = qk(t), Pk = Pk = Pk(t), tE(t2' t2), Pk = ~~, k = 1,2, .. ,n} 

(3.9.4) 

induced by a direct Legendre transform is a class <6'm(tl' t2) solution of 
Hamilton's equations (3.9.1) and vice versa. 

PROOF. Every class ~m(m ~ 2) path E that satisfies Equations (3.9.3) also satisfies 
equations of the normal forms (3.8.4), i.e., 

aH 
il = (let, q, p) = -a . 

Pk 
(3.9.5) 

But Equations (3.9.3) under a direct Legendre transform become the second set of 
Hamilton's equations (3.9.1 b). Thus, the image path E of E satisfies all Hamilton's 
equations. The functions aHjal and aHjapk are of class ~m-I and, therefore, the path E 
is of class ~m. This proves the first part of the theorem. Conversely, if E satisfies Equation 
(3.9.1 b) and is of class ~m, m ~ 2, then an inverse Legendre transform applied to Equa
tions (3.9.1) generates Lagrange's equations (3.9.3). But the functions aHjaqk are of class 
~ - I. Thus the image path E of E satisfies Lagrange's equations and is of class ~m(t I, t 2). 

Q.E.D. 

The involutive nature of the Legendre transform then implies the following 
corollary. 

Corollary 3.9.1A. Lagrange's equations (3.8.3) and Hamilton's equations 
(3.9.1) are equivalent when their respective Lagrangian and Hamiltonian 
functions are connected by a Legendre transform. 

The equivalence property of the above corollary can also be proved in 
several other ways, but we shall not indulge in their analysis at this time. 

In essence, Theorems 3.8.1 and 3.9.1 and Corollaries 3.8.1A and 3.9.1A 
prove that, for the study of regular Newtonian systems, one can equivalently 
use the analytic equations in either configuration space or phase space. 

The problem of the existence of a Lagrangian has been investigated in 
Section 3.5. When a Lagrangian exists, the consequent existence of a Hamil
tonian has been stressed in Section 3.8. However, one of our objectives is the 
study ofthe problem ofthe existence of a Hamiltonian per se, i.e., independently 
from the existence of a Lagrangian. This latter problem demands a more 
effective formulation of Hamilton's equations. 

Introduce the 2n-component contravariant vector 

a" = {
ql', Jl. = 1, 2, ... , n, 
PI'-n' Jl. = n + 1, n + 2, ... , 2n, 

(3.9.6) 
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which now spans a phase space by assumption. Then Hamiltonian R can be 
written R(t, q, p) = R(t, a) = R(t, all), and through the use of the con
travariantform 73 

we can write 

oR 
+

OPk 

oR 
- oqk 

= ( IlV OR) 
OJ oav ' 

Therefore, Hamilton's equations (3.9.1) can be written in the form 

fl = 1,2, ... , 2n, 

(3.9.7) 

(3.9.8) 

(3.9.9) 

which we shall call the contravariant normal form of the analytic equations in 
phase space. 

By introducing the inverse matrix 

(3.9.10) 

and the covariant 2n-vector 

_ v_{-PIl,fl=1,2, ... ,n, 
all = OJllva - Il-n _ . q , fl - n + 1, n + 2, ... , 2n, 

(3.9.11) 

we obtain, from Equations (3.9.9), the system 

'V oR 
OJllva - ~ = 0, vall 

(3.9.12) 

which we shall call the covariant normalform of the analytic equations in phase 
space. 

Trivially, Equation (3.9.12) in conventional notation reads 

(3.9.13) 

73 This introduces a symplectic structure in the space Mlq,Pl = M lal , See the Charts of 
Chapter 2. 
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and, as such, they are the conventional Hamilton's equations, only written 
in a unified notation 74 

By introducing the notation 

H'(t, all) = H'(t, wllvaV ) = H(t, all), 

oH 
ol 

_(WIlV OH) 
oav ' 

(3.9.14) 

Equations (3.9.9) and (3.9.12) can also be written in the factorized form 

WIlV( av - ~:.) = 0, (3.9.15a) 

(3.9.15b) 

which more transparently exhibits the" cross-wise" correspondence of the 
contravariant (covariant) tensor WIlV(WIlV) with the covariant (contravariant) 
normal 7 5 form of the canonical equations. 

3.10 Self-Adjointness of the Conventional Hamilton's Equations 

We are now equipped to study the self-adjointness of the conventional 
Hamilton's equations. 

Consider the one-parameter family itt,a) of contravariant paths 

£(11') = {all I all = all(t; w); tEet!> t2 ), WE Of} 

which are solutions of the covariant canonical equations 

(3.10.1) 

f.1. = 1, 2, ... , 2n. (3.10.2) 

Suppose that the family itt,a) satisfies all necessary theorems of the existence 
theory in such a way that the contravariant variations 

oalll oalll I'/Il =- ~Il =-
ow w=o' ow w=o' 

(3.10.3) 

exist and are continuous in (t!> t 2)' 

74 Notice that Equation (3.9.12) directly exhibits the fundamental symplectic structure w 
(Chart 2.3), while Equations (3.9.13) do not, even though the two systems coincide. This difference 
in the way of writing Hamilton's equations, besides its geometrical significance, will be crucial for 
the study of the self-adjointness properties. 

75 Here, we stress the point that Hamilton's equations, from the viewpoint of the theory of 
ordinary differential equations, constitute a system of 2n first-order differential equations in the 
normal form (in the sense of footnote 6, Chapter 1). 
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By computing the total derivative of Equations (3.10.2) with respect to w 
and by setting w = 0, we obtain the equations 

M () dF/J I 'V v 0 /J 1'/ = -d = w/JvI'/ - (1/JvI'/ = , 
w w=o 

(3.10.4) 

where 

fJ2H I (1/Jv = !l /J!l v , 
ua ua w=o 

(3.10.5) 

which are the equations of variations of Hamilton's equations. If the forms 
M i 1'/) are computed along an (admissible) variation I'//J which is not necessarily 
a solution of Equation (3.10.4), we shall call them the variational forms of 
Hamilton's equations. 

Theorem 3.10.1 (Self-Adjointness of Hamilton's Equations).76 Under the 
assumption that the Hamiltonian H(t, a/J) is of (at least) class f{j2 and regular 
in a region R2n+ 1 of points (t, a/J), the covariant normal form of Hamilton's 
equations is always self-adjoint in R2n + 1. 

PROOF. The equations of variations (3.10.4), under the assumed continuity conditions, 
always coincide with the adjoint system (Section 2.1) 

Mil'/) = -~VWV~ - I'/v(Jv~ = 0 

everywhere in ipn + 1. Q.E.D. 

(3.10.6) 

In essence, the identity 

M/J(I'/) == M/J(I'/), J1. = 1,2, ... , 2n (3.10.7) 

is based on the following assumptions. 

1. The form (w/Jv) is independent of the path all. and of the time t. This 
guarantees that in the construction of the adjoint, the identities 

(3.10.8) 

hold. 
2. The form (w IlV) is antisymmetric. This guarantees the identities of the 

following terms of Equations (3.10.4) and (3.10.6). 

(3.10.9) 

76 This theorem, to the best of my knowledge, is not treated in the available literature. 
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3. The Hamiltonian is of (at least) class C(j2 (R2n+l). This guarantees the 
last identities needed for Equations (3.10.7), i.e., 

[PH 
a IlV = iJall iJa v 

iJ 2H 
== aVIL = iJav iJall 

(3.10.10) 

Alternatively, Theorem 3.10.1 can be proved by verifying that Equations 
(3.10.2) satisfy the conditions of self-adjointness (2.7.20), i.e., for a covariant 
normal form 

(3.10.11) 

that is, 

0811 03\1 
iJa v iJall 

(3.10.12) 

(see Theorem 2.7.3). But the functions Ell for Equations (3.10.2) are given by 

(3.10.13) 

thus condition (3.10.12) trivially reduce to the "commutativity" property 
(3.10.10). 

The study of the self-adjointness of the contravariant normal form (3.9.15a) 
with respect to the covariant vector aa can be done with simple modifications 
of the above procedure. It is left as an exercise for the interested reader. 

Notice that the self-adjointness of Hamilton's equations can be proved with 
the minimal continuity conditions that HE C(j2(R2n+ 1). This should be com
pared with the corresponding aspect in configuration space for which the 
minimal continuity property is L E C(j4 (R 2n + 1). 

By introducing the quantities 

jiJqlll ;;--- = rt,1l, J1 = 1, 2, ... , n, 
uW w=o 

I]1l = 
iJPIl-n -::1-1 = I3Il , J1 = n + 1, n + 2, ... , 2n, 

uW w=o 

(3.10.14) 

Equation (3.10.4) can be written in conventional notation: 

iJ 2H . iJ 2H 
ak = -.-rt,' + --f3i' 

iJq'iJpk iJPiiJPk 
(3.10.15a) 

iJ 2H . iJ 2H A= ---rt,'---f3. iJqi iJqk iJPi iJqk ,. (3.10.l5b) 
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DLT 
• 

Lagrange's Equations Hamilton's Equations 
~ 

ILT 

IP DP DP IP 

DLT 
• Jacobi's Equations Jacobi's Equations 

in configuration space 
~ 

in phase space 
ILT 

Figure 3.3 A schematic view of the fundamental analytic equations of Newtonian Me
chanics, their equations of variations, and their relationships, where DLT = direct 
Legendre transform, IL T = inverse Legendre transform, DP = derivation with respect 
to the parameters, and IP = integration with respect to the parameters. Notice that the 
above diagram is closed and invertible. The analysis of this book is centered on the fact 
that the joint use of the analytic equations and their equations of variations, with the 
underlying self-adjointness properties (Theorem 3.3.1 and 3.10.1), allows the study of 
the necessary and sufficient conditions for the existence of a Lagrangian or Hamiltonian 
(Theorems 3.5.1 and 3.12.1). 

Furthermore, by introducing the function 

1 ( 02 H .. 02 H. 02 H ) 
Q(t, a, [3) = 2" oqi oqi rial + 2 oqi 0Pi a'[3i + 0Pi 0Pi [3i[3i 

= n(t,I'/), (3.10.16) 

Equation (3.10.4) can be written in the form 

";1' _ wl'V an = 0 
./ 01'/"' J1. = 1, 2, ... , 2n, (3.10.17) 

which exhibits a striking resemblance to the conventional Hamilton's 
equations. 

Equations (4.10.15) or (3.10.17) (sometimes referred to as Jacobi's equations 
in phase space) emerge within the framework of the calculus of variations for 
the so-called accessory problem in canonical formulations. 77 

It should be noted that Jacobi's equations in configuration and phase space 
can also be related through a direct or inverse Legendre transform. The 
verification ofthis important property is left to the interested reader (Problem 
3.7). 

77 See, for instance, Bliss (1946). 
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Finally, the reader should be aware that the direct proof of the self-adjoint
ness of Hamilton's equations demands the use of the tensor formulation, e.g., 
the formulation of Hamilton's equations in the form (3.10.2). It is an in
structive exercise for the interested reader to see that the proof of this central 
property of Hamilton's equations for the conventional form (3.9.1) is rather 
laborious. This fact has a number of implications for variational principles 
(see Charts 3.6 and 3.7), as well as for the transformation theory [see Santilli 
(1978)]. 

For a schematic view of the fundamental analytic equations, see Figure 3.3. 

3.11 The Concept of Analytic Representation in Phase Space 

The fundamental and kinematical forms of Newton's equations of motion in 
configuration space, even though they are particularly significant for the 
problem of their Lagrangian representation, do not exhaust all possible forms 
of writing the equations of motion. Clearly, within the context of the problem 
of the Hamiltonian representation, the forms of the equations of motions 
that are particularly significant are the first-order forms. 

Let us recall from the analysis of Sections 2.4 and 2.5 that, starting frorn the 
equations of motion in configuration space as they naturally arise from 
Newton's second law, i.e., the equations of the form 

Ak;(t, q, q)it + Bk(t, q, q) = 0, 

Aki> Bk EC(/1(R2n+ 1), 

IAijl(R2n + 1) -# 0, 

(3.11.1a) 

(3.11.1 b) 

(3.11.1c) 

one can reduce these equations to first-order forms, without using Lagrange's 
equations, by introducing the generally noncanonical prescriptions (2.4.2) in n 
new variables Yk' i.e., 

Gk(t, q, q, y) = rJ.dt, q, yW + Pk(t, q, y) = 0, 

rJ.. R EC(/l(ipn+l) 
k" Pk , 

(3.11.2a) 

(3.11.2b) 

The reduction of Equations (3.11.1) in it to equations in Yk then renders the 
system of n second-order equations equivalent to a system of 2n first-order 
equations of the type 

rJ.ki(t, q, yW + Pit, q, y) = 0, 

rJ.;/(t, q, Y)Yi + P~(t, q, y) = 0, 

which can be written in the general covariant form (2.5.3) 

C/lv(t, a)aV + D/l(t, a) = 0, 

C D EC(/1(R2n+l) pv, p , 

IC/lv l(R 2n+l) -# 0, 

(a/l) = (qk, Yk), 

(3.11.3) 

(3.11.4a) 

(3.11.4b) 

(3.11.4c) 

(3.11.4d) 
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or in the equivalent contravariant normal form (2.5.6) 

all - SIl(t, a) = 0, SIl E ~1(R2n+ 1), 

SIl = -CllvDv, (CIlV) = (CIlJ- 1 , 

(3.11.5a) 

(3.11.5b) 

or in the equivalent general contravariant form (2.6.25) or covariant normal 
form (2.5.14), i.e., 

C'IlV(t, aa)av + D'Il(t, aa) = 0, 

all - S~(t, aa) = 0, 

S~, C'1l", Dill E ~1(R2n+ 1), I C'IlV I (R2n+ 1) "# 0, 

C'IlV(t, aa) = CIlV(t, aP(aJ) = C'IlV(t, wapaP), etc., 

(aa) = (wapaP) = ( - Yk' qk). 

(3.11.6a) 

(3.11.6b) 

(3.11.6c) 

(3.11.6d) 

(3.11.6e) 

For the reader's convenience, let us also recall that: (1) at this stage the 
variables Yk do not necessarily coincide with the generalized momenta Pk; (2) 
the form which directly arises from the reduction of system (3.11.1) with 
identifications (3.11.4d) is the covariant form (3.11.4a) in the contravariant 
variables (all); (3) the application ofthe Theorem on the Implicit Functions to 
form (3.11.4) then naturally produces the contravariant normal form (3.11.5); 
(4) the remaining two forms (3.11.6a) and (3.11.6b) can be constructed through 
the use of identifications as in Equation (3.11.6e); and (5) the prime in the 
above expressions indicates a transition in the functional dependence of the 
considered functions from the contravariant to the covariant variables, e.g., 
Equation (3.11.6d). 

Our problem is that of extending the concept of the analytic representation 
of Section 3.4 to the representation of the above first-order forms in terms of 
Hamilton's equation. This can be done according to the following definition. 

Definition 3.11.1. A class ~l, regular, holonomic system of Newton's 
equations of motion in a first-order contravariant (covariant) form admits an 
analytic representation in terms of the contravariant (covariant) Hamilton's 
equation in a region R of the variables (t, a) when there exist 4n2 functions 
h',f (h~) which are of (at least) class ~l in R and whose matrix (h) is regular in R, 
such that the conventional contravariant (covariant) Hamilton's equations 
coincide with the equations of motion up to the equivalence transform 
induced by such a matrix (h), i.e., 

(3.11.7a) 

·v 8H - hV(C 'P D) wllva - oall = Il vpa + v, (3.11.7b) 

f1 = 1, 2, ... , 2n, 
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or, equivalently, when the equations of motion coincide with the contravariant 
(covariant) Hamilton's equations up to an equivalence transform induced by 
the inverse matrix (h- 1) = (h)-1,i.e., 

h' - 1 1' (wvpa _ CHI) = C'I'Pa + D'I' 
v P cav - P , (3.11.8a) 

h- 1v ( .p CH) - C .p D 
I' wvpa - cav = I'pa + /l" (3.11.8b) 

The representation is called direct (indirect) when the matrix (h) is (is not) the 
unit matrix, and it is called ordered when identification (3.11.7) or (3.11.8) 
holds not only for the left-hand and right-hand sides considered as systems, 
but also member by member for all the values of the index {t = 1,2, ... , 2n in 
a given ordering. When the latter ordering requirement is not met, the 
representation is termed nonordered. 

The most significant case is again that of an "ordered direct analytic 
representation" which, in this case, consists of the identifications of the 
normal forms 

(3.11.9a) 

(3.11.9b) 

A variational structure equivalent to that of Equations (3.4.11) then holds. 
For illustrations, see the examples at the end of this chapter [as well as those 
of Santilli (1979)]. 

Notice that: (a) the factor functions of Equations (3.11. 7) or (3.11.8) have 
been selected in such a way as to preserve the contravariant or covariant 
nature of the system; (b) the maximal functional dependence of these 
functions is h = h(t, a) because any dependence on the derivatives a would 
alter the first-order nature of the systems; and (c) in identities (3.11.7) and 
(3.11.8) there is not only the preservation of the overall tensor nature of the 
systems (e.g., contravariant systems are identified with contravariant analytic 
equations), but also the preservation of their functional dependence (e.g., the 
contravariant Hamilton's equations in the covariant variables a~ are identified 
with the contravariant equations of motion in the same covariant variables). 

A comparative analysis with the framework of Section 3.4 reveals not only 
predictable similarities between the concepts of analytic representations in 
configuration and phase space, but also significant differences. In the former 
case, the implicit functions of the system are the functions fk(t, q, 4), the 
underlying form is the kinematical form, and the ordered direct analytic 
representation of this form is a particular case of the more general representa
tion of the fundamental form. In the latter case, the implicit functions of the 
system are the functions 31'(t, a), the underlying forms are normal forms 
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(3.11.5) and (3.11.6b), and their ordered direct representations in terms of 
Hamilton's equations are not a particular case of a more general representa
tion. This difference is ultimately due to a difference in the structure of 
Lagrange's and Hamilton's equations. Indeed, unlike the case of Lagrange's 
equations, Hamilton's equations are equations in their normal form. As such, 
they can only directly represent systems in such a form. This difference between 
Lagrange's and Hamilton's equations will imply, as we shall see in the next 
section, a considerable simplification of the Inverse Problem in the transition 
from configuration to phase space formulations. 

Another considerable difference between the analytic representations in 
configuration and phase space is constituted by their impact on the underlying 
representation spaces. In the former case, the underlying space (at the level of 
the equations of motion in their second-order form) is the configuration space 
of the generalized coordinates qk. The existence of an analytic representation 
of such equations of motion in terms of Lagrange's equations does not affect 
the nature of such a space. In the latter case, the original underlying space of 
the equations of motion in their first-order form is the 2n-dimensional space 
of the variables (a 1') = (q\ Yk), which is not necessarily a phase space. How
ever, if an analytic representation of such equations exists, such a spacf is 
a phase space with Yk = Pk' Therefore, the existence of an analytic represt' la

tion in the a-variables implies the presence of a canonical structure. This 
occurrence has several geometrical implications. 

As a final remark, we would like to point out that the concept of analytic 
representation according to Definition 3.11.1 indicates the existence of 
generalized forms ofthe conventional Hamilton's equations, i.e., the left-hand 
sides of identifications (3.11.8). [This aspect is studied in Santilli (1979)]. 

3.12 The Fundamental Analytic Theorem for Phase Space 
Formulations and a Method for the Independent Con
struction of a Hamiltonian 

We are now equipped to formulate and prove the following important 
theorem 

Theorem 3.12.1 (Fundamental Analytic Theorem for Phase Space Formu
lations).78 A necessary and sufficient condition for a local, holonomic, 
generally nonconservative Newtonian system in the covariant normal form 

'V - ( ~) 0 wl'v a - =-1' t, a = , 

f.1 = 1, 2, ... , 2n, 
(3.12.1 ) 

78 Despite a rather laborious search, I have been unable to identify any reference to this 
theorem in the mathematical or physical literature within the context of the variational approach 
to self-adjointness. 
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which is well defined and of (at least) class ~1 in a star-shaped region ipn+ 1 

of the variables (t, a<Z), to admit an ordered direct analytic representation in 
terms of the covariant Hamilton's equations in R2 n+ 1 

'V iJH _ ',v ~ 
wilva - iJall = wilva -'::'Il (3.12.2) 

is that the covariant normal form is self-adjoint in ipn + 1. 

PROOF. Conditions of se1f-adjointness (2.7.20) are the integrability conditions of the 
differential form that underlies identifications (3.12.2). Q.E.D. 

Explicitly, identifications (3.12.2) hold if and only if 

iJH ~ ( <Z) 0 iJall - '::'Il t, a = . (3.12.3) 

This is an overdetermined system of first-order partial differential equations 
in the unknown H. The underlying differential form is 

::;,(1) _::;' dall 
..... - ...... IJ • (3.12.4) 

In view of the Converse of the Poincare Lemma 1.2.2, the integrability 
conditions for the existence of a primitive form are given by 

J.i.1' J.i.2 = 1,2, ... , 2n, (3.12.5) 

and they coincide with conditions of self-adjointness of form (3.12.1) ac
cording to Theorem 2.7.3. 

It is significant to compare the simplicity of the proof of Theorem 3.12.1 
with the rather involved proof of Theorem 3.5.1. The problem of constructing 
the Hamiltonian, once its existence is guaranteed by Theorem 3.12.1, is also 
considerably simpler than the corresponding problem of the computation 
of a Lagrangian. Indeed, a simple reformulation of the proof of Theorem 3.12.1, 
as well as use of Equation (1.2.25), leads to the following theorem. 

Theorem 3.12.2 (A Method for the Construction of a Hamiltonian). A 
Hamiltonian for the ordered direct analytic representation of holonomic, 
generally nonconservative Newtonian systems in the covariant normal form 
(3.12.1), which is well defined, of (at least) class ~1, and self-adjoint in a star
shaped region ipn+ 1 of points (t, a<Z), is a solution of the overdetermined 
system of first-order partial differential equations (3.12.3) given by 

H = all f dr Sit, ra<Z). (3.12.6) 

For illustrations of the above theorem, see the examples at the end of this 
chapter [as well as those of Santilli (1979)]. 
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A few comments are in order. The first point which must be stressed is that 
Theorems 3.12.1 and 3.12.2 establish a methodology for the existence of 
analytic representations of Newtonian systems which, according to our 
derivation, is independent of any prior knowledge of a Lagrangian. Basically, 
according to the remarks at the end of Section 3.8, Theorem 3.6.1 is in line with 
the approach of first identifying a Lagrangian and then computing a Hamil
tonian through a direct Legendre transform. Theorem 3.12.2 is along the 
lines of the opposite approach, namely, that of first identifying a Hamiltonian 
and then computing a Lagrangian by means of an inverse Legendre transform. 

A rather intriguing implication of the Inverse Problem is that the above 
two methods do not necessarily lead to the same Lagrangians and Hamiltonians, 
in the sense that, given a Newtonian system in the self-adjoint fundamental 
and normal forms with corresponding Lagrangian L and Hamiltonian H, 
the function H(L) is not necessarily the Legendre transform of L(H). This 
property is due to the fact that prescriptions (3.11.2) for the construction of a 
normal form do not necessarily coincide with canonical prescriptions (3.8.2) 
related to a given L. As a result, the emerging Hamiltonian is not necessarily 
the Legendre transform of L. For illustrations, see the examples at the end of 
this chapter. 

This situation clearly offers a first hint of the significance of the Inverse 
Problem for transformation theory, which is investigated in more detail in 
Santilli (1979). 

Given a system of Newton's equations of motion in their" natural" form, 
i.e., the fundamental form (3.11.1), the computation of a Hamiltonian ac
cording to the above independent method can be carried out according to the 
following steps. 

1. Construct a covariant normal form which incorporates arbitrary 
functions. This can be achieved by using prescriptions (3.11.2), where 
the n2 + 1 functions aki and 13k are, at this stage, arbitrary. As a result, 
the implicit functions of the system will depend on these functions, i.e., 
3/1 = 3it, aa, aki , 13k)· 

2. Impose conditions of self-adjointness (3.12.5) to remove the functional 
arbitrariness of step 1. This can be done by solving Equations (3.12.5) in 
the unknown functions aki and 13k and, therefore, by reducing the 3/1 
functions to a known functional dependence. Verify that the normal 
form so obtained is well defined and of at least class <6'1 in a star-shaped 
region of the variable. 

3. Compute the Hamiltonian by using integral (3.12.6). There is no need to 
inspect the consistency of Equation (3.12.3) because the proof of 
Theorem 3.12.2 is centered precisely on the point that Equations (3.12.5) 
are the integrability conditions of Equation (3.12.3). 

The possible non-uniqueness of the Hamiltonian then emerges in a self
evident way. Notice that a Hamiltonian does not necessarily exist within the 
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context of the above method. The problem of whether the method can be 
implemented to "always" yield a Hamiltonian is studied in Santilli (1979). 

The remarks of Section 3.6 regarding the nature and use of a star-shaped 
rather than an ordinary region extend trivially to Theorem 3.12.2. In this 
respect, another method for the computation of H (when its existence is 
ensured by the conditions of self-adjointness), which does not require the use 
of a star-shaped region, is given by the Cauchy integra[19 

(3.12.7) 

Clearly, if covariant normal form (3.12.1) violates only one of conditions of 
self-adjointness (3.12.5), then it is non-self-adjoint and a Hamiltonian for its 
ordered direct representation (3.12.2) does not exist. Again, if the ordering 
condition of Theorem 3.12.1 or 3.12.2 is removed, the condition of self~ 
adjointness is only sufficient for the existence of a Hamiltonian. 

The extension of the theorems of this section to contravariant normal forms 
is left as an exercise for the interested reader. 

The crucial role of the (cu".) matrix for the construction of the covariant 
normal form should be emphasized here. Indeed, if one uses, say, the tensor 
(j/iv as the lowering tensor of the a" variables, then the emerging normal form 
takes the structure 

(3.12.8) 

and, as such, it cannot be directly represented with Hamilton's equations. 
This indicates the need for using a symplectic structure in the space of the a" 
variables which, in turn, is deeply linked to the self-adjointness of Hamilton's 
equations and their canonical structure (Chart 3.18). In the final analysis, 

Theorem 3.12.1 provides necessary and sufficient conditions in local coordinates 
for a vector field to be globally Hamiltonian, in the sense of Chart 2.3. 

79 By comparing the use of the Poincare approach for the computation of a Hamiltonian, 
Equation (3.12.6), and the use of the Cauchy approach, Equation (3.12.7), one might have the 
impression that the freedom in the presence ofthe initial pointab exists only for the latter approach. 
This is not the case, because Equation (3.12.6) can be modified fnto the form 

H = (a" - ab) f dr 3.(t, Tao + (1 - T)ao)' 

I would like to express may appreciation to E. Engels for bringing this point to my attention. A 
corresponding method for the construction of a Lagrangian with the use of the Cauchy approach 
(and, thus, without the use of a star-shaped region) is given in Chart 3.11. In conclusion, the 
computation of a Lagrangian or a Hamiltonian with the use of the Cauchy approach constitutes 
a valuable alternative to that offered by the Converse of the Poincare Lemma, particularly when 
the system considered is self-adjoint but violates the condition of being well behaved in a star
shaped region. 
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The extension of the analysis to the case of locally Hamiltonian vector fields 
is done in Santilli (1979) via the use of Birkhoff's equations. 

The analysis of Section 3.7 can also be easily extended to the framework of 
this section with the equivalent result that the conventional Hamilton's 
equations can represent Newton's equations of motion with arbitrary Newtonian 
forces, i.e., couplings of types I, II, and Ill. The insensitivity of the conditions 
of self-adjointness to the nature of the acting forces is, within this context, 
even more evident owing to the considerable" degrees of freedom" that often 
occur in prescriptions (3.11.2). In this respect, it shouid be noted that, unlike 
the case of Equation (3.7.1), conditions of self-adjointness (3.12.5) cannot be 
interpreted as integrability conditions for the existence of a potential function, 
i.e., for the acting forces to be conservative. Indeed, such conditions are 
explicitly given by the 2n x 2n expressions 

G:;) (~:;) (~:!) (O~~:n) 
(3.12.9) 

e~~;n) e~~~n) eEj
) eEj

+
n) op; op; 

The statement then becomes self-evident, for instance, when prescriptions 
(3.11.2) reduce to the simple identities ilk = Yk, by indicating in this way a 
possible explicit dependence of the Ell functions on the velocities. Obviously, 
conservative forces also occur as a subcase of conditions (3.12.9), e.g., when 
the off-diagonal elements are all identically null. 

The analysis of the structure of the Hamiltonian capable of representing 
nonconservative systems can be conducted along lines parallel to those of 
Section 3.7 and leads to equivalent results. This analysis can also be carried 
out by studying the Legendre transform of the generalized structures of the 
Lagrangian introduced in Section 3.7. Consider, for instance, the case of a 
system of free particles subject to holonomic constraints and represented by 
the kinetic energy (3.7.25). Let T(t, q, p) be the "image" of T(t, q, q) under a 
Legendre transform. If all acting forces are derivable from an additive inter
action term to the kinetic energy according to structure (3.7.26), the Hamil
tonian will have the conventional structure 

H tot = T + U. (3.12.10) 

However, if some of the acting forces are not derivable from a potential, then 
the phase-space image of structure (3.7.27a) can be written 

(3.12.11) 

The nonconservative nature of the system is thus again reflected by the 
presence of terms which multiply the Hamiltonian for the free motion. 

For a schematic view of the content of this section, see Figure 3.4. For a 
schematic view of the Inverse Problem, see Figure 3.5. 
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Figure 3.4 A schematic view of the Fundamental Analytic Theorem for Phase Space 
Formulations treated independently from the corresponding theorem in configuration 
space. The equations of motion in their (first-order) normal form are constructed from 
Newton's second law through a set of prescriptions for the characterization of new 
variables. Whenever, for a suitable selection of such prescriptions, they satisfy each ofthe 
conditions of self-adjointness, they are self-adjoint. Hamilton's equations with class '(52 

Hamiltonians, on the contrary, are always self-adjoint. Similar to the corresponding 
situation in configuration space (Figure 3.1), the conditions of self-adjointness for first
order forms emerge again as the central mathematical tool for the independent treatment 
of the Inverse Problem in phase space. However, the underlying conditions are different 
from the corresponding ones in configuration space. Furthermore, such conditions now 
acquire a direct algebraic and geometric meaning because, from an algebraic viewpoint, 
they guarantee that the analytic brackets of the theory satisfy the Lie algebra axioms and, 
from a geometric viewpoint, they guarantee the presence of a symplectic structure in the 
space of the (q, p) variables. The emerging methodological context is, therefore, centered 
on a synthesis of primitive concepts of three interrelated disciplines, i.e., analytic mechan
ics, abstract algebras, and differential geometry (Chart 3.18), with implications par
ticularly for transformation theory, symmetries, and conserved quantities of systems with 
arbitrary couplings [as can be seen in Santilli (1979)]. 
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Conditions of self-adjointness Conditions of self-adjointness 
for second-order differential <----l for first-order differential 
equations equations 

I I 
Fundamental Analytic theorem Fundamental Analytic Theorem 
for configuration space I4-----l for phase space formulations 
formulations 

I I 
Explicit construction of a 

~ 
Explicit construction of a 

Lagrangian Hamiltonian 

Figure 3.5 A schematic view of the Inverse Problem in Newtonian Mechanics. The 
problem consists of the independent methods for the construction of a Lagrangian or 
Hamiltonian from given equations of motion. The methods are centered on the con
cept of variational self-adjointness which establishes the corresponding Fundamental 
Analytic Theorems (Figures 3.1 and 3.4) and then allows the construction of the desired 
functions. The net result is a considerable broadening of the representational capabilities 
of the analytic equations, or of Hamilton's principle, which now emerge as being able to 
represent all Newtonian systems admitting a self-adjoint form of the equations of 
motion (Chart 3.2). The independent treatment of the problem in configuration and 
phase space reveals deep conceptual and technical differences, despite the ultimate 
equivalence of the two approaches [which is investigated in more detail in Santilli 
(1979)]. In particular, the independent computation of a Lagrangian and a Hamiltonian 
for the same system produces functions that turn out to be not necessarily related by a 
Legendre transform. This is an indication that the integrability conditions for the existence 
of a Lagrangian or Hamiltonian have a direct impact for transformation theory resulting 
in degrees of freedom of these functions which are not expected to be of conventional 
type. Despite their structural differences, Lagrange's and Hamilton's equations can be 
written in a formally unified way (Chart 3.7). This implies a formal unification of the two 
aspects of the Inverse Problem. Variational principles can then be generalized not only 
to induce the conventional analytic equations, but also the necessary and sufficient 
conditions for their existence (Charts 3.3 through 3.7). 

Chart 3.1 The Controversy on the Representation of Nonconservative 
Newtonian Systems with the Conventional Hamilton's 
Principle 

Nonconservative Newtonian systems are known to be representable by 
the following modified form of Hamilton's principle with external terms 

J, t2 
b dt(T + W) = 0, 

tl 

(1 ) 

[see, for instance, Goldstein (1950, pp. 38-40)]. 
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A problem which has been controversial for over a century in the 
physical literature is whether nonconservative Newtonian systems can be 
represented by the conventional Hamilton's principle without external 
terms (1.3.23). i.e .. 

b f2 dt L (t. q. q) = O. 
t 1 

(2) 

To the best of my knowledge. this controversy. somewhat inherited from 
contrasting statements dating back to the nineteenth century. reached a 
climactic stage in the early 1930s as a result of the following corollary of a 
theorem by Bauer (1931): 

The equations of motion of a dissipative linear dynamical system with 
constant coefficients are not given by a variational principle. 

The above corollary prompted the publication of Bateman's disproof of 
1931 according to a prolongation method we shall outline later in Chart 
3.13. (Bauer's paper was submitted as a Harvard note in March,21. 1931 
and Bateman's rebuff was submitted as a Caltec note in June 17 of the 
same year.) 

Despite the contribution by Bateman (which he properly published in 
The Physical Review). the controversy did not end. but was taken up again 
by J. L. Synge (1932) and other authors. and subsequently resulted n 
negative positions in more recent textbooks on the subject. 

For instance. C. Lanczos. in his textbook on variational principles (194!:l). 
states on page xxi: 

Forces of a frictional nature. which have no work function, are outside the 
realm of variational principles. 

Similarly. on p. 19-7 of Vol. II of the Feynman Lectures [Feynman et al.. 
(1966)]. we read 

The principle of least action only works for conservative systems-where 
all forces can be gotten from a potential function. 

It was unfortunate that the Inverse Problem of the calculus of variations. 
which was already well established in mathematical circles in the late 
1920s. as indicated in the Introduction. had not propagated into the 
physical literature. 

As we shall see in this book and in Santilli (1979). the Inverse Problem 
allows the resolution of this controversy. In particular. the arena of repre
sentational capabilities of the conventional Hamilton's principle without 
external terms for nonconservative New.tonian systems will emerge as being 
of considerable magnitude. 

Chart 3.2 The Arena of Applicability of Hamilton's Principle 

Consider a class '?i 2 • regular. unconstrained Newtonian system of N 
particles in the Euclidean space of its experimental detection with Cartesian 
coordinates rka. k = 1. 2 •.... N. a = x. y. z: 

AkaJb(t. r. r)j'jb + Bka(t. r. r) = O. 

Akajb.BkaE'?i2(R).IAI(R) 1=0. k=1.2 ....• n.a=x.y.z. (1) 
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The assumed continuity and regularity conditions ensure the existence and 
uniqueness of the implicit functions (Chart 1.1) 

,ka = fka(t, r, r), fka = -AkajbBibE'ii2(R), (Akajb) = (A kaib )-1. 

(2) 

We can say that a nonconservative Newtonian system [Equation (1)] 
admits a representation within the considered variables {t, r} in terms of 
Hamilton's principle 

b (,2dtL (t, r, r) = - r' 2dt(!!... OL _ OL )brka = 0 
J, J. dt o;ka orka 

t 1 t 1 

(3) 

when the totality of solutions of Lagrange's equations 

dOL OL 
Lka(r) = dt o;ka - orka = 0 (4) 

and of equations of motion (1) coincide. 
From the uniqueness of the implicit functions and the existence theory of 

Section 1.1, we can equivalently say that equations of motion (1) admit 
a representation within the considered variables {t, r} in terms of principle 
(3) when the system of implicit functions of Lagrange's equations (4) 
coincides with that of the equations of motion. 

By using our concept of analytic representation, Definition 3.4.1, we can 
equivalently say that equations of motion (1) admit a representation within 
the considered variables {t, r} in terms of principle (3) when there exists 
a class '{j2 regular matrix of elements h£~ (t, r, r) such that the following 
ordered identifications hold 

k = 1,2, ... ,n, a = x, y, z. (5) 

The Fundamental Analytic Theorem for configuration space representa
tions, Theorem 3.5.1, implies that, whenever a class '(j2 and regular matrix 
(h) exists such that the right-hand side of Equations (5) is well behaved 
and self-adjoint in a star-shaped region of the variables, a representation 
of system (1) in terms of principle (3) holds. The Fundamental Analytic 
Theorem for phase space formulations, Theorem 3.12.1, yields the same 
result (via the use of the inverse Legendre transform) with the additional 
possibility of reducing the minimal continuity condition to that of class 
'(j1 only. 

The above remarks are already sufficient to indicate that the arena of 
_ representational capabilities of Hamilton's principle in Newtonian mech
anics is rather broad indeed. When the matrix (h) of representation (5) is 
the unit matrix and the Lagrangian has the conventional structure L = 
T(i") - U(t, r, r), one recovers the representation in terms of Hamilton's 
principle of the Newtonian systems with (local) forces derivable from a 
potential including, of course, the case of the Lorentz force. However, 
when the matrix (h) of representation (5) is not the unit matrix, the repre
sentation in terms of Hamilton's principle of a considerably broad class of 
nonconservative systems is allowed. This is essentially due to the fact that 
Hamilton's principle, as a mathematical algorithm, holds for Lagrangians of 
arbitrary functional dependence in their variables [a property which is 
crucial for the consistency of the calculus of variations (Section 1.3)], 
while the integrability conditions for the existence of a Lagrangian, the 
conditions of variational self-adjointness, are insensitive as far the physical 
nature of the acting forces is concerned (Section 3.7). 
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Representations (5) with nontrivial factor matrices (h) are indirect 
according to our terminology (Section 3.4). As such, they are studied in 
Santilli (1979). It is significant here to indicate that, as formulated within a 
fixed system of the variables {t, r}. they are not" universal ", namely, a 
factor matrix (h) allowing representation (5) does not necessarily exist 
for an arbitrarily given system (1). As seen in Santilli (1979), the conditions 
of variational self-adjointness essentially characterize a class of non
conservative Newtonian systems (1) which admit representation (5). 

When analytic representation (5) does not exist within the fixed system 
of variables {t, r}, this does not mean that Hamilton's principle is neces
sarily unable to represent the system at hand. The reason is that one can 
still seek a representation of an equivalent system in a new set of variables 
{t', r'} induced by the class ~1 and invertible transformations 

rk -+ r'k = r'k (t, r, r). t -+ t' = ('(t, r, r). (6) 

with underlying indirect analytic representations 

L~a(r') = h~jab(t', r', 1") [A;biC(t', r', r')i'iC + B~c(t', r', r'»). (7) 

In this case, by construction, the totality of solutions of Lagrange's 
equations in the new variables is equivalent to (rather than coincidental 
with) the totality of solutions of system (1). 

In conclusion, the analysis of this first volume allows the formulation and 
proof of the following lemma 

Lemma. Hamilton's principle is capable of representing all class ~2, 
regular, unconstrained Newtonian systems, admitting an equivalent 
form which is well behaved and self-adjoint in a star-shaped region of the 
local variables. 

A primary objective of Santilli (1979) is the study of this lemma within 
the context of the equivalence transformations induced by factor matrices 
and transformations of the local variables. 

Chart 3.3 Generalization of Hamilton's Principle to Include the 
Integrability Conditions for the Existence of a Lagrangian 

Let Eo be an admissible possible path of the action functional A(E) = 
S:2 dt L (t, E, E'). i.e., an element of the 00 2n family of solutions qk (t; u, v) of 
L~grange's equations in L (t, q, q) which is of at least class ~2 (Section 1.3) 
(we here tacitly implement our continuity and regularity restrictions on the 
Lagrangian). Let E' = Eo + b1Eo be an admissible varied path with fixed 
end points, i.e., a varied path which is also of class ~2 and which satisfies 
end-point conditions (1.3.15). By integrating by parts and using these 
conditions, the contemporaneous second-order variation of the action, 
Equation (1.3.30), can be written 

Lk(Eo) = 0 stands for Lagrange's equations (1.3.21) and Jk(b1Eo) = 
o represents the associated Jacobi's equations (1.3.25). Since Eo is a 
possible path, Lagrange's equations are verified and the first term of 
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Equation (1) is identically null. However, since the varied path e is not 
necessarily a possible path in the sense of Equations (1.3.26), the varia
tions {) 1 £0 are not necessarily a solution of Jacobi's equations and variation 
(1) is not necessarily null. 

Let l' = £0 + J1£0 be another admissible varied path with fixed end 
points different from e. The two first-order variations of Equation (1) can 
be differentiated between themselves, and we can write 

~J1({)1A)IEo = - (2dtJk({)1£0)J1q~, 
Jr, 

~{)1(81A) lEo = -Jt2dtJk(J1£0){)1q~. 
t1 

(2) 

But the v_ari~tions {)1 and J1 are trivially commutative. By interpreting the 
system J k({)1£0) as the adjoint system of Jacobi's system J k({)1£0) 
(Section 3.3) and by recalling the fundamental condition of self
adjointness, Equation (2.1.15). we obtain th following generalization of 
Hamilton's principle to include the conditions of variational self-ad joint
ness. 

(3a) 

it2 
= lim dt[J1qkJ ({)1£ ) - {)1qkJ (J1£)] = 0 _ 0 k 0 0 k 0 EO ' 

6 1 =61 t1 

(3b) 

which is equivalent to the following lemma. 

Lemma, Newtonian systems representable by the action functional A (E) 
evolve according to a possible path £0 along which the first-order 
variation with fixed end points of the action is null and self-adjoint. 

This generalization of Hamilton's principle clearly incorporates in the 
variational algorithm not only Lagrange's equations, but also the necessary 
and sufficient conditions for their existence. In turn, this indicates the need 
of the inclusion in the variational principles of the second-order variation 
of the action. 

In view of the generalizations of Hamilton's principle of the subsequent 
<,:harts, it should be stressed that for principle (3) the variations {)1£0 and 
{) 1 £0 need not necessarily be the solutions of Jacobi's equations. 

Nota Bene. The fact that the limit ~1 = 01 of the left-hand side of Equation (3b) is 
nUll, is trivial. This is not the case for the right-hand side of the same expression. 
Indeed, by using Equation (2.1.9), this limit implies that 

(4) 

which is notthe case for an arbitrary system. However, property (4) holds if and only 
if the system is self-adjoint, i.e., when all conditions of self-adjointness are varified 
(Problem 3.5). It is in this sense that the generalization of Hamilton's principle 
presented in this chart contains all the integrability conditions for the existence of a 
lagrangian or, equivalently, of an action functional. 
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Chart 3.4 Generalization of Hamilton's Principle to Include Lagrange's 
Equations and Their Equations of Variation 

Let Eo be an admissible possible path and E' = Eo + 15Eo be an admissible 
varied path in the sense recalled in Chart 3.3. The computation of Lagrange's 
equations along E' and the use of the Taylor expansion leads to the im
portant formula 

This is a generalization to an arbitrary order s = 1, 2, 3, ... of the property 
of Section 3.3 according to which Jacobi's forms are the variational forms 
of Lagrange's equations, i.e., J2 (15 1 E) = 15 1 Lk (E). The equations J:(15SE) = 
o will be called the equations of variation of order s of Lagrange's 
equations. 

Suppose that the varied path E' satisfies fixed end-point condition 
(1.3.15) to all orders in the variations. Then, by using these conditions and 
by extending the integration by parts of Equation (1) of Chart 3.3 to 
higher order, we can write 

(2) 

15SA lEo = - St2 dt Lk(Eo)15sqt - t f2dt J~(i5iEo)15S-iqt f o. 
t 1 1 t 1 

Suppose, finally, that E' is also a possible path (fEo), i.e., E' = E~ is 
another element of the ex) 2n family of solutions of Lagrange's equations. 
We then reach the following generalization of Hamilton's principle to a 
variation of the action of arbitrary order s = 1, 2, 3, .... 

(3) 

which is equivalent to the following lemma. 

Lemma. Newtonian systems representable by the action functional 
A(E) evolve according to a possible path Eo and a possible varied path 
E~ along which the contemporaneous variation of order s = 1, 2, 3, .. , of 
A (E) is null. 

The case s = 1 trivially recovers the conventional Hamilton's principle 
with underlying Lagrange's equations. The cases s > 1 represent gener
alizations, where the underlying equations are the equations of variation of 
order s of Lagrange's equations. Thus, our generalizations, to be applicable, 
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demand the validity of Lagrange's equations as well as their equations of 
variation of arbitrary order. Besides being regular, the Lagrangian L is here 
tacitly assumed to be of class <{j"'. 

Chart 3,5 Generalization of Hamilton's Principle to Include Lagrange's 
Equations, Their Equations of Variation, and the End
Point Contributions 

The generalizations of Hamilton's principle of Charts 3.3 and 3.4 are 
restrictive because they deal with contemporaneous variations, i.e., those 
occurring at a fixed value of time (Section 1.3). In this chart, we introduce 
an extension of the generalization of Chart 3.4 to noncontemporaneous 
variations, i.e., those which also imply a variation of time (Section 1.3). The 
corresponding extension of the generalization of Chart 3.3 is left as an 
exercise for the interested reader. Other types of generalizations of 
Hamilton's principle suggested by the methodology of the Inverse Problem 
will be introduced in subsequent charts, as well as in the charts of Santilli 
(1979), depending on the aspect considered. 

By using an iterative procedure, the noncontemporaneous variations of 
the action functional can be written (Section 1.3) 

$2AIE = - r'2dtLk(E)1J2qk - r'2dtJ2(1J1E)1Jlqk + (EPC)2, (1) 
Jr, Jt 1 

where (EPC)s is the end-point contribution of order s which is given, for the 
cases s = 1 and s = 2, by Equations (1.3.40) and (1.3.43), respectively. 

By using the lemma of Chart 3.4, we then reach the generalization of 
Hamilton's principle to include Lagrange's equations, their equations of 
variation and the end-point contributions 

s = 1,2, ... , (2) 

which is equivalent to the following lemma. 

Lemma, Newtonian systems representable by the action functional A (E) 
evolve according to a path Eo along which the noncontemporaneous 
variations of order s = 1, 2, 3, ... with variable end points of the action 
when computed along a possible varied path, are equal to the end-point 
contributions of the same order. 

The case s = 1 recovers the known Weiss' (Holder's) principle, as recalled 
in Section 1.3. The cases s > 1 constitute generalizations to higher orders. 
Their significance is indicated in Santilli (1979) in relation to the problem of 
symmetries and conserved quantities of Newtonian systems with arbitrary 
couplings. 
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Chart 3.6 Generalization of Hamilton's Principle to Include a 
Symplectic Structure 

By performing a direct Legendre transformation of the Lagrangian 
(Section 3.8), the action functional in phase space can be written from 
Equation (2) of Chart 3.1 : 

- - Jt2 A(E) = dt[qkpk - H(t, q, p)lt, 
f1 

E= {q,p}. (1 ) 

It constitutes the basic functional of the canonical formulation of the 
calculus of variations [see, for instance, Bliss (1946, Chap. III)]. Since 
the generalized momenta Pk are independent of the coordinates qk, they 
must be independently varied. This implies the doubling of the number of 
variations of configuration space formulations. Elementary calculations 
then yield Hamilton's principle for phase space formulations 

15 1.41- = ft2dt[(il- dH)t5 1p - (p + dH)t5qk ] = 0, (2) 
EO c)p k k dqk _ 

t1 k EO 

which now leads to Hamilton's, rather than to Lagrange's equations. 
Principle (2) has been subjected to a number of critical examinations. 

As we see in Santilli (1979), a first problematic aspect is due to the inability 
of principle (2) of being form-invariant under ph~se space transformations 
more general than the canonical transformations. A second problematic 
aspect is the lack of "symmetry" of action (1). in the derivatives. This 
implies the rather peculiar situation whereby the action cannot be written 
in terms of the (covariant or contravariant) tensor notation a = (q, p), 
while the end result of the principle, Hamilton'S equations, can. A third 
problematic aspect is the inability of introducing a symplectic structure 
directly in the integrand of action (1), contrary to the established fact that 
the geometry that underlies canonical formulations is the symplectic 
geometry. In turn, this has led to the general lack of use of variational 
principles in the study of Newtonian systems from a geometrical profile 
[as Abraham and Marsden (1967) put it, variational principles, after their 
function of inducing the canonical equations, .. do not have a crucial role 
in the theory" (p. 129), contrary to their role for other aspects (e.g., 
derivation of the Hamilton-Jacobi equations and quantizatiqn]. 

This situation demands the study of whether the conventional Hamilton's 
principle in phase space can be implemented into a form allowing a 
direct geometrical treatment. This objective can be achieved by introducing 
the extended action functional in phase space 

A'e(E) = (2dt [qkPk - H]E - ~lqkpJ:f (E) 
Jt1 

(3) 
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which now directly exhibits the presence of the fundamental symplectic 
form w. The variations of the qk and Pk variables can now be unified into the 
variations of the a~ variables. We reach, in this way, the following gen
eralization of Hamilton's principle to include a symplectic structure 

(4) 

= 0, 

which now leads directly to Hamilton's equations in their (covariant or 
contravariant) normal form (Section 3.9). Since these equations, when 
explicitly written, coincide with the conventional nontensorial form of 
Hamilton's equations, principles (2) and (4) characterize the same New
tonian system and, thus, the same path. In this sense, they are equivalent. 
However, our generalization (4) is clearly preferable over the conventional 
form (2) from the viewpoint of the transformation theory, the differential 
geometry and, inevitably, the Lie algebra structure [which is elaborated 
upon in Santilli (1979)]. 

The configuration space image of principle (4) yields equivalent results. 
By using an inverse Legendre transform (Section 3.8), we reach the 
extended action in configuration space 

1t2 1 I OL /t2 Ae(E) = dt L(t, q, q)E - 2 ~ qk (E) t, q t, (5) 
= A(E) + g(E) 

with corresponding generalized principle 

(6) 

The underlying equations are, therefore, the conventional Lagrange's 
equations, as expected. Thus, principle (6) is equivalent to Hamilton's 
principle in configuration space. Notice that in principle (6) the additive 
term produces no contribution under contemporaneous variations with 
fixed end points because, trivially, it is (constant and) computed at end 
points. 

In conclusion the variational principles with fixed end points of the 
extended action in configuration and phase space are equivalent to the 
conventional corresponding forms of Hamilton's principle. 

To avoid possible misrepresentations, it should be noted that the above 
equivalence of the actions A(E) and Ae(E) holds only at the level of 
variational principles, but not at the level of variational problems (Section 
1.3). Indeed, the transition from A (E) to Ae(E) characterizes the transition 
from un G,.Jinary extremal problem of single integral path functionals to a 
subcase of the extension known as the Problem of Bolza [see, for instance, 
Bliss (1946, part II)]. 

It should also be indicated that the above equivalence of the variational 
principles for A(E) and Ae(E), strictly speaking, holds only at the level of 
contemporaneous variations with fixed end points, The corresponding 
principles for the case of noncontemporaneous variations with variable end 
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points are still equivalent in the sense that they still characterize the same 
system, but the additive term of our extended action in configuration space 
now implies a modification to the end-point contribution. This is left to the 
interested reader. Notice that the generalizations of Hamilton's principles 
introduced in Charts 3.3, 3.4 and 3.5 can be reformulated in terms of our 
extended action. These further generalization appear to be significant for 
the study of the transformation theory of Newtonian systems with arbitrary 
(local) forces, as can be seen in Santilli (1979). 

Chart 3.7 Generalization of Hamilton's Principle for the Unified 
Treatment of the Inverse Problem in Configuration and 
Phase Space 

As is familiar by now, the independent formulations of the Inverse 
Problem in configuration and phase space exhibit rather significant 
differences due to the differences in the underlying analytic equations 
(Lagrange's and Hamilton's equations) and their integrability conditions 
(i.e., the conditions of self-adjointness for systems of second-order and 
first-order equations). 

Nevertheless, the analytic formulations in configuration and phase space 
are known to be equivalent. The corresponding Inverse Problems are, 
therefore, expected to be equivalent, too. This situation creates the problem 
whether there exists a variational algorithm which exhibits such equivalence. 
A formal answer to this problem is given by the following lemma. 

Lemma. Let R2m+ 1 be a (2m + 1) space spanned by time t and m 
independent variables yk, and let 

1t2 
A(E) = dt F(t, y, Y)E 

t 1 

(1 ) 

be the action along E = {yk}. Then the self-adjoint variational principle 
with fixed end points (Chart 3.3) 

(2a) 

,lim 1[t51(b1A) - b1(t51A)]EO 
1i1 =1i1 

= ,lim rt2dt[J1yVk(b1Eo) - b1y~Jk(t51Eo)]EO = 0 (21:» 
1i1 =1i1 Jt1 

can characterize the Inverse Problem in either configuration or phase space, 
depending on the assumed realization of the yk and F functions. 

Assume m = n, yk = qk, and F = L(t, q, q). Then Equation (2a) yields 
Lagrange's equations 

( d of OF) (d OL OL ) 
Fk(Eo) = dt oyk - oyk EO = dt oel - oqk Eo = 0, (3) 

while Equation (2b) characterizes their integrability conditions. 
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Assume now m = 2n, {yk} = {a~}, and F = 1a~w~vav - H(t, a). Then 
Equation (2a) now yields Hamilton's equations 

(4) 

while Equation (2b) characterizes their integrability conditions. 
Notice that. while for reali2.ation (3) the function F is (generally) regular, 

for realization (4) the function F is totally degenerate because it is linear in 
the first-order derivatives. 

A central difference between realizations (3) and (4) is that. while for the 
former case the action is the conventional form, for the latter case the action 
is the extended form introduced in Chart 3.6. 

We are now in a position to better elaborate the insufficiency of the 
conventional Hamilton's principle within the context of the Inverse 
Problem. Let us recall that the identification of the self-adjointness of 
Hamilton's equations demands, for its proper treatment, the use of 
tensor formulations. To state it explicitly, when Hamilton's equations are 
written in the tensor form of Equation (4). their self-adjointness can be 
established easily (Section 3.10), though this is not the case when the 
same equations are written in the conventional notation, i.e., Equations 
(3.9.1). At the level of variational principles, this situation implies the 
inability to reach a second-order generalization inclusive of the integrability 
conditions for the existence of a Hamiltonian, i.e., the canonical formula
tion of our generalization of Hamilton's principle of Chart 3.3 cannot be 
formulated directly. In turn, this situation can be reduced to the insufficiency 
of the conventional action in phase space, Equation (1) of Chart 3.6. On the 
contrary, if the extended action in phase space, Equation (3) of Chart 3.6, is 
assumed, then the implementation of the first-order principle with a second
order algorithm directly expressing the integrability conditions for the 
existence of a Hamiltonian is possible, as indicated by the lemma of this 
chart. 

In conclusion, the methodology of the Inverse Problem provides 
additional indications of insufficiency of the conventional action in phase 
space, besides those of algebraic and geometrical nature recalled in 
Chart 3.6. In turn, this provides additional confirmation of the known deep 
relationship between the analytic, algebraic, and geometric profiles in the 
sense that the insufficiency of the conventional Hamilton's principle in 
phase space from, say, a geometric profile (lack of a symplectic structure) 
has a precise image within an analytic setting (lack of a variational algo
rithm expressing the integrability conditions for the existence of a Hamil
tonian). 

The interrelations of the analytic, algebraic, and geometric approaches to 
Newtonian Mechanics are studied in more detail in Santilli (1979). For a 
preview, see Chart 3.18. 

Chart 3.8 Self-Adjointness of First-Order Lagrange's Equations 

Theorem. Under the assumptions that the Lagrangian L (t, q, q) is of 
(at least) class ~3 and is totally degenerate, i.e., a2 L/0i/ aqi = 0, i, j = 1, 
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2, ... , n, in a region R2n+' of points (t, q, q), the first-order Lagrange's is 
equations 

d OL OL o'L o2L OL 
dt Oil - oqk == oqk oqi ci + oqk ot - oqk = 0, (1) 

k = 1,2, ... ,n 

are always self-adjoint in R2n+'. 

PROOF From Equations (3.3.8) and (3.3.9). the equation of variations 
of Equation (1) is 

and, under the assumed continuity conditions, always coincides with the 
adjoint system 

(3) 

everywhere in R2n+'. Q.E.D. 

The above theorem can also be proved by showing that Equations (1) 
satisfy all conditions of self-adjointness (2.2.32) for first-order systems. 
This analysis is simplified if one notes that. from the condition of total 
degeneracy, the Lagrangian must be linear in the velocities, i.e., of the type 

(4) 

Equations (1) then become 

and Equations (2.2.32) are readily verified under the identifications 

oy oy. X =_1 __ ) 
ij oqi oqi' 

(6a) 

y = OYi _~. 
1 ot oqi 

(6b) 

Nota Bene: The above theorem indicates that the variational approach to the 
self-adjointness of the regular Lagrange equations as given in Theorem 3.3.1 extends 
to the case of totally degenerate Lagrange equations without any additional technical 
difficulty. The reader should again be warned that this is not the case for the transition 
to "bona fide" degenerate Lagrangians (see footnote 36 of page 138 for more 
details). 
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Chart 3.9 The Fundamental Analytic Theorem for First-Order Equa
tions of Motion in Configuration Space 

Theorem. A necessary and sufficient condition for a system of first
order equations of motion in configuration space 

k = 1,2, ... ,n (1 ) 

which is well defined and of (at least) class o/J2 in a star-shaped region 
R* 2n+ 1 of the variables (t, q, q) to admit an ordered direct analytic 
representation in terms of the conventional Lagrange's equations in a 
first-order Lagrangian L (t, q, q) in R* 2n+ 1 

dOL OL 
Lk(q) = dt oqk - oqk == Fk(t, q, q), (2) 

is that the system is everywhere self-adjoint in R* 2n+ 1, i.e., that each and 
all the conditions 

oFi OFk d OFk 
Oqk = Oqi - dt Oqi ; 

(3) 

i, k = 1, 2, ... , n 

is everywhere satisfied in R* 2n+ 1. 

PROOF8D The necessity of the condition of self-adjointness follows 
from the theorem of Chart 3.8. For the sufficiency of this condition, 
assume 

(4) 

Then, by using conditions (3) and after some simple algebra, we can write 

.OFi d .oFi 
Lk(7:q) = Fk + q' oqk - dt q' oqk 

of . of 
= F k + yi _k + Y' _k 

oyi oyi 

d 
= - [7:Fk(t, 7:q, 7:q)]; 

d7: 

By integrating Equation (4) with respect to 7: E (0, 1), i.e., 

L(t, q, q) = _qk fd7: Fk(t, 7:q, 7:q), 

(5) 

(6) 

identifications (2) then follow and, under conditions (3), a Lagrangian 
always exists. Q.E.D. 

80 The above given proof had been formulated following a private communication 
by Lovelock and Anderson (1976) concerning the studies by these authors within the 
context of the cohomological approach by Horndeski (1974). 
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Notice that Equation (6) provides a method for the computation of a 
Lagrangian (once its existence is assured by the verification of the con
dition of the theorem). In line with the remarks following Theorem 3.6.1, 
if the integral of Equation (6) is not well defined, then the above method 
for the proof of the theorem does not hold. 

Conditions (3) directly follow from conditions (2.1.18) under the 
absence of dependence on the accelerations. Notice that this "direct 
form" of the conditions of self-adjointness, rather than the" reduced form" 
(2.2.32), enters into the proof of the theorem. The proof under these latter 
conditions is left to the interested reader. 

The Lagrangian L (t, q, q) is called first order in the theorem to indicate 
the order of the maximal derivative of its functional dependence. Therefore, 
the extension of the theorem of this chart to second-order equations of 
motion is not equivalent to the Fundamental Analytic Theorem 3.5.1, 
because it deals with analytic representations of such systems with second
order Lagrangians, i.e., L = L (t, q, q, q), which are now, again, totally 
degenerate (i.e., linear, in this case, in the accelerations). Within such a 
context, the extension does indeed hold (see Problem 3.6). As a matter of 
fact, the reader can verify that the extension of the theorem of this chart 
holds for a totally degenerate Lagrangian of arbitrary order. 

It is of some relevance to indicate that the transition from the above 
Newtonian framework to that of relativistic field theories leads to the 
corresponding theorem for the analytic representation of spinorial field 
equations. 81 

Chart 3.10 A Unified Treatment ofthe Conditions of Self-Adjointness 
for First-, Second-, and Higher-Order Ordinary Differential 
Equations 

Theorem 1. A necessary and sufficient condition for a system of n 
ordinary differential equations of order m. 

{
k = 1,2, ... , n, 

d'q 
q(")=-, m=1,2,3, ... , 

dt' 
IX = 0, 1, 2, ... , m, 

(1 ) 

which is of class rt/2m in a region R of the variables (t. q(O). q( 1) •...• q(m)) 
to be self-adjoint in R is that all the conditions 

"(-1)" - --'- - __ 1_ = ° (2) 2m (IX) d' ( OF) of {fJ = 0, 1, 2, ... ,2m, 
.':p fJ dt' oqJ(·+P) oqi(P) 'i, j = 1, 2, ... , n, 

are everywhere satisfied in R. 

The proof of the theorem 82 can be conducted by using a generalization of 
the methods of Section 2.1, and is left to the interested reader. 

81 For the (spinorial) field theoretical case, see Santilli (1978, Vol. I). 

82 Lovelock and Anderson (1976) and Horndeski (1974). 
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Theorem 2. Under the assumption that the m-order Lagrangian 
L (t, q(O), q( 1), ... , q(m» is of at least class Cfj2m+ 2 and regular in a region of 
its variables, the m-order Lagrange's equations along class (t 2m +3 paths 

~ d' OL {k = 1,2, ... , n, 
L~m)(q) = 1... (-1)' dt''>' k(') = 0 = 1 2 3 

'=0 uq m, , , ... 
(3) 

are always self-adjoint in R. 

This second theorem can be proved by showing that Equations (3), 
under the assumed conditions, satisfy each of the conditions of self
adjointness (2), and it also is left to the interested reader. 

For m = 1, Equations (2) reproduce conditions of self-adjointness 
(2.1.18), and Theorem 2 of this chart coincides with Theorem 3.3.1 
according to the first proof of Problem 3.1 . 

. Theorem 2 extends trivially to the case of totally degenerate m-order 
Lagrangians, i.e., Lagrangians that are linear in q(m). The case of degenerate 
Lagrangians is excluded on precautionary grounds along the remarks of 
footnote 36 of page 138. Theorem 2, for the case of totally degenerate 
first-order Lagrangians, coincides with the theorem of Chart 3.9. 

Notice the unified treatment offered by Theorems 1 and 2 of this chart. 

Chart 3.11 Engels' Methods for the Construction of a Lagrangian 

A central aspect ofthe Inverse Problem is the construction of a L!'Igrangian 
once the integrabiljty conditions for its existence are verified. Therefore, IS is 
important to review the available methods for this construction, other than 
that of Section 3.6. In this chart, we review two methods introduced by 
Engels (1975 and 1978). 

Consider a second-order system of ordinary differential equations in the 
fundamental form, 

(1 ) 

which satisfies all the conditions of Theorem 3.5.1 and thus, in particular, 
all the conditions of self-adjointness (3.5.3). The problem under considera
tion is that of constructing a regular first-order (Chart 3.9) Lagrangian 
L (t, q, q) for the ordered direct analytic representations of system (1) in 
terms of the conventional (second-order) Lagrange's equations. 

The method of Chart 3.9 for totally degenerate first-order Lagrangians 
can be extended to higher order. For system (1), this method yields a totally 
degenerate second-order Lagrangian given by 

Lo(t, q, q, ii) = _qk fdL Fk(t, Lq, Lq, Lq) (2) 

This Lagrangian is not suitable for our objective because it demands the 
use of third-order Lagrange's equations. The problem is now turned into 
that of identifying an equivalence transformation of Lo which removes its 
dependence on the accelerations: 

Lo"" L = Lo + :r G(t, q, q)3 ::* = 0, 
(3) 

k'" 1,2, ... , n. 
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By using Equations (1) and (:2), this condition can be written 

l' oG 
o dr(rqk)Ak1 (t, rq, rq) - oc/ = o. (4) 

The solution 

G(t, q, q) = { f dr dr'(rqk)Aki(t, rq, rr'q)qi (5) 

is then ensured by conditiOn!! (3.5.3b). 
Therefore, a regular first-order Lagrangian for the representation of 

system (1) is given (up to gauge transformations) by 

L(t, q, q) = _qk (dr Fk(t, rq, Hj, rq) 
Jo . 

d f' I' + - dr dr'(rqk)Aki(t, rq, rr'q)qi 
dt 0 0 

(6) 

see Engels (1978). 
Another method can be introduced as follows. Consider first a solution 

<l>i = Ti + Xi(t, q) of Equations (3.5.11), where Ti is any particular solution 
of Equations (3.5.11). e.g., 

Ti = fjdqjAji(q, = c" ... , qj_, = ci _" qj' qi+" ... ' q), (7) 
Cj 

and the x's are, at this point, arbitrary (but of class C6'3) functions. Introduce, 
then, the functions 

(8) 

By using the conditions of self-adjointness, it is then possible to prove 
that the functions Xi can always be selected in such a way that 

It then follows that 

OL 
<I> =-

i oqi' 

or. or 
_, - _1 = o. 
oqj oqi 

OL r =--
, oqi' 

(9) 

(10) 
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Therefore, a regular first-order Lagrangian for the representation of system 
(1) is given (again, up to gauge transformations) by 

qj - f dq rj(t, q, = d 1, ..• , qj-l 
dj 

= ~-1' qj' qj+l'· .. , qn' q = c). 

see Engels (1975). 

(11 ) 

The reformulation of Equations (7) and (11). in terms of the Converse of 
the Poincare Lemma, is left as an exercise for the interested reader. 

In conclusion, there exist at least three methods for the construction of a 
Lagrangian (i.e., that of Section 3.6 and the two additional methods of this 
chart). For cases of simple equations of low dimensionality, they are 
equivalent from a computational viewpoint. However, for more complex 
functional structures and/or higher dimensionality, one method may result 
to be more manageable than the other owing to the differences in the 
integrals to be computed. In general, method (6) appears to be the most 
straightforward. Notice that all three methods considered appear to be 
computerizable. 

Chart 3,12 Mertens' Approach to Complex Lagrangian Structures 

The Lagrangians that originate within the context of the Inverse Problem 
for the representation of nonconservative Newtonian systems generally 
exhibit a rather complex structure, as indicated by Equations (3.7.19) or 
(3.7.22). It then follows that the explicit computation of Lagrange's 
equations is, in these cases, a rather laborious task. This aspect is com
pounded by the fact that the difference in the two main terms of Lagrange's 
equations, 

d 
dt (gradQ L) - grad q L = 0, (1 ) 

generally implies the cancellation of complex terms which are in this way 
redundantly computed twice. 

To simplify the computational process, therefore, it is significant to ask 
whether Equation (1) can be written in a form which avoids the indicated 
cancellations. This problem was solved by R. Mertens in a note of 1976.83 

Mertens' result is that the known form of Lagrange's equations in terms of 
Christoffel symbols (see Chart A.14), besides its geometrical significance, 
has precisely the practical advantage of avoiding the indicated cancellations 
of form (1). 

Let us illustrate Mertens' findings with the simple Lagrangian 

L ( .) - 1 • iM· ( ) . j q, q -"2q ij q q , 

83 Mertens (1976). 

(2) 
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Equation (1) then becomes 

M . q + M . q - grad q L = O. (3) 

The cancellations occur here between the terms M . q and grad q L. Write 
the ith component of the difference M . q - grad q L in the form 

~(OM 1 OM.k) ] L' Oq~ -"2 O¢ qk qj = Auqj· (4) 

It is then straightforward to prove that 

A .. = (OMij _ ~ OMjk)qk 
IJ oqk 2 oqi 

= ~ (OMij + OMik _ OMjk ) qk 
2 oqk oqj oqi 

(5) 

= [jk; i]qk, 

where [jk; i] is the Christoffel symbol of the first kind (Chart A.14). 
Equation (1) can then be written 

(6) 

by recovering, in this way, a subcase of Equation (4) of Chart A.14 for 
Lagrangian (2). 

The point is that the computation of the term [jk; i]qkqj in lieu of the 
term M . q - grad L has precisely the practical advantage of avoiding the 
indicated cancellations. As a result, form (6) of Lagrange's equations is 
preferable over the conventional form (1) for explicit computations in 
several cases of complex Lagrangian structures. 

The extension of the analysis to Lagrangian structures more general 
than form (2) and to the inclusion of external terms is left as an exercise for 
the interested reader. 

Chart 3.13 Bateman's Approach to the Inverse Problem B4 

Theorem. Given a linear, second-order, homogeneous system of n 
ordinary second-order differential equations, 

(1 ) 

which does not admit an ordered direct analytic representation in terms of 
the conventional Lagrange equations, there always exist a prolongation of 
Equation (1) into a system of 2n second-order ordinary equations in the 
variables qk and a new set yk for which such an analytic representation 
exists. 

Bateman's proof of the theorem was based on conventional techniques 
of the theory of differential equations. The following proof is a simple 
elaboration of Dedecker's analysis with the use of Section 2.1. Since 
Equation (1) does not admit an ordered, direct analytic representation by 
assumption, from Theorem 3.5.1 they must be non-self-adjoint. But such 

84 Bateman (1931). A treatment of Bateman's prolongation method is given by 
Dedecker (1949), who also treated the nonlinear case. 
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equations are linear and homogeneous. Therefore, they are equivalent to 
their equations of variations, say Mk('1) = O. The adjoint system Mk(~) = 0 
now does not coincide with M kl'1) = O. However, the system of 2n 
equations of variations {Mk('1), Mk(~k)} = 0 is self-adjoint and, as a 
consequence, a Lagrangian for its representation exists. The theorem then 
follows by performing the prolongation of system (1) into a 2n-dimen
sional system, where the second set of n-equations are equivalent to the 
adjoint Mk(~) = O. 

The case discussed by Bateman is the damped oscillator, 

ii + 2kq + n 2 q = 0, (2) 

which does satisfy the conditions of the theorem. The extension found by 
Bateman is then given by 

q + 2kq + n 2 q = 0, 

r - 2ky + n 2 y = O. 
(3) 

The reader can now verify our proof because the second equation of the 
above prolongation is precisely equivalent to the adjoint equation of 
variation of the first equation. 

Nota Bene: System (3) is equivalent to system (3.4.13), which can be 
represented by Morse-Feshbach Lagrangian (3.4.15). This point is 
significant because, as indicated in the footnotes of Section 3.4, the 
Morse-Feshbach Lagrangian constitutes the Newtonian limit of the 
Lagrangian densities of the gauge theories. Therefore, the structure 
of the Lagrangian representations of the recent unified gauge theories 
of weak and electromagnetic interactions can ultimately be seen, to a 
considerable extent, from the viewpoint of Bateman's prolongation 
approach. 

Chart 3.14 Douglas' Approach to the Inverse Problem 

Consider a system of second-order ordinary differential equations 
Fk (t, q, q, ii) = 0, k = 1, 2, ... , n, which satisfies all the conditions of the 
Theorem on Implicit Function 1.1.2. Then such system can be equivalently 
written in what we have called the kinematic form: 

iF = fi(t, q, q), fi E '6" (R 2n+') (1 ) 

The same Theorem 1.1.2 then allows one to replace the accelerations iii 
with the implicit functions fi everywhere in the region of definition of the 
system. 

By using this latter property, Douglas (1941) studied the generally 
overdetermined system of partial differential equations, 

~2L ~2L ~2L M 
___ fi + ---ci + -- - - = 0 
~qk ~qi ~qk ~qi ~qk ~t ~qk ' 

(2) 

in the unknown function L, where the implicit function fi is given. The 
analysis was conducted within the context of the conventional theory of 
partial differential equations, with particular reference to the so-called 
Riqier theory, without any use of the conditions of self-adjointness, as can 
be inferred from the same starting point, i.e., Equation (2). 
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The analysis was centered on the reduction of second-order system (2) 
to an equivalent first-order system derivable as follows. 

The Lagrange derivative Lk = (d/dt) (OL/oqk) - OL/oqk satisfies the 
identities 

(3a) 

(3b) 

d Ofk Ofk 1 Ofm Olk 
G~ == -- - 2- - ---

J dt oqi oqi 2 oqJ oqm' 

o2L 
Lij = Oi/ oqJ' (3c) 

Under the assumption that the Lagrange derivatives are null, i.e., that they 
reduce to Lagrange's equations Lk = 0, the above identities reduce to the 
following linear system in the unknown i;i' 

OLij _ OLik = ° 
oqk oqi ' 

Lik G; - LJk G7 = 0, 

d 1 Ofk 1 Ofk 
dt L,} + "2 oqJ i;k + "2 oqi LJk' 

Lij - Lii = 0, 

(4) 

which Douglas, proved to be equivalent to the original system (2). Douglas 
then entered into a detailed study of the problem for the case n = 2. 

Despite the minimal dimensionality assumption (the case n = 1 being 
trivial) Douglas' analysis turned out to be considerably involved to the 
point of apparently discouraging subsequent investigations by other 
researchers. 

In essence, Douglas' approach is an extension of Darboux's approach 
(1891) to the case of two-dimensional systems. 

It should be indicated here that the concept of "analytic representation" 
used in this chart and that of Section 3.4 do not coincide. For an elaboration 
of this point as well as additional remarks, see Santilli (1979). 

Chart 3.15 Rapoport's Approach to the Inverse Problem 

Consider the initial value Newtonian problem 

(1 a) 

(1 b) 
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and suppose that it satisfies the conditions of Theorem 3.5.1. Then it can be 
turned into the initial value variational problem 

f'2 
A(q) = dt L(t, q, q), 

'1 

(2a) 

(2b) 

where L provides a direct analytic representation of system (1 a). Let q' be 
an admissible (in the sense of Section 3.3) varied path. Then we can write 

A = A(q') - A(q) (3) 

The problem of the construction of a function L capable of satisfying the 
above relation under the presence of initial value conditions was studied by 
Rapoport (1938). He basically transformed the single integral of Equation 
(3) into a double integral of the type 

S(q, q') = f'2dt r1 dr Fk[t 1q' + r(q - q'), q' + r(q - q'), 
'1 Jo 

q' + r(q - q')] (qk - q'k), (4) 

which he proved to be equal to the difference between the desired func
tional A computed along the paths q and q', i.e., S(q, q') = A(q) - A(q'). 
We shall content ourselves with an illustration of Equation (4). For more 
details, the reader is referred to the article by Rapoport. 

Consider the Newtonian initial value problem 

ij + kq = 0, q(t 1 ) = b 1 , (5) 

Then, in view of the relations 

s = 1,2, (6) 

Equation (4) yields 

S(q, q') = dt dr{q' + r(q - ij') + k2[q' + r(q - q')]}(q - q') J'2 11 
'1 0 

= - dt[q' + q + k(q' + q)] (q - q') 1 f/2 

2 '1 

= _ dt[q'2 - q2 + k2(q' - q)] + - (q' + q) (q - q') 1 f'2 11 I" 
2 '1 2 /2 

= - dt - (q2 - k 2q2) 1'2 11 Iq=q'(t) 

'1 2 q=q(') 

(7) 

by producing in this way the correct expression of the Lagrangian for 
problem (5). 

Rapoport's approach is significant because it ultimately provides an 
alternative method for the construction of a Lagrangian (once its existence 
is ensured by the conditions of self-adjointness). Notice, however, that 
again the system must be well defined in a star-shaped region for the 
integral with respect to r of Equation (4) to exist. 
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Chart 3.16 Vainberg's Approach to the Inverse Problem 85 

The branch of functional analysis which is particularly significant for the 
Inverse Problem is that dealing with nonlinear operators. A few basic 
definitions, given below, are useful to outline this profile. The reader is, 
however, urged to consult the quoted references for all technical details. 

A generally nonlinear system of n second-order ordinary differential 
equations in the n generalized coordinates q, i.e., F(q) = 0, is characterized 
by a generally nonlinear operator F acting on the function space Q(q) of 
the q's. In such (linear) space Q(q). we can define the scalar product 
{q" q2} == Iii q, (t)q2(t)dt, R E (t" t 2); the norm Ilqll = {q, q} '/2, and 
the distance D = II q, - q 211; q, q" q 2 E Q (q). This characterizes what is 
(often) called a pre-Hilbert space. Such a space is turned into a Hilbert 
space by adding to it all the missing limit elements. A line joining two paths 
q, and q2 is a one-parameter family of paths q(t; T), T E (0, 1) such that 
q(t; 0) = q, and q(t; 1) = q 2' The circulation of F(q) along a line is 
defined by 

A = r_ Jq2F(q)bq dt = r_ f'F(q(T)) oq dT dt. 
JR q, JR 0 OT 

(1 ) 

If the circulation is independent of the path, we can compute it along q, = ° 
and q2 = Tq and write 

A(q) = L fF(Tq)q dT dt = f/(q)dt. 

L(q) = q fF(Tq)dT. (2) 

The functional A(q) is called the potential of the operator F(q) which, in 
turn, is called the gradient of the functional. When a functional A (q). 
such that its gradient generates the operator F(q) exists, then F(q) is called 
a potential operator. Thus, within this context, the problem of the inte
grability conditions for the existence of a Lagrangian is turned into the 
necessary and sufficient conditions for a generally nonlinear operator to be 
a potential operator. The derivation of these latter conditions demands the 
introduction of the concept of a differential of a nonlinear operator, which 
can be achieved through the so-called Frechet differential 

lim F(q + £'1) - F(q) = F' '1 = of(q + 8'1) I (3) 
,~o e q oe <=0 

where the term F~ is called the FrecMt derivative of F. The Frechet 
differential of a functional is then given by 

. A(q + e'1) - A(q) J. 
11m = L~'1 dt 
,~O e ii 

(4) 

The Gateau differential of F(q) is given by 

. F(q + e'1) - F(q) 
11m = VF(q, '1), (5) 
,~O e 

85 Vainberg (1964). See also Atherton and Homsey (1975), and quoted references. 



204 The Fundamental Analytic Theorems of the Inverse Problem 

and is generally nonlinear in f/, while the Frechet differential is always 
linear in fl. Thus, a linear (uniformly continuous) Gateau differential is a 
Frechet differential. 

Theorem [Vainberg (1964)]. Suppose the following conditions are 
fulfilled: 

1. F is an operator from O(q) into the conjugate space 0* (q). 
2. F has a linear Gateau differential VF(q, f/) at every point of the ball B: 

Ilq - qoll < r. 
3. The functional {VF(q, f/), ~} is continuous at every point of B. 

Then, in order that the operator F be potential in B, it is necessary and 
sufficient that the bilinear functional {VF(q, f/),~} be symmetrical for 
every q in B, i.e., 

{VF(q, f/),~} = {VF(q, ~), f/}, '1, ~ EO. (6) 

Chart 3.17 Tonti's Approach to the Inverse Problem 86 

As recalled in the foreword, Vainberg's approach to the Inverse Problem 
within the context of functional analysis (Chart 3.16) was so abstract that it 
remained either inaccessible or unknown to researchers in applied mathe
matics for a considerable time. 

E. Tonti recognized the significance of Vainberg's approach to the Inverse 
Problem and reformulated the approach in a form directly applicable to 
practical problems for single-integral as well as multiple-integral path 
functionals. 

We consider here, for simplicity, the case of single-integral path func
tiona Is. The Frechet differential can be explicitly written 

lim F(q + 8f/) - F(q) = F~f/ = of f/ + o~ ~ + o~ ~. (1) 
,~o E oq oq oq 

According to Vainberg's theorem, a necessary and sufficient condition for 
an operator F(q) to be potential, i.e., the gradient of a functional, can then be 
explicitly written 

(2) 

+ --+2-- -+-- ~ =0 ( oF d OF) d of cf2 ] } 
oq dt OCt dt OCt dt2 f/ 

86 Tonti (1968). 
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This condition, in turn, holds if and only if all the relations 

oFi _ oFi 
oct - ofi' 

of of d of 
-'+-'=2--' 
oql oqi dt oiF' 

oFi _ OFj = ~ (~ oFf _ OFi) 
oqi oqi dt dt oqi oct 

(3) 

are verified identically in the domain of definition of F. Equations (3) can 
then be used as the explicit form of the integrability conditions for the 
existence of a path functional. 

Nota Bene: Tonti's analysis is particularly significant for the study of this 
monograph. It essentially indicates that the formulation of the Inverse 
Problem within the context of the functional analysis is equivalent to our 
variational approach to self-adjointness.lndeed, when explicitly computed, 
Frechet differential (1) coincides with variational forms (2.1.4), Vainberg's 
concept of potential operator, Equation (2); coincides with the concept of 
self-adjoint variational forms, Definition 2.1.2, and the explicit forms of the 
integrability conditions identified by Tonti, Equations (3); and coincides 
with Helmholtz's conditions of self-adjointness, Equations (2.1.18). 

For brevity, we leave to the interested reader the proof that the geo
metrical approach by Klein (1962) or the cohomology approach by 
Hordneski (1974) are also equivalent to the variational approach to self
adjointness used in this monograph, in the sense that the integrability 
conditions for the existence of an action functional or a Lagrangian, when 
explicitly computed, either coincide with those obtainable with the 
variational approach or are equivalent to them. 

I n conclusion, it appears that the methodology of the I nverse Problem 
can be formulated in a variety of different mathematical methods which, 
however, result to be equivalent to the variational approach to self
adjointness. 

Chart 3.18 Analytic, Algebraic, and Geometrical Significance of the 
Conditions of Variational Self-Adjointness 

The analytic, algebraic, and geometric approaches to Newtonian systems 
are known to be deeply interrelated. Therefore, it is significant to reinspect 
these interrelationships within the context of the Inverse Problem for 
phase space formulations. 

Consider a class C(foo, regular Newtonian system in the general first-order 
form (Section 2.5) 

p=1,2, ... ,2n. (1 ) 
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The conditions of variational self-adjointness for this system are (Section 
2.7) 

(2a) 

(2b) 

oC#V _ oD# 
-----

oD' 

ot oav oa" (2c) 

The methodological significance of the above conditions, depending on the 
profile considered, can be formulated as follows. 

Analytic Significance. Conditions (2), when applied to a normal form, 
guarantee the existence of a Hamiltonian. Indeed, for a normal form we have 
C#v = wllV and Dil = -311 , The conditions for se/f-adjointness in this case 
are the integrability conditions for the existence of a Hamiltonian (Theorem 
2.12.1). 

Algebraic Significance. Conditions (2) guarantee the existence of a Lie 
algebra structure. In particular, conditions (2a) and (2b) are equivalent to 
the Lie algebra laws, as indicated in Section 2.9. 

Geometrical Significance. Conditions (2) guarantee the existence of 
symplectic or contact structure. By keeping into account the Charts of 
Chapter 2, conditions (2a) and (2b) guarantee a symplectic structure for 
the autonomous case while the full set of conditions (2) guarantees a 
contact structure for the nonautonomous case. 

We can, therefore, reach the conclusion that the conditions of variational 
self-adjointness for (class ~"', regular, local) Newtonian systems in their 
first-order general form constitute a symbiotic characterization of certain 
fundamental aspects of analytic mechanics, abstract algebras, and 
differential geometry. 

EXAMPLES 

Example 3.1 

We shall illustrate the independent application of the Inverse Problem for con
figuration and phase space formulations with a simple example. 

Consider the case of a particle under a drag force represented by the equation of 
motion in the kinematical form 

q - f(t, q, q) == (q + I'q)NSA = 0, q > O. (\) 

This equation is, trivially, of class ~oc and regular, but non-selFadjoint. A Lagrangian 
for its direct analytic representation in terms of the conventional Lagrange's equation 
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does not exist (see the remarks after Theorem 3.5.1). However, the same equation of 
motion can be written in the equivalent self-adjoint fundamental form 

(2) 

which satisfies all the conditions of Theorems 3.5.1 and 3.6.1. A Lagrangian for the 
direct representation 

( d iJL iJL) yt .. dt iJq - iJq SA = [e (q + yq)NSA]SA 

then exists. Equations (3.6.3) in this case are 

iJ2K 
_=eyt 
iJq2 ' 

iJC iJD yt. iJ2K 
---= -e yq---
iJq iJt iJq iJt ' 

and solutions (3.6.4) become 

D = C = 0, 

yielding the Lagrangian87 

(3) 

(4) 

(5) 

(6) 

A simple inspection then proves the validity of the above computation. Indeed, from 
structure (3.1.3) of Lagrange's equations we have 

iJL _ yt. 
oi} - e q, 

iJ2L =~~=O 
iJi} oq iJq 

and this verifies representation (3). 

(7) 

Notice that Lagrangian (6) is of the generalized type (3.7.19) or (3.7.22) or (3.7.27), 
where the presence of a term which multiplies the Lagrangian for the free motion, i.e., 
tq2, is necessary because the acting force is not derivable from a potential. 

This concludes a first use of the Inverse Problem for configuration space formula
tions. 

We now turn to the independent application ofthe inverse problem for phase space 
formulations. By following the guidelines given after Theorem 3.12.2, we introduce the 
following prescription for the reduction of Equation (1) to an equivalent system oftwo 
first-order differential equations, 

G = rx(t, q, y)q + pet, q, y) = 0, 

rx(R) # 0, 
(8) 

87 This and several other Lagrangian have been identified without the use of the Inverse 
Problem. See, for instance, Denman and Buch (1972) and quoted papers. 
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where the functions rx and f3 are at this moment undetermined. After substituting in 
Equation (1), we obtain the system 

q - gl (t, q, y) = 0, gl = - f3lrx, 

- y - g2(t, q, y) = 0, 
(ogdoq)gl + (ogdot) + ygl 

g2 = ----,--------
ogdoy 

(9) 

which can be represented with the notation 

(10) 

The conditions of self-adjointness for this form, Equations (3.12.5) or, explicitly, 
(3.12.9), now give rise only to the condition 

(11) 

All the functions rx and f3 that, through Equations (9), satisfy the above condition, 
imply the self-adjointness of system (10) and, from Theorem 3.12.2, the existence of 
corresponding Hamiltonians. This gives an indication of the existence of a Jamily oj 
different Hamiltonians that are all capable of representing the considered system. 
However, we are interested, at this stage, in identifying one Hamiltonian. To simplify 
the computation we assume the reduced form of prescription (8), 

G = q + f3(y) = 0, (12) 

where f3 is again unknown but it is independent of t and q. Equation (11) then becomes 

admitting as a solution 

Og2 _ ~ (...!.L) _ Ogl __ of3 
oy - oy of3loy - oq - oq' 

c, d = const. 

(13) 

(14) 

By assuming the values c = -1 and d = 0, for convenience, system (10) becomes 

( ·v - ) (- y - Y ) 0 w~va -.:=.~ SA = . y =. 
+q - e SA 

(15) 

Such a system satisfies all the conditions of Theorem 3.12.2. A Hamiltonian then 
exists and, from Equation (3.12.6), is given by 

(16) 

= q f d-c y + p f d-c e'P = yq + eP - 1, 
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where we have used the identification y = p because we now have a canonical 
structure. It is significant here to indicate that alternative method (3.12.7) can also be 
applied, yielding 

(17) 

A simple inspection then verifies that the above Hamiltonian does indeed provide a 
representation of system (1) in phase space, because 

(
V 3H*) (-V - y ) OJ~va - --~ = . p = o. 

3a SA +q - e SA 
(18) 

The third part of this example deals with the necessary comparison of the above 
independent applications of the Inverse Problem. 

By using the methodology of Section 3.8 and, as expected, from the analysis of 
Section 3.12, we immediately see that Lagrangian (6) and Hamiltonian (16) are not 
related by a Legendre transform. Rather than being a drawback of the Inverse Problem, 
this indicates its richness, particularly from the viewpoint of transformation theory, 
because the resultant Lagrangian and Hamiltonian represent, by construction, the 
same system. 

First, let us see whether the framework of Lagrangian (6) has a phase space image 
which is consistent with the Inverse Problem. By using a direct Legendre transform, 
from Lagrangian (6) we can write the Hamiltonian 

3L 
P - 3t'] = P - eY't'] = 0, 

(19) 

From the form of canonical prescription (19a), we can then identify the functions ex 
and f3 of Equation (8) as 

f3 = p. (20) 

A simple inspection shows that the above values do satisfy condition (11), yielding the 
self-adjoint covariant normal form 

( -V - 0 ) 
(OJ~vav - 8~)SA = . -yt = O. 

+q - e P SA 
(21) 

The use of Equation (3.12.6) then yields the Hamiltonian 

(22) 

which coincides with that obtained by using a Legendre transform of Lagrangian (6). 
This indicates that the phase space image of the analytic framework of representation 
(3) is indeed consistent with the Inverse Problem. 
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Finally, we inspect the configuration space image of analytic representation (15) 
with Hamiltonian (16). First, an inverse Legendre transform yields 

aH* q - ap = q - eP, 

L* = qp - H* = q In q - yq - (q - 1). (23) 

The new Lagrangian representation is now given by 

(fr ~~~ - ~~ tA = [~(q + yq)NSA lAo (24) 

A simple inspection shows that, despite the presence of a new factor term as compared 
with Equation (3), the right-hand side of the above identification is indeed self
adjoint. 

A point of considerable methodological significance is that representation (24) is 
not well defined in a star-shaped region because of its divergent character at q = O. 

The reader is urged, at this point, to verify that solutions (3.6.4) do not hold for 
representation (24). However, the underlying system of equations for the construction 
of a Lagrangian, Equations (3.6.3), is given by 

a2K 
aq2 q' 

ac aD 
---=Y aq at ' 

(25) 

and it is consistent from the self-adjointness of the right-hand side of Equation (24). 
Therefore, it can be integrated with methods other than that of Equations (3.6.4). 
Indeed, the use of the second method of Chart 3.11 yields, as a solution of Equations 
(25), 

K = q In q, 

with underlying Lagrangian 

D = -1, c = -yq + 1, 

L* = K + Dq + C = q In q - yq - (q - 1), 

(26) 

(27) 

which coincides with that obtained through an inverse Legendre transform of 
Hamiltonian (16). This illustrates the statement of Section 3.6 to the effect that, under 
the conditions of self-adjointness, a Lagrangian or Hamiltonian is expected to exist 
without any restriction to a star-shaped region. 

Example 3.2 

The analysis of the previous example can be extended to the more general non-self
adjoint equation of motion 

(1) 

which represents the one-dimensional, linear, damped oscillator. 
The method of reducing this equation to an equivalent self-adjoint form is studied 

in Santilli (1979). Therefore, we ignore, at this stage, the problem of constructing a 
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Lagrangian and search for a Hamiltonian representation. Explicit calculations indicate 
that prescription (8), with values (20) of the previous example, also leads to a self
adjoint covariant normal form of the equation of motion that satisfies all the con
ditions of Theorem 3.12.2. The Hamiltonian, then, exists and is given by 

This yields, by using an inverse Legendre transform, the Lagrangian 

L = e,t!(q2 - w2l), 

which produces the representation 

(doL oL\ yt". 2 
dt oq -aq-JSA = [e (q + yq + W q)NSA]SA' 

(2) 

(3) 

(4) 

The reader can now verify that, because of the factor ert, the above equivalent equation 
of motion is self-adjoint. If such a self-adjoint form were known, one could have first 
used Theorem 3.6.1 for the computation of Lagrangian (3) and then computed 
Hamiltonian (2) through a direct Legendre transform with equivalent results. But the 
above value of the prescription, which induces a self-adjoint normal form, is not 
unique. A more elaborate solution then leads to the Hamiltonian88 

H = In q - In [cos (wpq)] - 1"ypq, (5) 

with corresponding Lagrangian 

(6) 

which can be considered as the generalization of corresponding functions (16) and (23) 
ofthe previous example. Notice that for both Examples 3.1 and 3.2, the knowledge of 
the Lagrangian alone is insufficient for establishing an analytic representation in line 
with Definition 3.4.1. 

Example 3.3 

Consider the class ~2 regular system of linear, coupled, and damped oscillators 

I C ki(R t ) I =I- O. 
(1) 

The system is s adjoint if and only if conditions (2.1.17) hold, i.e., 

bij + bji = 2eij' (2) 

aij - aji = - bij + cij' 

Therefore, the particular :,ystem 

(3) 

88 Havas (1957). 
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is self-adjoint. To determine the Lagrangian we use Theorem 3.6.1 which, in this case, 
yields the equations 

with a solution 

iPK 
-- = c .. (t) 
oiloqi IJ' 

oD· oD· 
~I_~J=O 

oqi oqi ' 

oDi oC k aK o2K 
at - oqi = aik(t)q + oqi - oqi ot' 

k = 1,2, ... , n, 

C = -!aiJ{t)qiqi. 

Therefore, one admissible Lagrangian is given by 

L(t, q, q) = ![qiCij(tW - qiaiit)qi]. 

Example 3.4 

A Lagrangian for the self-adjoint system 

(4) 

(5) 

(6) 

{ ( ri + [OCdt, q) OCiP, q)] 'i'i + OCki(t, q) 'i + ( ) i} - 0 (1) 
Cki t, q q oqi -~ q q -o-t~ q aki t q SA -

is 

(2) 

Example 3.5 

Consider the radial equation for a particle subject to a central force field, 

[m;; _ M: + OV(r)] = O. 
mr or SA 

(1) 

This equation is self-adjoint and can be directly represented with the well-known 
Lagrangian 

1 ('2 M2 ) L = 2m r + ~2? - v(r). (2) 

However, a Lagrangian capable of satisfying the direct representation of the equiv
alent form 

[m2r3r _ M2 + mr3 aV(r)] = 0 
VI' NSA 

(3) 

does not exist because the equivalent system is non-self-adjoint. In particular, Equa
tions (3.6.3) become inconsistent. This can be seen by first computing the solution of 
Equation (3.6.4a), i.e., 

(4) 
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Then, Equation (3.6.3c), i.e., 

aD ac 3 av 2 3 22. 
- - - = mr - - M - 2m r r at ar or (5) 

is now inconsistent due to the appearance of the velocity f on the right-hand side. 
Similarly, one can see that a Lagrangian capable of satisfying the direct representation 
of the equivalent non-self-adjoint form of the harmonic oscillator (for q # 0), given by 

(~ + ( 2 ) = 0, 
q NSA 

(6) 

does not exist. 

Example 3.6 

In this example, we illustrate in more detail the" mechanics" of the construction of a 
Lagrangian from the equations of motion according to the method of Section 3.6 for 
the case of more than one dimension. The two-dimensional, nonlinear, nonconserva
tive system 

(41 + 242)q2 + 2(41 + 42)qZ + q242 - ql42 + qlq2 + !q~ = 0, 
(1) 

2(41 + 42)ql + (2ql + 4Z)Q2 + ql41 - q241 + qlqz + !qI = 0 

satisfies all the conditions of Theorem 3.6.\, namely, the system is (a) of class Coo, (b) 
regular, and (c) well behaved and self-adjoint in a star-shaped region. Thus, a 
Lagrangian for its ordered direct analytic representation in terms of the conventional 
Lagrange's equations exists in terms of solutions (3.6.4). System (1) is the fundamental 
form 

k = 1,2. (2a) 

(A) = (41 + 242) 2(41 + 42») 
IJ 2(41 + 42) (241 + 42) 

(2b) 

(Bk ) = (q2 - ql)~2 + qlq2 + ~q~). 
(ql - q2)ql + qlq2 + 2ql 

(2c) 

The use of Equation (3.6.4a) then yields 

(3) 
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which is the "kinetic term" of Lagrangian (3.6.2). To compute the Dk terms of the 
same structure, we must first compute the Zki terms of Equation (3.6.3b). Since 
function (3) does not depend on the q's, we have 

(Zi) = (~ (BB'O_ BB,) 
2 oql oq2 

Equation (3.6.4b) then becomes 

= (j<ql ~ q2) t(q2 ~ qt)) (:J 
= (~q~ - qlq2)). 

3(ql - qlq2) 

We can thus construct the second term of Lagrangian (3.6.2) according to 

D ( ) ·k _ ( .. )(j<q~ - qlq2)) k q q - qlq2 11 2 ) 
3\ql - qlq2 

= t(q~ql + qrq2) - tqlqiql + q2)· 

(5) 

(6) 

To compute the last term C of the same structure we must first compute the w,. terms 
of Equation (3.6.3c). Since K is independent of the q's and the Dk'S are independent of 
time, we have 

Notice that the above terms are also independent of the velocities as guaranteed by 
the self-adjointness of the equations of motion. The use ofEquation (3.6.4c) then yields 
the desired result 

(8) 
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By summing up the various terms, the Lagrangian is given by 

L = K(q) + Dk(q)(l + C(q) 

= i(qi + q~) + qIqz + qlq~ (9) 

+ t(q~ql + qIqz) - tqlqz(41 + 4z) - !(qIqz + qlqD. 

The interested reader is urged, at this point, to verify, through the proper use of 
Lagrange's equations in their full form (3.1.3), that Lagrangian (9) does indeed provide 
an ordered direct analytic representation of system (1). 

Problems 

3.1 Establish alternative proofs for the self-adjointness of Lagrange's equations 
by writing them in the form 

. ( a2L ). (aZL . aZL aL) 
AkA' + Bk = ail aqi q' + aqk aqi q' + al at - al = 0, 

and by proving that they satisfy all conditions of self-adjointness (2.1.18) and (2.2.9), 
respectively. 

3.2. By using Theorems 2.2.2 and 3.5.1, prove the fundamental analytic theorem 
for kinematical forms, i.e., 

Theorem. A necessary and sufficient condition for a local, holonomic, generally non
conservative Newtonian system in the kinematical form 

qk - !Je(t, q, q) = 0, k = 1,2, ... , n, 

which is well defined and of (at least) class rcZ in a star-shaped region R*Zn+ 1 of points 
(t, q, q), to admit an ordered direct analytic representation in terms of the conventional 
Lagrange's equations in R*Zn+ I, 

d aL aL at aqk - al == qk - !Je(t, q, q), k = 1, 2, , .. , n, 

is that the system of equations of motion is self-adjoint in R*2n+ I. 

3.3 Prove the Inverse of the D'Alembert Principle (A.4.9) in configuration space, 
namely, that the equations of motion 

A(t )"i + B (t .) = Z(t )"i + [aZkit, q) _ ~ aZij(t, q)]'i.j k, , q q k' q, q k" q q aqi 2 al q q 

[aZk(t, q) aZlt, q) aZdt, q)] 'i + . ----+ q 
aq' al at 

aZk(t, q) aZo(t, q) aV(q) 
x 

at 

=0 
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admit an ordered, direct analytic representation in Lagrange's equations with Lagrangian 

L = T(t, q, q) - V(q) 

= tqiZij(t, q)qi + Zk(t, qW + Zo(t, q) - V(q). 

3.4 Study the generalization of Problem 3.3 to the case of forces derivable from a 
potential U(t, q, q). 

3.5 Prove the crucial relation (3b) of Chart 3.3 for a generalization of Hamilton's 
principle to include the integrability conditions for the existence of a Lagrangian, by 
proving the following theorem. 

Theorem. A necessary and sufficient condition for the self-adjointness of a system of 
differential equations is that the quantity Q('1, ii) of Definition 2.3.1 is conserved, i.e., 

lim !..- Q('1, ~) = 0. 
;;_~ dt 

3.6 Newton's equations of motion in their fundamental (second-order) form can 
also be represented with second-order Lagrangians L(t, q, q, ij), which are totally degener
ate (i.e., linear) in the accelerations and corresponding second-order Lagrange's equa
tions. By using the methodology of Chart 3.l0, prove the following theorem. 

Theorem. A necessary and sufficient conditionfor a Newtonian system of second-order 
equations 

k = 1,2, ... , n, 

which is well defined, regular and of at least class ~3 in a star-shaped region R*3n+ I of 
the variables (t, q, q, ij) to admit the ordered direct analytic representation in terms of 
totally degenerate second-order Lagrange's equations in R*3n+ I, 

is that the system is self-adjoint in R*2n+ I, i.e., that each of the conditions (2.1.18) are 
satisfied everywhere in R*3n+ I. In particular, establish a method for the computation of 
this higher-order Lagrangian. 

3.7 Prove that the equations of variations of Hamilton's equations can be derived 
through a direct Legendre transform of the equations of variations of Lagrange's 
equations and vice versa. 

3.8 By following the procedure in Example 3.l, construct an analytic representa
tion of the non-self-adjoint system with an "inverted" drag force, 

ij + yq-I = 0, 

by first identifying a self-adjoint covariant normal form which satisfies all the conditions 
of Theorem 3.12.2, then by computing a Hamiltonian by means of Equations (3.12.6), 
and then by computing a Lagrangian through an inverse Legendre transform. Ascertain 
whether such a Lagrangian characterizes an analytic representation which is or is not 
well defined in a star-shaped region of its variables. 
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3.9 The Newtonian limit of the field theoretical sine-Gordon equation can be 
written 

i1 + sin q = O. 

Prove that this equation satisfies all the conditions of Theorem 3.6.1 and compute a 
Lagrangian. The given equation of motion with related Lagrange's equation is highly 
nonlinear. Show that the associated Jacobi's equations are linear and compute their 
solution. 

3.10 Compute the factor term h of analytic representation (3.4.1a) induced by 
Lagrangian (5) of Example 3.2. 

3.11 Compute a Lagrangian for the self-adjoint system 

sin (4,(iz)(4~i1, + 4,42i12) + q2 = 0, 

sin (4,42)(4ii12 + 4,42i1,) + q, = O. 



APPENDIX 

Newtonian Systems 

A.I Newton's Equations of Motion 

As indicated in the Introduction, present-day theoretical physics provides a 
variety of methodological formulations to represent the physical world. 
Each formulation can be identified from the salient characteristics of the 
considered system such as, for instance, whether the system is 

1. discrete or continuous, 
2. nonrelativistic or relativistic, 1 

3. classical or quantum mechanical. 

In this book, we study some methodological foundations of only one class 
of physical systems: the discrete, nonrelativistic, classical systems also known 
as Newtonian systems. Therefore, we shall restrict our attention only to those 
systems for which the continuous, relativistic, and quantum mechanical 
aspects can be ignored. 

Within such a framework, the equations describing the motion of N 
particles in a Cartesian reference frame are the celebrated Newton's equations2 

k ~ 1,2, ... , N, (A.U) 

1 This terminology, even though almost universally accepted, is not immune from criticism, 
due to the fact that what is commonly referred to as a "nonrelativistic" (" relativistic") system is 
in actuality a Galilei (Einstein) relativistic system. See, in this respect, Chart A.1. 

2 Newton (1687). For historical notes see, for instance, Dugas (1950). 

219 
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where :F k is the total force acting on the particle k, Pk is the linear momentum, 
and Pk is its total time derivative. 3 

In this Appendix, we classify systems (A.U) from a physical profile and 
point out a general form of the equations for the (constrained) motion. 

A.2 Constraints 

The study of Newtonian systems demands the characterization not only of 
all the acting forces but also of all the possible constraints, namely, re
strictions on the dynamical evolution. Several types of constraints exist, 
e.g., those restricting the degrees of freedom of coordinates, velocities, and 
accelerations. To avoid possible confusion, it is important to classify such 
constraints and properly identify the related terminology. 

It should be mentioned in this respect that, regrettably, there does not 
seem to be a universally accepted terminology in the existing literature and 
sometimes identical terms are used with different meanings by different 
authors. This has led to a voluminous and often contrasting literature on the 
problem of the identification of the class of Newtonian systems that are 
derivable from a variational principle.4 

Consider a system of N particles in a three-dimensional Cartesian reference 
frame. Suppose that certain means (hinges, strings, etc.) restrict the possible 
values of the coordinates ri, velocities ri, and accelerations rio 

The first classification of such constraints which is significant for our 
analysis can be formulated in terms of whether: 

La. all constraints can be expressed in terms of equalities, e.g., 

tPit, r, r, r) = 0, s = 1,2, ... , r; (A.2.1) 

Lb. all constraints can be expressed in terms of inequalities, e.g., 

tPit, r, r, r) ~ 0, s=1,2, ... ,r; (A.2.2) 

I.e. some of the constraints are of type La and others are of type Lb. 

A particleS that can only move along a sphere of radius R is subject to a 
constraint expressible in terms of an equality, i.e., 

Irl- R = 0, (A.2.3) 

and thus this constraint is of type La. 
A particle placed on the surface of a sphere of radius R is subject to a 

constraint which is only expressible in terms of an inequality, i.e., 

Irl- R ~ 0. (A.2.4) 

Thus the constraint in this case is of type Lb. 

3 We shall denote with script letters, e.g., .Fko 'f', .Y, etc. quantities in a Cartesian reference 
frame. 

4 See, for instance, Rund (1966, Section 5.5). 
5 By particle we mean a massive point. 
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A second significant classification is given in terms of whether: 

II.a. all constraints do not depend explicitly on time; 
II.b. all constraints do depend explicitly on time; 
II.c. some constraints are of type ILa and others are of type II.b. 

For instance, constraints (A.2.3) and (A.2.4) are of type II.a. A typical 
example of a constraint of type II.b occurs in the case of a bead sliding on a 
moving wire. 

The third classification is given in terms of whether: 

lILa. all constraints either are expressed by, or can be reduced to, 
equalities involving the positions and, possibly, time, i.e., 

¢.(t, r) = 0, s=1,2, ... ,r; (A.2.5) 

IILb. no constraint can be reduced to the form (2.2.5); 
III.c. some constraints are of type lILa and others are of type IILb. 

In accordance with the most widely accepted (although not universally 
accepted) terminology, constraints lILa (III.b) will be called holonomic 
(nonholonomic)6 and those of type ILa (II.b) will be termed scleronomous 
(rheonomous) 7 constraints. 

Thus, Equation (A.2.3) represents a scleronomous holonomic constraint. 
Expression (A.2.4), if modified for the case of the moving sphere, would 
represent a rheonomous nonholonomic constraint. Those are simple 
examples for which, apparently, there is no major differentiation in the 
existing literature as far as the terminology is concerned. 

However, according to our terminology, velocity-dependent contraints 
of the type 

¢.(t, r, t) = 0, s = 1,2, ... , r (A.2.6) 

can be either holonomic or nonholonomic depending on whether they are 
integrable or not, that is, whether or not there exist functions ¢~(t, r) such that 

¢.(t, r, t) = :t ¢~(t, r) = 0. (A.2.7) 

When this is the case, constraints (A.2.6) are equivalent to the conven
tional holonomic coordinate constraints 

¢~(t, r) = 0, s = 1,2, ... , r. (A.2.8) 

This is so because of the property that, for consistency, a constraint must be 
obeyed at all times. Thus, when Equation (A.2.8) holds, Equation (A.2.7) 
also holds, and vice versa. 

For instance, if a system of two particles is subject to the velocity constraint 

6 Von Hertz (1894). 
7 Boltzmann (1922). 

(A.2.9) 
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then, for consistency, such a constraint is equivalent to the coordinate 
constraint 

r(l) - r(2) - c = 0, (A.2.10) 

which is holonomic. 
More generally, according to case IIl.a, all constraints which depend on 

time t, positions r and their time derivatives, and which are integrable 
(nonintegrable) to coordinate constraints of type (A.2.5) are holonomic 
(nonholonomic).8 

One of the most common types of velocity constraints is characterized by a 
linearity in the velocity, i.e., it can be expressed in the form 

cpit, r, t) = rslt, r) . ti + Ait, r) = 0, 

s = 1,2, ... , r. 

Such constraints admit the equivalent differential form 

rsi(t, r) . dri + Ait, r)dt = 0. 

Suppose, now, that Equation (A.2.ll) can be written 

A, ( .) d A,'( ) OCP~'i ocp~ 
'l-'s t, r, r = dt 'l-'s t, r = ori . r + at· 

(A.2.11) 

(A.2.12) 

(A.2.13) 

In this case, they are integrable because they are reducible through integra
tion to the coordinate constraint 

cp~(t, r) = 0. (A.2.14) 

The necessary and sufficient conditions for the integrability of Equation 
(A.2.13) are 

02cpS _ 02cps = ° 
ori ot ot ori ' 

(A.2.15) 

and by using the right-hand side of Equation (A.2.11) they can be written9 

(A.2.16a) 

(A.2.16b) 

8 For a different meaning of the term "nonholonomic" see, for instance, Gelfand and Fomin 
(1963), page 48. According to the terminology of these authors, Equation (A.2.6) are nonholo
nomic, irrespective of whether they are integrable or non integrable. In principle, this is also an 
acceptable terminology. The point we want to stress here is that the reader should be fully aware 
of the significance of the terms "holonomic" or "nonholonomic" assumed by each author in 
order to avoid some considerable confusion when studying the methodology for Newtonian 
systems, particularly within the framework of the variational approach. 

9 See Rund (1966, Section 5.5). See also Section 1.2. 
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Thus, according to our terminology, velocity constraints of type (A.2.11) 
are holonomic (nonholonomic) depending on whether all Equations (A.2.16) 
hold (do not hold). If Equations (A.2.16) hold only for a subset of constraints 
(A.2.11), then we have a case of constraints of type III.c. 

A typical example of a non integrable (and, thus, nonholonomic) constraint 
of type (A.2.11) is a vertical disk of radius R rolling without skidding on a 
horizontal plane (x, y). The speed I t I at the center of the disk is restricted by 
the equality 10 

It I - ReX = 0, (A.2.17) 

where eX is the angular velocity of the disk. The projection ofEquation (A.2.17) 
in the (x, y) plane can be written 

dx - (R sin ())drx = 0, 

dy + (R cos ())drx = 0, 
(A.2.1S) 

where () is the angle between the x axis and the projection of the symmetry 
axis of the disk in the (x, y) plane. The above equations do not satisfy integra
bility conditions (A.2.16). Thus, the constraint is nonholonomic. 

A.3 Generalized Coordinates 

We now restrict our attention to holonomic systems of N particles, namely, 
to Newtonian systems whose constrains are all holonomic. Suppose that the 
number of such independent ll constraints is 3N - n. When all such con
straints are either assigned or reduced to the coordinate form 

,pit, r) = 0, s = 1, 2, ... , 3N - n :::;; 3N, (A.3.1) 

they can be used to express the n actual degrees of freedom in terms of a set 
of n new independent variables, termed generalized coordinates, 12 and 
customarily denoted with the symbols ql, q2, ... , qn.13 

Such new independent variables can, in general, be assumed to be n 
independent functions of the positions ri and time t, i.e., 

(A.3.2) 

Such functions determine n Cartesian coordinates as functions of the q's, the 
remaining 3N - n Cartesian coordinates and time. Constraint Equation 
(A.3.1) then allow the determination of the residual 3N - n Cartesian 
coordinates. Therefore, from the combined use of Equations (A.3.1) and 

10 See, for instance, Goldstein (1950, page 13). 
11 The independence of the constraints (A.3.1) can be expressed, for instance, by the condi

tions that the (3N - n)x(3N) matrix (iJ4>s/iJria), s = 1,2, ... , 3N - n, i = 1,2, ... , N, a = 1,2,3, 
has rank 3N - n. 

12 Thomson and Tait (1879). 
13 For a first geometrical significance of the upper or lower indices, see Charts A.11 through 

A.14. For a more advanced treatment, see Charts 2.1 through 2.5. 
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(A.3.2), we can express all Cartesian coordinates as functions of the q's and 
of time, i.e., 

(A.3.3) 

In this way, the constraint equations (A.3.1) are obeyed identically by 
Equation (A.3.3). As a result, in the representation of holonomic systems in 
terms of generalized coordinates, as we shall see more clearly in the next 
section, we expect no representative of the forces of constraints. This fact 
can be seen at this point from the property that the generalized coordinates 
can be varied arbitrarily without conflicting with Equation (A.3.1), while 
this is not the case for the Cartesian coordinates. Explicitly, jointly with the 
q's, all the differentials 

(A.3.4) 

are independent and, once interpreted as virtual displacements, are consistent 
with Equation (A.3.1). On the contrary, the 3N differentials dria, to be con
sistent with the constraint equations, cannot all be independent. This can be 
seen from the time derivative of Equation (A.3.3), 

ori or i 
ti q'k + 

= oqk at' (A.3.5) 

whose differential version, 

(A.3.6) 

allows only a subset of the differentials dr i to be independent. As a result, all 
trajectories in the space of generalized coordinates are admissible by the 
constraint equations, and, as such they do not activate the forces of con
straints. 

The n-dimensional space M(q) characterized by the generalized coordinates 
will be termed c01ifiguration space. The space M(q) will be the representation 
space of our analysis. It will be used with the understanding that, when the 
systems are unconstrained, the set of n = 3N variables q1, q2, ... , q3N 
represents any set of conventional coordinates (e.g. Cartesian, cylindrical, 
spherical, etc.) in a given ordering. 

A.4 Conservative Systems 

A class of Newtonian systems of central significance from a methodological 
viewpoint is that for which all the acting forces !}ii" .• , !}iN are conservative, 
that is, they depend only on the positions of the particles, and their virtual 
work is the total differential of a (single-valued) function - i""(r), i.e., 

!}ii(r)· dri = -di"". (A.4.1) 
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We shall use the term conservative systems to describe all Newtonian 
systems with acting forces satisfying condition (A.4.1). Then for such systems 

(A.4.2) 

The function Y(r) of equations (A.4.1) will be called the potential energy 
function (or potential for short) of the acting forces (or of the system). When 
Equation (A.4.1) holds, then along any closed curve in the space of the r's,14 

(A.4.3) 

Suppose, for simplicity, that the masses mi are constant. Let the kinetic 
energy and its total time derivative be represented by the familiar forms 

(A.4.4a) 

(A.4.4b) 

Then, by using Equation (A.4.2), we can write 15 

d (07 1"") F 'i 01"".. 0 
dt .'f + = i • r + arr' r' == . (A.4.5) 

Thus, for a conservative system, the sum of the kinetic and potential energies 
is a constant, i.e., 

tffT = !Y + 1"" = const. (A.4.6) 

The value tff T is then determined by the initial conditions. 
The necessary and sufficient conditions 16 for the left-hand side of Equation 

(A.4.1) to be an exact differential are (in Cartesian coordinates) 

(A.4.7) 

i, j = 1, 2, ... , N, a, b = 1,2,3. 

Notice that Equation (A.4.7) can be used as a criterion to ascertain 
whether a given set of Newtonian forces ~r(r), ~r(r), ... , ~ N(r) is conser
vative or not. 

14 For a more rigorous treatment, see Example 1.4. 
15 For a first elementary approach to conservation laws, see Chart A.2. For a more detailed 

treatment, see Santilli (1979). 
16 For a more technical formulation, see Example 1.4, Theorem 3.5.1, and Section 3.7. 
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Consider now a conservative N-dimensional system in a Cartesian refer
ence frame subject to 3N - n independent holonomic coordinate constraints. 
The equations of motion are 

{P'. = ~.(r) = _ oil 
, , or' ' 

¢s(t, r) = 0, 

(A.4.8a) 

(A.4.8b) 

i = 1,2, ... , N, s = 1, 2, ... , 3N - n. 

If dr i represents a virtual displacement of the particle i, that is, an infinites
imal displacement compatible with the acting forces 17 and constraints, then 
the virtual work :Fi· dri of the forces of constraints :Fi is null, and we have 
the so-called D'Alembert's principle: 

{(. Oil) . 
Pi + o~ . dr' = 0, 

¢.(t, r) - O. 

(A.4.9a) 

(A.4.9b) 

In view of constraint (A.4.8b), the system has n actual degrees of freedom. 
Suppose they are represented by the generalized coordinates qt, q2, ... , qn. 
Then properties (A.3.2) and (A.3.3) allow the reformulation of the kinetic 
energy in configuration space according to 

== -!-ZJt, q)i/4j + Zk(t, q)i/ + Zo(t, q) = T(t, q, 4), (A.4.10) 

where 

(A.4.11a) 

(A.4.11b) 

(A.4.11c) 

For the case of the potential energy, we have simply 

iI(r) = iI[r(t, q)] = V(t, q). (A.4.12) 

17 We shall term" acting" force any force ~i( ,.=0) whose work ~i • dr i for either virtual or 
actual displacement is non-null. 
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D'Alembert's principle (A.4.9) can then be written 

(Pi + ~~).dri = [:t (miri'~:~) - miri' :t(~:~) + ~~]bqj 
_ [d 0 (1 . 'i) 0 (1 . Oi) OVJb j - dt oqJ Zmiri' r - oqj Zmiri' r + oqj q 

= [~ oT _ o(T -. V)Jb j 
dt oqJ oqJ q 

= [~ o(T -. V) _ o(T -. V)Jb j 
dt oqJ oqJ q 

= 0, (A.4.13) 

where we have used Equations (A.4.10) and (A.4.12). The variation in the q's 
is denoted by the symbol bqj' 

By introducing the Lagrangian 

L = L(t, q, q) = T(t, q, q) - Vet, q), (A.4.14) 

the necessary and sufficient conditions for the validity of principle (A.4.13) 
(in view of the independence and arbitrariness of variations bqi, can be 
expressed in terms ofthe (Euler~) Lagrange's equations in configuration space 

~ oL. _ oL = 0, 
dt oqJ oqJ 

j = 1,2, ... , n. (A.4.15) 

Under the assumption 18 

(A.4.16) 

and the prescriptions for the characterization of n new variables termed 
generalized momenta 

oL 
Pk = oqk' (A.4.17) 

one can introduce the Hamiltonian through the Legendre transform 

(A.4.18) 

Equation (A.4.15) can then be mapped into Hamilton's equations 

lqk - oH = ° 
OPk ' 

oH 
Pk + oqk = 0, 

(A.4.19a) 

(A.4.19b) 

18 According to the notation of Equation (1.1.6) and (1.1.8), matrices and determinants are 
denoted with the symbols ( ) and I I, respectively. 
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which act on the space M(q, p) of the canonically conjugate variables qk and 
Pk, termed phase space, 

For scleronomous holonomic conservative systems the Hamiltonian does 
not depend explicitly on time; it represents the total energy of the system, and 
thus it is a constant of the motion, i,e" 

dH(q, p) = 0 
dt ' (AA.20) 

Let us stress the fact that when the Hamiltonian H depends only on the 
elements (q, p) of the phase space, this by no means guarantees that the system 
is conservative or that H represents the total energy, even though property 
(A,4.20) still holds, Indeed, in this volume we shall encounter several cases in 
which functions H(q, p) represent truly nonconservative systems, 

Another aspect we would like to stress is the fact that the equations of 
motion of conservative systems, irrespective of whether or not they contain 
holonomic constraints, are not necessarily linear in the coordinates, For 
instance, a Lagrangian (AA.14) with a potential of the type 

(A,4.21) 

represents a truly conservative system, but Lagrange's equations are non
linear in qk. 

Equations (A,4.15) and (A,4.19) will often be referred to as the analytic 
equations in configuration and phase space, respectively. When Newtonian 
systems (A.I.l) can be expressed in terms of such equations, we shall say that 
they admit an analytic representation. 

Our derivation of Lagrange's equations through the use of D'Alembert's 
principle is the one most widely used in the current literature. However, such 
a derivation is not immune to criticisms,19 owing to the" static" nature of 
D'Alembert's principle, 

Whatever approach is used for deriving Lagrange's equations, it must be 
compatible with one of their central features, namely, the lack of any repre
sentative of the forces of constraints. For principle (AA.13), this is a con
sequence of the assumption that the displacements dri are compatible with 
the constraints, and thus the work of the forces of constraints is null. 

A.S Dissipative 'Systems 

Conservative systems often constitute a simplification of physical reality, 
since they imply, for instance, that motion is frictionless even in the presence 
of constraints. As is well known, constraints inevitably imply the presence of 
frictional forces and the motion in an actual environment necessarily implies 
a resistance due to the medium. 

19 See, for instance, Kilmister (1967, page 34). 
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A second significant class of Newtonian systems is represented by dis
sipative systems, namely, systems that are subject to an arbitrary collection of 
conservative and dissipative forces and whose total energy is monotonically 20 

nonincreasing in time, i.e., 

(A.5.1) 

Energy can be dissipated in an endless variety of ways, and dissipative 
forces can be characterized in an equally endless variety of ways. For in
stance, when a particle moves in a medium, a dissipative force is any drag 
or resisting force which opposes the motion. In this case, if the total energy is 
equal to the kinetic energy, all resisting forces due to the medium for which 
the kinetic energy monotonically tends to zero as t -+ 00, i.e., 

lim ff = 0, (A.5.2) 
t--+oo 

can be considered to be dissipative forces. 21 

A large class of dissipative forces is expressible as a series in the velocity, 
say 

(A.5.3) 

where the coefficients depend, in general, on positions and on time. Thus the 
functional dependent of [Fd is 

(A. 5.4) 

Dissipative forces are usually opposite in direction to the velocity, in 
which case their Cartesian components can be written as 

a = 1,2,3. (A.5.5) 

Several types of dissipative forces can be approximated with expressions 
simpler than the form (A.5.3), such as the following. 

1. Dissipative forces independent of the velocity. 
They are proportional to the normal force IF 1. between the surfaces in 
contact and are independent of contact area and velocity 

(A.5.6) 

where the space dependence arises from possible variations in the 
coefficient of friction and the time dependence arises from possible 
variations in the normal force as well as the positions. 

20 A function!(x) is said to be monotonic (strictly monotonic) in an interval (x?, x~) iffor every 
pair of points Xl' X2 e(x?, x~) such that Xl < X2' the relation!(x l ) 5.!(X2) (or!(xl) <!(X2» 
holds. 

21 According to Birkhoff (1927, page 31), a force!: is dissipative when!:4k ~ 0. Then the 
energy integral is monotonically nonincreasing. When!~4k > 0, the energy integral decreases 
toward some limiting value in a strictly monotonic sense. 
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2. Dissipative forces proportional to the velocity. 
They are usually opposite in direction to t, i.e., 

:¥d = -bJ. (A.S.7) 

Resistive forces of this type occur when a system is slowly moving in a 
fluid, or a magnet is slowly moving near a conducting sheet. 

3. Dissipative forces proportional to higher powers of the velocity. 
When the motion in a given medium is not slow, the resistive force can 
depend on higher powers of t, e.g., 

m = fixed, (A.5.8) 

where for a given range of speed, m = 2, for a higher speed m = 3, etc. 

Usually, dissipative forces do not affect the degrees of freedom of a system. 
For instance, if dissipative forces are considered for a system of N particles 
with 3N - n independent holonomic constraints, and thus n degrees of 
freedom, the number of generalized coordinates remains unchanged. It is 
then possible to represent dissipative forces in terms of generalized co
ordinates. This is achieved by considering the virtual work done by the 
dissipative forces, which must be the same in Cartesian and in generalized 
coordinates, i.e., 

dWd = :¥1· dr i 

= bim(VDm-rV;a dria (A.S.9) 

= f~(t, q, q)6q\ 

where we have assumed for simplicity that the series (A.S.3) can be truncated 
at the power M of the speed, and where f~ represents the components of the 
so-called generalized force. 

For a significant class of dissipative systems, it is possible to introduce the 
so-called power function pd(t, q, q), which represents the dissipative force in 
configuration space through the relations 22 

Opd 
f~ = oqk' 

Suppose the dissipative forces satisfy the relations23 

off?a i}ffJb 
ov jb ovia . 

Then the following exact differential occurs. 

fffa dvia = dp(v), 

22 See, for instance, Wells (1967, Chapter 6). 

(A.S.lO) 

(A.5.11) 

(A.S.12) 

23 To avoid possible confusion, we shall sometimes add a superscript c, d, e, or a to the symbol 
of a force to denote, specifically, conservative, dissipative, applied (or external), and acting (or 
total) force, respectively. Notice the mathematical similarity between Equation (A.5.11) and 
(A.4.7). For a more rigorous treatment, see Example 1.4. 
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which can also be written 

f~bil = bP, P(t, q, q) = p(V), (A.5.13) 

yielding relation (A.2.l). 
A typical example of a power function in configuration space is 

pd = _1_ b (q'k)m+ 1 
m + 1 k , 

m = 1,2,3, ... , (A.5.14) 

with corresponding dissipative forces 

(no summation). (A.5.15) 

Suppose that the f~ force is a function of position and time only: 

Then, as in case (A.2.5), we have 

p d = f~q\ 

f d _ opd 

k - oqk' 

(A.5.16) 

(A.5.17a) 

(A.5.17b) 

Notice that all conservative forces can be expressed by means of power 
function (A.5.17a). Clearly, pd has the dimension of power. 

Expression (A.5.14) with m = 2 is the celebrated Rayleigh's dissipation 
function. 24 More generally, this function can be defined as a homogeneous 
quadratic form in q\ i.e., 

(A.5.l8) 

where the coefficients bij are negative definite functions of the q's and time. 
Then the components of the dissipative forces are 

(A.5.l9) 

In all the cases considered above, the dissipative force is opposite to the 
direction of motion. But dissipative forces can als9 have an arbitrary orienta
tion with respect to the velocity of the particle. To illustrate this point, 
consider a magnetic pole2s which moves with velocity t in the vicinity of a 
conducting grill. As a result ofthe variation of magnetic flux, the grill acquires 
local currents. The induced magnetic field will oppose the motion of the 
magnetic pole through a force which is not opposite to t, but opposite to the 
component of t aloQg the direction perpendicular to the grill. 

24 Notice that the analytic representations of dissipative systems studied in this book are 
without the Rayleigh function. 

25 For example, one pole of a sufficiently long permanent magnet, so that it can be considered 
as isolated. 
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Consider, now, a holonomic conservativt> system with forces represented 
in configuration space by 

f'k = (A. 5.20) 

and with total energy Iff T = T + V. If an arbitrary dissipative force f~(t, q, q) 
is applied to it, the rate of change of Iff T is 

dlffT _fd.k 
dt - kq· (A.5.21) 

If f~ can be expressed in terms of a power function pd, Equation (A.5.21) 
becomes 

dlff T Opd.k 
dt = oqk q. (A.5.22) 

Finally, if pd is homogeneous of degree two in the q's, then we simply have 

(A.5.23) 

that is, the rate of change of the energy is twice the power function. Since 
pd is definitely negative (or null) by assumption, condition (A. 5.1 ) of the rate 
of variation of the energy with time is verified. 

Clearly, as for conservative systems, dissipative systems can also be 
represented by either linear or nonlinear differential equations. 

From a methodological viewpoint, dissipative Newtonian systems con
stitute a significant complement to conservative systems, since they generally 
imply "nonconservation" not only of energy but also of linear momentum, 
angular momentum, or any other physical quantity. Ultimately, the class 
of dissipative systems is broader than that of conservative systems, i.e., 

{conservative systems} c {dissipative systems}, (A.5.24) 

because the former class occurs as a particular subclass of the latter at the 
limit when all dissipative forces are null. Thus, it is expected that the meth
odology for dissipative systems implies a suitable generalization of that for 
conservative systems. 

In this book, we study the problem of the representation of holonomic 
Newtonian systems in general (and, thus, holonomic dissipative systems in 
particular) in terms of the (conventional) Lagrange's equations without 
external terms. In this way, we remove the major simplification made in the 
transition from Newton's equations of motion (AA.8) to Lagrange's equa
tions (A.4.l5), namely, that the motion is frictionless despite the presence of 
constraints. The reader should be aware that, despite this broadening of the 
considered physical context, our treatment is still restrictive because we 
exclude non local forces. Nevertheless, local forces not derivable from a 
potential are known to constitute a good approximation of nonlocal dis
sipative forces and, as such, are sufficient for our objectives. 
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A.6 Dynamical Systems 

Dynamics is the branch of classical mechanics that studies the motion of a 
system of particles subject to "arbitrary" Newtonian forces and constraints. 

Clearly, the conservative and dissipative forces considered so far do not 
exhaust all possible Newtonian forces. Without any claim to completeness, 
it is sufficient for our needs to introduce a third class of forces, the applied 
forces. 

We shall call an applied force any external force of a nonimpulsive nature26 
with an arbitrary functional dependence on positions, velocities, and time. 
The above definition includes a rather large variety of forces not necessarily 
derivable from a potential V(q) or a generalized potential U(t, q, q), such as 
logarithmic forces, periodical forces, etc. However, applied forces derivable 
from a potential aFe not excluded. 

We shall define a dynamical system as a system of particles subject to an 
arbitrary collection of conservative, dissipative, and applied forces. Clearly, 
in a dynamic system the energy can vary arbitrarily in time, i.e., 

(A.6.1) 

A typical example of a truly dynamicaF7 system is the damped and forced 
oscillator. In practical applications within a Newtonian framework,28 the 
conservative approximation of the oscillatory motion generated by an 
elastic force is usually valid for periods of time in which there is no appreciable 
variation (in relation to the desired approximation) of the amplitude and 
frequency. For comparably longer periods of time (or higher approximation), 
the inevitable presence of dissipative forces will result in a progressive 
damping of the motion up to the configuration of null amplitude (or energy). 
Thus, the preservation of the motion for a long period of time demands the 
use of applied forces. The rate of variation of the energy then depends on the 
relationship of the rate of supplied energy with the rate of dissipated energy, 
thus it can vary arbitrarily in time. The dependence of the energy on time, 
however, can only be continuous if possible discontinuities in the velocities 
are excluded. 29 

From now on we shall assume that the acting forces in Cartesian coordi
nates have an arbitrary dependence30 on time, coordinates, and velocities,31 
i.e., f7i = f7;(t, r, t), and they represent an arbitrary collection of con
servative, dissipative, and applied forces. We shall also assume that all 

26 This restriction is introduced to avoid discontinuities in the velocities. See Chart A.3. 
27 The term "truly" dynamical is used here in the sense that the total acting force includes 

conservative, dissipative. and applied forces. 
28 We stress here the exclusion of non-Newtonian (e.g .• quantum mechanical) frameworks. 
29 Clearly, discontinuities in the coordinates ri(t) or qk(t) are not admissible in any Newtonian 

system, irrespective of whether or not it contains impulsive forces. 
30 Certain continuity restrictions are introduced in Chapters 1, 2, and 3. 
31 We shall tacitly exclude a possible dependence on the accelerations or higher-order 

derivatives of the coordinates. 
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constraints are holonomic. As a more general formulation of the virtual 
work (A.5.9), we have 

The generalized forces 

dW = §'i·dri 

ori , , 
= §'i . -, 6ql = jj6ql. 

oql 

or i 

jj = §'i' oqi 

then represent the configuration space" image" of the forces §' i' 

(A.6.2) 

(A.6.3) 

The definition of total physical energy for a dynamical system with dissipa
tive and applied forces should be recalled. It is, in essence, given by the sum 
of the kinetic energy and the potential energy of all forces derivable from a 
potential. 32 A central aspect ofthe study of dynamical systems is then given by 
identification of the variation of this energy in time. 

Notice the generalization of the concept of rate of variation of the energy 
in the transition from dissipative to dynamical systems. Indeed, from ex
pressions (A.5.1) and (A.6.1), we see that while for the former the energy is 
nonincreasing in time (dissipation), for the latter the energy can vary arbi
trarily in time (nonconservation). This is a consequence of the fact that 
dissipative systems are a subclass of dynamical systems. By recalling Equa
tion (A.5.24), we shall then write the inclusion properties 

{conservative systems} c {dissipative systems} c {dynamical systems} 
(A.6.4) 

with an example provided by the above-indicated case of damped and forced 
oscillators: 

{harmonic oscillators} c {damped oscillators} 
c {damped and forced oscillators}. (A.6.5) 

It should be indicated here that the broadening of our framework to include 
arbitrary Newtonian forces implies a conceptual as well as a technical 
modification of the theory. In particular, while the conventional meth
odology of Newtonian systems is basically a theory of" conservative systems," 
the methodology of dynamical systems is eminently a theory of "non
conservative systems." This fact, however, does not exclude the study of 
symmetries and conserved quantities. Only their emphasis is changed, as 
seen in Santilli (1979). 

Our definition of "dynamical" systems is in line with the conventional 
definition of "dynamics" as recalled at the beginning of this section. The 
reader should be aware, in this respect, that the term" dynamical" systems 

32 See, for instance, Symon (1960), 
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is often restricted in currently available literature to that of "conservative" 
systems. This is certainly a proper terminology, because conservative systems 
are also dynamical systems. However, they constitute, strictly speaking, 
only a sublcass of the class of dynamical systems and often a crude approxi
mation of physical reality. Clearly, on methodological grounds, a deeper 
insight can be gained by including all (local) Newtonian forces, namely, 
conservative, dissipative, and applied. 

A.7 The Fundamental Form of the Equations of Motion in 
Configuration Space 

We shall now identify a general form of the equations of motion in con
figuration space for holonomic systems with arbitrary Newtonian forces. 
Such a form is used in the text for the study of the problem of the existence 
of a representation of a given dynamical system in terms of conventional 
analytic equations. 

Consider a holonomic dynamical system in Cartesian coordinates repre
sented in terms of the D' Alembert principle 

{ [Pi - ~(t, r, t)] . dri = 0, 
¢s(t, r) - 0. 

(A.7.1a) 

(A.7.1b) 

Under the assumption that the masses are constants, the above system 
can be written in configuration space as 

[Aij(t, q)ii + B;(t, q, cj)]bqi = 0, (A.7.2) 

with 

Aij = Zij' (A.7.3a) 

.' 1 aZ jk 'k'j aZk ' k azo 
Bi = Zijq} + Zi -"2 aqi q q - aqi q - aqi - /;, (A.7.3b) 

where we have used Equations (A.4.11) and (A.6.3). 
In view of the arbitrariness and independence of the bq's, a necessary and 

sufficient condition for the validity of principle (A.7.2) is that each of the 
equations 

Aij(t, q)ij} + B;(t, q, cj) = 0, i = 1,2, ... , n (A.7.4) 

holds. The above equations, however, do not represent the most general 
form of Newton's equations of motion in configuration space because they 
do not necessarily account for the so-called "acceleration couplings" 33 or 
for possible equivalence transformations. 

33 These couplings occur, for instance, within the systems of coupled, forced and damped 
oscillators (see Section 3.7). 
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By taking into consideration these latter aspects, we obtain the equations 

Ai/t, q, qW + B;(t, q, q) = 0, (A.7.5) 

in which there is an additional dependence ofthe Aij terms on the generalized 
velocities qi. We assume (A.7.5) to be ourfundamentalform of the equations of 
motion in configuration space. 

A central aspect of Equation (A.7.5) is their linearity in the accelerations. 
This is ultimately a consequence of the same structure of Newton's equations 
(A.l.1). 

Independent of that, equations of the type (A. 7.5) constitute the most 
general form of ordinary differential equations that are representable by 
Lagrange's equations. Indeed, the explicit form of these equations is 

= 0, (A.7.6) 

where 

(A.7.7a) 

(A.7.7b) 

that is, Lagrange's equations are also always linear in the accelerations. By 
inspecting Equation (A.7.6), we then see that the most general form of 
differential equations they are capable of representing is precisely the funda
mental form (A. 7.5). 

In this Appendix we have introduced the classification of Newtonian 
systems into (1) holonomic or nonholonomic, from the nature of the con
straints, and into (2) conservative, dissipative, or dynamical, from the type 
of acting force. We have then restricted our analysis to holonomic constraints 
only and included all (local nonimpulsive) Newtonian forces. Finally, we 
have obtained a general form of the equations of motion in configuration 
space for such a class of systems, i.e., Equation (A.7.5). 

A central objective ofthis monograph is the identification of the necessary 
and sufficient conditions for Equation (A.7.5) to admit an analytic repre
sentation in terms of Lagrange equation (A.7.6). For this purpose, the above 
classifications of Newtonian systems are insufficient and other methodo
logical aspects must be taken into consideration. This task is initiated in 
Chapter 1 and completed in the Chapters 2 and 3. 
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Chart A.1 Galilean Relativity 

The representation (or carrier) space for unconstrained Newtonian 
systems is the Kronecker product E 3' (r, t) = E 3 (r) x E, (t) of the 
three-dimensional Euclidean space E3 (r) representing the coordinate of 
the particles and the one-dimensional space E, (t) representing time. Space 
E3 (r) is homogeneous and isotropic, while space E, (t), being one
dimensional, is only homogeneous. These characteristics of the representa
tion space express certain basic assumptions of Newtonian Mechanics. 
First of a", the homogeneous and isotropic character of E 3 (r) guarantees 
the existence of inertial frames. Indeed, under such assumptions, a free 
particle which is at rest at a given time with respect to a given frame remains 
at rest at a" subsequent times and the frame is inertial. A" reference frames 
considered in this volume are inertial. The independence of E3 (r) and £, (t) 
expressed by the Kronecker product E3 (r) x E, (t) and the homogeneous 
character of E, (t) allow compliance with another basic postulate of 
Newtonian Mechanics, namely, the assumption that time is absolute, or, 
alternatively, that the same event, if measured by two inertial frames A and 
A', occurs at the same time, i.e., t == t. This implies the acceptance of 
infinite velocities for signals and/or particles. Throughout our analysis, the 
absolute nature of time is tacitly assumed. 

The Galilean Relativity Principle states that for a" inertial frames, the laws 
of Newtonian Mechanics are the same. Thus, starting with one inertial 
frame, one can equivalently study the same motion from a second inertial 
frame. The procedure can be iterated an infinite number of times by 
indicating in this way that there is no inertial frame of reference in New
tonian Mechanics which is "absolute," that is, preferable over a" other 
inertial frames, because a" inertial frames are equivalent. 

This demands the study of the transformations connecting two inertial 
frames which do not alter the laws of Newtonian Mechanics. Consider 
Newton's second law in the (unprimed) inertial frame A for a particle with 
constant (inertial) mass m, i.e., mr = F. Let mT = F' be the law for the 
same motion as seen from a second inertial frame, A'. The assumption that 
the mass must be the same for both A and A' implies m = m'. The assump
tion that the work done by the acting force must be the same for both 
A and A' then restricts a" possible linear coordinate transformations to 
the so-called orthogonal transformatIons (or rotations) 

RRT = RTR = 1, 

a = 1,2,3. 

R = (R~). (1 ) 

The admissible nonlinear transformations are then given by the solutions 
of the equations 

which are 

fa = R~rb + va, va = const., 

r'a = R~rb + vat + r~, r~ = const. 

(2) 

(3a) 

(3b) 

If m is at the origin of A, then r~(va) represents the coordinates (velocities) 
of such an origin within frame A'. Notice that the admissible relative 
motion between A and A' is that with constant velocity v. 
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The assumption that time is absolute implies that the duration of an 
event in A is the same as that in A', i.e., At = At', thus l' = t + to' with 
to = const. 

The set of all transformations so obtained, 

{ r'=Rr+vt+ro' (4) 
1'=t+to' 

are called Galilei transformations 33a and represent the largest set of linear 
transformations in E 3 1 (r, t) that preserve the laws of Newtonian Mechanics. 
Such transformations form a 1 O-parameter group called the Galilei group 
G31 , where 

1. 3 parameters (angles) characterize an arbitrary rotation r' = Rr; 
2. 3 parameters (the velocity v) characterize the transformation 

r' = r + vt called Galilei boost; 
3. 4 parameters (the positions r 0 and the time to) characterize the 

translations in space r' = r + r 0 and in time l' = t + to. 

As a final comment of speculative nature, the reader should be aware that 
the systems studied in this monograph are not form-invariant under the 
Galilei transformations because their forces, besides being not derivable 
from a potential and explicitly dependent on time, are nonlinearly depend
ent on coordinates and velocities. This creates the problem whether the 
Galilei relativity as currently known (and outlined in this chart) needs a 
suitable generalization to become applicable to nonconservative systems 
in general (rather than to conservative and Galilei form-invariant systems in 
particular). This problem is identified and treated in details by Santilli 
(1978). The same references present the conjecture of a generalization of 
the Galilei relativity for nonconservative systems based on the so-called 
Lie-admissible algebras (which are algebraic coverings of the Lie algebras 
directly applicable in Newtonian Mechanics for forces not derivable from a 
potential via the brackets of the time evolution law of a suitable generaliza
tion of Hamilton's equation). Possible relativistic extensions are considered 
too. 

Nota Bene: According to the assumptions of Section A.1, our analysis is restricted 
to those systems for which all relativistic effects can be ignored. Therefore, all 
velocities considered in this volume are tacitly assumed to be much smaller than the 
velocity of light. Within such a framework, Newtonian Mechanics and the underlying 
Galilean Relativity Principle are in agreement with physical reality. In this respect, one 
aspect of our analysis calls for clarification. The Lagrangians L (t, q, q) we deal with 
are functions generally defined for all values -00 :0:; t, qk, tl :0:; +00. This implies 
possible values of the velocities qk for which relativistic effects should be taken into 
consideration. We eliminate such possibilities by considering the Lagrangians and 
related analytic representations over a region R2n+ 1 of values (t, q, q) selected in 
such a way as to avoid relativistic effects. Therefore, throughout our analysis we 
tacitly assume that all regions of definition of the Lagrangian are consistent with the 
assumptions of Section A.1. This is compatible with the methodology used for the 
integrability conditions for the existence of a Lagrangian, i.e., the calculus of differ
ential forms and the Converse of the Poincare Lemma (Section 1.2). I ndeed, this 
methodology can be formulated in the neighborhood of a point of the variables 

338 Galilei (1638). For contemporary accounts, see, for instance, Landau and 
Lifshitz (1960, Section 1.3) or Mann (1974, Section 1.1.C). For the Galilean group see, 
for instance, Levy-Leblond (1971). 
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(t, q, q) satisfying certain restrictions (of being star-shaped). In particular, the value 
of qk can be arbitrarily selected. In conclusion, there is no need for including divergent 
values of the velocities for the rigorous formulation and treatment of the problem of 
the existence of a Lagrangian. 

Chart A.2 Ignorable Coordinates and Conservation Laws 

Let L (t, q, q) = T(t, q, q) - V(t, q) be the Lagrangian of a conservative 
system. Each of the 2n + 1 quantities t, q, and qk is said to be ignorable 
when the Lagrangian does not depend explicitly on it. 

Conservation law of the total energy. When the time is ignorable, the 
total energy tff T = qk OL /oqk - L = T + V is constant. 

PROOF By using Lagrange's equations, the total time derivative of 
the Lagrangian can be written 

~~ = :t (qk :~k). (1 ) 

Thus 

!!.- (qk ~ - L) = !!.- tff == O. dt oqk dt T (2) 

Nota Bene: The quantity qk OL/oqk - L does not, in general, represent the 
physical total energy unless the system is scleronomous, holonomic and conservative, 
in which case qk oL/oqk = 2T. Notice that when L does not depend explicitly on 
time, it is invariant under time translations (i.e., t --+ t' = t + to' to = const.) 

Conservation law of the generalized momentum. If the generalized 
coordinate qk is ignorable then the generalized momentum p k is constant. 

PROOF From the definition Pk = OL/Oil, the Lagrange equations, and 
the assumption that qk is ignorable, it follows that 

. dOL OL 
P =--=- == O. k dt oqk oqk 

(3) 

Nota Bene: The generalized momentum Pk does not, in general, coincide with the 
physical linear momentum unless the system is conservative and without constraints. 
If this is the case, the above conservation law does not imply that the "total" 
momentum is constant unless all coordinates are ignorable (i.e., when, trivially, all 
particles are free). For conservative systems (only) the condition Pk = 0 implies that 
the k component of the acting force is null. Notice also that when L does not depend 
on qk(k = fixed} it is invariant under translations in the k coordinate (i.e., qk --+ q'k = 
qk + q~, q~ = const.). 

Conservation law of the angular momentum. 34 Consider a conservative 
system of N particles with total angular momentum m T = Ii mi , and 

34 See, for instance, Whittaker (1904), Goldstein (1950), and Mann (1974). A 
study of the problem of symmetries and conserved quantities for Newtonian 
systems with arbitrary forces is provided in Santilli (1979). 
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without constraints. Let mi . n be the component of the angular momentum 
mi along an axis in space with unit vector n. Represent the system in 
cylindrical coordinates qi = r, qi + 1 = (Ji, qi + 2 = ni, i = 1, 2, ... , N, 
where ni is the component of ri along the n axis. Then. if the angle 
qi+ 1 = (Ji is ignorable, the component mi . n of the angular momentum 
mi is constant. 

PROOF Forqi+1 = fP,Pi+1 = M/tJqi+1 = m;r2(P = mi' n. The proof is 
then similar to that for the conservation of the generalized momentum Pi+ l' 

Nota Bene: Again, the above conservation law does not imply that the "total" 
angular momentum is constant unless" all" angles in all three possible representa
tions of the systems in cylindrical coordinates along three orthogonal axes are 
ignorable (e.g., when f(r', ... , rN) = f(r', ... , rN). For the considered system, 
the condition tJL/Mi = 0 implies that the Oi component of the acting torque is null. 
When the system is not conservative, the generalized momentum does not coincide 
with the linear momentum, and tJL/Mi does not represent the component mi . n of 
the physical angular momentum mi' Notice that when the Lagrangian (of either a 
conservative or nonconservative system) does not depend on an angle, then it is 
invariant under rotations about that angle. 

Caution: The conservation laws given above do not allow the identification 
of all possible constants of the motions. For instance, for a free particle 
with p = mt", the quantity mr - pt is also a constant of the motion re
SUlting from the invariance of the system under translations and the Galilean 
transformations r -+ r' = r - vt. 

Chart A.3 Impulsive Motion 35 

Consider a Newtonian system of particles with constant masses without 
constraints. The motion is said to be impulsive when sudden changes of 
dynamical quantities occur because of forces :F of large intensity acting in 
a small period of time (called impulsive forces). For instance, we have an 
impulsive motion when there is no appreciable change of the positions ret) 
in the interval (to - e, to + e) but a large variation of the velocities ;-(t) in 
the same interval of time occurs. This impulsive motion is customarily 
interpreted in mathematical formulations by saying that the coordinates 
r(t) are continuous, while the velocities ret) are discontinuous at to' 

By introducing the impulse, 

fto +, 
rJ'I = dt :F, 

to-f. 

(1 ) 

the equations of motion can be written 

m;U'i - rP) = rJ'Ii , (2) 

where ;-(;-0) represents the velocities prior to (after) the application of the 
impulse. 

Nota Bene: Impulsive motions present several problematic aspects if one 
attempts to represent them with conventional analytic formulations. This is 
due, for instance, to the fact that the Lagrangian L customarily depends on 

35 See, for instance, Pars (1965, Chapter XIV). 
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the velocities, L = L(r, r), and, thus, the inclusion of impulsive forces 
implies the appearance of discontinuities in the functional dependence of 
the Lagrangian. In turn, such discontinuities have implications at all levels 
of the methodology, e.g., the existence theory of solutions, variational 
principles, etc. Therefore, we shall exclude, from here on, the representation 
of impulsive motion whenever considering analytic formulations. More 
specifically, we shall restrict our study of analytic formulations to systems 
whose coordinates, velocities, and accelerations are all continuous 
functions of time in the interval considered. 

Chart A.4 Arrow of Time and Entropy 

From the viewpoint of time inversion, 

t~ -t, (1 ) 

Newton'sequations of motion can be classified into" symmetry-preserving" 
and" symmetry-violating" equations. Conservative systems, such as the 
case of a particle under an elastic force -kx, i.e., 

mx + kx = 0, (2) 

constitute a class of systems which is time-inversion symmetry-preserving. 
This implies that for each process there exists a corresponding equivalent 
time-reversed process. Dissipative systems, on the contrary, such as the 
case of a particle moving under the action of a drag force -bx, i.e., 

mx + bX = 0, (3) 

are, generally, time-inversion symmetry-violating. In this case, a time 
inversion leads to a nonequivalent motion, such as 

mx - bx = 0. (4) 

As a result of this property, dissipative systems and, more generally, all 
systems with velocity-dependent forces (e.g., dynamical systems) that 
are not invariant under time inversion demand, for their consistent descrip
tion, a specified direction of time or "time's arrow." 

Nota Bene: The time-inversion symmetry violation is not in contradiction with the 
Principle of Causality according to which a cause must precede the effect, because 
such a principle holds in Newtonian Mechanics for each specified direction of time. 

The above behavior of Newtonian systems under time inversion has 
profound implications from a thermodynamic profile. One of the most 
significant aspects of the thermodynamical description of systems of 
particles is the existence of irreversible processes. According to Planck's 
definition, they are processes which, once performed, leave the world in an 
altered state with no experimental process capable of restoring the initial 
state. Such irreversibility has been related to a priviledged direction of time, 
namely, that for which Clausius's entropy is nondecreasing. More 
specifically, the second law of thermodynamics states that for any isolated 
system, the variation dS of the entropy S in the time dt( ~ 0) must be non
increasing, i.e., dt > 0 ...... dS ~ 0. Eddington vividly expressed such 
connection by saying that entropy is time's arrow. 
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Thermodynamics is today a sophisticated and fascinating discipline with 
a direct or indirect impact on virtually all other branches of Physics. A 
variety of excellent easily identifyable treatises are available to the inter
ested student. Among the contributions by the "founding fathers" of 
thermodynamics, Boltzmann's contribution were and still are crucial. In 
essence, they identify and correlate the following layers of descriptions of 
the physical reality. 

Newtonian description (Newton's equations of motion) 
Probabilistic description (kinetic equations) 
Thermodynamical description (entropy) 

Boltzmann's approach is useful here to emphasize that the content of this 
book deals only with the first layer of description, namely, the Newtonian 
description. 

It is also significant to indicate that Newtonian systems with time
inversion symmetry-violating forces, i.e., dissipative or nonconservative 
systems, have a rather natural place within the context of Boltzmann's 
analysis. This is not the case for conservative systems precisely in view of 
their time-inversion symmetry-preserving character. This problem can be 
expressed in terms of the so-called Loschmidt's paradox: when a system is 
invariant under time inversion, the time-reversed process is physically 
admissible and the original state can be recovered contrary to the second 
law of thermodynamics. 

For a treatment of Loschmidfs paradox see, for instance, Prigogine 
(1973). 

Chart A.5 Gauss' Principle of Least Constraint36 

Consider a system of N particles with (constant) masses m; without 
constraints in a Cartesian reference frame. Introduce the quantity 

Q( ") _ ~ (" _ $';)2 r - 2m; r; m; . (1 ) 

Gauss' Principle of Least Constraint states that the system evolves in such 
a way that the quantity Q affords a minimum for the actual accelerations. 

PROOF Let r be the actual accelerations and f; + M; represent possible 
accelerations. Then 

M; > 0, (2) 

unless M; = 0, i = 1, 2, ... , N. 
Significance: The condition that the (first-order) variation bQ of Q be 

null, i.e., 

bQ(i') = ° (3) 

is sufficient to derive Newton's equations of motion. 

36 See, for instance, Pars (1965, page 42). 
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Chart A.6 The Gibbs-Appel Equations 37 

Consider a Newtonian system of N particles (with constant masses) in a 
Cartesian reference frame. The quantity 

(1 ) 

is called the Gibbs function. When expressed in terms of generalized 
coordinates, it can be written 

G = G(t, q, q, q) = 1qiZij(t, q)qi + Z;(t, q, q)qk + Z~(t, q, q), (2) 

where Z;j is the same quantity as that of the kinetic energy and Z; and Z~ are 
functions which depend on the forms of the constraints. The Gibbs function 
is instrumental in formulating the following theorem. 

Theorem. The accelerations of the system are such that the quantity 

G' = G - fiii (3) 

always assumes a minimum value when considered as a function of iF. 

Nota Bene: In the above theorem, coordinates q' and velocities (/' are assumed to 
be constants. The proof then can be given by noting that the total variation /lG(ij) is 
always positive unless /lei = O. 

Necessary conditions for G(ij) to afford a minimum at ij are the equations 

oG' 
-=f Oijk k' 

k = 1,2, ... ,n, (4) 

called Gibbs-Appel equations. They are equivalent to Newton's equations 
of motion, they hold for both holonomic and nonholonomic constraints, 
and they are closely related to Gauss's principle of least constraint 
(Chart A.5). 

Chart A.7 Vi rial Theorem 38 

The so-called Clausius's virial for a Newtonian system of N particles in 
Cartesian space subject to (nonimpulsive) forces ~i is the time average 

1 i'o Y = - < 1ri . ~) = - t dt 1ri . ~i· 
o 0 

(1 ) 

The virial theorem states that under the assumption that the particles move 
in a closed region and the velocities are bounded, the time average of the 
kinetic energy is equal to the virial, i.e., 

(2) 

For central force fields, the term ri . ~i becomes equal to the potential 
energy. Thus, the virial theorem for central force fields states that the time 
average of the kinetic energy is equal to, but opposite, half the time average 
of the potential energy. 

37 See, for instance, Pars (1965, Chapters XII and XIII). 
38 See, for instance, Lindsay (1941). 
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Significance: The virial theorem is particularly useful from a statistical 
profile, e.g., in the kinetic theory of gases where it leads in a natural way to 
Boyle's law for perfect gases. 

Chart A.S Liouville's Theorem for Conservative Systems39 

Consider a conservative holonomic Newtonian system of N particles, 
represented by the Hamiltonian H(t, p, q) = T(t, q, p) + Vet, q) and 
Hamilton's equations 

k = 1,2, ... ,n. (1 ) 

Suppose that the Hamiltonian H satisfies all needed continuity conditions. 
Each point of the phase space M jq , p) represents a possible state of the 
system and one and only one possible path crosses through each of those 
points. 

Liouville's Theorem for Conservative Systems states that the 
phase space volume occupied by a conservative holonomic Newtonian 
system of particles is constant in time (i.e., particles in phase space move as 
an" incompressible fluid"), 

Let V be the volume in phase space, By using Gauss's divergence 
theorem we have 

- = dql", dqN dp , .. dp ....!!...- +....!!..l!.. , dV f () 'k ()') 

dt v 1 N ()qk ()Pk 

and in view of Equations (1) and the continuity of H, we can write 

dV 

dt 
dql , , , dqN dp ... dp - == O. f ( )2H ()2H) 

V 1 N ()qk ()p k ()p k ()qk 

Nota Bene: Liouville's Theorem holds also for time-dependent Hamiltonians. 

(2) 

(3) 

Significance: Liouville's Theorem is particularly important for statistical 
mechanics and, thus, for any large collection of either microscopic or 
macroscopic particles (such as a plasma or a galaxy, respectively). The 
statistical properties of such systems may be specified at any time t 
through the density pet, q, p) of points per unit volume of phase space. 
Liouville's theorem then implies that the density p remains constant in the 
neighborhood of possible trajectories in phase space. Statistical equilibrium 
can then be defined as the distribution for which the density p is uniform 
along possible phase space trajectories. 

Chart A.9 Generalizations of Liouville's Theorem to Dynamical 
Systems 

Two generalizations of Liouville's theorem to dynamical systems can be 
formulated depending on the assumed form of the canonical equations. 

39 See, for instance, Tolman (1938). 
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Global Approach: Suppose that a holonomic Newtonian system admits a 
representation in terms of the Hamiltonian H(t, q, p) and the conventional 
Hamilton's equations 

k = 1,2, ... , n, (1 ) 

Gauss's divergence theorem (Chart A.14) applies and we can state the 
following theorem. 

Liouville's Theorem for the Global Approach to Holonomic 
Newtonian Systems. The volume V in the phase space M(q, p) 
occupied by a holonomic Newtonian system of particles represented in 
terms of the conventional Hamilton's equations is constant in time, i.e., 

- = dql ... dqN dp ... dp - == 0. dV J (tJ 2H tJ 2H) 
dt v 1 N tJqk tJp k tJp k tJqk 

(2) 

Nota Bene: The Hamiltonian H(t, q, p) can have here an arbitrary functional 
dependence on (t, q, pl. The dependence H = T + U may occur as a particular case 
when all the acting forces are derivable from a potential. Theorem (2) is clearly 
insensitive to the functional dependence of H and it centrally depends on Equations 
(1) and the tacit requirement that H possess continuous partial derivatives of at least 
second order. For the construction of a Hamiltonian capable of representing a (self
adjoint) holonomic Newtonian system through Equations (1), see Chapter 3. 

External Approach: Suppose that a holomic Newtonian system is rep
resented in terms of the Hamiltonian H+ (t q, p+) and the Hamilton 
equations with external forces 

(3) 

where the q's are the same as those of Equations (1) and the p+'s are new 
variables. 

Let M+ denote the space spanned by the 2n variables q and p+. Gauss's 
divergence theorem still applies for the space M+, but we now have the 
following theorem. 

Liouville's Theorem for the External Approach to Holonomic 
Newtonian Systems. The volume V+ in the space M+ of variables 
(q, p+) occupied by a holonomic Newtonian system of particles represented 
in terms of the Hamilton's equations with external forces is not constant 
in time unless Mk/tJpt == 0, i.e.,4o 

dV+ 

dt J dql ... dqN dq+ ... dP+(Ml + tJPt) 
v+ 1. N tJqk tJPt 

J dql 
v+ 

= J dql ... dqN dpi 
v+ 

40 Lichtenberg, Stehle, and Symon (1956). 

(4) 
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Nota Bene: If fk = fk(t, q) in Equation (4) and the system is conservative, then the 
above two generalizations of Liouville's Theorem are equivalent. Thus, these two 
theorems actually differentiate when the acting forces (either dissipative or applied or 
both) are velocity-dependent. It must be stressed that these two theorems are not in 
contradition, because the spaces M and M+ do not coincide. In actuality, the above 
two theorems are complementary to each other in the sense that they express comple
mentary views: if the system is represented as a whole with one single function H 
(global approach), the volume in the space M(q, p) is constant; but if the system is 
only partially represented with a function H+(q, p+) and external p+-dependent 
forces fk occur, the volume in the related M+ (q, p+), space is no longer constant due 
to the presence of external terms. The reformulation of the two theorems in terms of 
the densities p and p+ is here left to the interested reader. 

The above properties give a clear indication of the methodological differences 
which result from the use of Equations (1) or (3) for the representation of Newtonian 
systems, as indicated in the Introduction. 

Chart A.10 The Method of Lagrange Undetermined Multipliers41 

Consider a holonomic conservative system represented by the Lagrangian 
L(r, r) = T(r) - Y(r). Suppose that the system is subject to k non
holonomic constraints of the (nonintegrable) velocity type, 

s = 1,2, ... , k. (1 ) 

Suppose also that:Fi are the forces necessary for the system to satisfy such 
constraints. Then the equations of motion can be written 

dOL OL 
----=:F 
dt ori ori i' i = 1,2, ... , N. (2) 

But the work generated by :Fi for all displacements dri which satisfy 
constraints (1) at a given (fixed) time t must be null by assumption, i.e., 
:Fi . dri = 0 for all dri such that :Fsi . dri = 0 at fixed t(dt = 0). Then a 
necessary condition for such work to be null is that '~i = ,srSi ' where the 
fs are termed Lagrange undetermined multipliers. Therefore, the equations 
of motion of the system are given by the set of N + k equations 

{
dOL OL 
-- - - = Isr. 
dt ori . 0: Sl ' 

1>s(t, r, r) - 0 (3) 

in the 3N + k unknowns ri and Is. 
Suppose, now, that constraints (1) are integrable, i.e., they satisfy 

conditions (A.2.16). Then Equations (3) are equivalent to the equations 

{
~ OL(') _ OL(') = 0 
dt ori ori ' 

d oL (.) OL (.) 
----=0 
dt 005 oocS 

(4) 

41 See, for instance, Rund (1966, Section 5.5). 
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in the Lagrangian 

L (.) = L + iXscP S ' (5) 

with liS = - /S. I ndeed, Equations (4) can be written 

dt or; or; s ork or; ot or;' f
~ oL(') - oL(') = -lisr + iXS[(orS; - orSk) . j-k - (ors; - OAs)] 

d OL (.) OL (.) OL (.) 
dt Olis - OIlS = - OIlS = -cPs = 0, (6) 

and, in view of Equations (A.2.16), they coincide with Equations (3) for 
liS = -Is. 

Nota Bene: Equations (3) are customarily derived on an empirical basis without 
methodological backing (e.g., variational). On somewhat pragmatic grounds they 
are used because they are known to be correct. I n the transition to the configuration 
space of generalized coordinates, the forces of constraints are lost (Section A.4). 
By comparing Equations (A.4.15) with Equations (3) or (4), we see that when only 
the actual path is needed, both types of equations can be used. However, when the 
computation of the forces of constraints is required, then only the latter equations 
should be used. If a holonomic constraint is assigned in the coordinate form, it can be 
equivalently written in velocity form (1) through a time derivative (see Section A.2). 
Notice that the transition from Equations (3) to the equivalent form (4) is not trivial on 
methodological grounds, because it represents the transition from analytic equations 
with external terms in the Euclidean space E3 (r) to analytic equations without 
external terms in the space E3(r)3 x Ek(a) of the Cartesian coordinates and the 
multipliers as. It should finally be indicated that Equations (3) constitute, strictly 
speaking, a system of second-order ordinary differential equations subject to a 
system of first-order subsidiary constraints. This class of systems will not be studied in 
this book. 

Chart A.11 Geometric Approach to Newtonian Systems 

In the main text of this book, we study the analytic approach to New
tonian systems. Such an approach is undoubtedly essential to analyze 
several basic aspects and advisable as a first step for the uninitiated reader, 
but it does not exhaust all possible methodological alternatives. In this 
series of charts at the end of each chapter, we often touch upon a second 
significant approach to Newtonian Mechanics, the geometric approach, 
with the intention of providing the interested reader with the elements for 
a broader methodological horizon, but without any claim of completeness 
or mathematical rigor. Therefore, the uninitiated reader is urged to study the 
quoted references or some equivalent sources. 

There exist several motivations for the analysis of Newtonian systems 
from a geometrical profile, ranging from a purely aesthetic need to specific 
methodological tools not provided by the conventional analytic approach. 
It is sufficient, in this respect, to mention that the geometric approach 
provides the means for characterizing the "essential features" of a 
dynamical system in a way independent from the selected type of co
ordinates. There are, however, deeper motivations for recommending the 
study of the geometric aspects. They are ultimately connected to the fact 
that within each selected coordinate system there exists an infinite variety 
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of equivalent equations of motion, all able to characterize the same 
actual path (i.e., the solution of a Newtonian initial value problem). This 
fact will be analyzed in more detail later. Thus, the actual path can be 
considered as an "essential feature" of a dynamical system. However, 
when such a system is represented in terms of Newton's (or analytic) 
equations, then the study of the class of equivalent Newtonian initial value 
problems becomes essential for any in-depth study of the framework. In 
turn, this aspect is intimately linked to the so-called transformation theory. 

Again, the geometric approach provides means for characterizing the 
class of equivalent differential equations without any specific reference to 
an individual element of the class. There exist several aspects of the geo
metric approach which are relevant for our analysis. In these charts, we 
touch only on those of major significance. In Charts A.12 through A.16, 
we consider only the tensor calculus for linear and nonlinear coordinate 
transformations and the representation of the equations of motion in 
curvilinear coordinates. The concepts of manifold and symplectic geometry 
are introduced in the charts of Chapter 2. We hope that the presentation of 
the geometric approach jointly with the conventional analytic approach, 
rather than as a disjoint discipline per se, will render it more accessible to 
the uninitiated reader, and that it will be more effective. 

Chart A.12 Tensor Calculus for Linear Coordinate Transformations 4 2 

Tensor calculus, one of the first steps toward a geometric analysis of 
physical systems, is concerned with the behavior of physical quantities 
under coordinate transformations. In this chart. we restrict our attention to 
linear transformations. The nonlinear case is considered in Chart A.13. 

Consider an n-dimensional Euclidean space En with coordinates q;, 
i = 1, 2, ... , n, for a point PEEn. Let the linear transformation 

(1 ) 

be an orthogonal transformation, i.e., a transformation satisfying the 
conditions aaT = aTa = 1, where a = (a1) and aT is the transpose of a. 

A set of nr quantities T; 1; 2 ... ; r is termed an affine tensor of rank r if these 
quantities transform, under transformations (1). according to the law 

(2) 

with inverse 

(3) 

An affine vector A; in En is an affine tensor of rank r = 1 with transforma
tion laws (and inverse) 

- oq. A = _I A., 
I oq; I 

42 See, for instance, Lovelock and Rund (1975). 

(4) 



The Fundamental Form of the Equations of Motion in Configuration Space 249 

An affine scalar A (q) (or affine invariant) is an affine tensor of rank r = 0 
with transformation law 

A(q) = A(a). (5) 

If an affine tensor vanishes in one coordinate system it vanishes in any 
other reference frame obtained through orthogonal transformations. The 
set of all affine tensors of rank r constitutes a (linear) vector space over the 
field of real numbers. 

Nota Bene: For the affine (or orthogonal or Cartesian) framework there is no 
distinction between coordinates with upperor lower indices, i.e., qi = qi,i = 1, 2, .... 
The configuration space "'!ig) with generalized coordinates qi used in the text refers 
primarily to this context. 'he set of all orthogonal transformations in En forms a 
group called the orthogonal group O(n) (which includes inversions, i.e., the trans
formation Qi = -q). 

Chart A.13 Tensor Calculus for Nonlinear Coordinate Trans
formations43 

The linear transformations of Chart A.12 are often inadequate (e.g., for 
the case of curvilinear coordinate systems or of tensor calculus on 
manifolds). As a generalization of the affine framework, consider the 
transformations in a Euclidean space En with points P = (q', ... , qn) 

(1 ) 

which are not assumed to be necessarily linear in qi. Suppose that the 
functions qi(q) possess continuous partial derivatives of the second order 
in a region Rn E En and that everywhere in such a region transformations 
(1) a.!.e invertible. A scalar (or invariant) in Rn is any quantity A(q) such 
that A(q) = A(q). The gradient vector Ai = (jA/(jqi transforms under (1) 
according to 

(2) 

and is termed a covariant vector. A set of quantities Ai(q) is termed a 
contravariant vector when it transforms under Equation (1) according to 
the law 

(j-i 
A-, q A' '=_, 1. 

(jql 
(3) 

The coefficients of transformation laws (2) and (3) must be evaluated at 
the point P. Three types of tensors of rank 2 can now be distinguished. They 

43 See, for instance, Misner, Thorne, and Wheeler (1973) or Lovelock and Rund 
(1975). 
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are the contravariant tensor, Tii, the covariant tensor Tii and the tensor of 
mixed type T~ = T~, defined by the corresponding transformation laws 

r-·· - i:Jep i:Jqi Tkl I} ____ _ 

i:Jqk i:Jq' , 

i:J-i i:J I 
fi=~~Tk 
i i:Jqk i:Jqi I' 

f = i:Jqi i:Jqi T 
ii i:Jqk i:Je;' kl· (4) 

In addition, a quantity r}k' termed connection, can be introduced for which 

_., i:Jqi' i:Jqi i:Jqk. i:Jqk i:J2qi' i:Jq' 
r ' = ------p + --------

i'k' i:Jqi i:Jqi' i:Jqk' ik i:Jqi' i:Jqk i:Jq' i:Jqk'· 
(5) 

Such a connection allows the quantities dAi + PkAi dqk to transform as 
contravariant vectors. This permits the introdJction of the covariant 
derivatives 

1 
(}Ai 

Ad = - + P Ak 
'j i:Jqi k i' 

. _ i:JAi k A.,. - - + LAk , 
I) i:Jqi I} 

(6) 

for which 

the quantity 

i:JP i:JP R i - Ih - Ik + ri rm - rj rm 
Ihk - i:Jqk i:Jqh mk Ih mh Ik' (7) 

is termed the curvature tensor of the connection. 

Nota Bene: Unlike the case of linear transformations (Chart A.12), the covariant 
and contravariant quantities do not coincide within the context of nonlinear trans
formations. This is ultimately due to the fact that the terms (:)(1 /CJlji and CJlji /CJqi are not, 
in general. equal. If, however, transformations (1) are linear, then: (a) such identifica
tion is possible; (b) the distinction between covariant and contravariant quantities is 
lost; and (c) the connection becomes identically null (together with its curvature 
tensor). We must stress that the connection r~k is, at this point, arbitrary in the sense 
that it can be characterized by any set of n 3 numbers and law (5). It should be 
mentioned that such a connection is often called an affine connection, although the 
context is not the conventional affine framework of Chart A.12. 

Chart A.14 Dynamical Systems in Curvilinear Coordinates44 

Consider a Newtonian system of N particles with constant masses sub
ject to scleronomous holonomic constraints and generalized forces 
fk(t, q, q). Its kinetic energy can be written 

T(q, q) = J-'lZij(q)qi, (1) 

44 See, for instance, Rund (1966, Appendix 2). 
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where the quantities Zij are given by Equation (A.4.11). Then we can write 

By introducing the so-called Christoffel symbols of the first kind, 

(3) 

the equation of motion can be written 

d aT aT 
- - - - - f = Z qk + [ji, k]qiel - f = o. (4) dtaqi aqi I Ik I 

By introducing the Christoffel symbols of the second kind, 

{i~} = Zi'[jk; I] (5) 

with the "i nverse" 

[jk; I] = Zi'C~}. (6) 

w~ere the matrix (b) is the inverse of (Zij)' the equation of motion can be 
written 

(7) 

In Riemannian geometry, the quantity within the square brackets is termed 
the covariant derivative of qk with respect to t, and denoted by 

D ·k 
~ = ··k + (kl. .j., 
Dt q \j"q q . (8) 

Then the equations of motion can be written in the concise form 

(9) 

Significance: Equations (4) or (7) or (9) are particularly useful from a 
geometric (i.e., Riemannian) profile both per se and as an intermediate 
step prior to the general theory of gravitation. 

Nota Bene: Equations (4). (7), or (9) can be interpreted as the equations of 
motion of scleronomous holonomic systems in a curvilinear coordinate system with 
affine connection fi, = {/,} or, equivalently, in a curved space with metric tensor 
qil = ·Fij· When the elements gil (q) characterize a nonsingular, symmetric, covariant 
tensor field over a differentiable manifold (see Chart 2.1), the representation space 
can be interpreted as an n-dimensional Riemannian space. 

At the limit when gij = 7im/lij (i.e., when the system is unconstrained), the 
Christoffel symbols vanish identically and Equation (4). (7), or (9) coincides with 
Newton's equations in Cartesian coordinates. 



252 Newtonian Systems 

EXAMPLES 

Example A.l 

A significant example of a Newtonian conservative system without constraints is 
provided by an isolated system of N particles moving in a vacuum under their mutual 
gravitational forces. This system can be represented by the Lagrangian 

i<j 

where G is the universal constant of gravitation. The study ofthis system, particularly 
for the case N > 2, falls within the framework of the many-body formulations in
dicated in the Introduction. 

Example A.2 

One of the simplest examples of systems with conservative forces and scleronomous 
holonomic coordinate constraints is given by the plane pendulum. In this case, the 
coordinate constraint arises from mechanical means (inextensible rod of length I 
and hinge), which force the particle to move in a vertical circle of radius I. If one takes 
the generalized coordinate q to be the angle between the rod and the vertical, the 
system is described by the Lagrangian 

L(q, q) = tml2q2 - mgl(l - cos q) 

when frictional forces are ignored. 

Example AJ 

An example of a system with conservative forces and rheonomous holonomic co
ordinate constraints is given by a particle which moves under the force of gravity 
along a straight line, rotating in a vertical plane with a constant angular velocity qy. 
The Lagrangian (for q = r = coordinate along the straight line) is 

L(t, q, q) = tm(q2qy2 + q2) + mgq cos qyt. 

Example A.4 

Another simple example of a conservative system is the one-dimensional harmonic 
oscillator with the Lagrangian 

and the (linear) equation of motion 

x + w6x = 0, 
2 k 

(Vo = -
m 

which holds for small oscillations when damping forces are ignored. 
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Example A.5 

A typical example of a nonlinear conservative system is the anharmonic oscillator 
with the Lagrangian 

The equation of motion 

2 kl Wo =-, 
m 

is nonlinear (in the coordinate) and provides a higher approximation than that of the 
linear case, when damping forces are again ignored. 

Example A.6 

A typical example of one-dimensional linear dissipative systems is the oscillator with 
conservative (elastic) force ffc = - mW5 x and damping force ffd = - 2mf3o X. 
The equation of motion is 

x + 2f3ox + w5x = o. 
If one assumes fJJd = - mf30 X2 as the power function, then the rate of change of energy 
is 

Example A.7 

An example of a nonlinear dissipative system occurs when the conservative and dis
sipative forces are 

respectively. The equation of motion is 

x + 2f3ox + 2f3ox2 + WoX + W 1X2 = 0 

and the rate of change of the energy is 

dtffT - = -2mf3ox2 - 2mf3 1x 3 . 
dt 

Notice that this system is nonlinear in both the position and the velocity. 

Example A.8 

An example of a linear dissipative system in more than one dimension is given by the 
equations 

ak(t)l + Mt)i/ + Ck(tW = 0 (no summation) 

k = 1,2, ... , n, 

which represent a system of damped oscillators. The oscillators, however, are de
coupled. 
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Example A.9 

A more significant example of a (linear) dissipative system of arbitrary dimension 
is given by a system of coupled and damped oscillators with the equations 

aki(t)qi + bk;(t)i/ + Cki(t)i/ = 0, 

which playa central role in the theory of small oscillations with damping. 

Example A.lO 

A significant example of a truly dynamic system in one dimension is the damped and 
forced oscillator with conservative force -mw 6 x, dissipative force - 2mf3o x, and 
applied force1"(t, x, x)/m. Its equation of motion is 

x + 2f3ox + W6x = 1"(t, x, x). 

Example A.ll 

The system of coupled, damped, and forced oscillators with the equations of motion 

ak;(t)qi + bk;(t)4i + Ck;(t)iji = net, q, 4) 

is a significant example of a dynamic system in more than one dimension. Notice 
that this system can be written in the form of fundamental equations of motion 
(A.7.S) by putting 

Notice the appearance of the so-called acceleration couplings due to generally non
null values of the off-diagonal terms of the matrix (Ci). 

Problems 

A.1 Prove the following relations in the transition from the Cartesian to the 
generalized space of coordinates. 

oti ori 

o4j oqj' 

d oj-i otj 

dt o4j oqj' 

which are used for the Lagrangian formulation of D'Alembert's principle (A.4.9). 

A.2 Prove that acceleration-dependent forces generally violate the postulate of 
Newtonian Mechanics according to which the total acceleration of a particle is the 
(vector) sum of the accelerations produced by each individual acting force. 
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A.3 Perform the transition to configuration space for D'Alembert's principle 
(A.7.l) in the case of masses variable in time. 

A.4 Compute the equations of motion of Examples A.2 and A.3. 

A.5 Compute the energy rate of variation for Examples A.9, A.lO, and A.Il. 

A.6 Examples A.2 and AJ constitute only an approximation of the corresponding 
physical systems. Construct more realistic models with the inclusion of dissipative forces 
and identify their equations of motion. 

A.7 The case of a massive charged particle moving (nonrelativistically) in an 
electromagnetic field constitutes a somewhat hybrid mixture of a discrete system (the 
particle) and a continuous system (the electromagnetic field). Assume the total energy 
of this system to be that of its discrete part, namely, the kinetic energy of the particle. 
Compute the rate of variation of this energy and identify the system as conservative, 
dissipative, or dynamic. 

A.S Prove the Gibbs-Appel equations of Chart A.6. (Hint: Assume coordinates 
and velocities to be constant.) 

A.9 Prove the virial theorem of Chart A.7. 
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