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Prd'ace 

WALTER NOLL'S influence upon research into the foundations of mechanics 
and thermodynamics in the past twenty years is plain, everywhere acknowledged. 
Less obvious is the wide effect his writings have exerted upon those who apply 
mechanics to special cases, but it is witnessed by the now common use of terms, 
concepts, and styles of argument he introduced, use sometimes by young engineers 
who have learnt them in some recent textbook and hence take them for granted, 
often with no idea whence they come. 

The purpose of this volume of reprints is to put into general hands those of 
NOLL'S works which presently promise broadest and most fertile service to stu
dents of the thermomechanics of deformable bodies. This purpose explains the 
selection of the contents, about half of the pages he has published in periodicals 
or proceedings. The complete list of his works, which follows this preface, serves 
also as Table, the articles reprinted here being indicated by their respective page 
numbers at the right. 

Had influence already manifest been the basis of the choice, it would have 
dictated inclusion of No.2, which was NOLL'S thesis, but by now that work is in 
part obsolete, in part available through the intermediacy of a dozen books and a 
hundred papers. As a single example, I may adduce the fact that in Volume 10f 
A Supplement to the Oxford English Dictionary, 1972, that thesis is the earliest 
source quoted in the article "constitutive equation", although, with a lapse of 
accuracy scarcely to be expected, NOLL'S name is misspelled there. Equally 
certainly, on the basis of influence I should have had to exclude his latest devel
opment of the foundations, presented in No. 35, since its impact is not yet widely 
felt. In the past NOLL'S major works have often seemed forbiddingly abstract 
and remote at first sight, and five to ten years have gone by before they came to 
be widely understood and applied. Had quality been the criterion, it would have 
forbidden me to exclude No.3, his paper on statistical mechanics, or No. 33, 
his study of GIBBS' phase rule, but their subjects are peripheral to the field of 
this volume. Instead, the reader will find below two largely expository papers, 
Nos. 24 and 25, which present in typical simplicity and elegance propositions 
in algebra and geometry now frequently applied in continuum mechanics. 

This preface is no place for an obituary of a man not yet fifty and in full 
power of work, but I will record the circumstances in which NOLL began to study 
the foundations of mechanics. 

Students well trained in mathematics, as mathematicians understand that 
discipline, rarely take any interest in mechanics. Students of mechanics, all too 
often aping their teachers, neglect the prime lesson the history of that discipline 
affords, namely, that "the paradise of the mathematical sciences" flowers and 
bears its best fruit when mathematicians cultivate it with their most powerful 
tools - indeed, design those tools for that purpose. After the war the relict 
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German scholars, against odds now not only forgotten but also hard to imagine, 
were striving to revivify the life of the mind which the mental and physical 
barbarity preached and practised by the -isms and -acies of 1933-1946 had all 
but eradicated. Thinking that among the disciples of these elders, restorers rather 
than progressives, I might find a student or two who would wish to master new 
mathematics but grasp it and use it with the wholeness of earlier times, in 1952 
I wrote to Mr. HAMEL, one of the few then remaining mathematicians from the 
classical mould, to ask him to name some young men fit to study for the doc
torate in The Graduate Institute for Applied Mathematics at Indiana University, 
flourishing at that time though soon to be destroyed by the jealous ambition of 
the local, stereotyped pure. Having just retired from the Technische Universitat 
in Charlottenburg, he passed my inquiry on to Mr. SZABO, in whose institute 
there NOLL was then an assistant. Although Mr. NOLL informs me that he had 
attended only one course by HAMEL, and that "there were very few students, and 
none of us understood what he was talking about", nevertheless I like to think 
of WALTER NOLL as our link with the great Gottingen school, with the HILBERT 
who wrote: 

What a vital nerve would be cut off from mathematics by rooting out geometry and mathe
matical physics! On the contrary, I think that wherever mathematical ideas come up, whether 
from the theory of knowledge or in geometry, or out of the theories of natural science, mathe
matics ought to investigate the principles underlying these ideas and by means of a simple 
and complete system of axioms establish them in such a way that in deduction the new ideas 
shall be no whit inferior to the old arithmetic concepts. 

In Berlin NOLL had followed courses by E. SCHMIDT and HASSE, the former, like 
HAMEL, once a doctorand under HILBERT and the latter once a colleague. The 
volume of the Journal of Rational Mechanics and Analysis in which NOLL'S 
thesis is published is dedicated in memoriam to HAMEL. The present volume of 
reprints will mark the twentieth anniversary of the defense of that thesis on 
August 9, 1954, in my office. The room itself, like all that we valued of our 
circumstances then, has since been destroyed. 

Nowadays, when the common student seeks a secure berth by grafting him
self upon some modest little professor whom he regards as prone to foster 
painlessly his limaceous glide toward a dissertation not too strenuous or, even 
better, to draught it for him, tradition is moribund, and we lightly disregard it. 
Mathematics once was transmitted almost like a priesthood, through novitiate, 
trial, and the laying on of hands. The burden lay upon the candidate, not upon 
his professor. Before NOLL came to Indiana, a year at the Sorbonne had given 
him some of the abstract, direct mathematics of BOURBAKI, which then seemed 
to him unrelated to natural science, but from which he afterward created what 
is now become the common dialect of continuum mechanics. That year brought 
him into contact with living exponents of another tradition, even more power
ful than HILBERT'S: the didactic, systematic rationalism of DESCARTES. 

C. TRUESDELL 
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198 WALTER NOLL: 

1. Introduction 

Until not long ago continuum mechanics meant to most people the theories 
of inviscid and linearly viscous fluids and of linearly elastic solids. However, 
the behavior of only few real materials can be described adequately by these 
classical theories. Experimental scientists, who had to deal with real materials, 
developed a science of non-classical materials called rheology. But they did not 
succeed in fitting their experimental results into a general mathematical frame
work. Most of the rheological theories are either one-dimensional, and hence 
appropriate at best for particular experimental situations, or are confined 
to infinitesimal deformations, in which case they are only of limited use, because 
large deformations occur easily in the materials these theories are intended to 
describe. 

In the last few years a number of mathematicians have succeeded in devising 
general three-dimensional theories which are valid for large deformations *. 
Guided directly by physical experience or by the one-dimensional theories of 
the rheologists, these authors have proposed various special hypotheses intended 
to characterize the mechanical behavior of large classes of materials in arbitrary 
motions. Using the principle of objectivity of material properties (cf. Section 11 
of this paper) and usually also the assumption of material isotropy** they then 
derived the general constitutive equation (also called rheological equation of state 
or stress-strain relation) compatible with the original hypothesis. In many cases 
they also solved particular problems in order to make possible a comparison 
with experimental results ***. 

This paper does not start with a special hypothesis. It starts (Chapter II) 
with a general principle, called the principle of determinism for the stress, which 
is implicit in all physical experience and applies to any material whatsoever as 
long as only its mechanical behavior is considered and as long as there are no 
constraints. From this principle and the principle of objectivity the most general 
constitutive equation for all materials is derived. 

Constitutive equations characterize material properties. But material proper
ties are of a local nature and may change from particle to particle in a body. 
It turned out to be necessary, therefore, to develop concepts which describe the 
local behavior of a motion at a particular particle. This is done in Chapter I. 
Some of the concepts introduced there are similar to those of the theory of 
"jets" introduced by EHREsMANN [2J into modern differential geometry. The 
treatment of strain and related notions given in Chapter I is, I believe, more 
concise and direct than previous treatments. It is based on the well known 
polar decomposition theorem for linear transformations. 

With only one exception **** the ideal materials previously considered in the 
literature are special cases of what is called a simple material in Chapter III of 

* A review of the work done up to 1953 was given by TRUESDELL [12J. For 
more recent researches we refer to [1J, l4J, [5J, [8J, [9J, [13]. 

** These two things were not clearly distinguished for some time. A clarifica
tion was given by the author in [5J, where the term "principle of isotropy of space" 
was used for the principle of objectivity. 

*** Ct· [3J, [5J, [10J, LI2J, l13J, [14]. 
**** TRUESDELL'S theory of Maxwellian fluids (ct. 112J, Chapter V D). 
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the present paper*. There is reason to believe that most real materials are 
adequately covered by this category. A detailed discussion of the theory of 
these simple materials is given. It includes new and very general definitions of 
isotropic and anisotropic solids and of fluids in terms of the special invariances 
of the corresponding constitutive equations. Fluids are always isotropic in the 
sense in which the term is used in this paper. I believe that physically observed 
anisotropies in fluids are not really intrinsic in these fluids but depend on the 
past history of the substance. 

In Chapter IV it is shown how two large classes of ideal materials fit into 
the general framework. In the isotropic case, these two classes were introduced 
by RIVLIN & ERICKSEN [8] and COTTER & RIVLIN [1]. The general non-isotropic 
case is discussed here, too. 

The theory of simple materials presented in Chapter III generalizes the 
memory theory of linear visco-elasticity. The theory of materials of the rate 
type (Section 24) generalizes the differential operator theory of linear visco
elasticity. The materials of the differential type (Section 23) correspond to the 
special case when only the stress and not the stress rates occur in the basic 
equation. 

Notation and terminology. Physicists customarily use symbols to denote 
physical quantities. They do not use symbols for the functions that relate these 
quantities, except sometimes the symbol f, which then stands for any function. 
Pure mathematicians, on the other hand, distinguish carefully between functions 
and their values, and they use different symbols for different functions. Both 
methods have advantages and disadvantages. I have found it necessary here to 
follow the pure mathematicians. Thus, in this paper, F means something entirely 
different in nature from F(t). The first is a function, and the second a value of 
that function and hence a constant. 

The terms "function" and "functional" are used here as synonyms for 
"mapping". A mapping is an operation that assigns to each element of one set, 
called the domain of the mapping, a value in another set. A mapping that has 
the same values as a given mapping IX on a subset of the domain of IX but is not 
defined outside this subset is called the restriction of IX to the subset in question. 
Sometimes, if no confusion can arise, we use the same symbol IX for such a 
restriction. 

If IX and fJ are two suitable mappings, then IX 0 fJ denotes their composition 
defined by (IX 0 fJ) (X) = IX (P (X)). The inverse of a one-to-one mapping IX is denoted 

-1 
by IX. If.?F and C§ are two sets, then .?F X C§ means the set of all ordered pairs 
of elements of .?F and f§. 

In the case of linear transformations F, G of a vector-space into itself we 
omit the symbol 0 and write simply FG for their composition. The inverse of a 
linear transformation G is denoted by G-1, its transpose by GT • The identity 
transformation is denoted by I. A linear transformation Q is orthogonal if and 
only if QQT =1, i.e., QT =Q-1. The term tensor is used as a synonym for linear 
transformation. Tensors of order higher than two do not occur in this paper. 

* More general materials are those "of order n", discussed by the author in 
[7]. They include TRUESDELL'S theory of Maxwellian fluids. Simple materials are 
those of order one. 
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200 WALTER NOLL: 

Points and vectors of a Euclidean space are denoted by boldface letters, 
except when they are values of mappings. If ~ and yare two points, then y - ~ 
denotes the vector leading from ~ to y. If ~ is a point and u a vector, then 
~+u denotes the point y uniquely determined by u=y-~. 

I. Local kinematics 

2. Basic concepts 

Precise axiomatic definitions of the basic concepts used in this paper are 
given in [6J. Here is a brief summary: 

A body fliJ is a smooth manifold of elements X, Z, ... , called particles. The 
configurations cp, {}, ... of fliJ are the elements of a set of one-to-one mappings 
of fliJ into a three-dimensional Euclidean point space 8. The vector space as
sociated with 8 will be denoted by -r. The mass-distribution m of fA is a measure 
defined on all Borel subsets of fliJ. If cp is a configuration of fliJ, then there is a cor
responding mass density (ltp such that 

(2.1) m(~) = J (ltp(X)dV 
tp('if) 

for all Borel subsets~ of fliJ. A motion is a one-parameter family {{}T}' - 00<.< 00, 
of configurations. The parameter. is called the time. A motion will often simply 
be denoted by {}, which is then regarded as a point-valued function of two 
variables, a particle and a time. The mass density corresponding to the con
figuration {}T is denoted by (l(.). 

A body, its configurations, its mass-distribution, and its possible motions are 
subject to the axioms given in [6]. These axioms insure that the customary 
notions and operations are meaningful. However, in some of the considerations 
of this paper, continuity and differentiability conditions stronger than those 
implied by the axioms of [6J have to be assumed. It will be clear from the 
context when this is the case, and we shall not mention these conditions explicitly. 

3. Deformations and linear transformations 

A smooth homeomorphism <5 which maps a neighborhood of the null-vector 0 
of the vector space "Y onto another such neighborhood and which maps 0 into 
itself, 

(3·1) <5(0)=0, 

shall be called a local homeomorphism of "Y. We define an equivalence relation 

among all local homeomorphisms by local identity: <5 "" ~ if and only if <5 (P) = b(P) 
for all P in some neighborhood of 0, however small. The resulting equivalence 

classes L1 will be called deformations. The equivalence class of <50 J depends only 

on the equivalence classes L1 and J of <5 and <5, and it will therefore be denoted 

by L1 0 L1. With the law of composition thus defined, the deformations form a 
group denoted by p). 

A linear transformation G, i.e., a mapping of "Yonto itself such that 

(3·2) 

4 

G(~+~) =G(~) +G(~), G(aP) =aG(P), 
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is a local homeomorphism provided that it is regular, i.e., provided that GP=O 
is possible only for P = O. Two different linear transformations are never equi
valent in the sense defined above. Hence a regular linear transformation defines 
a unique deformation and may thus be regarded as a special deformation. The 
regular linear transformations thus form a subgroup of the group of deformations 
~, called the linear group and denoted by 2. 

The gradient at P = 0 of a local homeomorphism b is a local property of b 
and hence depends only on the equivalence class L1 to which b belongs. We can, 
therefore, define the gradient V L1 of a deformation L1 by 

0·3) V L1 = Vb (0) if bE L1 . 

The gradient V L1 is a regular linear transformation and hence itself a deforma
tion. Since, by the chain rule, 

(3.4) 

it follows that the gradient operation V is an endomorphism of the group ~. 
Its kernel is the group % of all null-deformations, i.e., all deformations whose 
gradient is the identity I. The quotient group ~/% consists of the equivalence 
classes of deformations defined by the equivalence relation 

(3· 5) L1 ,....., 3 if and only if V L1 = V 1. 

The deformations in each class have the same gradient and any representing 
local homeomorphisms differ only by small terms of order one. The relation (3.5) 

may be read: L1 and J are equal up to a small term of order one. Each class 
has a unique representative which is a linear transformation. We have 

(3·6) 

i.e. any deformation differs from its gradient only by a small term of order one. 
In the case when L1 = G is a linear transformation, we have 

(3·7) VG = G. 

The quotient group ~/% is isomorphic to the linear group 2. 

A deformation L1 will be called isochoric if there is a volume preserving local 
homeomorphism b in the class Lt. The isochoric deformations form a subgroup 
..F of~. The null-deformations are isochoric, and % is a subgroup of .f. A linear 
transformation G is isochoric if and only if 

(3.8) I det GI = 1. 

The isochoric linear transformations form a subgroup 'fI of 2, called the uni
modular group. They are also called unimodular transformations. The group of 
orthogonal transformations is a subgroup of 'fI; it will be denoted by @. The 
space of all symmetric linear transformations will be denoted by Y. The set of 
all positive definite and symmetric linear transformations will be denoted by Y+. 
I t is a subset of the linear group 2. 

5 



202 WALTER NOLL: 

4. Local configurations 

Consider a neighborhood ..;v(X) of a particle X in a body f1I, i.e., a part of 
f1I containing X. Let tp be a smooth homeomorphism of ";v(X) into the vector 
space "f/" mapping X itself into the null-vector, 

(4.1) tp(X) = O. 

We define an equivalence relation among all such homeomorphisms by the con
dition that tp,.....,1jJ if and only if tp(Z) =1jJ(Z) for allZ in some neighborhood of X. 
The resulting equivalence classes rp will be called the local configurations of X. 
The set of all local configurations of X will be denoted by ~x. 

Let 15 be a local homeomorphism of -r. The equivalence class of the mapping 
15 0 tp depends only on the equivalence class f/J of tp and on the deformation LI of 15. 
Therefore, it is meaningful to speak about the local configuration LI 0 rp of X, 
which is the composite of the local configuration f/J of X and the deformation ,1. 

If rp and & are two local configurations of X, we define 

(4.2) 

This LI will be called the deformation from the configuration rp to the configuration $. 
Let rp be a configuration of the body f1I. Then tp = rp - rp (X) maps f1I into 

the vector space "f/" and has the property (4.1). Its equivalence class will be 
denoted by rp(rp, X), and it will be called the localization at X of rp. Assume 
that a motion D of !J1J is given. We then use the notation 

(4·3) 

and we call e the localization at X of the motion D. We note that e is a func
tion of a real variable whose values are in ~x. Any sufficiently smooth function 
of this type will be called a local motion of X. 

Let e be a local motion and rp a local configuration of X. We then write 
-1 

(4.4) Q(T) = e(T) 0 rp 

and callQ the deformation function of X in the local motion e relative to the local 
reference configuration rp. Q is a function of a real variable with values in ~. 
Any sufficiently smooth function of this type will be called a deformation function. 

In the special case when rp =€J(t) in (4.4), where t is a particular time, we use 
the notation 

-1 

(4.5) Qt(T) = €J(T) 0 e(t) 

and call Qt the deformation function of X in e relative to the time t. 
Let rp be a configuration of the body f1I and (!<p the corresponding mass density. 

The value (!<p (rp(X») depends only on the localization rp(rp, X) of rp at X. We can, 
therefore, define 

(4.6) (!rt> = (!<p (rp (X») , rp = rp(rp, X) , 

and cq.ll (!rt> the mass density of X in the local configuration rp. 
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5. Gradients 

Assume that two local configurations (/J and (/J of a particle X are given. 
The regular linear transformation 

(5.1) G = G((/J, (/J) = V,1, 

will then be called the deformation gradient from (/J to ii. 
In the case when a local motion 8 and a local reference configuration (/J are 

given, we use the notation 

(5.2) 

(5·3) 

F(-,:) = V.o(-,:) = G (8 (-,:), (/J), 

1<;(-,:) = V.ot(-':) =G(e(-,:),-&(t)). 

Assume that (/J is another local reference configuration, and let 

(5.4) 

Then, by the chain rule for gradients, we have 

(5.5) F(-,:) =F(-,:)G, 

where G =G((/J, (/J) is defined by (5.1). We note the following formulas: 

(5.6) 

(5.7) 

G(;P,(/J) =G((/J,$t1, 

F(-,:) = 1<;(-,:) F(t), 1<;(t) = I. 

We define an equivalence relation among all local configurations (/J E <efx by 

(5.8) f/J ,....,;P if and only if G ((/J, f/J) = I. 

The corresponding equivalence classes M will be called the configuration gradients 
at X. The class of local configurations equivalent to a given (/J E ~x is denoted 
by Va>, so that 

(5.9) M = V f/J if and only if f/J EM. 

The equivalence class of the local configuration ,1 0 f/J, where,1 is a deformation, 
depends only on the equivalence class of (/J and on the gradient V,1 of,1. There
fore, it is meaningful to speak about the configuration gradient GM, which is 
the product of the configuration gradient M and the regular linear transforma
tion G. This product is characterized by the property 

(5.10) V(,1 0 f/J) = (J7,1) (J7(/J) . 

If M and M are two configuration gradients, we define 

(5.11) 
We have 

(5.12) 

G = M M-l if M = G M. 

G (;p, f/J) = if M-l, M = V (/J, 

which shows that G ($, f/J) depends only on the gradients of f/J and;P. In par
ticular, the deformation gradient function F in (5.2) depends only on V(/J, and 
we may call 

(5.13) F(-,:) = (V8(-,:)) M-l 

7 
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the deformation gradient at time T of the local motion e relative to the con
figuration gradient M as a reference. 

If l/J and ii are two local configuration at X, then the corresponding densities 
ell> and etii are related by 

(5.14) etii = 1 det G(ii, 4>}1 ell>' 
It follows from (5.8) that etii= ell> if ii and l/J have the same configuration gradient. 
Hence we can define 

(5.15) 

and we call eM the mass density for the configuration gradient M at X. Equation 
(5.12) then implies 

(5.16) eGM = 1 det GI eM' 
It follows that 

(5.17) eM = eM if and only if G =M M-l is unimodular. 

6. Rotation and strain tensors 
Of fundamental importance for the local kinematics of continuous media is 

the well known polar decomposition theorem,' 
Let F be any regular linear transformation. Then there are unique decom

positions 

(6.1) F=RU, F=VR 

in which R is orthogonal and U and V are symmetric and positive definite, i.e., 
R E (), U, V E 9'+. The following relations are valid: 

(6.2) U2=FT F, V2=FFT , 

(6.3) V=RURT , V2=RU2RT • 

This theorem, when ~pplied to a deformation gradient F = G (ii, l/J), gives 
rise to the following terminology: We call R the rotation tensor, U the right strain 

tensor, and V the left strain tensor of the deformation from l/J to ii. The squares 

(6.4) C = U2=FT F, B = V2=FFT =RCRT 

will be called the right and the left Cauchy-Green tensors of the deformation from 
(/J to ii. 

The strain tensors U and V describe adequately what is meant physically by 
strain because their eigenvalues are the principal extension ratios of the deforma-

tion from 4> to ii. However, it is often of advantage to use the Cauchy-Green 
tensors rather than the strain tensors as measures of strain because their com
ponents are rational functions of the components of the deformation gradient F, 
while the components of U and V are complicated irrational functions of the 
components of F. Both C and B are, of course, symmetric and positive definite. 
Their eigenvalues are the squares of the principal extension ratios of the deforma
tion. 
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In the special case when F is the tensor function defined by (5.2) R, U, V, C, 
and B will also be tensor functions of a real variable. If F is replaced by the 
tensor function Fe defined in (5.3), we use the analogous notation Rt , [fe, Ve, Ct , 

and B t . These functions have the same smoothness properties as F or Fe, respec
tively. We note that 

(6.5) 

7 . Histories 

Let ofF be an arbitrary set. The class of all functions with values in ofF whose 
domain is the negative real axis will then be denoted by ofF * . 

Let oc be any function of a real variable with values in ofF. We then define 
octEofF* by 

(7.1) oct(s) = oc(t + s) for s < 0, 

and we call it the history up to time t of the function oc. 

For functions oc* EofF* we generally use the notation 

(7.2) 

Then 

(7·3) 

oco = oc*(O). 

Let e be a local motion of a particle X, so that e(7:) E~x. The corresponding 
history et E ~:, defined by 

(7.4) fY(s) = e(t + s) for s:::;;: 0, 

will then be called the kinematical history up to t of X. If, in addition, a local 
-1 

reference configuration <J> is given and if Q = e 0 <J> is the corresponding deforma-
tion function, we call fY E (2*, defined by 

(7.5) Qt(s) =Q(t + s) for s :::; 0, 

the deformation history up to t of X. 

8. Rate of strain and spin 

Consider a local motion e of a particle X. Let Fe be the corresponding deforma
tion gradient function defined by (5.3) and Fet the history of Fe up to time t 
defined according to (7.1). 

We then call * 

(8.1) 

the velocity gradient at time t of the local motion e. Similarly* 
(n) (n) 

(8.2) En (t) = Fe (t) = Fet (0) , n = 0, 1, 2, ... 

* A superposed dot denotes the operation of differentiation and a superposed (n) 
its nth iteration. 
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is called the nth acceleration gradient at time t of e. We have, by (6.5) and (8.1), 

(8·3) Eo=I, El =E. 

If e is the localization at X of a global motion {}, then E(t) (En (t)) actually 
coincides with the gradient with respect to position of the velocity (nth accelera
tion) at ;r ={}t(X) and at time t. 

The polar decomposition 

(8.4) 

defines the rotation tensor Rt(T) and the right strain tensor Ue(T) of the deforma
tion from the configuration at time t to the configuration at time T. The histories 
R~ and Uet up to time t of R t and Ue are defined according to (7.1). The tensor 

(8.5) W(t) = Ht (t) = H~ (0) 

is called the spin at time t, and the tensor 

(8.6) D(t) = ~(t) = ~t(O) 

the rate of strain at time t. Similarly, we define the nth spin W,. and the nth rate 
of strain Dn by 

(8.7) 

(8.8) 

(n) (n) 

Wn(t) = Rt(t) = R~(O), 
(n) (n) 

Dn(t} = Ue(t} = Uet(O). 

Replacing Ue in (8.8) by the right Cauchy-Green tensor Ct= Ue2 , we get a tensor 
(n) (n) 

(8.9) An(t) = C/(t) = q(O), 

which we shall call the nth Rivlin-Ericksen tensor*. By (6.5), (8.5), and (8.6) 
we have 

(8.10) 

One could give definitions similar to (8.8) and (8.9) by replacing the right 
strain and Cauchy-Green tensors by their left counterparts. But the tensors 
defined in this way are of little interest. Moreover, for n = 1 one would get 
nothing new, because . . 
(8.11 ) D (t) = Ue (t) = Ve (t), 

as is not hard to prove. 

9. Rational expressions for the rates 

It is possible to find explicit expressions for vv,., Dn, and An as polynomials 
in the acceleration gradients Ek and their transpositions E[, k = 1,2, ... , n. 
Differentiating Ct=I{Fe [cf. (6.4)J n times, by the product rule we obtain 

M n W ~-~ 

Ct(T) =2:(:)F?(T) Fe (T). 
k=O 

* RIVLIN & ERICKSEN l8J recognized the importance of these tensors and used 
them extensively. 

10 
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Substituting 7: =t yields, according to (8.2) and (8.9), 

(9.1) 

Since Eo=/ by (8.3), this may be written in the form 

n-l 

(9.2) An=En+E~ + L (;)EfEn_k. 
k=l 

Differentiating CiT) = [ft2 (7:) and then substituting 7: = t we get 

(9·3) 
n-l 

An= 2Dn+ L (;)DkDn_ k , 

k=l 
and hence 

(9.4) 

This is a recursion formula which can be used to find explicit expressions for 
the Dn as polynomials in the A k , k = 1, 2, ... , n. Hence, after substitution of 
(9.2), one would also obtain explicit expressions for the Dn as polynomials in 
the Ek and Ef, k=1, 2, ... , n. 

Differentiating F;(-r) =Rt(-r) [ft(T) and then putting 7: =t, we find 

n-l 

(9.5) En = w,. + Dn + L (;) w,;Dn - k, 
k=l 

and hence 

(9.6) 
n-l ' 

w,. = En - Dn - L (;) w,;Dn - k • 

k=l 

This is again a recursive formula which permits us to express w,. as a polynomial 
in the Ek and Dk. Since the Dk are polynomials in the Ek and Ef, we can also 
find expressions for the w,. as polynomials in the E k and Ef, k = 1, 2, ... , n. 

In the special case n = 1 we find 

(9.7) 

It follows that the spin W is skew (WT = - W). The higher spins w,., n> 1 
are not necessarily skew. Of course, the Dn and An are all symmetric. For n = 2 
we find 

(9.8) 

A2=E2+Ef +2ETE, 

D2=!(A2-tAi) =t[E2+Ef - (E +ET)2J +ETE, 

~ =t[E2- Ef - ET(E - E T)]. 

II. The general constitutive equation 

10. Basic concepts 

A dynamical process for a body !JI/ is defined as a motion {} of !JI/ coupled with 
a system of forces for!JI/ at each time -r, subject to the principle of linear momentum 
and the principle of angular momentum (c/. [6J, Section 5). A system of forces 

11 
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can be split into body forces and contact forces. If sufficient continuity assump
tions are made, the contact forces are determined, for each time T, by a field 
of symmetric stress tensors 5 (-r). If a motion D and smooth fields of symmetric 
tensors 5 (-r) are arbitrarily prescribed, one can always find a dynamical process 
such that 5 (-r) is the corresponding stress tensor field at time -r. Appropriate 
body forces can be chosen, for example, by putting the mutual body forces equal 
to zero and by letting the density b of the external body forces be given by 

(10.1) 

where v is the acceleration of the motion fJ. Then CAUCHY'S law of motion ([6J, 
(5.25)) holds, and the principles of dynamics are satisfied. 

If we subsequently talk about a process for a body !JIJ we mean a pair {fJ, S}, 
where D is an arbitrary motion of !JIJ and 5 an arbitrary time family of symmetric 
stress fields. We can always adjoin suitable body forces to a given process so 
as to make it a dynamical process. 

A local process for a particle X E!JIJ is defined as a pair {e, S}, where e is a 
local motion of X and 5 a symmetric tensor function of a real variable. The 
localization at X of a process {fJ, S} is defined by replacing D by its localization 
e at X and 5 by its values for X. We shall use the same symbolS for these 
values and write S(-r) =S(-r, X). No confusion can arise because, in all local 
considerations, the particle X will be fixed. 

A constitutive assumption is a restrictive condition on the possible dynamical 
processes a body can undergo, and it characterizes the material properties of 
the body. Restrictive conditions on the possible motions alone are particular 
constitutive assumptions; they are called constraints. Examples of constraints 
are rigidity (every possible motion is a rigid motion) and incompressibility 
(every possible motion is isochoric). In this paper, we shall assume that there 
are no constraints, i.e. that all motions D are possible. We shall investigate 
constitutive assumptions in the form of functional relations between the stress 
5 and the motion D of a process {D,S}. Such relations will be called constitutive 
equations. 

11. The principle of obiectivity of material properties 
A change of frame is a transformation of space and time specified by a point

valued function c of a real variable, a function Q of a real variable whose values 
are orthogonal transformations, and a real constant a. It transforms a pair 
{~, -r} consisting in a point ~ and a time -r into the pair {~', -r'} given by* 

(11.1) 

( 11.2) 

it' = c(-r) + Q(-r) (~- 0), 

T'= 't'-a, 

where 0 is an arbitrary point, the same for all transformations. Vectors u E "Y 
transform according to 

(11·3) u'= Q(-r)u. 

* TOUPIN has analyzed these transformations recently [11]; he calls them "Eucli
dean transformations of space-time". 

12 
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If G is a linear transformation and UE"Y, then GUE"Y. Hence, by (11.3), 
(GU)/= Q (-e) Gu. Defining the transform G' of G by (GU)/=G'u' , we get 
Q (-e) Gu = G' Q (-e) u, and hence the following law of transformation for second 
order tensors: 

(11.4) 

Two dynamical processes are called equivalent if they are related by a change 
of frame as made precise in Definition 7 of [6]. Under such a change of frame 
the contact forces transform in an objective manner, i.e., according to the law 
(11.3). Hence the stress tensor must transform according to the law (11. 4). 
The motion {} determines the position of the particles and hence transforms 
according to (11.1). Disregarding the body forces, we can say that two processes 
{O, 5} and {{}', 5'} are equivalent it they are related by a change ot trame in the torm 

(11.5) 

{}'(Z, -e/) = c(-e) + Q(-e) [{}(Z, -e) - OJ, 

5 /(Z, -e/) = Q (-e) 5 (Z, -e) QT (-e), 

-e'=-e-a. 

Constitutive equations are subject to the following invariance requirement: 

Principle of objectivity of material properties. It a process {{}, 5} is com
patible with a constitutive equation, then also all processes {{}I, 5'} equivalent to it 
must be compatible with the same constitutive equation. 

This is a special case of the general principle of objectivity stated in [6]. 
Its physical meaning is simply that the material properties of a body should 
not depend on the observer, no matter how he moves. 

12. The principle ot determinism tor the stress 

We ask for guiding principles which will enable us to find the most general 
form of a constitutive equation. The following two are implied by physical 
experience: 

(i) The stress at a particle X should depend only on the' physical state of an 
arbitrarily small neighborhood of X. The state of parts distant from X should 
have no direct influence on the stress at X. This condition is implicit in the 
concept of a contact force. 

(ii) The physical state of a body at a time t should depend only on its past 
history, i.e., on what happened to it at times -e~ t, and not on its future, i.e., 
on what will happen to it at times -e> t. This condition expresses the causality 
of natural processes. 

The physical history of a body consists of several components: its kinematical 
history, its thermodynamic history, its electromagnetic history, its chemical 
history, etc. In reality, each of these components may influence the stress. 
But, in this investigation, we shall disregard all non-mechanical influences. 

Principle of determinism. The stress 5 (t) at a particle X and at time t is 
determined by the past history ot the motion ot an arbitrarily small neighborhood 
ot X. 

13 
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In precise terms, this principle states that 

(a) the stress 5 (t) at X is a functional ~t of the motion {}, 

(12.1) 5 (t) = ~t ({}) 

the domain of ~t being the class of all possible motions and its values being 
symmetric tensors, 

(b) for any two motions D and i which coincide in some neighborhood of X 
for times Ts;.t the value of the functional ~t is the same, i.e., 

(12.2) 

whenever 

(12·3) D(Z, T) = n(Z, T) 

for T<t and Z in some neighborhood VV(X) of X, however small. 

13. The general constitutive equation 
Not any arbitrary functional ~t with the Property (b) is permissible in (12.1), 

because (12.1), as a constitutive equation, is subject to the principle of objectivity 
stated in Section 11. This principle states that (12.1) must hold equally if the 
process {{}, 5} is replaced by any equivalent process {D', 5'}, i.e., that 

(13.1) 

must be valid for any process {D', 5'} related to {D, 5} by a transformation of 
the form (11.5). Choosing Q=I, a=O, and C(T)=O-[{}. .. (X)-O] in (11.5), 
we get 5'=5, T'=T, and D~=O+[DT-DT(X)]. It follows that 5(t) =5'(t) = 
~t ({}') holds and hence that 5 (t) depends only on the vector-valued function 1p 
defined by 1p(Z, T) =D(Z, T) -D(X, T). Moreover, the Property (b) of ~t implies 
that 5 (t) can depend only on the local behavior of 1p in an arbitrarily small neigh
borhood of X. This means that 5 (t) is determined by the localization 8 at X 
of the motion {} as defined by (4.3). Thus, (12.1) reduces to the form 

(13.2) 5(t) = ~t(8) 
where ~t is a functional with the property that 

(13·3) 

whenever 

( 13.4) 8(T) = 8(T) for T < t. 

Now we consider another equivalent process by choosing C(T) = 0, Q =1, 
and a = t in (11.5). We then have 

T'=T-t, t'=t-t=O, 5'(t') =5'(0) =5(t), 

and, for the corresponding local motion 8, 

8'(T') = 8(T) = 8(t + T/). 

14 
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It follows from (13.1) that 

(13.5) S(t)=S'(O)=~o(e'). 

By (13.4) we have ~o(e') =~o(e') whenever e'(T') =e'(T') for T'~O, which 
shows that the value ~o(e') depends only on the restriction of the function 
e' (T') to T' < o. But this restriction is nothing but the kinematical history 
e t Ercl up to time t as defined by (7.4). Omitting the index 0 in (13.5), we see 
that the constitutive equation (13.2) reduces to the form 

( 13·6) S (t) = ~ (e') , 

where et is the kinematical history of X for the local motion e. The form of 
the functional ~ is independent of t and depends only on the particle X. Its 
domain is <'(jl. 

We finally consider an equivalent process by choosing C(T) = 0 and a =0 
in (11.5), leaving the orthogonal tensor function Q arbitrary. The principle of 
objectivity then implies that the functional ~ of (13.6) must satisfy the relation 

( 13·7) Qo~(e*) Q[ = ~(Q*oe*), Qo = Q*(O), 

for all kinematical histories e*Ercl and all orthogonal tensor functions Q*EtP*. 
It is not hard to see that, conversely, the principle of determinism and the 

principle of objectivity are automatically satisfied for any equation of the form 
(13.6) provided the functional ~ has the property (13.7). Hence (13.6) with (13.7) 
is the most general constitutive equation. An equation of this form restricts 
the class of all possible local processes {e, S} for the particle X and characterizes 
the local material properties of X. 

If we subsequently speak about a particle X, we always assume that a func
tional of the type discussed above is associated with it. We call it the functional 
of the particle X. 

14. Material isomorphisms 

The nature of the domain <'(j: of the functional ~ of the particle X varies 
with the particle X. Hence there is no direct way to compare the functionals 
of different particles. It is desirable to render such a comparison possible, because 
only then can a precise meaning be given to the statement that two different 
particles consist of the same material. 

A body was defined in [6J as a certain mathematical structure. As in the 
case with any such structure, it is meaningful to talk about isomorphisms be
tween bodies. An isomorphism of a body !!4 onto a body !!4 is a one-to-one mapping 
y of !!4 onto iii such that 

(a) the configurations if of iii are of the form 

( 14.1) 
-1 

ip=rpoy, 

(b) the mass distributions m and m of !!4 and iii are related so that 

( 14.2) m(<'(j) = m(y(<'(j)) 

for all Borel subsets <'(j in !!4. 
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Assume that X and X are two particles and consider the isomorphisms y, 
if any, of neighborhoods .A'(X) onto neighborhoods .k''(X) which map X into 
X =y(X). We define an equivalence relation among all such isomorphisms by 
the condition that y"-'y if and only if y(Z) =y(Z) for Z in some neighborhood 
of X, however small. The resulting equivalence classes r will be called the local 
isomorphisms of X onto X. If r is such a local isomorphism then the local 
configurations iii of X are of the form 

(14·3) 
-1 

if)=cpor, 

where cp is a local configuration of X. 

Definition 1. A local isomorphism r of a particle X onto a particle X will 
be called a material isomorphism of X onto X provided the functionals lJ and "§" 
of X and X are related by 

-1 

( 14.4) ~(e*) =CJ(e*or) 

for all kinematical histories e* E ct'1. 
We shall say that two particles consist of the same material if they are 

materially isomorphic to each other. 

15. Constitutive functionals 

Assume that a local motion e and a local reference configuration cP of a 
particle X are given. Let et and fi be the corresponding kinematical history and 
deformation history, respectively, as defined in Section 7. By (4.4) they are 
related by 

(15.1) et =[:J!o CPo 

Hence the general constitutive equation (13.6) may be rewritten III the form 

(15.2) 

Definition 2. A functional @ whose domain is the set ~* of all deformation 
histories and whose values are symmetric tensors is called a constitutive functional 
provided it has the following property: For all deformation histories Q* E ~* and 
all orthogonal tensor functions Q* E (!)* the relation 

(15·3) 

holds. 

Qo@(Q*) Ql = @(Q* 0 Q*), Qo = Q*(O) , 

It is clear that the functional @.p defined by 

(15.4) @.p(Q*) = @(Q*; CP) = ~ (Q* 0 CP) 

is a constitutive functional, because the property (15.3) for @ =@<Il is equivalent 
to the property (13.7) for lJ. Hence the most general constitutive equation may 
be formulated in this way: 

16 
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Theorem 1. Given a particle X ana a local reference configuration (/J of X, 
there is a constitutive functional (4) such that, for any local process {e, S} of X, 
the stress S is related to the local motion e by 

(15.5) 

where Dt is the deformation history of X defined in Section 7. The constitutive 
functionals (4) and @!p corresponding to the local reference configurations (/J and (j, 
are related, for all deformation histories D* E ~*, by 

( 15.6) 

~ -1 ~ 

where LI = (/Jo (/J is the deformation from (/J to (/J. 

The relation (15.6) is an immediate consequence of (15.4). We call (4) the 
constitutive functional of the particle X relative to the local reference configura
tion (/J. 

Since the nature of the domain ~* of constitutive functionals is not related 
to particles, as was the case with the functionals tJ in (13.6), they characterize 
materials in a manner that is independent of the particular particle. The following 
theorem is a consequence of Definition 1 and (15.4): 

Theorem 2. Two particles X and X are materially isomorphic, i.e., consist 
of the same material, if and only if there is a local configuration (/) of X and a local 
isomorphism r of X onto X such that 

( 15.7) 
-1 

(4)(D*) = @dl(.Q*), ~ = (/J 0 r, 

for all D* E ~*. 

16. The local isotropy group 

Let r be a material automorphism of X, i.e., a material isomorphism of X 
onto itself. By Theorem 2, there is a local configuration (/J such that 

( 16.1) @(D*; (/J) =@(D*; $), 
~ -1 

(/J =(/Jor. 

...- -1 -. 

The material automorphism r and the deformation LI = (/J 0 (/J from (/J to (/J are 
related by 

-1 -1 -1 -1 

( 16.2) LI=(/Joro(/J, r=(/JoLlo(/J. 

Since r, an isomorphism, preserves the mass distribution, it follows that LI must 
be an isochoric deformation. 

In addition to (16.1) we have the relation (15.6) between the two functionals 
@4) and @~. Combining these two relations we obtain 

(16·3) 
-1 -1 

Conversely, if (16.3) holds for an isochoric deformation LI EJ, then r= (/Jo LI 0 (/) 

can easily be seen to be a material automorphism of X. 

17 



214 WALTER NOLL: 

Definition 3. Let @ be a constitutive functional. The group I§l 01 all tSO

choric deformations LI E J with the property that. 

(16.4) @ (D* 0 LI) = @(D*) 

holds for all D* E ~*. is called the local isotropy group of @. 

f§l is a subgroup of the group J of all isochoric deformations. The material 
automorphisms of a particle also form a group. The relations (16.2) establish 
an isomorphism of this group with the local isotropy group ~J of ~!II' The local 
isotropy groups ~J and ~l corresponding to different local configurations (/J 

and $ will in general be different. But they are all isomorphic to each other 
because they are isomorphic to the group of material automorphisms of X. 
In fact, it is not hard to see that ~l is conjugate to ~~: 

( 16.5) 

III. Simple materials 

17. Simple constitutive functionals 
It may happen that the values @ CD*) of a constitutive functional @ are not 

affected if Q*(s), for each s~O, is changed by a small term of order one. By 
(3.6), D*(s) differs from VD*(s) only by such a small term. 

Definition 4. A constitutive functional @ is said to be simple if 

( 17.1) @(D*) = @(VQ*) 

for all deformation histories D* E ~*. 
The condition (17.1) is equivalent to the following: If V.Q*(s) = V.Q*(s) 

for all s:::;;: 0, then 

(17.2) 

The values of a simple constitutive functional @ are determined for all Q* E ~* 
if they are known for the histories of linear transformations F*E!£'*. In other 
words, @ is determined by its restriction to !£'*. 

From now on we assume that @ is simple, and we use the same symbol @ 

for its restriction to !£'*. By (15.3) @ satisfies the relation 

(17·3) Qo@ (F*) Ql = @ (Q* F*) , Qo = Q*(O) , 

for all F* E!£'* and all Q* E (T) * . 
Let G E!£' be an arbitrary regular linear transformation with the polar 

decomposition 

(17.4) G=PT, PE(T), 

For any F* E!£'* we define 

(17.5) F* = F* G-l = R* 6*, R*E (!J*, 

where R* and 6* are determined by the polar decomposition ofF*. We then have 

F* =F*G =R* 6* P T = (R* P) (PT u* P) T. 

18 
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Substituting R* P for Q* and (PTU* P) T for F* in (17.3), we see that 

(17.6) @(F*) = ROP@(PT 0* P) T) p T R'[, Ro = R*(O). 

We now define a functional ~ with domain [/+* X ~ by 

(17.7) @(U* T) = ~(U*; T) 

for all U*E[/+* and TE[/+. Equation (17.6) then shows that 

(17.8) @(F*) = RoP ~(PT 0* P; T) pT R'[. 

The functional ~ has the property that 

(17.9) ~(U*; T) = ~(U*; T) if U* T = U* f. 
Conversely, if ~ is any functional with domain [/+* X ~ and with the property 
(17.9), then (17.8) defines a simple constitutive functional @. The variables on 
the right side of (17.8) are defined in terms of F* and an arbitrary GE!l'. For 
the special choice G = I we get 

(17.10) @(F*) =Ro~(U*;I)R'[, Ro=R*(O), 

where U* and R* are defined by the polar decomposition 

(17.11) F* =R* U*, R*E(!J*, U*E~*. 

In the special case when G =Fo=F*(O) (17.8) becomes 

(17.12) 

where Ro=R*(O), Uo= U*(O), and where U: E [/+* is determined by the polar 
decomposition 

(17.13) 

We define a functional ~l with domain [/+* by 

(17.14) ~l (U*) = ~ (U* ; I) for U* E [/+*. 

Then (17.10) takes the form 

'(17.15) @(F*) = Ro ~l (U*) R'[. 

Conversely, if ~l is an arbitrary functional with domain [/+*, then (17.15) defines 
a simple constitutive functional. 

We also define a functional ~2 as the restriction of ~ obtained by allowing 
for its first variable only those functions U: E [/+* whose value for s = 0 is the 
identity, 

(17.16) 

We denote the set of all U: with the property (17.16) by ~**' The domain 
of ~2 is then [/+** X ~, and it is identical with ~ in this domain. The function 

19 
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U: defined by (17.13) has the property (17.16), and the same is true for 
Rr U: Ro. Hence (17.12) has the form 

( 17.17) 

Conversely, if sr2 is an arbitrary functional with domain ~** X .9"+, then (17.17) 
defines a simple constitutive functional @. 

18. Simple materials 

We say that the material at a particle X is simple or, briefly, that X is simple 
if the constitutive functional @<p of X, for some local configuration lP of X, is 
simple. We assume from now on that this is the case. Let lP be another local 

~ -1 ~ 

configuration of X and let Lt = lPo lP be the deformation from lP to lP. For 
every deformation history Q*E9J*, by (3.7) and the chain rule (3.4), we have 

(18.1 ) V(.Q* 0 Lt) = V [(I7Q*) 0 Lt]. 

It follows from (17.2) that 

@(.Q* 0 Lt; lP) = @(I7.Q* 0 Lt; lP), 

and hence from (15.6) that 
@(.Q*; $) = @(I7.Q*; $), 

which shows that @~ is also simple. Therefore, if the material at a particle is 
simple then the constitutive functional @<p is simple for all local reference con
figurations lP. 

It follows from (15.6) that the functionals @<p and @~ corresponding to two 

local configurations lP and $ are related by 

(18.2) @ (F* G; lP) = @ (F* ; lP) , 

where G=G(lP, lP) is the deformation gradient from lP to ij) defined by (5.1). 
It follows from (18.2) that 

@(F*;lP)=@(F*;lP) if G(lP,lP) =1. 

This means, according to (5.8), that @(F*; lP) depends only on the gradient 
M = VlP of the local configuration lP. We can therefore define 

(18·3 ) @M(F*) = @(F*;M) = @(F*; lP) if M = VlP. 

The following theorem is a corollary of Theorem 1. 

Theorem 3. Let X be a simple particle and let M be a configuration gradient 
of X. Then there is a simple constitutive functional @M such that, for any local 
process {e, S}, the stress is related to the local motion by the constitutive equation 

(18.4) 

where ptE!£'* is the history of the deformation gradient of the local motion e relative 
to M as a reference. The functionals @M and @M corresponding to two configuration 

20 
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gradients are related by 
~ 

(18.5) @ (F* G; M) = @ (F* ; M) , G=MM-I, 

for all F* E .fi'*. 
The results of the previous section enable us to put the constitutive equation 

into various other forms: 

Theorem 4. The constitutive equation for a simple particle X may be written, 
with reference to a fixed configuration gradient M of X, in one of the following four 
forms: 

(a) There is a functional srI with domain ~* such that the stress is given by 

(18.6) 5 (t) = R (t) srI (Ut ) R (tf, 

where R (tl is the rotation tensor and if the history of the right strain tensor relative 
to M as a reference. 

(b) There is a functional sr with domai;:: Y+* X Yand with the property (17.9) 
such that, for any configuration gradient M as a reference, the stress is given by 

(18.7) 

where R (t) is the rotation tensor and Ot the history of the right strain tensor relative 

to M as a reference, and where~ P ~ the rotation tensor and T, the right strain tensor 
of the deformation from M to M, M M-I= P T. 

(c) In the special case when M is the gradient of the configuration at some 
time to the equation (18.7) takes the form 

( 18.8) 

where the rotation tensors Rand Rto and the right strain tensors U and [fto are taken 
relative to M and the configuration at time to as a reference, respectively. 

(d) There is a functional sr2 with domain Y+** X ~ such that the stress is 
given by 

(18.9) 

where R, U, and [ft are defined as before. 

The forms (18.6) and (18.9) have the advantage that the functionals srI and 
sr2 are not subject to any restrictive condition. 

19. The isotropy group 

If @ is a simple constitutive functional, then it follows from (17.2) that 
@(.Q*) =@(.Q*oL1) holds for all null-deformations L1E%' i.e., whenever 17L1 =1. 
Hence, by definition 3, the local isotropy group Wi of @ contains the group .AI" 
of all null-deformations as a normal subgroup. The quotient group Wlj.Al" is 
isomorphic to a group of unimodular transformations. 

Definition 5. The group W oj all unimodular transformations H with the 
property that 

(19.1) @(F*H)=@(F*) 
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holds for all F* E 2* is called the isotropy group of the simple constitutive func
tional @. 

~ is a subgroup of the group <fI of all unimodular transformations and it is 
isomorphic to ~l/.A'. 

Theorem 5. A n orthogonal transformation Q is an element of the isotropy 
group ~ of a constitutive functional @ if and only if one of the following conditions 
is satisfied: 

(a) For allF*E!l'* 

(19.2) 

(b) For all U* E f/+* and all T E [/+ 

(19·3) 

where sr is defined by (17.7). 

(c) For all U*Ef/+* 

( 19.4) 

where srI is defined by (17.14). 

(d) For all U:Ef/+** and all TE[/+ 

( 19.5) 

where sr2 is defined in Section 17. 

Proof. If we substitute the constant tensor Q for the tensor function Q* 
in (17.3), and QF* for F* and Q for H in (19.1), we see that (19.2) holds if and 
only if QE~. The equivalence of the condition (a) with (b), (c), and (d) follows 
directly from the definitions of sr, srI' and sr2. 

If ~ contains the full orthogonal group (!), then (19.2), (19.3), (19.4), and 
(19.5) are valid for all orthogonal Q. 

The isotropy group ~ M of the constitutive functional @M of a particle will, 
in general, depend on the choice of the configuration gradient M. But, as in 
the case of local isotropy, t~e groups ~M and ~M corresponding to two con
figuration gradients M and M are conjugate: 

( 19.6) 

It follows from (18.5) that HE~M if and only if 

( 19.7) @(F*;M) =@(F*;HM) 

for all F* E 2* . 
20. Isotropic and anisotropic solids 

We say that a constitutive functional @ defines a solid if its isotropy group is 
a subgroup of the orthogonal group, i.e., if ~ ((!). A particle X is said to be a 
solid particle if there is a configuration gradient M of X such that @M defines 
a solid. A solid is called an isotropic solid if the isotropy group of its defining 
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functional is the full orthogonal group, i.e., if ~ =~. Let X be an isotropic 
solid particle. Any configuration gradient M such that ~M=~ is then called an 
undistorted state of X. 

The following theorem follows immediately from Theorems 4 and 5. 

Theorem 6. Let X be an isotropic solid particle. Its constitutive equation 
may be written, with reference to an undistorted state M of X, in one 0/ the following 
forms: 

(20.1) 

(20.2) 

(20·3) 

(20.4) 

S(t) = Sf1 (R(t) VIRT(t)) , 

S (t) = R (t) Sf ({jt; 11) R(t) T, 

S (t) = RID (t) Sf (Vf.; V(to)) Reo (t), 

S(t) = Sf2 (V!; V(t)). 

The notation of Theorem 4 applies here. In addition, V = R V RT is the left strain 
tensor relative to M as a reference and 11 is the left strain tensor of the deformation 
from M to M. The functionals Sf, Sf1 and Sf'2 satisfy the conditions (b), (c), and 
( d) of Theorem 5 for all orthogonal transformations Q. 

A solid is called anisotropic if the isotropy group of its defining functional 
is a proper subgroup of the orthogonal group, i.e., if ~ (~ and ~ =F ~. Material 
symmetries in anisotropic solids, such as orthotropy, transverse isotropy, and the 
various types of crystal symmetry are defined according to the special nature 
of the isotropy group f§. 

21. Fluids 
We say that a constitutive functional defines a fluid if its isotropy group ~ 

is the full unimodular group 0/./, i.e., if ~ =0/./. A particle X is said to be a fluid 
particle if, for some configuration gradient M of X, the corresponding constitutive 

functional defines a fluid, i.e., if ~M=o/./. Let M be any other configuration 
gradient. By (19.6) f§M is conjugate to ~M=o/./. But 0/./ is a normal subgroup 
of .It' and hence coincides with all its conjugates. It follows that, if X is a fluid 
particle, then ~M=o/./ for all configuration gradients M of X. 

For a fluid it follows from (19.7) that 

(21.1) @(F*;M) =@(F*;M) 

~ -1 

whenever H =M M is unimodular. But, by (5.17), this is the case if and only 
if the densities eM and eM coincide. If follows that the value @ (F*; M) can depend 
only on the density eM' Therefore, we can define a functional .p with domain 
.It'* X fJl+ (fJl+ = set of positive real numbers) such that 

(21.2) 

for all F* E.It'* and all configuration gradients M of X. Let F* = R* V* be the 
polar decomposition of F*. Substituting R* for Q* and V* for F* in (17.3) and 
using (21.2) we see that 

(21.3) 
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which shows that -P is determined by its restriction to !/+* X Bl+. We use the same 
symbol -P for this restriction. Since ~M=<ft contains the orthogonal group it 
follows from (19.2) that .p satisfies the relation 

(21.4) 

for all U* E !/+* , all Q E @, and all d> o. 
Theorem 7. The constitutive equation for a fluid particle X may be written 

in one of the following forms: 
(a) There is a functional .p with domain ~* X Bl+ and with the property (21.4) 

such that the stress is given by 

(21.5) S(t) = R(t) .p(ut; eM) R(t)T, 

where R (t) is the rotation tensor and U' the history of the right strain tensor relative 
to an arbitrary configuration gradient M with mass density eM. 

(b) In. the special case when M is the configuration gradient at some time to, 
the equation (21.5) takes the form 

(21.6) S (t) = Rto (t) .p (D;!; e (to)) Rto (t) T. 

(c) There is a functional .pI with domain !/+** X Bl+ and with the property that 

(21.7) 

for all U: E ~**' all Q E @, and all d > 0, such that the stress is given by 

(21.8) 

Proof. The part (a) and its special case (b) follow from (21.3) and Theorem 3. 
The part (c) follows from (b) by choosing to=t and by defining .pI to be the 
restriction of .p to !/+** X fJl+. 

We note that an arbitrary functional -PI with domain !/+** X fJl+ and with 
the property (21.7) may define a fluid. The constitutive equation (21.8) is 
intrinsic in the sense that it does not depend on the choice of a reference con
figuration. The constitutive equation of a solid cannot be put into such an 
intrinsic form. 

22. Constitutive equations involving the Cauchy-Green tensors 
As we pointed out in Section 6, it is often better to use the Cauchy-Green 

tensors C and B instead of the strain tensors U and V. In order to do so, we 
define new functionals~, SFI, SF2, fi and fil' of the same nature as the correspond
ing functionals without the superposed bars defined in Sections 17 and 20, by 
the following formulas: 

(22.1) i(UU; T2) = Uost'(U*; T) Uo, 

(22.2) 

(22·3) 

(22.4) 

(22.5) 

24 
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valid for all U*E~* (Uo=U*(o)), all U:E~** (U:(O) =1), all TE~, and 
all d>O. 

It is not hard to see that the general constitutive equations (18.6), (18.8), 
and (18.9) of Theorem 4 for simple materials then take the form 

(22.6) F(tV S (t) F(t) = ~l (e' ), * 
(22.7) Fe. (t)T S (t) Fe. (t) = R (to) i (R (to) T q. R (to); C(to)) R (to)T, 

(22.8) Set) = R(t) i2(R(t)T qR(t); C(t)) R(t)T. 

In the case of isotropic solids, the functionals sf, iI' and ~2 satisfy, for all 
orthogonal Q, the functional relations obtained from (19.3), (19.4), and (19.5) 
by superposing bars. Moreover, the simplified constitutive equations (20.3) and 
(20.4) for isotropic solids take the form 

(22.9) 

(22.10) 

Fe. (t)TS(t) Fe.(t) =~(q;B(to)), 

Set) =~2(q;B(t)). 

The functionals .\) and ~ have the same properties (21.4) and (21.7) as the 
corresponding functionals without the superposed bars. The constitutive equa
tions (21.6) and (21.8) for fluids take the form 

(22.11) Fe.(tf S (t) Fe. (t) = ~ (q; e (to)) , 

(22.12) Set) =~l(q;e(t)). 

IV. Special classes of materials 

23. Materials of the differential type 

The value @ (F*) of a simple constitutive functional is determined by the 
values F*(s) of the tensor function F* for s<O. It may happen that @(F*) 
depends only on the values F*(s) for s very near to zero. If F* has sufficiently 
many continuous derivatives then F*(s) may be approximated, for small values 
of s, by its Taylor expansion up to some order n. This Taylor expansion is deter
mined by the value of F* and its derivatives up to the order n at s = 0, i.e., by 

•• (n, (IS) 

(23·1) Fa = F*(O), Po = F*(O), ... , Po = F*(O) . 

Definition 6. A simple constitutive functional @ is said to be of the differential 
type if 

(23.2) @(F*) = @(F*) 

whenever 
(k, ~) 

(23·3) F*(O) = F*(O), k = 0, 1, ... , n. 

We have seen that every simple constitutive functional @ has a representation 
of the form (17.17) in terms of a functional ~2' Since ~2 is just a restriction of ~ 

* This form, in other notation, has been proposed independently by GREEN & RIV
LIN [4]. 
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which is defined by (17.7) in tenus of @, we have 

(23.4) 

for all U: E [/'+** and all T E [/'+. If @ is of the differential type then its value 
depends only on the values at s = 0 of its argument and its first n derivatives. 
Hence, by (23.4), the value ~2(U:; T) depends only on the first n derivatives 
of U: at s=O, since U:(O) =1. It follows that there is a function f of n+1 
symmetric tensor variables such that 

(23·5) 

for all U: E [/'+** and all T E ~. In the case when U: = Ut' is the history up to 
time t of the right strain tensor relative to the configuration at time t of a local 

<k) 

motion, the derivative U/ (0) coincides by (8.8) with the kth rate of strain Dk (t). 
For simplicity we use the notation 

(23·6) 

We say that a particle X is of differential type if its constitutive functional 
GM , for some configuration gradient M, is of the differential type. It is not 

hard to see that GM, for any other configuration gradient £1, is then also of the 
differential type. The following theorem is a consequence of (18.9) and the 
remarks made above: 

Theorem 8. The constitutive equation of a particle X of differential type may 
be written, with reference to a configuration gradient M of X, in the following form: 

There is a symmetric-tensor-valued function f of n + 1 symmetric tensor variables 
such that the stress is given by 

(23·7) 

where Dk (t) is the kth rate of strain and where the rotation tensor R (t) and the right 
strain tensor U(t) are taken relative to M as a reference. 

In a material of the differential type the stress depends only on the immediate 
past of the motion and not on its course at times long ago. 

Since the rates of strain Dk can be expressed as polynomials in the accelera
tion gradients Ek and EI as shown in Section 9, it follows that the constitutive 
equation (23.7) is a relation involving the displacement gradient G =R U, the 
acceleration gradients, and the stress. 

In the case of isotropic solids, it follows from Theorem 6 and (23.5) that f 
must satisfy the relation 

(23·8) 

for all Dk E [/', k = 1, 2, ... , n, all Q E ~, and all T E ~ . A function with this 
property is called an isotropic tensor function. By (20.4) the constitutive equation 
(23.7) reduces for isotropic solids to 

(23·9) 
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The constitutive equation for a fluid of the differential type has the form 

(23. 10) 

where 9 is an isotropic function of n symmetric tensor variables and one positive 
scalar variable, i.e., it satisfies the relation 

(23. 11 ) 

for all DkEY, k=1,2, ... ,n, all d>O, and all QE(!J. This is an immediate 
consequence of Theorem 7, (21.8). 

If we use the alternate forms (22.8), (22.10), and (22.12) of the general con
stitutive equations we arrive at the following forms for materials of the dif
ferential type: In the general case, 

(23·12) 

For isotropic solids *, 

(23·13) 

For fluids, 

(23· 14) 

In these equations f and ~ are of the same type as f and 9; in (23.12) f may be 
arbitrary but in (23.13) it must be isotropic. Of course, ~ is also isotropic. Ak(t) 
is the kth Rivlin-Ericksen tensor, defined by (8.9) and related to the acceleration 
gradients by (9.2). 

24. Materials of the rate type 

The general constitutive equation of a simple material in the form (18.8) 
may be rewritten as 

(24.1 ) 

where 

(24.2) 

and 

(24·3) 

Keeping to and UCto) fixed, we may interpret (24.1) in the following manner: 
Assuming that the function flea defined by 

(24.4) 

is given, the function St. defined by (24.2) is completely determined. In other 
words, (24.1) defines an operation on functions fle with values in Y+ which 
gives functions Se. with values in [f. It may happen that this operation is defined 
by the process of solution of a differential equation for Se. in the form 

_....... ~) -....... !!!) 

(24.5) f( Sdt) , St. (t), ... , Sdt); Ut• (t), Udt), ... , Ut• (t); U{to)) = 0, 

* This form was first derived by RIVLIN & ERICKSEN [8]. 
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where f is a symmetric-tensor-valued function of m +n + 3 symmetric tensor 
variables. For simplicity we use a notation similar to (23.6). so that (24.5) 
becomes 

(/) (k) 

(24.6) f(5;.(t); ~.(t); U(to)) =0. 

If the function ~. is given. then (24.6) is a differential equation of order m for 
the function Se., We assume that the form of f is such that there is a unique 

<l) 

solution 5;. which assumes given initial values 5;. (tI). 1 = O. 1 •...• m - 1. no 
(k) (I) 

matter how we choose U(to). Ut •• tl • and S;.(ft). 
Since to is arbitrary. in (24.6) we may make the special choice to=t obtaining 

(/) (k) 

(24.7) f(5;(t); Ut(t); U(t)) = O. 

By (24.4) and (8.8) we have 
(k) 

(24.8) ~ (t) = RT (t) Dk (t) R (t) . 

will be called the 1th invariant stress rate. If we carry out the differentiation in 
(24.9) according to the product rule. and if we observe (8.7). we see that 

~ I! (q) 

(24.10) 51= L p!q!r! WpT 5W,; 
p, q, ,=0, ... , 1 

p+q+r=1 

thus ~ can be expressed explicitly in terms of the stress 5. its time derivatives 
~ ~ 

5 up to the order 1. and the spins Wp up to the order 1. We have 50 = 5. For 
1 = 1. we get the invariant stress rate * 

~ ~ . 
(24.11) 51 = 5 = 5 - W 5 + 5 W. 

Observing (24.2). (24.9). and (24.8). we see that (24.7) has the form 

(24.12) f(R(tf5;(t) R(t); R(tfDk(t) R(t); U(t)) =0. 

A material with a constitutive equation of this form will be called a material of 
the rate type. 

It must be noted that (24.12) is not really a complete constitutive equation. 
The stress is not determined by the local motion alone but only when. in addition. 

initial values 5~(tI}, l=O.1 • ...• m-1. for some initial time tl • are given. These 
initial values. on the other hand. should be determined by the history of the local 
motion up to the time tl . A constitutive equation of the type (24.12) characterizes 
not a single material but a family of materials depending on m symmetric tensor 
parameters. 

* It was introduced by ZAREMBA [15J. 
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In the case of isotropic solids it follows from Theorem 6 that the tensor func
tion f in (24.12) must be isotropic and that the constitutive equation reduces to 

(24.13) f(5;(t); Dk(t); V(t») = o. 
Fluids of the rate type are described by an equation of the form 

(24.14) 

where 9 is an isotropic tensor function of m+n+1 tensor variables and one positive 
scalar variable. However, not every equation of the form (24.14) defines a class 
of fluids of the rate type. It may also define a class of isotropic solids, because 
the stress may depend on the right strain tensor relative to some reference con
figuration through the initial values. 

Starting from the general constitutive equations (22.7), (22.9), and (22.11), 
one can easily derive alternate forms for the constitutive equations of the rate 
type: 

In the general case we obtain 

(24.15) f{R(tf 5;(t) R(t); R(tf Ak(t) R(t); C(t») = 0 

where Ak(t) is the kth Rivlin-Ericksen tensor (9.2) and where 5;(t) is the lth stress 
flux defined by 

(24.16) 
- (/) I 
51 (t) = F;, (t) T 5 (t) F;, (t) t,~t. 

We find that 51 may be expressed explicitly in terms of the stress 5, its deri
vatives up to the order m, and the acceleration gradients EI up to the order m 
by the fOTIllula 

(24.17) - " l' (q) 

51 = L..J p! q'! r! EJ 5 E,. 
Q. f>.'~O ..... 1 
f>+q+'~1 

For l=O we have .fo=5, and for l=1 we get the stress Ilux* 

(24.18) ~ = g = 5 + ET 5 + 5 E. 

In the case of isotropic solids f is isotropic and (24.15) reduces to 

{24.19) 

For fluids we get 

(24.20) 

f(S;(t);Ak(t); B(t») =0**. 

where ~ is an isotropic tensor function. 
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* It differs from the flux introduced by CAUCHY (ct. the discussion given by 
TRUESDELL in [12]. Section 55 bis), in which there are minus signs on the right. 

** This form was first derived by COTTER & RIVLIN [lJ. 
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THE FOUNDATIONS OF CLASSICAL MECHANICS 

IN THE LIGHT OF RECENT ADVANCES 
IN CONTINUUM MECHANICS 1 

WALTER NOLL 

1. Introduction. It is a widespread belief even today that classical 
mechanics is a dead subject, that its foundations were made clear long 
ago, and that all that remains to be done is to solve special problems. This 
is not so. It is true that the mechanics of systems of a finite number of 
mass points has been on a sufficiently rigorous basis since Newton. Many 
textbooks on theoretical mechanics dismiss continuous bodies with the 
remark that they can be regarded as the limiting case of a particle system 
with an increasing number of particles. They cannot. The erroneous belief 
that they can had the unfortunate effect that no serious attempt was 
made for a long period to put classical continuum mechanics on a rigorous 
axiomatic basis. Only the recent advances in the theory of materials 
other than perfect fluids and linearly elastic solids have revived the interest 
in the foundations of classical mechanics. A clarification of these foun
dations is of importance also for the following reason. It is known that 
continuous matter is really made up of elementary particles. The basic 
laws governing the elementary particles are those of quantum mechanics. 
The science that provides the link between these basic laws and the laws 
describing the behavior of gross matter is statistical mechanics. At the 
present time this link is quite weak, partly because the mathematical 
difficulties are formidable, and partly because the basic laws themselves 
are not yet completely clear. A rigorous theory of continuum mechanics 
would give at least some precise information on what kind of gross 
behavior the basic laws ought to predict. 

I want to give here a brief outline of an axiomatic scheme for continuum 
mechanics, and I shall attempt to introduce the same level of rigor and 
clarity as is now customary in pure mathematics. The mathematical 

1 The results presented in this paper were obtained in the course of research 
sponsored by the U.S. Air Force Office of Scientific Research under contract no. 
AF 18 (600)-1138 with Carnegie Institute of Technology. 
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structures involved are quite complex, and some fine details have to be 
omitted in order not to overburden the paper with technicalities. 

Notation: Points and vectors in Euclidean space will be indicated 
by bold face letters. If x and yare two points, then x - y denotes the 
vector determined by the ordered pair (y, x). If x is a point and v a vector, 
then x + v denotes the point uniquely determined by (x + v) - x = v. 
The word "smooth" will be used instead of "continuously differentiable". 
Some equations will be valid only up to a set of measure zero. It will be 
clear from the context when this is the case. 

2. Bodies. 

DEFINITION 1: A BODY is a set 58 endowed with a structure defined by 
(a) a set <1> of mappings of 58 into a three-dimensional Euclidean point 

space E, and 
(b) a real valued set function m defined for a set of subsets of 58 

subject to seven axioms as follows: 

(5.1) Every mapping q; E <1> is one-to-one. 
(5.2) For each q; E <1>, the image B = q;(58) zs a region in the space E, a 

region being defined as a compact set with piecewise smooth boundaries. 
-1 

(5.3) If q; E <1> and "p E <1> then the mapping X = "p 0 q; 2 of q;(58) onto 
"P(58) can be extended to a smooth homeomorphism of E onto itself. 

(SA) If X is a smooth homeomorphism of E onto itself and if q; E <1>, then 
also X 0 q; E <1>. 

These four axioms give 58 the structure of a piece of a differentiable 
manifold that is isomorphic to a region in Euclidean three-space. The 
following three axioms give 58 the structure of a measure space. 

(M.l) m is a non-negative measure, defined for all Borel subsets ~ of 58. 

(M.2) For each q; E lfJ, the measure f-lrp = m 0 ~ induced by m on the region 
B = q;(58) in space is absolutely continuous relative to the Lebesgue 
measure in B. Hence it has a density Prp so that 

(2.1 ) m(~) = J prp(x)dV. 
cp(~) 

(M.3) For each rp E lfJ the density Prp is positive and bounded. 

2 The symbol 0 denotes the composition of mappings and a superposed - 1 
denotes the inverse of a mapping. 
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We use the following terminology: The elements X, Y, ... of ~ are the 
PARTICLES of the body. The mappings cp E fP are the CONFIGURATIONS of 
the body. The point x = cp(X) is the POSITION of the particle X in the 
configuration cpo The set function m is the MASS DISTRIBUTION of the body. 
The number m(@:) is the MASS of the set @:. Here and subsequently we 
refer to Borel sets simply as sets. The density Ptp is the MASS DENSITY of ~ 
in the configuration cpo Note that it would have been sufficient to require 
the existence of Ptp only for one particular configuration cpo It then follows 
that the mass density exists also for all other configurations. 

A compact subset ~ of ~ with piecewise smooth boundaries will be 
called a PART of the body ~. It may again be regarded as a body whose 
configurations are the restrictions to ~ of the configurations of ~ and 
whose mass distribution is the restriction of the mass distribution of ~ 
to the subsets of ~. Two parts ~ and :0. will be called SEPARATE if 

~ r"I :0 c ~ r"I 0, 

where ~ denotes the boundary of ~. 

3. Kinematics 

DEFINITION 2: A MOTION of a body ~ is a one-parameter family {Bt}, 

- 00 < t < 00, of configurations Bt E fP of ~ such that 

(K.l) The derivative 

(3.1) 
d 

v(X, t) = de Bt(X) 

exists for all X E ~ and all t, it is a continuous function of X and t 
jointly, and it is a smooth function of X. 

(K.2) The derivative 

(3.2) 
. d d2 

v(X, t) = de v(X, t) = dt2 Bt(X) 

exists piecewise and is piecewise continuous in X and t jointly. 

The parameter t is called the TIME. Derivatives with respect to t will be 
denoted by superposed dots. v(X, t) is called the VELOCITY of the particle 

X at time t. v(X, t) is called the ACCELERATION of X at t. 
Let h be any real, vector, or tensor valued function of X and t, and 

assume that h(X, t) is smooth in X and t jointly. We may then associate 
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with h the function h defined by 
-1 

(3.3) h(x, t) = h«()t(x), t) 

for - = < t < = and x E ()t(58). By the chain rule of differentiation we 
have 

(3.4) h(x, t) = h«()t(X), t) + I7h«()t(X), t) ·v(X, t), 

where I7h denotes the gradient of h with respect to x. It is customary in 
the literature to use the same symbol for hand h, to omit the independent 

. . ah 
variables, and to distinguish h from h by writing h = -. Equation (3.4) 
then takes the familiar form at 

(3.5) 
ah 

h = - + v·gradh. at 
The LINEAR MOMENTUM at time t of a set ~ C 58 is defined by 

(3.6) g( (£; t) = f v(X, t)dm. 
(ii; 

It follows from (K.1) and (K.2) that g( (£, t) is piecewise smooth in t. As a 
function of (£ it is a vector valued measure, absolutely continuous relative 
to m with density v. 

The ANGULAR MOMENTUM at time t of a set (£ C 58, relative to a point 
o E E, is defined by 

(3.7) h( (£; t; 0) = f [()t(X) - OJ X v(X, t)dm. 
(ii; 

It is piecewise smooth in t, and, as a function of (£, it is a vector valued 
measure. 

4. Forces 

DEFINITION 3: A SYSTEM OF BODY FORCES for a body 58 is a family 
{B~} of vector valued set functions subject to the following axioms: 

(B.1) For each part ~ of 58, B~ is a vector valued measure defined on the 
Borel subsets of ~. 

(B.2) For each ~, B~ is absolutely continuous relative to the mass distri
bution m at ~. Hence it has a dens£ty b~ so that 

(4.1 ) B~«£) = f b~(X)dm. 
(ii; 
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(B.3) The density bs;f3 is bounded, i.e. 

I bs;f3 (X) I < k < 00, 

where k is independent of ~ and X E ~. 

DEFINITION 4: A SYSTEM OF CONTACT FORCES for a body ~ is a family 
{Cs;f3} of vector valued set functions subject to the following axioms: 

(C. 1) For each part ~ 0 f ~, C s;f3 is a vector valued measure defined on the 
Borel subsets of ~. 

(C.2) Cs;f3(~) _ Cs;f3(~ ("\ ~). 
(C.3) If ceo, c C~, and ~ CO, then 

Cs;f3(c) = Co(c). 

(CA) If rp E rp is any configuration of ~ and if P = <p(~), then the induced 
-1 

measure Cs;f3 0 rp, when restricted to the Borel subsets of the boundary 
surface P of P = rp(~), is absolutely continuous relative to the Le
besgue surface measure on P. Hence it has a density s(~, <p) so that 

(4.2) Cs;f3(C) = J s(~, <p; x)dA 
'P(c) 

for all Borel subsets c C ~. 
(C.S) The density s(~, <p) is bounded, i.e. 

Is(~, rp; x)1 < l < 00, 

where l does not depend on ~ or x E rp(~). 

As in the case of a mass distribution, it would, have been sufficient in 
(CA) to require the existence of s(~, <p) only for a particular <p E rp. The 
existence of s for all other configurations is then an automatic consequen
ce. The axiom (C.2) means that C\lS is essentially a vector measure on the 

boundary ~. 
It is useful to consider surfaces in ~ as being oriented, and to employ 

the operation of addition of oriented surfaces in the sense of algebraic 

topology. The boundary ~ of a part ~ of ~ will be regarded as oriented 

in such a way that the positive side of ~ is exterior to ~. If ~ and 0. 
are two separate parts of ~, then 

(4.3) ~vo.=~+o.. 

This is true because the common boundary of ~ and 0., if any, appears 
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twice with opposite orientation on the right side of (4.3) and hence 
cancels. We shall say that the surface c is a PIECE of the surface b if c is a 
subset of b and if the orientation of c is induced by b. The significance of 
the axiom (C.3) is brought out by the following theorem: 

THEOREM I: There is a vector valued function S, defined for all oriented 
surfaces c in 58, such that 

(4.4) C\U(c) = S(c) 

whenever c is a piece of the boundary ~ of ~. We say that S(c) is the CONTACT 
FORCE ACTING ACROSS THE ORIENTED SURFACE c. 

Proof: For each C which is not a piece of - ~ we can find a part 

O(c) of 58 such that C is a piece of O(c). We then define S(c) = C,o,(c)(c). 
Now let ~ be an arbitrary part of 58 and let C be a piece of ~. We then 
have 

c C ~, c C O(c), c C O(c) '"' ~, 

~ '"' O(c) C~, ~ '"' O(c) C O(c). 

Applying axiom (C.3) twice, we get 

C\U(c) = C\U .... ,o,(C)(c), C,o,(C)(c) = C\U .... ,o,(C)(c). 
Hence 

C\U(c) = C,o,(C)(c) = S(c). 

If c is a part of - 58 we define 

(4.5) S(c) = - S(- c). 

It follows from theorem I and axiom (C.4) that there is a vector valued 
function s(c, q;; x) such that 

(4.6) S(c) =Js(c, q;; x)dA. 
<p(C) 

Also, if x E q;(b) C q;(c) and if b is a piece of c, then 

(4.7) s(c, q;; x) = s(b, q;; x). 

If Cl and C2 are two pieces of a surface c and if c = Cl + C2, thei. 

(4.8) 

This is true because C\U' as a measure, is additive and because, by axiom 
(CA) the value of C\U for the common boundary curve of Cl and C2 is zero. 
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DEFINITION 5: A SYSTEM OF FORCES for a body 58 is a family of vector 
valued measures {FI.I3} such that, for each part ~ of 58, FI.I3 is defined on the 
subsets of ~ and such that the F 1.13 have decompositions 

(4.9) FI.I3 = BI.I3 + CI.I3' 

where {BI.I3} is a system of body forces and {CI.I3} is a system of contact forces. 

It is not hard to see that the decomposition (4.9), if it exists, is auto
matically unique. 

We use the following terminology: The measure F 1.13 is the FORCE acting 
on the part ~ of 58. The vector F 1.13(~) is the RESULTANT FORCE acting on 
~. Let ~ and 0. be two separate parts of 58. The vector measure 

(4.10) FI.I3,O = FI.I3 - Fl.I3uo 

defined on the subsets of ~, is the MUTUAL FORCE exerted on ~ by 0.. 
The mutual force exerted on a part ~ of 58 by the closure of its comple
ment is denoted by F(I.I3) and it is called the INTERNAL FORCE acting on ~. 
The restriction of F jB to a part ~ of 58 is the EXTERNAL FORCE acting on ~. 
A similar terminology and notation will be used when "force" is replaced 
by "body force" or by "contact force". 

Let {F 1.13} be a system of forces for a body 58, rp E l/J a configuration of 58, 
and 0 E E a point in space. The MOMENT about 0 of the force F 1.13 acting 
on the part ~ of 58 in the configuration rp is the vector valued measure 
M(F 1.13' rp, 0) defined by 

(4.11) M(FI.I3' rp, 0; <r) =J[rp(X) - OJ X dFI.I3 
(£ 

for the subsets <r of ~. The vector M(F 1.13' rp, 0; ~) is the RESULTANT 

MOMENT about 0 acting on ~. 

5. Dynamical processes 

DEFINITION 6: A DYNAMICAL PROCESS is a triple {58, (h, F l.I3,t}, where 58 
is a body, (h is a motion of 58, and Fl.I3,t is a one-parameter family of systems 
of forces for 58, subject to the following two axioms: 

(D.1) Principle of linear momentum: For all parts ~ of m and all times t, 

(5.1 ) F l.I3,t(~) = g(~; t), . 

where g is defined by (3.6). In words: The resultant force acting on 
the part ~ is equal to the rate of change of the linear momentum of ~. 

(D.2) Principle of angular momentum: Let 0 E E be any point in space. 
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Then for all parts ~ of 58 and all times t, 

(5.2) M(Ff.U,t, (Je, O;~) = h(~; t; 0), 

where hand M are defined by (3.7) and (4.11), respectively. In words: 
The resultant moment about 0 acting on a part ~ is equal to the rate 
of change of the angular momentum of ~ relative to o. 

It would have been sufficient to require that (5.2) holds for a particular 
o E E. It is then automatically valid for all points in space. Also, (5.2) 
remains valid if the fixed point 0 is replaced by the variable mass center 

(5.3) c(~, t) = 0 + mt~) f ((J,(X) - O)dm 

f.U 

of the part ~. These statements can be proved in the classical manner. 
We now prove a number of important theorems. For simplicity we 

omit the variable t; we write 

(5.4) s(c; x) = s(c, 8t ; x) 

for the density of the contact force as defined by (4.6). 
THEOREM II: For any two separate parts ~ and 0 of 58 we have 

(5.5) 

i.e. the resultant mutual force exerted on ~ by 0 is equal and opposite to the 
resultant mutual force exerted on 0 by ~. 

Proof: We apply axiom (D.I) to ~, 0, and ~ v 0: 
. . . 

(5.6) Ff.U(~) = g(~), F,o,(O) = g(O), Ff.Uu,o.{~ v 0) = g(~ v 0). 

Since ~ n 0 has no mass by (M.2), it follows from (3.6) that 

g(~ v 0) = g(~) + g(O) ; 

hence, by (5.6), 

It is not hard to see that F f.Uu,o.{~ n 0) = O. Hence 

F f.Uu,o,(~ v 0) = F f.Uu,o,(~) + F f.Uu,o.{O). 

The assertion follows now from the definition (4.10). 
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THEOREM III (reaction principle) 3: The contact force S( c) acting cross 
c is opposite to the contact force acting across - c, i.e. 

(5.7) S(c) = - S(- c) 

Proof: If c is a piece of - 58, then (5.7) is true by the definition (4.5). 
If not, it is possible to find two separate parts ~ and 0 such that 

~ r'\ 0 = C (see Fig. 1). We orient C such that it is a piece of ~. Then - C 

b __ ~ ___ , 

~, 
e---~,,"(-C) 

Fig. 1 

will be a piece of O. The surfaces ~, 0, and ~ v 0 have decompositions 

~ = C + h, 0 = (- c) + e, ~ v 0 = h + e. 

It follows from theorem I and (4.8) that 

C'.l3(~) = S(c) + S(b), C'.l3u,o.(~) = S(b) 

and hence that 

Similiarly, we obtain 

CO,'.l3(O) = S(- c). 

For the total resultant mutual forces, we get 

(5.8) 
FO,'.l3(~) = B'.l3,o(~) + S(c) 

FO,'.l3(O) = Bo ,'.l3(O) + S(- c). 

Application of theorem II gives 

(5.9) S(c) + S(- c) = -[B'.l3,DJ~) + Bo .'.l3(O)]. 

Using axiom (M.3) one can show that the parts ~ and 0 can be chosen 

3 Various statements, mostly quite vague, pass under the title "principle of 
action and reaction" in the literature. All of these statements, when made precise. 
are provable theorems in the theory presented here. 
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such that their masses m(~) and m(O) are arbitrarily small. Axiom (B.3) 
then implies that the right side of (5.9) can be made arbitrarily small in 
absolute value. It follows that the left side of (5.9) must vanish. Q.e.d. 

As a corollary, it follows that 

(5.10) S(CI + C2) = S(CI) + S(C2), 

no matter whether CI and C2 are pieces of C = CI + C2, as in (4.8), or not. 
Hence S may be regarded as an additive vector valued function of 
oriented surfaces in 58. Another corollary is that the statement of theorem 
II remains true if "mutual force" there is replaced by "mutual contact 
force" or by "mutual body force". 

THEOREM IV (stress principle) 4: There is a vector valued function 
s(x, n), where x E Ot(58) and where n is a unit vector, such that 

(5.11) s(c; x) = s(x, n) 

whenever Ot(c) has the unit normal n at x E Ot(c), directed towards the positive 
side of the oriented surface Ot(c), the orientation of Ot(c) being induced by the 
orientation of c. 

Proof: Let CI and C2 be two surfaces in 58 tangent to each other at 
-1 

X = Ot(x). The surfaces CI = Ot(CI) and C2 = (h(C2) in space E are then 
tangent to each other at the point x. We assume that n is their unit 
normal at x and that CI and C2 are oriented in such a way that n is directed 

C2, , , , n 

CI ~ _ 
__ ';;;-"+r7'7"'r/lE: - - - - - " 

Fig. 2 

toward the positive side of Cl and C2. Consider the region PI bounded by a 
piece dl of CI, a piece of a circular cylinder f of radius r whose axis is n 

4 The assertion of this theorem appears in all of the past literature as an assump
tion. It has been proposed occasionally that one should weaken this assumption and 
allow the stress to depend not only on the tangent plane at x, but also on the curva
ture of the surface c at x. The theorem given here shows that such dependence on 
the curvature, or on any other local property of the surface at x, is impossible. 
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and by a. plane perpendicular to n at a distance r from x as shown in 
Fig. 2. The region P2 is defined in a similiar manner. Denote the common 
boundary of PI and P 2 on the cylinder and the plane bye. The bounda
ries PI and P2 then have decompositions into separate pieces of the form 

(5.12) 

where II and /2 are pieces of the cylinder /. We denote the surface area of a 
surface c by A(c) and the volume of a region P by V(P). It is not hard to 
see that then 

(5.13) 

(5.14) 

(5.15) 

A(di ) = nr2 + o(r2), 

A (Ii) = o(r2) , 

V(Pi) = o(r2) 

-1 -1 

for i = 1, 2. ~1 = ()t(Pl) and ~2 = ()t(P2) will be parts of 5B for small 
enough r, except when x E ()t(5B) , and n is directed toward the interior 
of ()t(5B). Applying axiom (D.l) to ~1 and ~2 gives 

(5.16) F ~.(~i) = B~.(~i) + C~.(~i) = J vdm, i = 1,2. 
~. 

By (4.1) and (4.4) this may be written in the form 
- . 

(5.17) S(~i) = J (v - b~.)dm. 
~. 

By (4.6), (4.7), (4.8), and (5.12) we have 

(5.18) S(~i) =Js(ci)dA +Js(fi)dA +Js(e)dA; i= 1,2, 
d. t. e 

-1 -1 

where fi = (hUt), e = ()t(e). Subtracting the two equations (5.18) and 
using (5.17), we get 

(5.19) J s( cl)dA - f s( c2)dA = 

. . 
= J (v - b~l)dm - f (v - b~.)dm - J s(h)dA + J s(h)dA. 
~, ~. " t. 

Since v, b~. and the mass density are bounded by constants independent 
of ~, according to the axioms (K.2) , (B.3) , and (M.3), it follows from 
(5.15) that 

J(v - b~.)dm = o(r2), i = 1,2. 
~. 
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Similarly, it follows from axiom (C.5) and from (5.14) that 

f s(ft)dA = o(r2), i = 1,2. 
!. 

Hence, by (5.19), 

Dividing by nr2 and using (5.13), we get 

(5.20) 
f s( c2)dA ( 2) 

d. 0 r 
- A (d2) + -n-r2- . 

By a theorem on measures with density, we have 

f s(Ct)dA 
lim de = s(c,; x), i = 1,2. 
,.....0 A (dt ) 

Thus, letting r go to zero in (5.20), we finally obtain 

S(Cl; x) = S(C2; x), 

which shows that s( c; x) has the same value for all surfaces c with the 
-1 

same unit normal n. The exceptional case when x E (h(58) and n is 
directed toward the interior of Ot(58) is taken care of by the definition 
(4.5). 

The vector s(x, n) is called the STRESS acting at x across the surface 
element with unit normal n. By (4.6) the contact force S(c) acting across 
c is given by 

(5.21) S(c) = f s(x, n)dA, 
8.(c) 

where n is the unit normal at x to the oriented surface Ot(c). By theorem 
II we have 

(5.22) s(x, n) = - s(x, - n). 

The following two additional assumptions suffice to ensure the validity 
of the classical theorems of continuum mechanics: 

(a) The stress s(x, n), for each n, is a smooth function of x E Ot(58). 
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(b) For almost all X E ~, the limit 

(5.23) b(X) = lim _1_ Bll!(~)' 
ll!-+X m(~) 

where ~ is a neighborhood of X contracting to X, exists. 
Under these assumptions, one can prove the following theorems in 

the classical manner: 
(1) There is a field of linear transformations S(x), X E Ot(~), such that 

(5.24) s(x, n) = S(x)n. 

S(x) is called the STRESS TENSOR at x. 
(2) The stress tensor S(x) is symmetric. 
(3) Cauchy's equation of motion 

(5.25) div S + pb = pv 

holds, where S is the stress tensor, p is the mass density, v is the 
acceleration, and b is defined by (5.23). 

6. Equivalence of dynamical processes. The position of a particle can be 
specified physically not in an absolute sense but only relative to a given 
frame of reference. Such a frame is a set of objects whose mutual distances 
change very little in time, like the walls of a laboratory, the fixed stars, 
or the wooden horses on a merry-go-round. In classical physics, a change 
of frame corresponds to a transformation of space and time which pre
serves distances and time intervals. It is well known that the most 
general such transformation is of the form 

(6.1) 
x* = c(t) + Q(t)(x - 0), 

t* = t + a, 

where c(t) is a point valued function of t, Q(t) is a function of t whose 
values are orthogonal transformations, a is a real constant, and 0 is a 
point, which may be fixed once and for all. We assume that c(t) and Q(t) 
are twice continuously differentiable. A change of frame (6.1) also induces 
a transformation on vectors and tensors. A vector u, for example, is 
transformed into 

(6.2) u* = Q(t)u. 

Let {~, Ot, F ll!.t} be a dynamical process. A change of frame {c, Q, a} 
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will transform the motion Ot into a new motion Ot' defined by 

(6.3) Ot'(X) = c(t - a) + Q(t - a)[Ot-a(X) - OJ. 

The velocities and the accelerations of the two motions Ot and Ot' are, in 
general, not related by the transformation formula (6.2) for vectors. They 
depend on the choice of the frame of reference. We say that they are not 
objective. However, there are objective kinematical quantities, for ex
ample the rate of deformation tensor. 

If we wish to assume that forces have an objective meaning we would 
have to require that F \l!,t(tt) transforms according to the law (6.2) under 
a change of frame. However, when this assumption is made, a dynamical 
process does not transform into a dynamical process because the axioms 
(D.l) and (D.2) are not preserved, except when c is linear in t and Q is 
constant. It is this difficulty which has led to the concept of absolute 
space and which has caused much controversy in the history of mechanics. 
A clarification was finally given by Einstein in his general theory of 
relativity, in which gravitational forces and inertial forces cannot be 
separated from each other in an objective manner. If we wish to stay in 
the realm of classical mechanics we may resolve the paradox by sacrificing 
the objectivity of the external body forces while retaining the objectivity 
of the essential types of forces, the contact forces and the mutual body 
forces. This can be done by assuming that the forces transform according 
to a law of the form 

(6.4) 

Here I(tt, t) will be called the INERTIAL FORCE acting on tt due to the 
change of frame {c, Q, a}. 

DEFINITION 7: Two dynamical processes {~, Ot, F \l!,t} and {~, Ot', F' \l!,t} 
are called EQUIVALENT if there is a change of frame {c, Q, a} such that Ot' and 
F'\l!,t are related to Ot and F\l!,t by (6.3) and (6.4). 

The classical analysis of relative motion shows that the inertial force 
I(tt, t) is necessarily of the form 

(6.5) I(tt, t) = J i(X, t)dm 
Q: 

with 
- . 

(6.6) i(X, t) = c(t - a) + 2V(t - a)[v'(X, t) - c(t - a)] 

+ [V2(t - a) - V (t - a)][Ot'(X) - c(t - a)] 
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where v' is the velocity of the motion ()t', and where V(t) is defined by 

(6.7) V(t) = Q(t)Q(t)-l. 

It is not hard to see that the inertial force I gives a contribution only to 
the external body forces and that the contact forces and the mutual 
forces transform according to (6.2) and hence are objective. The external 
body forces and the inertial forces cannot be separated from each other in 
an objective manner. Experience shows that, for the body consisting 
of the entire solar system, there are frames relative to which the external 
body forces nearly vanish. These are the classical Galilean frames. Two 
equivalent dynamical processes really correspond to the same physical 
process, viewed only from two different frames of reference. 

7. Constitutive assumptions. An axiom that characterizes the particular 
material properties of a body is called a CONSTITUTIVE ASSUMPTION. It 
restricts the class of dynamical processes the body can undergo. A 
familiar example is the assumption that the body is rigid. It restricts the 
possible motions to those in which the distance between any two particles 
retnains unchanged in time. More important for modern continuum 
mechanics are constitutive assumptions in the form of functional re
lations between the stress tensor S and the motion ()t. Such relations are 
called CONSTITUTIVE EQUATIONS (sometimes also rheological equations of 
state or stress-strain relations). A classical example is the constitutive 
equation for linear viscous fluids 

(7.1 ) s = (- p + AtrD)I + 2pD, 

where D is the rate of deformation tensor, I is the unit tensor, p is the 
pressure, and A and p are viscosity constants. A wide variety of consti
tutive equations have been investigated in recent years 5, and a general 
theory of such equations has been developed [2]. 

Constitutive assumptions are subject to a general restriction: 

PRINCIPLE OF OBJECTIVITY: If a dynamical process is compatible with 
a constitutive assumption then all processes equivalent to it must also be 
compatible with this constitutive assumption. In other words, constitutive 
assumptions must be invariant under changes of frame. 

This principle, although implicitly used by many scientists in the his
tory of mechanics, was stated explicitly first by Oldroyd [3] and was 

5 A review of the literature and a bibliography is given in [IJ. 
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clarified further by the author [4]. It is of great importance in the theory 
of constitutive equations. 

8. Unsolved problems. The axiomatic treatment given here is still too 
special. It does not cover concentrated forces, contact couples and body 
couples, sliding, impact, rupture, and other discontinuities, singularities, 
and degeneracies. It would be desirable to have a universal scheme which 
covers any conceivable situation. 

A more fundamental physical problem is to find a rigorous unified 
theory of continuum mechanics and thermodynamics. Classical thermo
dynamics deals only with equilibrium states and hence is not adequate 10r 
processes with fast changes of state in time. Such a unified theory should 
lead to further restrictive conditions on the form of constitutive equations 
and hence to more definite and realistic theories for special materials. 
Also, a satisfactory connection with statistical mechanics can be expected 
only after such a theory has been developed. 
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In a recent article on the mechanical behavior of continuous media [lJ, the 
physical concept of a fluid was given a mathematical definition. We believe that 
this definition covers almost all real fluids (whenever thermal and other non
mechanical effects can be disregarded) and is more general than any proposed 
previously because it accounts for all hereditary effects including stress relaxation. 
The general fluids covered by this definition may even exhibit, in some situations, 
physical phenomena which are usually attributed to solids. 

Here we show that certain steady flow problems can be solved assuming 
only the definition of a general fluid and incompressibility. The class of problems 
considered includes most of the classical flows: simple shearing flow, channel 
flow (i.e. flow between fixed plates), Poiseuille flow, and Couette flow. It also 
includes torsional and other flows for which we do not work out the details, 
because, under reasonable body forces, such flows are not compatible with the 
dynamical equations unless inertia is neglected. 

The solutions obtained here are in terms of three unspecified real functions 
of one variable which depend on the particular material; we call them material 
functions. Our solutions are simply related. If experimental measurements are 
combined with anyone of the solutions to determine the three material functions, 
then complete stress and velocity profiles can be predicted for the other flows. 
Thus, our work really establishes correspondence principles for the flows con
sidered. It is hoped that our results may help experimental rheologists to 
rationalize the treatment of their data by giving precise meaning to such concepts 
as "shear-dependent viscosity". 

If one uses a special theory, either molecular or phenomenological, to solve 
a particular flow problem of our class (say, simple shearing flow), then our three 
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material functions can be readily identified *. The solutions to the other flow 
problems can then be obtained from the formulae given here without further 
reference to the original special theory**. 

It should be pointed out that our three material functions do not determine 
the behavior of the fluid in all experimental situations, since the functional that 
predicts the response of a material to all situations may contain vastly more 
information than the three material functions introduced here. 

Some of the solutions and relations obtained here have appeared in the 
literature, but the derivations given have rested upon special assumptions about 
the nature of the fluid considered. Of these previous investigations, the most 
general is RIVLIN'S study of flows in fluids of the differential type [4]. Such 
fluids do not have long range memory and hence constitute only a special class 
of the general fluids considered here. It turns out, however, that RIVLIN'S 

solutions (including those for helical flow, which will be discussed in a future note) 
remain valid for general fluids. 

This paper can be read independently of reference [1] if the reader is willing 
to accept equations (1.1)-(1.3) below. 

Notation. We denote vectors and points by bold face Latin or Greek minus
cules: v,;£,;. 

Second order tensors are always denoted by light face Latin majuscules: 
A, B, I, Q. The transpose of a tensor Q is written QT. The unit or "metric" 
tensor is denoted by I. The symbol ti; denotes the physical components of T 
relative to an orthogonal, but not necessarily Cartesian, coordinate system, 
except when a statement is made to the contrary. We use the summation con
vention throughout. The matrix of the physical components of T is denoted 
by (T) or Ilti;ll, and the trace of T is written trT. 

Partial differentiation is indicated as follows: Oy = % Y or 0; = % Xi. 

1. Basic concepts 

In a general fluid ([1], §§ 21 and 22) the stress tensor S at time t depends 
on the history of the motion up to t and is given by a constitutive equation 
which may be stated in the form (22.12) of [1]. In this paper we discuss only 
isochoric motions; we do not make the dependence of S on the density e (t) 
explicit, and we write 

(1.1) 

Here $) is a functional of the tensor-valued function c: and satisfies the relation 

(1.2) 

for any constant orthogonal tensor Q (c/. [1], (21.7)). The function c: is the 
history of the right Cauchy-Green tensor taken with respect to the configuration 

* A summary of results pertaining to the normal stress effect for special theories 
has been presented by MARKOVITZ [2]. The present investigation gives a proof of 
his equations (12) - (16), which he offered as conjectures. 

** For example. much of the work in Chapter IV of [3J could have been avoided 
if the present results had been known to the author at the time. 
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at time t and is defined by 

CHs) = C,(t + s) = F,T (t + s) 1';(t + s), s =:; 0, (1.3) 

where 1';(t+s) is the displacement gradient at time t+srelative to the configura
tion at time t (c/. [lJ, §§ 6 and 7). 

In this paper we consider homogeneous incompressible fluids. The stress is 
then determined by the history of the motion only up to a hydrostatic pressure p, 
and (1.1) must be replaced by 

where 
T(t) =.p (q), 

T=S+pl 

(1.4) 

(1.5) 

is called the extra-stress. Moreover, the tensor-valued functional .p is determined 
only up to an arbitrary scalar-valued functional of C!. We remove this indeter
minacy by the normalization 

trT=tr[.p(q)J =0. (1.6) 

The pressure p then reduces to the mean pressure 

p = -ltrS, (1.7) 

and T is the deviatoric part of S. We note that the extra stress T must vanish 
if the motion reduces to a state of rest, in which case we have CHs) =1 =const. 
Hence 

0= .p(1). (1.8) 

Consider a particle which at time t finds itself at the position ~, with general 
coordinates x', and which was at time t+s, s=:;O, at the point~, with coordinates 
t. For the dependence of ~ on ~, t, and t+s, we write 

~=&,(~,t+s). (1.9) 

The function &" with coordinates Dtt ), is the displacement function relative to 
the configuration at time t. 

It follows from (1.3) that the covariant components of q(s), relative to the 
natural basis at ~ of the coordinate system, are 

where 
em.; (s) = /t);,(t + s) f(t)i(t + s) gkl (t + s), 

/tllj(t + s) = OJ [Dtt ) (z, t + s)], 

(1.10) 

(1.11) 

and g;'l (t+s) denotes the covariant components of the unit tensor 1 at ~ = 
&,(~, t+s). If the velocity v(~, t+s) is given as a function of the position ~ and 
the time t + s, the displacement function 

~(s) = &,(~, t + s) 

is that solution of the differential equation 

d~ =v(~ t + s) 
ds ' 

which satisfies the .initial condition 

~(O) = &t(~, t) = z. 

(1.12) 

(1.13) 

(1.14) 
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If the motion is a steady flow, the velocity v (;) depends on only the position; 
and not on the time t+s. In this case &,(x, t+s), and hence also F;{t+s) and 
q{s), are independent of the reference time t. It follows from (1.4) that the extra
stress T must be independent of time. 

We assume that the body forces g (per unit mass) have a single-valued 
potential 1p: 

g = - grad1p. 

We introduce the modified pressure: 

q;=P+e1p· 

( 1.15) 

(1.16) 

It coincides with the ordinary pressure p if there are no body forces. The 
dynamical equations take the form 

div T - grad q; = ev. ( 1.17) 

2. A class of steady flows 

We consider here steady flows for which the velocity field v (x) has the 
contravariant components 

(2.1) 

in some appropriate orthogonal coordinate system Xl, X2, x3. The matrix Ilgiili of 
the covariant components of the unit tensor I is then diagonal. We further 
assume that the gii are independent of X2, so that !lgiili has the form 

[gl{XI,X3)]2 0 0 

Iigii(x)li= 0 [g2(XI,X3)]2 0 (2.2) 

o o 

where gl' g2' and g3 are three positive functions of Xl and x3. The flows defined 
in this manner are isochoric, because the equation 

(2·3) 

where Vi =glg2g3' is obviously satisfied. 
In the special case of the velocity field (2.1), integration of the differential 

equation (1.13) with the initial condition (1.14) yields the simple result 

~l = xl, ~2 = x2 + s V (Xl) , ~3 = x3 • (2.4) 

From (2.4), (1.12) and (1.11) we obtain 

1 0 0 

Iiftt)i(t + s)1i = sv'(xl) 1 0 (2.5) 

o 0 1 

where v' denotes the derivative of v. Equ.ations (2.4) and (2.2) imply that 

(2.6) 

i. e., that the covariant components of the unit tensor remain constant along the 
paths of the particles. Using equations (1.10), (2.5), (2.2), and (2.6) we obtain 
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the following expression for the covariant components of the tensor C:(s): 

[gl(XI, xa)]2+ [s g2(XI, xa) V'(XI)]2 
S [g2 (Xl, X3)]2 V'(XI) 

o 

S [g2(XI, X 3)]2 V '(XI ) 

[g2(XI, xa)]2 

o 
The matrix (C~(s)) of the physical components of C!(s) is 

where 

o 
o 
1 

. (2.7) 

(2.8) 

(2.9) 

In the remainder of this paper we shall always use the physical components of 
second order tensors. 

3. Reduction of the general constitutive equation 

The results of the previous section may be summarized in this way: If the 
velocity field has the form (2.1) in an orthogonal coordinate system obeying 
(2.2), the function c: has the form 

(3·1) 

where the matrices (A), (B) of the physical components of A and B are given by 

010 
(A) = x 1 0 0 , 

000 

100 
(B) = x 2 0 0 0 . 

000 
(3·2) 

When (3.1) holds, the function c: is completely determined by A and B, and 
the functional.\) of (1.4) reduces to a function 'f) of the two tensors A and B, 
so that 

T ='f)(A, B). 

It follows from (1.2) that the tensor function 'f) must be isotropic; i.e., 

'f)(QA QT, QBQT) = Q'f)(A, B) QT 

(3·3) * 

(3.4) 

must hold for all orthogonal tensors Q. It is a consequence of this fact that the 
component functions 'f)i; of'f) are the same for all orthonormal bases. Since physical 
components are components relative to orthonormal bases, the functions 'f)i; do 
not depend on the coordinate system or the point under consideration, if physical 
components are used. 

The normalization (1.6) of the functional .\) implies that the function 'f) is 
normalized by 

trT=tr['f)(A, B)] =0. (3·5) 

* We note that, if (3.1) holds, A and 2B coincide with the first two Rivlin-Erickser. 
tensors Al and A2 as defined in [1J, (8.9). Equation (3.3) has the form of a constitutive 
equation of the differential type (ct. [1J (23.14)). 
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Furthermore, it follows from (1.8) that 

0= 1) (0,0). (3·6) 

We now consider the orthogonal tensor Q whose physical components are given 
by the matrix 

1 0 0 
(Q) = 0 1 0 (3·7) 

0 0 -1 

Then, by (3.2), we have 
QA QT =A, QBQT=B. (3·8) 

Hence, from (3.4) we get 
QTQT = T (3.9) 

for T = 1) (A, B). Denoting the physical components of T by tii , we find that the 
matrix of the physical components of Q T QT is given by 

(3·10) 

According to (3.9), this matrix must coincide with the matrix (T) =\ltiill, which 
is possible only if t13 = t31 = t23 = t32 = O. Hence (T) must have the form 

tll t12 0 

(T) = t21 t22 0 (3.11 ) 

0 0 t33 
By (3.5), we have 

tll + t22 + t33 = o. (3.12) 

From the fact that the component functions 1)ii are independent of the 
coordinate system, and from (3.2) and (3.3), it follows that the physical components 
tii of T are functions of ~ alone. It is clear from (3.11) and (3.12) that these 
components tii may be expressed in terms of three independent functions of ~. 
We choose 

(3.13) 

For the physical components sii = tij - P ()ii of the stress tensor we also have 

S12 = S21 = T(~), 

Sll - S33 = 0'1 (~), S22 - S33 = 0'2 (~). 

(3.14) 

(3·15 ) 

The three functions T, 0'1' and 0'2 depend only on the material, not on the particular 
flow; they are material junctions. 

The functions T, 0'1' and 0'2 are not completely arbitrary, as may be seen from 
the following argument: For a second choice of Q in (3.4) we take 

100 
(Q) = 0 -1 0 0·16) 

001 
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Equation (3.2) then yields 

QA QT = -A, (3.17) 

and, from (3.11), we get 
tll - t12 0 

(Q TQT) = -t21 t22 0 (3.18) 

o 0 t33 

It is clear from (3.2) that the conjugation operation (3.17) is equivalent to 
replacing x by -x. Thus, by (3.13), equation (3.18) states that 

T (- x) = - T (x), ai (x) = ai (- x) ; (3·19) 

i.e., that T must be an odd function, while al and a2 must be even functions. No 
further restrictions are imposed on T, aI' and ali by the isotropy condition (3.4). 

The condition (3.6) implies that the material functions T, aI, and a 2 must 
vanish for x = 0: 

(3.20) 

A further restrictive condition on T follows from the principle that the 
dissipation of energy must be positive. This condition is 

XT(X»O, x=l=O; (3.21) 

i.e. T (x) must have the same sign as x. If it is assumed that T is twice con
tinuously differentiable, then (3.20) and (3.21) imply that T(X) must be a strictly 
increasing function of x in some interval - Xo < x:S + Xo around x = o. In this 

interval T will have a strictly increasing and odd inverse, 7l. In the remainder 

of this paper, whenever 7l occurs, we assume that we are in the range in which 

"7:1 is defined. If "7:1 is not defined over the entire real axis then the flows which 
we discuss below will not occur at high speeds. 

We can give a precise meaning to the "shear-dependent viscosity" used in 
the rheological literature by identifying it with the material function 'Yj: 

(3. 22) 

Clearly'Yj must be an even function. Since T(O) =0 and T is twice differentiable, 
'YJ is differentiable, even at x = 0, and 

'Yj'(0) = o. 

If we assume that a1 and a2 are differentiable, we also have 

a~(O) = a; (0) =0. 

(3·23 ) 

(3. 24) 

If a polynomial approximation for 'Yj, aI' and a2' in a neighborhood of x =0, is 
used to fit experimental data, only even powers of x can occur. 

4. Rectilinear flow 

If the velocity field has the form (2.1) in a Cartesian coordinate system 

x1 =x, x 2 =y, (4.1 ) 
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then we call the motion rectilinear flow. In this case 

gl = g2 = ga = 1 , 
and hence, by (2.9), 

" = v'(x). 

(4.2) 

(4·3) 

By (3.13), the extra stresses tij are then functions of x only, and the dynamical 
equations (1.17) become 

o"t"" - o"cp = 0, o"t"" - o"cp = 0, o.CP = o. 
A simple analysis shows that these equations are satisfied only if 

t",,(x) = - ax + b, 

cp = cp(x,y) = - ay + t.~.~(x) - c, 

where a, b, and c are constants. 

(4.4) 

(4.5) 

(4.6) 

There are two important special cases of rectilinear flow which we shall 
discuss in the next two sections. 

5. Simple shearing flow 

This is a rectilinear flow between an infinite plate I at rest and an infinite 
plate II moving with a constant speed V parallel to plate I. We denote the 
distance between the plates by d. We choose the y and z axes to be in the plane 
of plate I and such that plate II moves in the y direction. The x axis is then 
perpendicular to the plates with x = 0 at plate I. Assuming that the fluid adheres 
to the walls, we have the boundary conditions 

V (0) =0, v(d) = V. (5.1) 

We assume now that the modified pressure cp, defined by (1.16), has no 
gradient in direction of the flow; i.e., that o"cp =0. We then have a =0 in (4.6). 
Hence, by (3.13), (4.3) and (4.5), the shearing stress 

t",,(x) = l' (v'(x» = b (5.2) 

-1 
is constant. It follows that v'(x) = l' (b) must be constant and hence that v (x) 
is linear. The conditions (5.1) then imply that 

V 
v(x)=(fx, (5·3) 

and (4.3) becomes 
V ,,= (f = const. (5.4) 

According to (3.14), the shearing stress is 

s",,=1'(~). (5.5) 

Since s"" is equal to the tangential force per unit area that must be applied to 
the moving plate II in order to produce the flow, equation (5.5) can be used to 
determine the material function or experimentally. 
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It follows from (5.4) and (3.13) that the tii must actually be constant. Hence, 
by (4.6), since a =0, 

f[! = txx - c = const. (5.6) 

Using (1.16) and sxx=txx-P, we find 

(5.7) 
and (3.1 5) becomes 

Su - Szz =al (~), s)'y - Szz = a2(-~-)' (5.8) 

Hence, the matrix of the stress tensor is 

(5) = 

o 

(5.9) 

i(~) 0 I 
(V) 'v 

c-(]1p+a? ,d -al(-d) 0 I 
o c-(]1p-al(~) 

C -(]1p 

Since the normal stresses can be measured, at least in principle, equations (5.8) 
can be used to determine the material functions al and a2 • 

6. Flow through a channel 

This is a rectilinear flow between two parallel infinite plates which are both 
at rest. We now place the y and z axes in a plane half-way between the plates; 
the x axis is then perpendicular to the plates. Let the distance between the 
plates be d; it follows that the plates are in the planes x = ±t d. 

The fluid adheres to the plates. For rectilinear flow, to get any motion at 
all we must have a =1= 0 in (4.6). When a is positive, there is a flow in the positive 

y-direction. From (3.13), (4.3) and (4.5) we get v'(x)=:rl(-ax+b). The 
-I 

boundary conditions are v(±-~d) =0. The fact that i is an odd function 
implies b = 0; i.e., -I 

v'(x) = - i (a x). (6.1) 

After integration we obtain the velocity profile 
x 1 

V (x) = - f:r (ae) de. (6.2) 
-ld 

The total applied force f in the direction of the flow, exerted on a column 
of fluid with cross-section d and lying between two planes y = YI and y = Yn , 
is given by 

Yn 
1={fsyydA) = -(fsyydA) = -f f(oy1p)(]dAdy. (6·3) 

d yYIl d YYI YId 

This reduces to 
1= f {(SYY - (]1p)Y=YII - (SYY - (]1p)Y~YJ dA. 

d 

By (1.16) and (4.6) we have 

sYY -(]1p = tyy - P - (]1p = tyy - f[! = a y + tyy (x) - txx (x) + c, 

(6.4) 
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hence Syy - !!lP = a Y + h (x). (6.5) 

Substitution into (6.4) yields 
f = a (Yn - YI) A , 

where A is the area of the cross-section of the column. We thus have 

a= f 
A(Yn-YI) , 

(6.6) 

which gives a physical meaning to the parameter a. It is the applied force per 
unit volume in the direction of the flow. It is the driving force that produces the 
flow. If there are no body forces, a reduces to what is usually called the pressure 
head per unit length. It must be produced by a pump or similar device. If the 
only body force is gravity, acting in the direction of flow, and if there is no 
pressure head, then a is simply the specific weight of the fluid. In any case, 
a is a measurable quantity. We call it the driving force. 

The volume discharge per unit time through a cross-section of the channel 
one unit deep is 

~d 

Q = f vex) dx. (6.7) 
-fid 

Integrating by parts, remembering the boundary conditions v(±td) =0, and 
using (6.1), we find 

~d +~d 

Q=- f xv'(x)dx= f x"1?(ax)dx. (6.8) 
-id -~d 

We finally obtain 

(6.9) 

o 

Thus, the experimentally measurable rate of discharge Q is related to the 
measurable driving force a through the material function T which can be deter
mined by independent measurements. 

Equation (6.9) is easily solved for the function .:/ in terms of the function 
Q = Q(a): 

-l(ad) 2 d [2Q( ] 
T 2 = ad2 (fa a a). (6.10) 

This formula may be used to calculate the material function T when Q has been 
measured as a function of a. 

The normal stresses are obtained from (4.6), (3.15), (4.3) and (6.1): 

Sxx = a Y + (!lP - c, 

sxx - Szz = (11 (:r1(ax)) , 

Syy - szz = (12 (:r1(ax)) . 

(6.11 ) 

If the material functions T, (11' and (12 are known from independent measurements, 
these formulae may be used to predict the measurable normal stresses. It will 
be noticed that the normal stresses are determined only up to a constant hydro
static pressure of magnitude c. 
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If only Tis known, then (6.11) may be used to determine (11 and (12 by meas
uring su- Su and Syy- s". If the potential "p of the body forces is known, then 
a measurement of Su just determines the value of the constant c. 

7. Poiseuille flow 
We consider a steady flow through an infinite circular pipe of radius Rand 

use cylindrical coordinates with the z-axis coincident with the axis of the pipe. 
We label the coordinates as follows: 

(7.1) 

We say that we have Poiseuille flow if in this coordinate system the velocity 
field has the form (2.1) and if the fluid adheres to the walls of the pipe; i.e. 

vCR) = O. (7.2) 

The coordinate system r, z, {} is orthogonal and obeys (2.2) with 

g1=g2=1, ga=r. (7·3) 

Therefore, we find that (1..9) becomes 

x =v'(r). (7.4) 

By (3.13), the extra stresses t' i are then functions of r only, and the dynamical 
equations (1.17) become 

o,t" + r-1 (t" - tIH}) - o,({J = 0, 

o~t,. + r-1t,. - o.({J = 0, 

- o{J({J =0. 

An elementary analysis shows that these equations are satisfied only if 

({J = ((J(r,z) = - az + h(r) , 

h'(r) = o,t" + r-1(t., - t{J{J) , 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

where a and b are constants and h is an arbitrary function of r. Since the shearing 
stress s,.=t,. must be continuous at the center of the pipe (i.e. ·for r =0), we 
must put b =0 in (7.6). According to (3.14) and (7.4), we thus have 

s,.= -tar=T(v'(r)); 

hence, since T is an odd function, 
-1 

v'(r) = - T (tar). (7.9) 

This equation, together with the boundary condition (7.2), determines the 
velocity profile: 

R 1 
V (r) = J T (ta~) d~. (7.10) , 
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An investigation analogous to that given in § 6 for the case of a flow through 
a channel shows that the parameter a is again the applied force per unit volume 
in the direction of the flow. We again call a the driving lorce. It reduces to the 
pressure head per unit length if there are no body forces. If the flow takes place 
in a vertical pipe under the action of gravity alone, ais just the specific weight 
of the fluid. 

The volume discharge per unit time through a cross-section of the pipe is 
R 

Q = 2n J v (1') I'd l' . (7.11 ) 
o 

After integration by parts and use of (7.2) and (7.9), we find * 
i aR 

Q= ~: J ;2T1(;) d;. (7.12) 

o 

Thus, if the material function. is known, one can predict, for pipe flow, the 
dependence of the rate of discharge Q on the driving force a. 

As in the case of channel flow, (7.12) is easily inverted: 

T\la R) = --}-R3 dd [a3 Q(a)]. 
na a 

(7.13) 

If Q = Q (a) has been measured, this formula may be used to calculate the 
material function •. 

To calculate the normal stresses, we observe that (3.13), (7.4), (7.9) and the 
fact that 0"1 is an even function imply 

_ (-1(1 )) t" - t{} {} - 0"1 • 2" a l' • (7.14) 
Integration of (7.8) yields 

R 1 
her) = t" - J ;-lO"dT (ta;)) d; - c, (7.15 ) 

r 

where c is a constant. Substituting (7.15) into (7.7) and using cp=P+e"P and 
s,,=t.,-P, we obtain 

R . -1 
S" = az + (I"P + Ie-1 0"1 (. (ta;)) d; + c. (7.16) 

r 

By (3.15), we have 

srr - s{}{} = 0"1 (T1(tar)), Szz - s{}{} = 0"2 (T1(tar)) . (7.17) 

The remarks made in § 6 about the prediction of measurable normal stresses 
in channel flow also apply here. 

8. Couette flow 
Here we consider a steady flow between two infinite coaxial cylinders; the 

inner cylinder has radius R1 , and the outer cylinder has radius R2 • Using cylin
drical coordinates with the z axis coincident with the axis of the cylinders, we 

* Equivalent relations have appeared previously in the literature (c/. [5J, pp. 249 
and 250). The derivation given here, we believe, is the first that is not based on special 
assumptions. 

60 



General Fluids 301 

now label the coordinates 
(8.1)* 

If, in these coordinates, the velocity field has the form (2.1), we speak about 
Couette flow. We than have 

so that (2.9) becomes 
~ = rv'(r). 

(8.2) 

(8·3) 

Note that v(r) has now the physical dimension of an angular velocity. By (3.13) 
and (8.3), the extra stresses tii depend only on r. The dynamical equations (1.17) 
become 

o,t., + r-l(t" - tu) ~ o,fP = - ervll, 

o,t,(J + 2r-1 t,(J - r-1 o(JfP = 0, (8.4) 

-ozfP=O. 

An analysis of these equations, using the fact that fP must be single valued and 
hence periodic in {}O, shows that fP can depend only on r and that t,(J=M/(2nr2), 

where M is a constant. From (3.13) and (8.3), it follows that 

t (J = 1: (rv'(r») = ~. , 2nrl (8.5) 

The moment per unit height exerted on the fluid inside the cylindrical surface 
r = const. is, by (8.5), equal to 

r(2nr) t,(J ='M (8.6) 

and is independent of r. From (8.5) we get 

v (r) = - 1: -- • , 1 -l( M ) 
r 2nrl 

(8.7) 

We consider further the special case in which the inner cylinder remains at 
rest while the outer cylinder rotates with constant angular velocity D. Assuming 
that the fluid adheres to the walls, we then have 

(8.8) 

M is the moment per unit height that must be applied to the outer cylinder 
in order to produce the flow. 

Integration of (8.7) with the boundary condition (8.8) yields 

M/(lInRV 

[J=~ r _1_7?(~)d~. 
2. ~ 

(8.9) ** 
M/(lInR:) 

Thus, a knowledge of the material function 1: makes it possible to predict the 
angular velocity [J of the outer cylinder as a function of the moment per unit 
height M. If the gap between the two cylinders is very small [(R2-Rl)/Rl~1J, 

* Note that this differs from the labeling (7.1) used for Poiseuille flow. 
** A derivation, based on special assumptions, of a formula equivalent to (8.9) is 

given in [6], § 3. 
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the formula (8.9) may be approximated by 

Q ~ R2~Rl :z.1(2:R~)' (8.10) 

We wish to invert (8.9) so as to be able to calculate the material function 7: 

from an experimental determination of Q =Q(M). Differentiation of (8.9) with 
respect to M gives 

2M d.Q(M) = :z.1('~_) _ :z.1(~)' 
dM 2:n:Ri 2:n:R~ . (8.11 ) 

With the abbreviations 
F(M) = 2M d.Q(M~ at = !ii. 

dM' R~' 
(8.12) 

equation (8.11) becomes 

F(M) = :z.1(...!!..M2) - :z.1(Ot~). 2:n:Rl 2:n:Rl (8.13 ) 

If we replace here M by Otn M and sum from n = 0 to n = N, we get 

N 

'\' F( n M) = -1(~_) _ -1( N+1~) L.... Ot 7: R2 7: at R2 . 
n=O 2:n: 1 2:n: 1 

(8.14) 

Since R 1 <R2 , we have Ot<1 and hence lim Otn +1= O. The continuity of :z.1 at 
-1 n~oo 

zero and the fact that 7: (0) =0 (cf. (3.20)) insure that 

hm 7: Otn 1 -- = O. . -1( + M) 
n-+oo 2:n:Ri 

Hence, (8.14) yields* 

(8.15) 

Equations (8.12) and (8.15) make it possible to calculate 7: if Q =Q(M) is known. 
When the gap between the cylinders is small, 7: can be calculated directly from 
(8.10). 

We now determine the normal stresses. From (3.13), (8.3), and (8.7), we get 

(-1 ( M )) (-1 f ]vI )) t - too = a1 7: -- -a2 T 1---- . 
rr 2 :n: r2 \ 2 :n: r2 (8.16) 

Substitution of (8.16) into the first equation of (8.4) and integration yields, after 
using srr=i,.-P and qJ =P+(!tp, 

r 

s,.=(!tp-.f {(!HV(~)J2+~ G1(:z.1(2:;2))- ~ G2(:z.1(2~2))}d~+c, (8.17) 
Rl 

where v(';), by (8.7) and (8.8), is 
; 

v(~)= --7:--d?;. J' 1 -1( M ) 
C 2:n:C2 (8.18) 

Rl 

* Note added in proof: It has been brought to our attention that an equivalent 
inversion of (8.9) was published by KRIEGER & ELROD [7]. 
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By (3.15), we have 

s" - s •• ~ (h (:rl ( 2 :".)) , (8.19) 

The remarks made at the end of § 6 apply here also. 

When the potential"P of the body forces is independent of r, (8.17) yields the 
following expression for the difference of the normal stresses at the outer and 
inner cylinders: 

R. 

s,,(R2}-s,,(R1}=-f {e r [v(r}]2+! (Jl(:rl(2:rZ))-! (J2(:r1(2:rz))}dr. (8.20) 
R, 

When (R2-R1}/R1<t::.1, this formula may be approximated by 

s,,(R2) - s".(R1} ~ Rz~Rl [(J2 (:rl(2~f)) - (Jl(:rl(2~~))]. (8.21) 

The error in both the approximate formulae (8.10) and (8.21) is of the order 
of [(R2-R1}/Rl ]2. The inertial term er[v(r}]2 in the integral on the right side 
of (8.20) makes a contribution to s" (R2) - s" (Rl) of the order of [(R2 - Rl}/Rl ]3 

and hence does not appear in (8.21). 
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In this article we regard thermostatics as being that branch of thermo
dynamics which deals with bodies which are at rest at the present time and 
which, for all practical purposes, may be regarded as having been at rest at 
all times in the past. 

We attempt to develop here a rigorous theory of thermostatics for continuous 
bodies in arbitrary states of strain. The thermodynamics of chemical reactions, 
phase transitions, and capillarity is not discussed. Our aim is to derive some 
of the fundamental laws of hydrostatics and elastostatics from thermodynamic 
principles. Among these laws are the existence of elastic potentials for stress
strain relations, the known inequalities of hydrostatics, and some new inequalities 
for hydrostatics and elastostatics. 

In his classic work, "On the Equilibrium of Heterogeneous Substances", 
J. W. GIBBS [lJ laid down criteria for determining whether a given (global) state 
of a body is thermodynamically stable. He used these criteria to derive particular 
equations and inequalities which represent conditions (in some cases necessary 
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and other cases sufficient) for various special states to be stable. The equations 
GIBBS obtained as necessary conditions for thermodynamic stability are now 
recognized as fundamental laws in physical chemistry. GIBBS also derived 
inequalities which, apparently because they are in obvious accord with everyday 
experience and thus might be mistakenly called trivial, have attracted relatively 
little attention and are sometimes not even mentioned in modem thermodynamics 
courses. For example, in his treatment of homogeneous systems at rest under 
uniform hydrostatic pressure, GIBBS showed that a necessary condition for such 
a system to be in a stable state is that both its heat capacity at constant volume 
and its adiabatic modulus of compression be non-negative. It is inequalities of 
this type which are emphasized in the present paper. We take, however, a point 
of view different from that of GIBBS. 

In the classical treatments of thermostatics (e.g., [1], [2]) the adjective stable 
is used in two senses. It is sometimes used as a modifier for the word equilibrium; 
i.e. one refers to "states of stable equilibrium"; or it is used as a modifier for the 
word state; i.e. one refers to "stable states". In this paper we never use the word 
stable in the former sense. The theory which we develop here makes a careful 
distinction between local states, referring to a material point in a body, and global 
states, referring to the body as a whole. A local thermomechanic state is specified 
by giving the entropy density and the local configuration at a material point. 
A global thermomechanic state, on the other hand, is specified only when the 
entropy field and the complete configuration are specified for the entire body. 
We regard thermal equilibrium to be a property of local states. We consider just 
one type of thermal equilibrium. We define a state of thermal equilibrium as a 
local thermomechanic state which minimizes an appropriate potential rather than 
as a state at which a first variation vanishes. We regard stability as a property 
of only global states. We consider several types of stable states, defined as global 
thermomechanic states which minimize certain energy integrals subject to dif
ferent constraints. 

Our theory is based on two physical postulates. The first asserts that, at a 
material point, any local thermomechanic state can be an equilibrium state 
provided the local temperature and local forces have appropriate values. The 
second postulate is essentially the assumption that, at least in continuum 
mechanics, absolute temperatures are never negative. We believe that these 
physical postulates, which are stated in terms of our definition of equilibrium, 
contain the physical content for the statics of continuous media of the First and 
Second Laws of Thermodynamics. From our postulates we prove relationships 
between the stress-strain equation and the caloric equation of state, and we 
derive various inequalities restricting the form of the caloric equation of state. 
We should like to propose that the inequalities which we obtain for the finite 
theory of elasticity answer some of the questions raised by C. TRUESDELL [3] in 
his recent article, "Das ungeloste Hauptproblem der endlichen Elastizitats
theorie". 

Although our definition of thermal equilibrium is new, some of the definitions 
of the stability of global states which we propose tor study are similar to stability 
definitions considered by GIBBS [1] and J. HADAMARD [4]. In particular, our 
concepts of isothermal and adiabatic stability at fixed boundary are closely related 
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to, but not identical to, Hadamard stability*. We briefly discuss GIBBS' theory 
of the stability of fluid phases in § 16. In a future article we hope to give a 
discussion of GIBBS' theory of the stability of fluid mixtures. 

We regard the main tasks of the science of thermostatics to be, first, the 
exploration of the consequences for the caloric equation of state of the existence 
of local states of thermal equilibrium and, second, the derivation of useful 
necessary and sufficient criteria for global states to be stable. In the present 
paper, § 6-§ 13 are devoted to the first task and § 14-§ 16 deal briefly with 
the second. From our present point of view, we should say that the great classical 
thermodynamicists, GIBBS and DUHEM, devoted their main efforts to the second 
task. 

It will be noticed that in this paper we never mention such notions as "re
versible processes" and "quasi-static processes"; in fact, our theory of thermo
statics, being a truly statical theory, has no need of "processes" at all. 

In writing the present paper we have striven for a level of mathematical rigor 
comparable to that of works in pure mathematics rather than to that customary 
in physics. 

Notation and basic mathematical concepts. We often find it convenient to 
distinguish between functions and their values. The basic local thermodynamic 
variables are denoted by light face Greek minuscules: 8, "P, n, D, .... Symbols 
such as 8,8, e ... and fl, ip, Vi, .. represent real valued functions whose values are 
the thermodynamic variables 8 and "P' 

We denote vectors and points of the three-dimensional Euclidean space tff 

by bold face Latin minuscules: v, ~, y .... 
Second order tensors are denoted by light face Latin majuscules: F, U, Q, R, I. 

However, we reserve the symbols X and Z to represent material points of a 
physical body. The term tensor is used as a synonym for linear transformation. 
Tensors of order higher than two do not occur in this paper. For the trace of 
the tensor F we write tr F and for the determinant of F we write det F. We 
say that F is invertible if F has an inverse F-l; i.e. if det F =l= O. The transpose 
of F is denoted by FT. The identity transformation is written I. For the com
position, or product, of two linear transformations A and B we write simply AB. 

* Hadamard stability requires (roughly) that the first variation of the integral 
of the elastic potential vanish, and that the second variation be non-negative, for aU 
smooth variations in the state of strain which are compatible with a fixed boundary. 
This sort of stability is necessary but not sufficient for stability at fixed boundary 
as we define it here. In the theory of the propagation of waves in a perfectly elastic 
solid, Hadamard stability of a particular rest state implies the reality of all roots 
of the wave velocity equation for acceleration waves of arbitrary direction which 
might impinge on an object in that state. J. L. ERICKSEN & R. A. TOUPIN [5J have 
recently considered a modification of Hadamard stability in which they require that 
the second variation of the integral of the elastic potential be strictly positive. They 
use their definition of stability to prove uniqueness theorems in the theory of small 
deformations superimposed on large. R. HILL [15J also has recently discussed rela
tionships between uniqueness and stability. In the third article of his "Recherches 
sur l'elasticite" P. DUHEM [6J formulated several definitions of stability which are 
applicable to bodies with fixed and partially free surfaces; he also derived several 
necessary conditions on the equation of state for particular states of strain to be stable. 
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Let h (a:) be a function for which both the range and the domain consist of 
either vecto~s or points in Euclidean space G. Assume that for z in some region 
the derivative 

dd h(z+sV)1 = P'h(z;v) 
s .=0 

(1) 

exists for all v and is continuous in z. It is the content of a fundamental theorem 
of analysis that P'h(z; v) is then a linear function of v, and hence we can write 

P'h(z;v) = [P'h(z)] v, (2) 

where P'h(z) is a linear transformation (tensor), called the gradient of h at z. 
Similarly, the gradient of a real valued function C (F) of a tensor variable F 

is a tensor valued function CF (F) defined by the relation 

(3) 

where A is an arbitrary tensor. If Cartesian coordinates are used, and if 11/.ill 
is the matrix of F, then the matrix of CF is given by 

II CF (F) Ii =" :,;.", 
where i is the row and i the column index. 

We make frequent use of the following theorem, called the polar decomposition 
theorem: Any invertible tensor F has unique decompositions 

(4) 

where R is orthogonal (i.e., RRT =1) and U, V are positive delinite symmetric 
tensors (i.e., U = UT, V = V T, and the proper numbers 01 U and V are all real 
and greater than zero). In addition, we have 

U=RTVR, U2=FTF, P=FFT. (5) 

Consider a smooth (i.e., continuously differentiable) real valued function 
C(w) whose domain "II'" is a region in a finite dimensional vector space. The 
function C is called strictly convex if either of the following two equiValent condi
tions are satisfied: 

(a) For all w 1 and W 2=+=W1 in "II'" and all positive rx.,{J with rx.+{J=1, the 
inequality 

(6) 
holds. 

(b) For all wand w*=+=w in "II'" the inequality 

C(w*) -C(w) - (w* - w)· P'C(w) > 0 (7) 
is satisfied. 

When "II'" is a region in the space of all tensors, we use the notation of (3) 
and the convexity inequality (7) becomes 

C(F*) - C(F) - tr [(F* - F) CF(F)] > o. (8) 
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For a twice continuously differentiable function C (w) to be strictly convex in "fr, 
it is sufficient that the second gradient 1717 C (w) be positive definite for w in '''fr. 
This condition is not necessary, however: if C (w) is convex, it follows only that 
1717 C (w) is positive semidefinite. 

1. Mechanical preliminaries 
We give a brief summary of those concepts from the mechanics of continuous 

media that are relevant to the present investigation. For a detailed discussion 
we refer to [7] and [8J. 

A body PA is a smooth manifold of elements X, Z, ... , called material points*. 
A configuration 1 of PA is a smooth one-to-one mapping of PA onto a region in a 
three-dimensional Euclidean point space Iff. The point :lJ =/(X) is the position 
of the material point X in the configuration I. The mass distribution m of PA is 
a measure defined on all Borel subsets of PA. For the total mass of PA we write 
m(PA). To each configuration 1 of PA corresponds a mass density e. 

Consider a neighborhood .Ai(X) of a material point in a body; i.e., a part 
of the body containing X in its interior. Let 9 be a smooth homeomorphism 
of .Ai(X) into the three-dimensional vector space "Y such that X itself is mapped 

into the zero vector O. The inverse mapping of 9 is denoted by "it Let 91 and 92 
be two such homeomorphisms. The composition 92 0 g~ of 92 and g~ is defined by 

(92 0 g~) (:lJ) = 92 (g~ (:lJ)) . 

It is a mapping of a neighborhood of 0 onto another neighborhood of O. We 
define an equivalence relation ""," among all these homeomorphisms by the 

condition that 91'" 92 if the gradient of the mapping 92 0 g~ at 0 is the identity I. 
The resulting equivalence classes will be called the local configurations ** M of X. 
If Ml is the equivalence class of 91 and M2 the equivalence class of 92 then the 

gradient at 0 of 92 0 g~, i.e. 
G = 17(92 0 g~) (0), (1.1) 

depends only on Ml and M 2. We write 

G=M2M1 \ M2=GM1 , (1.2) 

and call G the deformation gradient from Ml to M 2 ; G is an invertible linear 
transformation. 

It is often convenient to employ a local reference configuration M;. and to 
characterize the other local configurations 

(1.3) 

by their deformation gradients F from the local reference configuration M;.. If, 
in this way, two local configurations Ml and M2 correspond, respectively, to 1\ 
and F; then the deformation gradient G from Ml to M z is given by 

G =F21\-I, F; = G1\. (1.4) 

* The term "particle" is often used. We prefer "material point" to avoid confusion 
with molecules and other physical particles. 

** The term "configuration gradient" was used in [7J. 
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The rotation tensor R, the right stretch tensor* U, and the left stretch tensor V 
of a deformation gradient F are defined by the unique polar decompositions 

F=RU= VR, (1.5) 

where R is orthogonal, while U and V = R U RT are symmetric and positive 
definite. We note that U and V have the same proper numbers; these proper 
numbers are called the principal stretches VI' V2 , Va' A deformation gradient G 
is called a pure stretch if its rotation tensor reduces to the identity I; i.e., if G 
is symmetric and positive definite and hence coincides with its own right and 
left stretch tensors. 

The mass densities at X corresponding to the local configurations Ml and M2 
are denoted, respectively, by (h and 122' We have 

1 
122 = I det G r 121 , (1.6) 

where G is related to Ml and M2 by (1.2). 

2. Thermomechanic states 
A global thermomechanic state, or simply a state, of a body fJI is a pair {j,1J} 

consisting of a configuration f of fJI and a scalar field 1J defined on fJI; 1J is called 
the entropy distribution of the state. 

A local thermomechanic state, or simply a local state, of a material point X 
is defined as a pair (M,1J) consisting of a local configuration M of X and a real 
number 1J, called the entropy density (per unit mass) of the local state**. 

In the following we often use a local reference configuration M, and, according 
to (1.3), characterize the other local configurations M by the deformation gradients 
F from M,. We then use the pair (F,1J) to characterize the local states. 

Two local states (F,1J) and (F',1J') will be called equivalent if they differ 
only by a change of frame of reference. The local configuration transforms under 
a change of frame according to the law F' = QF where Q is orthogonal. We 
assume that the entropy density 1J is objective; i.e., it remains invariant under a 
change of frame. Thus, the local states (F,1J) and (F',1J') are equivalent if and 
only if 

F'= QF, 1J' = 1J (2.1 ) 
for some orthogonal Q. 

We say that two global states {j,1J} and {f',1J'} are equivalent if they differ 
by only a change of frame. This is the case if and only if 

1J'(X) =1J(X), F'(X) = QF(X) (2.2) 

for all X in the body and some orthogonal tensor Q independent of X. Here, 
F(X) and F'(X) are the deformation gradients at X corresponding to f and f' 
respectively. 

* The term "strain tensor" was used in [7]. 
** In this article, pairs in braces, { }, always refer to global properties; the elements 

of such pairs are fields over!J6. On the other hand, pairs in brackets, (), always refer 
to local properties and have elements which are either real numbers or tensors. Note 
that the symbol 1) in {/,1)} and (M,1)) denotes different entities; in the first case 1) 

denotes a field while in the second case it denotes a number. No confusion should 
arise, however. 
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3. The caloric equation of state 
A material is characterized by a real valued function of local states, whose 

values e are called the energy densities (per unit mass) of the local states. We 
pick a fixed local reference configuration M,. and characterize the state (M, "I) 
by the pair (F, "I) where F =M M,-l. We write 

e = e(F,1)). (3·1) 

It is assumed here that the function e has continuous derivatives with respect 
to F and 1)*. 

We assume that the energy density is objective; i.e. invariant under a change 
of frame. It follows from (2.1) that the function e must satisfy the relation 

e(QF,1)) =e(F,1J) (3.2) 

for all orthogonal Q. Using the polar decomposition (1.5) and putting Q =RT 
in (3.2) we see that 

(3·3) 
i.e., that the energy density is determined by the right stretch tensor U and the 
entropy "I' 

The function e in (3.3) depends on the choice of the local reference configura
tion M,.. The function e' corresponding to some other local reference configura
tion M; is related to 8 by 

(3.4) 

where G = M; M,-l is the deformation gradient from M,. to M;. 
The equation (3.3) characterizes the thermal and mechanical properties of a 

material in statics. It is called the caloric equation of state of the material. 

4. The isotropy group 
It may happen that the energy function e remains the same function if the 

local reference configuration M,. is changed to another local reference configura
tion M; =H M,. with the same density. It follows from (3.4) that e then satisfies 
the relation 

e(F,1J) =e(FH,1J)' (4.1) 

Since M; and M, have the same density, it is clear from (1.6) that I det HI = 1 ; 
i.e., H is a unimodular transformation. The unimodular transformations H for 
which (4.1) holds form a group, called the isotropy group I:§ of e or of the material 
defined bye. This group depends, in general, on the choice of the local reference 
configuration, but it can be shown that the groups corresponding to two dif
ferent local configurations are always conjugate and hence isomorphic. 

We say that the energy function e defines a simple fluid if its isotropy group 
I:§ is the full unimodular group 0/1. If I:§ =0/1 for one reference configuration, 
then I:§ =0/1 for all reference configurations. A material point is called a fluid 
material point if its energy function defines a simple fluid. The caloric equation 

* For the application to physical situations it is necessary to limit the domain 
of e to a region in the space of local configurations and an interval on the 1]-axis. We 
do not supply the mathematical details which may arise in the consideration of limi
tations of this kind. 
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of state (3.3) then reduces to the form 

e=e(F,1]) =e(v,1]), 
where 

v = -.!... = I det F I ~ 
(! (!r 

(4.2) 

(4·3) 

is the specific volume of the local configuration M =F M,; e and Qr are the mass 
densities corresponding to M and M,. The function e in (4.2) does not depend 
on the choice of the reference configuration. 

We say that a material point is an isotropic material point if the isotropy 
group of its energy function e, relative to some local reference configuration, 
contains the orthogonal group (!). Those local reference configurations of the 
material point for which '§ contains (!) are said to be undistorted. A simple fluid 
is isotropic, and all of its local configurations are undistorted. For any isotropic 
material, it follows from (3.2) and (4.1) that e satisfies the relation 

(4.4) 

for all symmetric and positive definite U and all orthogonal Q, provided the local 
reference configuration for e is undistorted. Taking Q=R, so that V=RUR T 

is the left stretch tensor, we see that for isotropic material points the caloric 
equation of state (3.3) may be written in the form 

E = e(F,1]) = e(V,1])' (4.5) 

It is a further consequence of (4.4) that for each fixed value of 1], B may be 
expressed as a symmetric function of the three principal stretches Vi' v2 , V3: 

(4.6) 

It may also be expressed as a function of the three principal invariants I v, I I v' 
IIIv of V and U: 

(4.7) 

We say that the energy function e defines a simple solid if its isotropy group 
'§ is contained as a subgroup in the orthogonal group (!). A material point is 
called a solid material point if its energy function e, relative to some local con
figuration as a reference, defines a simple solid. The local reference configurations 
with this property are again called the undistorted states of the solid material 
point. For an isotropic simple solid, the isotropy group '§ is identical to the 
orthogonal group (!). 

Throughout the rest of this paper, whenever we discuss isotropic materials 
it is to be understood that the local reference configuration for the energy density 
function is undistorted, unless the reference configuration is explicitly specified. 

5. Forces, stresses, and work 
A system of forces is a system of vector valued measures, one for each part 

of the body P4 under consideration *. One must distinguish between contact and 
body forces. The contact force acting across an oriented surface element in P4 
will be denoted by de. 

* For a detailed axiomatic treatment ct. [8]. 
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Definition of mechanical equilibrium. In order that a body !!4 be in mechani
cal equilibrium under a given system of forces, two conditions must be fulfilled 
for each part f!jJ of !!4: (a) the sum of the forces acting on f!jJ must vanish, and (b) 
the sum of the moments, about any point, of the forces acting on f!i'must vanish. 

The condition (a), called the force condition, depends only on the body and 
the force system, not on the configuration of the body. The condition (b), called 
the moment condition, does depend on the configuration of the body; i.e., for a 
given force system, the moment condition may be satisfied for one configuration 
but not for another. 

The force condition alone implies that, for each configuration, the contact 
forces de arise from a stress-tensor S, so that 

de = SndA, (5·1) 

where n is the unit normal vector of the oriented surface element and dA its 
area in the configuration under consideration. For fixed contact forces dc, the 
stress tensor S will be different for different configurations. 

We consider now a neighborhood f(X) of a material point X and assume 
that a system of contact forces de is given for f(X). Let fr be a fixed reference 
configuration and f some other configuration of f(X). If de is such that the force 
condition is satisfied, then (5.1) is valid for all configurations; we can write for 
the reference configuration fr' in particular, 

(5.2) 

where nr is the unit normal of the oriented surface element in the reference 
configuration f., and dAr is the area of the surface element in fro We denote 
the position vector, in the configuration f, of a typical material point Z in f(X) , 
relative to the position of X as origin, by p, and we consider the tensor K defined 
by 

K = V ()(X)) f p 0 dc, (5·3 ) 
%(X) 

where f(X) denotes the boundary surface of %(X) and v (f(X)) the volume 
of f(X) in the configuration f, and where 0 denotes a tensor product. If the 
force condition is satisfied, the relation (5.1) is valid, and we have 

KT = v()(X)) f Sn0pdA. 
%(X) 

In the limit as f(X) shrinks to X, we obtain, after using Green's theorem, 

ST = lim K. 
%(X)-+X 

(5.4) 

The same argument, with the configuration f replaced by the reference configura-
tion fT> gives 1 f 

ST = lim p ,0, de (5 5) 
r %(X)-+xvr(.Y(X)) r'CI , . 

%(X) 

where vr (f(X)) is the volume of f(X) in the reference configuration and Pr 
the position vector, in the reference configuration, of a typical material point Z 
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in 5(X), relative to the position of X as origin. The position vector P of Z in 
the configuration f is related to Pr by the relation 

P = F Pr + 0 ( IPrl ) 
where F is the gradient at X of the deformation from fr to f and where 

lim o(d) = O. 
d ..... O d 

Substitution of (5.6) into (5.3) and use of (5.4) and (5.5) yields 

S=~FS 
(!r r' 

(5.6) 

(5.7) 

where e and er are, respectively, the mass densities at X in the configurations f 
andfr· 

The skew part of K, defined by (5.3), is the moment about X, per unit volume, 
of the contact forces de acting on 5(X) in the configuration f. If the moment 
condition is satisfied for the configuration f, then the total moment (i.e. the 
moment of the contact forces and the body forces) about X in f must vanish. 
Since the moment per unit volume about X of the body forces on 5(X) goes to 
zero as 5(X) shrinks to X, it follows from (5.4) that S must be symmetric if 
the moment condition is satisfied in f. 

We say that a material point X is in local mechanical equilibrium, when the 
body is in a given configuration and under a given force system, if the stress 
tensor S exists at X and is symmetric. 

The local behavior at X of a system of contact forces is completely determined 
by the tensor Sr defined by (5.2). It is called the Kirchhoff tensor * of the system. 
For a given force system, the Kirchhoff tensor depends only on the choice of 
the reference configuration and remains the same if the actual configuration is 
changed. From (5.7) we see that the existence of the Kirchhoff tensor Sr and 
the symmetry of F Sr are necessary and sufficient conditions for local mechanical 
equilibrium at a material point in the local configuration determined by F. 

In order that a body !!11 in a configuration 1 be in mechanical equilibrium. 
it is not sufficient that all its material points be in local mechanical equilibrium; 
i.e., that the stress tensor exist and be symmetric at each material point. Global 
mechanical equilibrium will prevail only if, in addition, Cauchy's law 

divS+eb = 0 (5.8) 

is satisfied. In this equation, S, e, and the density b of the body forces are to 
be regarded as fields with domain 1(!!I1). 

We consider now a smooth one-parameter family of configurations I(s) with 
deformation gradients F(s) at X. The work per unit mass done on 5(X) by the 
contact forces de along the path of configurations I(s) from s =S1 to s =S2 is 
defined by 

w =_1_1S

'[ 1~·de]ds m(JV(X)) ds ' 
s, %(X) 

(5.9) 

* Ct· TRUESDELL [9J, (26.s). 
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where m(.A'(X)) is the mass of .A'(X) and p(s) denotes the position vector, in 
the configuration j(s), of a typical material point in .A'(X). Assuming that the 
contact forces dc are independent of s, we obtain 

w= m(;(X») [J:..P(S2)·dc-J:..P(Sl)·dC]. 
.¥(X) .¥(X) 

(5.10) 

Observing (5.3), (5.4) and (5.7), and taking the limit .A'(X) -+X, we get 

e,w = tr [F(S2) S,] - tr [F(Sl) S,]. (5.11 ) 

This relation shows that - ~ tr (F S,) has the physical meaning of the potential 
(!, 

energy, per unit mass, of the local contact forces. 

6. Definition of thermal equilibrium 

A force temperature pair for a material point X is a pair (S" #) consisting 
of a tensor S" to be interpreted as the Kirchhoff tensor of a system of contact 
forces at X, and a real number #, to be interpreted as the temperature at X. 

Let a force temperature pair (S" #) be given and consider the function 

A 1 
)'(F,'fJ) = e(F,'fJ) - -tr(F S,) - 'fJ#. 

(!, (6.1) 

To help motivate the definition of thermal equilibrium given below, we make 

the following remarks. According to (5.11) the term - ~ tr (F S,) is the potential 
(!, 

energy, per unit mass, of the local contact forces. The term A-'fJ# may be inter-
preted as a thermal potential energy. Thus, the value A. =A.(F, 'fJ) gives a kind 
of free energy per unit mass of the local state (F, 'fJ) when under the action of 
the force temperature pair (S" #). 

Definition of thermal equilibrium. The local state (F, 'fJ) is called a state 
oj thermal equilibrium under a given jorce temperature pair (S" #) if 

(a) the stress tensor S -'-- (e/e,)F s, is symmetric, 
(b) the inequality 

A A 

A.(F*,'fJ*»A.(F,'fJ) 

holds for all states (F*, 'fJ*) =F (F, 'fJ) such that 

F*=GF, 

where G is symmetric and positive definite. 

(6.2) 

(6·3) 

The condition (a) means that F corresponds to a local configuration in local 
mechanical equilibrium (cf. § 5). The condition (b) means that a change of state 
increases the free energy ). provided that the configuration of the changed state 
is related to the original configuration by a pure stretch G (cf. § 1). 

7. Conditions for thermal equilibrium 
In this section we show that, for a local state (F, 'fJ) to be a state of thermal 

equilibrium under the force temperature pair (S" #), the following three conditions 
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are necessary and sufficient: 

(<X) The stress tensor 5 = -'L F 5, is given by the stress relation * 
(l, 

({J) The temperature -& is given by the temperature relation 

-& = e~ (F, 1]) . 
(y) The inequality 

(7.1 ) 

(7.2) 

e (F*, 1]*) - e(F, 1]) - tr [(F* - F) eF (F, 1])J - (1]* -1]) e'l (F, 1]) > 0 (7.3) 

holds if (F*, 1]*) =F (F, 1]) and F* is related to F by F* = G F, where G is positive 
definite and symmetric. 

We assume first that (F,1]) is a state of thermal equilibrium and prove the 

validity of (a.), ((J), and (y). By (6.2) and (6.3), the function J..(GF, 1]*) of the 
symmetric tensor variable G and the scalar variable 1]* has a minimum Jor G = I 

and 1]* =1]. By a theorem of calculus, it follows that the derivatives of J.. (9 F, 'f)*) 
wit.? respect to G and 'f)* must vanish for G = I and 1]* =1]. If we set the derivative 

of J.. (GF, 1]*) with respect to 1]* e<!ual to zero at 'f)* =1], we obtain the temperature 
relation (7.2). The gradient of J..(GF, 'f)*) with respect to G may be computed 
using the formula (3) of the mathematical preliminaries and (6.1); we obtain 
the equation 

(7.4) 

which is valid for arbitrary symmetric tensors A. Using (5.7) the equation (7.4) 
may be rewritten in the form 

(7.5) 

By the condition (a) of the definition of thermal equilibrium, 5 is symmetric. 
It follows from (3.2) and Theorem I of reference [10J, p. 42, that eFeF(F, 'f)) is 
also symmetric. Thus, the tensor eFeF(F, 1]) - 5 is symmetric. On the other 
hand, (7.5) can be valid for arbitrary symmetric A only if eFBF(F, 'f)) - 5 is 
skew; whence it follows that eFeF(F, 1]) - 5 must vanish, which proves (7.1). 
The inequality (7.3) is obt~ined simply by substitution of (7.1) and (7.2) into 
the inequality (6.2), after J.. is replaced by its definition (6.1). 

We assume now that the conditions (a.), ((J), and (y) are satisfied. It then 
follows from (7.1), (3.2) and the theorem of reference [10J mentioned above that 
the stress tensor 5 must be symmetric, so that condition (a) of the definition 
of thermal equilibrium is satisfied. Furthermore, the Kirchhoff tensor is given by 

(7.6) 

Substitution of (7.6) and (7.2) into the inequality (7-3) gives the inequality (6.2); 
hence condition (b) of the definition of equilibrium is also satisfied. 

* This is the familiar stress-strain relation offinite elasticity theory (c/. [10J, (16.4)). 
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8. The fundamental postulates 

We are now able to lay down our two fundamental postulates: 

Postulate I. For every local state (F, 'Y}) for which 8(F, 'Y}) is defined there 
exists a force temperature pair (5" f}) such that (F, 'Y}) is a state of thermal equilibrium 
under (5" f}). 

Postulate II. The energy function 8(F, 'Y}) is strictly increasing in 'Y} for each 
fixed F. 

Postulate I and the results of the previous section yield the following theorems: 

Theorem 1. The force temperature pair (5" f}) which makes the local state 
(F, 'Y}) a state of thermal equilibrium is given by 

5 r =er 8F(F,'Y}), 

f} = 81}(F, 'Y}). 

Theorem 2. The energy function 8 obeys the inequality 

(8.1) 

(8.2) 

for any two local states (F, 'Y}) and (F*, 'Y}*), in the domain of definition of 8, which 
are related by 

F*=GF, (8.4) 

where G is symmetric and positive definite. 

The discussion of the previous section shows that Theorem 2 is equivalent to 
Postulate 1. In fact, if we are given a state (F, 'Y}), we can define a force tem
perature pair (5r , f}) according to (8.1) and (8.2) and then use the inequality 
(8-3) to prove that (F, 'YJ) is in equilibrium under (5r , f}). 

The inequality (8.3) of Theorem 2 is a restricted convexity condition on the 
function s. If we take, in particular, F*=F, then (8.3) reduces to 

(8.5) 

for 'YJ* =f=17· This inequality is the content of the following corollary to Theorem 2: 

Theorem 3. For each fixed local configuration, the energy density is given by 
a strictly convex function of the entropy density. 

This theorem is equivalent to the statement that 81} (F, 'YJ) must be a strictly 
increasing function of'YJ for each fixed F. It follows that the equation (8.2) can 
be solved for 'Y} in a unique manner: 

'YJ =fj(F, f}). (8.6) 

Here, fj is a strictly increasing function * of f} for each F. The fact that (8.6) 
is obtained by solving (8.2) for'YJ is expressed by the identity 

(8.7) 

* The specific heat e at fixed strain is given by e=i}'ijIJ(F,i}). Hence, it is a 
consequence of Theorem 3 that eli} is never negative and, for each F, is strictly 
positive except possibly for a nowhere dense set of values of i}. 
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If we take 1'}*=1'} in (8.3), we obtain 

e(F*,1'}) - e(F,1'}) - tr [(F* - F) eF(F,1'})] > 0; (8.8) 

this inequality holds whenever F* = G F, where G =1= I is symmetric and positive 
definite. 

A local state (F,1'}) is called a natural state if the corresponding stress (8.1) 
vanishes. Keeping the entropy fixed, we may use the local configuration of the 

natural state as the reference configuration, so that F = I and eF (I, 1'}) = ~ S = O. 
In this case, the inequality (8.8), by (8.4), reduces to €! 

e (G,1'}) > e (I,1'}) , (8.9) 

which is valid for arbitrary symmetric and positive definite G =fl. Replacing 
G by the right stretch tensor U of an arbitrary deformation gradient F and 
using (3.3), we see that 

(8.10) 

this expression becomes an equality only when F is orthogonal; i.e., when (F,1'}) 
is equivalent to (I,1'}). Hence, the energy density is smallest in a natural state. 
It should be pointed out that this observation, though important for the theory 
of simple solids, is vacuous for fluids. For, we shall prove in § 11 that the stress 
on a fluid material point in thermal equilibrium is always a strictly positive 
pressure; thus, for a fluid there is no natural state. 

We note that the restriction (8.4) on the inequality (8.3) of Theorem 2 is 
essential for application of the present theory to physical situations. This 
restriction means that the local configurations corresponding to F* and F must 
be related by a pure stretch. If, for example, these local configurations were 
related by a rotation so that F*= QF, with Q an orthogonal transformation, 
then the left side of (8.8) would reduce to tr [(Q -I)FeF(F,1'})], since e(F*) 
would equal e(F) by (3.2). The stress relation (7.1) shows that the left side of 

(8.8) would then become ~ tr [( Q - I) S]. One can show that this expression 
e 

can be made negative by an appropriate choice of Q if S has at least one negative 
proper number. Thus, the inequality (8.8), were it to hold for arbitrary pairs 
F, F*, would exclude the possibility of thermal equilibrium under compression 
stresses, which is certainly not in accord with experience*. 

9. An alternative axiomatization 
In this section we hope to make clear our reasons for assuming Postulate II 

and to motivate further our definition of equilibrium. 
It follows from Postulate II that, for each fixed F, the caloric equation of 

state has a unique solution for 'YJ: 

(9.1) 

and that the function ,q is strictly increasing in B for each F. This one-to-one 
correspondence between Band 'YJ at each F makes it possible to give an alternative 

* It has also been pointed out by HILL [15] that an assumption of unrestricted 
convexity of e in the deformation gradient would lead to unacceptable physical 
behavior. 
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axiomatization of our present theory of thermostatics by taking e and F as 
independent variables and defining thermal equilibrium in terms of the func
tion~. In such a formulation a local thermomechanic state is characterized by 
a pair (F, e), and thermal equilibrium is defined as follows: 

Alternative definition of thermal equilibrium. The local state (F, e) is called 
a state of thermal equilibrium under the force temperature pair (5,., {}), with {} =1=0, if 

(a) the stress tensor 5 = (e/e,.)F 5,. is symmetric, 

(b) the inequality 
~ ~ 1 ] 6*-6 
ij(F,e»ij(F*,e*) + {J(!,. tr[(F*-F)5, --{J- (9.2) 

holds for all states (F*, e*) =I=(F, e) such that F*=GF, where G is symmetric and 
positive definite. 

Theorem 4. The definition of thermal equilibrium given in § 6 and the alternative 
definition of thermal equilibrium are equivalent (for {} =1=0) if Postulate II is assumed. 

Proof. In § 7 we showed that, under the original definition of § 6, in order 
for a state (F,1'/) to be a state of thermal equilibrium for the force temperature 
pair (5,., {}) it is necessary that 

{} = e'l(F,1'/)' (9·3) 

By a very similar argument it can be shown, using the alternative definition of 
thermal equilibrium, that in order for the state (F, e) to be a state of thermal 
equilibrium it is necessary that 

1 :':: 
{f =1'/.(F, e). (9.4) 

Now, by Postulate II, the functions e and ~ are strictly increasing in 1'/ and e, 
respectively, for fixed F. Hence, {} cannot be negative if (51" {}) is to be a force 
temperature pair for some state of thermal equilibrium, regardless of which of 
the two definitions is used. Since we here assume {}=I=O, we have {}>O, and 
(9.2) can be multiplied by {} and then rearranged to give 

- {}~(F*, e*) - ~tr(F* 51') + e* > - {}~(F, e) - ~tr(F 5,) + e. (9.5) 
(!, (!, 

Noting the relations 
1'/* =~(F*, e*), 1'/ =~(F, e), 

e*=e(F*,1'/*), e=e(F,1'/), 
(9.6) 

and (6.1), we see that (9.5) is equivalent to (6.2). The requirement that (F, 1'/) =1= 
(F*,1'/*) and the requirements on G =F* F-l are the same for (6.2) and (9.5). 
The condition (a) is obviously the same in both definitions; hence the definitions 
are equivalent, q.e.d. 

From a certain point of view the alternative definition of thermal equilibrium 
given in this section is more fundamental than the original definition of § 6. 
The alternative definition is more closely related to the physical notion that, 
since entropy tends to increase, equilibrium states should be, in some sense, 
states of maximum entropy. The definition of § 6 is closely related to the idea, 
which is often used in mechanics, that equilibrium states should be, in some 
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sense, states of minimum potential. It should be emphasized that the two 
definitions are equivalent only if Postulate II is assumed; i.e., only if states of 
negative temperature are excluded. Of course, negative temperatures never 
occur in continuum mechanics, but there are subjects in which they do occur 
(cf. [11], [12]). Statistical mechanical considerations suggest that for systems 
capable of negative temperatures a practical definition of thermal equilibrium 
should be based on the idea of maximum entropy. 

10. Infinitesimal deformations from an arbitrary state 
Here we consider the classical theory of infinitesimal deformations from an 

arbitrary initial configuration. We make no attempt to justify the use of the 
theory of infinitesimal deformations as an approximation to the theory of finite 
deformations. 

In the theory of infinitesimal deformations one considers cases in which 
F* = G F is obtained from F by superimposing an infinitesimal deformation. The 
infinitesimal strain tensor E is defined as the symmetric part of G - I. 

In the special case in which G is positive definite and symmetric (i.e., when 
F* is related to F by a pure stretch) we have 

E=G-l, 

and the excess energy e(GF,1])-e(F, 1]) is a function of E alone: 

u(E) =e(GF,1]) -e(F,1]). 

Equation (10.2) is valid approximately even when G is not symmetric. 

( 10.1) 

(10.2) 

In the infinitesimal theory it is assumed (i) that (10.2) is valid exactly for 
all G and (ii) that the excess energy is exactly given by the sum, 

0' (E) = 0'1 (E) + 0'2 (E) , (10·3 ) 

of a term 0'1 (E) linear in E and a term 0'2 (E) quadratic in E. 
By taking the gradient of (10.2) with respect to E and then putting E =0, 

it is easily shown that the linear term 0'1 (E) must be given by 

u1 (E) =tr[EFeF(F,1])]. 

Hence, using the stress relation (7.1), we have 

1 
0'1 (E) =-tr(E 5), 

(} 

where 5 is the stress of the original state (F,1]). 
Now, the fundamental inequality (8.8) may be written 

e(GF, 1]) - e(F, 1]) - tr[(G - l)FeF(F,1])] > o. 
From (10.1), (10.2) we get 

u(E) - tr[EFeF(F,1])] > 0, 

and it follows from (10.3), (10.4) and (10.5) that 
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u2 (E) = 0' (E) - "'!"'tr(E 5) > o. 
(} 

(10.4) 

(10.5) 

(10.6) 

(10.7) 

( 10.8) 
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This inequality is the content of the following theorem: 

Theorem 5. For an infinitesimal deformation superimposed, at fixed entropy, 
on an arbitrary state, the excess energy is the sum of a positive definite quadratic 
form in the infinitesimal strain tensor E of the superimposed strain and a linear 

term ~ tr (E S), where (! is the density and S the stress corresponding to the original 
state. (! 

If the original state is a natural state in which the stress vanishes, the above 
theorem reduces to the familiar statement that the strain energy is a positive 
definite quadratic form in the infinitesimal strain tensor. For isotropic materials, 
this statement is equivalent to following well known inequalities for the Lame 
constants: 

(10.9) 

which state that the shear modulus and the compression modulus must be positive. 

11. Simple fluids 
For simple fluids we have, by (4.2) and (4.3), 

e(F,1]) ="8(ldetFI vr ,1]) , (11.1) 

where vr = 1/(!r is the specific volume in the reference configuration. Taking the 
gradient of (11.1) with respect to F, we obtain 

(11.2) 

where v = I det F I vr · On substituting (11.2) into the fundamental inequality 
(8.3) and using (8.4), we obtain 

"8 (v*, 1]*) - "8 (v, 1]) - v 8v (v, 1]) tr (G - I) - (1]* -1]) "81/ (v, 1]) > 0, (11·3) 

which must hold for all positive definite symmetric G =F F*-l whenever either 
G 4=1 or 1] 4=1J*. 

We assume now that v*=v; i.e., that IdetF*1 =ldetFI, which means that 
G is unimodular. We also choose 1]*=1]. Then (11.3) reduces to 

- v 8v (V, 1]) tr(G - I) > 0, ( 11.4) 

which must be valid for all symmetric positive definite unimodular tensors G 4=1. 
Let gI' g2' g3 be the proper numbers of G. We then have 

and 
tr(G - I) = gl + g2 + g3 - 3· 

(11.5) 

( 11.6) 

Using the fact that the arithmetic mean is greater than the geometric mean, 

gl +gz+ga ,3/--
3 > vglg2g3' 

we see that (11.5) and (11.6) imply 

tr(G - I) > o. 

( 11.7) 

(11.8) 
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Hence, it follows from (11.4) that 
( 11.9) 

for all v and 'YJ for which s is defined. Thus, s(v, 'YJ) mUst be a strictly decreasing 
function of v for each fixed 'YJ. 

Substitution of (11.2) into (7.1) shows that the stress relation reduces to 

where 
5 = - P(v,'YJ) I, 

P(v,'YJ) = - Sv (v, 'YJ) 

is the hydrostatic pressure. By (11.9) it is positive. 

For further exploitation of (11.3) we choose G =rxI, rx>O. Since 

rx3 = I det G I = I ~ee~~·1 = v: ' 

we have 

(11.10) 

(11.11) 

G = (ffl I. (11.12) 

Substitution of (11.12) into (11.3) yields the inequality 

B(v*,'YJ*)-S(V,1})-3 vBv(v,1})(Vvv· -1)-(1}*-'YJ)Sf/(V,1}»O, (11.13) 

which must be valid for all v, v*, 1}, 1}* except, of course, when both v =v* and 
'YJ =1}*. In order to understand the significance of this inequality we introduce 
the new variable 

(11.14) 
and define the function e by 

s(v,'YJ) =e(v,1}) =e(vv,1})' (11.15) 

A straightforward calculation shows that (11.13) is equivalent to the inequality 

(11.16) 

which states that e (v, 1}) is strictly convex in v and 'YJ jointly. If e (v, 1}) happens 
to possess continuous second derivatives, it follows that the matrix 

( 11.17) 

must be positive semi-definite. 

We summarize in the following theorem: 

Theorem 6. For a simple fluid in thermal equilibrium, the stress 5 reduces to 
a hydrostatic pressure 5 = - P (v, 1}) I. The pressure P (v, 'YJ) = - Bv (v, 'YJ) is always 
positive. The energy density e (v, 1}) is a strictly convex function of the cube root v 
of the specific volume and the entropy 1} jointly. 

It is not hard to show that, for simple fluids, the positivity of p (v, 1}) and 
the convexity of e(v, 1}) are not only necessary but also sufficient conditions for 
the validity of t4e fundamental inequality (11.3). Hence, these conditions are 
also sufficient conditions for the validity of Postulate I for simple fluids. 
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12. Isotropic materials 

For isotropic materials in general, if we pick an undistorted state as reference, 
we have, by (4.5), 

( 12.1) 

where V is the left stretch tensor, defined by the polar decomposition F = V R. 
On computing the gradient of (12.1) with respect to V, we find 

(12.2) 

If we substitute (12.2) into (7.1) and again use F = V R, we see that the stress 
relation may be written in the form 

( 12·3) 

On substituting (8.4), (12.1) and (12.2) into the fundamental inequality (8.3) 
and observing that 

e(F*) = e(GF) = e(GVR) = e(GV), 
we obtain 

e (G V, 1)*) - 8 (V, 1)) - tr [(G - I) V ev (V, 1))J - (1)* -1)) 8'1 (V, 1)) > O. (12.4) 

This inequality must be valid for all 1), 1)* and all symmetric and positive definite 
G and V, except, of course, when both 1) =1)* and G =1. 

We consider now the special case when G and V commute; i.e., when 

V*=GV (12.5) 

is symmetric. In this case the tensors V and V* have an orthonormal basis of 
proper vectors in common. The matrices of V and V*, relative to this basis, are 

V1 0 0 vt 0 0 

IIV II = 0 V 2 0, II V* II = 0 v: 0 (12.6) 

o 0 va o 0 v: 
where the v. and the vt are the proper numbers of V and V*, respectively. The 
matrix of ev (V, 1)) is 

Ilev(V, 1))11 = 0 8 2 0 . ( 12.7) 
0 0 8a 

where 
8i=e.(vt ,1)) = o~. e(vi' 1)) (12.8) 

• 
are the partial derivatives of the function (4.6). Substitution of (12.5), (4.6), 
(12.6), and (12.7) into (12.4) gives the inequality 

a 
8 (vi, 1)*) - e (Vi' 1)) - L (vt - Vi) 8;(vi' 1)) - (1)* -1)) 8'1 (vi' 1)) > 0, (12.9) 

.=1 

which is valid except when 1)*=1) and v.=vr for all i. We have thus proved* 

* We have shown that for isotropic materials the inequality (12.9) is a necessary 
condition for validity of the fundamental inequality (8.3). At the present time, it 
is an open matter as to whether (12.9) is sufficient for the validity of (8.3) in the 
isotropic case, or whether further inequalities which are independent of (12.9) can be 
deduced from Postulate I for isotropic materials. 
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Theorem 7. For an isotropic material, the energy density 8(vi' 1]) is a strictly 
convex junction oj the principal stretches vi and the entropy density 1] jointly. 

If e happens to be twice continuously differentiable, it follows that the matrix 

8ll 812 813 81 '1 

en 822 823 82 '1 

831 8 a2 8 a3 8 3 '1 
(12.10) 

8'1 1 eq2 8'13 8'1'1 

is positive semidefinite. Here the indices 1, 2, 3, and 1] denote the derivatives 
of 8 with respect to VI' V2 , Va, and 1], respectively. 

A corollary of the convexity inequality (12.9) is 

Theorem S. For an isotropic material, the junctions 8 i (vi' 1]), dejined by (12.8), 
have the property that Vi>Vk implies 8i(Vi , 1]»8k (Vj , 1]). 

Pro oj. Without loss of generality, we take i = 1 and k = 2. We then choose 
vi=v2, v:=vI , v:=va, and 1]*=1]. Since 8(Vj,1]) is a symmetric function of 
the principal stretches vi (cj. § 4), and since the vi differ from the vi only by 
their order, we have 

Hence (12.9) reduces to 

- (V2 - VI) 81 (Vi' 1]) - (VI - v2) 82 (V j ,1]) > 0; 
loe., 

(VI - v2) [8dvi ,1]) - 82 (Vi ,1])] > o. 

Thus, if VI>V2' then 81 (Vi' 1]»82(Vi' 1]), q.e.d. 
In an isotropic material, the left stretch tensor V and the stress tensor S 

have an orthonormal basis e i of proper vectors in common. The e i determine 
the principal axes of stress. It follows from (12.3), (12.6), and (12.7) that the 
principal stresses are given by 

(12.11 ) 

When measured per unit area in the undistorted reference state, these principal 
stresses must be replaced by 

(12.12) 

Hence Theorem 8 has the following simple physical interpretation: 

Theorem Sa. Ij, at a given value 1], the principal stretch Vi is greater than the 
principal stretch Vk, then the principal stress, measured per unit area in the un
distorted rejerence state, in the direction oj Vi is greater than that in the direction oj Vk. 

I t should be noted that the statement of this theorem does not necessarily 
remain valid if the principal stresses are measured per unit area of the deformed 
state *, except when these stresses are all positive; i.e., except in a state of pure 
tension. 

* Such a statement was proposed as a postulate by M. BAKER & J. L. ERICKSEN 

[13J. In our theory, only the modification given by Theorem Sa is valid. Related 
inequalities have been studied by]. BARTA [14J. 
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13. The free energy 
It is often useful to employ the deformation gradient F and the temperature 

{), rather than F and the entropy 1], as the independent variables. This is possible 
because, by (8.2) and (8.6), there is a one-to-one correspondence between 1] and {} 
for each fixed F. 

The free energy function tp is defined by 

tp (F, {}) = 8 [F, 1] (F, 0) J - 01] (F, 0) , (13.1) 

where the entropy function 1] is defined in (8.6) as the unique solution of the 
equation (8.2). The values "p of the free energy function ip are called free energy 
densities*. 

Differentiation of (13.1) with respect to F, using the chain rule, gives 

ipF (F, 0) = 8F [F, 1] (F, O)J + 8'1 [F, 1] (F, O)J 1]F (F, 0) - 0 1]F (F, 0) . 

It follows from (8.7) that the last two terms cancel, so that 

tpF (F, 0) = 8F [F, 1] (F, 0)]. (13·2) 

Differentiation of (13.1) with respeCt to {} gives 

ip{} (F, 0) = -1] (F, 0) . (13·3) 

From Theorems 1 and 2, (13.2), and (13.3) we get 

Theorem 9. For the force temperature pair (5" 0) to make the local state (F,1]) 
a state of thermal equilibrium, it is necessary and sufficient that 5, and 1] be given by 

5, = e, ipF (F, 0) , 

1] = -ip{}(F, 0). 

(13.4) 

(13·5) 

On multiplying (13.4) on the left by (e/ e,) F and noting that 5 = (e/ e,) F 5" 
we get the following form for the stress relation: 

5 = eFij;p(F,O). (13·6) 

Assuming that two temperatures {}, 0* and two deformation gradients F, F* 
are given, we now put 

1] = 1] (F, 0) = - ip{} (F, 0) 

1]* = 1] (F*, 0*) = - tp{} (F*, {}*) . (13·7) 

By substituting (13.1) -(13.7) into the fundamental inequality (8.3) of Theorem 2, 
we obtain 

Theorem 10. The free energy function tp obeys the inequality 

tp(F*,O*) - tp(F, 0) - tr [(F* - F) tpF(F, 1])J - (0* - 0) tp{}(F*, 0*) > 0 (13.8) 

for any two pairs (F,O) and (F*, {}*) =F (F, {}) in the domain of definition of tp which 
are related by 

F*=GF, (13·9) 

where G is symmetric and positive definite. 

* The term "Helmholtz free energy per unit mass" would also be in accord with 
common usage. 
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As Theorem 2, so also Theorem 10 is equivalent to Postulate I. 
If in (13.8) we take the special case F*=F and interchange {} and {}*, we 

obtain 
ip(F, {}*) - ip(F, {}) - ({)* - {}) ip.(F, {}) < o. (13·10) 

This inequality, which is valid for all F and all {}*=f=.{}, states that the free energy 
function ip (F, {}) is strictly concave in {} for each F. 

Putting {}*={} in (13.8) gives the following restricted convexity of fP in F: 

1p (F*, {}) - ;P(F, {}) - tr [(F* - F) 1pF(F, {})] > 0, 

the restriction being the condition (13.9). 

(13·11) 

The considerations and results of § 11 and § 12 on simple fluids and isotropic 
materials remain valid if the energy function 8 is replaced by the free energy 
function;P, except that the convexity of s(F, 71) in 71 corresponds to the concavity 
of ;P(F, {}) in {}; We summarize the relevant results. 

For a simple fluid, the free energy density reduces to a function of the specific 
volume 11 and the temperature 1J only: 

"P = ip (F, 1J) = iii (v, {}) . (13·12) 

The stress reduces to a hydrostatic pressure given by 

(13·13) 

The pressure is always positive. The function VJ, giving the free energy as a 
function of the cube root v of the specific volume and the temperature, 

VJ (v, 1J) = ip (va, {}}, (13·14) 
satisfies the inequality 

VJ (v*, 1J*) - VJ (v, {}) - (v* - v) VJ,,(v, {}) - ({)* - {}) VJ8 (v*, 19'*) > o. (13·15) 

This inequality implies that VJ (v, {}) is strictly convex in v for each # and strictly 
concave in {} for each v. 

For isotropic materials in general, the free energy reduces to a function of 
the temperature # and the three principal stretches Vl , Vi' V3 , computed relative 
to an undistorted state: 

(13·16) 

The function ip is symmetric and strictly convex in the variables Vl' Vi' V3 ; iii is 
strictly concave >in {}. Theorems 8 and 8a remain valid if 8 is replaced by iii; 
i.e., if the temperature, rather than the entropy is fixed at a given value. The 
stress relation may be written in the form 

(13·17) 

where V is the left stretch tensor. 

The forms, (13.6), (13.13), and (13.17), of the stress relation are useful in 
discussing experiments involving equilibrium states for which the temperature 
is controlled, while the forms, (7.1), (11.10), and (12.3), are appropriate for 
discussing experiments involving eqUilibrium states for which the entropy is 
controlled. 

86 



Thermostatics of Continua 119 

14. Thermal stability 

Consider a body g(J and a global thermo mechanic state {j, 'iJ} of f!I, defined by 
a configuration f of g(J and an entropy distribution 'iJ of g(J; (cf. § 2). Let the 
caloric equation of state of the material point X of g(J be given by 

e(X) =e[F(X),'iJ(X);X]. (14.1 ) 

Here F(X) is the deformation gradient at X of the configuration f relative to 
some reference configuration f,. We do not assume that the body is homogeneous, 
and hence the function e may depend explicitly on X as indicated in (14.1). 
The total entropy of g(J in the given state is defined by 

H=J'iJ(X)dm ( 14.2) 
91 

and the total internal energy of g(J by 

E = J e [F(X) , 'iJ (X); X] dm. (14.3) 
91 

In this section we shall deal with situations in which the deformation gradient 
F(X) is kept fixed at each X while the entropy field 'iJ ='iJ (X) is varied. It will 
not be necessary to make the dependence of e on F explicit, and the following 
abbreviated notation will be convenient: 

e [F(X) , 'iJ (X); X] = e eX, 'iJ (X)). ( 14.4) 

Definition of thermal stability. Let {j, 'iJ} be a state of g(J and let E and H 
be, respectively, the total internal energy and total entropy corresponding to the state 
{j, 'iJ}. We say that {j, 'iJ} is a thermally stable state of g(J if every other state {j, 'iJ*}, 
with the same configuration as {f, 'iJ} and the same total entropy as {j, 'iJ}, 

H* =J 'iJ*(X) dm = H =J 'iJ(X) dm, 
91 91 

( 14.5) 

has a greater total internal energy than the state {j, 'iJ}; i.e., 

E* =J e (X, 'iJ * eX)) dm> E =J e(X,'iJeX)) dm. (14.6) 
91 91 

We give another condition, equivalent to the one given above, which could 
also be used to define thermal stability. 

Theorem 11. A state {j, 'iJ} of g(J is thermally stable if and only if every other 
state {f, 'iJ*} with the same configuration as {j, 'iJ} and the same total energy as {j, 'iJ}, 

E*=J e(X,'iJ*(X))dm=E=J e(X,'iJ(X))dm, 
91 91 

( 14.7) 

has a lower total entropy than the state {j, 'iJ}; i.e., 

H = J 'iJ (X) dm > H* = J 'iJ*(X) dm. (14.8) 
91 91 

Proof· We show that the hypothesis of Theorem 11 is necessary for thermal 
stability by showing that if there exists a state {j,1h} (with 'iJ1 not identical to 'iJ) 
which obeys the equation (14.7) of Theorem 11 but violates (14.8), then there 
must exist a state {j, 'iJ2} (with 'iJ2 not identical to 'iJ) which obeys the equation 
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(14.5) of the definition of thermal stability but which does not obey (14.6). Let 
'f}l be the entropy density distribution which obeys (14.7) but not (14.8); we 
construct 'f}2 as follows: H - H 

'f}2(X) ='f}I(X) + m(£1l)l , (14.9) 

where HI is the total entropy corresponding to 'f}l' The total entropy correspond
ing to 'f}2 is 

H2 = J 'f}2 (X) dm = H . 
91 

(14.10) 

Hence, the state {I, 'f}2} obeys the equation (14.5) of the definition. We have 
assumed that 'f}2 is not identical to 'f} and that HI::::: H. If HI = H, then 'f}2 is the 
same as 'f}l and hence different from 'f}. In this trivial case of 'f}2='f}1' it follows 
from the fact that 'f}l obeys (14.7) that 

J e(X,'f}2(X)) dm =J e(X,'f}I(X)) dm =J e (X,'f) (X)) dm. 
91 91 91 

(14.11 ) 

If H1>H, then 'f}2(X) <'f}I(X) for all X in @J. It then follows from Postulate II 
of § 8 and the assumption that 'f}l obeys (14.7) that 

J e(X,'f}2(X)) dm<J e(X,'f}I(X)) dm =J e(X,'f}(X)) dm. (14.12) 
91 91 91 

It is clear from (14.12) that 'f}2 is not identical to 'f}. Hence, whenever HI > H, 
we have, by the construction (14.9), a state {I, 'f}2} with 'f}2 different from 'f} but 
with H2 = Hand 

E2 =J e (X, 'f}2(X)) dm~ J e(X,'f}(X)) dm = E. (14.13) 
91 91 

Thus, a violation of the hypothesis of Theorem 11 implies the existence of a 
state different from {I, 'f}} which obeys (14.5) yet violates (14.6). 

The sufficiency of the hypothesis of Theorem 11 is proved analogously by 
starting with a state which obeys (14.5) of the definition, but not (14.6), and 
then using Postulate II to construct a state which obeys (14.7) of the theorem, 
but which violates (14.8). 

The main result of the present section is the following theorem: 

Theorem 12. A state {I, 'f}} of a body is thermally stable if and only if it is 
of uniform temperature; i.e., if and only if 

{} = e'l (X, 'f}(X)) ( 14.14) 

is a constant, independent of the material point X. 

Proof. To show the necessity of {} = constant, we observe that, by (14.6), 
the function 'f} (X) is the solution of the variational problem 

J e(X,'f}*(X)) dm = Minimum 
91 

subject to the constraint (14.5). It follows that the first variation of 

(14.15) 

J[e(X,'f}*(X)) -oc'f}*(X)]dm (14.16) 
91 

must vanish for 'f}*='f}. Here oc is a constant Lagrange parameter. We obtain 

OC = eq (X, 'f) (X)) = {} = constant. ( 14.17) 
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To prove the sufficiency of -0 = constant, we substitute the function values 
F(X), 1] (X) and 1]*(X) for F, 1] and 1]* in the convexity inequality (8.5). Using 
the abbreviation (14.4) and the equation (14.14), we get 

e (X, 1]*(X)) - e(X,1](X)) - [1]*(X) - 1] (X)] -O~ o. (14.18) 

This inequality must be strict for some X if 1]* and 1] are different continuous 
functions. If -0 is a constant and if (14.5) holds, then integration of (14.18) over 
the body fJI gives the inequality (14.6), which proves that {I,1]} is thermally stable, 
q.e.d. 

15. Mechanical stability 
Consider a state {I, 1]} of a body fJI. According to Postulate I of § 8 it is 

possible to find a temperature field -0 and a stress field 5 such that every material 
point of fJI is in thermal equilibrium for the force temperature field defined by 
5 and -0. In fact, 5 and -0 are given by the stress relation (7.1) and the temperature 
relation (7.2), respectively. If a field of body forces b is given, then the state 
{I,1]} will be a state of mechanical equilibrium if Cauchy's condition 

Div5+eb =0 (15.1) 

holds. If {I,1]} is such that every material point is in thermal equilibrium, it 
is always possible to choose b such that the state {I,1]} is a state of mechanical 
equilibrium. We need only to define b by (15.1). We say that the fields 5,-0, 
and b, given by (7.1), (7.2) and (15.1), make {I,1]} a state of equilibrium. We 
call 5, -0 and b, respectively, the stress, temperature, and body force fields of 
{I,1]}. 

We investigate the possible meaning that can be given to the statement that 
an equilibrium state {I,1]} is stable. First, we require that it be thermally stable 
which, according to Theorem 12, means that the temperature {} must be uniform. 
In addition, we require that some condition of mechanical stability be satisfied. 
One must distinguish between various types of isothermal mechanical stability and 
adiabatic mechanical stability. 

In the case of isothermal mechanical stability, one compares the given 
equilibrium state {I, 1]} wit~ a class of states {I*, 1]*} corresponding to the same 
uniform temperature {} =-o(F, 1]) as the given state. Each of these states is 
characterized by its configuration 1* alone, because the corresponding entropy 
distribution is then determined by 

1] = fj (F*, (}) . (15.2) 

External forces or boundary conditions must be prescribed for each of the 
comparison configurations /*. The configuration 1 is called stable if the increase 
in the total free energy would always be greater than the work done on the 
body by the external forces if the configuration were to be deformed into any 
of the comparison configurations /*. We give more precise definitions in two 
special cases. 

Definition of isothermal stability at fixed boundary (IFB stability). An 
equilibrium state {I,1]} is called IFB stable if {I,1]} has a uniform temperature -0 
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and if for every state {f*,1J} which satisfies the following conditions: 

(a) f* lies in a prescribed neighborhood* of f, 

(b) f*(X) =f(X), when X belongs to f!lJ, (15.3) 

(c) the temperature corresponding to {f*, 1J} is eq·ual to {} for all X in f!lJ, 

the following inequality holds: 

J {1jJ(F*) -1jJ(F) - b· (f* - f)}dm > o. (15.4) 
fJI 

Here f!lJ is the boundary of f!lJ, and 1jJ (F) is an abbreviation for 

1jJ(F) =1p (F(X) , {}; X); (15.5) 

F*(X) and F(X) are the deformation gradients at X for the configurations f * 
and f, respectively, both computed relative to the same fixed reference configura
tion. As in § 14, we do not assume that the body is homogeneous, and hence 
the function ip may depend explicitly on X. 

We say that {j,1J} is strictly IFB stable if the inequality (15.4) is strict 
whenever {f*,1J*} obeys (a), (b) and (c) and is such that f*=t=f. 

Note that the surface tractions do no work if the boundary is fixed and that 
- J f* . b dm is a potential of the work done by the body forces if these are 

fJI 

held at their values b (X) in the equilibrium state {j,1J}. 

The type of stability considered is affected by the prescription of the neigh
borhood in the requirement (a) of the definition of IFB stability. A global state 
may be stable with respect to some (small) neighborhood without being stable 
with respect to other (larger) neighborhoods. 

Definition of isothermal stability at fixed surface tractions (1FT stability). 
An equilibrium state {j,1J} is called 1FT stable if {j,1J} has a uniform temperature 
{} and if for every state {f*, 1J} which satisfies the following conditions: 

(a) f* lies in a prescribed neighborhood of f, 

(b) the temperature corresponding to {f*,1J} is equal to {} for all X in f!lJ, 

the following inequality holds: 

F= J {1jJ(F*) -1jJ(F) - b· (f* - f)}dm - J (f* - f) . 5 n dA :?:: o. (15.6) 
fJI ~ 

Here iiis the boundary surface of the region occupied by f!lJ in the configurationf; 
dA is the element of that surface; and n is the exterior unit normal. 

Note that - J f*. Sn dA is a potential of the work done by the surface 
~ 

tractions if they are held at their values in the equilibrium state {f,1J}. 

An 1FT stable state is always also IFB stable. This follows from the fact 
that the surface integral in (15.6) gives no contribution if the boundary condition 
(15.3) holds, so that the inequalities (15.4) and (15.6) become the same in this casc. 

* A neighborhood of a configuration is defined by the metric 

0([,1*) = sup {If* (X) - [(X)I + 1F*-l(X) F(X) - II} 
X(-fJI 

over the space of all configurations. 
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If the inequality (15.6) holds for all states which obey items (a) and (b) of 
the definition of 1FT stability and is, furthermore, a strict inequality for all 
such states for which F*(X) =l=F(X) for at least one material point X, then we 
say that {j, 'I'}} is strictly 1FT stable against deformations and rotations. For in 
that case (15.6) can reduce to an equality only if f* is related to f by a simple 
rigid translation. 

To investigate adiabatic mechanical stability, one compares the given equi
librium state {j, 'I'}} with a class of states which correspond to the same total 
entropy as {j, 'I'}}. We again consider two special cases. 

Definition of adiabatic stability at fixed boundary (AFB stability). An 
equilibrium state {j, 'I'}} is called AFB stable if {f 'I'}} is thermally stable and if for 
every state {j*, 'I'}*} which satisfies the following conditions: 

(a) f* lies in a prescribed neighborhood of f, 

(b) reX) =f(X), when X belongs to iii; 
(c) J'I'}*(X) dm = J'I'} (X) dm, 

!II !II 

the following inequality holds: 

J {e [F*(X) , 'I'} * (X) ; X] - e [F(X) , 'I'} (X); X] - b· (r - f)}dm ~ O. (15.7) 
!II 

If the inequality in (15.7) is strict for all {f*, 'I'}*} satisfying (a), (b) and (c) 
and for which f*=l=f, then we say that {j, 'I'}} is strictly AFB stable. 

Theorem 13. A thermally stable equilibrium state {j, 'I'}} is AFB stable if and 
only if for every state {f*, 'I'}*} which satisfies the following conditions: 

(a) r lies in a prescribed neighborhood of f, 

(b) reX) =f(X) when X belongs to Pi, 
(c) J{e(F*(X),'I'}*(X); X)-b .f*}dm= J {e(F(X),'I'} (X) ; X)-b ·f}dm, (15.8) 

!II !II 

the following inequality holds: 

J'I'}*(X)dm~J'I'}(X)dm. (15.9) 
!II !II 

Furthermore, {j, 'I'}} is strictly AFB stable if and only if (15.9) is a strict inequality 
for every state {f*, 'I'}*}=l={j, 'I'}} obeying (a), (b) and (c). 

We omit the proof of Theorem 13 because it is analogous to that of 
Theorem 11. Of course, the validity of Theorem 13 requires the assumption of 
Postulate II. 

Definition of adiabatic stability at fixed surface tractions (AFT stability). 
An equilibrium state {j, 'I'}} is called AFT stable if it is thermally stable and if for 
every state {j*, 'I'}*} which satisfies the following conditions: 

(a) f* is in a prescribed neighborhood of f, 

(b) J'I'}*(X)dm=J'I'}(X)dm, 
!II !II 

the following inequality holds: 

J {e[F*(X),1]*(X); X] - e[F(X),'I'} (X); X] - b· (f* - f)}dm-

!II -J(f*-f).SndA~o. (15.10) 
iB 
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It will be noticed that a state which is AFT stable is always AFB stable. 

If the inequality (15.10) holds for all states which obey (a) and (b) and is a 
strict inequality for all such states for which F*(X) +F(X) for at least one X, 
then we say that {/,7}} is strictly AFT stable against deformations and rotations. 

It is clear that, in analogy to Theorem 13, an alternative, but equivalent, 
definition of AFT stability can be formulated in which a stable state is defined 
to be one of maximum entropy among all those states for which (15.10) reduces 
to an equality. 

The definitions of IFB, 1FT, AFB and AFT stability given above are ap
plicable only to those physical situations in which the body force field b = b (X) 
is independent of the comparison configuration/*. If one is interested in studying 
cases in which the body force on X depends on X and is also a functional of /*, 
one can modify the definitions of stability by connecting the comparison state 
/* to / by means of a continuous one-parameter family /s' 0 ~ s ~ 1, /0 = /, /1 = /* 
and replacing the term - J b . (/* - j) dm 

91 

in (15.4), (15.6), (15.7), (15.8) and (15.10) by 
1 

- J Jb(X,/s)' f)/~~X) dsdm. 
91 0 

If the body force on each material point is derivable from a single-valued poten
tial, then the integral exhibited above is independent of the paramatization, 
and is simply the difference in the potentials at / and /*. 

In the definitions of 1FT and AFT stability, we assumed that not only the 
body forces but also the contact forces at the surface do not depend on the 
comparison configuration. One can also study, in a way analogous to that outlined 
above for the body forces, those cases in which the surface tractions depend on 
the comparison configuration. 

Theorem 14. A state which has isothermal stability of a certain type also has 
adiabatic stability of the corresponding type. 

Proof. Consider a state {j, 7}} which has a uniform temperature .0 and which 
has isothermal stability of a particular type. Let /* be a configuration which 
satisfies the boundary conditions, if any, for the appropriate comparison con
figurations. Define the entropy field 7}1 by 

7}1 (X) = fj (F*(X), D) , (15.11) 

where F* is the deformation gradient field corresponding to the configuration /*. 
By (13.1) we have 

ip(F*, D) -ip(F, .o) =e(F*,'1h) - e(F,'I]) - ('1]1-'1]).0. (15.12) 

Here F corresponds to /. Let 7}* be any entropy distribution satisfying the 
condition J 'I]*(X) dm =J 7}(X) dm, (15.13) 

91 91 

which is required for comparison states in adiabatic stability. Define the field 
pby 

p=e(F*,7}*) -e(F*,'I]I) - ('I]*-7}I).o· (15.14) 
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From (8.5) we get P(X) ~O 
for all X. From (15.12) we have 

ip(F*, -0) - ip(F, -8) = e(F*, 'f/*) - e(F, 'f/) - p - ('f/* - "1)-8. (15.15) 

We integrate (15.15) over 91. According to (15.13) we get no contribution from 
the term - ('f/*-'f/)-8; hence, since p is non-negative, 

J [V'(F*,-8) -ip(F,-8)] dm~ J [e(F*,'f/*) - e(F,'f/)] dm. 
• • 

(15.16) 

Since the work W done by the external forces in going from I to f* is the same 
in adiabatic and isothermal stability, it follows from (15.16) that if 

J[ip(F*,-8) -ip(F,-8)]dm- W (15.17) 
• is non-negative, then 
J[e(F*,'f/*) -e(F,'f/)]dm- W (15.18) 

• 
is non-negative (and strictly positive when (15.17) is strictly positive). Hence, 
the isothermal stability of {I, 'f/} implies the corresponding adiabatic stability for 
{I, 'f/}, q.e.d. 

Although in writing our proof of Theorem 14 we have used a notation which 
implies that 91 is homogeneous, it is clear that the same argument is valid when 
$I is not homogeneous. 

It appears to us that the converse of Theorem 14 need not be true; i.e., an 
equilibrium state may have adiabatic stability without being isothermally stable. 

16. Gibbs' thermostatics of fluids 
We now consider a type of stability which was proposed by GIBBS * for 

fluids free from body forces. GIBBS states ** that he had in mind a physical 
situation in which the fluid is "enclosed in a rigid envelop which is non-conducting 
to heat and impermeable to all the components of the fluid". A body which 
may be regarded as being in such an envelop is usually called an "isolated system". 

Definition of G stability***. An equilibrium state {I, 'f/} of a fluid body $I 

is called G stable if the following condition is satisfied. Let {I*, 'f/*} be any other 
state with the same total volume and the same total entropy as {I, 'f/}, 

J v*dm =J vdm, 
• • 

(16.1) 

* See the section of [1] which is entitled "Internal stability of homogeneous 
fluids as indicated by the fundamental equations", (b), pp. 100-115, particularly the 
subsection entitled "Stability with respect to continuous changes of phase" (b), 
pp.105-111-

** [1] (b), p. 100. 
*** In this definition we again restrict ourselves to those physical situations in 

which fluctuations in chemical composition are surpressed. We have in mind situations 
in which chemical reactions are prohibited and in which the fluid is either homo
geneous or does not allow diffusion. For fluids the homogeneous case is the one of 
practical importance. Situations in which flow is pennitted but diffusion is prohibited 
are rare. 
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then {j,1]} has a lower total internal energy than {f*,1]*}' 

Je [v*(X)'1]*(X); X] dm > Je [v(X),1](X); X] dm, (16.2) 
II II 

unless v*(X) = v (X) and 1]*(X) =1] (X) for all X in fJ1J. 

In (16.1) v and v* denote the specific volume fields for fJ1J corresponding to 
the configurations f and f *. 

In the following alternative definition f and e are taken as the independent 
variables, and the permitted comparison states are such that the total internal 
energy and total volume of the body are conserved during the variations. This 
alternative formulation may suggest to the reader why G stability is regarded 
as being appropriate for discussing the physics of isolated systems composed of 
fluids: 

Alternative definition of G stability. An equilibrium state {I, e} of a fluid 
body fJ1J is called G stable if any other state {j*, e*} with the same total volume and 
the same total internal energy as {I, e}, 

J v* d m = J v d m , J e* d m = Jed m, (16.3) 
II II II II 

has a higher total entropy, 

J ~ [v*(X), e*(X); X] dm < J ~ [v (X), e(X); X] dm, (16.4) 
II II 

unless v*(X) =v(X) and e*(X) =e(X) for all X in fJ1J. 

The function ~ in (16.4) is obtained by solving e = e (v, 1]; X) for 1], which 
is possible in a unique way because e is strictly increasing in 1]. 

The proof of the equivalence of the two definitions of G stability is analogous 
to the one given for Theorem 11 of § 14 in the case of thermal stability; one 
must again use Postulate II of § 8. 

The main result of this section is 

Theorem 15. An equil£brium state {j,1]} of a fluid body is G stable if and 
only if its temperature and pressure are uniform. 

Proof. To prove that the condition is necessary we observe that the func
tions v, 1] are solutions of the variational problem 

Je(v*,1]*; X) dm = Minimum 
II 

subject to the constraints (16.1). Therefore, the first variation of 

J [e(v*,1]*; X) - ),1]* - p v*] dm 
II 

( 16.5) 

must vanish for v*=v and 1]*=1]. Here)' and p are constant Lagrange para
meters. It follows that 

e'1(v, 1]; X) =), = constant, ev(v, 1]; X) =p=constant. (16.6) 

Hence, by (8.2) and (11.11), both the temperature, If=e'1(v, 'f); X), and the 
pressure, p = - ev (v, 'f); X) are uniform over fJ1J. 

To prove the sufficiency of the condition of the theorem, we assume that If 
and p are uniform and that (16.1) holds. From the convexity inequality (11.16), 
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the inequality (11.9), and the fact that v ='1'3, '1'>0, is a convex function of v, 
one can easily infer that s(v, 1]) must be convex in v and 1]. Hence, the inequality 

is valid at all material points X in PA; (16.7) cannot reduce to an equality for 
all X unless v (X) =v*(X) and 1] (X) =1]*(X) for all X. Since p = -Bv(V, 1]) and 
if = B'I (v, 1]) are independent of X, integration of (16.7) over PA gives 

J {e(v*,1]*; X) - e(v,1]; X)}dm + p J (v* - v) dm -if J (1]* -1')) dm> 0. 
N ' N N 

The condition (16.1) states that the last two terms vanish and hence that (16.2) 
holds, q.e.d. 

In his discussion of the stability of homogeneous fluids, GIBBS used a defini
tion of stability which is identical to what we have called G stability, except 
that he did not demand, as we do, that {j,1]} be an equilibrium state*. GIBBS 

was able to prove that uniform values of s1/(v, 1]) and ev(v, 1]) are necessary for 
his stability and, furthermore, that the inequality (16.7) is also necessary. He 
also realized that the constancy of e'l and Bv over PA and the validity of (16.7) 
are sufficient for his stability. If he had gone a step further and postulated that 
for homogeneous fluids stable states exist for every value of v and 1] for which e 
is defined, he would have obtained (16.7) as a property of the function s. Such 
a procedure, however, cannot yield the statements, made in Theorem 6, that 
- ev is positive and that e is jointly and strictly convex in v and 1]. 

We conclude with 

Theorem 16. An equilibrium state {j,1]} of a fluid body PA is G stable if and 
only if both of the following conditions hold: 

(a) The temperature corresponding to {j, 1]} is uniform. 

(b) Any other state {j*, 1]*} with the same total volume, 

Jv*dm=Jvdm, (16.8) 
N fJI 

and the same uniform temperature {} has a higher total free energy, 

J iji (v*, {} ; X) d m > J iji (v, if; X) d m , ( 16.9) 
fJI N 

unless v*(X) =v(X) for all X in PA. 

Proof. The proof that the conditions (a) and (b) are sufficient for the G 
stability of {j,1]} is completely analogous to the proof of Theorem 14 of § 15. 

The necessity of the condition (a) for the G stability of {j,1]} follows from 
Theorem 15. To prove that (b) is necessary we assume that {j,1')} is stable. 
We consider another state {f*, 1]*} which obeys (16.8) and which has the uniform 
temperature if. Since v ='1'3 is a convex function of v for v> 0, and ijiv (v, {}) < 0, 
the inequality (13.15) implies that 

iji(v*, if; X) -1jJ(v, {}; X) - (v* - v)ijiv (v, if; X) > 0; (16.10) 
------

* GIBBS does not use either our Postulate I or our definition of (local) thermal 
equilibrium. 
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(16.10) cannot reduce to equality for all X unless v (X) =v*(X) for all X. Now, 
since we are assuming that {t,'T}} is stable, it follows from Theorem 15 and (13.13) 
that VJv(v, {}; X) is independent of X. Thus, by (16.8), if we compute the mass 
integral of (16.10) over f1I, the last term on the left makes no contribution, and 
we get (16.9). Hence, when {t, 'T}} is G stable, the condition (b) is valid, q.e.d. 

This theorem shows that for G stability of fluids adiabatic and isothermal 
stability are equivalent. 
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We start with a brief discussion of the physical motivation behind the 
mathematical considerations to be presented in Part I of this paper. 

Often in theoretical physics one is concerned with a functional relationship, 

00 

a =iY (g(s)) , (1.1 ) 
S~O 

which states that the present value a of a physical quantity is determined by 
the values g(s) of a second quantity at all times s in the past. In (1.1), g(s) 
is the value of the second quantity s time units ago. If the functional iY is given, 
the relation (1.1) may be used to predict the present value a of the first quantity 
from a knowledge of the "history" g of the second quantity. The relation (1.1) 
may be interpreted as expressing the causal nature of a class of physical processes. 
For definiteness we assume that the values of a and g (s) lie in appropriate 
normed vector spaces, not necessarily finite-dimensional. 

In many physical situations, the value a in (1.1) will be, in some sense, 
more sensitive to the values of g for small s than for large s. Intuitively speaking, 
the "memory" of the system described by (1.1) will "fade away" in time. In 
order to make this idea precise, we shall introduce a norm II g II in the function 
space of the histories g for which (1.1) is meaningful. We first choose a number p, 
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1 <p< 00, which will be kept fixed, and then define the norm of 9 to be 

1191l={V!(19(S)lh(S))PdS 
sup Ig (s)! h (s) 
.;;;0 

if 1 '5:. P < 00 

if P=oo, 
(1.2) 

where Ig(s)l is the magnitude of g(s) and where h(s) is a real-valued function 
which approaches zero rapidly as s_oo. Thus, in computing the norm IIgll 
we assign a greater influence to the values of 9 for small s (recent past) than 
for very large s (distant past). We call the function h in (1.2) an influence 
function. The physical idea that the memory of the system is fading corresponds 
to the mathematical assumption that the functional a in (1.1) is continuous 
with respect to convergence in the norm (1.2) of the function space of histories. 
The influence function h characterizes the rapidity with which the memory is 
fading. 

It is always possible to reduce the relation (1.1) to one which is normalized 
in the sense that the possible histories 9 have the value 9 (0) = 0 at the present 
instant and that the value of a for the zero history g(s) =0 is zero. Now. 
physical experience indicates that phenomena which one would expect to be 
described exactly by a normalized functional relation (1.1) often follow a simpler 
relation of the form (1) d I 

a = I (gl') , ( ) (1.3) 9 =Tsg s .=0' 

where I is a linear transformation. In particular, it appears that (1.3) accounts 
well for the observed phenomena in the case of slow processes. This observation 
leads to the conjecture that, in some mathematically precise sense, the relation 
(1.3) approximates the normalized relation (1.1) for slow processes. It is the 
purpose of the present paper to prove an approximation theorem of this kind. 
Theorem 2 of § 5 asserts not only that (1.3) is the first-order approximation to 
the normalized relation (1.1) for slow processes but shows also the form of the 
approximations of higher order. The theorem is based on the assumption that 
the functional a of (1.1) is not only continuous but also Fn!chet differentiable 
at the zero history g(O) =0 in the function space with norm (1.2). A normalized 
functional a satisfying this assumption will be called a memory functional. The 
continuity of a for histories 9 different from the zero history is not needed to 
prove the approximation theorem. 

In Part II of the paper we apply the approximation theorem to constitutive 
equations of continuum mechanics. Our main interest there is in the logical 
status of the theory of Newtonian fluids within the framework of a recently 
proposed general theory of fluids with memory effects *. 

The theory of compressible Newtonian fluids is based on the following con
stitutive equation for the stress tensor S: 

s= - pI + 2'YJD+ l(trD) I; (1.4) 

here the rate of deformation tensor D is the symmetric part of the velocity 
gradient tensor; P=P (e) is the hydrostatic pressure the fluid would be supporting 

* Ct. [1], [2] and [3]. 
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if it were at rest at its present density (!; 'Yj and A are functions of (! alone and 
are called coefficients of viscosity. 

Experience shows that for some substances, such as water, the theory of 
Newtonian fluids accounts remarkably well for experimental measurements over 
a very wide range of conditions. Other substances, such as molten plastics, 
definitely do not obey (1.4) exactly, but yet their behavior appears to approxi
mate that of Newtonian fluids in the limit of slow motions. 

In §6 we review the mathematical definition of a simple fluid. As we have 
frequently remarked in the past, we believe this definition is capable of covering 
the behavior of nearly all real fluids including such substances as molten plastics 
which exhibit "hereditary", "non-Newtonian" and "yiscoelastic" effects. Here 
we add to the definition of a simple fluid a new requirement: we require that 
the functionals occurring in the definition be memory functionals in the sense 
of the definition used in this paper. As we have indicated, this requirement 
is related to the physical assumption that simple fluids have a fading memory. If 
this assumption were not satisfied, the term "fluid" would hardly be appropriate. 

In § 7 we conclude that the theory of Newtonian fluids is indeed the complete 
first-order approximation to the theory of simple fluids for slow flows. We also 
indicate what an experimenter should expect to find as second-order corrections 
to the constitutive equation of a Newtonian fluid. We point out that several 
special flow problems for incompressible second-order fluids lead to third-order 
linear partial differential equations. 

In § 8 we apply our approximation theorem to the theory of the general 
simple materials defined in [lJ, Part III. 

I. The Approximation Theorem 

2. Influence Functions and Histories 

An influence function h of order r> 0 is a real-valued function of a real 
variable with the following properties: 

(i) h(s) is defined and continuous for O<s<oo. 

(ii) h(s) is positive, h(s»O. 

(iii) For each a> 0, there is a constant 

sup h}Sh/oc( )) ~ M" for 

M", independent of 0(, such that 

s~" oc S 
(2.1) 

The last condition (iii) means that h(s) must decay to zero at a fast enough 
rate as s--+oo. In fact, we have 

sup sr h (s) = N < 00, (2.2) 
s>o 

which follows from (2.1) by taking a= 1 and observing that 

(-,--)rh(-'--)~h(1)SU h(s/oc) <h(1)M. 
oc oc p ocr h (s) 1 

s~l 

Let a real Banach space Y with norm II be given. We then define a history 
g to be a measurable function defined for O<s<oo with values g(s) in Y. Two 
such functions will be regarded as the same if they differ only on a set of 
measure zero. 
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For a given influence function h and a given number p, 175:,p~00, we define 
the .!lj.,p-norm, Ilgllh,P' or simply IIgll, of a history 9 by 

~ /00 IIgllh,P = V f (lg(s)1 h(s»)Pds 
o 

Ilgllh,oo = sup 1 g(s)1 h(s) 
s~O 

if 1 ~ P < 00, 

if P = 00. 

(2·3) 

(2.4) 

In (2.4) and subsequently sup I(s) stands for the essential supremum of I(s), 
i.e. for the greatest lower bound of the suprema of all functions which differ 
from I(s) only on a set of measure zero. 

The set of all histories with finite .!lj.,p-norm forms a Banach space, which 
we denote by .!lj.,p, 

We remark that (2.2) is a necessary but not a sufficient condition for the decay 
relation (2.1). However, if a function h(s) satisfies (i), (ii), and the limit relation 

lim sr h (s) = ° monotonically for large s, 
s_oo (2.5) 

then it also satisfies the decay relation (2.1) and hence is an influence function of 
order r. To prove this fact we consider the expression 

h (s/oc) 
ocr h (s) 

(s/aY h (s/oc) 
sr h (s) 

(2.6) 

Since sr h (s) is monotonically decreasing for s larger than some value SI' it follows 
that (2.6) is not greater than 1 for all S>SI' For O<I1;;;;;S;;;;;SI the denominator srh(s) 
of (2.6) has a positive minimum because h satisfies the conditions (i) and (ii). The 
numerator of (2.6) is bounded by the maximum of sr h (s), which exists and is finite 
because of (2.5). It follows that (2.6) is bounded, for l1;;;;;s<oo, by a constant Ma 
independent of oc, which is the content of (2.1). 

The function 

h(s) _ 1 
- (S+1V 

is an influence function of order r. An exponential, 

h(s)=e-Ps , {3>0, 

is an influence function of any order. 

3. Retardation 

The retardation Fa. with retardation lactor ex, 0 < ex 75:, 1, is the linear transformation 
9 -+g", defined, for all histories g, by 

(Fa. g) (s) = g(1. (s) = 9 (ex s) . (3·1) 

We show that Fa. maps the space .!lj.,p into itself. For p =f= 00, we have * 
00 

IIg",IIP = f (lg(exs)1 h(s))P ds 
o (3·2) 

* Since no confusion can arise, we omit the indices h, p on the norm. 
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Since h is continuous and positive, 
sup h (s/a.) < 00 

a;;';s;;';O h (s) 

for any a>O. The decay condition (2.1) implies that 

Hence, 

sup h (s/a.) < a.r Ma < 00. 

s;;';a h (s) -

sup h (s/a.) = Ka. < 00. 
s;;';O h (s) 

Combining (3.2) and (3.3) gives 
1 

Ilga.II~a.-P Ka.lIgll· 
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(3·3) 

(3.4) 

It is easily verified that this inequality remains valid for p = 00 when we put 
Voc= 1. It follows from (3.4) that when g has a finite norm ga. has a finite norm 
and is, therefore, in ~.p. Intuitively, retardation replaces a given history by 
one which is essentially the same, but slower. 

If, possibly after a suitable alteration of g (s) on a set of measure zero, the 
limits 

(0) 1. ( ) g=lmgs, 
.->-0 

(h) 1. k! ( () kl:-l si (i») g= Im-~ g s - --;--9 
.->-0 ~ . J! 

1=0 

(3·5) 

exist for k = 0, 1, .... n, then we shall say that the history g has n generalized 
derivatives at s = 0. Of course, the existence of ordinary derivatives implies the 
existence of the corresponding generalized derivatives. Here we shall use the 
term "derivative" always in the generalized sense of (3.5). Generalized derivatives 
at s=O of any order may exist even though g(s) is not continuous near s=O. 

The Taylor transformation IIn is the linear transformation g ~IIn g defined, 
for all histories g which are n times differentiable at s = 0, by 

n si (i) 

(IIng) (s) = l: ~ 9, (3.6) 
. i=O J. 

where the g are the derivatives (3.5). 

This Taylor transformation replaces g by its nth "Taylor approximation" 
IIn g. The history IIn g is a polynomial of degree ~ n. 

We note that retardation Fa. preserves the differentiability of a history and 
that IIn and Fa. commute; i.e., for all histories g having n derivatives at s=O, 
we have 

(3·7) 

The set of all histories which have n derivatives at s=O and which also 
belong to the Banach space ~.P will be denoted by ~n. This set ~n is a linear 
subspace of ~.P' but it is not closed in ~.P and hence not a Banach space. 

The following theorem is an analogue of the classical Taylor approximation 
theorem. 

Theorem 1. Assume that n, p, and the order r of the influence function h satisfy 
the inequality 

n < r - i- (; = ° if P = 00) . (3·8) 
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Then the Taylor transformation II" maps the subspace 9),. of ~,P into itself, ana, 
for all 9 in .9", 

lim ~ 1I.z:(g - IIng)!l" P = o. 
ot .... o ot ' 

(3·9) 

We can also write (3.9), using (3.7), in the form 

.z:g - II".z:g = got - II"got = o (ocn) , (3.10) 

where the order symbol 0 must be understood in terms of the norm of the 
function space ~,p. Roughly speaking, the theorem states that in the space 
.9 .. E.9'",p a slow history is close to its Taylor approximation and that the 
distance between them is o (octl). 

Proof of Theorem 1. We consider only the case when p is finite. The case 
when p = 00 can be treated analogously. 

First, we show that every polynomial of degree < n has a finite norm. For 
this purpose it is sufficient to prove that 

00 

J(skh(s))Pds=Lk<oo for k<n. 
o 

It follows from (2.2) that 
00 00 00 

(3·11) 

J (Sk h (s))P ds = J (s' h(s))P sP(k-'l ds < NP J s-P(,-kl ds. (3.12) 
111 

The inequalities (3.8) and k -s;. n imply that p (r - k) > 1 and hence that the 
integral 

00 

! S-P(,-kl d s = 1 
p(r-k)-1 

1 

is finite. Since Sk h(s) is continuous, it then follows from (3.12) that the integral 
(3.11) is finite. 

We have shown that any polynomial of degree < n belongs to ~.P and 
hence to .9", because it has n derivatives at s=O. Since a Taylor approximation 
II" 9 is a polynomial of degree -s;. n, it follows that II .. maps 9),. into itself. 

The definitions (3.5) and (3.6) imply that the history 

(3.13) 
satisfies the limit relation 

lim I/(s)1 =0. (3.14) 
..... 0 s .. 

The definitions (2.3), (3.1), and (3.13) show that the assertion (3.9) of the theorem 
is equivalent to 

00 

1im~! (If(ocs)1 h(s))P ds = o. 
ot .... o octly 

(3·15) 
o 

We observe that 
00 00 

oc!p f (If(oc s) I h (s))P as = oc"!+! f (1/(s) I h ( :))P ds (3.16) 
o o 
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and investigate the latter expression. Let e>O be given. It follows from (3.14) 
that we can find a O"(e»O such that 

1/(:)/ ~ e for 0 < s ~ 0" (e) . 
s 

Hence, aCe) aCe) 

at"!+! f (l/(s)1 h( :)t ds ~ at"!+! el> f (s"h( :)t ds 
o 0 

00 (3.17) 

~ ef> f ( :: h ( :) t d ( :) = el> L .. , 
o 

where L .. is given by (3.11). On the other hand, we have 

00 00 

at"!+! f (l/(s)I h( :)t ds = rx.W f (1/(s)1 h(s))I>( :r~/(:~ t ds, (3·18) 
aC') aC') 

where w=p(r-n) -1. Applying the decay condition (2.1) to (3.18), we find that 

00 

at"!+! f (l/(s)l h( :)t ds ~ rx.fI) lI{/{.) II/W· (3.19) 

aCo) 

On combining (3.17) and (3.19), we see that 

00 

at"!+l f (l/(s)l h( = )t ds < el> L .. + rx.W i\tf.) 11/111> (3·20) 
o 

holds for all e>O and all O<rx.~ 1. The assumed inequality (3.8) insures that 
w=p (1' -n) -1 is positive. Therefore, by choosing first e and then rx. sufficiently 
small, we see that the right side of (3.20) can be made as small as desired. It 
then follows from (3.16) that the limit relation (3.15) holds, which completes 
the proof of the theorem. 

. 1 ~ 
In the speclal case n=O, r>p' 9=0 Theorem 1 states the following. If 

9 E .2i..1> is continuous at s = 0 with value 0, then 

lim II Fa: 9 II = o. cx .... o 
(3·21) 

1 (0) • 
If 1~n<r-p and 9=0, Instead of (3.21), we have the stronger result 

9cx = Fa: 9 = O(rx.). (3.22) 

4. Memory Functionals 
We first recall some definitions * from the theory of funttions defined on 

a real vector space ~ with norm 1111 and having values in another real vector 
space.r with norm II. 

(1) Suppose 91' ... , 9k are variables in~. Then a function .H91' ... , 9k), 
defined for all values of the variables 9. in ~ and having values in.r, is called 

* These definitions are analogous to those given in Chap. XXVI of [4). 
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a bounded k-linear form if it is linear in each variable gi separately and if there 
is a constant M, independent of gi' such that 

(4.1) 

The form ,(gl' ... , gk) is said to be symmetric if any permutation of the variables 
leaves the value unchanged. 

(2) A function, (g), defined for all g E£ and having values in f/, is called 
a bounded homogeneous polynomial of degree k if there is a bounded symmetric 
k-linear form, (gl' ... , gk) such that 

'(g) =,(g, ... ,g). (4.2) 

The symmetric n-linear form ,(gl, ... , gk) is uniquely determined by the homo
geneous polynomial, (g) and is called the polar form of the polynomial. 

(3) A function iJ, defined on a neighborhood of OE£ and having values in 
f/ is said to be n times Frechet-differentiable at OE£ if there are bounded homo
geneous polynomials bkiJ (g) of degree k = 0, 1, "', n such that 

~(g) = ±i(bk~(g) + IIgllnm(g), 
k~O 

(4·3 ) 

where 
lim Im(g)1 = o. 

lIyll---+O 
(4.4) 

The polynomial bkiJ (g) or its polar form bkiJ (gl, ... , gk) is called the kth Frechet
differential or the kth variation of ~ at 0 E£. The differentials may be obtained 
recursively by 

bO~(g) = ~(o), (4.5 ) 

We here consider the case in which £ is the function space of all histories 
g with the following properties: 

(ex) g has a finite .,p,.,p-norm, 

(f3) g has n generalized derivatives at s = 0, 
(y) g has a zero limit at s = 0: 

limg(s)=g>=O, (4.6) 
8---+0 

(b) n, p, and the order r of the influence function h obey the inequality (3.8). 

The conditions (ex) and (f3) state that £ ( ~. Condition (b) insures that the 
conclusion (3.9) of Theorem 1 is valid for all g E£. 

A function ~ defined on a neighborhood in £ of the zero function 0 E£ (.,P,.,p 

and having values in a real Banach space f/ will be called a memory functional 
of type (h, n) if it is n times Fn~chet-differentiable at 0 E£ and if it is normalized by 

bO~(g) =iJ(O) = O. (4.7) 

In some applications it may be more natural to assume that ~ is defined and 
Frechet-differentiable on a neighborhood of zero in the entire space .,P,.,p' How
ever, the approximation theorem of the following section applies only to histories 
which belong to the subspace £" of .,P,., p' 
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5. The Approximation Theorem 

Theorem 2. Let iJ be a memory functional of type (h, n); the histories g in 
the domain space Yf' of iJ have values in the space .'7', and iJ itself has values in.r. 
Then, for each k-tuple of indices (jl' j2' ... , jk) such that 

(5.1) 

there exists a bounded k-linear form lh ... ik with variables in .'7' and values in .r 
such that, for all g EYf', 

where 

and where 
<i> " <i> g" = at g 

(5.2) 

(5·3) 

(5.4) 

is the generalized jth derivative at s=O of g", defined according to (3.5). The sum 
in (5.2) is to be extended over all sets (jl' ... , jk) of indices satisfying (5.1), and 
the order symbol o (atn) has the usual sense. The multilinear forms lh ... ik are uniquely 
determined by iJ. 

This theorem permits the asymptotic approximation of a memory functional, 
for "slow" histories, by a polynomial function of the derivatives at s=O of the 
argument function of the functional. It is worth noting that the approximating 
expression 

(5.6) 

regarded as a functional of g, is not a memory functional in the sense of the 
previous section because it is not even continuous at the zero function g=OEYf'. 

For n= 1 and n=2, (5.6) reduces to 

iJl (g) = II (!1), ij2 (g) = II (!1) + 111 (!1, !1) + 12 (!i) (5.7) 

respectively, where II and 12 are linear and In is bilinear. 

Proof of Theorem 2. For n=O, the theorem is a trivial consequence of 
(3.21). For n~ 1, the proof is based on a combination of the Frechet-differen
tiability assumption (4.3) and equation (3.10) of Theorem 1 which, in the notation 
of (5.3), may be written as 

g" = IIn g" + 0 (at"). 

Since g=O by (4.6), the definition (3.6) gives 

n '. 

(IIng,,) (s) = Lati~g. 
i=l J. 

The result (3.22) applies to both gE£' and IIngE£': 

IIn g" = 0 (at) , 

g" = o (at) . 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

105 



BERNARD D. COLEMAN & WALTER NOLL: 

Combining (5.11) with (4.3), (4.4), and (4.7), we obtain 

" iY(g",) = L ;, ~kiY(g",) + o (ot") . 
k=I 

(5.12) 

Consider now a bounded homogeneous polynomial '(g) of degree k, 1;;;;; k:::;;n, 
in the sense of (2) of §4. The differentials ~kiY, k> 1 are such polynomials. 
The polar form of , will also be denoted by,. Using the multilinearity of this 
polar form " we obtain by (4.2), (5.8), and (5.10) 

,(g",) =, (II" g", + 0 (ot"), ... , II" g", + 0 (ot")) 

= ,(II"g"" ... ,II"g",) + 2: '(0 (ot), ... , o (ot"), ... , ° (ot)) , 

where each term of the sum contains at least one variable o (ot"). It follows 
from the boundedness (4.1) of , that the terms in the sum are all o(ot,,+k- I ). 

Since k"2:: 1, we have 
(5.13 ) 

We now investigate '(II" g",). Using (5.9) and the multilinearity of the polar 
form " we obtain 

~ ~ a/1+ ... +ik . (i.) . (ik) 
,(IIng",) = L.J ... L.J . I . I '(Sl1g, ... ,slkg). 

;'=1 ik=I11·· .. Jk' 
(5.14) 

Due to the symmetry of " all terms of (5.14) which differ only in the order of 
the indices jI, ... , j k are the same. Collecting these terms and separating all 
terms of order higher than n in ot, we get 

II ~. + + . . (i1) • <ik) 
'( ng",) = -'-' otll ... 1kmh ... ik'(sllg, ... ,slkg)+0(otn+l) (5.15) 

(h • •..• ikl 
k fixed 

where the sum is to be extended over all k-tuples (iI, ... , jk) satisfying (5.1) and 
where the mil ... ik are positive rational numbers. 

Now, the function 

Ph ... ik (fit, ... , ak) =, (Si1 aI' ... , Sik ak), (5.16) 

with variables a i E ,</ and values in .'T is clearly multilinear, because, is. Also, 
'il ... ik is bounded. Indeed, application of (4.1) to (5.16) yields 

I Ph ... ik (al •... , ak ) I ;;;;; Mil sh alii· .. II Sik ak II ' 
and (3.11) shows 

II sil adl" = I all i/LiI , 
hence 

I Ph '" ik (aI, ... , ak) I :::;; M I fit I '" I a k I· 
Substituting (5.16) into (5.15) and using (5.4) yields 

III (II ) - ~ I (i1 ) (ik) ° n+ 1 
'l" "g", - -'-' h ... ik g"" ... , g",) + (ot ) 

(il •...• ikl 
k fixed 

where the Ih ... ik are bounded k-linear forms. 
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Applying the results (5.13) and (5.18) to ,= ;! (jkiJ in (5.12), we obtain 
formula (5.2). 

The uniqueness of the lil ... ik follows easily from the observation that they 
are linearly independent and of order 0 (cx") or lower. 

We remark that the multilinear forms lil ... ik of (5.2) are not necessarily sym
metric. 

II. Applications 

6. The Concept 0/ a Simple Fluid 

The notion of a simple fluid has been given a definition within the frame
work of a general theory of the mechanical behavior of materials *. This defini
tion is based on the following two physical assumptions **: 

(a) The present stress depends on the past history of the first spatial gradient 
of the displacement function. 

(b) A fluid has no preferred configurations. 

Using the principle of material objectivity ([lJ, §11), it was shown in re
ference [lJ that the constitutive equation of a simple fluid can be written in 
the form (22.12) of [1]. This functional relation, in a slightly different notation, 
reads 

00 

S (t) = ~ (Ct (t - s) ; e (t)) . (6.1) 
$=0 

Here S (t) is the stress and e (t) the density at time t. Cd T) is called the right 
Cauchy-Green tensor at time T relative to the configuration at time t. This 
tensor is defined by 

(6.2) 
where 

(6·3) 

is the gradient the displacement function ;=Xt(:r, -r) which gives the position 
at time T of the material point having the position :r at time t. The stress tensor 
S (t) is symmetric. The Cauchy-Green tensor Ct (T) is positive definite and 
symmetric; for T=t it reduces to the unit tensor 1: 

(6.4) 

The functional ~ in (6.1) is isotropic; i.e., ~ obeys 
00 00 

Q~ (C(s); e) QT = ~ (Q C(s) QT; e) (6.5) 
8=0 8=0 

identically in the history C(s)=Ct(t-s) and the orthogonal tensor Q; here 
QT is the transpose of Q. It follows from (6.5) that the value of ~ for the "rest 

* [1J, § 21-
** In [3J we give a survey of the theory of simple fluids with emphasis on physical 

applications. In that paper we anticipate some of the results rigorously derived here. 
Although the language and the definitions of the present paper are slightly different 
from those used in §§ 6 and 7 of [3J, the arguments presented here prove also the 
theorems stated there. 
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history" C(s) =:=1 is a scalar multiple -P(e) of the unit tensor I. Defining 
00 00 

a (G(s), e) = P(e) 1+4) (I + G(s), e), (6.6) 
5=0 5=0 

we may rewrite (6.1) in the form 
00 

S(t) = - P (e(t)) I +a (Ct{t - s) -I, e(t)). (6.7) 
5=0 

00 

The functional iY (G (s); e) is defined for functions G (s) with the property 
5=0 

G(O) = 0, (6.8) 

and it has the value 0 for the zero function G(s) _0; i.e., 

a (0, e) = o. (6.9) 
5=0 

It is also isotropic in the sense of (6.5). 
We now assume that for each simple fluid defined by a constitutive equation 

(6.7) there exists an influence function h of an order r such that the functional 
iJ of (6.7) is a memory functional of type (h, n) in the sense of §4. The domain 
of iY is a class.JF of histories G whose values G(s) are in the space [/ of all 
symmetric tensors. For the norm I I in [/ we use 

IAI = lItr A2 for AE [/. (6.10) 

The range space .r of a is the same as the range space of the histories G, 
i.e. the space .r =[/ of all symmetric tensors with norm (6.10). Equation (6.9) 
insures that iY has the normalization (4.7) required for a memory functional. 
The density e enters into (6.7) only as a real parameter. The assumption that 
a is a memory functional implies that its domain of definition contains a neighbor
hood of zero in a function space.JF which is defined by the conditions (cx)-(b) 
of §4. The condition (y) expresses the assumption that all histories GE.JF 
correspond to motions which are continuous at the present instant s=o (c/. (6.8)). 

If the simple fluid under consideration is incompressible, we must make some 
alterations in our starting assumptions. For every possible motion in such a 
fluid the density e is constant and the tensor Ct(T) is unimodular. In addition, 
the stress is determined by the history of the motion only up to a hydrostatic 
pressure p. Consequently, the equation (6.7) must be replaced by 

00 

S(t) = - PI +a (Ct(t - s) -1) (6.11) 
5=0 

in which the indeterminate pressure P and the functional iY may be normalized by 
00 

O=trS(t) +3P=triY (Ct(t- s) -1). (6.12) 
5=0 

If we were to limit the domain of the functional iY in (6.11) to kinematically 
possible histories, this domain would not contain a neighborhood of the zero 
function in an appropriate function space, .JF; therefore, iY could not then be 
a memory functional. We assume, however, that iY becomes a memory functional 
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when its domain is extended by putting 
00 00 

iJ (C(s) -1) =iJ ((det C(S)tlC(S) -1) (6.13 ) 
5-0 5-0 

when C (s) is not unimodular. 
Aside from the added properties (6.12) and (6.13), the functional iJ occurring 

in (6.11) is assumed to be of the same type as that in (6.7) with respect to both 
isotropy and memory. 

7. Approximations oj Order n jor Simple Fluids 
We now apply Theorem 2, § 5, to the memory functional occurring in the 

constitutive equations for simple fluids (6.7) or (6.11). 
Suppose a motion with Cauchy-Green tensor Ct(T) is given. The correspond

ing history G is defined by 
G(s) = Ct(t - s) - I. (7.1) 

If Ct(T) is n times differentiable with respect to Tat T=t, the kth Rivlin-Ericksen 
tensor A k , k = 1, 2, ... , n is defined as follows: 

dk I k (k) 
Ak=-d"Ct(T) = (-1) G, 

1: T-t 
(7.2) 

(k) 

where G is the kth derivative of G(s) at s=O, as in §2. 
We now consider histories Ga. obtained from GEYf' by retardation as in (5.3). 

The corresponding Rivlin-Ericksen tensors are 

(7·3) 
(k) 

They differ only by the inessential factor (_1)k from the tensors Ga. to be sub-

stituted for ?la. in the approximation formula (5.2). This formula, applied to 
the constitutive equations (6.7) or (6.11), yields the following expression for the 
stress tensor Sa. corresponding to the retarded history Ga.: 

Sa. = - pI + L mi, ... ik (Ai'., ... , Aft) + 0 (o:n). 
(i" ... ik) 

(7.4) 

where the summation is to be extended over all sets of indices (jl' ... , ik) obey
ing (5.1). The terms mi , ... ik (Ai" ... ,Aik) are linear in each of the variables. 
For compressible fluids, it is understood that p and mi, ... ik depend on the density e. 

The equation (7.4) remains valid even when the derivatives shown in (7.2) 
exist only in the generalized sense of (3.5). 

The multilinear forms mj. ... ik in (7.4) are isotropic functions, which means 
that they obey the identities 

Q mi, ... i.t(Ul' ... , Uk) QT = mil ... ik(Q U1 QT, ... , Q Uk QT) (7.5) 

for all orthogonal Q and all symmetric tensors U1 , ... , Uk. This proposition 
follows easily from the fact that the memory functional iJ occurring in (6.7) 
or (6.11) is isotropic in the sense of (6.5), from the observation that the conjugation 
G (s) -+Q G (s) QT leaves the norm II G II unchanged, and from the uniqueness 
of the multilinear forms mi, ... ik asserted in Theorem 2, § 5. 
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It follows from known theorems on isotropic functions that each form 
mil ... il: (Ail' ... , Ail:)' because it is isotropic and multilinear, may be expressed 
as a sum 

of products of the form 

mil ... il:(A!t, ... , Ail:) = L ~t 
• 

~t = ft. fIJI flJ2 ••• flJlTII (A'l A, • ... A,., + Az., ... A,. A'l) 

(7.6) 

(7.7) 

where the fIJ/s are traces of products of some of the tensors Air and are such 
that each Air' r=1, ... , k, occurs precisely once in each term ~ •. In the case 
of an incompressible simple fluid the coefficients ft. are constants, whereas for 
simple fluids in general the ft. are functions of the density. Thus, for simple 
fluids, a finite number of scalar material functions p (f!), ft.(f!) suffices to deter
mine the stress 8(% to within terms of order n in at. 

The case n=1 of (7.4) is of particular interest. With use of (7.6), (7.7), we 
obtain 

s", = - pI + 'YJ A1 + ~ (tr A1) 1+ 0 (at) . 
2 

(7.8) 

Now, the first Rivlin-Ericksen tensor Al=2D differs from the rate of defor
mation tensor D only by the factor 2*. It follows that (7.8) is, to within terms 
of order o(at), simply the constitutive equation (1.4) of a Newtonian fluid. 

When the fluid is incompressible, the case n = 2 of (7.4) takes a remarkably 
simple form. The observation that tr Al = 0 for isochoric motions and use of 
(7.6), (7.7) yield 

(7.9) 

where 'YJ, p, and y are material constants and where p is an indeterminate 
pressure. This pressure p differs, in general, from the mean pressure p defined 
by the normalization (6.12), because it is obtained from p by absorbing all scalar 
multiples of I arising from mll and m2 through use of (7.6) and (7.7). 

Motivated by (7.9), we can define an incompressible second-order fluid by the 
constitutive equation 

S=-pl+'YJAl +PA~+yA2' (7.10) 

Incompressible Newtonian fluids correspond to the special case p=y=O of (7.10). 
In some dynamical situations equation (7.10) leads to a linear partial differ

ential equation for the velocity, just as in the Newtonian case. For example, 
consider a rectilinear shearing flow which, in Cartesian coordinates x, y, z, has 
a velocity field with components 

{vi} = {O, V (x, t), o}. (7.11) 

If the body forces are conservative, substitution of (7.10) and (7.11) into 
CAUCHY'S dynamical equations leads to the following third-order partial differ
ential equation for v (x, t) : 

* ct· [1], (9.7). 
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A non-steady flow of the Couette type, in cylindrical coordinates r, {}, Z, 

has a velocity field with contravariant components 

{Vi} = {O,w(r, t), o}. (7.13 ) 

For such a flow, instead of (7.12), we get 

r3 ow =~[r(a ow + b 02W)]. (7.14) ot or or or ot 
In the Newtonian case, since b=O, equations (7.12) and (7.14) reduce to 

diffusion equations. As for the diffusion equations, many physically interesting 
solutions of (7.12) and (7.14) may be obtained by separation of variables*. It 
would be desirable to develop a mathematical theory of third-order partial 
differential equations of the type (7.12), (7.14). 

8. Simple Materials in General 
The considerations of the previous two sections may easily be extended to 

the general simple materials defined in Reference [lJ, Part III. 
The form of the constitutive equation of an isotropic simple material may 

be obtained from (6.1) by replacing the scalar density (! (t) by the left Cauchy
Green tensor B(t), taken relative to an undistorted reference state (ct. [lJ (22.10)). 
A consideration analogous to the one which led to (6.7) shows that the consti
tutive equation of an isotropic simple material may be written in the form 

00 

S(t) = ~ (B(t)) + iJ (Ct{t - s) -1; B(t)). (8.1) 
s=o 

Here, the functional iJ depends on a tensor parameter B, instead of on a scalar 
parameter (! as in (6.7). We assume again that there is an influence function 
h of order n such that the functional iJ in (8.1) is a memory functional of type 
(h, n). In place of (7.4), we then obtain the following approximation formula 
for the stress Sa. produced by a slow motion of an isotropic simple material: 

Sa. = ~ (B) + L mil .. ik (Ai" ... , Ah,; B) + 0 (ocft). (8.2) 
(i" ... , ik) 

where mh .. ik is linear in each of its first k tensor variables but not necessarily 
in the last tensor variable B. 

The formulae corresponding to (8.1) and (8.2) in the case of anisotropic 
simple materials are obtained from (8.1) and (8.2) simply by replacing all tensors 
T occurring in these formulae by their conjugates RT TR with the rotation 
tensor R=R(t) of the displacement from the reference state (cf. [1], (22.8)). 

In the case of isotropic materials, the function ~ and the functional iJ in 
(8.1) are isotropic in the sense that they obey the identities 

00 00 

iJ (Q G(s) QT, Q B QT) = QiJ (G(s), B) QT 
s=o s=o 

(8·3) 

(8.4) 

* In particular, the sinusoidal vibration problems discussed for Newtonian fluids 
in §§ 345-346 of LAMB'S treatise [5J are easily solved for second-order fluids. Also, 
special solutions of (7.14) corresponding to sinusoidal vibrations of a fluid between 
coaxial cylinders can readily be found. 
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for all orthogonal tensors Q. As in § 7, it follows that the mi1 ... f;t in (8.2) are 
isotropic functions of all their variables; i.e., they obey the identities 

Q mil .. ik(U1 , ••• , Uk; B} QT = mil ... ik(Q U1 QT, ... , Q Uk QT; QB QT} (8.5) 

for all orthogonal Q and all symmetric tensors lJ,., ... , Uk' B for which mil ... iot 
is defined. The methods developed by SPENCER & RIVLIN ([6J, [7J and [8J) 
may be used to derive explicit representations for the m il ... iot of a type analogous 
to but more complicated than (7.6), (7.7). Using such a representation, one 
can show that, in the case n= 1, the approximation formula (8.2) reduces to 

S(% = ~ (B) + A~ ~ (B) + tl (B) A~ + tr (A~ t2 (B)) ta (B), + 0 (IX), (8.6) 

where ~, ~, t2 and ta are isotropic functions of the one variable B and hence 
have representations of the form 

(8.7) 

in which Po, PI and PI are scalar functions of the three principal invariants of B. 
The first term ~ (B) in the expression (8.2) for the stress S(% corresponds to 

purely elastic response. The sum in (8.2) may be interpreted as representing 
the internal friction for slow motions. 
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Foundations of Linear Viscoelasticity* 
BERNARD D. COLEMAN 

AND 

WALTER NOLL 

1. INTRODUCTION 

T HE classical linear theory of viscoelasticity was 
apparently first formulated by Boltzmann! in 

1874. His original presentation covered the three-dimen
sional case, but was restricted to isotropic materials. 
The extension of the theory to anisotropic materials is, 
however, almost immediately evident on reading 
Boltzmann's paper, and the basic hypotheses of the 
theory have not changed since 1874. Since that date, 
much work has been done on the following aspects of 
linear viscoelasticity: solution of special boundary value 
problems,2a reformulation3 ,4 of the one-dimensional ver
sion of the theory in terms of new material functions 
(such as "creep functions" and frequency-dependent 
complex "impedances") which appear to be directly ac
cessible to measurement, experimental determination2b 
of the material functions for those materials for which 
the theory appears useful, prediction of the form of the 
material functions from molecular models, and, recently, 
axiomatization5 ,6 of the theory. In this article, instead of 
being concerned with these matters, we reexamine the 
fundamental hypotheses of linear viscoelasticity in 
the light of recent advances in nonlinear continuum 
mechanics. 

The basic assumption of the classical linear theory of 
viscosity is a constitutive equation relating the stress 
tensor T(t) at time t to the history of the infinitesimal 
strain tensor E(t-s), O~s< 00. This assumption asserts 
that if E(t-s), taken relative to a natural reference con
figuration corresponding to zero equilibrium stress, is 
small in magnitude for all s, then 

T(t) = O{E(t)} + ... (O){E(t)} + i"'<i>(S) {E(t-s)}ds, 

o (Ll) 

* This work was supported by the Air Force Office of Scientific 
Research under contract and by the National Science Foundation 
under Grant NSF -G5250. 

1 S. Boltzmann, Sitzber. Akad. Wiss. Wien, Math. naturw. Kl. 
70, 275 (1874); Pogg. Ann. Phys. 7, 624 (1876). 

• (a) E. H. Lee, in Viscoelasticity, edited by J. T. Bergen 
(Academic Press, Inc., New York, 1960), p. 1; (b) J. D. Ferry and 
K. Ninomiya, ibid., p. 55. 

• B. Gross, Mathematical Structure of the Theories of Viscoelas
ticity (Hermann & Cie., Paris, 1953). A summary of relationships 
between those material functions which occur in the one-dimen
sional formulation of the theory is given in this reference and in 
refere,!ce 4. 

• H. Leaderman, Trans. Soc. Rheol. 1, 213 (1957). 
• E. R. Love, Australian J. Phys. 9, 1 (1956). 
• H. Konig and J. Meixner, Math. Nachr. 19, 265 (1958). 

where 
ci>(s) = (d/ds)<I>(s), (1.2) 

and ... is such that 

lim "'(s) =0. (1.3) 
.~"' 

Here ... (s){ } (for each s) and (1{ } are linear trans
formations of the space of symmetric tensors into itself. 
As a function of time, ... has a simple physical signif
icance and is called the "stress relaxation function." For 
if we consider a deformation history such that the 
material is kept in its natural reference configuration 
(E=O) for all times t<O and has the strain E* for all 
times t~O, then for such a history Eq. (1.1) yields 

T(t) = {
o 
... (t){E*} +(1{E*} 

ift<O 

if t~O. 
(1.4) 

In the familiar special case of an isotropic material, 
"'(1) is completely determined by two scalar-valued 
functions of time: the stress relaxation functions for 
shear and dilatation. The linear transformation (1 

characterizes the "linear equilibrium stress-strain l\Lw" 
of infinitesimal elasticity theory; i.e., Eqs. (1.3) and 
(1.4) yield 

lim T(t)=O{E*}. (1.5) 

For an isotropic solid, (1 is determined by the two Lame 
constants. 

We refer to the classical linear theory based on Eqs. 
(1.1)-(1.3) as infinitesimal viscoelasticity because, 
roughly speaking, it can be applicable only to those 
situations in which the strain is small at all times. 

In Sec. 4 we show how Eq. (Ll) must be modified 
when the reference configuration is arbitrary and not 
necessarily one in which the equilibrium stress is zero. 
In particular, in the case of a fluid, T(t) should be 
replaced by T(t)+PrI, where pr is the equilibrium 
hydrostatic pressure corresponding to the reference 
configuration, and I denotes the unit (or identity) 
tensor. For a fluid 0 is determined by the equilibrium 
compressibility. 

It is often claimed that the theory of infinitesimal 
viscoelasticity can be derived from an assumption that 
on a microscopic level matter can be regarded as 
composed of "linear viscous elements" (also called 
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"dashpots") and "linear elastic elements" (called 
"springs") connected together in intricate "networks." 7 

The motivation behind some of the recent work on 
spring and dash pot networks appears to be the hope 
that the consideration of such readily visualized models 
will suggest a formalism for immersing viscoelasticity in 
a general thermodynamical theory of irreversible 
processes. 

We feel that the physicist's confidence in the useful
ness of the theory of infinitesimal viscoelasticity does 
not stem from a belief that the materials to which the 
theory is applied are really composed of microscopic 
networks of springs and dash pots, but comes rather 
from other considerations. First, there is the observation 
that the theory works for many real materials. But 
second, and perhaps more important to theoreticians, 
is the fact that the theory looks plausible because it 
seems to be a mathematization of little more than 
certain intuitive prejudices about smoothness in macro
scopic phenomena. It is natural to assume that the 
dependence of the stress on the history of the deforma
tion should be, in some sense, a smooth dependence. 
(Smoothness assumptions are usually so "natural" to 
physicists that they are seldom made explicit.) Since 
we know that in small neighborhoods smooth de
pendences are approximately linear, it is felt that if 
only small deformations are considered, the stress 
should be given by a linear functional of the deformation 
history, and that this functional should yield the form 
exhibited in Eqs. (1.1)-(1.3). 

This article tries to make precise these observations 
about smoothness, and in so doing seeks to obtain a 
mathematical derivation of infinitesimal viscoelasticity 
from plausible macroscopic assumptions. To do this one 
must first presume a nonlinear theory of the mechanical 
behavior of materials with memory, and, if the under
taking is to be at all worthwhile, the presumed nonlinear 
theory must rest on constitutive equations based only 
on very general physical principles. Our development 
starts with the recently formulated general theory8 of 
"simple materials" (i.e., materials for which the stress 
depends in an arbitrary way on the history of the first 
spatial gradient of the displacement). The theory of 
simple materials is outlined in Sec. 3. 

To make precise the notion of smoothness we must 
introduce a topology into the space of functions charac
terizing the history of the deformation; i.e., we must 
have a way of knowing when two histories are close to 
each other. We do this by defining a norm. The par
ticular norm used here is one of those considered in our 
paper on memory functionals.9 This norm has two 
important properties: first, it makes our space of 
histories a Hilbert space; second, it places greater 

1 D. R. Bland, The Theory of Viscoelasticity (Pergamon Press, 
New York, 1960), Chap. 2. 

8 W. Noll, Arch. Rat!. Mech. Ana!. 2, 11)7 (1958). 
• B. D. Coleman and W. Noll, Arch. Rat!. Mech. Anal. 6, 356 

(1960). 
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emphasis on the deformations which occurred in the 
recent past than on those which occurred in the distant 
past. We believe that this second property is essential 
if one is to formulate a smoothness assumption for 
macroscopic phenomena that is compatible with the 
everyday observation that memories are imperfect. The 
memory of a macroscopic object for its past defor
mations fades in the sense that deformations which 
occurred in the distant past have a smaller effect on the 
present forces than have more recent deformations. 

We mathematize the notion of smoothness by assum
ing that the constitutive functionals which give the 
stress in a simple material are Frechet differentiable in our 
Hilbert space of histories. 

In considering finite deformations in simple materials, 
it is often convenient to take the present configuration 
as the reference configuration for describing the history 
of the deformation. Indeed, when dealing with a fluid, 
this is the natural thing to do, because a fluid has no 
preferred configurations. However, we can do this even 
for solids, provided we maintain in the constitutive 
equations a tensor parameter which tells how the 
present configuration is related to a preferred con
figuration. 

The function space norm which we use has the 
property that the norm of a history is small if the 
deformations have been small at all times in the past; 
indeed, our derivation of infinitesimal viscoelasticity is 
a combination of this fact with our differentiability 
assumption. However, when one takes the present state 
as a reference, the deformation at the present time is 
zero, and if one further notes that the distant past is of 
little importance, it becomes clear that there are several 
ways in which a history can be small in norm. In par
ticular, any history for which the motion has been slow 
in the recent past has a small norm. This observation 
has suggested to us the consideration of a new linear 
approximation for the general constitutive functionals 
of simple materials. We call the theory based on this 
new approximation finite linear viscoelasticity; it includes 
the classical infinitesimal theory as a special case, but 
has the advantage of being meaningful in situations 
involving finite deformations. The arguments presented 
in Secs. 3 and 5 show that finite linear viscoelasticity 
furnishes a complete first-order approximation to the 
theory of simple materials in the limit in which the 
history of the deformation, taken relative to the present 
configuration, is small in norm. 

The smoothness considerations presented can be 
extended to obtain higher order approximations to the 
general constitutive equations of simple materials. In 
Sec. 6 we discuss a second-order theory of viscoelasticity 
for incompressible simple fluids. 

2. KINEMATICS 

We present a brief outline of the kinematics required 
for a discussion of simple materials. For a more complete 
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presentation which goes back to first principles, see 
Noll.' 

Consider a particular material point X of a body <B. 
Suppose that X occupies the position X in Euclidean 
space 8 when <B is in a reference configuration. Let ~ 
be the position of X in 8 at time T. For the dependence 
of ~ on X and T, we write 

~= 2C(X,T). (2.1) 

The gradient F(T) of 2C(X,T) with respect to X, 

F(T)=V2C(X,T), (2.2) 

is called the deformation gradient at the material point 
X at time T. It is a tensor which possesses an inverse 
F(T)-l. (Here the term "tensor" is used a synonym for 
"linear transformation of the three-dimensional Eucli
dean vector space into itself.") The value of F(T) at 
each point of <B is affected not only by the tonfiguration 
of <B at time T but also by our choice of a reference con
figuration for <B. This reference configuration may be 
chosen for convenience and need not necessarily be a 
configuration actually occupied by the body during its 
motion. 

It is often useful to employ the configuration at the 
present time t, rather than a fixed configuration, as the 
reference. The corresponding deformation gradient is 
denoted by F,(T) and called the relative deformation 
gradient. The deformation gradients enjoy the following 
important property, which is a direct consequence of 
the chain rule for the differentiation of composite 
vector-valued functions: 

(2.3) 

where the indicated multiplication is the usual com
position of linear transformations (matrix product). 

An immediate consequence of the definition of F,(t) 
is that 

(2.4) 

where I is the unit (or identity) tensor. From Eq. (2.3) 
we obtain the relation 

(2.5) 

Let p(T) give the mass density at X as a function of 
T; it follows from a theorem of kinematics that 

(2.6) 

If F(T) is independent of X, we say that the con
figuration of <B at time T and the reference configuration 
of <B are related by a homogeneous deformation. If 
F=F(T) is orthogonal, i.e., if 

FTF=FFT=I, (2.7) 

in which FT denotes the transpose of F, then this 
"homogeneous deformation" represents a rigid rotation 
of the body. If F is symmetric positive-definite, then 
the body has been subjected to a pure stretch; in this 
case the proper vectors of F give the principal direc-

tions of stretch and the proper numbers of F are the 
principal stretch ratios. 

A theorem of algebra, called the polar decomposition 
theorem, states that any invertible tensor F can be 
written in two ways as the product of a symmetric 
positive-defini te tensor and an orthogonal tensor: 

F=RU, 

F=VR. 

(2.8) 

(2.9) 

Furthermore, the orthogonal tensor R and the sym
metric positive-definite tensors U and V in these decom
positions are uniquely determined by F and obey the 
following relations: 

lJ2=FTF=G, 

V2=FFT=B, 

U=RTVR. 

(2.10) 

(2.11) 

(2.12) 

Equations (2.8) and (2.9) have the following significance 
in kinematics: Any homogeneous deformation with 
deformation gradient F may be regarded as being the 
result of a pure stretch U followed by a rigid rotation 
R, or a rigid rotation R followed by a pure stretch V. 
These interpretations uniquely determine the pairs R, 
U and R, V. The rigid rotations entering these two 
interpretations are the same; however, the pure stretches 
U and V can be different. It follows from Eq. (2.12) 
that although these stretches may have different prin
cipal directions, they must yield the same stretch ratios. 
We call the tensor R the rotation tensor and the tensors 
U and V, respectively, the right and left stretch tensors. 
The symmetric positive-definite tensors G and B, defined 
by Eqs. (2.10) and (2.11), are called, respectively', the 
right and left Gauchy-Green tensors; they obvi~usly 
contain the same information as the corresponding 
stretch tensors, and their components are often easier 
to compute. 

The rotation tensor, the stretch tensors, and the 
Cauchy-Green tensors computed from the relative 
deformation gradient F, are denoted by Rio U " V" G" 
and B ,. The modifier relative is used to indicate that the 
present configuration (time t) is used as the reference. 
For example, G,(T), is called the relative right Gauchy
Green tensor. 

The following formulas are consequences of Eq. (2.4): 

U,(t) = VI(t)=G,(t)=B,(t)=R,(t)=I. (2.13) 

For simplicity we have emphasized the interpretation 
for homogeneous deformations of the tensors defined by 
Eqs. (2.8)-(2.11). These definitions obviously apply 
also to nonhomogeneous deformations, and similar in
terpretations can be given to .them in the nonhomo
geneous case if one merely first observes that the 
deformations considered in continuum mechanics are 
sufficiently smooth to be approximately homogeneous 
in small regions of <B. 
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We note that there is no unique way to measure "the 
strain" corresponding to an arbitrary finite deformation. 

We now establish the connection between the kine
matics of finite deformations sketched in the foregoing 
and the more familiar kinematics of infinitesimal defor
mations. 

The magnitude 1 A 1 of a tensor A is defined by 

(2.14) 

where Tr denotes the trace of a tensor. If Cartesian 
coordinates are used, then 1 A 12 is the sum of the 
squares of the elements of the 3X3 matrix correspond
ing to A. We also use tbe defnition (2.14) or magnitude 
when A is replaced by a linear transformation r of the 
six-dimensional space of symmetric tensors. In this case, 
the square of the magnitude 1 rl of r is the sum of the 
squares of the 6X6 matrix corresponding to r. 

Let a m.)tion with deformation gradient F=F(r) 
be given. We put 

H=F-1 
and 

E= supl H(r) I. 

(2.15) 

(2.16) 

H is the gradient of the displacement vector field. We 
say that the deformation corresponding to F(r) is 
infinitesimal at all times r if 

(2.17) 

The infinitesimal strain tensor E=E(r) is defined by 

E=!(H+HT). (2.18) 

In the following we consider functions of r which are 
determined by H(r) and which have the property that 
for each r their magnitude is less than K,n, where K 
is a number independent of r, the function H(r), and E. 

Any such function is denoted by the order symbol 
O(En); i.e., 

10(En)1 <K,n. 

It is easy to show that 

F=I+H=I+0(E), 

F-l=1 -H+0(E2)=1+0(E). 

(2.19) 

(2.20) 

(2.21) 

Also, it is not difficult to establish the following relations 
between the stretch tensors U, V and Cauchy-Green 
tensors C, B, on the one hand, and the infinitesimal 
strain tensor E, on the other hand: 

U-1=E+0(E2)=0(E), 

V -I =E+0(E2)=0(E), 

C-1= 2E+0(,2)=0(E), 

B-1 = 2E+0(E2)=0(,). 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

Thus, if terms of order 0(E2) can be neglected, the 
stretch tensors U, V and Cauchy-Green tensors C, B 
can be expressed in terms of E. For finite deformations, 
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however, the infinitesimal strain tensor E is devoid of 
kinematical significance. 

Finally, we note the following relations between the 
infinitesimal rotation tensor W, defined by 

W=!(H-HT), 

and the finite rotation tensor R: 

R=I+W+O(E2)=1+0(E), 

RT=R-l=l- W+O(E2)=I+0(E). 

(2.26) 

(2.27) 

In order to find an expression for the relative Cauchy
Green tensor C,(r), we first substitute Eqs. (2.20) and 
(2.21) into Eq. (2.5) and obtain 

F,(r)=I+H(r)-H(tHO(E2). (2.28) 

Equation (2.10), written for the relative tensors F, and 
C" reads 

C,(r) =F,(r)TF,(r). (2.29) 

Substitution of Eq. (2.28) into Eq. (2.29) and use of 
Eq. (2.18) yield 

C,( r) = 1+2[E(r)-E(t)J+0(E2)= 1+0(,). (2.30) 

For finite deformations there is no simple relation 
between C,(r), C(r), and C(t). 

3. FADING MEMORY 

The theory of simple materials is based on the fol
lowing physical assumption: The present stress is given 
by a functional of the past history of the deformation 
gradient. 

Suppose the deformation gradient F(r) is given (for 
all r:::; t) computed relative to a fixed reference con
figuration. The right Cauchy-Green tensor C(t) and 
rotation tensor R(t) corresponding to F(t) are deter
mined by Eqs. (2.8) and (2.10). On using Eqs. (2.5) 
and (2.29) we can compute the relative Cauchy-Green 
tensors C,(r) for all r :::;t. We now put 

Gt ( r) = RT(t)Ct ( r )R(t). (3.1) 

If the material has always been at rest, we have, by 
Eqs. (2.13) and (3.1), 

G,(r)=1 for r:::;t. (3.2) 

The principle of material objectivity, which states that 
the properties of a material should appear the same to 
all observers, can be used to show that the general con
stitutive equation for simple materials reduces to the 
form 

00 

T(t) ==RT(t) T(t)R(t) = Sl (G,(t-s); C(t», (3.3) 
8=0 

where T(t) is the stress tensor at time t and the symbol 
Sl denotes a functional. [This may be compared with 
reference 8, Eq. (22.8). Here we use a somewhat more 
suggestive notation.] 
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It is useful to put Eq. (3.3) into a slightly different 
form by writing the right-hand side as the sum of an 
"equilibrium term" ~(G(t)) and a term which vanishes 
when the material has always been at rest, i.e., when 
Eq. (3.2) holds: 

"" 
T(t)=~(G(t))+ II (C,(t-s)-I; G(t)), (3.4) 

.-0 

"" II (0; G(t))=O. (3.5) 
.-0 

For present purposes it is sufficient to regard the con
stitutive equation (3.4) as the definition of a simple 
material. 

We now add a new physical assumption: The memory 
of a simple material fades in time. 

There is no unique way to give this statement a 
precise meaning. We consider a particular mathe
matical interpretation of it. For this purpose we first 
introduce the concept of an influence function which is 
used to characterize the rate at which the memory 
fades. (This definition of an influence function is slightly 
different and somewhat less technical than the one we 
gave in reference 9.) A function h is called an influence 
function of order 1'>0 if it satisfies the following con
ditions: 

(a) h(s) is defined for 0 ~s< 00 and has positive real 
values: h(s»O. 

(b) h(s) decays to zero according to 

lim srh(s) =0 
-"" 

monotonically for large s. For example, 

h(s)= (s+1)-p 

(3.6) 

is an influence function of order r if r<p. An exponential 

h(s)=e-P', 8>0 

is an influence function of any order. 
Any function G(s), defined for s~O and with values 

which are symmetric tensors, is called a htstory. The 
argument function G(s)=C,(t-s)-I of the functional 
II of Eq. (3.4) is a history. The tensor G(t) in Eq. 
(3.4) plays the role of a parameter. 

Let an influence function h(s) be given. We then 
define the norm IIG(s)1l of a history G(s) by 

IlG(s)112= 1""IG(s)12h(s)2dS, 
o 

(3.7) 

where IG(s)1 is the magnitude of the tensor G(s) 
defined by Eq. (2.14). The influence function h(s) 
determines the influence assigned to the values of G(s) 
in computing the norm IlG(s)ll. Since h(s) -> 0 as s-> 00, 

the values of G(s) for small s (recent past) have a 
greater weight than the values for large s (distant past). 

The collection of all histories with finite norm (3.7) 

forms a Hilbert space X. A history G(s) belongs to the 
space X if it does not grow too fast as s -> 00. 

Consider now an influence function h and a functional 

"" II (G(s)) 
.-0 

which is defined on a neighborhood of the zero history 
in the Hilbert space X corresponding to h and whose 
values are symmetric tensors. Assume that the value 
of II for the zero history is zero, i.e., that 

"" II (0)=0. (3.8) 
.-0 

We say that II is Frechet-differentiable at the zero 
history if there is a continuous linear functional oir 
such that 

'" '" '" II (G(s))=oll (G(s))+!R (G(s)). (3.9) 
.-0 .-0 .-0 

where the "remainder" !R is of order o(IlG(s)ll) in the 
sense that 

"" 
lim IlG(s)II-1 !R (G(s)) =0. (3.10) 

II G(')II-->O .-0 
The linear functional oll is called the first variation or 
Frechet differential of II at the zero history. 

We now translate our physical assumption of fading 
memory into the following mathematical requirement: 

(F) There exists an influence function h(s) of an order 
r>! such that, for each value of the tensor parameter G, 
the functional II of the constitutive equation (3.4) is 
Frechet-differentiable at the zero history in the Hilbert 
space X corresponding to h(s). 

If we indicate the dependence on the tensor parameter 
G, Eq. (3.9) becomes 

"" "" "" II (G(s); G) = oll(G(s) ; GH!R (G(s); G). (3.11) 

We now invoke the theorem of the theory of Hilbert 
spaces which states that every continuous linear func
tional may be written as an inner product. It follows 
from this theorem that the first variation oll has an 
integral representation of the form 

?It(G(s); G)= f"" res; G)(G(s)}ds. 
o 

(3.12) 

Here res; G)( }, for each s and each G, is a linear 
transformation of the space of symmetric tensors into 
itself with the property that 

f"" I r(s; G) 12h(s)-2ds< 00, 

o 
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where I r(s; C) I is the magnitude of r(s; C) as defined 
by Eq. (2.14). The property (3.13) shows that res; C) 
must approach zero at a faster rate than the influence 
function h(s) as s ---+ 00. Substitution of Eqs. (3.12) and 
(3.11) into Eq. (3.4) yields 

T=~(c)+i'" res; C){G(s)}ds+!R(G(s); C), (3.14) 
o .~ 

where 
G(s) = C,(t-s)-I. (3.15) 

It is understood that the variables T, C, and G(s) 
depend on the present time t. 

It seems natural to add to the requirement (F) the 
following two assumptions: 

(F') The Frechet-differentiability of g; postulated in 
(F) is uniform in the tensor parameter C. 

(D) The tensor function "(C) of (3.14) is continuously 
differentiable. 

By the assumption (F') we mean that the first 
variation 

'" 
og;(G(s); C) 
.-0 

depends continuously on C in the strong sense and that 
the convergence in Eq. (3.10) is uniform in C. 

4. INFINITESIMAL VISCOELASTICITY 

We first remark that any function of order 0(,") in 
the sense of Eq. (2.19) is also a function of order 0(,") 
with respec~ to the Hilbert-space norm (3.7); i.e., 
there is a constant K, independent of " such that 

(4.1) 

In order to prove this inequality we substitute 0(,") 
for G(s) in the definition (3.7) of the norm and use the 
inequality (2.19): 

110(,n)1I2= f'" I 0(,") 12h(s)2ds < (K,n)2 f'" h(s)2ds. (4.2) 
o 0 

The requirement (F) of Sec. 3 ensures that the number 
r of Eq. (3.6) is greater than !. It follows that the 
integral fo""h2(s)ds is finite and hence that the inequality 
(4.1) holds with 

K=KC(""h(S)2dSY. (4.3)' 

This remark shows that the order symbols in Eqs. 
(2.20)-(2.30) may be interpreted in terms of the con
vergence in the Hilbert space of histories defined in 
Sec. 3. This interpretation must be used to justify most 
of the subsequent considerations. 

By combining Eqs. (3.1), (2.30), and (2.27), we find 
the following expression for the history 

G(s) = C,(t-s)-1 
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which enters the constitutive equation (3.4) of a simple 
material: 

G(s) = 2[E(t-s)-E(t)]+0(,2)=0(,). (4.4) 

On substituting Eq. (4.4) into Eq. (3.11) and using 
Eq. (3.10) and the linearity and continuity of the first 
variation Ilg;, we obtain 

ij (G(s); C) = 21lij (E(t-s) - E(t); C) +0(.). (4.5) 

where the order symbol 0(,) is used in the sense that 

lim ,-110(.) 1=0. (4.6) 
.-+0 

It is not difficult to prove that the uniformity assump
tion (F') of Sec. 3 implies that Eq. (4.5) remains valid 
if, on the right-hand side, the tensor C=I+0(.) is 
replaced by the unit tensor 1: 

ij (G(s); C) = 21lij (E(t-s) - E(t); 1)+0(.). (4.7) 

We now substitute the integral representation (3.12), 
for C=I, into Eq. (4.7), and obtain 

& (G(s); C)=f"" 2r(s){E(t-s)}ds 
.-0 0 -f'" 2r(s)ds{E(t»+0(.). (4.8) 

On defining 4>(s) by 

4>(s) = -2 f'" r(u)du, ci>(s)=~4>(s)=2r(s), (4.9) 
• ds 

we may rewrite Eq. (4.8) in the form 

"" g; (G{s); C) = 4> (O){E(t)} 
.-0 

+ i"" ci>(s){E(t-s)}ds+o(.), (4.10) 

where 
lim 4>(s)=O. (4.11) 
...-.'" 

Assumption (D) of Sec. 3 and Eq. (2.24) imply that 
the equilibrium term ~(C) of Eq. (3.4) has the form 

~(C(t»)= Tr+O{E(t»+o(,). (4.12) 

Here, the linear transformation O{ } of the space of 
symmetric tensors is the gradient of the tensor function 
MC) at C=I. The tensor 

Tr=~(I) (4.13) 

is the residual stress, i.e., the stress the material would 
sustain if it had been held in the reference configuration 
at all times in the past. 
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Substitution of Eqs. (4.10) and (4.12) into the con
stitutive equation (3.'*) yields 

'1'(t) = T r+[O+4> (O)]{E(t)} 

+ £'" .(s){E(t-s)}ds+o(E). (4.14) 

Finally, going back to the definition (3.3) of '1' and 
using Eqs. (2.27), we obtain the following expression 
for the stress tensor T(t) : 

T(t)- Tr= W(t)Tr- TrW(t)+[O+<I>(O)]{E(t)} 

+ J'" .(s){E(t-s)}ds+O(E). (4.15) 
o 

When E, given by Eq. (2.16), is small enough, the 
remainder term O(E) can be neglected in comparison 
with the other terms on the right-hand side of Eq. 
(4.15), which are of order O(E). Thus, the constitutive 
equation of infinitesimal viscoelasticity reads 

T(t)- Tr= W(t)Tr- TrW(t)+[O+<I>(O)]{E(t)} 

+ i'" .(s){E(t-s)}ds. (4.16) 

When the reference configuration is a natural state, 
we have Tr=O, and Eq. (4.16) reduces to the classical 
equation (1.1). Equation (4.16), with Tr;;"!'O, applies to 
infinitesimal deformations superposed on a large defor
mation from an unstressed natural state. In this case, 
the reference configuration is not the natural state but 
the deformed state with equilibrium stress T r. If T r is 
a hydrostatic pressure T r= - pI, the terms involving 
Wet) inEq. (4.16), cancel. The stress relaxation function 
4>(s) depends not only on the material but also on the 
configuration which has been taken as the reference. 

We remark that the special case <I>(s)=O of Eq. 
(4.16) corresponds to the theory of infinitesimal elastic 
deformations superposed on large deformations. The 
special case 4>(s)=O and Tr=O corresponds to the 
classical theory of infinitesimal elasticity. 

5. FINITE LINEAR VISCOELASTICITY 

Motivation 

Let us return to Eq. (3.14), which, under our hypoth
esis (F), is equivalent to the fundamental constitutive 
equation (3.4). It follows from Eq. (3.10) that the 
remainder term of Eq. (3.14) is small compared to the 
term involving the integral, provided the history 
G(s)=C.(t-s)-1 has a small Hilbert-space norm. 
Thus, the equation 

'1'=~(C)+ i'" res; C){G(s)}ds (5.1) 
o 

approximates the general constitutive equation of a 

simple material in the limit 

IIG(s)II-+0, (5.2) 

and the error approaches zero faster than IIG(s)ll. We 
call the theory based on Eq. (5.1) finite linear visco
elasticity. 

One way of achieving the limit (5.2) is to let E, 

defined by Eq. (2.16), go to zero. The discussion of 
Sec. 4 shows that, in this case, Eq. (5.1) reduces to the 
constitutive equation (4.16) of infinitesimal viscoelas
ticity. 

When we consider, however, the definition (3.7) of 
the norm IIG(s)lI, we see that the limit (5.2) may be 
achieved even when E does not approach zero. In order 
for IIG(s)1I to be small, it is not necessary that the 
deformation (relative to the configuration at the present 
time t) be small at all past times ,,<t, but only that the 
deformation be small in the recent past. In particular, 
IIG(s)1I is small for "slow" motions. To make this 
remark precise we consider a history G(s) which has 
finite norm and corresponds to a deformation which 
makes no jump at the present, so that 

lim G(s) =0. (5.3) 
~ 

We then construct for each a, O<a$; 1, a "retarded" 
history 

G .. (s)=G(as). 

It follows from Eq. (3.21) of reference 9 that 

lim II G .. (s) II =0, 
.......0 

(5.4) 

(5.5) 

i.e., that the limit (5.2) may be achieved by retardation 
of a given process. 

Aside from the fact that the finite theory based on 
Eq. (5.1) applies to a much larger class of problems 
than the infinitesimal theory, there is a fundamental 
difference between the two theories. The infinitesimal 
theory is physically meaningless for finite deformations 
because it does not have the invariance properties 
required by the principle of materiaI objectivity. The 
finite linear theory, on the other hand, enjoys the correct 
invariance. Thus, it is conceivable that there exists 
some material which obeys Eq. (5.1) for arbitrary finite 
deformations. The infinitesimal theory cannot possibly 
apply to any material when finite deformations are 
considered. 

Finally, we remark that in the derivation of Eq. 
(5.1) no assumption has been made about the mag
nitude of the tensor parameter C. Hence, the finite 
theory based on Eq. (5.1) is applicable when the present 
and the reference configuration are related by an 
arbitrary large deformation. 

Isotropic Materials 

When dealing with isotropic materials it is con
venient to take the reference configuration to be undis-
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torted. (A precise definition of this term is given in 
reference 8.) Then the equilibrium stress is hydrostatic. 
Furthermore, the results in Sec. 22 of reference 8 show 
that the constitutive equation (5.1) reduces to 

T=~(B)+ i'" res; B){J(s)}ds, (5.6) 

where B=B(t) is the left Cauchy-Green tensor, defined 
by Eq. (2.11), and the history J(s) is given by 

J(s)=C,(t-s)-I. (5.7) 

Furthermore, the tensor function ~ and the linear 
functional given by the integral in Eq. (5.6) are isotropic 
in the sense that they obey the identities 

Q~(B)Qr= ~(QBQry, (5.8) 

Q i'" r(s; B) {J(s)}ds Qr 
o 

= 1'" res; QBQT)(QJ(S)QT}ds (5.9) 
o 

for all orthogonal tensors Q. A fundamental theorem of 
the theory of isotropic tensor functions (for an elegant 
recent proof see reference 10, Sec. 59) states that ~ has 
a representation 

(5.10) 

where ho, hi, and h2 are scalar invariants of B. Also, it 
can be shown that the identity (5.9) implies the follow
ing representation for r: 

res; B) (J(s)} = ft(s; B) J(s) +J(s) 11(S; B) 

+ Tr[J(s) Ms; B) J1+ Tr[J(s) Ms; B) JB 

+ Tr[J(s)Ms;B)JB2. 
(5.11) 

Here, for each s, the tensor functions li(s; B) are iso
tropic in the sense of Eq. (5.8) and hence have repre
sentations of the form (5.10). The proof of this result 
is too te'chnical to be included here. Equations (5.10) 
and (5.11) and the representations for the Ii may be 
used to render the constitutive equation (5.6) explicit. 
The resulting formula shows that, in the finite theory 
of linear viscoelasticity, the behavior of an isotropic 
material is determined by 11 independent scalar 
material functions; three of these depend on three 
variables and the remaining eight on four variables. 
The assumption of isotropy alone yields no further 
simplification. The special case r""o of Eq. (5.6) cor
responds to the theory of finite (nonlinear) isotropic 
elasticity. 

Fluids 

We now consider materials which not only obey a 
constitutive equation of the form (5.1) but which are 
also simple fluids in the sense of the definition given in 

10 J. Serrin, "Mathematical principles of classical fluid me
chanics," in Encyclopedia of Physics, edited by S. Fliigge (Springer
Verlag, Berlin, 1959), Vol. VIII/l. 
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reference 8. (Coleman and Nollil give a summary of the 
general theory of simple fluids with emphasis on 
physical applications.) Such materials are isotropic, and 
hence Eqs. (5.6)-(5.9) apply. Moreover, the functions 
~(B) and res; B) in Eq. (5.6) depend on B only 
through the determinant of B or, equivalently, only 
through the present density p=p(t). Thus, for a fluid, 
Eq. (5.6) becomes 

T=~(p)+ i'" res; p){J(s)}ds. (5.12) 

The isotropy identities (5.8) and (5.9) may be written 
in the form 

Q~(P)QT=_(p), (5.13) 

['" Q[r(s; p){J(s)}JQT 

-r(s;p){QJ(s)QT}ds=O. (5.14) 

Since Eq. (5.13) is valid for all orthogonal tensors Q, 
it follows that ~(P) must reduce to a scalar multiple of 
the unit tensor: 

~(p)= -PCP)I. (5.15) 

We call pep) the equilibrium pressure; it is the pressure 
the fluid would be supporting if it had remained at rest 
in its present configuration at all times in the past. 

Equation (5.14) is valid for all orthogonal Q and for 
all possible histories J(s) belonging to the Hilbert space 
:JC. The only element of a Hilbert space which is ortho
gonal to all elements of the space is the zero element. 
This fact implies that the integrand in Eq. (5.14) must 
be identically zero. Hence, the transformation r(s; p){ } 
satisfies the identity 

Q[r(s; p) (J}JQr= res; p) {QJQT}. (5.16) 

for all orthogonal tensors Q and all symmetric tensors J. 
In other words, for each sand p, r (p ; s){ } is an 
isotropic linear transformation of the space of sym
metric tensors. The representation theorem for such 
isotropic transformations [special case of the theorem 
embodied in Eq. (5.10) (see reference 10, Sec. 59)J states 
that r(s; p){J(s)} must be of the form 

r(s; p){J(s)} =).I(s; p)J(s)+X(s; p)(Tr J(s»I, (5.17) 

where ).I(s;p) and X(s;p) are scalar functions of the 
time lapse s and the present density p. On substituting 
Eqs. (5.15) and (5.17) into Eq. (5.12), we obtain the 
following constitutive equation of a simple fluid in the 
theory of finite linear viscoelasticity: 

T=-p(p)I+ f'" ).I(s;p)J(s)ds 

+[i'" X(s;p) Tr J(S)dS]I. (5.18) 

11 B. D. Coleman and W. Noll, Ann. N. Y. Acad. Sci. 89, 672 
(1961). 
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I this theory, the mechanical behavior of a fluid is 
~termined by the three scalar material functions pep), 
:s; p), and >.(s; p). 
If the fluid under consideration is incompressible, 
rtain modifications must be made in this analysis. In 
compressible materials, the motion determines the 
ress only up to a hydrostatic pressure. In other words, 
e constitutive equation gives only the extra stress 

T.=T+pI, (5.19) 

lere p is an indeterminate pressure. In the incom
essible case, the two terms in Eq. (5.18) which are 
alar mUltiples of the unit tensor I may be absorbed 
to the indeterminate pressure term pl. From these 
marks we see that in finite linear viscoelasticity the 
ress in an incompressible fluid is given by the remark
'ly simple equation 

T.=T+pI= f" l-'(s)J(s)ds, 
o 

(5.20) 

lere, since the density is constant, I'(s) is a function of 
ly the time lapse s. 
The "relaxation function" <I>(s) determined by 
eologists from measurements or the decay of shearing 
Lctions for simple (infinitesimal) shc;ar in incom
essible fluids is related to the· material function I-'(s) 
follows: 

<I>(s)=-2 f" I-'(rr)drr, I-'(s) = !(djds)</>(s). (5.21) 
• 

tUS, the relaxation function <I>(s) is sufficient to 
termine the mechanical behavior of incompressible 
ids in the theory of finite linear viscoelasticity. 
For simple fluids, the property (3.13) is equivalent 
the conditions 

f" II-'(s;p)1 2h(s)-2ds<00, 
o 

(5.22) 

f" I>'(s; p)1 2h(s)-2ds< 00. 

o 

ese conditions relate the rate of decay of the influence 
Iction to the rate of decay of the material functions 
'; p) and >.(s; p) as s -+ 00. 

6. SECOND-ORDER VISCOELASTICITY 

[n Sec. 3 we showed, on the basis of our assumption 
), that the (nonlinear) functional g: giving the stress 
a simple material may be approximated by a linear 
tctional. The error in this approximation approaches 
o faster than the Hilbert-space norm "G(s)" of the 
tory (3.15). The analysis of Sec. 3 may be generalized 
he assumption (F) is replaced by a stronger assump-

tion which requires that the functional g: be not just 
once but n times FfI!chet differentiable at the zero 
history. It is then possible to approximate g: by a 
polynomial functional of degree n with an error that 
approaches zero faster than the nth power of the 
norm "G(s)". For example, when n=2, we find the 
following generalization of Eq. (3.14): 

T=~(C)+ f" r(s;C){G(s)}ds 
o 

.. .. 
+ o.(G(s); C)+!Jl'(G(s); C). (6.1) 

.-0 

Here, 0. is a continuous quadratic functional depending 
on the tensor parameter C; the remainder !H' is of order 
0("G(S)"2), i.e., 

lim "G(s) 11-2!Jl'(G(s); C) =0. (6.2) 
JIG .>11-00 

Relation (6.1) shows that the equation 

T=~(C)+f" res; C){G,(s)}ds+O(G(s); C) (6.3) 
o .-0 

approximates the general constitutive equation of a 
simple material in the limit "G(s)" -+ 0, and the error 
approaches zero faster than "G(s)"z. We call the theory 
based on Eq. (6.3) second-order viscoelasticity. 

The quadratic functional 0. of Eq. (6.3) may be 
expressed in terms of a bounded symmetric operator 
on the Hilbert space of histories. It is not possible, in 
general, to represent 0. by integrals. However, an 
integral representation does exist if the operator cor
responding to 0. is completely continuous. We consider 
only this special case. 

Explicit forms of the constitutive equations for iso
tropic materials and for simple fluids in second-order 
viscoelasticity may be obtained by an analysis similar 
to the one given in Sec. 5 in finite linear viscoelasticity. 
The resulting formulas are too complicated to be 
included here in full. Without giving the details of the 
derivation, we state the constitutive equation of an incom
pressible fluid in the second-order theory of viscoelasticity: 

T+pI= ['I-'(s) J(s) ds+ f.''' l"'[a(sh s.) J(Sl) J(St) 
.0 0 0 

+i3(Sl, S2) {Tr J(SI) I J(S2) ] ds, dst • 

(6.4) 

Here, p is an indeterminate pressure, J(s) is the history 
given by Eq. (5.7), and I-'(s), a(sl,s:) and (J(SI,S:) are 
scalar material functions. The function I'(s) is the same 
as in Eq. (5.23). The functions a and 13 are symmetric, 
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i.e., O(E3) and O(E4), respectively. Therefore, for small E, 
(6.5) Eqs. (6.9) and (6.10) reduce to 

In order to illustrate the behavior predicted by Eq. 
(6.4), we consider a class of motions called simple 
shearing motions. These motions are defined by the 
property that the velocity field vex) = {v~,vu,v.}, in 
some Cartesian coordinate system x, y, !ii, has the com
ponents 

v~=o, Vu= v(x,t), v.=O. (6.6) 

It follows from Eqs. (5.6), (5.8), and (5.10) of reference 
11 that the matrix function corresponding to the history 
J(s) defined by Eq. (5.7) has the form 

[J(S)J=~I(S)II! g gll+MS)21Ig g gil, (6.7) 

where 

i· d 
~t(s)= -vex, t-u)du. (6.8) 

o dx 

In order to obtain the components T =, T~, etc., of the 
stress tensor T, we substitute Eq. (6,7) into Eq. (6.4). 
After a simple calculation, we find 

XX t (Sl)2X ,(S2)ds lds2, (6.9) 

T~~-Tuu= f'" 1£ (s)Xl(s)ds+ fOG f'" -r(Sl,S2) 
o 0 0 

(6.10) 

(6.11) 

where 
(6.12) 

Equations (6.9)-(6.11), together with Cauchy's 
equations of motion, lead to a rather complicated system 
of integro-differential equations. 

We now consider the special case when 

E=suplx,(s)1 (6.13) 
.>0 

is small. Physically, this case corresponds to shearing 
motions with the property that the configuration of the 
fluid at all past times differs from the present con
figuration only by a small deformation. Shearing vibra
tions of small amplitude have this property. It is clear 
from Eqs. (6.13) and (6.7) that the Hilbert space 
norm IIJ(s)1I is of order O(E2). But the terms involving 
double integrals in Eqs. (6.9) and (6.10) are of order 
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(6.14) 

(6.15) 

Equation (6.14) for the shearing stress T ~ is the same 
as the corresponding equation in the theory of infini
tesimal viscoelasticity. The normal stress differences 
given by Eqs. (6.15) and (6.11), zero in the infinitesimal 
theory, do not vanish in the second-order theory. 
Equations (6.11) and (6.15) may be used, for example, 
for the interpretation of data on normal stresses ob
tained in experiments involving shearing vibrations of 
small amplitude. It is remarkable that the normal stress 
difference (6.15) depends only on the material function 
I£(S) or, equivalently, the shear relaxation function q,(s) 
given by Eq. (5.24). 

These results on simple shearing motions can easily 
be generalized to motions that have a form similar to 
(6.6) in an appropriate curvilinear orthogonal coor
dinate system. (The method to be employed is analogous 
to the one used in Sec. 2 of reference 12.) 

7. FINAL REMARKS 

In our considerations in Secs. 3-6 we have used the 
relative right Cauchy-Green tensor C, as a measure of 
strain. As we remarked at the end of Sec. 2, there is no 
unique "strain tensor" when finite deformations are 
considered. Instead of C I we could also have used the 
relative right stretch tensor U,= (C,)t, the inverse C,-t, 
10gC I, or any other tensor related to C I by a smooth 
one-to-one transformation. To different choices of the 
measure of strain correspond different theories of finite 
linear viscoelasticity. However, the difference of the 
stresses computed using two different such theories is 
of order o(IIG(s)II). Hence, since any finite linear theory 
can be expected to be accurate only when terms of 
order o(IIG(s)11) can be neglected, we can say that the 
various theories corresponding to the various measures 
of strain are equivalent. 

To different choices of the measure of strain also 
correspond different theories of second-order viscoelas
ticity. These different theories are equivalent in the 
sense that the corresponding stresses differ only by 
terms of order o(IIG(s)1I2). 

On the basis of a molecular model for certain incom
pressible fluids, Lodgel3 has derived a constitutive 
equation corresponding to Eq. (5.23) when J(s) is 

III B. D. Coleman and W. Noll, Arch. Ratl. Mech. Anal. 4, 289 
(1959). 

lJ A. S. Lodge, Trans. Faraday Soc. 52, 120 (1956). 
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nputed using C,I rather than Ct as a measure of 
ain. Our analysis shows that any other molecular 
,del must give the same or an equivalent result, 
>vided only that terms of order o(IIG(s)11) may be 
~lected. 

I\s we have remarked in Sec. 5, the norm IIG(s)1I is 
. all in particular for "slow" motions, and hence the 
ite linear theory applies in this case. For slow flows 
simple fluids, the finite linear theory is actually 

llivalent to the classical theory of Newtonian fluids, 
)vided that the influence function h satisfies the 
ation (6.3) with r>!. This fact and analogous results 
. fluids of higher order are proved in reference 9. 

Rivlin and his co-workersl4 in recent years have 
developed memory theories involving mUltiple integrals 
similar to the second-order theory proposed in Sec. 6. 
The emphasis in their work has been on the represen
tation theorems following from material objectivity and 
symmetry. In particular, the representations mentioned 
here in Secs. 5 and 6 can be derived using their results . 
An investigation of higher order theories of viscoelas
ticity based on the existence and complete continuity 
of Frechet differentials of order> 2 would make muc1t 
more use of such representation theorems. 

.. A. ]. M. Spencer and R. S. Rivlin,.Arch. Rat!. Mech. Anal. 4, 
214 (1960). 

Those items in the Erratum published in 
REVIEW OF MODERN PHYSICS, Vol. 36, No.4, 1103, October 1964, 

which have not been inserted in the text above 

Page 239. In the second line of the second paragraph, 
place of "viscosity" read "viscoelasticity." 

Page 239. Reference 1 should read: 
I L. Boltzmann, Sitzber. Kai~erlic1t, Akad. Wiss. 
Vien), Math.-Naturwiss. Kl. 70, Sect. II, 275-306 
874). 

Page 246. The sentence starting seven lines below 
:J.. (5.11) and reading "The resulting formula shows 
at ... " should be deleted and replaced by: 

The resulting formula shows that in finite linear 

viscoelasticity the behavior of an isotropic material is 
determined by 15 independent scalar-valued material 
functions. 

Pages 247 and 248. The sentence containing Ell. 
(6.5) should be replaced by: 

The function a is uniquely determined if and only if 
it is chosen to be symmetric, i.e., 

a(sl, S2) = a(s2, SI) ; 

the function (J need not be symmetric. 
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Motions with Constant Stretch History 

WALTER NOLL 

Introduction 
The class of motions considered in the present paper has recently been intro

duced by COLEMAN * [lJ, who noticed that it includes almost all steady flows 
that have ever been studied in connection with non-classical fluids. Examples 
are: Simple shearing flow, laminar flow through pipes (circular or not), Couette 
flow, helical flow, torsional flow, and circular flow between coaxial cones or 
concentric spheres. All these examples are actually special cases of what is 
called here steady curvilineal flow (see Section 3). The curvilineal flows belong 
to a class of motions which have been called viscometric flows (see Section 3 
of the present paper or Section 3 of [lJ). 

The main result of this paper is contained in Section 2, where a representation 
theorem is proved which characterizes all motions with constant stretch history. 
It turns out that the nature of such a motion is governed by one constant 
tensor M. 

Section 3 deals mainly with conditions which insure that M is nilpotent. 
In particular, the viscometric flows are shown to correspond to the case when 
M2=O. For curvilineal flows it is shown how M can be computed explicitly. 
Some examp]es of motions with constant stretch history that do not reduce 
to viscometric flows are mentioned. 

In Section 4 the representation theorem is used to obtain information about 
the behavior of incompressible simple fluids l in motions with constant stretch 
history. It is shown that this behavior is described by an isotropic tensor 
function of M. This description leads, in particular, to a very efficient general 
treatment of viscometric flows of incompressible simple fluids. 

The kinematical results of COLEMAN ([ 1J, Section 6) are corollaries of the 
Theorem 3 presented here. 2 

1. Preliminaries 
We collect for easy reference some definitions and results from the kinematics 

of continuous media. For more details we refer to [4J or [2J. 
Consider a continuous medium in smooth motion. Let ~ be the location 

at time 7: of that material point which, at time t, is located at~. Denote the 

* He used the term "substantially stagnant motion". 
1 The concept of a simple fluid was introduced by the author in [2). For details 

on the theory of simple fluids see [3J or [1J and the literature quoted there. 
I The result derived here shows, moreover, that the condition ({3) of COLEMAN'S 

Theorems 1 or 3 may be dropped and the condition (I') may be weakened by re
placing As by A,. 
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98 WALTER NOLL: 

dependence of ; on t, ~, and T by 

;=X,(~, T). 
The gradient 

(1.1) 

(1.2) 

of ; with respect to ~ is called the relative deformation gradient. It depends, 
of course, not only on t and T but also on the material point. We shall fix our 
attention on only one particular material point throughout. 

In addition to the variable times t and T, we consider also a fixed time, 
taken to be O. It is often convenient to think of t as the variable present time 
and of T as a variable past time. The various values of the relative deformation 
gradient are related by 

11;,(T) =.li;(T) 11;,(t) , .li;(t) =1, (1.3) 

where 1 denotes the unit tensor. 3 

The relative right Cauchy-Green tens01' is defined by 

C, (T) = FeT (T) .li; (T), (1.4) 

where the superscript T denotes transposition. The tensor function O:(s), s~O, 
defined by 

O:(s) = Ct(t-s) =.li;T(t-S).li;(t-s) (1. 5) 

is a measure of the deformation history taking t as the present time. The proper 
numbers of d,(s) are the squares of the principal stretches of the deformation 
carrying the present configuration (time t) into the past configuration s time 
units ago. The proper vectors of C:(s) determine the directions of these principal 
stretches. 

The following relations follow from (1.3) and (1.4): 

CO(T) = Fl(t) C, (T)11;, (t), C,(t)=CHo) =1. (1.6) 

Differentiations, denoted by superimposed dots, are assumed not to affect 
parameters indicated by indices. For example: 

• d • d I 
.li;(T) = d-r: .li;(T), .li;(t) = d-r: .li;(.) T=I' (1.7) 

The velocity gradient tensor L(t) is given by 

L(t) =.li; (t) =D(t) + W(t) ; (1.8) 

its symmetric part D (t) = l(L(t) + LT (t») is called the stretching tensor, and its 
skew part W(t) is called the spin tensor. The nth Rivlin-Ericksen tensor A" (t) 
is defined by (,,) (,,) 

A .. (t)=C,(t)=(-1)"C:(O), Adt)=2D(t). (1.9) 

If A,,(t) =0 for all t, then O:(s) is a polynomial of degree <n in s. 

The following results on exponentials of tensors will be needed. The ex
ponential eM of an arbitrary tensor M is defined by the convergent power series 

00 

eM=L~M"· 
,,=0 nl 

(1.10) 

8 The term "tensor" is used as a synonym for linear transformation. 
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Motions with constant stretch history 

The following rules are valid: 

(eM)T =eM'l', 

eM+N=~eN if MN=NM,' 

QeMQT =eQMQ'l' if Q is orthogonal, 

99 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

A tensor M is called nilpotent if M" = 0 for some integer n ~ o. In three 
dimensions, if M is nilpotent, then .Ml'=O. Moreover, the matrix [M] of M, 
relative to an appropriate orthonormal basis, has the form 

000 

[M] = " 0 0 

A. ." 0 

If M2=O, then the basis may be chosen such that 

000 

[M] =" 1 0 0 . 

000 

(1.15) 

(1.16) 

The exponential e™ is a polynomial in -r if and only if Mis nilpotent. In this case, 

e™=1 + -rM +.! -rIM2. (1.17) 
2 

2. The representation theorem 
Definition. We say that a motion, along the path of a material point, has 

constant stretch history if there is an orthogonal tensor function P(t) such that 
the histories C~(s) and OX(s), for s~O, are related by 

C~(S)=pT(t)cg(S)P(t), s>O. (2.1) 

The condition (2.1) means physically that for an observer moving with the 
material point both the magnitudes of the principal stretches and the changes 
of direction of the principal axes of strain depend only on the time lapse sand 
not on the present time t. 

Theorem 1. A motion has constant stretch history if and only if the deformation 
gradient Fo (-r) relative to some fixed time 0 has the representation 

Q(O)=I, (2.2) 

where M is a constant tensor and Q (-r) is an orthogonal tensor function. 
Before proving this theorem, we give a list of formulas which follow directly 

from (2.2) and the results given in the previous section. We use the abbreviations 

Mt=Q(t)MQT (t). Z (t) = Q (t) QT (t). (2.3) 

Clearly, Z(t) is skew, i.e., Z(t)T=_Z(t). 

4 Note that eM+N=J=eMeN if M and N do not commute. 
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100 WALTER NOLL: 

(a) Relative deformation gradient Ii; (T) : 

Ii; (T) = Q (T) e(T-t)M QT (t) . 

(b) Relative right Cauchy-Green tensor C!(s)=Ce(t-s): 

C!(s) =e-sMl' e-sM, = Q (t) e-sMP e-sMQT (t). 

(c) Velocity gradient L(t): 

(2.4) 

(2.5) 

L(t) = M t + Z (t) , (2.6) 

L(t)=Z(t) +Z(t)L(t) -L(t)Z(t). (2.7) 

(d) Stretching D(t) and spin W(t): 

D(t) = -'"- (Me+Mt) , Wet) = ~ (Me-Mt) +Z(t). (2.8) 
2 2 

(e) Rivlin-Ericksen tensors An (t): 

n 

An (t) = L (;) (M;)T Mt"-k = Q (t) An (0) QT (t). 
k=O 

(2.9) 

It is often useful to consider an orthonormal basis b 1 (t), b 2 (t), ba (t) which 
is attached to the material point and which rotates, as the point moves, accord
ing to the law 

b k (t) = Q (t) b k (0). (2.10) 

The matrix [M] of Me, relative to this rotating basis, is then independent of t. 
It follows from (2.5), (2.8)1' and (2.9), that the matrices of C~(s), D(t) and 
An (t) are also independent of t. If we define the matrix [Ii; (T)] of Ii; (T) by 

Ilbk(T)· Ii;(T)bm(t)II=[Ii;(T)], (2.11 ) 

then (2.4) is equivalent to 
(2.12) 

Proof of Theorem 1. Assume that the motion has constant stretch history. 
The function pet) is not uniquely determined by (2.1), but in view of the assumed 
smoothness of the motion pet) may be chosen to be a smooth function of t which 
satisfies P(O}=I. We abbreviate 

E (t) = pet) Fo (t) , H(T) =Co(- T) =Cg(T). (2.13 ) 

Note that E(O) =1, H(O) =1. We infer from (2.1), (1.6), and (2.13) that 

H(s -t) =Co(t-s) =ET (t)H(s)E(t) , s>O. (2.14) 

We differentiate (2.14) with respect to t and then put t=O, obtaining 

-R(s) =MTH(s) +H(s)M, s:2::0, (2.15) 

where M=E(O). Now, (2.15) is a differential equation for H(s) which must 
have a unique solution satisfying the initial condition H (0) = I. This solution 
is given by 

s>O, (2.16) 
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Motions with constant stretch history 101 

as is easily verified with the help of (1.14). Substituting (2.16) back into (2.14) 
and putting s - t =. yields 

H(.) =ET (t) e-tMT e-™T e-tMe-™E(t) , .~ - t, (2.17) 

which shows that H (.) depends analytically on • for • ~ - t. Since t is arbitrary, 
it follows that H(.) is an analytic function of • for all values of •. From (2.16) 
and the principle of analytic continuation it follows that 

H(-.) =e™T e™= Co(.) =F/ (.)Fo(.) 

holds for all.. (2.18) is equivalent to 

(Fo (.) e-™V( Fo (.) e-™) =1, 

(2.18) 

(2.19) 

which shows that Q(.)=Fo(.)e-™ is orthogonal and hence that (2.2) holds. 
If, conversely, (2.2) is valid, then (2.1) follows directly from (2.5), with the 

choice P(t) = Q (t) T. Q.E.D. 

Remark. In certain degenerate cases the tensor M of (2.2) is not uniquely 
determined by the motion. Consider, for example, the case when H(s)=cg(s) _1 
for all s, which corresponds to a motion that is locally rigid along the path line 
under consideration. In this case, Fo (.) is itself orthogonal, and hence (2.2) 
holds when M is an arbitrary skew tensor, for e™ is orthogonal when M is skew. 

If, for some value of ., the proper numbers of H(.)=cg(.) are distinct, 
then M is uniquely determined by the motion, as may be seen from the following 
argument. If 

then H(.) satisfies 

-H(.) = M[H (.) +H(.)M., i =1,2. (2.20) 

Taking the difference of the two equations (2.20) gives 

(2.21) 

For .=0 we obtain AT+A=O, which meanS that A must be skew. Fix the 
value of ., and denote the proper numbers of H(.) by h1, h2' ha· Let 11,/2' la 
be a corresponding orthonormal basis of proper vectors, and let A km be the 
components of A relative to the basis Ik' Equation (2.21) is then equivalent to 

(2.22) 

If the proper numbers hk are distinct, it follows from (2.22) that Akm=O for 
k=l=m. Since A is skew, we then must have A=M1 -M2 =O, i.e., M 1 =M2 • 

3. Special cases 
Theorem 2. Consider a motion with constant stretch history. Then the follow

ing conditions are equivalent: 

(a) One of the Rivlin-Ericksen tensors vanishes for all t. 

(b) In the representation (2.2) the tensor M is nilpotent and hence satisfies 
M3=O. 
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102 WALTER NOLL: 

(c) The history C:(s) has the form 

C:(s)= (I - sMr +iS2Mt2T) (I -SMt+is2Mt2) , 

where Mt=Q(t)MQ(t)T. 

(d) The motion is isochoric, and Am(t) =0 for m> 5 and all t. 

(3.1) 

Proof. An (t) - 0 for some n implies that cg (s) must be a polynomial in s. 
By (2.5), cg(s) is the product of the two entire functions e-sMT and e-sM. It 
follows that e-sM must be a polynomial in s. But this can be the case only 
when M is nilpotent. (3.1) follows then from (1.17) and (2.5). It is clear from 
(2.9) that Am (t) = 0 for m~ 5. Since M is nilpotent, its trace is zero. Hence, 
by (2.8), tr D (t) - 0, which shows that the motion must be isochoric. Q.E.D. 

The following theorem is a corollary of Theorem 2: 

Theorem 3. Consider a motion with constant stretch history. Then the follow-
ing conditions are equivalent: 

(a) A4 (t) = 0 for aU t. 

(b) The tensor M of the representation (2.2) satisfies M2= O. 
(c) The history C:(s) is of the form 

C:(s) = (I -sMn (I -sMt) =1 -s(MI+M{)+ s2Mr M" (3.2) 

where MI=Q(t)MQ(t)T. 

(d) The motion is isochoric, and Am(t) =0; 0 for n~3 and all t. 

The motions of the type described by Theorem 3 are called locally viscometric 
motions. A viscometric flow is a flow which is locally viscometric at every material 
point of the flowing medium. 

Definition. We call steady curvilineal flow a motion whose velocity field 
v (x) has the contravariant components 

vl=o, V2=U(XI), V3 =W(XI) (3-3) 

in an orthogonal curvilinear coordinate system xk whose metric components gkk 
are constant along the curves ; =; (s) defined by 

~l= xl, ~2= X2+ SU (Xl), ~3= x3 + SW (Xl). (3.4) 

The condition on the gkk is satisfied in particular when the gkk depend only 
on Xl or when w (Xl) == ° and the gkk depend only on Xl and x 3• 

Theorem 4. Every steady curvilineal flow is viscometric. Let e k =ek (x) be 
the orthonormal basis of the unit vectors in the direction of the coordinate lines, 
and let the orthonormal basis b k = bk (x) be defined by 

where 

bl =el , 

b 2 =oc - 2+ fJea, 
b3 = -fJe2+oce3 • 

(3·5) 

OC=~Vg22, fJ=~Vg33, X=VU'2g22+W'2g33 (3.6) 
"gll "gll gl1 

in which u' and w' denote the derivatives of u (Xl) and w (Xl) with respect to Xl. 
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Motions with constant stretch history 103 

The matrix [MJ ot the tensor Me ot (2.5) relative to the basis (3.5) is then 
given by 

000 
[MJ =x 1 0 0 

000 

(3·7) 

Proof. The deformation function (1.1) is obtained by solving the differential 
equations 

(3·8) 

with the initial conditions ~kIT=e= Xk. The solution is given by 

(3·9) 

Let ek = ek (;r) be the natural basis of the coordinate system used, and let 
ek=ek(;r) be the dual of ek (ek is characterized by ek . em=b!.). By (3.9) and 
(1.2) we then have 

1 0 0 

!lek (;).li;('r)em (;r)I/=II:::II= (7:-t)u' 10· (3·10) 
(7:-t)w' 0 1 

The unit vectors ek in the direction of the coordinate lines are related to the 
ek and ek by 

(3.11 ) 

It follows from (3.9) and our hypothesis on the gkk that the gkk are constant 
along the path lines of the motion and hence that gkk(;)=gkk(;r)=gkk. There
fore, (3.10) can be rewritten, with use of (3.11), in the form 

o 0 0 

I/ek(;)·li;(t-s)em (;r)I/=[/J-s Vg22g111u' 0 0 (3.12) 

Vg33 gllw' 0 0 

where [/J is the unit matrix. Finally, the matrix [li;(t-s)J in the sense of 
(2.11), for the basis defined by (3.5) and (3.6), is easily computed to be 

000 
[li;(t-s)J=[/J-sx 1 0 0 

000 

(3. 13) 

It follows that (2.12) is satisfied when [M] is given by (3.7). Since M2=O, 
the motion is a viscometric flow. Q.E.D. 

Consider a flow whose velocity field v (;r) in Cartesian coordinates x, y, z 
has the components 

u=O, v=xx, W=AX+VY, (3·14) 

where x, A, and v are constants,* o. The components ~,'Yj, C of the deformation 
function (1.1) corresponding to (3.14) are easily computed: 

~=X, 'Yj = (7: - t) x x + y, C =(7:-t) (AX+VY) +t(7:-t)2VXX + Z. (3.15) 
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104 WALTER NOLL: 

The derivatives of ~,'Y/, 1; with respect to x, y, z are the components of the 
relative deformation gradient ~(r). Thus, the matrix [~(r)J of ~(r) is given by 

000 000 
[~(r)J = [IJ + (r-t) x 0 0 +!(r-t)2 0 0 0 , (3.16) 

A. v 0 xv 0 0 

which shows that ~(T)=e(T-t)M, where the matrix [M] of Mis given by (1.15). 
We see that (3.14) describes a flow with constant stretch history such that 
.M3=O but M2=1=O. Hence, this flow is of the type described by Theorem 2 
at all its material points, but it is not viscometric. 

An example of a motion which corresponds to the case when the tensor M 
in the representation (2.2) is not nilpotent but symmetric is steady extension, 
which is treated in a separate paper [5J. 

4. Simple Fluids 
Flows with constant stretch history are very important for the theory of 

incompressible simple fluids. Such fluids obey the constitutive equation 
00 

T+PI='if (CHs)) (4.1) 
S~O 

where T is the stress tensor and where P is an indeterminate pressure, whiCh 
may be normalized so that p= -ttrT. The response functional 'if satisfies the 
isotropy relation 

00 00 

QT'if (H(s)) Q = 'if (QT H(s) Q) (4.2) 
S~O S~O 

for all functions H(s) in a suitable class and for all orthogonal tensors Q. 
Consider a flow with constant stretch history. The formula (2.5) then applies 

and, in conjunction with (4.1) and (4.2), gives 

where 
Q (t) T(t) QT (t) + pI =g (M), (4·3) 

00 

g (M) = 'if (e-MT S e-M S). (4.4) 

The values g (M) are symmetric tensors. The argument ~ need not be symmetric, 
but it must satisfy tr M = 0 in order that the motion be isochoric. (4.2) implies 
that g (M) must be isotropic in the sense that 

QT g(M) Q=g(QTMQ) (4.5) 

holds for all M and all orthogonal Q. Consider a rotating basis b k (t) which 
satisfies (2.10), and let [TJ =\1 T <k m)11 be the matrix of the stress tensor T(t) 
relative to that basis. Then (4-3) is equivalent to 

IIT<km>11 = [T] = - P [IJ+jj([MJ), (4.6) 

where jj is the matrix function which corresponds to the tensor function g relative 
to any orthonormal basis. It follows that the behavior of an incompressible 
simple fluid for flows with constant stretch history is completely determined 
by the matrix function jj ([MJ). 
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For a viscometric flow, which is characterized by M2= 0, we may assume 
that [MJ has the form (1.16), i.e. 

000 
[MJ =x 1 0 0 (4.7) 

000 

In this case, the components of [TJ+P[IJ are determined by x. This means 
that the off-diagonal components of [TJ and the differences of the diagonal 
components of [TJ are functions of x. We write 

T(12) =r(x), (4.8) 

The other two off-diagonal terms T (13) and T (23) must be zero, as is shown by 
the following argument. The orthogonal matrix 

1 0 0 

[QJ = 0 1 0 

o 0 -1 

(4.9) 

commutes with (4.7). It follows from (4.5) and (4.6) that [TJ must commute 
with (4.9). It is easily seen that this can be the case only if T(13) = T(23) =0. 

Making use of (4.5) with the choice 

1 0 0 

[QJ= 0 -1 0 (4.10) 

o 0 1 

one can readily prove that the shear stress functions r (x) must be odd while 
the normal stress functions <11 (x) and <12 (x) must be even in x. 

The behavior of incompressible simple fluids in steady extension is dis
cussed in [5J. 
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LA MECANIQUE CLASSIQUE, 
BASEE SUR UN AXIOME D'OB]ECTIVITE (1) 

par Walter NOLL 

I. Introduction. 

II Y a plusieurs points de vue sur l'axiomatisation d'une theorie 
physique. On peut les schematiser en parlant du point de vue du 
logicien, du point de vue du mathematicien et du point de vue du 
physicien. 

Le logicien entreprend de donner des formalisations completes en 
utilisant Ie symbolisme de la logique formelle. II est interesse plus 
dans la structure formelle d'une theorie que dans son contenu 
physique. L'accent du logicien est concentre sur les mHa-theoremes 
et non sur les theoremes de la theorie. 

Le physicien, au contraire, s'il fait l'axiomatique, entreprend 
d'ordonner les phenomenes d'experience d'une fac;on assez logique 
sans exclure son intuition et sans eire trop preoccupe des questions 
de rigueur. L'accent du physicien est concentre sur Ie contenu 
physique d'une theorie et non sur sa structure formelle. 

Le mathematiciell a une position intermediaire. II entreprend 
d'etre rigoureux comme Ie logicien, mais son accent, comme celui 
du physicien, est concentre sur les theoremes d'une theorie et non 
sur sa forme logique. Le but du mathematicien est de creer et 
d'analyser des structures complexes. II emploie la logique et la 
theorie des ensembles d'un point de vue naif; mais, la theorie des 
ensembles admise, Ie reste doit eire rigoureux. L'objectif de l'axio
matique en physique est d'achever la clarte et la precision des 

(1) Ce rapport est base sur des recherches supportees par la National 
Science Foundation, Grant NSF-G 5250 to Carnegie Institute of Technology_ 
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48 WALTER NOLL 

concepts. C'est la theorie mathematique qui fournit la precision 
definitive des concepts de la physique. 

Dans ce rapport je me propose de traiter la mecanique classique 
comme une structure mathematique. L'objectif de ce traitement 
est de donner des definitions mathematiques precises des concepts 
generaux de la mecanique classique en extrayant tout ce qui est 
commun a ses branches diverses : la mecanique des masses ponc
tuelles, la mecanique des corps rigides, la mecanique des fluides 
et des milieux elastiques, et la mecanique moderne des materiaux 
qui ne sont ni fluides ni elastiques dans Ie sens classique (voir [3] 
et les references donnees dans ce papier). Je crois que c'est une telle 
axiomatisation que Hilbert eut en vue quand il posa Ie sixieme de 
ses celebres problemes en 1900 [1]. J e ne crois pas que la partie 
du sixieme probleme de Hilbert qui concerne la mecanique a 
trouve une solution satisfaisante. 

Dans une autre communication [2] j'ai presente une tentative 
d'axiomatisation de la mecanique classique generale. Les axiomes 
fondamentaux etaient les lois de la balance des actions et des 
moments et ce que j'ai appele Ie principe d'objectivite materielle, 
qui demande l'invariance des equations constitutives par change
ment de repere arbitraire. 

Recemment, j'ai observe qu'on peut achever une axiomatisation 
plus simple et plus naturelle en rempla<;ant les axiomes de la 
balance par un autre axiome d'objectivite qui demande l'invariance 
du travail par changement de repere arbitraire. eet axiome est 
compatible avec les realites physiques si ron regarde les forces 
d'inertie comme des forces veritables qui sont les interactions entre 
les corps dans notre systeme solaire et la totalite des objets dans 
Ie reste de l'univers. Les reperes inertiaux n'entrent plus dans la 
partie generale de la nouvelle axiomatisation. La loi d'inertie est 
regardee comme un postulat constitutif. Les reperes privilegies sont 
lies explicitement a la position du reste de l'univers. 

Dans la suite j'esquisserai les idees esstmtielles de la nouvelle 
axiomatisation sans donner tous les details techniques. 

2. Univers materiel. 

Soit t; un espace euclideen a trois dimensions et CU l'espace vec
toriel associe. Un univers materiel est un ensemble 9.L muni d'une 
structure par un ensemble <I> d'applications biunivoques de 9.L 
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sur e et par une mesure positive finie m sur cu,. On demande de <P 
des propriHes convenables telles qu'on peut definir, a partir de <P, 
sur cu, une structure de variHe contimlment differentiable iso
morphe a e. 

Les elements X E cu, sont appeles les points materiels de l'uni
vers, les applications :x. E <P, les configurations de l'univers et la 
valeur m( $) de la mesure m pour une partie $ de cu, la masse de 
la partie $. 

Un corps $ est defini comme un sous-ensemble ferme de '\.L qui 
est assez regulier et qui n'a pas de sous-ensembles stricts fermes 
avec la meme masse que $. Deux corps $ et C sont dits separes 
si la masse de leur intersection est n ulle, m( $ () C) = O. On demande 

o 
que, pour tout corps $, il existe un autre corps $ separe de $ 

o 
telle que m( $ v $) = m('\.L). Le corps $ est appele l' exlerieur 
de $. 

3. Systemes de forces. 

Un systeme de torces pour un univers materiel cu, est defini comme 
une fonctionf a valeurs vectorielles de deux corps separes dans '\.L. 
La valeur f($, C) est appelee la force exerde sur Ie corps $ par 
le corps C. On demande quef ait les propriHes suivantes : 

a) Pour tout corps 33 il existe une fonctionfn vectorielle comple
tement additive definie sur des sous-ensembles de $ et telle que: 

o 
(1) f$(C) = f(C, $) 

si C est un corps contenu dans 33. 
b) Pour tout corps $ il existe une fonctionf?B vectorielle com ple-

o 
tement additive definie sur des sous-ensembles de l'exterieur $ 

et telle que 

(2) fi(C) =f($, e) 
o 

si C est un corps dans l' exterieur $ de $. 

En vertu de ces propriHes on peut parler de l'integrale de Stieltjes 

f $g df$ d'une fonction g continue definie sur Ie corps 33. 

On appelle : 

(3) 

la force resultanle exercee sur 33. 
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Un systeme de forcesf peut etre une combinaison de forces de 
contact et de forces de distance. Pour un systeme de masses ponc
tuelles, c'est-li-dire si m est une mesure discrete, on ne peut avoir 
que des forces de distance. Les forces de contact sont essentielles 
dans les milieux continus. 

4. Processus dynamiques. 

Etant donne un univers materiel '\1, on considere une paire 
{ Xhft }, - 00 < t < + 00, d'une famille de configurations X, de '\1 
et d'une famille de systemes de forcesft pour '\1. Le parametre 
reel t de ces familIes est appeIe Ie temps. On emploie la notation 
X,(X) = X(X, t) et on demande que la vitesse : 

d 
(4) v(X, t) = dt X(X, t) 

existe et so it assez reguliere. La famille Xt ou la fonction X(X, t) 
est appeIee un mouvement de '\1. Le point spatial x = X{X, t) est 
la position du point materiel X au temps t. 

Le travail par unite de temps des forces exercees sur un corps $ 

est defini par 

(5) W ( $, t) = J.'1\ v (X, t).dft . .'1\, 

oiJ.ft.$ est la mesure vectorielle associee aft par (1). 
On dit que la paire {xl,ji } definit un processus dynamique si 

l'axiome fondamental du § 6 ci-dessous est satisfait. Pour enoncer 
cet axiome il est d'abord necessaire d'analyser la notion de chan
gement de repere. 

s. Changements de repere. 

Un evenement est une paire (x, t) d'un pointx de I'espace B, la posi
tion de I'evenement, et d'un nombre reel t, Ie temps de I'evenement. 
La totalite des evenements est appelee l' espace-temps. On definit un 
changement de repere comme un automorphisme (x, t) ~ (x', t') 
de I'espace-temps qui preserve l'intervalle temporel de toute paire 
d'evenements et la distance spatiale de toute paire d'evenements 
simultanes. La geometrie analytique no us apprend que tout chan
gement de rep ere a une representation analytique de la forme : 

(6) x' = c(t) + Q(t)x, 
t' = t + a, 
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ou les points x, x', c(f) sont confondus avec leurs vecteurs de posi
tion par rapport it une origine arbitraire. c(t) est une fonction ponc
tuelle de t, Q(t) est une fonction de t it valeurs transformations ortho
gonales, et a est une constante reelle. On demande que c(t) et Q(t) 
soient continument difierentiables. Un changement de repere est 
determine par les donnees c(t) , Q(t), a. 

Si 1'0n demande que les relations entre les points, les scalaires, 
les vecteurs et les tenseurs soient preservees par changement de 
repere on obtient des lois definitives de transformation pour ces 
quantites. Par exemple, les scalaires ne changent pas par change
ment de repere et les vecteurs u subissent une transformation de 
la forme: 

(7) u' = Q(t)u. 

Deux processus dynamiques { Xt,}; } et { X)' ,fi' } sont dits equi
valents s'ils sont lies par un changement de repere de la forme : 

(8) 
(9) 

ou t' = t + a. 

x)' = c(t) + Q(t)Xh 
fi' = Q(t)};, 

L'interpretation physique d'un changement de repere c'est d'un 
changement de 1'0bservateur seulement. Des processus equivalents 
ne rendent que des descriptions difierentes d'une meme realite 
physique. 

Une fonction definie it partir d'un processus dynamique est dite 
objective si elle transforme en accord avec les lois de changement 
de repere. Autrement elle est dite relative. Les systemes de forces 
sont objectifs par definition (9). Par contre, les vitesses et les acce
lerations sont relatives parce qu'elles ne transforment pas en accord 
avec la loi (7). II est aise it voir que la partie symetrique du tenseur 
gradient de la vitesse est objective. Ce tenseur est une mesure du 
changement de deformation. 

6. L'axiome fondamental. 

En general, Ie travail (5) n'est pas invariant si 1'0n transforme Xt 
et}; par (8) et (9). Autrement dit, Ie travail n'est pas objectif pour 
un pair { Xh}; } arbitraire. L'axiome fondamental c'est la restric
tion des considerations de la mecanique aux paires { XI> fi } pour 
lesquelles Ie travail est invariant. 
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AXIOME FONDAMENTAL. - Pour un processus dynamique Ie tra
vail est objeciit. C' est-it-dire, pour tout corps $ Ie travail w( $, t) 
detini par (5) est invariant par changement de rep ere arbitraire (8) (9). 

On peut regarder cet axiome comme la definition d'un processus 
dynamique. 

7. Les lois fondamentales. 

C'est une consequence simple de (8) et (4) que Ia Ioi de trans
formation de Ia vitesse par changement de repere a Ia forme (1) : 

(10) v' = Q(v + Vo + Wx) 

ou : 

(11) x = X(X, t), 

lei, QT denote Ia transposee de Ia transformation orthogonale Q 
et Ie point superpose denote Ia derivee par rapport au temps t. 
La transformation lineaire W, produit des transformations Q et QT, 
est antisymetrique. 

Si l'on substitue (9) et (to) dans Ia formule (5) pour Ie travail, 
on obtient : 

w'($) = J ;p,v'.df/p, = J ;p,Q(v + Vo + Wx).QdfS3· 

L'invariance du produit interieur de deux vecteurs par trans
formation orthogonale donne : 
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w'($) = J ;p,(v + Vo + Wx).df;p" 

d'ou 

(12) w'($) = w($) + Vo· J ;p,df;p, + tr [W(J;p,x ~ df;p,) J, 
ou ir denote la trace d'une transformation lineaire et ~ Ie produit 
tensoriel de deux vecteurs (2). 

L'axiome fondamental affirme que w'( $) = w( $) pour tout $ 

et tout changement de repere. En vertu de (12) il resulte que 

Vo· J ;p, df;p, + tr [ W (J ;p, x ~ df;p, )] = 0 

(1) Dans ce qui suit, la dependance des variables d'un processus dyna
mique du temps t et du point materiel X est entendue. 

(2) Le produit tensoriel a ® best confondu avec la transformation lineaire 
definie par (a@ b)u = a(b. u) pour tout vecteur u. 
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pour tout vecteur Vo et toute transformation antisymHrique W. 
II s'ensuit que: 

(13) 

et : 

(14) 

ou 1\ denote Ie produit exterieur de deux vecteurs. 
Les equations (13) et (14) sont Ie contenu des deux lois fonda

mentales de la mecanique : 

LOI DE LA BALANCE DES ACTIONS. - La force resultante exercee 
sur tout corps est nulle. 

LOI DE LA BALANCE DES MOMENTS. - Le moment resultant des 
forces exercees sur tout corps est nul. 

II faut se rappeler que nous n'avons pas dissocie les forces d'inertie 
des forces ordinaires. On obtient les enonces conventionnels des 
lois fondamentales apres avoir introduit une telle dissociation. 

Les deux lois fondamentales ne sont pas seulement necessaires, 
mais aU3si suffisantes pour la validite de 1'axiome fondamental. 
Toutes les autres lois generales de la dynamique classique sont des 
consequences des deux lois fondamentales. En particulier, on a Ie 
theoreme de 1'action et de la reaction: pour deux corps separes $ 

et C assez reguliers, la force exercee sur $ par C est l' opposee de 
la force exercee sur C par $ : 

(15) f($, C) = -f(C, $). 

8. Les postulats constitutifs. 

La structure matMmatique developpee jusqu'ici n'est suffisante 
pour la description d'aucune situation physique particuliere. Elle 
n'introduit qu'une langue generale qui est tres commode dans la 
plupart des situations de la mecanique classique. Pour delimiter 
la nature particuliere d'une situation mecanique il faut introduire 
des postulats constitutifs. 

D'abord, on ne peut jamais traiter 1'univers total. On 
concentre 1'attention sur une partie S de l'univers 'lL et on ne consi
dere que Ie mouvement de S et les forces exercees sur les corps $ 
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dans S. On appeUe systeme materiel une telle partie S de l'univers 
materiel. 

Un postulat constitutit de la premiere espece specifie l'action de 
o 

l'exterieur S du systeme S sur les corps $ dans S. On suppose que 
o 

les forces f( $, S) = fs( $) exercees sur les corps $ dans S par Ie reste 
o 

de l'univers S dependent d'une maniere simple du mouvement de $ 
o 

relatif it un rep ere defini it partir de S. Ce rep ere est appele Ie repere 
priviUgie. 

Un exemple de postulat constitutif de la premiere espece est Ie 
postulat d'inertie. Pour tout corps $ dans Ie systeme S, Ia force 

o 
exercee sur $ par Ie reste de l'univers S est donnee, relatif au repere 
privilegie, par : 

(16) o dJ f($, S) =fs($) = - dt $vdm. 

On adopte ce postulat, en particulier, dans les situations phy
siques oil S est Ie systeme solaire. En ce cas, Ie rep ere privilegie est 
Ie repere dans Iequel les Hoiles fixes sont au repos en moyenne. 

Des postulats constitutifs de la premiere espece plus generaux 
resultent, si ron augmente Ie cOte droit de (16) par une fonction 
prescrite du temps, des points materiels de $ et de leurs positions 
et vitesses. 

Un postulat constitutit de la deuxieme espece specifie l'action 
mutuelle des corps contenus dans Ie systeme materiel S. La forme 
genera Ie d'un tel postulat est une relation fonctionnelle entre les 
restrictions des fonctions X(X, t) etf( $, C) it XES et $ c S, C c S. 
On appelle une telle relation une equation constitutive. 

Un exemple d'une equation constitutive dans la mecanique des 
masses ponctuelles est donne par : 

(17) Ji(X, Y) = h(X(X, t), X(Y, t» 

oil h est une fonction vectorielle prescrite de deux variables ponc
tuelles. En ce cas, il n' est pas necessaire de distinguer les corps 
it un seul point materiel et les points materiels X, Y de masses 
positives. 

Pour une theorie generale des equations constitutives dans la 
mecanique des milieux continus voir [3]. 
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9. Le principe de l'objectivite materielle. 

Les postulats constitutifs ne peuvent pas etre completement 
arbitraires parce qu'on ne change pas une situation physique si 
l'on ne change que l'observateur. 

PRINCIPE DE L'OBJECTIVITE MATERIELLE. - Un postulat consti
tutif doit etre object if, c' est-a.-dire invariant par changement de repere. 

Le cO!ltenu precis de ce principe est Ie suivant : si un postulat 
constitutif est satisfait pour un processus dynamique {Xh fi} Ie 
meme postulat constitutif doit eire satisfait pour tout processus 

dynamique { xt,,fi' } equivalent it { xhfi }. Du point de vue formel, 
Ie principe est une sorte de :rneta-axiome. II dissocie les postulats 
constitutifs admissilIDJes des postulats non admissibles. 

Pour les postulats constitutifs de la premiere espece, Ie principe 
d'objectivite materielle 'permet Ie calcul des forces exterieures dans 
les reperes non privilegies. Par exemple, Ie principe affirme qu'on 
peut obtenir la forme du postulat d'inertie dans un repere arbi
traire de la maniere suivante : supposant quef' et v' correspondent 
au rep ere priviIegie on a, d'apres (16) : 

f8($) = - d~' J 3? v' dm. 

Apres y substituer (9) et (10) on obtient la forme generale du pos
iulat d'ineitie : 

lci, vo est la vitesse de l' origine, Q est l' orientation et West la 
vitesse angulaire du repere considere relatif au repere privilegie. 

II est aise de deriver de (18) la formule classique pour les forces 
d'inertie dans un repere non inerte. Le principe d'objectivite 
materielle est necessaire pour justifier cette formule. Pour les phy
siciens, Ie principe est trop evident pour prendre la peine de 
l'enoncer. 

Les consequences du principe de l'objectivite materielle sont 
moins evidentes pour les postulats constitutifs de la deuxieme 
espece. Le principe affirme que la forme d'une equation consti
tutive doit eire la meme dans tout repere, privilegie ou non. Par 
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exemple, on montre aisement que l'equation constitutive (17) n'est 
admissible que si la fonction vectorielle h a la forme speciale : 

--+ 
(19) h(x, y) = xy h(r), 

oil h(r) est une fonction scalaire de la distance r des points x et y. 
Dans Ie cas particulier h(r) = Gr3 on a l'equation constitutive de 
la gravitation. 

Pour des applications moins triviales du principe de l'objectivite 
materielle dans la mecanique des milieux continus voir [3]. 
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The Thermodynamics of Elastic Materials with 

Heat Conduction and Viscosity 

BERNARD D. COLEMAN & WALTER NOLL 

1. Introduction 
The basic physical concepts of classical continuum mechanics are body, con

figuration of a body, and force system acting on a body. In a formal rational 
development of the subject, one first tries to state precisely what mathematical 
entities represent these physical concepts: a body is regarded to be a smooth 
manifold whose elements are the material points; a configuration is defined as 
a mapping of the body into a three-dimensional Euclidean space, and a force 
system is defined to be a vector-valued function defined for pairs of bodies l . 

Once these concepts are made precise one can proceed to the statement of 
general principles, such as the principle of objectivity or the law of balance 
of linear momentum, and to the statement of specific constitutive assumptions, 
such as the assertion that a force system can be resolved into body forces with 
a mass density and contact forces with a surface density, or the assertion that 
the contact forces at a material point depend on certain local properties of the 
configuration at the point. While the general principles are the same for all 
work in classical continuum mechanics, the constitutive assumptions vary with 
the application in mind and serve to define the material under consideration. 
When one has stated the mathematical nature of bodies, configurations and 
forces, and has laid down the ways in which these concepts occur in the general 
principles and the constitutive assumptions, then the properties of these concepts 
are fixed, and one can present rigorous arguments without recourse to "operational 
definitions" and other metaphysical paraphernalia, which may be of some use 
in deciding on the applicability of a theory to a specific physical situation but 
seem to have no place in its mathematical development. 

To discuss the thermodynamics of continua, it appears that to the concepts 
of continuum mechanics one must add five new basic concepts: these are tem
perature, specific internal energy2, specific entropy 3, heat flux, and heat suPPly4 
(due to radiation). Once mechanics is axiomatized, it is easy to give the mathe
matical entities representing the thermodynamic concepts: temperature, specific 
internal energy, specific entropy and heat supply are scalar fields defined over 

1 For more extensive discussions of the foundations of continuum mechanics 
see references [lJ- [4J. 

2 Sometimes called "internal energy density". 
3 Sometimes called "entropy density". 
4 Sometimes called "density of absorbed radiation". 
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the body, while heat flux is a vector field over the body. We believe that in 
presenting thermodynamics one should retain all the general principles of me
chanics but add to them two new principles: the first law of thermodynamics, 
i.e. the law of balance of energyl, and the second law, which for continua takes 
the form of the Clausius-Duhem inequaJity2. The constitutive assumptions of 
our present work are the following: 

(1) That there exists a caloric equation of state relating the specific internal 
energy to the "strain" 3 and the specific entropy. 

(2) That there exists a temperature equation relating the temperature to 
the strain and specific entropy. 

(3) That the stress tensor of mechanics is the sum of two terms, one of which, 
the "elastic" term, depends on only the strain and the specific entropy, and 
the other, the "viscous" term, depends on both these variables and, in addition, 
has a linear dependence on the "rate of strain"'. 

(4) That the heat flux depends on only the strain, the specific entropy and 
the spatial gradient of the temperature. (We assume smoothness but not linearity 
for this dependence.) 

We allow the heat supply to be assignable in any way compatible with the 
general principles, just as body forces are often left assignable in mechanics. 

The constitutive assumptions considered here are not the most general imagin
able li, but they are sufficiently general to cover many applications; in particular, 
they include the starting assumptions of thermoelasticity theory and the classical 
theory of viscous fluids with heat conduction. 

We feel that a statement of the role of the thermodynamic fields in the 
general laws of thermodynamics and in specific constitutive assumptions should 
serve to fix the mathematics of thermodynamics and permit a rational develop
ment of the subject without requiring the introduction of non-mathematical 
concepts, such as Heat Reservoirs, Perpetual Motion Machines, and Reversibly 
Added Heat 6. 

Here we proceed as follows. We first give a precise meaning to the term 
therttWdynamic process; such a process is defined to be a time-dependent set 
of configurations, force systems, and temperature, internal energy, entropy, 
heat supply and heat flux fields, compatible with the principles of mechanics 
and the law of conservation of energy. A thermodynamic process is said to be 
admissible if it is compatible with the constitutive assumptions under con
sideration. We then demand that the Clausius-Duhem inequality hold for all 

1 ct. §§ 241 and 242 of [4]. 
II Ct. § 257 of [4]. 
8 More precisely, the deformation gradient. 
, More precisely, the velocity gradient. 
I For example, they do not allow for all the long range memory effects covered 

in the purely mechanical theory of simple materials; ct. [5], [2]. 
• We do not believe it impossible to assign a mathematical meaning to Heat 

Reservoirs, Perpetual Motion Machines, and Reversibly Added Heat, but we feel 
that this has not yet been done, and we doubt its necessity. In several of the extant 
"axiomatizations" of thermodynamics, reference to these vague concepts appears 
to disguise the absence of, rather than to furnish, a mathematical justification for 
the conclusions drawn. 
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admissible processes. This requirement places restrictions on the constitutive 
assumptions. 

Our main interest here is in the rigorous derivation of a set of necessary and 
sufficient restrictions on the assumptions (1)-(4) for the Clausius-Duhem in
equality to hold for all admissible processes. Each of the restrictions we find 
is, by itself. a familiar formula or inequality. What is new here is the logical 
connection. 

In a future article we shall apply the general principles of the present frame
work to more general constitutive assumptions and in so doing obtain a thermo
dynamic theory compatible with long range memory and non-linear viscoelastic 
effects. such as stress relaxation. 

2. Thermodynamic processes 
Consider a body consisting of material points X. A thermodynamic process 

for this body is described by eight functions of X and the time t. with physical 
interpretations as follows: 

(1) The spatial position x = X (X, t) ; here the function X, called the deformation 
function, describes a motion of the body. 

(2) The symmetric stress tensor T=T(X, t). 

(3) The body force b = b (X, t) per unit mass (exerted on the body by the 
external world). 

(4) The specific internal energy e=e(X, t). 
(5) The heat flux vector q=q(X. t). 

(6) The heat supply r=r(X, t) per unit mass and unit time (absorbed by 
the material and furnished by radiation from the external world). 

(7) The specific entropy 1J =1J (X, t). 

(8) The local temperature #=#(X. t), which is assumed to be always positive. 
#>0. 

We say that such a set of eight functions is a thermodynamic process if the 
following two conservation laws 1 are satisfied not only for the body but also 
for each of its parts PA: 

(A) The law of balance of linear momentum: 

J :t dm = J b dm + JTn ds. (2.1) 
~ ~ o~ 

(B) The law of balance of energy 

~ :e J ;i:. ;i:dm+ Je dm= J(;i:. b +1') dm + f(;i:· Tn - q. n) ds. (2.2) 
~ ~ ~ o~ 

In (2.1) and (2.2), dm denotes the element of mass in the body. 8PA the sur
face of PA, ds the element of surface area in the configuration at time t, and n 
the exterior unit normal vector to 8PA in the configuration at time t; super
imposed dots denote time-derivatives. 

1 A thorough discussion of these conservation laws is given in [4]. §§ 196-205. 
240. 241. 
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The assumed symmetry of the stress tensor T insures that the moment of 
momentum is automatically balanced. Couple stresses, body couples and other 
mechanical interactions not included in T or b are assumed to be absent. 

Under suitable smoothness assumptions the balance equations (2.1) and (2.2) 
in integral form are equivalent to the following two balance equations in dif
ferential form 1: 

divT-e X= -e b, 

tr{TL} -div q-e e= -(1 r; 

here, e denotes the mass density and L the velocity gradient. 

(2·3) 

(2.4) 

In order to define a thermodynamic process it is sufficient to prescribe the 
six functions X, T, e, q, 'YJ, and {}. The two remaining functions band r are then 
uniquely determined by (2.3) and (2.4). 

3. The constitutive equations 
A material is defined by a constitutive assumption, which is a restriction on 

the processes that are admissible in a body consisiting of the material. An 
elastic material with heat conduction and viscosity is defined by five response 
functions i, iJ., T, ( and q. A process is said to be admissible in a homogeneous 
body consisting of such a material if the following constitutive equations hold 
at each material point X and at all times t: 

e=e(F, 'YJ), 
~ 

{}={}(F, 'YJ)' 
~ 

T=T(F, 'YJ) +((F, 'YJ)[LJ, 

q =q (F, 'YJ, grad {}) . 

(3.1) 

(3.2) 

(3·3) 

(3·4) 

Here F denotes the deformation of gradient, at X and t, computed relative 
to a fixed homogeneous reference configuration, and L denotes, as before, the 
velocity gradient; i.e., if we identify the material point X with its position X 
in the reference configuration, we have 

and 
F= VxX(X, t) (3.5 a) 

(3.5 b) 

The value ((F, 'YJ) of the response function ( is a linear transformation over the 
nine-dimensional space of tensors, and the square brackets in (3.3) indicate that 
this transformation operates on the tensor L.2 The response functions e, iJ., T, ( 
and q depend on the choice of the reference configuration. 

1 See the sections of [4] cited above. 
2 The assumed linear dependence of the "viscous stress" I(P, 1)) [L] on L is not 

essential to our present arguments; for example, for our derivation of (5.5) it suffices 
that {(P, 1)) [L] _0 as L_O. Our work on materials with fading memory [6] suggests, 
however, that if the extra-stress depends non-linearly on the velocity gradient then 
it should depend also on acceleration gradients. Since we here do not allow for an 
effect of acceleration gradients on the viscous stress, we prefer to let {(F, 1)) [L] be 
linear in L and thus stay within the theory of "linearly viscous materials", a theory 
which gives, in the sense of [6], a complete first-order approximation to the non
linear theory of materials with fading memory. 
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To specify an admissible process, it is sufficient to prescribe the deformation 
function X and the entropy distribution r; as functions of time. The deformation 
gradient 11' and the velocity gradient L can be computed from X, and then e, 
{), and T can be determined from (3.1)-(3.3). With the temperature distri
bution {) thus obtained, the heat flux q can be calculated from (3.4). Finally 
band r can be chosen so that (2.3) and (2.4) hold!. In Sections 4 and 5 we 
shall make frequent use of this observation that X and r; can be chosen inde
pendently and that to every such choice corresponds a unique admissible thermo
dynamic process. 

The constitutive equations (3.1) - (3.4) must obey the principle ot material 
objectivity 2, which states that an admissible process must remain admissible 
after a change of frame or observer. Such a change of frame is defined by a 
time-dependent orthogonal tensor Q. The scalars E, r;, and {) remain unaffected 
by a change of frame, but 11', T, L, and grad {} transform as follows: 

F-+QF, 

T-+QTQT, 

L-+QLQT +QQT, 

q-+Qq, 

grad {} -+ Q grad {} . 

(.3 .6) 

Using the methods of reference [7J, it is easy to show that the principle of 
material objectivity is satisfied if and only if the response functions obey the 
following identities: 

E (F, r;) =8(QF, r;), 
~ ~ 

{} (11', r;) ={} (QF, r;), 

Q T(F, r;) QT = T(QF, r;), 

Q l(11', 'fj)[LJ QT =l(QF, r;)[QLQT + WJ, 

Qq (F, r;, v) =q (QF, r;, Q v) 

(3·7) 

for all scalars 'fj, all vectors v, all tensors 11' and L, all orthogonal tensors Q, 
and all skew tensors W. 

1 In many treatments of continuum thermo-mechanics band r are regarded as 
assigned a priori. We do not follow this practice here. Nor are we disturbed by the 
fact that it might be difficult to control band r experimentally. Physical consider
ations suggest, however, that for each set of assigned values of F, L, and 'f} the heat 
supply r should have a negative lower bound yo<o whose magnitude Irol is the 
radiation the body would emit into an environment at zero absolute temperature. 

To account explicitly for this lower bound it would suffice to restrict the ad
missible fields X and 'f} to those which give rise to values of T, L, div q, e, and 6 
such that the left side of (2.4) is greater than e Yo. Our arguments would not be 
affected much by this restriction. 

2 See [1J - [3]. 
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The identities (3.7) can be used to derive reduced forms for the constitutive 
equations (3.1)-(3.4). One set of such reduced constitutive equations is 

e=i(U, '1/). 
~ 

fJ=fJ(U, '1/), 

RTTR =T(U, '1/) +1(U, '1/)[RTDRJ, 
(3·8) 

q=R q (U, '1/, RT grad fJ). 

Here U is the (symmetric and positive-definite) right stretch tensor and R the 
(orthogonal) rotation tensor, determined by the polar decomposition F=R U, 
and D=i-{L+LT) is the stretching tensor. 

An alternative set of reduced constitutive equations is 

e=~(C,'1/). 
fJ=fJ(C, '1/), 

FTTF=T(C, '1/) +1(C, '1/) [FTDF] , 

q=F q (C, '1/, FT grad fJ), 

where C= lJ2=FT F is the right Cauchy-Green tensor. Noting that 

FT grad fJ = J7x fJ , 

(3·9) 

(3·10) 

where J7x fJ is the gradient of the temperature with respect to the position X 
in the reference configuration, we find that the last equation of (3.9) has the 
form 1 

(3.11 ) 

In rough terms, the isotropy group of a material is the set of density-preserving 
changes of reference configuration which leave the response of the material 
unaltered. A more formal definition is the following 2. The isotropy group J 
of an elastic material with heat conduction and viscosity is the set of all uni
modular tensors H for which the following identities hold: 

e(F,'1/)=e(FH,'1/). 

:D(F, '1/)=i(FH, '1/), 
~ ~ 

T(F, '1/) = T(F H, '1/), 

I(F, '1/) [L] =1(FH, '1/) [L], 

q(F, '1/, v)=q(FH, '1/, v), 

(3·12) 

for all scalars '1/, all vectors v and all tensors F and L. It is easy to show that 
the tensors H in J form a group. Of course, the group J depends not only 
on the material under consideration but also on the choice of reference con
figuration. It can be shown, however, that the isotropy groups corresponding 

1 This is the form derived by PIPKIN & RIVLIN ([8], equation (17.2)), and by 
GREEN & ADKINS. ([9], equation (8.5.17)). 

I This definition is analogous to that given in [2] and discussed in detail for 
elastic materials (without heat conduction or viscosity) in [10]. 
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to two different reference configurations of the same material are conjugate 
and hence isomorphic. 

The unit tensor 1 always belongs to J. Suppose now that the inversion 
-1 is in J. (We note that if -1 is in the isotropy group corresponding to 
one reference configuration of a material, then -1 is in the isotropy groups 
corresponding to all other reference configurations of the same material.) In 
this case (3.12h for H= -1 yields the identity 

q (F, 'Yj, v)=q (-F, 'Yj, v). (3·13) 

On the other hand, (3.7h with Q= -1 and v replaced by -v, gives 

-q(F, 'Yj, -v)=q(-F, 'Yj, v). (3.14) 

Combining (3.13) and (3.14), we obtain the identity 

q (F, 'Yj, - v) = -q (F, 'Yj, v) . (3·15) 

In words: if -1 is in J, then, the heat flux must be given by an odd function 
of the temperature gradient. If we put v = 0 in (3.15), it follows that 

(3.16) 

Of course, (3.16) holds whenever q (F, 'Yj, v) is linear in v, i.e., when Fourier's 
law is assumed. We have shown here that even if q (F, 'Yj, v) is not linear in v, 
the presence of the inversion -1 in the isotropy group implies that q vanishes 
when gradD vanishes l . 

PIPKIN & RIVLlN [8J, § 18, have referred to the equation (3.16) as expressing 
the "non-existence of a piezo-caloric effect". 

4. The Clausius-Duhem _ inequality 
We regard qlD to be a vectorial flux of entropy and riD to be a scalar supply 

of entropy. In other words, for each process we define the production of entropy 
in the body ~ to be 

F= :t f 'Yjdm- f ~ rdm+ f ~ q.nds. 
a a aa 

Under suitable smoothness assumptions one can write 

where 

F=i'Y dm , 
a 

'Y =TJ - ; + (]-l div (qID) 

=1] - ~ + _t_divq __ t_q. gradD 
{} (! {} (! {}B 

is the specific production of entropy. 

(4.1) 

(4.2) 

(4·3) 

1 There are real materials, such as crystals in the pedial class, whose material 
symmetry does not imply that -1 be in J. 
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We now lay down the following 

Postulate. For every process admissible in a body consisting of a given material 
and for every part P1J of this body the inequality 

is valid. 
r~O (4.4) 

The inequality (4.4) is called the Clausius-Duhem inequality, and the postulate 
above is a statement of the second law of thermodynamics within the frame
work presented here. The main purpose of the present paper is to derive logical 
consequences from the postulate. 

In order that the inequality (4.4) hold for all parts P1J of the body, it is necessary 
and sufficient that the specific entropy production (4.3) be non-negative at all 
material points X and at all times t. Using (2.4) and {» 0, we see that this 
condition is equivalent to 

e {)y = e ({)ij - s) + tr{T L} - ~ q. grad {) > o. (4.5) 

It follows from (3.1) and the chain rule for the differentiation of composite 
functions that 

(4.6) 

where sp is the gradient 1 of S with respect to the tensor F, and sf} the derivative 
of S with. respect to the scalar 'Y}. Substituting (4.6) into (4.5) and using the 
relation F=LF, we obtain 

e[{)-sf}(F,'Y})]ij+tr{[T-eFsp(F,'Y})]L}- ~q.grad{)~O. (4.7) 

5. Temperature relation, stress relation, dissipation inequality 
Our postulate states that the inequality (4.7) must hold for every admissible 

process. We consider now processes that are defined by homogeneous deformations 
and homogeneous entropy distributions. For such processes, F and 'Y} are inde
pendent of the material point and depend on only the time. By (3.2), the 
temperature distribution {) is also homogeneous, and hence grad {) = O. The 
inequality (4.7) then becomes, after substitution of (3·2) and (3.3), 

e [D(F, 'Y}) - sf}(F, 'Y})]ij + tr{[T(F, 'Y}) - eFsp(F, 'Y})] L} + 
+ tr{l(F, 'Y}) [L] L} > o. 

(5.1) 

As functions of time, F and 'Y} can be c!lOsen arbitrarily. It follows that for a 
particular time, the values of F, 'Y}, L=FF-l, and ij can be assigned arbitrarily. 

Taking L=O in (5.1) shows that [D(F, 'Y}) - sf}(F, 'Y})]ij> 0 must hold for every 
value of ij; this can be the case only if the temperature relation 

holds. 
(5.2) 

Choosing ij=O and substituting at L for L in (5.1), where at is an arbitrary 
number, we obtain 

at tr{[T(F,'Y}) - eFsp(F,'Y})] L} +at2 tr{Ll(F, 'Y}) [L]} ;;:::0. (5·3) 
------

1 The definition of the gradient used here is that given in reference [7], equations 

(C. 11) and (C. ttc). In components: [sp(F,1])]it.= o~ . 
O£ji 
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This polynomial inequality in ex must be satisfied for all values of ex when F, 'YJ, 
and L are kept fixed. It is clear that this is the case if and only if the coefficient 
of ex vanishes and the coefficient of ex2 is non-negative. Thus we obtain the 
stress relation 

(5.4) 

and the dissipation inequality 

tr{L I(F, 'YJ) [LJ}> 0 (5.5) 

which must hold for all tensors L. 
Let F=RU, where R is the rotation tensor and U the right stretch tensor. 

Writing (3.7), with the choice Q=RT and W=j-RT (LT -L)R, multiplying the 
result by RT LR, and then taking the trace, we obtain 

tr{LI(F, 'YJ) [LJ} =tr{SI(U, 'YJ) [SJ} , (5.6) 

where S=j-RT(L+LT)R. It is evident that L can always be chosen so that 
S is an arbitrarily prescribed symmetric tensor. Therefore, by (5.6), the dissi
pation inequality (5.5) is equivalent to the requirement that 

tr{SI(U, 'YJ) [SJ}~O 

hold for all symmetric tensors S. 

6. Heat conduction inequality. Summary 

(5.7) 

Let us assume now that the temperature relation (S.2) can be solved for the 
entropy, so that (5.2) is equivalent to 

'YJ=fj(F, {}). (6.1) 

The invertibility of (5.2) is assured, in particular, when for each fixed F, e is 
a convex function of 'YJ. 

Continuing to keep the homogeneous reference configuration fixed, let us 
consider deformations X that are both homogeneous and constant in time. Each 
such deformation is characterised by a unique value of F, and, of course, we 
have L=O. Let us also consider time-independent temperature distributions 
{}={}(X). By (6.1), for each pair {}={}(X), F=const., a corresponding t~me
independent entropy distribution 'YJ = 'YJ (X) is uniquely determined. Thus, by 
the last paragraph of Section 2, a prescribed constant F and a prescribed function 
{} (X) uniquely determine an admissible process. For such a process, the in
equality (4.7) reduces to 

-q. grad {}>o. (6.2) 

Since {}={}(X) can be so chosen that, at a particular material point, both {} 
and grad {} have arbitrarily assigned values, it follows from (6.2) and (3.4) that 
the heat conduction inequality 

v· q(F, 'YJ, v):::;;O 

must hold for all vectors v, all tensors F and all scalars 'YJ. 
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Keeping F and 'Yf fixed, let us define a scalar function of the vector v by 

!p (v) =v . q (F, 1], 'I)). (6.4) 

The heat conduction inequality (6.3) states that !p (v) has the maximum 0 at 
v=O. A rule of calculus tells us then that the gradient of !p(v) with respect 
to v must vanish for v=O. Using the rules for the differentiation of products, 
we find from (6.4) that 

{Wv q (F, 1], v)Yv + q (F, 1], v)}lv=o= q (F, 1],0) = O. (6.5) 

Therefore, the condition (3.15), expressing the non-existence of a piezo-caloric 
effect, is also a consequence of the heat conduction inequality and hence can 
be expected to hold even if - I does not belong to the isotropy group of the 
material. This is, in fact, a result already obtained by PIPKIN & RIVLIN [8J, 
§ 18. 

We summarize the results obtained as a consequence of our postulate: An 
elastic material with heat conduction and viscosity is determined by the three response 
functions e, l, and q. The temperature and stress are given by the relations (5.2) 
and (5.4). The response function 1 is restricted by the dissipation inequality (5.5). 
If the temperature relation is invertible, the response function q is restricted by 
the heat conduction inequality (6.3) and hence also by (3.15). 

Using (5.2), (3.3), and (5.4), we can rewrite the inequality (4.5) as follows: 

e#y=tr{Ll(F,1J) [LJ}- ~.q.grad#;;::::O. (6.6) 

It is clear from (6.6) that the temperature relation (5.2), the stress relation 
(5.4), the dissipation inequality (5.5), and the heat conduction inequality (6.3) 
are sufficient that the Clausius-Duhem inequality hold for all admissible processes. 

7. Linearly viscous fluids 
We say that a material is a fluid if its isotropy group J is the group '¥t of 

all unimodular tensorsl. If J ='¥t for one reference configuration, then J =Olt 
for all reference configurations of the same material; hence, the property of 
being a fluid is intrinsic to the material. 

For an elastic fluid with heat conduction and viscosity we have the identities 
(3.12) for all unimodular tensors H, and, therefore, e (F, 1J), 1 (F, 1J) and q (F, 1J, v) 
can depend on F only through I det FI or, equivalently, through the specific 

volume V= ~. The temperature and stress relations now reduce to 
e 

#=B1J (V,1J), T(v, 1J) =Bv(V, 1J)I. (7.1) 

The identity (3.7)4 implies that 

Q l(v, 1J) [D] QT =l(v, 1J) [QD QT] (7.2) 

holds for all symmetric tensors D and all orthogonal tensors Q. It is well known 2 

that the identity (7.2) holds if and only if 1 is of the form 

l(v, 1J)[D] =2.u D + A(trD)I, (7-3) 

1 Ct. [2J. 
2 Ct. [4J, § 298. 
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where # and A. are scalar functions of v and 'Yj. Substituting (7.1)2 and (7.3) 
into (3.8)3' we find 

(7.4) 
where 

(7.5) 

Of course, (7.4) is the familiar constitutive equation for linearly viscous fluids. 
It is significant, however, that the pressure p is given by the same formula 
(7.5) which holds for perfect (inviscid) fluids. The dissipation inequality (5.7) 
states that 

2# tr 8 2 + A. (tr 8)22 0 (7.6) 

for all symmetric tensors 8. It is known 2 that the inequalities 

#?;. 0 , (7.7) 

are equivalent to (7.6). They state that the shear viscosity # and the bulk 
viscosity A. + t# must both be non-negative. 

For fluids, the identity (3.7ls reduces to 

Q q (v, 'Yj, v) =q (v, 'Yj, Qv) . (7.8) 

This identity holds if and only if q is of the form 

q (v, 'Yj, v) = -x v (7.9) 

where x is a scalar function of v, 'Yj, and v . v. By (7.9), the heat conduction 
inequality (6.3) reduces to 

x?;.o, (7.10) 

which states that the heat conductivity x cannot be negative. 
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This paper is concerned with elastic materials; these are substances for which 
the present stress S on a material point depends on only the present local 
configuration 1 M of that point: 

S=S(M). (1 ) 

There are several highly developed branches of physics which rest on special 
cases of the constitutive assumption (1): Euler's hydrodynamics of perfect 
fluids, the classical theory of infinitesimal elastic deformations, and the modem 
theory of finite elastic deformations. Our present interest is not in the solution 
of special problems in these subjects but rather in the theory of the form of 
the function S itself; here we investigate the general limitations placed on S 
by material symmetry and thermodynamic considerations. 

Applicability of the Theory 
Let us consider the situations in which we expect a theory based on (1) to 

be useful. It is known that there is a large, albeit not all-inclusive, class of 

1 In Sections 1 and 2 we explain more precisely some of the mechanical and 
kinematical terms used in this Introduction with only abbreviated and heuristic 
descriptions. 
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substances, called simple materials, whose behavior in general mechanical pro
cesses is described by the assertion that the stress at a material point is deter
mined by a function of the history of the local configuration of the point: 

00 

S = €i (MS). 
s=o 

(2) 

Here M S denotes the local configuration s seconds ago, and €i is a functional 
whose argument is the function M S , O~s< 00, and whose value is the symmetric 
tensor S. Most of the literature on continuum mechanics deals with simple 
materials. For examples we have the theory of linear viscoelasticity, the hydro
dynamics of perfect, viscous and non-Newtonian fluids, and also recent general 
theories of materials with nonlinear memory. 2, 3 

Now, when we consider a material point which has been in its present local 
configuration at all times in the past, the function M S reduces to a constant, 

MS- M=const., 

and (2) yields the result that S depends only on M: 

S=S(M). (4) 

Thus, the theory of elastic materials describes simple materials which have 
always been at rest. 

Suppose that the material described by the functional €i in (2) has a "fading 
memory", i.e., that €i is continuous in such a way that S is "more sensitive" 
to changes in the local configuration M S at small s (recent past) than to changes 
in the local configuration at large s (distant past). 4 Then, given any history M S , 

we can construct retarded histories M""s, 0 < IX < 1, and prove that 7 

00 

lim €i (M""S) = S (MO) . 
,,"--->-0 s=o 

(5) 

The function S in Eqs. (4) and (5) is the same function. 
Equation (5) tells us that for every history M S there exists a retarded history 

M""s, "essentially the same as M S but slower", such that the present stress cor
responding to M""s is given, to as good an approximation as we wish, by S(MO). 
This result justifies, within the framework of the theory of simple materials, 
the use of the static stress-strain function S in the discussion of slow processes; 
i.e., it gives a motivation to the dynamic (as distinguished from the static) 
theories of perfect fluids and perfectly elastic solids. 

Thermostatic Inequalities 

In the theory of infinitesimal elastic deformations from a natural state (i.e. 
a state with zero stress), it is usually assumed that the stress-strain function S 
IS determined by the gradient of a positive-definite strain-energy function G. 

2 GREEN, A. E., & R. S. RIVLIN, Arch. Rational Mech. Anal. 1, 1 (1957). 
3 NOLL, W., Arch. Rational Mech. Anal. 2, 197 (1958). 
4 This concept of "fading memory" is made precise in reference 5 and exploited 

further in reference 6. 
6 COLEMAN, B. D., & W. NOLL, Arch. Rational Mech. Anal. 6, 355 (1960). 
6 COLEMAN, B. D., & W. NOLL, Rev. Mod. Phys. 33, 239 (1961). 
7 The crucial step in proving (5) is Eq. (3.21) of reference 5. 
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It has often been supposed that the positive-definiteness of G should be justifi
able in terms of fundamental principles in classical thermodynamics, but rigorous 
arguments to this effect have not come forth. Nor has classical thermodynamics 
told us how to extend this assumption on G (and hence on S) for infinitesimal 
elasticity to an assertion about S that is in accord with experience in finite 
elasticity. 8 

Yet, Eq. (3) tells us that the function S must be appropriate for those 
physical situations in which a simple material can be regarded as having been 
forever at rest, and S must therefore describe "equilibrium states." Further
more, our thermodynamic intuition suggests that an equilibrium state is one 
which maximizes an entropy or minimizes a free energy with respect to an 
appropriate class of disturbances, and this, in turn, suggests that the function 
S should be subject to certain inequalities. The failure of classical thermo
dynamics to yield these inequalities is, in part, due to the difficulty in deciding 
what to include in the "class of disturbances". 

In 19599 ,10 we proposed a theory of thermostatics which led to a general 
inequality on S. We refer to that inequality as the TI (Thermostatic Inequality). 
In references 9 and 11 consequences of the TI were obtained for various types 
of materials. In the theory of infinitesimal deformations from a natural state, 
the TI reduces to the classical assumption of the positive-definiteness of G. The 
consequences of the TI for finite elastic deformations seem to be in accord with 
all experience in solids. 

For example, consider a homogeneous deformation of an undistorted isotropic 
elastic cube in the direction of its three axes. The TI then implies that the 
greater stretch occurs always in the direction of the greater applied force. 9 

For fluids, the TI is equivalent to the assertion that the pressure be positive 
and that the compression modulus be greater than two-thirds of the pressure. 
That the pressure is positive seems to be in accord with experience. However, 
for a fluid whose critical point occurs at a high pressure there can be a range 
of densities at which the compression modulus is less than two-thirds of the 
pressure. 

Our TI is equivalent to a requirement of stability against homogeneous 
disturbances at fixed surface forces. Such a requirement should be appropriate 
for solids, because it is the surface forces that are controlled in most measure
ments on solids. For fluids, however, it is usually pressure, and not surface 
force, that is controlled. When the pressure is fixed during a deformation, the 
surface forces do not remain fixed but change their direction so as to stay 
normal to the surface and change their magnitude so as to compensate for the 
variation of the surface area. The familiar statement that the compression 
modulus is positive can be derived from a requirement of stability against varia
tions in volume at fixed pressure. Such a requirement is suitable for fluids but 
does not yield adequate restrictions on the behavior of solids; it does not even 
yield the positivity of the shear modulus for isotropic infinitesimal elasticity. 

8 TRUESDELL, C., Z. angew. Math. u. Mech. 36, 97 (1956). 
9 COLEMAN, B. D., & W. NOLL, Arch. Rational Mech. Anal. 4, 97 (1959). 
10 A different formulation of the 1959 theory is given in reference 11-
11 COLEMAN, B. D., Arch. Rational Mech. Anal. 9, 172 (1962). 
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It is still an open question whether it is possible to find a single inequality from 
which one can derive all thermodynamic restrictions on the static behavior of 
elastic materials, whether they be fluids, solids, or neither. 

In this article we make a detailed study of implications of the TI, stating, 
without proof, some of the known theorems and presenting several new theorems. 
Proofs are supplied for all new theorems stated. 

Throughout the present discussion we ignore the dependence of the stress 
on a thermodynamic parameter, such as the temperature or the entropy density. 
Furthermore, we follow the procedure of a recent article by TRUESDELL & 
TOUPIN12, and, whenever possible, we work with a generalization of the TI, 
called the WTI (Weakened Thermostatic Inequality) which can be expressed 
directly in terms of the stress-strain function S without recourse to mention 
of internal energy or free-energy functions. This deliberate suppression of men
tion of thermodynamic variables is done to emphasize the mechanical signifi
cance of our thermodynamic considerations. 

Beiore going into the theory of the TI, we discuss the characterization of 
material symmetry in terms of stress-strain functions, giving simplified proofs 
of some known propositions and presenting several new results. 

On Notation 
The term tensor is used here as a synonym for linear transformation of a 

vector space into itself. We denote tensors by Latin majuscules: F, U, Q, R, I. 
We reserve the symbol X, however, to represent material points of a physical 
body. For the trace of a tensor F we write tr F, and for the determinant of 
F we write det F. We say that F is invertible if F has an inverse F-l, which 
is the case if and only if det F =1= o. The transpose of F is denoted by FT; F is 
symmetric if FT =F and skew if FT = -F. The "unit tensor" (i.e. the identity 
transformation) is denoted by I. If Q QT = QT Q=I, then Q is orthogonal. If 
Q is orthogonal and such that det Q = + 1, then Q is proper orthogonal. If the 
inner product v· Uv is strictly greater than zero for all nonzero vectors v, 
then we say that the tensor U is positive-definite. If U is symmetric, then a 
necessary and sufficient condition that U be positive-definite is that all the 
proper numbers of U be positive. 

1. Mechanical Preliminaries 
For convenience, we briefly summarize some definitions and general results 

of continuum mechanics which are prerequisite to the present paper. Since 
detailed axiomatic treatments of this material have been given elsewhere, 3,13,14 

the results stated here are asserted without proof. 

12 TRUESDELL, C., & R. A. TOUPIN, Arch. Rational Mech. Anal. 12, 1 (1963). The 
inequality which we here call the "WTI" is called the "GCN condition" by TRUESDELL 
& TOUPIN. 

13 NOLL, W., in: Proceedings of the Berkeley Symposium on the Axiomatic Method, 
pp. 266- 281. Amsterdam: North Holland. 

14 Another brief summary is given in § § 1 and 5 of reference 9. For a thorough 
exposition of the foundations of continuum mechanics see C. TRUESDELL & R. A. 
TOUPIN, in: Encyclopedia of Physics, Edited by S. FLUGGE, Vol. 111/1. Berlin
Gottingen-Heidelberg: Springer 1959. 
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Kinematics 

A body ?A is a smooth manifold whose elements X are called material points. 
A configuration I of ?A is a one-to-one mapping of ?A onto a region Bl in a three
dimensional Euclidean point space C. The point x=/(X) is called the position 
of X in the configuration I, and Bl=/(?A) is called the region occupied by ?A in I. 
The mass distribution m of ?A is a measure defined on subsets of ?A. To each 
configuration I of ?A corresponds a mass density e. 

If we have two configurations 11 and 12 of the same body PA, we can con
sider the composition !h,l of 12 with the inverse 111 of 11; g2,l is defined by 

g2,d~) =/2(111 (x)). 

Clearly, g2,l is a mapping of the region Bl1 occupied by ?A in the configuration 
11 onto the region fJl2 occupied by PA in the configuration 12. The class of ad
missible configurations I is assumed to be such that for any two configurations 
11 and 12' g2,l is a smooth homeomorphism15 of fJl1 onto fJl2. Now, since g2,l 
is a mapping of one region of ordinary Euclidean space onto another, there is 
no difficulty in computing the gradient of g2 l' grad g2 1. Because 11 is one
to-one, grad g2,l can be regarded as either a 'field over 'fJl1 or as a field over 
the manifold ?A. Here it is convenient for us to take the latter point of view. 
We denote the values of gradg2,l by F;,l(X). Of course F;,dX) is a tensor; 
it is called the deformation gradient (at the material point X) of the configmation 
12 computed taking the configuration 11 as reference. Because the function g2 1 

is one-to-one, the tensors F;,l (X) are invertible. 
If we have three configurations 11,/2' la of the same body PA and compute 

the three deformation gradients Fa,dX), Fa,2 (X) and Fa,l (X), then it follows 
from the chain rule for differentials of vector functions that 

(1.1) 

If F;,l is independent of X, we say that 11 and 12 are related by a homogeneous 
deformation. If, in this case, F;,l is a proper orthogonal tensor, then F;,l is 
said to characterize a rigid rotation. If F; 1 is orthogonal (with no restriction 
on the sign of det F; 1)' then F; 1 is said t~ correspond to an orthogonal trans-, , 
formation, i.e. a combination of rigid rotations and reflections. If F;,l has the 
form ~Q, where ~ is a scalar and Q is orthogonal, then F;,l describes a similarity 
transformation, i.e. a combination of an orthogonal transformation and a uni
form expansion by the factor~. If F; 1 is a positive definite symmetric tensor, 
then 12 is said to be obtained from II' by a pure stretch; the proper vectors of 
F; 1 then give the principal directions of stretch, and the proper numbers of 
F;' 1 are the pnncipal stretches. 

, Let us return to deformations which are not necessarily homogeneous; such 
deformations can still be regarded, in a sense which we shall now make precise, 
as homogeneous on a "local level". 

If, at a particular material point X, F; 1 (X) is the unit tensor I, then we 
say that 11 and 12 give rise to the same loc~l configuration at X. To state this 

15 A smooth homeomorphism is a one-to-one function 9 such that both 9 and 
its inverse g-1 are continuously differentiable. 
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more formally, we observe that for each fixed X we can define an equivalence 
relation "" .. ../' among all the configurations I of f!lJ by the condition that 11 "-'/2 
if ~ 1 (X) = I; the resulting equivalence classes of configurations are the local 
configurations M of X. If MI is the equivalence class of It at X and if M2 is 
the equivalence class of 12 at X, then ~,l (X) depends only on MI and M2; it 
is also true that M2 is uniquely determined by ~ I (X) and MI' Hence we can 
call ~,l (X) simply the deformation gradient from M~ to M 2 • Dropping the symbol 
X in ~,tCX), we write 

(1.2) 

If we denote the mass densities at X corresponding to the local configurations 
MI and M2 by !h and e2' respectively, then 

(1.3) 

It is often convenient to employ a fixed local reference configuration Mo and 
to characterize all other local configurations 

M=FMo (1.4) 

by their deformation gradients F from Mo. It follows from (1.1) that if 

(1.5) 

then the deformation gradient H from Ml to M2 is given by 

(1.6) 

A theorem of algebra, called the polar decomposition theorem, states that 
any invertible tensor F can be written in two ways as the product of a symmetric 
positive-definite tensor and an orthogonal tensor: 

F=RU, 

F=VR. 

(1.7) 

(1.8) 

Furthermore, the orthogonal tensor R and the symmetric positive-definite tensors 
U and V in these decompositions are uniquely determined by F and obey the 
following relations: 

U2=FTF, 

V2=FFT, 

U=RTVR. 

(1.9) 

(1.10) 

(1.11) 

Equations (1.7) and (1.8) have the following significance in kinematics: Any 
deformation gradient F may be regarded as being the result of a pure stretch 
U followed by an orthogonal transformation R, or an orthogonal transformation 
R followed by a pure stretch V. These interpretations uniquely determine the 
pairs R, U and R, V. The orthogonal transformations entering these two inter
pretations are the same; however, the pure stretches U and V can be different. 
It follows from (1.11) that although U and V may have different principal 
directions, they must have the same proper numbers u •. We call the orthogonal 
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tensor R the rotation tensorl6 and the tensors U and V, respectively, the right 
and left stretch tensors. If M2 =FMl , then we call U and V, respectively, the 
right and left stretch tensors from Ml to M2 , and the proper numbers u. of U and 
V are called the principal stretches from Ml to M2 • 

Stress 
One distinguishes between contact forces and body forces. On assuming the 

principle of linear momentum and the principle of angular momentum, one can 
show, after laying down some strong continuity assumptions, that the contact 
force de across an oriented surface element with unit normal n and area dA 
is given by 

de=SndA, (1.12) 

where S is a symmetric tensor called the stress tensor.17 
A proper vector of S is said to determine a principal axis of stress. Proper 

numbers of S are called principal stresses. 
Since we are here interested in only "local phenomena", we ignore body 

forces throughout our discussion. 

Changes of Frame 
A change of frame is the mathematical embodiment of the physical concept 

of a change of observer. 
In this paper we assume that the stress tensor S at a material point X is deter

mined by the present value of the local configuration M at that point. It follows 
that, for our present purposes, we can define a change of frame to be the follow
ing simultaneous transformation of the local configuration Mx and the stress 
Sx at each material point X of a body: 

Mx-+QMx, 

Sx-+QSxQ-l; 

(1.13 a) 

(1.13 b) 

here Q is an orthogonal tensor independent of X. The change of frame (1.13) 
is said to be characterized by Q. 

In other words, a change of frame is a simultaneous orthogonal transformation 
of both the present configuration of 81 and the present force system acting on 81. 

The principle of material objectivity is a mathematization, for classical me
chanics, of the physical idea that the behavior of a material should be inde
pendent of the observer. In our present theory this principle reduces to the 
statement that the dependence of the stress on the local configuration must 
be invariant under changes of frame; i.e., this dependence must be such that 
if M is changed from M to QM, where Q is any orthogonal tensor, then the 
stress S corresponding to M must change to Q S Q-l. 

2. The Response Function and the Isotropy Group 
We are now prepared to state formally our 
Fundamental Constitutive Assumption. To each local configuration M there 

corresponds a unique value of the stress tensor S. 

18 In applications R is usually proper orthogonal. 
17 For details, see reference 13. 
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Such a correspondence between Sand M is called an elastic material (or, 
simply, "a material"). Since the behavior of a material should be independent 
of the observer, we also lay down an 

Assumption of Material Objectivity. The dependence of the stress S on the 
local configuration M is such that if M2 = QMl where Q is any orthogonal tensor, 
then S2 = Q SI QT where SI and S2 are the stresses corresponding to Ml and 
M 2 , respectively. 

We follow standard procedure and express the dependence of S on M by 
picking a local reference configuration Mo, characterizing all local configurations 
by their deformation gradients F from Mo in accordance with (1.4), and then 
regarding S as a function g of F: 

S=g(F). (2.1) 

The function g is called the response function, of our material, taken relative 
to Mo. 

lt follows from our Assumption of Material Objectivity that g must obey 
the identity 

g (QF) = Qg (F) Q-l (2.2) 

for all tensors F and all orthogonal tensors Q. Using Eqs. (2.2) and (1.7), we 
infer that Eq. (2.1) is equivalent to 

S=Rg(U)R-I. (2·3) 

The function g depends on the choice of the reference configuration Mo. 
To exhibit the nature of this dependence of g on M;" we note that it follows 
from (1.5) and (1.6) that if F and F' are two deformation gradients characterizing 
the same local configuration M with respect to two different local reference 
configurations Mo and M;, i.e. 

and if 

then 

M=FM;,=F'M;, 

M;=GMo, 

F=F'G. 

If the response functions relative to Mo and M; are denoted by g and g', 
respectively, we infer 

S=g (F) =g'(F') =g'(FG-l). 
This proves 

Proposition 1. If g and g' are the response functions for the same material 
but taken relative to dilferent local configurations Mo and M;, with M; =GM;" 
then 

g(F)=g'(FG-l) (2.4) 
for all F. 

For a given material it may turn out that g remains the same function if 
the local referen~e configuration Mo is changed to another local reference con
figuration M;=HMo with the same density, i.e., that 

g (F) =g'(F) (2.5) 
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for all F. (The physical interpretation of the identity (2.5) is that the two con
figurations Mo and M; must be equal in their response to equal deformations, 
i.e., that the classes of reference configurations for which the identity (2.5) 
holds must characterize the isotropy of the material under consideration.) Now, 
it follows from (2.4) that if (2.5) holds for A(, and M; =H Mo' then 9 satisfies 
the identity 

9 (F) =g (F H-I) (2.6) 

for all F. Since we are here assuming that M; and Mo have the same density, 
it is clear that IdetHI =1; i.e., H is here a unimodular transformation. If the 
identity (2.6) holds for H-I, it holds also for H; furthermore, the set of unimodular 
transformations H for which the identity (2.6) holds forms a group. Let us now 
state the following important formal definition whose physical motivation should, 
we feel, now be clear. 

Definition. The group f of unimodular tensors H for which the identity 

g(FH)=g(F) (2.7) 

holds for all F, where 9 is the response function relative to the reference con
figuration A(, , is called the isotropy group relative to Mo. 

f depends on A(, , but we shall see that for a given material the isotropy 
groups f and f' relative to two distinct local reference configurations A(, and 
M; are conjugate and hence isomorphic. In fact, combination of (2.4) and (2.7) 
shows that 

g'(FG-I) = g'(F H G-I) (2.8) 

for all F. If we put H'=GHG-I and F'=FG-I, then F HG-I=F' H', and (2.8) 
becomes the assertion that 

g'(F') = g'(F' H') (2.9) 

for all F', but this simply says that H' is in f'. Hence we have 

Proposition 2. If G is the deformation gradient from Mo to M;, then H belongs 
to f if and only if GHG-I belongs to f', where f and f' are, respectively, the 
isotropy groups relative to A(, and M;. 

f =f' would mean that the change of reference configuration G does not 
affect the isotropy group. By Proposition 2 this is the case if and only if G-I H G 
belongs to f. In the language of group theory, this condition states that G 
must belong to the normalizer group of f within the full linear group!l'. Thus 
we have 

Proposition 3. A change of reference configuration from Mo to G Mo leaves the 
isotropy group f unchanged if and only if G belongs to normalizer of oF in Y. 

Suppose Q is orthogonal and belongs to f; then we can combine the identity 
(2.6), with H = Q, and the identity (2.2), to obtain 

Proposition 4. A n orthogonal tensor Q belongs to the isotropy group f if and 
only if 

(2.10) 
for all tensors F. 
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Definitions. If an elastic material has a local configuration Mo such that 
the corresponding isotropy group is either the orthogonal group (f) or a group 
which contains (f) as a subgroup, then we say that the material is isotropic, and 
Mo is called an undistorted local configuration. If a material is such that for 
some Mo' .? is a subgroup (which need not be proper) of (!), then we say that 
the material is a solid, and we again call Mo undistorted. Hence for the un
distorted configurations Mo of an isotropic solid.? = (f). In general, we say that 
a configuration Mo is undistorted if .? is comparable to (!); i.e. if .? either is itself 
a subgroup of (f) or contains (f) as a subgroup. We say that a material is a fluid 
if .? is the full unimodular group 011. Since (f) is a subgroup of 011, an elastic 
fluid is isotropic. It follows from Proposition 2 that if .? =011 for one local con
figuration Mo, then of' =011 for every other local configuration M:; hence, every 
configuration of a fluid is un distorted. 

Note. Continuum mechanics does not yet have a standard terminology for the 
various mathematical concepts behind the intuitive notion of "isotropy". The parti
cular definitions we give here are specializations to elastic materials of the definitions 
given by NOLL3 for general simple materials. The reader is cautioned that, whereas 
we use isotropic as a quality of a material, other writers regard isotropic as a quality 
of both a material and a configuration. When these writers say that "the material 
is isotropic in the configuration M", we say that "M is an undistorted configuration 
of the isotropic material". 

The following proposition is an immediate consequence of Proposition 4. 

Proposition 5. The response function 9 of an isotropic material, when taken 
relative to an undistorted state, obeys the following identity for all tensors F and 
all orthogonal tensors Q: 

g(QFQ-l)= Qg(F) Q-l. (2.11 ) 

Tensor-valued functions obeying (2.11) are called isotropic functions. 
The next three propositions illustrate some of the physical motivation behind 

our formal definitions. 

Proposition 6. The stress on an undistorted state of an isotropic material is 
always a hydrostatic pressure. 

This proposition states that if of contains (f) as a subgroup (properly or im
properly), then g(I)=-pI. 

Proof. By hypothesis and Proposition 5 we have 

Qg (I) Q-l= 9 (Q I Q-l) = 9 (I) 

for all orthogonal tensors Q; i.e., 9 (I) must commute with all orthogonal tensors. 
This is possible only if 9 (I) is a scalar multiple (- p I) of the unit tensor I, q.e.d. 

Proposition 7. The stress on an elastic fluid is always a hydrostatic pressure 
- p I which depends on only the density e. 

In other words, for a simple fluid, 

9 (F) = - P (e) I (2.12) 
where 

e = IdetFI eo, (2.13 ) 
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e being the density of the present local configuration F M and eo the density of 
the local reference configuration ~. 

Proof. For any given tensor F, the tensor H = 1 det FI F-l is obviously uni
modular and hence belongs to the isotropy group J ='fI of the fluid. There
fore, by (2.7), 

g (F) = g (F H) = g (I det F 1 I) 
depends only on 1 det FI or, equivalently, on the density e. That g (F) is a hydro
static pressure for all M and F is a consequence of Proposition 6 and the fact 
that a simple fluid is an isotropic material all of whose configurations are un
distorted. 

Proposition 8. Two undistorted local configurations of an isotropic solid can 
differ by only a similarity transformation. 

Proof. By definition, the isotropy group of an isotropic solid, relative to 
an undistorted reference configuration, is the orthogonal group trJ. Hence, by 
Proposition 3, a change G from one undistorted reference configuration to an
other must belong to the normalizer of trJ in.P. But it is a known result in group 
theory that the normalizer of trJ is the group of all similarity transformations, 18 

q.e.d. 
3. Undistorted States of Aeolotropic Solids 

Proposition 6 of Section 2 shows that the stress on an undistorted local con
figuration of an isotropic material (solid or not) must be a hydrostatic pressure. 
Here we investigate the limitations material symmetry imposes upon the stress 
on undistorted configurations of various types of aeolotropic solids. We also 
extend Proposition 8 of Section 2 to obtain limitations on the possible strains 
which can relate undistorted states of general solids. 

As far as purely mechanical behavior is concerned, the symmetry of an 
elastic solid is characterized by a corresponding "type" of isotropy group J. 
By our definition of the term solid, J will be a subgroup of the orthogonal group trJ 
if an undistorted local configuration ~ is used as a reference. If M: = G ~ 
is another undistorted reference configuration, then the isotropy group J' cor
responding to M; will also be a subgroup of the orthogonal group. Moreover, 
according to Proposition 3 of Section 2, J' will be the conjugate J' = GJ G-l 
of J under G; i.e., every transformation Q' in J' will be of the form 

Q'=GQG-l (3.1) 

where Q is a member of J. Let 
G=RU (3·2) 

be the polar decomposition of G, so that U is the right stretch tensor and R 
the rotation tensor of the deformation carrying Mo into M;. Combining Eqs. (3.1) 
and (3.2), we find 

Q'G=GQ, 

Q'R U = R U Q = (R Q) (Q-l U Q) . 
(3·3) 

18 Cf. H. WEYL. The Classical Groups, p. 22. Princeton 1946. 
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Since both Q'R and R Q are orthogonal tensors while U and Q-l UQ are both 
positive-definite and symmetric, (3.3) gives two polar decompositions of the one 
tensor Q' G. Therefore, the uniqueness of a polar decomposition implies that 

Q'R=RQ and U=Q-IUQ. (3.4) 

The first of the Eqs. (3.4) shows that every member Q' of .?' is of the form 

Q' =R QR-l, (3.5) 

i.e., that .?' is actually a confugate .?' =R.? R-l of.? within the orthogonal grMep. 
We say that two subgroups of the orthogonal group are of the same type if they 
are conjugate in this sense. The isotropy group of a solid depends on the choice 
of reference configuration, even when this configuration is restricted to be un
distorted. The type to which this group belongs, however, represents an in
trinsic property of the material. 

Crystalline solids are classified into thirty-two classes, each of which is char
acterized by a certain type of symmetry group. The symmetry groups are finite 
subgroups of the orthogonal group. On putting Q = - I III (2.2) we see that 

9 (F( - I)) = (- I) 9 (F)( - I) =9 (F), (3·6) 

which shows that the inversion - I is always a member of the isotropy group. 
This inversion, however, does not belong to the symmetry group of some of 
the crystal classes.l9 The following assumption seems to be natural: 

Hypothesis on Crystalline Solids. Consider a crystal which, relative to some 
undistorted state M o ' has the crystallographic symmetry group (i.e. point 
group) «i'. The isotropy group.? of this crystal, relative to ~, is assumed to 
be the group generated by «i' and the inversion - I. 

The 32 types of symmetry groups20 give rise to only 11 types of isotropy 
groups. In describing a group .? we need not list all the elements of .? but 
only a set of generators of .?, i.e. a set of members of .? which, when they and 
their inverses are multiplied among themselves in various combinations, yield 
all the elements of.? For an isotropy group relative to an undistorted state 
of a solid it is always possible to find a list of generators - I, Ql' ... , Qm such 
that each Qi is proper orthogonal. We denote by R: the right-handed rotation 
through the angle q;, 0< q;< 2n, about an axis in the direction of the unit 
vector n. Each proper orthogonal transformation =1= I is a rotation of the form R:. 
Table 1 gives a description of the 11 types of isotropy groups for crystals. In 

this table, i,j, k denotes a right handed orthonormal basis and d= ;3 (i +j + k). 

A change from one group to another of the same type corresponds merely to 
a change of the orthonormal basis i,j, k. 

19 If we were dealing here with vector phenomena, as in electromagnetic theory, 
then we should not automatically have -J in.?, and we should have instead'? =«i'. 
In other words, it is because our present theory involves only tensors of order two 
that our isotropy groups are sometimes bigger than the crystallographic point groups. 

20 Complete lists of members for all these groups are given by G. F. SMITH & 
R. S. RIVLIN, Trans. Am. Math. Soc. 88, 175 (1958). The names we employ for the 
various crystal systems and classes are those used by SMITH & RIVLIN, who, in turn, 
state that they come from the 1952 Edition of DANA'S Textbook of Mineralogy, 
revised by C. S. HURLBUT (New York: John Wiley). 
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Table 1. Isotropy Groups tor the Various Crystal Classes 

Ref. Proper Orthogonal Number of 
Crystal Class Elements 

No. Generators of "' in", 

Triclinic System 

1. all classes I 2 

Monoclinic System 

2. all classes RJ: 4 

Rhombic System 

3. all classes R'/. Rj 8 

Tetragonal System 

{ tetragonal-disphenoidal } 
J?Yi2 4. tetragonal-pyramidal 8 

tetragonal-dipyramidal 

{tetragonal~""I=Oh'dm1 ) 
5. ditetragonal-pyramidal RW·. Rf 16 

tetragonal-trapezohedral 
ditetragonal-dipyramidal 

Cubic System 

6. { tetratoidal } 
diploidal 

Rf. Rj. Ra,"'3 24 

{ hextetrahedral } 
7· gyroidal R'r. Rr 48 

hexoctahedral 

Hexagonal System 

8. {trigOnal-pyramidal} 
rhombohedral 

R1c"'3 6 

{ditrigonal-pyramidal } 
9· trigonal-tra pezohedral R1c"'/3. Rf 12 

hexagonal-scalenohedral 

{ trigonal-dipyramidal } 
10. hexagonal-pyramidal RW3 12 

hexagonal-dipyramidal 

{ ditrig=al-dipymmidal ) 
11- dihexagonal-pyramidal RW3• Rf 24 

hexagonal-trapezohedral 
dihexagonal-dipyramidal 

With respect to their elastic behavior alone. crystals can show only the 
11 types of symmetry characterized by the 11 types of isotropy groups. 

A type of symmetry appropriate not to crystals but to materials with a 
bundled or laminated structure or to drawn ~ibers is transverse isotropy. It is 
defined by the assumption that the isotropy group consists of ± I and ± RJ;. 
for some fixed unit vector k. and all angles qJ. 0< qJ< 2n. 

Consider an elastic solid and a particular undistorted reference configuration 
Mo. Denote the corresponding response function by g and the corresponding 
isotropy group by oF. The stress on M" is given by 

(3·7) 
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The following is an immediate consequence of Eq. (2.10) for F=I: 
Proposition 1. The stress 50 on an undistorted local configuration ~ of a 

solid commutes with every member of the isotropy group .F for ~; i.e. 

(3·8) 
holds for all Q in .F. 

It is easily seen that (3.8) holds for all Q in .F if it holds for all rotations Q., 
i = 1, ... , m in a list - I, Ql' ... , Qm of generators of .F. Therefore, the problem 
of finding the possible stresses 50 on an undistorted state reduces to the problem 
of finding those symmetric tensors that commute with a certain set of rotations 
of the form Ria. For each of the 11 cases given in Table 1 and for the case of 
transverse isotropy, this problem can easily be solved with the help of the follow
ing 

Commutation Theorem 21. The symmetric tensor 5 commutes with the ortho
gonal tensor Q if and only if Q leaves each of the characteristic spaces of 5 invariant, 
i.e., if it maps each characteristic space into itself. 

Here, a characteristic space of 5 is defined to be a maximal subspace (of 
the ordinary three-dimensional vector space) consisting of only proper vectors 
of 5. If 5 has three distinct proper numbers, then it has three one-dimensional 
characteristic spaces. If 5 has only two distinct proper numbers, then it has 
two characteristic spaces, one of which is one-dimensional and the other two
dimensional. In this case, 5 must be of the form 22 

5=-pI +qn0n, (3·9) 

where - p and q - p are the proper numbers of 5 and n is a unit vector which 
generates the one-dimensional characteristic space. If the three proper numbers 
of 5 coincide, then the entire three-dimensional vector space is the only char
acteristic space of 5, and 5 is of the form 

5=-pI. (3.10) 

Now if <p=!=n, the only spaces left invariant by the rotation Ria are the one
dimensional space of all multiples of n the two-dimensional space of all vectors 
perpendicular to n, and the entire three-dimensional vector space. The rotation 
R~ leaves invariant, in addition, each one-dimensional space generated by a 
vector perpendicular to n. 

Proposition 1, Table 1, and the results from geometrical linear algebra just 
described enable one to establish easily the results collected in Table 2. In this 
table, i, j, k is the same orthonormal basis as is used for the isotropy groups 
in Table 1. Recall that a proper vector of the stress 50 determines a principal 
axis of stress. 

Let us now return to Eqs. (3.4). It follows from the second of these equations 
that Q U = U Q, which is the content of 

21 This theorem is a corollary to Theorem 2, p. 77, and Theorem 3, p. 157, of 
P. R. HALMOS, Finite-Dimensional Vector Spaces. Princeton: Van Nostrand, 2nd ed., 
1958. 

22 The symbol ® denotes a tensor product; i.e., n ®n is the tensor with the property 
that (n®n)v=n(n·v) for all vectors v. 
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Proposition 2. Let Mo and M; be two local reference configurations of a solid, 
and let oF be the isotropy group relative to Mo. If Mo is undistorted, then M~ is 
undistorted if and only if the right stretch tensor U from Mo to M; commutes with 
every member of oF. 

Table 2. Restrictions on the Stress for Undistorted States of Aeolotropic Solids 

Type of Isotropy 

Triclinic system 
Monoclinic system 
Rhombic system 

{
Tetragonal system 
Hexagonal system 
Transverse isotropy 
Cubic system 

Ref. No. 
in Table t 

2 

3 

4, 5, } 
8, 9, 10, 11 

6,7 

Restriction on S. 

no restriction 
k is a proper vector of So 
i, J, k are proper vectors of So 

So=-PI+qk®k 

So=-PI 

It follows from this proposition that if Mo is an undistorted configuration 
of a solid with the symmetry listed in the first column of Table 2, then a necessary 
and sufficient condition that M; be an undistorted configuration of that solid 
is that the right stretch tensor U relating M; to Mo obey the restrictions listed 
for So in the second column. 

4. Thermostatic Inequalities 
As we mentioned in the Introduction, there are reasons, whose origins lie 

outside of mechanics, for believing that stress-strain functions used in physical 
applications should be subjected to restrictions beyond those following from 
Material Objectivity. These restrictions should have the form of inequalities 
and, we believe, should follow from a properly formulated theory of the thermo
dynamics of continuous media. 

The inequalities we wish to consider here can be most simply expressed 
through use of the first Piola-Kirchhoff stress tensor, T, defined by 

T = I det F I (F-l S) T = ~ S Fr-" 
(! 

(4.1) 

where S is the ordinary stress and F the deformation gradient. The definition 
of T depends on the choice of the reference configuration. T need not be sym
metric. We denote the relation between T and F by 

(4.2) 

where the response function lj is related to the response function 9 of Eq. (2.1) by 

(4·3) 

When the equation of material objectivity (2.2) is expressed in terms of lj, it 
reads 

lj ( Q F) = Q lj (F) . (4.4) 
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Using Eqs. (4.4) and (1.7), we see that Eq. (4.2) is equivalent to 

T=R~(U), (4.5) 

where R is the rotation tensor and U the right stretch tensor corresponding to F. 
In a work on the foundations of thermostatics 9 we have laid down postulates 

which, in our present theory, are equivalent to the following 

Thermostatic Inequality (TI). There exists a (scalar-valued) energy function 
a such that 

a (F*) -a(F) -tr{(F* -F) ~(F)T} > 0 (4.6) 

for all pairs of deformation gradients F, F* such that F* =l=F and F* F-l is positive
definite and symmetric. 

The energy function a(F) in (4.6) can be interpreted as either the internal 
energy density (per unit volume in the reference configuration) or the Helmholtz 
free energy density, depending on whether one regards the entropy density or 
the temperature as the thermodynamic quantity being held fixed, and then 
suppressed, in defining g. 

In reference 9 it is shown that (4.6) implies 

~ (F) T = gradF a (F) . (4.7) 

Once (4.7) is established, our assumption of Material Objectivity, i.e. (2.2), is 
equivalent to the assertion that a in (4.6) obey the identity 

a(QF) =a(F) (4.8) 

for all F and all orthogonal Q. 23 

An alternative formulation of our TI is the following assertion.24 Consider 
the Class ~ of continuous rectifiable curves 1'; in the space of all invertible tensors F, 
and let the parameter t for these curves vary from 0 to 1. Let (r' be the set of 
all curves 1'; in ~ for which F;. =1= Po and F;.F;'1 is both symmetric and positive
definite. Then, the following inequality must hold for curves 1'; in ~': 

(4.9) 

The integral on the left in (4.9) is to be interpreted as a line integral along the 
curve 1'; from t = 0 to t = 1. 

The quantities appearing on each side of (4.9) represent work, per unit volume 
in the reference configluation, done against contact forces at a material point 
X as the local configuration of X is deformed along path 1';Mo' o~t ~ 1. The 
quantity on the left in (4.9) gives the "true" work done, i.e. the work done 
assuming that at each t the contact forces on each material surface at X are 
those which one calculates using the stress tensor S = g (1';) and the actual 

23 In essence, the proof of (4.8) is given in Theorem I of W. NOLL, J. Rational 
Mech. Anal. 4, 3 (1955); see also § 1 of reference 11. 

24 The proof that (4.9) is equivalent to the assertion that (J exists and obeys 
(4.5) is given in reference 11. In writing (4.9) we have made use of the fact that 
9 (F) is symmetric. This enables us to simplify Eqs. (1.4) and the inequality (2.3) 
of reference 11. 
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configuration of the surface at time t; the quantity on the right in (4.9), however, 
gives the work which would be done along the path ~Mo if the contact forces 
were to remain fixed at their initial values. 25 Thus, (4.9) states that f) must 
be such that contact forces always change in a process which results in a pure 
stretch, and, furthermore, they always change in such a way that the work 
done against them is greater than that which would have been done had they 
remained fixed. 

Let us now return to (4.6). Of course, when F* F-I is symmetric and positive 
definite, so is FF* -1, and we can interchange F and F* in (4.6). If we do this 
and add the resulting inequality to (4.6), the terms involving (J cancel, and 
we get, as do TRUESDELL & TOUPIN I2, 

tr{(F* -F) [f) (F*) - f) (F)] 1) > o. (4.10) 

We now state the 

Weakened Thermostatic Inequality WTI. The response function f) is such that, 
for all pairs of tensors F*, F for which F* =l=F and F* F-I is positive-definite and 
symmetric, we have the inequality (4.10). 

The WTI is equivalent to demanding that 

tr{(U -I)F[f) (UF) - f) (F)] 1) > 0 (4.11) 

for all F and all positive-definite symmetric U =l=I. Since the reference con
figuration can always be chosen such that F=I, the WTI IS also equivalent 
to the requirement that 

tr{(U -I)[f) (U) - f) (1m> 0 (4.12) 

for all positive-definite symmetric U, no matter what reference configuration is 
used in defining the response function q. 

Of course the TI implies the WTI; the WTI does not imply TI. It is possible 
to find (theoretical) materials obeying our WTI but yet such that f) is not derivable 
from an energy function (J through (4.7). 

Remark. To say that a material obeys the TI is equivalent to the assertion 
that the response function f) is such that (4.9) holds for all curves ~ in (£. To 
say that a material obeys the WTI, however, is to assert only that f) is such 
that (4.9) holds for those curves ~ in (£' which are straight lines. 26 

It follows from these observations that any special result derived from the 
WTI inequality (4.10) will also hold for materials obeying the TI inequality 
(4.6). Since most of the known implications of the TI, and also the implications 
of the TI which we wish to report here, can hold also under the weaker (i.e. 
more general) assumption of the WTI, we shall base our present discussion of 
thermostatics upon the WTI. Throughout the rest of this paper, if the WTI 
is not mentioned in the statement of a proposition, it is to be understood to 
be present as an axiom. 

26 Note that, when the configuration of a surface is changing, keeping contact 
forces fixed is not equivalent to keeping the stress tensor 5 fixed; rather, it is equi
valent to keeping the Piola-Kirchhoff tensor T fixed. 

26 BRAGG, L. E., & B. D. COLEMAN, J. Math. Phys. 4, 1074 (1963). 
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5. States of Pressure 
Here we obtain some results which show that the WTI places limitations 

on the properties of local configurations which give rise to a hydrostatic pressure. 
Our main new result is Theorem 3, which tells us, among other things, that 
the stress tensor can vanish only in an undistorted configuration of a solid. 

Lemma. Consider two local configurations Ml and M2 of the same material, 
and suppose that they both correspond to hydrostatic pressures: 

SI=-Pl1 , 

S2=-P21 . 

(5.1 a) 

(5.1 b) 

Here PI mayor may not equal P2' Consider the right stretch U from Ml to M2; 
i.e., put 

F=RU, (5.2) 

where R is orthogonal and U positive-definite and symmetric. Then, the following 
inequality must hold whenever U * 1 : 

Pl(tr U - 3) +P2(det U) (tr U-l- 3) > 0. (5·3 ) 

Proof. We use Ml =Mo as the reference configuration. By Eqs. (4.1), the 
Piola-Kirchhoff tensors corresponding to Ml and M2 are 

Tl = SI = - PI 1 , 

T2 = I det FI (F-l S2)T = - P2 (det U) R U-l. 

Hence, by (4.5), we obtain 

1) (1) = - Pl1 , 1) (U) = - P2 (det U) U-l. 

Substitution of Eqs. (5.5) into the form (4.12) of the WTI gives 

tr{(U -1) [( -P2) (det U) U-l + PIIJ}>O, 

whenever U *1; (5.6) is equivalent to (5.3), q.e.d. 

(5.4a) 

(5.4b) 

(5.5) 

(5.6) 

Theorem 1. Suppose that two local configurations Ml and M2 of a material 
correspond to the same hydrostatic stress - P 1 with P> 0. Suppose further that 
Ml and M2 differ by more than an orthogonal transformation, i.e., that the principal 
stretches u.' i = 1, 2, 3 from Ml to M2 are not all 1. Then the following two situa
tions are both impossible: 

ui ::::0: 1 for all i, 

Ui ~ 1 for all i. 

(5.7a) 

(5.7b) 

Proof. We use the Lemma, putting Pl=P2=P in (5.1). Of course, the Ui 

mentioned here are just the proper numbers of U defined in (5.2). Now the 
inequality (5.3) states that if U *1, i.e. if the Ui are not all 1, then 

Pg>O, (5.8) 
where 

g = (tr U - 3) + (det U) (tr U-l - 3) 

= (Ut + U 2 + Ua - 3) + (u2 U a + U l U a + U 2 U a - 3 Ut Ztz ua) . 
(5.9) 
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Since, by hypothesis, p> 0, the inequality (5.8) implies 

g>O. 

Differentiation of Eq. (5.9) yields equations of the type 

~g = Uk + Ul + 1 - 3 Uk Ul, 
uU; 

105 

(5.10) 

(5.11) 

where j, k, and 1 are all distinct. Suppose now that the inequalities (5.7a) hold. 
We then also have inequalities of the form 

> Uk+ UI+ 1 
Ukul = 3 ' k=f=.l, (5.U) 

and hence, by Eq. (5.11), 

~<O au; = , j = 1, 2, 3. (5.13 ) 

Since g reduces to 0 when U I=U2=u3=1, it follows from (5.13) that g~o when 
(5.7a) holds, which contradicts (5.10). Hence the inequalities (5.7a) are impossible. 
To show that the inequalities (5.7b) are also impossible, we need only interchange 
the roles of the configurations MI and M2, q.e.d. 

Corollary. Suppose two local configurations MI and M2 give rise to the same 
positive hydrostatic pressure p and differ only by a similarity transformation 
F=ocQ, Q orthogonal, OC>O. Then oc=1; i.e., MI and M2 must have the same 
density and can differ by only a rotation or reflection. 

Theorem 2. Suppose that, for a given material, MI and M2 are two local con
figurations which have the same density and give rise to hydrostatic pressures PI 
and P2' respectively, so that Eqs. (5.1) hold. If PI <0 and P2<0, then MI and 
M2 can differ by only an orthogonal transformation, and we must have PI =P2. 

Proof. Since here MI and M2 have the same density, the right stretch tensor 
U of (5.2) satisfies 

det U =det U-l= 1. (5.14) 

Thus, if U =f=.I, the inequality (5.3) becomes 

Pl(trU - 3) +P2(tr U-l- 3) > o. (5.15) 

The arithmetic mean of a set of positive numbers is strictly greater than 
the geometric mean unless the numbers are all equal to one. Applied to the 
proper numbers of a positive-definite, symmetric tensor A, this observation 
states that 

V det A < tr A if A =f=. I. 
3 

On putting A = U and A = U-l in (5.16) and using (5.14), we obtain 

trU-3>0, trU-1-3>0, 

(5.16) 

(5.17) 

whenever U=f=.I. If PI~O and P2~0, the inequalities (5.15) and (5.17) are 
inconsistent. Hence U = I, which means that MI and M2 can differ only by 
an orthogonal transformation F=R (see Eq. (5.2)). Moreover, using Eqs. (2.1) 
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and (2.2) with M1 as the reference configuration, F=I and Q=R, we find 

51 = -P11 =g(I), (5.18a) 

52 = - PsI = g (R) = Rg (I) R-1 = R (- P1I) R-1 = - PI!; (5.18b) 

i.e. PI =Ps, q.e.d. 

Corollary. If g (H) = g (I) = - P I where H is unimodular but non-orthogonal, 
then P>O. 

Theorem 3. If there exists a local configuration Mo such that the corresponding 
stress 50 vanishes or is a negative hydrostatic pressure, then the material under 
consideration is a solid, and Mo is an undistorted configuration. 

The theorem states that if 50 = -pI, with P '5:. 0, then the isotropy graup J 
relative to Mo is a subgroup of (!). 

Proof. By the definition of J, if H is in J, then I det HI = 1 and g (H) = 
g (I) = 50' Since we here have 5 0 = - pI with P< 0, the Corollary to Theorem 2 
shows that H must be orthogonal, q.e.d. 

Let us now consider elastic fluids. On turning back to Proposition 7 of 
Section 2 and observing that the stress in a fluid is characterized by a scalar
valued function P of a scalar e, we see that our WTI is equivalent to our TI 
for a fluid. 27 It follows from Theorem 3 that P (e) in (2.12) is always positive. 
Furthermore, it follows from Theorem 1 that P (e) is an invertible function. 
These observations are sharpened in the following theorem. 11 

Theorem 4. For an elastic fluid, a necessary and sufficient condition for the 
WTI (and hence also for the TI) is that the function P(e) in (2.12) obey the follow
ing inequalities for all e: 

P(e»O, (5.19) 

(5.20) 

In (5.20) it is to be understood that equality holds on only a nowhere dense set of 
values of e. 

Theorem 4 has the same content as Theorem 6 of reference 9, as is easily seen 
by observing that (5.20) is equivalent to the statement that the internal energy 
density in a fluid is a convex function of the cube root of the specific volume. 28 

Various implications of the WTI for isotropic materials are derived by 
COLEMAN & NOLL s9, TRUESDELL & TOUPIN12, BRAGG & COLEMAN 30, and NOLL 
& TRUESDELL 31,32. 

27 This is not the case when thermodynamic variables such as the temperature 
or entropy density are considered. 

28 An extension of the inequality (5.20) to a statement about the mean pressure 
on arbitrary states of strain in general elastic materials is given in reference 26. 

29 Section 12 of reference 9. 
30 BRAGG, L. E., & B. D. COLEMAN, J. Math. Phys. 4, 424 (1963). 
31 NOLL, W., & C. TRUESDELL, in: Encyclopedia of Physics, Edited by S. FLU-GGE, 

Vol. UI/3. Berlin-Gottingen-Heidelberg: Springer (forthcoming). 
32 For its discussion of inequalities in isotropic materials the article of TRUESDELL 

& TOUPIN12 is the most exhaustive currently in print. It also contains some interest
ing remarks on uniqueness questions for boundary value problems in materials of 
arbitrary symmetry. 
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6. Differential Inequalities 
We assume now that the response function g of Eq. (2.1) or, equivalently, 

the response function ~ of Eq. (4.2) is continuously differentiable and investigate 
the restriction that the WTI imposes on the gradients of g and ~. 

Let D be an arbitrary non-zero symmetric tensor, and consider 

U=I+7:D, (6.1) 

where 7: is a real parameter =1= o. It is clear that when I 7: I is sufficiently small 
the tensor U given by Eq. (6.1) is not only symmetric but also positive-definite 
and =1=1. Let us make the abbreviation 

f(7:}=tr{D~(I +TD}1). (6.2) 

Starting with (4.12) and letting U be given by (6.1), we find that the WTI 
may be written 

7: [t(7:} -f(o}]>o. 

Dividing (6.3) by 7:2 and taking the limit 7:~O, we obtain 

f(O}?::.o, 

(6·3) 

(6.4) 

where the superimposed dot denotes the derivative. The directional derivative 
V~ [D] of ~ at I, in the direction of the tensor D, is defined by 

ddT ~(I+TD}IT=o = V~[D]. (6.S) 

Here V~, the gradient of ~ at I, is a linear transformation of the six-dimensional 
space of symmetric tensors D into the nine-dimensional space of arbitrary tensors. 
We now define a quadratic form n on the six-dimensional space of all symmetric 
tensors D by n (D) =tr{D(V~ [D])7J. (6.6) 

Equations (6.2), (6.S), and (6.6) show that the inequality (6.4) states that 
n (D) ?::. O. Thus we have 

Theorem 1. In order for the WTI to hold it is necessary that the quadratic 
form n defined by (6.6) be positive-semidefinite, i.e. that 

n(D}?::.O (6.7) 
for all symmetric tensors D. 

Of course, the response function l) and hence the quadratic form n depend 
on the choice of the reference configuration; n must be positive semi-definite 
for every such choice. 

To cast (6.7) into a more transparent form we consider a smooth one
parameter family of deformation gradients F(7:} such that F(O} =1. The cor
responding rotation tensors are denoted by R (7:) and the corresponding right 
stretch tensors by U(7:}. We then have R (O) = U(O} =1. If we put 

R(O}=W, U(O}=D, (6.8) 

we find, by differentiating Eq. (1.7) with respect to 7: and then putting 7:=0, 
that 

F(O}=W+D. (6.9) 
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Moreover, it is clear that D is symmetric and it is easy to show that W is skew 
(by differentiating RT R=I). 

Let 5 (r) and T(r) be the stress and the Piola-Kirchhoff tensor, respectively, 
corresponding to F(r). Equation (4.1) shows that T(O) = 5 (0). We use the 
notation 

5 (0) = T(O) = 50' 

On differentiating (4.5) we find 

To= Wf}(I) + Vf} [D], 

. . 
T(O)=To' (6.10) 

(6.11 ) 

where Vf} is the gradient of f} at I and where the notations (6.9) and (6.10) have 
been used. Since 5 0 =f} (I), Eq. (6.11) is equivalent to 

(6.12) 

Let us denote the density of the local configuration corresponding to F(r) by 
e(r) and use the notation eo=e(O), eo=e(O). If we differentiate Eq. (4.1) with 
respect to r and then put r=O, we find, using (6.8)-(6.10), 

(6.13 ) 

The equation of continuity 33 implies eo= - (tr D) eo, hence (6.13) is equivalent to 
. . 

5 0 = - 50 (tr D) + 5 0 (D - W) + To. (6.14) 

Combining Eqs. (6.6), (6.12), and (6.14), we find 

neD) =tr{(So + 50 W - W 50 )D} +tr D tr(5oD) - tr(50 D2). (6.15) 

If we differentiate Eq. (2.3) with respect to r and then put r=O, we find 

(6.16) 

where V 9 is the gradient of the response function 9 at the tensor I. We may 
regard V 9 as a linear transformation of the six-dimensional space of symmetric 
tensors into itself. When components are used, the matrix of V 9 has 36 com
ponents, which are the elastic coefficients for an infinitesimal deformation from 
the reference configuration. Of course, these elastic coefficients depend on the 
choice of the reference configuration. 

It follows from Eqs. (6.15) and (6.16) that the quadratic form neD) may 
be expressed in terms of V 9 by 

neD) =tr{D V 9 [D]} + (tr D)tr(50 D) - tr(50 D2). (6.17) 

We call a one-parameter family M =M(t) of local configurations a deforma
tion path. If we define F(r) by M(t+r)=F(r)M(t), the tensors D and Ware 
called the stretching and the spin of the deformation path. In the notation of 
Ebs. (6.10)-(6.17) the stress corresponding to M(t) is 50' We now omit the 
SUbscript 0 and note that Eq. (6.15) and Theorem 1 yield 

Theorem 2. In order for the WTI to hold it is necessary that for every defor
mation path 

tr(5*D)~O, (6.18) 
33 Or, equivalently, (1. 3). 
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where D is the stretching, and 5* is the invariant stress rate defined by 

5* = 5 + 5 W - W 5 + 5 tr D - i (5 D + D 5). (6.19) 

In (6.19) 5 is the stress and W the spin. 
In his "Recherches sur l'elasticite," P. DUHEM 34 makes the following assertion. 
"Considerons d'abord un systeme defini par un certain nombre de variables 

nonnales ct, p, ... , A, hors la temperature absolue T. Supposons qu'a une certaine 
temperature T, Ie systeme prenne un etat d'equilibre lorsqu'on Ie soumet aux actions 
exterieures A, B, ... , L, et que cet etat d'equilibre varie d'une maniere continue 
lorsque, sans faire varier la temperature T, on fait varier les valeurs A, B, ... , L 
des actions exterieures. Si les actions A, B, ... , L eprouvent des variations infiniment 
petites dA, dB, ... , dL, que nous nommerons des actions perturbatrices, les valeurs 
des variables ct, p, ... , A qui conviennent a l'equilibre eprouvent des variations 
dct, dP, ... , d A, que nous nommerons des perturbations; l'expression 

dAdct+dBdP+ '" +dLdA 
sera nommee Ie travail perturbateur isotkermique. 

"Dire qu'un travail perturbateur est positif, c'est dire, sous une forme mathe
matique precise, que la perturbation se produit dans Ie sens vers lequel tendent les 
actions perturbatrices. II est clair que les systemes que la nature nous oltre seront 
tels, en general, que tout travail perturbateur isotkermique, accompli a partir d'un etat 
d'equilibre, soit positit. C'est ce que nous experimerons en disant qu'ils sont soumis 
a la loi du deplacement isotkermique de l'equilibre." 

Our Theorem 2 above furnishes a precise mathematization, for elastic materials, 
of DUHEM'S "law of isothermal displacement of equilibrium". 

Isotropy 
We now seek the limitations which the WTI places on the elastic coefficients 

characterizing the response of an isotropic material to an infinitesimal deformation 
from an undistorted state. 

Taking the gradient of Eq. (2.11) with respect to F at F=I, we find that 

V g [QD Q-l] = Q V g [D] Q-l (6.20) 

holds for all orthogonal tensors Q in the isotropy group and all symmetric 
tensors D. Here we assume that g is the response function for an undistorted 
configuration of an isotropic material; it then follows that V g [D] is a linear 
isotropic tensor fQnction of D. It is a consequence of this remark that V g has 
the representation 35 

Vg[D]=A(trD)I +2I-'D, (6.21) 

where A and I-' (the Lame coefficients) are elastic coefficients which depend on 
the reference configuration. By Proposition 6 of Section 2, the stress 50 on the 
undistorted reference configuration must be of the form 

50 = -pI. (6.22) 

Substitution of Eqs. (6.21) and (6.22) into (6.17) gives 

n (D) = (A - P) (tr D)2 + (21-' + P) tr DB. (6.23) 
84 DUHEM, P., Ann. Ecole Norm. 22, 143-217 (1905), p. 193. 
31 Ct. A. E. H. LOVE, A Treatise on the Mathematical Theory of Elasticity (Cam

bridge, 4th Edition, 1927), §§ 106-110. LOVE'S assumption of the existence of a 
strain energy function does not affect the generality of his results for isotropic materials 
or cubic crystals. 
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Now, quadratic forms of the type 

q=a(~ +d2+ds)2+b(d~+d~+d~) (6.24) 

are well known. A necessary and sufficient condition that q be positive semi
definite in the triple (llt, d2 , ds) is that both 

b~O and 3a+2b>0. (6.25) 

If we take a = ). - p, b = 2 fl + p, and d. to be the proper numbers of D, the 
quadratic form (6.24) reduces to (6.23). Therefore, a necessary and sufficient 
condition that n (D) be positive semi-definite is that 

From Theorem 1 we now obtain the following result. 

Theorem 3. The WTI implies that for each undistorted 
isotropic material the following inequalities hold: 

fl>-!P, 

x>tP; 

(6.26) 

configuration of an 

(6.27a) 

(6.27b) 

here p is the pressure, fl the shear modulus, and x =). + tfl the compression modulus; 
of course p, fl, and x can all depend on the choice of the reference configuration. 

If P=O, i.e., if the reference configuration is a natural state of an isotropic 
solid, then Theorem 3 yields the familiar assertion that 

fl~O and x>O. (6.28) 

For an elastic fluid we have fl=O and x= e dP (e)/de, and hence Theorem 3 yields 

P >0 dP(e) > ~p 
=, e de = 3 . 

This condition is just a bit weaker than the necessary and sufficient condition 
for the WTr stated in Theorem 4 of Section 5, for our present Theorem 3 does 
not contain the precious result that p = 0 is impossible in a fluid. Yet we think 
Theorem 3 to be not without interest. Through its conclusion (6.27a) it yields 
a condition on fl for a particular negative pressure p to be possible: If the con
figuration is varied among undistorted configurations in such a way that p 
decreases and becomes negative, fl must always remain greater than - tP, 
otherwise the material will not support the negative pressure. 36 

Cubic Symmetry 
When the material has cubic symmetry and the reference configuration is 

undistorted, it follows from (6.20) that there exists an orthonormal basis hi 
such that the components of J7 9 [D] and D are related by s7 

J7 9 [D]ii=Cl.Dii + f3 (D jj + Dkk), (6.29a) 

(6.29b) 
36 We take this to mean that cavitation will occur, as seems to be the case with 

fluids. 
37 The result is essentially given in LOVE'S treatise. 30 The three coefficients 

ct, (3, y, are related to those on p. 160 of reference 35 by Cll = ct, Cl2 = fl, C" = y. 
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No summation convention is used here, and i, j, k is any permutation of 1, 2, 3. 
It follows from the last entry in Table 2 that the stress 50 in the reference con
figuration must be a hydrostatic pressure: 

5 0 =-pI. 

Substitution of (6.29) and (6.30) into (6.17) yields 

n 3 3 

n(D) =(XLD~. + 2(P - P) L DiiDfj + (4y + 2P) L D~i· 
.=1 i,i=1 '.i=l 

i>i i>i 

Thus n (D) is the sum of the two quadratic forms 

and 

3 3 

nl(D) =(XLD~i+ (2{J-P) LDiiDU' 
.=1 ti=l 

3 

n2(D) = (4y + 2P) L D~i· 
'.i=1 

i>i 

i> i 

(6·30) 

(6.3 1 ) 

(6·32a) 

(6·32b) 

The form n1 (D) involves the three diagonal components of D, which can be chosen 
at will, while the form n2 (D) involves only the three off-diagonal components 
of D, which also can be chosen at will. Hence, in order for n (D) to be positive
semidefinite it is necessary and sufficient that both of the forms (6.32) be positive
semidefinite. 

It is clear that the form n2 (D) of (6.32b) is positive-semidefinite if and only 
if 4y + 2P~ O. The form ndD) of (6.32a) is of the type (6.24) when we put 
a+b=ex, 2a=2{J-p, and di=Dii' i=1, 2, 3. Using (6.25), it follows that the 
form n(D) of (6.31) is positive-semidefinite if and only if the three inequalities 

2y + P :2::0, ex - {J + lP :2:: 0, (6-33) 

hold. We summarize: 

Theorem 4. The WTI implies that for each undistorted configuration of a 
material with cubic symmetry, the elastic coefficients ex, {J, y and the pressure P 
obey the inequalities 

y>-lP, ex-{J~-lP, {J+2ex>lP· (6·34) 

Acknowledgement. This research was supported by the Air Force Office of Scientific 
Research under Contract AF 49(638)541 with Mellon Institute and by the National 
Science Foundation under Grant NSF-G 16745 to Carnegie Institute of Technology. 

Mellon Institute 
Pittsburgh 

and 
Department of Mathematics 

Carnegie Institute of Technology 
Pittsburgh 

(Received August 16, 1963) 

181 



EUCLIDEAN GEOMETRY AND MINKOWSKIAN CHRONOMETRY 

WALTER NOLL 

1. Introduction. The term "Minkowskian Chronometry" is used here for 
the study of the structure of space-time appropriate to Einstein's special rela
tivity. This term suggests a parallel with Euclidean geometry. Originally, 
geometry was an empirical science which dealt with measuring of distances on 
earth. The Greeks transformed this science into a beautiful mathematical dis
cipline. Chronometry is the science of the measurement of time intervals. 
Einstein's first paper was a critical study of time measurements. It was Minkow
ski, however, who made a geometrical discipline out of Einstein's chronometry. 
More recently, Synge ([2), [3]) has been an able advocate of the geometrical 
point of view in relativity. 

The present paper is an attempt to axiomatize Minkowskian chronometry 
using direct coordinate-free methods. I believe that the coordinate-free ap
proach fosters the cultivation of intuition, a scarce commodity in relativity be
cause the phenomena this theory is intended to describe are as yet rather remote 
from our daily experience. I hope, moreover, that Minkowskian chronometry 
will become, as Euclidean geometry did, a branch of mathematics that is of 
interest purely for its esthetic value. 

Section 2 contains a collection of definitions and results on vector spaces 
with an inner product that is not necessarily positive definite. We give a new 
proof of the inertia theorem of Sylvester, a proof that remains valid for infinite 
dimensional spaces. 

In Section 3 we present certain inequalities valid in inner product spaces 
of index one. The most notable of these are the "reversed Schwarz inequality" 
and the "reversed triangle inequality." 

Section 4 consists of an axiomatic introduction to pseudo-Euclidean geom
etry, based on the fact that the structure of a pseudo-Euclidean space is deter
mined by its "separation function," which in the Euclidean case is identical to 
the square of the metric. Associated with each pseudo-Euclidean space is a 
unique "translation space," which is a vector space with inner product. 
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"Inner product" is just another term for "nondegenerate bilinear form." 
Usually the term is used, however, only when the form is positive definite. But 
indefinite inner products can be treated in the same geometric spirit as definite 
inner products usually are, and we adopt here the terminology that has become 
standard so far only for the case of definite inner products (see, e.g. Halmos [5]). 
The theory of bilinear forms is extensive, much of it going back to the nineteenth 
century. In most textbooks, however, the subject is treated in analytical lan
guage with components. A notable exception is the treatise of Bourbaki [1], 
to which we refer for further information on the topics treated in Sections 2 
and 4. 

When the index of the translation space is zero, pseudo-Euclidean geometry 
reduces to Euclidean geometry, and when the index is one, it reduces to Min
kowskian chronometry. From a physical point of view it is reasonable to use 
distance as a primitive notion in Euclidean geometry, because there are yard
sticks to measure distances. In this case, the separation of two points is just 
the square of their distance. There are no "separation meters," however, to 
measure the separation of two arbitrary events in relativistic space-time. In 
Section 5 we give an axiomatic introduction to Minkowskian chronometry 
based on primitive notions that have a more direct physical meaning: observers, 
clock-readings, signals. We show-and this is the least trivial part of the paper
that these primitive data determine the separation function uniquely. The fact 
that the index of the translation space is one is not an assumption of the theory 
but comes out as a theorem. 

Section 6 deals with temporal order, i.e. with the possibility of distinguishing 
future from past. It turns out that such order, in Minkowskian chronometry, is 
related to the distinction between emission and reception of signals. We note 
that in classical space-time, such distinction is not sufficient to determine 
temporal order. The axioms given here may answer a problem proposed by 
Suppes ([4], Sect. 4). 

We do not impose anywhere a restriction on the dimension, which may even 
be infinite. Of course, in the presently known physical applications of Minkow
skian chronometry the dimension is 4. 

2. Inner product spaces. (For details see [1].) Let '0 be a real vector space. 
A nondegenerate symmetric bilinear form on '0 will be called an inner product. 
The inner product of u, vE'O will be denoted by U·V, and we will abbreviate 
u·u=u2• Nondegeneracy means that 

(2.1) u·v = 0 for all v E '0 implies u = o. 

A quadratic form <1> on '0 is a function <1>: 'O---?<R (<R=set of real numbers) such 
that <1>(v) = V· v for some inner product. The quadratic form determines the inner 
product uniquely. 

An inner product space '0 is a vector space with an additional structure de
fined by an inner product. If 'U is a subspace of '0, then CU.L= {v/v·u=O for all 
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uEcu.} is called the orthogonal complement of cu.. If dim cu. is finite, then 
cu.u=cu. and dim cu.+dim cu.J.=dim"O. A subspace cu. is called regularifcu.f\cu..l. 
= to} and singular if 'Uf\cu..L¢ to}. If dim cu. is finite and cu. is regular, then '0 
has the direct decom posi tion "0 = cu. EB cu..L. 

A linear transformation Q: "O~"O is called orthogonal if it preserves the inner 
product. In view of (2.1), Q is then also one-to-one and hence an automorphism 
of the inner product space "0. 

The following terminology is suggested by the physical applications. The sets 
of vectors 

(2.2) 

"0+ = {v I v2 > 0 or v = O}, 

"0_ = {v I v2 < 0 or v = O}, 

"00 = {v I v2 = O} 
will be called the space-cone, the time-cone, and the signal-cone, respectively. 
These cones have only the zero vector 0 in common. A vector v is said to be 
space-like, time-like, or a signal vector depending on whether vE"O+, vE"O_, or 
vE"Oo. The maximal dimension of the time-like subspaces of "0, (Le. subspaces 
contained in "0_) will be called the index of "0; it will be denoted by i = ind "0. 
(The customary definition is ind "0 = maximal dimension of the signal subspaces 
of "0. Our definition will give the same value if the sign of the inner product is 
properly adjusted, as is shown in Theorem 2 below.) 

THEOREM 1. If cu. is a time-like subspace of maximal dimension i = ind "0 and 
if i < 00, then the complement cu. J. is space-like and "0 has the direct decomposition 

(2.3) "0 = cu. EB cu. J., cu. C "0_, cu. J. C "0+. 

In addition, for any decomposition of the type (2.3), we have dim cu.=i. 

Proof. Let cu.C"O_, dim cu.=i. cu. is then regular and "0 has the direct decom
position "0 = cu. EB cu. J.. Assume that cu..L is not space-like. Then there is a vector 
wEcu.J. such that w2;:;;;O, w¢O. By (2.1), there is a vector vE"O such that W·V 

=a¢O. Let 

v = u + z, u E cu., z E cu..L 

be the decomposition of v. We have a=w·v=w·u+w·z=w·z. Since w, zEcu..l., 
the vector p=z+J3w also belongs to cu..L for any choice of p. Now, 

p2 = Z2 + 2fJw. z + {32w2 ;:;;; Z2 + 2{3a. 

Since a¢O, we can adjust f3 such that p2 <0. If xEcu. and y=x+Xp, then 
y2=X2+X2p2<0, unless y=O. Therefore, the space cu.' spanned by cu. and p is 
time-like and of dimension i+1, which contradicts the assumption that cu. is of 
maximal dimension. 

Consider now an arbitrary decomposition of the form (2.3) and assume that 
i is a time-like subspace of maximal dimension i. Every tiEcU has a unique 
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decomposition 'd=u+z, uE'U, zEcu..L. This decomposition defines a linear trans
formation 'd--+u=L'd of cfi. into cu.. If u=O, then 'd=O+zEcu..LC'O+, and hence 
'd = O. Thus L is one-to-one, which implies i = dim cU ~ dim cu.. On the other 
hand, dim cu.~dim cU=i by definition of i. Q.E.D. 

In the case when dim '0 is finite, Theorem 1 reduces to a version of the classi
cal inertia theorem of Sylvester (d. [1], Chapter 7, no. 2). 

Lincoln E. Bragg has disclosed to me a counterexample which shows that the 
conclusion of Theorem 1 may be false when i = 00. From now on we assume that 
the index i of '0 is finite (dim '0 need not be finite). 

COROLLARY. Let a decomposition of the type (2.3) be given. Then any other 
decomposition of the same type has the form 

(2.4) 

where Q is orthogonal. 

THEOREM 2. If dim 'O-i~i, then the maximal dimension of the signal sub
spaces of '0 is also given by i. 

Proof. Let S be a signal subspace of maximal dimension i', and consider 
a decomgosition of the form (2.3). By Theorem 1 we have dim 'U = i, dim cu..L 
= dim '0 - i ~ i. The unique decomposition s = u +z, u E cu., z E cu..L defines two 
linear transformations s--+u = Ls and s--+z = Ns of S into cu. and cu..L, respectively. 
It is easily seen that both Land N are one-to-one. It follows that i' =dim S 
~dim cu.=i. If i' <i, L(S) and N(S) must be proper subspaces of cu. and cu..t, 
respectively. It is then possible to find xEcu. and yEcu..L such that x is orthogonal 
to L(S) and y is orthogonal to N(S). If x and yare normalized such that X2 = -1, 
y2 = + 1, the space spanned by S and x +y is easily seen to be a signal subspace 
of dimension i'+1, which contradicts the definition of i'. Q.E.D. 

3. Spaces of index one. From now on we assume that '0 is an inner product 
space of index one. The following two theorems are corollaries of the results of 
the previous section. 

THEOREM 1. Let I be a time-like unit vector (II = -1). Then every vector vE'O 
has unique decomposition of the form 

(3.1) v = ~I + w, w·1 = 0, 

THEOREM 2. If a vector is orthogonal to a nonzero time-like vector then it must 
be space-like. 

In an indefinite inner product space (ind 'O~O), Schwarz's inequality is of 
course not valid. When ind '0 = 1 the following two theorems partially replace 
the Schwarz inequality: 
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THEOREM 3 (reversed Schwarz inequality). If U and v are both time-like, 
then 

(3.2) 

and equality holds only when U and v are linearly dependent. 

THEOREM 4. For any three nonzero time-like vectors u, v, and w, 

(3.3) (U·v)(v·w)(w·U) < O. 

Proof. Let U, v, wE'lL, all ;CO. Consider 

Z = aU - {Jv, a = V·W, {J = U·W. 

We have z·w=af3-f3a=O. It follows from Theorem 2 that 

o ~ Z2 = a 2U 2 + (J2V2 - 2afJu·v, 

l.e. 

(3.4) 

Here equality can hold only when z = 0, i.e. when u and v are linearly dependent. 
Since w is time-like and ;CO, Theorem 2 shows that a=V'W and f3=u·w cannot 
be zero. Therefore, the right-hand side of (3.4) is negative, which proves Theo
rem 4. Theorem 3 is trivial when u=O or v=o. Otherwise it follows from (3.4) 
when we put W=U and observe that u 2 <0. Q.E.D. 

Consider the relation u'v<O within the set -0- of all nonzero time-like vec
tors. Theorem 4 shows that this relation is transitive. Clearly, it is also reflexive 
and symmetric. Hence u·v<O is an equivalence relation in -0_. The vectors 
uE-o- and -uE-o_ belong to different equivalence classes, hence there are at 
least two such classes. But there are no more than two classes, because if u, v, w 
belonged to three different classes, then the inner products on the left side of 
(3.3) would be all positive, which contradicts (3.3). We adjoin the zero vector 
o to each of the two equivalence classes and denote the resulting sets by '0:" and 
'O~, respectively. It is easily verified that '0:" and 'O~ are in fact convex cones. 
We summarize: 

THEOREM 5. The time cone '0_ is the union of two convex cones '0:" and 'O~ 
which have only the zero vector in common. Two time-like vectors u, v belong to the 
same cone if and only if u· v ~ O. If u E '0_ belongs to one of the cones, then - u 
belongs to the other, i.e., '0: = -'0:'. 

We call '0:" and 'O~ the two directed time cones. 
If v is time-like, we call rev) = V -v2 the duration of v. We have rev) ~O, 

and rev) = 0 only if v = o. The following "reversed triangle inequality" is a con
sequence of Theorems 3 and 5. The proof is analogous to that of the ordinary 
triangle inequality. 
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THEOREM 6 (reversed triangle inequality). If the two vectors u and v both be
long to one of the directed time cones (u· v ~ 0), then 

(3.5) T(U + v) ~ T(U) + T(V), 

and equality holds only when U and v are linearly dependent. 

Remark. The reversed triangle inequality expresses what is often mislead
ingly called "the relativistic clock paradox." 

4. Pseudo-Euclidean Geometry. Let a set 8 of points x, y, . .. and a func
tion 

(4.1) u: 8 X 8 ~ (R 

be given, where (R denotes the real line. The function (T defines a certain structure 
on 8. The automorphisms of this structure are the one-to-one mappings a of 8 
onto itself which satisfy 

(4.2) u(a(x), a(y» = u(x, y) 

for all x, yE8. We denote by a the group of all these automorphisms. We im
pose restrictive conditions on (T by assuming that a contains a subgroup"U which 
satisfies the axioms (E1)-(E,) stated below. 

(E1) '0 is commutati'lJe. 
(E2) '0 is transitive. 
(E3) If vE'O maps some point xE8 onto itself, then v is the identity mapping. 
We write the group operation in '0 additively and denote the identity map-

ping by O. We write x+vE8 for the image vex) of xE8 under vE'O. It follows 
from (&) and (Es) that for any two points x, yE8 there is a unique vE'O which 
maps x onto y. The mapping v determined in this way will be denoted by 
v=y-x. The "sum" x+v and "point-difference" y-x thus defined obey the 
rules suggested by the notation. 

The following proposition is easily established: The value (T(x, y) depends 
only on the point difference y-x; i.e., there is a function <1>: 'l)-?(R such that 

(4.3) cp(y - x) = u(x, y) 

for all x, yE8. 
The last condition required of '0 is the following. 
(E,) '0 is the underlying additive group of a real vector space and <1> is a non

degenerate quadratic form on "U; i.e., 'U can be given the structure of an inner product 
space such that 

(4.4) (y - X)2 = (y - x)·(y - x) = <T(x, y). 

In view of (E,) we refer to the automorphism v in 'U as vectors. 

UNIQUENESS THEOREM. There is at most one subgroup "U of the automorphism 
group a such that 'U satisfies the axioms (E1)-(E.). If such a subgroup exists then 
its structure as an inner product space, as required for (E,), is unique. 
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Proof. Assume that '0 and -0 are subgroups of a which both satisfy (E1)-(E.). 
If two points x, yES are given, we denote by y-x the unique vector in '0 
which maps x onto y and by y ~ x the unique vector in {) which maps x onto y. 

We choose a fixed point qES and define a mapping f of '0 into {) by 

(4.5) v = f(v) = (q + v) .~ q, 

so that 

(4.6) q + v = q + fey) = q + v 
for all vE'O. It is clear that f is one-to-one and onto, and that f(O) = 0 = O. 

By (4.4) we have 

(4.7) u(x, y) = (y - x)2 = (y ~ x)2. 

Substituting x=q+u and y=q+v into (4.7) we find that 

(4.8) (v - U)2 = (v - ii)2 

holds for all u, vE'O. In particulari when u=O=O=t1, (4.8) shows that v2 =v t 

for all vE'O. Hence, if we expand (4.8), 

(4.9) 

the square terms cancel and we obtain 

(4.10) v·u = v·u = f(v) ·ii. 

Repeated use of (4.10) shows that 

Hence 

f(av + {3w)·ft = (av + fJw)·u = a(v·u) + (3(w,u) 

= [af(v) + tJf(w) j . O. 

[af(v) + (3f(w) - f(av + tJw)]·O = 0, 

which holds for all t1E-O. Since (E4) requires that the inner product is non
degenerate it follows from (2.1) that 

(4.11) af(v) + (3f(w) = f(av + fJw) 

is valid for all v, wE'O and all real a, fJ. It is the content of (4.10), (4.11) and 
the remark after (4.6) that f is an inner product space isomorphism of '0 onto-O. 

Let xES and vE'O be given. Put u=x-q so that x=q+u. Using (4.6) twice 
and (4.11) once we derive 

x + v = q + u + v = q + f(u + v) = q + f(u) + f(v) = q + u + fey) = x +f(v). 

Thus, x+v=x+f(v) is valid for all xES, which shows that the mappings v and 
f(v) of S onto S are the same. Therefore, f is the identity mapping of '0 onto it
self, which completes the proof that '0 and -0 coincide as inner product spaces. 
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DEFINITION. A set 8 which is endowed with a structure defined by a real fJaZued 
function 0" on 8 X8 is called a pseudo-Euclidean space if the axioms (E1)-(E,) 
are satisfied. The function 0" will be called the separation function of 8. The inner 
product space "0 determined by 0" is called the translation space of 8. (The definition 
given here differs from that of Bourbaki ([ 1] Chapter 6, no. 6) in that the 
translation space "0 is not regarded as part of the defining structure.} 

The uniqueness theorem insures that the translation space is well defined. 
If the separation function 0" is nonnegative and if the translation space "0 is 

finite-dimensional, then 8 may be regarded as a Euclidean space in the ordinary 
sense. 

The following is a corollary of the uniqueness theorem. 

REPRESENTATION THEOREM. Let 8 be a pseudo-Euclidean space and q a point 
in 8. Then every automorphism n of 8 has a unique representation of the form 

(4.12) n(x) = a(q) + Q(x - q), 

where Q is an orthogonal transformation of the translation space '0. 

Proof. The mapping Q defined by 

(4.13) Q(V) ::II nov 0 n-1 

is an isomorphism of the subgroup '0 of Cl onto its conjugate "O*=n 0 '00 n-1 
in Cl. The mapping Q may be used to transport the inner product space structure 
of "0 to '0*. It is clear that "0* then satisfies the conditions (E1)-(E,). Hence, by 
the uniqueness theorem, it must coincide with "0, and Q must be an automor
phism of the inner product space '0. Since we use the notation u(q) =q+u when 
uE'O, the image of gE8 under the mapping Qv 0 n=n 0 v (see (4.13)) is given by 

(4.14) n(q) + Qv = n(q + v). 

We obtain (4.12) by substituting v=x-q into (4.14). 

Remark I. In the Euclidean case (4.12) is the well-known formula for rigid 
displacements. Many textbooks, however, derive this formula under unneces
sary a priori assumptions of smoothness or even linearity of n; a theorem that 
does not require such assumptions appears as Exercise 21a, chapter 6, in Bour
baki [1]. The uniqueness theorem and the representation theorem, including 
proofs, remain valid when the field of real numbers is replaced by an arbitrary 
commutative ring <R of characteristic ~2. In this case, the translation space is 
a module over <R. 

Remark II. One may be tempted to define a subspace g: of a pseudo-Euclidean 
space 8 by the condition that the restriction O"g: to g: of the separation function 
0" of 8 satisfy the axioms (El)-(E4) and hence give g: the structure of a pseudo
Euclidean space. Unfortunately, it may happen that such a "subspace" g: is 
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not a subspace in the customary sense, i.e., a set of the form 

(4.15) 5= = {x I x = P + u, U E '\1}, 

where '\1 is a subspace of the translation space of 8. For example, letS = CR X CR X CR 
with u defined by 

(4.16) O'(x, Y) = (Xl - Y1)2 - (X2 - Y2)2 - (Xa - ya)2. 

The set 5= of all triples of the form (cp(~), cp(~), ~), where cp is an arbitrary function 
cp: CR-+CR, is a "subspace," but not of the type (4.15) when cp is not linear. But 
for this fact Theorem 1 of the following section would be trivia1. 

Remark III. The uniqueness theorem given in this Section shows that the 
complete structure of a pseudo-Euclidean space, including the translation space, 
is determined by a knowledge of the separation function u alone. One may ask 
whether u itself may not be uniquely determined by the prescription of even less 
information. A result in this direction was found by Suppes [2]. Under the as
sumption that the translation space has index 1 and dimension 4, he showed that 
u is uniquely determined by its values O'(x, y) for all pairs (x, y) such that u(x, y) 
<0. This result is easily obtained by an adaptation of the reasoning leading 
from (5.10) to (5.14) given in the following section. The uniqueness theorem of 
the following section is a different result of the same type. 

5. Minkowskian Chronometry. We assume that the following data are given: 
(a) a set B, whose elements x, y, . . . will be called events; 
(b) a family 0 of subsets of 8 which covers B. The members .e of 0 will be 

called observers; 
(c) for each observer .cEO, a nonpositive separation function U.c on .c 

which gives .c the structure of a one-dimensional pseudo-Euclidean space; 
(d) a symmetric binary relation'" on 8 with the following property: Given 

any observer .c and any event x EE.c, there are at least two events Yl and Y2 in 
.c that are related to x. The relation '" will be called the signal relation and a 
pair (x, y) of events related by '" will be called a signal. 

Remarks on physical interpretation: xE.c means physically that x is an event 
which is experienced by the observer .c. We imagine that each observer is 
equipped with a clock. If 7.c(X, y) is the time-difference of the two clock readings 
at the events x and y of .c, then the separation 0' .c(x, y) of x, yE.c is assumed to 
be given by u .c(x, y) = - (7.c(X, y»)2. The two events of a signal (x, y) are inter
preted to be the emission and reception of a light, radio, or other electromagnetic 
signa1. If x EE.c, we may imagine x to be the event of reflection of a signal which 
is sent out by .c at Yl and returns to .c at Y2. 

The data described under (a)-(d) define a certain structure on 8. We impose 
restrictions on this structure by assuming that there exists a separation function 
u on all of 8 which endows 8 with the structure of a pseudo-Euclidean space and 
which satisfies the following two axioms: 

191 



138 EUCLIDEAN GEOMETRY AND MINKOWSKIAN CHRONOMETRY [February 

(M1) u is an extension of the separation function U.e for each observer .eEO. 
In other words, 

(5.1) O'(x, y) = 0' .e(x, y) 

holds whenever x, yE.e. 

(M2) The pair (x, y) is a signal if and only if the separation of x and y is zero, 
i.e. u(x, y) = 0 if and only if y~x. 

UNIQUENESS THEOREM. There is at most one separation function u which satis
fies the axioms (M1) and (Ms). 

We first prove a number of preliminary theorems, assuming that some 
separation function u satisfying (M1) and (M 2) on 8 is given. The corresponding 
translation space is denoted by '0, as in Section 4. 

THEOREM 1. Every observer .e is a time-like straight line in 8. More precisely: 
There is a vector lE'lJ with the following properties 

(i) I is a time-like unit vector, i.e. l2 = -1. 
(ii) if qE.e is given, then xE.e if and only if x= q+~l, and ~ECR. 
A vector l with the properties (i) and (ii) will be called a direction vector of the 

observer .e. It is clear that if l is a direction vector, then -I is also one and 
there can be no others. 

Proof. Let '0' be the one-dimensional translation space corresponding to u.e. 
The event-difference in '0' of the two events x, yE.e will be denoted by y..!....x. 
This difference must be carefully distinguished from the event difference y-x 
in '0, which corresponds to the separation function u. It follows from axiom 
(M1) and from (4.3) that 

(5.2) (y - X)2 = (y"'!' x)2 = O'(x, y) = O'.e.(x, y) 

for x, yE.e. Since '0' is assumed to be one-dimensional and u.e nonpositive, .e 
can be represented in the form 

.e = {xl x = q + El', E E CR}, 

where q is a fixed event in .e and I' E'O' is such that 1'2 = -1. 
We now define a mapping f of CR into 'lJ by f(~) = (q+~l') -q . .e is then the 

set of events x that are of the form 

(5.3) x = q + El' = q + feE), E E CR. 

The same argument as the one that led from (4.5) to (4.10) shows that for 
all ~,7]ECR we must have 

(5.4) 

We fix ~ and 7] and consider the vector sE'O given by 

(5.5) 
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It follows from (5.4) that 

S2 = 1]2( _~2) - 2~1]( -~1]) + t2( _7]2) = 0, 

i.e. that s is a signal vector. Consider the event z = q+s. By (5.2) we have 

(5.6) S2 = (z - q)2 = u(q, z) = O. 

If zEcC then s=z-q must be of the form s=fCr). By (5.4) it then follows that 
0=S2= _f2 and hence that s=f(O) =0. 

Assume now that s~O, in which case z EEcC. Axiom (M 2) and (5.6) imply that 
qEcC and z EEcC must be related by a signal. The signal relation has the property 
that there must be another event pEcC, p~q, which is also related to z. Using 
axiom (M2) again, we find 

(5.7) o = u(p, z) = (z - p)2 = (8 + V)2 = 2s·v + v2, 

where v=q-p. Since PEcC, v must be of the form v=f(A). By (5.4) and (5.5), 
we obtain 

s·v = 1](-~A) - H-7]A) = 0 

and hence, by (5.7), 0=v2= _}..2. Consequently, v=f(O) =O=q-p, i.e. p=q, 
which contradicts p ~ q. 

We conclude that always 8=0 and hence, by (5.5), that 

(5.8) 1] f(~) = t f(7]) 

holds for all real ~ and 11. Putting 11= 1 and f(l)=IE'O, we see that (5.8) gives 
f(~) =~l. It follows from (5.3) that cC is the set of events of the form x=q+~l. 
The relation 12 = -1 is a consequence of (5.4). Hence 1 has the properties (i) 
and (ii). Q.E.D. 

THEOREM 2. Let cC be an observer with direction vector 1 and let qEcC, xEe. 
A n event y = q +111 E cC is then related to x by a signal if and only if 11 is a root of the 
equation 

(5.9) 1]2+21· (x - q)1] + (x - q)2 = O. 

When x EEcC, there are exactly two events 

(5.10) Y1 = q + till, 
in cC that are related to x by a signal and we have 

(5.11) u(q, x) = (x - q)2 = - 7]17]2, (x - q)., = - (7]1 + '12), 

(5.12) [I· (x - q)]! + 4(x - q)2 > O. 

Proof. By axiom (M2), y=Q+111 is related to x by a signal if and only if 

a(x, y) = (y - X)2 = (q - x + tll)2 = - 1]2-21·(x - q)7] + (x - q)2 = 0, 
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which proves the first part of the theorem. 
When x EE.e, the property of the signal relation described in (d) requires 

that the roots of (5.9) must be real and distinct. (5.12) is a necessary and suffi
cient condition for this requirement. The roots of (5.9) always satisfy (5.11). 

Proof of the uniqueness theorem. Let q and x be any two events in S. Since the 
family of all observers covers S, there is at least one observer such that qE.e. 
If xE.e also, then by axiom (M1) 

(5.13) u(q, x) = u.e(q, x). 

If x EE.e, we consider the events Y1, Y2E.e, determined as in Theorem 2. With the 
notation of Theorem 2, we have 

t t 2 
u(q, y.) = (Y' - q) = '1.1 = - ''Ii> i = 1,2 

2 22 I 2 
U(Yl, Y2) = (Y2 - Y1) = ('12 - '11) I = - '12 + 2"11'12 - '11. 

I t follows that 

'11'1' = i[U(Yh Y2) - u(q, Y1) - u(q, Y2)], 

Noting that Y1, y" qE.e, we infer from axiom (M 1) and (5.11h that 

(5.14) u(q, x) = - ![u.,c(Yh Y2) - u.e(q, Yl) - u.e(Y, Y2)]. 

Equations (5.13) and (5.14) show that u(q, x) is uniquely determined when U.e 
is given. Q.E.D. 

DEFINITION. A set S which is endowed with a structure defined by n, {(1.e I.e En} , 
and", as described under (a)-(d) is called a Minkowskian domain if the axioms 
(M1) and (M,) are satisfied. 

The uniqueness theorem shows that a Minkowskian domain is also endowed, 
in a canonical way, with the structure of a pseudo-Euclidean space. 

THEOREM 3. The translation space '0 of a Minkowskian domain has index 1. 

Proof. Let.e be an observer with direction vector I, and let'tl= {ul u=~I,~E <R} 
be the one-dimensional subspace of '0 generated by 1. Consider a nonzero vector 
vE'tlL, which then satisfies l·v=O. Choose an event qE.e and put x=q+v. It is 
clear that x EE.e. Since l·v=l· (x-q) =0, (5.12) states that (X-q)2=V2>O, which 
shows that v is space-like. It follows that '0 = 'tl $ 'tl1. is a direct decomposition 
with the property that 'tlC'O_, CU1.C'O+, i.e., it is a decomposition of the type 
(2.3). Theorem 1 of Section 2 implies that ind '0 = dim 'tl = 1. 

Remark. As is shown by Theorem 1, the family n of observers is a congruence 
of straight lines in S. Since n covers S, there must be at least one line through 
each event. For example, n could be the set of all straight lines parallel to a 
given time-like direction. Unless n contains "very many" observers, a knowledge 
of u(x, y) for all pairs (x, y) such that x, Y belong to the same observer is not 
sufficient to determine u. It is the interconnection of u with the signal relation, 
as provided by axiom (M2), which renders u unique. 
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6. Temporal order. As in the previous section we assume that data as de
scribed under (a), (b), and (c) are given. Instead of (d), we suppose that we have 

(d') a binary relation ---" on S with the following property: Given any ob
server £ and any event xES, there is an event YIE£ such that Y1~ and there 
is an event Y2E£ such that X--'Y2. Moreover, X---"Y and y~ can both be valid 
only if x = y. The relation ---" will be called the directed signal relation and the 
relation defined by 

(6.1) x ,...., y if and only if x --->. y or y --->. X 

the (undirected) signal relation associated with --->0. 

I t is clear that,,", has the property described under (d) of the previous sec
tion. 

Remark on physical interpretation. The change from (d) to (d') corresponds 
to introducing the possibility of distinguishing the emission x from the reception 
y of a signal x---"y. 

We require here the existence of a separation function (T on S which satisfies 
not only the axioms (M1) and (M 2) but also 

(Ma) If £ is an observer and if Y1, Y2 and ZI, Z2 are events in £ such that 

(6.2) yl ....... P ....... y2, ZI---"q---"Z2 

for some p, qES, then 

(6.3) U£(Y1, Zl) + U£(Y2, Z2) - U£(YI, Z2) - U£(Y2, Zl) ~ o. 
DEFINITION. A set e which is endowed with a structure defined by n, {(T £ I £ En} ~ 

and -->. as described under (a)-(c) and (d') is called a directed Minkowskian domain 
if the axioms (M l ), (M 2), and (M3) are satisfied. 

From now on we shall exclude the trivial case when the domain S coincides 
with one of the observers. The dimension of the translation space '0 of S is 
then at least two. 

DEFINITION. We say that the event xES is earlier than the event yES, and we 
write x -< y, if there is an event p such that x---"p---"y. 

THEOREM 1. Every observer £ has a unique direction vector 1 with the following 
property: For any two events x, yES the relation x -<y holds if and only if 

(6.4) (y - X)2 ~ 0, (y - x)·1 ~ O. 

The direction vector 1 determined by the condition (6.4) will be called the 
proper direction vector of £. 

LEMMA. Let £ be an observer with direction vector 1 and let Xl, x2ES. Assume 
that qE£ and zi=q+~il are the two events related to x, by a signal (i= 1,2). Then 

(6.5) 

and (6.5h can reduce to equality only if (X2-XI)2=0. 
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Proof. Theorem 2 of Section 5 applies when we replace there q, x, Y1, Y2, '171, 7]2 

by q, Xi, q, Zi, 0, ~i' respectively. (5.11)2 then yields 

(6.6) 

"\-------=~--\, Xa 

lI1 

£ 

Consider the vector U=~2S1-~lS2. It follows from (6.6) that u·l=O. There
fore, by Theorem 3 of Section 5 and Theorem 2 of Section 3, u must be space
like. Since s~ = 0, we obtain 

(6.7) 

On the other hand we have 

(X2 - Xl)' = (81- Sl)2 = - 2s1·S2, 

which shows that (6.7) is equivalent to (6.5)~. Equality can hold in (6.7) only 
if U=~2S1-~lS2=O. in which case X2-X1=S2-S1 must be a signal vector. Q.E.D. 

Proof oj Theorem 1. The proof will be carried out in four steps. 
I. Assume first that x, yE£. Let i' be one of the two direction vectors of £ 

(see Theorem 1 of the previous section) and let y - X = ai'. Since the translation 
space 'D of e is such that ind 'D = 1, dim 'D ~ 2, there is a space-like unit vector 
orthogonal to I', i.e. a vector u such that u·I'=O, u 2 =1. Put q=x+!a i'E£ 
and z=q+!au, so that 

The two roots of the equation 

a 
y = q + -I', 

2 

a 
Z - q = -u. 

2 

'12 + I'· (z - q)'1 - (z - q)2 = .,,2 - ( ~ y 
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are 11 = ± la. Hence, by Theorem 2 of Section 5, x and yare the events in .c 
that are related to z by a signal. Therefore x and y, in some order, must be the 
two events in .c that correspond to z as described in (d'), and we must have 
either X-->'Z-'"y, i.e. x -< y, or y-'"Z-""X, i.e. y -< x. Both x -< y and y -< x can hold only 
when x=y=z. 

II. We choose two events ZI, z2E.c such that (Z2-Z1)2= -1. By the result of 
I we may assume that ZI, Z2 are arranged such that Zl-<Z2. We put I=Z2-ZI. Let 
x, yE.c and assume x -<Yo An easy calculation, starting from (6.3) with Yl, Yt 
replaced by x, y, shows that 

U.c(X, ZI) + u.c(y, 212) - u.c(x, 212) - u.c(y, 211) = - 2(y - X)'l;;;; O. 

Under the restrictive hypothesis x, yE.c the conclusion of the theorem now fol
lows. We note that if x, yE.c, then 

(6.8) 
e~Oifx-<y 

y - x = e 1, where 
~ ~ 0 if y -< x. 

(6.8) characterizes the proper direction vector of .c. 
III. Assume x -<y holds for two events x, yEe, i.e. x-+q-->.y for some qEe. 

Let .c' be an observer passing through q and let l' be the proper direction vector 
of .c'. According to the requirements described in (d'), there are events Z1. z2E.c' 
such that 

i.e. such that ZI-<q-<Z,. By II, (6.8) applies with x, y replaced by ZI, q or q, Z2. 
Hence 

(6.9) Zi = q + ~il', 
The lemma and (6.9) show that 

(6.10) (y - x)·l' ~ 0, (y - X)2 ~ O. 

Therefore the conclusion (6.4) holds for the particular observer .c'. 
Let .c be another observer and let q'E.c' be chosen arbitrarily. It is clear 

that there are events Xl, x2E.c and z{ , z/ E.e' such that z{ -'"Xl-""q'-""X2-""Z{. If 
.e'~.e we must have Xl~X2 and hence 

(6.11) x, - Xl = ai, a> 0, 

where 1 is the proper direction vector of .e. Also, (6.9) remains valid when 
q, Zi, ~i are replaced by q', zf, H. Thus, the lemma applies again and we find, 
using (6.11), that 

(6.12) 1·1' ~ O. 

If y~x, it follows from (6.10), (6.12) and Theorem 2 of Section 3 that actually 

(y - X)2 ~ 0, (y - x)·l' < 0, 1·1' < O. 
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Theorem 4 of Section 3 shows that we must have (y-x) ·1<0. If y=x, (y-x)·1 
=0 is trivially true. Hence (6.4) holds for the proper direction vector 1 of an 
arbitrary observer. 

IV. Assume that (Y_X)2~0. It is not hard to see that it is then possible to 
choose an observer .c and events q, Zl, z2E.c such that the hypotheses of the 
lemma are satisfied for X2=y, Xl=X. If (Y-X)2<0, (6.5h implies ~1~2<0, which 
states that ~l and ~2 have opposite sign. From part II we conclude that either 
Zl-'X-'q-'y-"Z2 or Z2-'y-'q-"X-'Zl. Hence, we must have either x <y or y <x. 
If (y-x)2=O, axiom (M2) shows that x and yare related by a signal and hence 
that x < y or y < x, trivially. Thus, x and yare comparable. This observation, to
gether with the result of III, completes the proof of Theorem 1. Q.E.D. 

Remark. The number - (y-x)·l is the "time-difference" of the events x 
and y relative to the observer .c. Theorem 1 states, therefore, that x is earlier 
than y if and only if it is "earlier" for every observer. 

An argument based on Theorem 1 and Theorem 4 of Section 3 will prove 

THEOREM 2. The relation < is a partial order on 8, which has the property 
that x and yare comparable if and only if cr(x, y) ~ o. 

One of the two directed time-cones described in Theorem 5 of Section 3, 
say 'l)~, is singled out by the property that y-xE'l)~ implies x <Yo We may call 
'l) ~ the future time-cone and 'l)!... = - 'l) ~ the past time-cone. 

The research leading to this paper was done under Grant NSF-G16745 by the National 
Science Foundation to Carnegie Institute of Technology. 
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Let ~ be a real inner product space of dimension n. The inner product is 
assumed to be positive definite. The unimodular group tW and the orthogonal 
group (I) of ~ are defined by 

and 
tW= {HI HE.P, IdetHI =1} 

(I)={QI QE.P, QT = Q-l} , 

( 1} 

(2) 

where .P is the algebra of all linear transformations of ~ into itself. It is the 
purpose of this note to give a simple proof of the fact that (I) is a maximal 
subgroup of tW. 

This theorem has an important corollary in the theory of simple materials. 
In the terminology introduced in [1], the theorem implies that every isotropic 
simple material is either a solid or a fluid. 

I convinced myself of the validity of the theorem about two years ago, on 
the basis of a tedious and ugly argument. Since I could not believe that the 
theorem was new, I asked a number of distinguished mathematicians for re~ 
ferences, but I had no success 1. I still believe that the theorem must have been 
discovered previously, but it is certainly not well known. 

The polar decomposition theorem states that every invertible linear trans
formation is the product of an orthogonal transformation and one that is positive 
definite and symmetric. It follows that every group f'§ containing (I) is generated 
by its positive definite and symmetric members. It is therefore sufficient to 
prove the 

Theorem. Assume that SEtW is positive definite and symmetric and has at 
least two distinct proper numbers sand t, s> t. Then every positive definite and 
symmetric HEtW belongs to the group t:g generated by (I) and S. 

The proof is based on the following 

Lemma. For every e such that 

(3) 

1 The proof of BRAUER [2], which came to my attention after this note was 
written, is being published in response to my inquiries. 
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there exists an RE () such that the symmetric transformation 

T=S-IRS2R-IS-I (4) 

has the proper numbers (E, E-I , 1, ... , 1). 

Proof. Let 9 and I be unit proper vectors of S corresponding to the proper 
numbers sand t, respectively. Let ir be the (n - 2)-dimensional subspace of 
!2 that is orthogonal to both 9 and f. We define R6E () by 

and we put 

R6 W =W if wEir, 

R6 9 = cos {} 9 + sin {} I, 

R 6 1=-sin {} 9 + cos {} I, 

~=S-IR6S2R{/S-I. 

It is easily seen that ~w=w if WE ir and 

Hence 7( .. /2) has the proper numbers (ft (fr2
, 1, ... , 1. Since To=l and 

since ~ depends continuously on {}, it follows that there exists a {} such that 
the assertion of the lemma holds for T=~, QED. 

Proof of the theorem. Let e l , ... , en be an orthonormal basis of proper 
vectors of H, with corresponding proper numbers hI' ... , hn • Let Hk be the 
symmetric tensor that has the same proper vectors e l , ... , en as H, but with 
corresponding proper numbers, 1, ... ,1, 17k' 17,/,1, ... ,1, where 17k corresponds 
to ek and 17kl to ek+l. If the 17k are chosen such that 

k = 1, 2, ... , n - 1 , 

then, observing that hI h2 ... hn = 1, we infer 

(5) 

We now fix k and choose m large enough that E = 'Y17,: satisfie.:- the inequality 
(3). We then determine T according to the lemma. Let 9 and I be unit proper 
vectors of T which correspond to the proper numbers ~ and E-I, respectively. 
We can find an orthogonal transformation Q which maps the basis e l , ... , en 
onto an orthonormal basis of proper vectors of T in such a way that 

With ~, T, and QE () chosen in this manner, we easily see that 

(6) 

Of course, T, Q, and m depend on k. 
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If we substitute (4) into (6) and the result into (5), and if we do so for each 
of the H k , we see that H is indeed generated by S and orthogonal transformations. 
QED. 
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Space-Time Structures in Classical Mechanics 

WALTER NOLL 

1. Introduction 

The English language contains many words that denote spatial or 
temporal concepts: 'now', 'later', ' soon', ' simultaneous', 'here', 
'there', 'far', 'location', 'equidistant', etc. The grammar is in part 
organized in accordance with temporal categories: present, past, future. 
If we tried to remove all words, prefixes, and suffixes with a temporal 
or spatial meaning from the language we would surely all but destroy 
it. The system of temporal and spatial concepts of a natural language 
such as English constitutes a verbal space-time structure. It is not a very 
precise system, but it serves very well as a framework for the common 
experiences of human life. 

The geometry of the ancient Greeks and the spatial and temporal 
concepts of the mechanics of GALl LEO and NEWTON may be viewed as 
being refinements of the intuitive verbal space-time structure, refine
ments which resulted in a very precise mathematical system. This 
system, which I call the classical space-time structure, provides the basis 
for several very successful branches of physics, chief among them the 
mechanics of particle systems of NEWTON and the mechanics of rigid 
bodies of EULER. In Sect. 2 I shall give a brief outline of a modern version 
of the classical space-time structure. 

Until the beginning of the 19-th century there were very few people, 
if there were any, who could even imagine a system that might replace 
classical space-time. KANT, for example, regarded the valid statements 
of classical geometry and mechanics as being "a priori" and "syn
thetic"; i.e., he considered them to be truths about reality not derived 
from experience and yet not mere tautologies. This judgement reflects 
the view that the classical space-time structure is not just an expedient 
framework for physical experience, but is indeed the only conceivable 
such framework. It is a very understandable view, because before the 
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invention of non-Euclidean geometry it must have been impossible to 
imagine how another space-time structure might be formulated. 

A non-classical space-time structure cannot easily be described 
entirely in words, because words have connotations that imply the 
classical structure. The term "space-time" itself has misleading con
notations when applied to a nonclassical system. The natural language 
keeps us in the prison of classical space-time. The only language within 
which a non-classical structure can be unambiguously formulated is 
the language of axiomatic mathematics. The methods of modem mathe
matics make it possible to fabricate almost at will structures that can 
play the role of classical space-time. 

One may ask why anybody would wish to consider a nonclassical 
space-time at all. The reason is, of course, that the classical structure, 
while adequate as a basis for the concepts of ordinary experience and of 
the older branches of physics, is inadequate for some of the newer 
physical disciplines, inadequate, in particular, for relativistic and quan
tum physics. These disciplines require space-time structures that radically 
deviate from the classical one. It is not the purpose of this lecture to 
elaborate on these structures. Rather, I here content that classical 
space-time is not well suited even for some venerable branches of me
chanics, and I shall develop another structure which I believe to be more 
appropriate for these branches. This structure, which I call neo-classical 
space-time, will be presented in Sect. 3; and in Sects. 4-6 I shall in
dicate how it can be used for developing classical mechanics. 

Many of the concepts of classical space-time reflect the fact that we 
humans live on this solid earth, which in daily life is always available 
as a frame of reference for specifying" locations". The first blow to the 
classical system was dealt by COPERNICUS, who deprived the earth of its 
once secure place as the universal frame of reference. The concept of a 
"location" in interstellar space is much more problematical than that 
of a location on earth. NEWTON'S absolute space, as the set of all possible 
locations, has since its inception been regarded with unease by most 
thinkers. Nonetheless, the "Newtonian" mechanics built upon this 
concept of absolute space has been very successful. Actually, use of the 
concept of absolute space is one among several ways of accounting for 
the phenomenon of inertia. Classical space-time with its absolute space 
has been most successful in those branches of mechanics in which inertia 
plays the central role. Such is not the case, however, in many of the 
branches of the mechanics of continuous media, where inertia is often 
of minor importance or sometimes even altogether neglected. In these 
branches of mechanics absolute space is an artificial and inappropriate 
concept. If it is used anyway, it is necessary to compensate for its 
arbitrariness by introducing a requirement of invariance, called the 
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principle of frame-inditference or objectivity (c.f. [lJ, Sect. 19). The 
description of mechanics in terms of the neo-classical space-time, which 
has no room for an absolute space, shows clearly why this principle is 
needed. 

2. The Event-World of Classical Space-Time 

The absolute space is a set E consisting of points (locations) x, y, .... 
The set E is endowed with a mathematical structure defined by a distance 
function Ii which associates with each pair x, y of points a number 
Ii(x,y), the distance from x to y. The distance function Ii is subject to 
certain axioms which ensure that Ii is a Euclidean metric that gives E 
the structure of a Euclidean space. This Euclidean structure makes it 
possible to define a unique translation space ~ of E, which is a vector 
space with inner product consisting of automorphisms of E. (For details, 
see [2J, Sect. 4.) 

The event-world of classical space-time is the set W = E X R of all 
pairs (x, t), where xEE and tE R, the set of real numbers. The point x 
is called the location, the number t the time of the event (x, t). 

3. The Event-World of N eo-Classical Space-Time 

The event-world of neo-classical space-time is a set W consisting of 
events e, f, .... The set W is endowed with a mathematical structure 
defined by a time-lapse function 0' and a distance function Ii, subject to 
the axioms (7;,) - (T4) and (D1) - (D3) stated below. 

(7;,) The time-lapse function 0' assigns to each pair e, f of events a number 
O'(e, f), called the time-lapse between e and f. 

(T2) For any e, fE W, 
O'(e, f) =- O'(f, e). (3·1 ) 

(Ta) For any e, f, gE W, 
O'(e, f)+O'(f, g) = O'(e, g). (3. 2) 

(T4) For any eE Wand any tE R there is a fE W such that 0' (e, f) = t. 

We say that e is earlier than, later than, or simultaneous with f 
according to whether 0' (e, f) > 0, < 0, or = 0. 

The set of all pairs of simultaneous events 

S={(e, f)IO'(e, f) =o} (3.4) 

is an equivalence relation on W, as can easily be seen to follow from 
(T2) and (Ta)· This equivalence relation determines a partition r of W 
into classes T of simultaneous events such that 

5= U TxT. (3· 5) 
TEr 
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The equivalence classes T will be called instantaneous spaces or simply 
instants. If eE T we say that the event e happens at the instant T. 

The value of the time-lapse T (e, I) depends only on the instants T and S 
at which e and 1 happen. Therefore, we can define unambiguously a 
time-lapse 

'f(T, S) = T(e, I) if eE T, IES (3·6) 

between two instants T and S. 

(D1) The distance function <5 assigns to each pair (e, I)ES, i.e., to each 
pair of simultaneous events, a number <5 (e, I), called the instantaneous 
distance between e and I. 

(Da) For each instant T, the restriction <5T of <5 to TxT is a Euclidean 
metric on T. 

To say that <5T is a Euclidean metric means that it gives to the 
instant T the structure of a Euclidean space. The translation space of T 
will be denoted by VT • 

(D3) For each instant T, the dimension of the translation space VT is 3. 

Physically, the values T (e, I) of the time-lapse function T are to be 
interpreted as the results of time-measurements with clocks. The axioms 
(Ta)-(T4) reflect familiar experiences with such measurements. The 
values <5 (e, I) of the distance function <5 are to be interpreted as the 
results of distance measurements with measuring sticks. The value 
<5 (e, I) is defined only when e and 1 are simultaneous because each 
distance measurement is made at a particular instant. The axioms (Da) 
and (D3) are the abstract of thousands of years of experience with 
distance measurements. 

An automorphism at of the event-world W is a one-to-one mapping 
of W onto itself which preserves time-lapses and distances. Thus, an 
automorphism at satisfies 

and 
T (at (e), at (I)) =T(e,/) foraH e,/EW 

<5 (at (e), at (f)) = <5(e, I) foraH (e,/)ES. 

If U(W we write 
rJ'Z= {at (e) I eE U} 

(3·7) 

(3·8) 

(3·9) 

for the set of all images under at of events in U. In this way, the mapping 
T ~ ya. of r onto itself is an automorphism of r in the sense that it 
preserves the time-lapse function 'f defined by (3.6). 

An automorphism at of W also induces isomorphisms VT-VTCX 
between the translation spaces of the instantaneous spaces. 
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4. Material Universes, Motions 

A material universe l is a set ~ consisting of bodies B, C, .... It is 
assumed that ~ is partially ordered by a relation <, and we say that C 
is a part of B if C < B. The body B is said to be separate from the body 
C if Band C have no part in common, i.e., if there is no DE~ such that 
both D < Band D < C. 

The material universe appropriate to a system of discrete particles 
consists of the collection of all subsets of a finite set, whose members 
represent the particles. In this case, the relation < is the set-inclusion. 
For continuum mechanics, however, more complicated material uni
verses must be considered. 

A motion of the material universe ~ is a function M which assigns 
to each body BE~ a subset M(B) of W such that 

M(B)(M(C) if B<C (4.1) 
and 

M(B)nT=l=0 for each TEr. (4.2) 

The set M(B) is called the set of events experienced by B during the 
motion M, or simply the world-tube of B. 

The requirement (4.1) states that a part experiences fewer events than 
the whole, and (4.2) expresses the fact that bodies cannot appear out 
of nothing nor disappear into nothing. 

An automorphism IX of the event-world W induces a transformation 
M --+Ma. on motions; it is defined by 

MCX(B)=(M(B))a. forall BE~. (4·3) 

The above is only the beginning of a kinematics based on the neo
classical space-time. A more detailed development will be presented in 
future publications. 

5. Force Systems, Dynamical Processes 

A force system for a material universe ~ is a function ffJ which as
signs to every triple (B, C, T), where Band C are separate bodies in Ol/ 
and TEris an instant, a vector ffJ(B, C, T) in the translation space VT 

of T. The value ffJ(B, C, T) is called the force exerted by the body C on 
the body B at the instant T. Force systems are subject to restrictions which 
will not be stated here. (They are similar to the ones given in [3], Sect. 3, 
and [4], Sect. 4.) 

1 The concept of material universe used here differs from the one of references 
[3] and [4]. In these papers, bodies are assumed to be certain subsets of a universal 
set, while here they need not be sets at all. 
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A dynamical process for the material universe 0It is a pair II= (M, cp), 
where M is a motion of 0It and cp a force system for 0It, such that the 
fundamental laws of balance of forces and moments are statisfied. A 
precise statement of these laws in the present framework and a detailed 
treatment of dynamics will be given in future publications. The totality 
of all dynamical processes for 0It will be denoted by~. 

An automorphism at of W induces a transformation cp-+cpa. on force 
systems; it is defined by 

cpa.(B, C, P)=at(cp(B, C, T)), (5.1) 

where the right hand side is the image under the isomorphism Vi,-+ VTa. 
induced by at. The automorphism at induces the transformation 

(5.2) 

on the set ~ of all dynamical processes, where Ma. is defined by (4.3) 
and cpa. by (5.1). The fundamental laws of balance are invariant under 
transformations of the form (5.2), so that dynamical processes are trans
formed into dynamical processes. 

In order to have consistency of the theory described here with the 
conventional approaches to classical mechanics one must include inertial 
forces in the force systems cp on an equal footing with other kinds of 
forces (d. [3J). 

6. Constitutive Classes 

The nature of many problems in mechanics can roughly be described 
as follows: among all conceivable dynamical processes for a material 
universe, select the one that will actually occur. In order to make such 
a selection, one must know something about the particular material 
properties of the bodies which belong to the material universe. Con
ventionally such properties are described by "force laws", "stress
strain relations", or similar types of constitutive laws. 

A way of making precise the concept of a material property within 
the present framework is that of using the notion of a constitutive class: 
A constitutive class for a pair B, C of separate bodies is a subset '(/ (B, C) 
of the set ~ of all dynamical processes, subject to the following re
quirements: 

(I) If III = (MI' CPI) and II2= (M2' CP2) are two dynamical processes 
such that 

MI (D) =M2(D) 

for all parts D < B or D < C and 

CPI (B, C, T) = CP2 (B, C, T) 

for all instants TEr, then III E'(/ (B, C) if and only if II2 E'(/ (C, B). 

(6.1) 

(6.2) 
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(II) <'C(B, C) is stable under automorphisms; i.e., if IIE<'C(B, C) and 
if IX is an automorphism of W, then IIa.E<'C(B, C), where II<1. is defined 
by (5.2). 

The first of these requirements is a principle of irrelevance, stating 
that the material properties of the bodies Band C concern only Band C, 
and not anything else in the universe. The second requirement is a 
principle of homogeneity for the event-world, expressing the condition 
that events may have no individuality beyond the one conferred to them 
by motions of material universes. 

In conventional treatments of mechanics material properties are 
defined by means of constitutive equations. Such constitutive equations 
actually define classes of dynamical processes in the sense of Sect. 5 if a 
suitable concept of frame of reference is employed. One can show that these 
constitutive equations must satisfy the principle of material frame
indifference and the principle of local action (see [lJ, Sect. 23) if they 
are to define constitutive classes in the sense described above. 
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The basic concepts of the theory of simple materials have been introduced in 
reference [1] (see also the exposition in [2], Chapter C III). Here I present a detailed 
study of the structure of bodies that consist of a uniform simple material yet are 
not necessarily homogeneous. 

After assembly of the necessary mathematical tools in Sects. 2 - 4, the concept 
of a simple body is introduced in Sect. 5. This concept is more inclusive than the 
one described in [1] because it can be appropriate not only to mechanical material 
properties, but also to thermal, optical, electrical, magnetic, or any other type of 
material properties. A body may be simple with respect to any particular such 
material property or to any combination of them. The physical theory relevant to 
these properties need not be made explicit. 

In Sect. 6 a precise definition of a materially uniform simple body is given. The 
nature of the coherence of a uniform body with respect to the local material prop
erties under consideration can be described mathematically in terms of what I 
call a material uniformity or in terms of what I call a uniform reference. In general, 
neither of these is uniquely determined by the simple body structure, but the degree 
of non-uniqueness can be delimited precisely. There mayor may not exist uniform 
references that are gradients of global configurations. If they do exist, the body is 
homogeneous, and the theory becomes trivial. 

This paper supersedes an unpublished preliminary study written by the author in 1963. 
Section 34 of reference [2] is a summary of that study. 
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Sections 7 - 9 contain an exposition of the mathematical prerequisites necessary 
to describe the local behavior of material uniformities and uniform references 
that possess a degree of smoothness. In the remainder of the paper, such smooth
ness is always assumed. A material uniformity is then equivalent to an affine con
nection, which is defined in Sect. 10 and called a material connection. The Cartan 
torsion of this connection describes locally the deviation from homogeneity and 
is therefore called, in Sect. 11, the inhomogeneity of the given material uniformity. 

Associated with each smooth uniform reference is also a Riemannian structure 
on the body, and the relation of this structure to the material connection is studied 
in Sect. 12. The difference between the Riemannian connection and the material 
connection determines what I call the contortion of the given uniform reference. 
Contortion and inhomogeneity determine one another. 

Of particular interest is a special type of non-homogeneity called contorted 
aeolotropy in Section 13. It generalizes the more familiar curvilinear aeolotropy. 
In contorted aeolotropy, the deviation from homogeneity is given by a distribution 
of rotations on a suitable global configuration, and the contortion describes the 
local behavior of this distribution. The curvature of the Riemannian structure 
mentioned before describes locally the deviation from contorted aeolotropy. 

Section 14 contains a number of results that apply when the response functions 
of the body have special properties, especially with respect to material symmetry. 

The usual version of CAUCHY'S equation of balance (cj. [2], (16.6») is very useful 
only when applied to bodies that are homogeneous. For applications to materially 
uniform but inhomogeneous bodies, a new version of CAUCHY'S equation, derived 
in Sect. IS, is much more suitable than the usual one. This new version gives rise, 
for example, to a definite differential equation for the theory of inhomogeneous 
but materially uniform elastic bodies. 

Unfortunately, there is no easily accessible exposition of the coordinate-free 
type of modern differential geometry that is the most appropriate for the applica
tions in this study. The monograph of LANG [3], although it explains some of the 
concepts used here, does not contain sufficient material and emphasizes matters 
not relevant in the present context. For this reason I develop in this paper all 
mathematical tools as they come to be needed, tailored to the requirements of the 
intended applications. 

There is a large literature on theories of continuous distributions oj dislocations, 
proposed in various forms by KONDO, NYE, BILBY, BULLOUGH, SMITH, SEEGER, 
KRONER, GUNTHER, and othersl. Motivated by heuristic considerations, mostly 
concerning lattice defects in crystals, these authors lay down a priori certain geo
metric structures to describe distributions of dislocations. These geometric struc
tures are formally of the same type as some of those occurring in the present paper. 
The conceptual status of the theory presented here, however, is very different. I 
show that once a constitutive assumption defining a materially uniform simple 
body is laid down, the geometric structures of the body are determined. The geo
metry is thus the natural outcome, not the first assumption, of the theory. Since the 
underlying constitutive assumption is very general, the real materials to which 
the theory can be expected to apply need be neither crystalline, nor elastic, nor solid. 

1 For details and references I refer to the expository articles [4] and [5]. 
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Theory of Dislocations 3 

2. Deformations 

We shall employ the concept of absolute physical space 2 , as is customary in 
classical physics. This space ct, whose elements x, y, ... , we call spatial points, has 
the structure of a three-dimensional Euclidean point space 3. The translation space 
of ct is denoted by f; it is a three-dimensional inner product space. The elements 
u, v, ... , of f are called spatial vectors. The translation which carries XEct to 
YEct is denoted by Y -XE"Y, and X+ u denotes the point into which XEct is carried 
by the translation UE"Y. The inner product of two spatial vectors u, vEf is 
denoted by u . v. Of course, U • vE9l, where 9l is the set of all real numbers. 

The set of all linear transformations L: f -+ f of f into itself is denoted by 2. 
The composition of LE2 with ME2 is denoted by MLE2. The identity trans
formation on f is denoted by lE2. The transpose of LE2 is denoted by II, 
so that u . Lv=II u . v holds for all u, VE"Y. The trace and determinant of LE2 
are denoted by tr Land detL, respectively. The set 2 of all linear transformations 
has the natural structure of a nine-dimensional algebra. It is also endowed with 
a natural inner product, whose values are given by L· M =tr(LMT). A transfor
mation LE2 is said to be invertible if it is a bijection (i. e., one-to-one and onto). 
In this case, there exists an inverse L- 1E2 so that LL- 1 =L- 1 L=l. The invertible 
members of 2 form a group t c: 2 under composition; it is called the linear group 
of "Y. Important subgroups of t are the unimodular group 

and the orthogonal group 
u={H EtlldetHI = I} 

Q={QEtIQQT=l}. 

Of course, Q is a subgroup of u. 

Consider a mapping qJ: C§ -+ ct' of an open subset C§ c: ct into a point-space or 
vector-space ct'. Let f' be the translation space of ct' (f' =ct' if ct' is already a 
vectorspace) and let 2("Y, f') be the space of all linear transformations of f 
into f'. We say that qJ is of class C 1 if there is a continuous mapping VqJ: C§-+ 
2("Y, f') such that 

qJ(X + u) = qJ(x) + (VqJ(x) u +a(x, u), 
where 

lim _111 a(x, u)=O 
1"1-+0 u 

holds for all XEC§. The mapping VqJ, if it exists, is uniquely determined by qJ and 
is called the gradient of qJ. If VqJ exists and is itself of class C 1, we say that qJ is 
of class C 2. The gradient of VqJ is denoted by V(2)qJ and is called the second gradient 
of qJ. Continuing in this manner, we say that qJ is of class C r , if it is of class C r - 1 

and if its (r _l)st gradient v(r-1)qJ is of class C 1. The gradient of v(r-1)qJ is denoted 
by v(r)qJ. We say that qJ is of class CO if it is merely continuous. If qJ is of class C 2, 
its second gradient has the symmetry property (V(2)qJ) u) v = ((I7(2)qJ) v) u, u, VE"Y. 

2 The considerations of this paper can be adapted to the neoclassical space-time explained 
in [6]. When this is done, absolute space must be replaced by suitably defined "instantaneous 
spaces". 

3 The exact meaning of this term is explained in [7], Sect. 4. 
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The modifier "of class C'" may apply, in particular, to a scalar field, i.e. a 
mapping f: '§ -+ qt, a vector field, i. e. a mapping h: '§ -+ "Y, or a tensor field, i. e., 
a mapping T: '§ -+fi>. A one-to-one mapping A: '§ -+$ is called a deformation of 
class C' (r~ 1) if it is not only of class C' but if also the values of its gradient are 
invertible, i.e. if V A(x)el for all xe'§. 

The members of the linear group l are also called local deformations, so that 
a (global) deformation has a gradient whose values are local deformations. 

3. Continuous Bodies 

A physical object can often be described mathematically by the concept of a 
body fJI, which is a set whose members X, Y, ... , are called material points, and 
which is endowed with a structure defined by a class C of mappings Ie: fJI-+C. 
The mappings "eC are called the configurations of fJI (in the space C). The spatial 
point "(X)eC is called the place of the material point XefJI in the configuration". 

We say that fJI is a continuous body of class CP (p~ 1) ifthe class C of configura
tions satisfies the following axioms: 

(C 1) Every "eC is one-to-one and its range "(fJI) is an open subset of C, 
which is called the region occupied by fJI in the configuration ". 

-1 

(C2) If 1', "eC then the composite 4 A=I'O": ,,(fJI)-+I'(fJI) is a deformation 
of class CP, which is called the deformation of fJI from the configuration" into the 
configuration 1'. 

(C 3) If "eC and if A: "(fJI) -+$ is a deformation of class CP, then AO "eC. 
The mapping AO " is called the configuration obtained from the configuration" by 
the deformation A. 

In the remainder of this paper we shall always assume that fJI is a continuous 
body of class CP, p~ 1. 

The axioms (Cl)-(C 3) ensure that the class C endows the body fJI with the 
structure of a "CP-manifold modelled on $" in the sense of LANG ([3], Ch. II, § 1). 
Topologically, it is a very simple manifold because it can be mapped out with a 
single "chart" ("configuration" in our terminology). 

Of central importance for the present paper is the concept of a local configura
tion 5 at a material point X. Two (global) configurations " and I' are said to be 
equivalent at X, and we write 6 

-1 

""'xl' if 17(" 0 I' )ly(x)=l. (3.1) 

It is an immediate consequence of the chain rule for gradients that ~ x is an equi
valence relation on C. The resulting partition of C is denoted by rex, and its 
members Kx , Gx , ... , i.e. the equivalence classes, are called local c011figurations 
at X. Instead of writing "eKx when" is a member of the class Kx we often write 

(3.2) 

4 Composition of mappings other than linear mappings is denoted by o. The inverse of a 
-1 

one-to-one mapping 1C is denoted by 1C. 

5 The term "configuration gradient" was used and another meaning was assigned to the 
term "local configuration" in [1]. 

6 For better reading, we sometimes write f Ix instead of f(x) for the value of fat x. 
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and say that the local configuration Kx is the gradient at X of the (global) config
uration K. 

Let Kx , GxECCx be two local configurations, and let KEKx , YEGx . It is easily 
-1 

seen that the local deformation 17("10 K) Ix(X)Et depends only on Kx and Gx , 
and not on the particular choices of KEKx and YEGx . We denote this local defor
mation by GxKi1 and call it the local deformationfrom the local configuration Kx 
into the local configuration Gx . Using the notation (3.2), we then have 

(3.3) 

If KxECC x is a local configuration and LEt any local deformation, we can 
define a new local configuration LKxECCx by 

(3.4) 

We call LKx the local configuration obtained from the local configuration Kx by 
the local deformation L. Clearly, we have the rules 

(3.5) 

4. Tangent Spaces 

Consider pairs (Kx, u), where KxECCx is a local configuration at X and UE"Y 
a spatial vector. We say that two such pairs (Kx, u) and (Gx , v) are equivalent if 

(4.1) 

It follows from the rules (3.5) that (4.1) does indeed define an equivalence relation. 
The resulting equivalence classes are called tangent vectors ux , Ox, ... at X. The 
totality of all these tangent vectors is denoted by fTx and is called the tangent space 
at XE!!I. Let UxE fTx and KxECCx be given and let (Gx , v) be any pair belonging to 
the class ux . Now, if (Kx, u) is to belong to Ux then (4.1) must hold. Therefore, 
we see that UxE fTx and KxECCxdetermine a unique spatial vector UE"Y such that 
(Kx, U)EUx . We can therefore use the notation 

(4.2) 

and we see that Kx determines a one-to-one mapping of the tangent space fTx 
onto the space "Y of spatial vectors. The tangent space fTx has the natural structure 
of a three-dimensional vector space, with addition defined by 

UX+OX=K~l(U+V) if UX=K~l U, OX=K~l v (4.3) 

and multiplication with scalars by 

QEt?ll. (4.4) 

It is immediately seen that these definitions of ux+ox and aux are legitimate be
cause the results are independent of the choice of the local configuration Kx used 
to represent Ux and Ox in "Y. The local configurations can be identified with the 
invertible linear transformations of fTx onto "Y. 
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Given a local configuration KxeCCx , we can define an inner product ux*ux 
of Ux, ux,e9'"x by 

(4.5) 

However, we obtain different inner products on 9'"x for different choices of Kx , 
and hence 9'"x is not naturally an inner product space. 

5. Simple Bodies, Material Isomorphisms, Intrinsic Isotropy Groups 

To describe mathematically the physical characteristics of a body PA we must 
endow fA with additional structure. Some of these characteristics, such as elasticity, 
viscosity, heat capacity, and electrical conductivity, are local, i. e., they are attached 
to the individual material points XefA rather than to the body as a whole. Other 
characteristics, such as mutual gravitation and internal radiative heat transfer, 
involve more than one material point. We deal here only with local characteristics. 
The physical response of the body fA at a particular material point XefA and a 
particular time will depend on the configuration " of fA at that time. It may 
happen that only the local configuration V,,(X) at X determined by", and no 
other properties of ", has an influence on the response. If this is the case, we say 
that the material at X is simple. We say that the whole of fA is simple or that fA 
is a simple body if the material at X is simple for all XefA. 

We assume that a possible physical response at a material point is given 
mathematically by specifying an element from a set R of mathematical objects. 
The nature of R depends on the particular physical phenomena to be described. 
For example, in the theory of elasticity R consists of all possible 'stress tensors', 
i.e., of all symmetric linear transformations of l' into "Y. In the mechanical theory 
of simple materials with fading memory, R consists of "memory functionals" that 
relate relative deformation histories to stresses and are subject to certain smooth
ness requirements. In theories that include non-mechanical effects R consists of 
functions or functionals whose independent and dependent variables have inter
pretations as local temperatures, energy or entropy densities, heat fluxes, electric 
or magnetic field strengths, polarizations, magnetizations, electric currents, etc. 
For the purpose of the present paper, no specific assumptions about the nature 
of R need be made. 

We can now make our definition of a simple body precise: 

Definition 1. Let R be a set, whose elements we call response descriptors. A con
tinuous body fA of class CP will be called a simple body with respect to R if it is 
endowed with a structure by afunction <fJ which assigns to each material point XefA 
a mapping 

<fJx : CCx-+R. (5.1) 

The vaiue <fJx (Gx) is the response descriptor of the material at X in any configuration y 
of fA such that Vy(X)=Gx . 

The mappings <fJx cannot be entirely arbitrary, for they are subject to restric
tions imposed by general physical principles such as the principle of frame
indifference and the principle of dissipation. These restrictions need not be made 
explicit here. 
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Theory of Dislocations 7 

We would like to give now a precise meaning to the statement that the material 
at one point XEfJB is the same as the material at another point YEfJI. We cannot 
construe this statement to mean that 6>x and 6>y are the same, for they have 
different domains and hence cannot be directly compared. However, we can con
nect the domains rtf x and rtf y if an isomorphism cfJ x y: Yy -+ Y x of the tangent 
space at Y onto the tangent space at X is given. Recalling that a local configura
tion GxErtf x can be regarded as a mapping Gx : Y x -+"Y, we can let GxErtf x cor
respond to the composition Gx cfJXyErtfy. We are thus led to the following defini
tion: 

Definition 2. An invertible linear transformation cfJx y: Yy -+§x is called a 
material isomorphism from Yy onto Y x if 

(5.2) 
holds for all GxErtfx . 

To say that the material at X is the same as the material at Y means that there 
exists a material isomorphism from §x onto Yy. 

It follows immediately from Definition 2 that if cfJx y: Yy -+Yx and cfJyz: 5"z -+§y 
are material isomorphisms, so is their composition cfJx y cfJy z: 5"z -+ Y x . Also, if 
cfJXY : .o/;-+Yx is a material isomorphisms, so is its inverse cfJ;}: §x-+Yy. If we 
denote the set of all material isomorphisms from Y x onto Yy by fI,yx , these facts 
can be expressed by 7 

-1 
flzy flyx = flzx, flyx = flxy, valid if these sets are not empty. (5.3) 

It is clear that fix x, the set of all material isomorphisms of Y x onto itself, is a 
subgroup of the linear group t x of Y x , which consists of all invertible linear trans
formations of Y x . We write 

(5.4) 

and call fix the intrinsic isotropy group of the material at X. For any cfJx yEflx y 
one easily establishes the relations 

(5.5) 

It follows from (5.5)z that if a material isomorphism cfJx y: Yy -+§x exists, i. e. 
if the material at X is the same as the material at Y, then the intrinsic isotropy 
groups fix and fly are isomorphic. 

6. Material Uniformity, Uniform References, Relative Isotropy Groups 

A simple body fJB is said to be materially uniform if the material at any two of 
its points is the same, i. e. if fix y is never empty. From now on we assume that fJB 
is a materially uniform simple body. We select a member cfJ'(X, Y) from each flxy 
and thereby define a function cfJ' which assigns to each pair (X, Y) of material 
points of fJB a material isomorphism from Yy onto Y x . Choose Xo E!!l arbitrarily 

7 If fI and A are sets of linear transformations of any kind such that the composition LM 
makes sense whenever LEr;, MEA, we write flA= {LMI LEfI, MEA}. If the LEfl are invertible, 
we write fI-1={L -lILEfI}. Also, we write KfI= {KLI LEfI} if KL makes sense for all LEfI. 
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8 w. NOLL: 

and define cjJ by 
(6.1) 

It follows from (5.3) that cjJ(X, Y)E§lxy. Moreover, we have 

(6.2) 

where lx is the identity transformation of !Tx . 

Definition 3. A function cjJ which assigns to each pair (X, Y) of material points 
of 86 a material isomorphism cjJ(X, Y)E§lx y is called a material uniformity if (6.2) 
holds. 

The construction (6.1) shows that the materially uniform bodies are those that 
admit material uniformities. It follows from (5.5) and (6.2) that any two material 
uniformities cjJ and $ are related by 

(6.3) 

where 'l3 is a function on 86 whose values 'l3(X) belong to the intrinsic isotropy 
groups §Ix. 

Definition 4. Afunction K on 86 whose values K(X)E<{6'x are local configurations 
is called a reference for 86. If, moreover, 

cjJ(X, Y)=K(X)-l K(Y) (6.4) 

is a material isomorphism of ffy onto !Txfor any X, Y E86, then K is called a uniform 
reference for 86. 

Actually, (6.2) holds ifcjJ is defined by (6.4), so that cjJ is a material uniformity 
if K is a uniform reference. Hence, every uniform reference K determines a material 
uniformity cjJ through (6.4). Conversely, if a material uniformity cjJ and a local con
figuration KXoE<{6'xo for a particular material point XoE86 are given, then there 
exist a unique uniform reference K such that (6.4) and K(Xo) =Kxo hold. In fact, 
K is given by 

K(X)=Kxo cjJ(Xo ,X). (6.5) 

Therefore, every material uniformity has representations (6.4) in terms of uniform 
references. 

If K is a (global) configuration, then V K, which assigns to X the local configura
tion VK(X) at X, i.e., the equivalence class to which K belongs, is a reference, 
called the gradient of the configuration K. We say that a body is homogeneous if it 
admits a gradient as a uniform reference. Of course, not every reference is a grad
ient, and it may happen that none of the uniform references of a materially uni
form body is a gradient. 

Let K be a uniform reference. Every local configuration Gx E <(6' X can be charac
terized by the local deformation F=GxK(X)-lEt from K(X) into Gx , so that 

Gx=F K(X). (6.6) 
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Theory of Dislocations 9 

Substituting (6.6) and (6.4) into (5.2) with the choice cJ>Xy=cJ>(X, Y), we see that 

(6.7) 

must hold for all FEI and all X, YEgo. Conversely, if (6.7) holds for all FEI and 
all X, YEgo, then K is a uniform reference. This result may be formulated as follows: 

Theorem 1. A reference K for go is uniform if and only if there is a function 
f>K: t -+ R which satisfies 

(6.8) 
for all XEgo and all FEI. 

The function f>K' which assigns to each local deformation a response descrip
tor, will be called the response function of the body relative to the uniform reference K. 

Let K be uniform reference. If we substitute (6.4) for cJ>x y in (5.5), we see that 

K(X)flxK(X)-1 =K(Y)fl y K(y)-1, (6.9) 
i. e. that 

flK= K(X) fix K(X) -1 (6.10) 

is independent of X. The group flK is a subgroup of the linear group t. We call flK 
the isotropy group of the body go relative to the uniform reference K. In view of 
(6.10), all the intrinsic isotropy groups fix, XEgo, are isomorphic to the relative 
isotropy group flK. It is easily seen that flK is given in terms of the response func
tion f>K by 

(6.11) 

The relation between two uniform references and the corresponding response 
functions and isotropy groups is described by the following theorem: 

Theorem 2. Any two uniform references K and K are related by 

K(X)=LP(X)K(X), 

where LEI and where P is afunction on go with values in flK. 

The isotropy groups flK and fli. relative to K and K are conjugate: 

flK=LflKC 1. 

The response functions .£)i. and.£)K are related by the identity 

for all FEI. 

Proof. The two material uniformities cJ> and & given by 

cJ>(X, Y)=K(X)-1 K(Y), &(X, Y)=K(X)-1 K(Y) 

must be related by (6.3). It follows that 

K(Y)~(Y)K(y)-1 =K(X) ~(X)K(X)-1=LEI 

is independent of XEgB. Hence (6.12) holds with the choice 

P(X)=K(X) ~'(X)-1 K(X)-I. 

(6.12) 

(6.13) 

(6.14) 

(6.15) 
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It follows from (6.10) that P(X)EflK for all XEPl, which proves the first assertion 
of the theorem. If we write (6.10), with K replaced by K and substitute (6.12), we 
obtain 

flic.=LP(X)K(X)flx K (X)-l p(X)-l L- 1 

=LP(X)flK P(X)-l L- 1 • 

Since P(X)EflK we have P(X)flK p(X)-l =flK and hence (6.13). The identity 
(6.14) is derived by writing (6.8) with K replaced by K, then substituting (6.12) 
and observing (6.11). Q.E.D. 

The theory of isotropy groups relative to a local reference configuration at a 
single material pointS extends without change to isotropy groups relative to a 
uniform reference K of a whole materially uniform body. In particular, we say 
that the uniform reference K is undistorted if flK is comparable, with respect to 
inclusion, to the orthogonal group.u, i.e., if either flKc.()' or .()'cflK. If there are 
uniform references K such that flK::J.u, we say that Pl is a uniform isotropic body; 
if there are uniform references K such that flKC.()', we say that Pl is a uniform solid 
body. It is possible that a uniform simple body has no undistorted uniform refer
ences at all; such a body would be neither a solid nor isotropic. 

7. Vector and Tensor Fields 

As before, we assume that Pl is a continuous body of class CP,p~ 1. 

A mapping",: Pl --+ S' of Pl into some point-space or vector-space S' is said 
-1 

to be of class C r , O;;i:r;;i:p, if for every configuration KEC, the mapping "'0 K : 
-1 

K(Pl) --+S' is of class cr. In view of the axioms for Pl it is clear that "'0 K is of 
class c r for every KEC if it is of class C r for some KEC. These definitions apply, 
in particular, to functions (scalar fields) on Pl, i. e. mappings f: Pl --+~, to vector 
fields on Pl, i. e. mappings h: Pl --+ i', and to tensor fields on Pl, i. e. mappings 
T: Pl --+.P. 

A mapping l) which assigns to each material point XEPl a tangent vector 
l)(X)Effx is called a tangent vector field. We say that such a tangent vector field l) 
is of class C', 0 ~ r ~ p - 1, if the vector field (V K) l) on Pl defined by 

(VK) l) Ix= (VK(X») l)(X) (7.1) 

is of class C r for some - and hence every - configurafion KEC. 
The algebra of all linear transformations of the tangent space ffx into itself 

will be denoted by f x . A mapping::t which assigns to each material point XEPl 
a linear transformation ::t(X)Efx is called an intrinsic tensor field. We say that ::t 
is of class C r , O~r~p-l, if the tensor field (VK)::t(VK)-l on Pl defined by 

(7.2) 

is of class c r for some - and hence every - configuration KEC. 
We shall use the term field on Pl for any mapping that assigns to every XEPl 

an element of some vector space (which may consist of linear or multilinear trans
formations). 

8 This theory was initiated in [1], §§ 19 - 21. An exposition is given in [2], §§ 31- 33. 
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Theory of Dislocations 

We shall employ the following scheme of notation: 
~=set of all functions (scalar fields) of class C' on 81. 

"YfB = set of all vector fields of class C' on 81. 
fffB = set of all tangent vector fields of class C' on 81. 

!l' fB = set of all tensor fields of class C' on 81 . 
.;1fB =set of all intrinsic tensor fields of class c r on 81. 

11 

The set ff; is a commutative algebra under pointwise addition and multiplica
tion. The sets "Y~, ffJ, !l'~, and .;1~ can be made modules with respect to any of 
the algebras ~, s ~ r ~ p - 1, by defining addition and scalar multiplication with 
functions in ~ pointwise. For example, if 1), fEff; and fEfffB, we define 1)+ fEff; 
and J 1)EfffB by 

(1) +1) Ix =1)(X)+ I(X), (f1) Ix = J(X) 1) (X) , XEP4. (7.3) 

The sets !l';' and .;1fB become associative (but not commutative) algebras over ~ 
if multiplication is defined pointwise. 

It is evident that we have fffB c ffJ if s ~ r and similar inclusions for the other 
sets in the list given above. Actually, ~ is a subalgebra of ffJ. Also, "Y; is not 
only a ~-module, but also a submodule of "Y~, regarded as a ~-module. Anal
ogous observations apply to the other modules and algebras of the list above. 

If T E!l' ~ and hE "YfB or 'l: E.;1~ and 1) E ff;, we define Th or 'l: 1) pointwise, i. e. by 

T h Ix= T(X) h(X), 'l: 1) Ix ='l:(X) 1) (X) . (7.4) 

When s~r, one can see that ThE"YJ, 'l:1)EffJ. It is evident from (7.4)1 that the 
rules 

T(h+k)=Th+Tk, T(fh)=JTh 

are valid. Hence every TE!l'~ gives rise to a mapping 

T: "Y~ ~ "Y~ 

(7.5) 

(7.6) 

which satisfies the rules (7.5) for h, kE"YfB, JEffgf. Mappings of the type (7.6) 
satisfying the rules (7.5) are homomorphism with respect to the ~-module struc
tures of "YfB and "YJ. We also call them ff-linear mappings. Thus, every TE!l' ~ 
gives rise to an ff-linear mapping (7.6). It is remarkable that the converse is also 
true, i. e. that every ff-linear mapping of the type (7.6) arises from a tensor field 
of class c' on 81: 

Proposition 1. 1fT: "Ya, ~ "Ya,(s~r) is ff-linear, then there exists a unique tensor 
field TE!l'Jw such that Th = T h holds for all hE"Ya,. 

Proof. Let (e l , e2 , e3) be a basis of "Y. The vectors ei can be regarded as con
stant vector fields on 81, so that eiE"YJ- l c "YfB. Every hE"Y; has a unique com
ponent representation 

h=L hiei , hiEff~. 
i 

Applying the given ff-linear mapping Tto (7.7), we obtain 

Th=L hiTei . 
i 

(7.7) 

(7.8) 
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Now, if there is a tensor field T such that T h = T h for all hE"YJ, we must have, 
in particular, Tei=Te;, i.e. 

T(X) ei=(Tei) Ix (7.9) 

for all XEffl. But since (elo e2 , e3) is a basis of "Y, we can find, for each XEffl, 
exactly one T(X)E.!.f such that (7.9) holds. Since the vector fields Tei are of class 
C', it is easily seen that the tensor field f obtained in this way is also of class C'. 
Moreover, in view of (7.8), (7.9) and the ji'-linearity of T we have 

Th= L hi Tei= L hi Tei = T(L hi e;)= Th 
iii 

for all h. Q. E. D. 
Proposition 1 enables us to identify the set of all ji' -linear mappings of the 

type (7.6) with the set .!.fJa of all tensor fields of class C' on ffl. Similarly, we can 
identify the set of all ji'-linear mappings of the type 

(s~r) 

with the set JJ of all intrinsic tensor fields of class C' on ffl. The proof of this 
fact follows from Proposition 1 by choosing a configuration K of [J6 and letting l: 
correspond to T = V K l: (V K) - 1: "Y~ -+ ~. The result just stated is a special case 
of a general proposition referring to ji'-multilinear mappings. For later applica
tion we state another special case: 

Proposition 2. If 
(7.10) 

is ji'-bilinear (i. e. ji'-linear in each of the two variables), then there exists a unique 
field S on ffl whose values 6(X) are bilinear mappings 

(or Jx) (7.11) 
such that 

SeX) (l}(X), f(X»= S(I), f) Ix (7.12) 

holdsforalll}, fEf/Je and all XEB. Thefunction 6 is of class c· (in the obvious sense). 

8. Relative Gradients, Brackets 

From now on we assume that ffl is a continuous body of class CP with p~2. 
Let 1/1: ffl-+ cff' be a mapping of class C(jr, 1 ~ r ~ p, where cff' is some point 

space or vector space. Given a configuration K of ffl, we can then define 

(8.1) 
-1 

where "Y' is the translation space of cff', by V"I/I=V(I/Io K)OK, i.e. 
-1 

V"I/Ilx=V(I/Io K )i,,(X) , XEffl. (8.2) 

We call V" 1/1 the gradient of 1/1 relative to the configuration K. It is clear that V" 1/1 
. f I C r - 1 IS 0 C ass . _ 1 _ 1 _ 1 

Let K, }'E C be two configurations. Taking the gradient of 1/10 K =(",0 }' ) ° (}'o K ) 
and using the chain rule, we see with the help of (3.3) that the gradients of '" rela-
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Theory of Dislocations 13 

tive to K and yare related by 

(8.3) 

Let K and G be two references for ffJ (see Definition 4). We define K G- 1 point
wise, i. e. by 

(8.4) 

Recalling that the configuration gradients V K and V yare references, we see that 
(8.3) can then be written as 

(8.5) 

We say that a reference K is of class e r , r~p-l, if for some and hence 
every - configuration KEC thetensorfield (VK)K- 1 is of class e r , i.e. belongs to 
fi'!R. It is clear that every gradient reference V K is of class e P- 1. 

Let a local configuration KxE ~ x be given. If K and y both belong to the equiv
alence class that defines Kx , which means that VK(X)=Vy(X)=Kx , we have, 
by (8.3), V" ",(X) = Vr "'(X). Hence, V" ",(X) depends on K only through the equiv
alence class KxE ~ x to which K belongs, and it is legitimate to define 

VKX",(X)=V"",eX) if KEKx. (8.6) 

If K is a reference, we define the gradient of'" relative to the reference K by 

(8.7) 

If K and G are any two references for ffJ, we see that (8.3) and the definitions (8.6) 
and (8.7) yield the formula 

(8.8) 

which generalizes (8.5). By writing (8.8) with G=Vy, where YEC, we infer that 
VK '" is of class er - 1 if'" is of class e r and K of class er - 1 • 

When the range of '" coincides with the set [Jll of real numbers, in which case 
we write f instead of "', we can identify V"f with a vector field on ffJ. Thus, if 
fE!F';; then VJE"f/@-I. The formula (8.5) becomes 

V"i=(Vy(VK)-lf Vri. (8.9) 

Let I) E Y"@- t and f E §",;;. The function I) (/) on ffJ defined by 

(8.10) 

where the inner product is defined pointwise, does not depend on the choice of the 
configuration KEC, as is easily seen with the help of (8.9). Moreover, 1)(/) is of 
class e r - t . Therefore, every I)Ey"@-1 gives rise to a mapping 

(8.11) 

Actually, every I)Ey"@-l can be identified with a mapping ofthe type (8. 11), because 
it is easily seen from (8.10) that 91(/)=1)2(/) cannot hold for allfE!F';; unless 
91 =92· The mapping (8.11) defined by (8.10) has the following basic property, 
which follows immediately from the chain rule. 
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14 W. NOLL: 

Proposition 3. If~Ef/~-I, if H is a real-valuedfunctionof classC r of any number 
m of real variables, and if fl>f2' ... ,fmE§J, then 

m 

~(H(fl,f2' ... ,fm»)= L H. k (fl>f2, ···,fm) I)(fJ, (8.12) 
k=1 

where H.k denotes the derivative of H with respect to its klh variable. 

Actually, the property described in Proposition 3 characterizes the tangent 
vector fields of class C r - 1 and hence could have been used for their definition, 
but we shall neither use nor prove this fact. 

Applying (8.12) to the cases when H(el> e2) =el +e2 and H(el> e2) =e1 e2, we 
obtain 

I)(f+ g)=~(f)+I)(g), ~(f g)=f~(g)+ gl)(f). (8.13) 

Let ~,fEf/~-1 with r~2. Since f/~-1 cf/~-2 and hence also I), fEf/~-2 we can 
identify ~ and f not only with mappings from §J into §sf - 1, but also with mappings 
from §J- 1 into §sf-2. Therefore, we can form the compositions ~pf and f.o~ as 
mappings from §J into §J-2. By themselves, these compositions do not corre
spond to tangent vector fields, but it is remarkable that the difference 

(8.14) 

called the bracket of ~ and f, has values that belong to §J-l( c§sf-2) and does 
correspond to a tangent vector field: 

Proposition 4. The bracket of two tangent vector fields ~,fE.r~-1(r~2) can be 
identified with the tangent vector field of class C r - 2 given by 

[~,f]=(VK)-l [(V,.k)h-(V,.h)k] , h=(VK)~, k=(VK)f, (8.15) 

where K is an arbitrary configuration. 

Proof. We denote the tangent vector field of class C r - 2 defined by the right
hand side of (8.15) by b, so that 

(VK)b= [(V,.k)h-(V,.h) k] . (8.16) 

Now letfE§sf. In view of (8.10), it follows from (8.16) that 

b(f)=V,.f· [(V,.k)h-(V,.h) k] (8.17) 
and from (8.15h.3 that 

(~.o 1) (f)=~(f(f»)= V,.(V,.f· k). h. (8.18) 

The rules of ordinary differential calculus yield V,.(V,.f· k) . h =h . (V~2> f)k+ 
V,.f· (V,.k)h. Hence, since VP>f is symmetric, if we write (8.18) with ~ and f inter
changed, take the difference, and then compare with (8.17), we obtain 

b (f) = (I) .0 f) (f) - (1.0 I) (f) = [I), f] (f) 

i.e. the desired result b=[~, fl. Q.E.D. 
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Theory of Dislocations 15 

The bracket (1), f] depends linearly (but not jO-linearly) on 1) and f and satisfies 
for 1), I, IEff,rt, fE!#f:J, 2~r, the identities 

[l), t] = - [f, I)], 

[1), f I] =f [1), I] + 1) (f) f , 

and for 1), I, IEffJ, 2~r~p-1, the Jacobi-identity 

L [£), [I, I]] = 0 , 
cyclic 

(8.19) 

(8.20) 

(8.21) 

where the sum is taken of all terms obtained from the one written by cyclic per
mutation of 1), I,I. The identity (8.19) is obvious from (8.14), and (8.21) is the 
result of a trivial calculation. The identity (8.20) follows from (8.14) and (8.13). 

It would have been possible to define the bracket [£), I]EffJ-I for £), fEffJ, 
1 ~r~p-1, directly by (8.15), for it is easy to see that the right-hand side of 
(8.15) does not depend on the choice of the configuration K. 

9. Affine Connections, Torsion, Curvature 

From now on we assume that BI is a continuous body of class CP, p?;3. 

A mapping 
(9.1) 

is called an affine connection of class C'-1(1~r~p-1) on BI if 

r(1)+I)=r1)+rl (9.2) 
holds for all 1), fE~ and 

r(f1» 1= f(r1» f+l(f) 1) (9.3) 

holds for all 1) EffJ,fEjO; and all IEffJ-I. 

If a is a real constant, then lea) =0 by the definition (8.10). Hence (9.3) reduces 
to r(a1» =ar£) when aEf!,l, 1)EffJ. Thus, r is a linear mapping, but it is never 
jO-linear. The rule (9.3) resembles one of the product rules for gradient operators. 

A triple (c I, Cz, c3) of tangent vector fields of class C', r~p-l, is called a 
frame of class C' if the values ci(X) form a basis of the tangent space ffx for each 
XEBI. Frames of class Cp-l (and hence of class C', r~p-l) exist. For example, 
if (e l , ez, e3) is a basis of"Y and K a configuration, then Ci=(VK)-lei defines a 
frame of class CP-l. Every tangent vector field 1)EffJ has a component represen
tation 

(9.4) 

with respect to a given frame (Cl> cz, c3) of class C' such that the component func
tions hi belong to .fF; . 

Now let r be a connection of class C,-l. Substituting (9.4) into (r £» cj and 
using the rules (9.2) and (9.3), we obtain 

(rr» cj = L [hi(r ci ) C j + C/hi) c;] . (9.5) 
i 
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The components T;~ of the three intrinsic tensor fields rei with respect to the 
frame (e 1, e 2, e 3) are defined by 

(r ei ) ej = L ~~ ek • (9.6) 
k 

These components T;~ belong to ff~-l and are called the components of the connec
tion r with respect to the frame (el' e2' e3)' If we prescribe a frame (el' e2, e3) of 
class C' and 27 functions T;~E:F;;-l on fJI arbitrarily, then (9.5) and (9.6) deter
mine a unique affine connection of class c r -1 . 

Let r be a connection of class C r - l having components T;~Eff~-l with respect 
to the frame (e l , e2, c3) of class cr. When I ~s~r, then (e l , e2' e3) is also of class 
c' and T;~EffrH-1~ff~-1. Hence, (9.5) and (9.6) define an affine connection of 
class C·-I. Therefore, the mapping r: .cTtB -+JtB - 1 has a unique extension to!!TJ 
that is an affine connection of class c· -1. We denote this extension by the same 
symbol r. With this convention, we can say that every affine connection of class 
C r - 1 is also of class C·- 1 when 1 ~s~r~p-1. 

Letr be a connection of class C r -I, and hence also of class C·- l when 1 ~s~r. 
U sing the notation 

(9.7) 

we can identify rl) with a mapping 

rl): g;j-+g;;-l (9.8) 

for any choice of s, l~s~r, and any choice of 1)E.cT.,w-l. In terms of TI) the rule 
(9.3) reads 

rl)(1f) = f(TI) f) + 1)(1) f. (9.9) 

Moreover, TI) depends ff-linearly on 1). 

The Cartan-torsion (or simply torsion) of the connection r is the mapping 

(9.10) 
defined by 

6(1), t) =l~ I-If 1) - [1), I]. (9.11) 

In view of (8.19) it is obvious that 6 is skew in the sense that 

6(1),0= - 6(1,1). (9.12) 

It is an almost immediate consequence of (9.9) and the rule (8.20) that 6 is 9"
bilinear. Hence, by Proposition 2 (Sect. 7), the torsion 6 can be identified with 
a field on fJI of class C r - l whose value 6 (X) at X EfJI is a bilinear mapping from 
.rx x ffx into .cTx . It follows that 6 (1), I) remains meaningful for any, even discon
tinuous, tangent vector fields 1), I, and that 6(1), I) Ix = 6 (X) (1) (X), f(X») depends 
on 1) and I only through their values at X. 

Let f, 1)E.cTtB- 1, 2~r~p-1. In view of(9.8) we can regardTI) and TI as mappings 
from.cT~ into .cTtB - 1 and also as mappings from .cT,.-1 into .cT,.-2. Hence we can 
form the compositions Ti)o TI and Tlo Ti) and the bracket 

(9.13) 
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Theory of Dislocations 17 

as mappings from f/J into ff;-2. Since [I), I]eff;-l, we can regard rl~,11 as a 
mapping from f/J( cff;-l) into ff;-2. Hence we can define 

by 
9t(I), I) = [Ii, ,If] -1[", II' 

(9.14) 

(9.15) 

An easy calculation, based on the definition (9.13) and the rules (9.9) and (8.20), 
shows that the mapping (9.15) is ~-linear. Hence, by an analogue of Proposition 1 
(Sect.7) for intrinsic tensor fields, 9t(I), I) can be identified with an element of 
JOi- 2 and 9t can be regarded as a mapping 

(9.16) 

which is called the Riemann-curvature (or simply curvature) of the connection r. 
It is obvious that 9t is skew in the sense that 

9t(I), I) = - 9t(I, I». (9.17) 

A short calculation shows that the mapping (9.16) is ~-bilinear. Therefore, 
by Proposition 2 (Sect. 7), we can identify the curvature 9t with a field on fA of 
class C r - 2 whose value 9t(X) at XefA is a bilinear transformation from !!Tx xffx 
into Jx. We have 9t(I), I) Ix =9t(X)(I)(X), I(X», which shows that 9t(l),I) is 
meaningful for any tangent vector fields I), f. 

There is an important relation between the torsion and the curvature of an 
affine connection: 

PropositionS. Let r be an affine connection of class C r - 1 on fA, 2~r~p-1. 
The torsion 6 and the curvature 9t of r satisfy 

L {If (6 (I), f») + 6(1, [1,1)])- 9t(I, I» I} =0 (9.18) 
cyclic 

for aliI), I, 1e9J. The sum is to be taken over all terms obtainedfrom the one written 
by cyclic permutation of I), 1,1. 

The identity (9.18) is often called the First Bianchi Identity. 

Proof. Operating with r( on (9.11) gives 

1((6(1),1))-(1( or,,) 1+(1( olf) I) +1( [I), f] =0. 

The cyclic sum of the left side of this equation remains unchanged if the third 
term is changed by one and the fourth by two cyclic permutations of I), I, 1. 
Hence we have 

L {1((6(1), f»)-(I( orf) I+(r" orJI+lf [I, I)]} 
cyclic 

= L {1((6(1), 1))- [I( ,r!)] I+lf [I, I)]} =0. 
cyclic 

Using the definitions (9.15) and (9.11), we obtain 

L {1((6(1), 1))- 9t(I, 1»1+ 6(1, [1,1)])+ [I, [I, I)]]} =0. 
cyclic 
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In view of the Jacobi identity (8.21) the last term gives no contribution and (9.18) 
results. Q. E. D. 

* Let rand r be two connections of class C r - 1 on f!4. Using the notation (9.7) 
and observing the rule (9.9), we see that, for each s, 1 ~s~r, and each £)E~-l, 
the difference 

(9.19) 

is actually §"-linear. Hence ::D" can be identified with an intrinsic tensor field of 
class cs-l, i.e. ::D"EJ~-l. Since ::D" depends §"-linearly on £),::D can be regarded 
as an §"-linear mapping 

(9.20) 

and hence can be identified with a field of class C r - 1 whose values ::D (X) are 
linear transformations from ffx into .Fx. The possibility of identifying ::D" and ::D 
with fields on f!4 follows from analogues of Proposition 1 (Sect. 7). 

* * * Let 6 and 6 denote the torsions and 91 and 91 the curvatures of rand r, 
* respectively. If we write the definition (9.11) of the torsion for both rand rand 

take the difference, we obtain 

* 6 (£), f) - 6 (£), f) = ::D" f -::DI £) . (9.21) 

* * If we write the definition (9.15) of the curvature for r and substitute r"=r,,-::D,,, 
we find 

* 91(£), f) = 91(1), f) - [r", ::DrJ- [::D" ,If] + [::D", ::DrJ + 1)(", I]' (9.22) 

10. Material Connections 

Let ([J be a material uniformity for the simple body f!4 of class CPo (See Defini
tion 3, Sect. 6.) We say that a tangent vector field c is materially constant if 

c(X)=([J(X, Y)c(Y) (10.1) 

holds for all X, YEf!4. If XoEf!4 is fixed and uXoEffxo is prescribed arbitrarily, then 

(10.2) 

is easily seen to define a materially constant field c such that c(Xo) =uxo . Moreover, 
every materially constant field c can be obtained in this fashion. Thus (10.2) de
scribes a one-to-one correspondence between ffxo and the set g;, of all materially 
constant vector fields. This correspondence is actually a vector-space isomorphism, 
showing that .'T(f) is a three-dimensional vector-space when addition and multi
plication with scalars in g;, are defined pointwise. 

Let K be a uniform reference (see Definition 4, Sect.6) and CEg;,. Then it 
follows from (10.1) and (6.4) that K(X) c(X) =K(Y) c(Y) for all X, YEf!4, i.e. 
that 

K c=c=constant. (10.3) 
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Conversely, if ce"Y, then c =K- 1 c is easily seen to be materially constant. Thus 
9;. is exactly the set of all tangent vector fields c with the property (10.3). 

A material uniformity cP is said to be of class C r , r~p-l, if 5;,cffJ" i.e., 
if all tangent vector fields materially constant with respect to cP are of class cr. 
For the remainder of this paper we lay down the following: 

Smoothness assumption 9: BI is a materially uniform continuous body of class 
CP,p~3 10, which admits a material uniformity cP of class C p- 1 • 

Let cP be a material uniformity of class C p - 1 and let K be a uniform reference 
such that (6.4) holds. Then for ce"/', ICee, and C=K-ICE~, the vector field 
«IlIC)K- l) c=(IlIC) c is of class CP-l because c is of class CP-l. This is possible 
for all c E "/' only if (IlIC) K and hence K is of class C P - 1. Thus, if K is a uniform 
reference such that 

CP(X, Y)=K(X)-1 K(Y), X, YeBl, (l0.4) 

then K is of class Cp-l. 

Theorem 3. Given a material uniformity cP of class C P- 1 , there is a unique affine 
connection r such that rc=o holds for all materially constant tangent vector fields 
ceY" •. In terms of any uniform reference K satisfying (10.4), r is given by 

(10.5) 

Also, r is of class CP-2. 

Proof. To prove the uniqueness, assume that rand F are connections such that 
rc=Fc for all ce~. Putting1)l)=rl)-FI)' we then have !:V=O for all ce~. We 
have seen at the end of the previous section that 1)1) can be identified with an 
intrinsic tensorfield in JJ when~e.9":. Hence 1)1)(Xo)c (Xo) =0 for all XoeBl and 
all ce~. Since for any prescribed uxoeffxo the ce~ given by (10.2) has the prop
erty c(Xo) =uxo' it follows that 1)1) (Xo) uXo =Ofor all uxoeffxo' i.e., that 1)1) (Xo) =0. 
Since XoeBl is arbitrary, we infer that 1)1) =0, i. e. that r =F. 

To prove the existence of r we choose a uniform reference K with the property 
(10.4), define r by (10.5), and show that it has all the necessary properties. It is 
clear that rc=o when ce~ because, by (10.3), IlK(Kc) =0 when ce~. Since K 
is of class CP-l it follows that r~ is of class C p - 2 when ~e.9"J-l. The validity of 
the rules (9.2) and (9.3) follows from the validity of the analogous rules for the 
relative gradient ilK. Hence r is indeed an affine connection of class C p- 2. Q. E. D. 

Definition 5. The affine connection (of class Cp-2) with the property rc=o 
for all ce~ is called the material connection for the material uniformity cP (of 
class CP-l). 

Theorem 4. Material connections have zero Riemann-curvature. 

Proof. LetXeBl and uxeffx be given. We can determine ce9;.c .9"J- 1 such that 
c(X) =Ux . If r is the material connection for cP we have rl) c =0 for all ~e.9"J. 
Hence the definition (9.15) shows that 9l(~, f) c =0 for all ~, fe.9"J- 1 • Since 9l(~, I) 

9 C. C. WANG [81 has recently shown that the theory given here can be extended to the case 
when each point has a neighborhood that admits a smooth material uniformity. This can happen 
even when all material unifo:mities for the whole body are discontinuous. 

10 For all considerations not referring to curvature, p~ 2 is actually sufficient. 

229 



20 W. NOLL: 

can be identified with an intrinsic tensor field it follows that 

91(£), f) c Ix = 91(£), f) Ix c(X) = 91(£), f) Ix Ux = o. 
This can be valid for all XE!!6 and all uxE9i- only if 91(£), f) =0. Hence, since 
£), fEf/r/-l are arbitrary, we must have 91 =0. Q. E. D. 

11. Inhomogeneity 

Let cP be a material uniformity of class C p-l, let r be the associated material 
connection (of class CP-2) with torsion 6, and let K be a uniform reference (of 
class CP-1) such that (10.4) holds. We can define a field S of class Cp-2 with 
values S (X): "Y -+ 2' by the condition 

(Su)v=K6(K- 1u,K- 1v) (11.1) 

for all u, VE"Y. In view of the linearity of the values SeX), 6 (X), and K(X), (11.1) 
continues to hold if the fixed vectors u and v in (11.1) are replaced by vector 
fields hand k. The following theorem shows how S and hence 6 can be expressed 
directly in terms of K: 

Theorem 5. Let '"1 be an arbitrary configuration of !!6 and 

Then S is given by 

or 

F=(Vy)K-1E2'~-1 . 

(S u) v=F- 1 [(VKF) v) U-((VKF) u)V] , 

S u=F- 1 [VK(Fu)-(VKF) u], 

where u, VE"Y and h=Fu, k=Fv. 

(11.2) 

(11.3) 

(11.4) 

(11.5) 

Proof. The tangent vector fields K- 1u and K-1v are materially constant and 
hence are annihilated by r. Hence, the definitions (11.1) and (9.11) of Sand 6 
yield 

(Su)v= -K[K- 1 u,K- 1 v]= -K[(V'"1)-1 h,(V'"1)-1 k]. (11.6) 

Using Proposition 4, (8.15), we find 

(S u) v=F- 1 [(Vy h) k-(Vy k) h]. (11.7) 

The formula (8.8), with the choices", =h and G = V '"1, gives 

(Vy h) k=(Vy h)F v=(VK h)v= VK(F u) v=((VKF) v) u. (11.8) 

Substituting (11.8) and the formula obtained from (11.8) by interchanging hand k 
into (11.7), we obtain (11.3) and (11.4). 

To prove (11.5) we note that Vyu=O for constant UE"Y. Using one of the pro
duct rules for gradient operators we find 

O=(Vy u) k= Vy(F- 1 h) k=((VyF- 1) k) h +F- 1 (Vy h) k. (11.9) 

Of course, (11.9) remains valid if we interchange hand k. The formula (11.5) 
follows from (11. 7) and (11.9). Q. E. D. 
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Theory of Dislocations 21 

Recall that the body 88 is homogeneous if it admits a configuration gradient 
K = V lC as a uniform reference. We can then choose I' =lC in (11.2), obtaining F = 1, 
which is constant and hence has gradient zero. Thus, Theorem 5 shows that S =0 
and hence 6 =0 for suitable uniform references if the body is homogeneous. The 
converse of this result is not true, but it becomes true if "homogeneous" is replaced 
by "locally homogeneous" in a sense we shall now make precise. 

Let ..¥ be an open subset of a simple body 88 of class CPo We can give ..¥the 
structure of a continuous body of class CP by letting 1': ..¥ --+ Iff be a configuration 

-1 
of ..¥if lCO I' : I' (..¥) --Iff is of class CP for all configurations lCEC of 88. We denote 
the set of all configurations of ..¥ by CA'" If lCEC, then the restriction of lC to ..¥ 
belongs to CA". However, not all configurations I'E CA" of..¥ can be obtained in this 
manner. Still, given any XE"¥and any configuration I' of .AI; one can easily con
struct a configuration lC of 88 such that (3.1) holds. Therefore, an equivalence class 
Kx which defines a local configuration at X relative to ..¥ can be made to corre-

-1 
spond to the non-empty set {lCECi V(lC O I' ) 11'(x) = lfor alll'EKx}, which is a local 
configuration at X relative to 88. This correspondence is one-to-one and can be 
used to identify local configurations at X relative to ..¥ with local configurations 
at X relative to 88. Using this identification, we can endow ..¥ with the structure of 
a simple body by using the restriction to ..¥ of the function 6) which defines the 
simple body structure on 88 according to Definition 1 (Sect. 5). Thus, every open 
subset ..¥ of 88 has a natural structure of a simple body of class CP, i. e., every 
open subset..¥ of 88 can be regarded as a simple body of class CPo Such a subset 
is called a neighborhood of a material point if it contains that point. 

A simple body 88 is called locally homogeneous if every XE88 has a neighbor
hood ..¥ that is homogeneous. A body can be locally homogeneous without being 
homogeneous, even if it is simply connected. 

Definition 6. The Cartan torsion 6 of the material connection r associated with 
a material uniformity cP of class cr1 is called the inhomogeneity of CPo 

The field S defined by (11.1) is called the inhomogeneityll relative to the refer
ence K. 

This definition finds its motivation in the result already mentioned: 

:rheorem 6 12 • If f!4 is homogeneous, then it admits a material uniformity of 
class cr1 with zero inhomogeneity. If 88 admits a material uniformity of class cr1 
with zero inhomogeneity, then it is locally homogeneous. 

Proof. Only the second part of the theorem remains to be proved. Assume, 
therefore, that lP is a material uniformity of class crl with zero inhomogeneity. 
Using the same notation as before, we then have 6 =0 and hence S =0. Theorem 5, 
(11.5), shows that if I'EC is arbitrary and F defined by (11.2), Vl'F- l has the symme
try property 

(11.10) 

11 It corresponds to what is called "dislocation density" in the theory of continuous distribu
tions of dislocations (c/. [4]). 

12 The theorem stated in the middle of p. 90 in reference [2) is incorrect and should be re
placed by Theorem 6. 
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for all u, vEf/'. Let XEf!4 be given and let,Al' be a simply connected neighborhood 
of X. By a classical theorem of analysis, the symmetry (11.10) implies the existence 
of a mapping l: y(,AI')--+$ such that F- 1 =(V l)oy holds in ,AI'. Moreover, 
K, V" and hence F and F- 1 being of class CP-1, l is of class CPo Since 17 A=F- 1 0 y-1 

is invertible, it follows by the inverse function theorem that l is locally (but not 
necessarily globally) invertible, i. e. that X has a neighborhood,AI c:,AI" on which A 
is invertible. The mapping" =lo y, when restricted to ,AI, is therefore a configura
tion of ,AI with gradient V" = (V A 0 y) Vy = F - 1 V Y = K on ,AI. Hence the uniform 
reference K on ,AI is the gradient of the configuration" of ,AI, i. e., ,AI is homo-
geneous. Q. E. D. 

The first Bianchi identity gives rise to the following identity for the relative 
inhomogeneity S and its gradient VK S relative to K: 

I [((WKS) u) v) w)-(S u)(S v) w] =0. (11.11) 

To prove (11.11), substitute I =K -1 u, f =K- 1 w, I) =K- 1 v into (9.18), observe that 
m =0 (Theorem 4, Sect. 10), and make use of (11.6)1' 

12. Relative Riemannian Structures, Contortion 

Let K be a uniform reference of class CP-1. If we choose Kx=K(X) in (4.5), 
then this equation defines an inner product * on each of the tangent spaces :!Tx, 
XEPJ. The structure on f!4 defined by these inner products will be called the 
Riemannian structure of f!4 relative to the uniform reference K. If I) and f are tangent 
vector fields, we define I)d pointwise. For such fields, (4.5) then yields 

(12.1) 

It is clear that I) * f E ff"; if I), fEffJ for 0 ~ r ~ p - 1. This fact is expressed by saying 
that the Riemannian structure relative to K is of class Cp-1. 

Although the following proposition is one of the basic facts of Riemannian 
geometry, we shall give an independent proof: 

* Proposition 6. There is a unique affine connection r of class CP-2 with thefollow-
ing properties: 

* * (a) The torsion (2; of r vanishes. 

(b) For any I), f, IEffJ- 1 the relation 

* * l)(f*l)=f*l~l+I*rl)f (12.2) 
is valid. 

* Proof. First we assume the existence of r. Let r be the material connection 
associated with K and consider the difference 

* l\=rl)-l~, I)Eff.cl- l . (12.3) 

According to the results given at the end of Sect. 9, 1) can be identified with a field 
of class CP-2 on PJ whose values are linear transformations from:!Tx into §x· 

232 



Theory of Dislocations 23 

Therefore, we can define a field D on PJ of class C P- 2 with values D (X): "f'" --+ f£' 
by the condition 

(12.4) 

* for all UE"Y. Since 6 =0, the relation (9.21) and the definitions (12.4) and (1Ll) 
give 

(S u) v=(D u) v-CD v) U, u, VE"Y. (12.5) 

By the Definition 5 (Sect. 10), we have rlj C =0 whenever c is materially con
stant. Hence, since c =K- 1 c is materially constant when CE"Y, we infer from (12.3) 
and (12.4) that 

* Krlj(K- 1 c)= -(D Kl))c (12.6) 

when CEr. Now let U,V,WEr. If we substitute l)=K- 1 u, f=K- 1 v,andI=K- 1w 
into (12.2) and observe (12.6) and (12.1) we obtain 

l)(V' w) = - v . (D u) w-w . (D u) v. (12.7) 

Since V· w is constant, we have l)(v. w)=O (see the definition (8.10)). Therefore 
(12.7) states that D uEf£' is skew for all UE"Y: 

Du=-(Du)T, UE"Y. (12.8) 

The equations (12.5) and (12.8) enable us to express D in terms of S. Indeed, 
if we take the inner product of (12.5) with WE"Y, subtract from the resulting 
equation the two equations obtained from it by cyclic permutations of u, v, w, 
and observe (12.8), we find 

2u· (D w)v=w· (S u)v-u. (Sv)w-v, (S w) u. (12.9) 

Since (Su) v = -(Sv) u, (12.9) is equivalent to 

(D u) v=! {[(S u) -(S U)TJ V - (SV)T u}. (12.10) 

Now, since S is determined by the uniform reference K, it follows from (12.10), 
* (12.4), and (12.3) that r is uniquely determined by K. 

* To prove the existence of a connection r with the properties (a) and (b), one 
* can define r by (12.3), (12.4), and (12.10) and verify that it has all the required 

properties. Q. E. D. 

* Definition 7. The connection r determined by the conditions (a) and (b) of 
Proposition 6 is called the Riemannian connection relative to the uniform reference 
K. The field D determined by (12.3) and (12.4) or (12.5) and (12.8) is called the 
contortion 13 of K. 

The term "contortion" will be motivated in Section 13. 

13 It corresponds to what is called "Cosserat structure curvature" or "Nye curvature" in the 
theory of continuous distributions of dislocations (cf. [4]). 
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* In general, the curvature 9l of the Riemannian connection is not zero. We 
* * can define a field R with values R(X): "Y x "Y -+ ft' by the condition 

* * R(u, v)=K9l(K- 1 u,K- 1 v)K- 1 (12.11) 

for all U,VE"Y. Let U,V,WE"Y and put1)=K- 1 u, f=K- 1 v, I=K- 1 w. The fields 
1), f, I are then materially constant and hence are annihilated by r. Recalling that 
the curvature 9l of r vanishes (Theorem 4, Sect.lO), we then infer from (9.22), 
(10.5), (11.6)1, (12.4), and (12.11) that 

* R(u, v) W= -(17K(D v) u) w+(17K(D u) v) W 

+(D u)(D v) w-(D v)(D u) w-D(Su)v)w 
and hence 

* R(u, v) = (17K D) v) u-(17KD) u) v+(D u)(D v)-(D v)(D u)-D(S u) v). (12.12) 

* In view of (12.5) and (12.10), equation (12.12) shows that R can be expressed 
in terms of the contortion D and its gradient relative to K or in terms of the in
homogeneity S and its gradient relative to K. 

13. Contorted Aeolotropy 

Definition 8. A uniform reference K of class C p-1 is called a state of contorted 
aeolotropy if there exists a configuration K such that the tensor field 

Q=(17K)K- 1 Eft'~-l 

has orthogonal values (Q (X) E-O' for all XEgB). 

(13.1) 

Assume that K is such a state of contorted aeolotropy. Since the inner product 
in "Y is preserved under orthogonal transformations, the Riemannian structure 
(12.1) relative to K satisfies. 

(13.2) 

for all tangent vector fields 1) and f. It follows from (13.2) that the Riemannian 
* connection r relative to K is obtained by transporting the gradient operator 17 

from K(gB) into gB via (17,<rt, so that 

* rf=(17K)-l17,,(17K)f)(17K), fEfTJ'-l. (13.3) 

* Indeed, if r is defined by (13.3), condition (a) of Proposition 6 follows from the 
symmetry of the second gradient and condition (b) from the rule for the differen
tiation of inner products. By virtue of (13.1), (13.3) is equivalent to 

* Krl)f=QT17,,(QKf)QK1), 1),fEfTJ'-l. (13.4) 

Now let u, VE"Y. If we substitute 1) =K- 1 u, f =K-1v into (13.4) and observe (12.6), 
we obtain 

QT 17,,(QV)QU= -(Du)v, 
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which, by (13.1) and (8.8), is equivalent to 

Da= -QTWKQ)a, ae"Y. (13.5) 

This equation shows that the skew transformation -Dalxe.P is the instan
taneous rate of change of Q at X in the direction of a, if viewed in any configura
tion belonging to K (X). In other words, D describes the local behavior of the rota
tion field Q, which changes the given state of contorted aeolotropy K into the 
gradient of a global configuration re. It is this property that the term "contortion" 
for D is meant to express. 

Theorem 7. If K is a state of contorted aeolotropy, then the curvature of the 
Riemannian connection relative to K vanishes. Conversely, if the curvature of the 
Riemannian connection relative to K vanishes, then K is locally a state of contorted 
aeolotropy (i.e., every point in f!4 has a neighborhood.;V such that the restriction 
of K to .;V is a state of contorted aeolotropy for .;V). 

* Proof. Assume first that (13.1) holds. It follows from (13.3) that rf=O if and 
* only if (Vre)f is constant. Hence we could give a simple direct proof of 9t=O by 

using the same argument as we used in the proof of Theorem 4 (Sect. 10). Another 
proof can be obtained on the basis of (13.5) as follows: 

If "/ is an arbitrary configuration and F=(Vl')K-1, then (13.5) is equivalent to 

(VyQ)h= -QD(F- 1 h), he"Y. (13.6) 

If we take the gradient Vy of (13.6) in the direction of ke"Y, we find 

(Wi2 ) Q)k) h= -Q {(VKD) v) a-CD v)(D a)+D((VyF- 1) k)h), (13.7) 

where a=F- 1 h, v=F- 1k. Of course, because of the linearity of the values of the 
fields D, VKD, V,?) Q, etc., (13.6) and (13.7) remain valid if hand k are not fixed 
vectors but vector fields. In particular, they remain valid when a and v are fixed. 
If we interchange a and v and hence hand kin (13.7) and subtract the resulting 
formula from (13.7), we obtain, after observing (11.5) and (12.12), 

(13.8) 

* * Thus, R =0 and hence 9t =0 follows also from the symmetry of the second gradient 
Vy(2)Q. * 

Assume now that K is a uniform reference such that R =0. Let "/ be an arbi
trary configuration and put F =(Vy) K- 1, as before. We can then regard (13.6) as 

* a differential equation for the determination of Q. As we have seen, R=O is an 
integrability condition necessary for the existence of a solution. According to a 

* classical theorem, R =0 is also sufficient for the existence of a solution that is 
valid in a simply connected neighborhood .;V' of a given point XoEf!4. The solu
tion can be chosen so that for Xoef!4, Q(Xo) has a prescribed value, which we take 
to be the identity 1. Since D a is skew for all ae"Y, it follows from (13.6) that QQT 
has gradient zero and hence must be equal to 1 everywhere in ';v'. Hence Q has 
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* orthogonal values. To summarize: If R=O, every point in fJl has a neighborhood 
%' on which we can find an orthogonal-valued tensor field Q (of class CP-l) such 
that (13.5) holds. 

Assume, then, that (13.5) holds on %'. Combining (12.6) with (13.5) we obtain 

* K rl)c= QT(J7K Q)Kl))C=QT J7K (Qc) Kl) , (13.9) 

which is valid when c=K-lc is materially constant. Consider the affine connec
tion f' of class crl defined by 

where 
K=QK. 

It is easily seen that (13.9) is equivalent to the statement that 

* rc=rc 

(13.10) 

(13.11) 

(13.12) 

holds for all materially constant tangent vector fields c. Using the same argument 
* - * as in the uniqueness proof of Theorem 3 (Sect. 10) we conclude that r =r. Since r 

has zero torsion, an analogue of Theorem 6 (Sect. 10) shows that every point in %' 
must have a neighborhood % such that K = J7 K for some configuration K of %. 
Hence, by (13.11), we have Q=(J7K)K- l on %, i.e., K is a state of contorted 
aeolotropy on %. Q.E.D. 

A special case of contorted aeolotropy is curvilinear aeolotropy. It corresponds 
to the case when there exists an orthogonal coordinate system on K(fA)c:.cf with 
the following property: If (el(X), e2 (X), e3(X)) is the orthonormal basis which 
consists of the unit vectors that point in the direction of the coordinate lines at 
K(X), then Q(Xl ei(X) does not depend on XEfA. 

14. Special Types of Materially Uniform Bodies 

We consider first the case when the isotropy group flK of fA relative to some -
and hence every - uniform reference K is discrete. Suppose that K and K are two 
continuous uniform references. They must be related by (6.12), where P(X)EflK 
must depend continuously on X. Since flK is discrete, this is possible only when P 
is constant. Thus we can absorbP into L,and (6.12) becomesK =LK, withL=const. 
If we write (6.4) for both K and K, we see that they correspond to the same contin
uous material uniformity. Since every continuous material uniformity must be 
of the form (6.4), where K is a continuous uniform reference, we have the following 
result: 

Theorem 8. If the isotropy groups of a materially uniform simple body fA are 
discrete, then fJl has at most one continuous material uniformity cPo Any two con
tinuous uniform references K, K are related by 

K=LK, L=constEf. (14.1) 

Since material connections are only associated with differentiable uniformities 
cP and not with discontinuous ones, it follows from the uniqueness assertion of 
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Theorem 8 that in the case when the isotropy groups are discrete, the inhomo
geneity 6 is a characteristic of the body. If the isotropy groups are non-discrete 
Lie groups, however, and if there are any material uniformities of class CP-l at 
all, there will be many, and hence also many inhomogeneities 6 for one and the 
same body. This is the case, in particular, for uniform isotropic bodies. 

Next, we consider a uniform isotropic body ffB with an undistorted uniform 
reference K of class C P- 1, so that .0 C f/K' If K is a state of contorted aeolotropy, 
so that (13.1) holds, it follows from Theorem 2, (6.12), that V" is again a uniform 
reference and that f/K is also the isotropy group relative to V,,: 

Theorem 9. If a uniform isotropic body has an undistorted state of contorted 
aeolotropy, it is homogeneous. 

The conclusion of the theorem becomes false when the qualifier "undistorted" 
is ommitted; i. e., there are inhomogeneous isotropic bodies with distorted states 
of contorted aeolotropy. 

Finally, suppose there is a natural way to single out, among all uniform 
references for ffB, a particular class U with the following property (P): All members 
of U are of class C p-l and differ from one another by a field of similarity trans
formations with constant ratio, so that K, K' E U implies 

K'=aQK, (14.2) 

where a is a real constant and Q an orthogonal valued tensor field on ffB. For ex
ample, if ffB is a uniform solid body that is either isotropic or has cubic symmetry 
then the class U of all undistorted references has the property (P). This follows 
from results proved in reference [9]. Other examples are obtained by letting U 
be the class of all uniform references K such that the corresponding response func
tions -ilK satisfy a certain special condition such as -ilK (1) =0. Such references are 
often called natural references. The nature of the response function is often such 
that the class U of natural references has the property (P). 

If (14.2) holds, it follows from (12.1) and the fact that orthogonal transforma
tions preserve inner products that the two Riemannian inner products correspond
ing to K' and K differ from one another only by the constant factor a2 • Therefore, 
Proposition 6 shows that the Riemannian connections relative to K and K' are 
the same, and we have the following result: 

Theorem 10. If ffB is a uniform simple body with a distinguished class U of uniform 
* references with the property (P), then the Riemannian connection r and its curva-

* ture 9{ are characteristics of the body. 

The assertion of Theorem 10 applies, in particular, to uniform isotropic solid 

* bodies, for which the curvature, m, defined by the class of undistorted uniform 
references, is an intrinsic measure of deviation from homogeneity. 

15. Cauchy's Equation of Balance 

We now derive a new version of CAUCHY'S equation of balance, which expresses 
the fact that the forces acting on every part of a given body ffB must add to zero. 
In order to do so, we first derive a lemma, Proposition 7 below. 
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Let h be a vector field and T a tensor field of class CIon fJI. We define the 
divergence of these fields relative to some reference K by 

(15.1) 

respectively. The following product rules are valid for fEiFg/, hE"f/J, TE!l'~: 

divK(f h)=(VKf)· h+fdivKh, 

divK(T h) = (divK TT). h+tr(TVKh). 

If K = V K is a configuration gradient, we write div" instead of div K. 

(15.2) 

Suppose that a uniform reference K of class C p - 1 for fJI and a tensor field T 
of class CIon fJI are given. For any configuration l' of fJI we then define another 
tensor field T., of class C 1 by 

(15.3) 

where 
(15.4) 

Proposition 7. If 
K(X)= VK(X) (15.5) 

for some XEfJI, then the divergences at X relative to K of the tensor field T and of 
the tensor field T" defined by (15.3) and (15.4) are related by 

(15.6) 

where the vector field s is defined, in terms of the inhomogeneity S relative to K, by 

s·u=tr(Su), U E "Y. (15.7) 

Proof. We make use of (15.3) and (15.4) with 'l' replaced by K. We then have 

J(T: u)=F(TT u), U E "Y. (15.8) 
U sing the rule 

(15.9) 

for the differentiation of a determinant, the product rules (15.2), and the defini
tion (15.1h, we see that taking divK of (15.8) yields 

J tr [F- 1(CVK F)(T: u)] +J(divK T,,) . u = (divK FT) . TT U + tr [F VK(TT u)J. (15.10) 

Since F(X) =1, J(X) = 1, and T,,(X) = T(X) by (15.5), (15.4), and (15.3), evalua
tion of (15.10) at XEf?J gives 

{tr [(VK F)(TT u)] + (divK T,,) . u -(divK FT) . TT U -(divK T) . u }x=O. (15.11) 

Using the rule tr[(VKF)v] = VK(tr F). v, we see that (15.11) can hold for all UE"Y 

only if 
(15.12) 
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On the other hand, if we evaluate (11.4) at XEfJI and take the trace, we obtain 

tr(S u) Ix= {(divKFT). U - VK(tr F)· u}x, 

which, in view of (15.7), is equivalent to 

s Ix= {divKFT - VK(tr F)}x. (15.13) 

The desired result (15.6) follows from (15.12) and (15.13). Q.E.D. 
Let us assume now that the body [!J is subject to internal contact forces and 

external body forces 14. If the forces acting on every part of fJI are balanced and if 
suitable regularity assumptions are satisfied one can prove the following results 
(cj. [10]): 

(i) With every configuration K of [!J one can associate a stress tensor field T" 
of class C 1 and a body force field b" of class CO such that the forcef exerted on a 
part f!/' of [!J by the combined action of a separate part f!/" of fJI and the external 
world is given by 

f= S bl(dV+S Tl(ndS, (15.14) 
I( ([JI') C(f 

where C(f is the surface of contact between f!/' and f!/" in the configuration K and 
where n is the unit normal to C(f directed away from K(f!/'). 

(ii) CAUCHY'S equation of balance 

(15.15) 

is valid on [!J for every configuration K. 

(iii) If K and r are two configurations of fJI, then the stress fields TI( and Ty 
and the body force fields bl( and by are related by 

(15.16) 

where 
(15.17) 

(cj. equation (43A.3) of reference [2]). 
Let K be a uniform reference of class crl for fJI. Let a particular point XEPJ 

be given. It is clear from (15.16) and (15.17) that Ty(X) = TI«X) and by (X) =bl«X) 
hold whenever both K and r belong to the equivalence class by which the local 
configuration K(X) is defined. Thus, we can define fields TK and bK by the condi
tion that for each XEPJ, 

TK(X) = T,,(X) , bK(X)= b,,(X) (15.18) 

hold whenever VK(X)=K(X). We call TK and bK the stress tensor field and body 
force field relative to the reference K. It is clear from (15.16) and (15.17) that 

when F and J are given by (15.4), where r is an arbitrary configuration. 

14 Inertial forces should be regarded as part of the body forces. 

(15.19) 
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Since div"Tlx=divKTlx whenever rK(X)=K(X), it follows from (1S.1S) that 

(IS.20) 

holds whenever r K(X) =K (X). On the other hand, Proposition 7 applies when 
we choose T= TK. Thus, by substituting (IS.6) with the choice T= TK into (1S.20) 
we obtain the following result: 

Theorem 11. The stress tensor field TK and the body force field bK relative to a 
uniform reference K satisfy the modified equation of balance 

(IS.21) 

where s is defined in terms of the inhomogeneity S relative to K by (1S.7). 

The equation (1S.21) is much more useful than (1S.1S) for dealing with in
homogeneous materially uniform bodies. Consider, for example, an elastic body 
!!4, for which the set of response descriptors is the set f/ c: fi' of symmetric linear 
transformations. According to Theorem 1 (Sect. 6) we can associate with a given 
uniform reference K a relative elastic response function i>K: t --> f/. In order that a 
configuration y be compatible with a given force system, the constitutive equation 

(IS.22) 

must be satisfied on 31, where Ty is the stress tensor field for y. In view of (1S.19)1, 
(1S.22) is equivalent to 

(IS.23) 

where l)K: t --> fi' is defined by 

(1S.24) 

Assume that l)K is of class C 1 , and denote its gradient by HK. For each FEl the 
value HK(F) is then a linear transformation from fi' into fi'. If we take the gradient 
of (1S.23) relative to K, the chain rule yields 

UE1/". (1S.2S) 
It follows that 

(IS.26) 

where AK is that function on t whose values AK(F): fi'("f/, fi') -+ 1/" are deter
mined by the property that AK(F)[Z] . w is the trace of the linear transformation 
u -->{HK(F) [Zu]Y w for all WE1/" and all ZEfi'("f/, fi'). Of course, AK is determined 
by the response function l)K. If we substitute (1S.26) and (1S.23) into (15.21), we 
obtain 15 

(1S.27) 

which is the differential equation for the determination of configurations y possible 
in a materially uniform elastic body. If the body is homogeneous. we can choose 

15 This result, in terms of coordinates, was announced two years ago in reference [2] as 
equation (44.7). 
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K = V K. Then s vanishes and (15.27) reduces to the classical differential equation 
of finite elasticity. 

Finally, we give another application of Proposition 7. Using the fact that "Y 
is three-dimensional (which was irrelevant up to now), we choose an orientation 
in "Y and consider the associated cross product x. The curl of a vector field h 
and a tensor field Ton f!4 relative to some configuration "1 are defined by 

g. (Vyh)v-v. (Vyh) g=(curly h) . (g xv), 

(curly T) T u = curly(T g), 

where g, ve"Y. It follows from (15.28) that 

(curly TT)(U x v) = (Vy T) v) u -(Vy T) g) v. 

Also, we have the rule 

(15.28) 

(15.29) 

(15.30) 

The inhomogeneity S reltive to a uniform reference K has the skew symmetry 
(Sg) v=-(Sv)u, g,ve"Y. Therefore, S determines and is determined by a tensor 
field A on (}I such that 16 

(Sg)v=A(u xv), g, ve"Y. (15.31) 

If we substitute (15.31) into (11.5) and observe the rule (15.29), we see that 

(15.32) 

Hence, since FT(Fv x Fu) = (det F) (v x g) and since u x v is arbitrary, (15.32) yields 

T-I 1 T 
-curly(F )=JAF, J=detF. (15.33) 

Thus, the tensor field - curly (FT-I) is obtained from A by the rules (15.3), (15.4), 
except that the absolute value signs are omitted in the definition of J, which does 
not affect the validity of Proposition 7. Since by rule (15.30) we have 

(15.6) yields 
divKA+As=O, 

where s is determined by A through 

-(A-AT)u=sxg, 

(15.34) 

u e "Y. (15.35) 

Thus, (15.34) is a differential identity for A and K. One can show that it is equival
ent to the Bianchi identity (11.11). 

Acknowledgement. The research leading to this paper was supported by the Office of Naval 
Research under contract NONR-760 (30). 

16 The field A here corresponds to what was denoted by AT in [2], Sect. 34. 
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The original theory of simple materials was formulated by me in 1958 in 
reference [N2]. I proposed this theory in an attempt to unify and clarify the con
fusing variety of theories of mechanical behavior of materials that had been pro
posed in the literature up to that time. One can perhaps say that the attempt was 
moderately successful, considering that this first theory of simple materials has 
served as a foundation for a large part of the research in continuum physics 
since 1958, and considering that the concepts and even the notations of [N2] are 
now used routinely and without reference in textbooks on continuum mechanics. 

Unfortunately, the success of the first theory of simple materials obscured the 
fact that this theory has at least three severe defects: 
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(i) In the original theory it is assumed, roughly, that the present stress is deter
mined by the infinite past history of deformation. If one assumes that the 
memory of the material is limited, only a finite part of the history will have 
an appreciable effect on the present stress. There are materials, however, 
for which such an assumption is not appropriate. For such materials the 
original theory brings the infinite past into play. This is philosophically 
unacceptable, Because real material bodies (perhaps even the entire universe) 
have not existed for an infinite time. Even if one imagines the existence of a 
material body for the infinite past, only a finite portion of that past is know
able. 

(ii) The original theory has failed to give an adequate conceptuul framework 
for the mathematical description of such phenomena as plasticity, yield, and 
hysteresis. 

(iii) The definition of a material of the rate type in the framework of the first 
theory (cl [N2], Sect. 24 or [TN], Sect. 36) was artificial and fraught with 
difficulties. BERNSTEIN ([B 1] and [B2]) gave another and much more natural 
definition, but his definition did not fit into the framework of the first theory. 

The new theory of simple materials presented here is free from the three 
defects just described. Only deformation processes of finite duration, not infinite 
histories, occur in the description of the response of a material element. I believe 
the new theory is suited very well as a basis for mathematical theories describing 
phenomena of plasticity, although such theories have not yet been developed on 
this basis. Finally, BERNSTEIN'S definition of a material of the rate type fits naturally 
into the new framework. 

The idea of a state of a physical system is used, informally or formally, in almost 
all branches of physics. It is used formally as a primitive notion, for example, in 
most axiomatic descriptions of quantum mechanics. Informally, i. e. without a 
precise mathematical meaning, the term "state" has also been used in much 
work on continuum mechanics. In the axiomatic definition of a material element 
presented here, the notion of a state of the element is used formally as a primitive 
notion with a precise mathematical meaning. 

An important difference between the study presented here and all previous 
work in continuum physics (as far as I know) is that in the present study no 
a-priori existence of frames of reference or physical space is assumed and no a priori 
coordinate sysrems are used for the description of the response of material bodies. 
In the past literature, an inordinate effort has been expended to derive the con
sequences of the principle of frame-indifference for whatever constitutive assump
tions were considered. This was the case even before the principle of frame-indif
ference was formulated with precision and generality in [N3]; it was the case, 
for example, in the pioneering work of CAUCHY and STOKES. The advantage of 
not using frames of reference is, of course, that the principle of frame-indifference 
is vacuously satisfied and need not be considered explicitly at all. An increasing 
number of researchers recognize (mainly since the publication of my thesis [Nl] 
in 1955) that a priori coordinate systems and hence considerations of coordinate 
invariance are redundant and an impediment to understanding. 
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New Theory of Simple Materials 3 

The intrinsic, frame-free description of material elements has a second ad
vantage: no a priori commitment need be made about the space-time structure 
used when the interaction of an elemen~ with an environment is considered. The 
description given here is compatible with classical, neo-classical (cf. [N6]), as 
well as relativistic spacetime. The imbedding of material bodies in relativistic 
space-time will be investigated in a future paper. 

We now give a brief survey of the contents of this paper. 
In Section 2 we assemble the mathematical notation and terminology used 

later. The basic vocabulary that mathematicians have adopted in the last few 
years is included in order to aid those readers whose primary interest is in mechan
ics and who may not yet be familiar with this vocabulary. It is assumed that the 
reader has a good grasp of the concepts of elementary abstract linear algebra 
and is comfortable with vector spaces that have no inner product. 

In Section 3 we introduce, somewhat informally, the notions of intrinsic con
figuration of a continuous body and of an infinitesimal body element. This 
intrinsic notion is different from the extrinsic concept of "configuration" I have 
used in past work. I now prefer the term "placement in a frame of reference" for 
the extrinsic concept. 

Section 4 contains the formal definition of a body element and a rigorous 
discussion of (intrinsic) deformation processes for a body element. 

In Section 5 we describe the connection between (intrinsic) deformation pro
cesses and motions in a frame space introduced a posteriori. 

In Section 6 we explain the concept of intrinsic stress and we show how work 
can be computed in terms of intrinsic stresses and deformations. 

Section 7 contains the formal definition for the basic concept of the present 
paper, that of a material element. The structure of a material element is governed 
by six axioms, of which only the first three are stated in Section 7. 

In Section 8 we discuss internal constraints and demonstrate that no formal 
modifications are necessary when such constraints ar~ present. 

Section 9 deals with material isomorphisms, which are defined in accordance 
with the notion of isomorphism for arbitrary mathematical structures. A material 
is defined as an equivalence class of material elements, the equivalence being 
material isomorphy. Included in Section 9 are also a few remarks intended to 
clarify the nature of the theory of materially uniform but inhomogeneous material 
bodies. 

In Section 10, the symmetry group of a material element is defined as its group 
of automorphisms. We also give a precise definition for the symmetry group of a 
state. States whose symmetry group is an appropriate orthogonal group are called 
isotropic states, and isotropic material elements are defined as those that possess 
isotropic states. 

In Section 11 we define natural uniform structures on sections of the state 
space and a natural topology on the state space. A completeness axiom postulates 
that the sections be complete uniform spaces. Readers who are not familiar with 
the elements of abstract general topology can skip this section and just assume 
that a notion of convergence for states is somehow defined. 
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In Section 12 we state and discuss the relaxation axiom, which postulates that 
if a material element is frozen in a definite configuration, its state will approach 
a relaxed state. 

In Section 13 we say what it means that one state is accessible from another 
and we state the accessibility axiom, which postulates that all states must be acces
sible from a certain relaxed starting state. 

In Section 14 an elastic element is defined by the condition that the states be 
in one-to-one correspondence with the configurations. A semi-elastic element is 
defined by the condition that the relaxed states be in one-to-one correspondence 
with the configurations. Solid and fluid materials are defined as semi-elastic 
materials with special symmetry. Notions of undistorted state and undistorted 
configuration are defined so as to apply to all semi-elastic materials (not just to 
solids and isotropic materials, as in the original theory). 

In Section 15 we show that, for semi-elastic elements, a dense set of states can 
be described by deformation histories of infinite duration. 

In Section 16 we establish a precise position for the original theory of simple 
materials. It turns out that simple materials in the original sense are equivalent 
to semi-elastic materials in the new sense. The proof of this equivalence is by no 
means simple. The history functional of a semi-elastic element, which relates 
infinite deformation histories to stresses, must satisfy two convergence conditions. 
These conditions express the fact that semi-elastic materials have limited memory, 
as is to be expected from the discussion about the first defect of the original theory. 

The considerations of Section 17 are purely kinematical. A monotonous process 
is defined by the condition that all of its segments of equal duration are congruent. 
A non-trivial theorem, whose proof will be given elsewhere [N8], shows that the 
monotonous processes are related to what have been called "substantially stagnant 
motions" by COLEMAN [C] and "motions with constant stretch history" by 
myself [N 4]. 

In Section 18 we explain why the dynamical analysis of monotonous processes 
is often not much more complicated than a statical analysis. The reason is that, 
if the material has a sufficiently large symmetry group and if certain other con
ditions are satisfied, such processes leave the reduced state unchanged. The states 
occurring in such processes are called states of monotonous flow. 

Materials (as distinct from material elements) can often be characterized by 
numerical functionals, functions, or constants. In Section 19 such a characteri
zation is carried out in detail for incompressible fluids. 

In Section 20 we define and discuss materials of the rate type. There is no 
evidence, conceptual or experimental, that any real material behavior fits the 
theory of materials of the rate type, but this theory gives mathematically concrete 
examples of material elements that are not semi-elastic and hence do not fit the 
original theory of simple materials. (The definition of a material of the rate type 
given in [N2] and [TN] applies, in the language of the present paper, only to 
materials that are both semi-elastic and of the rate type.) 

In Section 21 we discuss possible generalizations, further development, and 
applications of the theory presented here. 
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2. Mathematical Preliminaries 

(a) Basic Notations. The set of real numbers is denoted by lR and the set of 
non-negative reals by lR+. If t1> t2ElR and t 1;I;.t2, the closed interval from tl to 
t2 is defined by [tl' t2]={t I t 1 ;I;.t;I;.t2}. In particular, [t, t]={t} is a degenerate 
interval that reduces to a singleton. The set of natural numbers I, 2, 3 ... is 
denoted by N. 

A mappingj: f0 ~ Cfi assigns to each element x in the set f0 a value f(x) in the 
set «5. The set f0 is called the domain of f and «5 is called the codomain of f One 
expresses this situation by saying thatf maps f0 into «5. The set 

Rangef= {I(x) I xEf0} 

is called the range (or" image") of f The range is a subset of the codomain. If 
the range coincides with the codomain, one says that the mapping is surjective 
(or "onto") and calls it a surjection. A mapping f is said to be injective (or "one
to-one") and is called an injection if f(x 1)=f(x2) is possible only when Xl =x2. 

The composition go j: f0 ~ ~ of two mappings f: f0 ~ «5 and g: Cfi ~ ~ is 
defined by (go f)(x)=g(J(x)) for all XEf0. The composition go f is meaningful 
only if the codomain of f coincides with (or at least is contained in) the domain 
ofg. The identity mapping l.@: f0~f0 of a set f0 is defined by l.@(x)=x for all 
XE~. A mappingf: f0~Cfi is said to be invertible (or "bijective" or "one-to
one and onto") if it has an inversef-l: Cfi~f0 with the propertiesf-l o f=l.@ 
and f 0 f- 1 = l't!'. A mapping is invertible if and only if it is both injective and 
surjective. If this is the case, the mapping is also called a bijection (or" one-to-one 
correspondence "). 

If the values of a mapping f are given by a formula and if no special symbol 
for the mapping itself is available, one uses the notation X f--+ f(x) to denote the 
mapping. (Note the distinction between f--+ and ~.) For example, t~ t 2 denotes 
the "squaring" mapping from lR into lR (or into lR +). Another possible notation 
for x f--+ f(x) is f(·). For example, if the domain of g: f0 1 x f02 ~ «5 is a Cartesian 
product f0 1 x f02 ={(x l, X2) I Xl Ef0 1, X2Ef02}, one can obtain, for every Xl Ef0 1 , 

a mapping g(Xl' .): f0 2 ~«5. 

It often happens that the codomains «51 and Cfi 2 of two mappings fl : f0 ~ «51 
and f2: f0 ~ «52 are such that there is an algebraic operation which assigns to 
each Yl E«51 and each Yz ECfi z a Yl Yz in a set «53' One then defines 11 f2: f0 ~ Cfi 3 
by value-wise application of the operation, i. e. by (fl f2) (x) = fl (X)f2 (x) for all 
XE!0. For example, if f: f0 ~ lR and g: f0 ~ lR thenf+g: f0 ~ lR andfg: f0 -+ lR 
are defined by value-wise addition and multiplication, i. e. by (f + g) (x) = f(x) + g(x) 
and (fg)(x)=f(x)g(x) for all XEf0. 

The terms" function", "functional", and" transformation" are some of many 
synonyms for "mapping". 

(b) Vector Spaces. We deal only with finite-dimensional real vector spaces. 
If ~ and ffz are such spaces, we denote by 

Lin(S;:, ffz) = {A: s;: ~ g; I A linear} 

the set of all linear mappings from s;: into ffz. The composition of two linear 
mappings Ai and A 2, meaningful if the domain of A2 coincides with the codomain 
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of At, is again linear and is denoted by A 2 A t • (The symbol 0 is omitted in this 
case.) Lin(~, 9;) is again a vector space, its structure being defined by taking 
value-wise sums and scalar multiples. The notation 

Invlin(~, 9;)= {A e Lin (s;: , 9;) I A- t exists} 

is used for the set of invertible linear mappings from ~ into 9;. Invlin (~, 9;) 
is non-empty only if dim ~ = dim 9;. We use the abbreviations 

Lin (9'") = Lin (9;' 9'"), Invlin(9'")=lnvlin(ff, fT). 

Lin (fT) is not only a vector space, but an algebra with multiplication defined 
by composition. Invlin (9'") is not a vector space, but it is a group under com
position, and it is often called the general linear group of fT. It is the group of 
automorphisms of the vector space fT. 

The dual fT * of a vector space fT is defined by 

fT* = Lin(9;'lR). 

It is a vector space of the same dimension as fT. The elements of §"* are called 
linear forms or co vectors. The value of u*efT* at vefT is denoted by (u*, v)elR. 
The dual fT** of the dual 9'"* is identified with the original space fT in such a 
way that the value at u*efT* of the element of fT** = Lin (fT*, lR)corresponding 
tovefTis (u*, v). If vefT and u*efT*, we define v®u*eLin(fT) by 

(v®u*)(w)=(u*, w)v for all wefT. 

The dual of Lin(fT) contains a distinguished element tre(Lin(!T))*, called 
the trace. It is characterized by the condition that 

tr(v®u*)=(u*,v) for all vefT and all u*e9'"*. 

Another distinguished function on Lin(fT) is the determinant det: Lin(fT) -+ JR. 
It is not linear but preserves products, so that det(A t A2)=(detA t)(detA2). Also, 
one has det(l.,..) = 1. We use the notations 

Lino(9'") = {AeLin(fT)I tr A =O} 
and 

Unim(fT)= {Aelnvlin(fT) I (detA)2 = I}. 

Lino(fT) is a subspace of Lin(fT) and Unim(fT) is a subgroup of Invlin(fT). The 
group Unim(fT) is called the unimodular group of fT. 

To every AeLin(~, 9;) one can associate a unique adjoint A*ELin(9;*, ~*) 
characterized by the condition that (A*w*, v)=(w*, Av) for all veS;: and all 
w*E9;*. If A eLin (ff), thenA*ELin(fT*) and we have trA =trA*, detA*=detA. 

(c) Bilinear Forms, Orthogonal Groups, Inner Product Spaces. Let fT be a 
finite-dimensional real vector space. The space Lin (9;' fT*) can be identified 
with the space of all bilinear forms on ff, because every such bilinear form is a 
mapping from fT x ff into JR of the type 

(v, w)1-+ (Gv, w), with GeLin(ff, fT*). 
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The subspace 

Sym(ff, ff*)= {GELin(ff, ff*) I <Gv, w) =<Gw, v) for all v, wEff} 

of Lin(ff, ff*) is then identified with the space of symmetric bilinear forms on 
ff. The subset 

Sym + (ff, ff*)= {GESym(ff, ff*) I <Gv, v) >0 if vEff, V=fO} 

of Sym(ff, ff*) is identified with the set of all positive definite symmetric bilinear 
forms on f/. We note that 

Sym + (ff, ff*)cInvlin(ff, ff*), 

i.e., G- 1 exists for every GESym+(ff,ff*). The following fact will be needed: 
For every GoESym+ (ff, ff*) we have 

Sym + (ff, ff*)= {A* Go A I AEInvlinff}. 

For any GESym+(ff, ff*) we put 

Orth(G) = {A E Lin (ff) I A* GA=G}. 

For every GESym+ (ff, ff*), the set Orth(G) is a proper subgroup of Unim(ff). 
We call Orth(G) the orthogonal group ofG. The following facts concerning ortho
gonal groups will be needed: 

(i) For all G1 , G2 ESym+ (ff, ff*) we have 

Orth(G1)cOrth(G2} ~ Orth(G1)= Orth(G2 ) 

~G2=cGl for some c>O. 

(ii) The groups Orth(G) are maximal subgroups of Unim(ff), i.e., if r; is a proper 
subgroup ofUnim(ff) such that r;=>Orth(G), then r;=Orth(G).l 

An inner product space "Y is a vector space equipped with an additional 
structure by singling out a particular member IESym+ ("Y, "Y*), which is called 
the inner product of "Y. One uses the notation 

u·v=(Iu,v) for y,VE"Y 

and calls u· v the inner product of u and v. Also, since I: "Y -+ "Y* is a bijection, 
it is used to identify "Y with "Y*. Thus, when UE"Y is regarded as a linear form 
on "Y, its value at VE"Y is U· v. Lin("Y*) is identified with Lin(1'") and hence 
the adjoint of AELin("Y) is identified with another element of Lin ("Y). This 
element is denoted by AT instead of A * and called the transpose of A. The space 
Sym("Y, "Y*) is identified with the subspace 

Sym("Y)= {AELin("Y)I A =AT} 

of Lin("Y). The orthogonal group of the inner product I is also called the ortho
gonal group of the inner product space "Y and denoted by 

Orth("Y)= {QELin("Y) I QT Q = 1-;'"}. 

Orth("Y) is the group of automorphisms of the inner product space "Y. 
1 This is a rather non-trivial theorem. The simplest proof I know is the one I gave in [N5]. 
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Let "Y be an inner product space and fT a vector space. If KeLin(9;' "Y), 
then K*c:Lin("Y*, fT*)=Lin("Y, fT*) and hence K* KeLin(9;' 5'*). Actually, 
we always have K* Ke Sym(9;' fT*) and 

Sym + (9;' fT*)= {K* KI KeInvlin(9;' "Y)} 
if dim fT = dim "Y. 

A special inner product space is the numerical space JR.n consisting of n-tuples 
of real numbers. Actually, JR." is equipped with even more structure than an inner 
product space, because JR.n possesses a distinguished orthonormal basis, while 
for inner product spaces without additional structure any orthonormal basis is 
as good as any other. 

3. Continuous Bodies, Intrinsic Configurations 

A continuous body !!J is usually defined 1 as a set endowed with a structure 
described by a class <P of mappings K: !!J --+ tI" whose codomains tI" are Euclidean 
spaces. The elements X, Y, ... of !!J are called material points. The spaces tI" 
have an intuitive interpretation as frames of reference, and a mapping Ke<P 
assigns to each material point Xe!!J a place K(X) in the frame of reference tI". 
We will refer to the mappings in <P as the possible placements 2 of the body !!J. 

The class <P of placements of !!J is subject to a number of axioms which we 
will not repeat here. For our purposes it is enough to know that the axioms are 
such as to determine, on !!J, a unique structure of a differentiable manifold. 
Therefore one can associate with each material point X e!!J a tangent space frx, 
which is a finite-dimensional real vector space (see [N7], Sect. 4). Intuitively, the 
members of frx describe the material points in an infinitesimal neighborhood of X. 
Therefore, we call frx the (infinitesimal) body element at X of the (global) body !!J. 
If K e <P is a placement of !!J, its gradient VK (X): frx --+ "Y" is an invertible linear 
mapping from frx onto the translation space "Y" of tlK (see, e.g., [N7], Sects. 3 
and 4). Note that "YK is an inner product space, while frx is a vector space without 
inner product. 

We thus see that localizations of placements of a body to one of its body 
elements frx are described by invertible linear mappings from frx onto inner pro
duct spaces. We therefore call such mappings placements of the body element frx. 

We observe that one can associate with each placement K: !!J--+tSK a distance 
function (j,,: !!J x !!J --+ IR. + defined by 

(3.1) 

where dK denotes the Euclidean distance in the frame space tI". Two placements 
Klo K2 e<P determine the same distance function if and only if K 2 0 Ki 1 is an iso
metry between a subset of tiKI and a subset of tS"2. 

Let 
(3.2) 

1 Although the concept has been used in the literature on continuum mechanics since time 
immemorial, the first precise mathematical definition was given in [N3] (see also [N7], Sect. 3). 

2 In earlier work I used the term" configuration". I now believe" placement" is more apt. 
Also, I would like to reserve "configuration" for the intrinsic concept to be introduced below. 
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be the class of all distance functions of the form (3.1). Instead of using tP to 
describe the structure on fA and then defining LI by (3.2) in terms of tP, one can 
also use a suitable class LI of mappings b: fAx fA -+ 1R. + to describe the structure of a 
continuous body on fA and then define tP to be the class of mappings K: fA -+ tfre 
for which (X, Y)l--+dre(K(X), K(Y») belongs to LI. The advantage of describing 
the body structure in terms of the class LI is that such a description is completely 
intrinsic. The elements of LI do not involve extrinsic frames of reference, as do 
the elements of tP. 

We shall refer to the distance functions in LI as the possible (intrinsic) con
figurations of the body fA. A configuration bELl assigns to any two material points 
X, Y EfA a number b (X, Y) E 1R. +, which we call the distance between X and Y in 
the configuration b. 

A configuration b: fAx fA -+ 1R. + induces, by localization, on each of the 
tangent spaces ffx a positive definite symmetric bilinear form b x: ffx x ffx -+ 1R. + . 
In precise terms, bx is the mixed second gradient of b with respect to its 
two point variables, evaluated at (X, X). It is natural, therefore, to call such 
bilinear forms (intrinsic) configurations of the body element ffx. Recalling that 
Sym + (ffx, ffx*) can be identified with the set of all positive definite symmetric 
bilinear forms on ffx (see Section 2), we see that the configurations of ffx can be 
regarded as elements of Sym + (ffx, ffx*). 

A motion of a body fA is a one-parameter family of placements of fA (see 
[N2]). By a deformation process for a body fA we mean a one-parameter family 
of configurations of fA. Motions and deformation processes of body elements 
are defined in the same way. 

From now on we shall deal almost exclusively with body elements rather than 
with (global) bodies. We think of a body element as a physical system in itself, 
regarding the rest of the continuous body to which the element belongs merely 
as part of the environment. 

Precise formal definitions, motivated by the considerations of this section, 
for the concepts of a body element and of configurations, deformation processes, 
placements, and motions of a body element will be given in the next two sections. 

4. Deformation Processes, Body Elements 

Let C§ be any set. A function P of the type 

P: [0, dp] -+'C§, dpElR. + (4.1) 

will be called a process with values in C§. The number dp will be called the duration 
of the process and the values 

pi=P(O), pI =P(dp ) (4.2) 

will be referred to as the initial and final values of the process. 

If GEC§ and tE 1R. +, we define a process G(t): [0, t] -+ C§ by 

G(t)(r)=G for rE[O, t] (4.3) 

and call it the freeze of duration tat G. 
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Let P be a process and let t l , t2E[0, dp], with tl ~t2' We then define a new 
process P[t,.t2]' of duration t2 -t l , by 

(4.4) 

Such a process will be called a segment of the given process P. 

Let PI and P2 be processes such that p{ =P~. We then define a new process 
PI *P2, of duration dp, +dp2 , by 

if tE[O,dp,] 

if tE[dp" dp, +dp2J. (4.5) 

We call PI *P2 the continuation of PI with P2. Continuation is an associative 
operation, i. e., we have 

(PI * P2)*P3 =PI *(P2 *P3 ) 

if p{ =P~=(P2 *P3Y and p{ =(PI *P2)f =P~. 

(4.6) 

We note that processes of duration zero are not excluded. Of course, all such 
processes are of the form G(O)' i. e. they are freezes of duration zero. It is clear 
that for any process P 

(4.7) 

Definition 4.1. A body element is a triple (5; t§, n), where !T is a finite-dimen
sional real vector space, t§ is a closed and connected subset of Sym + (5; 5"*), 
and n is a class of processes with values in t§ which satisfies the following con
ditions: 

(P 1) Any freeze at any GEt§ belongs to n. 

(P2) If P belongs to n, so does every segment of P. 

(P3) n is closed under continuation, i.e., if PI' P2En and p{ = P~, then PI *P2En. 
(P4) Any two elements GI , G2 Et§ can be connected by a process in n, i.e., there 

is at least one PEn such that GI =p i and G2 =pf. 

When we speak about a body element 5; we consider it understood that !T 
is endowed with a structure defined by the prescription of t§ and n. The elements 
of t§ will be called the configurations of :T and the processes in n the deformation 
processes for g-: 

Examples of classes n that satisfy (P I)-(P4) are: (a) the class of all processes 
with values in t§, (b) the class of all continuous processes with values in t§, (c) 
if t§ is arcwise connected, the class of all processes P that are continuous and have 
a piecewise continuous derivative l' in the sense that pet) exist for all but a finite 
number of tE [0, dp] and P has left and right limits for all tE [0, dp]. 

Remark. It cannot happen that the class n contains only processes that are 
everywhere differentiable, except in the trivial case when t§ is a singleton. To see 
this, we note that (P4) implies the existence of a non-constant PEn. If P is every
where differentiable, there must be a t>O such that p(t)=I=O. By (Pl)-(P3), the 
process p[o.t]*P(t)(t')' where t'>O, must also belong to n. This process does not 
have a derivative at t. 
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5. Motions in a Frame-Space 

Let (!!I, t:§, ll) be a body element and let "I"" be a real inner product space 
having the same dimension as ff. An element KeInvIin(!!I, "1"") wiII be called a 
placement of the element ff in the frame-space "I"" if K* Ket:§. The set of all 
placements of ff is denoted by 

&'y-={KeInvlin(!!I,"I"")IK* Ket:§}. (5.1) 

We call K* K the configuration determined by the placement K. It is easily seen 
that two placements K 1, K 2e&'y- determine the same configuration if and only if 
K2 Ki'" 1 e Orth ("I"") and that 

(5.2) 

A process M: [0, dM ] -&'y- with values in &'y- will be called a motion of ff in 
the frame-space "I"" if M* Mell. We call M* M the deformation process deter
mined by the motion M. 

The notions of duration, initial and final placements, freezes, segments, and 
continuation apply also to motions since they apply to processes of any type. Two 
motions MI and M2 determine the same deformation process if and only if they 
have the same duration and if M2 Mi'" 1 has values in Orth("I""). 

It is often useful to fix a particular reference placement KRe&'y- and to describe 
the possible motions of the body-element with reference to KR • In this way one 
obtains all the standard tensor functions connected with a given motion M (see 
[TN], Chapter CI). For example, 

F=MK;l: [O,dM]-Lin("I"") (5.3) 

defines the displacement tensor 1 of M. If P=M* M is the deformation process 
determined by M, then 

C=K: -1 PK;1 =FT F: [0, dM] _ Lin ("I"") (5.4) 

defines the right Cauchy-Green tensor. If te [0, dM ] and if we take M(t), rather 
than KR, as reference placement, we obtain the relative displacement tensor 

F(t)=MM(t)-1: [0, dM] - Lin ("I"") 

and the relative right Cauchy-Green tensor 

(5.5) 

C(t)=M(t)* -1 GM(t)-1 =F(~)F(t): [0, dM ] - Lin ("1""). (5.6) 

If the deformation process P=M* M is of class C k, we can define the kth Rivlin
Ericksen tensor by 

(5.7) 

6. Intrinsic Stress, Work 

It follows from the basic principles of continuum mechanics that, roughly 
speaking, the contact forces exerted on a body element ff in a placement KePy-

1 In [TN] the term "deformation gradient" is used. For the present context, I prefer the 
term I used in [NI], p. 14. 
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can be described by a (Cauchy-) stress tensor TeSymCr) Csee Section 16 of [TN]). 
We define a corresponding intrinsic stress SeSymC9"*, 9") by 

S=K- 1 TK* -1. (6.1) 

It describes the contact forces acting on the element 9" intrinsically, without 
reference to any frame space. 

A mechanical process for a body element 9" is defined to be a pair (P, S), 
where Pen is a deformation process for 9" and S is a process with values in 
SymC9"*,9") and of the same duration as P, i.e. S: [0, dp ]-+SymC9"*, 9"). The 
values of S are to be interpreted as intrinsic stresses. If P is determined by a motion 
M of 9" in the frame space r, then 

(6.2) 

gives the Cauchy-stress corresponding to the intrinsic stress S as a function on 
[0, dp ]. 

If Sis continuous andP continuously differentiable, then SP: [0, dp ] -+ Lin (9") 
is meaningful and one can easily show (see (5.7)) that 

(6.3) 

is the stress power. Its value at t measures the rate at which the contact forces 
exerted on the element do work, per unit volume in the configuration pet). The 
total work done on the element during the mechanical process (P, S), per unit 
volume in the initial configuration pi=P(O), is given by 

dp • 

w=t J trCSP)j, 
o 

where j: [0, t p] -+ lR + is determined by 

l=det(pi)-1 P). 

(6.4) 

(6.5) 

The meaning of j(t) is that of the ratio of the volume of the configuration pet) 
to the initial volume. 

7. Material Elements 

We are now ready to introduce the main concept of the present paper, the 
concept of a material element. A material element will be a body element endowed 
with additional structure that is designed to describe physical material properties. 
For definiteness we confine ourselves to mechanical material properties, although 
it is not difficult to include non-mechanical physical phenomena (see Section 21). 
The principal feature of our definition is that it associates with the element a 
space of possible physical states. The underlying intuitive idea is that when a 
material element is given in a concrete physical situation, it is given in a definite 
state. The state determines everything about the element: its configuration, its 
stress, and, most importantly, the response of the element in every possible test. 
We imagine that a test consists of SUbjecting the element to a deformation process 
and measuring the stress at the end. 
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Definition 7.1. A material element is a septuple (ff, C§, ll, E, G, S, p) which satisfies 
Axioms I-VI stated below. The nature of the objects of the septuple is as follows: 

(a) (:T, C§, ll) is a body element as in Definition 4.1. It is called the underlying 
body element of the material element. 

(b) E is a set, called the state space of the material element. 
(c) G is a mapping G: E ~ C§ from the state space E into the configuration space C§. 

(d) S is a mapping S: E ~!/ from the state space E into the space 

!/= Sym(:T*, :T), 

which we call the stress space of the element. 
(e) p is a mapping p: (Exll)fit~E, whose domain 

(E x ll)fit= {(O", P)/ O"EE, PEll, pi=G(O")} 

(7.1) 

(7.2) 

is the set of all state-process pairs such that the state "fits" the initial con
figuration of the process. 

When we speak about a material element ff, we consider it understood that 
:T is endowed with a structure defined by the prescription of C§, ll, E, G, S, and p. 
The elements 0" of E are the possible states of IT. The value G(O") is the configura
tion and S(O") is the (intrinsic) stress determined by the state 0". The function p 
will be called the evolution function of IT. The value p(O", P) is the state reached 
by the element if, starting from the state 0", it is subjected to the deformation 
process P. 

In addition to (7.1) and (7.2), we shall use the following notations throughout 
the rest of the paper: 

(i) The set of all deformation processes beginning at the configuration GEC§ is 
denoted by 

(ii) The set of all states that fit the configuration GeC§ is denoted by 

EG={o"EE/ G(O")=G} 

and called the G-section of E. 
(iii) The response functional S of the element is defined by 

S=S 0 jj: (E x ll)fit~[/. 

(7.3) 

(7.4) 

(7.5) 

If O"EE and PEllG(a), then S(O", P) is the stress produced by the process P 
when the initial state was 0". 

It is evident that II is the disjoint union of the llG' GEC§, that E is the disjoint 
union of the sections EG, GEC§, and that (E x ll)fit is the disjoint union of the 
Cartesian products EG x llG' GEC§. 

The first two axioms flow directly from the intuitive meaning of the evolution 
function p. One states that the state reached after a process must fit the final 
configuration. The other expresses the fact that when the element is first subjected 
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to a process P 1 and then to a process P2 , it must reach the same state as when it 
is subjected to the continuation P1 *P2 of P1 by P2. 
Axiom I. For all (0', P)e(k x ll)w, 

p(u, P)ekpr, i.e., G(p(u, P» = pf. (7.6) 

It follows from Axiom I that G: k -+ t'§ must be surjective, because, by con
dition (P4) of Definition 4.1, for any uek and any Get'§, there must be a Pell 
such that (0', P)e(k x ll)cit and pI = G. 

Axiom IT. If Ph P2ell, Uekp\ and p{ =p4, then 

(7.7) 

An immediate consequence of (7.7) is 

S(u, P1 * P2)=S(p(u, P1), P2). (7.8) 

The next axiom is basic. It expresses the assumption that there must be some 
operational way to distinguish between states. Specifically, if two states are dif
ferent but fit the same configuration, there must be some process which produces 
different stresses with the two states as initial states. 

Axiom ID. For any Get'§, i/u1, u2 ekG and 
- -
S(U1o P)=S(U2' P) 

for all PellG, then 0'1 =0'2' 

A simple application of Axiom III gives the following result, which states that 
processes of zero duration leave states unchanged. 

Proposition 7.1. For all uek we have 

(7.9) 

Proof. Given any PellG(tr), we apply (7.8) with the choice P1 = G(u)(O) = ptO) 
and P2 =P. In view of (4.7), we get 

S(u, P)=S(p(u, 6(0')(0»' P). 

Since P is arbitrary, Axiom III yields the desired result (7.9)10 and (7.9h is an 
immediate consequence. Q.E.D. 

There will be three more axioms. They all involve a certain topology on the 
state space k, a topology which we will define in Section 11. Axiom IV of Sec
tion 11 requires that the state space k should be in a certain sense complete. 
Axiom V, to be stated in Section 12, postulates the existence of "relaxed states". 
Axiom VI, to be stated in Section 13, requires that all states must be "accessible" 
in an appropriate sense. 

In the next section we shall describe how our conceptual framework applies 
even when the material is subject to "internal constraints". Sections 9 and 10 
deal with material isomorphisms and material symmetry, for which Axioms IV-VI 
are not needed. 
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8. Internal Constraints 

We recall (Section 4) that in order to define the structure of a body element fr, 
one must prescribe the set C§ of its possible configurations, and C§ must be a 
closed connected subset of Sym + (fr, ff·). If every neighborhood in C§ of every 
GeC§ has a non-empty interior in Sym + (fr, ff·), we say that the element is free 
of internal constraints. 

On the other hand, for a given configuration G, it may happen that some 
neighborhood of Gin C§ is contained in a proper submanifold C(j G of Sym + (fr, ff·). 
If this is the case, we say that the element is subject to an internal constraint at G 
with constraint manifold C(jG' For example, if C§ is contained in a proper submani
fold ce of Sym + (fr, ff·), then C(j is a constraint manifold for every GeC§. 

The most important internal constraint is incompressibility. It is defined by 
the condition that any two possible configurations G1 , G2 eC§ must have the same 
volume. Although it is easy to give a precise mathematical meaning to the notion 
of "volume of a configuration",1 we shall not do so here but merely remark 
that the square of the ratio of the volume of G2 to the volume of G1 is given by 
det(G11 G2 ) (cf. [TN], (23.11»). We say that ff is an incompressible element if 
for any G 1 , G2 eC§ we have det G1 1 G2 = 1. This means that C§ is contained in 

(8.1) 

where GoeC§ is arbitrary. Thus, for an incompressible element, (8.1) is a constraint 
manifold for all GeC§. 

The severest possible constraint is rigidity. A rigid body element has only one 
possible configuration, i.e. C§ reduces to a singleton C§={Go}. The only possible 
deformation processes in II are the freezes at Go. 

Another internal constraint is inextensibility in some direction. We say that ff 
is inextensible in the direction of veff if for any G1 , G2 eC§ we have (G 1 v, v)= 
(G2 v, v). This means that C§ is contained in 

f(f={GeSym;(fr, ff·)1 (Gv, v)=c}, (8.2) 

where c > O. For an inextensible element, (8.2) is a constraint manifold for all 
GeC§. 

The definition of a material element given in the previous sections applies 
whether or not internal constraints are present. However, if ff is subject to 
internal constraints, the values of S: I --+ [/ must be reinterpreted as being intrinsic 
extra stresses (cf. [TN], p. 71) rather than intrinsic stresses. The formulas (6.3) 
and (6.4) remain valid if S is so reinterpreted. The indeterminacy of the extra 
stress must be removed by normalization. Such normalization is somewhat 
arbitrary, but the following condition seems to be the simplest. We note that if 
ce is a submanifold of Sym+ (fr, ff·), then the tangent spaces of C(j are subspaces 
of Sym(fr, ff·). Also, if SeSym(ff·, ff) and GeC§, then GSGeSym(fr, ff·). 

Normalization Condition. If ff is subject to an internal constraint at GeC§ with 
constraint manifold ceG , then,for every CTeIG, GS(CT)G must belong to the tangent 
space ofceG at G. .. 

1 As an element of the space" fT. of n-covectors, with n=dim:T. 
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One can show that the tangent space of the manifold (8.1) at GeC§ consists of 
all De Sym (9;" f/*) such that tr(G- 1 D)=O. Hence, for incompressible body 
elements, the Normalization Condition reduces to 

tr(S(o) G)=O for all Gei§ and all aeEG • (8.3) 

For a rigid material element, the constraint manifold is the zero-dimensional 
manifold ~=i§={Go}. Its tangent-space at Go is the zero-dimensional space 
whose only member is the zero element of Sym(9;" f/*). Hence the Normali
zation Condition gives S(a)=O for all aeE. Using Axiom III, one can see im
mediately that the state space E must also reduce to a singleton E={O'o}, and the 
entire material element structure becomes trivial. 

9. Material Isomorphisms, Materially Uniform Bodies 

Isomorphisms between body elements (Definition 4.1) and between material 
elements (Definition 7.1) will be defined in accordance with the general notion 
of isomorphisms for arbitrary mathematical structures. 

We note that the set Invlin(~, 9;) is the set of vector-space isomorphisms 
from ~ onto 9;. Each Aelnvlin(~, 9;) induces an isomorphism G .... A*GA 
from Sym(9;,9;*) onto Sym(~, ~*) and an isomorphism SI-+ASA* from 
Sym(~*,~) onto Sym(9;*, 9;). 

Definition 9.1. Let (~, C§1' Ill) and (9;, i§z, lIz) be body elements. A mapping 
A : ~ --+ 9; is called an isomorphism between the body elements s;. and 9; if 
(i) Aelnvlin(~, 9;), (ii) A*C§z A=C§l' and (iii) A* Ilz A=Il1. 

Definition 9.2. Let (9';:, i§1' Ill> E1, (;l> Sl' P1) and (9;, i§z, lIz, Ez, (;z, Sz, pz) be 
material elements. A mapping A: 9';: --+9; is called a material isomorphism between 
the material elements ~ and 9; if A is an isomorphism between the underlying 
body elements of ~ and 9; and if there exists a bijection 

with the following properties: 

(a) for all aeEl> 

(b) for all aeEl> 
G1 (O')=A* GZ(lA(a)) A, 

Sz(IA(a))=AS1 (a)A*, 

(c) for all aeI1 and all PeIlz such that 61 (a)=A* piA, 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

Proposition 9.1. The bijection 'A of (9. 1)-(9.4) is uniquely determined by the material 
isomorphism A. 

Proof. Application of (9.3) and (9.4) shows that 

AS1 (P1 (0', A* PA))A* =Sz (P2(IA(a), P») (9.5) 
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for all uEl'l and all PEITz with Gl (u)=A* piA. Hence, if IA and l~ are both 
bijections satisfying (9.1)-(9.4), we have 

Sz (pz (lA(U), P»)=Sz(Pz(l~(U), P») 

for all PEITz with Pi=A*-lGl(U)A-l=Gz(lA(U))=Gz(I~(U)). It follows from 
Axiom III that 'A(O')=l~(U). SinceuEl'l is arbitrary, we obtain IA=I~. Q.E.D. 

If A is a material isomorphism, so is its inverse A - 1, and the corresponding 
bijections IA and 'A-1 are related by 

(9.6) 

If Al and A z are material isomorphisms and if their composition AzA l makes 
sense, it is again a material isomorphism. The bijections lA" 'A2' and IA2A, are 
related by 

(9.7) 

If two material elements g;: and fi; are materially isomorphic we also say that 
they consist of the same material. We give a precise meaning to the term" material" 
by saying that a material is an equivalence class of material elements, the equiv
alence being material isomorphy. 

Suppose that we have defined, on one and the same vector space !T, two 
material element structures in such a way that the identity 1,r is a material iso
morphism between them. By Definition 9.1, the sets <f} and IT must be the same 
for both structures. Although the state spaces need not be the same a priori, we 
shall always employ the bijection ll,r to identify one with the other. The functions 
G, S, and p then become the same for both structures, i.e. the two structures 
become the same. Thus, we do not distinguish between material element structures 
on .r that are isomorphic via the identity mapping of !!/. 

Remark. In Section 3 we have indicated how a continuous body f!4 can be defined 
and how a body element .'Tx can be associated with each of the material points 
XEf!4. We say that f!4 has the structure of a material body if each of its body 
elements .'Tx has been endowed with the structure of a material element in ac
cordance with Definition 7.1. We say that a material body is materially uniform 
if any two of its material elements consist of the same material. (This definition 
is consistent with the one I gave in [TN], p. 59 and [N7], p. 7.) 

Let f!4 be a materially uniform material body, and let d be the set of all material 
isomorphisms between material elements of f!4. It is easily seen that this set d 
has the following properties: 

(II) Every member of d is a vector-space isomorphism between two (not neces-
sarily distinct) tangent spaces of f!4. 

(I2) If AEd, then A-lEd. 

(13) If Au AzEd and Domain A z = Range A l , then AzoAlEd. 

(I4) For any X, YEf!4, there is at least one AEd such that A: .'Tx---+ffy. 
The set d endows the body-manifold f!4 with a certain "geometrical" struc

ture. This structure is closely related to what, in the literature on abstract dif
ferential geometry, is called a G-structure (see [S], Chap. VII). The theory of 
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inhomogeneous but materially uniform bodies as developed by me in [N7] and 
C.-C. WANG in [W 2] is essentially nothing more than a theory of the geometrical 
structure on a manifold f1l defined by a set d with the properties (11)-(14). 
For example, a material connection r on f1l is defined to be an affine connection 
on f1l such that every parallel transport with respect to r belongs to d. (This 
concept of material connection is the one introduced by C.-C. WANG in [W2], 
p. 66. It is a more inclusive concept than the original concept introduced by me 
in [TN], p. 90 and [N7], p. 19.) 

10. Material Symmetry, Isotropy 

Let !T be a material element. A material isomorphism (see Definition 9.2) 
between !T and !T itself is called a material automorphism or a symmetry of !T. 
The set 

9' =Aut(!T) c: Invlin(!T) (10.1) 

of all material automorphisms is obviously a subgroup of the general linear 
group Invlin(!T). We call this group 9' the symmetry group of material element!T. 1 

The following result is an immediate corollary of Prop. 9.1 and (9.6), (9.7): 

Proposition 10.1. There is a unique homomorphism 

I: 9' -+ Perm (L) (10.2) 

from the symmetry group 9' into the group Perm(L) of all permutations of the state 
space L such that for every A E 9' the value 1..( of 1 at A satisfies the following con
ditions: 

(i) for all UEL 

and 
G(u)=A* G(l..(U))A, 

S(l..( (u)) =AS(u) A*, 

(ii) for all UEL and all PEn such that G(u)=A* piA, 

(10.3) 

(lOA) 

(10.5) 

This proposition asserts that the symmetry group 9' acts as a transformation 
group on the state space L. Therefore, we can define the orbit Q" of UEL under 
the action of 9' by 

(10.6) 

The orbits under the action of 9' form a partition of the state space L. We call 
these orbits the reduced states of the given material element. Every state deter
mines a unique reduced state. Two states that determine the same reduced state 
are physically equivalent in an intuitively obvious sense. 

Let U E L be any state. The set 

(10.7) 

1 In [N2], Sect. 19, and in later work (notably [TN)) I used the term "isotropy group". 
Some of my colleagues convinced me that" symmetry group" is preferable. 
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of all symmetries that leave the state (1 invariant will be called the symmetry group 
of the state (1. Of course, flu is a subgroup of fl. 

Proposition 10.2. The symmetry group flu of a state (1 is a subgroup of the ortho
gonal group of G«(1) and hence 

flu cflnOrth (G«(1»). (10.8) 

Proof. It follows from (10.3) and (10.7) that G«(1)=A*G«(1)A for all A Eflu. This 
means (see Section 2) that A E Orth(G «(1»). Q.E.D. 

We say that a state (1 is isotropic if 

flu = Orth( G«(1»). (10.9) 

We say that !T is an isotropic material element if it has isotropic states. 

Proposition 10.3. The symmetry group fI of an isotropic material element !T is 
such that either fI= flu if and only if (1 is isotropic or else fI'::) Unim(!T). 

Proof. By the definition (10.9), (1 is isotropic if and only if flu = Orth(G«(1»). Since 
fI'::) flu we can apply the theorem on the maximality of an orthogonal group in the 
unimodular group (see Section 2) and conclude that we must have either fI= 
Orth G«(1) = flu or fI'::) Unim(!T). Since these are mutually exclusive possibilities, 
the assertion follows. Q.E.D. 

Proposition 10.4. The stress 8«(1) determined by a state (1 is such that 

A8«(1) G«(1) = 8«(1) G«(1) A for all A Eflu. (10.10) 

In particular, if (1 is an isotropic state, then 

8«(1)= -pG«(1)-l, (10.11) 
where PEIR. 

Proof. (10.10) is an immediate consequence of (l0.4), (10.7), and (10.3). If 
(1 is isotropic, i.e.~flu=Orth(G«(1»), then (10.10) states that 8«(1) G«(1) c~ommlltes 
with all AEOrth(G«(1»). It is well known that this can happen only if S«(1) G«(1) 
is a multiple of the identity Iy , i.e. if (10.11) holds. Q.E.D. 

The number p of (10.11) is called the pressure corresponding to the isotropic 
state (1. For incompressible material elements, it follows from Prop. 10.4 and the 
normalization (8.3) that the extra-stress is zero for all isotropic states. 

We recall that two states (1, (1' determine the same reduced state if one is in 
the orbit of the other under the action of fI' i.e. if (1'=IA«(1) for some AEfI. The 
following proposition shows that if two states determine the same reduced state, 
then the symmetry groups of the two states are conjugate in fI and hence iso
morphic. 

Proposition 10.5. If (1EI and AEfI, then 

fI'A(<1)=AfI" A-I. (10.12) 

Proof. In view of (9.6), (9.7), and the definition (10.7), we have BEfI" if and only if 

IABA -1 (IA «(1»)=(lA 0 lB 0 lA -1 0 lA)«(1) = lA (lB«(1») = lA «(1), 

which is valid if and only if ABA-l EfI'A(<1). Q.E.D. 
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We say that a state u is a state of maximal symmetry if {fa is maximal in the 
class of all symmetry groups of states, i.e. if {fac{f, is possible for -rEE only if 
{fa = {fT' 

Proposition 10.6. For an isotropic material element, a state is of maximal symmetry 
if and only if it is isotropic. 

Proof. In view of Prop. 10.3 it is trivial that isotropic states are always of maximal 
symmetry. 

On the other hand, let u be a state of maximal symmetry. By Prop. 10.3, we 
have two possibilities for {f: 

(a) {f=fh, with -r isotropic. In this case, (10.8) becomes 

{fa C {f,nOrth( G(u)) C fI,. 

Since fla is maximal, the inclusions must reduce to equalities, which is possible 
only when fla = fI, = fl· By Prop. 10.3, u must be isotropic. 

(b) fl~ Unim(5"). Let -r be an isotropic state. We can always find a A EUnim(5"") 
such that G(u)=cA*G(-r)A, with c>O (see Section 2). Since AEfI, we have, 
by (10.3), G(u)=cG(-r'), where -r'=IA(-r) is another isotropic state (see Prop. 
10.5). It follows that fI,'= Orth(G(-r'))= Orth(G(u)). Using (10.8), we obtain 

fla C Orth( G(u)) = Orth( G(-r'))= {f," 

Since fla is maximal, the inclusion must reduce to equality, so that fl,,= 

Orth(G(u)). This means that u is isotropic. Q.E.D. 

It is clear from Prop. 10.5 that if a state u is of maximal symmetry or is iso
tropic, so are all states that determine the same reduced state as u. Thus, it is 
meaningful to speak about reduced states of maximal symmetry and isotropic 
reduced states. 

The conditions (10.3)-(10.5) are obviously satisfied for A = If and A = -If 
if we put 

(10.13) 

Hence the symmetry groups fl", uEE, and fI always contain the two-element 
group {If' -If}. 

11. Uniformity and Topology in the State Space 

We now introduce natural uniformities on the sections of the state space of a 
material element and a natural topology on the whole state space. For the ex
planation of the concepts occurring in the following definition we refer to [BK], 
Chapt. II, §2, No.3, and Chapt. I, §2, No.4, or to [FT], Chapt.24. Recall that 
the stress space 9'=Sym(5""*, 5"") is a finite-dimensional real vector space and 
hence has a natural uniformity. 

Definition 11.1. Let 5"" be a material element with response functional S (see (7.5)). 
For every GEi§, we call natural uniformity of the G-section EG (see (7.4)) the coarsest 
uniformity on EG which renders the mappings 

S(·,P):EG -+9' 
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uniformly continuous for all PEll G ((see 7.3».1 We call natural topology of the 
state space 1'= U {1'G I GE~} the sum of the topologies on the sections rG induced 
by the natural uniformities of these sections. 

The following result, a special case of [BK], Prop. 4 of §2, Chap. II, character
izes the natural uniformity of 1'G. 

Proposition 11.1. A mapping cp: I1/! -+ 1'G from a uniform space into the G-section 
1'G is uniformly continuous if and only if the mappings 

S(cp(.),P): 11/!-+t/' 

are uniformly continuous for all PEIIG. 

This proposition is used to prove the following result. 

Proposition 11.2. For all PEll, the mapping 

fJ ( " P): l' pi -+ l' pf 
is uniformly continuous. 

Proof. It follows from (7.8) that 

S(fJ(u, P), P')=S(u, P * P') 

for all P'Ellpf. Since S(., P*P'): 1'pi-+!/ is uniformly continuous by definition 
of the natural uniformity on 1'Pi, it follows that S(p(., P), P'): 1'pi-+!/ is uni
formly continuous for all P' Ell pf. Application of Prop. 11.1 with the choice 
11/!=1'pi, cp=p(-, P) yields the assertion. Q.E.D. 

The following result, a special case of [BK] Prop. 10 of §8, Chap. I, charac
terizes the natural topology of 1'. (For the explanation of convergence of nets we 
refer to [K], Chapt. 2.) 

Proposition 11.3. A net (h-+u;) in1' converges to UE1' if and only if (i) U; belongs 
eventually to some fixed section 1'G, (ii) UE1'G, and (iii) 

limS(u;, P)=S(u, P) (11.1) 
; 

for all PEIIG' 

Proposition 11.4. The state space 1', with its natural topology, is a Hausdorff space, 
i.e., nets in l' cannot have more than one limit. 

Proof. If U 1 and U 2 are both limits of the net (il-+u;), we must have, by Prop. 11.3, 
G(u 1)=G(U2)=G and S(u 1 , P)=S(U2' P) for all PEIIG • By Axiom III, Sect. 7, 
it follows that U1 =U2' Q.E.D. 

The natural topology on l' is such that all sections 1'G, GE~, are both open 
and closed in 1'. Hence G: l' -+ ~ is trivially continuous, because it is constant on 
each section. Also, S: r -+ !/ is continuous, because by (7.9h and Definition 11.1, 
the restriction of S to 1'G is the same as S (', G(O» and hence (uniformly) con
tinuous. 

1 This uniformity is also called the" initial uniformity" on 1.:G associated with the mappings 
S(., P), PEnGo 
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If ~ and g; are material elements with state spaces I: I and I: 2 and A : ~ -+:Y;, 
a material isomorphism between g; and:Y;" then the bijection lA: I:l -+I:2 induced 
by A (see Prop. 9.1) is a homeomorphism when I:l and I:2 are endowed with 
their natural topologies. This is but a special instance of the general fact that 
isomorphisms preserve all structures induced from the given structure. In partic
ular, if A is a symmetry of an element fT, then lA is an auto-homeomorphism of 
the state space l: of :Y. 

The sections I:G , with their natural uniformity described by Definition 11.1, 
mayor may not be complete spaces. If they are not, we may form the completions 
1:G of the I:G (cl [K], p. 196 or [BK] Chapt. II, §3) and define the completed 
states space 1: by 1: = U {fG I GE<;§}. Then I: is dense in f and, in view of the conti
nuity of G and S, we can extend the domains of these functions from I: to f, preserv
ing continuity. Also, in view of Prop. 11.2, one can extend the domain of p from 
(I:xll)fit to (1:xll)fit, preserving uniform continuity of p(., P) for all PEll. 
After this has been done, one obtains what is technically a new structure having 
(fT, <;§, II) as the underlying body element but f instead of I: as the state space. 
However, the distinction between the original structure and the new one with 
completed state space is physically insignificant, and artificial distinctions are 
avoided by means of the following postulate: 

Axiom IV. The sections I:G , GE<;§, with the natural uniformity described by Defini
tion 11.1, are complete spaces. 

12. Relaxed States 

In Axiom V, below, the topology of Definition ILion the state space I: of 
the element :r plays an essential role. The axiom has the following interpretation: 
If the element is initially in the state (J and then frozen in the corresponding con
figuration, its state will approach, in the limit of infinite time, a "relaxed" state. 

Axiom V. For all (JEI:, the limit 

limp((J, G((J)(t»)=X((J) (12.1) 
t-+ 00 

exists (it is unique by Prop. 11.4). 

The mapping l: I: -+ I: determined by (12.1) will be called the state relaxation 
mapping, and the members of its range 

will be called relaxed states. 1 

It is clear from (7.6) that 
G(X((J)) = G((J). 

(12.2) 

(12.3) 

Hence, since G is surjective, the restriction G Irrel of G to I:rel is also surjective. 
In other terms, I:GnI:rei is non-empty for all GE<;§. 

1 This concept of a relaxed state is similar to what I have called, in a very special and now 
obsolete context, a "body at ease" in [N 1], p. 26. 
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If we apply Prop. 11.3 to the net tf-+p(a, G(a\t)) and observe (7.8), we see 
that (12.1) is equivalent to 

limS(a,G(t)*P)=SO:(a),P) for all PEnG , (12.4) 

where G=G(a). 

We now give several characterizations of relaxed states. 

Proposition 12.1. Let AE l' and G = G (A). The following four conditions are equiv
alent: 

(i) AEl'reh 

(ii) for all tEIR +, peA, G(t))=A, 

(iii) for some to>O, peA, G(to)) = A, 

(iv) ~(A)=A. 

Proof. First we note that, in view of (4.3) and (4.5), 

(12.5) 

holds for any r, tE IR +. For every aEl'G, it follows from (12.5) and (7.7) that 

(12.6) 

We now prove (i)=> (ii): AEl'rel means that A=l(a) for some aEl'. Since 
(12.3) shows that aEl'G we see that (12.6) is valid. Taking the limit r ..... 00 in 
(12.6) and observing Prop. 11.2 as well as Axiom V, we obtain 

)~=l(a)=.o(l(a), G(r))= p()., G(t)), 

i. e., condition (ii) is satisfied. 

The implication (ii) => (iii) is trivial. 
To prove (iii) => (iv), we assume that (iii) holds and apply (12.6) with the 

choice a=A, r=to, t=(n-l)to, where nElN: 

peA, G(nto)) = p(.o(A, G(to))' G(n-l)to)=p(A, G(n-l)to)· 

Since peA, G(O))=A by (7.9), we see that induction over n yields Jl=p(Jl, G(nto)) 
for all nElN. Taking the limit n ..... 00 and using Axiom V, we get A= ~(.~,). 

The implication (iv)=> (i) is trivial. Q.E.D. 

Prop. 12.1 has the following interpretation: Suppose a material element is 
initially in a state A and then frozen in the corresponding configuration. The 
state will remain unchanged if and only if A is relaxed. The material cannot return 
to its initial state A in a finite time or in the limit of infinite time unless A is relaxed. 

Proposition 12.2. Relaxation cannot decrease the symmetry group of a state, i. e., 
for all aEl', we have 

(12.7) 

Proof. Let G=G(a)=G(A(a)) (see (12.3)). If AEf}", i.e. lA(a)=a, we have, by 
(10.3), G=A*GA and hence, for all tEIR+, G(t)=A*G(t)A. Writing (10.5) with 
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P=G(t), we get 
l.,.{p(a, G(t»)=p(a, G(t». 

Taking the limit t~ 00 and observing Axiom Y, we obtain IA (1 (a» = 1(0) and 
hence Aegl(.,). Q.E.D. 

The following result is a corollary to Prop. 12.2. 

Proposition 12.3. If a is an isotropic state or a state of maximal symmetry, so is 
1 (a). 

If A. is a relaxed state and A a material isomorphism, it is clear that 'A (A.) is 
again a relaxed state. This applies, in particular, when Aeg is a material symmetry. 
It follows that if A. is relaxed, so are all states that determine the same reduced 
state as A.. Thus it is meaningful to speak about relaxed reduced states. 

13. Accessibility 

Let a be a state of a material element with state space L. The set of all states 
that can be reached from a is {pea, P) I Penil(.,)}. The closure of this set, in the 
natural topology of L described in Definition 11.1, will be denoted by 

(13.1) 

If 7:eL." we say that the state 7: is accessible from the state a. Thus, 7: is accessible 
from a if every neighborhood of 7: contains states that can actually be reached 
from a. We note that, by (7.9), we have a=p(a, G(a)(O»)eL." showing that every 
state can be reached from itself. 

The following proposition states that accessibility is a transitive relation, i. e., 
if v is accessible from 7: and 7: is accessible from a, then v is also accessible from a. 

Proposition 13.1. If 7:EL." then L.cL.,. 

Proof. First we recall that for any veL, LG(Y) is open in L and hence a neighborhood 
of v. Thus, the neighborhoods of v that are contained in LG(Y) form a neighborhood 
basis for v. 

Now let veL. and let Ty be an arbitrary neighborhood of v with TycLG(y). 
By the definition of Lt> there is a process Pi enG(.) such that p(7:, Pi)eTy. By 
(7.6) we have p{ =G(v). The continuity of p(-, Pi): LG(.)~LG(y) (see Prop. 11.2) 
insures that there is a neighborhood T.cLG(.) of 7: such that p(7:', Pi)eTy for 
all 7:'eT •. The condition 7:eL., implies the existence of a process PZenG(a) such 
that 7:'=p(a, Pz)eT •. Hence we have p(p(a, Pz), Pi)eTy, i.e., by (7.7), 

pea, Pz*Pi)eTv. 

Thus we have found a state in Tv which can be reached from a. Since the neighbor
hood Tv was arbitrary, it follows that veL.,. Q.E.D. 

The next result is a direct consequence of (12.1) and Prop. 13.1: 

Proposition 13.2. For every aeL, if 7:eL." then l(7:)eL." i.e., if 7: is accessible 
from a, so is 1(7:). In particular, l(a)eL.,. 

266 



New Theory of Simple Materials 25 

We are now ready to state our final axiom. It postulates that every state must 
be accessible from some relaxed starting state Ao. The axiom thus limits the possible 
size of the state space I. If an axiom of this type were not imposed, there could 
exist two states which had no connection whatever. Physically, these states would 
have to be regarded as states of distinct materials. 

Axiom VI. There is at least one AoEIrel such that I;"o=I. 

If the septuple (ff,r§, II, I, 0, S, p) satisfies Axioms I-V but not Axiom VI, 
one can use the following procedure to define material element structures on .r: 
We select AoEIrel arbitrarily and put I'=I;,.o. Let G' and S' be the restrictions of 
o and S to I', and let p' be the restriction of p to (I' xII G)fit. It is not hard to 
verify that the septuple (ff,r§, II, 1:',0', S', p') thus obtained again satisfies 
Axioms I-V. It obviously also satisfies Axiom VI and hence defines a structure 
of a material element on f7. This structure may depend, of course, on the partic
ular choice of AO' and hence the original septuple may give rise to not one, but 
many material element structures on f7. 

The procedure just described will be illustrated by an example in Section 20. 

14. Semi-Elastic and Elastic Materials 

Definition 14.1. A material element .r is said to be semi-elastic if the restriction 
o lIre! 0/ its configuration function 0 to the set I rel of relaxed states is injective. 
The material element is said to be elastic if it is semi-elastic and if, in addition, all 
o/its states are relaxed, so that I=Irel. 

We have seen in Section 12 that 0 lIre! is always surjective. Hence, semi-elastic 
materials are characterized by the condition that 0 lIre! has an inverse 

(14.1) 

The value I(G) is the relaxed state uniquely determined by the configuration G. 
Observing (12.3), we see that X satisfies 

(14.2) 

for all uEI. Hence (12.1) reduces to 

limp(u, G(t»)=i(G) if G(u)=G. (14.3) 
t-+oo 

For semi-elastic elements with a known symmetry group, one can determine 
the symmetry groups of its relaxed states: 

Proposition 14.1. Let .r be a semi-elastic element with symmetry group ?-. For all 
AEIrel we then have 

(14.4) 

where ?-;,., the symmetry group of A, is defined by (10.7). 

Proof. In view of (10.8) we need only prove that AE?-nOrth(O(A)) implies 
lA(A)=A. Now, AEOrth(G(A)) means that A*G(A)A=O(A). On the other hand, 
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by (10.3), AEfI implies that G(A.)=A*G(lA(A.»)A. Thus we have G(A.)=G(lA(A»). 
Since A. is relaxed, so is lA (A.), and the injectivity of G lIre. yieldsA = lA (A.). Q.E.D. 

We say that a state of a semi-elastic element is undistorted if it is relaxed and 
of maximal symmetry. We say that the configuration GECfJ is undistorted if the 
corresponding relaxed state leG) is undistorted. 1 Undistorted states always exist, 
for if u is any state of maximal symmetry, so is the relaxed state ):(0), as is evident 
from Prop. 12.2. It follows from Prop. 10.6 that for an isotropic semi-elastic 
element, a state is undistorted if and only if it is both relaxed and isotropic. 

We call a semi-elastic element a solid element 2 if its symmetry group is con
tained in the orthogonal group of some configuration. 

Proposition 14.2. In a solid element a state A. is undistorted if and only if it is relaxed 
and satisfies fI;., = fl. 

Proof. We need only show that for any A.El"reh if A. is of maximal symmetry then 
fI;.,=fI. Since the element is solid, we have flcOrth(G) for some GECfJ. Let AO= 
l(G), so that G=G(Ao). By (14.4) we have fI;'o=flnOrth(G)=fI and hence fI;.= 
flnOrth(G(A.»)cfI=fI;.,o. Since A. is of maximal symmetry, it follows that fI;.= 
fI;"o=fI. Q.E.D. 

Proposition 14.3. If the symmetry group of a semi-elastic element is fI = Orth (G) 
for some GECfJ, then the element is isotropic (and solid). Moreover, a state (J' is 
isotropic if and only if fla = fl. If u is isotropic, then G(u) = cG for some c>O. 

Proof. We must prove that isotropic states exist. Since undistorted states exist 
and since the element is solid if fI=Orth(G), it follows from Prop. 14.2 that there 
are states u such that fla=fI=Orth(G). Now, in view of (10.8), fI.,.=fI=Orth(G) 
implies Orth(G) C Orth(G) n Orth( G(u»), and hence Orth(G) C Orth(G(u»). This 
is possible (see Section 2) only when Orth(G(u») = Orth(G) =fI =fla, which shows 
that u is isotropic. 

If, conversely u is isotropic, we have Orth(G(u»)=flacfI=Orth(G). Again, 
this is possible only if fla = fI and G(u) = cG with some c > 0 (see Section 2). Q.E.D. 

We call a semi-elastic element a fluid element 3 if its symmetry group fI contains 
the unimodular group Unim(ff). It follows from Prop. 14.1 that all relaxed states 
of a fluid element are isotropic. The converse is also valid, except when the set CfJ 
of configurations is degenerate in the sense that all GECfJ are scalar multiples of 
one of them. Degeneracy is a severe constraint and of little if any physical interest. 

Proposition 14.4. If all relaxed states of a semi-elastic element are isotropic and 
if CfJ is non-degenerate, then the element is fluid. 

Proof. To say that all relaxed states are isotropic means that fI;., = Orth( G(A.») for 
all A. El"rel. Hence, since GIIre• is surjective, it follows that fI::::)Orth(G) for all 

1 In [TN], Sects. 31 and 33 and in earlier work ([N2]. [eN 1], [CN2]) I have used a related 
notion of "undistorted configuration". applicable only to isotropic materials and to solids. The 
concept introduced here applies also to materials that are neither one nor the other. 

2 See [N2], Sect. 20 or [TN], Sect. 33. 
3 See [N2], Sect. 21 or [TN]. Sect. 32. 
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GE'§. Since '§ is non-degenerate, the groups Orth(G) are not all the same (see 
Section 2). Therefore, we must have g:=l=Orth(G) for some GE'§. By the theorem 
on the maximality of an orthogonal group in the unimodular group it follows 
that g:=> Unim(5"). Q.E.D. 

For a fluid element, all configurations are undistorted and, by Prop. 10.4, 
the stress in all relaxed states reduces to a pressure. For an isotropic solid element, 
by Prop. 14.3, all undistorted configurations are scalar multiples of anyone of 
them. An incompressible isotropic solid element has exactly one undistorted con
figuration. 

Remark 1. For material elements that are not semi-elastic, the conclusions of 
Props. 14.1-4 need no longer be valid. It is conceivable, for example, that the 
symmetry group is an orthogonal group or even the unimodular group and yet 
the element is not isotropic, because there are no isotropic states. 

For semi-elastic materials, Axiom VI of Section 13 yields the following strong 
conclusion. 

Proposition 14.5. In a semi-elastic element, every state is accessible from every 
other state, i.e. ];,,=];for all (JE];. 

Proof. Let rE];". By Prop. 13.2 we then also have ~(r)E];" and hence, by Prop. 
13.1, ];X(T)C];". 

Now choose a process PEll such that pi=G(~(r)) and pJ=G(AO)' where 
AOE];rel satisfies ];;'0=]; (see Axiom VI). The existence of such a process is assured 
by the condition (P4) of Definition 4.1. We have 

(14.5) 

Using (12.3), we obtain fr,?m Q4.5h that G(~(p(~( r), P)))= G(Ao). The inject
ivity of GI Ire) yields AO = A. (p(A. (r), P)). Hence, by (14.5)1 and Prop. 13.2, we 
conclude that AO E];X(t) c];". Using Prop. 13.1 again, we find ];=];;,oc];n, i.e. 
];,,=];. Q.E.D. 

Remark 2. Prop. 14.5 would remain valid if Axiom VI were replaced by the 
weaker requirement that every state (J be accessible from some relaxed state A" 
which may depend on (J. 

The results of this section are valid, a fortiori, for elastic material elements. 
F or such elements, G: r -+ '§ is a bijection, and the sections ]; G = {X (G)} are 
singletons. The natural topology on ]; is then the discrete topology. One can use 
G: ]; -+ '§ and its inverse A: '§ -+ r to identify the state space]; with the set '§ of 
configurations. If this is done one must remember, however, that ~ is equipped 
with the discrete topology when considered as the state space. 

In order to define the structure of an elastic element on a given body element 
(§,' '§, ll), it is sufficient to prescribe a stress function S: '§ -+ !/' = Sym(5"*, 5"). 
F or the state space one can then take ]; = '§, for G the identity mapping of '§, 
and for p the trivial mapping given by p(pi, P)=pJ. 
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15. Deformation Histories for Semi-Elastic Elements 

As in Section 4, let t§ be any set. We observe the notation and terminology of 
Section 4. A function H of the type 

H:IR+-.t§ 

will be called a history with values in t§. Its value 

H(O)=HI 
will be called the final value of H. 

If G E t§ is given, we can define a history G (00): 1R + -. t§ by 

G(oo)(s)=G for sEIR+; 

we call this history the constant history at G. 
For any SE 1R +, we define the s-section H(s): 1R + -. t§ of a history H by 

(15.1) 

(15.2) 

(15.3) 

(15.4) 

It is again a history. The s' -section of the s-section of H is the same as the (s + s')
section of H, i. e., 

H(S) (s') = H(s +s') for s, s' E 1R + . (15.5) 

Of course, we have H(O) = H. 

If H is a history and SE 1R +, we can define a process H[s], of duration s, by 

H[slt)=H(s-t) for tE[O, s]. (15.6) 

We call H[s] the s-segment of H. We have 

(H[s]i=H(s), (H[s]i =HI =H(O). (15.7) 

The s-segment (H(r»)[s] of the r-section H(r) of H is a segment of the segment 
H[s+r], namely 

(15.8) 

If H is a history and P a process, of duration dp , such that HI =pi, we define 
the continuation H. P: 1R + -. t§ of H with P by 

{
H(S-d) 

(H. P)(S) = p 
P(dp-s) 

if s"i?;dp 

if SE[O, dp ]. 

We have, for all SE 1R +, 

H -H(s) H 
- • [s]· 

The continuation is associative, i. e. 

if HI =P~, 

The s-section of a continuation H.P is given by 
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{
H(S-dP ) 

(H • P)(s) = 
H. p[o. dp-s] 

if s"i?;dp 

if SE[O, dp ]. 

(15.9) 

(15.10) 

(15.11) 
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For the s-segment of H.P we have 

if SE[O, dp ] 

if s'?;,dp • 

29 

(15.12) 

Definition 15.1. Let (9'; 'lJ, II, r, G, S, p) be a semi-elastic material element, so 
that G IXr.1 is invertible with inverse 1: 'lJ -+ rrel' A history H: lR + -+ 'lJ is called a 
deformation history for the element !!7 if 
(i) for all sER+, the segment H[s] belongs to II (in view of (15.8) and (P2) of 

Definition 4.1, we then also have (H(r»[s]EII for all s, rER+), and 

(ii) the limit 
lim p(i(H(r) (s», (H(r»[s]) ErH(r) 

s .... 00 

exists for all rE lR + . 

The set of all deformation histories for !!7 will be denoted by ¢J and, in view of 
condition (ii), we can define p: ¢J -+ r by 

p(H) = limp(i(H(s», H[s]). (15.13) 
s--+ 00 

We use the notation 
(15.14) 

for the set of all deformation histories for !!7 that end at the configuration GE'lJ. 

We note that if H belongs to ¢J, so do all of its sections H(s), SE lR +. Also, in 
view of (12.1), all constant histories (15.3) belong to ¢J, and by Prop. 12.1 (iv), 
we have 

(15.15) 

for all GE'lJ. The next observation is somewhat less trivial: 

Proposition 15.1./f HE¢J and PEIIHf, then H.PE¢J and we have 

p(H • P) = p(p(H), P). (15.16) 

Proof. By (15.9) and (15.12) we have, for s'?;,dp , 

p("A(H. P) (s), (H. P)[S]) = p(i(H(s - dp », H[s-dp]. p). 

Application of (7.7) yields 

p(i(H. P) (s», (H. P)[S]) = p(p(J.(H (s - dp », H[S-dp]), P). 

Taking the limit s -+ 00 and using the continuity of p (', P) (see Prop. 11.2), we 
see that (15.13) gives the desired result (15.16). Q.E.D. 

Observing (15.10) and (15.15), we obtain the following special cases of (15.16): 

ji(H) = p(p(H(s», H[s]), SElR +, HE ¢J, 

p(Ptoo). P) = p(i(pi), p), PEII. 

(15.17) 

(15.18) 
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Proposition 15.2. The function p: r/) - L satisfies 

limji(H(s)(oo)*H[s])=ji(H) for all HEr/) (15.19) 
s-+ 00 

and 
(15.20) 

t-+ 00 

Proof. If we write (15.18) with the choice P=H[s] and substitute the result into 
(15.13), we obtain (15.19). 

To prove (15.20), we apply (15.16) with the choice P=Ht) and take the limit 
t _ 00. Observing (14.3), we obtain 

limji(H * Hfr» = lim p(ji(H), Hfr») = J.(Hf). 
t-+ 00 t-+ 00 

In view of (15.15) this is the desired result. Q.E.D. 

The next result states that arbitrarily close to any state there is a state that 
can be described by a deformation history. 

Proposition 15.3. The range of p is dense in the state space L, i. e., 

L=clLhist, where Lhist=Rangeji. (15.21) 

Proof. Let A. be any relaxed state. It follows from the definition of L). (cf (13.1») 
and from (15.18) that 

L). =cl {ji(Ptoo) * P) I PEIIG().)}· 

Since this set is the closure of the range of the restriction of p to histories of the 
form ptoo)*P with pi=(;(A.), it follows afortiori that L).=cl Lhist. By Prop. 14.5, 
this is the desired result. Q.E.D. 

For semi-elastic elements, it is often sufficient to confine one's attention to 
the space Lhist of states that correspond to deformation histories. The remaining 
states, which are limits of states determined by histories, are of little physical 
interest. 

Finally, we describe how p(H) changes under a symmetry. 

Proposition 15.4. If AEg is a symmetry of a semi-elastic element, then A*r/)A=r/) 
and 

for all HEr/). (15.22) 

Proof. Let AEg. It follows from (10.3) and the definition of .l as the inverse 
(; IIre' that 

(15.23) 

for all GEg. Now let HEr/). Using (15.23) with G=H(s) and then (10.5) with the 
choice P=H[s] and U= lA" 1 (.l(H(s»), we obtain 

p(J.(A* HA)(s», (A* HA)[s])=p(IA 1 (l(H(s»), A* H[s] A) 

= lA 1 (p (1 (H(s», H[s])). 

Recalling that I A" 1 = I A - 1 (cf (9.6») is a homeomorphism and remembering the 
definition (15.13) of p, we see, by taking the limit s- 00, that A* HAEr/) and that 
(15.22) holds. Q.E.D. 
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16. The History Functional o( a Semi-Elastic Element 

Let !!I be a semi-elastic element, r!> the set of its deformation histories, and 
p: r!> -+ L the (unction defined by (15.13). We define the history functional S of 
the element by 

(16.1) 

where 9' = Sym(!!I*,!!I) is the stress space. If we apply S to (15.16), we see that S 
is related to the response functional S = Sop by 

(16.2) 

A knowledge of the history functional is sufficient for deciding whether two 
deformation histories determine the same state. Indeed, it follows from Axiom III, 
Section 7, and (16.2) that 

_ _ H 1 =H2 andS(H 1 *P)=S(H2 *P) 
{
II - - } 

p(H1)=p(H2 ) ¢> for all PEII with pi=H{ =H{ . (16.3) 

We shall show in Theorem 16.1, below, that a knowledge of the set r!> of 
deformation histories and of the history functional S: r!> -+ g' characterizes the 
semi-elastic element structure on !T. We first give a complete list of conditions 
that are satisfied by r!>. They are easy consequences of the results of the previous 
section. 

(H 1) Every HEr!> is a history H: lR + -+ <§ with values in a closed and connected 
subset <§ of Sym + (.'T, !!I*). 

(H2) For all GE<§ we have G(oo)Er!>. 
(H3) If HEr!> and SElR+, then H(s)Er!>. 

(H4) If H, KEr!> and SElR + with KI =H(s), then K*H[s]Er!>. 

(H5) For any G1 , G2 E<§ there is a HEr!> such that G1 , G2 ERange H. 

The set II of all deformation processes for !!I is determined by r!> as follows: 

II = {H[s] I HEr!>, sElR +}. (16.4 ) 

Next, we show that the history functional S has the following two convergence 
properties: 

(F I) For every HEr!> we have 

lim S(H(s)(oo) * H[s]) = S(H). (16.5) 
s .... 00 

(F2) If HEr!> and PEnH!, so that HI =pi, then 

. - I - I 
hm S(H * H(t) * P) = S(H(oo) * P). (16.6) 
t .... 00 

Property (Fl) is an immediate consequence of (15.19) and the continuity of S. 
If we apply the convergence criterion for states given by Prop. 11.3 to (15.20) 
and observe (16.2), we see that (F2) must be valid. Applying the same convergence 
criterion to the condition (ii) of Definition 15.1 and observing (15.15) and (15.16), 
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we see that the class f/J must satisfy the following saturation condition with respect 
to 5: 
(S) If H is a history with values in '§ such that H[o] E n for every SE IR. + and such 

that 

0"'00 

exists whenever rEIR. + and pi=H(r), then H belongs to CPo 

Theorem 16.1. Let !T be a finite-dimensional real vector space, and let cP be a class 
of histories with the properties (H 1)-(H5). Let n be defined by (16.4). Finally, let 
5: cP ~ [f be a functional with the properties (F 1), (F 2) and assume that cP satisfies 
the saturation condition (S) with respect to 5. Then there is a unique semi-elastic 
element structure on !T for which cP is the class of deformation histories and 5 the 
history functional. 

Proof. First we assume the existence of a semi-elastic element structure (ff, '§, 

n, L, G, S, p) whose set of deformation histories is cP and whose history functional 
is 5, and we prove the uniqueness of this structure. It is clear that II must be the 
set defined by (16.4) in terms of cP and that '§ must be the set mentioned in (H 1). 
Hence the underlying body element (ff, '§, n) is determined by CPo 

Guided by (16.3), we now introduce an equivalence relation", on cP by 

{ 
f f - - } HI =H2 and S(HI *P)=S(H2 *P) 

H 1 ",H2 ¢> . f . 
for all PEn with P'=H1 =H{ 

(16.7) 

Let L' be the quotient of f/J with respect to this equivalence relation. In other 
words, the elements of r are the equivalence classes determined by ,..., . We use 
the notation p': cP ~ r for the quotient mapping, which assigns to each HE f/J 
the equivalence class p' (H)EL' to which H belongs. It follows from (16.3) that 
there is a bijection l: r ~ Lhist = Range p such that p = lOp'. The bijection 1 

associates with every equivalence class a' EL the common value of p at all members 
HEa'. We now define G':};'~'§ by G'=Gol, S':};'~[f by S'=SOl, and 
p': (L'Xn)fit~};' by l(p'(., .))=p(l(.), .). We then have 

G' (a') =Hf, S'(a')=5(H) if HEa' (16.8) 
and 

p'(a', P)=p'(H *P) if HEa', pi=Hf. (16.9) 

It is clear from (16.8) and (16.9) that G', S', and p' are completely determined by 
cP and 5. 

We have obtained a structure (ff, '§, n, };', G', S', p') which is determined by 
cP and 5 alone. It is easily seen that this structure satisfies Axioms I-III. Hence 
we can apply Definition 11.1 to it and endow each section };G = { a' E};' I G' (a') = G} 
with a natural uniformity and r=U{};G I GE'§} with a natural topology. The 
functions 0', S', and p' ( ., P) are continuous with respect to this topology. Moreover, 
it is easily seen that the bijection l: r ~ Lhist is a homeomorphism when };hist is 
endowed with the topology induced by the natural topology of };. 

Next, we consider the completions 'fa and };* = u{fG I GE'§} as described at 
the end of Section II, and we extend the functions G', S', and p' so as to obtain 
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a structure (ff, f'§, n, 1:*, G*, S*, p*) which satisfies not only Axioms I-III but 
also Axiom IV. Since Axiom IV is satisfied for (ff, f'§, n, 1:, G, S, p), we can also 
extend the homeomorphism I: 1:' ~1:hist to a homeomorphism 1*: 1:*~cl 1:hist =I' 
(see (15.21»). The relations G'=Go/, S'=SO/, and l(p'(., .»)=p(I(.),.) remain 
satisfied after G', S', p', and 1 have been extended to G*, S*, p*, and /*. It follows 
that the identity l.r is a material isomorphism between the material element 
(ff, f'§, n, 1:, G, S, p) and the structure (ff, f'§, n, 1:*, G*, S*, p*) determined by 
q, and S, the bijection lI.r being the same as 1*. Since we have agreed, under these 
circumstances (see Section 9), to employ 1* to identify 1: with 1:* and not to 
distinguish between the two structures, we have the following conclusion: If there 
is a semi-elastic element structure on :T whose set of deformation histories is c[> 

and whose history functional is S, it must be given by (ff, f'§, n, 1:*, G*, S*, P*). 
We now prove the existence of a semi-elastic element structure on :T whose 

set of deformation histories is q, and whose history functional is S. If f'§ is the set 
mentioned in (H 1) and if n is defined by (16.4), it is easily inferred from (H 1)-(H5) 
that n satisfies the conditions (P 1)-(P4) of Definition 4.1 and hence that (ff, f'§, fl) 

endows :T with the structure of a body element. 
Consider the quotient set 1:' of c[> with respect to the equivalence relation 

defined by (16.7) and the quotient mapping p': q, ~ 1:'. It follows from (16.7) that 
HI ",H2 implies H{ =H{, S(HI)=S(H2 ), and HI *P",H2 *P when pi=H{ =H{. 
Thus, it is meaningful to define G', S' by (16.8) and p' by (16.9). We introduce a 
corresponding response functional S' = S' 0 p', so that 

(16.10) 

It is easily verified that the septuple (ff, f'§, n, 1:', G', S', p') thus constructed 
satisfies Axioms I-III. Observing (16.10), it follows from Condition (F2) for S 
that S' satisfies (12.4) when l': 1:' ~1:;el is defined by 

;.' (u') = p' (H{oo» if H eu'. (16.11) 

Therefore Axiom V is also satisfied, because it is equivalent to (12.4). The set 
1:;el consists of the equivalence classes that contain constant histories. The restric
tion of G' to 1:;el has an inverse X': f'§ ~ 1:;eI given by 

(16.12) 

so that l' (G) is the equivalence class determined by the constant history G(oo). 

Thus, the defining condition of Definition 14.1 for a semi-elastic element is satis
fied. 

Next we construct the completion 1:*=u{ra I Gef'§} and the extensions G*, 
S*, and jj* as described in the uniqueness proof above. The septuple (ff, rg, n, 
1:*, G*, S*, p*) thus constructed satisfies not only Axioms I, II, III, and V, but 
also Axiom IV. Note that the completion introduces no new relaxed states, so 
that 1:~el = 1:;01. To show that the accessibility axiom, Axiom VI, is satisfied, let 
Gef'§ and Heq, be given. For each seIR + we select a process PsEfl such that 
P;=G, p! =H(s). This is possible because n satisfies (P4) of Definition 4.1. 
Using the assumption that S satisfies both (F 1) and (F2), we easily infer that 

lim lim S( G(OO) * Ps * H(s)(t) * H[s] * p') = S(H * P') (16.13) 
s-+oo t-+co 
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holds for all P' ellH'. Observing (16.9), (16.10), (16.11), and using the convergence 
criterion of Prop. 11.3, we see that (16.13) is equivalent to 

lim limp' ().'(G), Ps * H(s)(t) * H[s]) = ji'(H) 
s~C() t-+oo 

in the natural topology of I' = Range p'. It follows that p' (H) is accessible from 
I' (G). Since H was arbitrary, we conclude that I' c: IhG)' and since I' is dense 
in I~, we find I*=If'(G)' i.e. that Axiom VI is satisfied. Therefore (ff, f§, ll, 
I*, G*, S*, p*) is a semi-elastic material element structure. 

It remains to be shown that qJ is the set of deformation histories and 8 the 
history functional of the semi-elastic element just constructed. It follows from 
(H2), (H3), (H4), and (Fl), using also (16.10) and (16.12), that 

lim S' ().' (H(r) (s»), (H(r»[.] * P)= 8 (H(r) * P) (16.14) 
.-+00 

for all HeqJ, all reIR+, and PellH(r). From the convergence criterion of Prop. 
11.3 we see that condition (ii) as well as condition (i) of Definition IS.1 is satisfied 
for all HeqJ and hence that qJ is contained in the set of deformation histories for 
the constructed element. The fact that qJ is actually equal to this set of deformation 
4istories is a consequence of the saturation condition (S). It is not hard to verify, 
finally, that 8 is the history functional of the constructed element. Q.E.D. 

Remark. If qJ and 8: qJ -+ ff are such that (H 1 )-(H S) and (F 1), (F 2), but not 
necessarily the saturation condition (S), are satisfied, the construction of the semi
elastic element structure (ff, ro, ll, I*, G*, S*, p*) described in the proof above 
can still be carried out. However, the set qJ* of deformation histories for the 
element so constructed will then be larger than the original set qJ. To obtain qJ* 
from qJ, one must saturate qJ by joining to it all histories for which the limits of 
condition (S) exist. 

Theorem 16.1 states, in essence, that a semi-elastic material element structure 
on 9" is the same as a structure defined by a triple (ff, qJ, 8) subject to the con
ditions (H 1)-(HS), (F 1), (F2), and (S) as axioms. It follows that material iso
morphisms between semi-elastic elements can be described as isomorphisms 
between structures of the type (ff, qJ, 8). More precisely, we have the following 
corollary to Theorem 16.1. 

Proposition 16.2. Let s;. and 9; be semi-elastic elements whose sets of deformation 
histories are qJ1 and qJ2 and whose history functionals are 81 and 82 , respectively. 
A mapping Aelnvlin(s;., 9;) is a material isomorphism between s;. and 9; if and 
only if qJ1 =A*qJ2A and 

8 1 (A* HA)=A -1 8 2(H)A* -1 for all He qJ2. (16.1S) 

Applying this proposition to material automorphism, we obtain the following 
corollary. 

Proposition 16.3. Let §" be a semi-elastic element whose set of deformation histories 
is qJ and whose history functional is 8. A mapping A e Invlin (9") belongs to the sym
metry group f} of 9" if and only if qJ = A * qJ A and 

8(A* HA)=A- 1 8(H)A* -1 for all HeqJ. (16.16) 
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17. Monotonous Processes 

We deal with processes and histories as described in Sections 4 and 15. Let g;: 
and!Y; be two real vector spaces of equal finite dimension. We say that a process 
p 1 with values in Sym + (g;:, g;:*) is congruent to a process P 2 with values 
in Sym + (!Y;, !Y;*) if P 1 and P 2 have the same duration and if there is an 
A E Invlin (g;:, !Y;) such that 

(17.1) 

For example, if (g;:, '#1' II 1) and (!Y;, '#2, II 2) are body elements (cf. Definition 4.1) 
and if A is an isomorphism between these elements (cl Definition 9.1), then every 
process in II 1 is of the form A * P 2 A with P 2 E II 2 and hence congruent to a 
process in II 2' It is clear that congruence is an equivalence relation. 

Definition 17.1. We say that a process P with values in Sym+ (~ff*) is monotonous 
if P is continuous and if any two segments of P of equal duration are congruent. 
We say that a history H with values in Sym + (~ff*) is monotonous if all of its 
segments H[s], sER+, are monotonous. 

Proposition 17.1. A process P with values in Sym + (~ ff*) is monotonous if and 
only if there is a function A: [0, dp] --+ Invlin (ff) such that 

P(r+ t)=A(r)* P(t)A(r) for rE[O, dpJ, tE[O, dp-rJ. (17.2) 

Proof. If P is monotonous, then Pro. dp-r] and p[r. dp] are congruent, and (17.2) 
expresses this congruence. If (17.2) holds, then p[r, r+d] and Pro. d] are congruent 
if r ~ dp - d. Hence all segments of P of duration d are congruent to Pro. d] and 
hence to one another, i. e., P is monotonous. Q.E.D. 

Every freeze is obviously monotonous. A complete characterization of all 
monotonous processes is given in the following theorem. 

Theorem 17.1. A process P with values in Sym + (~ff*) is monotonous if and only 
if there is an element EELin(ff) such that 1 

P(t)=exp(tE*)pi exp(tE) for tE[O, dpJ. (17.3) 

Moreover, if P is monotonous, then (17.3) holds for exactly one E in the subalgebra 
ofLin(ff) that is generated by the subset {P(t1)-1 P(t2) I t 1, t2E[0, dp ]} of Lin (ff). 

The proof of this rather non-trivial theorem will be given in a separate paper 
[N 8]. If it were known in advance that both P and A of (17.2) are differentiable, 
one could prove the assertion by the method used in the proof of Theorem 1 of 
[N 4]. The hard part of the proof of Theorem 17.1 is to show that a priori conti
nuity and differentiability assumptions on A are unnecessary. 

If (17.3) holds, we call P the monotonous process of exponent E, initial con
figuration pi, and duration dp. It is clear that every segment of a monotonous 
process of exponent E is again a monotonous process of exponent E. 

00 1 
1 If EELin(!7), then expEElnvlin(!7) is defined by expE= I ,En or as the value 

n=1 n. 
A(l) at t= 1 of the solution of the initial value problem A(t)=EA(t), A(O)= 1. 
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In general, the exponent is not uniquely determined by the monotonous 
process P. For example, if P= G(d) is a freeze, then (17.3) holds not only when 
E=O, but also when E is skew-symmetric relative to G, i.e. when E*G= -GE. 
In this case, the subalgebra mentioned in Theorem 17.1 consists of the scalar 
mUltiples of the identity of fT, and E=O is the only exponent in that subalgebra 
for which (17.3) holds. 

Proposition 17.2. A history H with values in Sym + (fT, ff*) is monotonous if and 
only if it is of the form 

H(s)=exp( -sE*)HI exp( -sE), SEIR +, (17.4) 

with EELin(ff). If (17.4) holds, then every segment of H is a monotonous process 
of exponent E. 

Proof. If (17.4) holds, it is easily seen (cf (15.6) and (15.7») that 

H[s](t)=exp(tE*)H(s)exp(tE), tE[O, s] 

and hence that H[s] is monotonous with exponent E for each SEIR +, which means 
that H is monotonous. 

Now assume that H is monotonous, and choose r E IR +, r> 0. Since H[r] is 
then monotonous, we can apply Theorem 17.1 to H[r] obtaining 

H(r-t)=H[r](t)=exp(tE*)H(r)exp(tE) for tE[O, rJ. (17.5) 

The choice t=r gives Hfr]=HI =exp(rE*)H(r) exp(rE). Solving this equation 
for H(r), substituting the result into (17.5) and then putting s=r-t, we derive 

H(s)=exp( -sE*)HI exp( -sE) for SE[O, rJ. (17.6) 

We must show that (17.6) holds not only for SE[O, r] but also when s>r. Now, 
if s> r, we select r' > s and observe that an equation of the form (17.6), but possibly 
with an exponent E' different from E, holds for all s' E [0, r']. It follows that H 
is analytic on [0, r']. By the principle of analytic continuation, (17.6) must also 
hold for s. Q.E.D. 

If (17.4) holds, we say that H is the monotonous history of exponent E and 
final configuration HI. If H is a monotonous history of exponent E, so are all 
its sections H(s) (see (15.4») and, since exp(r+s)E=(exp sE) (exp rE), we have 

H(s)=exp( -sE*)H exp( -sE). (17.7) 

We recall the definitions and terminology of Section 5 and consider a body ele
ment (fT, 'd, II) as well as a frame-space "Y. We say that a motion M: [0, dM ] -£?IIr 
is monotonous if the deformation process M * M: [0, dM ] _ 'd determined by it 
is monotonous. 

Proposition 17.3. Let M be a motion of ff in "Y and F(o)=MM;-l its displace
ment tensor relative to the initial placement M; = M (0). The motion M is monotonous 
if and only if F(o) is of the form l 

1 Comparison of this result with Theorem I of [N 4] shows that the class of monotonous 
motions is identical to the class of motions introduced by CoLEMAN [C] under the name of 
"substantially stagnant motions", which I later called "motions with constant stretch history" 
in [N4] and [TN], Sect. 109. 
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F(o)(t) = Q(t) exp(tB), 

where BELin(j'") and Q: [0, dM ) ~ Orth(j'"), Q(O)= 1.",... 

37 

(17.8) 

Proof. By Theorem 17.1, M* M and hence M is monotonous if and only if 

(17.9) 

If (17.9) holds, then M and t f-+ Mi exp(tE) determine the same process. Hence, 
as was remarked in Section 5, 

M(t) (Miexp(tE»)-l = Q(t) (17.10) 

belongs to Orth(j'"). If we put B=MiEMi- 1 so that Mi exp(tE)Mi- 1 =exp(tB), 
we see that (17.10) implies (17.8). Conversely, if (17.8) holds, it is easily seen that 
(17.9) is valid with E=Mi- 1 BM;, and hence that M is monotonous. Q.E.D. 

An important special type of monotonous deformation process is one whose 
exponent E satisfies E 2 = 0 but E =l= O. We call such a process a simple shearing. 
Since exp(tE)=I+tE when E 2 =0, (17.3) shows that a simple shearing P has 
the form 

(17.11) 

A motion which determines a simple shearing is called a viscometric motion 
(cl [CMN)). 

18. Processes of Constant Reduced State, States of Monotonous Flow 

Definition 18.1. Let ff be a material element with symmetry group fl. We say 
that a deformation process PEII is of constant reduced state relative to a state 
UErp ' if the states p(u, p[o. I])' tE[O, dp ), all belong to the reduced state Q" deter
mined by u. 

To say that P is of constant reduced state relative to UErp ' means (el (10.6») 
that there is a function A: [0, dp ) ~ fI such that 

(18.1) 

Since p(u, p[o.O])=u by Prop. 7.1, we may assume that A(O)= 1,9"". 

It is clear from Prop. 12.1 (ii) that all freezes G(/) are of constant reduced state 
(actually of constant state) relative to any relaxed state A with G(A)=G. If the 
symmetry group fI is large enough, one can expect to find non-constant processes 
of constant reduced state among the monotonous processes in II, as is shown in 
the proposition below. We say that UEr is a state of monotonous flow with ex
ponent E if exp(sE)EfI for all SEIR + and if every monotonous process PEn of 
exponent E and initial configuration pi=G(u) satisfies 

(18.2) 

and hence is of constant reduced state relative to u. The states of monotonous 
flow with exponent 0 are identical to the relaxed states (cl Prop. 12.1 (ii»). If fI 
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is a Lie group, then the condition that exp(sE)Eg for all SElR + means that E 
belongs to the Lie algebra of g. 

Proposition 18.1. Let H be a monotonous history, with values in C§ and of exponent 
E, suclr that 

(i) the segments H[s], SElR +, belong to n, 

(ii) for all SE lR +, exp(sE) belongs to the symmetry group g, 

(iii) for some G'oEkH/' the limit 

limp('exP(sE)(G'o), H[s]) = (1 

exists. 

Then G' is a state of monotonous flow with exponent E. 

Proof. We use the abbreviation 

A(t)=exp( -tE), tElR. 

It follows from (17.4) and (17.5) that 

A(r)* H[t](r)A(r)=A(t)* H' A(t), rE[O, t]. 

(18.3) 

(18.4) 

(18.5) 

On the other hand, if P is a monotonous process of exponent E and initial con
figuration H', it follows from (17.3) that A(r)* p[o. t](r)A (r)= H', rE[O, t), 
tE[O, dp ). Substituting this expression for H' into (18.5) and using the fact that 
A(r) and A(t) commute, we obtain 

H[t]=A(t)* P[o.t]A(t), tE[O, d p ]. (18.6) 

Since H[t]En and A(t)-l Eg, we infer that p[o. t] belongs to n. Moreover, by 
(15.10) and (17.7), (18.6) gives 

and hence 
A(t)* (H[s] * p[o. t]) A(t) = H[t+s]' 

By (10.5), it follows from (18.8) that 

1 A(t) P (l ~(~j (l A( -sj «(10»)' H [t +S]) = P (l A( -s) «(10)' H[s] * p[o. t]). 

If we apply (7.7) and observe lA(-(t+s»=lA(~jO 'A(-sj' we obtain 

1 A(t) (p (lA( - (t+s» «(10), H[t +S])) = P (p (l A( -s) «(10)' H[s])' p[o. t]). 

Taking the limit s---+ 00 and observing (18.3), we get 

lA(t) «(1) = p«(1, p[o. t]), 

(18.7) 

(18.8) 

which shows that (18.2) holds and hence that (1 is a state of monotonous flow. 
Q.E.D. 

The following result is a corollary to Prop. 18.1. 

Proposition 18.2. Let ff be a semi-elastic element and iP the set of deformation 
histories for ff (ef Definition 15.1). If H belongs to iP and is monotonous of ex-
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ponent E such that exp(sE)Efjfor all sEIR. +, then p(H) (see (15.13») is a state 0 

monotonous flow with exponent E. 

Proof. H satisfies the condition (i) of Prop. 18.1 because H is in cP, the con
dition (ii) by hypothesis, and the condition (iii) with CT = P (H) and CT 0 = 1 (H f) 
because lexp(sE)(l(Hf»)=l(H(s»). Q.E.D. 

For a process of constant reduced state it is possible to determine the stress 
at time t from a knowledge of the initial stress and the symmetry-valued function 
A of (18.1) alone. Indeed, it follows from (18.1) and (10.4) that the stress S(CT, p[o. t) 

at time t is given by 
(18.9) 

Remark. It is (18.9) that often makes the dynamical analysis of processes of con
stant reduced state as simple as a statical analysis. For example, (18.9) is at the 
root of the dynamical analysis of viscometric flows of incompressible fluids (cl 
[CMN]) as well as of the incompressible "subfluids" of WANG [WI]. 

For semi-elastic elements, it is possible to give a lower bound on the size of 
the symmetry group of a state of monotonous flow of the form p(H). 

Proposition 18.3. Let H be a monotonous history of exponent E that belongs to 
the set cP of deformation histories of a semi-elastic element !T. Let 

Comm(E) = {BEInvlin(ff) I BE = EB} (18.10) 

be the group of all invertible transformations that commute with E. The symmetry 
group fjp (H) then satisfies 

fjp(H)::::> fj n Orth(Hf ) n Comm(E). (18.11) 

Proof. If BEOrth(Hf)nComm(E), it is clear from (17.4) that B*-l HB-1=H. 
If also BEfj, it follows from Prop. 15.4 that p(H)=p(B*-l HB-1)=IB(P(H»), 
i.e. that BEfjp(H)' Q.E.D. 

The Propositions 18.2 and 18.3 apply, in particular, to fluid elements, for 
which fj::::> Unim(ff) (see Section 14). Since exp(sE)EUnim(ff) if and only if 
tr E=O, we see that for fluids all monotonous deformation histories H in cP with 
traceless exponent define a state p(H) of monotonous flow. The symmetry group 
of this state satisfies 

fjp(H)::::> Orth(Hf) n Comm(E). (18.12) 

By Prop. 10.4 the stress S(H)=S(p(H») is such that S(H)Hf commutes with 
all transformations in Orth (H f) (') Comm (E). 

19. Material Functionals and Functions for Incompressible Fluids 

We recall (Section 9) that a material is defined to be an equivalence class of 
material elements, the equivalence being material isomorphy. It is often possible 
to characterize such an equivalence class by means of numerical functionals. We 
call such functionals material functionals for the material in question. Numerical 
functions and numbers derived from a material functional are called material 
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functions and material constants. For simplicity we consider only the case when 
the material is an incompressible fluid. 

Proposition 19.1. The set t'§ of configurations of an incompressible fluid element ff 
has theform 

t'§ = {GE Sym + (ff, ff*) I det Go 1 G = 1} 

= {A* Go A I AEUnimff}, 
(19.1) 

where GoESym + (ff, ff*). The symmetry group fI of ff is fI= Unim(ff). 

Proof. Let GoEt'§. By definition of a fluid element (Section 14) we have 
Unim(ff) cfI. Hence, since A *t'§A =t'§ for all AEfI (see Definition 9.1 (ii)), t'§ must 
contain the set t'§1 ={A* GoA I A EUnim(ff)}. On the other hand, since the element 
is incompressible, t'§ must be contained in the set C{f given by (8.1). Now, since 
det(Go1 (A*GoA))=(detA)2=1 holds if and only if AEUnim(ff) and since 
Sym + (ff, ff*)={A * GoA I AElnvlin(ff)} (see Section 2), it follows that t'§1 =C{f 
and hence t'§=t'§1 =C{f, which is (19.1). Also, A*t'§ A =t'§ can hold only if 
A EUnim(ff), which implies fI= Unim(ff). Q.E.D. 

We assume now that t'§ is given by (19.1) and that a frame space "Y has been 
selected (see Section 5). The set &>-yr of all placements corresponding to t'§, as 
defined by (5.1), is easily seen to have the form 

&>-yr={KoAIAEUnim(ff)}, (19.2) 

where KoELin(ff, "Y) is such that Kti KoEt'§. 
Given any set cP of histories, with values in t'§ and such that A * cPA = cP for 

all A EUnim(ff), we define 

cP-yr={K* -1 HK-1IHEcP, KE&>-yr, K* K=H(O)}. (19.3) 

This set cP-yr consists of histories with values in Sym + ("Y) (l Unim("Y) and all 
CEcP-yr satisfy C(O) = l-yr. Moreover, cP-yr satisfies QT cP-yrQ = cP-yr for all QEOrth("Y), 
because if KE&>-yr and K* K=H(O), then also QKE&>-yr and (QK)* (QK) = H(O) for 
all QEOrth("Y). 

Conversely, suppose that cP-yr is a set of histories with values in Sym + ("Y) (l 
Unim("Y) and such that C(O)=I-yr for all CEcP-yr and QTcP-yrQ=cP-yr for all 
QEOrth("Y). Then 

(19.4) 

defines a set of histories with values in t'§ and such that A * cP A = cP for all 
A EUnim(ff). 

We say that a mapping T: cP-yr --+ Sym("Y) is an isotropic functional if 

T(QTCQ)=QTT(C)Q for all CEcP-yrandallQEOrth("Y). (19.5) 

The following lemma is the key for the construction of material functionals. 

Lemma 19.2. Let cP be a set of histories with values in t'§ such that A * cPA = cP for 
all A EUnim(ff), and let cP-yr be defined by (19.3). If S: cP--+ Sym(ff*, ff) satisfies 

S(A*HA)=A-1S(H)A*-1 for all HEcPandaliAEUnim(ff), (19.6) 
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then there is a unique isotropic functional T: «P-r --+ Sym(j"") such that 

T(C)=K5(K* CK)K* for all Ce«P-r and all Ke&'r. 

41 

(19.7) 

Conversely, let «Pr be a set of histories with values in Sym+ (1'")n Unim(1'") 
such that C(O)=I-rfor all Ce«P-r and QT«P-rQ=«P-rfor all QeOrth(j""), and 
let «P be defined by (19.4). If T: «P-r --+ Sym(j"") is an isotropic functional, then there 
is a uniquefunctional 5: «P--+Sym(ff*, ff) which satisfies (19.6) and (19.7). 

Proof. Assume «P and S are given and that (19.6) holds. Select Koe9i'" and define 
Tby 

(19.8) 

Now let Ke&'-r be arbitrary. By (19.2), there is a AeUnim(ff) such that K=KoA. 
Using (19.6) and (19.8), we get 

KS(K*CK)K*=KoAS(A* KriCKoA)A* Kri=T(C), 

i.e., (19.7) is valid. Since QKoe&'-r whenever QeOrth(j""), we can substitute QKo 
for Kin (19.7). Using (19.8) again, we obtain 

T(C)=QKo S(Kri QT CQKo)Kri QT =QT(QT CQ)QT. 

Hence T satisfies (19.5) and hence is an isotropic functional. 
Assume now, conversely, that «Pi'" and an isotropic functional T: iPi'"--+ 

Sym(j"") are given. Let He«P, with «P defined by (19.4). If Kl> K 2 e&'i'" satisfy 
Ki K1 =K't K 2 =H(0), we have Ki- 1 HK11, K't- 1 HK2- 1e«P-r and there is a 
QeOrth(j"") such that K2 =QK1. Since Tis isotropic, we obtain 

K;:1 T(K~ -1 HK;:1)K~ -1 =K1 1 QT T(QKi -1 HK11 QT)QKi- 1 

=K1 1 T(Ki -1 HK11)Ki -1. 

Therefore it is meaningful to define S by 

S(H)=K- 1 T(K* -1 HK- 1)K* -1 if K* K=H(O), (19.9) 

because the right side depends only on H, not on the particular choice of K. It is 
clear that (19.7) holds when S is defined by (19.9). For any AeUnim(ff) we 
have (KA) * (KA)=A* K* KA=A* H(O)A. Hence (19.9) remains valid when H 
is replaced by A * HA and K by KA. It follows that S also satisfies (19.6). Q.E.D. 

We assume now that ff is an incompressible fluid element, that «P is the set 
of all deformation histories for ff (see Definition 15.1), and that S is the history 
functional of ff (see Section 16). It follows from Prop. 16.3 and Prop. 19.1 that 
S satisfies (19.6) and hence that Lemma 19.2 can be applied to it. Thus, given 
any frame space j"", we can associate with the element ff a set iPi'" of histories 
with values in Sym + (1'") n Unim(1'") and an isotropic functional T with domain 
«P-r. Since S satisfies the normalization condition (8.3) for incompressible elements, 
it easily follows from (19.7) that the values of Tmust belong to the space 

Symo (j"") = {Te Sym (j"") I tr T= O} 

of traceless symmetric tensors. 

(19.10) 
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If we take for "Y the numerical space JR", we denote the resulting isotropic 
functional by ~ and call it the material functional of the element. The domain 
cPRn of ~ consists of histories whose values are unimodular and positive-definite 
symmetric matrices. The values of ~ are symmetric matrices with zero trace. 
By (19.7), the material functional ~ is related to the history functional S in such a 
way that 

~(C)=KS(K* CK)K* for all CEcPRn (19.11) 

and all placements K of fff' into the numerical space JR". 

Proposition 19.3. Two incompressible fluid elements are materially isomorphic if 
and only if they have the same material functional. 

Proof. Recall that for semi-elastic elements :T, the structure is determined by 
the triple (:T, cP, S) (see Section 16). Now, if s;: and 5;. are two incompressible 
fluid elements with the same material functional ~ and if Kl and K2 are arbitrary 
placements of s;: and 52 into JR", then it follows from (19.11) and Prop. 16.2 that 
Kit Kl is a material isomorphism. Conversely, if AElnvlin(S;:, 5;.) is a material 
isomorphism and Kl a placement of s;: into JR", then K2=AKl is a placement 
of 52 and Prop. 16.2 shows that (19.11) defines the same material functional for 
both s;: and 5;.. Q.E.D. 

Using the properties (H 1 )-(H 5) of cP listed in Section 16, one can easily show 
that the domain cPR" of a material functional of an incompressible fluid must 
have the following properties: 

(01) Every CEcPRn is a history with values in Sym + (JR") n Unim(JR"). 

(D2) For every CEcPRn, C(O) = 1R" and (1 Rn)(oo)EcPRn. 
(03) /fCEcPRn, SEJR+ and UEUnim(JR") such that UTU=C(s), then 

U T - t C(s) U- t EcPRn. 

(D4) /fC, DEcPRn, sEJR+ and UEUnim(JR") such that UTU=C(s), then 

UT D U * Crs] E cPRn. 

(DS) For all CoESym+ (JR")n Unim(JR") there isa CEcPRnsuch that Co E Range (C). 

The properties (F 1), (F2), of Section 16, for the history functionals imply that 
the material functional ~: cPRn --+ Symo(JR,,), in addition to being isotropic, must 
have the following convergence properties. 

(M 1) For all CEcPR" we have 

lim~(C(s)(oo) * C[.])=~(C). (19.12) 
.... 00 

(M2) For all C, DEcPRn, SEJR" and UEUnim(JR") such that UTU=C(s) we have 

lim ~(Ur DU * C(s)(r) * C[s]) = ~ (C(s)(oo) * C[S])' (19.13) 
t-+oo 

Prop. 19.3 states, in essence, that every incompressible fluid is characterized 
by an isotropic material functional ~ whose domain cPRn satisfies (D 1 )-(05) 
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and which has the convergence properties (M 1) and (M2). Conversely, every 
functional Z: IPll.n -+ Symo (JR") of this type determines an incompressible fluid 
material. Indeed, if we select a vector space !T of dimension n and any GoE 
Sym +(9"; !!/*), we can define Cd by (19.1), then &'lRn by (19.2), then IP by (19.4), and 
finally S by (19.9). The triple (9"; IP, S) then satisfies (H 1)-(H 5) and (F I), (F2) 
of Section 16. As remarked there, one can then construct a structure of a semi
elastic material element on !!/ whose set IP* of deformation histories is obtained 
by saturation of IP with respect to S. The element is incompressible and fluid, 
and its material functional is obtained from the given Z by extension from IPlRn 
to an appropriate saturation of IPRn. 

Let Z be a material functional of an incompressible fluid and assume that 
the domain of Z contains all histories of the form st-+exp( -sBT ) exp( -sB) 
with B in the space Lino(IR") of all traceless matrices. We then define t: Lino(IR")-+ 
Symo(JR") by 

t(B)=Z(st-+exp( -sBT ) (exp-sB»). (19.14) 

Since Z is an isotropic functional, t is an isotropic function in the sense that 

t(QT BQ) = Q t(B) QT for all BELino(lR") and all QEOrth (JRn). (19.15) 

The following result shows that the material function t derived from Z by (19.14) 
describes the behavior of the incompressible fluid determined by Z in all mono
tonous flow states (see Section 18). 

Proposition 19.4. Let!!/ be any incompressible fluid element with materialfunctional 
Z. Then for every G E Cd and every E E Lino (!!/) there is a unique state u of mono
tonous flow with exponent E and such that G(u)=G. The intrinsic stress S(u) 
satisfies 

(19.16) 

for all KE&'Rn such that K* K=G. 

Proof. Let GECd and EELino(!!/) be given. Let H be the monotonous history 
with exponent E and final value HI =G. This history is given by (17.4). We now 
choose KE&'ll.n such that K* K=G. It is easily seen that we then have 

H =K* CK, where C=(sl-+exp( -sBT ) exp (-sB») with B=KEK- 1 . (19.17) 

Since CElPlRn by assumption, we infer from (19.4) that HElP. As we have seen 
at the end of Section 18, it follows that u = p (H) is the state of monotonous flow 
with exponent E and configuration G(u)=HI =G. The relation (19.16) is an 
immediate consequence of (19.11), (19.14), and (19.17). Q.E.D. 

The material function t determines, in particular, the viscometric functions 
., u 1, u2 • These are given by 

(19.20) 
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for Ke[:.o H~lre tii' i, j= 1, 2, 3 denote the components of t and Bo is the matrix 

Bo = 1 0 0 . As is well known (see, e.g., [N 4], Sect. 4), the viscometric 
000 

functions describe the behavior of the fluid for all simple shearings (see end of 
Section 17). 

20. Materials of the Rate Type 

We consider a body element (5; tfi, ll) such that II is the class of piecewise 
continuously differentiable processes in the sense described in example (c) after 
Definition 4.1. We use the notation 

. . . 
tfiG= {pet) 1 Pell, te[O, dp ], pet) exists, P(t)= G} (20.1) 

for the class of all possible derivatives of processes at a time at which they have 
the value G. 

We assume that with each Getfi, there is associated a closed subset ~ of the 
stress space 9"=Sym+(9"*, 9") and that we are given a function 

~: !y} -+ 9" 

whose domain !Y} consists of triples (G, G, S) as follows: 

!y}={(G, G, S)I Getfi, Ge r§G' Se~}. (20.2) 

We assume that ~ satisfies the following conditions: 

(i) If P is continuously differentiable and SieYpI, the initial value problem 

S(t)=~(P(t), pet), S(t»). S(O)=Si (20.3) 

has a unique solution S: [0, dp ] -+!/. We denote the dependence of the final 
value S(dp ) = Sf on P and on the initial value Si by 

(20.4) 

so that t 1-+ 6 (p[o. tl' Si) is the solution of (20.3). 
(ii) The final value Sf = 6 (P. Si) belongs to Yp, and the dependence of the final 

value on the initial value is uniformly continuous, i.e. the function 

6(P, .): 9;..-+9;., 

is uniformly continuous for each continuously differentiable Pell. 

(iii) If Getfi and Se~. then 
lim 6 (G(t). S)=@l(G, S) 
t .... 00 

exists. 

(20.5) 

(20.6) 

If ~ is a reasonably regular function, then one can apply general theorems on 
ordinary differential equations to verify Conditions (i) and (ii). Condition (iii) 
says that the solutions of S(t)=~(G,O,S(t)) have limits as t-+oo for every 
(constant) Getfi. This condition is closely related to one I have described in [N 1], 
pp.52-53. 
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We now attempt to use the function f) for endowing!T with the structure of a 
material element. For the state space L we take 

L={(G, S)I Gef/}, Se9:,}. (20.7) 

Thus, the states are configuration-stress pairs. The functions G and S merely 
assign to each pair its first and second member, so that 

G(G, S)=G, S(G. S)=S. (20.8) 

In order to define the evolution function p, we first note that there is a natural 
way to extend the solution functional 6 of (20.3) in such a way that 6 (P, Si) 
becomes meaningful for all Pell with Sief/Pi, not just those that have a continuous 
derivative for all te[O, dp ]. The general member Pell is of the form 

P=Pl *P2 *···*Pm, 

where the Pk are continuously differentiable. We then define 6(P, Si) inductively 
by 

6(P1 * ... *Pm - l * Pm, Si)=6(Pm, 6(Pl * ... *Pm - l , Si). 

With 6 thus extended, it makes sense to define p by 

;;(G, S), p)=(pl, 6(P, S», PeIIG , Se9:,. 

The response functional S = So;; satisfies 

S(G,S),P)=6(P,S) if pi=G 

and hence is essentially the same as the solution functional of (20.3). 

(20.9) 

(20.10) 

(20.11) 

It is very easy to verify that the septuple (9'; f/}, II, L, G, S, p) thus constructed 
satisfies Axioms I-III. We note that for all Gef/}, there is a natural one-to-one 
correspondence S-(G, S) between 9:, and the G-section LG of the state space. 
It is not hard to prove, using Condition (ii) and (20.11), that the natural uniformity 
on LG (see Definition 11.1) is identical to the uniformity on LG induced by the 
natural uniformity of ~ c.9'. Since ~ was assumed to be closed in f/ and since 
f/ is complete, it follows that ~ and hence LG is complete. Thus, Axiom IV, 
Section 11, is satisfied. The validity of the relaxation axiom, Axiom V, Section 12, 
is now an immediate consequence of Condition (iii), and it follows from (20.6) 
that the relaxation mapping l is given by 

1(G, S)=(G, S(G, S». (20.12) 

We have proved that (9'; f/}, II, L, G, S, p) satisfies Axioms I-V. The acces
sibility axiom (Axiom VI, Section 13), however, will not be satisfied unless the 
sets Yo of stresses compatible with a given configuration are properly selected. 
Indeed Axiom VI is equivalent to the requirement that the 9:, be of the form 

(20.13) 

where Goef/} and SoeYoo such that ~(Go, So) = So· 
If Axiom VI is not satisfied, one can apply the procedure described at the 

end of Section 13 to construct material element structures on §: In the present 
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case, this procedure goes as follows: Select Goet'§ and SI e.9G, arbitrarily and 
compute So=S(Go, SI) using (20.7). Define !7G to be the right side of (20.13) 
and then determine (I', G', S', p') in terms of the!7G in the same way as (I, G, S, p) 
were determined in terms of the .9G. The septuple (ff, t'§, II, 1:',0', S', p') then 
satisfies all axioms and hence defines the structure of a material element on 9". 

A material element obtained from a function ~ satisfying Conditions (i}-(iii) 
in the manner just described is called a material element of the rate type. As we 
have seen, one and the same function ~ may define more than one material element 
structure on ?/. 

We now consider the case when t'§G is a subspace (rather than merely a subset) 
of Sym(ff, IT*) and when the given function ~ is linear in its second variable, 
i.e. if 

~(G, ., S)eLin(t'§G' f/') (20.14) 

for every Get'§ and Se.9G. A material element whose structure is defined by such 
a function will be called a hypo-elastic element 1. Since (20.14) implies that 
~(G, 0, S)=O, it follows that the solutions of S(t)=~(G, 0, S(t») are constants 
and hence that Condition (iii) is automatically satisfied with 

@(G,S)=S (20.15) 

for all Get'§ and Sefl;;. In view of (20.12) it follows that/or a hypo-elastic element 
all states are relaxed. Thus, a hypo-elastic element cannot be semi-elastic unless 
it is elastic. If the element is elastic, then the sets .9G must be singletons fI;; = {S (G)}. 
It can be proved that the elastic elements which are also hypo-elastic are those 
whose stress function § satisfies certain differentiability and invertibility con-
ditions 2 • . 

When (20.14) holds, then the solution functional 6 of (20.4) is easily seen to 
have the property 

(20.16) 

where the reversed process Prey is defined by Prev(t)=P(dp-t), te[O, dp]. It 
follows from (20.16), as is easy to show, that accessibility (see Section 13) becomes 
an equivalence relation on I when I is defined by (20.7). Even when ~ is a very 
simple function there can be more than one equivalence class, as is shown by an 
example due to BERNSTEIN ([B 1]; see also [TN], Sect. 100). Axiom V is satisfied 
only after the .9G are replaced by subsets !7G which consist of all those Se.9G for 
which (G, S) belongs to a particular equivalence class in I. The state space r' 
defined by (20.7) in terms of the !7G then is the same as this particular equivalence 
class. Thus, each of the equivalence classes in I defines on IT the structure of a 
hypo-elastic element 3. 

Remark 1. In the past literature (cf. [N2], Sect. 24 or [TN], Sect. 36) materials 
of the rate type have been defined by differential equations involving Cauchy
stresses and motions in a frame space rather than intrinsic stresses and deformation 

1 This notion of hypo-elasticity is more inclusive than the original one of TRUESDELL [T]. 
2 The method of proof is the same as the one used, in a special situation, in Sect. ISb of [NI]. 
3 This procedure was first used by BERNSTEIN [B2] to define a concept of "material" in 

hypo-elasticity. 
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processes. It is instructive to consider the following special non-intrinsic con
stitutive equation of the rate type: 

(20.17) 

* Here, T is the Cauchy-stress, T any invariant time flux of T, and A 1 the first 
Rivlin-Ericksen tensor. Apart from a possible dependence on density, (20.17) is 
the constitutive equation for what I called" hygrosteric" materials in [N 1]. If 6) 

is linear in its second variable, then (20.17) is the constitutive equation of hypo
elasticity in the original sense of TRUESDELL ([T]; see also [TN], Chapter DIV). 

* It will be convenient to choose for T the time flux given by 

(20.18) 

where L(t)=F(t)(t), with F(t) defined by (5.5). Using (5.7), (6.2), (5.5), and (20.18), 

* we can express A 1> T, and T in terms of the motion M, the intrinsic stress S, and 
the process P=M* M: 

* . 
T=MSM*. (20.19) 

Now, (20.17) can serve to define material elements of the rate type in the intrinsic 
sense only if, after substitution of (20.19), equation (20.17) becomes a special 
case of (20.3)1' This is the case if and only if there is a function f) of the type 
described at the start of this section such that 

(20.20) 

holds for all (G, G, S) in the domain of f) and all placements K such that K* K=G. 
Since K* K=Kt Kl =G is valid if and only if Kl =QK for some QeOrth(i"), it 
follows that (20.20) can be valid for all K with K* K= G only if 6) is an isotropic 
function, i. e. if 

(20.21) 

for all QeOrth(i") and all (T, AI) in the domain of 6). We have thus recovered 
the well known result ([N 1], Sect. 7) that (20.17) cannot define a material 
unless 6) is isotropic. 

If (20.20) holds, then f) satisfies 

f)(A* GA, A* GA, A-I SA* -1)=A- 1 f)(G, G, S)A* -1 (20.22) 

for all (G, G, S) in the domain PJ of f) and all A in the set 

g= {A eInvlin(ff) I (G, G, S)ePJ => (A* GA, A* GA, A-I SA* -1)e~}. (20.23) 

Indeed, if we replace Kby KA in (20.20) so that G =K* K becomes (KA) * (KA) = 
A* K* KA=A*GA, if we replace also G by A*GA and S by A-I SA*-l, we see 
that (20.22) must hold. Now, we recall that in order to define a material element 
structure by means of f), one may have to replace the sets ~ by suitable subsets. 
In view of (20.2), this means that PJ has to be replaced by a suitable subset. After 
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this has been done, (20.23) can easily be shown to be the symmetry group of the 
element. 

One and the same constitutive equation (20.17) may determine several material 
element structures on !I, and these structures need not all have the same symmetry 
group. 

Remark II. More general materials of the rate type are obtained if the initial 
value problem (20.3) is replaced by an initial value problem for a differential 
equation of higher order. No new insight is gained by considering such materials. 

21. Outlook 

We give here a list of possible generalizations, further developments, and 
applications of the ideas presented in this paper. 

(a) Abstract theory of systems with memory. The basic features of the theory 
presented here can be used to define a very general concept of physical systems 
with memory. In the definition of such a system, one uses as primitive notions a 
set q; of abstract configurations and an action space Y, whose elements are assumed 
to describe the possible actions of the system on the environment. A system with 
memory is then defined to be a septuple (q;, II, 1:, G, Y, S, p) whose entries II, 1:, 
G, S, and p are as described in Definitions 4.1 and 7.1. The only difference is 
that q; and g are now abstract sets which need not be defined concretely in 
terms of a vector space ff. 

Axioms I-VI remain in force. It must be assumed that the action space g is 
endowed a priori with a uniform topology. This is necessary in order that Defini
tion 11.1 and hence Axioms IV-VI remain meaningful. 

A material element in the sense of Definition 7.1 is a very special kind of 
physical system with memory. 

Note Added in Proof. The structure of an abstract system with memory described here has 
many features in common with the structure used in "mathematical systems theory". (See, e.g., 
WILLEMS, J. C.: Dissipative dynamical systems I. Arch. Rational Mech. Anal. 45, 322-351 
(1972), and the literature cited there.) 

(b) Thermodynamic theory of material elements. To include thermal and 
energetic phenomena, one should modify Definition 4.1 by assuming that q; is a 
closed and connected subset of Sym + (!I, ff*) x IR + + x ff*, where IR + + denotes 
the set of all positive reals. The members of q; are triples G = (C, e, g), where Cis 
interpreted as a configuration, e as a temperature of the material element, and g 
as a temperature gradient across the element. 

In Definition 7.1, Equation (7.1) should be replaced by 

n 

.9'=Sym(ff*, ff) x IR x ff xl\ff*, (21.1) 
n 

where 1\ ff*, the nth exterior power of ff* (n = dimff), is the one-dimensional 
space of possible volumes of the element. The members of g are quadruples 
(S, 1], h, t/J), where S is interpreted as an intrinsic stress, 1] as an entropy per unit 
volume, h as an intrinsic heat flux, and t/J as a free energy. 
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Let P=(C, e, g): [0, dp]--+~ be a process (i.e. PEn), let rIEl: be a state such 
that pi=G(rI) and let 

(S,ti,h,Ij/): [O,dp]--+9' (21.2) 

be defined with the help of the response functional S (see (7.5») by 

(S(t), Ii(t), h(t), lj/(t»)=S(rI, p[O,t]), (21.3) 

n 

One then defines the rate of entropy production y: [0, dp ] --+ A.'T* corresponding 
to rI and P by 

(21.4) 

n _ 

where vcCt) = vc(t) is the volume in A.'T* corresponding to the configuration e(t). 

In a detailed development of a thermodynamic theory of material elements, 
the Definition (21.4) should playa fundamental role. 

I believe, also, that the framework just described can serve to simplify and 
clarify the axiomatic approach to thermodynamics developed by W. A. DAY [D]. 

(c) Theories of plastic behavior. D. R. OWEN ([01], [02]) has developed, 
within the framework of the old theory of simple materials, concepts and results 
intended to describe in mathematical terms what physicists usually call plastic 
behavior. I believe that the new theory presented here provides a more natural 
setting for such concepts and that it can be used to simplify and clarify OWEN'S 
ideas. 

We note that the theory of states of monotonous flow given in Section 18 
applies not only to semi-elastic materials, but also to materials that exhibit plastic 
behavior, provided the materials possess sufficient symmetry. I expect, therefore, 
that one can develop concrete descriptions of plastic monotonous flows, in par
ticular viscometric flows. 

(d) Theories of fading memory. In the framework of the old concept of simple 
material, several theories of fading memory are known (see [TN], Chapter CV; 
also [CM] and the literature cited there). Analogous theories for the new concept 
given here remain to be created. Such theories should involve continuity assump
tions imposed upon the response functional 

(21.5) 

Suitable topologies on nG , which are needed to make continuity meaningful, can 
be defined in terms of a natural metric on the configuration space ~. I shall 
demonstrate the existence of such a natural metric in a future paper. 

For semi~elastic materials, it should not be too difficult to translate the known 
theories of fading memory into the intrinsic setting of this paper. It would be 
interesting if one could also create theories of fading memory for non-semi-elastic 
materials. 

Acknowledgement. The research leading to this paper was supported by the National Science 
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This is an outline of a series of lectures I delivered at the Technion in Haifa, 
Israel, in the summer of 1972. This outline gives my view of what the basic con
cepts of modern continuum mechanics and thermodynamics are and how they 
should be presented to graduate students of mathematics and theoretical mechanics. 
This view evolved gradually over the past eight years. A first version was given 
in a series of lectures I delivered at the Summer Session in Bressanone, Italy, 
in 1965 (reference [1]). The material was reworked several times for an introductory 
graduate course repeatedly given at Carnegie-Mellon University and for lecture 
series given at the University of Karlsruhe, Germany, in 1968 and in Jablonna, 
Poland, in 1970. This paper is the latest version, and it renders reference [1] 
obsolete. 

The basic mathematical notations and tools used in the present paper, mainly 
from linear algebra, are described in Section 2 of reference [2]. 
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I. Kinematics of Continuous Bodies 
2. Euclidean Spaces 

A metric on a set tI is a function 

d:tlxtl-+IR.+ 

63 

which associates with each pair (x, y) of points in tI a number d(x, y), called the 
distance from x to y. Euclidean geometry can be based entirely on an appropriate 
metric. 

The group 0/ isometries oF for the metric d is the set of all invertible mappings 
of tI onto itself that leave distances unchanged: 

oF = {a: tI -+ tI I a invertible, d(x, y)=d(a(x), a(y») for all x, yeti} . 

It is clear that oF is a group under composition. 
If the metric d is to describe Euclidean geometry it must have certain prop

erties. It is intuitively clear that translations are isometries, and we characterize 
Euclidean metrics in terms of the translations as follows: 

It may happen that oF contains a subgroup "Y with the following properties: 

(El) "Y is commutative, i.e., UOV=VOU for all u, ve"Y. 
(E2) "Y is transitive, i.e., for any x, yeti there is a ue"Y such that u(x)=y. 
(E3) "Y acts. freely, i.e., if v(x)=x for some xetl, then V= I". 
(E4) There is a scalar multiplication IR. x "Y -+ "Y which makes -r a vector 

space when composition in "Y is taken as addition, and there is an 
inner product I on the vector space "Y such that 

d(x,yi=u.u=(Iu,u) when u(x)=y. 

The properties (E 1)-(E4) are intuitively plausible when "Y is the group of transla
tions. 

Uniqueness Theorem. There is at most one subgroup "Y 0/ oF with the properties 
(E 1)-(E4). Moreover, if "Y is such a subgroup, the scalar multiplication and the 
inner product on "Y required/or (E4) are uniquely determined. 

The proof of this theorem will not be given; it is not trivial but not too difficult 
(see, e.g., reference [3]). 

Definition. The function d: tI x tI-+ IR. + is called a Euclidean metric on tI if oF 
has a subgroup "Y with the properties (E 1)-(E4). If a Euclidean metric d is 
prescribed, we say that d endows tI with the structure of a Euclidean space. 

The inner product space "Y determined by d is then called the translation 
space of tI. 

Let tI be a Euclidean space with translation space "Y. The following notations 
are useful: 

(i) if u, ve"Y, write u+v for vo u, 
(ii) write Oe"Y for I." 

(iii) if ue"Y, write -u for u- 1• 
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(iv) if XES and UE"Y, write X+U for u(x). 

(v) if X, YES, write u=y-x for the unique UE"Y for which U (x) =y. 

If these notations are used, the rules of the ordinary algebra of addition and sub
traction are valid. 

Let ttl and tt2 be Euclidean spaces, with metrics d l and d2 and with translation 
spaces ~ and fz. An invertible mapping rx: ttl -+tt2 is called an isomorphism 
from ttl onto tt2 if it preserves distance, i.e. if 

for all X, YE8l . An isomorphism from ~ onto fz is a linear mapping which 
preserves the inner product. The following result describes the isomorphisms of 
Euclidean spaces: 

Representation Theorem. Every isomorphism rx: ttl -+ 8 2 from one Euclidean space 
onto another induces an isomorphism iX: ~ -+fz between the corresponding trans
lation spaces in such a way that 

rx(x) - rx(q) = iX(x - q) (1) 
holds for all X, qESl . 

Proof. We define fz' ={rx o U 0 rx-ll UE~}. It is easily seen that fz' is a subgroup 
of the group f2 of isometries of 8 2 • It is also easily verified that fz' satisfies the 
conditions (E 1)-(E3). We define a scalar multiplication on fz' by putting 
a(rxouorx-l)=rxo(au)orx-l for aEJR, UE~ and an inner product on fz' by 
putting 

It then becomes clear that (E4) is also satisfied by fz'. By the uniqueness 
theorem, it follows that fz=fz'. Moreover, the mapping iX: ~ -+fz given by 

UE~ (2) 

is an isomorphism from ~ onto fz. Equation (2) is equivalent to 

a(u)(rx(q»)=rx(u(q») for all qEtt l , UE~. 

If we put u = X - q and use the notations (i)-(v) above, we get the desired result. 
Q.E.D. 

The case when 81 = cf2 = Iff gives rise to the following 

Corollary. To every isometry rxEf oIa Euclidean space tt with translation space "Y 
corresponds a unique Q",EOrth("Y) such that 

rx(x)-rx(q) = Q",(x- q) (3) 
for all x, qEC. 

The dimension of a Euclidean space is defined to be the dimension of its 
translation space. Finite-dimensional Euclidean spaces are isomorphic if and 
only if they have the same dimension. 
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3. Neo-Classical Spacetime 

A basic primitive notion of any physical theory is an event-world 11'. It is a 
set whose elements e,1, ... are called events. Intuitively, events are actual or 
possible" atoms of experience" and the event world is a mathematical idealization 
of experience. 

The classical time concept can be described by a time-lapse function 

i: 11' x 11' -+ JR, 

whose value i(e,J) gives the time-lapse between the events e andl, as measured 
by a stop watch. We agree to count l(e,J) as positive when e is earlier than I, 
negative when e is later thanf. Our intuitive idea of time requires that 1 have the 
following properties: 

(Tl) 1 (e,J) = -l(1, e) for all e,JE1I'. 
(T2) l(e,J)+l(1, g)=i(e, g) for all e,1, gE1I'. 
(T3) For every eE1I' and every tEJR there is afE1I' such that l(e,J)=t. 

We say that e is earlier than, later than, or simultaneous with f according to 
whether i(e,J»O, <0, or =0. Simultaneity is easily seen to be an equivalence 
relation on 11'. Its graph is the set 

f/={(e,f)E"IY x "IY 1 i(e,f)=O} (1) 

of all pairs of simultaneous events. The simultaneity relation determines a parti
tion r of"IY into classes T of simultaneous events so that 

"IY=U{TITEr}, f/=U{TXTITEr}, (2) 

the unions being disjoint. 
The classes TEr are called instants. If eET we say that the event e happens at 

the instant T. 

The time-lapse i(e,J) depends only on the instants T and (J' at which e and 
fhappen. Therefore one can define a time-lapse function 

t:rxr-+JR 
between instants by 

reT, (1) = l(e,f) if eET, fE(1. 

The absolute value 1 tl can easily be shown to be a Euclidean metric on r. The 
corresponding translation space of r can be identified with the reals JR. If the 
notations of Section 2 are used, we then have 

T-(1=t«(1, T), (1+t=T if t=t«(1, T) 
forT,(1Er, tElR. 

Distances between events, as measured by measuring rods, are meaningful 
only when the events are simultaneous, because a measurement has to take 
place at a particular instant. Thus, distance measurements are described by a 
function 
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where [I' is the set (1) of all simultaneous pairs of events. Experience with distance 
measurements shows that a should have the following basic properties: 

(D 1) For each instant 7: E r, the restriction d,: 7: x 7: -+ lR. + of a to 7: x 7: c r 
is a Euclidean metric and hence endows 7: with the structure of a Euclidean 
space. 

(D2) For each instant 7:Er the dimension of the translation space "Y. of 7: is 3. 

Definition. We say that a set if'" is a neo-classical event-world if it is endowed 
with the structure defined by a prescribed time-lapse function t with the properties 
(T 1 )-(T 3) and a prescribed distance function a with the properties (D I), (D 2). 

The internal symmetry of a neo-classical event-world if'" is described by its 
group of automorphisms. An automorphism 0( of if'" is an invertible mapping 
of if'" onto itself which preserves time lapses and distances, i. e. satisfies 

tVx(e),O((f»)=l(e,j) for all e,jEif'", 

d((J.(e),O((f»)=a(e,j) for all (e,j)E[I'. 

The following result is an easy consequence of the Representation Theorem of 
Section 2. 

Theorem. To every automorphism (J. of a neo-classical event world if'" corresponds 
a unique number tlXElR and to each instant 7:Er a unique isomorphism ~,: "Y.-."Y.+t« 
such that (J.(e)E7:+t", ifeE7: and 

O(e)-(J.(f)=~,(e-f) if e,jE7:. 

4. Kinematical Processes, Frames, Motions 

A material system BI is a set of material points X, Y, .... These are idealizations 
of material objects or markings in or on material objects. 

From now on we assume a neo-classical event-world if'" given once and for all. 
By a time-interval T we mean a connected subset of the set r of all instants, 
connected in the sense that if 7:ET and 7:+tET, then also 7:+sET for all SE[O, tl. 

A mapping 
x: BI x~-'if'", 

where Tx is a time-interval, will be called a kinematical process if 

X(X,7:)E7: for all X EBI and all 7:ETx-

The event X(X, 7:) is interpreted to be the event experienced by the material 
point X at the instant 7:. 

The set 
{x(X, 7:) I7:E~} 

of all events experienced by X is called the worldUne of X in the kinematical 
process X. 
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Let/: T - C be a function on a time-interval T with values in some Euclidean 
space c. The limit 

j(.r)=lim f(7:+s)- f(7:) 
..... 0 S 

d 
d7: f(7:), 

if it exists, is called the derivative of/at 7:ET. The valuej(7:) belongs to the transla
tion space "Y of c. If j(7:) exists for all 7:ET we say that/is differentiable and call 
j: T_"Y its derivative. We say that/is of class e 1 ifj exists and is continuous. 

(n) 

The nth derivative / offis defined inductively by 

(0) (1) (2).. • 

/=j, f=j, /=f = (f)", 
(n) (n-1) 

f=( f r· 
(n) 

We say thatfis of class en if / exists and is continuous. 
A material system ~ is assumed to be endowed with a structure defined by 

the prescription of a non-empty class R of admissible kinematical processes. 
The members of R are assumed to be such that for any two material points 
X, YEaJ, the function 

7: f-+ J(X(X, 7:), X(Y,.) 
is of class e 2 • 

The derivative dd a (x (X, .), x (Y, 7:») is called the relative speed of X and Y at 7: 
7: d 2 ~ 

and the second derivative d.2 d(X(X, .), x(Y, .») the relative scalar acceleration 

of X and Y at 7:. A kinematical process X is called a rigid process if a(X(X, .), 
x(Y, 7:») is independent of 7: for all X, YE.c?6', i.e., if the relative speed of any two 
material points is always zero. 

A material system C is called a rigid system if its class 91 of admissible kine
matical processes is defined in terms of a distance function d: C x C _ IR by 
9l={PIP: CxTp-iY is a kinematical process and d(x,y)=a(p(x, .), P(y, 7:») 
for all x, YEC and all .ETp}. If PE91 and 7:ETp, we define 

P.:C-. by P.(x)=P(x,.). (1) 

If P. is invertible for some PE91 and some 7:ET then P. is an isomorphism and 
d must be a Euclidean metric on C. In this case, C is called a frame of reference 
(or simply frame). The processes in 91 will then be called reference processes. 

We now assume that a frame C with Euclidean metric d and class 91 of reference 
processes is given. Let.c?6' be a material system, unrelated to C, and let R be the 
class of admissible processes of aJ. 

We assume that if XER and if oc is an automorphism of iY, then also X"ER, 
where X" is defined by X"(X, 7:)=oc(X(X, 7:-t/l»). For every XER and every 
7: E~, we define 

X.:~-7: by X.(X)=X(X, 7:). (2) 

If a reference process P E 91 with ~ = Tp is given, we define the motion 
/l: aJ x Tx - C of aJ relative to the frame C, determined by X E R, by 

/leX, .)=/l.(X) with /l.=p;1 0 X., 7:E~. 
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Let 9Jl be the class of all motions obtained in this way, i.e. 

9Jl = {JlI Jl, = /3,0 x" XEst, rE~}. 

It follows easily from the invariance of st under the automorphisms of'"IY that 9Jl 
is independent of the choice of /3E9l. For every choice /3E9l with 1p=~ the 
relations 

(3) 

define a one-to-one correspondence between the class st of kinematical processes 
of fll and the class 9Jl of motions of fll relative to the frame C. This correspondence 
depends, of course, on the choice of the reference process /3 E 9l. 

Let a kinematical process XEst be given. If /3, /3*E9l are two reference processes 
(with T x=7p=7p.) we obtain two motions Jl, Jl*E9Jl corresponding to X by 

(4) 

It follows from (4) that these motions Jl and Jl* are related by 

(5) 

where cx~= /3: -1 0/3" for each rE~, is an isometry of the frame C. Using the 
representation (3) of Section 2, we infer from (5) that 

(6) 

where qEC can be chosen arbitrarily, c: ~--+C is defined by c(r)=cx,(q), and 
Q: 'Y;, --+ Orth (~) is defined by Q ( r) = Qa •. 

If a motion Jl of !!J relative to C is of class C 2 , we can define a corresponding 
velocity field j1: fll x -r;; --+ ~ and a corresponding acceleration field ji: !!J x 7;. --+ ~ 

by . d .. d 2 

Jl(X, r)=,fr Jl(X, r), Jl(X, r)= dr2 Jl(X, r). 

Assume that the motion Jl, corresponding to a given kinematical process X relative 
to a reference process /3, is of class C 2 • Let /3* be another reference process such 
that the functions c and Q of (6) determined by /3* are also of class C 2 • Then the 
motion Jl* corresponding to X and /3*, given by (6), is also of class C 2. The veloc
ity and acceleration fields of Jl and Jl* are easily seen to be related by 

jJ,* - QjJ,=c+A(Jl* -c), 

ji. * -Qji.=c+2A(jJ,* -c)+(A _A2)(ll* -c), 
where 

A: Tx --+ Skew (~) is defined by A = QQ T 

(Skew(~)={AELin(~) I A = _AT}). 

(7) 

(8) 

It is possible to associate with a kinematical process X and a reference process /3 
an instantaneous velocity field v by v,= 13,0 /.l,: fll--+~, where Jl,=/3; loX,. If the 
right side of (7) were zero, one could prove that v, is independent of the choice 
of the reference process. Since the right side of (7) is not zero, it follows that 
there is no way of associating a velocity field with the kinematical process itself, 
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independent of any choice of reference process. We express this fact by saying 
that the velocity is frame-dependent. Of course, the acceleration is also frame
dependent. Later, we will see that there are certain tensor fields derived from the 
velocity that are frame-indifferent, i.e. independent of the choice of reference 
process. 

5. Differential Calculus in Euclidean Spaces 

Let cjJ: f» --+!»' be a mapping from an open subset!» of a Euclidean space cf 
into an open subset f»' of a Euclidean space cf'. Let "Y and "Y' be the translation 
spaces of cf and cf', respectively. We say that cjJ is differentiable at XEf» if there is 
a LELin("Y, "Y') such that 

cjJ(X + u)- cjJ(X) = Lu + o(u) 

for u in a neighborhood of OEi". The notation o(u) indicates that u 1-+ o(u) is 
some function of order small o. This means that for every 8>0, there is a b>O 
such that 

10(u)I<8Iul when lul<b. 

Roughly, o(u) can be neglected compared to Lu for small u. The linear mappingL 
is called the gradient of cjJ at x and is denoted by VcjJ(x). The gradient VcjJ(x) is a 
linear approximation to the mapping Ul-+cjJ(x+u)-cjJ(x). A mapping cjJ: f»--+fi))' 
is said to be of class e 1 if cjJ is differentiable at every XEfi)) and if the gradient 
function 

v cjJ: f» --+ Lin ("Y, "Y') 

is continuous. It is possible to define on Lin("Y, "Y') a natural structure of an 
inner product space in the following way: If L, MELin("Y, "Y') then 

M*ELin(i'" *, i"*) = Lin ("Y', "Y) 

and hence LM*ELin("Y). If we put L· M=tr(LM*), then (L, M)I-+L· M is 
easily proved to be an inner product on Lin("Y, "Y'). 

Since every inner product space can be regarded as a Euclidean space, it is 
meaningful to discuss the possibility that V cjJ is of class e 1. If this is the case, 
we say that cjJ is of class e 2 • In a similar way, one can define what is meant by 
saying that cjJ is of class en, n = I, 2, .... 

The most important theorem of the differential calculus is the chain rule: 

Let cjJ: !»--+!»' and "': f»'.--+f»" be mappings of class el, where f», ~', and fi))" 
are open subsets of Euclidean spaces cf, cf', and cf". The composition'" 0 cjJ: !» --+ fi))" 
is then again of class eland its gradient is given by 

V("'o cjJ)(X) = V",(cjJ(x)) VcjJ(x), xEfi)). 

Moreover, if cjJ and", are both of class en, n> I, so is '" 0 cjJ. 
Another important theorem is the product rule: 

Let cjJ: fi))--+~, "': fi))--+-t; be mappings of class el, where f» is an open subset 
of a Euclidean space and where ~ and -t; are inner product spaces. 
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Let B: ~ x ~ -+'f; be a bilinear function. Then 

,,=B(4)(.), t/I(. »: ~-+'f; 
is again of class eland its gradient is given by 

(Il,,(x» u = B(Il4> (x» u, t/I(x» + B(4)(x), (Ilt/l(x» u). 

Finally, we have the following symmetry theorem: 

If 4>: ~-+~' is of class C 2 , then 1l1l4>: ~-+Lin(~, Lin(~, ~'» has symmetric 
values in the sense that 

((IlIl4> ) (x» u) v = ((IlIl4> ) (x» v) u 

for all xe~ and all u, ve~. 

6. Continuous Bodies 

We describe here precise mathematical structures intended to idealize the 
vague physical notion of continuous body. Such structures depend on the choice 
of a class D of mappings called displacements. This class is assumed to satisfy 
the following requirements: 

(i) the members of D are invertible mappings whose domains and codomains are 
open subsets of Euclidean spaces. 

(ii) Every mapping in D is of class C 1 • 

(iii) If AeD then ;.-leD. 
(iv) If A, p,eD and Range (A) = Domain(p,) then p,oAeD. 
(v) Isometric (i. e. distance-preserving) bijections between open subsets of Eu

clidean spaces belong to D. 

The following classes D are important examples of classes of displacements: 

(a) D=Dn=class of all restrictions to open sets of Cn-diffeomorphisms 
between Euclidean spaces (n~ I). 

(b) D=D~so=class of all isochoric (i.e. volume-preserving) mappings 
belonging to Dn. 

(c) D=Drll=class of all isometric bijections between open sets of Euclidean 
spaces. 

Definition. We say that a material system !!I is a continuous body of type D if it is 
endowed with a structure defined by a non-empty class P of mappings subject 
to the following conditions 

(B 1) The members of P are invertible mappings from !!I onto open subsets 
of Euclidean spaces. 

(B2) If lC, ye P, then lC ° y-l ED. 
(B3) If lCeP, AeD and Range(lC)=Domain(A), then AO lCeP. 

The members of P are called the placements of !!I. The range 91" of a lCeP 
is called the region occupied by !!I in the placement lC. 
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The Euclidean space 8" of which the range gt" of Ke P is an open subset is 
called the range space of K. Its translation space is denoted by 1';;. 

We say that fJi is a body of class C" if Dc D "' an incompressible body of class 
C" if DcD~so, and a rigid body if D=Drll. 

Let § be some Euclidean space with translation space tJU and let fJi be a body 
of class C". We say that the mapping 

j: fJi-§ 

is of class c r (O~r~n) if fo K- 1 : gt" _ § is of class c r for some KeP. It follows 
from (B2) and the chain rule thatfo K- 1 is then of class C r for every KeP. If fis 
of class C 1 and if KeP, we define 

by 
V"j(X) = V(f 0 K- 1)(K(X»), X efJi 

and call it the gradient off in the placement K. 

If K and ')I are two placements, it follows from the chain rule that 

We say that J7l'K is the gradient of the displacement A=')IO K- 1 from K to ')I. 

(1) 

(2) 

The intuitive notion of an "infinitesimal element" of a continuous body can 
be made precise in the following way. 

Let XefJi and let y be a placement of fJi. If u varies in a neighborhood of 
zero in the translation space 't;: of the range space of ')I, then ')I(X)+u varies in a 
neighborhood of ')I(X) in the region occupied by the body in the configuration ')I, 
and hence ')1-1 (y(X) + a) varies in a neighborhood of XefJi. If K is another 
placement then 

')1-1 (')I (X) + a)= K- 1 (K(X)+V) 

describes the same point in the neighborhood of X if 

A (')I (X) + U)=K(X)+ 11, A=KO ')1-1. (3) 

Approximating the displacement A by its gradient in the neighborhood of ')I(X), 
we see that (3) can be written 

Thus, the two vectors ue't;: and ve1';; describe approximately the same material 
point if (J7l'K(X»)a=v. 

Definition. We say that the pairs (')I, a) and (K, v), where K, ')IeP, ae't;:, ve1';;, 
are equivalent at XefJi and write (y, a)-x(K, v) if 

(4) 

The equivalence classes determined by the equivalence relation thus defined 
are called the tangent vectors at X. The set of all tangent vectors at X is called the 
tangent space at X and is denoted by 5X. 

303 



72 W.NOLL 

The tangent vectors at X describe, approximately, the points in a neighborhood 
of X independently of any placement. Thus, the notion of tangent space is a 
mathematization of the intuitive notion of an "infinitesimal element about X". 

Letf: PA ~ 1F be a mapping of class C 1 from PA into some Euclidean space 1F 
with translation space d/t. It It follows from (2) and (4) that (VKf(X»)v=(Vyf(X»)u 
if (y, U)-x(K, v). Hence we can define a mapping 

Vf(X): ffx ~ IJ!t (5) 
by 

(Vf(X»)t=(VKf(X»v if (K, V)EtEffx. (6) 

The following theorem justifies the term" tangent vectors" for the elements of ffx. 

Theorem. The tangent space ffx has a unique natural vector space structure such 
that for all f: PA ~ 1F of class C 1, the mapping (5) defined by (6) is linear. 

Proof. If KEP, then K= VK(X): ffx~"fI",. is easily seen to be an invertible mapping. 
The vector-space structure on ffx is obtained by transporting the vector-space 
structure of "fI",. to S"x by means of K- 1 • It is easily seen that the structure on ffx 
thus obtained is independent of the choice of KEP. Q.E.D. . 

Remark. Given KEP, one can also transport the inner product of "fI",. to ffx by means 
of K- 1 • But one gets different inner products on ffx for different choices of KEP. 
Hence ffx has no intrinsic natural inner product. 

7. Configurations, Deformations 

Let PA be a continuous body. With every placement KEP we can associate a 
distance function 

by putting 
(1) 

(If u belongs to some inner product space, we define the magnitude I U I of u by 
lul=Vu, u.) 

The distance functions obtained in this manner will be called configurations 
of PA, so that 

is the set of all configurations of PA. Two placements K, YEP determine the same 
configuration dK=dy.if and only if the displacement ;'=YOK- 1 from K to y is an 
isometric bijection. 

It is possible to recover the class P of placements of PA from a knowledge of 
the set C of configurations of PA, because P is the class of all invertible mappings 
K: PA~9ilK onto open subsets 9ilK of Euclidean spaces tfK such that d(X, Y)= 
IK(Y)-K(X)I holds for some dEC. 

Let dEC be a configuration of PA and let XEPA be a material point. The defini
tion (6) of Section 6 can be applied to d 2 (., Y): PA~ R, where YEPA. We denote 
the gradient at XE~ of this function by 

(Vd2 (., Y»)(X) = 171 d 2 (x, Y)ELin(ffx, 1R)=ffx*. 
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Since YE~ is arbitrary we thus obtain a function V1 d 2 (X, .): rA-+/Tx*. The 
definition (6) of Section 6 can be applied again, with Y instead of X, and we obtain 

V2 VI d 2 (X, Y)= V(VI d 2 (X, • »)(Y)ELin(~, ffx*). 

Using the fact that d 2 (X, Y)=d2 (y, X) and the symmetry theorem of Section 5, 
one can easily prove that 

(2) 

We say that Gd is the configuration of the infinitesimal element ffx induced by the 
configuration d of the body ~. The set 

G={Gd I dEC} c:Sym + (ffx, ffx*) 

is then the set of all configurations of ffx. 
There are several other ways to characterize the induced configurations 

Gd of ffx: 

(i) If tEffx and (K, U)Et, then 

(Gdt, t)= :;2 d 2 (x, K- 1 (K(X)+su»)ls=o· 

(ii) If KEP is a placement and K= VK(X)EInvlin(ffx, ~), then 

(3) 

hence Gd .. is just the "inner product" on ffx obtained by transporting 
the inner product of ~ to ffx via K - 1. 

A deformation process of a body ~ is a function of the type 

p:[O,r]-+C, rElR+. 

The value of p at tE [0, r] is denoted by Pt. The number r is called the duration 
of the process. With every kinematical process 

x: ~xTx.-+'"II'" of~, where ~=[To,To+r] 

is a closed time-interval, we can associate a deformation process p: [0, r] -+ C by 

Pt(X, Y)=d(x(X, To+t), X(Y, To +t)), tE[O, rJ. (4) 

Similarly, with every motion Jl: ~ x ~ -+ tS' of ~ relative to some frame tS', where 
~=[TO' To+r], we can associate a deformation processp: [0, r]-+C by 

Pt(X, Y)=d(Jl(X, To+t),Jl(Y, To+t»), tE[O, r]. (5) 

Theorem A. Two kinematical processes X and x* of ~ determine the same deforma
tion process if and only if there is an automorphism oc of the event-world '"II'" such that 
X*=Xa.. (Recall that X«(X, T)=OC(X(X, T-tJ).) 

Theorem B. Two motions Jl and Jl * of ~ relative to tS' determine the same deformation 
process if and only if there is a kinematical process X and two reference processes fJ 
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and P* such that J.l and J.l* are the motions corresponding to x, P and X, p*, respec
tively. This is the case ifand only ifJ.land J.l* are connected bya relationoftheform (6) 
of Section 4. 

A continuous body !JI can be endowed with the structure of a material system 
in the sense of Section 4 in the following manner: A class :D of deformation 
processes of !JI is prescribed. The class 5\ of admissible kinematical processes 
then consist of all those that determine a deformation process in :D. 

In view of Theorem A, the condition that xe5\=> x"'e5\ for every automorphism 
at: of "If/" is automatically satisfied. In view of Theorem B, the class 9Jl of admissible 
motions of !JI relative to the frame cff consists of all those that determine a de
formation process in :D. 

If J.l is a motion of !JI, then J.lt: !JI -+ cff is called the placement of ~ in cff at time 
'reT,.. The gradient 

M('r) = VJ.lt(X)eLig(~, "Y) 

is called the placement of the body element ~ in "Y at time 'r. The function 
M: T,. -+ Lin (~, "Y) is called the motion of the body element ~ induced by the 
motion J.l of !JI. 

If p: [0, r] -+ C is a deformation process of !JI, then 

is called the deformation process of ~ induced by the deformation process p of !JI. 

It is often useful to consider body elements in isolation, as if they were dis
connected from the continuous body from which they are obtained. 

Definition. A body element is a 3-dimensional vector space ff endowed with 
structure defined by the prescription of a set G c Sym + (ff, !!T*) of configurations 
and a set n of deformation processes P: [0, r] -+ G, r e IR+ . 

A placement of the element ff in a frame space "Y (inner product space) 
is defined to be an element KelnvLin(ff, "Y) such that K* KeG. A motion of ff 
in the frame space "Y is a function M: [0, r] -+ Inv Lin (ff, "Y) such that M * Men. 
It is often useful to fix a particular reference placement KR and describe the 
possible motions in relation to K R • The following functions from [0, r] into 
Lin("Y) are obtained in this fashion: 

(i) Displacement tensor: 

(ii) Right Cauchy-Green tensor: 

In the case when KR=M(t) for some te[O, r], we get: 
(iii) Relative displacement tensor: 

306 



Foundations of Mechanics and Thermodynamics 

(iv) Relative right Cauchy-Green tensor: 

(v) kth Rivlin-Ericksen tensor: 
(k) 

Ak=M*-l PM-t, 
(k) 

Ak(t)=C(t)(t). 

75 

If L is defined by L(t)=F(t)(t), we have -tA=D=HL+LT), which is called the 
stretching rate (or rate of deformation). The spin (or vorticity) W is defined by 
W=1-(L-LT). 

The functions C, CIt)' Ak , and D are frame-indifferent, F, F(t), L, and Ware 
frame-dependent. 

ll. Thermomechanics of Continuous Bodies 
8. Interactions 

In this section we deal with what we call a material universe D, whose members 
d, 81, CC, •.. we call material objects. We assume that D is endowed with a structure 
defined by a relation -< and we read d-<f!1 as "d is a part of 81". 

We assume that Q and -< satisfies the 6 axioms stated below, which are all 
intuitively plausible. 

(M 1) d=f!1 if and only if d-<f!1 and f!I-<d. 

(M2) d-<f!1 and f!I-<CC implies d-<CC. 

These two axioms state that -< is a partial order on D. Given d, f!IeQ, there 
can be at most one CCeQ such that CC-<d, 81 and CC'-<d, f!I=> CC'-<C(J. If such a C(J 
exists, we call it the greatest common part of d and 81 and write 

Given d, f!IeD, there can be at most one ~eQ such that d, f!I-<q; and 
d, f!I-<~'=>~-<~'. If such a q; exists, we call it the least envelope of d and 81 
and we write 

~=dvf!l. 

(M3) There are two elements 0, ooeQ, called the material nothing and the 
material all, such that 0-<d-<00 for all deD. 

If d" 81 = 0 we say that d and 81 are separate. 

(M4) For each deD there is exactly one deeD, called the exterior of d, 
such that d "de =0 and dvde=oo. 

(M 5) If d" f!Ie = 0, then d -<81. 
(M6) For all d, PJeQ, d ,,81 exists. 

One can prove, from (M 1)-(M6), that the operations " and v define on D 
the structure of a Boolean algebra. The proof (taken from reference [1]) is given 
in the Appendix. 
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We use tlie notation 

(.0 x .o)sep= {(d, 86)e.o x .0 I d /\ 86 =0} 

for the set of all separate pairs of bo~ies, and the notation 

.081= {9I'e.o 19I'-<86} 
for the set of all parts of 86. 

A mapping F: .0' _"II from some subset .0' of .0 into some vector space "II 
is said to be additive if 

F(d v 86) = F(d) + F(86) 

whenever d, 86, dv86e.o' and d /\86=0. 

Definition. A mapping 
1: (.0 x Q)sep - "II, 

(1) 

where "II is some vector space, is called an interaction if J(., de): QJ4 - "II and 
J(de, .): QJ4-"II are additive for every de.o. 

Lemma. If J is an interaction and d /\ 86 = 0 then 

Proof. Let rc = d v dB. Then rce /\ d = 0, rce /\ 86 = 0, and 

The additivity of J(d, .) and 1(86, .) gives 

Using the additivity of 1(., rce), we get the desired result (2). Q. E. D. 

The following theorem is an immediate consequ,ence of the Lemma. 

Theorem A. An interaction 1 satisfies the "law of action and reaction" 

l(d, 86)= -1(86, d) (3) 

for all d, 86eQ with d /\ 86=0 ifand only if the mapping d~J(d, de) is additive. 

An interaction J is said to be balanced if 

(4) 

Theorem A implies that the law (3) of action and reaction holds for balanced 
interactions. 

We now assume that a continuous body 86 of class C 1 is given and that for 
some (and hence every) placement K of 86 the region!!ll" occupied by 86 is bounded 
and has a piecewise C 1 boundary o!!ll". One can then complete 86 by joining to 86 
a boundary 0 86. The placements of 86 can be extended to the completion 

i!i=86uo86 
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of f!4 in such a way that for every KeP, K is continuous in gj and 

K(8f!4)=8~". 

77 

For every subset!!fJ of f!4, we say that the boundary 8!!fJc.gj is piecewise C 1 if 
K(8!!fJ) is piecewise C 1 for some (and hence every) placement KeP. 

We assume, further, that we have singled out a certain class DfJI of open 
subsets of f!4 such that 

(i) Every !!fJeD., has a piecewise C 1 boundary. 

(ii) If !!fJeD." then 

(iii) If!!fJ, 9.eD." then 

(iv) If!!fJ, 9.eDfJI' then 
!!fJ v 9. =int cl (gJ u 9.)e DfJI. 

(v) The class D., is as large as possible (in a sense not made precise here). 

(5) 

(6) 

(7) 

We now construct a material universe D from a given continuous body f!4 
and a prescribed class D[fI of parts of f!4 as explained above, and from a given 
Euclidean space <t. The class D consists of D[fI and objects of the form !!fJ v tS with 
!!fJeD[fI. The "is a part of" relation -< is defined in such a way that !!fJ-<9. means 
gJ c.9. if !!fJ, 9.eD[fI and 

(8) 

In words, the Euclidean space tS is regarded as the exterior of the body, or as the 
external world. For the parts of f!4, the greatest common part and the least envelope 
are given by (6) and (7), respectively. If gJeD[fI, we have 

(9) 
where !!fJb is given by (5). 

Let 1 be an interaction in the material universe D just constructed with values 
in a normed space d/t. The restriction 

tnt: (D[fI X D[fI)sep --. d/t 

of 1 to seperate pairs of parts of f!4 is called the internal interaction determined by 1. 
The additive function ["xl: D[fI--.d/t defined by lext(!!fJ)=l(!!fJ, <t) is called the 

external action determined by l. It is clear that for any !!fJ, 9.eDfJI with gJc.9., 
we have 

(10) 

The following two assumptions are made about most of the interactions that 
occur in continuum physics: 

(11) The internal interaction lint is a contact interaction and it is area-continuous. 
More presisely, for some (and hence every) placement K of PA, there is a 
k > 0 such that 

I tnt(gJ, 9.) 1< k Area" (8!!fJ1l 89.) 

holds for all gJ, 9.eDfJI with gJ A 9.=0. 
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(12) The external action r xt can be by contact and at a distance and it is area
volume-continuous. More presisely, for some (and hence every) placement 
K of f!l, there are kl' k 2 >O such that 

for all f!lJEQ. 

These assumptions have the following consequence: 

Theorem B. Let J be interaction that satisfies the conditions (11) and (12) and let K 

be a placement of f!l. One can then find an integrable function 

11(: f!l-+ I1lt 

and, for each oriented surface [/ c 81 belonging to a suitable class, an integrable 
function 

.i.e/, 1(: [/ -+ I1lt 

such that for any f!IJ, j1EQp with fjJc j1, we have 

J(&J,j1e)= Jll(d(Voll()+ J J.e/,l(d(Areal()' 
!P .e/ 

(11) 

where [/ is the surface of contact between f!IJ and j1, oriented in such a way that f!IJ 
and j1 are on the interior side of [/. Thefunctionsfl( and ].e/,I( are uniformly bounded. 

The proof of this theorem is not difficult but too technical to be presented 
here. The essential parts of this proof are contained in Section III and the Appendix 
of reference [4]. The following theorem is non-trivial and surprising. The original 
proof is contained in reference [5]. 

Theorem C. Let J be an interaction that satisfies the conditions (11) and (12) so 
that the conclusions of Theorem B are valid. Assume that f!lJt-.. +l(f!IJ, fjJe) is volume
continuous on Qat (i.e., for some, and hence every, placement K of f!l, there is a 
k > 0 such that I J(f!IJ, fjJe) l;;a k Voll«fjJ) holds for all f!lJEQat). 

Then there is a function 

where ~l={nEf.c Ilnl=I}, such that 

j.e/,I«X)=}I«X, n) 

whenever n is the exterior unit normal to [/ at X E [/ in the placement K. 

(12) 

The following theorem is a classical non-trivial result that was proved, in 
essense, by CAUCHY in 1823. A modern proof, which I have used in courses and 
lectures since 1958 but never published, is reproduced in Section VIII of refer
ence [4]. 

Theorem D. If the hypotheses of Theorem C are valid and if the function 
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of Theorem C is continuous for every n E "f';.1, then there is a continuous function 

such that 
j,,(X, n) = jl«(X) n. (13) 

It is unfortunate that nobody has been able, so far, to prove the conclusion 
of Theorem D on the basis of the hypotheses of Theorem C alone, without the 
ad hoc continuity assumption of Theorem D. A step towards filling this hole in 
the foundations of continuum thermo mechanics has been made by GURTIN, 

MIZEL & WILLIAMS in 1967 (reference [6]), who proved the existence of a measur
able functionjl( under the assumption that],,(" n) is measurable for each n. 

9. Equilibrium of Forces, Mechanical Processes 

We assume in this section that f!4 is a continuous body of class C 1, that Q[JJ 

is a class of parts of f!4, that e=f1Ae is a Euclidean space representing the external 
world, and that Q is the material universe constructed from Q£fI and e as explained 
in the previous section. 

An interaction/ in Q with values in the translation space "Y of e will be called 
a force system for f!4. We consider only force systems that satisfy the conditions 
(II) and (I2) of the previous section. It is then possible to associate, with each part 
f?lJEQ£fI a bounded vector-valued Borel measure /iP on the Borel subsets of ?} 
such that 

/ iP(lC) = J h" d (Voll() + J t viP." d (Area,,), (1) 
C(/ C(/ () viP 

~olds for all placements K of f1A in e, where hI( and tViP.1( correspond to fl( and 
I9'.I(' with Y = 8f?lJ, of Theorem B of the previous section. This measure describes, 
intuitively, the forces exerted on f?lJ and its parts by the exterior of f?lJ. It is meaning
ful to integrate continuous functions on?} relative to the measure/iP' For example, 
if v: ~ -+ "Y is a continuous function, we have 

J v· d/£fI= J (h,,' v) d(Voll()+ J (tviP.,,· v) d(Areal()' (2) 
9 9 viP 

A vector field k: e -+ "Y is called an infinitesimal isometry of e if the solution 
~(s)=a(s, x) of the initial value problem ~=k(~), ~(O)=x, determines an isometry 
X 1-+ a(s, x) for every SEIR. The Representation Theorem for isometries (Corollary 
at the end of Section 2) is easily seen to imply the following result. 

Representation Theorem for Infinitesimal Isometries. To every infinitesimal isom
etry k of e corresponds a unique AkESkew("Y) such that 

k(x)=k(q)+Ak(X-q) (3) 
holds for all x, qEe. 

Definition. We say that a force system/ for f!4 is in equilibrium in the placement K 

of f!4 in e if for every part f?lJ of f1A and every infinitesimal isometry k of f!4 

(4) 
holds. 
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The right hand side of (4) can be interpreted as the rate at which the forces 
do work in a "virtual" rigid motion (i.e. a motion obtained from a rigid kine
matical process; see Section 4). 

The following result is obtained by applying the Representation Theorem 
above. The details of the proof are given in reference [7], Section 7. 

Theorem A. A force system / for fJI is in equilibrium in the placement K of fJI in 8 
if and only if the following two balance laws are valid: 

I. Balance of Forces. For every part f!lJ of fJI 

holds. 
.f ( f!lJ, f!lJ") = 0 

II. Balance of Moments. For every part f!lJ of fJI and every qe8 the tensor 

KJ«f!lJ, q)=(J (ro K)®d/~r eLin(-1"") 
~ 

;s symmetric, where r: 8-+-r is defined by r(x)=x-q. 

(5) 

(6) 

We note that the condition I does not involve the placement K at all. Hence, 
if the forces are not balanced, the force system cannot be in equilibrium in any 
placement. 

Since we have assumed that the force system / satisfies the conditions (II) 
and (I2) of the previous section, we can apply Theorems C and D of the previous 
Section to a balanced force system. If it were not for the ad hoc continuity con
dition of Theorem D, we could conclude that there exists, for every placement 
K of fJI in 8 a field 

such that for any f!lJeQ .. and any Borel subset rc of ~ we have 

/~(rc)= J bJ(d(VolJ()+ J TJ( lIJ(d(AreaJ()' 
~ ~,,{J~ 

(7) 

where 1IJ(: af!lJ -+ -r is the unit normal to K(af!lJ), directed towards the exterior of f!lJ. 

The field TJ(' if it exists, is called the stress determined by / in the placement K. 

For an arbitrary force system /, the tensor KJ«f!lJ, q) defined by (6) is called 
the astatic load on f!lJ relative to q in K. Its skew-symmetric part is called the 
moment relative to q of the forces acting on f!lJ in the placement K. A proof of the 
following theorem is given in Section 5 of reference [8]. 

Theorem B. Assume that / satisfies the balance of force condition I of Theorem A 
and that the stress T",exists for some and hence all placements K of fJI. Then the 
astatic load KJ«f!lJ, q)=KJ«f!lJ) is independent of q and given by 

KJ«f!lJ)= J TJ(d(VoIIC)' (8) 
~ 

Since the left side of (8) cannot by symmetric for every part f!lJ of fJI unless TIC 
has symmetric values, we obtain the following consequence of Theorems A and B: 
Theorem C. A force system / that satisfies the hypotheses of Theorem B is in 
equilibrium in the placement K of fJI in 8 if and only if the stress TJ( has symmetric 
values. 
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Assume now that I is a force system that has a representation of the form (7) 
for some, and hence all, placements K. Condition I, expressing balance of forces, 
is then equivalent to the condition that 

J bK d(Vol.) + J TKnKd(AreaK)=O (10) 
~ cif 

hold for all parts £?jJ of ffI. If TK is of class C 1, this condition is equivalent to 
Cauchy's Law: 

(11) 

If Cauchy's Law (11) holds for one placement K, it holds automatically for all 
placements. 

Definition. A mechanical process is a triple (X, /3, f) with the following properties: 

(a) X: ffI x T -if/" is a kinematical process, 
(b) /3: iff x T -if/" is a reference process, 
(c) For each 'rET, It is a force system in Q that satisfies the conditions (11) 

and (12) of the previous section. 
(d) For each 'rET and each flJEQ, the rate of work 

J .* 
P(flJ, 'r)= Jlt' d/" 

~ 

(12) 

of the forces It in a motion Jl* determined by X and a reference process 
/3* is independent of the reference process /3*. 

It follows from Equation (7) of Section 4 that the Condition (d) is equivalent 
to the following: 

(d') For each 'rET the force system It is in equilibrium in the placement Jl" 
where Jl is the motion determined by X and /3. 

If the continuity condition of Theorem D of the previous section could be 
eliminated, one would have the following result: A mechanical process can be 
characterized by a triple (X, /3, T), where X: ffI x T -if/" is a kinematical process 
of ffI, /3: iff x T -if/" a reference process of the external world iff, and T: ffI x T_ 
Sym(1") a symmetric stress tensor field. 

The force-systems It' 'rET, of the process (X, /3, T) are determined as follows: 
If flJ, 22EQf;W, flJ A22=0, then 

It(flJ,22)= J T"ntd(Areat), (13) 
D~()D~ 

where nt is the exterior unit normal in the placement Jlt= /3; 10 Xt and Areat 
denotes the surface area in that placement. For each 'rET there is a unique body 
force field bt such that (10) holds with K replaced by Jlt (or simply 'r). If Tt is of 
class C 1, then bt is actually given by bt = - div P. T t • We have 

It(flJ, iff) = J T" "td(Areat) + J bt d(Volt)· (14) 
()f;W(){)~ ~ 

If we put It(@"' flJ)= - It(flJ, @") when flJEQf;W, then It is completely determined by 
(13) and (14). 
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10. Thermodynamic Processes, Entropy Production 

As in the last section we assume that fA is a continuous body of class C 1, and 
that 0 is a material universe constructed from fA and an external world 8. 

Definition. A thermodynamic process is a septuple (X, p, /, E, H, S, lJ) whose entries 
have the following nature: 

(0() (X, P,/) is a mechanical process on a time interval T and the motion p. deter
mined by X and p if of class C 1 with velocity v = p,. 

(P) E is a function of the type E: OflxT-+ 1R, whose value E(&, 7:)=E,(&) is 
called the energy content of & at time 7:eT. It is assumed that E, is additive 
and that E, and E, (defined by E,(&)=E(&, 7:)) are volume continuous. 

()') H is a function of the type H: (Ox O)sepxT-+1R, whose value H(&, d, 7:)= 
H,(&, d) is called the rate of heat transfer from d to & at time 7:eT. It is 
assumed that H, is an interaction that satisfies the conditions (11) and (12) 
of Sect. 8. 

(0) S is a function of the type S: OflxT-+ 1R, whose value S(&, 7:)=S,(&) is 
called the entropy content of & at time 7:eT. It is assumed that S, and S, are 
volume continuous. 

(8) lJ is a function of the type lJ: gj x T -+ 1R + + whose value lJ(X, 7:) is called 
the temperature at xefJ at time 7:eT. 

The septuple is subject to the following axiom, called the law of energy balance: 
For all parts & of fA and all 7:eT, we have 

where 
E,(&)=H,(&, &e)+ P,(&), 

P,(&)= Sv,.d/"fP' v,(X)=jJ.(X, 7:), 
fP 

(1) 

(2) 

is the rate of work of the forces acting on & in the motion p. determined by X and p. 

Recall that by Condition (d) of the previous section, P is independent of the 
reference process p and depends on p. only through x. Using the results of the 
previous section, one can express P in terms of the stress as follows: 

Theorem A. Let 1C be a placement of fA in C. If the force systems /, are described 
by a stress T",:ii x T-+Lin(?'"), then the rate of working is given by 

P(&)= S tr(T", 17",v)d(Vol",). 
fP 

(3) 

From now on we omit the subscript 7: and consider dependence on time as under
stood. 

It follows from the assumed additivity and volume continuity of E" E" S, 
and S, that for every placement 1C there exists an energy density 8",: fAx T -+ 1R 
and an entropy density 11K: fAx T -+ 1R such that 

E(&)= S 8K d(VolK ), E(&) = S 8K d(VolK ) (4) 

and 
fP fP 

(5) 
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If the force systems can be described by a stress field, then Theorem A shows 
that the rate of working P is additive and volume continuous. Since E is additive 
and volume continuous by assumption, it follows from the law (1) of energy balance 
that &' 1-+ H(&" &,e) is additive and volume continuous. The hypotheses of Theorem 
C of Section 8 are therefore satisfied for the interaction H. If it were not for the 
continuity condition of Theorem D of Section 9 we could conclude that with each 
&'EQ9I one can associate a bounded Borel measure HfJ' on ?) of the form 

HfJ'(~)= S rKd(Vol.J+ S qK· nKd(AreaK) (6) 
«l «l" OfJ' 

where K is an arbitrary placement of [fl. 
We have H~(&,)=H(&',!Ze) whenever &',!ZEQ9I, &,c!Z. The function rIC: 

[fI x T _ JR is called the heat supply and q K: [fI x T - l' the heat flux determined 
by H in the placement K. 

If we substitute (3), (4) and (6), with ~=&', into the energy balance equation 
(1), we obtain 

S (eK-tr(TK VKv)-rK)d(VolK)- S q". nKd(Area,,) =0. (7) 
fJ' OfJ' 

If qK is of class C 1, then (7) is valid for all parts &' of [fI if and only if the local 
energy balance equation 

holds. (8) 

One can derive a result for thermodynamical process analogous to the one for 
mechanical processes stated at the end of the previous section: If continuity 
conditions could be ignored, every thermodynamical process could be characterized 
by a septuple (X, p, T, 8, q, 1'/, (J), where T, 8, q, 1'/, (J are functions on [fI x T 
representing the stress, energy density, heat flux, entropy density, and temperature 
corresponding to the actual placements Jl. of the motion determined by X and p. 
The local energy balance equation (8) then determines the heat supply reX, -r)= 
rl'.(X, -r). 

We assume now that a thermodynamical process is given. Using the measures 
H~ defined by (6), we define the rate of entropy transfer from!Ze to &'EQ!/I, &'c!Z, 
by 

(9) 

Definition. The rate of entropy production r: Q9I x T - JR of a thermodynamic 
process is defined by 

(10) 

If the heat flux q" and the temperature (J are of class C 1, one can use the diver
gence theorem in (9). After substitution of (5h and (9) into (10) one then obtains 

r(&')= S /,,,d(Vol,,), (11) 
fJ' 

where /,,,: [fI x T _.JR, the local rate of entropy production, is given by 

(12) 
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Using (8), we can eliminate r K from (12) and obtain 

OYK=lhiK- 8K+ tr (TK ilK v) + ~ qK· IlKO. (13) 

In view of (11) we see that r({/J)~O can hold for all parts {/J of f!4 if and only if 
YK~O. Hence (13) gives the following result: 

Theorem B. If the thermodynamic process is such that for some, and hence every, 
placement K of f!4 the stress TK and heat flux q K exist and if q K and the temperature 
o are of class C 1, then the rate of entropy production r has non-negative values if 
and only if 

(14) 

holds for some, and hence every, placement K. 

Remark. GURTIN & WILLIAMS in 1967 (reference [4]) have developed a foundation 
of thermodynamics in which the rate of entropy transfer M is regarded as one of 
the primitive data in the definition of a thermodynamical process. Using certain 
physically well motivated axioms, they then derive from M and H not one but 
two temperatures, a conductive temperature and a radiative temperature. They 
then proceed to show that under many, but not all, circumstances, the two tem
peratures are the same. 

11. Constitutive Assumptions, the Dissipation Principle 
Constitutive assumptions are mathematical statements that describe particular 

physical circumstances which govern the behavior of particular bodies and their 
environments. A constitutive assumption is a relation involving the seven functions 
X, p, I, E, H, S, 0 that define a thermodynamic process. Processes that satisfy 
this relation are said to be admissible for the constitutive assumption in question. 

External constitutive assumptions describe the influence of the environment tff 
on the body f!4. We describe those assumptions that are very often made in con
tinuum physics: 
(a) There are two additive and volume-continuous functions m;, mg: QfM-+ lR + 

and a scalar field ¢: C x T -+ IR of class C 1 such that 

rxt(f!IJ)= - J admi+ J Il¢ 0 fldmg when f}c.f!4 (1) 
fJ' fJ' 

holds for all admissible processes. Here r xt is the external force defined by I, 
i.e. rxt({/J)=/({/J, tff), and a=p, is the acceleration for the motion fl defined by 
X and p. m/ is called the inertial mass and mg the gravitational mass. The first 
term on the right side of (1) is called the inertial force, the second is called 
the gravitational force acting on f!IJ. The field ¢ is called the gravitational 
potential of the enviroment c. 
It is an experimental fact that the ratio mi({/J)/mg({/J) is not only independent 

of (/JEQiJtj, but actually the same for all bodies ever encountered in nature. By 
suitable choice of units, one therefore can take mi=mg=m, replace (1) by 

rxt(f!IJ)= Je-a+ll¢ofl)dm when {/Jc.f!4, (2) 
fJ' 
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and call the functionm: Q9I-+ IR + the mass. Since m is assumed to be volume con
tinuous, we can associate with every placement K of rJI a mass density p,,: rJI-+ IR + 
such that 

m(flJ) = S p"d(Vol,.). (3) 
&' 

The condition (2) can be expressed in terms of PIC and the body force density b" 
by 

b,,=p,,( -a + V<jJ 0 J1.). (4) 

(b) If .?)¢rJI, i.e. if oflJnorJI*0, a surface integral over oflJnorJI is added to the 
right side of (2). This integral represents the surface traction acting on rJI. 
A variety of assumptions on this surface traction represent a variety of physical 
circumstances. 

(c) It is usually assumed that there is no heat transfer at a distance from the en
vironment, i. e. that 

(5) 

In terms of the heat supply, (5) means that 

(6) 

for some, and hence all, placements K of rJI. 

(d) If oflJnorJI*0, then Hext(flJ) is set equal to a surface integral over of!JJnorJI. 
This integral represents the heat supplied to rJI by contact with the environment. 
A variety of assumptions on this integral represent a variety of physical 
conditions. 

Internal constitutive assumptions describe the internal physical constitution of 
the body rJI. They are relations that involve only the internal portion (X, ppnt, 
E, Hint, S, (J) of the thermodynamic process (X, p, /, E, H, S, (J) considered. The 
kinematical process p of the enviroment iff should not occur and only the internal 
parts p pnt and Hint of the interactions / and H should be involved. It is PJ;nt 
rather than /;nt that describes the internal forces at time -. intrinsically, without 
reference to the environment iff. 

A fundamental restriction on the possible internal consititutive assumptions 
must be imposed: 

Dissipation Principle. For all members of the class of thermodynamic processes 
that are admissible for an internal constitutive assumption, the rate of entropy 
production must have non-negative values. 

A body rJI is said to consist of a simple material if its physical behaviour is 
completely determined by the physical properties of its infinitesimal elements. In 
order to make this idea more precise, we introduce the concept of a thermodynamic 
process of a body element as follows: 

Let (X, p, /, E, H, S, B) be a thermodynamic process, let J1. be the motion deter
mined by X and p, and let XErJI be a material point. Assume that the process 
is defined on the closed time interval T=[-.o. -'o+r]. The function M: [0, r]-+ 
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Invlin (ffx, "Y) defined by 

M(t)= VJ1<+t(X), tE[O, r] (7) 

describes the motion of the body element ffx (see Sect. 7). Thedeformationprocess 
P of ffx induced by the deformation process p induced by the kinematical process 
X is * + P=M M:[O,r]-+GcSym (ffx,ffx*). (8) 

We define the intrinsic stress 

S: [0, r] -+ Sym(ffx*, ffx) 

in terms of the stress Til. (assumed to exist) by 

S(t)=M(t)-l TIl<o+'(X, To+t)M(t)* -1. 

Also, we define the intrinsic heat flux 

q: [0, r]-+ffx 

in terms of the heat fluxes qll. (assumed to exist) by 

q(t)=M(t)-l qll'o+t(X, TO + t). 

The intrinsic temperature gradient g: [0, r] -+ffx* is defined by 

(9) 

(10) 

(11) 

It is a useful to choose a reference configuration GREG of ffx and to introduce an 
energy density 8R: [0, r] -+ lR and an entropy density I1R: [0, r] -+ lR by 

(12) 

where KE P is such that GR = VK (X) * VK(X). It is easily seen that 8R and I1R depend 
on K only through GR' 

The septuple (P, S, 8R, q, I1R' e, g) of functions on [0, r] with values in G, 
Sym (ffx*, ffx), lR, ffx, JR, lR ++, and :YX*, respectively, is called the thermodynamic 
process of the element !Tx induced by the thermodynamic process (X, P, j, E, H, 
S, e) of !!4. It is easily seen that the induced process depends only on the internal 
portion (X, p pnt, E, Hint, S, e) of the given process. 

We say that !!4 is a simple body if the internal constitutive assumptions for !!4 
are relations involving only the thermodynamical processes of the body elements. 

We introduce a lo~al volume jR: [0, r] -+ lR ++ by 

jR(t)2=det(G;1 P(t)), tE[O, r], (13) 

and a local entropy production YR: [0, r] -+ lR by 

YR(t)=y,,(X, To+t), tE[O, r], (14) 

when GR= VK(X)* VK(X). It follows from Equation (13) of the previous section 

that {I . 1 } 
eYR=()irR-SR+jR "Itr(SP)+e(g,q) , (15) 
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which shows that YR depends only on the thermodynamic process of the element 
:Tx under consideration. Theorem B of the previous Section implies the following 
result: 

Theorem A. The dissipation principle is satisfied for a material element 9" if and 
only if for every admissible thermodynamical process (P, S, 8R, q, '1R' (), g) of fT, 
the local entropy production YR defind by (15) has non-negative values. 

We now show by an example how Theorem A can be applied. A Navier-Stokes 
fluid with Fourier heat conduction is described by 6 material functions p, I, "it, SR' 0, 
and K from lR. ++ x lR. into lR.. The constitutive relations are the following: 

(i) Navier-Stokes relation: 

PSP=( - P+A tr(p- 1 P»P+ pi>, (16) 
where 

P=PUR,'1R), A=).UR,'1R)' P="itUR,'1R)' (17) 

(ii) Equations of state: 

8R =eRUR' '1R), ()=()UR' '1R)' (18) 

(iii) Fourier's law of heat conduction: 

Pq=Kg, where K=K(jR,'1R)' (19) 

The following result is a consequence of Theorem A, but the proof, given in 
reference [9], is not trivial. 

Theorem B. The constitutive relations (16)-(19) for a Navier-Stokes fluid with 
Fourier heat conduction satisfy the dissipation principle if and only if the following 
conditions are satisfied: 

(a) 8=eR ,2 (temperature relation), 
(b) P = - BR , 1 (pressure relation), 
(c) Jl~O, l+t Jl~O (viscosity inequalities), 
(d) K~O (heat conductivity inequality). 

Remark. The formulation of the dissipation principle given here is due to COLE
MAN & NOLL (1963) (reference [9]), who also gave the first non-trivial application, 
of which Theorem B is a special case. Since then, the principle has been applied 
by many authors to a variety of constitutive relations, often with suprising results. 

Appendix: The Concept of a Material Universe 

A material universe Q is a set endowed with a structure defined by a relation -<, 
subject to the axioms (B 1)-(B6) below. The elements A, B, C, ... are called 
material objects or bodies. 

(B 1) Certain pairs (A, B) of bodies are related by -<; we write A -<B if this is the 
case and say that A is a part of B. 

(B2) A=B if and only ifboth A-<B and B-<A. 

(B3) If A-<B and B-<C, then A-<C. 
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The axioms (B 1 )-(B 3) state that -< is a partial ordering of Q. 

If B-<A and C-<A we caIl A an envelope of {B, C} and write {B, C}-<A. If 
{B, C}-<D and if {B, C}-<A implies D-<A we say that D is the least envelope of 
{B, C} and we write D=Bv C, so that 

{B, C}-<A implies {B, C}-<B v C-<A. (1) 

A least envelope mayor may not exist, but if it does, it is uniquely determined by 
Band C. If A -<B and A -< C we say that A is a common part of {B, C} and write 
A-<{B, C}. If D-<{B, C} and if A-<{B, C} implies A-<D we say that D is the 
greatest common part of {B, C} and write D = B v C, so that 

A-<{B,C} implies A-<BAC-<{B,C}. (2) 

If there is a greatest common part it is unique. Envelopes, the greatest envelope, 
common parts, and the greatest common part of an arbitrary collection of bodies 
are defined in a similar manner. Let {Ad ie/} be such a coIlection, its members 
Ai marked with indices i taken from an index set I. If the least envelope of the 
collection exists, we denote it by V Ai; if the greatest common part exists, we 
denote it by A Ai. iel 

lar 
Two bodies A and B are said to be separate if they have no common part. 

It will be convenient to adjoin to the material universe Q two improper bodies, 
the null-body 0 and the universal body 00. We extend the relation -< to the extended 
universe 

Q'=Qu{0,00} (3) 
by putting 

0-<A-<00 for all AeQ'. (4) 

Of course, the relation -<, when extended by (4), remains a partial ordering. 
We have 

AAB=0, A,BeQ 

if and only if A and B are separate. 
The following rules are easily established: 

I. A-<B if and only if A AB=A or A v B=B. 
II. If A -<B and if A A C, B A C exist, then 

AAC-<BAC. 

III. If A -<B and if A v C, B v C exist, then 

AvC-<BvC. 

IV. If A-<B and if B A C=0, then A A C=0. 
V. If A A Band B A C exist, then 
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(AAB)A C=A A(B A C)=A AB A C, 

provided either (A A B) A C or A A (B A C) exist. 

(5) 

(6) 

(7) 

(8) 
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It is possible that A A B A C exists but A A B or B A C do not. 
We are now ready to state the next axiom: 

89 

(B4) For each body AeQ there is exactly one body AeeQ with the property that 
{A, Ae} have neither a common part nor an envelope; i.e., 

(9) 

The body Ae is called the exterior of the body A. If we put 0'=00, ooe=!3, 
then (9) is valid for all AeQ'. It follows directly from the definition of Ae that 

(10) 
holds for every AeQ'. Also, 

A -<.B implies A A Be = 0, (11) 

which is a consequence of (9)1 and rule IV. The next axiom postulates that the 
converse of (11) is valid: 
(B 5) If A and the exterior of B have no common part, then A is a part of B. 

It follows from (B5) and (11) that 

A-<.B if and only if AABe=0. (12) 

By (12) and (10) we have A -<.B if and only if Be A (A~e =13. Hence, using (12) 
again, we find that 

A-<.B if and only if Be-<.Ae. (13) 

The following propositions are corollaries of (13): Let {Allie!} be a collection of 
bodies. If V AI exists, so does A (AD and 

leI leI 

A (AD=(V AI)e. (14) 
ieI leI 

If A AI exists, so does V (AD and 
ieI ieI 

V (A~)=(A AIY. (15) 
leI leI 

The following result is basic to the theory of bodies: 

Lemma. Assume that Ai' A2, and B are bodies and that Ai AB, A2 AB, andA1 v A2 
exist. Then we have 

{Ai A B, A2 A B}-<. {B, Ai v A 2}; (16) 
furthermore, if 

{A1AB,A2AB}-<.C (17) 
and 

D-<. {B, Ai v A 2}, (18) 
then 

D-<.C. (19) 

Proof. It follows from the definitions (1) and (2) that Ai A B-<.B, and AI A B-<.Ai-<' 
Ai v A 2 , i= 1,2, which immediately gives (16). 
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Assume now that (17) and (18) hold. It follows from (17) and (11) that 

{Ai 1\ B) 1\ Ce =0, i = 1, 2. (20) 

Suppose that E is a common part of {D, Ce}, i.e. 

E~{D, Ce }. (21) 

By (18) we have E~D~B, and hence 

E~{B, Ce}. (22) 

Now, if Gi is a common part of {E, AJ, 

Gi~{E,Ai}' (23) 

then Gi~E~B by (22) and hence Gi~{B, Ai}, which is equivalent to 

Gi~Ai 1\ B, i = 1,2. (24) 

Using rule IV, we infer from (24) and (20) that G j /\ Ce =0. But by (23) and (22) 
we also have Gi~E~ce and hence, by rule IV, Gi=Gi/\Gi~Gil\ce=0, i.e. 
Gi=0. We have shown that (23) implies Gi=0, which means that 

EI\Ai=0, i=1,2. (25) 

Applying (10) and (12), we infer from (25) that Ai~g, i= 1,2, which is equivalent 
to Al v A2~Ee, or, by (13), to 

E~(Al vA2Y. 

On the other hand, it follows from (21) and (18) that 

E~D~Al vA2 • 

(26) 

(27) 

The relations (26) and (27) can both hold only if E=0. We have shown that (21) 
implies E= 0, which means that D /\ ce = 0. But by (12) this is equivalent to (19). 
Q.E.D. 

The following four propositions are easy consequences of the Lemma: 

(A) If Al /\ B, A2 /\ B, and Al v A2 exist, then 

provided either the left hand side or the right hand side exists. 

(B) If Al vB, A2 V Band Al /\A2 exist, then 

(All\ A 2 ) v B=(Al v B)/\ (A2 v B), 

provided either the left hand side or the right hand side exists. 
(C) If A /\ Band Ae /\ B exist, then 
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(D) We have 
A=BvC, BAC=0 (31) 

if and only if 
(32) 

Proposition (A) is an immediate corollary of the Lemma; (B) results from 
applying (A) to Ai, Ai, and Be and using (14) and (15); (C) corresponds to the 
special case A1 =A, A2 =Ae of (A). To prove (D), assume that (31) holds. Then 
B-<A follows from (31)1. Using (12) and (10) we infer from (31)2 that C-<Be, 
i.e. that CABe=C. Using (31)1 and (A), we obtain 

A ABe=(Bv C)ABe=(B ABe)v(C ABe)=0v C=C, 

which proves (32). Assume, conversely, that (32) holds. We then have A A B=B 
and hence, by (C), 

A=(BAA)v(Be AA)=B V C. 

Also, 0=0AA=(B ABe)AA=B A (Be AA)=B A C, which proves (31). 

We now state the final axiom: 
(B6) If A, BEQ are not separate, then the greatest common part A ABEQ exists. 
It follows from (B 6) that in the extended universe defined by (3), A A B exists for 
all A, BEQ'. By (15), the least envlope A v B=(Ae ABeYEQ' exists always also. 
Equations (28) and (29) state that the operations A and v are distributive with 
respect to one another. This fact, together with axiom (B4), can be expressed by 
saying that Q' is a complemented distributive lattice. 

Suppose that a body B is given. A finite collection ~ = {Pi I i = I, ... , n} is 
called a partition of B if 

n 

B = V PI and Pi A Pj = 0 if i =t= j. (33) 
i= 1 

We say that the partition ~' = {P: Ii = I, ... , n'} is a refinement of ~ if for each 
P;E~' there is a PjE~ such that P:-<Pj. 

Theorem. Any two partitions ~={Pdi=l, ... ,n}, .Q={Qj lj=l, ... ,m} have a 
common refinement; i.e., there is a partition which is a refinement of both ~ and.Q. 

Proof. The required refinement consists of the nm parts PiAQj, i=l, ... , n, 
j = 1, ... , m. The fact that these parts do indeed form a refinement of both ~ and 
.0 follows easily from the distributive laws (28), (29), and from PI A Qj-<{Pj, Qj}. 
Q.E.D. 

The axioms (B 1 )-(B 6) and the theorems derived from them reflect our common 
sense experiences with physical bodies. It is necessary here to make the mathe
matical description of bodies independent of any imbedding in "space", simply 
because there is no such thing as "space" in our development. 

The following purely mathematical special examples illustrate the concept of 
a material universe: 
(Il() Let Q' consist in all subsets of an arbitrary set X and let -< represent set in
clusion. We have A AB=A nB (intersection), A v B=A u B (union) and Ae=Ac 
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(complement). The Newtonian mechanics of particle systems can be based on such 
a universe when X is a finite set. 
(f3) Let Q' consist in all closures of open sets in an arbitrary topological space and 
let -< represent set inclusion. In this case the greatest common part of two bodies 

A, B is not always their intersection, but rather A I\B=AnB (a superimposed 0 

denotes the interior and a superimposed bar denotes the closure). The least en-

velope of a collection {Ad iEI} is given by V A j = U Aj , i.e. by the closure of the 
ieI ieI 

union of the interiors of the sets in the collection. This least envelope is equal to 
the union U Aj if the collection is finite, but not necessarily if it is infinite. The 

jeT 

exterior of a body is Ae=A", i.e. the closure of the complement. 
(')I) Let Q consist in all finite unions of closed polyhedra and closed exteriors of 
polyhedra in a Euclidean space. Q satisfies the axioms of a material universe 
when -< represents set inclusion. Greatest common parts, least envelopes, and 
exteriors are given by the same formulas as in example ({J). 
(b) Let Q consist in all closed regions with piecewise smooth boundaries, in a 
Euclidean space. If -< represents set inclusion, then the axioms (B I)-(B5) are 
satisfied, but (B 6) is not. Since this example is of importance in conventional 
continuum mechanics, it may be desirable to develop the mechanics of material 
universes without postulating (B 6). However, this leads to considerable technical 
difficulties, and the issue has not yet been resolved. 
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