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Foreword 

The material included in this book was first presented in a series of lectures de
livered at the University of Minnesota in June 1983 in connection with the con
ference "Thermodynamics and Phase Transitions". This conference was one of 
the principal events in the first year of operation of the Institute for Mathematics 
and its Applications (lMA) at the University of Minnesota. 

The Institute was founded under the auspices of the National Science Foun
dation of the United States and the University of Minnesota and is devoted to 
strengthening and fostering the relation of mathematics with its various applica
tions to problems of the real world. 

The present volume constitutes an important element in the continuing pub
lication program of the Ipstitute. Previous publications in this program have ap
peared as lecture notes in the well-known Springer series, and future ones will be 
part of a new series "IMA Volumes in Applied Mathematics". 



Preface 

Until recently it was believed that thermodynamics could be given a rigorous 
foundation only in certain restricted circumstances, particularly those involving 
reversible and quasi-static processes. More general situations, commonly arising 
in continuum theories, have therefore been treated on the assumption that inter
nal energy, entropy and absolute temperature are a priori given quantities, or 
have been dealt with on a more or less ad hoc basis, with emphasis for example 
on various types of variational formulations and maximization rules. 

At the same time, the last decade has seen a unity of method and approach in 
the foundations of thermodynamics and continuum mechanics, in which rigorous 
laws of thermodynamics have been combined with invariance notions of mechanics 
to produce new and deep understanding. Real progress has been made in finding a 
set of appropriate concepts for classical thermodynamics, by which energy conser
vation and the Clausius inequality can be given well-defined meanings for arbitrary 
processes and which allow an approach to the entropy concept which is free of tra
ditional ambiguities. There has been, moreover, a careful scrutiny of long estab
lished but nevertheless not sharply defined concepts such as the Maxwell equal-area 
rule, the famous Gibbs phase rule, and the equivalence of work and heat. 

The thirteen papers in this volume accordingly gather together for the first 
time the many ideas and concepts which have raised classical thermodynamics 
from a heuristic and intuitive science to the level of precision presently demanded 
of other branches of mathematical physics. 

The basic notions of thermodynamics already appear in the work of the 
founders of the subject - Carnot, Clausius, Kelvin and Gibbs - though their 
ideas now appear with greater brilliance than ever as they are seen in a pure and 
abstract light. Perhaps more unexpected is the diminished role played by Cara
theodory's principle of accessibility. Indeed in an important essay opening Part 
II of this volume Clifford Truesdell argues with great force that Caratheodory's 
contribution has turned the subject away from its mainstream, and that it is more 
appropriate to return to classic directions. 

The first two papers in Part I, by Serrin and Silhavy, carry out this approach. 
They are firmly based on the idea that classical thermodynamics is precisely the 
study of heat, work and hotness: in other words, thermodynamics is concerned 
with the general structure of systems which exchange work and heat with their 
environment. Though these papers differ in method and technique they both 
adopt the primitive concepts of heat and work, and develop mathematical struc
tures in which the laws of thermodynamics can be stated with exactness and 
clarity. Equally, both papers clarify the role of entropy and energy and their rela
tion with heat and work, leading to new insight into various formulations of en
tropy for irreversible thermodynamics and continuum mechanics. 



VIII Preface 

In a third paper on the foundations of thermodynamics, Feinberg and Lavine 
present, in a tour de force of invention, a theory in which hotness and tempera
ture are defined concepts, thus providing great generality to our views of the 
meaning of temperature as a measure of equilibrium. 

The central position of cyclic processes in statements of the laws of thermody
namics is addressed in papers of Coleman and Owen, Truesdell, and Ricou. In 
recent years it has been realized with increasing force that there are numerous 
materials which have few, if any, cyclic processes available to them (hereditary 
systems, hardening cements, and so forth). For these systems the traditional laws 
provide little guidance. Coleman and Owen accordingly have introduced the 
notion of approximate cycles and have proposed a detailed topological structure 
for state spaces, so that for large classes of non-cyclic materials one can obtain a 
meaningful concept of entropy. Following a different line of argument, Truesdell 
in his paper in Part I takes thermodynamic efficiency as the guiding principle and 
obtains a number of estimates for this quantity in non-cyclic situations. 

Manuel Ricou's paper considers the same problem from a new point of view. 
It is not possible to summarize his ideas here, but his short paper promises to fun
damentally alter our conception of energy as a state function and is destined to 
become one of the classics of the subject. The astute reader will even find in this 
paper the beginnings of an axiomatic treatment of the third law of thermody
namics! 

Part II of the volume deals with the thermodynamics of Gibbs and Caratheo
dory, and their legacy to later generations. The essay of Professor Truesdell 
which opens this part is concerned particularly with Gibbs's contribution to ther
modynamics (as opposed to thermostatics). His remarks are especially important 
and appropriate today, not only because we now see thermodynamics and ther
mostatics as different subjects but also because students continue to this day to 
reread and rethink the ideas of Gibbs. It goes without saying that this essay con
firms once again the lasting place which Gibbs holds in thermodynamic science. 

It has repeatedly been emphasized, most recently in a paper of Martin Klein 
in "Springs of Scientific Creativity" (University of Minnesota Press, 1984), that 
Gibbs was a writer of notorious scientific difficulty in spite of the lucidity of his 
English style. The papers of Fosdick and Man in Part II are specifically con
cerned with the elucidation of difficult but key ideas introduced by Gibbs. In par
ticular, Fosdick addresses the question of the structure and existence of equilib
rium states in thermostatics, together with the dynamical significance of Gibb
sian stability. His work provides important new insight into these elusive con
cepts, and should be widely read. 

Man's contribution presents a clear and vigorous discussion of the empirical 
and philosophical meaning of the Gibbs phase rule. Although this rule has been 
criticized for its ambiguity, Man shows that Gibbs himself cannot be held respon
sible for the many inaccurate statements of the rule. Even more, he provides a 
context in which the phase rule becomes generically and rigorously valid. 

The series of papers in Part III are concerned with special material systems. 
While quite different from each other, and from the earlier papers, they never
theless possess an important underlying unity in that each uses ideas generated by 
modern thermodynamical research. The paper of Coleman, Fabrizio and Owen 



Preface IX 

introduces and analyses a generalization of Cattaneo's theory of the propagation 
of heat. Their conclusions are of value not only in rationalizing the well-known 
paradox of the infinite speed of heat transmission (a consequence of the para
bolic nature of the heat equation) but also in the theory of heat conduction in di
electric crystals at low temperatures. 

The paper of J. E. Dunn studies a new type of work, important in the transfer 
of mechanical energy between a material system and its environment. This quan
tity, called interstitial working, does not appear in standard theories of energy 
conservation: on the other hand, absence of such a term places severe limitations 
on the types of materials which can be studied by the methods of continuum me
chanics, at least when the second law of thermodynamics is taken into account. 
The new term accordingly can prove of particular value in the study of Korteweg 
fluids as well as chemical mixture theory. 

The contribution of Richard James deals with phase transformations in cer
tain types of crystals. Using arguments which are brilliant in their simplicity, he is 
able to enumerate all the possible transformations which can exist and thus to 
clarify a previously unknown situation. Underlying his approach is the purely 
thermodynamic concept of minimizing the free energy of the crystal, furnishing 
thereby a direct connection with the results of Fosdick. 

Landau and Lifschitz have stated in their classic treatise on fluid mechanics 
that a shock wave can never compress a gas sufficiently to liquefy it. However re
cent experiments of Thompson and his coworkers have shown that, at least for 
certain gases, this belief is inaccurate. The final paper in the volume provides a 
theoretical model for these experiments, and a classification of possible gas-liq
uid shock waves (the actual computations are concerned with the special case of a 
van der Waals fluid, but the method is quite general). This work employs the 
concept of interstitial working, thus providing a link with Dunn's paper and a 
new application of the second law of thermodynamics. 

This brief overview can only hint at the material covered, but it is hoped that 
readers will find much of lasting value among the ideas which are introduced 
here. 

The preparation of the volume was greatly aided by the professional efforts 
of Kathleen Pericak-Spector, who edited many of the manuscripts, and by 
George Sell, whose helpful guidance even in difficult moments was always in evi
dence. Finally the entire work owes its existence to the good auspices of the Insti
tute for Mathematics and its Applications at the University of Minnesota. 

Minneapolis, January 1986 James Serrin 
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Part I 

Foundations of Thermodynamics 



Chapter 1 
An Outline of Thermodynamical Structure 

J. Serrin 

1.1 Introduction 

It is my purpose to formulate the laws of classical thermodynamics in a clear and 
precise way, sufficiently general to include not only traditional applications to 
reversible and quasi-static processes but also irreversible theories of continuum 
mechanics. I then go on to express the Clausius inequality in a precise form, in
dependent of the structure of any particular system. 

Finally, I shall give a general definition for the concepts of internal energy 
and entropy, and in particular elucidate the logical position of the Clausius
Duhem inequality in continuum mechanics. 

Since the earliest days of thermodynamical science, it has always been recog
nized that the conclusions of the subject were to be obtained deductively from 
general laws. At the same time, in contrast with the case of other sciences, these 
laws have not been expressed in any standard or usual mathematical formalism, 
thus making the deductions appear different from those in other branches of 
physics. Indeed, Buchdahl expressed the situation well when he wrote "There is 
no doubt that part of the difficulty of the classical arguments lies in the subtlety 
with which mathematical notions and ostensibly physical notions are almost in
extricably interwoven". Finally, since the early days of the subject there have 
been repeated calls for rigor in proofs. Thus, along with the discovery of an 
appropriate mathematical structure in which to carry out the deductions, modern 
research is also concerned with the struggle for precision. It is not that nothing 
correct has been available, but rather that rigor has been only occasional and 
confined to special circumstances. These facts themselves contributed to the gen
eral mysteries of the subject, since they caused further confusion between mathe
matical derivations and physical thinking. 

The purpose of this chapter is to provide clarity and understanding for 
phenomenological thermodynamics, not to give "prescriptions" for calculating 
entropy or internal energy. Nevertheless, by introducing precise definitions one 
at least is presented with a definite problem to be solved rather than mystical 
statements about vague operational procedures. The precision which is obtained 
may eventually lead to a revision of present physical beliefs as to the primacy of 
energy and entropy, although for the moment such a view is speculative. 

The basis of thermodynamics in fundamental restrictions about cyclic pro
cesses has also been reexamined in recent years, and alternative points of view are 
discussed in Sect. 1.6. Our presentation is partly motivated by this work, as well 
as by important new researches of Silhavy. In particular, SilhavY's central dis
covery that one can state the general First Law without the intervention of the 
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concept of the mechanical equivalent of heat is crucial to the formulation of the 
First Law given here. 

This latter direction of research has produced as well a generalized version of 
thermodynamics, which gives up the precise equivalence of work and heat but 
retains in all other respects the structure of the subject. Because this aspect of 
modern work is even more speculative, one cannot yet determine its future 
impact, but certainly it leads to interesting possibilities for explaining material 
behavior in non-classical irreversible systems. 

Let me emphasize again that this work is not to be construed as providing 
answers to specific thermal problems. On the contrary, it concerns definite 
formulational questions which have their own implications and interrelations 
with the general subject. 

I wish to thank Professor Kathleen Pericak-Spector for her great help in the 
preparation of this paper. 

1.2 Classical Thermal Structure 

• The subject of thermodynamics seems to present peculiar dif
ficulties. 

A. H. Wilson [1.2) 

Thermodynamics is a subject which has been studied for well over a century. For 
just as long a period there have been, as there still are, skeptics and critics. Kelvin 
[1.3] has written that "A mere quicksand has been given as a foundation for 
thermometry, by building from the beginning on an ideal substance called the 
perfect gas, with none of its properties realised rigorously by any real substance" . 
Cardwell [1.4] states that "The student is usually introduced to the concepts of 
thermodynamics - the Carnot cycle, the principle of reversibility, the idea of 
entropy - in a way which does violence to credibility". There appears to be a 
special difficulty encountered with the second law. Fong [1.5] writes "The second 
law of thermodynamics is the most profound, yet the most elusive, fundamental 
principle in physics .... As a college student, I was dissatisfied with many of the 
arguments involved in classical thermodynamics. It was a great relief to find that 
Max Born and P. W. Bridgman have expressed similar views". 

It will be useful to begin by considering the traditional thermal structure of 
processes. Here the first law is frequently stated as follows: 

I) For a cyclic process of an arbitrary thermal system, the net heat Q supplied 
to the system equals the net work W done by the system, that is 

Correspondingly, the (traditional) second law can be stated analytically in three 
different ways: 
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II) For a cyclic process of a system the sum of the heats supplied divided by 
their absolute temperatures is non-positive: 

i d; ~O. 
IIA) For any process of an isolated system the entropy S must either stay 
fixed or increase, that is 

L1S~O. 

lIB) The absolute temperature T is an integrating divisor for the heat. 

All these statements appear unconnected; moreover, although all are analytical, 
the level of abstraction rises while the level of mathematical clarity falls. The 
Clausius inequality II and the entropy inequality IIA in fact are little more than 
heuristic descriptions, the formulae being mnemonic devices written in suggestive 
symbolism. Also, whether these are axioms or theorems depends on the writer, 
even assuming that the meaning is clarified. Fong has written further that "The 
feeling of uneasiness in thermodynamics is as old as thermodynamics .... The 
real difficulty has always been in the basic concepts. The axiomatists made a very 
great effort to build elaborate and complicated structures. Unfortunately, equal 
care was not taken in selecting satisfactory construction materials, i.e., basic 
concepts" . 

In the following section we shall use the classical notions of heat, work, and 
hotness as primitive elements, and set up a thermodynamical structure in which 
the laws of thermodynamics can be expressed in a clear and concise way. 

That heat is an appropriate and natural primitive for thermodynamics was 
already accepted by Carnot. Its continued validity as a primitive element of ther
modynamical structure is due to the fact that it synthesizes an essential physical 
concept, as well as to its successful use in recent work to unify different consti
tutive theories. Similarly, by taking work as a second primitive not only do we 
follow the classical tradition but at the same time we avoid reference to specific 
mechanical theories which might otherwise reduce the generality of the treat
ment. Finally, "hotness" represents the abstract physical content of ordinary 
temperature readings, and as such again constitutes a reasonable and natural 
primitive element, intuitively understood from the historical beginnings of the 
subject and clearly expressed by a number of writers in the nineteenth century 
(see the quoted paragraph in [1.11], where Mach carefully notes that "tempera
ture is ... nothing else than the characterization, the mark of a hotness level by a 
number"). 
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1.3 The Formal Structure of Thermodynamics 

• Science constantly seeks for separable entities which can either 
be perceived in the outside world, or, more often, have to be 
inferred speculatively in the outside world. 

J. Bronowski [1.6) 

It is convenient to begin our treatment by introducing the concept of hotness, 
which will here be considered a primitive notion within the theory. It is repre
sented by a thermal manifold .if consisting of the set of hotness levels L open to 
material systems. 

At the simplest level, the manifold .if should be a totally ordered set, with the 
order relation >- corresponding to increasing levels of hotness. In particular, 
if L1 and L2 are any two different hotness levels in .if, then either L1 >- L2 or 
L2 -< L1 (but not both). Moreover, if L1 >- L2 and L2 >- L3 then L1 >- L3, that is, 
the order is transitive. The relation L1 >- L2 will be read "L1 is hotter than L2" or 
alternatively "L2 is colder than Lt"; we write also L1 ~ L2 to indicate that either 
L1 >- L2 or L1 = L2. 

A temperature scale is a strictly increasing map from .if into the reals IR. If IfI 
is a temperature scale then IfI(L) is called the temperature of L in the scale 1fI. At 
this stage of the theory there is no reason to prefer anyone temperature scale 
over any other. 

Fundamental to thermodynamical structure is the concept of a thermo
dynamical system, examples of which might be a body of gas or an elastic solid, 
to name two particularly simple cases. Every thermodynamical system !J' comes 
endowed with a set IP (!J') of processes, denoted by P, R, S, etc., which the system 
may undergo, together with a subset IPCyc(!J') of cyclic processes of the system. 1 

To every process PEIP(!J') there correspond real numbers W(P) and Q(P), 
respectively the total work done by the process P and the total heat used by the 
process P (of course, any appropriate and agreed set of units may be used to 
"measure" heat and work, say calories and joules). Formally 

W: IP(!J') --+ IR 

Q : IP (!J')--+ IR . 

We adopt the standard sign convention that W(P) > 0 if work is done by the sys
tem on the exterior environment and W(P) < 0 if the exterior environment does 
work on the system. Similarly Q(P) > 0 if heat is supplied to the system, while 
Q(P) < 0 means that the system has supplied heat to the environment. How the 
functions Wand Q are to be computed for a given system is a constitutive matter 

1 A scientist naturally takes it for granted that a thermodynamic system may move in various ways. 
The mathematician, wishing to quantify this idea, requires a listing (set) of the various things the 
system can do. Some systems may have relatively few available processes - for example, a gas 
confined to a container with a movable piston - but other systems - the body of gas itself, 
thought of as a separate system - may have many more possible motions open to it. In Sect. 1.8 
we shall discuss several examples of thermodynamic systems in detail. 
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for the system, a matter which naturally must be discussed in detail when one 
turns to the specific study of particular systems. Suffice it to say for the moment 
that any material system !J' of physical interest certainly admits a definite value 
for both the total heat and the total work corresponding to each of its processes 
P. 

This is not quite all. In 1875 Gibbs [1.7] had emphasized an important fact: 

"In thermodynamic problems, heat received at one temperature is by no 
means the equivalent of the same amount of heat received at another tem
perature. For example, a supply of a million calories at 1500 is a very dif
ferent thing from supply of a million calories at 500 • Hence, in thermody
namic problems, it is generally necessary to distinguish between the quantities 
of heat received or given out by the body at different temperatures, while as 
far as work is concerned, it is generally sufficient to ascertain the total 
amount performed." 

In order to make the ideas expressed by Gibbs more concrete, we require a 
method for discriminating between the kinds of heat supplied to a system at dif
ferent hotness levels. To do this, we make the basic observation (structural 
axiom) that to every process PelP(!J') and every hotness level Le.Jf there is as
sociated a real number Q(P, L) representing the total or net heat transferred to 
the system during the process P at hotness levels L I not exceeding L. Formally we 
have 

Q: IP(!J') x .Jf --+ IR . 

The function Q(P, .) is called the accumulation junction of the process P. We 
emphasize that it is a mapping from the hotness manifold .Jf into the reals IR. 

The accumulation function expresses analytically the essential properties of 
the relation between heat and hotness for a given process P. For example, during 
a process P the total heat added between the hotness levels L1 and L2 (with 
L 1-<'.. L2 say) is given by Q(P, L 2) - Q(P, L1)' It follows in particular that the 
accumulation function of an isothermal process P, operating at a single hotness 
level Lo, is constant except for a single jump at Lo, the jump being positive if 
Q(P) > 0 and negative if Q(P) < O. Similarly if the system only absorbs heat 
during a process P - but never emits heat - then Q(P, .) is monotonically in
creasing. Finally, if P is adiabatic - that is, exchanges no heat whatsoever with 
its environment - then Q(P, .) == O. 

The reader should note that in actual physical processes it is possible for heat 
to be added at one time at a hotness level Lo, and then to be emitted later in the 
same amount and at the same hotness level. In such a case, the two amounts of 
heat cancel as far as the accumulation function is concerned, a property of this 
function which vitally contributes to its usefulness. Because of this kind of can
cellation it is clear that one could have Q(P, .) == 0 without P being adiabatic, 
even though (as observed above) it is necessarily true that Q(P, .) == 0 when P is 
adiabatic. 

The accumulation function is assumed to have the following structural 
property: 
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1) For every PelP(Y) there exists a lower hotness level, denoted by Lf(P) , or 
simply by L/, such that 

Q(P, L) = 0 when L -< L/ 

and an upper hotness level, denoted by Lu, such that 

Q(P,L) = Q(P) when L>- Lu' 

Condition (1) reflects the fact that, for any given process, heat is supplied to 
or emitted from the system only on some bounded range of hotnesses. In 
particular, if no heat is added at any hotness level below L / then clearly 
Q(P, L) == 0 for L -< L/, while similarly if no heat is added at hotness levels above 
Lu then obviously Q(P,L) == Q(P) (the total heat) when L>- Lu' The levels L/ 
and Lu of course may be different for different processes of the system. For a 
given process P with Q(P, • ) ;i& 0 it is convenient to specify L / and Lu uniquely as 
the highest and lowest levels respectively with the given properties. 

Two further structural assumptions are required, the first guaranteeing a 
minimal degree of regularity for the accumulation function Q(P, .), the second 
providing an axiomatization for the notion of cycle.2 These assumptions can be 
stated as follows: 

2) For every PelP(9') the function Q(P,.) is bounded and right-continuous, 
and has at most a denumerable number of discontinuities. 

3) To every process PelPcyc(9') and to every positive integer m there corre
sponds another process p(m)elPcyc(9'), called the m-times repeated cycle of P, 
with the properties 

W(p(m» = m W(P) 

Q(p(m» = m Q(P) 

Q(p(m),.) = mQ(P,.) . 

We define a thermodynamical universe to be a set 0/1 of thermodynamical 
systems 9'. 

In the sequel we shall need several further structural concepts. A particularly 
valuable idea is that of products of thermodynamical systems. The well-known 
heuristic arguments presented in standard treatments of thermodynamics to 
justify the classical efficiency theorem, arguments which ultimately go back to 
Carnot, involve comparing Carnot cycles for two different systems by forming a 
third (union) system for which the heat and work are found by adding the corre
sponding quantities for the original systems. In effect, the union idea involves 
taking the heat emitted by one body and transferring it by some unspecified 
mechanism, frequently involving a central heat reservoir, directly to a second 
body, with a corresponding reduction of the heat supplied to the second system 
from its other surroundings. These well-known but nevertheless somewhat vague 
ideas require a formal description in order to be useful. 

2 The notion of cycle also can be replaced as primitive by the idea of "follower", see [1.8, 9]. 
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Let 9'1 and 9'2 be a pair of physical systems. The product system, 9'1 (±l9'2, is 
characterized by its processes and their work and heat functions, which are 
required to satisfy the following conditions: 

(i) 1P(9'1 (±l9'2) = 1P(9'1) x 1P(9'2) 

(ii) IP cyc(9'1 (±l9'2) = IP cyc(9'1) x IP cyc(9'2) 

(iii) W'(P1 (±l P2) > 0 if W(P1) + W(P2) > 0 

(iv) Q(P1 (±l P2) < 0 if Q(P1) + Q(P2) < 0 

(v) Q(P1(±lP2'·)~0 if Q(P1,·)+Q(P2,·)~0.3 

Here P1 (±lP2 denotes the union process (in 1P(9'1 (±l9'2» corresponding to the 
pair of processes P1 elP(9'1), P 2elP(9'2) and x denotes the Cartesian product. 

It is open to question whether the concept of a product system should be 
meaningful for all conceivable pairs of thermodynamical systems. To avoid such 
metaphysical points, we shall henceforth restrict the formation of product 
systems only to special and distinguished pairs of system, which will be called 
thermodynamically compatible systems (or simply compatible systems). Thus if 
9'1 and 9'2 are a pair of compatible systems, then the product system 9'1 (±l9'2 is 
itself assumed to be a meaningful thermodynamical system satisfying the laws of 
thermodynamics. 

If ~ is a collection of thermodynamical systems, we shall say that ~ is com
patible with a thermodynamical system !T if and only if !T is in ~ and each 
system 9' in ~ is compatible with !T. 

Finally we shall say that a process P of a thermodynamic system 9' is weakly 
reversible if there exists at least one associated process P' of 9' such that 

(a) W(P I ) = - W(P) 

(b) Q(P' ) = - Q(P) 

(c) Q(P',.) = -Q(P,.) 
(d) p' elPcyc(.9") if PelPcyc(.9"). 

The process P' will be called a weak reversal of P. Note that there is no require
ment that P' be unique for a given reversible process P or that it should follow 
some "path" reverse to the "path" of P; indeed in general this will not be 
the case. 

Note. The formal structure presented here was first developed during the period 
1977 -1979 in papers of the author [1.10,11,12]. A similar structure was found 
slightly later but entirely independently by Silhavy [1.13, 14, 15], Silhav'Y's devel
opment requires considerably deeper topological and measure theoretic con
siderations, however, and accordingly we follow the treatment in [1.10, 11, 12]. 
Another concurrently developed and philosophically related approach to the 
foundations of thermodynamics is due to Feinberg and Lavine. In their treat-

3 This is a weaker formulation of the union axiom than is usually stated. For the strong version of 
the axiom one requires that W(PI Et> P2) = W(PI) + W(P2), and Q(PI Et> P2) = Q(PI ) + Q(P2). 
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ment, beginning in 1978 [1.16] and ultimately published as reference [1.17], it is 
not necessary to include the notion of hotness as an explicit primitive concept, 
though this gain is partially balanced by the need to apply fairly deep measure 
and function theoretic ideas. 

Further bibliographical notes are contained in later sections. These notes are 
intended for accuracy of presentation, but are not necessary for understanding 
the text. 

1.4 The First Law 

• One of the principal objects of theoretical research in any 
department of knowledge is to find the point of view from 
which the subject appears in its greatest simplicity. 

J. W. Gibbs [1.8] 

Even since the work of James Joule in the mid-nineteenth century, a first prin
ciple in thermodynamic theory has been the basic interconvertibility of heat and 
work as forms of energy. If one is to state this principle without recourse to 
special assumptions regarding state spaces and internal energy it appears neces
sary to use, in one way or another, the general concept of cyclic processes. The 
principle of interconvertibility of heat and work then asserts that there exists a 
universal constant J> 0 such that W(P) = J Q(P) for any cyclic process P of 
any physical system. 

A particular feature of this formulation which may strike one as unusual is 
the appearance of the universal constant J. In developing the theory of absolute 
temperature, for example, the existence of this canonical scale is not postulated, 
but rather is derived from more basic laws. It would therefore seem more appro
priate to state the first law without reference to an absolute equivalent of work 
and heat, and to demonstrate within the theory that such an absolute equivalent 
must exist. Once one turns in this direction, however, a number of alternatives 
present themselves, and it is not immediately clear which of these should be taken 
as the fundamental expression of the relation between work and heat. 

The first step in this direction was due to Truesdell [1.19], who set up such an 
axiomatic structure for reversible systems and who proved in this framework the 
existence of internal energy, entropy and an absolute equivalent of work and heat 
for certain two-variable systems. Truesdell and Bharatha [1.20] then derived 
stronger statements from somewhat weaker assumptions of the same kind (see 
also [1.21, 22]). 

Though limited to reversible systems, Truesdell's work nevertheless strikingly 
shows that a fundamental axiom structure of thermodynamics need not involve a 
direct postulation that heat and work are interconvertible. The axioms used by 
Truesdell derive from Carnot's ideas; whether these can lead to a satisfactory 
theory of irreversible systems is uncertain. 

In formulating here an appropriate and general set of laws for thermodynam
ics we shall seek statements which (following the above discussion) do not give a 
priori significance either to a mechanical equivalent of heat or to the existence of 
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a canonical absolute temperature scale. Moreover, the statements should express 
only the most certain and secure of our intuitive beliefs about heat and work, 
should apply to general thermodynamical systems, and above all should yield a 
comprehensive and satisfying theory. In particular if we give some thought to the 
gist of the first law, namely that work can only be produced at the expense of 
heat energy, we are led to the following formulation, due to Silhavy. 

Weak First Law. If W(P) > 0 for a cyclic process P of a thermodynamical system 
Yo then also Q(P) > O. 

The weak first law formalizes the idea that positive work can be obtained 
from a cyclically operating process only when a positive total amount of heat is 
supplied to the system during the process. While representing a generally weaker 
requirement than the strict interconvertibility of heat and work, it nevertheless 
carries great conviction and provides all the normal conclusions drawn from the 
stronger statement. Of course the weak first law, as stated above, is logically con
sistent with the strict interconvertibility of work and heat in the sense that if the 
latter is asserted to hold, then the weak first law is an obvious consequence. 

To obtain strict interconvertibility, certainly a desideratum, we shall also con
sider a stronger version of the first law, again due to SilhavY. 

Strong First Law. For a cyclic process P of a thermodynamical system !I, the 
conditions W(P) > 0 and Q(P) > 0 are equivalent. 

The principal goal of elementary thermodynamics is to provide analytic tools 
for studying thermal systems. We shall say that a thermodynamic system fl is a 
reversible heat engine if there exists a weakly reversible cyclic process R of fl 
such that W(R) '*' 0.4 The following analytic result then follows as a 
demonstrated consequence of the Weak First Law. 

The Energy Inequality. Let 0/./ be a thermodynamical universe which is com
patible with a reversible heat engine. Then there exists a unique universal con
stant ,1> 0 such that for every cyclic process P of every system !I in 0/./ we have 
W(P) :S;;fQ(P). 

Proof of the Energy Inequality. Let fl be a reversible heat engine which is com
patible with 0/./, and let R be a reversible cyclic process of fl with W(R) '*' O. We 
may assume that W(R) > 0, if necessary by interchanging the roles of R and its 
associated reversal process R'. By the Weak First Law, it follows that Q(R) > O. 
We may thus define the positive quantity 

J= W(R) . 
Q(R) 

Let P be a cyclic process of an arbitrary system !I in 0/./, and suppose for 
contradiction that 

4 An example of such a system is a perfect gas (see footnote 8). 
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W(P) > JQ(P) . 

Let p(rn) denote the cycle P repeated m times (see Sect. 1.3) and R (n) the cycle 
R repeated n times, and consider the joint process p(rn) Ef) R (rn) of the system 
Y'Ef) ~. By (iii) in Sect. 1.3 

w(p(rn) Ef) R (n» > 0 if W(p(rn» + W(R (n» = m W(P) + n W(R) > 0 

and similarly by (iv) 

Q(p(rn) Ef) R (n» < 0 if Q(p(rn» + Q(R (n» = m Q(P) +n Q(R) < 0 . 

Now define R(-n) when n>O to be the cycle R' repeated n times, that is 
R(-n)=R,(n). Then 

W(R(-n» = W(Rdn» = n W(R') = - n W(R) 

and similarly Q(R(-n» = -nQ(R). It follows that in the above inequalities n 
can be allowed to take negative as well as positive integer values. 

Consider the vectors A, Bin 1R2 given by 

A = W(P)i+ W(R)j, B = JQ(P)i+ JQ(R)j. 

Their second components are equal and positive, and their first components 
satisfy W(P) > JQ(P). Hence they bear the geometric relationship shown 
Fig. 1.1. 

FI,.I.l 

Consequently there exists a vector C = m i + nj, with m and n integers, m > 0, 
n '* 0, such that 

o <A· C= m W(P)+nW(R) , 

o >B · C= mJQ(P)+nJQ(R).5 

Thus W(p(rn) Ef) R (n» > 0 and yet Q(p(rn) Ef) R (n» < O. This contradicts the First 
Law since p(rn) Ef) R (n) is a cyclic process of the thermodynamic system Y'Ef) ~ by 
(ii). This proves the condition W(P) ~ JQ(P). 

5 Indeed any lattice point in the shaded area defined by vectors respectively orthogonal to A and B 
suffices for the endpoint of C. This elegant geometric construction of the pair (m, n) is due to 
Robert Hummel. 
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To prove that J is unique, suppose that j is a second constant with the 
property that 

W(P) ~jQ(P) 

for all cyclic processes P of systems !I in 011. We choose for P the special cyclic 
processes R, R' of Pl. Then, in particular, 

W(R) ~jQ(R) , W(R') ~jQ(R') . 

On the other hand, by the properties of Rand R' we have 

W(R) W(R') 
Q(R) = Q(R') = f ' 

where Q(R) > 0, Q(R') < O. Thus the preceding two inequalities imply both 
f ~ j and j~ f· Hence f = j as required. 

The energy inequality of course applies only to thermodynamic systems !I in 
some universe CfI which is compatible with Pl. Since we may assume, realistically, 
that any system !I of interest belongs to such a universe it follows that the 
relation W(P) ~ fQ(P) can be presumed to hold for cyclic processes of arbitrary 
thermodynamic systems. The constant f is called the mechanical equivalent oj 
heat. 

When the Strong First Law is posited instead of the Weak Law, and the 
strong union axiom is assumed (see footnote 3), a similar proof yields the conclu-
sion 

W(P) = fQ(P) 

for all cyclic processes P of systems !I in the universe CfI. That is, the Strong First 
Law is equivalent to the interconvertibility of heat and work for arbitrary cyclic 
processes. 

In what follows, if a conclusion is valid whenever either the Weak or Strong 
First Law is assumed to hold, we shall simply say that it follows from the "First 
Law". If the Strong First Law is necessary to obtain the conclusion we shall 
remark this separately. 

Note. Both the weak and strong versions of the First Law were given by Silhavy 
in his fundamental paper [1.13], though in his context some additional topolog
ical considerations appear which are extraneous to our purposes. Silhavy more
over does not emphasize the independent importance of these two versions, as we 
do here: see [1.13], Part II, Theorem 2.2.1; [1.14], Part 1, Sects. 4.6, 4.7; and 
[1.14], Part II, Section 4.12. 

The energy inequality, as a possible axiomatic expression of the first law, was 
first noted by Fosdick and the author [1.23]. The inequality, as a theorem based 
on the Weak First Law, is due to Silhavy ([1.13], Part II, Sect. 2.1). The present 
proof of the energy inequality is simpler than that given in [1.13], because of the 
different underlying thermodynamic structure used here. 
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1.5 The Second Law 
• The scientist must order; science is made out of facts as a house 

out of stones, but an accumulation of facts is no more a science 
than a heap of stones is a house. 

H. Poincare 

The second law of thermodynamics involves more subtle ideas than the first since 
it deals with the quality of heat at different hotness levels. Moreover, the physical 
notions which originally motivated the various nineteenth century statements of 
the second law are fairly obscure, requiring some effort to phrase clearly. 

The first essentially correct formulation of the second law is due to Rudolf 
Clausius. Here is his original formulation of 1850, as paraphrased by Kelvin 
[1.24]: 

It is impossible for a self-acting machine, unaided by any external agency, to 
convey heat from one body to another at a higher temperature. 

Later Clausius [1.25] restated this in the form: 

A passage of heat from a colder to a hotter body cannot take place without 
compensation. 

While this is not at all precisely stated, we may consider it to mean that if a cyclic 
process absorbs heat at a hotness level Lo and emits heat at a hotness level L1 >- Lo 
then necessarily W(P) < O. In terms of the accumulation function Q(P, .) this 
takes the form 

Second Law (Clausius). The accumulation function of a cyclic process P cannot 
have a single positive jump followed by a single negative jump, unless W(P) < O. 

That is, the accumulation function of a cyclic process with W(P) ~ 0 cannot 
have any of the forms shown: 

L I I ~ 

This version of the second law is not easily applicable to the case of general 
thermal processes without the further intervention of sophisticated topological 
notions. On the other hand, a slightly stronger formulation of essentially the 
same idea can be given which avoids this difficulty. In particular we observe that 
when W(P) ~ 0 the third picture above cannot apply because of the First Law. 
Now, if graphs of the first two types are disallowed by Clausius's version of the 
second law, it seems equally the case that no linear combination of such graphs 
could occur as the accumulation function of a cyclic process with W(P) ~ O. 
Indeed, such an accumulation function would represent a process which raises 
various low temperature heat supplies to various higher temperatures, without 
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the need of doing work on the system. In the same way, any closure of such linear 
combinations would also appear impossible for cyclic processes (by continuity 
considerations) at least if W(P) > O. But the set of such closures coincides with 
the set of non-negative accumulation functions. We are thus led to the following 
general version of the second law, proposed first by Serrin. 

Second Law. The condition Q(P, .) ~ 0 can occur for a cyclic process P of a ther
modynamical system !/ only in the exceptional case when Q(P, .) == O. 

The second law as stated obviously implies the Clausius Law. Its plausibility 
further derives from the physical idea that should heat be so strongly added to a 
system that the accumulation function is non-negative at every hotness level, and 
positive at least at some hotness levels, then the system must necessarily move 
away from its initial condition. 

The reader may observe an interesting duality between the First and Second 
Laws, namely that when W(P) > 0 for a cyclic process P the former requires a 
positive value for Q(P) while the latter implies a negative value for Q(P, .) at 
some hotness level. This result can be stated formally as follows. 

Combined Laws. For any cyclic process P with W(P) > 0 there holds 

Q(P,L) >0 

Q(P,L) <0 

for some 

for some 

The Second Law is an intrinsic statement about the relation between heat and 
hotness in cyclic processes. In parallel with the discussion of the First Law in the 
previous section, the Second Law also has an equivalent analytical formulation 
of great usefulness. We state this as follows. 

The Accumulation Theorem. Let t¥f be a thermodynamical universe which is 
thermodynamically compatible with a perfect gas r§. Then there exists an 
(absolute) temperature scale t on the hotness manifold.Yl', with tV!,) == IR+, 
such that for every cyclic process P of every thermodynamic system !/ in t¥f we 
have 

COs Q(P,L) dT~O 
o T2 ""', 

where L = l (T) is the hotness level associated with the temperature T in the scale 
t. Any temperature scale t with the above property either agrees with the perfect 
gas scale of r§ or is a positive constant multiple of this scale. 

The accumulation theorem immediately accomplishes two purposes: It 
establishes the concept of absolute temperature without ambiguity, and it charac
terizes once and for all the allowable behavior of the accumulation function of 
any cyclic process. 

Indeed the accumulation theorem implies the Second Law, for if Q(P, .) ~ 0 
in a cyclic process P then the accumulation integral above will of necessity be 
positive unless Q(P, .) == o. 
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The reader should also observe that the accumulation integral is well-defined 
and finite, as follows easily from properties (1) and (2) of the accumulation 
function given in Sect. 1.3. 

The accumulation inequality is a generalization of the Clausius inequality 
noted in Sect. 1.2. In particular, should the function Q(P, .) be continuously dif
ferentable with respect to T, then an integration by parts shows that 

j Q(P, L) dT = j dQ(P, L) dT, 
o T2 0 dT T 

the latter integral representing the "sum" of the heats added divided by their ab
solute temperatures.6 The advantage of the accumulation integral compared to 
the Clausius integral is that it can be expressed analytically in terms of clearly for
mulated primitive concepts, and at the same time is applicable to a broader class 
of processes since its existence relies only on the structural properties (1) and (2) 
of the accumulation function. 

Proof of the Accumulation Theorem. We first define the required temperature 
scale t. By hypothesis the universe if! is compatible with a perfect gas f§. Let 
():.1f--+ IR+ be the gas scale defined by f§, by Charles' Law an invertible mapping 
of .1f onto IR +. We shall prove below that () is a temperature scale, that is, that () 
is strictly monotone increasing.· Assuming this for the moment, we name this 
scale t and shall show that it suffices for the validity of the accumulation in
equality. 

Thus suppose for contradiction that in the scale tthere is some cyclic process 
C of some system Y in if! such that 

j Q(C,L) dT>O. 
o T2 

Our purpose will be to construct an auxiliary cyclic process of f§ which, when 
considered together with the cyclic process C, provides a violation of the second 
law. To do this we state the following 

Principal Lemma. There is a cyclic process G of f§ with the properties 

W(G) + W(C) > 0, Q(G, .)+ Q(C,,) ~ 0.7 

6 More generally, for the analytically minded reader, should Q(P,·) be of bounded variation then 
we can use Stieltjes integration to write 

I Q(P,L) dT= I dQ(P,L) . 
o T2 0 T 

7 For a proof ofthis lemma see Serrin [1.12] or Coleman, Owen and Serrin [1.32]. In these papers it 
is also shown how to replace the perfect gas C§ in the proof by less special model materials - es
sentially those with a suitably rich supply of Carnot cycles - thus avoiding Kelvin's criticism (at 
the expense, however, of a longer proof). 

In standard thermodynamic arguments results having essentially the same physical content as 
the Principal Lemma are usually taken for granted. 
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Using this result, consider the union process C Ef) G of the thermodynamic 
system .9'Ef) C§. Conditions (iii) and (v) in Sect. 1.3 imply that W(C Ef) G) > 0 and 
Q( C Ef) G, 0) ~ 0 respectively. By (ii) the process C Ef) G is cyclic. Hence from the 
First Law we have Q(CEf) G) >0, while by the Second Law Q(CEf)G, 0) =0. 
This is impossible, however, in view of the second part of property (1) of the ac
cumulation function. Consequently we have established that the temperature 
scale t = 8 serves as an absolute temperature in which the accumulation in
equality is valid. 

Now assume that T is a another scale such that 

j Q(P;L) dT~O, L=i(n, 
o T 

for cyclic processes. We must show that Tis a constant multiple of the gas scale 
(J. To this end let us choose for P in the preceding inequality a Carnot cycle R of 
the perfect gas C§. Since R is reversible it follows easily that 

j Q(R,L) dT=O, L=i(n. 
o T2 

(cf. also Sect. 1.7). Now by well known properties of Carnot cycles for perfect 
gases it is clear that there is such a cycle R operating between any two hotness 
levels Ll and L2 (L 1 ~ L2) and that for such a cycleS 

Q2 =~ 
Ql (Jl 

where Q2 is the heat absorbed at L2, Ql is the heat emitted at Lb and (Jb 82 are 
the gas temperatures at Lt and L2• The accumulation function for R then has the 
form 

if 
if 
if 

L~Ll 

Ll~ L~L2 
L2~L . 

Consequently the integral relation above (in the scale f) yields the equality 

_Ql(_1 __ 1 ) + (Q2-Qt)_1 =0 
Tl T2 T2 

where Tl and T2 are the absolute temperature of Ll and L2 in the scale f. 
Rearranging this result gives 

8 The argument for this is briefly as follows. The heat form (see Sect. 1.8) of a perfect gas C§ is given 
by 

q = du+pdv 

where u = u(8) and p = R8/v. Hence 

q/8 = d(R log v + f du/8) , 

an exact differential, from which the structure of the Carnot cycles of C§ is easily deduced. 
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whence 

T1 01 

By fixing L1 and varying L2 it is now clear that t = const O. 
We observe that if L2,>- L1 as above, then necessarily Q2> Q1 - for other

wise the Second Law would be violated by the reverse of the Carnot cycle in ques
tion. Hence in turn O2 > 01 , showing that 0 is strictly increasing and thus complet
ing the proof of the accumulation theorem. 

From the proof it follows that we can physically recognize the direction of 
increasing hotness by means of a perfect gas thermometer. 

Another method to determine this direction involves the use of general Car
not cycles; if a Carnot cycle operates between hotness levels L1 and L2, absorbing 
heat at L2 and emitting heat at L 1, and does positive work, then necessarily 
L1 -< L2. Indeed, if this were not so then (since Q(P) > 0 by the First Law) the ac
cumulation function Q(P, .) for the process would have the graph shown: 

Q 

But this is impossible according to the Second Law, and so L1 -< L2. 
The analytical results which we have obtained so far provide a rigorous 

setting for phenomenological thermodynamics. In particular, the Weak First 
Law takes the analytical form 

W(P) ~fQ(P) for all P e IP eye (.9") , 

the Strong First Law the form 

W(P) =fQ(P) for all Pe IP eyee9") , 

and the Second Law the form 

J Q(P,L) dT~ 0 
o T2 

for all P e IP eye (.9") . 

Here !/ of course refers to an arbitrary thermodynamic system. 
For convenience in the sequel we shall suppose that the units used to measure 

heat are normalized so that the constant f has the value 1. 
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Appendix to Sect. 1.5: The Direction of Increasing Hotness. From the point of 
view of foundational axiomatics one might wish to weaken the hypotheses 
defining the hotness manifold, giving up the condition that there is a 
distinguished direction of increasing hotness and retaining only the one 
dimensional topological structure. If this is done, however, several unavoidable 
consequences ensue, each having definite costs. To begin with, one must give up 
the possibility of any second law reflecting Clausius' idea that cyclic processes 
cannot raise hotness levels without the expenditure of work for if there is no a 
priori direction of increasing hotness such a law would lose its very meaning. But 
if one cannot use a Clausius-type second law then reliance must be placed on a 
second law of Kelvin's form. As experience has shown, however, this in turn 
forces the introduction of fairly deep topological considerations into the 
fundamental structure in order to obtain a useful theory. 

In any case, the physically relevant issue in a discussion of increasing hotness 
levels is not whether such a direction exists. Indeed we are convinced by 
experience that there is such a direction, and we would be shocked by a theory 
which neither supposed nor proved this fact. From a physical point of view, 
rather, what is important is whether a theory can provide some experimental or 
observational method for determining this direction. That is, even though we 
believe (by sensation) that there is a direction of increasing hotness, we require an 
objective method for recognizing it and, even more, a method for distinguishing 
which of two hotness levels is the hotter one. But all modern theories do provide 
such a method; the theory in this paper, for example, shows that a perfect gas 
thermometer does the job, or alternately, at a deeper level, the use of Carnot 
cycles as discussed above. 

The principal difference at this level between a theory which assumes an a 
priori direction and one which does not, is that in the former type a model 
material (such as a perfect gas) can be proved to be an empirical thermometer, 
while in the latter some model material must be endowed with a directional 
character - after which a direction of increasing hotness can be proved to exist 
on the basis of the fundamental structure. 

Note. The Second Law and the Accumulation Theorem in the form stated here 
appeared first in references [1.10, 1.11]. The proof of the Accumulation 
Theorem was originally given in [1.12]. For other related points of view, see [1.8, 
9,13-17]. 

1.6 State Structure and Potentials 

In order to provide a concrete framework for the notions of internal energy and 
entropy it is necessary to introduce the idea of a state space, and an associated 
state structure. At the simplest (and most general) level this may be defined as 
follows. 

A state structure for a system !I' consists of a set E, whose elements are called 
states of the system, and a corresponding family of processes IPE(!I') C IP(!I'), 
with each process PeIPE(!I') having a well-defined initial state PieE and final 
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state Pf E17. 9 Moreover if P is a cyclic process in 1P1'(Y') then Pi = Pf' [In practice, 
a state structure should also be compatible with the notion of a process P follow
ing another process P', and should include in this case the axiom P; = PI' Sim
ilarly, the structure may include (at least in some weak sense) the intuitive notion 
that if two processes P, P' satisfy Pf = Pi then P' can follow P.] 

We shall say that a system !/ has an internal energy corresponding to the state 
structure (17, 1P1') if there exists a function 

such that 
U: 17-+ IR 

L1 U ~ Q(P) - W(P) 

for each PelPl'(!/)' Here L1U denotes the difference between U evaluated at the 
final state and the initial state of P, that is 

L1 U == U(Pf ) - U(P;) . 

Roughly speaking, then, a function U is an internal energy for a system if it is a 
lower potential for the difference Q(P) - W(P). 

If PElPcyc(!/)nlPl'(!/) then necessarily P;=Pfand in turn L1U=O. Con
sequently we recover the energy inequality 

W(P) ~ Q(P) 

from the above formula, this in fact being the motivation for the definition of 
internal energy. 

In parallel with the Strong First Law, we may also introduce the idea of a 
strong internal energy, in which the inequality L1U ~ Q(P) - W(P) is replaced by 
the stronger requirement 

L1U= Q(P)- W(P). 

Turning to the Second Law it is natural to proceed in a similar way, but now 
based on the accumulation inequality. For convenience in formulation, we 
introduce the abbreviation A (P) for the integral appearing in the accumulation 
theorem; thus 

A(P) == J Q(P,L) dT; 
o T2 

naturally, once one has a definite absolute temperature scale in hand one can 
define A (P) whether or not the process P is cyclic. This being understood, we 
shall say that a system !/ has an entropy corresponding to the state structure 
(I, IPE) if there exists a function 

S:I-+IR 
such that 

L1S ~A(P) 

9 Formally, the assignment of initial and final states can be considered as a pair of mappings 

i: IPI (9') --+.E, i(P) = Pi 

f: IP I( 9') --+.E , f(P) = Pf . 
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for each PeIPI (.9'). To express this in succinct form, one can say that entropy is 
an upper potential for the accumulation integral A (P). 

If PelPcyc(.9') n IPI (.9') then of course L1 S = 0 so that we recover the cyclic 
condition 

A(P) ~O 

stated in the accumulation theorem. Another case of interest is that of an 
adiabatic process, for which Q(P,.) ;;;; O. In this situation one has A (P) = 0, 
whence in turn the entropy hypothesis yields 

L1S~O , 

the condition IIA noted at the beginning of the paper. Other direct consequences 
of the formulas L1 U ~ Q - W, L1 S ~ A, including the classical efficiency theorem 
of Kelvin, are noted in my appended remarks to Professor Truesdell's paper fol
lowing in this volume. 

A system !/ is said to satisfy the energy-entropy hypothesis for a state struc
ture if there exists an internal energy function and an entropy function corre
sponding to this structure. 

It is one of the principal conclusions of elementary thermodynamics that 
simple reversible systems necessarily possess both an entropy and an internal 
energy. As we shall see in Sect. 1.8, this result is an easy, almost immediate con
sequence of the general structure exhibited above. 10 

On the other hand, reversible systems by no means exhaust the range of 
thermodynamic interest: it is not self-evident that a given system, with its given 
preassigned structure, will possess either an entropy or an internal energy. Thus 
the construction of an appropriate state structure becomes a matter of para
mount importance. The state space I must be large enough to accommodate a 
non-trivial set of processes IPI' but at the same time not so large as to be uninter
esting or carry superfluous information. Different process classes IPI may be of 
importance for different purposes, and accordingly a given system might have 
more than one useful state structure. Finally a state structure can serve not only 
as a vehicle for the concept of internal energy and entropy, but also as a way of 
formulating the constitutive structure of the system itself, that is, the dependence 
of working and heating in the system upon changes of state. This idea, of funda-

10 Historically, the existence of internal energy for reversible systems is due to Clausius for the 
special case of a perfect gas and to Kelvin for two-variable reversible materials (see [1.34], p. 227). 
Kelvin's argument applies unchanged to n-variable reversible systems, and is essentially the one 
given below in Sect. 1.8. The first derivation of existence of entropy for reversible systems is due to 
Rankine (see [1.34], pp.215, 333), though his derivation was neither particularly clear nor 
applicable beyond two dimensional state spaces. A rigorous derivation (of the two dimensional 
result) was indicated by Reech a little later, and carried to its conclusion by Truesdell and 
Bharatha [1.20]. 

A number of different methods have since been devised for extending the Rankine-Reech 
theorem to n-variable state spaces, the most recent being due to Pitteri [1.29] on the basis of the 
axiomatic structure introduced in [1.27]. The simple and direct method here adopted in Sect. 1.8 
appeared first in [1.11]. 

A thorough discussion and evaluation of the various proofs now available, their interrelation 
and their advantages and disadvantages, would be an important contribution to the subject 
though no light task. 
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mental importance to the discussion of actual systems, can be given a strict 
formal development as we shall see in Sect. 1.8. 

For any particular state structure (E, IPE) the existence of internal energy and 
entropy is a desideratum. In addition, it is equally important to know whether 
they are unique, or under what circumstances one can expect this to be the case. 
A partial answer to the latter question is contained in the theorem at the end of 
Sect. 1.7. 

All these issues are closely related to the First and Second Laws, as is of 
course apparent. Not so apparent is the specific role played by cycles. If the class 
IPE(.9') contains a rich supply of cycles, then the cyclic laws alone may suffice to 
settle the question of existence and uniqueness. But in other cases, as emphasized 
in the important work of Day [1.26] and Coleman and Owen [1.27 - 31], proving 
the existence of entropy can require more subtle versions of the Second Law in 
which statements are made about non-cyclic as well as cyclic processes. Further 
work in this direction, due to Coleman, Owen, and Serrin [1.32], Owen [1.33], 
and Silhavy, is discussed elsewhere in this volume. 

Finally, in his dissertion Ricou [1.8] has generalized these ideas to obtain the 
remarkable result that if a state structure is deterministic for a given system (that 
is, if the condition PI = PI implies that the process P' can follow P) then the 
system must have an internal energy and an entropy. 

1.7 Reversible Processes 

Recall that a process P of a thermodynamic system !J' is weakly reversible if there 
exists an associated process P' of !J' such that 

(a) W(P I ) = - W(P) 

(b) Q(P I ) = - Q(P) 
(c) Q(P',.) = -Q(P,·) 

(d) P' EIPCYc(.9') if PElPcyc(.9'). 

Suppose in addition that P, P' E IP I(.9') for some state structure (.E, IP I) and that 

(e) PI = PI' P; = Pi' 

Then the process is called strongly reversible with respect to the state structure. 
Now consider the energy inequality for a weakly reversible cyclic process. We 

have first of all the inequality W(P) ~ Q(P). From (a) and (b) and the energy in
equality for the reversal process P' it follows that W(P) ~ Q(P). Hence, for any 
cyclic weakly reversible process P of a thermodynamical system there holds 

W(P) = Q(P) , 

That is, for such processes, heat and work are strictly interconvertible - even 
without the intervention of the Strong First Law! 
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Next suppose that P is strongly reversible for a state structure (.E, IPI ) in which 
!I has an internal energy function U. Then, proceeding exactly as before, we ob
tain the conclusion 

LlU = Q(P)- W(P) , 

one of the standard results of classical thermodynamics, again proved without 
recourse to the Strong First Law. 

We turn next to the accumulation theorem. If P is a weakly reversible cyclic 
process then 

j Q(P,L) dT~ 0 and so 
o T2 

j Q(P~L) dT~O. 
o T 

But the second integral must also be non-positive by the accumulation theorem. 
Therefore, for any cyclic weakly reversible process P of any thermodynamic sys
tem !I we have 

A(P) = j Q(P,L) dT= O. 
o T2 

Similarly if the process P is strongly reversible for a state structure in which !I 
has an entropy, we obtain the conclusion 

LlS =A(P). 

The above results immediately imply the following interesting 

Theorem. Let !I be a thermodynamic system satisfying the energy-entropy hypo
thesis for a state structure (.E, IPI ). Suppose that there exists a "base" state O'oE.E 

such that to each O'E.E there corresponds at least one strongly reversible process P 
with initial state 0'0 and final state 0'. Then both the internal energy and the 
entropy are unique up to arbitrary constants (namely the values U(O'o) and 
S(O'o»' 

This result supplies the underlying logic for textbook statements that entropy 
can be calculated by means of reversible processes joining states in question. (Un
fortunately, the textbook derivations are not formulated with any degree of ex
plicitness, which can mislead readers who fail to notice the qualifications that are 
an integral part of the theorem.) 

Partial converses of this result, and extensions to quasi-reversible processes, 
have been given by Coleman and Owen [1.27], Feinberg and Lavine [1.17], and 
by Ricou and Serrin. 
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1.8 Special Systems 

• If we review the classical treatments, we see that they did not 
distinguish between the general laws of thermodynamics and 
the constitutive equations defining particular thermodynamic 
bodies. 

C. Truesdell [1.351 

It is of considerable interest to apply the preceding ideas to several concrete 
systems in order to see the advantages of a rigorous approach to thermodynamic 
structure. We shall consider particularly the classical reversible systems of 
standard thermodynamics, and the structure of classical single constituent con
tinuum mechanics. As has always been apparent in the thermodynamic litera
ture, a clear understanding of these cases, especially the first, is crucial to the 
development of the subject. Indeed, in light of these examples it becomes pos
sible to give a strict definition of the notion of constitutive structure in thermo
dynamics. This we do at the end of the section. 

As has already been emphasized, our main purpose is to describe a general 
thermodynamical structure, rather than to apply this to particular systems. 
Accordingly it almost goes without saying that the following discussions will be 
brief and given without accompanying motivations, and that they will leave more 
specialized considerations aside. 

1.8.1 Reversible Systems 

A classical reversible system !/ is, in the first instance, endowed with a finite 
dimensional state space I(a connected open subset of IRk) with the property that 
each process PelP(!/) has a unique corresponding path in I, 

r: J-+I, 

where J = [a, b] is a closed time interval and the function t -+ r(t) is piecewise 
smooth. 11 Naturally the path of any cyclic process is assumed to be closed, that is 
r(a) = r(b). 

It is assumed that there are two differential forms w and q (with continuous 
coefficients) defined on I, with the property that 

W(P) = J w , Q(P) = J q , 
r r 

r being the path associated with P. 
The accumulation function Q(P, .) is determined through the assignment of a 

hotness level .9"(u) to each state ueI, that is 

.9": I-+.1f . 

Assuming that ft is continuous, we then put 

11 We do not study quasi-static processes, though in many ways their theory is parallel or even 
identical. 
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Q(P,L) = I q 
r(L) 

where F(L) denotes that "part" of the path rwhere the associated hotness level 
fl does not exceed L (i.e. that part of the path where fl 0 r""L). 

To complete the formulation of a reversible system we assume that to each 
path rthere corresponds at least one process P with the path r, and in particular 
that this process is cyclic if ris closed. Note, from a mathematical point of view, 
that the association from processes to paths is onto but not necessarily one-to
one. 

The system can be given a "natural" state structure, with IPx(9') == 1P(9'), by 
defining the initial and final states of any process in the obvious way, 

Pi = F(a) , PI = F(b) . 

This being the case, it is easy to see that every process PelP(9') is strongly revers
ible. 12 It follows moreover from the results of the preceding section that, pro
vided an entropy and an internal energy exist for Y, they are unique up to addi
tive constants and satisfy the conditions 

LlU = Q{P) - W{P) , LI S = A{P) . 

Of course this is not the whole story: we must still deal with the question of 
existence of U and S as well as their calculation in terms of the assigned structure 
of the system, namely the differential forms q and w and the hotness function fl. 

The case of internal energy is fairly simple. By the First Law and reversibility 
there holds, for all cyclic processes P, 

Q{P) = W(P) 

(recall J = 1). Choosing an arbitrary closed piecewise smooth path r, an~ lettin~ 
P be some associated cyclic process, it follows from the formulas for Q and W 
that 

Jq=Jw. 
r r 

The differential form q - w is thus exact, and accordingly there exists a continu
ously differentable function U such that 

dU=q-w. 

In turn, for any process P of Y we have 

Q{P) - W{P) = J q - J w = J dU = LI U , 
r r r 

proving that U is an internal energy for Y. 

12 It is for this reason that systems of the kind under discussion are called reversible. The reader 
should bear in mind that while every process of a reversible system is strongly reversible, neverthe
less not every reversible process belongs to a reversible system. 
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The procedure to establish existence of entropy is more involved, but uses 
similar ideas (see [1.11]). We observe that, for any process P of the system Y, 

A (P) = J ~ { J q} dT . 
o T r(L) 

To this iterated integration we apply Fubini's theorem, noting that the inner 
integral can be expressed as a time integration over the set of values tel where 
(t 0 !f' 0 I) (t) ~ T. Thus we find 

A(P) = J~, 
rT 

where T = t 0 !f' is the absolute temperature associated with a state point a. 
Since A (P) = 0 for any cyclic process, by virtue of the Second Law and 
reversibility (note the closely parallel treatment ofthe First Law), it follows as be
fore that the differential form q/T is exact. Hence there exists an entropy func
tion S: ~ --+ IR such that 

q 
dS=-. 

T 

This result is the precise formulation of condition lIB given at the beginning of 
the paper (Sect. 1.2). 

From the above discussion, it is clear that lIB is not a general principle of ther
modynamics but rather a special relation holding for a restricted class of systems, 
a fact which cannot be too strongly emphasized. To be fair however, one should 
add that lIB (namely, the fact that the absolute temperature is an integrating 
divisor for the heat form of a reversible system) does express fully the content of 
the second law for reversible systems. To see this, consider a cyclic process P of a 
reversible system. Assuming that q/T is exact we see that Jr q/T = 0 and in turn 
A (P) = 0. Thus if Q(P, .) ~ 0 then necessarily Q(P, .) = 0, as required. 

In order to calculate the internal energy and entropy of a reversible system in 
terms of its characteristic differential forms q and w one can use the conditions 

dU=q-w, TdS=q 

derived above. Moreover, as demonstrated in every text, these conditions yield 
those numerous interrelations between q, wand T which are the lifeblood of the 
classical subject. 

1.8.2 Continuous Media 

In continuum theory the basic assumption is that hotness is a well-defined field 
concept. Let the motion and the hotness of a body (or system) then be defined by 

x = X(X, t): PJ xl --+ 1R3 

L = )"(X, t): PJ xl -+.?If , 
(*) 
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where for each tel the mapping x = x(x, t) is one-to-one and smooth from the 
reference configuration Pi into 1R3. The reference configuration is itself a closed 
smoothly bounded subset of 1R3. 

The configuration comes equipped with a reference density (1o: Pi --+ IR+, 
whence the mass density at any time t can be defined by 

(I(X, t) = (lo(X) , 
detF(X, t) 

where 
F(X, t) ~ gradX ~ (:;) 

is the Jacobian of x; here it is natural to require that detF > O. 
The velocity vector v = oXlot is a mapping from Pi x I into 1R3. Define 

Y (t) = X( Pi, t) to be the point set in 1R3 occupied by the body at time t and let 
o Y (t)denote its boundary. If/is the body force vector per unit mass, r the sur
face force vector, r the body rate of heat supply per unit mass, h the surface rate 
of heat supply, and 

YL(t) = {xeY(t) I A (x, t) ~ L}, OL Y(t) = {xeoY(t) IA(X, t) ~ L}, 

then (see [1.10, 15]) we have the following expressions for the work, heat and 
accumulation functions of the process P given by the motion (*): 

W(P) = - S { S (1/' v dx + Sr· v dS} dt 
I o9'(t) 809'(1) 

Q(P)=S{S(lrdx+ S hdS}dt (**) 
I o9'(t) 809'(t) 

Q(P,L)=S{ S (lrdx+ S hdS}dt. 
I 09' L (I) 8L o9'(t) 

Here it is of course assumed that the integrands are bounded and continuous as 
functions of x and t. An easy calculation using Fubini's theorem now shows that 
additionally 

A(P) = S{ J !!!....dx+ J ~dS}dt 
I o9'(t) T 809'(1) T 

where T = t 0 A: Pi x 1--+ IR + is the absolute temperature associated with the 
motion. 

The energy-entropy hypothesis requires somewhat more care in a dynamical 
setting because of the presence of kinetic energy. While this quantity could be 
treated formally as part of the internal energy, it is in fact more convenient to dis
tinguish between these types of energy and to write the energy-entropy hypothesis 
in the form 

LI(U+K) ~ Q(P)- W(P) 

LIS ~A(P) , 
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where K denotes the kinetic energy, given by the relation 

K(t) = J _1 (!v 2dx. 
Y(t) 2 

When the Strong First Law is assumed, one naturally should replace the first 
inequality above by equality, e.g. 

LI(U+K) = Q(P)- W(P) . 

Finally, it should be noted that no particular state structure is placed in evidence, 
since we wish to maintain a maximum generality. 

The classical energy balance equation and the Clausius-Duhem inequality are 
closely related to the above considerations. In particular, let us assume further 
that a "local" state can be associated with each material particle in the body, 
during the motion, and that an internal energy density e and entropy density 11 
exist, functionally dependent on the local state. The total internal energy and 
entropy at any instant t are then given by 

U(t) = J (!e dx , 
Y(t) 

s(t) = J (!11 dx . 
Y(t) 

The preceding inequalities now take the form 

[U(b) + K(b)] - [U(a) + K(a)] ~ Q(P) - W(P) 

S(b)-S(a) ~A(P) . 

In general neither of the functions U(t) or S(t) can be presumed continuously 
differentiable. If this assumption is made, however, then assuming that the 
process P induces subprocesses corresponding to arbitrary subintervals of I, it 
follows immediately that 

~ r {!(e+~v2)dX~ r ({!j·v+r)dx+ J (r· v+h)ds 
d t .I(t) 2 .I(t) 8Y(t) 

d {!r h - J (!l1dx~ J -dx+ J -ds. 
dt Y(t) Y(t) T 8Y(I) T 

If the Strong First Law is assumed, the first inequality should be changed to 
equality. 

These relations are to be interpreted in the sense that they must hold 
identically for every process (*) available to the body. The first of these relations, 
typically in its equality form, is the equation of energy balance, the second is the 
Clausius-Duhem inequality (see [1.35]). This derivation, based directly on the 
energy-entropy hypothesis (and certain differentiability assumptions), provides 
the underlying motivation for their validity. 13 

13 If the body force f and the heat supply r are eliminated from the energy inequality and the 
Clausius-Duhem inequality (to eliminate f requires also Cauchy's equations of motion), one 



1. An Outline of Thermodynamical Structure 29 

In conclusion, I would like to signal a possibly useful generalization of the 
formula for work in (**). As discussed in the paper of Dunn in this volume, a 
body whose work W(P) is given by (**) may be unable to tolerate stress 
responses of certain useful types. For this reason, it is valuable to include a 
generalized surface working i (independent of velocity) in (**). Thus one can 
propose the formula 

W(P) = J { J (!f· vdx+ J (r· V+i)dS}dt 
T YOO aYOO' 

as being more appropriate to the case of a general continuous body. If internal 
spins are present, as in micropolar media or liquid crystals, one must naturally 
add further terms to account for their effects; considerations of this type are 
naturally far beyond the intentions of this opening essay. 

1.8.3 Constitutive Structure 14 

A set of processes C (Y) C IP (Y) of a system is said to possess a constitutive 
structure subordinate to the state space Iif to each process PeC(y) there corre
sponds a path 

1= [a,b] C IR 

with the following properties: 

(i) If two processes in C (Y) have the same path then they have the same 
total work W, total heat Q, and accumulation function Q. 

(ii) If PeC(Y) is cyclic then the corresponding path r is closed, that is 
F(a) = F(b). 

(iii) Let PeC(y) with corresponding path r. Let re(a, b) and putI,= [a, r], 
I~ = [r, b]. Then there exist processes P" P~ in C (y), with the respective paths r 
restricted to I, and r restricted to I~, such that 

W(P) = W(P,) + W(P~) 
. Q(P) = Q(P ,) + Q(P~) 
Q(P,·) = Q(P" .)+ Q(P~,·) . 

Conditions (i - iii) are obviously satisfied in the case of reversible systems, 
(i) because the line integrals defining tv, Q, and Q depend only on the path r(the 
differential forms q and ware fixed for the system), and (iii) because integration 
is additive. For a reversible system the state space is finite dimensional and simple 
in its structure. For continuum mechanics the state space is infinite dimensional, 

obtains the so-called reduced Clausius-Duhem inequality, a key relation in the study of material 
behavior. It is interesting to note that this result, like so many others, relies only on the weak 
rather than the strong form of the First Law. Another aspect of this situation occurs in Gibbsian 
theory, where the various minimization and stability theorems are unchanged whether or not the 
Strong First Law is invoked. 

14 The presentation here is crucially dependent on the important ideas of Coleman and Owen [1.27]. 
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generally a field of local states. For materials with memory the states are 
particularly sophisticated, involving the past history of the particles themselves. 

If C (9') has a constitutive structure subordinate to I, then the pair (I, q can 
be given a "natural" state structure by putting, for any PeC(9'), 

In turn, within this state structure, the problem of entropy and internal energy 
can be formulated as in the previous sections. 

We remark that C(9') can easily be a proper subset of 1P(9'), or even of 
IPE( 9') - the set of processes with well defined initial and final states in I. In this 
way, in fact, the constitutive structure of the subset C(9') can influence the 
behavior of processes going from one equilibrium state in I to another, even 
though the processes themselves need not be describable by means of paths in the 
state space. 

1.9 Concluding Remarks 

• One may feel a security in the conclusions of a [postulational] 
analysis which is impossible in a less formal structure. 

P. W. Bridgman [1.36] 

Reviewing the structure of phenomenological thermodynamics, one finds a 
beautiful edifice of immense aesthetic and physical appeal. First and foremost, 
thermodynamics is the science of heat, and the relations existing on the one hand 
between heat and work and on the other between heat and hotness; see Table 1.1. 
Two intrinsic principles govern these relations - the First and Second Laws of 
Thermodynamics. Each states a reasonable, even if somewhat pessimistic, con
viction about the physical world. There are, next, analytical formulations of 

Table 1.1 

General thermodynamic structure (Sects. 1.3 -7) 

Primitive concepts 
Intrinsic law 
Analytical formulation 
Scale 
Potential 

Reversible systems (Sect. 1. 8) 

Constitutive structure 
Associated potential 

Heat and Work 
First Law 
Energy Inequality 
Mechanical Equivalent of Heat 
Internal Energy 

Heat form q, Work form w 
dU=q-w 

Heat and Hotness 
Second Law 
Accumulation Inequality 
Absolute Temperature 
Entropy 

Heat form q, Temperature T 
dS= qlT 

Note. When the Strong First Law is assumed, the listing "Energy Inequality" should be replaced by 
"Energy Balance". All other entries are the same whether or not the Strong First Law is used. 
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these laws - first, the energy inequality (or, if the Strong First Law is used, the 
interconvertibility of heat and work for cycles), and second, the accumulation in
equality. These analytical formulations pave the way to all direct applications of 
the theory. They rely in turn on two derived scale concepts - the Joule mechan
ical equivalent of heat and the Kelvin absolute temperature scale, each among the 
greatest conceptions of Nineteenth Century physics. Finally, there are two 
fundamental potentials, or more accurately semi-potentials - the internal energy 
and the entropy - which extend the direct cyclic principles to much broader 
classes of thermal processes. On this structure hangs all thermal science, from the 
elementary theory of reversible systems, to Gibbs' magnificent conception of 
thermal and chemical equilibrium, to sophisticated theories of material 
dynamics. 

The most far-reaching implication of the structure, however, is the fact that it 
is not limited to equilibrium. In fact, a dogmatism which would lay this restric
tion on thermodynamics would in turn invalidate a massive sector of thermal 
physics, including heat transfer theory, compressible fluid mechanics, shock 
wave theory, and combustion theory. Conversely, allowing thermodynamics a 
natural scope beyond equilibrium yields a powerful and far-reaching theory with 
which to attack those dynamical problems where hotness and heat playa crucial 
role. 

References 

1.1 H. A. Buchdahl: The Concepts of Classical Thermodynamics (Cambridge University Press, 
Cambridge 1966) 

1.2 A. H. Wilson: Thermodynamics and Statistical Mechanics (Cambridge University Press, 
Cambridge 1957) 

1.3 J. W. Thompson (Lord Kelvin): Encyclopedia Brittanica, 9th edition (1878) 
1.4 D. S. L. Cardwell: From Watt to Clausius (Cornell University Press, Ithaca 1971) 
1.5 P. Fong: "Second Thoughts on the Second Law of Thermodynamics, Its Past, Present and 

Future", in A Critical Review of Thermodynamics (Mono Book Company, 1970) p. 407 
1.6 J. Bronowski: The Common Sense of Science (London 1951) 
1.7 J. W. Gibbs: Graphical Methods in the Thermodynamics of Fluids. Collected Works, Vol. 1, 

p. 10 
1.8 M. Ricou: Energy, entropy, and the laws of thermodynamics. Ph. D. Thesis, University of 

Minnesota (1983); see also the final paper in Part I of this volume 
1.9 M. Ricou, J. Serrin: A general second law of thermodynamics (to appear) 
1.10 J. Serrin: The Concepts of Thermodynamics. Contemporary Developments in Continuum 

Mechanics and Partial Differential Equations (North Holland, Amsterdam 1978) pp. 411- 451 
1.11 J. Serrin: Conceptual analysis of the classical second laws of thermodynamics. Arch. Rational 

Mech. Anal. 70, 355 - 371 (1979) 
1.12 J. Serrin: Lectures on thermodynamics. University of Naples (1979) 
1.13 M. SilhavY: On measures, convex cones, and foundations of thermodynamics. I. Systems with 

vector-valued actions; II. Thermodynamic systems. Czech. J. Phys. B30, 841 - 861, 961 - 991 
(1980) 

1.14 M. Silhavy: On the second law of thermodynamics for cyclic processes. I. General framework; 
II. Inequalities for cyclic processes. Czech. J. Phys. B32, 987 -1010, 1073 -1099 (1982) 

1.15 M. SilhavY: On the Clausius inequality. Arch. Rational Mech. Anal. 81, 221-243 (1983) (Work 
originally presented at Euromech 111 Symposium, September 1978) 



32 J. Serrin: An Outline of Thermodynamical Structure 

1.16 M. Feinberg: Private communication (1978) 
1.17 M. Feinberg, R. Levine: Thermodynamics based on the Hahn-Banach theorem: the Clausius 

inequality. Arch. Rational Mech. Anal. S2, 203 - 293 (1983) 
1.18 J. W. Gibbs: Letter of Acceptance for the Rumford Medal (1881) 
1.19 C. Truesdell: "How to Understand and Teach the Logical Structure and the History of Classical 

Thermodynamics", in Proceedings of the International Congress of Mathematicians 
(Vancouver, 1974) pp. 577 - 586 

1.20 C. Truesdell, S. Bharatha: The Concepts and Logic of Classical Thermodynamics (Springer, 
Berlin, Heidelberg, New York 1977) 

1.21 C. Truesdell: Absolute temperatures as a consequence of Camot's general axiom. Arch. Hist. 
Exact Sci. 20, 357 - 380 (1980) 

1.22 M. Pitteri: Classical thermodynamics of homogeneous systems based upon Camot's general 
axiom. Arch. Rational Mech. Anal. SO, 333 - 385 (1982) 

1.23 R. L. Fosdick, J. Serrin: Global properties of continuum thermodynamic processes. Arch. 
Rational Mech. Anal. 59, 108 -109 (1975) 

1.24 J. W. Thompson (Lord Kelvin): Mathematical and Physical Papers (Cambridge University 
Press, Cambridge 1882); see especially pages 178 -181 

1.25 R. Clausius: Abhandlungen aber die mechanische WtJrmetheorie (Braunschweig 1864, 1867) 
[Translated by W. R. Browne as The Mechanical Theory of Heat (London, 1879); see especially 
pages 76 - 79) 

1.26 W. A. Day: The Thermodynamics of Simple Materials with Fading Memory (Springer, Berlin, 
Heidelberg, New York 1972) 

1.27 B. Coleman, D. Owen: A mathematical foundation for thermodynamics. Arch. Rational Mech. 
Anal. 54, 1 -104 (1974) 

1.28 B. Coleman, D. Owen: On thermodynamics and elastic-plastic materials. Arch. Rational Mech. 
Anal. 59, 25 - 51 (1975) 

1.29 B. Coleman, D. Owen: On thermodynamics and intrinsically equilibrated materials. Ann. Mat. 
Pura Appl. (IV) lOS, 189-199 (1976) 

1.30 B. Coleman, D. Owen: On the thermodynamics of semi-systems with restrictions on the 
accessibility of states. Arch. Rational Mech. Anal. 66, 173-181 (1977) 

1.31 B. Coleman, D. Owen: On the thermodynamics of elastic-plastic materials with temperature
dependent moduli and yield stresses. Arch. Rational Mech. Anal. 70, 339 - 354 (1979) 

1.32 B. Coleman, D. Owen, J. Serrin: The second law of thermodynamics for systems with approx
imate cycles. Arch. Rational Mech. Anal. 77, 103 -142 (1981) 

1.33 D. Owen: The second law of thermodynamics for semi-systems with few approximate cycles. 
Arch. Rational Mech. Anal. SO, 39-55 (1982) 

1.34 C. Truesdell: The Tragicomical History of Thermodynamics, 1822 -1854 (Springer, Berlin, 
Heidelberg, New York 1980) 

1.35 C. Truesdell: Rational Thermodynamics (McGraw-Hill, New York 1969) 
1.36 P. W. Bridgman: The Nature of Thermodynamics (Harvard University Press, London 1941) 



Chapter 2 
Foundations of Continuum Thermodynamics 

M. Silhavy 

2.1 Introduction 

There have been many attempts to derive the existence of energy, entropy, and 
absolute temperature from the statements of the first and second laws of thermo
dynamics which do not presuppose the existence of these quantities. Until very 
recently, the rigorous part of this research has been based essentially upon the use 
of analytic and differential geometric methods in finite dimensional space 1. 

As I have explained elsewhere [2.4], this approach generally fails to provide a 
basis for the existing structure of continuum thermodynamics as presented, e.g., 
by Truesdell [2.5]. 

In the past, the attempts to make the foundations of thermodynamics of ir
reversible inhomogeneous processes precise were blocked by the lack of an 
appropriate tool to describe the exchange of heat between a body and its environ
ment in terms suitable for the statement of the second law of thermodynamics. In 
[2.4, 6, 7] I introduced Borel measures on the set of empirical temperatures to 
describe the information about this exchange of heat. Explicitly, with each 
process there is associated a Borel measure called the heat measure; the value of 
this measure on a given set of empirical temperatures is the gain of heat of the 
system at empirical temperatures from that set. 2 

An important ingredient in the approach developed in [2.6] and [2.4] is the 
concept of a thermodynamic system. Each system has states and can undergo 
processes, i.e., time-evolutions of states. 3 With each process there is associated 
a number, the work done by the system in the process, and a Borel measure on 

1 See, e.g., Caratheodory [2.1), Arens [2.2) and Boyling [2.3). 
2 A similar idea was suggested independently by Serrin [2.8, footnote p. 427). In fact it was only 

after the essential parts of Professor Serrin's and my researches were completed that we realized 
close similarities of our results, not published at that time. Early in 1979 I sent a preliminary but 
complete version of [2.7) to Professor D. R. Owen. In response he sent me a preprint of Serrin 
[2.8) of which I was unaware. A final version of [2.7) was sent to Professor J. Serrin in the 
summer of 1979 (a printed version of [2.7) with updated references, but without any change of 
results, has appeared recently as [2.9). Serrin's ideas were meanwhile made more explicit in [2.10), 
and a complete structure of thermodynamics, similar to that of Silhavj [2.4), appears in Coleman, 
Owen and Serrin [2.11). The proofs in Silhavj [2.4) are based on the extensive use of the separa
tion theorems in topological a linear space of measures, and a recent paper by Feinberg and Lavine 
[2.12) employs essentially the same mathematical tools. 

3 Description of dynamical systems within the state space formalism similar to that employed in 
[2.6) and [2.4) was developed within different contexts by Noll [2.13), Coleman and Owen [2.14) 
and Gurtin [2.15). 
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the set of empirical temperatures, the heat measure of the process. The class of 
thermodynamic systems admits a natural operation of a composition of two ther
modynamic systems to produce a new thermodynamic system. The theory deals 
with thermodynamic universes which are collections of thermodynamic systems 
closed under the compositions of thermodynamic systems, and which contains 
sufficiently many ideal reversible Carnot processes. Within this framework, the 
basic program of foundations of thermodynamics is carried out: 

The First Law. Various versions of the first law are given in [2.4] which imply the 
universal proportionality of work and heat in cyclic processes and the existence 
of energy satisfying the equation of balance of energy. Alternatively, a weaker 
postulate is employed in [2.4] which implies the energy inequality rather than the 
equation of balance of energy. 

The Second Law. The verbal statements of the second law are converted into 
mathematically meaningful postulates (see Silhavy [2.4, 6, 7, 16, 17]). Relations 
among these statements are established; the existence of the absolute temperature 
is shown to be a consequence of various forms of the second law under appro
priate additional assumptions; the absolute temperature satisfies the Clausius 
inequality for cyclic processes. Moreover, using an earlier idea of Day [2.18], the 
Clausius inequality is shown to imply the existence of non-equilibrium entropy 
satisfying the abstract version of the Clausius-Duhem inequality 4. 

It is also shown in Silhavy [2.4] that the first and the second laws can be stated 
in a formally similar way and that the above described consequences of these 
laws can be deduced from a general theory developed in the first part of Silhavy 
[2.4]. The universal proportionality of work and heat in cyclic processes and the 
existence of the absolute temperature are established there by an essentially geo
metrical method which sheds additional light on the nature of these concepts. 
A less technical description of this geometrical approach is given by Kratochvil 
and Silhavy [2.20]. Another survey of the results of Silhavy [2.4] is contained in 
an appendix to the forthcoming second edition of Truesdell's "Rational Thermo
dynamics" [2.17]. 

The approach to the foundation of thermodynamics described above is 
extended to more general systems (which do not necessarily satisfy the acces
sibility axiom of [2.4]) in Silhavy [2.21]. For more detailed information about 
this approach see Sect. 2.2.2. 

The abstract theory [2.4] and its more general version [2.21] apply to con
tinuous bodies in inhomogeneous irreversible processes. In [2.22] I develop an 
approach to the foundations of thermodynamics of continuous bodies. The basic 
definition of a continuous body does not presuppose any equation or inequality 
such as the balance equations and the Clausius-Duhem inequality. The statement 
of the first law of thermodynamics then implies the existence of energy satisfying 
the equations of balance of energy; moreover, the equation of balance of energy 

4 A slightly different condition implying the existence of entropy and absolute temperature for 
genuinely non-equilibrium material is given in Silhavy [2.19). 
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together with the principle of material frame indifference then yield (cf. Green 
and Rivlin [2.29]) the equations of balance of linear and angular momentum. 
Taking the concept of empirical temperature for granted, one can also define the 
heat measure corresponding to a process in terms of the rest of the structure of 
continuous bodies and the second law employed in the general theory then leads 
to the existence of absolute temperature and entropy satisfying the Clausius
Duhem inequality. 

In addition to this, the rich structure of continuous bodies, the explicit 
account of heat through the heat flux and the body heating, enables one to 
remove the empirical temperature from the list of primitive quantities. Roughly 
speaking it turns out that the empirical temperature is determined by the second 
law to within a universal change of scale, provided the universe of bodies has an 
additional structure. In particular, one does not need the so called zeroth law to 
introduce and determine the empirical temperatures. 

2.2 Work, Heat, and Empirical Temperature 

The purpose of this section is to develop a conceptual structure appropriate for 
the discussion of the basic laws of thermodynamics and their basic consequences. 
Thus, after a preliminary discussion of the concepts of work and heat measure in 
Sect. 2.2.1, the concept of a thermodynamic system is defined in Sect. 2.2.2. 
Section 2.2.3 then deals with universes of thermodynamic systems, some basic 
postulates expressing the presence of sufficiently many ideal reversible Carnot 
processes to be used in the sequel are formulated here. 

2.2.1 Work and Heat Measures 

Basically, thermodynamics is a science of work, heat, and temperature. Within 
the abstract theory presented here, work is a primitive undefined concept, i.e., 
work is a number associated with each process. 

Also the concepts of heat and empirical temperature are taken for granted 
here. They are combined, however, in a single primitive concept, the concept of a 
heat measure (Silhavy [2.4, 6, 7]). Throughout, I C R denotes a fixed open 
interval which is interpreted as the set of empirical temperatures. Assuming that 
the empirical temperature is meaningful in "non-equilibrium situations", it is 
always possible to determine, for a given process of a system, and a given set of 
empirical temperatures A C I, the net gain, Q(A), of heat of the system at 
empirical temperatures from the set A. Thus, each process determines a set 
function A -+ Q(A), defined on certain subsets of empirical temperatures. It is 
clear from the interpretation of this function that if AbA2 C I are two disjoint 
sets of empirical temperatures, At nA2 = f/J, then 

5 See Silhavy [2.22]; a particular case of this result can be found in Silhavy [2.24]. 
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i.e., Q(e) is an additive set function. For continuous bodies, the function Q is 
defined explicitly in terms of the fields of empirical temperature, the body heat 
supply, and the heat flux vector. Silhavy [2.7] shows that there is essentially no 
loss of generality in assuming that Q is a finite real-valued signed Borel measure 
with compact support contained in I, i.e., it turns out that Q(.) is additive also on 
infinite sequences of mutually disjoint Borel sets. 

Henceforth we shall assume that the set function Q(.) associated with the 
process is a finite real valued signed Borel measure with compact support con
tained in I; Q will be referred to as the heat measure of the process. 

We denote by M(l) the set of all finite real valued signed Borel measures with 
compact support contained in I. The elements Q of M(l) will be referred to as 
measures; M(l) is an infinite dimensional real linear space. 

Let weR be the work done by the system in the process, and QeM(l) be the 
heat measure corresponding to the process. For a given process of a thermo
dynamic system, the pair (w, Q)eR xM(l), contains all the information about 
the work and exchange of heat in the process necessary for the statement of the 
laws of thermodynamics and their consequences. 

Furthermore, a topology on R x M(l) is used to determine when two pairs 
(wt> Qt) and (W2' Q2) are close to each other. Namely, M(l) is endowed (Silhavy 
[2.4, 16]) with the weakest topology which renders all the functionals 

Q-+ JfdQ 

continuous, where f is a fixed continuous function on I. R x M(l) is endowed 
with the product topology. This particular choice of the topology can be justified 
by a set of simple and physically motivated postulates (Silhavy [2.4, 16,21]). 

2.2.2 Thermodynamic Systems 

Basic to the approach described in Silhavy [2.4, 6] is the concept of a thermo
dynamic system. At this level of generality a thermodynamic system is specified 
by giving its set of states, the class of processes, and two mappings which 
associate with each process the work done by the system in the process and the 
heat measure corresponding to the process. Processes are viewed as time
evolutions of states. We will now make the discussion precise. 

Let S = (.E, II, lV, Q) be a four-tuple of objects, where .Eis a set; IIis a set of 
paths in .E, i.e., a set of mappings 11: of the type 

(2.1) 

where dx > 0 depends on 11:, W is a mapping 

w: II-+R; 

and Q is a mapping 

Q: II-+M(l) . 
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The four-tuple S = (L, ll, W, Q) is called a thermodynamic system if it satisfies 
the conditions (i - iii) formulated below. The set L is then called the state space, 
its elements (JeL states; Ilis called the class of processes of the system, the ele
ments nell are processes. For each process nell the number d7C occurring in 
(2.1) is called the duration of the process; the values ni = n(O) and nf = n(d1C) are 
then referred to as the initial and the final states of n, respectively. For a given 
process nell, the number w(n) is the work done by the system in the process, 
and the measure Q(n) eM(I) is the heat measure corresponding to the process n. 

i) If nt> n2eIland ni = n~, then the path n1 * n2, of duration d7C1 + d7C2, given by 

n1 * n2(t) = {n1 (t) , te [0, d7C1 1 
n2(t-d1C1 ) , te[d1Cl,d1Cl+d7C21 , 

belongs to ll, i.e., 

moreover 

This assumption says that if the system undergoes two processes n1 and n2 such 
that the final state of the first process coincides with the initial state of the second 
process, then these two processes give rise to a new process n1 * n2 in which the 
system undergoes the process n1 and then n2 continuously. The process n1 * n2 is 
called the continuation of n1 with n2' Moreover, the work and the heat measure 
corresponding to the continuation n1 * n2 are the sum of the quantities corre
sponding to the original processes n1 and n2' 

ii) There exists at least one state (JeL with the following properties: for each 
d > 0 the path (J[d1, of duration d, given by 

is a process, i.e., 

which satisfies 

and 

(J[d1(t) = (J, 0 ~ t ~ d 

(2.2) 

(2.3) 

(2.4) 

Any state (JeI satisfying (2.2), (2.3), and (2.4) will be referred to as an equilib
rium state of the system; thus, an equilibrium state of a system is a state in which 
the system can stay an arbitrarily long time without doing work or exchanging 
heat with its environment. Condition (ii) asserts the existence of at least one equi
librium state. 

iii) If (J1> (J2eI, then there exists a nellwith ni = (J1 and nf = (J2. 
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In other words, any two states at. a2 can be connected by at least one process of 
the system. Elastic, viscous, and certain elastic-plastic bodies satisfy this 
condition, but certain bodies, such as the bodies made of material with fading 
memory, satisfy this condition only approximately (cf. Coleman and Owen 
[2.14]). I assume condition (iii) here to make the discussion simple; in Silhavy 
[2.21] I extend my approach of [2.4] to systems satisfying (iii) only approx
imately. In a stimulating paper, Coleman, Owen and Serrin [2.11] also deal with 
the second law of thermodynamics for systems satisfying (iii) only approximate
ly. However, the version of the Clausius inequality derived in [2.11] from a basic 
statement of the second law is not strong enough to ensure the existence of 
entropy for general systems. The existence of entropy is proved in [2.11] only for 
thermally bounded systems, which, roughly speaking, are the systems which 
exchange heat below a given a priori bound of empirical temperatures. No such 
restriction occurs in Silhavy [2.4] and thus the generality gained in [2.11] in one 
respect is accompanied by a loss of generality in another respect. More 
importantly, the thermal boundedness restriction occurring in [2.11] is not 
inherent to the second law for systems which do not satisfy (iii) strictly, as I show 
in [2.21]. In that paper I also show that the entropy can be constructed under 
slightly more general circumstances than in the paper by Coleman and Owen 
[2.14]. Namely, it turns out that it suffices to assume the existence of small 
perturbations of processes; in these perturbations the final state of the process, 
the value of work, and of the Clausius integral are assumed to be close to their 
respective quantities corresponding to the original process. This allows me to 
relax some specific assumptions madein [2.14], and the resulting theory is more 
suitable for the discussion of the qualitative properties of global continuous 
bodies such as the uniqueness of the solutions of the corresponding equations, 
continuous dependence on initial data, and stability (Silhavy [2.22]) 6. 

2.2.3 Universes of Thermodynamic Systems 

The present theory deals with classes of thermodynamic systems which are closed 
under the operation of the sum of two thermodynamic systems. Roughly 
speaking, a sum of two thermodynamic systems is a new thermodynamic system 
which corresponds to viewing these two systems as a single system. This should 
not be confused with the operation of putting two systems into thermal contact. 
It was Carnot who recognized the significance of considering two thermo
dynamic systems as a single thermodynamic system. Explicit mathematical 
definitions of the sum of two systems occur frequently in the literature (cf. Arens 
[2.2]) within the framework of reversible homogeneous systems. We now 
proceed to a formal definition of the sum of two thermodynamic systems within 
the present framework (Silhavy [2.4]). 

6 The generalizations described above were announced at this Workshop. FuJI details were 
presented by myself in a lecture at the Institute for Mathematics and its Applications, Minnea
polis, MN, USA, on June 22,1983. The author wishes to thank Professors Coleman, Owen and 
Serrin for their valuable comments during this lecture. 
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Let Sa = (Ia,lla, Wa, Qa), a = 1,2 be two thermodynamic systems; their 
sum, Sl +S2, is the thermodynamic system S = (I, I1, w, Q), where the state 
space I is given by 

the class II of processes consists of those paths 7r: [0, dn] ..... I, for which there 
exist processes 7rl e III, 7r2 e II2 with 

such that 
(2.5) 

for all te[O, dn]; the values of wand Q on the process 7r are then given by 

and 

where 7rl eilb and 7r2eII2 are as in (2.5). 
It turns out that (Silhavy [2.4]) the four-tuple S = (I, I1, W, Q) really is a ther

modynamic system, i.e., satisfies conditions (i - iii) of the preceding section. 
A collection U of thermodynamic systems is called a universe of thermo

dynamic systems if it is closed under the operation of addition of thermodynamic 
systems, i.e., if SbS2eUimply SI +S2eU. 

Having now defined the concept of a universe of thermodynamic systems, we 
proceed to introduce various sets of pairs, (w, Q)eR xM(l), associated with 
cyclic processes starting from equilibrium of systems within a given universe. Let 
S = (I, II, W, Q) be a thermodynamic system. A process 7r e II is said to be a cyclic 
process starting from equilibrium if 

and if 7r i is an equilibrium state in the sense of assumption (ii) of Sect. 2.2.2. 
If Uis a universe of thermodynamic systems, we denote by Ao(U) the set of 

all pairs (w, Q) eR x M(l) corresponding to cyclic processes starting from equi
librium of systems from U, i.e., 

Ao(U) = {(w, Q)eR xM(l): there exists a systemS = (E,II, w,Q)eUand 
a cyclic process starting from equilibrium 7r e II such that 
(w, Q) = (w(7r), Q(7r»} . 

It is also convenient to consider the closure, A(U), of the set Ao(U) in R xM(l) 
being endowed with the topology described in Sect. 2.2.1. The operation of the 
closure adds to Ao (U) certain pairs (w, Q) which need not correspond to any real 
cyclic process starting from equilibrium of any system from U; these pairs are 
interpreted as pairs corresponding to the ideal cyclic processes starting from equi
librium. 
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Note that for reversible systems, such as the elastic systems in homogeneous 
situations, the pair (w, Q) corresponding to the time reversal of a process is the 
opposite of the pair (w, Q) corresponding to the original process. We interpret 
the elements (w, Q) eA (U) which satisfy 

-(w, Q)eA(U) 

as pairs corresponding to ideal reversible processes starting from equilibrium. 
The set of all such elements (w, Q) is denoted by L(U), i.e., 

L(U)=A(U)n(-A(U» , 
where 

-A(U) = {(w, Q)eR xM(l): -(w, Q)eA(U)}. 

The following proposition is crucial to the proofs of the proportionality of work 
and heat in cyclic processes and for the proof of the existence of an absolute tem
perature scale. 

Proposition 7. If U is a universe of thermodynamic systems then the sets Ao( U), 
A(U), and L(U) are additive. 
(A subset S of a vector space V is said to be additive if x .. X2 e S implies 
Xl +X2eS.) 

We shall also need an assumption expressing that the universe U has suf
ficiently many ideal reversible homogeneous Carnot processes. There are many 
ways to formulate this assumption mathematically. We here use, for simplicity, a 
rather strong version of this assumption, noting, however, that many of the 
results to be given below hold under less restrictive assumptions (cf. Silhavy 
[2.4, 16,21]). 

Axiom. There exists a subset Lo of L (U) with the following three properties 

i) If(w,Q)eLoand le[O,1], then 

l{w,Q)eLo· 

ii) There exists (w, Q) eLo with 

w > 0, Q(l) > 0 . 

iii) If 0+,0- eI and 0+ > 0- then there exists a (w, Q)eLo with 

w>O 
and with Q of the form 

Q = c+ Je+-c- Je-

where c + > 0, c - > 0 and Je denotes the Dirac measure concentrated at OeI. 

Roughly speaking, Lo can be interpreted as the set of all homogeneous ideal 
reversible cyclic processes starting from equilibrium associated with the universe 
U; condition (i) then expresses a homogeneity property which can be related to 

7 See Silhavy [2.4]. 
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the homogeneity of the underlying processes; (ii) simply asserts the existence of at 
least one element in Lo for which the corresponding work is positive and the net 
gain of heat Q(I) is positive; condition (iii) then says that Lo contains pairs (w, Q) 
corresponding to Carnot processes at any pair of operating temperatures 0+ , 0- . 

Henceforth I will deal with a universe of thermodynamic systems which 
satisfies the above axiom. 

2.3 The First Law of Thermodynamics 

Two different basic statements of the first law are given in Sect. 2.3.1. Section 
2.3.2 contains a discussion of the relations among the basic statements and their 
consequences. It is shown that the basic statements of the first law imply Joule's 
relation and the existence of the energy function satisfying the equation of 
balance of energy. In Sect. 2.3.3 a postulate weaker than the first law is 
exhibited; it is shown that it implies an energy inequality rather than the equation 
of balance of energy. Some further aspects of the first law in relation to the 
second law are discussed in Sect. 2.4.2. 

2.3.1 Basic Statements of the First Law 

Recall that it is assumed that a universe U of thermodynamic systems satisfying 
the Axiom of Sect. 2.2.3 is given. For such a universe, A (U) denotes the set of all 
pairs, (w, Q), associated with real or ideal cyclic processes starting from equilib
rium. To avoid repeated statements, we denote, for a generic pair (w, Q) eA (U), 
by q the net gain of heat in a process characterized by (w, Q); i.e., 

q = Q(I) . 

(The net gain of heat for the set of all possible empirical temperatures I.) 
The following two versions of the first law are given in Silhavy [2.4]. 

The First Law (I). Let (w, Q)eA(U). Then 

q = 0 implies w = 0 . 

Roughly speaking, this postulate says that it is impossible to produce non-zero 
work in a cyclic process starting from equilibrium in which the overall net gain of 
heat vanishes. 

The First Law (II). Let (w, Q)eA(U). Then 

w > 0 if and only if q > 0 . 

The "if" part of the implication in the above equivalence says that it is imp,ossible 
to produce, in a cyclic process starting from equilibrium, a positive work unless 
the net gain of heat is positive. The converse implication assures us that w is 
strictly positive if q is. 
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2.3.2 Relations Among the Statements; Consequences: Equation of Balance 
of Energy 

Theorem 18. The versions (I) and (II) of the first law given in the preceding 
section are equivalent. 

From now on we assume that the two equivalent versions of the first law are 
satisfied, and discuss their consequences. 

Theorem 28. There exists a unique positive constant J such that 

w=Jq (2.6) 

for each (w, Q) eA (U). 
Theorem 2 asserts a universal proportionality of work and net gain of heat in 

cyclic processes starting from equilibrium. The relation (2.6) will be called 
Joule's relation; the constant J is the mechanical equivalent of a unit of heat. 
With a suitable choice of units one can achieve that J = 1. It turns out that 
Joule's relation holds for all cyclic processes, not only the cyclic processes 
starting from equilibrium. This is also a consequence of Theorem 3 stated below. 
In that theorem the consequences of the first law of thermodynamics are 
extended also to general, not necessarily cyclic processes. We employ the 
following notation. If S = (I, II, W, Q) e U is a thermodynamic system and nell 
its process, then q(n) denotes the net gain of heat in that process, i.e., 

q(n) = Q(n)(l) . 

Theorem 38• For each system S = (I, II, W, Q) e U there exists a function 
E: I -+ R such that 

(2.7) 

for each process neIl. The function E is unique to within an additive constant. 
The function E is the energy function of the thermodynamic system. Equa

tion (2.7) is the equation of balance of energy. To summarize, the basic state
ments of the first law lead to Joule's relation and to the equation of balance of 
energy. Conversely, these consequences guarantee the validity of the basic state
ments of the first law. Hence (2.7) is completely equivalent to the basic state
ments (I and II); equation (2.7), however, is more convenient in applications. 

2.3.3 A Weaker Postulate 

To clarify in more detail the logical relationship between the basic statements of 
the first law and its consequences, this section is devoted to establishing the con
sequences of a postulate which is weaker than the first law (II) namely, we 
consider the following 

8 See Silhavy [2.4]. 
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Postulate. Let (w, Q)eA(U). Then 

w > 0 implies q > 0 . 

In other words, it is impossible to produce, in a cyclic process starting from 
equilibrium, a positive work unless a positive net amount of heat is gained. The 
postulate, however, does not exclude the possibility that w ~ 0 even if q > O. The 
first consequence is established in 

Theorem 49• There exists a unique positive constant J such that 

w~Jq (2.8) 

jor each (w, Q)eA(U). 
Inequality (2.8) establishes an upper bound for the work done in a cyclic 

process starting from equilibrium in terms of the net gain of heat. The constant 
J> 0 is the maximum work which can be extracted from a unit of heat. The next 
theorem extends the consequences of the Postulate to general non-cyclic 
processes. It turns out that it is possible to define a state funtion E whose change 
in a process is dominated by the difference J q - w. 

Theorem 59. For each system S = (I,ll, w, Q)eU there exists a junction 
E: I -+ R such that 

(2.9) 

jor each '!leIl. 
In contrast to the energy occurring in equation (2.7), there may be systems for 

which there exist two functions Eb E2 both satisfying inequality (2.9), but whose 
difference is non-constant. 

2.4 The Second Law of Thermodynamics 

This section is devoted to the second law of thermodynamics. In Sect. 2.4.1 the 
classical verbal statements due to Carnot, Clausius, Kelvin, and Planck are 
converted into meaningful postulates. In Sect. 2.4.2 the relationship among the 
various versions of the second law are established and, more importantly, it is 
shown that they lead to the existence of the absolute temperature scale and 
entropy. 

2.4.1 Basic Statements of the Second Law 

While the first law of thermodynamics establishes the equality (in suitable units) 
of the work done by the system and the net gain of heat of the system in a cyclic 
process, the second law deals with a finer question that not all of the heat 

9 See Silhavy [2.4]. 
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supplied to the system can be converted into useful work. To make this rough 
idea precise, one has to look more closely at the exchange of heat between the 
system and its environment. The heat measure provides sufficiently detailed in
formation for this purpose. 

Rather than using the heat measure directly, it is convenient to introduce 
certain quantities derived from the heat measure (see Silhavy [2.4,6, 7]). 
Accordingly, let QeM(I) be a heat measure of a process of a thermodynamic 
system. Generally, there may be sets of empirical temperatures on which the 
measure is positive as well as sets of empirical temperatures where the measure is 
negative. It is a standard result of measure theory (cf. Rudin [2.25]) that each 
measure QeM(I) can be written uniquely as a difference 

of two non-negative measures Q+, Q- eM (I) which satisfy certain minimality 
conditions. Such a decomposition of Q into Q+ and Q- is called the Jordan de
composition. If A C I is a Borel set of empirical temperatures, then the value 
Q + (A) ~ 0 is interpreted as the heat absorbed by the system at empirical tem
peratures from the set A, and, similarly, Q- (A) ~ 0 is interpreted as the heat 
emitted at empirical temperatures from the set A. In particular the value of the 
measure Q+ on the set of all empirical temperature, i.e., the number 

is called the heat absorbed by the system in the process, while the number 

is called the heat emitted by the system in the process. The net gain q of heat of 
the system in the process, i.e., the number 

q = Q(I) , 
then satisfies 

+ -q =q -q . 

The support of the measure Q+, denoted by supp Q+, (the smallest closed subset 
of I on which the measure is non-zero) is interpreted as the set of all empirical 
temperatures on which the system absorbs heat. If supp Q+ '*' <p, i.e., if the 
system absorbs a non-zero amount of heat, then the number 

()+ = max supp Q+ 

is referred to as the maximum empirical temperature at which heat is absorbed. 
Similarly, the support supp Q- of Q- is interpreted as the set of empirical tem
peratures on which the system emits heat, if supp Q- '*' <p, then the number 

()- = min supp Q-

is referred to as the minimum empirical temperature at which heat is emitted by 
the system in the process. 
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The basic statements of the second law of thermodynamics are formulated 
below as assertions about the properties of real and ideal cyclic processes starting 
from equilibrium of a universe U of thermodynamic systems. To avoid repeated 
hypotheses, we use, for a generic pair (w, Q) eA (U), the notation q +, q -, e+, e
introduced above. 

The Second Law (I). Let (w, Q) eA (U). Then 

w > 0 implies q - > 0 . 

Roughly speaking, it is impossible for a thermodynamic system to produce a 
positive work in a cyclic process starting from equilibrium unless a positive 
amount of heat is emitted. Statements of this type can be attributed, loosely, to 
Carnot, Kelvin, and Planck. 

The Second Law (II). If(w, Q)eA(U) and Q is of the form 

Q=C~8 

for some ceR and eel, then 

w~O. 

That is, it is impossible for a thermodynamic system to produce a positive work 
in a cyclic process starting from equilibrium by extracting heat at just one value 
of empirical temperature (Kelvin). 

The Second Law (III). Let (w, Q) eA (U). Then 

w > 0 implies q + > 0 , q - > 0 , and 0+ > (r . 

It is impossible for a system to undergo a cyclic process starting from equilibrium 
in wich positive work is done unless heat is absorbed (this follows also from the 
first law), heat is emitted, and the maximum empirical temperature at which heat 
is absorbed exceeds the minimum empirical temperature at which heat is emitted 
(Clausius). 

The Second Law (IV). Let (w, Q) eA (U). Then 

w > 0 , q + > 0 , and q - > 0 imply 0+ > 0- . 

Note that this version of the second law differs from the version (III) by shifting 
the implication from one place to another place. In words, (IV) says that it is im
possible for a thermodynamic system to undergo a cyclic process starting from 
equilibrium in which positive work is done, and heat is transferred from cooler to 
hotter temperatures (Clausius). 

All the above statements are contained in Silhavy [2.4], (I and II) occur also 
in [2.6,7]. For a more complete list of the statements of the laws of thermo
dynamics see Silhavy [2.16, Sect. 4], where also the ambiguities arising in the 
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process of translating the verbal statements into precise mathematical language 
are analysed. 

2.4.2 Relations Among the Statements, Consequences: Entropy Inequality 

We now deal with a universe U satisfying the Axiom of Sect. 2.2.3 and the first 
law of thermodynamics in any of the equivalent versions given in Sects. 2.3.1, 2. 

Theorem 6. The versions (1- IV) of the second law of thermodynamics given in 
the preceding section are equivalent. 

The equivalence of (1- IV) holds only provided the first law holds and 
provided an assumption embodied in item (iii) of the Axiom in Sect. 2.2.3 holds. 
A discussion of the relationships among the statements for systems satisfying the 
first law under less restrictive assumptions is given in Silhavy [2.4]. A discussion 
of the relationships among the statements for general systems not necessarily 
satisfying the first law is given in Silhavy [2.16]; it turns out that the relations in 
this general case become rather complicated; the statements are far from 
equivalent in that case. 

In the remainder of this section we assume that the four equivalent versions 
(1- IV) of the second law are satisfied. 

Theorem 710. There exists a positive, increasing, and continuous function 
T: 1--+ R + + such that 

(2.10) 

for all (w, Q) EA(U). Thefunction T is unique to within a positive multiplicative 
constant. 

The function Tis, of course, the absolute temperature scale, and (2.10) is just 
the Clausius inequality for cyclic processes. 

Thus, Theorem 7 shows that any of the versions (1- IV) of the second law 
leads to the existence of the absolute temperature scale obeying the Clausius 
inequality. The existence of this scale establishes the consequences of the second 
law of cyclic processes (starting from equilibrium). For general processes, the 
Clausius inequality leads to the existence of a state function, called entropy, 
whose change in the process dominated the expression J (dQ)ITcorresponding to 
that process. 

Theorem 8 11• For each system S = (.E, II, lV, Q) E U there exists a state function 
H: .E --+ R such that 

(2.11) 

for each process nEIl. 

10 See Silhavy [2.4, 6, 7]. 
11 Silhavy [2.4], the proof of the theorem given in the cited work is based on an earlier idea by Day 

[2.18]. 
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The inequality (2.11) is an abstract entropy inequality which in the case of a 
continuous body takes the form of the Clausius-Duhem inequality. In contrast to 
the energy function (see Theorem 3), the entropy function need not be unique to 
within an additive constant. 

To summarize, Theorems 7 and 8 show that any of the basic statements of the 
second law leads to the existence of the absolute temperature and entropy 
obeying an abstract entropy inequality. This holds only when the universe satis
fies the first law and the assumption embodied in item (iii) of the Axiom. In 
Silhavj [2.16] I present a complete discussion of the consequences of the state
ments of various forms of the second law for general systems not necessarily 
obeying the first law. The consequences then become very complicated and differ 
from statement to statement. Note, however, [2.16], that if a universe satisfying 
the Axiom of Sect. 2.2.3 contains an ideal gas with constant specific heats, then 
statements (III and IV) are equivalent and imply the Clausius inequality and the 
energy inequality (2.8) for cyclic processes. For general processes then (2.9) and 
(2.11) hold. Thus, for universes containing an ideal gas with constant specific 
heats, the second laws (III and IV) contain a considerable amount of the first 
law. 

Acknowledgement. The author wishes to thank Dr. Kathy Pericak-Spector for 
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Chapter 3 
Foundations of the Clausius-Duhem Inequality* 

M. Feinberg and R. Lavine 

3.1 Introduction 

To some extent modern continuum thermodynamics amounts to a collection of 
"thermodynamical theories" sharing common premises and common method
ology. There are theories of elastic materials, of viscous materials, of materials 
with memory, of mixtures, and so on. It is generally the case that, in the context of 
each theory, one considers all processes (compatible with classical conserva
tion laws) that bodies composed of the prescribed material might admit, and, 
moreover, one supposes that there exists for the theory a "Clausius-Duhem in
equality". In very rough terms this amounts to an assertion of the following kind: 
For any process suffered by any body composed of the material under study 

of the body at the - body at the beginning ~ J -.!£ (3.1) [
The total entropy] [The total entropy of the] d I 
end of the process of the process () process 

"dq denoting the element of heat received from external sources and () the tem
perature of the part of the system receiving it." (This interpretation of the 
integral on the right side of (3.1) is taken from the opening page of Gibbs's "On 
the Equilibrium of Heterogeneous Substances"). 

In fact, one generally supposes something more: that in calculating the 
various quantities appearing in (3.1) one has available "functions of state" that 
give instantaneous values of the specific entropy (entropy/mass) and the tem
perature at a material point within a body once the instantaneous "state" of the 
material point is specified. 1 More precisely, in a theory of a prescribed material it 
is usually taken for granted that "states" of material points can be identified with 
elements of a Hausdorff space .E (which depends upon the manner in which the 
notion of "state" is rendered concrete within the theory2) and that there exist 

* With very minor differences this article has also appeared as an appendix in the second edition of 
C. Truesdell's Rational Thermodynamics (Springer, Berlin, Heidelberg, New York, Tokyo 1984). 

1 A "state" will always be regarded here as an attribute of a material point within a body, never as 
an attribute of the body as a whole. We say that a material point is in a certain "state" while the 
body containing it is in a certain "condition". 

2 The notion of "state" will vary from one theory to another. In a theory of an elastic material the 
state of a material point might, for example, be identified with a pair (e,F), e and F denoting in
stantaneous values of the specific internal energy (energy/mass) and the deformation gradient at 
that material point. In a theory of a particular gas the state of a material point might be identified 
with a pair (p, v), p and v denoting instantaneous values at that material point of the pressure and 
specific volume. 
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two functions - a specific entropy function ,,: I -+ IR (where IR denotes the real 
numbers) and a thermodynamic temperature scale (): I -+ IP (where IP denotes the 
positive real numbers) - such that the specific entropy and temperature of a 
material point in state uEIare given by ,,(u) and (}(u). If, for a body suffering a 
particular process, one has a specification of the manner in which states of the 
various material points evolve in time, then the functions "(0) and ()( 0) permit 
local and instantaneous calculation of the temperature and specific entropy. In 
turn these calculations, supplemented with suitable information about the 
process, permit evaluation of the quantities appearing in (3.1), each by means of 
an appropriate integration procedure. The crucial supposition here is not only 
that the functions "(0) and ()( 0) exist within the context of a particular theory, but 
also that they are compatible with (3.1) for all processes that bodies considered 
within the theory might admit. Indeed, for thermodynamical theories of the kind 
we have in mind, this supposition plays the role of the Second Law. 

The Second Law, however, is traditionally invoked in far more basic terms, 
usually as a simple prohibition against certain kinds of heat receipt by bodies suf
fering cyclic processes. No initial appeal is made to notions of "entropy" or 
"thermodynamic temperature", much less to "functions of state" that give 
instantaneous values of the thermodynamic temperature and specific entropy at a 
material point. To the extent that these functions exist within the context of a 
particular theory, their existence is generally expected to be a consequence of the 
Second Law rather than a precursor of it. 

Classical arguments for the existence of specific entropy functions and ther
modynamic temperature scales are - at least in spirit - constructive ones, based 
entirely on consideration of reversible (usually homogeneous) processes. These 
are generally depicted as hypothetical processes, suitably well-approximated by 
actual processes, which operate so slowly that a body suffering such a process 
might be regarded to be in an equilibrated condition at every instant. Based on 
one or another of the primitive statements of the Second Law (and the tacit pre
sumption of a rich supply of reversible processes), these arguments deliver both 
the existence and the uniqueness (up to inconsequential scale changes) of "func
tions of state" which give the specific entropy and thermodynamic temperature. 
However, the very nature of these arguments suggests that the functions so 
constructed should contain in their domain only those states that might be 
exhibited within a body during the course of a reversible process. 

On the other hand, the methodology of modern continuum thermodynamics 
requires that the Clausius-Duhem inequality apply to all processes that bodies of 
a particular material under study might suffer, even those processes which 
involve rapid deformation and heating. Accordingly, states within the domains 
of the pre-supposed functions "(0) and ()( 0) are generally not restricted to those 
that might be manifested during reversible processes. In effect, results of the clas
sical arguments - in particular the existence of "(0) and (}(o) - are lifted from 
and applied beyond the restricted setting within which they were derived. In dis
cussing modern use of the Clausius-Duhem inequality, Truesde1l 3 [3.1] has 

3 That physical theory often proceeds in the way Truesdell suggests has been argued elsewhere by 
Feynman [3.2). 
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written that 

" ... we are following here the common, tried path of theorists: We have 
observed a property that summarizes a number of known and understood 
facts, and we ask if it will serve by itself, stripped of the restricting assump
tions by which we were led to it, as an axiom on the basis of which further 
facts may be explained and further effects predicted." 

Nevertheless, it is not unreasonable that more orthodox thermodynamicists 
should call into question the very premises upon which modern use of the 
Clausius-Duhem inequality depends. It is our purpose here to address issues of 
this kind. 

In the sense suggested at the outset, we shall continue to view thermody
namics as a collection of thermodynamical theories, each appropriate to a par
ticular material. The notion of "thermodynamical theory" will eventually be 
made precise. It suffices here to say that we shall regard such a theory to be char
acterized, first, by specification of the "state space" I - that is, of the manner in 
which the notion of "state of a material point" is rendered concrete within the 
theory - and, second, by a suitable description of those processes bodies com
posed of the prescribed material are deemed to suffer. Once the notion of "ther
modynamical theory" is made mathematical we shall want to know 

i) for precisely which theories there exist two "functions of state" - a thermo
dynamic temperature scale 0: I -+ IP and a specific entropy function 11: I -+ IR 
- such that inequality (3.1), made suitably precise, is satisfied for every 
process the theory contains; and 

ii) for precisely which of those theories that admit such functions is it the case 
that this pair of functions is unique (up to inconsequential changes of scale). 

Although we wish to address these questions in general terms, we shall circum
scribe our considerations in one respect, primilarily so that subsequent discussion 
might have a substantially less technical character. For all theories considered 
hereafter we shall presume that I is a compact Hausdorff space. In effect, for a 
particular material we are restricting attention to processes wherein no material 
point experiences a state outside a fixed compact set, perhaps very large. 4 This 
restriction will be understood throughout. 

In this context we show that, among all thermodynamical theories, existence 
of functions 11: I -+ IR and 0: I -+ IP (compatible with the Clausius-Duhem in
equality) is a property of precisely those we call Kelvin-Planck theories -
roughly, of those thermodynamical theories for which the processes comply with 
a version of the Kelvin-Planck Second Law. Our proof, which we sketch very 
briefly, is based on the Hahn-Banach theorem (as are proofs of virtually all other 

4 When I is merely required to be locally compact, one can obtain results similar but not identical to 
those obtained here. It should be mentioned, however, that when Iis not even locally compact our 
work becomes more problematical. For materials with memory (in which states are identified with 
"histories" residing in an infinite-dimensional Banach space) the assumption that Ibe compact or 
even locally compact may be too restrictive to permit consideration of a suitably rich supply of 
processes. 
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theorems stated here) and relies not at all on notions of reversibility, slow pro
cesses, Carnot cycles, differential forms, equilibrium states or any other appara
tus normally built into classical existence arguments. Thus, for theories that 
admit functions 1'/ (. ) and 0(·) , elements of the domain E need not be restricted to 
those states that might be exhibited in a body during the course of a reversible 
process. On the other hand, further theorems indicate that, for theories in which 
these functions not only exist but are also essentially unique, it must be the case 
that each state in Eis "exhibited" in some process - if not an actual process then 
one well approximated by actual processes - which is reversible (in a certain 
weak sense). Taken together, our theorems suggest that orthodox criticism of 
premises upon which modern thermodynamical methodology is based should 
perhaps focus less upon questions concerning existence of crucial state functions 
and more upon questions concerning the extent to which uniqueness of these 
functions plays a role in applications. 

More extensive discussion of the work sketched here as well as additional re
sults can be found in two articles by us 5 [3.3]. These articles had their origin in 
unpublished notes we wrote for James Serrin in 1978 to show how some of his 
early ideas, when used in conjunction with the Hahn-Banach theorem, could 
deliver results similar to his Accumulation Theorem in a rather different way. 
Our concerns then were much more limited than they are here. We concentrated 
only on how the Hahn-Banach theorem provides information about the existence 
and uniqueness of thermodyamic temperature scales suited for the Clausius in
equality (Le. (3.1) restricted to cyclic processes), and then only when the existence 
of an empirical temperature scale (or hotness manifold) is taken for granted. 
That the existence of such thermodynamic temperature scales emerges from the 
Hahn-Banach theorem (in approximately the same limited setting) was apparent
ly observed by Silhavy at about the same time. Readers are concouraged to 
consult the contributions to this volume by Serrin and Silhavy, and also those by 
Coleman and Owen, for discussion of their research on foundations of the 
Clausius-Duhem inequality. 

3.2 Thermodynamical Theories 

In this section we make precise what we mean by a thermodynamical theory and, 
in particular, what we mean by a Kelvin-Planck theory. At the outset our discus
sion will be informal: words like "theory" and "process" will be used in an intui
tive way only to provide motivation for definitions we shall eventually record. 

Although thermodynamical theories of different materials may vary greatly 
in detail, answer to questions posed earlier depend less upon the fine structure of 
a particular theory than they depend upon certain of its coarse-grained features. 
For our purposes, then, we regard a thermodynamical theory to be characterized 
by just those features that bear upon issues connected with existence and proper
ties of specific entropy functions and thermodynamic temperature scales com-

5 The second article, "Thermodynamics based on the Hahn-Banach Theorem: the Clausius-Duhem 
inequality" is being prepared for the same journal. 
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patible with the Clausius-Duhem inequality. In fact, we regard a theory to be 
specified by two sets, I and g>, that carry precisely the information we require. 
The first of these is called the set of states for the theory, and the second is called 
the set of (basic) processes. 

The set I serves to specify for a particular theory the manner in which the 
notion of "state of a material point" is made concrete. In effect, specification of 
I amounts to a description of the domain of states that material points might 
conceivably experience during processes admitted for consideration in the 
theory. As indicated earlier, we shall always presume that .E is endowed with a 
compact Hausdorff topology. For example if, in a theory of a particular gas, a 
state is regarded to be a pair (p, v), withp the pressure and v the specific volume 
at a material point, then .E would be identified with a closed and bounded region 
of 1R2, perhaps very large. In any case, it should be kept in mind that a "state" is 
an attribute of a material point within a body, not an attribute of the body as a 
whole. 

To explain the nature of the set g> and the sense in which it characterizes the 
processes a theory contains, we shall require a somewhat more extensive discus
sion. For this purpose we shall consider a theory concerned with all bodies com
posed of a particular material, and we shall suppose that states of material points 
are identified with elements of a compact l;Iausdorff space .E. 

We begin by making precise the idea that a body (as distinct from a material 
point within a body) reveals itself in a certain instantaneous "condition". Con
sider a body composed of the prescribed material. At some fixed instant each ma
terial point within the body manifests itself in some state contained in.E. (We do 
not presume that all material points are in the same state, although it may in fact 
be the case that the body is homogeneous throughout.) By the (instantaneous) 
condition of the body we mean a positive Borel measure on I which we denote 
here by m and which we interpret in the following way: For each Borel set A C I, 
m(A) is the mass oj the part oj the body consisting oj material points in states 
contained within A. In rough terms we can imagine m (A) to be determined by 
removing from the body just those material points in states contained within A 
and weighing the material so removed. Thus, the measure m describes the instan
taneous distribution of material among the various states. Note that m (I) is the 
mass of the entire body. Note also that if a body of total mass Mis homogeneous 
throughout with all material points in state (lEI, then the condition of the body 
is given by M au, where au is the Dirac measure 6 concentrated at (l. 

Now we consider a process suffered by some body composed of the pre
scribed material. During the course of the process the body may suffer deforma
tion, and heat exchange may occur between the body and its exterior. Moreover, 
each material point within the body may experience a variety of states as the 
process advances. As a result, the initial condition mj of the body (at the begin
ning of the process) may be very different from its Jinal condition, mf(at the end 
of the process). In fact, with the process we may associate the change oj 
condition 

(3.2) 

6 The Dirac measure Oq is defined as follows: For each Borel set A C I, oq(A) = 1 [=0] if (1 is 
[is not] a member of A. 
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suffered by the body between the beginning of the process and its end. Here L1m 
is a (signed) Borel measure on I; that is, L1m may take negative values on some 
Borel sets. Note, however, that 

L1m (I) = mr(I) -mj(I) = 0 (3.3) 

since both mr(I) and mj(I) are equal to the total mass of the body suffering the 
process. 

In addition to the change of condition we shall associate with the process 
under consideration another (signed) Borel measure on I called the heating 
measure for the process. We denote the heating measure by r; and give it the 
following interpretation: for each Borel set A C I, r; (A) is the net amount of 
heat received (from the exterior of the body suffering the process) during the 
entire process by material points in states contained within A. In rough terms, 
r;(A) is the net amount of heat one would observe being received by the body 
from its exterior if, at each instant during the process, one ignored heat receipt by 
parts of the body in states outside A. Note that r; may be positive (corresponding 
to net heat absorption) on some Borel sets and negative (corresponding to net 
heat emission) on others. 

Because the measures L1m and 'I for a process will play significant roles in 
what follows it is perhaps instructive to consider how these measures derive from 
a somewhat more traditional (and more detailed) process description: 

Example 1. For the material under consideration we consider a particular pro
cess. With the process we associate 

i) a body B that suffers the process. We regard B to be a set (of material points) 
taken together with a a-algebra of subsets of B called the parts of B. 
Moreover, we presume that B comes equipped with a positive measure f1. 
defined on its parts: for each part PCB, f1.(P) is the mass of part P; 

ii) a closed interval J( = [tj, tr)) to be interpreted as the time interval during 
which the process takes place; 

iii) a measurable function &: B x J -+ I, where &(x, t) is to be interpreted as the 
state of material point X at time t; 

iv) a real-valued (signed) measure A on B x J with the following interpretation: 
for each part PCB and each Lebesgue measurable set J C J, A(PxJ) is the 
net amount of heat received (from the exterior of B) by part P during instants 
contained in J. 

For the process so described the heating measurer; is constructed as follows: for 
each Borel set A C I, 

(3.4) 

To construct the change of condition for the process we proceed in the following 
way: Let the functions &j: B -+ I and &r: B -+ I be defined by 

(3.5) 
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Then the initial condition mj of body B and its final condition mr are defined as 
follows: for each Borel set A C 1:, 

mj(A) = .u(uj-l(A» and mr(A) = .u(ur- 1(A» . (3.6) 

The change of condition LIm for the process is then given by mr-mj. 

We are now in a position to describe the set fJJ for the theory under considera
tion. With a process admitted by a body composed of the prescribed material we 
can associate the pair (.L1m, ?), where LIm is the change of condition and? is the 
heating measure for the process. By fJJ we shall mean the set of all (LIm, ?) pairs 
that derive from processes admitted by bodies composed of the prescribed 
material. 7 

We let JI (1:) denote the vector space of finite signed regular Borel measures 
on 1:, and we let Jlo (1:) denote the linear subspace of JI (1:) defined by 

Jl O (1:): = {VEJI(1:) I V (1:) = O}. (3.7) 

It follows from (3.3) that the change of condition for any process is an element of 
JlO (1:). Thus we can view fJJ as a subset of Jl O (1:) E8 JI (1:). Hereafter, for a 
theory with state space 1: we give JI (1:) the weak-star topology 8, Jl o (1:) the 
topology it inherits as a subspace of JI (1:), and JlO (1:) E8 JI (1:) the resulting 
product topology. 

There is a certain amount of structure one might expect the set fJJ to possess. 
For example, if (LIm, ?) E fJJ derives from a process suffered by a body composed 
of the material under study and if (LIm,?), E fJJ derives from a process suffered 
by another such body (perhaps a copy of the first), then one might expect 
(LIm, ?) + (LIm, ?)' to be an element of fJJ on the grounds that the two processes 
executed in separate locations constitute a third process suffered by the "union" 
of the two separate bodies. (In effect, we are invoking what Serrin has called the 
"union axiom" .) Moreover, if (LIm, ?) E fJJ derives from a process suffered by a 
body of mass M and if a is a positive number, one might expect a(Llm,?) to be 
an element of fJJ as well - an element that derives from a "scaled copy" of the 
first process, one suffered by a body of mass aM. With considerations like these 
in mind, we shall assume that fJJ C Jl o (1:) E8 JI (1:) is a convex cone. 9 

Because the set fJJ for a particular theory carries all the information we 
shall require about the nature of processes the theory contains, we shall find 
it convenient to speak of "the process (LIm,?) E fJJ". In fact, we shall go a 
step further. In classical thermodynamics one attaches significance not only to 

7 The description of a process in terms of what we call the condition of a body was suggested by Noll 
[3.4]. The use of what we call heating measures in process descriptions and in statements of the 
Second Law seems to have originated with Serrin [3.5]. 

8 By the weak-star topology we mean the coarsest topology on vii (I) such that, for every con
tinuous ¢: J: --> IR, the function 

v Evil (J:) --> J ¢dv 
is continuous. I 

9 In fact, we shall only require that the topological closure of fJ' be a convex cone. (If fJ' is a convex 
cone, if follows that cl(fJ') is a convex cone.) Our discussion here is merely intended to make 
plausible the idea that cl(fJ') should have a convex conical structure. Arguments presented in the 
second of our articles cited earlier are somewhat different and, we think, more satisfactory. 
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actual processes the bodies under consideration admit but also to idealized "pro
cesses" which, while perhaps not among the actual processes, are in some sense 
approximated by them. Indeed, a substantial part of classical methodology is 
predicated on the tacit supposition that thermodynamical laws restricting actual 
processes should govern such idealized "processes" as well. With this in mind, we 
shall designate as processes not only those elements of .At ° (E) Ejj.At (27) that lie in 
fJJ but also those elements that lie in the closure of fJJ (denoted cl(fJJ». When we 
wish to discuss elements of fJJ in particular, we shall refer to these as basic pro
cesses. 

Definition 1. A thermodynamical theory (27, g» is specified by 

i) a non-empty set 27 endowed with a compact Hausdorff topology. Elements of 
27 are called states (of material points). 

ii) a non-empty set fJJ c .At ° (27) Ejj.At (27) such that cl(fJJ) is a convex cone. 
Elements of cl (fJJ) are called processes; in particular, elements of fJJ are called 
basic processes. If ft = (LIm, r;) is a process, then Llme.At° (27) is the change of 
condition for the process fi, and r;e.At (27) is the heating measure for the 
processft· 

By a Kelvin-Planck theory we shall mean a thermodynamical theory for 
which the processes comply with a version of the Kelvin-Planck Second Law. In 
rough terms this amounts to an assertion that for no cyclic process can the body 
suffering the process absorb heat from its exterior without emitting heat as well. 
We begin by defining what we mean by a cyclic process. 

Definition 2. A cyclic process in a thermodynamical theory (27, fJJ) is a process 
for which the change of condition is the zero measure. We denote by rt the set of 
elements of .At (27) which are heating measures of cyclic processes. That is, 

(3.8) 

Elements of rt are called the cyclic heating measures for the theory. 

Note that for a process to be cyclic we require only that the initial and final 
condition of the body suffering the process be identical. We do not impose the 
stronger requirement that the state of each material point be the same at the 
beginning and end of the process. 

A Kelvin-Planck theory is a thermodynamical theory in which no (nonzero) 
cyclic heating measure is a positive measure. This is to say that if, for a Kelvin
Planck theory, r; is a heating measure for a cyclic process and there exists a Borel 
set A C 27 such that r;(A) is positive (corresponding to heat absorption), then 
there must exist a Borel set A' C 27 such that r;(A') is negative (corresponding to 
heat emission). We shall denote by .At + (27) the set of positive Borel measures on 
27 - that is, the set of those elements of .At (27) (including the zero measure) 
which are non-negative on every Borel set. Thus, we have 10 

10 (3.9) is similar in spirit if not in detail to a version of the Second Law invoked by Serrin in the 1978 
article cited earlier [3.5]. 
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Definition 3. A Kelvin-Planck theory is a thermodynamical theory (I, 9) for 
which 

We are now in position to supply answers to questions posed earlier. 

3.3 The Existence of Specific Entropy Functions 
and Thermodynamic Temperature Scales 

(3.9) 

The following theorem asserts that, among all thermodynamical theories, the 
Kelvin-Planck theories are precisely those that admit (continuous) specific 
entropy functions and thermodynamic temperature scales which are compatible 
with the Clausius-Duhem inequality in the sense described earlier. Hereafter 
C(I, IR) will denote the set of real-valued continuous functions on I, and C(I, IP) 
will denote the set of functions in C(I, IR) that take strictly positive values. 

Theorem 1. Let (I, (1) be a thermodynamical theory. The following are 
equivalent: 

i) (I, (1) is a Kelvin-Planck theory. 
ii) There exist functions '1eC(I, IR) and fJeC(I, IP) such that 

Remark 1. It is worth noting that if, for a particular process, mj and mf are the 
initial and final condition of the body suffering the process, then ..1m = mf-mj 

and 
(3.11) 

We shall of course regard (3.10) as a Clausius-Duhem inequality for a (Kelvin
Planck) theory, with '1(0) playing the role of a specific entropy function and 9(0) 
playing the role of a temperature scale. Thus, the terms on the right of (3.11) 
become the final and initial total entropy of the body suffering the process. It is 
also worth noting that if, for a particular process, the pair (..1m,?,) derives from 
the data specified in Example 1, Sect. 3.2 then, for that process, the inequality 
appearing in (3.10) can be "pulled back" to a somewhat more traditional expres
sion of the Clausius-Duhem inequality: 

J ll((1r(X»dtt(X) - J,,(Uj(X» dtt (X) ~ J dA(X, t) (3.12) 
B B - Bx! fJ(u(X, t)) 

Proof of the implication that (ii) implies (i) in Theorem 1 of this section is 
straightforward, and we shall not give it. We do, however, think it important to 
give a brief sketch of the proof that (i) implies (ii) if only to demonstrate that it 
relies not at all on tacit assumptions about equilibrium states, reversible pro-
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cesses, Carnot cycles, or any of the other hypothetical physical apparatus built 
into classical arguments for the existence of entropy functions and thermody
namic temperature scales. 

Rather, the proof relies exclusively on ideas in functional analysis which, 
while now standard, were unavailable to the pioneers of thermodynamics. We 
shall need a few preliminary facts: First, J{ (2:') is a locally convex Hausdorff 
topological vector space, as is J{0 (2:') EEl J{ (I). Second, the compactness of I 
ensures that 

is a compact subset of J{ (2:'). Finally, iff: J{0 (2:') EEl J{ (2:') -+ IR is a continuous 
linear functional, then there exist in C(I, IR) functions a(·) and P(·) such that, 
for every (v, w) eJ{ ° (2:') EEl J{ (2:'), 

f(v,w) = Jadv+ Jpdw. (3.13) 
I I 

Sketch of Proof, (i) implies (ii). In a Kelvin-Planck theory no process is of the 
form (0, w) with weJ{ 1 (2:'). Thus, in J{ ° (2:') EEl J{ (2:') the closed convex cone 
cl(~) is disjoint from the compact convex set {o} x J{1(2:'). The Hahn-Banach 
theorem 11 therefore ensures the existence of a continuous linear functional 
f: J{ ° (2:') EEl J{ (2:') -+ IR such that 

f(L1m, 9') ~ 0, V(L1m, 9')ecl(~) 

and 
f(O,w) >0, v(O,w)e{O} x J{1(2:'). 

(3.14) 

(3.15) 

Moreover, there exist in C(I, IR) functions - 17(') and P(·) such that f(', .) has a 
representation 

f(v,w) = J(-17)dv+ JPdw, v(v,w)eJ{°(2:') EElJ{(2:'). (3.16) 
I I 

Since, for each (leI, the Dirac measure Oais a member of J{j(2:') it follows from 
(3.15) and (3.16) that P(·) takes positive values. Taking 0(·) = 1/ P(·), we obtain 
(3.10) from (3.14) and (3.16). 

Definition 1. Let (I,~) be a Kelvin-Planck theory. An element (17,O)e 
C(I, IR) x C(I, IP) that satisfies condition (3.10) will be called a Clausius-Duhem 
pair for the theory. A function OeC(I, IP) is a Clausius-Duhem temperature scale 
for the theory if there exists 17eC(I, IR) such that (17,0) is a Clausius-Duhem pair, 
in which case 17(') is a specific entropy function (corresponding to the Clausius
Duhem temperature scale 0(·». We denote by ffcn the set of all Clausius-Duhem 
temperature scales for the theory. 

II The version of the Hahn-Banach theorem invoked here is one which asserts that, in a locally 
convex Hausdorff topological vector space, two disjoint non-empty convex sets - one closed, the 
other compact - admit separation by a hyperplane. See Theorem 21.12 in [3.6]. In fact, [3.6] is a 
good source of information about the vector space J( (I). 
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Because we shall be interested in, among other things, the uniqueness of 
specific entropy functions and Clausius-Duhem temperature scales for a given 
Kelvin-Planck theory, we shall be concerned with the supply of Clausius-Duhem 
pairs a particular theory admits. Inspection of condition (3.10) suggests that the 
supply of Clausius-Duhem pairs is intimately connected with the supply of pro
cesses the theory contains. In rough terms, the larger the set #J for a Kelvin
Planck theory, the more demanding condition (3.10) becomes and the smaller 
will be the set of (17, 0) pairs that satisfy its requirements. It is this dual relation
ship between the supply of processes and the supply of Clausius-Duhem pairs for 
a Kelvin-Planck theory that we begin to explore next. 

3.4 Properties of the Set of Clausius-Duhem Temperatures Scales 

This section will conclude with a theorem which gives for a Kelvin-Planck theory 
a condition which is both necessary and sufficient to ensure that all its Clausius
Duhem temperature scales are identical up to mUltiplication by a positive con
stant. Even in the absence of such uniqueness we shall want to draw a connection 
between temperature and "hotness". That is, we shall want to understand the 
sense in which the Clausius-Duhem temperatures scales of a Kelvin-Planck 
theory (I, ffJ) assign to states in I numbers which reflect the relative hotness of 
material points in those various states. Thus, we shall require that the set I carry 
some "hotness structure" wherein it makes sense to say that two distinct states 
are "of the same hotness" or that one is "hotter than" another. We take the point 
of view that such a structure should be imposed by the processes the theory 
contains. Therefore, without recourse to the existence of temperature scales we 
define the notions "of the same hotness" and "hotter than" in terms of the 
existence within the theory of processes having specified properties. Then we ask 
how the resulting hotness structure on I is reflected in the Clausius-Duhem 
temperature scales the theory admits. 

We begin by stating what we mean by a reversible process. 

Definition 1. A reversible process in a thermodynamical theory (I, #J) is a 
process (Llm,1)ecl(ffJ) such that (-Lim, -1) is also contained in cl(#J). 

Note that a reversible process need not be a member of ffJ, the set of basic pro
cesses; it need only be a member of cl(.~). This we believe reflects the usual idea 
that a reversible process need not be a member of the "actual" processes but 
should be approximated by them. Note also that our definition of a reversible 
process is somewhat weaker than the traditional one, in which a process and its 
reverse trace out "paths" in opposite directions. Here we require no notion of 
"path" . 

Definition 2. Let (I, #J) be a thermodynamical theory. Two states aeI and 
a' eI are of the same hotness (denoted a' - a) if there exists in cl(#J) a 
reversible cyclic process with heating measure t5(], - t5(]. The equivalence relation 
- induces a partition of I into equivalence classes called hotness levels. We 
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denote by IH the set of all hotness levels, and we give IH the quotient topology it 
inherits from I. 

In rough terms, the reversible cyclic process described in Definition 2 of this 
section is such that, for the body suffering the process, heat is absorbed only by 
material points in state (J', heat is emitted only by material points in state (J, and 
the amount of heat absorbed is equal to the amount emitted (whereupon the First 
Law requires that the net amount of work done on the body is zero). Here again 
it is important to recognize that the process described need not be among the 
basic (or "actual") processes; it need only be approximated by them. 

Theorem 1. Let (I, ;1) be Kelvin-Planck theory. The following are equivalent: 

i) (J' eI and (JeI are of the same hotness. 
ii) O( (J ') = O( (J) , V 0 eYeD' 

Theorem 1 of this section asserts not only that two states of the same hotness 
are assigned identical temperatures by every Clausius-Duhem scale but also that 
if two states (J' and (J are not distinguished by any Clausius-Duhem scale for the 
theory then the theory must contain a process of the kind described in Definition 
2 of this section. 

Because two states residing in the same hotness level are assigned identical 
temperatures by every Clausius-Duhem scale, it makes sense to speak of the 
"temperature of a hotness level" . 

Definition 3. For a Kelvin-Planck theory (I, ;1) let 0: I --+ IP be a Clausius
Duhem temperature scale. By ()*: IH --+ IP we mean the Clausius-Duhem tempera
ture scale on IH induced by 0(·) in the following way: For each he IH 

()*(h) = O«(J) , 

where (J is any element of h. The set of all Clausius-Duhem temperature scales 
induced on IH by members of YeD will be denoted by ffcb. 

Next we wish to give meaning to the idea that one hotness level is "hotter 
than" another. In preparation for that definition we recall that the support of a 
measure veJt+ (1:) is defined to be the complement in Iof the largest open set in 
I of v-measure zero. We denote the support of v by supp v. In terms which are 
hardly precise, suppvis that part of I which v acts on in a nontrivial way. In par
ticular, if h C I is a hotness level, then supp v C h implies that v(A) = 0 for any 
Borel set A C I disjoint from h. 

Definition 4. For a Kelvin-Planck theory (I, ;1) with hotness levels IH we say that 
h' elH is hotter than helH (denoted h'l- h) if h' =1= h and there exists in cl(;1) a 
cyclic process with heating measure of the form 

'I = v ' - v, 

where v' and v are members of Jt+ (1:) such that supp v Chand v' (h') > v(h). 
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In rough terms, the process described is a cyclic (not necessarily reversible) 
one wherein heat is emitted only by material points in states within hotness level 
h, and the amount of heat emitted is less than the amount absorbed by material 
points in states contained within hotness level h I. Thus, the total amount of heat 
absorbed by the body suffering the process is positive (whereupon the First Law 
requires that the body do work). 12 

Remark 1. For a Kelvin-Planck theory the relation ~ is a partial order on the set 
of hotness levels. It need not be the case that the order is total, for the theory may 
be insufficiently rich in processes to render every pair of hotness levels ~-com
parable. 

Theorem 2. Let h' and h be hotness levels for a Kelvin-Planck theory. Thefol
lowing are equivalent: 

i) h I is hotter than h . 
ii) There exists 8 > 0 such that 

e*(h') 
--~> 1 +8, ve*e!lCo. 

e*(h) 
(3.17) 

Theorem 2 of this section asserts that if h I is hotter than h it is not only true 
that e* (h ') > e* (h) for each e* e.rc'b but also that the ratio of the two tem
peratures is bounded away from unity as e* (0) ranges over all Clausius-Duhem 
scales on IH. Conversely, if the set of Clausius-Duhem temperature scales for a 
Kelvin-Planck theory has this property, then the theory must contain a process of 
the kind described in Definition 4 of this section. 

We turn next to a corollary of Theorem 2 of this section. Recall that for us the 
hotness levels for a Kelvin-Planck theory (I, fI) were defined objects, and the set 
IH of all hotness levels inherited its topology (Definition 2 of this section) from 
that of I even before IH was endowed with a "hotter than" relation. In the 
absence of special assumptions one cannot say much about the topological 
nature of IH other than that IH, like I, is compact and Hausdorff. If, however, 
the Kelvin-Planck theory in question is sufficiently rich in processes as to make 
~ a total order on IH, then one can say quite a bit: that IH looks very much like a 
subset of the real line. 

Corollary 1. Let IH be the set of hotness levels for a Kelvin-Planck theory (I, fI). 
If IH is totally ordered by ~, then IH is both homeomorphic and order-similar to 
a subset of the real line. 13 In particular, if I is connected then IH is homeo
morphic and order-similar to a bounded closed interval of the real line. 

12 A similar, though somewhat more special, notion of hotter than was used by Truesdell [3.7]. 
Definition 4 of this section corresponds to the relation 4 ~ in the first of our articles cited earlier. 

13 Corollary 1 of this section gives nontrivial information not only about the topological structure of 
IH but also about its order structure. It is not generally the case that a totally ordered set is order
similar to a subset of the real line. For a counterexample see [3.3, Sect. 5]. 
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In questions concerning the essential uniqueness of Clausius-Duhem tempera
ture scales we shall find that Carnot processes play an inexorable role. 

Definition 5. A Carnot process in a thermodynamical theory (.E, g» is a 
reversible cyclic process (0, 9)ecl(~) with the following property: There exist in 
.E hotness levels h I and h such that the heating measure 9 has a representation 

9= v ' - v, 

where v I and v are non-zero elements of vi' + (.E) with supp v I Ch' and 
supp v C h. We say that the Carnot process operates between hotness levels h' 
and h. 

In rough terms, the process described in Definition 5 of this section is a 
reversible cyclic one wherein heat is absorbed by material points in states con
tained entirely in one hotness level and heat is emitted by material points in states 
contained entirely in another hotness level. 

Theorem 3. Let (.E, ~) be a Kelvin-Planck theory. Thefollowing are equivalent: 

i) All Clausius-Duhem temperature scales for (.E, g» are identical up to 
multiplication by a positive constant. 

ii) For each pair of hotness levels h I and h there exists in cl (~) a Carnot process 
operating between h' and h. 

iii) For each pair of states (J' e.E and (Je.E there exists in cl(g» a Carnot process 
with heating measure c' du' - Cdu, where c' and c are positive numbers. 14 

The implications (iii) -+ (ii) -+ (i) of Theorem 3 of this section are routine. Of 
real interest here are the implications (i) -+ (ii) -+ (iii). In rough terms these assert 
that, in order for a Kelvin-Planck theory (.E, (JJ) to have an essentially unique 
Clausius-Duhem temperature scale, it is necessary that the theory contain a rich 
supply of Carnot processes; moreover, every state in .E must manifest itself in a 
reversible (Carnot) process. 

3.5 Properties of the Set of Specific Entropy Functions 

Here we examine connections between the set of specific entropy functions for a 
Kelvin-Planck theory and the set of processes the theory contains. Let (.E, g» be 
a Kelvin-Planck theory for which .9CD is the set of Clausius-Duhem temperature 
scales. For each (Je.9CD we denote by YtJthe set of specific entropy functions that 
correspond to (J: 

YtJ: = {1'/eC(.E, IR) 1(1'/, (J) is a Clausius-Duhem pair for (.E, g>)}. 

14 In rough terms, the Carnot process described in (iii) is one for which there is net heat absorption 
only by material points in state (1' and net heat emission only from material points in state (1. 

It should be remembered that such a process need only lie in the closure of fJI. In terms of the 
classical picture it is instructive to think about a sequence of Carnot cycles with isothermal parts of 
decreasing length. 



3. Foundations of the Clausius-Duhem Inequality 63 

Moreover, we denote by !I the set of all specific entropy functions the theory 
admits; that is, !I is the union of all !Ie as e ranges over ..reD' 
Definition 1. An adiabatic process in a thermodynamical theory (2', gJ) is an 
element of c1 (f1) for which the heating measure is the zero measure. 15 

Definition 2. Let (I, f1) be a thermodynamical theory. Two states a' eI and 
aeI are adiabatically related if there exists in c1(gJ) a reversible adiabatic 
process for which t5(J' - t5(J is the change of condition. 16 

The process described in Definition 2 of this section can be regarded as a 
reversible adiabatic one in which the body (of unit mass) suffering the process 
has initial condition t5(J and final condition t5(J" That is, the body begins in a 
homogeneous condition wherein all material points are in state a and ends in a 
homogeneous condition wherein all material points are in state a'. 

Theorem 1. Let (I, f1) be a Kelvin-Planck theory. Thefollowing are equivalent: 

i) a' eI and aeI are adiabatically related. 
ii) l1(a') = l1(a) , 't/l1eY. 

Theorem 1 of this section asserts not only that two adiabatically related states 
are assigned identical values by every specific entropy function for the theory but 
also that if no specific entropy functions distinguishes a' from a then the theory 
must contain a process of the kind described in Definition 2 of this section. 

Our next theorem addresses the following question: In a Kelvin-Planck 
theory for which all Clausius-Duhem temperature scales are essentially identical, 
what is required - beyond a rich supply of Carnot processes - in order to 
ensure that the specific entropy functions corresponding to each temperature 
scale are also essentially identical? 

Theorem 2. Let (I, f1) be a Kelvin-Planck theory for which all Clausius-Duhem 
temperature scales are identical up to multiplication by a positive number. The 
following are equivalent: 

i) For each 8e.9CD the elements of Y8 are identical up to an additive constant. 17 

ii) For each pair of states a' eI and aeI there exists in c1 (f1) a reversible pro
cess for which the change of condition is t5(J' - t5(J' 

As in the discussion following Definition 2 of this section, the process 
described in (ii) can be regarded to be a reversible one in which the body suffering 

IS The definition of an adiabatic process given here is somewhat weaker than the usual one. It does 
not necessarily imply that during the course of the process there is no heat supplied or removed but 
rather that if there is heat supplied and removed these compensate each other in such a way as to 
make? (A) = 0 for every Borel set A C I. 

16 The equivalence relation on I given in Definition 2 of this section serves to partition I into 
adiabats. In ways we shall not pursue here, these play for specific entropy functions the role that 
hotness levels play for Clausius-Duhem temperature scales. 

17 In the context of the theorem it is not difficult to deduce from (ii) that if 11(') and~(·) are any 
specific entropy functions for the theory, not necessarily corresponding to the same temperature 
scale, there exist celP and c'elR such that ~(.) = C11(·)+C·. 
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the process begins with all its material points in state u and ends with all its 
material points in state u '. Here, however, the process need not be adiabatic. 

That (ii) implies (i) is well known. That (i) implies (ii) is more interesting. In 
rough terms this last implication requires that, for a Kelvin-Planck theory (..E, gJ) 
to have not only an essentially unique Clausius-Duhem temperature scale but 
also an essentially unique specific entropy function, it is necessary that gJ be so 
rich that, for each pair of states in ..E, there exists in cl «(J') a reversible process 
connecting them. Here, as in Theorem 3 of Sect. 3.4 uniqueness of the specific 
entropy function requires that each state in ..E manifests itself in some reversible 
process. 

3.6 Concluding Remark 

Beginning with a statement of the Second Law and the tacit presumption of a 
rich supply of reversible processes, classical arguments deduce simultaneously 
both the existence and uniqueness of requisite functions of state. Questions of 
existence and uniqueness are of course very different, and it should come as no 
surprise if conditions for one are largely irrelevant to the other. Theorem 1 of 
Sect. 3.3 ensures the existence of a Clausius-Duhem temperature scale and a 
specific entropy functions for any Kelvin-Planck theory - roughly, for any ther
modynamical theory that carries a Kelvin-Planck Second Law - regardless of 
the nature of the individual "states" the theory purports to take into account. On 
the other hand, if these functions are to be essentially unique for a particular 
theory, Theorems 3 of Sect. 3.4 and Theorem 2 of Sect. 3.5 require that all the 
states be of the kind that can be exhibited during the course of a reversible 
process. Thus, there is little in these theorems to support the position of those 
who would deny the existence of crucial state functions in modern 
thermodynamical theories. On the contrary, Theorem 1 of Sect. 3.3 calls such a 
denial into serious question. If, however, uniqueness of these functions is at 
issue, then the more conservative thermodynamicists would be seem to have the 
weight of Theorem 3 of Sect. 3.4 and Theorem 2 of Sect. 3.5 on their side. 
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Chapter 4 
Recent Research on the Foundations of Thermodynamics 

B. D. Coleman and D. R. Owen* 

The principles of thermodynamics have found application in many branches of 
science. These principles have been employed to understand the efficiency of heat 
engines, the electromotive force of galvanic cells and thermal junctions, the 
dependence of chemical equilibrium on temperature and pressure, the properties 
of phase transitions, and the subject emphasized in this book: the thermo
mechanics of continuous bodies. 

Although thermodynamics is the science of heat and temperature, its prin
ciples are often usefully applied to experiments in which heat is not flowing (e.g., 
those involving poor thermal conductors or insulated reaction chambers) or 
others in which temperature is not changing (because, say, the object under study 
is a good thermal conductor in contact with an isothermal environment). One 
recognizes a thermodynamical argument by its reference to consequences of 
either the first or the second law. Every student of physics or chemistry has been 
taught that the first law is an assertion about the balance of heat and work, and 
that the second law is an assertion about the rate of increase of entropy that, in 
some sense, is equivalent to a denial of the existence of certain perpetual motion 
machines, or to a denial of the existence of cycles in which heat is absorbed at 
some temperatures without emission at others, or to an assumption about the 
sign of the sum over a cycle of the ratio of the heat absorbed to the temperature 
at which it is absorbed 1. 

We here describe some recent work toward a precise formulation of the 
second law as a general principle whose implications can be derived with rigor2. 
We do not believe that the results of this work can be dismissed as "mere axiom
atics". The development in the 1960s of the thermodynamics of materials with 
memory raised questions whose resolution required a careful examination of the 
mathematical foundations of thermodynamics. In its original presentation [1964, 
1, 2], the theory of the thermodynamics of materials with fading memory rested 

* This article appeared as Appendix G1 in C. Truesdell's Rational Thermodynamics (Springer, 
Berlin, Heidelberg, New York, Tokyo 1984). 

1 In their explanation of the laws of thermodynamics, particularly the second law, the texts on the 
subject tend to be obscure, not because the principles sought fail to have the generality claimed, 
but because of the absence of a mathematical language that permits expression of the principles at 
that level of generality. 

2 This brief survey is confined to the study of certain forms of the second law. No attempt is made 
to present a complete set of axioms for all of thermodynamics. The first law and the concept of 
work are not discussed. For accounts of the early development of the science of thermodynamics 
and the discovery of the first and second laws, see the books of Truesdell [1980, 2) and Truesdell 
and Bharatha [1977, 1). 
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on the Clausius-Duhem inequality, i.e., on the assumption that for each sub
stance there is a function of state 3, called the entropy, whose difference at two 
states dominates the ratio of the heat absorbed to the absolute temperature along 
each process taking one state of the other. The question was raised: Does each 
substance have such a function of state with the properties of regularity needed 
to derive the now known consequences of the Clausius-Duhem inequality? Of 
course, the question is meaningful only if one has a statement of the second law 
that does not presuppose the presence of entropy as a function of state. A state
ment of this type can be obtained by making mathematical the ideas behind the 
familiar assertion that the sum along a cycle of the ratio of the heat gained to the 
absolute temperature at which it is gained cannot be positive. However, to be 
useful for materials with gradually fading memory and for other substances with 
few non-trivial cycles, the statement must be formulated in such a way that it has 
meaning for "approximate cycles". We have obtained such a formulation of the 
second law and have used it to study various questions, including the existence, 
uniqueness, and regularity of entropy functions. 

In this recent work [1974,1; 1975,1], a careful distinction is made between 
the general structure of thermodynamical systems and the equations defining 
special classes of systems 4. The concept of a system employed is one in which a 
system is a pair (I, m of sets with the following mathematical structure: I is a 
topological space whose elements are the states; II is the set of processes; asso
ciated with each process is a continuous function (}p mapping a non-empty open 
subset ~ (P) of I onto a subset ~ (P) of 1:'; (}p is called the transformation 
induced by P and its value at a state (J in ~ (P) is denoted by (}p(J; to each pair 
(P",P') of processes for which ~ (P') intersects ~ (P") is assigned a process 
P" P' called the process resulting from the successive application of (first) P' and 
(then) P". It is assumed that: 

I) for each (J in:E, the set of states accessible from (J, i.e., the set of states of the 
form (}p(J with P in II, is dense in 1:'; and 

II) if P" P' is the result of the successive application of P' and P", then the 
transformation (}p. p' induced by P" P' is the composition of (}p' and (}p", 

i.e., is the function defined on ~ (P" P') = (}p,l(~ (P"» by the equation 
(}p"p'(J= (}p"(}p'(J. 

The mathematical concept that renders precise and general the idea of a "sum 
along a process" is that of an action. An action is a function that assigns a 
number a (P, (J) to each pair (P, (J) with P in II and (J in ~ (P); a(P, (J) is called 
the supply of a on going from (J to (}p(J via the process P. Two properties are 
required of an action: 

i) additivity in the sense that if P is the result of the successive application of P' 
and P", then for each (J in ~ (P) the supply of a obtained by going from 

3 For a material with fading memory, a state can be identified with an appropriate history. 
4 It is common for the older literature to obscure such a distinction or to employ two languages: the 

language of mathematics for the treatment of special systems and examples, and a non-mathe
maticallanguage, reminiscent of metaphysics, for discussion of the general principles of thermo
dynamics. 
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(1 to (}p(1 via P is the sum of the supplies of a obtained by going from (1 to 
(}p' (1 via P' and from (}p' (1 to (}p(1 = (}p"(}p' (1 via plI, i.e., 

a(P, (1) =a(pl, (1) +a(plI, (}p,(1) , (4.1) 
and 

ii) continuity in the sense that for each P in II, the function a(P, .) is continuous 
on ?) (P). 

A process P and a state (10 are said to form a cycle (P, (10) if (10 is in ?) (P) 
and (}p(10 = (10. One may consider taking the second law to be the assertion that 
an appropriate action {) (which, of course, must be be specified) is not positive 
when its argument is a cycle, i.e., is such that 

(4.2) 

For materials with gradually fading memory, the class of cycles (P, (10) is too 
small for (4.2) to have the full implications expected of the second law. To obtain 
an extension of (4.2) to "approximate cycles", we have employed the following 
concept: We say that {) has the Clausius property at a state (10 if, for each e > 0, 
(10 has a neighborhood 0'0«(1°) for which 

(4.3) 

It is clear that if (4.3) holds and (}p (10 = (10, we have {) (P, (10) < e for every e > 0, 
and hence (4.2) holds; i.e., if {) has the Clausius property at (10, then J(P, (10) is 
not positive when (P, (10) is a cycle. 

If an action has the Clausius property at a state (10, then it has the property at 
each state in a set £0 that is dense in £ and contains all states (1 that are accessible 
from (10;5 this set £0 may be defined as follows. For each state aO in £ let 
§ «(10, (1) be the collection of all the open subsets 0' of £ that contain (1 and are 
such that the sets {) {aO -. O'}, defined by 

(4.4) 

are individually bounded above, i.e., have 

supJ {aO -. O'} < (Xl ; (4.5) 

£0 is the set of states for which 

m«(1°,(1):= inf supJ{a°-./t7} (4.6) 

is finite, i.e., 
lle§(uO, u) 

(4.7) 

In [1974, 1] we interpreted the second law as the statement that a particular 
action J has the Clausius property at least at one state. To prove that such a 
statement implies the existence of an entropy function that enters a relation with 

5 [1974,1) Thm. 3.1. 
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the form of the Clausius-Duhem inequality, we there introduced the concept of 
an upper potential. 

A real valued function S on a dense subset Yof Iis called an upper potential 
for an action {) if for each pair of states at. 0'2 in Y and each e > 0 there is a 
neighborhood O'e(O't. 0'2) of 0'2 such that whenever (}PO'I is in O'e(O't. 0'2), 

S(0'2) - S(O't> > {) (P, 0'1) - e . (4.8) 

In the special case in which 0'2 is accessible from 0'1, i.e., in which 0'2 has the form 
0'2 = (}pO't. this relation holds for all e > 0 and hence implies that the supply of {) 
on going from 0'1 to 0'2 is dominated by the difference S(0'2) - S(O't>: 

(4.9) 

It is easily seen that an action that has an upper potential has the Clausius 
property at each state in the domain of the upper potential. Although far less 
trivial to show, the converse is also true: the assumption that there are states at 
which {) has the Clausius property implies that {) has an upper potential, in fact, 
one that is upper semicontinuous6• If we identify {) (P, 0') with the sum of the heat 
added divided by the temperature at which it is added as the system is taken from 
the state 0' to the state (}p 0' by the process P, then in (4.9) the upper potential Sis 
playing the role played by entropy in the Clausius-Duhem inequality. Thus, the 
existence of an upper potential for {) is tantamount to the existence of entropy as 
a function of state. 

Our construction of an entropy function employs the observation that if {) has 
the Clausius property at 0'0 and if So is defined on I O by 

(4.10) 

then not only is the domain I O of So dense in I, but So is an upper potentialjor 
{) and is upper semicontinuous on IO . 

Under the assumptions stated up to this point, we can say no more about the 
regularity of upper potentials for {) than that there is one that is semicontinuous. 
This should not be surprising, for we have so far assumed very little about 
systems and actions. At this level of generality, the collection Iof states has a 
topology but not the vector-space or manifold structure required to make 
meaningful the concept of a differentiable function on I. When more is assumed 
about the system (I, m and the action {), one expects to be able to prove more 
about entropy as a function of state. 

We have not yet assumed any special properties for the state 0'0 with which 
we start when we construct I O as shown in equations (4.4) - (4.7). We would like 
to take this state as a "standard state" and be able to normalize entropy functions 
S on IO so that 

(4.11) 

6 [1974,1] Thm. 3.3. 
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Although the hypotheses we have made so far imply that IO is dense in I, they 
are not strong enough to imply that UO is in IO. It does suffice, however, to 
assume that this selected state UO is equilibrated with respect to 0 in the sense that 
there is at least one process po in II for which 

(4.12) 

In fact, we have the following theorem 7: Suppose that UO is equilibrated with 
respect to 0 and is a state at which 0 has the Clausius property. Then (1) UO is in 
IO; (2) 

(4.13) 

and hence the upper potential So defined in (4.10) vanishes at uO, i.e., 

(4.14) 

moreover (3) So is the smallest entropy function that is normalized in this way: if 
S is an upper potential for 0 that is defined on I O and obeys (4.11), then for each 
state u in IO , 

So (u) ~ S(u) . (4.15) 

If, in addition, m(u, UO) [defined by interchanging the roles of u and UO in the 
relations (4.4) - (4.6)] is finite for each u in IO, then the function So defined on 
I O by 

(4.16) 

also is an upper potential for 0 and not only obeys the normalization (4.11), but 
is the largest entropy function that does; i.e., each upper potential for 0 that is 
defined on I O and obeys (4.11) has the bounds: 

So (u) ~ S(u) ~ So (u) . (4.17) 

The set of entropy functions on I O normalized according to (4.11) is convex: 
if S1 and S2 are two such entropy functions, then so also is each function of the 
form aS1 + (1- a) S2, 0 < a < 1. We have just observed that if 0 has the Clausius 
property at uO, if UO is equilibrated with respect to 0 at uO, and if m(u, UO) is 
finite whenever m(uO, u) is, then So is the minimal and So is the maximal 
element of this convex set of normalized entropy functions. Clearly, then, this set 
reduces to a singleton if and only if So = So. That is, under these hypotheses 
about the referene state UO , in order that there be only one entropy function S on 
I O obeying (4.11) it is necessary and sufficient that for all u in IO 

(4.18) 

This condition, although met by elastic materials and viscous materials, is not 
met in general. Among the exceptions are certain elastic-plastic materials, 

7 [1975, 1) § 3. In [1974, 1) § 7 we show that a weaker hypothesis, namely that aO be a relaxed state, 
suffices for the theorem. 
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materials with fading memory, and certain materials with internal state vari
ables. 

We have seen that if one takes the second law to be the assertion that an 
action a has the Clausius property, one can deduce the existence of entropy as a 
function of state and obtain information about the regularity and uniqueness of 
entropy. We have left open the questions: 

i) Which of the many actions one can formulate for a system should be 
assumed to have the Clausius property? 

ii) Can information about the form of a be deduced from a statement of the 
second law that makes precise an assertion to the effect that there can be no 
cycles in which heat is only absorbed? 

iii) In what sense is "absolute temperature" a distinguished measure of 
hotness 8? 

Recent papers of Serrin have shed light on these questions. Basic to his theory 
[1979,2,3] is the concept of the hotness manifold Jr, introduced by Mach 
[1896,1] and assumed by Serrin to be a continuous, oriented, one-dimensional 
manifold whose points L are called levels of hotness, or, for short, hotnesses. It 
is assumed that the orientation of .1f induces a total strict order "-<" on 
hotnesses, with "Lt -< L 2" read "Lt is a lower level of hotness than L 2", or "Lt is 
below L 2", or "L2 is above Lt". Serrin's theory [1979,2,3] does not rest on a 
concept of "state", but does refer to objects that we may here identify with 
cycles, i.e., with pairs (P, 0') in llx Iwith 0' in ~ (P) and epO' = 0'. Let us define 
a classical thermodynamical system to be a set IPc of cycles and a real-valued 
function Q on IPc x Jr, called the accumulation function; the value Q(~ L) of Q 
at a point (~ L) in IPc X .1f is called the net heat absorbed by the system at levels 
of hotness at or below L in the cycle g>. It is assumed that Q( ~ L) varies only 
over a bounded interval in .1f in the sense that for each cycle flJ there are levels of 
hotness LI = LI(g», L U = L U(g», with LI -< L u, such that 

Q(~L)=O for L-<LI,} 

Q(~L) = Q(~LU) for LU~L. 
(4.19) 

For each flJ, the function Q( g>, .) generates a finitely additive set function q ~ for 
.1fwhose value q ~ (I) = Q(~ L 2) - Q(~ L t ) on the set 1= {L I Lt'< L ~L2} is 
the net heat absorbed by the system at levels of hotness in I, (i.e., above Lt and at 
or below L2); (4.19) implies that this set function has compact support. The 
number Q( ~ L U) is called the overall net gain of heat (by the system) in the 
cycle g>. 

8 There is a growing literature devoted to questions related to these. We mention here a few recent 
contributions: Boyling [1972, 1) has discussed the construction of entropy and absolute tempera
ture from axioms of the form proposed by Caratheodory. Truesdell and Bharatha [1977, 1), and 
Truesdell [1979,41 have clarified and extended Carnot's, Reech's, and Kelvin's studies of ideal 
(reversible) systems. Serrin's research [1979,2,3) and our own research done with him [1981, 1) 
extend and render mathematical ideas expressed by Kelvin and Clausius. Recent papers expressing 
a similar point of view and showing points of contact with the research described below are those 
of Silhavy [1980, 1), [1982,3), Feinberg and Lavine [1982, 1), and Owen [1982,2). 
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Serrin develops a language for discussing the effect of the operation of two or 
more systems or the repeated operation of a single system: if !J" = (IP~, Q') and 
!J'" = (IP~', Q") are two thermodynamical systems (which mayor may not be the 
same), their union !J" <±l !I" is the thermodynamical system !I= (lPe, Q) with 

and 
Q«~', ~"),L) = Q'(gJ',L)+ Q"(~",L) 

for each pair (gJ', gJ") in lPe and each L in .if. 

(4.20) 

(4.21) 

Serrin assumes that a collection Q) of classical thermodynamical systems, 
closed under the union operation, has been given. His statement of the second 
law is: If ~ is a cycle of a system (lPe, Q) in Q) with Q(~L) ~ OforeverYL, then 
Q( ~ L) = 0 for every L. In other words, in a cycle for which the net heat 
absorbed at or below each hotness level is not negative, the accumulation func
tion is identically zero and, in particular, the overall net gain of heat in that cycle 
is zero. 

To show that this statement of the second law permits the construction for 
each system of a function {1 obeying (4.2), Serrin assumes that the collection Q) of 
classical thermodynamical systems contains at least one special system that is the 
mathematical embodiment of an elastic or viscous substance. His proofs take 
their simplest form if the distinguished systems are ideal gases; these are systems 
for which each cycle ~ can be represented as a closed (oriented) curve c go in the 
first quadrant of a coordinate plane, with one coordinate, V, interpreted as the 
volume of the gas, and the other, 0, a coordinate indicating the level of hotness L 
in the gas. The number 0 is related to L by a strictly increasing, positive-valued, 
continuous function rp on the manifold .if. (Use of the coordinate system rp on.Yt' 
corresponds to measurement of hotness with an "ideal gas thermometer".) For 
each process gJ of an ideal gas and each level I of hotness, Q(~I) equals the 
integral of a differential form, 

c(V, O)dO+p(V, O)dV, 

over the portion C go (I) of Cgo on which L~ I, i.e., on which the coordinate 
0= rp(L) is equal to or less than 0 = rp(I); p is the pressure in the gas and is given 
by the formula, 

rO 
p(v, 0) =-, 

V 
(4.22) 

with r a constant; c is the heat capacity of the gas and is given by a function of 0 
alone: 

c(v, 0) = c(O) . (4.23) 

(The relations (4.22) and (4.23) distinguish an ideal gas form other homogeneous 
fluid bodies.) Thus, for an ideal gas, 

Q(~I) = L (C(O)dO+ !!...dV) , 
c~(L) V 

(4.24) 
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i.e., 
(4.25) 

Serrin shows that his form of the second law implies that the functions ({J corre
sponding to two distinct ideal gases must be proportional, and hence that ideal 
gases determine, to within a constant factor, a distinguished coordinate system 
on £'. In [1979,2] it is shown that the presence in UJ of elastic, or even viscous, 
substances far more general than ideal gases determines the same coordinatiza
tion of £'. This coordinatization, which is unique if, as in practice, one preassigns 
the value of the difference in the coordinates of the hotness levels of two phase 
transitions at a standard pressure, such as the freezing and boiling points of 
water at one atmosphere, is called the absolute temperature scale. 

Serrin's principal result is that his statement of the second law is equivalent to 
asserting that Jor every cycle rY oj each system in UJ 

(4.26) 

The importance of this relation, called the accumulation inequality, lies in its 
generality: it refers only to the absolute temperature scale ({J and the "accumula
tion" Q( rY, .) of the (countably additive) heat measure q ~ on the hotness 
manifold .if; it is independent of the "space-time structure" or the concepts of 
"body" and "force" used in the specific physical theory to which the thermo
dynamical concepts of heat and hotness may be applied. When the function Q~, 
defined by Q~ (0) = Q(~ ({J -1(0», is of bounded variation, for each small ~ > 0, 
an integration by parts yields, in view of (4.19), 

Thus the accumulation inequality does give a mathematical form to the assertion 
that "the sum along a cycle of the ratio of heat gained to the absolute tempera
ture at which it is gained cannot be positive" . 

The integral in the accumulation inequality plays the role of the action {) in 
(4.2). It is clear that Serrin's form of the second law and his derivation of the 
accumulation inequality go a long way toward the resolution of problems (i), (ii), 
and (iii). In our recently published joint research with Serrin [1981, 1], we have 
extended Serrin's form of the second law and the accumulation inequality so that 
they are meaningful for "approximate cycles". In this research, by combining 
definitions and methods of the papers [1974,1; 1975,1; 1979,2,3], we answer 
the questions (i - iii) in a way that supplies not only identification of the action {) 
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in (4.2) but also a derivation of the implication (4.3). We consider thermodynam
ical systems (I, II, Q) that are systems (I, m in the sense explained above 9 and 
possess an accumulation function Q that assigns a number Q(P, a, L) to each 
triple (P, a, L) with P in II, a in ~ (P), and L in the hotness manifold Jf'; 
Q(P, a, L) is called the net heat absorbed by the system at levels of hotness at or 
below L in the process P starting at the state a. Let IP be the set of pairs (P, a) 
with P in II and a in ~ (P). In addition to a mild regularity condition 10 for Q, it 
is assumed that, for each (P, a) in IP [even if (P, a) is not a cycle, i.e., does not 
have (!pa= a] there are hotness levels Ll=Ll(p,a) and LU=LU(P,a), with 
Ll ~ L u, such that, in analogy with (4.19), 

Q(P,a,L)=O for L~LI, } 

Q(P,a,L)=Q(P,a,LU) for LU~L. 
(4.28) 

We say that a pair (P, a) in IP is absorptive if Q(P, a, L) ;;; ° for all Lin Jf'; i.e., if 
the heat absorbed by the system at or below each level of hotness is not 
negative 11. 

The union !/' (f)!/" of two thermodynamical systems !/' = (I', II', Q') and 
!/" = (I",II",Q") is taken to be the system !/= (I,II,Q) with I= I' x I", 
II = II' x II", IP = IP' x IP", and with 

and 
(!(P',P")( a', a") = ({!p' a', (!p" a") 

Q«P',P"), (a',a"), L) = Q'(P',a',L)+ Q"(P", a",L) , 

(4.29) 

(4.30) 

for each «P', P"), (a', a"» in IP = IP' x IP" and each L in .if. As in [1979, 2, 3], 
it is assumed that a collection QJ of thermodynamical systems, closed under the 
union operation, is given and that QJ contains at least one special system that 
corresponds to an elastic or viscous substance. Again, the discussion of the 
second law takes its simplest form if the distinguished systems are ideal gases. 
Each state a of an ideal gas is represented as a point (V, () in the first quadrant of 
a coordinate plane; each process PI of the gas is a piecewise continuous function 
on an interval [0, t) with values (V( r), O( r» that, for each r in [0, t), can be inter
preted as the rates of change of V and () at time r; a pair (PI' aO), with 
aO = (VO, ()O), is in IP if, for each s in [0, t], (V(s), ()(s», with 

s • 
V(s) = Vo + J V(r)dr, 

o 
s • 

{)(s) = {)O + J O(r)dr, 
o 

(4.31) 

9 I.e., in the sense in which the word system is used in [1974, 1; 1975,1]. It is observed in [1981, 1] 
that many of the results given there hold under a concept of "system" more general than that 
introduced in [1974, 1; 1975,1]. 

10 Namely that for each choice of P and (J the function Q(P, (J, .) is bounded and has at most a 
countable number of points of discontinuity. 

11 When the processes correspond to functions of time, a pair (P, (J) may be absorptive and yet such 
that heat is emitted by the system during an interval of time; in such a case there will be (for the 
same process P and initial state (J) other intervals of time during which the system absorbs a com
pensating amount of heat. 
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is in I, i.e., has V(s) > 0 and 8(s) > 0; in such a case 

(4.32) 

It is again part of the definition of an ideal gas that 8 is given by a coordinate 
system qJ on Jf and no more is assumed about qJ than that it is a strictly increas
ing, positive-valued, continuous function. For an ideal gas the function Q has the 
form 

Q(Pt, (J°,L) = J (C(O(S» O(s) + rO(s) V(S») ds, (4.33) 
M(Pt , (I,L) V(s) 

where r is a number, c is a function characteristic of the gas, and 

M(Pt, (J,L) = {s 10 ~ s < t, 8(s) ~ qJ(L)}. (4.34) 

When the curve with the parametrization (4.31) on [0, t] is a closed curve, and 
hence V(t) = V o , 0(1) = 00, (4.32) yields {}Pt(J° = (J0, and the pair (Pt, (JO) is a 
cycle; in such a case, if we write [JJ for (Pt, (J0), the equations (4.33) and (4.24) 
become the same. The equation (4.33), which can be written in the line-integral 
notation used in equations (4.24) and (4.25), is an extension of these equations 
from pairs (Pt, (J0) that are cycles to pairs (Pt, (JO) with (J0 in f!) (Pt), i.e., from IPc 
to IP. 

We take the second law to be the following statement that pertains to each 
system !/= (..E, II, Q) in QJ: For each level L of hotness and each e > 0, each state 
(J has a neighborhood tJe( (J, L) in ..E for which 

{}p (J E tJe «(J, L), (P, (J) absorptive, L U (P, (J) -< L 

~ 0 ~ Q(P, (J,LU(P, (J» < e . (4.35) 

In terms more suggestive but less precise: The overall net gain of heat is small in 
an approximate cycle that is absorptive and operates at or below a fixed level L of 
hotness. 

In (4.35), the relation (}p(JE tJe«(J,L) indicates an "approximate cycle" and 
the relation L U = L U(P, (J) -< L is the assertion that a pair (P, (J) "operates at or 
below the fixed level L of hotness". The relation 0 ~ Q(P, (J, LU) is true for any 
absorptive pair (P, (J). The relation Q(P, (J, L U) < e, however, is the assertion 
that the "overall net gain of heat is small" and is the important conclusion of the 
implication (4.35). 

It is a consequence of this law that the hotness manifold again has a distin
guished coordinate system qJ that is unique to within a constant multiple, and this 
coordinate system is that employed in the formula (4.33) for the accumulation 
function of an ideal gas. The principal results obtained in [1981,1] are of the 
following type: The second law is equivalent to the assertion that for every L in 
Jf and every thermodynamical system (..E, II, Q) in QJ, each state (J0 has, for each 
e > 0, a neighborhood tJe«(J° ,L) in ..Efor which 

(4.36) 
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whenever (P, aO) is in P, L U(P, a) -< L, and 

epaE (Je(a,L) . (4.37) 

In other words: The second law holds if and only if each system in Q.J is such that 
its accumulation integral is approximately negative on approximate cycles. In 
particular, the second law implies that when 

o(P,aO) = J Q(p,aO'i- 1(O» dO 
o 0 

and (P, aO) operates at or below L, the implication (4.3), with (Je(aO) = 
(Je(aO ,L), holds for each system in Q.J, each state aO, and each e > O. 

In the second part of this essay we have discussed the problem of characterizing the action .j in a 
general, essentially context-free, manner in which only the concepts of heat and hotness need be men
tioned. Of course, in the thermomechanics of continuous media, formulae for .j have long been 
known. Of primary interest to researchers in that field will be the ideas and theorems presented in the 
first part of our discussion, namely in the paragraphs containing the relations (4.1) - (4.18). The con
cepts set forth there give us an approach to thermodynamics in which the existence and regularity of 
entropy (and of free energy) as a function of state is to be deduced rather than assumed 12. In our first 
paper employing this new approach [1974,1], we examined the problem of finding the restrictions 
that the second law places on the constitutive equations of elastic and viscous materials, materials 
with internal state variables, and materials with fading memory, and we found that the assumption 
that.j has the Clausius property yields restrictions on the response functions (or functionals) that give 
such experimentally observable quantities as stress, heat flux, and internal energy (or temperature) 
agreeing perfectly with restrictions obtained in the treatments that start with a differentiable entropy, 
or free energy, function and employ the Clausius-Duhem inequality [1963, 1,2; 1964,1- 3; 
1967,1,2]. For each of these materials more was known about.j (P, u) than its continuity in u or its 
general representation as an accumulation integral, and consequently more than semi-continuity was 
proven about entropy and free energy. In each case it was shown that, starting with an appropriate 
expression for .j in terms of the response functions or functionals of stress, heat flux, and internal 
energy, and assuming that .j has the Clausius property, one can construct an entropy function (or 
functional) with the properties of differentiability needed to derive the principal results of the earlier 
studies. The failure of the entropy and free energy of a material with fading memory to be unique 
does not invalidate the earlier studies based on the Clausius-Duhem inequality. The implications of 
the earlier work for the response functionals for stress, heat flux, and internal energy, required only 
the existence of an appropriately smooth free-energy functional, not its uniqueness. 

It has been found that for some materials one can separate the problem of finding the class of 
entropy functions from that of deriving the thermodynamical restrictions on response functions 
relating experimentally accessible quantities. For example, the local thermomechanics of a unidimen-

12 The need for such an approach was brought out in the book of Day [1972, 2] which preceded and 
influenced our paper of 1974. (Another important influence was a paper of Noll [1972,3], which 
showed the usefulness of the concept of state for a broad class of materials, including materials 
with memory.) Day, starting with a Clausius-type inequality for non-linear materials with fading 
memory, was able to obtain, albeit under neglect of the contribution to .j of a term involving the 
inner product of the heat flux vector and the temperature gradients, the existence of entropy and 
free-energy functionals; however, he assumed, rather than proved, that these functionals have the 
smoothness needed to proceed further and derive Coleman's formula for stress as an 
instantaneous derivative of free energy. Only the equilibrium response was shown to have the 
smoothness expected of it. Nevertheless, Day's book stimulated the search for general Clausius
type and Kelvin-type formulations of the second law by showing that, even for materials with 
memory, the existence of entropy can be proved from such starting points. 
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sional elastic-plastic material (with its elastic behavior linear and its plastic behavior perfect) is 
described by giving the elastic modulus p, and the yield strain a as functions of the temperature 8, and 
the heat capacity x, the latent elastic heat A., and the latent plastic heat Ap as functions of the elastic 
strain Ae, the plastic strain Ap ' and the temperature: 

p, = p,(8) , a= a(8) , 

X= X(Ae, Ap' 8), Ae = Ae(Ae' Ap' 8), Ap = Ap(Ae' Ap' 8). 

Without mention of entropy or free energy, one can derive relations among the functions p" (1, X, Ae , 

Ap that are necessary and sufficient for compliance with the laws of thermodynamics (see [1976,2; 
1979,1]). One may separately find conditions on these functions sufficient for the entropy function, 
normalized as in equation (4.11), to be unique and, in cases where entropy and free energy are not 
unique, the class of such functions can be precisely described [1975, 1; 1979,1]13. 

Acknowledgment. We are grateful to James Serrin for the opportunity to work with him on the 
theory of the accumulation inequality. 

The preparation of this essay was supported in part by the U.S. National Science Foundation and 
the Italian National Council for Research. 

References 

1896 
[1] E. Mach, Die Prinzipien der Wlirmelehre, Historisch-kritisch entwickelt. Leipzig, Barth. 

1963 
[1] B. D. Coleman & V. J. Mizel, "Thermodynamics and departures from Fourier's law of heat 

conduction" , Archive for Rational Mechanics and Analysis 13:245 - 261. 
[2] B. D. Coleman & W. Noll, "The thermodynamics of elastic materials with heat conduction and 

viscosity", Archive for Rational Mechanics and Analysis 13:167 -178. 

1964 
[I] B. D. Coleman, "Thermodynamics of materials with memory", Archivefor Rational Mechanics 

and Analysis 17:1-46. 
[2] B. D. Coleman, "Thermodynamics, strain impulses, and viscoelasticity", Archive for Rational 

Mechanics and Analysis 17:230-254. 
[3] B. D. Coleman & V. J. Mizel, "Existence of caloric equations of state in thermodynamics", 

Journal of Chemical Physics 40: 1116 - 1125. 

1967 
[I] B. D. Coleman & M. E. Gurtin, "Equipresence and constitutive equations for rigid heat 

conductors", Zeitschrijt fUr Angewandte Mathematik und Physik 18:199- 208. 
[2] B. D. Coleman & M. E. Gurtin, "Thermodynamics with internal state variables", Journal of 

Chemical Physics 47:597 - 613. 

1972 
[1] J. B. Boyling, "An axiomatic approach to classical thermodynamics", Proceedings of the Royal 

Society (London) A 329:35 -70. 
[2) W. A. Day, The Thermodynamics of Simple Materials with Fading Memory, Springer Tracts in 

Natural Philosophy, Volume 22, Berlin etc., Springer-Verlag. 
[3) W. Noll, "A new mathematical theory of simple materials", Archive for Rational Mechanics 

and Analysis 48:1- 50. 

13 We discuss corresponding problems for hypo-elastic materials in [1976, I] and there show that 
each hypo-elastic material has a unique normalized free-energy function. 



4. Recent Research on the Foundations of Thermodynamics 77 

1974 
[1] B. D. Coleman & D. R. Owen, "A mathematical foundation for thermodynamics", Archivefor 

Rational Mechanics and Analysis 54:1-104. 

1975 
[1] B. D. Coleman & D. R. Owen, "On thermodynamics and elastic-plastic materials", Archivefor 

Rational Mechanics and Analysis 59:25 - 51. 

1976 
[1] B. D. Coleman & D. R. Owen, "On thermodynamics and intrinsically equilibrated materials", 

Annali di Matematica pura e applicata (IV) 108:189-199. 
[2] B. D. Coleman & D. R. Owen, "Thermodynamics of elastic-plastic materials", Accademia 

Nazionale dei Lincei, Rendiconti della Classe di Scienze fisiche, matematiche e naturali (VIII) 
61:77 - 81. 

1977 
[1] C. Truesdell & S. Bharatha, The Concepts and Logic of Classical Thermodynamics as a Theory 

of Heat Engines, Rigorously Developed upon the Foundation Laid by S. Carnot and R. Reech, 
New York etc., Springer-Verlag. 

1979 
[1] B. D. Coleman & D. R. Owen, "On the thermodynamics of elastic-plastic materials with tem

perature-dependent moduli and yield stresses", Archive for Rational Mechanics and Analysis 
70:339 - 354. 

[2] J. Serrin, Lectures on Thermodynamics, University of Naples, multiplied typescript. 
[3] J. Serrin, "Conceptual analysis of the classical second law of thermodynamics", Archive for 

Rational Mechanics and Analysis 70:355 - 371. 
[4] C. Truesdell, "Absolute temperatures as a consequence of Carnot's General Axiom", Archive 

for History of Exact Sciences 20:357 - 380. 

1980 
[1] M. Silhavy, "On measures, convex cones, and foundations of thermodynamics, I. Systems with 

vector-valued actions; II. Thermodynamic systems", Czechoslovak Journal of Physics 
B30:841-861,961-991. 

[2] C. Truesdell, The Tragicomical History of Thermodynamics, 1822-1854, New York etc., 
Springer-Verlag. 

1981 
[1] B. D. Coleman, D. R. Owen, & J. Serrin, "The second law of thermodynamics for systems with 

approximate cycles", Archive for Rational Mechanics and Analysis 77:103 -142. 

1982 
[1] M. Feinberg & R. Lavine, "Thermodynamics based on the Hahn-Banach Theorem: the Clausius 

inequality", Archive for Rational Mechanics and Analysis 82 (1983):202-293. 
[2] D. R. Owen, "The second law of thermodynamics for semi-systems with few approximate 

cycles", Archive for Rational Mechanics and Analysis 80:39 - 55. 
[3] M. Silhavy, "On the Clausius inequality", Archive for Rational Mechanics and Analysis 

81:221- 243. 



Chapter 5 
A Third Line of Argument in Thermodynamics 

C. Truesdell 

We all know the power of arguments resting on cycles. Again and again in the 
papers we have heard, cycles or approximations to them have delivered the 
goods. We know also the power of classical ideas and the value of classical ther
modynamics as an example of what is wanted and what can be got. Every speaker 
has called upon classical arguments and classical results, not only as an im
portant special instance that must be included in any modern theory but also as a 
source of inspiration. But classical thermodynamics, while it may be developed 
by exploiting the properties of cycles, need not be. David Owen and Manuel 
Ricou have reminded us that thermodynamics can be founded also upon ideas 
about a class of processes that need not even include non-trivial cycles. 

The thermodynamics of possibly irreversible processes in homogeneous sys
tems, as presented by Planck, associates with a given body an internal energy E 
and an entropy H, process-dependent functions of time, which satisfy a "First 
Law" and a "Second Law" expressible as follows in terms of the heating (heat 
rate) Q: 

(I) 

(C-P) 

L+11E = JC, 

11H~ J Q dt , 
T 

in which the integration with respect to time t is taken over a specified closed in
terval; the net gain of heat 

C:= JQ dt; 

J is a universal positive constant; and the net work done 

L:= J Wdt, 

Wbeing the density of net working (work rate), which may include the rate of de
crease of kinetic energy. In Clausius' terms, a process is "compensated" if equali
ty holds in (C-P). 

The classical thermodynamics of reversible bodies takes Q and W as linear 
functions of time rates, thus making heat and work reversible always. E and H 
are assumed to be (or proved to be) functions of T and a finite-dimensional vec
tor "substate" Y . "Compensated" and "reversible" are equivalent. If a cycle is 
defined by the conditions 11 T = 0, 11 Y = 0, then in a cycle 11E = ° and 11H = 0, 
and for cycles (C-P) reduces to Clausius' Second Law. 

In a more general thermodynamics, the "substate" may be the history of an 
infinite-dimensional vector, and cycles may be of several different kinds: 11E = ° 
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characterizes a cycle in energy; L1H = 0 a cycle in entropy; etc.; and the kinds are 
generally not co-extensive. Likewise, "compensated" and "reversible" need not 
be equivalent. 

We consider now (I) and (C-P) as they stand. If the heat absorbed is 

then we may prove that 

(I) & (C-P) ~ (W) , 

(W) being the following estimate of work done: 

L+L1E~J(1- Tmin) C++ TminL1H. 
Tmax 

The symbols T max and T min stand for the essential supremum and essential in
fimum of T; the former is assumed finite, the latter, positive. The sign of 
equality holds only for a compensated process which is isothermal or absorbs no 
heat or absorbs heat at the temperature T max only and emits heat at the tempera
ture T min only. A process of the third of these kinds may be called a "compen
sated Carnot process" . 

If we assume that (W) holds on all processes, it holds on the restriction of a 
given process to any subinterval of the time-interval on which that process is de
fined. We can then prove a converse to the foregoing estimate and so conclude 
that 

(I) & (C-P) # (I) & (W). 

Thus all properties of Planck's thermodynamics can be deduced from (I) & (W) 
alone. In other words balance of energy and the same estimate of maximum work 
as classical thermodynamics delivers suffice to derive all restrictions on constitu
tive functions, no appeal to any idea of increase of entropy being needed. 

The work inequality (W) suggests two possibilities. 

1) Defining a "W-thermodynamics" by a sufficiently general concept of 
"state", a broad enough class of processes, and some appropriate class of con
stitutive relations, we might use (W) to demonstrate the existence of and calculate 
a least possible, constitutively determined function H. That would be a construc
tion of entropy functions belonging to the bodies in the W-thermodynamics. 

2) Also in a theory not restricted to homogeneous processes we might use a 
work-inequality similar to (W) to obviate the Clausius-Duhem inequality alto
gether in the procedure for determining restrictions on constitutive relations. 
This possibility has been explored by Chi-Sing Man in a thesis accepted in 1980 
but not yet published. 

If the sets on which Q>O and Q<O have positive measure, then Thas a finite 
essential supremum on the former, a positive essential infimum on the latter. De
noting these by T+ and T-, we easily prove from (C-P) that 
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(W') 

This estimate of work done is less likely than (W) to serve as a basis for thermo
dynamics because it holds for only a subclass of processes. When it does hold, it 
gives a better bound than (W) if and only if 

(~: - ~:) JC+ >(T- - Tmin)L1H. 

Mr. Serrin has extended the estimate (W') to greater generality. His statement 
and proof follow. 

"Assume, within the context of my paper in this volume, that the energy
entropy hypothesis holds, namely that there exist functions 

such that 

(*) 

E: I --+ IR, H: I --+ IR 

L1E~JQ(P)- W(P) 

L1H~JA(P) 

for all processes P e Pz{S). Here A (P), the accumulation integral, is defined by 

A(P) = j Q(P,L) dT, 
o T2 

where Q(P, . ) is the accumulation function of the process P and L is the hotness 
associated with the absolute temperature T. 

"If it is supposed that Q(P, . ) is of bounded variation, then this function can 
be represented uniquely in terms of its positive and negative variations Q + (P, . ) 
and Q - (P, . ) as follows: 

Q(P, . ) == Q + (P, . ) - Q - (P, . ) . 

Clearly both Q + (P, L) and Q - (P, L) are constant for all L e ;fwhich are suf
ficiently hot or sufficiently cold (depending of course on the process P). Define 

T+ = inf{Te IR+: Q + (P, L) == constant for T> T} 

T-=sup{TelR+:Q.-(P,L)==O for T<T} 

(obviously Tmin ~ T-, T max ~ T+). 

"We assertthat lfQ(P, .) is o/bounded variation and T+ > 0, T- < 00, then 

(**) 



82 C. Truesdell 

where C + is the ultimate (positive) value oj Q + (P, .), i.e. the total absorbed 
heat. 

Proof. Obviously 

and 

where C - is the ultimate value of Q - (P, .), that is 

C + - C - = Q(P) . 

Combining the above lines leads to 

Now from (*) it follows at once that 

W(P) + L1E ~ JQ(P) + T- {L1H -JA(P)}. 

Eliminating A (P) from this inequality by use of (t), we get the required result. 

"Inequality (**) is an estimate for the quantity W(P) + L1E in terms of T-, 
T+, C + and L1H. Another estimate in terms of the same variables can be ob
tained from (*)1 and the fact that Q(P) = C + - C -, namely 

(***) 

Which of (**) or (***) is better clearly depends on the quantity T+ L1H -JC+. If 
this is positive, then (***) is stronger; if it is negative then (**) is stronger; and if 
it is zero then the two are the same. 

"It is easily shown that equality holds in (**) if and only if equality holds in 
(*) and P is a Carnot process with T- < 00. On the other hand equality holds in 
(***) if and only if equality holds in (*) and C - = 0, T- = 00. 

"To see the relation between (W), (**) and (***), observe that the proof of 
(**) also yields the inequality 

.1E+ W(P),;;1 (1- ::) C+ + r- dB 

forallr-E(O,T-) and r+E(T+,oo). Here (W) results when r-=Tmin , 

r + = Tmax , while (**) arises when r - = T- < 00, r + = T+ ;;?: 0 (note that (**) can 
be interpreted as W(P) + L1E ~ T- L1H when T- < 00, T+ = 0). 

We now consider the mutually exclusive cases 
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T+iJH-JC+ >0 (or iJH>O if C+ = 0) 

T+ iJH-JC+ <0 (or iJH < 0 if C+ = 0) 

T+ iJH-JC+ = 0 (or iJH = 0 if C+ = 0) . 

In the first case the best choice of ,-, ,+ is ,- = 0, ,+ arbitrary, which yields 
the optimal bound (***). Hence in this case both (W) and (**) are less good then 
(***), though which of (W), (**) is better depends on the relation earlier ad
dressed by Professor Truesdell. In the second case, we see from (*h and an argu
ment by contradiction that C - > 0, so that T- < 00. The best choice of, -, ,+ is 
then ,- = T-, ,+ = T+, yielding for this case the optimal bound (**). In the 
third case (**) and (***) are the same, and both arise from the optimal choice 
,- =0, ,+ = T+. 

"To return to Professor Truesdell's considerations, the above analysis shows 
that if his inequality (W) is stronger than (W'), then (***) in turn is stronger than 
(W). On the other hand if his inequality (W') is stronger than (W), then either 
(W') itself is best, or else (W') can in turn be improved to (***). 

"We conclude with a simple estimate for the work done by cyclic processes. 
Indeed in this case, assuming W(P) > 0, 

iJE= iJH=O, T+ >0, T- < 00 

(that C+ >0, and so T+ >0, follows from (*)1; that C- >0 and so T- < 00 
then follows from (*h). Thus in turn T+ iJH < JC + so (**) rather than (***) is 
the stronger inequality. This yields the efficiency estimate 

W(P) ~ J (1 - ~:) C + , 

an improved version of the celebrated Kelvin relation 

W(P) ~ J (1 _ T min) C + • 
Tmax 

"From this perspective one can profitably view the inequalities (W), (W') and 
(**), (***) as generalizations of Kelvin's efficiency formula, providing estimates 
for the maximum amount of work which can be obtained from a process P when 
the initial and final states, the maximum temperature T + of heat input, the mini
mum temperature T - of heat output, and the total absorbed heat C + are given." 
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Chapter 6 
The Laws of Thermodynamics for Non-Cyclic Processes 

M. Ricou 

If the laws of thermodynamics are stated without reference to the concepts of 
energy and entropy, the problem of deriving sufficiently general existence and 
uniqueness theorems for these functions naturally becomes one of central impor
tance in the theory. With few exceptions (for example [6.1]), when the content of 
the laws is chosen for this purpose, they are phrased as prohibitions against 
certain types of (possibly approximate) cycles. The difficulties encountered when 
trying to prove general existence and uniqueness results for energy and entropy 
from statements of this type are by now reasonably well known and understood. 

In spite of these difficulties, it is nevertheless true that existence theorems for 
entropy have been proved for a wide variety of thermal systems, for example 
using the notion of approximate cycles as done by Coleman, Owen and Serrin 
[6.2], or via separation lemmas associated with the Hahn-Banach Theorem, as 
done by Feinberg and Lavine [6.3] and Silhavy [6.4]. Naturally, there is some dis
agreement as to whether the results thus obtained cover all cases of "practical" 
interest. In any event it is worth observing that these approaches requires the laws 
to be stated in forms which are, of necessity, fairly sophisticated and of difficult 
(or at best not obvious) physical interpretation. Also, they are applied only to 
systems satisfying certain precise mathematical specifications. Hence, as a matter 
of principle, their results cannot be considered completely general. Finally, 
energy and entropy functions are defined axiomatically, by means of inequalities 
they are supposed to satisfy (see [6.5], Sect. 6). As a result, non-uniqueness ques
tions inevitably arise, and can be dealt with only for systems satisfying fairly 
restrictive conditions connected with the notion of reversibility. 

The purpose of this paper is to give a brief and informal description of an 
alternate and different resolution of t!te energy-entropy problem. To be more 
specific, I shall proceed here under the assumption that our difficulties do not 
indicate a lack of mathematical sophistication in the statements of the laws, or in 
the methods used to exploit them, but point instead to the incompleteness of any 
theory of thermodynamics based solely on properties of cyclic processes. To try 
to clarify this idea, let me take the First Law as an example. At an elementary 
level, this law is supposed to prohibit "perpetual machines of the first kind" , i.e., 
machines capable of delivering work without consumption of other forms of 
energy. Such a prohibition has no obvious, rigorous mathematical form, in part 
because some systems are clearly capable of producing work, even if not con
nected to an external power source (consider the case of a box containing an elec
tric motor connected to a charged battery). The mention of cycles in the First 
Law is a device to avoid examples like the one just described. After all, and as 
everyone knows, a process by which the above system does work cannot be 
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repeated indefinitely and as such is not cyclic. From our point of view, however, 
what is important is the following observation: when the First Law is stated only 
for cycles we gain rigor but lose vital information about the real world: in this 
instance, the fact that a system as simple as the one above, whether operating in 
cycles or not, will never produce arbitrarily large amounts of work unless it is 
connected to an external power source. 

Naturally, if statements of the First Law (and possibly of the Second) are 
presumed to be incomplete if they refer only to cycles, our immediate task is to 
find concepts which might conceivably be used to replace cyclic processes in their 
fundamental role. A good place to start is this question: if cycles are to be 
defined, instead of being taken as primitive notions, in what terms can that 
definition be phrased? Our previous (and informal) description of a cycle as a 
process which can be repeated after itself an arbitrary number of times contains a 
hint. If refers implicitly to an algebraic operation on processes, often confused 
with a property of state spaces, but in fact deeper than and independent of the 
notion of state. This operation may be loosely described as follows: If P and P' 
are processes of a system Yo it is sometimes possible to apply P and P' to the 
system, one immediately after the other. If P' is applied after P, the resulting 
process can be labelled PP', and the operation we are now discussing is the 
application (P, P') -+ PP'. In terms of this operation, a cycle is merely a process 
P for which the combination PP is possible. It is this operation which allows us 
to phrase the laws of thermodynamics without mentioning the concept of cycle. 
Before doing so, we must of course introduce the logical framework of the 
theory. In this we follow ideas recently introduced by Serrin. 

6.1 Basic Definitions 

The formal definition of thermal system which we shall use here is a modification 
of that described by Serrin in his paper in this volume. A thermal system !I' is a 
triple !I' = (IP (!I') , Q, W), where IP(!I'), Q and W have their usual meanings. In 
particular 

IP(!I') is the set of all processes available to !I' , 
Q: IP(!I') x £ -+ IR is the accumulation function of !I' , 

W: IP(!I') -+ IR is the work function. 

£ is of course the hotness manifold. (The total heat Q(P) absorbed by !I' during 
a process P can of course be obtained directly from Q, (see [6.5], Sect. 3). The set 
of all thermal systems is the universe c¥t. Instead of the fourth element appearing 
in Serrin's definition of a system (Le., the set IPc(!I'», let me now describe the 
algebraic structure of IP(!I') hinted at in the previous section. This description is 
obviously an axiom: 

There is an associative binary operation defined in a subset IF(!I') of 
IP(S") x IP(S") and indicated by juxtaposition. For all P,P' and P" (61) 
in IP(S"), (PP')PII and P(P' PII) are defined if and only if PP' and . 
P' p lI are both defined. Moreover in this case (PP')PII = P(P' PII). 
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The set 1F(9') is called the follow relation. Its physical meaning is clear: 
(P, P') elf (9') if and only ifthe process P' can be applied to 9' immediately after 
P is completed. The functions Q and W have algebraic properties connected to 
this relation, listed in the next axiom: 

If (P,P')elF(9'), then 

Q(PP',') = Q(P, .) + Q(P',') 

W(PP') = W(P) + W(P') . 

These properties are again of simple physical interpretation. 

(6.2) 

If P is in 1P(9'), we introduce the set of followers of P, denoted by Foll(P), 
and the set of predecessors of P, denoted by Pred(P), by 

Foll(P) = {P' elP(9'): (P, P') elF(9')} 

Pred(P) = {P' elP(9'): (P',P)elF(9')} . 
(6.3) 

Foll(P) is the set of processes available to 9' immediately after P is completed. It 
is also convenient to define the set IPc(9'), consisting of all followers, and the set 
IPp(9'), formed by all predecessors, namely 

IPc(9') = {Pe 1P(9'): Pred(P) * ~} 
IPp(9') = {pelP(9'): Foll(P) *~}. 

(6.4) 

We denote by IPc(9') the set of all cyclic processes of 9'. It is defined by 

IPc(9') = {PelP(9'): (p,P)elP(9')}. (6.5) 

Serrin's assumption about cycles now becomes a lemma (the proof is omitted). 

Lemma 6.1.1. If PelPc(9'), there is a sequence {pn} in Foll(P) n Pred(P) such 
that Q(pn, .) = nQ(P, .) and W(pn) = n W(P). 

Here pn is of course the process P repeated after itself n times. It will occa
sionally be necessary to refer to reversible process. Let us say that PelP(9') is 
reversible if and only if there is another process P' elP(9') such that 

PP' is a cycle, 

Q(P,·) = - Q(P',') , 

W(P) = - W(P'). 

If (6.6) holds we shall say that (P, P') is a reversible pair. 

(6.6) 

Finally, we must adapt the notion of compatible systems to our previous 
definitions. Suppose 9't and 9'2 are systems in %', and for convenience denote the 
pairs (P, Q) in IP (9't) X IP (9'2) by P Ef) Q. The systems 9't and 9'2 are called com
patible if and only if there is a third system 9't Ef) 9'2 in %' determined as follows: 

i) 1P(9't Ef)9'2) = 1P(9't) x 1P(9'2) , 
ii) for all P t Ef) P2 in IP (9't Ef) 9'2) we have 
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Q(P1 (£JP2,·) = Q(Pb .)+Q(P2,·) 

W(P1 (£J P2) = W(Pt> + W(P2) , 

iii) for all Pb P1 elP (.9"1) and P2,PZ elP (.9"2), 

(P1 (£J P2)(P1 (£J P2) is defined if and only if P1P1 and P2PZ are defined, in which 
case 

It is now possible to proceed with the discussion of the First Law at a more 
rigorous level. 

6.2 The First Law and Energy 

As suggested above, our aversion to perpetual machines of the first kind does not 
seem to be directly related to properties of cycles, but to the following observa
tion: once a machine capable of delivering mechanical work is built, it will be 
unable to deliver arbitrarily large amounts of work unless it is connected to an 
external power source. It is fairly easy to phrase this idea in the terminology just 
discussed. The construction of a machine, that is, the setting up of a thermal 
system .9" in some particular initial configuration can be interpreted as the execu
tion of a process Pin IP (.9"). Once P is completed, the elements of Foll(P) corre
spond to the different possibilities for the operation of this machine, and 
naturally depend on the initial configuration, which is in turn determined by P. 
What we said about the impossibility of generating arbitrarily large amounts of 
work without consumption of other forms of energy (Le., heat) is now, very 
simply, the statement 

For any .9" in t1J and each PelP (.9") , 

Wis bounded above in the set {P'eFoll(P): Q(P') ~O}. 
(6.7) 

This we could take as the First Law. Another possibility, stronger than (6.7) 
but possibly more suggestive, is what I shall call here the Weak First Law (WFL): 

WFL: If {Pn} eFoll (P), then W(Pn) -+ 00 implies Q(Pn) -+ + 00. 

This says literally that, following a fixed process P, the generation of arbitrarily 
large amounts of work requires arbitrarily large amounts of heat. Note that WFL 
implicitly states the existence of a function W*: IPp(.9") x IR -+ IR such that 

If P' eFoll(P) and Q(P') ~ q then W(P') ~ W*(P, q) . (6.8) 

In particular, the bound mentioned in (6.7) is obviously just W*(P,O). 
Before listing any of the consequences of WFL, let us pause to indicate what 

one might hope to accomplish. At this level of generality, our main objective 
must be to clarify the delicate interplay between the statement just given and the 
ideas listed below: 
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1) The properties of cyclic processes, 
2) the existence and properties of energy functions for arbitrary thermal 

systems, 
3) the nature and theoretical role of the principle of conservation of energy. 

Let me begin by discussing cycles. In our notation, SilhavY's Weak and Strong 
First Laws 1 for cycles (respectively WFLC and SFLC) can be stated as follows: 

WFLC: If PelPc(Y) then Q(P) ~ 0 ~ W(P) ~ 0 , 

SFLC: If PelPc(Y) then Q(P) ~ 0 ~ W(P) ~ 0 . 

Much has been said about the symmetry (or lack of it) between the roles of Q and 
Win SFLC and WFLC. At this point, there is no general agreement as to which 
of these two statements realistically describes a property of all cycles. Interest
ingly enough, the lack of symmetry between the roles of Q and Win WFL is not a 
matter for philosophical argument: it is evident that interchanging their roles 
produces a patently false principle. In any case, it is easy to derive WFLC, but 
not SFLC, from WFL (in fact, from (6.7». 

Lemma 6.2.1. Weak First Law for Cycles. If P is a cycle then 

Q(P) ~ 0 ~ W(P) ~ 0 . 

Proof Consider the processes pn mentioned in Lemma 6.1.1. It is clear that 

- - - 1-n 1 * Q(pn) = nQ(P) ~ 0 and W(P) = - W(P ) ~ - W (P,O) . 
n n 

Letting n -+ 00, we obtain W(P) ~ o. 
Our next step is the generalization of the inequality 

(6.9) 

to a statement valid for all followers of any fixed process PelP(Y). A simple 
modification of an argument used to derive (6.9) from WFLC yields. 

Theorem 6.2.2. Work-Heat Inequality. There is a constant f > 0 such that 

Sup{W(P') - f Q(P'): P' eFoll(P)} < + 00 for all PelPp(Y) . 

The proof is omitted. It should be remarked, however, that it uses an 
auxiliary system &I which must satisfy two conditions: it must be compatible 
with Y, and IPc(&I) must include two cycles Rand R' forming a reversible pair, 
with W(R) > O. (Thus in what follows we restrict our attention to thermal 
systems compatible with &I.) 

The previous inequality suggests a very natural definition: 

1 Silhavy [6.4]. Is should be noted that Silhary did not consider the weak statement, by itself, to be 
an adequate or complete formulation of the First Law. 
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If !/ is a thermal system, its energy function E: IPp(!/) --t IR is given by 

E(P) = Sup{W(P')- ,1Q(P'): P' eFoll(P)}. (6.10) 

As a consequence of this definition, E obviously satisfies the relation 

If P' eFoll(P) then W(P')- ,1Q(P') ~E(P) . (6.11) 

In addition, and again as an easy consequence of its definition, it satisfies the 
stronger 

Theorem 6.2.3. Energy Inequality. If P' elPp (!/) n Foll(P), then 

,I Q(P') - W(P') ~ E(P') - E(P) . 

The proof is again omitted. The connection between this inequality and its 
more common form (using a state function) becomes clear once we realize that 
the processes P and P' are used here as labels for their target states (the state in 
which the system is when a given process is completed). Note also that one 
expects the target state of P to be the same as the initial state of P'. 

There really is no reason to believe in the possibility of proving a general con
servation equation for energy within this theory. In fact, the inequality 
mentioned in Theorem 6.2.3 agrees nicely with the spirit of WFL: energy is not 
necessarily conserved, it is simply never created. However, if we restrict our 
attention to reversible processes, it is not difficult to obtain a balance equation. 

Theorem 6.2.4. Energy Conservation for Reversible Processes. If (P, P') is a 
reversible pair of the system !/, then 

fQ(P')- W(P') = E(P')-E(P) . 

To summarize what was said before, the main consequences of WFL are the 
following results: 

1) Silhavy's Weak First Law for cycles, 
2) the construction of a well-defined energy function for any system compatible 

with the special system ~, 
3) the proof of an energy inequality for all processes, and of a balance equation 

for reversible processes. 

Absent from this list are, of course, the Strong First Law for cycles and a 
general principle of energy conservation. It is therefore natural to ask whether it 
is possible to reinforce WFL so as to cause the Strong First Law for cycles to 
hold, and if in so doing energy conservation becomes valid for all processes. 
Somewhat surprisingly, the answer to these questions is respectively yes and no. 

If we interchange in WFL the roles of Q and W, and simultaneously use pre
decessors instead of followers, the resulting statement does seem to convey the 
idea of energy indestructibility: 

If {Pn}ePred(P) then Q(Pn) --t 00 implies W(Pn) --t 00. (6.12) 
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If this statement holds, it is not hard to derive results which are in a sense 
mirror images of those contained in Theorems 6.2.1, 2 and 3. In particular, if 
(6.12) is combined with WFL, then the Strong First Law for cycles can be proved 
as a theorem. In spite of this, one can still show that energy conservation does 
not necessarily hold in general (Le., for non-cyclic processes as well). In other 
words, the Strong First Law for cycles and the principle of conservation of 
energy are distinct ideas, requiring different sets of assumptions to hold. It is 
indeed possible to prove another energy inequality, now of the form 

If PelPr(,SP) nPred(P') then JQ(P)- W(P) ~E*(P')-E*(P). (6.13) 

However, the function E* appearing above is defined for all P in IPr(,SP) by: 

E*(P) = Sup{jQ(P')- W(P'): all P'ePred(P)} (6.14) 

and hence E* and E are, in general, different. Actually, this is one of the major 
drawbacks of associating WFL and (6.12): if WFL and (6.12) both hold, we must 
associate with each thermal system two energy functions instead of just one. That 
is, in a word, ugly. 

In addition, the existence of two different energy functions must raise some 
doubts about the proper content of a general conservation principle for energy 
(for instance, should we choose a balance equation for E or for E*1). As I tried 
to show elsewhere [6.6], when (6.12) holds the most reasonable choice for this 
principle seems to be 

If P' follows P then E(P) = E*(P') . (6.15) 

Even if the statement above is accepted as the proper expression of the idea of 
energy conservation, its status in thermodynamics is by no means clear. At first 
sight, it is very tempting to consider (6.15) as another axiom. But in a system with 
a high degree of irreversibility in its behavior the sets Foll(P) and Pred(P') are 
likely to be very different. In such a case, on what ideas are we to base a belief in 
(6.15)1 For my part, I cannot imagine arguments making (6.15) plausible which 
do not involve accessibility conditions (and even notions of reversibility) of 
dubious generality. Hence, it may be reasonable to treat (6.15) as just another 
property of some thermal systems, a property which of course happens to be 
common for the systems we have studied in the past (including of course revers
ible systems). 

The possibility of rejecting (6.12) as a basic axiom should be given some con
sideration. The reasons for doing so are somewhat subjective, but they do exist. 
First, there is a natural desire for simplicity and elegance in the theory, and that 
seems quite incompatible with the notion of associating two different energy 
functions with each thermal system. Second, it is undeniable that (6.12) is less 
convincing than WFL, and thus including it among the basic axioms of this 
theory must diminish our confidence in its results. Finally, if (6.12) is rejected as 
a basic axiom our doubts concerning the proper content of the principle of 
energy conservation disappear, and the principle can only be stated as the usual 
conservation equation for the function E. 
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6.3 The Second Law and Entropy 2 

A look at the Weak First Law stated in the previous section suggests the follow
ing question: are there any circumstances under which the amount of heat flow
ing into a body is limited? The purpose of the Second Law (as it is going to be 
stated here) is precisely to answer this question. It is often said in connection with 
discussions about the Second Law that a thermal system placed in contact with a 
single heat reservoir will eventually reach a state of "thermal equilibrium" with 
the reservoir, at which point heat transfer between the two systems cease. 
Admittedly, this idea is vague, imprecise, and in some cases plainly wrong, but it 
does convey an aspect of our intuitions about the Second Law which does not 
seem to be covered by statements referring only to cycles. Hence, it may very well 
be a good starting point for our search. 

Consider the case of a gas placed in contact with a heat reservoir at some 
fixed temperature. If the gas is allowed to occupy arbitrarily large volumes, it will 
certainly absorb arbitrarily large amounts of heat. As a result, the idea discussed 
above can only be true if applied to processes leading a thermal system to a pre
assigned target configuration. Once the need to look at processes sharing a com
mon target is recognized, it becomes necessary to inquire also whether we may 
have to fix the initial configuration of the system as well. Naturally, if a system is 
started frozen solid, after which it is placed in contact with a heat reservoir at 
some fixed temperature and forced to reach some final configuration, it will 
surely absorb more heat than if started warm. But there is an experimentally rec
ognized limit as to how frozen the system can be initially (I am of course thinking 
of the Third Law), and it is therefore reasonable to expect the existence of a 
bound on absorbed heat depending only on the final configuration of the system. 

Experience with cyclic processes shows that statements of the Second Law 
referring only to isothermal processes raise serious technical difficulties for the 
resulting theory. Furthermore, this experience also shows that, when considering 
processes exchanging heat at more than one hotness level, it is only reasonable to 
expect a bound on heat absorbed for processes for which the direction of heat 
transfer is from cold to hot. The formalization of this idea concerning the direc
tion 'Of heat flow has been done by Serrin in his statement of a Second Law for 
cycles, and will be applied here without modifications: the processes contem
plated in the statement of the Second Law given below have non-negative accu
mulation functions (a process with a non-negative accumulation function is 
called absorptive). 

Even when considering absorptive processes, it is obvious that the bounds on 
absorbed heat we are discussing depend on the temperature of the heat reservoir, 
and conceivably go to infinity at the hot end of .it. If we wish to set such bounds 
for absorptive processes in general, it is clearly necessary to associate with these 
processes a characteristic hotness level. The simplest way to procede seems to be 
the following: let P be an absorptive process, and assume Q(P) > O. In this case, 
it is apparent that Q(P, .) can be written (in more than one way) as a sum of a 

2 Some of the material in this section will appear in [6.7]. 
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positive Heavyside function with a non-negative function. Among all such de
compositions, one seems rather natural. Define the Kelvin point of P, denoted by 
K(P), by 

K(P) = glb{Le£': Q(P,L') ~ Q(P), for all L' ~L}. (6.16) 

A moment's thought shows that Q(P, .) can be seen as a combination of an iso
thermal transfer of Q(P) units of heat at the level K(P), together with a transfer 
of heat from cold to hot with a zero net gain. It is for this reason that we take the 
Kelvin point of any absorptive process P with Q(P) < 0 as its characteristic 
hotness level. 

We now have at our disposal all the ingredients needed for a reasonable state
ment of the Second Law. 

Second Law. If {Pn} is a sequence of absorptive processes in Pred(P) , 
then (6.17) 

Q(Pn) --+ + 00 implies K(Pn) --+ + 00 • 

Other possibilities for a statement of this type are discussed in [6.7], and in 
addition there are clear similarities between this statement and that of Owen in 
[6.1]. Of course Owen's statement is made in the context of Coleman and Owen's 
theory of semi-systems, and hence makes explicit use of states, instead of the 
follower relation. However, like (6.17) Owen's formulation provides a limitation 
on the amount of heat absorbed by a system undergoing processes with non
negative accumulation functions, if those functions have a bounded charac
teristic hotness level. Owen's Second Law also places a restriction on the initial as 
well as the final states of the processes under consideration, and hence provides 
an entropy only when the supply of processes available to the system satisfies 
certain additional restrictions. His characteristic hotness level is also different 
from the Kelvin point defined by (6.16): in this case it is the level at which Q(P, .) 
becomes identically equal to Q(P). 

A statement equivalent to (6.17), but mentioning explicit bounds, is the 
following: 

There is a function Q*: IPr(.$"') x£'--+ IR such that 

P'ePred(P) with Q(P,.)~O implies Q(P')~Q*(P,K(P'» .(6.18) 

Note that Q*(P, .): £' --+ IR can be chosen in a natural way to be increasing and 
positive. Hence, the Second Law in the form (6.17) is definitely very close to the 
notion of special non-negative temperature scales on Jr. I would also like to point 
out the strange but beautiful symmetry existing between (6.17) and WFL. I 
wonder if that in itself is not one of our best reasons for rejecting (6.12) as 
another basic axiom of thermodynamics. 

As for the First Law, it is now necessary to investigate the major con
sequences of (6.17). These are, in the order of their appearance, the following: 

1) Serrin's Second Law for cycles, 
2) a generalized accumulation inequality, 
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3) a definition of entropy, 
4) a proof of the entropy inequality. 

Serrin's Second Law for cycles is equivalent to: 

If PE lPeCS") is absorptive, then W(P) ~ 0 . (6.19) 

Proof. Suppose PE lPeCS") is absorptive, and Q(P) > o. It is easy to see that the 
processes pn mentioned in Lemma 6.1.1 are predecessors of P satisfying 

pn is absorptive, Q(pn) = nQ(P) , K(pn) = K(P) . 
Hence 

Q(P) = ~ Q(pn) ~ ~ Q*(P, K(P» . 
n n 

Letting n -+ + 00, we conclude that Q(P) ~ 0, contradicting the assumption 
Q(P) > O. We must therefore have Q(P) ~ 0 for all absorptive cycles P, and by 
the Weak First Law this implies W(P) ~ O. This completes the proof. 

Once (6.19) is established, the existence of absolute temperature scales 
follows as in [6.8], with the help of a special ideal system .1 (for a description of 
this system, see [6.6,8]). If one of these scales is chosen, the accumulation 
integral A: IP (51') -+ IR can be defined as usual by 

A(P) = T Q(P, n- 1(n» dT, 
o T2 

(6.20) 

where n: .it -+ R + is the chosen scale. Again with the help of the special system .1 
it is possible to prove a generalization of Serrin's accumulation inequality, valid 
for all systems compatible with f. 

Theorem 6.3.3. Accumulation Inequality. If PE IP(Y), then 

Sup{A(P'): P' EPred(P)} < + 00 • 

The proof of this result is rather lengthy, involving as it does a fair number of 
auxiliary lemmas (see [6.6] for details). If Pred(P) =F ¢J the supremum above is 
finite and corresponds to an important quantity associated with the process P. It 
is what I call the entropy of 51' at (the beginning of) P. We make the following 

Definition. The entropy of a thermal system 51' is the function S: IPf(Y) -+ IR 
given by 

S(P) = Sup{A(P'): P' EPred(P)} . 

Without difficulty we can now prove (again for systems compatible with f): 

Theorem 6.3.4. Entropy Inequality. If PE IPf(Y) n Pred(p l ), then 

A(P) ~S(PI)-S(P). 

The above inequality is simply a refinement of the (obvious) inequality 
A (P) ~ S(PI). What is most interesting is its new status in the theory: it is merely 
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a property of entropy, not its defining quality, thereby avoiding the non-uni
queness problem previously mentioned. 

The function Sand E constructed in this and the previous section are not state 
functions in the usual·sense. Moreover, what I have called the energy inequality 
and the entropy inequality involve differences between the values of E and S at 
different processes, rather than at the initial and final states associated with a 
single process. We next see how the commonly made assumption of determinism 
leads (almost automatically) to state functions satisfying the usual forms of the 
two inequalities. 

6.4 Deterministic State Structures 

If :J' is a thermal system, a state structure for :J' is a triple (E, i, t), where E is a 
set (the state space) and i, t: IP(:J') ~ E are functions. If Pe IP(:J'), i(P) and t(P) 
are respectively the initial and final states of :J', when undergoing the process P. 
The triple (I, i, t) is not completely arbitrary, and must agree with the follower 
relation, namely 

If P p' is defined, then t(P) = i (PI) . (6.21) 

In particular, it follows that 

If P is a cycle, then t(P) = i(PI ) . (6.22) 

Frequently, one assumes also that the state structure further verifies the condi
tion 

PP' is defined if and only if t(P) = i(P I) . (6.23) 

When (6.23) holds, the structure (I, i, t) is called deterministic. Condition (6.23) 
has been assumed by Coleman and Owen, and also by Silhavy. In Feinberg and 
Lavine's work, the only statement (vaguely) of this type is: 

t(P) = i(P) if PelPc(:J'). (6.24) 

For a system with a deterministic structure it is easy to see that the concomitant 
energy and entropy functions can be redefined so as to have as their domains a 
subset of E. To this end, it is enough to observe that if (6.23) holds then 

Pred(P) = r 1(i(p» 

Foll(P) = ;-1(t(p» . 

As a result, if P has followers, then 

E(P) = SUp{W(PI)- ,1Q(P' ): P' ei-1(t(P»} = E(t(P» , 

and if P has predecessors then 

(6.25) 
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S(P) = Sup{A(P'): P' er 1(i(p))} = S(i(P)). 

It is therefore obvious that the energy inequality and entropy inequality 
(indicated before) can be rewritten as 

J Q(P) - W(P) ~ E(t(P)) - E(i(P)) , 

A (P) ~ s(t(P)) - S(i(P)) 
(6.26) 

for all Pe IPr(5") n IPp(5"). If P is reversible, the preceding inequalities naturally 
become equalities. 

Reversible (or ideal) systems are probably the simplest interesting examples of 
thermal systems with deterministic structures. The concept is by now familiar 
(see [6.5, Sect. 8]), so we shall simply introduce the notation which will be needed 
here. 

If .I is an ideal system, its state space E can be taken to be an open connected 
subset of IRn. There are continuous differential forms q and w defined in E, and 
each process Pe IP(.I) has associated with it a piecewise smooth path Yp: 1-+ E 
defined in a compact interval Iof IR, such that 

W(P) = j w , Q(P) = j q . 
Yp Yp 

To each such path Y there corresponds at least one process P in IP(.I). If 
Yp: [a, b] -+ E, then i(P) = yp(a) and t(P) = Yp(b). The structure (E, i, t) is there
fore deterministic, and it is not hard to see that all processes in IP(.I) are revers
ible. Finally, there is a function T: E -+ IR + with the property that 

- r q 
A(P) = J -. 

Yp T 

Since for the system .I the inequalities in (6.26) are in fact equalities, one 
obtains immediately 

E and S are potentials for Jq - wand 

q/T respectively. (6.27) 

q - wand q/T evidently have an infinite number of potentials, differing from 
each other by constants. However, it is easy to identify in these collections the 
particular potentials E and S, namely 

E and S are the unique potentials for J q - wand q/T 
(6.28) 

with infima equal to zero . 

Proof. We prove this statement just for E. Assume e: E -+ IR is a potential of 
J q - w, and choose xeE and P in IP(.I) with t(P) = x. Then 

E(x) = E(P) = Sup{W(P')- JQ(P'): all P' with i(P') = x}. 

Since e is a potential for q - w, it is clear that for all P' e IP (.f) we have 
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W(P') - Q(P') = e(i(P'» - e(t(P'» . 

In our case, i(P') = x while t(P') is completely arbitrary. Hence 

E(x) = Sup {e(x) - e(y): all yeI} . 

It follows that E(x) = e(x) - inf e, and as result inf E = O. 
I I 

We note that the inequalities E, S ~ 0 should in fact be quite general. In most 
cases, one should be able to obtain them by considering processes in either 
Foll(P) or Pred(P) with an arbitrarily short time duration. Moreover, these in
equalities can be forced to hold in all cases, simply by creating in 1P(.9'), and for 
each process P, left- and right-identities with respct to the algebraic operation (f) 
existing in 1P(.9'). 

In the context of this theory the positivity of energy and entropy therefore 
loses a bit of its mystery. 
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The Thermodynamics of Gibbs 
and Caratheodory 



Chapter 7 
What Did Gibbs and Caratheodory Leave Us About 
Thermodynamics? 

C. Truesdell 

Apology 

One reason I accepted the invitation to speak on this subject is to correct mis
understandings about my opinion of Gibbs. Gibbs needs no estimate from me, 
but I must defend myself against the contempt I should justly suffer, were I to be 
so deficient in science and taste as to place his achievements at any level but the 
highest. 

In the terms I have used and sharpened these thirty years and more, I see 
Gibbs as the one and only creator of thermostatics; in contrast, his writings seem 
to me to bear little on thermodynamics. As I myself have never worked in ther
mO!itatics but have directed all my effort toward problems of motion - thermo
dynamics, that is - I have found little reason to refer to Gibbs. I do not think I 
deserve blame for citing only infrequently the work of a great man whose efforts 
and successes, magnificent as they are, point in a direction mainly different from 
that which I have tried to follow. 

Table of Contents 

7.1 The Words 
7.2 Statics and Dynamics: the Catenary 
7.3 The Thermostatics of Gibbs 
7.4 Gibbs on Thermodynamics 
7.5 The Thermodynamics of Planck 
7.6 Gibbs's Rational Foundations of Thermodynamics: Gibbsian Statistical 

Mechanics 
7.7 Bryan's Rational Thermodynamics 
7.8 Caratheodory's Axioms 
7.9 Caratheodory's Legacy 
7.1 0 Colophon 

7.1 The Words 

There is a difference also in usage of words. Gibbs himself always employed 
"thermodynamics"; as the word "thermostatics" had not yet been coined, its 
failure to appear in his writings by no means suggests that he did not distinguish 
statics from dynamics. 
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In 1849 Kelvin introduced the word "thermodynamic", which, following 
him, the Oxford English Dictionary (1912) defines as follows: 

... operating or operated by the transformation of heat into motive power. 

Noting the reference to motion produced by heat, I prefer this early meaning. In 
1854 Kelvin (and perhaps also Rankine) used "thermodynamics" in a sense both 
less and more specific (ibid.): 

The theory of the relations between heat and mechanical energy, and of the 
conversion of either into the other. 

In 1867, still a decade before Gibbs's papers appeared, Kelvin & Trait tried to en
large the meaning of dynamics, which they chose to regard as comprising both 
statics, the theory of equilibrium, and kinetics, the theory of motions produced 
by forces. Just a few years earlier, in 1864, Webster had introduced the word 
"kinetics", then new to our language, in the sense Kelvin & Tait were to use. Can 
it be that our cousins from the Isles - distant cousins, they were - had let them
selves be directed in their native tongue by a transatlantic, and at that the most 
tendentious of lexicographers? Be that as it may, the Oxford English Dictionary 1 

in its definition of "Dynamics" (1897) commented as follows: 

... in earlier use restricted to the action of force in producing or varying mo
tion, and thus opposed to Statics (which treats of equilibrium under the ac
tion of forces). 

Further, remarked the Dictionary, despite the efforts of Kelvin & Tait 

the earlier usage, in which Statics and Dynamics are treated as co-ordinate, is 
still retained by some physicists, and has largely influenced the popular and 
transferred applications of the word and its derivates. 

The term "kinetics" in Webster's sense is now fallen into desuetude; as one of 
those who introduced the derivate "thermostatics" (1960), I followed "the 
popular and transferred applications". Perhaps the new term will apear in the 
still awaited Volume 4 of the Supplement. However that may eventuate, I will use 
in this lecture the old yet still surviving distinction that surely was clear to Gibbs, 
whatever his choice of terms. 

Tomorrow and later you will hear several lectures on recent extensions of 
Gibbsian thermostatics, some of them deeply influenced by what Gibbs himself 
published. What I shall say regarding that will be only by way of making the dis
tinction clear. My own research and historical analysis have concerned thermo
dynamics. 

I The Supplements to the Oxford English Dictionary issued in 1933, 1972, and 1976 do not add any
thing to the original definitions of "dynamics" and "kinetics". For "statics" the same holds for the 
Supplement of 1933. For the words "statics" and "thermostatics" in the second Supplement we 
must await its still unpublished Volume 4. 
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7.2 Statics and Dynamics: the Catenary 

Everyone in this audience will know the difference between statics and dynamics. 
Nevertheless, because our lectures are to be printed and so may fall into the 
hands of physicists, chemists, heat-transfer men, etc., I feel compelled to adjoin 
now a statement of the distinction, and to this end I will use the simplest of ex
amples: the catenary curve. 

If we attach the two ends of a real and apparently flexible, heavy cord or fine 
chain from two pins and then let it fall, it will move about for a while and then 
settle into rest. To determine its shape in eqUilibrium through a theory that 
idealizes it as a massy, heavy line, there are two methods. First, we may set up 
and attempt to solve equations of motion for such a body. Those determine the 
shapes that the body will assume as time goes on - the processes the body may 
undergo. Dynamics is the theory of processes. Among these are the rest pro
cesses, those in which no part of the chain ever moves. What other processes the 
chain may undergo, will depend upon the constitutive properties attributed to the 
chain and its environment: for example, the chain's internal friction and the re
sistance offered by the air. If both of these are naught, the chain will never come 
to rest but will keep on oscillating like an assembly of ideal pendulums. Different 
constitutive properties define different ideal chains; in general, the processes one 
chain may undergo, another may not. The rest processes, in contrast, are com
mon to all chains. Even so, the problem of the catenary is only partly solved by 
determining the rest processes, for there are two of these: one bellied upward, the 
other bellied downward. To obtain the catenary curve, we must select the latter 
and reject the former. The dynamics of rest does not suffice for that. Some 
adscititious condition is needed, typically an imposed requirement of stability. 

Statics is a theory designed to avoid commitment to equations of motion yet 
determine directly (and alone) the figure of equilibrium and at the same time con
ditions of stability for it. The statics of the catenary is given by a variational prin
ciple: Among all curves of given length that connect two points, a figure of equi
librium gives the center of gravity its lowest possible position. The vanishing of 
the first variation and the differential equation satisfied by rest processes are 
identical, and so again there are two solutions, but only at this first step. Since 
every interior point of the solution bellied upward is higher than every point of 
the one bellied downward, the latter has a lower center of gravity, and thus it, the 
catenary curve, is the one and only solution provided by the variational principle: 
The variational principle by itself delivers the same outcome as does an adscititi
ous condition of stability for rest processes. 

The competitors in the variational condition cannot themselves be figures of 
equilibrium, for there is only one of those, which is the solution itself; neither do 
they correspond to processes, for in the variational treatment no equations of 
motion have been specified. The competitors are subject to no mechanical condi
tion at all: They are simply curves of given length joining given endpoints. 

To motivate the variational principle, the physical literature often adjoins as
sertions of a vaguely dynamic tone. For example, "if the chain is forcibly dis
placed from its figure of equilibrium, its center of gravity will rise, and when the 
chain is released, its center of gravity will have to fall lower until it becomes as 
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low as possible." Such a statement is not made specific in terms of actual pro
cesses; if we try to make it specific, the constitutive relations we provide may well 
yield a perpetual oscillation, which does not conform with the dynamical claim. 
Bare assertion of a trend or attempt is not a part of dynamics; it is at best a 
heuristic, at worst an orison. 

Sometimes in mechanics the term "virtual" is utilized here. The vanishing of 
the first variation is interpreted as a statement that the virtual work done by a 
virtual displacement equals the virtual increase of the gravitational potential. 
Since kinetic energy is neglected, a displacement of this kind may be called 
"quasistatic". This sort of mumbo-jumbo brings comfort to some, but it solves 
no problems. The variational principle is sufficient to its purpose, which is to 
solve a problem of statics; for dynamic ends, it is useless. 

These distinctions and remarks carryover to thermodynamics and to the ther
mostatics of Gibbs. 

7.3 The Thermostatics of Gibbs 

The basic papers of Gibbs on the phenomenology of heat fill 371 pages in his 
Collected Works. While written in elegant, easy English, they are torve, tense, 
and terse in largely verbal reasoning. I do not understand all of those pages, and I 
will make no attempt to detail Gibbs's contribution (1873, 1876/8). 

We must not confuse what Gibbs knew about thermodynamics with what he 
did in thermostatics. 

For the latter, I hold in the main to the judgment I wrote thirteen years ago, 
much as follows now. 

This shy and exotic newcomer found himself before the altar of a goddess 
far from virgin, her morals eroded by callous abuse and her territory shrunk 
by the timorosity of her champions. There were two easy possibilities: To set 
out on a campaign to rejuvenate the goddess and reconquer her lost domin
ions, or to make her an honest old lady in a safe and clean cottage. Gibbs 
chose neither. Perceiving that results like those obtained in the thermody
namics of processes in bodies of especially simple material ought hold also for 
all bodies in equilibrium, he created a pure statics of the effects of tempera
ture and heat. Accepting the restrictions Clausius had imposed one by one in 
his years of retreat from irreversible processes, Gibbs recognized the subject 
in its starved and shrunken form as being no longer the theory of motion and 
heat interacting, no long thermodynamics, but only the beginnings of 
thermostatics. It is Gibbs's singular merit to have seen the essence of this 
thermostatics: a variational definition of eqUilibrium, including its stabilities 
and instabilities, in which infinitely many putative equilibria are compared, 
and variational criteria are imposed to select from this class of fields that 
which, for a given caloric equation of state, corresponds with actual 
equilibrium, namely that field of fixed total energy which renders the total 
entropy a maximum. A competitor is not required to obey an "equation of 
state" and need not be the outcome of any process undergone by the body in 
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question. A pure statics results, which Gibbs develops fully and deeply in his 
second and third papers. 

The foregoing description fits the opening remarks of Gibbs himself in the 
abstract 2 of his long paper: 

It is an inference naturally suggested by the general increase of entropy 
which accompanies the changes occurring in any isolated material system that 
when the entropy of the system has reached a maximum, the system will be in 
a state of equilibrium. Although this principle has by no means escaped the 
attention of physicists, ... little has been done to develop [it] as a foundation 
for the general theory of thermodynamic equilibrium. 

The principle may be formulated as follows, constituting a criterion of 
equilibrium -

I) For the equilibrium of any isolated system it is necessary and sufficient 
that in all possible variations of the state of the system which do not alter its 
energy, the variation of its entropy shall either vanish or be negative. 

The following form, which is easily shown to be equivalent to the preced
ing, is often more convenient in application: 

II) For the equilibrium of any isolated system it is necessary and sufficient 
that in all possible variations of the state of the system which do not alter its 
entropy, the variation of its energy shall either vanish or be positive. 

My description fits also the modern, rigorous reconstructions of parts of Gibbs's 
thermostatics, especially those of Coleman & Noll 3 and of Dunn & Fosdick 4: it 
fits also the papers of Messrs. Fosdick, James, and Man that that we are to hear; 
while it fits most of Gibbs's own writings, there are several passages where he 
seems to do something different, especially in his great tract on "heterogeneous 
substances", which is more a collection of essays on related topics than a con
secutive treatise. Gibbs always specifies his classes of "possible" variations in 
words, words expressing an idea which was no doubt clear in his mind but which 
changing usage makes difficult for a modern reader to apprehend precisely. 
Moreover, these classes vary with the classes of systems he takes up, one after an
other 5• On the whole, the outcomes, though not the variations used to get them, 

2 Page 354 (cj. also page 56) of Volume 1 of Gibbs's Scientific Papers (1906) and Collected Works 
(1928). The pagination of this volume is the same in these two collections. 

3 B. D. Coleman & W. Noll, still unpublished work of 1957 mentioned in § 264 of The Classical Field 
Theories, 1960; "On the thermostatics of continuous media", Archivefor Rational Mechanics and 
Analysis 4 (1959): 97 -128; B. D. Coleman, "On the stability of equilibrium states of general 
fluids", ibid. 36 (1970) 1- 32. 

4 E. Dunn & R. Fosdick, "The morphology and stability of material phases", Archive for Rational 
Mechanics and Analysis 74 (1980): 1 - 99. 

5 On pages 57 - 61 Gibbs introduces 0 for a "possible" infinitesimal variation and LI for a variation 
"in which infinitesimals of the higher orders are not to be neglected" (presumably analytic func
tions of some unspecified parameter that may tend to 0). He then states what is excluded to make a 
variation "possible". Some readers have misinterpreted his reference to cases in which "heat can 
pass by conduction or radiation from every part of the system to every other .... " In equilibrium 
such factors as these have finished their work. The "possible" variations in a theory of equilibrium 
allow for their effects but do not specify their nature or their manifestations during processes by 
which equilibrium might be in the end attained. 
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refer to piecewise homogeneous conditions in a finite number of constituent 
bodies. An essentially trivial exception is the inhomogeneity due to a uniform 
gravitational field 6. An exception of a different kind is the long, famous Section 6, 
on the equilibrium of solids 7, in which the field of displacement is varied and the 
variations are "entirely independent of any supposition in regard to the homo
geneity of the solid." This passage is familiar, at least derivatively, to every stud
ent of elasticity because it shows, in effect, that for a thermo-elastic body the in
ternal energetic and the free energetic, respectively, serve as stored-energy func
tions when the allowed variations are adiabatic for the former, isothermal for the 
latter. The student of mechanics finds the ideas and the analysis in this part of 
Gibbs's paper easier to follow than the rest, some of which call upon more 
knowledge of chemistry and physics than he is likely to have. It is an untypical 
part in that it presents equations in which possibly non-uniform fields are the 
outcome, and it does not pursue the variational principle far enough to reach 
conditions of stability for solids. 

My subject is thermodynamics, the effects of heat and hotness upon the 
actual motions of bodies. My foregoing remarks about Gibbs's thermostatics I 
do not intend as an accurate and comprehensive analysis; even less are they a 
summary of his work, for they leave aside his astonishing successes with difficult 
physical situations, in treating which he displays a capacity for physical thought, 
more "intuitive" than systematic, which might justly be set level with Huygens' 
and Newton's and Faraday's. 

7.4 Gibbs on Thermodynamics 

My foregoing remarks are designed only to defend myself against any charge that 
I fail to value sufficiently the work of Gibbs. I turn now to my subject, thermo
dynamics, and consider what Gibbs knew about it and what, if anything, he did 
for it. 

The former is easy. He knew in detail almost everything that had been pub
lished regarding thermodynamics. An example of what he knew is provided by 
his being the first to write that it was Rankine, not Clausius, who discovered 

Later (page 63 ff.) Gibbs uses d to denote a differential of a function, and he refers (page 64) to 
these as variations and states that they need not respect the homogeneity of the mass considered. 
Then he writes "De, D", etc., for the energy, entropy, etc., of any infinitesimal part". C/. also 
pages 184 - 218 on elastic solids, where all variations are reduced to statements about differentials 
and derivatives of functions. On page 222 he introduces and explains a "reversible" variation, 
warning the reader not to confuse it with a reversible process in the usual sense. On page 247 he 
writes, "These varied states of the system are not in general states of equilibrium, and the relations 
expressed by the fundamental equations may not hold true of them." Here, certainly the variations 
are of the kind allowed by Coleman & Noll. C/. also page 248. On page 326 Gibbs uses all varia
tions compatible with a specified constraint. 

Gibbs's variations are analogues to virtual displacements in mechanics: changes which need not 
con/orm with such physical laws as govern actual changes. 

6 Pages 188-191, 276-287, 319-323, 329-330, 338-339. 
7 Pages 184-218. 
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entropy. It is no easy task to discern that fact in the notoriously inscrutable writ
ings of Rankine: Gibbs mentions it in three footnotes 8. His attempt to set the rec
ord straight was not successful; it is an instance of Truesdell's Law of Attribu
tions: For arbitrary n, any false attribution outlasts n documented corrections. 

To justify having said "almost everything" rather than "everything", I re
mark that Gibbs 9 attributes characteristic functions to Massieu (1869), while in 
fact the very quantities and thermodynamic potentials Gibbs himself introduced 
as his own in 1875 had been defined, analysed, and applied by Reech in a paper 10 

published in a major journal of mathematics in 1853, when Gibbs was 
fourteen. Reech, not Gibbs, deserves the credit for first discovery of the idea 
Gibbs later called "a fundamental equation" 11. 

In his course on thermodynamics 12 Gibbs used the first nine lectures to 
present the traditional theory, basing it on the papers of Kelvin and Clausius. 
The record of these lectures does not mention "quasistatic processes" or express 
any doubts regarding the existence of temperature or entropy. Lecture I con
cerned "thermometry and calorimetry"; Lecture II, the Carnot cycle. E. B. Wil
son, a student and worshipper of Gibbs, told me on 3 September 1953 in a con
versation that I straightway wrote down, 

Gibbs began his lectures on thermodynamics with the Carnot cycle, which 
he always got wrong. After getting thoroughly mixed up he concluded the 
first lecture with an apology, and in the second lecture he gave it letter 
perfect. It was in this way he introduced entropy, rather than in the formal 
way in the "Heterogeneous Substances". 

While Gibbs's analysis in his three papers almost always concerns thermo
statics, to motivate his assumptions and interpret his conclusions he tries to con
vince the reader that those are inferred from and consistent with thermodynamics 
as that science then stood. At the head of his long paper he put the famous dicta 
of Clausius in 1865, then only a decade old: 

The energy of the world is constant. 
The entropy of the world tends toward a maximum. 

8 Pages 2, 3, and 52. 
9 Pages 86-87. 

10 For a summary of Reech's idea of this matter see § 10e, "Reech introduces and analyses the ther
modynamic potentials", in my Tragicomical History of Thermodynamics, 1822 -1854, New York 
etc., Springer-Verlag, 1980. 

11 Pages 2 and 20 - 28, footnote on page 34, pages 86 - 89. 
12 Here I rely on E. B. Wilson, "Papers I and II as illustrated by Gibbs' lectures on "Thermodynam

ics", Article C in A Commentary on the Scientific Works of J. Willard Gibbs, Volume 1, 
Thermodynamics, edited by E. G. Donnan & Arthur Haas, New Haven, Yale University Press, 
1936. There Wilson prints the notes, which are scarcely more than an outline, taken by L. I. Hewes 
on the lectures of 1899/1900. 

In the conversation quoted in the text above, Wilson told me that 

Gibbs always lectured above the heads of his students and always refused to teach under
graduates at all. He knew his students did not follow him but did not alter his style on that 
account, having a definite idea of how the subject should be presented. He once told me that in 
all his years of teaching he had had only six students sufficiently prepared in mathematics to 
follow him .... 
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Immediately thereafter Gibbs refers to processes 13: 

As the difference of the values of the energy for any two states represents the 
combined amount of work and heat received or yielded by the system when it 
is brought from one state to the other, and the difference of entropy is the 
limit of all the possible values of the integral J dQlt, (dQ denoting the element 
of the heat received from external sources, and t the temperature of the part 
of the system receiving it), the varying values of the energy and entropy char
acterize in all that is essential the effects producible by the system in passing 
from one state to another. For by mechanical and thermodynamic contriv
ances, supposed theoretically perfect, any supply of work and heat may be 
transformed into any other which does not differ from it either in the amount 
of work and heat taken together or in the value of the integral J dQlt. 

The reference to "the part of the system" suggests that Gibbs has in mind the varia
tions of temperature in the interior of a body, while in "the heat received from 
external sources" he may include the heat that comes into one part of the body 
from other parts. Also he refers to t as "the temperature of the part receiving it" , 
not the temperatures of the sources of heat. Thus his integral J dQlt might be 
interpreted as the sum of the two terms which are now familiar in the "Clausius
Duhem" inequality. On the other hand, in his reference to "the limit of all the 
possible values" Gibbs seems to suggest that the entropy might be constructed from 
the class of values that Clausius' integral takes on when it is applied to different 
processes connecting two states. Later 14 he asserts that the entropy 

is the value of the integral J dQlt for any reversible process by which [the 
change in entropy from the value 0 to the actual value] is effected (dQ denot
ing an element of the heat communicated to the matter thus treated, and t the 
temperature of the matter receiving it) .... [I]t is understood that at the close 
of the process, all bodies which have been used, other than those to which 
[the integral] relates[s], have been restored to their original state .... 

While this remark about reversible processes might suggest that a body's entropy 
is to be calculated always from its caloric equation of state in thermostatics, 
Gibbs certainly had no such idea when he wrote his second paper, in which we 
read 15 

When the body is not in a state of thermodynamic equilibrium, its state is not 
one of those which are represented by our surface. The body, however, as a 
whole has a certain volume, entropy, and energy, which are equal to the sums 
of the volumes, etc., of its parts. 

A footnote tells us that "the word energy" here is used "as including the vis viva 
oj sensible motions." Thus Gibbs knew the general principle of energy, and he 

13 Page 55. 
14 Page 85. 
IS Page 39. Note also page 59, on which Gibbs makes a statement about the entropy of a body which 

need not be in equilibrium. Likewise in his statistical mechanics Gibbs sets up the expectation of 
the index of probability as the analogue of the entropy for any density in phase, not merely a den
sity appropriate to statistical equilibrium. Cf his Collected Works, Volume 2, Part 1, page 20, 
and Chapter XI. 
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attributed an entropy to a body in any state of motion. Insofar as he referred to 
thermodynamics, he did not limit it to slow changes 16 governed by "equations of 
state" of the classical kind. 

Indeed, there is one (and so far as I know, only one) passage 17 in which Gibbs 
treats processes, and irreversible ones at that. After discussing "a perfect electro
chemical apparatus", he writes 

... if we give up the condition of the reversibility of the process ... [yet] ... 
still suppose, for simplicity, that all parts of the cell have the same tempera
ture, which is necessarily the case with a perfect electro-chemical apparatus, 
we shall have, instead of (692), 

dQ dn>--, .. · . 
t 

(695) 

We recognize this statement, which refers to finite increments, as the isothermal 
instance of what is now called "the Clausius-Planck inequality". Gibbs's "if we 
still suppose, for simplicity" suggests that he could easily have stated and applied 
that inequality in general, without the restriction. Nowhere in his published 
works did he do so. 

Here is the place to finish my long self-defense in regard to Gibbs. I have no 
doubt that he could, had he so wished, have developed the thermodynamics of ir
reversible processes. Had he done so, much of what we now call rational thermo
dynamics might well have been standing in print for a century. Nonetheless it is a 
fact that what Gibbs chose to produce was in the main thermostatics, not the 
thermodynamics of irreversible processes. 

7.5 The Thermodynamics of Planck 

Taking up the thermodynamics of processes at the point where Clausius had sur
r.endered, Planck introduced systems described by n variables. Many of his for-

16 The word "process" occurs in Gibbs's writings sometimes as a term of ordinary speech, a pro
cedure of some kind, or a merely geometrical passage from one point to another on a curve or sur
face. Of his 371 pages I have found twenty-seven on which he uses "process" to mean a sequence 
of changes undergone by a body in the course of time or refers to such changes without using the 
word. Those pages are 1, 27, 33, 37, 39-42, 56, 57, 59, 60, 61, 85, 89, 90, 92,120,144,145,159, 
167, 196,222,285,338, and 339. The discourse there serves mainly to motivate statements about 
equilibrium and its stability, to visualize changes consistent with thermostatic equations, and to 
limit the class of competing variations. 

On page 39 - 42 note the imaginary "envelop" to maintain uniformity in the pressure and the 
temperature of the body, provided that certain strict inequalities hold "if any part of the body has 
sensible motion." 

Mostly, when Gibbs uses the word "reversible", he attaches it to progressive changes for which 
all equations of thermodynamics are constantly applicable. 

17 Pages 338-339. 
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mulae look just like some that appear in Gibbs's thermostatics, and in his auto
biography 18 he writes 

Unfortunately, as I found out later, the great American theorist Josiah Wil
lard Gibbs was ahead of me in this matter. He had formulated the same theo
rems [statements?], even partly in a more general form .... 

The vagueness of the German words "Satz" and "formulieren" makes the mean
ing of Planck's admission unclear. If he had read Gibbs's work carefully enough 
to master it, he could not have concluded that it anticipated his own, merely that 
many of the equations and inequalities were formally alike. 

Planck in the same book tells us that in his thesis of 1879 he had taken as his 
basic principle the following statement: 

In every natural process the sum of the entropies of all bodies involved in the 
process increases. 

Restriction of a natural process to a subinterval of the interval of time upon 
which it is defined delivers another natural process. Thus Planck does, at least 
implicitly, consider not merely the outcomes of processes but changes that occur 
as time proceeds; the actual changes undergone by special systems. Many materi
al bodies that differ in their dynamics share a common statics. In this sense the 
thermostatics of Gibbs is of broader application than the thermodynamics of 
Planck. The distinction is confirmed by Planck's own statement regarding the re
ception of his thesis: 

The impression [that my dissertation presented to the University of Munich in 
1879] made upon the public of physics at that time was naught. Of my 
teachers at the University, as I know precisely from conversations with them, 
not one understood its contents. They probably let it pass only because they 
knew me from my other work, in the "Praktikum" for physics and in the 
mathematical seminar. Even among physicists more nearly concerned with 
the subject itself I found no interest, let alone approval. Helmholtz probably 
did not read this paper at all; Kirchhoff rejected its contents expressly with 
the remark that the concept of entropy, the magnitude of which was measur
able only by means of a reversible process and hence was definable only for 
such, could not legitimately be applied to irreversible processes. 

Even 100 years ago, it seems, thermodynamics was already regarded in Germany 
as a dead field, insusceptible of broadening or deepening; already it was chained 
to equilibrium and hence inapplicable to "natural processes", which were what 
Planck designed to represent. Planck went on to conjecture that he obtained a 
chair not because of his researches on thermodynamics but in spite of them and 
through the good offices of a friend of his father's. 

18 M. Planck, Wissenschaftliche Selbstbiographie, Leipzig, J. A. Barth, 1948. I have not used the 
translation by F. Gaynor, pages 13 - 51 of Scientific Autobiography and other Papers, New York, 
Philosophical Library, 1949. 
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Planck obtained and applied what we now call the Clausius-Planck inequali
ty 19: 

L1H~ J dC , 
- T 

iI~g, 
- T 

(dC= Q dt), (7.1) 

which provides a lower bound for the increase of entropy accompanying the 
actual accumulation of heat at various temperatures. Gibbs's equation (695) is 
the special instance of (7.1) in which T = const., and while doubtless he had (7.1) 
in his hands, this excursus into the theory of processes is unique in his published 
writings. On the whole, it seems to me, Gibbs's considerations involve bodies 
putatively subject to non-uniform fields of temperature, energy, entropy, and 
specific volume. Gibbs demonstrates from his posited variational principle that 
throughout a body in equilibrium the temperature and other variables are uni
form. I find no such argument in the work of Planck, who always associates with 
any condition of anyone body just one temperature, one entropy, etc. Planck 
may be regarded as the originator of the thermodynamics of homogeneous 
processes undergone by bodies susceptible of irreversible change. 

Gibbs's thermostatics and Planck's thermodynamics have one common 
feature: Their conclusions refer - Gibbs's mainly and through proved theorems, 
Planck's entirely and by assumption - only to homogeneous conditions. A 
fortiori, neither can be compared except in trivial instances with, say, Maxwell's 
kinetic theory of gas flows. 

7.6 Gibbs's Rational Foundations of Thermodynamics: 
Gibbsian Statistical Mechanics 

Gibbs's thermostatics can easily be regarded, at least in its simpler parts, as axio
matic. While he there made his choice of entropy and absolute temperature as 
primitive concepts because that lent itself to the most compact, mathematically 
efficient formulation of special problems as well as of the structure of his theory, 
leading to the delightful "Gibbs relations" 

19 M. Planck, "Ober das Prinzip der Vermehrung der Entropie", Annalen der Physik (2) 30 (1887): 
562- 582; 31 (1887) 189-208; 32 (1887): 462- 503. Planck does not here write (7.1) explicitly. On 
page 468 of the third paper we find it expressed as follows for "any process that takes place in 
nature": 

It follows also, expressed as 

It5S+t5O' > 0, 
t5Q 

150'= --. 
(J 

Q~TdtP, 

from Equations (68) and (70) in the 7th edition of Planck's famous textbook, Vorlesungen iiber 
Thermodynamik, Leipzig, Veit & Co., 1891; 2nd ed., 1905; 3rd ed., 1911; 4th ed., 1913; 5th ed., 
Berlin, De Gruyter, 1917; 6th ed., 1921; 7th ed., 1922. Translation of the 1st ed. by A. Ogg, 
Treatise on Thermodynamics, London etc., Longmans Green, 1903; 1917; 1921; of the 7th ed., 
1927. Of the ingredient relation d U - T d tP < W, Planck writes "All conclusions with regard to 
thermodynamic chemical changes, hitherto drawn by different authors in different ways, cul
minate in this equation." tP is Planck's later symbol for the entropy, replacing the S he used in his 
paper of 1887. 
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ae 
p= ---, 

au 
(7.2) 

along with many other compact statements, of course Gibbs knew that entropy 
was not something obvious, not something that comes spontaneously to the 
burnt child who is learning to avoid the fire. He saw the need for a "Rational 
Foundation of Thermodynamics". He chose to seek it in statistical treatment of 
the motions of systems of punctual masses. In 1901 he issued his Elementary 
Principles in Statistical Mechanics developed with Especial Reference to the Ra
tional Foundation of Thermodynamics 20. There he referred to "the slow pro
gress of rational thermodynamics, as contrasted with the rapid deduction of the 
consequences of its laws as empirically established." He chose to "pursue 
statistical inquiries as a branch of rational mechanics" so as to gain "clear appre
hension of the relation of thermodynamics to rational mechanics" . 

Gibbs's statistical mechanics, like his phenomenological thermostatics, with
in the limits he set himself stands a peerless masterpiece. As would be expected, 
the rational treatment it presents provides a foundation not for thermodynamics, 
which Gibbs names, but for thermostatics, which he had treated before with 
entire success in applications. Again like his phenomenal theory, his statistical 
mechanics has been misrepresented by the tradition. Its high standard of 
deductive rigor is passed over in silence; its modest and specific theorems are 
twisted into pronouncements about trends in time which Gibbs suggested but did 
not claim to prove; and the restrictions that Gibbs imposed as sufficient to obtain 
thermostatic relations are fraudulently adduced as being necessary to the validity 
of a thermodynamics of any kind. That confusion may be the root of another 
and more deadly misconception: that if we are to "explain" irreversibility, we 
must resort to some kind of statistics. In fact, as P. G. Bergmann has written 21 

Is is not very difficult to show that the combination of the reversible laws of 
mechanics with Gibbsian statistics does not lead to irreversibility, but that the 
notion of irreversibility must be added as an extra ingredient. 

Maxwell's kinetic theory of gases provides a brilliant and successful example of 
an "added extra ingredient", namely, the collisions operator. 

The statistical mechanics of Boltzmann, which preceded the work of Gibbs, 
certainly had an effect and influence; certainly Boltzmann himself strove and 
struggled toward a rational treatment, but he achieved it only here and there. 
This place is not fit for the long, detailed and measured analysis that alone would 
carry conviction regarding the esteem that Boltzmann's assumptions and dis
coveries deserve. The community of physicists reinforces by rites of intuition and 
hocus-pocus with formulae its persuasion that statistical treatment provides the 

20 Republished as Part 1 of Volume 2 of The Collected Works of J. Willard Gibbs, New Haven, Yale 
University Press, 1928; not included in Gibbs's Scientific Papers, 1906. 

21 P. G. Bergmann, "Foundations research in physics", pages 1-14 of De/aware Seminar in the 
Foundations of Physics, edited by M. Bunge, New York, Springer-Verlag, 1967. See page 11. 
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doctrine of the one true church of thermodynamics. Here I quote the only 
physicist dissenter from that faith I have so far encountered, Bridgman 22: 

The insight which the probability interpretation of the second law at first 
seemed to give turns to ashes like apples of Sodom. The small-scale stuff is 
only a model, obtained by extrapolation of the large-scale stuff. The tactics 
of this extrapolation certainly cannot be claimed to display any subtlety - it 
was what any child might have invented. The only check on the extrapolation 
is that when worked backward it shall again produce the large-scale stuff .... 
An understanding of the attitude of physicists toward thermodynamics and 
kinetic theory is, I think, to be sought only in the realm of psychology. 

While I applaud the last sentence, and while I sympathize with part of the state
ments preceding it, the hundreds of pages of research I have published on kinetic 
theory and statistical mechanics make it plain that I do not share Bridgman's 
view in toto. Investigations in statistical mechanics carried out since Bridgman's 
death contain assertions of great interest and claim to prove them. The mathe
matical style of most of this work is such as to close it to mathematicians not in 
its small circle of authors. Such a quality is dangerous. Because clear, explicit 
statement and rigorous proof belong to the essence of rational thermodynamics, 
it is too soon to assess what progress in rational development recent researches in 
statistical mechanics have achieved. 

7.7 Bryan's Rational Thermodynamics 

Statistical thermodynamics is in principle neither more nor less rational than phe
nomenological thermodynamics. "Rational" is a quality of treatment, not of the 
object treated. In a book on the "first principles and their direct applications" 
Bryan 23 in 1907 pointed to rational mechanics not as something to be applied to 
thermodynamics but rather to be imitated by it. In his preface he writes 

It cannot be denied that the perfection which the study of ordinary 
dynamics has attained is largely due to the number of books that have been 
written on rational dynamics in which the consequences of the laws of motion 
have been studied from a purely deductive stand-point. This method in no 
way obviates the necessity of having books on experimental mechanics, but it 
has enabled people to discriminate clearly between results of experiment and 
the consequences of mathematical reasoning. It is maintained by many people 
(rightly or wrongly) that in studying any branch of mathematical physics, 
theoretical and experimental methods should be studied simultaneously. It is 

22 P. N. Bridgman, The Nature of Thermodynamics, Cambridge, Harvard University Press, 1941. 
Reprinted "with no essential change", Harper Torchbooks, 1961. I have used only the latter edi
tion, on pages 8 - 9 of which may be found the passage quoted. Some substantiation of detail may 
be read on pages 152-179. 

23 G. H. Bryan, Thermodynamics, an Introductory Treatise dealing mainly with First Principles and 
their Applications, Leipzig, Teubner, 1907. 
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however very important that the two different modes of treatment should be 
kept carefully apart and if possible studied from different books, and this is 
particularly important in a subject like thermodynamics. 

Part II of Bryan's book, which contains many references to rational mechanics, 
is called "The Foundations of Rational Thermodynamics" . 

Praiseworthy as is Bryan's attempt, like Reech's a half century earlier it is a 
failure. His "axioms" include undefined terms which are not represented by any 
mathematical concept, and his presentation, while different from those in other 
works of his day, is no less muddled. Bryan 24 seems also to have been the first to 
take internal energy rather than heat as the main concept on which to found ther
modynamics. We shall soon see a disastrous use of this idea. 

Gibbs's success, Boltzmann's uncertainty, and Bryan's failure did not grow 
from any inherent superiority in statistics or inherent weakness in phenom
enology; they merely reflect the capacities of the men. 

7.8 Caratheodory's Axioms 

Since the purpose of this lecture is to fill some lacunae in the expositions of ther
modynamics that I have published, these thirty years past and more, adopting 
one or another standpoint but each time attempting to take that standpoint 
seriously and treat it honestly, I come now to the celebrated axiomatization of 
Caratheodory25. Like most of the thermodynamics of the pioneers, Caratheo-

24 In § 47 of Bryan's book we read 

The following statements may be regarded in the light partly of a definition of energy, and 
partiy of an enunciation of its properties which are assumed as fundamental. 

There is a certain entity called energy which is characterised by the following properties: 

1) In an isolated system the total quantity of this entity always remains constant. 
2) The energy of a system cannot be changed without some real physical changes taking place in 

the state of the system. 
3) The kinetic and potential energies of dynamics are particular forms of this entity. 

The first statement is the Principle of Conservation of Energy, and it leads to the following 
conclusions. 

If the energy of a finite non-isolated system or part of a system changes in amount, then 
changes of equal but opposite amount must occur somewhere outside the system or part consid
ered, so as to make the total amount unaltered. 

According to (2) if the physical state of a system is completely defined by certain variables, the 
energy is a function of those variables only, and does not depend on the past history of the system 
previous to attaining the state in question. 

On the other hand, if the state of the system is defined so far as certain physical phenomena are 
concerned by certain variables, and we have evidence, from the existence of irreversible phenom
ena, or from any other cause, that energy changes have occurred in the system which are in
dependent of the changes of these variables, we infer that the variables originally assumed are not 
sufficient to completely determine the physical state of the system, but that this state depends on 
some other variables as well. 

2S C. Caratheodory, "Untersuchungen tiber die Grundlagen der Thermodynamik", Mathematische 
Annalen 67 (1909): 355 - 386 = pages 131-166 of Band II of Carathl:odory's Gesammelte Ma
thematische Schriften, Munich, C. H. Beck, 1954. Translation by J. Kestin, "Investigation into 
the foundations of thermodynamics", pages 229 - 256 of The Second Law of Thermodynamics, 
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dory's deals only with systems described by a finite number of scalars and unable 
to undergo irreversible changes. Not only for that reason but also because it is 
mathematically incorrect and physically insufficient to deliver even the classical 
results of Kelvin in the generality Kelvin himself maintained, Caratheodory's 
treatment has had scant effect on rational thermodynamics, although of course 
all students of the foundations have consulted and analysed it. Its birth is de
scribed as follows by Born 26: 

From [my reading of Gibbs] sprang an essential piece of progress in thermo
dynamics - not by myself, but by my friend Caratheodory. I tried hard to 
understand the classical foundations of the two theorems, as given by 
Clausius and Kelvin; they seemed to me wonderful, like a miracle produced 
by a magician's wand, but I could not find the logical and mathematical root 
of these marvellous results. A month later I visited Caratheodory ... and told 
him about my worries. I expressed the conviction that a theorem expressible 
in mathematical terms, namely the existence of a function of state like 
entropy, with definite properties, must have a proof using mathematical 
arguments which for their part are based on physical assumptions or ex
periences but clearly distinguished from these. Caratheodory saw my point at 
once and began to study the question. The result was his brilliant paper, pub
lished in Mathematische Annalen, which I consider the best and clearest pre
sentation of thermodynamics. 

Presuming that everyone in this audience is familiar with Caratheodory's as
sumptions and results, I content myself with a list of some of their failings. 

1) Caratheodory wrote 

Finally, in order to handle from the beginning systems with arbitrarily many 
degrees of freedom, it was necessary to use a theorem from the theory of 
Pfaffian differential equations ... instead of the Carnot cycle, which was al
ways used earlier but is easy to visualize and master only for systems with two 
degrees of freedom. 

The phrase "Finally ... it was necessary to" (Endlich musste) has been misunder
stood. While it seems to mean just the personal explanation "I had to" , expressed 
in the impersonal terms with which the modesty of twentieth-century scientists 

edited by J. Kestin, Stroudsburg (Pa.), Dowden, Hutchinson & Ross, 1976. Cj. also "tiber die Be
stimmung der Energie und der absoluten Temperatur mit Hilfe von reversiblen Prozessen", 
Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische 
Klasse (Berlin) 1925: 39 - 47 = pages 167 - 180 of Band II of Caratheodory's Gesammelte Mathe
matische Schriften. There are also expository papers by Born and others. 

26 M. Born, My Life, Recollections of a Nobel Laureate, London/New York, Taylor and Fran
cis/Charles Scribner's Sons, 1978. See page 119. This work first appeared in a translation into 
German, 1975. [In view of my words about Born's baneful influence on thermodynamics perhaps 
it is not out of place to remark here that his autobiography as well as the reputation he left behind 
him reflect a fine character as well as charm, learning, letters, and eminent humanity. His en
counter with the foundations of thermodynamics seems to be the one instance in his life when his 
physical sense failed him.] 
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often compels them to cloak their opinions and emotions, it is the source of two 
widely diffused assertions 27: 

I) Carnot cycles do not lend themselves to rigorous mathematical treatment. 
II) The approach to thermodynamics based on Carnot cycles does not work 

except for systems described by two independent variables. 

Half a century of confusion about not only the pioneers' discoveries but also the 
basic concepts and logical structure of classical thermodynamics, diffused 
through a forest of pulp and an ocean of talk, grew from these groundless 
opinions and other aspects of Caratbeodory's work. Bharatha & 128 proved the 
former assertion false; Pitteri 29, the latter. 

2) Mathematical gaps and errors in Caratheodory's work have been dis
covered by Whaples 30, Bernstein 31, Boyling 32, Cooper 33, Serrin and others. 

27 E.g. "can be conveniently and convincingly dealt with in the case of a system of two degrees of 
freedom only" in the Introduction to Johann Walter's "On the definition of the absolute tempera
ture - a reconciliation of the classical method with that of Caratheodory", Proceedings 0/ the 
Royal Society 0/ Edinburgh 82A (1978): 87 - 94. 

28 C. Truesdell & S. Bharatha, The Concepts and Logic 0/ Classical Thermodynamics as a Theory 0/ 
Heat Engines, Rigorously Developed upon the Foundation Laid by S. Carnot and F. Reech, New 
York, Springer-Verlag, 1977. 

29 M. Pitteri, "Classical thermodynamics of homogeneous systems based upon Carnot's General 
Axiom", Archive/or Rational Mechanics and Analysis 80 (1982): 333 - 385. 

30 G. Whaples, "Caratheodory's temperature equations", Journal 0/ Rational Mechanics and Anal
ysis 1 (1952): 302 - 307. 

31 B. Bernstein, "Proof of Caratheodory's local theorem and its global applications to 
thermostatics", Journal 0/ Mathematical Physics 1 (1960): 222 - 224. 

32 J. B. Boyling, "An axiomatic approach to classical thermodynamics" , Proceedings 0/ the Royal 
Society (London) A 329 (1972): 35 -70. See § 1 for references to further mathematical criticisms. 

33 J. L. B. Cooper, "The foundations of thermodynamics", Journal 0/ Mathematical Analysis and 
its Applications 17 (1967): 172-193. 

As Cooper pointed out, Caratheodory failed to prove that his "absolute temperature" 
deserved the name "temperature", which must be an increasing function of any presumed 
empirical temperature. Cooper's observation induced both Mr. Serrin and me to include proofs 
that the absolute scales we constructed were not open to any such objection. On the other hand the 
counterexample Cooper invoked was in effect the caloric theory of heat, in which the heat form is 
a perfect differential, and so all constants are integrating factors. Professor Walter has remarked 
(in effect) that Cooper's counterexample cannot apply to Caratheodory's development because he 
built the First Law into his axioms through his definition of heat, and the First Law excludes the 
caloric theory (at least if there is some model material which can accomplish cyclic work); c/. 
Johann Walter, "Bemerkungen zur Verwendung der Pfaffschen Formen bei der Definition der ab
soluten Temperatur nach Caratheodory", pages 504 - 512 of Proceedings 0/ the Fourth Confer
ence on Ordinary and Partial Dif/erential Equations, Dundee, Scotland, March 30 - April 2, 1976 
(Springer Lecture Notes in Mathematics No. 564). Nonetheless, careful analysis of conditions on 
Caratheodory's differential forms that suffice to render his argument rigorous supports the gist of 
Cooper's complaint. 

The preceding remarks are open to misinterpretation because they reflect the prejudice that di
rects him who seeks an absolute temperature to find integrating factors for some differential form. 
That was not Kelvin's way when he introduced absolute temperature in the first place. He sought 
directly a scale of temperature with physically desirable properties. Because he then was working 
with the caloric theory, integrating factors would have been useless to him. He did find an excel
lent scale. Later, after he had rejected the caloric theory, he introduced the scale now called after 
him; he did so, not by seeking integrating factors but again by first laying down a physical desider
andum, then determining a function of his old scale such as to satisfy that requirement. 
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Some analysts uninterested in thermodynamics are offended if they hear any 
criticism of Caratheodory. They retort, "But in that paper he proved a beautiful 
theorem on Pfaffian forms!" On that point some other analysts disagree. Re
marking that mathematicians had found incomplete Caratheodory's proof of his 
theorem (repeated in his later publications and in all expositions by physicists), 
Bernstein provided a precise proof for a precise statement of Caratheodory's 
type. His theorem delivers Caratheodory's integrating factor only locally, but, as 
he remarks, if that integrating factor is to be interpreted as an absolute tempera
ture and the essential block from which the entropy is built, local existence is in
sufficient. To deserve the name "absolute", a scale must be global. While the 
theorem by itself cannot do the job, Bernstein brings to bear Caratheodory's 
further assumptions to prove that in the application to classical thermodynamics 
the scale is indeed global. Even as patched up by Bernstein, Caratheodory's work 
employs the unnatural assumption that all the coefficients of the Pfaffian form 
be infinitely many times differentiable. In our rigorous formulation of Carnot's 
approach Bharatha & I assume only that certain first derivatives, and not all of 
them, should exist and be continuous. Thus even from the analytical standpoint 
Caratheodory's results are weaker than need be. Not too much should be made 
of that, nevertheless, because stronger theorems of existence for differential 
equations could be invoked now to get Bernstein's results from assumptions 
more natural to the physics of heat 33a. Indeed, Mr. Serrin informs me that all 
mathematical flaws in Caratheodory's work and even the grave error in physics I 
shall point out below in No.5 can be overcome by a thorough reformulation and 
recasting. No such recasting was available before 1975. 

3) While the founders had a fair if informal grasp of the difference between a 
constitutive relation and a generic principle, Caratheodory does not. While 
Carnot, Clausius, and Kelvin had considered processes having any speed that 
might be thought appropriate, Caratheodory comes out for "quasistatic pro
cesses". He confuses statements regarding a fairly general class of systems in 
equilibrium with the severe restrictions on constitutive functions that result from 
applying thermodynamic axioms to systems undergoing processes. Today we are 
accustomed to this muddle because we find it in every textbook, but in Caratheo
dory's day it was a new muddle, not yet a sacred cow of a numerous profession. 
Now or then, a mathematician who cannot get free of it will add nothing to 
thermodynamics but illusions of rigor where rigor there is none. 

To get absolute scales rigorously from Kelvin's line of argument the following assumptions 
suffice: 

1) Carnot's General Axiom 
2) Thermometric Axiom (Boyling): for each hotness h there is some body whose latent heat at that 

hotness fails to vanish for some volume. 

Both of these axioms are scale-independent; both are compatible with the First Law and the 
Second Law but require neither. The absolute temperatures so provided mayor may not be 
integrating factors for the heat form. For details see my "Absolute temperatures as a consequence 
of Carnot's General Axiom", Archive for History of Exact Sciences 20 (1979): 357 - 380. 

33a Added in Proof. Indeed Caratheodory's local theorem holds even if the coefficients are only once 
continuously differentiable, as had been shown by W.-L. Chow, "'Ober Systeme von linearen par
tiellen Differentialgleichungen erster Ordnung", Mathematische Annalen 117 (1939): 98 -105. 
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4) There is no basis in sensation or other experience for Caratheodory's 
celebrated axiom of inaccessibility. It reflects neither the origins of thermody
namics in experiment nor the insights provided by the discoveries of the pioneers. 
Caratheodory sets it down by fiat and expects his readers to accept his trick 
because it delivers what they already know and accept. The axiom itself is in
accessible in principle to experiment of any kind, for how can anyone assure him
self by or from experiment that in each neighborhood of any given point there is 
another point that cannot be joined to it by any member of an infinite class of 
paths? Professor Johann Walter in a letter to me has put this quandary as an 
episode: 

A student bursts into the study of his professor and calls out: 
"Dear professor, dear professor. I have discovered a perpetual motion of the 
second kind!" 

The professor scarcely takes his eyes off his book and curtly replies: 
"Come back when you have found a neighborhood U of a state Xo of such 
kind that every x E U is connected with Xo by an adiabat." 

Contrast this demand with "Show me a cyclic heat-engine that works with an ef
ficiency greater than 1 - T mini T max" , or "Show me a cyclic heat-engine that does 
positive work yet emits as much heat it absorbs." 

5) Caratheodory's axioms reflect an error in physics. They presume that the 
variables sufficient to define mechanical work suffice also to define any thermo
dynamic system. In the systems treated by the pioneers, the variables that define 
work are pressure and volume. As Thomsen & Hartka 34 remarked, Caratheo
dory's axioms, since they are expressed in terms of these same variables, cannot 
apply to water in the range of its anomalous behavior. Be it noted that Carnot, 
Kelvin, and Clausius in their basic assumptions had always taken temperature 
and volume as independent variables, upon which the latent and specific heats 
depend. The difference is not trivial, because the pioneers' choice is general for 
the fluids they considered, water included; this choice, recent studies of rational 
thermodynamics adopt and extend. 

It is one thing for a textbook to leave anomalous behavior out of account be
cause it is untypical of the circumstances most engineers encounter; it is quite an
other when a mathematician presents as axioms for the whole science of thermo
dynamics statements that in fact fail to apply to one of the two most useful 
substances on earth, essential to the existence of life. (Nevertheless, the writers of 
textbooks may not be wrong always when they claim that their versions of what 
they call the "classical" treatment of thermodynamics are equivalent to Cara
theodory's, for often they, too, start from assumptions that exclude water, 
although that fact does not keep them from applying their results to it afterward 
when (and if) they try to explain its anomalous behavior.) 

Returning to mathematicians, I must say that of them their colleagues, stu
dents, and successors expect a standard in conceptual analysis unreasonable to 

34 1. S. Thomsen & T. 1. Hartka, "Strange Carnot cycles", American Journal of Physics 30 (1962): 
26 - 33, 388 - 389. 
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demand of others. While he who does no more than apply a science need not in
terest himself in its essential physics or its logical structure, he who would set up 
axioms for a science must first master its main applications. As Hilbert wrote, 
"only that architect is fit to dispose securely the foundations of a structure who 
himself knows in all detail the functions it is to discharge." 

6) Caratheodory in effect defines heat as a kind or work. Here he cites the 
article by Bryan 35 in the mathematical Encyklopiidie, which starts from the First 
Law with internal energy taken as a primitive idea. Caratheodory, a skilful 
mathematician, easily sees that Bryan's vague discussion is unnecessary to the 
mathematical structure. He writes, 

The whole theory can be derived without assuming the existence of a physical 
quantity, namely heat, that diverges from the usual mechanical quantities. 

Even thermodynamicists of the classical kind have pounced upon this blunder. 
As W. J. Hornix 36 has remarked, 

many have tried to reduce thermodynamics to mechanics, but have failed be
cause the concept of heat defies such reduction. An axiomatic approach has 
made clear the reason for this, by showing that an adiabatic process is neces
sarily a truly primitive term in thermodynamics; it cannot be derived from 
mechanics. 

I agree with M. Zemansky 37 when he says: 

To deal with the foundations of thermodynamics as though you don't know 
what temperature, heat and work are is nonsense. 

That objection in itself suffices to dismiss Caratheodory's axioms. We recall that 
from D' Alembert's time onward some axiomatizers have thought that mechanics 
would do very well without a mathematical concept of force - in a word, that 
Newton in his Laws of Motion had used a dispensable primitive. In thermody
namics such an approach sneers at the struggles of the founders, who had to 
discover the First Law as well as the Second Law. As Mr. Serrin puts it, "Cara
theodory's greatest legacy of disaster is his attempt to define heat in terms of 
work and energy. Any such attempt must fail, since it can neither come to grips 
with the idea of heat supply as something corresponding in thermodynamics to 
force in ordinary mechanics nor distinguish between supplies of heat at different 
temperatures." In this confused and confusing blunder Caratheodory diverted 
generations of physicists from the major lesson to be learnt from Carnot and 
Gibbs. 

I think that any axiomatization designed to derive thermodynamics as a 
whole from ideas that represent nature directly is defective if it takes as an axiom 
a statement about energy. The approach of Carnot, adopted in the main by 
Clausius, is based plainly and explicitly upon the experimental properties of heat 

35 G. H. Bryan, "Allgemeine Grundlagen der Thermodynamik" (1903), pages 71-160 of Band 5, 
Erster Teil of Encykloptidie der Mathematischen Wissenscha!ten, 1903/1921. See also § 47 of 
Bryan's book, cited in Footnote 23. 

36 "Proceedings of the international congress on thermodynamics held at Cardiff, U.K., 1 - 4 April, 
1970", Pure and Applied Chemistry 22 (1970): 211- 553. See page 537. 

37 Ibid. page 552. 
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in bodies of the simplest kind, as natural to thermodynamics as the ideal 
pendulum is to mechanics; resurrecting that approach and replacing Carnot's 
one unacceptable axiom by a statement idealizing a fact of experiment discovered 
after Carnot's death, Bharatha & 138 demonstrated by elementary and rigorous 
use of ordinary calculus the existence and properties not only of entropy but also 
of internal energy; and Pitteri extended all our results to the generality of revers
ible systems described by the product of the hotness manifold and an n-dimen
sional manifold of substates. Heat is not defined away; it is accepted as fun
damental and then proved to be interconvertible with work and internal energy, 
restoring Clausius' finest discovery to its just place. I repeat, for reversible 
systems the First Law and the Second Law, both of them, emerge as proved 
consequences of the properties of gases and frictionless idealized heat engines. 
No assumption that excludes water, no new physical principles, no unmotivated, 
flashy, and untriable device, was ever called for. The recent work of Silhavy 39 

deserves particular respect for recognizing the general First Law, not restricted to 
reversible systems, as something that must be derived from natural and 
immediate assumptions about heat and work. The same holds for the un
published researches of Ricou. 

7} In any kind of thermostatics or thermodynamics adiabats take a central 
part. In consequence of his attempt to expel from physics the basic concept of 
heat, Caratheodory assumed that adiabats existed in kind and abundance suf
ficient for his needs. Apparently he did not see that such existence is a constitu
tive property which is to be discovered by bringing the theory of differential 
equations to bear upon particular conditions derived from the constitutive func
tions that define the thermodynamic system. It is a body's latent and specific 
heats, A v and K v for the bodies considered by the pioneers, that determine its 
adiabats through the differential equation 

AvdV+KvdO= 0, 

o being the temperature on a given empirical scale. All pioneers knew as much. 
Caratheodory did not even mention A v; had he attempted anything specific, he 
would have had no way to determine adiabats without knowing the energy func
tion of the body to which they belong. That energy function, moreover, would 
have had to operate on temperature and volume or entropy and volume, while his 
independent variables were pressure and volume. (He could not have used the 
entropy function or any derivative with respect to entropy because in order to 
prove entropy to exist he had presumed the existence of adiabats.) Thus he would 
have been unable to demonstrate the qualitative properties of the adiabats of 
water. Caratheodory seems to have had no acquaintance with the specific prob
lems thermodynamics is designed to handle. Here in alleviation of his failure we 
may notice that his somewhat older friend and later colleague, the physicist Som-

38 Concepts and Logic, cited above in Footnote 28. 
39 M. Silhavy, "On the Second Law of thermodynamics, I. General framework, II. Inequalities for 

cyclic processes", Czechoslovak Journal of Physics 832 (1982): 987 -1010, 1073 -1099. 
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merfeld 40, fared no better when he faced water, and his editors, eminent 
physicists of a more recent stamp, published a flagrant error regarding it. From 
the standpoint of Kelvin the matter is simple, and Kelvin (1854) was the first to 
state that A v < 0 in the range of anomalous behavior. 

8) In presenting a new theory of absolute temperature Caratheodory implied 
that there was something unsatisfactory in Kelvin's, and that generality could be 
increased by defining temperature for systems described by many variables. In
deed, there are two gaps in Kelvin's work: He does not recognize the hotness 
manifold, and he does not perceive need for a thermometric axiom such as to 
ensure that what he calls "absolute temperature" can qualify as a temperature of 
any kind. Caratheodory's system shares these faults. More than that, while the 
founders had worked not only half a century before Mach was to recognize the 
concept of hotness but also a decade before Riemann was to introduce the con
cept of manifold, Caratheodory proposed his axioms more than a decade after 
Mach's book had appeared. Finally, if after accepting an a priori concept of hot
ness and recognizing temperature as being a chart on the hotness manifold we 
somehow construct a global chart deserving the title "absolute", in regard to it 
we gain nothing by laboring with more and more complicated systems. Kelvin's 
construction of absolute temperature as a means of denoting hotness suffices, 
once we have filled its mathematical gaps, for all systems compatible with 
Carnot's General Axiom. We need but use it. Only he can refuse it who rejects 
the concept of hotness or who proposes axioms insufficient to deliver, when 
specialized to reversible and discrete systems, the basic assumption of Carnot. 

9) If for reversible systems Caratheodory's axioms are incomplete, unneces
sarily restrictive, and unphysical, they have no compensating virtue in other 
regards. Nothing like the statements of Clausius, Gibbs, and Planck regarding 
irreversible changes of entropy was obtained by Caratheodory. Although he does 
refer to irreversibility, he never makes his notions precise or derives anything 
concrete about it. As Leaf41 remarked, the Pfaffian form on which Caratheo
dory bases all his analysis does not suffice to represent heating or working of 
bodies that may undergo irreversible changes. While Gibbs had treated the ther
mostatics of elastic materials with masterly success, and Duhem had formulated 
and applied thermodynamics in the field theories of linear viscosity and general 
elasticity, Caratheodory never touches a field. 

Not only did Caratheodory himself fail to extend the domain of thermodynam
ics; he narrowed it, and in my opinion his approach, even after the mathematical 
deficiencies in his use of it have been emended, brings us further from a 
thermodynamics of possibly irreversible processes in general deformations of 
bodies than we are when we read the papers of Carnot, Kelvin, and Clausius. 

40 A. Sommerfeld, Thermodynamik und Statistik, herausgegeben von F. Bopp und J. Meixner, 
Wiesbaden, Dieterichsche Veriagsbuchhandlung, 1952. Translation by J. Kestin, Thermodynam
ics and Statistical Mechanics, New York & London, Academic Press, 1964. See tlbungsaufgabe 
1.6, pages 322 - 323 of the German edition, page 359 of the English. 

41 B. Leaf, "The principles of thermodynamics", Journal of Chemical Physics 12 (1944): 89- 98. 
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Seen against the background of the now understood successes of the pioneers and 
beyond the foreground of recent treatments, Caratbeodory's product reveals 
itself as an instance of the rule that the misbegotten are often misshapen. 

7.9 Caratheodory's Legacy 

The axiomatization of Caratheodory has left a baneful legacy: Born's endorse
ment, which for a long time propagated through physical circles widespread, 
complacent belief that thermodynamics had been standing on a general and 
secure foundation since 1909. Until recently physicists used Caratheodory's 
name as a mall to smash subsequent fundamental inquiry by the mathematically 
critical. To this I can speak from an experience of my own a third of a century 
ago, when I submitted an essay of mine to a nabob who enjoyed positive measure 
on a Nobel base in theoretical physics. The Great Man replied on July 8, 1948, 

the value of such general investigations ... is certainly rather limited. How
ever, I find an axiomatic treatment often very clarifying, and I certainly have 
no objection against it. I do not think that one can go in this way beyond the 
well established theories. I am therefore very doubtful whether Murnaghan 
and your generalizations of the classical mechanics of continua, correspond 
in any way to the behaviour of real solid or fluids .... 

Second, your exposition of thermodynamics certainly goes against the 
grain . .. . I do not understand, why you dismiss the work of Caratheodory 
(which is a serious and helpful attempt to axiomatize thermodynamics) in one 
sentence. 

In fact I was not doing axiomatics at all; I was merely trying to make thermody
namic statements clear enough to use in problems about deformable bodies; but 
the Great Man's remarks did send me to the papers by Caratbeodory and his 
admirers among the physicists, and it was then that I realized there must be 
something more than superficially wrong with thermodynamics, for otherwise a 
competent mathematician like Caratbeodory would not have made such a mess 
of it. That notwithstanding, I held my peace for thirty years and more, waiting 
until I should come to find constructive grounds on which to derogate aloud the 
sanctity of his axioms. 

Those who ridicule not only modern axiomatizations but also attempts to 
create a thermodynamics new in its systematic clarity, its breadth, and its 
strength sometimes attribute to Caratbeodory's work, which they seem to know 
only by reputation, qualities absent from its pages in print, such as proof that 
only quasistatic processes obey the laws of thermodynamics, that only bodies 
nearly in equilibrium have a temperature. A particularly charming quality of the 
thermopsychic state of this folk is its simultaneous expertise in "heat transfer", a 
theory in which differences in that quasistatic thing called temperature propagate 
at infinite speed. To be able to consider the same phenomenon as being both in-
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finitely slow and infinitely fast is a mark of outstanding physical intuition in 
facing what are nowadays called "real situations" . 

In reaction, perhaps, against the uncritical, immoderate flood of early praise 
by Born and other physicists, recent years have seen a slow but monotonically in
creasing awareness of Caratheodory's inadequacies and errors, not only among 
mathematicians but also among physicists and engineers of a new generation. 
Hence has burst out a second disaster. Everybody who finds a gap or mistake, in
stead of throwing the whole mess away as being just one of those occasional bad 
roads to goods results, tries to fix it up. The outcome is further confusion and 
new errors. Professor Walter 42 has provided an extensive but surely far from 
complete survey and analysis of this interdisciplinary gusher. Some physicists in
voke mathematics they have not taken the trouble to learn, for example the 
theory of differential forms, the terms and notations of which they palaver off
hand, concealing their unstated assumptions and orginal mistakes in a fog of 
mystic manipulation. Some mathematicians, including the author of an other
wise respectable textbook on analysis who offers proof of Caratheodory's con
clusions as a trivial exercise for a good analyst, have failed to learn enough about 
heat and temperature to phrase correctly in their terms what Caratheodory as
sumed and what he claimed to prove. Parts of the literature of theoretical 
engineering have taken affirmative action, adopting without prejudice various 
mixtures of the sins of both foregoing kinds. 

Bad as is the literature Professor Walter has analysed, it is probably no worse 
than what is typical of any other field. The papers we are to hear in this meeting 
prove, had there been any doubt, that some mathematicians and some engineers 
are firmly footed in the physics and the mathematics of classical thermodynamics 
and can make sound and sober extensions of it. I will take it on faith that there 
are, somewhere, physicists of similar capacity. 

7.10 Colophon 

What then, did Caratheodory give us? Misconceptions, regress, lacunary mathe
matics, confusion in physics. Gibbs? A magnificent phenomenological thermo
statics, an elegant if rather special statistical thermostatics - all in all, more than 
any other one man did for the science of heat and hotness. 

42 W. Walter, "On the definition of the absolute temperature - a reconciliation of the classical 
method with that of Caratheodory", Proceedings of the Royal Society of Edinburgh 82A (1978): 
87 - 94; "On the foundations of thermodynamics" , pages 695 - 702 of Ordinary and Partial Dif
ferential Equations (Proceedings of the Seventh Conference Held in Dundee, Scotland, March 
29 - April 2, 1982), Springer Lecture Notes in Mathematics No. 964. In the former work Professor 
Walter offers a mixture of ideas to get Caratheodory's conclusions economically. He takes inter
nal energy as primitive, adopts an axiom of union to exploit the consequences of adjoining a 
posited thermometric body to an arbitrary body, and by assuming the existence of adiabats of a 
suitable kind avoids recourse to Caratheodory's axiom of inaccessibility. Walter's development, 
like Caratheodory's, makes the Second Law contingent on the First. 
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Chapter 8 
Structure and Dynamical Stability of Gibbsian States 

R. L. Fosdick 

This paper is dedicated to my parents, Mary Helen and Glen Kenneth Fosdick, 
who provided an early environment for the exercise of imagination and the ap
plication of choice. 

8.1 Introduction 

It can be said that Gibbs' theory ofthermostatics [8.1] is one ofthe great constructs 
of modem science. One can hardly open any textbook on thermodynamics without 
being exposed to some aspect of his contribution, if not at the foundational level 
then on matters applied and practical. Gibbs not only opened an area of great con
ceptual and scientific interest, but also he proposed applications in materials 
science that are yet today receiving the concentrated attention of researchers. 

In 1980, Dunn and Fosdick [8.2] published a long article entitled "The Mor
phologyand Stability of Material Phases" in which we developed many theorems 
regarding the existence, uniqueness, structure and stability of coexistent phases 
in materials which are, roughly, fluid-like in equilibrium but which may have 
very general constitutive response properties when in motion. We gave a field 
theoretic framework to Gibbs' concepts in thermostatics and showed how one 
could apply continuum thermodynamics to better understand the question of 
stability of certain static states which within the Gibbsian structure he defined as 
stable. The present paper is based upon that work, and it is intended to represent 
a fairly comprehensive summary of what I consider to be the main results of that 
investigation. Seven theorems will be presented; the first two are concerned with 
the existence and the structure of what Gibbs called equilibrium and stable equi
librium states in thermostatics. The next two theorems describe conditions under 
which several extremum problems of thermostatics may be considered equiva
lent. The final three theorems are dynamical in nature and are aimed at the ques
tion of stability of thermostatic states. 

In Sect. 8.2 we begin by showing how the basic laws of continuum thermo
dynamics can be used to motivate the idea that those equilibrium or rest states 
which are expected to be limits of a certain class of dynamical processes may be 
determined by well-known extremum principles of Gibbsian thermostatics. 
While it is not essential to restrict the forms of the constitutive response functions 
of the material outside of equilibrium, we do assume in this work that rest states 
are such that their fields of specific entropy, Specific volume, and specific 
internal energy take values which lie on an a priori given smooth surface called 
the static site manisfold o. This surface is, in general, not convex and may only 
have a parametric representation. 
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Based upon the motivation of Sect. 8.2, we identify, in Sect. 8.3, Gibbsian 
states as those fields of specific entropy, specific volume and specific internal 
energy that are piecewise continuous, take their values on j, and maximize the 
total entropy of a body for a given total volume and total internal energy. We 
then go on, in Sects. 8.3 and 4, to describe the existence and detailed structural 
properties of normal Gibbsian states, i.e., Gibbsian states of non-zero thermo
static temperature. In Theorem 1 of Sect. 8.3 we show, as a necessary condition, 
that a given normal Gibbsian state can only associate with a certain set of support 
points of j that lie in a common support plane. Moreover, it is shown how the 
orientation of this support plane determines the thermostatic temperature and 
thermostatic pressure of the state. If j has neither flat patches nor planar arcs we 
find that any given normal Gibbsian state is at most a step function. We also give 
a necessary condition on the prescribed values of the total volume and total 
internal energy in order that a normal Gibbsian state may exist. 

We close Sect. 8.3 by showing how Theorem 1 readily provides certain 
classical comparison principles which apply to sequences of normal Gibbsian 
states. The idea here is that if one considers a sequence of normal Gibbsian 
states, certain changes of state are permissible and others are not. General rules 
which govern the possible changes are called principles of comparison. We show, 
for example, how local and global forms of the classical Gibbs equation arise in 
this connection. In addition, we obtain the inequalities of Van't Hoff and 
Le Chatelier which restrict, respectively, relative changes of temperature and 
entropy in constant pressure sequences, and relative changes of pressure and 
volume in constant temperature sequences. Finally, by applying Theorem 1 to a 
sequence of normal Gibbsian states which support discontinuities (i.e., coexistent 
phases), we show how the famous Clausius-Clapeyron equation emerges. 

The main result of Sect. 8.4 is Theorem 2 which not only gives a sufficient 
condition on the prescribed total volume and total internal energy for the 
existence of normal Gibbsian states, but also completely identifies the possible 
structure of such states. In certain situations, this structure can be fairly com
plex, leading to states with a high degree, and even a continuum of multiple co
existent phases, and in general it is non-unique. If the static site manifold is 
such that any single support plane will touch it coincidently in only a finite 
number of points then the structure is never more general than a step function. 
We close Sect. 8.4 by introducing the notion of rearrangements and discussing 
why a normal Gibbsian state that is not only a step function but also unique up to 
a rearrangement can have no more than 3 coexistent phases. The requirement of 
uniqueness up to a rearrangement is essential for obtaining the number 3; 
otherwise, the Gibbs phase rule is not expected to hold within the classical theory 
of thermostatics for a single substance. 

The literature on thermostatics contains many loosely supported claims 
regarding the "equivalence" of various classical extremum problems. Often, 
some unstated assumption concerning the invertibility or convexity of certain 
thermostatic functions is found to be required in order to make any sense of the 
results. In Theorems 3 and 4 of Sect. 8.5 we provide necessary and sufficient con
ditions in order that normal Gibbsian states also solve the following four alterna
tive problems of minimization: (i) minimize the internal energy at fixed volume 
and entropy, (ii) minimize the Gibbs semi-free energy, (iii) minimize the Helm-
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holtz semi-free energy at fixed volume, and (iv) minimize the semi-enthalpy at 
fixed entropy. While it is fairly elementary to show, as is done in Theorem 3, that 
a given normal Gibbsian state of positive thermostatic temperature also solves 
these problems, it is much more involved to prove the converse, especially in the 
case of problems (iii) and (iv). After a brief discussion of the specific potentials 
which characterize problems (ii), (iii) and (iv) we carry out this converse 
argument within the context of Theorem 4. 

Finally, in Sect. 8.6 we return to dynamics and the motivation given in Sect. 8.2 
for the study of Gibbsian states, and we show how it can be applied more precisely 
to study the stability of these states. Here, as a matter of convenience we assume 
that the static site manifold {} can be described globally by a smooth internal ener
gy function of the specific volume and specific entropy. Also, we suppose 1 that for 
a broad class of thermodynamic processes the thermodynamic state of specific 
entropy, specific volume, and specific internal energy is bounded below by {}. 

In all three theorems of Sect. 8.6, we take as given a thermostatic pressure p* 
and a positive thermostatic temperature 0* which are associated with a normal 
Gibbsian state. We then suppose, in Theorem 5, that the body is allowed to 
undergo any neo-classical process 2 that is compatible with this temperature and 
pressure. This includes, for example, any isolated process 2 for which the total 
volume and total energy (internal plus kinetic) are fixed at the corresponding 
values of total volume and internal energy that are associated with the normal 
Gibbsian state. Then, if the static site manifold {} satisfies a certain structural 
condition, which requires, roughly, that it contain a sufficiently well-distributed 
set of thermostatic support points of positive thermostatic temperature, we 
claim, in Theorem 5, that a definite set of points on {} determined by 0* and p* is 
stable in the sense of estimate (8.6.7). 

For the most part, Theorem 6 focuses on normal Gibbsian states that are 
unique up to a rearrangement, and shows that they are L i-stable relative to 
isolated processes. Roughly, for "small" initial data we show that during any 
isolated process the fields of specific volume, and specific internal energy always 
remain close, in an integrated L 1 sense, to the corresponding piecewise constant 
values of the given normal Gibbsian state over mass measures of the body that 
are close, in the sense of absolute value, to the unique mass measures which asso
ciate with each of the distinct phases of the normal Gibbsian states. 

Finally, in Theorem 7 we note that relative to the class of isolated processes, 
certain very special unique normal Gibbsian states that are homogeneous 
throughout the body and that associate with sharp isolated points of {} are L 1_ 

stable. While the hypotheses of this theorem, being more strict, also apply in 
Theorem 5, the claim here is substantially improved in that the earlier less specif
ic conclusion associated with the stability of a set is now made more explicit. 

8.2 Preliminaries and Motivation 

In the subject of continuum thermomechanics, a body B is identified with the 
regular region of Euclidean three-space which it occupies in a fixed reference 

1 See footnote 16 on page 149 for a relevant comment. 
2 Neo-classical and isolated processes are defined in Sect. 8.2. 
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configuration. A positive mass measure m(.) is assigned in the usual way, and a 
process class IP(B), characterizing the material, is introduced. It is convenient to 
think of the elements of IP(B) as an ordered S-tuple 

n(o, .) == {17, X, e, 0, T, q, b, r}(o, .) elP(B) 

defined on B x IR, which for every sub-body PCB satisfies the balance oj linear 
momentum 

~ J i dm = J Tn da + J b dm , 
dt P 8Pt P 

(S.1) 

the balance oj energy 

~ J (e + ~liI2) dm = J (i· Tn-q· n)da + J(i· b+r)dm, (S.2) 
dt P 2 8Pt P 

and the Clausius-Duhem inequality 

d q·n r 
- hdm~ - J --da+J-dm. 
dt P 8Pt 0 P 0 

(8.3) 

The components of the process n(X, t) at the particle X and time t have the usual 
respective interpretations of specific entropy per unit mass, the motion, the 
specific internal energy per unit mass, the absolute temperature (>0), the (sym
metric) Cauchy stress tensor, the heat flUX vector, and specific radiant heating 
per unit mass. Further, we have used the notation that i == aX(X, t)/at is the 
velocity, St == X(S, t) for any S C B, and n = n(x, t) is the outer unit normal to 
apt. We shall let Vr(P) denote the volume of Ptand call the positive valued func
tion v(', .): B x IR-+ IR+ which is such that 

V(P) = S vdm , 
P 

the specific volume per unit mass. 

(8.4) 

There are two classes of processes which seem to have attracted special atten
tion in the early developments of thermodynamics. Roughly, these correspond to 
the idea of (i) isolation, i.e., any process for which dV(B)ldt = 0 and there is 
null global supply of mechanical working W(t), heat working Q(t), and entropy 
M(t) to B for all t ~ 0, and (ii) to the notion that the environment of B is held at a 
fixed temperature and pressure of 0* > 0 and p*, respectively, while the global 
supply of mechanical working, heat working, and entropy to B for all t ~ 0 
satisfy 

d 
W(t) = - p*-Vr(B) , 

dt 
and 

M(t) ~ Q(t) . 
7 0* 

The latter notion we call neo-c1assical, and we shall denote the set of all such pro
cesses with ambient temperature 0* > 0 and ambient pressure p* as 
IP(O*,p*) C IP(B). The conditions of a neo-classical process can be arranged, for 
example, by considering processes for which band r are null so that 
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W(t) = Ji·Tnda= -p* Ji·nda= -p*~Vr(B), 
8Bt 8Bt dt 

q·n 
M(t) = - J - da , 

8Bt () 

and 
Q(t) = - I q . n da , 

8Bt 

and by applying the inequality 

(lJ- ()*)q . n ~ 0 on aBt 

for all t ~ O. This inequality clearly holds if () = ()* and q . n = 0 on com
plementary subsets of aBt, and, more generally, has the interpretation that at 
boundary points of aBt that are {~~~:D than the environment, heat cannot flux 
{o~t~r} the body. 

For the class of neo-classical processes lP(lJ*,p*) C IP(B) we see from (8.2), 
(8.3) and the above discussion that 

~ I (e + p*v + ~ Ii 12) dm = 0 , 
dt B 2 

d Q 
- I11dm~-. 
dt B ()* 

and 

Thus, by introducing the state vector field at time t 

St(') = (11, v, e) (0, t): B-+ 1R3 

and the constant ambient vector 

it follows from (8.5) that 

g*= (-1, p* ,_1_), 
()* ()* 

~ I[st. g*+ ~ 1.i- 12/lJ*] dm ~O 
dt B 2 

(8.5a) 

(8.5b) 

(8.6) 

(8.7) 

(8.8) 

for all t ~ O. For any neo-classical process in lP(lJ*,p*) the functional in (8.8) is 
non-increasing and, in fact, it would seem reasonable to expect that for all such 
processes the body B would eventually come to rest. If so, then because of (8.8) it 
could be that the rest state vector field 

t-+co 

has a close relation to a vector fieldp(.): B-+ 1R3 which minimizes 

Ip ·g*dm 
B 

(8.9) 

in some sense. At least, it could be that if a body is allowed to undergo a neo-clas
sical process in lP(lJ*,p*) which initially at t = 0 starts "near" such a minimiz-
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ing field, then it will remain near or possibily even approach this field with time. 
In any case, it is evident that such a problem of minimization warrents study and 
the stability of its resulting solutions merits investigation. 

For the class of isolated processes, the right hand sides of (8.2) and (8.3), 
which for the whole body B represents the sum W(t) + Q(t) and M(t), respec
tively, vanish and we see that for all t ~ 0 

!(e+ ~ Ii I') dm ~ cons! •• 

d - J t7dm~O. 
dt B 

In addition, since the volume is supposed to be fixed for such processes we have 

J vdm = const. 
B 

for all t ~ O. In this case, if the body B is to approach a state of rest with 
increasing time while remaining isolated, the above remarks suggest that the rest 
state vector field (8.9) may be related to a vector fieldp(o) == (n, v, e)(o): B-+ 1R3 

which in some sense maximizes 

subject to the constraints 
Jndm 
B 

J v dm = V*, J edm = E*, 
B B 

(8.10a) 

(8.10b) 

where V* and E* are given numbers. This is the primary Gibbs problem of 
thermostatics which, in fact, he took to define stable equilibrium states and 
which we shall study in Sects. 8.3 and 4. It is possible that solutions of this 
maximum problem and the earlier mentioned minimum problem could be closely 
related. This will be investigated, along with other related extremum problems, in 
Sect. 8.5. 

To be definite, we shall assume throughout the remainder of this work that 
the range of any rest state vector field s ""( 0) is an a priori given 2-dimensional 
smooth open manifold, called the static site manifold 3 {) C 1R3. Any point p E {) 

will be denoted by the ordered triple p = (n, v, e), and all competing vector fields 
in the variational problems outlined above will have their range in {). While the 
manifold {) may be considered a generalization of the idea of an equilibrium 
equation of state, it need not be connected nor convex and may not be expressible 
globally as a function e = e(n, v). However, on patches of {) where such a func
tion may be written, it is common in thermostatics to call () == ae(n, v)lan the 
thermostatic temperature and p == - ae(n, v)/av the thermostatic pressure asso
ciated with the point p = (n, v, e) E {). If () =1= 0, then a normal vector to {) at 
p = (n, v, e) may be written as 

3 See Fig. 8.1 for an example of a possible static site manifold. 
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v 

Fig. 8.1. A continuous static site manifold". The points Po . PI ' P2 and all of the points of the flat 
patch [J share a common support (tangent) plane whose normal go satisfies go' a = -1. Such points 
are called thermostatic support points and the set " (Po) of all these points is denoted as the planar 
slice at Po. Points PI. P2 and those on the darker portion of the boundary of [J are sharp thermostatic 
support points. A Po represents the A -projection of Po into the v - e plane 

(8.11) 

In fact, with a slight generalization, whenever a vector of the form (8.11) is 
identified as a normal to 0 at p = (n, v, e) we shall call (J and p the associated 
thermostatic temperature and thermostatic pressure at p, respectively. 

It should be noted that very little has been assumed concerning the general 
constitutive structure of the material body. Most of the discussion of this section 
was designed at motivating possible variational problems concerning rest states 
and the notion of equilibrium. Naturally, the assumption that rest states are to be 
found on a static site manifold is constitutive and we shall use this in the next 
section in order to describe the possible states of equilibrium. However, this 
assumption does not say anything about the dynamic response and, therefore, in 
particular the state vector S t(X) for any particle X eB and time t need not even lie 
on o. We shall consider the question of stability in Sect. 8.6 wherein a restriction 
on constitutive response outside of equilibrium will be introduced. 
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8.3 Gibbsian States: Necessary Conditions and 
Comparison Principles 

Consider now the primary Gibbs problem of thermostatics outlined roughly in 
(8.10). We shall let Cp denote the set of piecewise continuous functions which 
map the particles X eB into points on the static site manifold 0, and, for con
venience, introduce the fundamental unit triad a == (1,0,0), b = (0, 1,0) and 
c = (0,0,1) of Fig. 8.1. 

Definition. Given two numbers V* and E *, let 

Cp(V*,E*) == ~(') = (n, v, e)(·)eCpIA !p dm = (0, V*'E*)} ' 

where the projection tensor 4 A == b ® b + c ® c. Then, p *(.) e Cp( V*, E*) is a 
Gibbsian state ifforallp(')eCp(V*,E*), 

a.Jp*dm~a.Jpdm. 
B B 

The primary Gibbs problem is the study of Gibbsian states. Actually, because of 
(8.11) the thermostatic temperature associated with the value of a Gibbsian state 
p * (X) e 0 at a point of continuity X eB will be zero if a normal vector to 0 at 
p * (X) has null projection in the direction of a. In classical thermostatic it is com
mon, therefore, to consider normal Gibbsian states in order to avoid the pos
sibility of a Gibbsian state associated with zero thermostatic temperature, and we 
shall do so here. What distinguishes a normal Gibbsian state from all other 
Gibbsian states is that the range of a normal Gibbsian state consists of points on 
{) whose normal vector has a non-zero a-component. 

We now have 

Theorem 1. Let p*(.) = (n*, v*, e*)(·) eCp(V*, E*) be a normal Gibbsian state. 
Then, there exists a unique constant vector g* = ( -l,p*I()*, 1/ (}*), ()* * 0, such 
that 

[p-p*(X)] ·g*~O (8.12) 

for all p eo and all X eB where p *(.) is continuous. 
This theorem, while only a necessary condition for a normal Gibbsian state 

goes a long way toward solving the primary Gibbs problem. In a sense, it repre
sents both the Euler-Lagrange and the Weierstrass conditions. According to 
(8.12) a normal Gibbsian state can only associate with support points of the static 
site manifold o. Moreover, if p * (Xo) is one such support point for some Xo e B, 
then g * must be the normal to 0 at this point with g * . a = -1, and if X eB is any 
other point of continuity of p *(. ), 0 must not only have the same normal vector 
at p * (X) but also must lie in the same support plane as does p *(Xo). The con-

4 The A -projection of a point p = (n, v, e) is the image of its perpendicular projection into the v - e 
plane, i.e., Ap = (0, v,e). See Fig. 8.1. 
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stant vector g* determines the thermostatic temperature ()* (non-zero, but pos
sibly negative) and thermostatic pressure p* of the normal Gibbsian state. It is 
clear that if the static site manifold {1 has neither flat spots nor continuous ridges 
of constant slope, then, assuming existence, a normal Gibbsian state must gener
ally lie in the class of step functions in Cp (V*, E *). In this case, the specific struc
ture of a Gibbsian state then identifies the so-called constituent coexistent phases. 

The inequality (8.12) has two standard interpretations in classical thermo
statics. First, if we let X and Y denote any two distinct point of B where p *( 0) is 
continuous, then by replacingp in (8.12) by p*(Y) and by interchanging the roles 
of X and Y we arrive at the conclusion that 

[P*(Y)-p*(X)] . g* = 0 . (8.13) 

Thus, if we let p *( 0) == (n *, v *, e*) (0) it follows that the chemical potential 

,u*(X) == e*(X) - (}*n*(X) + p*v*(X) 

for any normal Gibbsian state is constant at every point X eB where p *( 0) is con
tinuous. Moreover, if the thermostatic temperature of a Gibbsian state ()* is 
positive, (8.12) may be re-written as 

e*(X)-(}*n*(X)+p*v*(X)-(e-(}*n+p*v) ~O, 

where we have set p == (n, v, e) eo. In a terminology suggested by Keenan [8.3] 
this says that at all points X eB where p *( 0) is continuous the availability must be 
minimized. 

Of course, a normal Gibbsian state may not exist, and if one does exist it may 
not be unique. We shall investigate these matters later in Sect. 8.4 when we estab
lish sufficient conditions for existence and at the same time obtain the complete 
structural character of any such state. At the moment, however, in addition to 
the necessary condition of Theorem 1, we record the additional helpful 

Remark. As a consequence of an integral mean value theorem for vector-valued 
functions 5, if a normal Gibbsian state is to exist it is necessary that the point 
(0, V*, E *)/ m (B) belong to the A -projection 6 of the convex hull of a set of sup
port points on (j determined by a plane whose normal g * satisfies g * . a = -1. 

We turn now to an outline of a Proof of Theorem 1. Let Xo e B be a point 
wherep*(o) is continuous and setp3 ==p*(Xo) = (n~, v~, e~). Letp = (n, v, e)e 0, 

be any point on the static site manifold and observe that since 

1. A (p~ - ap) A * 
1m = Po, 

a .... 0 1- a 

and since p *( 0) is a normal Gibbsian state, then for each sufficiently small a > 0 
there exists a point p (a) e d such that 

S See Dunn and Fosdick [S.21. p. 90 for a statement and proof of this theorem. Also. Theorem 3 on 
page 20 of this reference is relevant. 

6 See footnote 4 on page 132. 
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A(P~ - ap) 
---- =Ap(a) . 

l-a 
(S.14) 

Moreover, the one-parameter family p(a), a> 0, is a smooth curve on j such 
thatp(O) = p~. 

Now, suppose we know that 

a· [ap+(l- a)p(a)] ~a 'P6 

for sufficiently small a> O. Then, by rewriting (S.14) and (S.15) as 

and 

A [p(a)-p] ~A [p(a)a-P!] , 

•. [p(a)-p] ;, •. [p(a~-po ] , 

and by taking the limit a -+ 0, we get 

Thus, 

A(P6-P)=A dp(a) I ' 
da a=O 

dp(a) I a·(po-p)~a· da a=O' 

(S.15) 

v~-v=b·p'(O), e~-e=c·p'(O), n6-n~a·p'(0), (S.16) 

where 
p'(O) == dp(a) I . 

da a=O 

Sincep'(O) must lie in the tangent plane to {) atP6, then if g*==(-1,p*I(}*, 
1/ (} *) denotes a normal to {) at P6, we have 7 

p* 1 g * . p , (0) = - a . p , (0) + - b . p , (0) + - C • P , (0) = 0 . (S .17) 
(}* (}* 

Whence, (S.16) and (S.17) yield (3.1) at every point XoEB of continuity ofp *(.). 
It is now a straightforward matter to show by contradiction thatg* in (S.12) is in
dependent of X. 

To complete this proof we, thus, need to justify (S.15). As a first step we 
consider an open ball Bo(Xo) of radius 0 centered at XoEB and such that 
Bo(Xo) C B, and note that 

1 
lim --- Jp*dm=po. 
15 ..... 0 m(Bc5) Ba 

(S.18) 

7 Recall that p *(.) is a normal Gibbsian state so that at p *(Xo) E<1 there exists a normal vector with 
non-zero a-component. 
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Thus, with the aid of (S.13) we see that 

{ 1 A IP*dm-Aap}/(1-a) 
m(Bo) Bo 

has the limitAp(a) as J -+ 0 and therefore lies in any prescribed neighborhood of 
Ap(a) for sufficiently small J. This, in turn, implies the existence of a point 
po(a)ed with the property po(a) -+p(a) as J-+O and such that 

{ 1 AIP*dm-Aap}/(l-a)=APo(a). (S.19) 
m(Bo) Bo 

Now, with a> 0 sufficiently small, let Po C Bo(Xo) be a regular sub-part of 
Bo(Xo) with m(Po) = am(Bo) and consider the function 

{
P*(X) , 

pO(X) == P , 
po(a) , 

XeB-Bo' 
XePo, 
XeBo-Po . 

(S.20) 

Clearly pO(o)eCp, and it is straight forward to see, using (S.lS) and (S.19), that 

lpodm = (0, V*,E*) , 
B 

so thatpO(o)eCp(V*,E*). Whence, 

a 'lpodm ~a 'IP*dm, 
B B 

and by directly integrating (S.20) we obtain 

1 
a·[ap+(l-a)po(a)]~a· IP*dm. 

m(Bo) Bo 

Finally, we reach (8.15) by considering the limit J -+ 0 and by recalling (S .1S). 
In the remainder of this section, we shall show how the necessary condition 

(8.12) and its consequence (8.13) lead to certain comparison principles for 
normal Gibbsian states. Consider a sequence of normal Gibbsian states P:'( 0) == 
(nt, v:', etH 0) in Cp (Vr*' En corresponding to the smooth data (Vr*' En for 
ref, where f is an open interval. Then, for each ref and at every XeB which 
is a point of continuity of p t+i 0), for sufficiently small a ~ 0 it follows from 
(S.12) that 

(8.21a) 

(S.21b) 

Thus, by dividing (S.21) by a and taking the limit a-+O, and by adding (S.21a) 
and (S.21b), dividing the result by a2 and taking the limit a-+O, we obtain the 
respective conditions 

dp:'(X) 
--_·g:'=O, 

dr 
(S.22) 
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dp!(X) . dg! ~ 0 . 
dr dr 

(8.23) 

According to Theorem 1, g! has the form 

* ( 1 p! 1) 
gr = - , O!' O! ' 

where p! and O! denote the (uniform) thermostatic pressure and (uniform) 
thermostatic temperature associated with p!(. ). In terms of components, (8.22) 
and (8.23) have the respective forms 

de!(X) _ _ * dv!(X) 0* dn!(X) 
dr - Pr dr + r dr ' (8.24) 

_1 {dP! dv!(X) _ dO! dn!(X)} ~ 0 . 
O! dr dr dr dr 

and 

(8.25) 

The first of these represents a form of the classical (local) Gibbs equation for 
sequences of normal Gibbsian states, and because of its structure may be inter
preted as a sort of sequential local balance of energy at points X eB where nor
mal Gibbsian states are continuous. This interpretation carries with it the idea of, 
and, in fact, suggests that one identify the last term on the right with the 
primative notion of sequential (local) thermostatic heat. 

The inequality (8.25) has the following partial interpretations which are 
essentially independent observations of Van't Hoff and Le Chatelier in 1884: For 
positive thermostatic temperature, O! > 0, we have (i) in a constant pressure 
sequence oj normal Gibbsian states which are continuous at X eB, if the ther
mostatic temperature {:;~=:} then the local thermostatic entropy n!(X) 
{c;:,~C:;t 1:g;:aa:;}, and (ii) in a constant temperature sequence oj norm,al Gibbsian 
states which are continuous at XeB, if the thermostatic pressure {:Fe~=:} then 
the local thermostatic specific volume v!(X) U~~~g: :re~=~}. 

If the inequalities (8.21) are integrated over the body B, then the same argu
ments as given above may be applied to the integrated forms. In place of (8.24) 
and (8.25) we get the following global comparison principles: 

dE! _ * dVr* 0* dH! ----Pr--+ r--' 
dr dr dr 

_1_ {dP! dVr* _ dO! dH!} ~O, 
O! dr dr dr dr 

where H! represents the global thermostatic entropy, 

H! == In!(X)dm. 
B 

We now turn to the question of comparison principles at points XoeB on 
surfaces across which the sequence of normal Gibbsian states p!(.) is not con-
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tinuous. Suppose, first, that X and Y represent two points of continuity of pi(') 
in B. Then (8.13) yields 

[pi(X)-pi(Y)] 'gi=O, 

and because of (8.22) we also have 

[pi(X)-pi(Y)]' dgi = O. 
dr 

Now, by letting X and Y limit to the point Xo from either side we see that 

and 
dg* 

[pi(Xo)D . _T_ = 0 , 
dr 

(8.26) 

(8.27) 

where [. D denotes the jump computed in either order. In terms of components, 
(8.26) and (8.27) imply the following results: 

and 
[ei(Xo)D = -pi[v:(Xo)D + Oi[ni(Xo)D , 

[v*(X)D dpi = [n*(X)D dOi . 
T 0 dr T 0 dr 

(8.28) 

(8.29) 

The first of these needs no further explanation, having mentioned the condition 
of constant chemical potential earlier. The second genuine comparison principle 
represents a parametric version of the classical Clausius-Clapeyron equation 
which holds on surfaces of discontinuity in a sequence of normal Gibbsian states, 
i.e., at points Xo on any singular surface in B which separates two coexistent 
phases and which would continue to do so in a sequence as the parameter is con
tinuously changed. In more physical terms, it relates the jumps in the specific 
volume and specific entropy across a surface of phase transition which separates 
two coexistent phases to those mutual changes that could take place in the 
pressure and temperature of the body and yet have the body continue to support 
two coexistent phases. 

8.4 Gibbsian States: Sufficient Conditions and Structure 

In the following, it will be convenient to have in mind two geometric notions 
associated with the (smooth) static site manifold o. We callpoEo a thermostatic 
support pointS if 

where go is that normal vector to 0 at Po which satisfies go' a = -1. As we saw in 
Theorem 1, a normal Gibbsian state can only take on values which correspond to 

8 See Fig. 8.1. 
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the thermostatic support points of {}. The set of all thermostatic support points 
which share the same normal vector go at PoE{} must lie in a common support 
plane for {}, and we call this set the planar slice9 at PoE d, i.e., for each thermo
static support point PoE d, 

denotes the planar slice at POEd. Those points in 9(Po) which also lie on the 
boundary of the convex hull of 9(Po) are called sharp 9 thermostatic support 
points. 

Now, the remark following the statement of Theorem 1 has the following in
terpretation: a necessary condition/or the existence 0/ a normal Gibbsian state is 

(0, V*,E*)/m(B)EA £'(9(Po» , (8.30) 

where £'(9(Po» is the convex hull 0/ the planar slice at some thermostatic 
support point POEd , and A £' denotes the A -projection 0/ this convex hull. In the 
present section, we shall see that (8.30) is also sufficient for the existence of a 
normal Gibbsian state in Cp(V*,E*). In addition, the specific structure of 
normal Gibbsian states will be determined and this structure will be related to the 
question of multiple coexistent phases and to the so-called Gibbs phase rule. 

We now have 

Theorem 2. Suppose (8.30) holds for some thermostatic support point PoEd, so 
that either 

i) (0, V*,E*)/m(B) =Ap' , 

where P' E 9(Po) , or 

ii) (0, V*, E*)/ m (B) is not the A -projection 0/ a thermostatic support point. 

In case (i) ifp' is sharp, then P (X) = P' v X EB is the unique normal Gibbsian 
state. 

In case (i) if P' is not sharp, and in case (ii), the complete class rf 0/ normal 
Gibbsian states is given by 

rf == {p(-) ECp(V*,E*) Ip(X)E9(po), a.a. XEB}. 

This theorem not only affirms that (8.30) is sufficient for the existence of a 
normal Gibbsian state, but also it catagorizes the structural properties of any 
such state. If (0, V*,E*)/m(B) is the A-projection of a sharp thermostatic 
support point, then the normal Gibbsian state is uniform throughout B, and B is 
said to support a single phase. If (0, V*,E*)/m(B) is either theA-projection of a 
non-sharp thermostatic support point (so a fortiori (8.30) holds), or (8.30) holds 
and (0, V*,E*)/m(B) is not theA-projection of any thermostatic support point, 
then in the proof of this theorem we shall show that, in particular, there exists a 
normal Gibbsian state having the structure of a step function. In this case B is 

9 See Fig. 8.1. 
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said to support a finite number of distinct phases, that number equalling the 
number of different values in the range of the step function. There is, in general, 
no claim of uniqueness in this situation and, therefore, one should expect not 
only a multiplicity of normal Gibbsian states that are step functions, but also the 
possibility for smoothly varying fields that are in the class re. The latter 
possibility, however, will require that the planar slice 9(Po) not be discrete and, 
in fact, contain sets of points of non-zero length or area measure. This, of 
course, can happen only if the static site manifold {j has either "flat spots" or 
"flat arcs" . 

We turn now to an outline of a 

Proof of Theorem 2. Suppose, first, that case (i) holds. Then, from the definition 
of 9(Po) we may write 

(P_p')·go~O V pe{j. 
Because of the identity 

p_p' =A (p-p')+a[a· (P_p')] , 

and go' a = -1, we then have 

go·A(p-p')-a·(p-p')~O v pea. (8.31) 

If we now replacep by any p(.) eCp(V*, E*), integrate over B, and use the hypo
thesis of case (i) and the properties of Cp(V*,E*), it readily follows that 

a· m(B)p' ~a· Jp dm 
B 

for all p (.) e Cp (V*, E*), which shows that the constant function with value p I is 
a normal 10 Gibbsian state. Now, tracing through the last three inequalities we see 
that equality holds in the latter if and only if every point of continuity of p (. ) 
Cp(V*,E*) is associated with a member of the planar slice 9(Po). Thus, any 
other Gib bsian state p ( • ) e Cp ( V*, E*) must satisfy not only this restriction on its 
range, so that it must be normal and contained in the class re, but also it must 
meet 

Jp dm = m(B)p' . 
B 

However, in case (i) if p' e9(Po) is sharp (and therefore on the boundary of the 
convex hull of 9(po», an integral mean value theorem for vector valued func
tions then readily yields 11 p (X) = P I for all X eB, and we reach the uniqueness 
claim of the first part of the theorem. 

On the other hand, in case (i) if p'e 9(Po) is not sharp, the uniqueness 
argument fails and, as we saw above, any member of the class rc will qualify as a 
normal Gibbsian state. In this case, it is a fortiori clear that the condition (8.30) 
holds, and whenever this condition does hold it is an elementary result of convex 
analysis that (0, V*,E*)lm(B) may be written as the A-projection of a convex 
combination of at least two points in 9(po); i.e., 

10 Normal, because p I e9(Po). 
11 See Dunn and Fosdick [8.2], p.26. 
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where N 

N 
(0, V*,E*)/m(B) =A r aiPi, 

i=1 

r ai= 1 , aiE(0,1), Pi ES(Po), and N~ 2. 
i=1 

(8.32) 

If we now sub-divide the body B into N sub-parts Pi such that m(Pi) = aim(B), 
and introduce the step functionps(o): B-+J such that Ps (.X) = Pi for XEPi , then 

N N 
Jps dm = r m(Pi)Pi = m(B) r aiPi, 
B i=1 i=1 

so that, in fact, Ps (0) E rt'. Hence, this step function serves as a normal Gibbsian 
state in case (i) if piE S(Po) is not sharp. 

In the remaining case (ii) of this theorem, the hypothesis (8.30) allows us to 
again write (8.32). Thus, 

(P-Pi) ·go~O V pEJ 

for i = 1,2, ... ,N ~ 2, where equality holds if and only if P E S(Po). Then, 
analogous to (8.31) we have 

gO·A(p-Pi)-a,(p-Pi)~O V pEJ, 

and if we multiply this by ai, sum over the index i, replace P by any 
p(o) ECp(V*,E*), integrate over B, and use (8.32) and the properties of 
Cp(V*, E*), we readily obtain 

N 
a· m(B) r aiPi~a· Jp dm 

i=1 B 

for allp(o)ECp(V*,E*), where equality holds if and only if every point of con
tinuity of P (0) is associated with some member of S(Po). This shows that in case 
(ii) the class rt' is, again, the complete class of normal Gibbsian states. The step 
function introduced earlier applies to this situation and represents just one 
example of such a state. 

This theorem shows that if (0, V*, E*)/ m(B) is in the A -projection of the 
convex hull of a collection of thermostatic support points for J all of which share 
a common support plane, then normal Gibbsian states exist in Cp(V*,E*); 
indeed, there are at least as many such states as there are distinct collections of 
such thermostatic support points. Thus, in general any kind of uniqueness of a 
normal Gibbsian state is the exception rather than the rule, There is, however, 
a kind of uniqueness that is closely related to the classic Gibbs phase rule of 
thermostatics for a body which is composed of a single substance. To describe 
this situation we shall first say that two step functions Ps(o),p; (0): B-+J are 
rearrangements of one another if (i) the two sets of points of continuity of each 
of these functions in B cover the same range, and (ii) the subsets of B which cor
respond to equal values of these step functions have equal masses. Then, since 
any rearrangement of a normal Gibbsian step function is a normal Gibbsian step 
function, we shall say that a normal Gibbsian step function Ps (0) E Cp (V*, E*) is 
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unique to within (or, up to) a rearrangement whenever the only other normal 
Gibbsian state in Cp(V*,E*) is a rearrangement of Ps(o}. It is now straight
forward to verify 12 the following 

Remark. Suppose (8.30) holds for some thermostatic support point PoE {}. Then, 
there exists a normal Gibbsian state in Cp(V*,E*). Moreover, such a state is 
unique up to a rearrangement and is a step function with no more than 3 values, 
if and only if the planar slice 5(Po) contains 3 non-colinear, or less than 3 points. 

In more physical than precise terms, we may now conclude that for a given 
body if a system of coexistent phases which maximize the total entropy at fixed 
total volume and energy is unique up to a rearrangement then the system can 
contain at most 3 distinct phases. Without some qualification as for example the 
"uniqueness up to a rearrangement", the Gibbs phase rule remains simply a rule 
and not a theorem within Gibbsian thermostatics. While Gibbs [8.1], pp. 96-97 
was clear on this point, such is unfortunately not the case in other more modern 
elementary books on thermodynamics. 13 

8.5 Equivalent Problems of Thermostatics 

In addition to the primary Gibbs problem of thermostatics outlined in (8.10), 
there are several other auxillary problems of a similar kind all of which usually 
are advertised as being equivalent. The conditions under which this equivalence is 
to hold often are not considered and one wonders about this whole question: Just 
what can be shown to be equivalent and how should "equivalent" be interpreted? 

The first theorem of this section is elementary and while it does not claim any 
equivalence it does show that normal Gibbsian states of positive temperature also 
solve certain other extremum problems of thermostatics. The question of equiv
alence will be considered subsequently. First, we have 

Theorem 3. Let p *(.) = (n *, v *, e*)(·) E Cp (V*, E*) be a normal Gibbsian state 
with thermostatic pressure p*, positive thermostatic temperature ()* > 0, and 
entropy H* == J n*dm. Then, p*(.) also solves thelollowing problems: 

B 

i) minimize internal energy at lixed volume and entropy, i.e., 

minimize Jed m 
B 

among all p(.) = (n, v, e)(·) E Cp with 

J n dm = H* , J v dm = V* , 
B B 

12 See Dunn and Fosdick [8.2], pp. 35 - 37. 
13 Dunn and Fosdick [8.2], pp. 81- 88, have discussed this point at some length and have indicated 

where some of the usual "proofs" of the phase rule go awry. See, also, the more recent work of 
Man [8.4]. 
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ii) minimize Gibbs semi-free energy, i.e., 

minimize J<e- O*n+ p*v)dm 
B 

among all p(.) = (n, v, e)(·) eCp , 

iii) minimize Helmholtz semi-free energy at fixed volume, i.e., 

minimize J<e- O*n)dm 
B 

among allp(·) = (n, v,e)(.)eCp with 

Jvdm = V*, 
B 

iv) minimize semi-enthalpy at fixed entropy, i.e., 

minimize J<e+ p*v)dm 
B 

among all p (e) = (n, v, e)(·) e Cp with 

Jndm =H*. 
B 

Proof. First, if we replace pin (8.12) by any p(.) == (n, v, e)(·) e Cp , multiply the 
inequality by 0*, and integrate over B, it follows that 

J<e*- O*n*+ p*v*)dm ~ J<e- O*n +p*v)dm 
B B 

for all p(.) = (n, v, e)(·) e Cpo Clearly, then, the normal Gibbsian state 
p *(.) = (n*, v *, e*) (.) referred to in this theorem also solves problems (i), (ii), (iii) 
and (iv). 

In this theorem, the potentials of problems (ii), (iii), and (iv) are not the Gibbs 
free energy, Helmholtz free energy and enthalpy, respectively. For example, in 
problem (iii) if we were to restrict the class of competitors further so that the 
range of all such p (.) contained only those points on the static site manifold {} 
which have the thermostatic temperature 0*, and if, in addition, it were then 
possible to write the integrand of the potential as a single-valued function of 
specific volume on this iso-therm, we would have the problem of minimum 
Helmholtz free energy at fixed temperature and volume. 

Before leaving this theorem it is perhaps worth noting that while there may be 
many solutions to each of the problems (i) - (iv) , if p t (.) = (n t, v t, e ~ (.) e Cp 

represents anyone of them, then 

(8.33) 

for all p eo and all XeB at which p t(.) is continuous. Here, g* = (-1,p*10*, 
110*), where p* and 0* > 0 denote the thermostatic pressure and temperature of 
a normal Gibbsian state in Cp(V*,E*). Thus, whenever such a normal Gibbsian 
state exists, the range of all possible solutions to problems (i) - (iv), as well as all 
other normal Gibbsian states in Cp(V*, E*), is the same. This result is based 
upon the assumption that a normal Gibbsian state exists. Roughly, a proof of 
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(S.33) is readily constructed by assuming that its converse holds at a point of con
tinuity of p t (0), replacing p in this converse inequality by the field p *( 0) of the 
assumed normal Gibbsian state in Cp(V*,E*), and integrating over B. After 
multiplying by the constant 0* > 0, the inequality 

J<et - O*nt + p*vt)dm > J<e*- 8*n*+p*v*)dm 
B B 

emerges, which contradicts the hypothesis that p t (0) solves anyone of the 
problems (i) - (iv). 

We wish to now consider the more difficult question of when solutions to 
problems (i) - (iv) , considered as primative problems, quality as Gibbsian states. 
The results of this investigation when coupled with Theorem 3 then provide a 
framework for the interpretation of "equivalence" in these five problems of 
thermostatics. By analogy to our earlier definition of Gibbsian states, all of these 
problems may be cast in the following common and convenient form: Given a 
projection tensor U, a vector u e 1R3 in the null space of U, and a vector P * e 1R3 
orthogonal to u, 

maximizeu· Jp dm 
B 

among all p(o) eCp(P*), where 

Cp(P*) = {P(o) = (n, v,e)(o)eCpIUfp dm =P*}. 
B 

(S.34a) 

In the primary Gibbs problem outlined in (S.10) and studied in Sects. S.3 and 4, 
we have 14 U = A, u = a, and p* = (0, V*,E*). The four problems introduced in 
Theorem 3 may be recovered by setting, respectively, 

i) U=a®a+b®b, u = -c, p* = (H*, V*,O) , 

ii) U=O, u = (8*, - p*, -1) , p* = (0,0,0) , 
(S.34b) 

iii) U=b®b, u = (8*,0, -1) , p* = (0, V*,O) , 
iv) U=a®a, u = (0, -p*, -1), p* = (H*,O,O) . 

Now, since the problem (8.34) is formally identical with the primary Gibbs 
problem which we associated with the definition of Gibbsian states, its solution 
may be considered analogously. The main delicate issue is that earlier we intro
duced and studied normal Gibbsian states, and to be strictly analogous we must 
now identify the counterpart of "normal" here. In this respect it is helpful to 
recall that the range of a normal Gibbsian state is that set of points on d whose 
normal vector has a non-zero component in the a-direction. While, physically 
speaking, this consists of all those points on d of non-zero thermostatic tempera
ture, more pertinate to the mathematical questions which arose in the construc
tion of, say, "normal solutions" to the constrained maximization problem (i.e., 
normal Gibbsian states) was the condition that at points on d which associated 
with a solution, the normal vector to d must have a non-zero component in the 
null space of the projection tensor A (i.e., non-zero a-component) which essen-

14 Recall the formal definition of a Gibbsian state in Sect. 8.3. 
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tially identified the constraints of the problem. In the/our problems 0/(8.34), to 
which we now turn, we shall seek normal solutions, i.e., solutions whose range 
on the static site manifold 0 consists 0/ those points whose associated normal 
vector has a non-zero component in the null space 0/ the projection tensor U. 

It is now possible to obtain the following analog of Theorem 1: 

Theorem 4. Let p t (0) = (n t, v t, e t)( 0) E Cp (P*) be a normal solution to problem 
(8.34) under anyone 0/ the conditions (i) - (iv). Then, in each case there exists a 
unique constant vector g t = ( - (J*, p *, 1) such that 

(8.35) 

for all p Eo and all X EB where p t (0) is continuous. A fortiori, if (J* > ° then p t (0) 
is a normal Gibbsian state in Cp (A JBP t d m). 

Clearly, in each case, the condition (8.35) is sufficient for the existence of a 
solution to the corresponding version of problem (8.34). This theorem settles 
completely the relation between normal Gibbsian states and normal solutions of 
the four problems in (8.34). Because the static site manifold is smooth, we see 
from this theorem and Theorem 1 that if p (0) E Cp is anyone of these five types of 
states, then there exists a constant vector g = ( -1, p* /(J*, 11 (J*), (J* '*' 0, in the 
case of normal Gibbsian states, and g = (- (J*,p*, 1) otherwise, such that 

[p - p (X)] . g ~ ° 
for allp Eo and all X EB where p (0) is continuous; and, therefore,p(o) is also one 
of the remaining four types of states if the thermostatic temperature (J* 
associated with p (0) is positive. 

We emphasize that the equivalence established in Theorems 3 and 4 require 
neither the existence nor the positiveness of a thermostatic temperature at every 
point of the static site manifold o. Further, in the last three problems of (8.34) 
where the:: numbers (J* and/or p* are prescribed, it is not required that the 
elements of the respective classes of comparison states (i.e., the members of 
Cp(P*» have these numbers as their respective temperature and pressure. In fact, 
it is typical that both the thermostatic temperature and pressure associated with 
any p(o) ECp(P*) are general fields over the body B. Thus, for example, 
Theorem 4 as applied to problem (iii) claims, roughly, that among all states 
(n, v, e)( 0) (of any temperature field and pressure field on B) with a fixed total 
volume, anyone which minimizes the Helmholtz semi-free energy JB (e - (J* n) d m 
has, essentially, not only a uniform thermostatic pressure but also a constant 
thermostatic temperature equal to (J*. 

We turn now to a 

Proof of Theorem 4. First, we note that Theorem 4 for problem (i) is strictly 
analogous to Theorem 1 to within a trivial reb labeling and new identification of 
the orthonormal triad (a,b,c). Normal Gibbsian states and normal solutions to 
problem (8.34) under condition (i) are identical notions under this relabeling 
process, and thus the proof of Theorem 1 applies here as well. 

Problem (ii) of this theorem may be handeled with similar ease. Here, since 
the appropriate maximization problem (8.34) has no constraints, a drastically 
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simplified version of the proof of Theorem 1 holds. Summarizing, in particular, 
we may start as before with Xo E B denoting a point where p t (0) is continuous and 
observe, next, that (8.18) holds with superscript * replaced by t. Then, we may 
turn directly to the construction of a test function p,s( 0) E Cp similar to (8.20) but 
now of the form 

XeB-B,s, 
XeP,s, 
XeB,s-P,s, 

wherept andp2 are arbitrary points on -:1, and where B,sandP,shave the meanings 
as before. Then, by integration, use of the hypothesis that P t (0) is a maximizer in 
the form 

u· Jptdm ~u· JpJdm, 
B B 

and by a limiting argument as 0 -+ 0, we reach 

u . P6 ~ u . [apt + (1- a)P2] , 

wherep6 ==P6(Xo). Thus, upon letting a-+ 1 and settingg t == -u = (- 8*,p*, 1), 
from (ii) of (8.34b) we arrive at (8.35) for problem (8.34) under condition (ii). 

We now turn to the proof of this theorem for problem (8.34) under the condi
tion (iii). Since condition (iv) may be considered similarly, its formal proof will 
not be included here. As in Theorem 1, we let Xo e B be a point where P t (0) is con
tinuous, set P6 == P t (Xo) , and let P = (n, v, e) be an arbitrary point on the static 
site manifold -:1. Then, as in (8.14), and since pt(o) is a normal solution to 
problem (8.34) under condition (iii), we see that for all sufficiently small a> 0 
there exists a smooth curve of points p (a) e -:1 such that 

U(P6-ap) 
----= Up(a) , 

1-a 
(8.36) 

and p (0) = p~. That is, since, under condition (iii), a normal vector to -:1 at P6 
does not have only a b-component, and -:1 is smooth, then this proper7 of a 
normal not aligning with the b-direction persists in a neighborhood of Po on -:1. 

This means that for any given number (v6- av)/(1- a) == v(a) close to vt (a > 0 
and sufficiently small), there exists numbers n(a) and e(a) so that 
p(a) == (n, v, e)(a) is not only on -:1 and close to P6, but also is differentiable. We 
note, for later use, that 

t Vo-y 
a=-

v-y 

is the inverse of v(a) = y, and that by introducing p(y) ==p(a(y» = 
[n(y),y, e(y)] we have 

p'(O) = (v6-v)P(v6) 

= [n'(v6), 1,e'(v6)](v6- v) . 
(8.37) 

Since a> 0, it follows that v < (» v6 implies y > ( <) v6. 
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Now suppose, analogous to (8.15), that we have established the inequality 

U· [ap+(1-a)p(a)] ~u 'P6 (8.38) 

for sufficiently small a> 0, where u = (B*, 0, -1) as is noted in (8.34) under 
condition (iii). Then, as in the proof of Theorem 1 in obtaining (8.16), we see 
from (8.38) that 

B*(n6-n)-(e6-e) ~(B*a-c) ·p'(O) , 

and, with the aid of (8.37), that 

B*(n6- n) - (e6 - e) ~ [B* Ii' (v6) - e' (v6)](v6- v) . 

Thus, there exists a number p*(Xo), say, depending on B*,P6 = p t(Xo) , and the 
structure of -;) at p6. such that 

[p -p t(Xo)] . (- B*,p*(Xo), 1) ~ ° (8.39) 

for all p e -;). Clearly, from this inequality and the smoothness of -;), we may 
conclude that the vector (- B*,p*(Xo), 1) is proportional to a normal vector to-;) 
atP6, and therefore thatp*(Xo) is unique, given B*, XoeB, andp t(o). 

There are now two matters left to be established. First, we remark that the in
equality (8.38) can be obtained by an argument similar to that given for (8.15) in 
Theorem 1. In that argument, which begins with (8.18), we need only replace the 
superscript * by t, A by U = b ®b, and a by u = (B*,O, -1). We shall not con
sider this issue any further here. 

Finally, we must show that the number p*(Xo) in (8.39) is independent of the 
point Xo e B at which p t (0) is continuous, and that, in fact, this number also is 
not dependent upon the particular normal solution pt(o)eCp(P*) that one 
assumes for problem (8.34) under condition (iii). To this end, suppose first that 
p t (0) is not constant valued. Then, an integral mean value theorem for vector 
valued functions 15 asserts that there are N> 1 numbers ai e (0,1) and points 
Xi e B at which p t (0) is continuous such that 

and 

N 
L ai= 1, 

i=l 

N t 1 t L aiP (Xi) =--lp dm. 
i=l m(B) B 

Now, for an arbitrary collection of N vectors {t i} it is clear that 

U[p t(Xi) + rt;] -+ Up t(Xi) 

(8.40) 

as r-+O, and, sincept(o) is a normal solution to problem (8.34) under condition 

15 See, e.g., Dunn and Fosdick [8.2], p. 90. 
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(iii), we see that for sufficiently small I r I there exist N smooth curves of points 

p;( r) Eo such that 

(8.41) 

and p;(O) = p t(X;). Thus, by differentiating (8.41) and recalling that U = b ®b 
we get 

(8.42) 

In addition, if we multiply (8.41) by a;, sum over the index, and restrict the col
lection {t;} so that 

we reach 

N 
L a;b . t;= 0, 

;= 1 

UL a;p;(r) = U L a;pt(X;). 

. (8.43) 

It is now helpful to note that with the aid of (8.40), and the fact that p t (.) E 

Cp(P*), we may write this as 

UJPrdm = UJptdm =p* 
B B 

where, for each r with I r I sufficiently small, the function Pr(·): B -.. 0 is a step 
function taking values p;( r) on N regular sub-parts of B each having mass 
measure a;m(B). Thus, Pr(·) ECp(P*) and consequently we have 

N 
U· Jptdm ~u· JPrdm =U' m(B) L a;p;(r). 

B B ;=1 

Now, since this inequality becomes an equality and the right hand side is maxi
mized at r = 0 because of (8.40) and the fact that p;(O) = P t (X;), it follows that 

N 
U • L a;p;' (0) = 0 . 

;=1 
(8.44) 

On the other hand, each vector p/ (0) is tangent to {) at p t (Xi) and by repeatedly 
identifying Xo with X;, i = 1,2, ... ,N in (8.39) we see that the vector 
(- 8*,p*(X;), 1) = -u + p*(X;)b is normal to {) atp t(X;) so that 

[-u+p*(X;)b] ·p'(O) = O. 

Thus, using (8.42) we see that 

u 'p'(O) = p*(X;)b· t;, 

and by multiplying by a; and summing over the index we find that (8.44) yields 

N 
L p*(X;)a;b· ti= O. 

;= 1 

Since this must hold for all collections {t i} which satisfy (8.43), it readily follows 
that p*(Xi) == p* is the same number for each X;, i = 1,2, ... , N, and, based upon 
(8.39), we may write 
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[p - P t (Xj)] • ( - 0*, p*, 1) ~ 0 (8.45) 

for allpEo and for each of the N> 1 points XjEB. Thus, the Npointsp t(Xj)Eo 
are support points of 0 which share a common support plane. In addition, 
equality holds in (8.45) if and only if p Eo lies in this common support plane. 

If we now multiply (8.45) by aj, sum on the index, and use (8.40), it follows 
that 

[m(B)p(X)- Jp tdm] . (- 9*,p*, 1) ~ 0, 
B 

(8.46) 

where X is an arbitrary point in Band p (0) E Cp • Equality holds here only if p (X) 
lies in the common support plane determined in (8.45). Integrating (8.46) and 
notingthat(-9*,p*,1) = -u+p*b, we reach 

for all p (0) E Cp (P*), where equality holds only if when X E B is a point of con
tinuity of p(o), p(X) lies in the common support plane determined in (8.45). A 
fortiori, the range of p t (0) at all its points of continuity must lie in this common 
support plane, and, thus, by returning to (8.39) we see that p*(Xo) must be in
dependent of Xo E B as long as Xo is a point of continuity of p t (0). In addition, 
since any other normal solution of problem (8.34) under condition (iii) must, at 
its points of continuity in B, have values which also lie in the common support 
plane introduced above, we conclude that the constant p* is common to all 
normal solutions in Cp(P*). 

Finally, if the normal solution p t (0) is constant valued, much of the argument 
given above may be by-passed and we need only start with (8.39) and directly 
apply the reasoning from (8.46) onward. 

806 Dynamical Stability 

We return, in this final section, to the motivation, based on dynamics, given in 
Sect. 8.2 for the study of Gibbsian states, and show more specifically how it is 
related to the question of stability of these static states. Our aim is to present and 
discuss some theorems in this regard relative to neo-classical and isolated pro
cesses. For the most part, we shall not give proofs here, but, rather, refer to the 
original work of Dunn and Fosdick [8.2] for some of the detailed arguments. For 
convenience, we shall assume here that the points p = (n, v, e) of the static site 
manifold 0 lie on a connected surface which is expressible globally as a smooth 
function 

e = e(n, v) . (8.47) 

In general, the state vector field at time t, St(o) = (l1,v,e)(o,t):B-+IR3, of a 
process need not associate with points on this surface. However, throughout 
Sect. 8.6 we shall employ the following 
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Assumption 16. e(.,.) is a sub-potential for all neo-classical processes in the sense 
that the sub-set 

(8,48) 

is the only part of 1R3 that is accessible to the states of any such process. 
Consider, now, the set IP(O*,p*) of all neo-classical processes with ambient 

temperature 0* > 0 and ambient pressure p*, and suppose thatg* == (-1,p*IO*, 
11 0*) determines a planar slice of thermostatic support points $* C {) in the sense 
introduced in Sect. 8.4. Since, if P E$*, it follows from (8.48) that for any SEq), 

where 
(s-p)· g* ~ (r(s)-p)· g* ~ 0, 

res) 18=(11. v.e) == (11, v, e(l1, v» E {) , 

then, for any neo-classical process in IP(O*, P*), (8.8) requires 

d 'I'*(t)/ dt ~ 0 , 
where 

(8.49) 

(8.50) 

'I'*(t) == J[(St-p) . g* + 4- Ii 12/0*] dm ~ 0 . (8.51) 
B 

This, with (8.49), in turn, implies the following mild conclusions regarding 
stability: 

i) 0 ~ It Ii 12dm ~ 0* 'I'*(t) , 
B 

ii) 0 ~ J<St-p) . g*dm ~ 'I'*(t) , 
B 

iii) 0 ~ 'I'*(t) ~ '1'*(0) . 

(8.52) 

Roughly, whenever B undergoes a neo-classical process in IP (0*, P *) with small 
initial data (i.e., '1'*(0) small), the kinetic energy of B will remain small for all 
time, and the state vector field at time t, s t (. ), of the process will remain "close" 
to the plane of states that contains the planar slice $*. This latter remark is based 
upon the observation that the integrand in (8.52, ii) is non-negative and is pro
portional to the perpendicular distance between stand the plane containing $*. 

It is possible to obtain a more explicit result on stability provided the static 
site manifold {) has a "properly distributed" set of thermostatic support points, 
each having a positive thermostatic temperature, which "surround" the planar 
slice $*. In order to more clearly state the precise result, it is convenient to have 
available the set theoretic notions of a star appropriately surrounding $* and a 
radiant shell of the star. 

We say that S C {) is a star appropriately surrounding $* C {) if S is compact 
and if there exists some subset Rs C S, called a radient shell surrounding $*, such 

16 This assumption naturally is valid (with equality) for any classical, linearly viscous, compressible 
fluid. In addition, as remarked by Coleman and Greenberg [8.5) and Coleman [8.6), it also is valid 
within the theory of simple fluids with fading memory and for certain fluids with internal state 
variables. Dunn and Fosdick [8.7], and Fosdick and Rajagopal [8.8) have applied a version of this 
assumption to study the thermodynamics and questions of asymptotic stability of certain Rivlin
Ericksen fluids. 
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that (i) no points of 9* are limit points of Rs, and (ii) for each p eo - S, among all 
of the projected straight lines onto the n - v plane between every p *e9* and p, at 
least one of minimum length has a nonempty intersection with the projection of 
Rs onto the n - v plane. 

It can be shown that 9* C S. Also, as an example of a star S appropriately 
surrounding 9* and a radiant shell Rs of the star, one may associate S with a 
patch of 0 that contains all of the planar slice S* in its interior, and take for Rs a 
closed continuous curve on 0 but in S such that the projection of 9* onto the n - v 
plane is enclosed by the n - v projection of the curve Rs. Other, more general, 
examples for which Rs is a disconnected set of arcs on 0 can be constructed. 

We now have the following 

Theorem 5. Let g* = (-1,p*10*, 1/0*), 0* > 0, determine a planar slice of 
thermostatic support points 9* Co. Suppose s t(·): B -+ q) is the state vector field 
at time t of a neo-classical process in IP(O*,p*). Let 0 admit of a star appro
priately surrounding 9* such that every point in one of its radiant shells about 9* 
is a thermostatic support point of 0 with a positive thermostatic temperature. 
Then, for every tJ > 0 there exists C(tJ) > 0, monotone increasing and unbounded 
as tJ -+ 0, such that 

o ~ J inf ISt-p Idm ~ m(B)tJ+C(tJ) 1jI*(t) (8.53) 
B peS" 

for all t ~ O. 
For a proof of this theorem we refer to Theorem 15 and its Corollary in the 

work of Dunn and Fosdick [8.2]. The theorem, itself, asserts a type of stability of 
the set 9* with regard to processes in IP (0*, P *) in the sense that the distance 
between 9* and s t(.X) is bounded above in mean by a non-increasing function of 
time. A result of this type was established in the works of Coleman and Green
berg [8.5] and Coleman [8.6] but only in the elementary case when the planar 
slice 9* consisted of a single point - the case where the Gibbsian state corre
sponding to a temperature and pressure of 0* and p*, respectively, would be 
homogeneous throughout B. In the more general situation considered here, the 
estimate (8.53) establishes the stability of the set 9* and not the stability of any 
one of the multitude of Gibbsian states, all of which have 9* as their effective 
range. Further, this conclusion is the best that can be expected in light of the fact 
that the theorem admits the entire collection of neo-classical processes in 
IP (0*, p*), and, therefore, is not prejudiced by requiring additional specific initial 
and boundary data. 

In the remainder of this paper we shall consider isolated processes. Such pro
cesses, although more controlled, nevertheless are neo-classical processes in 
IP(O*,p*) for any 0* =1= 0 and any p*, and, thus, (8.53) remains valid. Being more 
controlled in the sense that during any isolated process the volume of B is fixed 
and the global supply of mechanical working, heat working and entropy is null 
for all time, one should expect to obtain additional conclusions regarding stabil
ity under isolation which reflect these additional constraints. In fact, the follow
ing theorem represents two such conclusions which are refinements of (8.53). 
First, it will be helpful to recall from Sect. 8.2 and the notion of an A-pro-
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jection 17 that if S t(·) = (11, v, e) (., t): B ~ !?I is the state vector field at time t of an 
isolated process, then 

where 
A JStdm+(O,O,K(t» = (0, V*,E*) , 

B 

K(t) = J 4- Ix 1
2dm 

B 

(8.54) 

(8.55) 

is the kinetic energy of Bt, and where (0, V*, E*) is the prescribed initial value of 
the left hand side of (8.54) at t = 0. As a second prerequisit, suppose that the 
planar slice 9* of Theorem 5 is a finite collection of n < 00 points, 
9* = {PbP2,' .. ,Pn}. In this case, the domain !?I of (8.48) can be decomposed 
into a disjoint union of n domains !?I = U 1=1 !?Ii, each of which, say !?Ii' 
has the property that it contains those S = (11, v, e) E!?I that are closer to 
Pi = (ni, Vi, ei) E 9* in specific volume v and specific energy e than to any other 
member Pj E 9* with j < i, and at least as close to Pi E 9*, in this sense, than to all 
members Pj E 9. Thus, 

!?Ii = {SE!?I IIA (S-Pi) I ~ IA (s-p) I for all 

j = 1,2, ... ,n; strict inequality for j < i} , 

and we note that if n = 1, then !?I 1 = !?I. 
It is now possible to establish the following 

Theorem 6. Let all the hypotheses of Theorem 5 hold and, further, suppose that 
the planar slice 9* is a finite collection of n points, and that S t(·): B ~ !?I is the 
state vector field at time t of an isolated process for which (8.54) holds. Then, 

i) if (0, V*,E*)/m(B) does not belong to the A-projection of the convex 
hull of 9*, it is impossible for both 

J inf ISt-p Idm and K(t), 
B PES-

and, therefore, also P*(t), to go to zero as t ~ 00; 

ii) if (0, V*, E*)/ m(B) belongs to the A -projection of the convex hull of 9* 
and if either n < 3, or n = 3 and the points of 9* are not colinear 18, then for every 
0> ° there exists C(O) > 0, monotone increasing and unbounded as 0 ~ 0, such 
that for each i = 1, ... , n, 

I ur - Ui(t) I ~ 0 + C(o) P*(t) , (8.56) 

where ur, ... , u~ are the n unique numbers in [0,1] which enter the convex com
bination in the representation 

17 See footnote 4 on page 132. 
18 See the formal Remark and the discussion following this remark at the end of Sect. 8.4, wherein 

the number 3 is related to the question of uniqueness of Gibbsian states. 
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n 
(0, V*,E*)/m(B) =A L a[Pi' 

i= 1 

n 
L a[ = 1 , (8.57) 

i= 1 

and where ai(t) is the mass fraction at time t of those particles X EB that have 
their state St(X) in £i)i, i.e., 

n 
L ai(t) = 1 . 

i=1 
(8.58) 

Part (i) of this theorem is not unexpected since the hypothesis violates a necessary 
condition for the existence of a normal Gibbsian state as given in the formal 
Remark of Sect. 8.3. 

Under the condition of part (ii) of this theorem, we know 19 that a normal 
Gibbsian state P *(. ) E Cp (V*, E*) is unique up to a rearrangement and that it 
takes on at most the n ~ 3 distinct values corresponding to the members of the 
planar slice 9*. Moreover, the mass fractions of those particles X EB that take on 
distinct values P * (X) in 9* are given by the numbers at. Thus, in the case n = 1, 
(8.56) is vacuous since both aT and al (t) equal one. However, more generally, 
since 

J IA (St-Pi) Idm ~ J inf IA (St-p) Idm, 
s..-I(E¥i) B pES· 

and since IA (s t-p) I ~ Is t-P I, we interpret (8.52, iii), (8.53), (8.65) and (8.58) to 
imply, roughly, that under isolation if 1[1*(0) is sufficiently small, the specific 
volume and energy fields associated with S t(· ) will stay close in aLI sense to those 
of Pi E 9* over a set of particles S t 1 (£i) i) C B whose mass measure is always close 
in an absolute sense to at m(B). 

We now outline a 

Proof of Theorem 6. First, we develope a key inequality that will be used to 
establish both parts of this theorem. For any state at time t, St(·): B-+ £i), asso
ciated with a neo-classical process and for PiE9*, we have 

n n 
L J (st-Pi)dm = JSt dm- L ai(t)Pim(B) , 

i=1 s..-I(E¥i) B i=1 

where we have used (8.58). Thus, with some rearrangement, it follows with the 
aid of (8.54) that 

n 
(0, V*,E*)/m(B)-A L ai(t)Pi 

i= 1 

=_l_{f J A (St-Pi)dm+(O,o,K(t»} , 
m(B) i=1 s..-I(E¥i) 

and, because of the identity and inequality 

19 See footnote 18 on page 151. 
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IA (St(X)-Pi) I = inf IA (St(X)-p) I 
peS" 

~ inf ISt-p I 
peS" 

for all XeB with St(X)e ~i' we have 

1(0, V*,E*)lm(B)-A t ai(t)Pil 

~_1_ {J inf ISt-p Idm+K(t)} . 
m(B) B peS" 

If both (8.52i) and (8.53) are applied to this result we get 

1(0, V*,E*)lm(B)-A J1 ai(t)Pil 

~ t5 + _1 _ [C(t5) + 8*] 'P*(t) . 
m(B) 

(8.59) 

(8.60) 

Now, to arrive at part (i) of the theorem, we note that since the summation in 
(8.59) or (8.60) is a convex combination of the elements of S* for any t, its value 
must always lie in the convex hull of S*. By performing an A-projection and 
using the hypothesis, we conclude that the left hand side of the inequalities (8.59) 
and (8.60) cannot vanish. Thus, the right hand sides of (8.59) and (8.60) cannot 
vanish and this confirms the claim of this part. 

To begin the proof of part (ii), we shall take for granted the uniqueness of the 
numbers at, as claimed, since this is an elementary result in convex analysis. The 
remainder of the proof then rests on an identity which we now develop. Since 

g* =Ag*-a, 

and A is symmetric, it follows that for Pi e S* and for any n numbers Ai we have 

n n n 
a· LAiPi=g*·A LAiPi-g"" LAiPi' 

i=1 i=1 i=1 

But, g*. (Pi-P) = 0 for any points Pi andpj in S*, and, thus, if the numbers Ai 
are such that L?= 1 Ai = 0 we have 

Now, since 

it follows that for L?= 1 Ai = 0, 
n n 
L Aipi=(1+a@g*)A LAiPi' (8.61) 

i=1 i=1 

Clearly, if n = 1 we have A1 = 0, and (8.61) is vacuous. In the two cases when 
n :;;;; 3 and the planar slice S* contains either 3 non-colinear or just 2 points, it is 
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straightforward to show that there exists a set of unique vectors {di}, i = 1, ... , n, 
in the plane determined by 9* such that 

n 

di · ~ AjPj = Ai , 
j=l 

whenever ~r=lAi= O. In these cases, (8.61) yields 

n 
Ai = di · (1 + a (8)g*)A ~ AjPj. 

j=l 
(8.62) 

Now, if we set Ai = a'{ - ai(t) for i = 1, ... , n, in (8.62), use (8.57), and invoke 
the hypothesis concerning n and the planar slice 9* , we find that 

Finally, by using (8.60) and appropriately redefining the numbers 0 and C(O) we 
arrive at (8.56). 

There is an interesting result on the stability of Gibbsian states relative to 
isolated processes which can be obtained when the data (0, V*, E*)/ m (B) 
corresponds to the A -projection of certain special points in the planar slice 9*, 
even though the planar slice itself may be quite complex. This is the content of 
our next and final 

Theorem 7. Let all the hypotheses of Theorem 5 hold and, further, suppose that 
Po E 9* is both a sharp thermostatic support point20 and an isolated discrete point 
of the set 9*. Let S t('): B --+ ~ denote the state vector field at time t of an isolated 
process for which (8.54) holds, and suppose that St(') is boundedforall t ~ 0 and 
(0, V*,E*)/m(B) =Apo.21 Then, for every 0>0 there exists C(O) >0, 
monotone increasing and unbounded as 0 --+ 0, such that 

J 1S t-Po I dm::;;; m(B)o+ C(O) P*(t) 
for all t ~ O. B 

A proof of this theorem is contained in Dunn and Fosdick [8.2], Theorem 17 
and its Corollary. 
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Chapter 9 
Genericity and Gibbs's Conjecture on the Maximum 
Number of Coexistent Phases 

C.-S. Man 

9.1 Gibbs's Conjecture and the First Phase Rule 

Consider a body B, homogeneous in "substance" and placed in a medium of 
constant (absolute) temperature eo and pressure pO. For such a system, a tradi
tional thermodynamicist would agree without hesitation that the body B, when in 
equilibrium, can exhibit at most three coexistent phases. His conviction would be 
founded on what we now call the Gibbs phase rule, a "proof" of which appears 
in every textbook on thermodynamics. 

Gibbs himself, however, was much more cautious than most of his followers. 
In fact he wrote, "it is entirely improbable that there are four coexistent phases 
of any simple substance", and in a more general context, "it does not seem prob
able that r can ever exceed n + 2" (Gibbs [9.1], p. 97); here n denotes the number 
of "independent variable components", and r the number of "coexistent phases" 
in equilibrium. For definiteness, we shall henceforth call Gibbs's foregoing 
assertion Gibbs's conjecture on the maximum number of coexistent phases. We 
call it a conjecture because Gibbs nowhere explained what he meant by the words 
"entirely improbable" and "does not seem probable". The reader will recognize 
the statement" r ~ n + 2", which is usually regarded as part of the Gibbs phase 
rule; here we shall call it the first phase rule. 

If the paper of Noll [9.2] did not produce the immediate impact it deserved, 
the more recent discussions by Wightman [9.3], Feinberg [9.4], and Dunn and 
Fosdick ([9.5], § 7) should have made clear to thermodynamicists that Gibbs's 
phase rule may not always hold and that the usual conviction about the phase 
rule is really founded on erroneous "proofs". (See § 7 of Dunn and Fosdick [9.5] 
for a critique of the usual "proofs" of the first phase rule.) That there are coun
terexamples to the first phase rule, however, does not invalidate Gibbs's original 
conjecture, for it asserts only that violation of the rule is "entirely improbable". 
Indeed my objective here is to give, for the special instance of substances, a 
precise interpretation of the words "entirely improbable" so that Gibbs's conjec
ture is replaced with exact theorems. For want of space no proofs will be given, 
and at places the discussion will be sketchy and incomplete. The reader is referred 
to Man [9.6] where he will find more results, proofs of all the theorems asserted 
below, and a full discussion of various aspects of the issue. 
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9.2 Counterexamples 

Henceforth we shall consider the Gibbs conjecture and the first phase rule only in 
their restrictions to bodies homogeneous in substance and placed in environ
ments of constant temperature and pressure. 

To motivate what we shall do below, let us consider how the first phase rule 
could be violated. We shall use the field formulation of Gibbsian thermostatics, 
which Gibbs himself applied in some important analyses in his major memoir 
[9.1], was abandoned in the traditional main-stream of thermodynamics, and 
was revived by Coleman and Noll [9.7] in the fifties. In this formulation the 
properties of a substance I are determined by a two-dimensional manifold S in 
the 1'/- v- e space; here 1'/ denotes the entropy density (per unit mass), v the 
specific volume, and e the internal energy density (per unit mass). We call such 
two-dimensional manifolds Gibbs surfaces. 

Now consider a body B of substance I placed in a medium of constant tem
perature (J0 and pressure pO. By assumption B is endowed with a positive Borel 
measure m; m(P) gives the mass of the Borel set P in B. We assume that 
m(B) < 00. Following Coleman [9.8], we call each Borel-measurable map (1'/(.), 
v(·), e(·»: B --+ S a static state of the body B. 

For the body B under consideration, the maximum number 'max of phases 
that can coexist in equilibrium is determined by Gibbs's equilibrium criterion: the 
"availability" A == IB(e- 00 1'/+ pO v)dm, as a function over static states, assumes 
its minimum value at an equilibrium state (Gibbs [9.9], p. 43). It follows that we 
can determine 'max by a simple geometric construction. Let a == e - (J0 1'/ + pO v 
be the integrand of A. Let fl[d] be the plane defined by the equation 
e - 00 1'/ + pO v = d or a = d. We shall regard the fl[d], s as the level-planes of the 
integrand a. Let do denote the minimum value of d such that fl[do] is a support
ing plane of the Gibbs surface S in the 1'/ - v - e space, by which we mean fl[do] is 
tangent to S and divides the 1'/ - v - e space into two parts so that the Gibbs 
surface S lies in the part defined by the inequality e- eo 1'/+pov ~ do. For any 
static state (1'/(.), v(·), e(.»: B--+S, and for any bodypoint Xin B, fl[do] is the 
lowest level-plane that a(X) can reach. 

To minimize the "availability" A, an equilibrium state 01(·), v(·),e(·» must 
satisfy the condition that Oi(·), v(·), e(· »(B) C fl[do] n S, to within a set of 
(mass) measure zero in B which we always ignore. Conversely, any static state 
which satisfies the foregoing geometric condition is an equilibrium state of B. 
Hence 'max is the number of distinct points at which the plane fl[do] and the 
Gibbs surface S touch. It follows that 'max' depending on the Gibbs surface S, 
could be any number ranging from 1 to 00; no postulate of Gibbsian thermo
statics is violated. Thus counterexamples which contradict the assertion 
"'max ~ 3"abound. 
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9.3 Naive Reformulation of the Gibbs Conjecture for Substances 

From the above discussion it is clear that Gibbs surfaces could be subdivided into 
two classes: (I) those which have a supporting plane that touches the Gibbs 
surface in question at more than three points; (II) those which do not have this 
property. Should the Gibbs surface of a substance fall into class (I), it would be 
theoretically possible for us to take a body of that substance and choose an en
vironment of the right temperature and pressure such that the body when placed 
in the chosen environment could exhibit more than three coexistent phases in 
equilibrium, thus producing a counterexample to the first phase rule. No coun
terexample will ensue from a surface of class (II). Accordingly, henceforth Gibbs 
surfaces of class (I) are simply called the violators, whereas those of class (II) are 
said to be rule-abiding. 

For a Gibbs surface S of class (I), there is at least one supporting plane which 
touches the surface at more than three points. Let us do a thought-experiment 
with the surface S: Suppose we deform the surface slightly so that another Gibbs 
surface S' results from the deformation; will the surface S' fall into class (I) or 
class (II)? Since three points in the" - v - e space determine a plane, there seems 
to be something unusual about the surface S that it should possess a tangent 
plane which contains more than three points of S. By deforming the Gibbs sur
face S it seems likely that we shall revert the unusual to the commonplace. Thus 
we will bet that the surface S' will fall into class (II). On the other hand, if we 
take a surface of class (II) and deform it slightly, by intuition we would guess that 
the resulting surface will remain in class (II). Our judgement is in fact based on 
the following supposition: If we pick a Gibbs surface at random, it is "entirely 
improbable" that the surface should belong to class (I); or in the set of Gibbs sur
faces those of class (I) constitute a subset that is very small in some appropriate 
sense. Remembering that Gibbs surfaces of class (II) obey the first phase rule 
while those of class (I) are the violators, we dare say that Gibbs himself might 
have had something similar in mind when he asserted that a violation of the first 
phase rule was "entirely improbable". 

Gibbs's original assertions and the discussion in the preceding paragraph are 
of course heuristic. They are, however, hopelessly imprecise. We did not say 
what we really meant by a small deformation, nor did we explicate the meaning 
of Gibbs's "entirely improbable". To proceed beyond Gibbs, first of all we have 
to recast the Gibbs conjecture and make it a precise statement susceptible of 
proof or disproof. 

Given a set E, to indicate precisely how small a subset F of E is we could 
proceed in two ways: (i) Make E a measure space; then show that F is a subset of 
small measure or a set of measure zero. (ii) Endow E with a topology; show that 
the complement of F as a subset of E is open and dense, or residual, etc. 
Motivated by the above discussion on deforming Gibbs surfaces, we will here 
follow the second approach and tentatively reformulate the Gibbs conjecture as 
follows: When the set of Gibbs surfaces G is endowed with a suitable topology, 
those surfaces which obey the first phase rule constitute an open and dense 
subset. Henceforth we shall refer to the preceding assertion as the naive refor
mulation of the Gibbs conjecture. In the naive reformulation, denseness mani-



160 C.-S. Man 

fests our expectation that by slightly deforming a violator we shall change it into 
a rule-abiding citizen, and openness reflects our surmise that one which obeys the 
rule remains faithful to it after a sufficiently small deformation. The topology on 
G will give a precise meaning to the words "sufficiently small deformation" . 

9.4 The Set of Gibbs Surfaces G 

Of course, the naive reformulation remains empty until we specify the "suitable 
topology" we choose. But we cannot define a topology on G unless the set of 
Gibbs surfaces itself is well-defined, for which we must agree on how smooth a 
Gibbs surface should be and what adscititious inequalities it should satisfy. 

We introduce the following notations: Let M and N be Coo manifolds (in this 
paper every manifold is assumed to be Hausdorff, paracompact and with a 
countable base, and a manifold may have "corners" if not specified otherwise). 
For ° ~ r ~ 00, let C'(M, N), Emb'(M, N) and Imm'(M, N) denote the set of C' 
mappings, C' embeddings and C'immersions from M to N, respectively. Let R be 
the set of real numbers, and let R n == R x ... xR (n times). 

Roughly speaking, in this paper we require every Gibbs surface to be of class 
C 2 and to satisfy at each surface point the adscititious inequalities that the 
specific heat at constant specific volume and the isothermal compressibility both 
be positive. More precisely, we introduce the following 

Definition. A Gibbs surface is represented by a 4-tuple (Ma, 11, v, e), where Ma is 
the constitutive domain, 11, v and e are the entropy density (per unit mass), the 
specific volume and the internal energy density (per unit mass), respectively. By 
assumption the 4-tuple (Ma , 11, v, e) satisfies the following postulates: 

i) Ma is a Hausdorff, paracompact, second-countable, 2-dimensional COO 
manifold-without-boundary, which need not be connected. 

ii) The constitutive functions 11, v, and e are in C 2(Ma, R); (11, v, e): Ma~ R3 is a 
C 2 embedding, and (11, v): Ma~ R 2 is a C2 immersion. 

iii) The functions 11, v and e satisfy the following adscititious constitutive in
equalities: v> O,e,,, >O,e,,,,, > ° and e,,,,,e,vv-(e,,,v)2 > 0. 

In the above definition e,,, is defined to be the function in C 1 (Ma, R) such that at 
xinMa, 

here (XbX2) denotes a local coordinate system at x, and the numerator and 
denominator are both Jacobian determinants. Since (11, v) is an immersion, the 
denominator is nonzero at x. Moreover, the value e,,,(x) is independent of the 
choice of local coordinate system at x. Thus e,,, is a well-defined function in 
c1(Ma,R). Similarly we define the functions e,v==(8e/8v)",e,,,,,==(82e/8112)v, 
e,,,v == 82e/8v811' and e, vv == (82e/8v2)" pointwise through local coordinate 
systems. The function e, v is in C 1(Ma' R), and the functions e, "", e, "v' e, vv are in 
CD(Ma>R). 
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Let 0 == e,,,, P == - e, v' Then for each x in Ma and each local coordinate 
system (XloX2) at x, 

0(0, v) (x) = e,,,,,(x) 0(11, v) (x) * 0 . 
0(XloX2) 0(Xlo X2) 

The function (8p/8V)II is defined pointwise through local coordinates as follows: 
For each x in Ma and each local coordinate system (XloX2) at x, 

( op) (x) = _ o(p,O) (x) / 8(0, v) (x); 
ov II a (XloX2) '/ a (xj,X2) 

(op/ov)lIis in CO(Ma,R). 

Remark. Since e,,,= 0, e,,,,,= O/xv and e,,,,, e,vv-(e,,,v)2= -(O/xv)(OP/OV)II' 
where f) is the absolute temperature, p the pressure and Xv the specific heat at 
constant specific volume, postulate (iii) is equivalent to the constitutive assump
tion that V> 0, f} > 0, xv> 0 and (op/8v)1I < O. The reader will recognize that the 
last two inequalities are simply the usual "stability conditions". Gibbs himself, 
however, preferred not to impose these conditions and he let his "primitive 
surface" include "states of essential instability" [9.9], p. 47. The C 2 assumption 
on smoothness would certainly invite criticism. The reader is referred to Man 
[9.6] for more discussion on these questions. Because our Gibbs surface of a 
substance could be taken as that which results when "states of essential instab
ility" are excised from Gibbs's "primitive surface" of a unit mass of that sub
stance, in postulate (i) we allow the constitutive domain to be disconnected. As a 
result, what we call a Gibbs surface here need not be connected. This usage of the 
term "surface" deviates from common practice in the mathematical literature in 
which "surfaces" are defined to be connected. Since every Cr(r~ 1) differentiable 
structure on a manifold-without-boundary contains a compatible Coo structure 
(see Hirsch [9.10], Theorem 2.2.9), there is no loss in generality to assume that 
Ma be a COO manifold rather than a C2 manifold. The reason that we require Ma 
to be a manifold-without-boundary rather than a manifold-with-corners will be 
given in Sect. 9.6. 

Let Ga be the subset of mappings in C 2(Ma,R3) which represent Gibbs 
surfaces and thence satisfy the conditions laid down in the definition above. Let 
Gp, G y' etc., be similarly defined when Ma in the definition above is replaced by 
the 2-dimensional Coo manifolds Mp, My, etc., respectively. Every function in 
Ga, Gp, etc., represents some Gibbs surface, but two different functions 
(11, v, e) EGa and (11*, V*, e*) E Gp may describe the same surface. Indeed, two 
functions (11, v, e) E Gaand (11*, v*, e*) E Gpdescribe the same Gibbs surface if and 
only if the embeddings (11, v, e) and (11*, v*, e*) map Ma and Mp, respectively, 
onto the same surface in R3. This motivates the following 

Postulate of Equivalence. (11, v, e) E G and (11*, v*, e*) E Gp describe the same 
Gibbs surface if and only if there is a crs. diffeomorphism Cpa: Mp--+ Ma such that 
11* = 11 0 Cpa' v* = VO Cpa' and e* = eO Cpa' 
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The set of Gibbs surfaces G is precisely the quotient set that remains when we 
identify the functions in U aGa that describe the same surface. The set G is 
obviously non-empty. 

9.5 Strong and Weak Topologies on G 

After the set of Gibbs surfaces G has been well-defined, we can begin our study 
of the Gibbs conjecture and its naive reformulation. As mentioned above, our 
surmise is that the violators constitute a "very small" subset of G, and we will 
attempt at a topological characterization of its smallness. To this end it is plain 
that any topology on G which can serve the above purpose is "suitable" and the 
more "suitable" topologies we put on G, the more different descriptions of 
smallness we could obtain, all the better. 

The naive reformulation, on the other hand, is one specific guess that ensues 
from our geometrical thought-experiment in deforming Gibbs surfaces. Here a 
"suitable topology" on G should capture the intuitive notion of "small deforma
tions"; a "sufficiently small deformation" of a Gibbs surface S will then be deter
mined by an appropriate neighbourhood of S. To proceed further we should first 
analyse the notion of "small deformations" more closely and sharpen it as far as 
possible. We shall achieve this aim by adding physics into the otherwise purely 
geometrical notion. 

Without violence to our intuition, let us assume that every deformation of a 
Gibbs surface S establishes a one-to-one correspondence between the points of S 
and those of the resulting surface S', and that this correspondence is mathe
matically a diffeomorphism. Let Ebe a deformation which maps S onto S' and 
satisfies the following condition at each point x in S for all the constitutive quan
tities: the value a constitutive quantity assumes at x is so close to the value the 
same constitutive quantity assumes at the corresponding point E(x) in S' that 
their difference defies any empirical resolution; here the constitutive quantities 
include '1, v, e, and those (e.g., the absolute temperature 9, the pressure p, the 
specific heat at constant specific volume, the isothermal compressibility, etc.) 
which could be defined through the first and second partial derivatives of the 
function e = e('1, v), should the surface in question be the graph of such a func
tion. A deformation such as Emust be regarded physically as "small". It follows 
that a "suitable topology" for the naive reformulation should be sufficiently fine 
to provide each S in G a neighbourhood of surfaces in which every surface could 
be obtained from S through a deformation "small" in the sense above. 

Motivated by the above discussion, we define a topology on G as follows: We 
endow each C 2(Ma,R3) with the Whitney C2 topology (or the strong C 2 

topology), 1 and denote the topological space that results by C~(Ma' R 3). The set 

1 For convenience of the reader we describe here a base for the Whitney C' topology on C'(M, Rn), 

where M is a 2-dimensional Coo manifold. Let rp 55 {( U;, 1P;)};eA be a locally finite family of charts 
on M such that each U; contains a compact set K;, the union of which covers M, i.e., u;K; = M. 
Let e 55 {e;};eA be a family of positive numbers. Let pr;: Rn -+ R denote the projection to the 
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Gais open in C&(Mw R 3) (Man [9.6], Lemma 3.3), and we give Gathe subspace 
topology. Let Diff&Ma be the set of C2 diffeomorphisms on M a, equipped with 
the Whitney C 2 topology. Diff&Ma is a topological group under the operation of 
composition, and the map Diff&Ma x Ga~ Ga defined by (C, (11, v, e» ~ 
(11, v, e) 0 ( is a continuous right action of Diff&Ma on Ga. Let GalDiff&Ma be 
the orbit space, equipped with the quotient topology. The postulate of equiv
alence says that two functions in Gadescribe the same Gibbs surface if and only if 
they lie on the same orbit in GaIDiff&Ma. Let 7ra: Ga~ GaIDiff.~Ma be the 
natural surjection; 7ra is open and continuous. 

Let Mp be a constitutive domain diffeomorphic to Ma. Let Diff2(Mp,Ma) be 
the set of C 2 diffeomorphisms from Mp onto Ma. Let CPaEDiff2(Mp,Ma). The 
map hPa: Ga~ Gp defined by hpa«11, v, e» = (11, v, e) 0 Cpa is a homeomorphism. 
Moreover two functions (11, v, e) and (ii, ii, e) belong to the same orbit in 
GalDiff&Mfif and only if hpa«11, v, e» and hPa«ii, ii, e» belong to the same orbit 
in GplDiffsMp. Then by passing to the quotient, the map hPa: GaiDiff&Ma 
~ GplDiff&Mp defined by the commutative diagram 

G hPa 

n, r · r n~ 
GalDiff§Ma __ ---'hp'-*a __ +. GplDiff&Mp 

is a homeomorphism. By the postulate of equivalence, SaE GalDiff&Ma and 
hpa(Sa) EGplDiff&Mp correspond to the same Gibbs surface S. Thus in accord 
with that postulate we should "paste" or "sew" GalDiff&Ma and GplDiff&Mp 
together by means of the homeomorphism hpa. This leads to the following 

Definition. The space of Gibbs surfaces G is that which results when we "paste" 
or "sew" the spaces GaIDiff&Ma, GpIDiff&Mp, etc., together by means of the 
homeomorphisms hpa. 

The topology on G given above is clearly derived from the strong C 2 topolopy 
on the function spaces C 2(Ma' R 3). Hence we simply say, for short, that the 
space of Gibbs surfaces is the set G endowed with the strong topology. If to 

jth coordinate. Let S = (SI,S2) be an ordered pair of non-negative integers, and let Is 1= SI + s2' 

If jeC'(M, R n ), a basic neighbourhood N'(f;K, f/>, e) is defined to be the set of C' maps 
h:M--+Rn such that for each i in A, for all X = (Xj,X2) in rfJ;(K;), for j= 1,2, ... ,n, and 
Is I = 0,1, ... , r, -

hereDS = (a/aXj)Sj (a/aX2)S2 and for k = 1,2, (8/8xdk is the identity operator when Sk = O. For 
O:S;;; r < 00, the Whitney C' topology on C'(M, Rn) has all possible sets of the above form for a 
base. The Whitney Coo topology on Coo(M, Rn) is simply the union of the topologies induced by 
the inclusion maps Coo(M, Rn) --+ CS<M, Rn) for r finite; here Cs(M, Rn) is the topological space 
that results when C'(M,Rn) is equipped with the Whitney C' topology. For properties of the 
Whitney topology, see Hirsch [9.10], Mather [9.11], and Michor [9.12]. 
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start with the function spaces C2(Ma' R 3) are given some topology other than the 
strong topology, by following the same procedure as above we would end up 
giving G a different topology. We say that the set G is given the weak topology if 
we start by endowing each C 2(Ma' R 3) with the weak or the compact-open C 2 

topology (see Hirsch [9.10] or Michor [9.12]), give each Ga the subspace topology 
(the resulting space being denoted by G,!/), and let the set of Gibbs surfaces 
inherit its weak topology from the spaces G'!/. We denote the topological space 
thus obtained by GW• Consult Man [9.6] for details. 

In what follows we shall regard the strong topology as the basic topology on 
G and study whether the naive reformulation of Gibbs's conjecture is a valid 
statement when G is equipped with the strong topology. As the reader might have 
noticed, by abuse of language we use the same symbol G to denote the space of 
Gibbs surfaces (with the strong topology) and its underlying set. 

9.6 The Criterion (*) 

For a body B immersed in a medium of fixed temperature and pressure, it is well
known that the temperature (), the pressure p, and the Gibbs free energy density 
g == e - ()" + p v will be homogeneous throughout B when the system is in equilib
rium (Man [9.6], Theorem 4.2). The validity of the preceding proposition is 
based on the assumption that Gibbs surfaces be manifolds-without-boundary, 
which explains why we make this assumption at the outset. 

Let S be a Gibbs surface which characterizes for some range of temperature 
and pressure the thermostatic properties of substance ~. Suppose the constitutive 
functions (), p, and g associated with S satisfy the following inequality: 

here # (. ) denotes the cardinal number of the set in question, and the minus signs 
before p and g are introduced for later convenience. It follows from the proposi
tion above that under no circumstances within the given range of temperature 
and pressure could any body of substance ~ violate the first phase rule. In other 
words, a Gibbs surface which obeys the inequality (*) must be rule-abiding. 

The subset of Gibbs surfaces singled out by the criterion (*) is clearly a proper 
subset of the rule-abiding surfaces. Nevertheless it turns out that this subset is 
already quite "large". Indeed in what follows we would characterize the "small
ness" of the subset of violators by making precise how "large" the subset of 
surfaces which obey the inequality (*) is. 

9.7 The Rule-Abiding Gibbs Surfaces. Denseness 

In this section we shall outline an argument to the effect that rule-abiding 
surfaces are dense in G. The reader is referred to Man [9.6] for details. 
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For the present purpose it suffices to show that for each Ga those (1'/, v, e) 
which represent rule-abiding Gibbs surfaces are dense in Ga. Let G: == 
Gan C"'(Ma,R3). Because Ga is open in C&(Ma,R3) (Man [9.6], Lemma 3.3), G: is open in C;(Ma,R3) when it is given the subspace topology. 

We define a mapping La: G: --+ C;(Ma,R3) by 

L a«1'/, v,e» = (e'I/' e,v, -e+ 1'/e'l/+ ve,v) 

= (0, - p, - g) . 

We call La the Legendre transformation on G';. We can show that Lais a homeo
morphism of G'; onto its image La(G:), which is open in C;(Ma,R3) (Man 
[9.6], Theorem 5.1 and Corollary 5.2). By appealing to the multijet transversality 
theorem (see Mather [9.13], § 3, or Golubitsky and Guillemin [9.14], Theorem 
2.4.13), we can show that those (0, -p, -g) in La(G:) which satisfy the 
inequality (*) are dense in La(G';). Let W: be the preimage of such (0, - p, - g) 
in G;. It follows immediately that W; is dense in G; (Man [9.6], Lemma 6.1 
and 6.2). Since G; is dense in Ga, W; is dense in Ga. Thence we conclude that 
the rule-abiding surfaces are dense in G (Man [9.6], Theorem 6.3). 

The basic trick in the above argument is to focus on Gibbs surfaces of class 
Coo so that the Legendre transformation defined above has nice properties, and 
to exploit the fact that Gibbs surfaces of class Coo are dense in G (Man [9.6], 
Theorem 3.6). Here a Gibbs surface is said to be of class Coo if it is a Coo sub
manifold in the 1'/ - v - e space. 

9.8 Difficulty and Refinement of the Naive Reformulation 

Besides denseness, it is part of our naive reformulation of Gibbs's conjecture that 
rule-abiding surfaces constitute an open subset in G. The following example will 
convince the reader that this part of the naive reformulation is incorrect. 

Example. Let II == (at. bl), /z == (a2, b2), h == (a3, b3) be three disjoint open inter
vals on the real line such that b l < a2 and b2 < a3' Letfbe a C2, locally strictly
convex function defined on the union of the three intervals. The function f has 
the following properties: (I) No supporting tangent line touches the graph of f at 
more than two points, but there is a supporting tangent line t which touches the 
graph offat Xl ell and X2e/z and is tangent to the graph offat a3; (II) the convex 
hull of f (i.e., the pointwise supremum of affine functions everywhere less than 
f), which is defined on (at. b3), agrees withf over (abxd and (a3, b3), but agrees 
with the tangent line t over [xt. a3] (see Fig. 9.1). Within any given strong C 2 

neighbourhood of f, we can easily find a C 2, locally strictly-convex function 
which possesses a supporting tangent line that touches its graph at three points. 

In the example above, for simplicity, we consider the instance that the graph 
of f is a one-dimensional manifold in R2 instead of a two-dimensional manifold 
in R3. But it should be clear that counterexamples could be constructed to show 
that the subset of rule-abiding surfaces is not open in G. 
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Graph of f 

t 

Fig. 9.1. The rule-abiding 
Gibbs surfaces do not con
stitute an open subset in G 

Nevertheless we can still prove the following result (Man [9.6], Theorem 8.5). 
In what follows let .91 be the subset of rule-abiding surfaces, equipped with the 
subspace topology in G; .91 has a nonempty interior (see Theorem 8.1 of Man 
[9.6]). 

Theorem. Let Ml be a 2-dimensional compact Coo manifold-with-corners. Let Gl 
be the subset of C 2 (Ml, R3) which consists of mappings that satisfy conditions 
(ii) and (iii) laid down in the definition in § 4. Suppose Gl* f/J. Let Ma be an open 
subset of the interior of Ml. Letjt EGland let (17, v,e): Ma-+R3 be defined by 
17 = prl 0 (ftIMa), v = pr2 0 (ftIMa) and e = pr3 0 (ftIMa); here for j = 1,2,3, 
P1j: R3 -+ R is the projection to the jth coordinate. 

1) Let S be the Gibbs surface represented by the 4-tuple (Ma, 17, v, e). In every 
weak neighbourhood of S in G w there is a rule-abiding Gibbs surface which 
lies in the interior of .91. 

2) Suppose further thatjt satisfies the criterion (*). Then S itself is rule-abiding 
and lies in the interior of .91. 

Thought-experiments in Sect. 9.3 prompted us to give a naive reformulation 
of Gibbs's conjecture. Although this naive reformulation is not entirely correct 
for the chosen topology on G (i.e., the strong topology), the theorem above does 
provide a rationale for our feeling about the thought-experiments: Take any 
compact C 2 surface st in the 17 - v - e space which satisfies the adscititious consti
tutive inequalities, and whose boundary consists of a piecewise smooth curve. 
Let us denote by S the Gibbs surface that results when the boundary of st is 
trimmed off. Should the surface st happen to satisfy the criterion (*), the Gibbs 
surface S would be rule-abiding; moreover, S will remain rule-abiding after any 
perturbation that is sufficiently small (as defined by some strong neighbourhood 
of it). If the compact surface st does not satisfy the criterion (*), we can deform 
it slightly (to within any prescribed strong = weak neighbourhood of s1) to make 
it observe that criterion. In terms of the Gibbs surface S, the deformation re
quired to ensure the deformed surface to be in the interior of .91 will also be as 
small as we please, if we use weak instead of strong neighbourhoods to define the 
word "small". When we form in our minds the image of a surface in R3, we 
usually think of a bounded (and thence relatively compact) surface. Our intuitive 
feeling about perturbations certainly lacks the sophistication to distinguish the 
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double standard of strong and weak neighbourhoods. Nor is it likely that our in
tuition could quickly hit upon pathological examples such as the one discussed 
above. 

Finally let us give a condition slightly more general than the one stated in the 
preceding theorem but sufficient to ensure that a rule-abiding Gibbs surface be in 
the interior of d. It is convenient to introduce the following 

Definition. A Gibbs surface S is said to be strongly rule-abiding if it could be 
extended to become a C2 compact manifold-with-corners st that satisfies the fol
lowing conditions: (i) st admits a representation (M\ 11\ v \ e t), where Mt is a 
Coo compact manifold-with-corners, «11\ vt),et) belongs to Emb2(Mt,R3) 
n (lmm2(Mt, R2) x C 2(Mt, R», and (11\ vt, et)(Mt) = st. (ii) Let(Ot, _ pt, _ gt) 
= (oet/ol1\ oet/ovt, -et + l1t(oet/ol1t) + vt(oet/ovt»; (ot, -pt, _gt) be
longs to Imm1(Mt,R3). (iii) st satisfies the criterion (*). 

Remark. In the definition above we do not require st to satisfy the adscititious 
constitutive inequalities. Should st satisfy those inequalities, condition (ii) above 
would be superfluous. Since S is a subset of S\ condition (iii) implies that the 
Gibbs surface S is rule-abiding. 

Theorem. Every strongly rule-abiding Gibbs surface lies in the interior of the 
subset d of rule-abiding surfaces (see Man [9.6], Theorem 8.6). 

In fact there are plenty of Gibbs surfaces that are strongly rule-abiding. For 
further discussion on this assertion, see the paragraph following Theorem 8.6 of 
Man [9.6]. 

9.9 The Remaining Paradox 

What follows is the central paradox about the first phase rule: While violations 
of the rule are conceivable in theory, it seems to be well-observed experimentally. 
By itself the fact that violators constitute a "very small" subset in G does not 
resolve the paradox. That violators are rare does not explain why we could not 
find museum specimens. Indeed, given that there are Gibbs surfaces which are 
violators, the paradox will remain as long as it is possible in principle to have one 
substance whose thermostatic properties are exactly those determined by a 
violator. 

Besides the central paradox, other questions remain to be answered. First of 
all, it is clear that many Gibbs surfaces represent the same thermostatic proper
ties of the same substance. For example, if a Gibbs surface S could be made to 
coincide with another surface S' by a translation parallel to the 11- e plane, then 
Sand S' will represent the same properties of the same substance. "This results 
from the nature of the definitions of entropy and energy, which involve each an 
arbitrary constant", as Gibbs [9.15], p. 34, aptly explained. Secondly, whether a 
specific Gibbs surface could be used to represent the thermostatic properties of 
the substance ~ for a given range of temperature and pressure depends partly on 
the system of units chosen. These facts must be taken into account before we can 
interpret our theorems about Gibbs surfaces as results about substances. 
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For further discussion on the problems above and for a plausible resolution 
of the central paradox, the reader is referred to Man [9.6]. There he will also find 
further mathematical results regarding Gibbs surfaces. 
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Chapter 10 
Thermodynamics and the Constitutive Relations 
for Second Sound in Crystals 

B. D. Coleman, M. Fabrizio, and D. R. Owen * 

Summary 

A derivation is given of the implications of the second law of thermodynamics 
for the constitutive equations of materials for which the heat flux vector q and 
the temperature 0 obey the relation 

T(O)q+q = -K(O) grad 0 , 

with T(O) and K(O) non-singular second-order tensors that, as functions of 0, 
depend on the material under consideration. The relation (t), which is a natural 
generalization to anisotropic media of the relation of Cattaneo, has been used by 
Pao and Banerjee to describe second sound in dielectric crystals. It is here shown 
that when (t) holds the specific internal energy e depends not only on 0 but also 
on q; that is: 

e = eo (0) + q . A (0) q , 

where eo is the classical or "equilibrium" internal energy, andA is determined by 
Kand T: 

A(O) = _~~ (Z(O») 
2 dO 02 ' 

Z(O) =K(O)-lT(O) . 

It is also shown that the second law implies that Z(O) is a symmetric tensor and 
thatK(O) is positive definite. It is observed that if Z(O) andZ(O) -lA (0) are posi
tive definite and ae/ae is positive, a temperature-rate wave, i.e., a singular sur
face across which there is a jump in (), will travel faster if it propagates opposite 
to, rather than parallel to the heat flux. 

10.1 Introduction 

In the classical theory of heat conduction, it is assumed that the heat flux vector q 
and the spatial gradient g of the temperature (), i.e., 

g = gradx O(x, t) , (10.1) 

are related by the constitutive equation, 

• An Italian language version of this paper appeared in Volume 68 of the Rendiconti del Seminario 
Matematico della Universita di Padova under the title: II secondo suono nei cristalli: Termodina
mica ed equazioni costitutive. 

The research reported here was supported by the U.S. National Science Foundation and the 
Consiglio Nazionale delle Richerche. 
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q = -K(O)g . (10.2) 

Thermodynamical arguments (vid., e.g., [10.1]) imply that the temperature
dependent second-order tensor K(O), called the thermal conductivity, is positive 
semi-definite, and since K((J) is, in practice, an invertible tensor, it is positive 
definite. 

In a now frequently cited paper published in 1948, Cattaneo [10.2] used a 
rough model yielding results having some properties in common with a result of 
Maxwell in the kinetic theory of gases 1 to suggest that the relation (10.2) should 
be replaced by one which, for the isotropic materials (namely gases) considered 
by Cattaneo, has the form 

uj+q = -xg (10.3) 

(with r and x positive functions of 0). Cattaneo pointed out that his constitutive 
relation yields field equations for 0 and q that are free from the "paradox of 
instantaneous propagation of thermal disturbances" known to be associated with 
the relation (10.2). In 1963 Chester [10.4] observed that current theories of the 
physics of heat conduction in pure dielectric crystals at low temperatures suggest 
that there can be a range of temperatures in which a relation of the form (10.3) 
holds approximately with the order of magnitude of xl r equal to +c V2, with c 
the heat capacity at constant volume and V an average value of the phonon 
velocities, which depend, in general, on frequency and polarization as well as 
direction. 2 Pao and Banerjee [10.17] (see also, Banerjee and Pao [10.18]) have 
remarked that for anisotropic media the natural generalization of the relation 
(10.3) is 

T(O)q +q = - K(O)g , (10.4) 

with K«(}) as in (10.2) and with T«(}), like K«(}), a temperature-dependent, 
positive definite, second-order tensor. 3 When q = 0, equation (10.4) reduces to 
equation (10.2), and hence, in the theory of (10.4), one may call K«(}) the steady 
state thermal conductivity tensor. We call T«(}) the tensor of relaxation times. 

1 For a modern presentation and extension of Maxwell's result see Chapters XIII and XVII of the 
treatise of Truesdell and Muncaster [10.3]. 

2 Many authors have proposed modifications and extensions of the relation (10.3). Of particular 
relevance is the derivation, for dielectric crystals, given by Guyer and Krumhansl [10.5]. Also of 
interest are the earlier articles on second sound by Ward and Wilks [10.6], Dingle [10.7], Sussman 
and Thellung [10.8], Griffin [10.9], Prohofsky and Krumhansl [10.10], and Guyer and Krumhansl 
[10.11], and the more recent articles of Enz [10.12], Kwok [10.13], and Hardy [10.14]. The 
problem of formulating constitutive relations that yield a finite velocity for the propagation of 
thermal disturbances has been discussed from another point of view by Gurtin and Pipkin [10.15] 
and Morro [10.16]. 

3 It is clear that the relations (10.3) and (10.4) are not invariant under time-dependent changes of 
frame, but this lack of invariance is not important for the problems we treat. A modification of 
(10.4) that is invariant under all changes offrame is T(8)(q - Wq) +q = -K(8)g with Weither 
the velocity gradient or the vorticity tensor, i.e., the skew part of the velocity gradient. (As our dis
cussion is confined to rigid bodies, in any motion of the materials we consider the velocity gradient 
is skew.) Pao and Banerjee [10.17, 18] considered non-rigid bodies and discussed the relations 
between thermal and acoustical waves in the framework of the linear theory of infinitesimal elastic 
deformations. 
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In an article [10.19] for the Archive for Rational Mechanics and Analysis, we 
have derived the restrictions that the second law of thermodynamics places on the 
constitutive relations of a class of materials that includes those considered by 
Cattaneo and Pao and Banerjee. We there show that the relation (10.4) with the 
tensors T(O) and K(O) non-singular is compatible with thermodynamics only if 
K (0) is positive definite, the tensor 

is symmetric, i.e., 
Z (0) = K ( 0) -1 T ( 0) 

Z(O)T = Z(O) , 

(10.5) 

(10.6) 

and the specific internal energy e (per unit volume), the specific entropy 1'/, and 
the specific Helmholtz free energy lfI = e - 01'/ are not given by functions of 0 
alone, but are instead given by functions e, ij, and /if of the form 4 

e = e(O, q) = eo(O) +..!. q . Z(O)q - ..!. q . ~ Z(O)q , (10.7a) 
o 2 dO 

1'/ = ij(O, q) = 1'/0(0) + ~ q. Z(O)q - _1_ q. ~Z(O)q, (10.7b) 
20 20 dO 

lfI = /if(0, q) = lfIo(O) + _1_ q . Z(O)q ; (10.7c) 
20 

these functions obey the relations 

(10.8) 

which imply the familar formulae, 

dlflol dO = -1'/0 and d1'/ol dO = colO, (10.9) 

in which Co is the "equilibrium heat capacity", i.e., 

co(O) = deo(O)ldO. (10.10) 

In the absence of both deformation and a supply of heat by radiation, the law 
of balance of energy takes the form 

4 (Footnote added to the English version, May, 1983): We have recently seen a paper by P. J. Chen 
and M. E. Gurtin [On second sound in materials with memory, Zeits. Angew. Math. Phys. 21, 
232 - 241 (1970)] in which they extend part of the theory of Gurtin and Pipkin [10.15] to deform
able media and discuss specializations of that theory to unidimensional cases. It is clear from the 
example treated in their § 6 that, despite differences in language, methods, and initial assump
tions, in the special case in which T and K are independent of () and the heat flow is unidimen
sional, Chen and Gurtin's theory intersects ours and agrees with it in the conclusion that an 
equation equivalent to our equation (10.7c) can hold. Chen and Gurtin do not observe that 
equation (to.7c) is implied by equation (10.4), i.e., that (10.7c) is the only free energy function 
compatible with (10.4). Of course, the papers of Gurtin and Pipkin [10.15] and Chen and Gurtin 
predate not only our own work on second sound but that of Pao and Banerjee [10.17, 18] on 
second sound in deformable media. 
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e+divq = o. (10.11) 
If we let 

A(O) = ~z(O) - ~ ~z(O) = _ ~ ~ (z(O») 
o 2 dO 2 dO 02 ' 

(10.12) 

then equation (10.7a) becomes 

e(O,q) = eo(O)+q ·A(O)q, (10.13) 

and, clearly, e in (10.11) is not given by the classical formula, e = Co (0) 0 (which 
was, of course, employed in [10.2, 4, 5, 14, 17, 18] but is instead given by the 
expression 

with 
e = [co(O) +q . B(O)q] 0+ 2q . A (O)q 

B(O) = ~A(O). 
dO 

(10.14) 

(10.15) 

Thus, the evolution of the heat flux and temperature fields is governed by a pair 
of partial differential equations, 

T(O)q+q+K(O) grad 0 = 0, 

divq + Co (0) O+q . B(O)q 0+ 2q . A (O)q = 0 , 
(10.16) 

for which the tensorial coefficients A (0) and B(O) in the second equation are 
determined by the temperature-dependence of the coefficients T(O) and K(O) in 
the first. As the relations (10.12) and (10.15) do not, in general, yieldA = B = 0, 
the second equation in (10.16) is non-linear in q. 

Below we give a derivation of the relations (10.6 - 8) that has certain advan
tages over that which we gave in [10.19]. Both derivations are set in the frame
work of Coleman and Owen's general theory of thermodynamical systems 
[10.20,21]. Here we take a state to be a pair (O,q), rather than (e,q),5 and we 
avoid the assumption that the function Or+e(O, q) is invertible at fixed q. In 
future papers Coleman and Owen will discuss circumstances under which such 
invertibility does not hold, and, for fixed non-zero values of q, 8oe(0, q) changes 
sign from positive to negative as 0 decreases toward 0.6 

10.2 Derivation of Thermodynamical Relations 

We are concerned with materials for which the state at a point (or material 
element) can be described by giving the local temperature 0 and the local heat 

5 In [10.19] we treat at length a general class of materials for which states are pairs (e, a), or (9, a), 
whose second members, a, become q only in certain special cases such as that in which (10.4) 
holds. 

6 (Footnote added to the English version, May, 1983): The first of these papers has been printed: 
B. D. Coleman and D. R. Owen: On the nonequilibrium behavior of solids that transport heat by 
second sound. Compo Math. with Appls. 9, 529-546 (1983). 
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flux q. The collection Iof all states of an element is here a set of the form .I x .sf 

with .I an open interval of positive numbers and .sf an open connected subset of 
1'(3) containing the zero vector O. (1'(3) is the three-dimensional Euclidean vector 
space in which q lies.) We write either (1 or (0, q) for the members of I, and, 
when we discuss such concepts from analysis as derivatives and line integrals, we 
regard I as a subset of the vector space IR (f) 1'(3) with the inner product 

«a,a),(p,b» = ap+a· b (10.17) 

("." is the inner product on 1'(3). 
With each material there are associated three continuously differentiable 

functions: 
T: .1-+ Lin* (1'(3» , 

K: .I -+ Lin* (1'(3» , 

e: I-+IR, 

(10.18) 

with Lin* (1'(3» the set of all invertible linear transformations of 1'(3) into 1'(3). 
Each process of an element of the material is a piecewise continuous (p - Co) 
function Pt mapping an interval [0, t), with t > 0, into IR (f) 1'(3). The values of Pt 

are pairs «((e),g(e» in which (e) is the time-derivative of 0 and g(e) is the 
spatial gradient of O. The set II of all processes of a given element is defined as 
follows: For each p - CO function Pt = «(,g): [0, t) -+ IR (f) 1'(3), let g) (Pt) be the 
set of states (10 = (0o, qo) for which the equations 

0= C 
q = -T(O)-lq -T(O)-lK(O)g, 

(10.19) 

with the initial conditions 

0(0) = 0o, q(O) = qo, (10.20) 

have a solution el-+(O(e),q(e» whose values lie in .Efor all ein [0, t); if g) (Pt ) is 
not empty, then Pt is a process, i.e., 

II = {Pt: [0, t) -+ IR (f) 1'(3),p - CO I g) (Pt) '*' 0} . (10.21) 

For each pair (Pt, (10) with Pt in II and (10 = (8o, qo) in g) (Pt), the solution 
e 1-+ (O( e), q (e» of (10.19) obeying (10.20) is called the parameterized trajectory 
in .E corresponding to (Pt, (10)' The final point (O(t), q(t» of this trajectory is 
interpreted as the "state (1t = (8t , qt) at the instant of completion of the process 
P/,. The dependence of (1t upon the "initial state" (10 is indicated by writing 

(10.22) 

and the operator (}Pt so defined is called the state-transformation function 
induced by the process Pt. Familiar theorems in the theory of differential equa
tions tell us that, for each Pt in II, the domain g) (Pt ) of (}Pt is an open subset of .E, 
and (}Pt is not only single-valued but also continuous on g) (Pt). 
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A pair (PI' ao) for which ao is in [!) (PI) and 

(10.23) 
is called cyclic. 

If PI is in II, v is in (0, t), and Pv is the restriction of PI to [0, v), then Pv is also 
in II, and [!) (Pv) contains [!) (Pt) as a subset. Moreover, if Ptt and Pt2 are in II, and 
if the range f11 (Ptt) of aptt intersects the domain [!) (Pt2) of (!Pf2' then the function 
Ptt + 12' defined on [0, t1 + t2) by the formula 

P (J:) = {Plt(~)' ~E[0,t1)' 
It + 12 ., P (J: _) J: [ ) 

12 " t1, ., E t1, t1 + t2 , 
(10.24) 

is in II, has [!) (PIt + (2) = (!pt: ([!) (PI2) n f11 (PIt»' and {!Ptt +f2a = (!Pf2{!Ptt a for each 
a in [!) (Ptt + (2); Ptt + t2 is called the process resulting from the successive applica
tion of (first) Ptt and (then) Pt2 . 

Let c be an oriented p - C 1 (piecewise continuously differentiable) curve that 
lies in I, and let the function ~I-+(O(~),q(~», from [O,t] into I, be a p_C1 

parameterization of c. Clearly, the function Pt = «(,g), defined on [0, t) by the 
equations 

(10.25) 

is p - Co, and if this function is substituted into equation (10.19), the solution of 
(10.19) with initial value ao will be precisely the function ~I-+(O(~),q(~». It 
follows that Pt is in II, ~ 1-+ (O(~), q (~» is the parameterized trajectory in I corre
sponding to the pair (Pt, ao), and (!PtaO equals (O(t), q(t», the final point of c. In 
summary, we here assert, as in [10.19]: 

Remark 1. If c is an oriented p - C 1 curve lying in I, then each p - C1 parameter
ization of c is the parameterized trajectory corresponding to a unique pair 
(Pt, ao) with PI in II and ao in [!) (Pt); ao is the initial point of c; {!PtaO is the final 
point of c. If c is a closed curve, then {!PtaO = ao, and the pair (Pt, ao) is cyclic. 

Because each pair of points in I can be joined by a p - C 1 curve, Remark 1 
implies the validity of the following assertion: 

Remark 2. For each pair (a', a") of states in I, there is a process Pt in IIwith a' 
in [!) (Pt) and a" = {!pta'; in other words, the set {aEI I a = {!Ptao} of states 
"accessible" from any given state ao is equal to all of I. 

It follows from these observations that the material elements under con
sideration are systems in the sense in which the term is used in the general theory 
of references [10.20, 21]. 

We turn now to the function e. The value e = e( 0, q) of e is the specific 
internal energy. The rate of change of e along the parameterized trajectory 
~ 1-+ (O(~), q (~» corresponding to a pair (Pt, a) is, for each ~ in [0, t], 

(10.26) 
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and, according to the first law of thermodynamics, 

e(~) = h(~) , (10.27) 

where h is the rate at which heat is absorbed at the material element. This rate is 
determined by the heat flux q and the rate r of supply of heat by radiation from 
sources external to the element: 

h = r-divq . (10.28) 

Our assumption that e is given by a function e of state is clearly compatible 
with the first law of thermodynamics. It has been customary in this subject to 
assume that the function e reduces to a function of 0 alone, i.e., to assume that e 
is independent of q, but, as we shall show below, such an assumption is not com
patible with thermodynamics. Using the method of Coleman and Owen [10.20], 7 

we shall show that the second law implies that e must have the form shown in 
equation (10.7a), withZ as in equation (10.5). 

Along the parameterized trajectory e;f-+(O(e;),q(e;» corresponding to a pair 
(PI, a), one may calculate the integral 

o (PI, a) = J - - div - de;; I( r q) 
o 0 0 

(10.29) 

for, by (10.28) and the relation 

d· q 1 d' 1 IV-=- IVq--q·g, 
o 0 02 

(10.30) 

there holds 

o(R, a) = f (h(e;) + q(e;)' g(e;») d~ , 
I 0 O(~) 0(~)2 

(10.31) 

and hence (10.26) and (10.27) yield 

o(P" a) = f (ooe(o(e;), q(e;» O(e;) + Oq e(O(e;), q (e;» . q (e;) + q (e;) . g(e;) ) de; . 
I 0 O(e;) O(e;) 0(e;)2 

(10.32) 

We here take this last expression as the definition of 0 ; it makes obvious the fact 
that 0 is well defined for every pair (PI' a) with PI in II and a in [i) (PI)' It is not 
difficult to show that, for each process PI' the function a f-+o(PI, a) is continuous 
on [i) (PI)' Moreover, if PI! +/2 is the result of the successive application of PI! and 
P12 , then for each a in [i) (PI! +/2)' 

7 The principal advantage of this method over that proposed by Coleman and Noll [10.1] and 
Coleman and Mizel [10.22,23], and employed in the investigations of Gurtin and Pipkin [10.15], 
Coleman and Gurtin [10.24], and Morro [10.16], is that it does not require a priori assumptions 
about the regularity or even existence of entropy (or free energy) as a function of state. The 
method we use, Le., that of reference [10.20], also avoids a situation encountered by Morro 
[10.16], who observed that his starting assumptions are not in accord with equipresence. 
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(10.33) 

Hence, <1 is an action for the system (I, m in the sense of Definition 2.2 of 
reference [10.20]. In accord with Definition 3.1 of that paper, we say that <1 has 
the Clausius property at a state 0'0 if, for each e > 0, 0'0 has an open neighbor
hood, 0e(O'O), for which 

PtEIl, O'OE{f)(Pt) , (}ptO'oEOe(O'o) implies 

<J(Pt, 0'0) < e ; (10.34) 

i.e., <J(Pt, 0'0) is approximately negative whenever the trajectory in I determined 
by the pair (Pt, 0'0) is approximately closed. 

As in [10.19-21], we here take the second law of thermodynamics to be the 
assertion: 

Second Law. The action <J has the Clausius property at least at one state in I. 

If follows from Remark 2 above and Remark 3.1 of reference [10.20] that the 
second law here implies that <J has the Clausius property at every state in I. 

If a pair (Pt, 0') is cyclic, i.e., if {}ptO' = 0', then (}prO'is in every neighborhood 
of 0', and, if <J has the Clausius property at 0', <J(Pt, 0') is less than every e > 0, 
which means that <J(Pt, 0') ~ O. Hence the second law has the following implica
tion: If the pair (Pt, 0') is cyclic, <J (Pt, 0') is not positive: i.e., for each 0' in I, 

PtEIl, O'E {f) (Pt) , (}ptO' = 0' implies 

<J(Pt, 0') ~ 0 . (10.35) 

Let c be an oriented p - C 1 curve lying in I. Each p - C 1 parameterization of 
c is, by Remark 1, the parameterized tracjectory el-+(O(e),q(e» corresponding 
to a pair (Pt,O') with 0' in P) (Pt), and for this pair the equations (10.32) and 
(10.19) yield the formula, 

<J(Pt, 0') = j (6ge(O, q) 0+ 06qe(O,q\-Z(O)Tq . q _ q . K(~) -1q )de , 
000 0 

(10.36) 

in which 0, q, 0, and q stand for O(e), q(e), O(e) and q(e). Therefore, <J(Pt,O') 
can be written as a sum, 

(10.37) 

of two terms, the first of which, 

/. ~ /. (.) ~! (a •• ~. q) dB+ Ba.'(B. q~2-Z(fJ)Tq . dq) • (10.38) 

is a line integral independent of the parameterization of c, and the second, 

,12 = - f q .K(O)-1q de, 
o 02 

(10.39) 
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does depend on the parameterization, but has the bound 

IJ21 ~Mt, 
where 

M = sup 1 qK(0)-1ql021 
c 

(10.40) 

(10.41) 

is finite because K is continuous on .J C (0,00), and c is a compact subset of 
I=.Jx.st. 

Now, let c be not only an oriented p - C 1 curve in I but also a closed curve. 
For each p- C1 parameterization of c, the corresponding pair (Pt, a) is cyclic, 
and hence (10.35) and (10.37) yield 

(10.42) 

In view of the bound (10.40) on J2' the relation (10.42) can hold for all p - C1 
parameterizations of c only if 

(10.43) 

For the curve - c that differs from c only in orientation, equation (10.38) yields 
J1 ( - c) = - J1 (c), but the argument that gave (10.43) yields also J1 ( - c) ~ 0, 
and, therefore, 

(10.44) 

As c is an arbitrary p - C1 closed curve in I, and Iis an open connected subset of 
IR E8 'i'(3), (10.44) and a familar theorem about the existence of potentials for 
vector fields yield the existence of a continuously differentiable real-valued 
function r, on I such that 

OOor,(O, q) = ooe(O, q) , 

02 0q r,(0,q) = OOqe(O,q)-Z(O)Tq , 

and, for any oriented p - C 1 curve c in I, closed or not, 

with a1 the initial and a2 the final point of c. 

(10.45) 

(10.46) 

(10.47) 

Equations (10.37) and (10.47) imply that for each pair (Pt, a) with ain fJ) (Pt ), 

(10.48) 

where J2 is as in equation (10.39). 
If for a given state ao = (00, qo) and positive number t, we let If = (~O,go) be 

the process defined on [0, t) by 

~o =0, 

gO = -K(00)-1qo , 
(10.49) 

then, the corresponding solution of (10.19) is the constant 
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() == (}o , q = qo , 

then pair (P?, ao) is cyclic, and (10.35), (10.48), and (10.39) yield 

o ~ a(pJJ, ao) = - tqo .K«(}O)-lqo/~. 

Thus, the second law implies that for each () in .I, 

(10.50) 

(10.51) 

(10.52) 

for all q in.s;l and, as K «(}) -1 is an invertible tensor and.s;l contains a spherical 
neighborhood of 0, this implies that K«(}) is positive dejinite jor each () in .I. 
Furthermore, whether or not (Pt, a) is cyclic, (10.51) and (10.39) together imply 

and hence (10.48) yields 
(10.53) 

(10.54) 

As this relation holds for all pairs (Pt, a) with Pt in n and a in ~ (Pt), we may 
assert that ij is an entropy junction. 8 Of course, the existence of this entropy 
function implies that a (Pt, a) is not positive when the pair (Pt, a) is cyclic. 
Employing that continuity of ij, one may show further that (10.54) implies that a 
has the Clausius property at each state in I, and hence we can assert 

Remark 3. The response functions T, K, and e are compatible with the second 
law of thermodynamics if, and only if, there is a continuously differentiable 
function ij: I -+ IR obeying (10.54) for all pairs (Pt, a) with Pt in n and a in 
~(Pt)· 

Suppose now that we have, in addition to the function ij of equation (10.47), 
another function n: I -+ IR that is an entropy function for the same material 
element, i.e., that obeys the relation 

(10.55) 

for each pair (Pt, a) with a in ~ (Pt). For each pair of states (al> a2), there is an 
oriented p - C1 curve c that has al as its initial point and a2 as its final point; for 
each p - C1 parameterization of c, (10.55) and (10.37) yield 

(10.56) 

and hence, by (10.40), 

(10.57) 

If we now interchange al and a2, and replace c by the curve - c that differs from 
c only in orientation, the same argument gives 

8 It follows from (10.54) and the continuity of ;; that;; is also an "upper potential" for d in the sense 
of Definition 3.2 of [10.20). 



10. Thermodynamics and the Constitutive Relations for Second Sound in Crystals 181 

~(0'1)-~(0'2)~J1(-C)= -J1(C) , (10.58) 

which is compatible with (10.57) only if ~(0'2) - ~(0'1) = J1 (c), and, in view 
(10.47), we may conclude that 

(10.59) 

that is, ~ can differ from ij by only a constant. 9 

The existence of an entropy function, ~, i.e., a function from .Eto IR obeying 
(10.55), implies the validity of (10.35), from which, as we have shown, there 
follows the existence of a continuously differential entropy function 17 that can 
differ from ~ by at most a constant. Thus we have 

Remark 4. If a material element has an entropy function, it is continuously 
differentiable and unique to within a constant. 

The value 'I of the entropy function 17 is called, of course, the entropy; here ij 
is unique if we assign the value 0 to the entropy in a "standard state" 0'0. If of has 
the form (0, a), and the function '10' defined on of by 

'10(0) = 17(0,0) , (10.60) 

has a limit as 0-+0, then a natural normalization of 17 is obtained by putting 

lim '10(0) = 0 . (10.61) 
0 ..... 0 

The value If! of the function ijJ defined on .E by 

ijJ(O, q) = e(O, q) - 017(0, q) (10.62) 

is the Helmholtz free energy. The assumed smoothness of e and the derived 
smoothness of ij imply that if! is continuously differentiable, and, in view of 
equation (10.45), we have, throughout .E, 

ooijJ(O,q) = -r,(O,q) , (10.63) 

and equation (10.46) yields 

(10.64) 

This last relation tells us that If! must have the form shown in (10.7c), and once 
that is known, the relation (10.63) implies that ij must be as shown in (10.7b). 
Clearly, (10.7b), (10.7c), and (10.62) imply that e must be as in (10.7a). 

Of course, (10.63) and (10.45) are the same as the relations (10.8). From 
(10.64) we conclude that, for each ° in of, the function q 1-+ ijJ( 0, q) has a gradient 
of order two given by 

(10.65) 

9 Our proofs of the existence, differentiability, and uniqueness of i1 parallel proofs we gave in 
[10.19] and rest on arguments introduced in the discussion of the thermodynamics of elastic 
elements with heat conduction in [10.20]. 
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which implies that Z(8) is symmetric Jor each 8 in .I, i.e., (10.6) holds. 
We summarize in the following 

Theorem.10 The second law implies that Jor each value oj 8: 

i) the tensor K(8) is positive deJinite,' 
ii) the tensor Z(8) = K(8) -1 T(8) is symmetric,' 

iii) e, TI, and", are not independent oj q, but are instead given by Junctions e, ;, 
and /if that are related as shown in (10.8) and have the Jorms shown in (10.7). 

Remark 5. It is a consequence of the relations (10.45) and (10.46) and the derived 
smoothness of the entropy function that when 0 and q are continuous so also is h, 
and 

h = 89;'(8, q) 0+ 8q ;'(8, q) . q 
= [88ge(8,q)0+ 88q e(8,q)· q-q .Z(8)q]/82 

= el8-q ·Z(8)q/82 • (10.66) 
The quantity 

Y = h+ div(q/8) - rl8 (10.67) 

is called that rate oj production oj entropy; it follows from (10.66), (10.27), 
(10.28), and (10.4) that here 

(10.68) 

The positive-definiteness of K implies that y is not negative and vanishes only if 
q = O. Thus the Clausius-Duhem inequality holds in the present theory. 

Singular Surfaces 

Suppose that at each point x of a region fit of a Euclidean point space, the con
stitutive relations, 

T(8)q+q = -K(8)g, 

e = e(8,q) , 

(10.69) 

(10.70) 

hold with T, K, and e the continuously differentiable functions of (10.18). 
Suppose further that these functions are compatible with thermodynamics and 
hence obey the conclusions (i), (ii) , and (iii) of the theorem of the previous 
section, so that, in particular, e has the form (10.7a). 

We are here interested in cases in which, for some t* > 0, the time-dependent 
fields 8, q, and r are continuous on fl x (0, t*), but fl x (0, t*) contains a 
smooth hypersurface !/ across which 0, g, q, and gradxq may have jumps 
although they are continuous on the complement of !/. Let (n, - U), with In 1=1 
and U ~ 0, be the normal to !/ at a point (xo, to) in the interior of !/; n is the 
direction oj propagation and U the speed of !/ at (xo, to). The jump 1fI ex
perienced by a fieldJ(such as 0, g, etc.) as !/ "passes through the placexo at time 
to" is 

10 cr. [10.191. Theorem 4.1. 
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[f] = lim/(xo,t)- lim/(xo,t). (10.71) 
t .... to t .... to 

We assume that [0] * 0, and we call the hypersurface [/ a temperature-rate 
wave. 11 

In [10.19] we showed that a temperature-rate wave cannot be purely trans
verse, i.e., cannot be such that [ti]' n = 0.12 We also showed there that U must 
obey a quadratic equation 13 which in the present context takes the form 

(10.72) 

Here (J = (J(xo, to) and q = q(xo, to) with (xo, to) a point on [/ at which the wave 
speed is U and the direction of propagation is n. By (10.13), 

8ee«(J,q) = co«(J)+q ·B«(J)q, (10.73) 
and 

8q e«(J, q) = 2A «(J)q = 2.Z «(J)q - ~Z«(J)q , 
(J d(J 

(10.74) 

with Co, B, A, and Z as in (10.10), (10.15), (10.12), and (10.5). 
Let us assume now, in accord with experience, that for each (Jin.l: (I)Z«(J) is 

positive definite, and (II) co«(J) is positive. As we have shown that K«(J) is 
positive-definite, for crystals of high enough symmetry (e.g., cubic crystals) (I) is 
implied by the physical observation that T«(J), the tensor of relaxation times, is 
positive definite. The assumption (II) that the heat capacity is positive when 
q = 0, is obviously in accord with observation and statistical mechanical models; 
as 8ee is continuous, (II) implies that, for each (J, there is a neighborhood .%e of 
the origin in j"(3) such that 8e e( (J, q) is positive for each q in .%e. 

From the relations (10.72-74) we read off 

Remark 6. Suppose (J and q are such that 8ee( (J, q) > 0, and define Uo «(J, q, n) by 

Uo((J,q,n)= n.~«(J) n (10.75) 
the relation (-1 ) 112 

8ee(fJ, q) 

When q(xo, to) = 0, i.e., when the temperature-rate wave is propagating into a 
region in which q = 0, the speed U of the wave is 

U(fJ,O,n) = Uo(fJ,O,n) = Vn .Z(fJ)-1n/ co «(J) . (10.76) 

11 The term was introduced by Gurtin and Pipkin [10.15], and our treatment of the subject in [10.19] 
drew on observations made by them. See also the recent papers of Morro [10.16, 25] and 
Cattaneo's now classical study [10.2] of waves of order two, i.e., surfaces across which 9 and q 
and their first derivatives are continuous, but their second derivatives suffer jumps. Our discus
sion of temperature-rate waves in [10.19] was based on constitutive assumptions of greater gener
ality than those employed here. 

12 See Remark 5.1 of [10.19]. Cattaneo [10.2] obtained an analogous result for waves of order two in 
materials that obey his theory (in which the dependence of e on q is not taken into account). 

13 Equation (5.13) of [10.19]. Analogues of this equation occur also in the papers by Gurtin and 
Pipkin [10.15] and Morro [10.16, 25]. 
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In general, the equation (10.72) for U (with 8ee (8, q) > 0) has a unique positive 
solution U( 8, q, n) that can be written in the form, 

U(8,q,n) = Uo(8, q,n)[V1 +(v· n)2_ v' n] , 

with v in 1"'(3) given by 

v = v(8,q,n) = Z(8)-18q e(8,q)12 Uo(8,q,n) 8ee(8,q) 

= Z(8)-1A (8)qIUo(8,q,n) 8ee(8, q) 

2q - 8Z(8) -1(dZ(8)1 d8)q 
=~~----------------~ 

2 8Uo(8, q,n) 8ee(8, q) 

(10.77) 

(10.78) 

Therefore, when, as is expected for dielectric crystals, Z(8)-1A(8) is positive 
definite and hence q '*' ° implies V· q > 0, a temperature-rate wave propagating 
in the direction of the heat flux vector travels more slowly than one propagating 
in the opposite direction: 14 

q,*,o, n=q/lql implies U(8,q,n)<U(8,q,-n). (10.79) 
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Chapter 11 
Interstitial Working and a Nonclassical Continuum 
Thermodynamics 

J. E. Dunn 

11.1 Introduction 

Twenty years ago Coleman and Noll [11.1] succeeded in clarifying and making 
rigorous a procedure by which the laws of thermodynamics could be used to 
deduce constitutive restrictions on a vast variety of materials. Almost from the 
very beginning, indeed in a paper by Coleman and Mizel [11.2] in the same year 
as [11.1], it began to be clear that the procedure of Coleman and Noll, when 
applied to the usual forms of the basic laws of thermodynamics, in many cases 
imposed extraordinarily severe restrictions on the long range spatial dependence 
allowable in constitutive quantities. Indeed, for the class of rigid heat conductors 
in which the energy e, the entropy 'I, and the heat flux q at a particle X may 
depend on the current value of the temperature () and its first n spatial gradients 
at X, Coleman and Mizel [11.2] showed that thermodynamics and the procedure 
of [11.1] allowed e and 'I to depend on at most the value of () at X - no gradients 
of temperature could appear in these quantities at all. Their result was soon 
extended by Eringen [11.3] to the class of deformable, elastic bodies in which the 
energy, entropy, heat flux, and now the Cauchy stress T at a particle X may 
depend on the current value of the temperature () and its first n spatial gradients 
at X as well as on the current value of the deformation gradient F and its first m 
spatial gradients at X. Eringen showed that in the above class of materials only 
the current values of () and F at X could enter into the response functions for e, 'I, 
and T - no higher spatial gradients of () or F were allowed. In fact, slightly 
before Eringen, Gurtin [11.4] had established the far deeper result that, even if 
the energy, entropy, heat flux, and stress at X were permitted to depend on the 
entire current temperature and deformation gradient fields throughout the body, 
nevertheless, thermodynamics and the procedure of [11.1] allowed only the 
restricted dependence found by Eringen. 

In fact, however, thermomechanical theories in which higher gradients of the 
temperature and strain entered into constitutive equations were formulated, 
studied, and applied long ago: In 1876 Maxwell [11.5] used the kinetic theory of 
gases to derive a formula for the stress explicitly containing spatial gradients of 
the temperature so as to afford an explanation of the phenomena, discovered by 
Reynolds, of thermal transpiration, in which the presence of a temperature 
gradient was itself sufficient to produce motion by giving rise to a non-equi
librated system of stresses. In 1901 Korteweg [11.6] proposed as a way of model
ling capillarity effects in fluids a constitutive equation for the stress that con
tained not only the usual dependence on the temperature () and current mass 
density g but also depended on grad g and grad2 g, the first and second spatial 
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gradients of the density. Specifically, Korteweg postulated a compressible fluid 
model in which the "elastic" or "equilibrium" part of the stress T was given by 

T = T(e, 8, grad e, grad2 e) , 
= (-p+ aLi e+ P 1 grade 12)1 + 0 grade ® grade+)I grad2e, (11.1) 

where LI e == tr {grad2 e} is the Laplacian of e and where p, a, p, 0, and )I are 
material functions of e and 8. 

More recently, Truesdell 1 has combined and generalized the ideas of Maxwell 
and Korteweg in his so-called "Maxwellian fluid" . Additionally, special instances 
of Korteweg's form (11.1) appeared in the work of Fixman [11.8] and of 
Felderhof[11.9] on the critical point for gas-liquid interfaces where a very special 
form for the equilibrium free energy, in which 1 grad e 1 appears quadratically, is 
postulated at the outset. Certain variational principles are then laid down, the 
momentum equations they give rise to are examined, and a form for the Cauchy 
stress is then inferred.2 This approach, which essentially makes the free energy a 
potential for the stress, should be contrasted to that of Korteweg and Truesdell in 
which the stress response function is postulated a priori and is thus compatible 
with there being no stored energy function and corresponding variational prin
ciple at all. Indeed, there are subtle overdeterminism difficulties for, say, the 
general form (11.1) which the methods of [11.8, 9] escape. These have been 
recently studied by Serrin [11.10] and will be discussed in Sect. 11.5 below. 
Finally, Korteweg's form (11.1) has also been studied in recent years by 
Blinowski [11.11, 12], by Aifantis and Serrin [11.13, 14], by Slemrod 
[11.15-17], by Hagan and Slemrod [11.18], and by Hagan and Serrin (see 
[11.19] and the paper by Hagan in these Proceedings). 

The above-mentioned works, in using only the density e and its higher 
gradients as the measures of the deformation appearing in constitutive equations, 
chiefly envisioned applications to materials that are essentially fluid-like. The 
more general situation, when the entire deformation gradient F and certain of its 
higher gradients are allowed to affect the stress, heat flux, energy, etc., was con
sidered, in ways that now seem too special (see below), by Toupin [11.20, 21] in 
his work on couple-stresses in elasticity 3 and by Green and Rivlin [11.22, 23] in 
their work on multipolar continuum theories. 

As we have already observed, the constitutive structure of each of the above 
theories is incompatible with the usual laws of thermodynamics when those laws 
are coupled with the procedure articulated by Coleman and Noll for deducing 
constitutive restrictions. Following a line of thought for energetic calculations 
similar to one found useful by Ericksen [11.24] in his work on liquid crystals, and 
which, in fact, was suggested (but not pursued) by Toupin [11.20] in his work on 
materials with couple-stresses, Serrin and I [11.25] have recently presented a par
ticularly simple and attractive resolution of the above incompatibility. Here I 
wish to outline and extend some of our ideas and results. 

I Truesdell's original work, 1948-1952, appears in a rather more polished form in § 125 of [11.7]. 
2 See the Introduction to [11.25] for a more complete discussion. 
3 Toupin's work is also discussed in [11.25]. 
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11.2 Classical Continuum Thermodynamics: A Limitation 

We begin by recalling the conceptual underpinnings of classical, continuum 
thermodynamics: let E denote a three dimensional Euclidean point space, and let 
us identify the material elements or particles of a continuous medium, or body, 
fI with the positions X eE they occupy in a fixed reference configuration. 
Denote by B the region occupied by fI in this reference configuration and assume 
given a referential mass density (!R (.): B -+ (0, 00) of fI in B such that 
m(P) == fp{!RdVis the mass of the subpart P of B. Along with fI and its referen
tial mass distribution is given the process class IP (fI) of fI which, roughly, 
consists of "everything that can happen to fI" and so characterizes the material 
comprising fl. More precisely, the elements n e IP (fI) are called processes and, 
classically, are certain ordered 8-tuples of functions on B x IR, 

n== {x,(},e,f/,T,q,b,r} , 

where, during n, at particle X and time t 

x == X(X, t) eE is the motion, 
() == (}(X, t) e(O, 00) is the absolute temperature, 

e == e(X, t) is the specific internal energy per unit mass, 

f/ == f/(X, t) is the specific entropy per unit mass, 

T = T(X, t) is the Cauchy stress tensor, 

q == q (X, t) e V is the heat flux vector, 

b == b (X, t) e V is the specific body force per unit mass, 

r == r(X, t) is the radiant heating per unit mass, 

where Vis the translation space of E. Moreover, with Pt == X(P, t), each process 
n e IP (fl ) is required to satisfy: 

i) the balance of linear momemtum 

~ f {!x dv == J Tn da + J (!b dv , 
dt P t BPt P t 

(11.2) 

ii) the balance of energy 

~ J {!{e+tx ·x}dv == f {x· Tn-q ·n}da+ J (!{x. b+r}dv, 
~~ B~ ~ 

(11.3) 

iii) the imbalance of entropy 

~ f {!f/dv ~ - f ~da+ J {!!...dv, 
dt Pt BPt () P t () 

4 This is usually called the Clausius-Duhem inequality and seems to have been first expressed in this 
general form with the crucial term involving r by Truesdell and Toupin [11.26]. 
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for every subpart P !: B, wherex = 8X(X, t)/8t is the velocity of the particle X at 
time t, where n = n (x, t) is the outer unit normal atx e8Pt , and where (! = (!(x, t) 
is the spatial mass density function induced by the motion X(·, .), i.e. 

m(P) = f (!RdV = f (! dv v P !: B . 
P Pt 

It, of course, thus follows that 
(!R 

(!=--'-"'--
IdetF I 

(11.5) 

where F = F(X, t) = V x (X, t)5 is the deformation gradient of X(·, .), which we 
always take to be nonsingular. 

When sufficient smoothness is assumed and (11.5) is taken into account, it is 
easily shown that (11.2 - 4) are equivalent to the local conditions 

div T + (!b = (!X , 

(!e = T·L -divq+ (!r, 

(!{ip+ "O}- T· L +!L!.. ~ 0, 
() 

(11.6) 

(11. 7) 

(11.8) 

where If! == e- ()" is the Helmholtz free energy, where L == gradx and g == grad () 
are, respectively, the spatial gradients of velocity and temperature, and where 
div (.) is just the contraction of grad (. ). Finally, a superposed dot denotes the 
usual material time derivative of the indicated quantity. The inequality (11.8) is 
usually called the dissipation inequality. 

At this point two caveats: first, while it is conventional to assume that the 
stress tensor T is symmetric, I will not make this assumption. Rather, I note the 
elementary consequence of (11.5) and (11.6) that, for any fixed point Zo and every 
subpart P ~ B, 

f (x - zo) ATn da + f (x - zo) A(!b dv = ~ J (!(x - zo) AX dv + fax(T - TT) dv , 
BPt PI dt Pt Pt (11.9) 

where, for any two vectors, a and b, aAb denotes their usual cross product, and 
where, for any skew tensor W, ax(W) denotes the axial vector of W. 6 Of course, 
(11.9) is just the well-known result that the resultant torque due to the surface 
tractions Tn and the body force b balance the rate of change of the angular 
momentum if and only ifax(T - TT) == 0, i.e., if and only if T is symmetric. Here 
I adopt the stance taken in particle mechanics: balance of angular momentum 
can be proven as a theorem in that subject if one makes certain assumptions 
about the forces of interaction in a system of massy particles; here too balance of 

5 Throughout our work "V" will denote differentiation with respect to the particle X in B while 
"grad" will denote differentiation with respect to the place x in Bt • 

6 That is, ax(W) is the unique vector in V satisfying Wa = ax(W)l\a for every a E V. 
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angular momentum (the symmetry of T) will emerge in an explicit way as 
reflecting now the nature of the thermomechanical interactions within flJ. 

Second, it should be noticed that so far the process class IP (flJ) could be 
arbitrarily small, in violation of our physical prejudice that most bodies can be 
made to undergo a vast variety of processes. It is exactly this point of ensuring a 
very large process class that is the heart of the procedure of Coleman and Noll 
[11.1]; I now describe what might be called their Axiom of Size. 

To be concrete, let us suppose that we are given a constitutive structure for 
flJ; indeed, it will suffice here to consider the particular constitutive structure 
embodied in the assumption that the energy e(X, t), the entropy ,,(X, t), the 
stress T(X, t), and the heat flux q(X, t) are, for every 7rEIP(flJ), given by smooth 
functions of F, e, VF, V2F, g, andF, i.e., 

A 2' e = e(F, e, VF, V F,g,F) , 
A 2' " = ,,(F, e, V F, V F,g,F) , 
A 2' 

T = T(F, e, V F, V F,g,F) , 
(11.10)1_4 

A 2' q = q(F, e, V F, V F,g,F) . 

Of course, once t(·) and fJ(·) are given, the relation If! == e - e" determines a 
function QJ(.) such that 

A 2' 7 If! = If!(F, e, V F, V F,g,F) . (11.10)s 

Certain of our results require the common, open domain d of the response 
functions t(·), ~(.), T(.), q (.), and QJ(.) to be suitably connected; for simplicity, 
we shall suppose d to be convex. Also, we shall sometimes suppose that if 
(F, e, VF, V2F,g,i) is in d, then so too are its associated "equilibrium" state 
(F, e, V F, V2 F, 0, 0) and its associated "relaxed" state (F, e, 0, 0, 0, 0). It is impor
tant to note that d constitutes a tacit restriction on the process class IP (flJ ) since 
any process 7r in IP (flJ ) must be such that its associated motion and temperature 
field, 1'(".) and e(·,·), satisfy 

(VX, e, V2X, v3x, grade, V i)(X, t) Ed 

for all (X, t) E B x IR. Accordingly, two maps, 1'(".) and e(·, .), will henceforth 
be called, respectively, a motion and a temperature field for flJ only if they meet 
this restriction. 

The procedure formalized in [11.1] may now be described as follows: let any 
motion 1'(', .) and any temperature field e(·, .) be assigned on B x IR; then (11. 5) 
and the constitutive equations (11.10) enable one to calculate an associated 
density (}(', .), energy e(·, .), entropy ,,(-, .), stress T(., .), heat flux q(., .), and 

7 For simplicity we study only materials for which the response functions €('), 1/('), t(,), q('), 
(and then 1jI('» can be taken as the same for each particule XeB. Thus, we suppose that the 
material comprising ~ is homogeneous and that B is one of its homogeneous reference configura
tions. We henceforth thus also suppose that the referential mass density €?R (X) is independent 
ofX. 
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free energy "'<-. 0). Entering these fields into the local balance laws (11.6, 7), we 
may in turn calculate an associated body force b (0,0) and radiant heating r( 0,0). 
We thus have produced an ordered 8-tuple of functions on B x IR, viz., and in a 
notation that anticipates our next axiom, 

7r:(x.8) == {X, 8; e, 1'/, T,q,b, r} ; 

we call it the ordered 8-tuple induced by the motion-temperature pair (X, 0) and 
observe that it automatically meets balance of linear momentum and balance of 
energy. 

The idea of Coleman and Noll [10.1J is to now make the following funda
mental 

Axiom of Size. Every induced 8-tuple 7r:(x,8) is a process, i.e., belongs to the 
process class IP (L1J) and so must satisfy the dissipation inequality (11.8). 

This axiom ensures that 1P(L1J) is now extremely rich in processes - indeed, so 
rich that the only way the dissipation inequality (11.8) can be satisfied is for our 
choices of the response functions €(o), 11(0), t(o), q(o), and q,(o) to be cor
respondingly impoverished. In fact, using essentially the methods of [11.1 - 3J 
it is now not hard to prove 

Theorem 1. Let the classic balance laws (11.2-4) hold. If a material with the 
constitutive structure (11.10) satisfies the Axiom of Size, then it is necessary that 
the free energy tP( 0) 

i) be independent of V F, V2F, g, and P, i.e., 

'" = tP(F,O) == tP(F, 0,0,0,0,0) , 

ii) serve as a potentia/jor the entropy 11(0), the energy €( 0), and the equilibrium 
stress TE(o) == t(o) Ig=£=o, in the sense that 

1'/ = - tPe(F, 0) , 
e = tP(F, 0)- OtPe(F, 0) , 

TE = etPF(F, O)FT • 

Here subscripts denote partial differentiation, and, as Theorem 1 makes clear, 
for materials satisfying its hypotheses classical thermodynamics drastically limits 
the way higher order spatial interaction effects can be directly modelled within 
the response function for energy, entropy, and stress - indeed, the energy e and 
the entropy 1'/ can never be directly influenced by V F, V2F, g, or P, nor can the 
stress T be directly influenced by V F and V2 F at any particle in local equilibrium 
(i.e., at which g = P = 0). In particular, as a glance at (11.5) reveals, we have the 
immediate corollary resultthat Korteweg's model (11.1) 8 satisfies the Axiom of 

8 More precisely, Korteweg's model (11.1) for the stress T embedded within classical thermo
dynamics, with accompanying response functions for e, 1'/, and q defined on the same domain as 
that for T. 
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Size only if all its non-classical coefficients a, p, J, and y vanish identically! 
A way to escape such consequences of classical thermodynamics is the subject 
of the next section. 

11.3 A Nonclassical Continuum Thermodynamics: 
Interstitial Work Flux 

As we have seen, if one wants a constitutive structure like, say, (11.10) in which 
higher gradients of F and (J genuinely enter, and if one wants something like the 
Axiom of Size so as to deduce constitutive restrictions 9, then the normal laws of 
continuum thermodynamics must be modified. The particular modification 
Serrin and I posited in [11.25] was one that was partially foreshadowed in 
theories of liquid crystals [11.24], in theories of polar media [11.22, 23] and 
materials with couple-stresses [11.20, 21], and in other theories meant to model 
mildly long range spatial interaction effects between the material elements or 
particles of PJ (which may be due to, here implicit, "substructures" of those 
elements) [11.8, 9, 11, 12]. Specifically, our desire was to preserve both the 
purely thermal principle of entropy imbalance (11.4) and the purely mechanical 
principle of linear momentum balance (11.2) along with its attendant notion that 
the net local contact force between the subparts of PJ is delivered in the usual 
way by the Cauchy stress tensor T. Thus, we modified only the energy balance 
(11.3), and we did this by postulating, for each process n, an interstitial work 
flux u = u(X, t), (X, t) eB x IR, such that the balance of energy (11.3) for each 
subpart P ~ B is replaced by 

.!!...- S e{e + ti . i}dv = S {i . Tn + u . n - q . n }da + S e{i . b + r }dv . 
dt PI aPI PI (11.3') 

The flux u, as its name suggests, seems here to be most appropriately thought of 
as mechanical in nature - see (11.13). We attribute u to the longer range spatial 
interactions we are trying to model, and we note that it engenders an interstitial 
working, i.e., a rate of supply u . n of energy, across every material surface in PJ 
above and beyond the usual mechanical energy supply due to the working i . Tn 
of the surface traction Tn. 

It is interesting to look at our introduction ofu in a more abstract way. In the 
conventional thermodynamics which is embodied in (11.2 - 4), the surface energy 
flux h, beyond that due to the working of the surface tractions, is just the heat 
flux q and is thus inextricably linked to the surface entropy flUX j which is 

9 As was in essence observed long ago, the special power of the dissipation inequality (11.8) to 
restrict response functions relies crucially on the Axiom of Size or something very much like it. 
Without such an axiom, one has only the basic laws (11.6 - 8), all now on an equal footing, and all 
now serving merely as necessary conditions on the elements of lP(a). With such limited structure, 
if lP(a) is small enough, almost any response functions will be compatible with (11.6- 8). 
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just q/(). Our introduction of the interstitial work flux u has severed this link 
since now h = q - u while j is still given by q / (). Mathematically therefore our 
theory includes and is equivalent to either a theory in which h was kept equal to 
(interpreted as) the heat flux q but the entropy fluxj was taken to be given by 
q / () - k, where k would represent a flux of entropy due to longer range spatial 
interactions, or a theory in which longer range spatial interactions resulted in 
neither h nor j having any simple dependence on (interpretation in terms of) the 
heat flux q (which, in fact, would then disappear from this theory 10). Thus, 
although motivated differently, our theory has formal similarities to that of 
Maller [11.27]. 

For us then, the process class 1P(,qj) of a body will henceforth be composed of 
processes 7r which are certain ordered 9-tup/es of functions on B x IR, 

7r = {X, e, e, 'I, T,q,u,b, r} , 

with the physical interpretations and mathematical properties we have discussed 
above, and which satisfy the balance of linear momentum (11.2), the imbalance 
of entropy (11.4), and the balance of energy in the new form (11.3'). Paralleling 
(11.6 - 8), it is easy to show then that (11.2), (11.3'), and (11.4) are, given 
sufficient smoothness and (11.5), equivalent to the local conditions 

div T + eb = ex , 

ee = T . L - divq + divu + er , 

(11.6) 

(11.7') 

(11.8') 

As we did with (11.8), we will henceforth refer to (11.8') as the dissipation 
inequality. 

In addition to entering u into the balance of energy, we also - and this is 
crucial for our theory - adjoinu to the constitutive structure of (11.10)1_5' That 
is, like f(·), Pf{·), T(.), q (.), and QJ(.), there is a response function u (.) giving the 
values of u(X, t) for every process 7relP(,qj) according to 

A 2' 
U = u(F, e, V F, V F,g,F) . (11.11) 

Now the presence of Fin (11.11) and our suggested interpretation ofu . n as a 
rate of supply of mechanical energy might motivate one, based on the formal 
analogy with the working of the surface tractions (TT x) . n, to require that the 
interstitial working 

2 • 
u·n =u(F,e, VF, V F,g,F)'n 

10 Note that, in terms of this last alternate, our theory can be seen as a way of reintroducing the heat 
flux q by defining q "" OJ and then u = q - h. The first alternate theory, of course, is just the rein
troduction of the heat flux q by the identifications q "" h and then k "" q/ 0-j. As these alternate 
but equivalent theories suggest, outside the traditional structure (11.2 - 4) the identification of the 
"real" heat flux is a rather subtle affair. 
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be linear in P. We shall not make such an assumption, and indeed the form of P' s 
appearance in ii (.) will be one of the main results of the theorems we give below. 

Finally, we need an appropriately amended form of the Axiom of Size to 
accommodate our new theory's local laws (11.6), (11.7'), and (11.8'), as well as 
its constitutive structure, (11.10)1_5 and (11.11). But this is straightforward: we 
repeat verbatim the first half of our earlier prescription for producing an induced 
8-tuple associated with any motion X(',·) and any temperature field 8(·,,) and 
now simply observe that the constitutive equation (11.11) lets us also calculate an 
interstitial work flux u (', .) associated with X(', .) and 8(·, .). We now use (11.6) 
and (11.7') to compute an associated body force b (', .) and radiant heating 
r(., .). We now have thus produced an ordered 9-tuple of functions defined on 
B x IR, viz., 

7r(l, II) = {X, 8; e, 'I, T,q,u,b, r} , 
, 

which was induced by the motion-temperature pair (X, 8). It now makes sense to 
postulate the following modified 

Axiom' of Size. Every induced 9-tuple 7r(l,lI) is a process and so must satisfy the 
dissipation inequality (11.8'). 

We now prove a fundamental theorem delimiting the possible functional 
forms of tji(.) and ii (.). To state it, let us introduce the function ii (.) given by 

ii (F, 8, "IF, V2F,g ,L) = ii (F, 8, "IF, "12 F,g ,L F) . 

Since the spatial velocity gradient L and the time rate of F are related by 
L = P F -1 during any motion, it is clear that u may be equally well computed 
during any process 7r by use of ii (.) or ii (.). Let us also recall that, for any second 
order tensor A on V, the adjugate of A is the unique second order tensor A * 
satisfying A * T (a I\b ) = (A a) I\(A b) for all a and b in V. As a consequence, one 
may easily show that 

A * = A 2 - IA + II 1 , 

where I and II are, respectively, the first and second principal invariants of A. 
Finally, if Fla and Flap denote, respectively, the Cartesian components of F and 
V F, let us define a third order tensor IK on V by setting 

otji 
IKijk = (!--FlaFkP' 

OFjaP 

Note that IK is symmetric in its first and third places. 
We now have 

Theorem 2. Let the balance laws (11.2), (11.3'), and (11.4) hold. If a material 
with the constitutive structure (11.10) and (11.11) satisfies the Axiom' of Size, 
then it is necessary that the free energy tji(.) 

i) be independent of V 2F, g, and P, i.e., 

If! = tji(F,8, V F) = tji(F, 8, "IF, 0, 0, 0) , 
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ii) serve as a potential for the entropy fi(·) and the energy §(.) in the sense that 

,,= - tPB(F, e, V F) , 
e = tP(F, e, V F) - etPB(F, e, V F) . 

It is also necessary that 

iii) the interstitial work flux "(.) be at most of the form 

u = "(F, e, V F, V2F,g,L) , 

= w + {IK + E}L + L "'m , 

where the third order tensor E is skew in its first and third places, and where E 
and the vectors wand m may depend on at most F, e, V F, V2F, and g. 

Theorem 2 tells us that "(.) is at most the sum of a term w which is 
independent of the deformation rate, a term {IK + E}L which is linear in the 
deformation rate and which is partially determined by the free energy, and a term 
L "'m which is quadratic in the deformation rate. We will analyze each of these 
terms below, but for now we just note that, in a thermodynamics with no inter
stitial work flux u, it follows from (11.13) that IK must vanish identically (as must 
also w, E, and m). Thus, we would then have ifiv F ;;;;; 0, and 'II would become a 
function of F and e alone - certain longer range spatial interaction effects would 
thus drop out of (not be modelable in terms of) tP(·). 

We now sketch the proof of Theorem 2. 

Proof. When the chain rule is applied to the dissipation inequality (11.8 '), one 
finds the condition 

g[tPF' F+ {tPB+ fi}8+ tPVF' V F+ tPg' g+ tPV2F' V 2F+ ljIi' F) - TF- 1T • F 
-UB' g-ug· G- [UF OVF+UVFOV2F+uV2FOV3F+UiOVF] ·F-1T 

+q·g~o, 
e (11.14) 

where all of the indicated response functions and their partial derivatives are 
evaluated at (F, e, VF, V2F,g,F)e5, where G = grad2 e, and where for any two 
tensors of order n, rand f/J, we define rO f/J to be the second order tensor such 
that, in Cartesian components, 

(rOf/J);j = l';pq ... t f/Jpq ... tj . 

Now, given any point Ii in the constitutive domain 5, we can always find a 
motion X(o,·), a temperature field e(o, .), and a particle time pair (Xo, to) eB X IR 
such that 2 • 

(F, e, VF, V F,g,F)(Xo, to) = Ii , 

11 In Cartesian components then (11.13) asserts that 

u; = w;+{IK;jk+E;jk}Ljk+L *ijmj. 
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while at (Xo, to) the seven quantities iJ, vi, '112 i,g,F, G, and '113 F are indepen
dent of A and arbitrary (up to certain symmetries which I leave implicit). 
Moreover, this motion-temperature field may then be used to produce an ordered 
9-tuple which, by the Axiom' of Size, will be a process and so must satisfy 
(11.14). But, in (11.14), iJ, vi, v2i,g,F,Gand V3Fappearlinearly; we conclude 
at once that 

and 

!/io+ rpiS 0 , rjig = 0 , 

rjiV2F = 0 , !/if = 0 , 

A • _1T • 
(UfOVF)·F = elf/v£' VF, 

ug·G =0, 

(UV2FOV3F) . F- 1T = 0, 

(11.15) 

(11.16) 

where, up to their respective implicit symmetries, vi, G, and V3F are arbitrary. 
When integrated, (11.15h,3,4 tell us that rji(o) is independent of g, V2F, andi, 

as we had claimed. Further, (11.15)1 then tells us that ~(o) enjoys the same in
dependence and that, in fact, ~ = - rjio. That e = If/- Olf/o now follows easily 
since e = If/+ 0". 

The condition (11.16h is well known to be equivalent to the requirement that 
U (.) be an affine function of g with skew linear part. The conditions (11.16)1,3 are 
more difficult to analyze, but we note that, in terms of the third order tensor IK of 
(11.12) and the function ii(·), we may write (11.16)1 in the form 

(11.17) 

for every third order tensor (G, symmetric in its first and third places, and where 

Observe that, by our earlier result concerning rji(.), the tensor IK is independent 
of L. But (11.17) is exactly the functional restriction addressed by the representa
tion theorem given below. We thus conclude that (11.13) holds; the proof of 
Theorem 2 is now complete .• 

Our proof of Theorem 2 depends critically on solving the functional restric
tion (11.17). We state here the relevant theorem; its proof will appear elsewhere. 

A Representation Theorem. Let V be a three dimensional inner product space, let 
T be the set of second order tensors on V, and let ~ ~ T be open and connected. 
If u (. ): ~ -+ V is once continuously differentiable and satisfies 

(A) 

for all L E ~, for all third order tensors (G, symmetric in their first and third 
places, and for some third order tensor IK, symmetric in its first and third places, 
then u (.) is necessarily of the form 
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u = u (L ) = w + {IK + IE}L + L *m , (B) 

where the vectors wand m, and the third order tensor IE are independent of L. 
Additionally, IE is skew in its first and third places. 

Conversely, if (B) holds on q), then u (.) is continuously differentiable and 
satisfies (A). 

If we use (11.13) and compute the divergence of u on any process (so 
L = grad v for some velocity field v), we find that 

divu = divw + L . div{IK + IE}+ L *T . gradm + {IK + IE}· grad2v T +m . divL *T 

where the divergence of any third order tensor field «; = «; (x) is defined to be the 
second order tensor div«; such that A . div«; = div(<<;A) for all second order 
tensors A. Now the term div L * T is identically zero since L is a gradient; 
moreover, a short calculation, the definition (11.12) of IK, and the fact that IE is 
skew in its first and third places shows that 

{IK + IE}· grad2v T == {IK ijk+ lE ijk } Vj, ik = IKijkVj,ki.' 

= el/lVF' VF-e(l/IvFOVF)·L , 

where (I/IVF 0 V F)ij == (8 1/1/8F;ap)Fjap· Consequently, we have 

divu = divw + el/lVF' VF+L *T. gradm +L . [div{IK+ IE}- el/lvFOVF] . 

When the above form for divu is substituted into the dissipation inequality 
(11.8') and use is made of (i) and (ii) of Theorem 2, one finds that 

L . [e'llFFT + e'llvFD VF - div{IK + IE}- T] - L*T. gradm + q . g - divw ~ 0, 
() (11.18) 

which we will call the reduced dissipation inequality. (It should be noted that the 
restrictions imposed by (11.16h,3 on w, IE, andm have been left tacit in (11.18). 
In Sect. 11.5, for materials of Korteweg type, we solve them completely.) 

11.4 Forms and Effects of the Interstitial Work Flux 

In classical thermomechanics the working of forces is always a linear form in the 
velocity i, e.g., (Tn)·i and (eb) ·i. Of the three terms w, {IK + IE}L, andL *m 
appearing in representation (11.13) for the interstitial work fluxu, only the term 
{IK + IE}L possesses this classic structure of linearity in the velocity field; the term 
w, which allows for energy fluxes even at particles in local equilibrium, and the 
term L *m, which is quadratic in the velocity field, are very much nonstandard. 
They can, of course, always be removed by fiat: one merely postulates that w == 
m == O. Moreover, the condition w == 0 follows at once if we were to adopt the 
postulate that 
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u = 0 if PJ is motionless . 

Similarly, both w == 0 and m == 0 would follow if we were to adopt the postulate 
that 

u = 0 if PJ moves rigidly . 

Indeed, since L is skew whenever X (', .) is rigid, this second postulate requires 
that 

w+{IK+IE}W+ W*m = 0 

for all skew tensors W. As a consequence, not only must wand m both vanish, 
but also we must have that 

{IK+IE}W = 0 

for every skew tensor W. As we shall see in a moment, this last condition is 
enough to totally determine IE in terms of IK (see (11.20h below), so that the 
postulate (P2) is, in fact, quite strong. 

Here, rather than adopt either of the above additional postulates, I prefer to 
take a more speculative approach and study the effects upon and interplay 
between the various parts of ii (.) under several alternative, additional, and in 
some cases more familiar, postulates. These postulates are, in effect, constitutive 
assumptions delimiting the modes of interstitial work flux supported by PJ • With 
them the reduced dissipation inequality (11.18) still has much to tell us not only 
about the various parts of ii (.), but also about Iji(.), t (.), and q (.), the response 
functions for, respectively, the free energy, the stress, and the heat flux. 

First, recall that the velocity gradient L may be decomposed into its sym
metric and skew parts. That is, L = D + W, where D = D T is the stretching 
tensor, and where W = - WT is the spin tensor. A simple calculation now yields 
that 

L* =D*+D W+ WD-(trD)W+A.Q9l, (11.19) 

where l, the axial vector of W, is just + of the vorticity vector, w = curl.i. Let 
IKuk and IEUk denote, respectively, the Cartesian components of IK and IE. We now 
have 

Theorem 3. The interstitial work flux ii (.) is independent of the spin tensor W, 
i.e., 

ii(F,(}, VF, V2F,g,L) =ii(F,(}, VF, V2F,g,D) , 

where D is the stretching tensor, if and only if, in the representation (11.13), 

m(·) == 0 

and IE is totally determined by IK according to 

(11.20h 

Proof. As a result of (11.13) and (11.19), we see that (P3) holds if and only if 

{IK+ IE}W + {D W + WD-(trD) W + l®l}m == 0 . 
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-If we take D = 0 in this and make the replacement W -+ a W then, since A -+ a A, 
we find that 

a2(A®A)m + a{IK+ IE}W = 0 

for all a. Thus, (P3) implies that 

(A®A)m=O and {IK+IE}W=O, 

for all vectors A and all skew tensors W. That (11.20)1 must hold is now clear. 
In terms of the components of IK and IE, the condition that {IK + IE} W = 0 for 

all skew W, takes the form 

When this equation is written down with the roles of k and i interchanged and 
then with the roles of j and i interchanged, and when the resulting three equations 
are summed, one finds, since lE ijk is skew in i and k, that 

2IEjik = IK ikj+ IKjki+ IKkij-IKijk-IKjik-IKkji' 

= 21Kikr 21Kijk , 

where the last holds because IK ijk is symmetric in i and k. We see that (11.20h is 
also implied by (P3). 

Conversely, it is now clear that (11.20)1 and (11.20h together imply (P3) •• 

Theorem 3 tells us that when only the local stretching, and not the local spin, 
is allowed to influence the interstitial flux u, then u is necessarily of the form 

u=w+VD, 

= w(F, e, V F, V2F,g) + V(F, e, V F)D , (11.21)1 

where the third tensor V is, by (11.12), (11.13), and (11.20h, completely 
determined by ViVF according to 

a Vi a Vi a Vi \I"k= n--R Fkp+n--R Rp-n_-R Fkp . (11.21h 
I) 0( a 1:'. la 0( a I:' la) 0( a 1:'. )a 

rjap rkap riap 

It is not hard to show that 

V(F, 8, VF) = 0 ~ ViVF(F, 8, VF) = 0, 

i.e., the dynamic portion VD of the interstitial work flux u vanishes identically 
only at points (F, 8, V F) where If! is locally not sensitive to strain distortions. In 
the next section, for materials of Korteweg type, we will see that thermodynamics 
tightly entwines the static part w of u with the temperature gradient and the equi
librium heat flux (in fact, at any particle where either of these vanish divw must 
also vanish 12). Moreover, with one additional postulate (see our (Psh), w itself 
turns out to necessarily vanish at any particle where grad{} vanishes. Under the 

12 See the Corollary to Theorem 11. 
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assumption (P3) then, we can begin to see some basis for why the classical 
thermodynamics of homogeneous processes never found a need to introduce the 
flux u. 

Let eijk be the usual permutation symbol. Dual to (P3) is the condition of 

Theorem 4. The interstitial work flux" (.) is independent of the stretching tensor 
D, i.e., 

"(E, 0, VE, V2E,g,L) = "(E, 0, VE, V2E,g, W) , 

where W is the spin tensor, if and only if, in the representation (11.13), 

m(·) ;: 0 

and the third order tensors IK and IE satisfy 

and 
IKijk+ I Kikj + IKjik = 0 , 

lEijk = -H1Kjik-1Kjki}+ ¢Jeijk' 

where ¢J is a scalar-valued function of at most E, 0, V E, V 2 E, and g. 

(11.22)1 

(11.22h 

(11.22h 

We remark that, by (11.12), it is clear that (11.22h constitutes a compatibility 
condition on the Helmholtz free energy function Iji(.). Further, it is now not hard 
to show that (11.22h implies that the linear part of "(.) is given by 

{IK + IE}L = {IK + IE} W , 

= {H- ¢Jl}w, (11.23)1 

where w is the vorticity vector, and where H is the traceless tensor given by 

(11.23h 

Proof. Since W* = l ® l, we see by (11.13) and (11.19) that (P 4) holds if and 
only if 

{IK + IE}D + {D*+D W + WD - (trD) W}m ;: 0 . 

If we take W = 0 in this and make the replacementD-+aD then, sinceD*-+a2D*, 
we find that 

a2D*m + a{IK + IE}D = 0 

for all a. It follows easily that (P 4) implies that 

D *m ;: 0 and {IK + IE}D ;: 0 

for all symmetric tensors D. If a, b, and c are mutually perpendicular unit 
vectors, and if we take D = a ®a + b ®b, then, since D * = c ®c, the condition 
D *m ;: 0 gives us (11.22)1 at once. 

In terms of their components, the requirement on IK and IE that {IK + IE}D = 0 
for every symmetric tensor D means that 

IKijk+ lEijk is skew inj and k . 
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Equivalently, 

If we permute indices in (11.24)1, we see that 

and 

Then, if we add (11.24)1_3, we reach 

lEijk+ lE ikj+ IEkji+ IEkij+ IEjik+ IEjki 

+ IKijk+ IKikj+ IKkji + IKkij + IKjik+ IKjki = 0 . 

(11.24)1 

(11.24)z 

(11.24h 

Upon recalling that IKijk is symmetric in i and k, while lE ijk is skew in i and k, we 
see at once that this last equation collapses to precisely (11.22)z. 

That (P 4) also implies (11.22h can be shown as follows. Define 

(fJijk = 3 lEijk-IKjik+ IKjki . 

Since lE ijk is skew in i and k, it is clear that (fJijk is also skew in i and k. Further, 
this asymmetry of lE ijk and (11.24h lets us write that 

(fJ jik = 3 IE jik - IKijk + IKikj , 

= 3 {lEkji+ IKkji+ IKkij}-IKijk+ IKikj , 

= - 3 lEijk+ 2lKkji+ 3lKkij + IKjki 

where we have used the symmetry of Kijk in i and k. But, by (11.22)z, 

and therefore 
IKkji + IKkij = -IKjki , 

(fJjik = - 3lEijk+ IKkir 2lKjki+ IKjki , 

= - 3 lEijk+ IKjik-IKjki, 

= - (fJijk· 

That is, (fJ ijk is also skew in i and j . 
In the same way, we may show that (fJ ijk is skew in j and k; that is (fJ ijk is com

pletely skew symmetric. As a consequence, it must be a mUltiple of eijb and this 
is exactly the assertion (11.22h. 

Finally, it is straightforward to verify that (11.22)1_3 and the symmetry of 
IKijk in i and k suffice to ensure (P 4) .• 

Theorems 3 and 4 tell us that the portion of u quadratic in the velocity neces
sarily vanishes whenever the interstitial work flux within ~ is totally indepen
dent of either the spin Wor stretching D. However, given the nonclassical nature 
of u, such a priori assumptions on u (.) might seem premature. We look next 
therefore at some other and more familiar postulates which, along with the 
reduced dissipation inequality (11.18), could also be used to justify our dropping 
the quadratic part of u from the local laws (11.6), (11.7'), and (11.8'). As will 
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become apparent, however, the quadratic part ofu could still playa role in the 
specification of boundary data for flJ. 

In the reduced dissipation inequality (11.18) the spatial velocity gradient 
L = F F -1 appears in a non-explicit way only in so far as it (i. e., F) enters into the 
response functions for the stress T and heat flux q. Let us say the material com
prising flJ is elastic whenever these two functions do not involve i. Thus, in an 
elastic material only F, 8, V F, V2 F, and g enter into the constitutive equations 
for T and q. By the Axiom' of Size, (11.18) must in essence hold for all values of 
(F,8, VF, V2F,g,F) in the constitutive domain.l. Let T denote the set of all 
second order tensors on V. We now and henceforth assume that.l is of the form 
.Jl' x T, i.e., 2 • 

if (F, 8, V F, V F,g) e.Jl' and FeT, 
2 • 

then (F,8, VF, V F,g,F)e.l 

where .Jl' is open and convex. It is now straightforward to prove 

Theorem 5. If the material comprising flJ is elastic, then (i) in the representation 
(11.13) the vector m is a constant, (ii) the stress is determined according to 

and (iii) the reduced dissipation inequality is now just the requirement that 

~-divw~O. 
8 

By (i) of Theorem 5, the quadratic part, L *m = (grad v)* m, of u will now be 
divergence-free; as a consequence this term drops completely out of the local 
laws (11.6), (11.7'), and (11.8'). However, since we have not shown m = 0, the 
term L *m might be of importance for the specification of boundary data for flJ. 
We do not pursue this matter here. 

By (ii) of Theorem 5. the stress T in an elastic material is determined com
pletely by the free energy If! and the third order tensor E. However, since E is 
skew in its first and third places, div{div E} == 0. As a consequence 

div T = div [e I/IFFT + e I/IvF 0 V F - div IK] , 

and E drops completely out of the local form (11.6) of balance of linear momen
tum. Further, all three of the terms e I/IVF 0 V F, IK, and E drop out of the local 
form (11.7') of the energy equation: the contribution each of these terms makes 
to the stress power T· L is exactly cancelled by its respective contribution to 
divu. Indeed, for elastic materials (11.7') may be put in the form 

i.e., except for the presence of the term due to w, the energy equation for those of 
our materials which are elastic is of the same form as that in classic thermo
elasticity. 
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All of the terms e I/IF 0 V F, IK, and IE affect crucially, however, the local stress 
system in fj. Indeed, by (11.9), we know that the usual form of the balance of 
angular momentum holds if and only if T is symmetric; here this means if and 
only if 

is symmetric, which necessitates a delicate interplay between the free energy and 
IE, and which usually need not hold. However, in the important special case (P3), 

when u is independent of the spin tensor, the sum IK + IE is just the tensor \I of 
(11.21) and is obviously symmetric in its last two places. Therefore, div{IK + IE} 
will be symmetric and so now . 

T = TT <* IjJFFT + IjJvFD V F is symmetric, 

<* IjJF(F, 8, V F) . WF + IjJvF(F, 8, V F) . WV F = 0 v skew W , 

i.e., if and only if 
IjJ(QF, 8, Q V F) = IjJ(F, 8, V F) 

for all (F, 8, V F) in the domain of 1/1 ( .) and for all proper, orthogonal Q in a 
neighborhood of 1. This last condition, broadened to hold for arbitrary proper, 
orthogonal Q, is usually referred to as the invariance of If! under superimposed 
rigid rotations. As we see, it ensures the symmetry of T whenever the interstitial 
work flux satisfies (P3). On the other hand, the invariance of If! under super
imposed rigid rotations will generally not suffice for the symmetry of the stress in 
those of our materials whose interstitial work flux meets, say, (P 4). 

Proof. To establish Theorem 5, note that the reduced dissipation inequality 
(11.18) and our assumption (It) yield that for all LeT 

_L*T. [gradm] +L . [eI/lFFT + el/lvFDVF-div{IK+ IE}- T] 

(11.25) 

where, since the material is elastic, each of the three bracketed terms depends on 
at most (F, 8, VF, V2F,g) eJ'f. If we replaceL in (11.25) with aL, we arrive at a 
quadratic polynomial in a which must always be nonpositive. This implies that 
the coefficient of a2 is itself nonpositive, i.e., 

L*T. gradm ~O v LeT. 

Let e be any unit vector, let {e,d,j} be a right handed, orthonormal basis for V, 
and let a and b be any vectors in V. If we set L = a ®d + b ®f, then a simple 
calculation shows that L * = e ® (a /\b); therefore gradm must satisfy 

(a /\b) . (gradm)e ~ 0 

for all vectors a, b, and e, Ie 1=1, in V. Clearly, then gradm must vanish 
identically; equivalently 
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m =m(Vx(X),8(X), V 2X(X), V3x(X),grad8(X» 

must be independent of X for every motion - temperature pair (X, 8). That 
m(o): .if-+ V must be the constant map is now clear. 

Next, since gradm vanishes, the inequality (11.25) is linear in L. Con
sequently, we can violate (11.25) unless on.if 

etPFFT+etPvFDVF-div{IK+E}-T=O, 
and 

q . g - divw ~ 0 . • 
8 

Two other cases in which the term L *m, quadratic in the velocity, drops out 
of the local laws (11.7') and (11.8') may also be formulated. To state them, let 
us, as we did with u, write T and q as functions, T(o) and q(o) respectively, of the 
variables CF, 8, VF, V2F,g) e.if and LeT. For any second order tensor M, let 
sym(M) and sk(M) denote, respectively, the symmetric and the skew parts of M. 
Lastly, note that use of (11.19) lets us write the reduced dissipation inequality in 
the form 

-[D*-WD-DW+(trD)W+l®l] ·gradm 

+L . [eViFFT + etPvFDVF-div{IK+ IE}- T] -divw + q. g ~O. 
8 (11.26) 

Paralleling the alternate hypotheses (P3) and (P 4), we can now use (11.26) to 
prove 

Theorem 6. If the material comprising ~ is such that T( 0) and q (0) are both 

A) independent of the spin tensor W, 
or 

B) independent of the stretching tensor D, 

then in the representation (11.13) the vectorm is a constant. Moreover, in Case A 
the skew part of T is independent of D as well as Wand is given by 

sk(T) = sk(etPFFT + etPVF 0 V F) - sk(div{IK + IE}} ; 

while in Case B the symmetric part of T is independent of W as well as D and is 
given by 

sym(T) = sym(etPFFT + etPvFD VF) - sym(div{IK + IE}) . 

We omit the proof of Theorem 6 since it rests on arguments very much like 
those we have already employed. The only difficult point is in proving a lemma 
that a ®a . gradm ~ 0, for all vectors a in V and all motion-temperature pairs 
(X, 8), necessitates m (0): .if -+ V being a constant map. 

Theorem 6 is interesting. It asserts that in Case A, where T and q can depend 
on the stretchingD, this dependence is not completely arbitrary: the skew part of 
T is essentially elastic, being independent of D and totally determined by tP( 0 ) 

and IE (0). Similar remarks, of course, apply to the symmetric part of T in Case B. 
Theorem 6 also tells us that the quadratic part L *m of u will enter into the local 
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laws (11.7') and (11.8') only when T(.) and/or q(.) involve both the stretchingD 
and the spin W. In this regard it is worth recalling that, within the kinetic theory 
of gases, both Maxwellian Iteration (see Maller [11.28]) and the Chapman
Enskog approximation method (see Edelen and McLennan [11.29]) lead to forms 
for T(.) and q (.) that do indeed involve both D and W. While these forms can in
volve other constitutive variables which are not accounted for in our present 
theory, it would be interesting to find the forms for u (.) implied by the various 
models used in the kinetic theory. This problem, however, will be taken up in a 
later paper. 

11.5 Materials of Korteweg Type 

An important subclass of our general materials (11.10, 11) are the materials of 
Korteweg type. They arise when the constitutive equations of (11.10, 11) are 
specialized to 

e = e(e, (J,d,S,g,L) , 

1'/ = r,(e, (J,d,S,g,L) , 

T = T(e, (J,d,S,g,L) , 

q = q(e,(J,d,S,g,L) , 

u = u(e, (J,d,S,g,L) , 

I{I= ijJ(e, (J,d,S,g,L) , 

(11.27) 

where e is the spatial mass density of (11.5), where d == grade, S = ST == grad2 e, 
and L = F F -1 = gradx, and where we still use .f to denote the common domain 
of the response functions in (11.27). It is clear that such materials more than 
include the original proposal (11.1) of Korteweg. As we shall see, however, the 
form (11.1) is inconsistent with our general thermodynamic structure unless 
fairly specific relations hold among Korteweg's coefficients a, p, t5, and y. 

When Theorem 2 is applied to materials of Korteweg type, we find at once 
that S, g, andL drop out of e(·), r,(.), and ijJ(.), and indeed 

I{I = ijJ(e, (J, d) , 

1'/ = - ijJo(e, (J, d) , (11.28) 

e = ijJ(e, (J, d) - (J ijJo(e, (J, d) . 

Further, for materials of Korteweg type the representation (11.13) is just 

u = u(e, (J,. ,S,g,L) , 

= w+{IK+ IE}L +L*m , 

where here the tensor IK of (11.12) is given by 

IK= -i-e2{1®l/td+l/td®1}, (11.29) 

and where w, IE, and m are functions of at most e, (J, d, S, and g. Finally, a 
straightforward calculation shows that for materials of Korteweg type 
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Hence, the reduced dissipation inequality (11.18) becomes here the requirement 
that 

L*T. gradm +L . [e(eVig+ Vid· d)l+ ed® Vid+div{IK+ IE}+ TJ 

(11.30) 

The expression (11.29) for IK in materials of Korteweg type allows for some 
striking specializations of our general results. Theorem 3 yields 

Theorem 7. In materials of Korteweg type, the interstitial work flux ii (.) is in
dependent of the spin if and only if m (.) == 0 and 

Consequently, 
IE = i-e2{1® Vid- Vid®l}. 

u = w-e2Vid(trL) , 

=W+eeVid!3 

Theorem 4 is the main ingredient of 

Theorem 8. In materials of Korteweg type, the interstitial work flux ii (.) is in
dependent of the stretching if and only if IK == m (.) == 0 and lE ijk = r/J Bijk. Thus, 
Vid(') == 0 (i.e., 'II is a function of e and 0 alone) and 

U = W - r/J curti , 

where r/J is a scalar-valued function of at most e, 0, and d. 
Only two things are not immediately obvious in the above theorem. First is 

the necessity of IK == Vid == 0, and this follows at once from the representation 
(11.29) and the compatibility condition (11.22h. Second is the fact that r/J cannot 
depend on S or on g, and this may be shown to follow from the general repre
sentation (11.40h below. 

Theorem 5 has the specialization 

Theorem 9. Foran elastic material of Korteweg type, the vectorm of(11.13) is a 
constant, and the stress is determined according to 

(11.31) 

A simple calculation, based on the first of (11.31), shows that we can also write T 
in the forms 

T = e{div(e Vid) - (e Vi)g+ 'II} 1- ed ® Vid- div{e2 Vid® 1 + IK + IE}, 
= e{ ",-.u} 1-d ® (e Vi)d- div{e2 Vid ® 1 + IK + IE}, (11.32) 

13 By (11.5), e = - q(tr L). 
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where e2 Vid ® 1 + IK = te2{Vid ® 1-1 ® Vid} is, like IE, skew in its first and third 
places, and where, in terms of the Helmholtz free energy per unit current volume 
e Vi, we have defined the (chemical) potential 

(11.33) 

Before continuing our general development, it is interesting to apply (11.31) 
and (11.32) to the special forms for IE found in Theorems 7 and 8. When IE is as in 
Theorem 7, (11.32)1 yields that 

T = e{div(eVid)-(e"')e+ ",}1- ed ® Vid' 

From this it is clear that Twill be symmetric if and only if Vid(e, (J,d) is parallel to 
d, and this occurs if and only if", = ",(e, (J,M), M = Id 12. It is also clear that the 
temperature gradient, g = grad (J, and the second density gradient, S = grad2 e, 
will now enter into T only through the term div(e Vid); thus, they will affect only 
the spherical part of T. 

On the other hand, when IE has the form given in Theorem 8, (11.31h yields 
that 

T = - e2{Vie- tdivVid}1 + te2 grad Via-per{gradtP}, 

= - e2{Vie- tdiv Vid} 1 + te2{d® Vigd+g® Vi6d+ S Vidd} 
- per {tPed + tP8g +S tPd} , 

where, for any vector a, per {a } is the (skew) second order tensor given by 
(per {a })ij;;;;; eijkak' This form for the stress T allows, in particular, g andS to play 
a much richer role than was their lot in the previous special case: in the present 
model non-zero values for g and/or S will, in general, lead to shear stresses. 
Notice, however, that T will now generally fail to be symmetric. Indeed, even if '" 
is independent of d altogether (as it is if we adopt all of the forms in Theorem 8), 
we have that 

so that 
T= -e2Iiiel-per{gradtP}, 

sk(T) = -per{gradtP}, 

which vanishes if and only if grad tP = O. 
The above two special cases illustrates some of the vast variety of stress 

systems contained within the class of elastic materials of Korteweg type. 
Nevertheless, it is not hard to show, by (11.32h, that every elastic material oj 
Korteweg type meets 

(11.34) 

Hence, the chemical potential f.l not only determines a portion of the stress T - it 
also determines all of div T whenever the temperature field is spatially uniform. It 
follows that, in isothermal problems, the equations of motion (11.6) take the 
form 

-gradf.l+b =x, 
for every elastic material of Korteweg type. Moreover, these equations are of 
exactly the same structure as those governing the motion of an Eulerian perfect 
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fluid in a barotropic flow. Consequently, whenever the body force b is derivable 
from a potential, b = - gradf(x, t), the acceleration field will be a gradient, and, 
as a result, much of classical hydrodynamics carries over at once to every elastic 
material of Korteweg type. More specifically still: whenever the temperature field 
is uniform, the body motionless, and b = - gradf(x) , the equations of 
equilibrium for our materials admit of the first integral 

/.l.+ f= constant = k , 
i.e., 

Thus, instead of the equilibrium configurations of our material being governed 
by 3 third order partial differential equations (div T = grad!) for the single scalar 
field e, which would usually result in e being overdetermined 14, they are in fact 
governed by a single partial differential equation of second order. 

The forms (11.31) - (11.34) have several other significant consequences. One 
of them we shall take up in the next section; here let us consider the problem of 
embedding Korteweg's form (11.1) into our thermodynamics of elastic materials 
of Korteweg type. Specifically, let the coefficients of a, p, 0, and Y of (11.1) 
depend on e, B, and (even) d, compute the divergence of (11.1) and require it to 
satisfy (11.33) and (11.34) for every density field e = e(x) and every temperature 
field B = B(x), for some Helmholtz free energy response function IfI = iiJ(e, B, d). 
This is the basic idea behind 

Theorem 10. Suppose that in (11.1) pis afunction of e and B, while a, p, 0, and ° 
may befunctions of e, B, and d. /f(11.1) gives the stress in an elastic material of 
Korteweg type, then it is necessary that (i) a, p, ° and y be functions of e alone 
that meet 

a+Y=ec, y'=c+o, P+o=+(ec'-c) 

for c = c(e), and (ii) the associated free energy then must be of the form 

IfI = iit(e, B,d) = ~ (:) Id 12+ C(e) . d + f(e, B) . 

(11.35) 

(11.36) 

We remark that in Theorem 10 we regard (11.35)1 or (11.35)z as defining 
c = c(e); we also note that the formulae (11.35) were found earlier by Aifantis 
and Serrin [11.13] in their more specialized study of the variational theory of van 
der Waals. Finally, it should be noted that the vector-valued function C = C(e) of 
(11.36) may be easily shown to vanish identically if one supposes IfI to be 
invariant under superimposed rigid rotations. 

A converse to Theorem 10 is slightly subtle to state due to the fact that, if an 
elastic material of Korteweg type satisfies (11.36) for some function c = c(e), the 
relations (11.35) determine the four-tuple (a, p, 0, y) only up to the addition of a 

14 In [11.10] Serrin has shown that precisely such overdeterminism occurs for Korteweg's form (11.1) 
unless a very special relation holds among the non-classical coefficients a, p, .5, and y. 
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term of the form (-h, -h',h',h), where h = h(e) is arbitrary. Thus, when we 
enter (11.36) into (11.33) and then into (11.32h, we find the formula 

T = {- e2fe+d. (e') +(ec)L1e+ t(ec)' IdI2}I-cd ®d-d ®(e') 

-div{e2riid®I+IK+IE} , 
where 

e2riid® 1+ IK = t(ec){d ® 1-1 ®d}+ te2{,® 1-1 ® ,}. 

But now, the third order tensors 

A==s®I-I®s, 

IB ==h{d®I-I®d}, 

with s = s (e) == fe' de and h = h (e) arbitrary, are skew in their 1 st and 3 rd 
places and satisfy 

div A = d . (e ') 1-d ® (e ') , 

divlB = {hL1e+h' Id 12}I-h' d ®d -h grad2e, 

since d = grade. Thus, our last formula for the stress T may be written as 

T = {- e2fe+ (ec- h)L1 e+ (t(ec)' - h') Id 12} 1 +(h' - c)d ®d 

+ h grad2 e- div II , 

which, up to the divergence of 

is exactly Korteweg's form (11.1) with coefficients a, p, J, and y (== h) satisfying 
(11.35). Note, however, that if we pick IE so as to have, say, ll==O, then the 
tensors A and IB will contribute to the interstitial working; indeed, the linear part 
of the interstitial flux u will then the given by 

{IK + IE}L = {A + IB - e2 riid ® I}L , 

= (s + hd- e2riid) trL -L (s + hd) , 

= (trD){i-(s+hd-e 2riid}-{D-i-(trD)I}(s+hd)- W(s+hd) , 

so that u will be sensitive to (i) the isotropic part of any stretching (through trD), 
to (ii) non-isotropic stretchings (throughD - i-(trD) 1), and to (iii) spins (through 
W). Note also that, since s = s(e), the combination s + hd vanishes for all e and 
d if and only if s(e) and h(e) both vanish identically. Thus, the presence of the 
term y grad2e in Korteweg's form (11.1) requires, within the theory of elastic 
materials of Korteweg type, an interstitial work flux u sensitive to both spins and 
non-isotropic stretchings. 

Of course, forms for the stress far more complex than Korteweg's (11.1) are 
delivered by our (11.31) and (11.32), since the third order tensor-valued function 
IE = lE(e, e,d,S,g) is still at our disposal. How much at our disposal, we now 
study. Indeed, let us return to general, not necessarily elastic, materials of 
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Korteweg type. As we shall now see, the reduced dissipation inequality (11.30) 
significantly structures each of the terms m, IE, and w appearing in the interstitial 
work flux u. Indeed, when the terms gradm, divlE, and divw are expanded in 
(11.30) there will appear a term of the form 

[a: {L 'm + EL + W J] . grad' 6 • 

and a term of the form 

[! {L'm+EL+WJ}grad3e . 

and these terms will be the only ones in (11.30) containing grad2 (J and grad3 e, 
i.e., (11.30) will be linear in these two quantities. Invoking the Axiom' of Size, 
we conclude easily that 

[~ {L'm+EL+WJ} G =0. (11.37), 

and 

(11.37h 

for all completely symmetric 2nd and 3rd order tensors, G and (9, respectively. 
The restrictions (11.37)1,2 are just the form (11.16h,3 take when specialized to 
materials of Korteweg type. Here they can be analyzed in rather full detail. 

Since {L *m + IEL + w} is a quadratic form inL, it is clear that (11.37>t,2 holds 
if and only if 

[~ {L *m}] . G = [~ {IEL}] . G = aw . G = 0 , ag ag ag 
(11.38) 

and 

[ a [ a ] aw - {L *m} . (9 = - {IEL} . (9 = - . (9 = 0 , as as as (11.39) 

for all completely symmetric 2nd and 3rd order tensors, G and (9, respectively. 
The first of (11.38) and (11.39) are very easy to analyze: (11.38)1 tells us that 
L *mg must be skew, i.e., 

for all L * which are adjugates. It is easy to see that this can hold only if mg = 0, 
i.e., m(e, (J,d,S,g) is independent of g. It is also independent of S. To see this, let 
a be any vector in V and take (9 = a (8) a (8) a in (11.39)1 to reach 

for all a E V and all L * which are adjugates. It is not hard to show that this can 
hold only if ms(a (8)a) = 0 for all a E V. Hence, by the spectral theorem, msS' = 0 
for all symmetric S', i.e., at every S the directional derivative of m with respect 
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to S vanishes in every direction. Clearly, m(e, (},d,S,g) is independent of S as 
well as g: 

m = m(e, (},d) . 

Unfortunately, the remaining four conditions of (11.38) and (11.39), restrict
ing the dependence of IE and w on Sand g, are more complicated to analyze. 
However, it turns out 15 that (11.38h and (11.39h hold if and only if w(o) is of the 
form 

w = w(e, (},d,S,g) , 

= k(e, (},d) +r(e, (},d) [S] + WI (e, (},d)Ag + W2(e, (},d) [S] Ag +S*z(e, (},d) , 

(11.40)1 
where r (e, (), d) [0] and W2 (e, (), d) [ 0] are linear and satisfy 

e . r(e, (), d)[e (8)e] = 0 = e A W2(e, (), d)[e (8)e] , 

respectively, for all unit vectors e. The function wt(o) = lE(o)L must, by (11.38h 
and (11.39h, have the same functional form (11.40)1 as w(o) has; however, for 
w t (0) the fact that L may be varied at will, along with the fact that IE is skew in its 
1 st and 3rd places, allows us to show that (11.38h and (11.39h hold if and only if 
IE (o)L is of the more special form 

IEL = lE(e, (},d,S,g)L , 

= lEo(e, (},d)L + 1E 1(e, (},d) [S]L + {L T ~(e, (},d)}Ag , (11.40h 

where IE 1 (e, (), d) [ 0] is linear and meets 

e·1E 1(e,(},d)[e(8)e]L =0, 

for all unit vectors e. Of course, lEo and IEl are, like IE, skew in their 1st and 3rd 
places. 

The forms (11.40)1,2 have several interesting consequences. First, consider 
our earlier expression (11.31) for the stress in an elastic material. In that expres
sion the first two terms, - e{e IiJ {! + d . IiJ d} 1 and ed (8) IiJ d, involve only e, (), and 
d; it is only through the term div {IK + IE} that the temperature gradient g and the 
second density gradient S can enter into (can influence directly) the stress T. 
Moreover, the term divlK will, by (11.29), be affine ing andS, while, by (11.40h, 
the term div IE will contain no terms involving grad3 e or grad2 () and will be at 
most quadratic in S and linear in g. Thus, for elastic materials of Korteweg type, 
thermodynamics regulates rather severely how g and S may influence the stress, 
although it does clearly allow for a much richer influence than Korteweg's (11.1). 

Perhaps even more interesting are the consequences of the representation 
(11.40)1 for w, the static part of the interstitial flux u. Indeed, let us define 

WE = wE(e, (},d,S) = w(e, (},d,S,O) , 

so that WE is the "equilibrium part" of w. By (11.40)1> we see that 

15 For the details, see Appendices Band C of [11.25]. 
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WE = k«(), B,d) + r«(), B,d)[S] + S*z«(), B,d) , 
and that 

Further, by (11.38h and (11.39h directly, we see that, for any density field 
() = ()(x, t) and for any temperature field B = B(x, t), 

divw = wg·d+WO·g+Wd·S, 

= w~. d+w~. S+w~. g+ (Wt + W2)gAg· d+{(Wt + W2)Ag}d· S, 

where we have used (11.40)t and the definition of WE. 
(11.41) 

Now enter (11.41) into the reduced dissipation inequality (11.30) and select 
g = L = 0. We thus find the restriction 

(11.42) 

for all «(), B,d,S) in the domain of wE(o). Since wE(o) is quadratic in S, the 
inequality (11.42) is cubic in S. Moreover, if 

we assume that the domain ofwE(o) is of the form fJl x !I' x 7;" (12) 

where fJl !,;; (0, 00) x (0, 00) is open and connected, where !I' !,;; V is star-shaped 
with respect to the zero vector, and where 7;, is the set of symmetric, second order 
tensors on V, then it turns out that (11.42) holds if and only if 

for all «(), B,d,S) E fJl x !I' x 7;,. (More detailed restrictions on the parts, k, r, and 
z, of WE are, of course, entailed by (11.42), but we defer discussion of these for 
the moment.) 

For any density field ()(x, t) and for any temperature field B(x, t), (11.41) now 
gives that 

divw = w:· g+ (Wt + W2)gAg· d + {(Wt + W2)Ag}d· S , 

= g. {W~+dA(Wt + W2)g- per{(Wt + W2)dS}} , (11.43) 

where, for any second order tensor A, (per {A })i == eijkAjk. Thus, thermo
dynamics alone forces divw to be a linear function of the temperature gradient g. 
We thus begin to get a little clearer picture of the possible effects of the static 
interstitial flux w: divw vanishes completely whenever the temperature field is 
spatially uniform. 

Moreover, insert (11.43) into the reduced dissipation inequality (11.30), 
replace Land gin (11.30) with, respectively, aL and ag where a> 0, and then 
divide the resulting inequality by a and let a 1 0. This yields that, for all Land g, 

L . [g«() t/i g + d . t/id) 1 + gd ® t/id+ divE {IK + IE} + TEl 

+ g. [W~+d A(WI + w2l,-per{(wl + w2ldS} - q: 1;. 0, (11.44) 
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where 
divE{IK + IE} == [div{IK + IE}] 1,=0, 

and where the equilibrium stress TE and the equilibrium heat flux q E are defined 
by 

E -E -T = T (e,(},d,S) == T(e, e,d,S,O,O) 
and 

respectively. 
Since Land g both appear linearly in (11.44), it is clear that we have now 

proven 

Theorem 11. For any material of Korteweg type, the equilibrium stress and the 
equilibrium heat flux are given by 

and 

respectively. 

TE = - e(e iii e + d . iild) 1-ed ® iild- divE {IK + IE}, 

qE= e{w~+dl\(W1+W2)e-per{(W1+W2)dS}}, 
(11.45) 

Corollary. For any material of Korteweg type, the static interstitial flux w satis-
fies E 

divw =.!L..:..!.. 
in every thermodynamic process. e 
Proof. Enter (11.45)z into (11.43) .• 

Thus, whether g is zero or not, the divergence of w vanishes identically in any 
material of Korteweg type in which the equilibrium heat flux qE vanishes 
identically. In such materials divw drops completely out of the local balance of 
energy (11.7'). 

The form (11.45)1 for the equilibrium stress TE is also interesting: except for 
the term divE {IK + IE} replacing div {IK + IE}, (11.45)1 is exactly the same as the 
expression we found in Theorem 9 for the stress in any elastic material of 
Korteweg type. Thus, if we put g = 0 in them, all our remarks about general 
elastic stress systems carryover to general equilibrium stress systems in arbitrary 
materials of Korteweg type. 

We could now enter (11.43) and (11.45)1,2 into the reduced dissipation in
equality (11.30) and then derived some further thermodynamic restrictions on 
T(o), ij(o), lE(o), and m(o) along the lines Serrin and I presented in Sect. 4 of 
[11.25]. However, I will not pursue this now. 

Throughout our analysis so far, we have avoided any postulate to the effect 
that the interstitial working u . n is invariant under superimposed rigid motions. 
Indeed, since it is well-known that such a postulate would imply that the inter
stitial work flux ii (0) is independent of the spin tensor W, an appeal to Theorem 3 
would then tell us that m ( .) == 0 and that IE is totally determined by IK according 
to (11.20)z. Such a postulate would then be too strong: while Theorem 3 delimits 
an interesting special case of the form of ii (0), we find little reason to believe that 
the interstitial fluxes allowed by nature don't outstrip Theorem 3's compass. 
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A much weaker, and we think more reasonable, postulate is that u . n be 
invariant under superimposed static rigid rotations, or, equivalently, that u(·) 

satisfy _ 2 T _ 2 
u(QF, e,QVF,QV F,Qg,QLQ ) = Qu(F, e, VF, V F,g,L) , (P5)1 

for all proper orthogonal tensors Q, and for all (F, e, VF, V2F,g,L)e.l. For 
materials of Korteweg type, u . n is invariant under superimposed static rigid 
rotations if and only if 

u(~, e,Qd,QsQT,Qg,QLQT) = Qu(~, e,d,S,g,L) , (P5h 

for all proper orthogonal tensors Q, and for all (~, e,d,S,g,L) e.l. Note that to 
even state (P 5)1 or (P 5h constitutes a tacit structure assumption on the corre
sponding constitutive domain .I. I close the present section by considering some 
of the implications of (P 5h for our earlier results on materials of Korteweg type. 

Due to the way in which L enters into the form u = w + {IK + IE}L + L *m, it is 
easy to see that (P 5h holds if and only if 

w(~, e,Qd,QsQT,Qg) = Qw(~, e,d,S,g) , 

{IK(~, e, Qd) + IE(~, e,Qd,QsQT, Qg)}QLQT = Q{IK(~, e,d) + IE(~, e,d,S,g)}L , 

m(~, e,Qd) = Qm(~, e,d) , (11.46) 

for all proper orthogonal Q, for all (~, e,d,S,g) in the domain of w(.) and IE(·), 
for all (~, e, d) in the domain of IK (.) and m (.), and for all tensors L. Note that in 
writing (11.46h we have used our thermodynamic analysis which revealed m to 
be independent of S andg, as is IK in (11.46h by (11.28h and (11.29). 

The consequence of (11.46h is well-known: m (.) must be of the form 

m = m(~, e,M)d 

for some scalar-valued function m(·) of ~, (J and M == Id 12. The conditions 
(11.46)1 and (11.46h are considerably more difficult. However, it may be 
shown 16 that w (.) meets the representation (11.40)10 the thermodynamic restric
tion (11.42), the domain assumption (12), and (11.46)1 if and only if 

(11.47) 

where r('), Wl('), and W2(') are scalar-valued functions of ~, (J, and M = Id 12. 
(Thus, in our earlier representation (11.40)10 the functions k(.) and z(·) now 
vanish altogether, while the functions r(.), Wl('), and W2(') now have delight
fully simple forms.) 

We read off at once from (11.47) that, in every material of Korteweg type, the 
static part w of the interstitial flux (i) vanishes at any particle where d = grad~ 
vanishes, (ii) is, in rough terms, quadratic in the departure of the fields ~(x, t) 
and e(x, t) from uniformity and (iii) vanishes identically for any material 
possessing a center of symmetry for w (.), in the sense that 

16 See Appendix B of [11.25] for the details. 
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W(Q, (), -d,S, -g) = -w(Q, (},d,S,g) . 

We thus have found strong reasons why the classical thermodynamics of homo
geneous processes never found a need for the introduction of w. Finally, if we 
enter (11.47) into (l1.45h, we find the simple relation 

qE= (}(r(j+w2e-2w1M)dl\(Sd). 

Turning now to (l1.46h and using the representation (l1.40h for lE(o), it is 
not hard to show that (l1.46h holds if and only if 

IK(Q, (), Qd)QLQT = Q IK(Q, (},d)L , 

lEo(Q, (},Qd)QLQT = Q lEo(Q, (},d)L , 

1E1(Q, (), Qd)[QSQT] QLQT = Q 1E1(Q, (},d)[S]L , 

~(Q, (), Qd) = Q ~(Q, (), d) , 

(11.48) 

where we have also used that IK is symmetric and lEo is skew in their 1 st and 3 rd 
places. From (11.48)4 we see that 

~ = ~(Q, (},M)d (11.49)1 

for a scalar-valued function ~(o). Next, a short calculation based on (11.29) 
shows that (11.48) 1 holds if and only if 

and this is easily integrated to yield 

IiJ(Q, (), Qd) = IiJ(Q, (), d) 

for all proper, orthogonal Q and for all (Q, (},d) in the domain of liJ(o). Thus, 
u . n invariant under superimposed static rigid rotations requires that If! also be so 
invariant. As a consequence 

If! = If!(Q, (), M) , 

where, as before, M = Id 12. 
The conditions (11.48h,3 may also be analyzed. One finds that a third order 

tensor-valued function IE o( 0) of (Q, (), d), with values which are skew in their 1 st 
and 3rd places, satisfies (11.48h if and only if, for every second order tensor L, 

IEOL = lEo(Q, (},d)L , 

= Aper{L }+B(LTd)l\d + C{l@d-d@l}L , (l1.49h 

where A (0), B( 0), and C( 0) are scalar-valued functions of Q, (), and M = Id 12. Of 
course, whenL = gradi, the term A per{L} is just - Aw, where w is the vorticity 
vector. 

Similarly, it can be shown that a third order tensor-valued function 1E 1(o) of 
(Q, (), d, S), with values which are skew in their 1 st and 3 rd places, which is linear 
in S and meets 
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for all unit vectors e and all second order tensors L, satisfies (11.48) 3 if and only if 

1E1L = 1E 1(e, e,d)[S]L , 

= Fper{SL} + G(L Td)I\(Sd) + H[(trS){l®d -d®l}-S {l®d -d®l} 
- {l ® (Sd) - d ®S}]L , (11.49h 

where F(.), G(·), and H(.) are scalar-valued functions of e, e, and M = Idt 
Note that, when S = 1 in (11.49h, 1E1L reduces to exactly the same form as IE L 
in (11.49)z. 

We have thus found the most general form of the interstitial work flux 
u = w + {IK + IE}L + L *m in all materials of Korteweg type for which the inter
stitial working u· n is invariant under superimposeq static rigid rotations. 
Further, in the case that the material also possesses a center of symmetry for w (.) 
and IE (.), so that both 

and 

then, alongside 

we have 

IE = lE(e, e,d,S,g) , 

w(e, e, -d,S, -g) = -w(e, e,d,S,g) 

lE(e, e, -d,S, - g)L = -1E(e, e,d,S,g)L , 

w(.) =0, 

= C{l®d - d ®l} + H[(trS){l ®d - d ®l} -S {l ®d -d ® l}- {l ®Sd - d ®S}] , 

i.e., the scalar-valued functions ~(.), A(·), B(·), F(·), and G(·) of (11.49)1,2,3 
vanish identically. 

11.6 An Application: Rules Like Maxwell's 

Let v = e -1 denote specific volume, and suppose that at some uniform, constant 
temperature () a body !fI consists of a liquid in equilibrium with its vapor. 
Suppose also that, however they may be distributed throughout !fI, both liquid 
and vapor have uniform specific volumes Vl and V2, respectively. Finally, let 
p = pH(V, ()) denote the pressure function governing the homogeneous, equilib
rium, fluid states of !fl. If pH(., ()) is defined on [Vb V2], Maxwell's rule is the 
assertion that the saturation pressure (i.e., the real pressure) pR of the mixture is 
uniform and is related to (is determined by) pH(., ()) according to 

V2 

HpH(v,e)-pR}dv=O and pH(Vbe)=pR=pH(V2,())' (11.50) 

Of course, (11.50)1 just asserts that, between Vl and V2, pR is such that the area 
under pH(., ()) - pR equals the area abovepH(., ()) - pR; (11.50)z,3just assert that 
pH(., ()) _ pR vanishes at the endpoints Vl and V2' For sufficiently nice functions 
pH(o, ()), the system (11.50) of 3 equations for the three unknowns Vb V2, andpR 
has a unique, non-trivial (i.e., Vl =1= V2) solution. 
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In the special context of one dimensional equilibrium problems for 
Korteweg's form (11.1), Aifantis and Serrin [11.13] noted that if the coefficients 
a, p, d, and y were such that 

P ~- 1 2{a+ y}' +u-T g (T , 

(with (11.35)10 this is precisely our (11.35h) then the value p of the stress in the 
axial direction x (constant since divT = 0) and the pressure function p = p(v, 9) 
of (11.1) satisfied 

X2 dv(x) 
Hp( v(x), 9) - p} dx = 0 , 

XI dx 
(11.51) 

where v = v(x) == g(x) -1 is the solution of the equilibrium equations, and where 
Xl and X2 are any two places where dv/dx vanishes. Equivalently, 

liz 
J {p(v, 9)-p}dv = 0, (11.52) 

where Vi = V(Xi), i = 1,2. With the identifications p(o, 0) = pH(o, 0) and p = pR, 
we see that (11.52) is of the same form as (11.50)1 in Maxwell's rule. Moreover, 
for those equilibrium solutions that are called "transitions" in [11.13], one can 
show that dv(x)/ dx = 0 implies that p( v(x), 9) = p; thus, for transitions the 
integrand in (11.52) will now vanish at each of the endpoints, VI and V2, making 
the analogy between (11.51,52) and Maxwell's rule (11.50) complete. 

For every elastic material of Korteweg type, I now give a broad generalization 
of the above result. The key to our vector Maxwell-like rules is an interesting 
integral identity which holds for every elastic material of Korteweg type 
experiencing any density field and any temperature field whatsoever. 

When we turn to generalize the result of [11.13], we see that, while (11.52) is 
not particularly suggestive, (11.51) invites us to study the expression 

J {TH(g, 9) - T(g, 9,d,S,g)} grad V dv , 
R 

where g = g(x) and 9 = 9(x) are, respectively, arbitrary density and temperature 
fields whose domain of definition includes the region R, and where TH(g, 9) is 
the stress response function for homogeneous, equilibrium states of our material, 
i.e., 

TH(g,9) == T(g, 9,0,0,0) , 

= _g2ijJq(g, 9,0)1 , 
(11.53) 

where we have used (11.31)1. Now, by the divergence theorem, 

JT(x)gradf(x)dv= I fTnda-IfdivTdv , 
R 6R R 

for any smooth tensor field T(x) and any smooth scalar fieldf(x). Hence, with 
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T(x) == T(e(x), 8(x), grade(x), grad2e(x), grad8(x» , 

and with f(x) == v (x) == e(x) - 1, we find that 

J - J 1 J 1 -T(e, 8,d,S,g) grad vdv = -Tn da- -divT dv . 
R oR eRe 

This, with (11.32 - 34), gives that 

J T grad vdv = J [{Vi-.u} l-d ® Vid - ~diV[)]n da+ Hgrad.u- Viograd8}dv , 
R oR e R 

= J {Vil-d ® Vid - ~diV[)}n da- J Viograd8dv, 
oR e R 

where [) == e 2 Vid ® 1 + IK + IE, and where we have once again used the divergence 
theorem. Since" = iHe, 8,d) = - Vio(e, 8,d), we have how established the key 
identity 

J {T grad v- ij grad8}dv = J {Vil-d ® Vid - ~diV[)}n da. (11.54) 
R oR e 

We emphasize that (11.54) holds for every elastic material of Korteweg type, for 
every density field e = e(x) and every temperature field 8 = 8(x), and for every 
region R in the domain of definition of e(o) and 8(·). 

Next, by (11.53), we see that 

TH(e(x), 8(x» grad v(x) = - e2(x) Vie(e(x), 8(x), 0) grad v(x) , 

= Vie(e(x), 8(x), 0) grade(x), 

= grad Vi(e(x), 8(x), 0) - Vio(e(x), 8(x), 0) grad 8(x) . 

Therefore, for any e(') and 8(·), 

HTH grad V_"H gradO}dv = J Vi(e, O,O)n da, (11.55) 
R oR 

where TH = TH(e(x), O(x», and where "H = "H(e(x), O(x», with "H(.,.) being 
the entropy function for homogeneous, equilibrium states of f!I, i.e., "H(e, 8) == 
ij(e, 0,0) = - ViIJ(e, 8,0). 

We have only to subtract (11.54) from (11.55) to complete the proof of the 
first half of 

Theorem 12. For any elastic material of Korteweg type, for every density field 
e('), and for every temperature field 8(·): 

J {(TH_ T) grad v- ("H_ ij) grad 8}dv 
R 

= J f(Vi(e, 8,0)- Vi(e, 8,d»l +d ® Vid + ~diV[)}n da, (11.56h 
oR ~ e 
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where R is any region in the domain of e(·) and e(·). Moreover, if on the 
boundary of R grad e(·) vanishes and grad e(·) is parallel to the outer unit 
normal n (.), then 

H(TH-T)gradv-(17H-17)grade}dv=O. (11.56h 
R 

Additionally, with g == n . grad e and s == n . (grad2 g)n, the tractions, THn and 
Tn, on 8R now satisfy 

Tn-THn = g2{g(n 'I/i~d)+s(n 'I/i~dn)}n , (11.56h 

where I/t~ == l/il}d(g, e,O) and I/i~d == I/tdd(g, e,O). 
We remark that, if III is assumed to be invariant under superimposed rigid 

rotations, then it follows that l/il}d(g, e,O) must vanish and I/tdd(g, e,O) must be 
spherical, i.e., l/idd(g, e,O) = u(e, e) 1. Thus, in this case (11.56h is just 

(11.56)4 

The identities (11.56)1_4 are our desired vector analogs of Maxwell's rule 
(11.50); they include (11.51) and (11.52) as a special case. 

Proof: We have already proven (11.56)1' It is clear that (11.56h will now follow 
if we can show that {div lD}n = 0 on 8R. Suppose therefore that on 8R 

grade(x) = 0 and grade(x) = g(x)n(x) , 

where g(.) is some scalar field. As is well-known, it follows from the first of these 
that on 8R 

grad2e(x) = s(x)n(x) ®n(x) , 

for some scalar field s(·). 
Now, since ID == e2l/id ® 1 + IK + IE, we see from (11.29) that we may write 

div ID = div {i-g2( l/id ® 1-1 ® l/id)} + div IE , 

= g{(d . l/id) 1-d ® l/id} + tg2{(div I/td) 1- grad 1/iJ} + div IE , 

where gradl/td = l/ied®d+ l/il}d®g+ I/iddS, To compute divlE, use (11.38h and 
(11.39h. Thus, for any constant tensor A, 

A . div IE = div {lEA} , 

= d . {IEA}g + g . {lEA }o+ S . {lEA }d . 

Therefore, for any vector a, for any vector n, and at any point where d = grade 
vanishes, 

a· {divlD}n =a· tg2{(g '1/t1}d+S 'l/idd)n-g(n 'l/il}d)-Sl/iddn} 

+g·~a®n1+S·~a®n1· 

But, on 8R, with n the outer unit normal, we have g = gn and S = sn ®n. 
Hence, for any vector a, we have that on 8R 
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a . {div [)}n = a . -h/{{g(n . V16d) + s(n . If/ddn)}n - gn (n . V16d) - sn (n . V1ddn)} 
+ gn . {lEa ®n }e+sn . {lEa ®n }dn , 

=0, 

since 1E(0) is skew in its 1st and 3rd places. Thus, for fields "(0) and 0(0) as 
described, we have proven that {div[)}n vanishes everywhere on oR. This, with 
(11.56)10 proves (11.56h. 

To prove (11.56h, note that {div [)}n = 0 on oR is equivalent to 

{div{IK+IE}}n = -{div{,,2 V1d ®1}}n, 

= - {2"d . V1d+ ,,2div V1d}n . 
Thus, on oR 

{div {IK + lE}}n = - ,,2 {g(n . V1 6d) + s(n . V1ddn)}n , 

where V16d and V1dd are, of course, evaluated at (", O,d) = (,,(x), O(x), 0). Upon 
entering this last into (11.31)1 and appealing to the definition (11.53) of T H, we 
see that we have established (11.56h. • 
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Chapter 12 
Phase Transformations and Non-Elliptic Free Energy 
Functions 

R. D. James 

12.1 Introduction 

The occurrence of a transformation from one solid form to another is often 
made evident by a spontaneous change of shape of parts of the crystal. In an 
unloaded body, this happens at a certain transformation temperature (Jo. 

Let us describe these changes of shape in the following way. Suppose that the 
transformation occurs when the body is cooled to (Jo. At a temperature just 
above (Jo, we label particles in the body by points XE [j£ C 1R3. The deformation 
which produces the change of shape is conveniently described by a function Yo 
mapping [j£ into 1R3 which gives the position Yo(x) of the particle x. Typically, 
part of the crystal, say gJp, does not transform: Yo(x) = x for XE gJp. This part 1 is 
associated with the parent phase. The remaining part gJt = [j£ - gJp is associated 
with the transformed phase. In twinning transformations the parent and trans
formed phases have the same crystal structure, but this is not usually the case. A 
reasonable idealization of observation is that VYo suffers a discontinuity on () gJt. 

In unloaded bodies at (Jo, gJt is often found to consist of several polygonal sub
regions on each of which Yo is reasonably regarded as a piecewise linear function. 
See the photographs of Saburi and Wayman [12.1], for example. 

If diffusion occurs at the transformation temperature, the concepts intro
duced above are not sufficiently general to describe the transformation. It would 
be natural in this case to turn to a mixture theory with motions yl(X, t), ... , 
yl'(x, t) associated with each constituent. The diffusionless transformations 
described above are termed martensitic, polymorphic, or displacive. They tend to 
occur in metals at high pressure or low temperature. In minerals they occur in 
profusion, the common minerals - quartz, calcite, the feldspars - each having 
several diffusionless transformations at various pressures and temperatures. 
Some steels undergo a martensitic transformation during rapid cooling which, 
however, competes with a diffusional transformation favored by lower cooling 
rates. Constitutive relations for these steels would therefore have to be more 
complicated than those studied here. 

After some kinematic preliminaries (Sect. 12.2), we study constitutive equa
tions in which the free energy function depends upon the deformation gradient 
and temperature. Forms of this function appropriate to solids which change 

1 There are cases - the a- fJ transformation in quartz for example - in which the phases do not 
co-exist at the transformation temperature in an unloaded body. The reason for this is a certain 
failure of compatibility explained in Sect. 12.2. 
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phase are described in Sect. 12.3. These forms give rise to systems of nonlinear 
PDE's whose type may change from point to point. 

The stress-free transformation temperature is not generally the transforma
tion temperature for a loaded body (or a body subject to electromagnetic or 
gravitational fields). In fact, even the arrangement of phases turns out to be 
highly sensitive to the loading device in solids. Thus, the behavior of a loaded 
body provides an ideal test case for the constitutive assumptions. In Sect. 12.5 
and 6, we study the stability of some simple piecewise linear deformations in a 
dead loaded body. A particularly delicate question is whether the parent phase 
can be recovered in a transformed crystal by applying some system of dead loads. 
This question is explored in detail for the case where the parent phase has cubic 
symmetry; here a certain technique of averaging over the symmetry group turns 
out to be useful. 

12.2 Kinematics of Co-Existence 

One way in which transformations in fluids differ from those in solids is in the 
restrictions imposed by conditions of continuity. Referring to the description of 
the change of shape in a phase transformation given in the Introduction, we shall 
say that a deformation y is coherent if y is a continuous function on fl. In this 
paper a phase boundary will be a surface in fl of non-zero discontinuity of Vy. 
Suppose we have a coherent deformation y and a smooth phase boundary 0 

which divides fl into two open regions fl + and fl-. Assume that Vy is con
tinuous separately on fl + and on fl- and has limiting valves on 0 from either 
side. Let F+ and F- be limiting values of F = Vy at XEo where a unit normal to 0 
is n. F+ and F- are subject to well-known jump conditions; there is a vector a, 
the amplitude, such that 

F+-F- =a®n. (12.1) 

The relation (12.1) does not playa significant role in the study of fluid phases 
because for (pure) fluids, the constitutive relations are only sensitive to the 
density e, or, equivalently, to detF, which (12.1) does not restrict. To see this, we 
take the determinant of (12.1) and get 

detF+ = (detF-)(1 + Ii· n) , (12.2) 

where Ii = (F-) -l a. Given e+ = eo (detF+) -1 and e- = eo (detF-) -1, the vector 
a can always be chosen to satisfy (12.2). Moreover, given e +, e - and n, we can 
choose F- consistent with e -, choose a to solve (12.2), define F+ by (12.1), and 
conclude that e + = eo (detF+) -1. Still more generally, the special deformation 
y(x) = X+I1(X)V, 11 being a continuous scalar function on a sufficiently small 
neighborhood of 0, and v being a constant vector, can be chosen to match any 
two smooth density fields in fl + and fl- near o. 

In solids, the constitutive equations are sensitive to F (at least) so that (12.1) 
plays a role, especially at places where several phase boundaries meet. To be 
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specific, consider a point CE fll and a sufficiently small sphere fJ' with center c. If 
several planar phase boundaries pass through c, they will intersect (} fJ' in arcs of 
great circles (edges). In general, consider e edges on (} fJ' joined at v vertices, so as 
to partition (} fJ' into/faces. Assume that the endpoints of each edge are distinct 
vertices, that each edge is connected, that the edges intersect only a their end
points and that the system of edges and vertices is a connected set of points. 
Formally, we have given a multigraph (in the terminology of Harary [12.2]) con
sisting of arcs of great circles on (} fJ'. Euler's relation / - e+ v = 2 holds. Now 
assume that each vertex is joined to c by a line segment. A sector of a plane is 
bounded by an edge and the line segments which join its terminal vertices to c. 
These e sectors, termed inter/aces, serve to divide fJ' into / open regions, 
fJ't, ... , fJ'f. We will call fJ't, ... , fJ'f a partition of fJ', and we will denote parti
tions by hollow letters, e.g. IP. See Fig. 12.1 for some examples of partitions. 

I shall investigate the following question: given a partition IP, does there exist 
a coherent deformation y defined on fJ' for which Vy is continuous on iJi 
separately, i = 1, .. . ,J, and for which (} iJi , i = 1, .. . ,J, are phase boundaries? 
Also, I shall assume that each interface supports a non-zero discontinuity of the 
deformation gradient, even in limit as c as approached along an interface. This 
assumption is not unreasonable in view of the crystallographic considerations of 
Sect. 12.3. We will say that a partition is coherent if there exists a coherent defor
mation satisfying the restrictions given above. 

We have confined attention to partitions with plane interfaces only to make 
the definition of a partition easy to state. In fact, a partition is coherent if and 
only if any partition diffeomorphic to it is coherent. Thus, the results shall apply 
to many arrangements with curved interfaces, but not to those with cusps. 

Let IP be a coherent partition and let y be the appropriate coherent deforma
tion. Let the e interfaces be denoted by ft. ... ,...Ie and let nj be a unit normal to 
~. Let F; denote the limiting value of Vy as c is approached from within fJ'i' 

Then, we necessarily have jump conditions of the form (12.1) for each interface. 
These jump conditions are easily organized by the use of an incidence matrix flu 
defined by _ {1 if ~ C 8~, 

flu - . (12.3) o If ~ e: (} fJ'j • 

The matrix flu has e rows and / columns and two ones in each row. Let fiij be 
obtained from flij by changing the second 1 in each row to - 1. The jump condi
tions referred to above are the following: there exist non-zero amplitudes 
at .. . , ae such that f 

1: fiuFJ = aj ® ni , 
j=t 

i=1, ... ,e. (12.4) 

Conversely, given a partition IP with associated normals nt, ... , ne and a modified 
incidence matrix fiu, suppose there are tensors Ft, ... ,Fj and vectors at, .. . ,ae 
which satisfy (12.4). Then, IP is coherent. In fact, the deformation 
y(x) = F;(x - c), XE fJ'j, i = 1, ... ,J, is continuous. 

It should be noted that the equations (12.4) are not sufficient for the existence 
of a continuous deformation of more complicated arrangements than partitions 
of a sphere (e.g. see [12.3, Fig. 3]). Also, the only physically meaningful 
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deformations are invertible ones. We shall show presently that every coherent 
partition admits an invertible, continuous deformation. Whether or not there is 
an invertible deformation which satisfies the additional restrictions arising from 
crystallography and stability like those discussed in Sect. 12.3 is a delicate matter. 

The Fredholm alternative implies (12.4) has solutions (Ft. ... , Fj; at. ... , ae) 

if and only if a certain homogeneous system of linear equations involving only 
(at, ... ,ae) is satisfied. The easiest way to derive this system is by row reduction 
of the equations (12.4) to triangular form. Since nij has one 1 and one -1 and all 
the rest zeros in every row, it can be row reduced in a way which preserves its 
form at very stage, except that rows of zeros appear. The row reduction to 
triangular form can be accomplished by a subgroup of the usual elementary 
operations, that subgroup consisting of the operations 

i) multiplication of a row by - 1, 
ii) exchange of two rows, 

iii) addition of two rows. 

Let 11U by the upper triangular form of nij' If nij has rank r, then the last (e - r) 
rows of 11U will be composed of zeros. If the same elementary operations used to 
triangularize nij are applied to the whole system (12.4), then the last (e - r) rows 
yield the homogeneous linear equations mentioned above: 

e 
1: ~ijaj®nj= 0, i= 1, ... ,(e-r). 

j=t 
(12.5) 

Because of the way (12.4) was reduced, the entries of ~ij are either 0, 1 or -1. 
The equations (12.5) have solutions (at, ... ,ae) if and only if the system (12.4) 

has solutions (Ft, ... ,Fj; at, ... ,ae), Suppose (12.5) has solutions (at. ... ,ae). To 
get (Ft. .. . ,Fj) satisfying (12.4), we return to the triangularized system. We may 
choose the last deformation gradient in the triangularized system arbitrarily (f - r 
always equals 1). Let us choose it to have a positive determinant. The remaining r 
deformation gradients are then determined by the first r rows of the triangu
larized system; since each of these r equations will be of the form 

Fk-Fi= .. . homogeneous in (at. ... ,ae) , 

Fiknown, 

detF/> 0, 

(12.6) 

then the remaining deformation gradients can also be chosen to have positive 
determinants. That is, the system (12.5) is homogeneous, so if (at. ... , ae) 

satisfies it, then so does (A at. ... , Aae) for any scalar A. Thus, the right hand side 
of (12.6)t can be made arbitrarily small by choosing IA I arbitrarily small. It 
follows that each Fk can be chosen with a positive determinant. 

The whole procedure is easily carried out by hand even for very complicated 
local partitions since nij retains its general form during the row reduction. 

The analysis of the equations (12.4) leads to two interesting properties of 
coherent partitions. The first is that many, but not all, partitions have parallel 
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amplitudes: a; = )..;a, i = 1, ... ,e. The second is their scarcity, suggesting that 
they can be classified in some way beginning with the simplest ones. 

To make this idea precise, we need a definition of "simplest". A natural 
definition is supplied by Euler's formula which holds for any partition. 
Excluding the trivial cases j ~ 1 and v ~ 1, we must have 

e~j, 

e~ v. 
(12.7) 

Thus, the number e of interfaces present is a natural measure of simplicity. 
Given a certain e, we can choose j and v consistent with Euler's relation and 

ask if there are any coherent partitions with e edges, jfaces, and v vertices. I have 
done this for e = 2,3, ... ,7. Beyond e = 7 the analysis becomes extremely 
tedious, even though the analysis of any given partition with e much larger than 7 
is quite easy. The results are summarized by Table 12.1 and Fig. 12.1. 

The notation x x x x in Table 12.1 means that there are no coherent parti
tions with the given values of (e,j, v) except possibly ones with removable 
vertices. 

Table 12.1. Kinematics of partitions. The notation x x x means that there are no coherent local 
partitions with the given (e,!, v) except possibily those with removable vertices 

e f v Morphology Restrictions 

2 2 2 Fig. 12.1 a nl parallel to n2 
3 2 3 xxxx 
3 3 2 Fig. 12.1 b No two of nj, n2. n3 
4 2 4 xxxx parallel 
4 3 3 xxxx 
4 4 2 Fig. 12.1 c None 
5 2 5 xxxx 
5 3 4 xxxx 
5 4 3 xxxx 
5 5 2 Fig. 12.1d None 
6 2 6 xxxx 
6 3 5 xxxx 
6 4 4 Fig. 12.1e and f See footnote a 

6 5 3 xxxx 
6 6 2 Fig. 12.1 g 
7 2 7 xxxx 
7 3 6 xxxx 
7 4 5 xxxx 
7 5 4 Figs. 12.1h-k See footnote a 

7 6 3 xxxx 
7 7 2 fig. 12.11 
: 

a The restrictions of e = f = 3. v = 2 are satisfied at all vertices where three edges meet. 

A removable vertex is a vertex Vk with the following two properties: 

i) exactly two edges meet at Vk ; 

ii) those edges do not share another vertex in addition to Vk • 
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(0) (b) (e) 

(d) ( e ) (tl 

(g) ( h ) ( i ) 

( j ) ( k) ( I ) 

Fig. 12.1 a - I. Coherent partitions with up to seven surfaces of discontinuity 
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A B 

c o 

Fig. 12.2A - D. Removable vertices. A is excluded by the restriction on e = f = v = 2 listed in Table 
12.1. B can be changed to C without affecting coherence. The vertex in the foreground of D is not 
removable 

That the notation x x x x is reasonable follows from the result for 
e = f = v = 2. That result is the following: At any line segment where exactly two 
sectors of planes meet in a coherent partition, the two planes must be parallel. 
However, if in a coherent partition two parallel planes meet at a line segment, we 
may simply remove that line segment, thereby decreasing e and v by one, and not 
change the equations (12.4) in any essential 2 way. However, if by removing the 
vertex we leave an edge which does not connected distinct vertices, then we have 
excluded the partition. Since there is no reason to exclude such partitions (Fig. 
12.1 a is one) I have imposed (ii) above. We illustrate this in Fig. 12.2. 

Incidentally, the result for e = 2 gives us some confidence that the assump
tions like limiting values exist etc. are reasonable. If a transformation is 
coherent, we should never see only two surfaces of discontinuity meeting at a 
corner. After perusing a wide variety of microstructures, I find that this property 
is generally true. Those few that do show pairs of surfaces incident at a corner are 
either very close to cusps (the corner angle is very small), or arise from trans
formations whose coherence is in doubt. 

Figure 12.1 gives the simplest (up to e = 7) coherent partitions. They fall 
naturally into twelve classes. Each class is defined explicitly by naming all 
vertices, edges and faces on (} fJJ, by listing the vertices on the boundary of each 
edge, by listing the edges on the boundary of each face and by accounting for the 
restrictions listed in Table 12.1. They found at first by the application of the 
rules governing partitions, by the use of the properties of arcs of great circles, 

2 A redundant equation in that system is omitted. 
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and finally by the solution of the equations (12.4). Later, I made use of graph 
theory. It turns out that the definition of a partition corresponds in part to the 
definition of a multigraph. Harary [12.2] gives a list of all possible graphs with 
given (small) numbers of e and v. I generalized this list to multigraphs by sys
tematically adding edges. I transferred members of the new list to the surface of 
the sphere one by one, and then I used properties of great circles to exclude some. 
The remaining ones where then analyzed using the equations (12.4). This was 
done in a systematic way so that no partitions were omitted. 

It is evident that coherence places strong restrictions on the possible arrange
ments. For example, Fig. 12.1 d (with no restrictions on the included angles) 
represents all coherent partitions with 5 interfaces, whereas many other parti
tions with 5 interfaces could be drawn. 

Finally we describe another interesting class of coherent arrangements which 
are defined on a compact set in the interior of rl, outside of which there can be 
prescribed an arbitrary homogeneous deformation. As such, they may be useful 
for calculations on nucleation. Consider a polyhedron (JJ c rl with f faces. 
Suppose (JJ is star-shaped with respect to some point c. Divide £1' up into f open 
regions £1'1, ..• , (JJf by drawing lines from the vertices of £1' to c, and by filling in 
the triangles. Assume that adjacent faces of (JJ are not parallel. Let dj be the 
(shortest) distance from c to the ith face of (JJ and let nj be outward unit normal 
the ith face of £1'. 

Then, there is a coherent deformation of rl which is an arbitrarily prescribed 
homogeneous deformation on rl- (JJ. In fact, the deformation 

y(x) = Fx+ b , XE rl- (JJ 

~FX+b+a(l- !, (x· nil) • xeiJ'i 
(12.10) 

is continuous, and every continuous piecewise linear deformation of ~, with 
constant gradients on the obvious regions, is of the form (12.10). Note that 
(12.10) yields deformations with parallel amplitudes. 

12.3 Non-Elliptic Free Energy Functions for Materials 
Which Change Phase 

The transformations considered here are recognized by a change of shape. It is 
natural, as a first guess, to try a constitutive relation in which the specific free 
energy is a function of the deformation gradient and temperature: 

(12.11) 

Given a suitable deformation y defined on a reference configuration ~ and a 
constant temperature 0, the free energy of y is defined by 

r ~(Vy(x), O)dV . 
Pi 

(12.12) 
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We shall be interested in the effect of various loads on the stability and 
arrangement of the phases. Let a functional !t [y] be the potential energy of the 
loading device on a suitable class of deformations. Familiar examples of these 
potentials are: 

i) A hard loading device - the potential vanishes, 

(12.13) 

and all deformations satisfy given boundary conditions of place. 
ii) A dead loading device - there is a vector-valued function t assigned on 

o iJI and 
!t [y] = J t(x)· y(x)dA . 

8&l 
(12.14) 

iii) Loading by an hydrostatic pressure - there is an assigned constant p 
and 

!t[y] = J -pdet Vy(x)dV 
&l 

(= - p Vol (y(iJI ») . (12.15) 

Various combinations of these loading devices are used in mixed problems. 
Following Gibbs [12.4], we shall say that y is stable if the total free energy 

is minimized at y, i.e. 
<p[y] = J ~(Vy(x), O)dV -!t [y] 

&l 

<p [.9] ~ <p [y] , 

(12.16) 

(12.17) 

for all deformations y. A discussion of metastability is given in [12.5]; in this 
formal treatment, I concentrate on absolute minimizers with the reservation that 
some deformations observed in experiment may possibly correspond to relative 
minima. 

A stable deformation y will satisfy equilibrium equations 

Div o~ (Vy, 0) = 0 
of 

in each phase, and jump conditions 

(~F(F+, 0) - ~F(F-, O»n = 0, 

~(F+, 0) - ~(F-, 0) - (F+ - F-) . ~F(F-, 0) = 0 , 

(12.18) 

(12.19) 

(12.20) 

on each phase boundary. These conditions are discussed by Gurtin [12.6]. We 
note that (12.19) implies that ~ cannot satisfy the conditions of strong ellipticity 
(e.g. Hayes [12.7]) everywhere in its domain if F+ = F- + a ® n, according to an 
argument of Knowles and Sternberg [12.8]. Thus, typically (12.18) will not be 
one type. 

The free energy function shall be objective, 

~(RF, 0) = ~(F, 0) v F, 0, iJI E () , (12.21) 
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tJ being the group of proper orthogonal tensors. Since we shall be concerned 
with crystals, the form of (fi will reflect the symmetry of fA. This is formalized by 
assigning a group g v and by assuming that 

~(FQ, B) = ~(F, ()) "IF, V(}, VQ E g v • (12.22) 

We will confine attention to finite groups gV of order v which are subgroups of 
the proper orthogonal group (so-called point groups), although it should be 
noted that molecular studies like those of Ericksen [12.9], Parry [12.10] and 
Pitteri [12.11] give rise to larger groups in a natural way. 

The behavior of a body which undergoes a diffusionless phase transforma
tion as it is cooled to (}o is roughly described as follows. Above (}o, the unloaded 
body deforms homogeneously with changes of temperature. At (}o, part of the 
crystal changes shape. Commonly, this is indicated by platelets and needles of the 
transformed phase which grow into the body from its boundary. 

Let us associate fA with the parent phase just above (}o. Then, g v is associated 
with the symmetry of the parent phase. Assume that the deformation of the 
parent phase above (}o under zero loads is given up to an inessential rigid motion 
by 

yp(X) = Fp«(})x , XE fA , (12.23) 

with Fp «(}o) = 1. Since the parent phase appears stable for () > (}o, it is natural to 
assume that yp minimizes the total free energy with !t == O. A short calculation 
using (12.23) and (12.17) then shows that Fp«(}) necessarily minimizes ~(o, ()) 
itself. That is, for each fixed () > Bo, 

(12.24) 

and (12.24) is also sufficient that yp minimize the total free energy. Byassump
tion Fp«(}o) = 1. 

Often, the deformation gradients in the unloaded transformed phase at (}o are 
found to be of the form RFtQ, where fA E tJ, QEgV and Ft is a fixed tensor. We 
also expect an exchange of stability at (}o. Thus it is natural to assume the 
existence of a function Ft «(}) which minimizes ¢ for each fixed () < (}o: 

(12.25) 

According to (12.24) and (12.25), we have 

(12.26) 

For transformations considered of "first order", Ft«(}o) * 1. "Coherent phase 
transformations" are characterized by the assumption Ft «(}o) = 1 + a ® n. 

In summary, we shall consider free energy functions (fi(F, ()) which satisfy 
(12.21,22), (12.24) for () ~ (}o, and (12.25) for (}:s;; (}o. 
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12.4 Significance of Points of Convexity of the Free Energy 

In this section we consider the behavior of a loaded body having a free energy 
function with the properties described in the preceding section. First, we study 
the stability of some piecewise linear deformations in a dead loading device. 

Let [11 be divided into f polygonal regions [111, .•• , [11 f' and consider a con
tinuous piecewise linear deformation y of [11: 

y(x) = Fjx, XE [11;. (12.27) 

For example, [11 could be one of the partitioned spheres of Fig. 12.1 (or any 
subset of a p~rtitioned sphere) in which case (12.4) is satisfied by Flo ... ,Ff. Let 
the traction t(x), XEO [11, be defined by 

i(x) = o</J (Vji(x), B)n(x) , XEo[11 , 
of 

(12.28) 

n(x) being the unit outward normal to 0 [11 at x. That is, let t(x) be exactly the 
Piola-Kirchhoff traction given by y. According to Sect. 12.3, y is stable in a dead 
loading device with assigned traction rif y minimizes 

if>[y] = J </J(Vy(x), B)dV - J i(x)· y(x)dA (12.29) 
~ a~ 

among all continuous piecewise differentiable deformations. 
Schematically, we assert that y minimizes if> and look for necessary condi

tions. After using the divergence theorem on integrals over 0 [11 and (12.28), it is 
found that the calculations are greatly simplified by a rather severe restriction on 
the arrangement of [111,"" [11 f. To state this restriction, we let the phase "A 
borders on B" mean that oA n oB has non-zero two dimensional area. The 
restriction mentioned above is embodied in 

Definition 1. The continuous piecewise linear deformation given in (12.27) is 
simple if [11; borders on [11 j for every i and j in {1, ... ,f}. 

For example, continuous piecewise linear deformations on the partitions of Fig. 
12.1 a, b or e are simple. 

Theorem 1. Let a continuous, simple, piecewise linear deformation y of the form 
(12.27) be given. Let the Piola-Kirchhoff traction be given by (12.28). If y is 
stable in a dead loading device with assigned traction l, then 

i) The Piola-Kirchhoff stress is constant on all of [11 , 

o</J -- (Fj, B) = T = const , i = 1, ... ,J, and 
of 

ii) each Fj is a point of convexity of </J(', B): 

</J( G, B) - </J(Fj, B) - (G - Fj) . </JF(Fj, B) ~ 0 

for all G and i = 1, ... ,J. 

(12.30) 

(12.31) 
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Conversely, if (12.30) and (12.31) are satisfied by the gradients of a (not neces
sarily simple) continuous, piecewise linear.Y of the form (12.27) and r is defined 
by (12.28), then.Y is stable in a dead loading device. 

Theorem 1 has a beautiful geometric interpretation due to Gibbs [12.12]. A 
hyperplane of slope T is pushed up against the "energy surface". the graph of 
f/l(F, 0) vs. F. until it just touches this surface. If it touches at certain tensors 
Flo . ..• Ffand these are gradients of a continuous deformation'y. then'y is stable 
in the dead loading device. 

We remark that while the Piola-Kirchhoff stress is the same on each region in 
deformations governed by Theorem 1. the Cauchy stress is not. However. each 
of the f Cauchy stresses is symmetric. A short calculation based on these sym
metries gives 

Lemma 1. Suppose the continuous, piecewise linear deformation .Y of the form 
(12.27) yields a constant Piola-Kirchhoff stress: 

8f/l --(F;,O)=T=const. i=1 •...• f. 
8F 

Let i * j belong to {1 •... • f}, and let R j border on Rj across a plane interface with 
normal n and amplitude a. Then 

Tnlla; 

the Piola-Kirchhoff traction on the interface is parallel to the amplitude. 
Needless to say. we have tried to relax Definition 1. Our first attempt was to 

simply assign deformation gradients which were points of convexity (which 
indeed would have implied that any continuous deformation constructed from 
them would be stable in a dead loading device) but which corresponded to dif
ferent Piola-Kirchhoff stresses. This attempt failed because of 

Lemma 2. If Ft and F2 are points of convexity of f/l(o, fJ). if 

f/lF(Ft • 0) n = f/lF(F2• 0) n , 
and if 

F2-Ft = a®n, 
then 

Finally. we note that if the conditions (12.35) and (12.36) are satisfied by a 
(not necessarily simple) continuous piecewise linear deformation. then it is stable 
in a wide variety of loading devices including the hard device and various mixed 
loading devices. 

12.5 Geometry of the Domain of the Free Energy 

To find points of convexity Flo ...• Ff • ... of the free energy corresponding to a 
fixed Piola-Kirchhoff stress T. we simply minimize (over F) the excess function. 
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f/J(F, 8) - p. T . (12.32) 

The existence of minima is guaranteed, for example, by mild growth conditions 
on f/J which do not contradict any of the assumptions of Sect. 12.3. In this section 
we look for regions in the set of tensors with positive determinant (P-space, for 
brevity) which consist of points of convexity of f/J(o, 8). 

We begin with the case 8 = 80 and T = O. Then, the points of convexity are 
simply minima of f/J(o, 80), By assumptions (12.24) and (12.25), any rotation R 
and any tensor of the form RPtQ, Re IJ, QegV, are such minima. In general this 
gives rise to n + 1 compact manifolds in P-space. Generally, these manifolds may 
intersect at various values of F; in particular cases this can often be easily decided 
by calculating the appropriate symmetric strain tensors, i.e. pT P and P pT. Also 
transversal intersections can be located without difficulty by calculating tangent 
planes. 

We shall work out the details of this geometry for coherent transformations. 
We focus on this case because in coherent transformations, it is often observed 
that only v deformation gradients are found on regions which border the parent 
phase, while the assumptions given above suggest the possibility of infinitely 
many. To this end, assume that Pt = 1 + a ® n for some fixed vectors a and n. 
According to Sect. 12.2, the gradient of a continuous deformation is defined on a 
region which borders the parent phase if it is of the form 1 + b ® m, for some 
vectors band m. To be the gradient of a simple, piecewise linear, continuous 
deformation which minimizes the free energy under zero loads, it also must be of 
the form R(1 + a ® n) Q for some R e IJ and Qegv• This leads to the restriction 

R(1+a®n)Q= 1+b®m. (12.33) 

If we premultiply (12.33) by Q, postmultiply by QT and let R = QR, we get 

R(1+a®n) = 1+Qb®Qm. (12.34) 

Equation (12.34) shows that Q enters (12.33) in an essentially trivial way; given 
vectors (b,m) which satisfy (12.33) with Q = 1, all others can be obtained by 
applying the finite group gVaccording to the rule 

b=Qb 

m=Qm, Qegv • 
(12.35) 

Thus, we will have all solutions of (12.33) for the given a and n if we find all 
(R, b, m), R e IJ, which solve 

R(1+a®n)=1+b®m. (12.36) 

This has been solved in [12.13J. In fact, there are exactly two nontrivial (R * 1) 
solutions of the form (R, ±b, ±m) if a is not parallel to n. If a is parallel to n 
there are no nontrivial solutions. Formulae for the solutions are somewhat 
lengthy and are given in [12.13J. Many martensitic transformations occur on so
called irrational planes; this means that Qn, Qe gV produces v distinct normals. 
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In this case the result given above suggests that we should observe more than v 
distinct deformation gradients (in general, 2 v) bordering on the parent phase. 
The reason we do not do this is that the experimentally determined a and n often 
have just the relation which makes b = Qa and m = Qn for some Qegv• 

Now we look for points of convexity corresponding to stressed states at 
0= 00 • The interpretation of Gibbs given just after Theorem 1 suggests the fol
lowing line of attack. Let orbit (R, RFt Q) denote all tensors which are either 
rotations or are of the form RFtQ where R is a rotation and Qegv• Let 

.ft = convex hull (orbit (R, RFt Q» . (12.37) 

The theory of convex sets shows that each Fe.ft can be written as afinite convex 
combination of members of orbit (R, RFtQ), viz., 

where Ak ~ 0, k = 1, ... , m , 

m 
Fe.ft=*F= ~ AkGk 

k=l 
(12.38) 

(12.39) 

and Gkeorbit (R,RFtQ), k = 1, ... , m. The significance of .ftstems from 

Lemma 3. If Ge.ft and G is point of convexity of ¢J(., 00), then the stress 
vanishes at G: 

o¢J 
-(G, 00) = O. of (12.40) 

Thus, all deformation gradients belonging to simple, stable, continuous, 
loaded, piecewise linear deformations will lie outside of .ft. 

By the definition of Jft', 1 eJft'. Suppose that 1 does not lie on oJft'. Then, there 
are no tensors sufficiently close to 1 which lie outside of Jft'. By Lemma 3, no 
deformation gradient near 1 is a point of convexity of ¢J(o, 00), In this sense, the 
(homogeneously deformed) parent phase cannot be recovered by applying any 
system of dead loads at 00 • 

Thus, it is of interest to decide whether 1 eo.ft or not. In the next section, we 
find necessary and sufficient conditions under which 1 eoJft' in the case where gV 
is the cubic group. 

12.6 Special Analysis for the Case of a Cubic Parent Phase 

We consider the question of whether 1 eoJft' for the case where gV is the cubic 
group (v = 24). g24 consists of all rotations which map a cube into itself. It might 
seem at first that with so many rotations available, we would never have 1 eo.ft, 
but this turns out not to be the case. 

An arbitrary member G of .ft can be written in the form 

(12.41) 
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where 

and 
L Ak+ L Aim = 1 . 
k I,m 

We take the trace of (12.41) and get 

trG = L AktrRk+ L Aim trRIFtQm 
k I,m 

which is a convex combination of scalars. Note that 

and 

(12.42) 

(12.43) 

(12.44) 

(12.45) 

(12.46) 

where Ft has the polar decomposition Rt Ut. Equation (12.46) follows from the 
fact that if detF > 0 and F has the polar decomposition R U, then 

max {tr RF} = tr U , (12.47) 
and a short calculation. R E (j 

We conclude that if tr Ut ::;; 3, then trG::;; 3 for every Ge.it. But clearly there 
are tensors near 1 with trace greater than 3. Thus, we have 

Lemma 4. If tr Ut ::;; 3, then 1 e (}.it. 
In fact, the converse of this lemma is also true. To prove this, we build up any 

tensor near 1 using special convex combinations. Assume that tr Ut > 3. First 
note that since 1 and the 1800 rotation - 1 + 2 e ® e belong 3 to .it, then 

t· 1 + t( -1 + 2e ® e) = e ® ee.it . (12.48) 

Thus, for any orthonormal set {ei}, and for scalars Ai ~ 0, };Ai = 1, we have 

(12.49) 

The conclusion (12.49) shows that any positive symmetric tensor whose eigen
values add up to 1 is in .it. 

At this point we need a tensor in .it whose trace is greater than 3. Consider the 
following average 4 over the cubic symmetry group: 

1 24 T 
A =- L Q;(RFt)Q; . 

24 ;=1 
(12.50) 

Here Ql,' .. , Q24 is a list of the elements of g24 and R is some rotation. Notice 
that QkA QI = A for each k = 1, ... ,24. It is known [12.14] that the only such in
variant tensors under the cubic group are dilatations. Thus, 

3 This conclusion restricts the proof to odd dimensions, since - 1 + 2 e ® e is not a rotation in even 
dimensions. 

4 These averages are discussed by Weyl [12.15]. 
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A = a1, (12.51) 

for some scalar a. To evaluate a, we take the trace of (12.50) and get 

3a=trRFt • (12.52) 

R is any rotation, so far. Choose it so that it just cancels the rotation in the polar 
decomposition of Ft. Then we get 

a= +trUt • 

Since tr Ut > 3, then 

a1 e.1t for some a> 1 . 

Now form the convex combination 4 

A1 a1 + 1: Aiei@ei' 
i=2 

(12.53) 

(12.54) 

(12.55) 

A routine calculation shows that any positive symmetric tensor near 1 is delivered 
by (12.55). Since by definition R.1t = .1t for any ReO, then by use of the polar 
decomposition theorem, every tensor near 1 belongs to .1t. Thus, we have 

Lemma 5. Iftr Ut > 3, then 1 *8.1t. 
Many martensitic transformations occur in cubic crystals. Also, it is common 

to have Ft = 1 + a @ n with a· n <C la 12. See the data of Saburi and Wayman 
[12.1], for example. In this case Lemma 5 applies, so that one should not be able 
to recover a homogeneous deformation y = Fx, with F near 1. Indeed, Wayman 
finds that a specimen under simple tension at 00 always transforms completely to 
the transformed phase. This conclusion can be reached by a simpler argument for 
simple tension. Also, it must be admitted that Wayman's loading device is not 
really a dead loading device. Nevertheless, the arguments given above seem to 
give essentially the right behavior under loads. It would be nice understand the 
effect of various loading devices; c~rtainly some homogeneous deformations 
y = Fx, xe PA, having non-zero stress with Fe.1t will be stable in a hard loading 
device. 

Similar arguments as those presented here can be applied to other groups gV 
and to the case 0 '*' 00 , 
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Chapter 13 
Dynamic Changes of Phase in a van der Waals Fluid 

R. Hagan and J. Serrin 

13.1 Introduction 

Korteweg's theory of capillarity [13.1, 2] has recently been used to find condi
tions for equilibrium between liquid and vapor phases of a van der Waals fluid 
(see [13.3]). Subsequently Slemrod [13.4] extended this approach to study 
dynamic changes of phase in a van der Waals fluid, under the assumption of iso
thermal motion. This study was further extended by Hagan and Slemrod in 
[13.5]. The next logical step was to drop the assumption of isothermal motion. 
This was done for a van der Waals fluid in a paper by Slemrod [13.6]. He showed 
the existence of a shock layer that converts vapor to liquid and the existence of a 
shock layer that converts liquid to vapor, under assumptions that render the 
motion nearly isothermal. These assumptions are that the specific heat capacity 
at constant volume is large, the coefficients of heat conduction and viscosity are 
of the same small order IJ" and the coefficients in the capillarity terms of the 
stress are of order 1J,2. 

One of the problems that complicates the study of dynamic changes of phase 
is the incompatibility of the classical Korteweg stress with the Clausius-Duhem 
inequality [13.7]. Recently, however, a modified Korteweg theory has been 
developed by Dunn and Serrin [13.8] that is compatible with the Clausius-Duhem 
inequality. In this theory they posit the existence of a rate of supply of mechan
ical energy, the interstitial working, which takes into account the working of 
longer range interactions. With this additional term in the energy balance it is 
possible to derive a constitutive relation of stress that depends on spatial 
gradients of the density and still satisfies the Clausius-Duhem inequality. These 
spatial gradient terms are used to model the effects of interfacial.capillarity and 
at the same time allow the existence of static phase transitions [13.1, 9]. That is, 
if we were to use the classical form of Navier and Stokes for the stress then we 
would find that some (shock layer type) dynamic phase transitions exist, but no 
static ones; see also [13.10, 11]. 

In this paper we use a special form of the modified Korteweg theory 
contained in [13.8]. The Clausius-Duhem inequality then gives a direct proof of 
the increase of entropy across a shock layer and it also provides a Liapunov 
function, in the sense of LaSalle [13.12], for the shock layer equations. 

In Sect. 13.2 we derive the shock layer equations and the increase of entropy 
theorem. In Sect. 13.3 we examine some of the properties of the Hugoniot curves 
for a van der Waals fluid. In Sect. 13.4 we state sufficient conditions to 
guarantee the existence of a compressive shock layer in a van der Waals fluid. 
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At the close of Sect. 13.4 we show by example the theoretical possibility of 
dynamic changes of phase for van der Waals fluids, as well as the more typical 
gas-gas shock layer transitions. In [13.10] we have also observed that similar 
methods can be need to treat fluids with general equations of states; the restric
tion to van der Waals fluids in this article is thus by no means essential. 

13.2 Basic Equations 

We consider one-dimensional steady flow of a van der Waals fluid (see Fig. 
13.1). The flow may be thought of as taking place in a cylinder of uniform cross
section parallel to the x-axis. We will always assume that the fluid velocity u is 
positive so that the fluid flows from left to right. The absolute temperature will 
be denoted by 0, and the specific volume by v. 

u-

-00 

o 

u, 
V, 
6, 

+00 

x 
Fig. 13.1. The one-dimen
sional flow regime 

We will seek a smooth solution (u(x), v(x), O(x», xelR, of the equations of 
motion satisfying the following boundary conditions 

(u(x), v(x), O(x» -+ {(Uo, Vo, 00) 
(Ul' Vi' Ot> 

(u(x)', V (x)" O(x)') -+ (0,0,0) 

as X-+ - 00 

as x-+ +00, 

as x-+±oo. 

(13.1) 

Such a solution is called a shock layer. Of particular interest to us in this paper is 
the question of the existence of a shock layer when (vo, 00) and (Vb 01) belong to 
different phases of the fluid. Shock layers of this type will be called dynamic 
phase transitions. 

The balance laws for mass, momentum, and energy for a one-dimensional 
steady flow in the absence of external body forces and radiant heating are 

(13.2) 

(13.3) 

(13.4) 

where ()' = d( )/ dx. In addition to the balance laws we also have the Clausius-

Duhem inequality, ( )' 
V-1Ul1' ~ ~ (13.5) 
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Here Txx is the x component of stress in the x direction, e is the specific internal 
energy, 'I is the specific entropy, k is the interstitial working (see [13.8]) and q is 
the heat flux. 

Iffis a function of v, 0, it will be convenient to setfl = f(vt. 01).JO = f(vo, 00) 
and U1 = fl - fo· 

Theorem 1.1. (The increase of entropy across a shock layer.) Suppose q = 0 
whenever 0' = O. Then 'II ~ '10 for any shock layer. 

Proof Integration of (13.2) gives 

u(x) = mv(x) , (13.6) 

for some constant m. Furthermore m > 0 since v > 0, and u > 0 by assumption. 
We may now integrate (13.5) from x = - 00 to x = + 00 to obtain 

m('11- '10) ~!i.] 00 • (13.7) 
o -00 

But 0' = 0 at x = ± 00, whence 
'II ~ '10 . (13.8) 

In addition to the balance laws and the Clausius-Duhem inequality we need to 
specify the constitutive structure of the fluid. For this purpose we shall use a 
special Korteweg stress theory developed by Dunn and Serrin [13.8]. The main 
features of this theory which make it useful for phase transition theory are the 
preservation of the Clausius-Duhem inequality and the occurrence of higher 
spatial derivatives of the density in the constitutive relation for stress. 

The constitutive relations for the stress are found in equation (1.27) of [13.8], 
to which one must add the standard Navier-Stokes viscous stress. This yields 
(when specialized to one-dimensional flow, with v = lie as the principal variable 
instead of e) 

00' (v,)2 00' 
Txx= -p+(A+2J.l)u'-- ----v'O'- O'v" , (13.9) 

8v 2 80 

where 0' = e3 c and c is the surface tension coefficient, a differentiable function 
of e, O. For the heat flux we adopt the Fourier Law 

q = "e' (13.10) 

and for the interstitial working term k we use (1.24) of [13.8]. Here the appro
priate form of the free energy (already used in obtaining (13.9) above) is 

If! = iiJ(e, e, d) = tii(e, e) + ~ -=-1 d 12 
2 e 

(13.11) 

where d = grade. Thus by (1.24) we have k = cgd+ w. When these formulas are 
specialized to one-dimensional flow we get w = 0 and 

If! = tii(e, e) + -to'(V,)2, k = mO'(v)2 . (13.12) 

The associated entropy 'I and energy e are obtained from (1.23) of [13.8]. In 
accord with the previous choice of If!, these become 
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_ _ 1 au ( ,)2 
"-"-T80 V , 

(13.13) 

- 1 ( oau)( ,)2 e=e+- u- - v , 
2 ao (13.14) 

where ~ and e are the equilibrium entropy and internal energy. They are con
tinuously differentiable functions of v and 0 only, as is the pressure p. Further
more, these quantities satisfy the classical Maxwell relationships of thermo
dynamics (see equations (13.29- 31) below). In general u, A., p, x are positive 
continuous functions of v and 0, with u in particular being of class ct. 

In this paper we shall restrict ourselves to the case where p and e satisfy the 
hypotheses 

RO a 
p = p(v, 0) = -- - -2 for all (v, 0) eO, (H1) 

v-b v 

ae 
cv=->O for all (v,O)eO, ao 

(H2) 

where 0 is defined as {(v, 0): b<v<oo, 0< 0< oo}. Here R, b, and a are positive 
constants and Cv is the specific heat at constant volume. (Hl) is of course the van 
der Waals equation of state. 

Substituting (13.7) into (13.3) and (13.4) yields 

mu' = T~x, 

me' = (1'xxu)' - T~xu+k' +q' . 

We can now put (13.15) in (13.16) to obtain 

(13.15) 

(13.16) 

(13.17) 

Next we integrate (13.15) and (13.17) from - 00 to x and apply the boundary 
condition (13.1). This gives (with (13.18) being used to simplify (13.19» 

(13.18) 

(13.19) 

Finally insert (13.6), (13.9), (13.10), (13.12) and (13.14) into (13.18) and (13.19) 
to obtain 

au au (V,)2 
uv" + - v' 0' + - -- -m(A.+2p)v' +p-po+m2(v-vo) = 0, 

ao av 2 (13.20) 

xO' = m{-~ ~(Ou)(v')2+e-eo+po(v-vo)-~m2(v-vo)21. 
2 ao 2 J (13.21) 
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It is convenient to define w = v I, 

L(v, 0) = p(v, 0) - Po+ m2(v - vol , 
and 

M(v, 0) = e(v, 0) - eo+ Po(v - vol - tm2(v - VO)2 

(13.22) 

(13.23) 

and to write (13.20) and (13.21) as a system of three first order ordinary differen
tial equations, namely 

Vi = w, (13.24a) 

1 au 2 au 
UW' = m(A+2,u)w- - -w --wO'-L(v, 0), 

2 av ao 
(13.24b) 

m a 2 
)CO' = - - -- (Ou) w + mM(v, 0) . 

2 ao 
(13.24c) 

We shall refer to this system as the shock layer equations. 

Lemma 1.2. Given (uo, vo, ( 0) and (UI! VI! ( 1) with (vo, ( 0), (VI! ( 1) E.Q, a shock 
layer exists satisfying (13.1) if and only if there exists a solution of (13.24) 
satisfying 

as 

as 

X-+ - 00 

X-+ + 00 

(13.25) 

and (13.6) holds. Naturally also (vl(X),wl(X),O'(X»-+O as X-+ ±oo, so that 
(vo,O, (0) and (VI!O, Od are critical points of the system (13.24). 

Lemma 1.3. (The Rankine-Hugoniot jump conditions). A necessary condition 
for a shock layer to exist satisfying (13.1) is that the Rankine-Hugoniot jump 
conditions are satisfied: 

[U] = m[v] , 

[p]+m 2 [v]=O, 

[e] + t(Pl + Po)[v] = 0. 

(13.26a) 

(13.26b) 

(13.26c) 

Proof. If a shock layer exists satisfying (13.1) then there exists a solution of 
(13.24) satisfying (13.25) and (13.6). Letx-+ 00. Then from (13.24b) and (13.24c) 

(13.27) 

hence [p] + m2[v] = ° and [e] + Po[v] - tm2[v]2 = 0. Therefore [e] + t(Pl + Po) 
. [v] = 0. Now let X-+ ± 00 in (13.6); then Ul = mVl and Uo = mvo. Therefore 
[u] = m[v]. 

We can solve the van der Waals equation of state for 0 in terms of v and p, 
algebraically. Hence we can define €(v,p) = e(v, 0). We may then put 

(13.28) 
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The curve in the v - p plane consisting of all (v,p) satisfying H(v,p; vo,Po) = 0 is 
called the Hugoniot curve generated by (vo,Po)' Note that any state (VtoPt) lying 
on the intersection of the Hugoniot curve with the straight line given by 
p = Po- m2(v - vo) will satisfy (13.26b, c) or equivalently (13.27). The corre
sponding jump [u] is then given directly by (13.26a). Thus all conditions of 
(13.26) are satisfied. 

It is convenient at this point to group together several thermodynamic iden
tities which will be useful in the following sections. First, we have the standard 
Gibbs identity 

Od~ = de+pdv (13.29) 
and the Maxwell relations 

ai ap 
-=O--p 
av ao 

(13.30) 

aij =2 
ao 0 

(13.31) 

In addition, we shall need the formula 

:~ 1,= :~ - :. (:~)'. (13.32) 

which follows from the chain rule 

ap ap I ap I a~ 
a;=a; ;;+ a~ va; 

together with (13.31) and the relation 

ap I = ap / aij = ~ ap 
aij v ao ao Cv ao' 

From (13.30) one also gets ai/av = a/v 2 for the van der Waals equation of 
state, so that in this case Cv = cv(O) by (H. 2), and 

i = - ~ + Jcv(O)dO. (13.33) 
v 

13.3 The Hugoniot Curve 

The van der Waals equation of state possesses non-monotone isotherms for 
0< Oe, where Oe is the critical temperature, and monotone decreasing isotherms 
for 0> Oe (see Fig. 13.2). The unstable region for this equation of state in the 
v - (J plane is 

(13.34) 
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Fig. 13.2. Isotherms for a van der 
Waals fluid 

Thus Du is bounded by 

We have 

2a (V-b)2 () = (}u (v) == - --'----:;--'-
R v3 

b<v<oo. 

-2a(v-bHv-3b) 

Rv4 

(13.35) 

and hence (}u(v) has only one stationary point Ve = 3 b on (b, (0) . Clearly (}u(v) 
takes on its maximum value (}e = 8 a127 R b, at v = Ve' 

We now define 

Ds = {(v, (})eD: (}e < ()< oJ} 
Dl = {(v, (})eD: (}u(v) < ()< (}e, b < v < ve} 

Qg = {(v, B)eQ: Bu(v) < B< Be, Ve < V < oo} . 

(13 .36) 

Here Ds is the super-critical vapor region, Dl is the liquid region, and Dg is the 
vapor (gas) region (see Fig. 13.3). 

8 

rI. 

o L....-..L.. _________________ --t. Fig. 13.3. Critical regions 
b y for a van der Waals fluid 
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We shall frequently refer to the fluid state in terms of v and p instead of v 
and e. On such occasions it is useful to introduce the notation 

Ox = {(v,p(v, e»: (v, e) E Dx} where X is 1, s, u, g, or empty. 

Note that the map (v, e) ~ (v,p(v, e» is a homeomorphism of Dx onto Ox since 
oploe> O. 

We now state and prove some useful lemmas concerning the Hugoniot curve. 

Lemma 3.1. Let (vo,Po) ED and let/be any compact interval in (b, 00) containing 
Vo. Then the Hugoniot curve generated by (vo,Po) approaches the isotherm pas
sing through (vo,Po), uniformly on I, as inf cv((}) approaches infinity. 

0< I/< 00 

Proof. We have 

H(v,p; vo,Po) = e(v, p) - eo + -4-(p + Po)(v - vo) . 
Hence 

But 

and so 
oH 

op 

oH oe 1 
-- (v,p; vo,Po) = - + - (v - vo) . 
op op 2 

oe _ oe/op _ cv(v-b) 
--- --
op oe oe R 

c (v -b) v - Vo v + __ ~ 00 as inf cv(e) ~ 00 • 

R 2 

(13.37) 

(13.38) 

Therefore we can solve H(v,p; vo,Po) = 0 for p as a function of v on I, say 
p = h(v), if inf cv(e) is sufficiently large. Assuming that this is so, we have 

Also 

Thus 

( oe 1 ) dh de 1 -+-(v-vo) - +-+-(P+Po) = O. 
op 2 dv dv 2 

oe = oe + oe oe I a 
ov ov oe ov p-7 

cv(v-b) op 

R ov 

dh = (Cv(V-b) op _~_ P+Po)/(v-vo + CV(V-b»), 
dv R ov v2 2 2 R 

and hence dhldv ~ oplov uniformly on I as inf cv(e) ~ 00. In turn 

v op 
h(v) - h(vo) ~ J - (z, eo) dz = p(v, eo) - Po 

Vo oe 

(13.39) 

uniformly on I as inf cv(e) ~ 00. Therefore h(v) ~ p(v, eo) uniformly on I as 
inf cv(e) ~ 00, since h(vo) = p(vo, eo). 
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Let us define 

(13.40) 

(note that y is not the same as the ratio of the specific heats cp!cv , except in the 
case of a perfect gas). 

Lemma 3.2. If Cv is constant, then H( v, P; vo, Po) = 0 can be solved algebraically 
for P as a function of v: 

( y+ 1 y-1 ) a P --v---vo-b +-2 «2-y)v-b) 
2 2 v 

( y+1 y-1 ) a 
= Po -- vo--- v-b + -2 «2- y)vo-b). 

2 2 Vo 

(13.41) 

Equation (13.41) can be rewritten in the alternate form 

(v - vs) P + --Po = --f(v) , ( y-1 ) 2a 

y+1 y+1 
(13.42) 

where 
y-1 2 

vs=--vo+--b 
y+1 y+1 

(13.43) 

and 

f(V)=~PO(Vo-b)+(Y-2)(~-~)+b(-1 __ 1). (13.44) 
y+ 1 a v Vo v2 v5 

R() a 
Proof. We have P = --- -2 ' and hence 

v-b v 

() _ (v-b) ( a) - p+-
R v2 

_ a v-b ( a) a e=cv()--=-- p+- --. 
v y-1 v2 v 

ButH(v,p; vo,Po) = e- eo+ t(P+ Po)(v - vo), and the results now follow at once. 
It is clear from (13 .42) that p = h (v) has exactly one singularity at 

v = vsE(b, vo). If Cv i 00 then yh and vslb; if cvlo then yi 00 and Vs i Vo. 

Lemma 3.3. Suppose Cv is constant. Then 

lim h ( v) = - y- 1 Po. 
V-H" y+1 

(13.45) 

Proof. The result follows at once from formula (13.42). 
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In the next lemma we shall examine the behavior of P = h (v) as v approaches 
Vs' To this end we define 

y+1 ab 
a = 2Y' (y-1) f(v s) 

y+ 1 {(y_ 2)(y-1) + 4(y-1) + ~}a , 
y[(y-1)y+ 2]2 y y2 

so that 

wherey= vo/b(>1). 

Lemma 3.4. Suppose Cv is constant and (vo,Po) eD. Then 

limh(V)={-OO if a>O 
v 1 Vs + 00 if a < 0 , 

{
if a> 0 limh(v) = + 00 

v t Vs - 00 if a < 0 , 

1· h() -2a {y-1 (y-2) 2b} 1m v =-- --Po+ +-
V-+Vs y+ 1 2a v; v; if a= O. 

Lemma 3.5. If Cv is constant, Po ~ 0 and y ~ 2, then a > 0 and 

y-1 
h(v)< ---Po for b<v<vs' 

y+1 

(13.46) 

(13.47) 

(13.48) 

(13.49) 

(13.50) 

Proof, We see from formula (13.47) that a> 0 whenever Po ~ 0 and y ~ 2. Thus 
(13.46) impliesf(vs) > 0 and from (13.44) we have 

(13.51) 

since y ~ 2. Hencef(v) > f(v s) for b < v < Vs' It now follows from (13.42) that 

y-1 
h(v) + --Po < 0 for b < v < Vs 

y+1 
and the lemma is proved. 

Lemma 3.6. If the hypotheses of Lemma 3.5 are satisfied then the Rankine
Hugoniot jump conditions cannot be satisfied if VI < Vs' 

Proof. In order for the Rankine-Hugoniot conditions to be satisfied, we must 
have 

_m2 = h(Vl)-PO 
Vl- Vo 
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and so h(V1) - Po> 0 since V1 < Vs < Vo (by hpothesis and by (13.43». But by 
Lemma 3.5 we have h(V1) - Po:S:;; - 2 YPo/(y+ 1) < 0 and the conclusion follows. 

13.4 Existence of Compressive Shock Layers 

Theorem 4.1. Assume (VloP1),(vO,po)eQ\Closure (Qu), that V1 < Vo and 
H(VloP1; vo,Po) = 0, and that 

P1 - Po = _ m2 < 0 . 
V1- Vo 

(13.52) 

Furthermore, suppose that the chord connecting (Vt.P1) to (vo,Po) lies above the 
graph of H(v,p; vo,Po) = 0 on the interval V1 < v < Vo and is not tangent to the 
graph at either end point. Assume finally that the straight line extension of this 
chord does not intersect the graph of H(v,p; vo,Po) = 0 when v> Vo and 
P > p(v, 0). Then there exists a unique compression shock layer connecting 
(vo,Po) to (vt.pd. Furthermore, (}1> (}o, ~1 > ~o, the flow is supersonic at the 
state (vo,Po) and is subsonic at the state (Vt.P1)' 

The proof of Theorem 4.1 will be carried out with the help of a series of 
lemmas. 

Lemma 4.2. Each of the equations M( v, ()) = 0 and L (v, ()) = 0 uniquely defines () 
as a function of v, say () = (}M(V) and (}dv). Furthermore under the hypotheses 
of Theorem 4.1 the curve L = 0 intersects the v-axis in exactly two points v = b 
and v = V, where v> Vo. Moreover the curve L = 0 lies above (below) the curve 
M = 0 when V1 < v < Vo (vo < v:S:;; v). That is 

Proof. We have 

and 

(}L(V) > (}M(V) for V1<V<VO 

(}L(V) < (}M(V) for V1 < v < V . 

8M 8e 
--=-=C >0 

8(} 8(} v 

8L = 8p >0 
8(} 8(} 

(13.53) 

(13.54) 

(13.55) 

so that both M = 0 and L = 0 can be solved for () as a function of v. In particular 
by (13.22) and (H1) 

v-b a 2 
(}L(V) = -- --2 + po-m (v-vo)· 

R v 
(13.56) 

It is clear from (13.56) that (}db) = O. In the v - P plane the image of the line 
L = 0 is the straight line P1- Po = m2(v1- vo). This line intersects the lower 
boundary of the region D, given by P = p(v, 0), b < v < 00, only once, since L = 0 
has negative slope and P = p( v, 0) has positive slope (Fig. 13.4). 
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8 Fig. 13.4. The curves L = 0 and M = 0 

8, 

v 

Therefore in the v - 0 plane the curve L = 0 intersects the v-axis (i.e. 0 = 0) only 
once in the interval (b, (0) say at v = v. 

The curves L = 0 and M = 0 intersect in Q if and only if the line L = 0 and the 
curve H = 0 intersect in Q, as follows immediately from the relation 

H=M+-i, (v-vo)L. (13.57) 

Thus it is sufficient to prove that the curve L = 0 lies above the curve M = 0 for at 
least one value of v in the interval (Vb vol. We have by (13.38) 

aH I = cv(v-b) + (v-vo) >0 
ap v R 2 

(13.58) 

in some neighborhood of (vo,Po)' Hence, by our assumption, in this neigh
borhood H> 0 on L = 0 if v < Vo. Thus by (13.57) in this neighborhood we also 
have M> 0 on L = 0 when v < Vo. 

From Lemma 4.2 and equation (13.56) we see that the graph of OL(V) lies in Q 

only when ve(b, v). In the next lemma we shall show that the graph of OM( v) lies 
in Dwhen b<v<oo. 

Lemma 4.3. Under the hypotheses of Theorem 4.1 there is a constant iJ> 0 such 
that (}M( v) ~ iJ for all v> b, with equality holding only at v = v. 

Proof. The curve M = 0 lies above the curve L = 0 for Vo < v::;;; v by Lemma 4.2, 
and the curve L = 0 lies above the v-axis for vo< v < V.1t is sufficient to show that 
the curve 0 = OM(V) takes on its minimum value in the interval (b, (0) at v = V. 
Now 

aM = 0 ap -L 
8v 80 

and by (13.54), since Cv = cv(O), 82M 
--=0. 
808v 

(13.59) 

(13.60) 
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Therefore 
oM oM 
-(v,O)=-(v,O)= -L(v,O). 

ov ov 
(13.61) 

From (13.56) and Lemma 4.2 we see that L(v,O) <0 when b<v<v and 
L(v,O) >0 when V<V<OO. But 

dOM(v) = _ oM (v, 0)/ oM (v, 0) = L(v,O) 
dv ov 00 cv(O) 

(13.62) 

and so OM(V) takes on it minimum at v = v and OM(V) ~ OM(V) for all v> b, with 
equality holding only at v = v. 

According to the discussion in Sect. 13.2 a shock layer is a solution of (13.24) 
satisfying (13.25); the points (vo, 0, (0) and (Vb 0, ( 1) are of course critical points 
of (13.24). In the next lemma we examine the nature of these critical points. 

Lemma 4.4. Under the hypotheses of Theorem 4.1 the critical point (Vi' 0, ( 1) is a 
saddle point with a one-dimensional stable manifold and a two-dimensional 
unstable manifold. Furthermore the fluid velocity is subsonic at the back state 
(Vb ( 1) and is supersonic at the front state (vo, (0), 

Proof The acoustic speed c is given by 

c2 = op I = - v2 op I . 
oe 1'/ ov 1'/ 

(13.63) 

Thus 

U2~C2~ V2( :~ l,+m2) (13.64) 

since u = mv. We need to show that 

op I + m2 > 0 at (vo, (0) (13.65) 
OV 1'/ 

and 

op I +m2<0 at (Vb (1) • (13.66) 
ov 1'/ 

Now by hypothesis the chord connecting (Vb Od to (vo, (0 ) has slope - m 2 and 
lies above the Hugoniot curve (H = 0) in Q. Thus the slope of the curve H = 0 is 
greater than the slope of the chord at (vo, (0), From (13.28) and the Gibbs 
relation (13.29) we now get 

dH= (0 01'/ I +~(V-Vo»)dP+ (0 01'/ 1-~(P-po»)dV. (13.67) 
op v 2 ov p 2 

Thus 

and so 

dp I = -~I /~I =~I at (vo,Po) 
dv H ov p op v ov 1'/ 

(13.68) 
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8p I + m2 > 0 at ( ) vo,Po . 
8v 1'/ 

This proves (13.65). We next show (13.66). 
By Lemma 4.2 the curve L = 0 lies above the curve M = 0 for V1 < v < Vo and so 

dfh df)M 
-- (V1) > -- (vd . 

dv dv 
(13.69) 

The strictness of the inequality can be shown to follow from the non-tangency 
hypothesis and equation (13.55). Now 

df)L __ 8L / 8L 
--- --

dv 8v 8f) 
(13.70) 

and 

(13.71) 

thus by (13.69) 

(13.72) 

since 8L18f) and 8M18f) are positive. Substituting (13.54), (13.55), (13.59), and 

8L 8p 2 
-=-+m 
8v 8v 

(13.73) 

into (13.72) gives ) ) 

( op 2 (op op 
D = Cv ov + m - f) of) - L of) (13.74) 

But L(v1> f)1) = 0 and (see (13.22» 

:~ _ :. (:~ )' ~ :~ I, (13.75) 

so that 

D ~ c. (:~ 1,+ m') at (v" 8,) . (13.76) 

Since D < 0 by (13.72), condition (13.66) now follows at once. 
To show that (V1>O, f)1) is a saddle point we linearize (13.24) about (V1>O, f)1) 

to obtain 

[
VI J = [ v - V1 J 
w' =A W 

f)' f)- f)1 

(13.77) 

where 



13. Dynamic Changes of Phase in a van der Waals Fluid 255 

0 

A= 
1 8L 
--- m 
(J 8v 

m 8M 
---

X 8v 

the entries being evaluated at (Vlo ( 1), 
Now (at (Vlo ( 1)) 

1 0 

),+211 1 8L 
---

(J (J 80 

0 
m 8M 
---
X 80 

detA =~ (8L 8M _ 8L 8M) =~D<O 
X(J 8v 80 80 xv X(J 

by (13.72). Also by (13.54) ( ) 
),+211 c 

trace A = m + _v > 0 . 
(J x 

(13.78) 

(13.79) 

(13.80) 

Let el, e2 and e3 be the eigenvalues of A. Suppose first that these are all real and 
that el ~ e2 ~ e3' Then ele2e3 = detA < 0 by (13.79) and so either el < 0, e2 < 0 
and e3 < 0 or e1 < 0, e2 > 0 and e3 > O. But e1 + e2 + e3 = trace A > 0 by (13.80), 
and hence el < 0, e2 > 0 and e3 > O. Next suppose that e1, e2 and e3 are not all 
real. Let e2 = a- iP arid e3 = a+ iP, where a, P and el are all real. Then 
(a2 + p2) e1 = detA < 0; hence e1 < 0 and 2 a+ el = trace A > 0, so a> O. There
fore the critical point (vloO, ( 1) is a saddle point with a one-dimensional stable 
manifold and a two-dimensional unstable manifold. 

Define 

<1>(v, w, 0) = m (n-111 + (Jw2 
_ M) . (13.81) 

20 0 

Lemma 4.5. Let (v(x), w(x), O(x» be any solution of (13.24). Then 

d 
- <1>(v(x), w(x), O(x» ~ 0 . 
dx 

That is, fiJ is nondecreasing along the trajectories of (13.24). 

Proof We can use (13.13), (13.23), and (13.24c) to write (13.81) as 

xO' 
<1> = m(11-111) - -- . 

o 
Thus ( )' xO' 

fiJ' = ml1' - -0- ~ 0 

(13.82) 

(13.83) 

(13.84) 

by the Clausius-Duhem inequality (see also (13.99», completing the proof. 

We have <1>(v lo O, Ot> = 0 and, by (13.54) and (13.31), 

8<1> m ao (v,O, 0) = or M(v, 0) (13.85) 

so that 8<1>(VbO, 0)/80 > 0 «0) for 0 > 01 (0 < (1), Hence 



256 R. Hagan and J. Serrin 

(13.86) 

The function (h(v) has a maximum on the interval (b, iJ), say 0, while 
(h(b) = lh(iJ) = o and lh(v) > 0 for b<v<iJbyLemma4.2. Now by (13.59) and 
(13.31) 

all> rn 
-(v,O,O) =-L(v,O) 

av 0 
(13.87) 

and so 
all> -
-(v,O,O)~O (13.88) 

av 
since L ~ 0 for 0 = O. Thus 

ll>(v,O,O) > 0 for v ~ VI (13.89) 

since Il>(VbO, 0) > 0 by (13.86). 
The curve M = 0 intersects the line 0 = 0 for some v> iJ, as follows at once 

from the relation (see (13.62), (13.22) and (H1» 

dOM (v) =_1_ (rn 2(v-vo)-PO---;-)' (13.90) 
dv Cv v 

From this fact and (13.85) and (13.89) it is clear that Il>(v, 0,0) > 0 for 0 < 0 < O. 
Put 

w2 = max.{-~Il>(V,O,O)+l}. 
v,o:;vo:;v rna 
00:;00:;8 

We define a box B in phase space by 

B={(v,w,8): v,<v<ii" -w<w<w,tO<8<0}. 

Note that with the exception of the bottom of the box and the point (Vb (1) we 
have Il> > 0 on aBo 

Lemma 4.6. Under the hypotheses of Theorem 4.1 every trajectory which inter
sects the bottom of the box B leaves the box. 

Proof. We have from (13.24) 

)(0' = rn (- ~ a(Oa) W 2+M(V,0»). 
ao 

(13.91) 

From Lemma 4.3 the curve M = 0 does not drop below the line 0 = 0 in D. 
But aMlaO = cv> 0 and so 

M(v,O)<O for b<v<oo and 0<0<0. (13.92) 
Also 

a aa 
-(Oa) = a+O-. ao ao 

(13.93) 

and by hypothesis a > 0 and 
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Hence 

lim () 8a (v, () = ° for b < v < 00 • 
0--+0 8() 

8 
- «()a) > ° for b < v < 00 
8() 

(13.94) 

and for () sufficiently small and positive. We can choose iJ smaller if necessary so 
that (13.94) holds when ° < () < 012. Thus ()' < ° on the bottom of the box Band 
every trajectory which intersects the bottom of the box at some point leaves the 
box at that point. 

Lemma 4.7. Under the hypotheses of Theorem 4.1 one of the (two) trajectories 
of the stable manifold of (Vlo 0, ()1) enters the box B while the other never does. 
Thus there can be at most one trajectory of (13.24) connecting (vo, 0, ()o) to 
(Vl,O, ()1)' 

Proof. We need to show that the line tangent to the stable manifold is transverse 
to the plane v = VI in phase space. This line is parallel to the eigenvector asso
ciated with the negative eigenvalue!'1 of (13.78). Let (~10~2'~3)T be this eigen
vector. Then we have 

(13.95) 

We assert that ~1 * 0, which is the required transversality condition. Suppose for 
contradiction that ~1 = 0. Then from (13.95) and (13.78) we have 

~2 = !'1~1 = ° 
8M 

(x!'l-mcv)~3 = m-- ~1 = 0. 
8v 

But X!'I- mcv < 0. Hence ~1 = ~2 = ~3 = 0, which is impossible. 

(13.96) 

Now suppose one of the trajectories forming the stable manifold of (Vb 0, ( 1) 

crosses the plane v = VI at some point. Then tP > 0 at this point since 

maw2 
tP( v, w, 0) = tP( v, 0, 0) + , 

2() 
(13.97) 

and tP(vIoO, 0) >0 for ()* 01 by (13.86). By Lemma 4.5, tP is nondecreasing 
along trajectories of (13.24); thus tP ~ 0 on the stable manifold and hence any 
trajectory forming the stable manifold cannot cross the plane v = VI' 

If we replace x by -x in the system of ordinary differential equations (13.24) 
then the direction of each trajectory in (13.24) is reversed. We shall refer to 
(13.24) with x replaced by -x as the reversed system. Note that tP decreases 
along any trajectory of the reversed system and hence tP is a Liapunov function 
in the sense of LaSalle for the reversed system. 

Let us denote by T the trajectory of the reversed system that leaves (Vlo 0, ()1) 
and enters B. 
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Lemma 4.8. Under the hypotheses of Theorem 4.1 the trajectory T is bounded. 

Proof. We shall show that T is contained in B. For the reversed system, t/J is non
increasing along Tand hence t/J ~ ° on Tsince t/J(V1> 0, (1) = 0. But t/J > ° on oB 
with the exception of the point (V1>O, ( 1) and the bottom face of B. Thus T 
cannot cross oB except possibly at the bottom face. But by Lemma 4.6 and the 
fact that the system is reversed, every trajectory which intersects the bottom face 
enters B. Thus T cannot cross oB and so it is bounded. 

To complete the proof of Theorem 4.1 we need to show that Tenters 
(vo, 0, (0), that is, the w-limit set W for the reversed system consists of the single 
point (vo, 0, (0), Since t/J is a Liapunov function in the sense of LaSalle for the 
reversed system and T is bounded, W is contained in the invariant subset of 
S == {(v, w, O)eClosure (B): t/J' = O}, by LaSalle's invariance principle [13.12]. 

From (13.84) we have 
(xO')' XO,2 

t/J' = mrl' - + -2-' (13.98) o 0 

Substituting (13.24c) and (13.13) into (13.98) yields (after some calculation) 

(13.99) 

Thus on S we have by (13.24c) 

w = 0, M(v, 0) = 0. 

Comparing this with the basic equations (13.24), and particularly with (13.24b), 
it is clear that the points of S where L =t= ° cannot be part of the invariant subset 
of S. Hence S consists at most of the two points (V1>O, ( 1) and (vo,O, 00) in 
Closure (B) where w = L = M = O. But the first of these points cannot belong to 
W, since by (13.99) we have t/J' < 0 somewhere on T so that t/J < 0 on W. Hence 
W, which is of course non-empty since T never leaves B, must consist of the 
single point (vo, 0, 00)' Thus we have proved that the trajectory T connects 
(V1>O, ( 1) to (vo,O, ( 0), as required. 

It remains to show that 111> 110 and 01 > 00 , The first of these inequalities 
follows from (13.81) since t/J < 0 on W, that is at (vo, 0, ( 0), The second follows 
from (13.62) since L(v,O) < ° for V1 < v < Vo. 

Remark. Theorem 4.1 also remains valid when the Korteweg terms are 
suppressed in the constitutive formulae (13.9 -14), that is, when a = 0. The basic 
shock layer equations (13.29) then take the form 

m(A+2.u)v' = L(v, 0) 

(x/m) 0' = M(v, 0) , 

as in the classical paper of Oi/barg [13.13]. Proof of existence of shock layer con
nections in this case can be carried out either by using the method of Gilbarg or 
by noting that t/J continues to be a Liapunov function and then restricting the 
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previous construction of the three dimensional box B to the two dimensional 
cross section in the (v, (J) plane. 

Example 1. Suppose that Cv is a large constant, so that by Lemma 3.1 the 
Hugoniot curve generated by (vo,Po) is near the isothermp(v, (Jo). Let us suppose 
that (vo,Po) is in the vapor region and (VtoPt) is in the liquid region. Further
more, suppose that the straight line through (vo,Po) and (VtoPt) intersects the 
Hugoniot curve at only these two points (see Fig. 13.5). 

p 

Chord with slope _m 2 

-~ 
~ ~ ~ 

Po 

b VI Vo 

Hugoniot curve 
for large Cy 

--- --- ----
-- ------

V 

Fig. 13.S. The Hugoniot diagram for large specific heat 

In this example the hypotheses of Theorem 4.1 are satisfied and hence there is 
a shock layer connecting (vo,Po) to (VtoPt). The shock layer converts vapor in the 
equilibrium state (vo,Po) into liquid in the equilibrium state (VtoPt). 

The phenomenon of liquefaction shocks was first discovered in 1979 by 
Thompson and his co-workers [13.14], who produced such shocks experi
mentally as supersonic, strongly temperature dependent reflection waves in a 
specially designed shock tube apparatus. In view of our hypothesis for this 
example that Cv should be large it is interesting to note that the fluids studied in 
[13.14] all had specific heats with cvlR at least 50 or greater. In this regard, both 
the experiments in [13.14] and the theory developed in this paper indicate that 
Landau & Lifshitz's remark, "It should be emphasized that condensation discon
tinuities are a distinct physical phenomenon, and do not result from the compres
sion of gas in an ordinary shock wave; the latter effect cannot lead to condensa
tion, since the increase of pressure in the shock wave has less effect on the degree 
of supersaturation than the increase of temperature ... " (quoted from [13.14]), is 
incomplete and somewhat misleading. 

Example 2. We keep the same set-up as in Example 1, but with (VtoPt) also in the 
vapor region and Vt < vo. Then there is a gas-gas compressive shock layer con
verting gas in the more rarefied equilibrium state (vo,Po) to gas in the hotter 
denser equilibrium state (VtoPt). 

Example 3. Let us suppose that Cv is constant and 0 < Cv ~ R, so that y ~ 2. We 
choose (vo,Po) in either the vapor or super-critical region, with Vo ~ 7 band 



260 R. Hagan and J. Serrin: Dynamic Changes of Phase in a van der Waals Fluid 

Po> O. Then a> 0 by (13.47), and the only attainable states on the Hugoniot 
curve are to the right of 

(y-1)vo+2b 

y+1 

by Lemma 3.6. Since Vo ~ 7 band y ~ 2 we have 

Vs~ (y-1)7b+2b =7b-~~3b. 
y+ 1 y+ 1 

But the liquid region lies to the left of v = 3 b, and hence no complete liquifaction 
shock is possible in this case. 
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