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Preface 

Although it has changed considerably in both coverage and length, this book 
originated from lecture courses at the Ecole Poly technique. It is useful to re
mind non-French readers of the special place this institution occupies in our 
education system, as it has few features in common with institutes with a 
similar name in other parts of the world. In fact, its programme corresponds 
to the intermediate years at a university, while the level of the students is 
particularly high owing to their strict selection through entrance examina
tions. The courses put a stress on giving foundations with a balance between 
the various natural and mathematical sciences, without neglecting general 
cultural aspects; specialization and technological instruction follow after the 
students have left the Ecole. The students form a very mixed population, 
not yet having made their choice of career. Many of them become high-level 
engineers, covering all branches of industry, some devote themselves to pure 
or applied research, others become managers or civil servants, and one can 
find former students of the Ecole amongst generals, the clergy, teachers, and 
even artists and Presidents of France. 

Several features of the present volume, and in particular its contents, 
correspond to this variety and to the needs of such an audience. Statistical 
physics, in the broadest meaning of the term, with its many related disci
plines, is an essential element of modern scientific culture. We have given a 
comprehensive presentation of such topics at the advanced undergraduate or 
beginning graduate level. The book, however, has to a large extent moved 
away from the original lecture courses; it is not only intended for students, 
but should also be of interest to a wider public, including research workers 
and engineers, both beginning and experienced. A prerequisite for its use 
is an elementary knowledge of quantum mechanics and general physics, but 
otherwise it is completely self-contained. 

Rather than giving a systematic account of useful facts for specialists 
in some field or other, we have aimed at assisting the reader to acquire a 
broad and solid scientific background knowledge. We have therefore chosen 
to discuss amongst the applications of statistical physics those of the greatest 
educational interest and to show especially how rich and varied these appli
cations are. This is the reason why, going far beyond the traditional topics of 
statistical mechanics - thermal effects, kinetic theory, phase transitions, ra
diation laws - we have dwelt on microscopic explanations of the mechanical, 
magnetic, electrostatic, electrodynamic, ... properties of the various states 
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of matter. Examples from other disciplines, such as astrophysics, cosmology, 
chemistry, nuclear physics, the quantum theory of measurement, or even bi
ology, enable us to illustrate the broad scope of statistical physics and to 
show its universal nature. Out of a concern for culture, and also in trying 
to keep engineers and scientists away from too narrow a specialization, we 
have also included introductions to various physical problems arising in im
portant technological fields, ranging from the nuclear industry to lighting by 
incandescent lamps, or from solar energy to the use of semiconductors for 
electronic devices. 

Throughout this abundance we have constantly tried to retain a unity of 
thought. We have therefore stressed the underlying concepts rather than the 
technical aspects of the various methods of statistical physics. Indeed, one can 
see everywhere in the book under various guises two main guiding principles: 
on the one hand, the interpretation of entropy as a measure of disorder or 
of lack of information and, on the other hand, a stress on symmetry and 
conservation laws. At a time when excessive specialization tends to hide the 
unity of science, we have deemed it instructive to present unifying points 
of view, showing, for instance, that the laws of electrodynamics, of fluid 
dynamics, and of chemical kinetics all go back to the same underlying, basic 
ideas. 

The French tradition, both in secondary education and in the entrance 
examinations to the Ecole Poly technique, has to some extent given pride of 
place to mathematics. We have tried to benefit from this training by putting 
our treatment on a strict logical basis and giving our arguments a structured, 
often deductive, character. Mathematical rigour has, however, been tempered 
by a wish to present and to explain many facts at an introductory level, to 
avoid formalistic stiffness, and to discuss the validity of models. We have 
inserted special sections to present the less elementary mathematical tools 
used. 

A first edition of this book was published in French in 1982. When the 
idea of publishing an English translation started to take shape, it seemed 
desirable to adapt the text to a broader, more international audience. The 
first changes in this direction brought about others, which in turn suggested 
a large number of improvements, both simplifications and more thorough 
discussions. Meanwhile it took some time to find a translator. Further lecture 
courses, especially one given at Yale in 1986, led to further modifications. One 
way or another, one thing led to another and finally there was little left of 
the original text, and a manuscript which is for more than eighty per cent 
new was finally translated; the present book has, in fact, only the general 
spirit and skeleton in common with its predecessor. 

The actual presentation of this book aims at making it easier to use by 
readers ranging from beginners to experienced researchers. Apart from the 
main text, many applications are incorporated as exercises at the end of each 
chapter and as problems in the last chapter of the second volume; these are 
accompanied by more or less detailed solutions, depending on the difficulty. 
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At the end of each of the two volumes we give tables with useful data and 
formulae. Parts of the text are printed in small type; these contain proofs, 
mathematical sections, or discussions of subjects which are important but lie 
outwith the scope of the book. For cultural purposes we have also included 
historical and even philosophical notes: the most fundamental concepts are, 
in fact, difficult to become familiar with and it is helpful to see how they 
have progressively developed. Finally, other passages in small type discuss 
subtle, but important, points which are often skipped in the literature. Many 
chapters are fairly independent. We have also tried clearly to distinguish those 
topics which are treated with full rigour and detail from those which are only 
introduced to whet the curiosity. The contents and organization of the book 
are described in the introduction. 

I am indebted to John Gregg and Dirk ter Haar for the translation. The 
former could only start on this labour, and I am particularly grateful to the 
main translator, Dirk ter Haar, for his patience (often sorely tried by me) and 
for the care bestowed on trying to present my ideas faithfully. I have come 
to appreciate how difficult it is to find exact equivalents for the subtleties of 
the French language, and to discover some of the subtleties of the English 
language. He has also accomplished the immense task of producing a text, 
including all the mathematical formulae, which could be used directly to 
produce the book, and which, as far as I can see, should contain hardly any 
misprints. 

The Service de Physique Theorique de Saclay, which is part of the Com
missariat it l'Energie Atomique, Direction des Sciences de la Matiere, and 
in which I have spent the major part of my scientific research career, has 
always been like a family to me and has been a constant source of inspira
tion. I am grateful to all my colleagues who through many discussions have 
helped me to elaborate many of the ideas presented here in final form. They 
are too numerous to be thanked individually. I wish to express my gratitude 
to Jules Horowitz for his suggestions about the teaching of thermodynamics. 
As indicated in the preface to the first edition, I am indebted to the teaching 
staff who worked with me at the Ecole Poly technique for various contribu
tions brought in during a pleasant collaboration; to those mentioned there, 
I should add Laurent Baulieu, Jean-Paul Blaizot, Marie-Noelle Bussac, Do
minique Gresillon, Jean-Franc;ois Minster, Patrick Mora, Richard Schaeffer, 
Heinz Schulz, Dominique Vautherin, Michel Voos, and Libero Zuppiroli, who 
to various degrees have helped to improve this book. I also express my thanks 
to Marie-Noelle Bussac, Albert Lumbroso, and Marcel Veneroni, who helped 
me in the tedious task of reading the proofs and made useful comments, 
and to Dominique Bouly, who drew the figures. Finally, Lauris and the other 
members of my family should be praised for having patiently endured the 
innumerable evenings and weekends at home that I devoted to this book. 

Paris, April 1991 Roger Balian 
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The teaching of statistical mechanics at the Ecole Poly technique used for a 
long time to be confined to some basic facts of kinetic theory. It was only 
around 1969 that Ionel Solomon started to develop it. Nowadays it is the 
second of the three physics "modules", courses aimed at all students and 
lasting one term. The first module is an introduction to quantum mechanics, 
while the last one uses the ideas and methods of the first two for treating 
more specific problems in solid state physics or the interaction of matter 
with radiation. The students then make their own choice of optional courses 
in which they may again meet with statistical mechanics in one form or 
another. 

There are many reasons for this development in the teaching of physics. 
Enormous progress has been made in statistical physics research in the last 
hundred years and it is now the moment not only to reflect this in the teach
ing of future generations of physicists, but also to acquaint a larger audience, 
such as students at the Ecole Poly technique, with the most useful anp in
teresting concepts, methods, and results of statistical physics. The spectac
ular success of microscopic physics should not conceal from the students the 
importance of macroscopic physics, a field which remains very much alive 
and kicking. In that it enables us to relate the one to the other, statistical 
physics has become an essential part of our understanding of Nature; hence 
the desirability of teaching it at as basic a level as possible. It alone helps to 
unravel the meaning of thermodynamic concepts, thanks to the light it sheds 
on the nature of irreversibility, on the connections between information and 
entropy, and on the origin of the qualitative differences between microscopic 
and macroscopic phenomena. Despite being a many-faceted and expanding 
discipline with ill-defined boundaries, statistical physics in its modern form 
has an irreplaceable position in the teaching of physics; it unifies tradition
ally separate sciences such as thermodynamics, electromagnetism, chemistry, 
and mechanics. Last and not least its numerous applications cover a wide 
range of macroscopic phenomena and, with continuous improvements in the 
mathematical methods available, its quantitative predictions become increas
ingly accurate. The growth of micro-electronics and of physical metallurgy 
indicates that in future one may hope to "design" materials with specific 
properties starting from first principles. Statistical physics is thus on the 
way to becoming one of the most useful of the engineering sciences, sufficient 
justification for the growth of its study at the Ecole Poly technique. 
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This book has evolved from courses given between 1973 and 1982 in the 
above spirit. The contents and teaching methods have developed consider
ably during that period; some subjects were occasionally omitted or were 
introduced as optional extras, intended only for a section of the class. Most 
of the major threads of statistical mechanics were reviewed, either in the 
course itself, or in associated problems. Nevertheless, on account of their 
difficulty, it has been possible to treat some important topics, such as irre
versible processes or phase transitions, only partially, and to mention some 
of them, like superconductivity, only in passing. The published text contains 
all the material covered, suitably supplemented and arranged. It has been 
organized as a basic text, explaining first the principles and methods of sta
tistical mechanics and then using them to explain the properties of various 
systems and states of matter. The work is systematic in its design, but tuto
rial in its approach; it is intended both as an introductory text to statistical 
physics and thermodynamics and as a reference book to be used for further 
applications. 

Even though it goes far beyond the actual lecture programme, this is the 
text circulated to the students. Its style being half way between a didactic 
manual and a reference book, it is intended to lead the student progressively 
away from course work to more individual study on chosen topics, involving 
a degree of literature research. Typographically, it is designed to ease this 
transition and to help the first-time reader by highlighting important parts 
through italics, by framing the most important formulae, by numbering and 
marking sections to enable selective study, by putting items, supplementary 
to the main course, and historical notes in small type, and by giving sum
maries at the end of each chapter so that the students can check whether 
they have assimilated the basic ideas. However, the very structure of the 
book departs from the order followed in the lecture course, which, in fact, 
has changed from year to year; this is the reason why some exercises involve 
concepts introduced in later chapters. 

Classes at the Ecole Poly technique tend to be mixed, different students 
having different goals, and some compromises have been necessary. It is use
ful to take advantage of the mathematical leanings of the students, as they 
like an approach proceeding from the general to the particular, but it is 
equally essential that they are taught the opposite approach, the only one 
leading to scientific progress. The first chapter echoes this sentiment in using 
a specific example in order to introduce inductively some general ideas; it 
is studied at the Ecole as course work in parallel with the ensuing chapters, 
which provide a solid deductive presentation of the basis of equilibrium sta
tistical mechanics. Courses at the Ecole Poly technique are intended to be 
complemented later on by specialized further studies. When we discuss ap
plications we have therefore laid emphasis on the more fundamental aspects 
and we have primarily selected problems which can be completely solved by 
students. However, we have also sought to satisfy the curiosity of those inter
ested in more difficult questions with major scientific or technological impli-
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cations, which are only qualitatively discussed. Conscious of the coherence of 
the book as a whole, we have tried to maintain a balance between rigour and 
simplicity, theory and fact, general methods and specific techniques. Finally, 
we have tried to keep the introductory approach of the book in line with 
modern ideas. These are based upon quantum statistical mechanics, richer 
in applications and conceptually simpler than its classical counterpart, which 
is commonly the first topic taught, upon the entropy as a measure of infor
mation missing because of the probabilistic nature of our description, and 
upon conservation laws. 

Capable of being read at various different levels, and answering to a vari
ety of needs, this course should be useful also outside the Ecole Poly technique. 
Given its introductory nature and its many different purposes, it is not in
tended as a substitute for the more advanced and comprehensive established 
texts. Nevertheless, the latter are usually not easy reading for beginners on 
account of their complexity or because they are aimed at particular appli
cations and techniques, or because they are aimed at an English-speaking 
audience. The ever increasing part played by statistical physics in the scien
tific background essential for engineers, researchers, and teachers necessitates 
its dissemination among as large an audience as possible. It is hoped that 
the present book will contribute to this end. It could be used as early as 
the end of undergraduate studies at a university, although parts are at the 
graduate level. It is equally well geared to the needs of engineering students 
who require a scientific foundation course as a passport to more specialized 
studies. It should also help all potential users of statistical physics to learn 
the ideas and skills involved. Finally, it is hoped that it will interest readers 
who wish to explore an insufficiently known field in which immense scientific 
advances have been made, and to become aware of the modern understanding 
of properties of matter at the macroscopic level. 

Physics teaching at the Ecole Poly technique is a team effort. This book 
owes much to those who year after year worked with me on the statistical 
mechanics module: Henri Alloul, Jean Badier, Louis Behr, Maurice Bernard, 
Michel Bloch, Edouard Brezin, Jean-Noel Chazalviel, Henri Doucet, Georges 
Durand, Bernard Equer, Edouard Fabre, Vincent Gillet, Claudine Hermann, 
Jean Iliopoulos, Claude Itzykson, Daniel Kaplan, Michel Lafon, Georges 
Lampel, Jean Lascoux, Pierre Laures, Guy Laval, Roland Omnes, Rene 
Pellat, Yves Pomeau, Yves Quere, Pierre Rivet, Bernard Sapoval, Jacques 
Schmitt, Roland Seneor, Ionel Solomon, Jean-Claude Toledano, and Gerard 
Toulouse, as well as our colleagues Marcel Fetizon, Henri-Pierre Gervais, and 
Jean-Claude Guy from the Chemistry Department. I have had the greatest 
pleasure in working with them in a warm and friendly environment, and I 
think they will excuse me if I do not describe their individual contributions 
down the years. Their enthusiasm has certainly rubbed off onto the students 
with whom they have been in contact. Several of them have given excellent 
lectures on special topics for which there has regrettably not been room in 
this book; others have raised the curiosity of students with the help of in-
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genious and instructive experiments demonstrated in the lecture theatre or 
classroom. This book has profited from the attention of numerous members 
of the teaching staff who have corrected mistakes, simplified the presentation, 
and thought up many of the exercises to be found at the end of the chapters. 
Some have had the thankless task of redrafting and correcting examination 
problems; the most recent of those have been incorporated in the second vol
ume. To all of them I express my heartfelt thanks. I am especially indebted 
to lonel Solomon: it is thanks to his energy and dedication that the form 
and content of the course managed to evolve sufficiently rapidly to keep the 
students in contact with live issues. On the practical side, the typing was 
done by Mmes Blanchard, Bouly, Briant, Distinguin, Grognet, and Lecuyer 
from the Ecole's printing workshop, efficiently managed by M. Deyme. I am 
indebted to them for their competent and patient handling of a job which was 
hampered by the complexity of the manuscript and by numerous alterations 
in the text. Indee9., it is their typescript which, with some adjustments by the 
publisher, was reproduced for the finished work. The demanding and essential 
task of proofreading was performed by Madeleine Porneuf from our group at 
Saclay. I also thank the staffs of the Commissariat a l'Energie Atomique and 
of the Ecole Poly technique, in particular, MM. Grison, Giraud, Servieres, 
and Teillac for having facilitated publication. Finally, I must not forget the 
many students who have helped to improve my lectures by their criticism, 
questions, and careful reading, and from whose interest I have derived much 
encouragement. 

Roger Balian 
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Introd uction 

Est-ce la physique que vous voulez apprendre? 
- Qu'est-ce qu'elle chante, cette physique? 
- La physique est celle qui explique les principes des choses 

naturelles et les praprietes du corps; qui discourt de la na
ture des elements, des metaux, des mineraux, des pierres, des 
plantes et des animaux, et nous enseigne les causes de tous 
les meteores, l'arc-en-ciel, les feux volants, les cometes, les 
eclairs, Ie tonnerre, la foudre, la pluie, la neige, la grele, les 
vents et les tourbillons. 
- Ii y a trap de tintamarre la-dedans, trop de brouillamini." 

Moliere, Le Bourgeois Gentilhomme 

The Unification of Macroscopic Sciences 

It is striking that the progress of Science has so far confirmed most scientists 
in their belief that there exist simple principles which should enable us to 
understand the various aspects of Nature, even though she appears to be 
so complex. In fact, the search for a unique foundation as the basis of most 
dissimilar phenomena, together with a quest for facts going beyond the well 
trodden paths, have been amongst the most powerful driving forces behind 
scientific progress. Strangely enough, aesthetic criteria often have led to the 
construction of new theories which describe Nature more efficiently. For ex
ample, the Ptolemaean system was changed to the Copernican one in order 
that one could more simply explain the apparent motions of the planets; later 
Kepler's laws gave way to Newton's universal gravitation and much later to 
Einstein's relativistic mechanics, each stage introducing a more general and 
at the same time a more accurate description of celestial dynamics. 

In the second half of the nineteenth century it was commonly - but, 
of course, wrongly - thought that science was about to be completed. The 
unification through induction had made it possible to regroup all known 
phenomena into a few broad, coherent disciplines: so-called rational mechan
ics, containing the statics and dynamics of point particles and rigid bodies, 
mechanics of continuous media, consisting of elasticity, fluid dynamics, and 
acoustics, electromagnetism, from electrostatics to the study of fields and 
currents in various kinds of substances, geometric and wave optics, thermo
dynamics, which studies thermal properties, pressure, and phase changes, 
and chemistry, which is concerned with equilibria, reactions, and thermo
chemistry. 
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Each of these disciplines is based on a few fundamental principles - such 
as the Hamiltonian, Navier-Stokes, or Maxwell equations, or the Laws of 
Thermodynamics - which appear as a kind of axioms discovered through 
successive inductions and justified by the extent of their consequences. Here 
the term "fundamental" refers not so much to the importance of the princi
ples, as to their character of "foundations". These principles make it possible, 
in theory if not in practice, quantitatively to predict the behaviour of vari
ous complicated physical systems. The additional ingredients are the specific 
properties of the substances considered, with the data being available either 
as tables or graphs, or as empirical laws - for, say, the viscosity, the resis
tivity, the magnetic susceptibility, the refractive index, the specific heat, the 
equation of state, the mass action law - distilled from experiments. 

One hardly needs stress the role of mathematics as a means for unifying 
science. It has made possible an accurate and succinct formulation of the 
basic principles and a derivation of their observable consequences. In fact, 
the larger the domain covered and the more general the principles, the more 
difficult it is to derive the consequences. One should note that the periodic 
reconsideration of physical theories may need invoking new mathematics, and 
that often these new tools lack rigour to start with, as witness the theories of 
differential and integral calculus, Fourier transforms, distributions, or func
tional integration. From a philosophical point of view, it is remarkable how 
efficient mathematics is in describing the real world: from the ancient Greeks 
to Einstein, scientists have felt that "God is a geometer". 

The growing dependence of science on mathematics should, however, not 
hide the essential role played by experiments. They are the basis of induction 
and the only means for distinguishing between rival theories and checking new 
hypotheses. They provide exact data, indispensible both for the progress of 
fundamental science and for its applications, and open the way to discoveries 
thanks to a search for possible failures of the existing theories. 

Note finally that science moves simultaneously to a greater unification 
and to an ever increasing specialization of the activities of the scientists. 
Even though the vision of an all embracing synthesis is a necessary part of 
all progress, it goes hand in hand with a deepening of knowledge in any 
particular domain. As soon as one realized that light is an electromagnetic 
wave, optics ceased to be an autonomous science, and one had to understand 
it as a branch of electromagnetism; however, this is no reason for using the 
Maxwell equations for designing a photographic lens! 
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Microscopic and Macroscopic Science 

The scientific revolution of the first third of the twentieth century rendered 
the above-mentioned classification of science obsolete. Although it still exists 
to some extent in the organization of laboratories or of lecture courses, in 
active science itself it has faded away. Even the frontiers between physics, 
mechanics, and chemistry are fluid. 

Nowadays, the major distinctions hinge upon the scale of the phenom
ena studied. Up to the end of the nineteenth century science was primarily 
concerned with the description and understanding of macroscopic phenom
ena, on our own scale. Certainly, interest in such matters has not abated 
since then, and one witnesses actually a renewed interest in research on our 
scale; indeed, much remains to be discovered and one finds all the time new 
applications to technology and to other sciences. However, the overall empha
sis has shifted to microscopic physics; its discovery has completely modified 
accepted views about Nature; a similar evolution has taken place in biology. 

Initially, microscopic research concentrated on phenomena on the scale 
of one Angstrom (1 A = 10-10 m) - the study of atoms, molecules, and 
condensed matter in its various forms, such as liquids, amorphous and crys
talline solids, or mesophases. These investigations have more or less rapidly 
evolved towards a coherent, logical discipline, based upon a small number of 
principles, to wit, the postulates of quantum mechanics, together with the 
properties of the particles involved at this level - electrons, atomic nuclei, 
and photons - which are simply characterized by their mass, charge, spin, 
and electromagnetic interactions. 

Nuclear physics, which started at the end of the nineteenth century 
through radioactivity, refers to the scale of one fermi (1 fm = 10-15 m). 
Its main development took place during the last sixty years; it describes the 
properties of nuclei regarded as assemblies of more elementary particles, pro
tons and neutrons, bound together by the so-called strong interaction. More 
recently, particle physics has compelled us to go further down to even more 
microscopic scales where the laws of physics become more and more unified. 
At the scale L ~ 10 -17 m, corresponding to energies hc / L of 100 Ge V, one 
observes that a single mechanism is the basis of both electromagnetism and 
the so-called weak interaction, which is responsible for the ,B-radioactivity 
of nuclei and the instability of the neutron. An even more microscopic scale 
(10- 25 to 10-30 m) is involved in the grand unified theories which try to in
clude electromagnetic, weak, and strong interactions in a single scheme, and 
which describe protons, neutrons, or mesons as composite particles formed 
from elementary constituents, the quarks, bound together by gluons. Finally, 
including the gravitational forces would make it necessary to go down to the 
Planck length obtained by a dimensional argument from the gravitational 
constant G, h, and c as JGh/c3 ~ 10-35 m; at this level the theory can only 
be speculative. 
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The emergence of new branches of physics at ever more microscopic scales 
poses a difficult problem: how can one connect these scales? For instance, the 
aim of many papers in nuclear physics is to explain the properties of nuclei, 
starting from their components, the protons and neutrons, or even, going 
further back, from the more elementary constituents, the quarks and gluons. 

In the present book we shall mainly study the passage from the Angstrom, 
which we shall call the microscopic, scale to our own, the so-called macro
scopic scale. There are obvious differences between these two scales. Not only 
the objects studied, atoms or molecules, on the one hand, pieces of matter, 
on the other hand, but also the phenomena and concepts are completely dif
ferent. The macroscopic and microscopic laws seem unrelated, as they are 
in qualitative contrast to one another. Microscopic physics is discrete, gov
erned by probabilistic quantum mechanics and by a few simple laws, whereas 
the laws on our scale are continuous, deterministic, and manifold. Moreover, 
microscopic dynamics is invariant under time reversal, whereas we observe 
daily irreversible phenomena. Many common macroscopic quantities, such as 
the temperature or the electric resistivity, and many phenomena such as the 
existence of different, solid and liquid, phases of the same material, have no 
obvious microscopic counterpart. We hit here a major difficulty. What are the 
relations between microscopic physics and the various macroscopic sciences? 
Are they distinct areas, governed by independent laws, as are, for instance, 
electromagnetism and thermodynamics? Or rather, does microscopic physics 
enjoy a privileged position in the unification of science in that it is possible 
to explain macroscopic effects solely from the interactions between parti
cles, and from quantum mechanics? In other words, are classical mechanics, 
macroscopic electromagnetism, thermodynamics, and chemistry, truly fun
damental, or can they be derived from a few simple laws of microscopic 
physics? 

Nowadays everybody knows that the second statement is the correct one. 
In fact, even before the birth of microscopic physics, the atomic hypothesis, 
inherited from Democritus, had been recognized as supplying a coherent 
explanatory system for various macroscopic properties of gases. 

Statistical Physics and Its Historical Development 

One can consider Daniel Bernoulli (Groningen 1700-Basel 1782) as the forefather 
of statistical mechanics. Its two essential ingredients, namely simple laws governing 
a large number of constituent particles and a probabilistic description, are already 
at the heart of his theory from 1727, where he explained the pressure of a gas as the 
consequence of collisions of hypothetical molecules with the walls. After Lavoisier 
had established the conservation laws for the chemical elements and for their mass, 
the chemists of the end of the eighteenth century also foresaw the logical necessity 
of molecular physics as the basis of their own science. Similarly, Maxwell's and 
Boltzmann's kinetic theory continued the work of some of their predecessors in the 
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first half of the nineteenth century, who assumed without much trouble that a gas 
consisted of molecules. The kinetic theory of gases, based upon purely mechanistic 
concepts, assumes that the molecules collide elastically with one another; it reduces 
heat to kinetic energy. It started around 1856-60 with the work of August Kronig, 
Rudolf Clausius, and first and foremost, James Clerk Maxwell (Edinburg 1831-
Cambridge 1879); concepts such as the mean free path, velocity distributions, and 
ergodicity were introduced at that time. Ludwig Boltzmann (Vienna 1844-Duino 
near Trieste 1906) made a decisive contribution by introducing probabilities, finding 
the energy distribution in thermal equilibrium, and interpreting the entropy and 
the Second Law on a microscopic level (1877). The second progenitor of statistical 
mechanics, Josiah Willard Gibbs (New Haven, Connecticut 1839-1903) introduced 
statistical ensembles which describe thermodynamic equilibrium and showed how 
they are connected with the thermodynamic potentials for any classical system; 
he helped to clarify Boltzmann's approach thanks to his elegant mathematical 
formulation. 

However, up to 1900, the scientific community ignored Gibbs's ideas and re
jected those of Boltzmann. It is interesting to understand why this was the case, in 
order better to grasp the importance of statistical physics and its role amongst the 
other scientific disciplines. At that time it seemed epistemologically inadmissible 
to base a fundamental science on statistics while the theory of the then preva
lent macroscopic sciences - such as thermodynamics or electromagnetism - only 
involved exactly known quantities. Moreover, the dominant trends forced scientists 
and philosophers to reject molecular approaches as long as there was no direct 
microscopic evidence in their favour - even though atomism had largely been ac
cepted at the end of the eighteenth century. On the contrary, the experimental 
background, from fluid dynamics to electromagnetic fields, supported continuous 
ideas about Nature. It is thus hardly surprising to find eminent thinkers, such as 
Ernst Mach, famous for his contributions to aerodynamics, the thermodynamicist 
Pierre Duhem, and the physical chemist Wilhelm Ostwald, among the fiercest op
ponents of Boltzmann. Even chemists such as Marcelin Berthelot fought against 
atomistic and molecular approaches; chemistry teaching in France continued un
til 1950 to be based upon macroscopic principles such as the laws of "definite" 
or "multiple proportions", and it still talked about the "atomic hypothesis". The 
violence of the attacks against Boltzmann may have contributed, together with an 
unsurmountable and painful illness, to induce his suicide in 1906 - two years before 
Jean Perrin's experiments directly proved the existence of atoms. 

It is not surprising that statistical mechanics had so many difficulties to 
become accepted, even after atomic physics had been solidly established, as 
it was not easy to show that all of macroscopic science followed from the lat
ter. In fact, microscopic phenomena are far from everyday experience, since 
the systems that we observe on our scale contain a huge number of particles. 
Even though in some cases, such as chemical reactions in the gas phase, our 
observations may reflect rather directly what happens on a microscopic scale, 
this is not so in general. Above a certain degree of complexity, the collective 
properties of a system have nothing in common with the individual properties 
of its constituents, and their derivation, even though theoretically possible, 
in practice meets with well-nigh unsurmountable difficulties. For instance, a 
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one carat diamond must be regarded as a molecule containing 1022 carbon 
atoms which are bound together. Although in principle its properties are sup
posed to be described by the Schrodinger equation of its nuclei and electrons 
and their Coulomb interactions, one cannot conceive the possibility to solve 
an equation with that many variables. Moreover, it is remarkable that most 
properties of solids, liquids, gases, or plasmas, that all of chemistry, and even 
biology itself, are virtually contained in this simple Schrodinger equation for 
nuclei and electrons with their Coulomb interactions. The diversity of the 
world which surrounds us testifies to the futility of even thinking about the 
possibility of simply extending to macroscopic substances the methods of 
quantum mechanics, even though these have been extraordinarily successful 
in the study of atoms and small molecules. The bridge between the two scales 
must be provided by a new science, statistical physics. In essence theoretical, 
it is directly in contact with other, experimental or theoretical, sciences deal
ing with various materials and with various kinds of properties: the physics 
of liquids, solids, plasmas, condensed matter, or amorphous substances - and 
electromagnetism in matter, mechanics of continuous media, thermodynam
ics, or physical chemistry. 

The stakes are enormous. On the one hand, one is trying to derive the 
principles of macroscopic sciences, demonstrating an underlying hidden con
ceptual unity. This proof is a major step in the unification process: with the 
exception of nuclear and particle physics, nowadays all of science appears 
to be based upon atomic scale phenomena, and the qualitative differences 
between various scales have been explained. On the other hand, we expect 
that statistical mechanics should enable us to understand, to predict, and to 
calculate from the microscopic structure of a substance its manifold prop
erties, which otherwise are only accessible experimentally. In this way one 
may justify empirical laws such as those of Gay-Lussac, Hooke, Ohm, or 
Joule. Even better, as it progresses, statistical physics, thanks to exchanges 
with experiments, helps the scientist or the engineer to produce substances 
or systems with properties which are defined beforehand, such as electronic 
components or special purpose glasses. In astrophysics also, statistical me
chanics occupies a privileged position as, for instance, it is the only means 
for studying stellar interiors or evolution. 

Statistical physics is an evolving science, never ceasing to improve and to change 
the subjects of its studies ever since it first appeared in the shape of the kinetic 
theory of gases. Around the end of the nineteenth century Lord Rayleigh (Essex 
1842-1919) and Max Planck (Kiel 1858-Gi:ittingen 1947) began to apply statisti
cal mechanics to a new system, the black body, in order to explain the spectral 
distribution of radiation; a breakthrough by Max Planck in 1900 contributed to 
the creation of quantum mechanics. Indeed, the theoretical explanation in 1905-
1907 by Albert Einstein (Ulm 1879-Princeton 1955) of Planck's formula through 
the quantization of radiation provided the basis of both quantum mechanics and 
quantum statistical mechanics. 
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The main subsequent progress of the latter came from solid state theory. Ein
stein himself already in 1907 and Petrus Debye (Maastricht 1884-Ithaca, New York 
1966) in 1912 explained the behaviour of the specific heats of solids. In the same 
period, following experiments by Pierre Curie (Paris 1859-1906), theories, by sci
entists like Pierre Weiss and Paul Langevin, and later P.Debye, Leon Brillouin, and 
Louis Neel, appeared, explaining the various types of magnetic behaviour. Already 
at the end of the nineteenth century Paul Drude (Brunswick 1863-Berlin 1906) 
started the electron theory of metals, following H.A.Lorentz and J.J. Thomson. 
During our century one has been able to witness continuously an extraordinary 
blossoming of statistical mechanical applications to a wide range of subjects: ad
sorption, electrical, thermal, optical, magnetic, and mechanical properties of metals, 
alloys or insulators, metallurgy, electrolytes, quantum fluids, plasmas, electronics, 
and so on. In the twenties and thirties these developments went hand in hand with 
applications of quantum mechanics and many names are common to both fields: 
Irving Langmuir, Max Born, Paul Ehrenfest, Arnold Sommerfeld, Fritz London, 
Eugene Wigner, Rudolph Peierls, Werner Heisenberg, Hans Bethe, Satyendranath 
Bose, Wolfgang Pauli, Enrico Fermi, Paul A.M.Dirac. In particular, Lev Davidovich 
Landau (Baku 1908-Moscow 1968) made major contributions to magnetism, to the 
theory of phase transitions, to plasma theory where he showed how thermal motion 
leads to damping of the oscillations, and to the theory of quantum liquids where 
he explained the superfluidity of helium at low temperatures. 

More recently, the understanding of the properties of semiconductors gave rise 
to the invention of the transistor (John Bardeen, Walter Brattain, and William 
Shockley, 1948). In the fifties statistical mechanics appeared in a new guise, as the 
"many-body problem", and the various techniques developed then made it possible 
to treat situations where the interactions between quantum particles playa major 
role. One of its applications, the BCS theory (John Bardeen, Leon N.Cooper, and 
John R.Schrieffer, 1957) gave an explanation of the superconductivity of various 
metals at very low temperatures, a phenomenon which had remained an almost 
complete mystery since its discovery by Heike Kamerlingh annes in 1911. The 
physics of the various condensed states of matter and nuclear physics continue to 
make contributions to the many-body problem. 

The seventies have been the scene of the theory of critical phenomena, which has 
explained the awkward and time-worn puzzle of the behaviour of thermodynamic 
quantities in the vicinity of the critical point in a phase transition, or the properties 
of long polymer chains in solution. Many problems still remain open, for instance, 
in the fields of poorly ordered materials, intermediate between liquids and solids, 
such as quasi-crystals, glasses, amorphous or soft matter, of biological substances, 
of chaotic dynamics, or of phenomena which are self-similar under a change in the 
space or time scales. All those topics are the subjects of very active research. There 
also remains much to be done in the field of non-equilibrium processes; in fact, it 
was only in 1931 that one of the major laws of irreversible thermodynamics was 
found by Lars Onsager (Oslo 1911-Miami 1976), and kinetic theory was extended 
to cover liquids only at the end ofthe thirties (John G.Kirkwood, Joseph E. Mayer, 
Jacques Yvon). 

Among the various guises in which statistical physics presents itself one 
finds a few aspects which unite this discipline. A first line of thought is 
a systematic exploitation of symmetry, invariance, and conservation laws 
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which are known on the microscopic scale. The information thus obtained is 
not plentiful, but it is precious as it gives us cheaply a few definite conclusions. 
For instance, it pays to draw up a simple balance of conserved quantities, 
such as the energy or the particle number. Let us note, however, that going 
from one scale to another can introduce subtle changes. For instance, energy 
conservation is considered on our scale from a new standpoint, as the heat 
concept only emerges on this scale. Symmetry properties which are valid 
in microscopic physics, such as time reversal, can also be broken when one 
passes to the macroscopic scale, though leaving a few traces. 

The major difficulty that statistical physics must overcome is the treat
ment of the large number of elementary constituents, measured by Avogadro's 
number, 6 x 1023 mol-!, or by the ratio of the lengths which characterize 
the two scales: 1 cm = 108 A. This makes it necessary to use mathemati
cal techniques which are as diverse as they are elaborate. They range from 
exact or approximate solutions of more or less realistic models, where one 
often exploits the large size of the system by considering it to be infinite, 
to numerical calculations or computer experiments where one must confine 
oneself to rather small systems. A common feature of all these techniques is 
the use of statistics. 

The Role of Statistics in Physics 

Whereas in the theory of games one can easily identify probabilities with 
relative frequencies, in physics the probability concept has an unavoidable 
anthropocentric character.! The probabilities are not an intrinsic property of 
an object; they are a mathematical tool which enables us to make consistent 
predictions, starting from earlier acquired information. Even if we wish to 
describe an individual system, we must consider it as being part of a statis
tical ensemble, constructed from similar systems, to which our probabilistic 
information and our conclusions refer. This view of probabilities will always 
be at the back of our mind in what follows. 

From this point of view every scientific law is statistical by nature. In
deed, scientific knowledge in any field relies on experiments, or at least on 
observations. The data that they provide invariably possess some degree of 
randomness, and the conclusions drawn from these data are coloured by the 
same uncertainties. Scientific truths are never absolute and progress is made 
by formulating laws which are less and less likely to be wrong. 

Apart from this experimental aspect, statistics is involved in physics for 
various reasons. Quantum mechanics, the theory underlying all contempo
rary physics, is probabilistic by nature. According to its current interpreta
tion, it is as much a theory about physical objects themselves as one about 

1 R.T.Cox, Am. J. Phys. 14, 1 (1946); B. de Finetti, Theory of Probability, Wiley, 
New York, 1974. 
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our knowledge of these objects: its statistical nature reflects the intrinsic in
completeness of our predictions. Attempts to find another, non-probabilistic 
interpretation - one which would completely eliminate the role of the ob
server - have always failed. Quantum mechanics thus makes the statistical 
nature of microscopic physics unavoidable. 

Nevertheless, other statistical aspects persist, even in the classical limit of 
quantum mechanics, to wit, classical dynamics, although a priori the latter 
is deterministic by nature. 

First of all, it is possible that a system under investigation is subject to 
unknown forces. Such is the case, for example, for Brownian motion (1826): a 
small particle - a pollen grain - in a liquid is observed through a microscope 
and is found to move under the effect of random blows from neigbouring 
molecules in the liquid. Its trajectory is extremely complicated and cannot 
be predicted, but one can calculate quantities such as the root mean square 
displacement and show that it varies as the square root of the time (Einstein 
1905, Smoluchowski 1906, Langevin 1908). 

It is also possible that the initial conditions are incompletely known, as 
in experiments on unpolarized beams of non-zero spin particles. In a more 
subtle way, most physical systems, even though their motion is governed by 
completely deterministic differential equations, follow a chaotic dynamics: 
the least uncertainty about the initial conditions, or the smallest perturba
tion, gets amplified with time in such a way that a near-certainty becomes 
a probability. The general occurrence of this phenomenon - which, for in
stance, makes any long-term meteorological prediction impossible - has only 
been realized in the seventies. It occurs, as soon as a dynamic system pos
sesses three degrees of freedom, but it is much more pronounced for complex 
systems. 

The large number of degrees of freedom of a macroscopic system make it 
necessary for us to use statistics. This number is so huge that a complete 
description of the system is inconceivable. The largest computers available 
are capable of simulating the motion of a few thousand particles whereas 
one mm3 of a gas contains 3 x 1016 molecules. It is sufficient to imagine the 
space required to write 1016 numbers, even restricting them to two significant 
figures, to see that it is completely impossible to record the positions of the 
molecules in a gas. Even if it were possible, such a cumbersome mass of 
information would be totally unusable and hence quite pointless. 

In fact, most physically interesting quantities, experimentally measurable 
and of practical application, are macroscopic: volume, pressure, temperature, 
specific heat, viscosity, refractive index, magnetic susceptibility, resistivity, 
etc. If we wish to derive their values from a knowledge of microscopic prop
erties, we must identify them with statistical averages over all particles, since 
the individual characteristics of the particles are both inaccessible and irrele
vant. Starting from the microscopic constituents to explain macroscopic prop
erties thus makes it necessary to use probabilistic ideas and methods, even 
if the laws governing the microscopic elements are exactly known, and even 
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if the underlying microscopic theory is deterministic. Thus, as for quantum 
mechanics, but for completely different reasons, the predictions of statistical 
mechanical are probabilistic by nature and involve averages. 

Nevertheless, the very fact that the systems studied are very large ~ and 
this is what initially impelled us to use statistical methods ~ has a redeeming 
consequence. The "law of large numbers" can, as shown in probability the
ory, lead to precise predictions whose fulfilment is a near certainty, and in 
these circumstances the system concerned is to all intents and purposes com
pletely deterministic. For instance, playing head or tail a very large number, 
N, of times, the chance of finding heads equals ~ with a relative uncertainty 
equal to 1/..fN. This is a general feature of statistical mechanics, where the 
large number involved is the number of atoms in the system: thus macro
scopic physical variables have mean square deviations which are negligible 
in comparison with their mean values and exact predictions are possible. For 
instance, in a fluid of N particles which are randomly distributed in a large 
volume fl, the number n of molecules in a volume v is a random variable. 
Its expectation value is vN I fl, and its relative statistical fluctuation equals 
II vf(n) (Exerc.2b). For 1 mm3 of gas, this quantity equals 0.6 x 1O~8; we can 
thus regard nlv as being exactly determined, and equal to the density Nlfl, 
its statistical fluctuations being negligible compared with the experimental 
errors. This kind of argument will enable us to reconcile the statistical nature 
of microscopic physics with macroscopic determinism. 

Contents of the Book 

The first chapter is devoted to a straightforward, detailed treatment of a 
simple statistical physics problem ~ paramagnetism of a particular class of 
ionic solids. The aim of this chapter is to introduce through an actual exam
ple, studied inductively, the most important methods and ideas of statistical 
physics which we shall use later on. 

Chapters 2 to 5 follow an inverse path, which is formal in order to be as 
general as possible, and deductive in order to be simpler. They form a unity 
which starts at the microscopic description of systems and ends up with es
tablishing their general equilibrium macroscopic properties. Deliberately we 
use quantum mechanics, conceptually simpler than classical statistical me
chanics which we find by taking a limit. First of all, we recall in Chap.2 the 
laws of quantum mechanics; we introduce the density operator which plays 
the role of a probability law in quantum physics, and the density in phase, 
its classical counterpart. To a large extent this chapter serves as a reference 
and much of it is not needed for understanding the remainder of the book. 
Having thus set up the formalism of statistical physics we devote Chap.3 
to a quantitative evaluation of our uncertainty about a system described by 
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a probability law or, what amounts to the same, of the disorder existing 
in that system. To do this, we base ourselves upon information theory and 
upon the concept of a statistical entropy which plays a central role every
where in this book. In particular, Chap.4 uses this concept to assign to a 
system in thermodynamic equilibrium an unbiased probability law. In this 
way we justify the introduction of the Boltzmann-Gibbs distributions which 
microscopically represent the equilibrium states, and we elaborate the tech
niques which can be used for efficiently making statistical predictions about 
macroscopic observables. 

Having thus surveyed the road leading from the microscopic description of 
a system to the evaluation of its macroscopic properties, we are in a position 
to focus our attention on the two main goals of statistical physics. 

On the one hand, statistical mechanics must enable us to derive from 
microscopic physics the basic postulates of the various macroscopic sciences. 
Keeping the treatment general, we perform this derivation in Chap.5 for the 
concepts and Laws of equilibrium thermodynamics. The two main aspects, 
conservation and degradation, appear on our scale as a reflection of two more 
fundamental microscopic properties, the invariance laws and the tendency to
wards disorder. Thus, statistical physics helps us to a better understanding 
of thermodynamics, exhibiting, in particular, the central role of entropy as 
a measure of the amount of disorder at the microscopic level. This idea is 
the starting-point for a modern presentation of equilibrium thermodynam
ics, given in Chap.6, whereas Chap.5 states the Laws of Thermodynamics 
in their traditional form. We include in Chap.6, which can be read in isola
tion, a summary of advanced thermodynamics, collecting together the main 
techniques of practical value, and a survey of general applications ranging 
from phase transitions to chemical equilibria and from thermal engines to 
dielectric or magnetic substances. 

On the other hand, statistical physics aims to understand and evaluate 
specific macroscopic properties of the most diverse substances. Chapters 7 
to 13 give examples of such applications. In contrast to Chaps.2 to 5, they 
are relatively independent of one another, even though we have tried to keep 
throughout a common line of thought. The emphasis is placed on explain
ing equilibrium phenomena; we calculate properties such as thermodynamic 
functions, equations of state, and specific heats of sundry substances. The 
first example studied, in Chap.7, is that of a gas in the limit where neither 
quantum mechanics nor interactions between the particles playa crucial role. 
In Chap.8 we show how the structure of the molecules in the gas is reflected, 
on the macroscopic scale, in the chemical and thermal properties ofthe latter, 
and we thus explain the laws of chemical equilibrium. In Chap.9 we study 
some effects of the interactions between molecules; they explain the devia
tions from the perfect gas law observed in compressed gases, and especially 
the vapour-liquid transition, that we choose as a prototype of the important 
phase transition phenomenon. 
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Chapters 10 to 13 deal with systems in which quantum effects have far
reaching macroscopic consequences. The required general formalism is laid 
out in Chap.10, and it is after that applied to specific problems. For the 
sake of simplicity we are especially interested in non-interacting particles, 
stressing the manifold macroscopic consequences of their indistinguishability. 
We give in Chap.11 an introduction to the vast field of solid-state physics, 
showing how the existence of these materials relies on quantum statistics 
and explaining properties that may be due either to their crystal structure, 
or to the lattice excitations, or to the electrons. We show here how one 
can approximately account for interactions between constitutive particles by 
describing the system as a collection of weakly interacting entities, the quasi
particles. The particular case of semiconductors has been singled out for a 
more detailed treatment on account of their practical importance. We also 
discuss the equilibrium properties of metals and insulators and show how 
the laws and concepts of macroscopic electrostatics in matter follow from 
microscopic physics. Chapter 12 reviews at an elementary level some of the 
curious aspects of quantum liquids - the isotopes 3He and 4He - and of 
superfluidity. Chapter 13 starts by quantizing the electromagnetic field and 
introducing the photon concept, then discusses the radiation laws, both as 
regards equilibrium, and as regards energy transfer. 

The last two chapters are dealing with some aspects of the dynamics of 
non-equilibrium processes, an enormous field in which rigorous theory is diffi
cult but which has important practical implications. Chapter 14 is devoted to 
the general laws of macroscopic thermodynamics of systems near equilibrium. 
The use of these laws is illustrated by a few examples of transport phenomena: 
diffusion, electrical or thermal conduction, cross effects, and fluid dynamics. 
As in Chap.5 for the case of equilibrium, but less exhaustively, we show how 
general macroscopic laws, such as the Navier-Stokes equations, follow from 
microscopic statistical physics. Here again our two main lines of attack are 
the symmetry and conservation laws, on the one hand, and the interpretation 
of the increase in the entropy as a loss of information, on the other hand. 
However, in order better to comprehend the relation between microscopic and 
macroscopic scales, we introduce an intermediate, the so-called mesoscopic, 
description which is useful to solve the irreversibility problem and to make 
the significance of the macroscopic entropy clearer. Finally, amongst the nu
merous phenomena pertaining to non-equilibrium statistical mechanics, we 
choose to present in Chap.15 the kinetics of various gases where the interac
tions can be taken into account in the form of collisions. This subject covers 
macroscopic dynamics and heat transfer in classical gases, neutron diffusion, 
and conduction in semiconductors or metals. We had already touched upon 
this in Chaps.7, 11, and 13 using balance techniques which are somewhat 
simpler, and rather efficient in the study of transport phenomena. The more 
detailed treatment of Chap.15 makes it possible to discuss for the systems 
studied the dynamics of the approach to equilibrium and the problem of 
irreversibility. 
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The Conclusion selects for discussion a number of concepts and methods 
emerging from statistical physics, which are sufficiently general to be useful 
in other fields. 

Each chapter is completed by a few exercises. Some of them are meant to 
help understanding, some others to apply the methods of statistical physics 
to various subjects, ranging from astrophysics to technology. Still others in
troduce topics which go beyond the framework of the main text; they comple
ment the latter and deal briefly with more advanced topics, such as Landau's 
theory of phase transitions and interfaces, or response theory. The problems 
at the end of the second volume serve the same purpose, but within a wider 
perspective; we have left most of them in the same form as they were given 
at various examinations. Detailed solutions accompany the more difficult ex
ercises and problems; for the others we have given more or less detailed hints. 

The text itself contains parts of varying difficulty. To ease access, passages 
which are not needed for a first reading, such as proofs, added material, 
discussions of subtle questions, or historical notes, have been printed in small 
type. 

As this is an introductory book, it has few bibliographic references; these 
are given in the form of footnotes and they often contain extensive bibliogra
phies which, we hope, will compensate for their scarcity. Our viewpoint is 
often complementary to those of the classical texts on statistical physics; the 
reader is referred to them for a comparison with other points of view, and for 
finding the most important references. Amongst those we may mention the 
intuitive and elementary treatments by R.P.Feynman in the first volume of 
the Feynman Lecture Notes on Physics (Addison-Wesley 1963) and by F.Reif 
in the fifth volume of the Berkeley Physics Course (McGraw-Hill 1965), as 
well as in R.Kubo's course of problems with comments (North-Holland 1964). 
Among the more advanced texts on statistical physics we mention those 
by L.D.Landau and E.M.Lifshitz, in the fifth, ninth, and tenth volumes of 
their Course of Theoretical Physics (Pergamon), D.ter Haar (Rinehart 1954), 
K.Huang (Wiley 1963), J.E. and M.G.Mayer (Wiley 1977), and S.-K. Ma 
(World Scientific 1985). The presentations of thermodynamics often suffer 
from the fact that the viewpoints of physicists, chemists, and engineers dif
fer; unified approaches can be found for equilibrium thermodynamics in the 
text by H.B.Callen (Wiley 1975) and for non-equilibrium thermodynamics in 
the introductory book by LPrigogine (Wiley, Interscience 1967) and in the 
more advanced book by S.R.de Groot and P.Mazur (North-Holland 1962). 

A table of units and physical constants, and a list of useful mathematical 
formulae are printed for convenience at the end of each volume, just after 
the index. This enables us to omit such details in the exercises and problems; 
in particular, the table of units should help the reader systematically to use 
dimensional analysis to check his results. 



1. Paramagnetism of Ionic Solids 

"Dans la Physique, comme dans toute autre science, les com
mencements sont epineux; les premieres idees ont peine a 
s'etablir; la nouveaute des termes, autant que celle des ob
jets, fatigue l'esprit par l'attention qu'elle demande." 

Abbe Nollet, Lel;ons de Physique Experimentale, 1775 

"Pour former un plan de travail sur un objet quelconque, il 
est necessaire de l'examiner sous ses principaux rapports, afin 
de pouvoir classer les differentes parties. Comment etablir 
leur liaison successive, si l'on n'a pas saisi l'ensemble?" 

Jean-Joseph Mounier, opening the debate of the National As
sembly on the Declaration of Rights, the preamble to the Con
stitution, 9 July 1789 

" ... nous ne saurions assez faire apercevoir la relation intime 
de ces memes principes avec les verites elementaires dont ils 
emanent; verites egalement simples et immuables, et qu'il 
suffit de montrer pour les reconnaitre. Tout ce que l'on peut 
exiger, c'est qu'on Ie fasse d'une maniere simple, claire, et 
a portee de tout Ie monde. Or, c'est precisement ce que j'ai 
tache de faire." 

A. Gouges- Cartou, ibidem, August 1789 

This introductory chapter, which is meant to be studied in parallel with the 
next three chapters, has a dual purpose. On the one hand, by treating in full 
detail a simple example, we show how to deal with problems in statistical 
physics: starting from a bare minimum of assumptions, we construct a model 
for the real physical situation and we solve it; we then compare the results 
that we have obtained with experiment in order to discuss the validity of the 
model; if we are not satisfied with the outcome of this discussion we reconsider 
the model and improve it until a satisfactory agreement with experiment is 
obtained. 

On the other hand, this simple example serves to introduce many of the 
concepts which the remainder of the book will develop and study in more 
depth. Our procedure - which we shall see later to be a general one - therefore 
is the following. 



16 1. Paramagnetism of Ionic Solids 

- We give a microscopic description of the physical system, involving three 
basic ingredients, to wit, the principles of quantum mechanics, a suitable 
model for the effect studied, and the use of probability distributions in 
which the macroscopic data appear as parameters (§ 1.1). 

- We identify the state of thermodynamic equilibrium at the microscopic 
level as corresponding to the least certain - or the most disordered -
probability distribution. This principle is supported by microscopic dy
namics, energy being conserved in the evolution towards disorder. At the 
same time we elucidate the microscopic meaning of the thermal contact 
between two samples (§ 1.2). 

- We introduce efficient calculation formalisms, which rely on the large size 
of the system and which are based upon the use of partition functions and 
the statistical entropy; in this way we find the macroscopic consequences 
of the microscopic statistical approach (§§ 1.2.3 and 1.3.2). 

- We identify the temperature and the entropy corresponding to our prob
ability distribution and we use our example to show that the laws of 
thermodynamics follow and how a probabilistic behaviour at the micro
scopic level leads to a deterministic behaviour at the macroscopic level 
(§ 1.3). 

- Finally, we derive physical laws which are specific for the material studied 
and which can be compared with experiments. In this way, phenomeno
logical, macroscopic laws appear as simple consequences of a microscopic 
theory based upon a small number of assumptions; they can be used to 
explain and predict properties which may have applications of practical 
interest (§ 1.4). 

1.1 Micro-states and Macro-state 

1.1.1 Paramagnetism 

Experimental magnetism shows a wealth of phenomena. 
In the simplest cases, when a substance is placed in a magnetic field 

B, it acquires a magnetization parallel to the field, which vanishes when 
the field vanishes. We define the magnetization as the ratio of the magnetic 
moment M to the volume n. One can then distinguish two cases, depending 
on whether the magnetic susceptibility, 

1. 1 M 
x= 1m nB' B-+O J& 

(1.1) 

where M is the value of the magnetization in the direction of the field, is 
positive - paramagnetism - or negative - diamagnetism. 

In some other substances, we find magnetic order even when there is no 
applied field present. The simplest example is that of ferromagnetism, where 
magnetization appears spontaneously if the temperature is sufficiently low 
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- for instance, T < 1043 K for iron and T < 631 K for nickel. We may also 
mention the case of antiferromagnetic crystals in which neighbouring ionic 
magnetic moments orient themselves alternatively parallel and anti parallel 
to a given direction, in such a way that the net magnetization is zero. 

There are various kinds of substances which show paramagnetism; their 
common feature is that at the microscopic level they have constituents with 
a magnetic moment. For instance, the paramagnetism of metals (§ 11.3.1) 
is connected with the spin magnetic moments of the conduction electrons. 
Sodium vapour and, more generally, vapours containing atoms or molecules 
with odd numbers of electrons are paramagnetic; in this case the microscopic 
magnetic moments are connected with the orbital and spin angular momenta 
of the electrons in the atoms or molecules. We shall in the present chapter 
study yet another kind of paramagnetic substances, namely, insulating ionic 
solids in which the so-called paramagnetic ions, such as Cu2+, Mn2+, or 
Gd3+ , have a non-zero magnetic moment. We shall see that for an explanation 
of the magnetic properties of such salts we need consider only those ions. 

The origin of paramagnetism can be understood qualitatively, if we note 
that in an external field B, the N magnetic moments 1'1> ... , J.'N in the 

sample have an energy - (B . (L:~1 J.'i) ). The magnetic moments J.'i thus 
tend to line up parallel to B and in the same direction, in order to mini
mize the magnetic energy; this leads to a positive susceptibility. However, 
if the sample is heated, that is, if energy is supplied to it, the magnetic en-

ergy - (B . (L:~1 J.'i)) must increase, the magnetic moments J.'i become 

disordered, and the magnetization decreases. Hence, one expects a decrease 
in the susceptibility when the temperature increases, as is confirmed by ex
periment. For instance, the full drawn curve in Fig.1.1 shows the magnetic 
susceptibility Xm per unit mass of a powder of CuS04.K2S04.6H20 in which 
the paramagnetic ion is Cu2+. The data are fitted with surprising accuracy 
- the measurement error is less than 1 % - by an inverse temperature law, 
X IX liT. This empirical rule, known as Curie's law, is found to hold for a 
wide range of paramagnetic substances, although it tends to break down in 
both the low and the high temperature regions. 

In the present chapter we develop a quantitative microscopic theory of 
paramagnetism. On the macroscopic scale the state of a sample is charac
terized by several parameters, relations between which are established by 
experiments. Some of these parameters, such as the magnetic field B, the 
magnetization M I [l, or the energy U, are readily identified in a microscopic 
description. However, parameters such as the temperature or the entropy 
have so far only been defined phenomenologically, in the framework of macro
scopic thermodynamics. In order to explain properties such as Curie's law, 
one of our tasks will be to understand the meaning of temperature on the 
microscopic level. 
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1.1.2 The Model 

Fig. 1.1. Magnetic susceptibility of 
CuS04.K2S04.6H20 as a function 
of the reciprocal temperature. The 
meaning of the dashed lines will 
be discussed in § 1.4.6. Laboratory 
thermometers based on measure
ments of the susceptibility of a known 
paramagnetic material placed within 
the experimental cell are commonly 
used 

A microscopic theory that is derived completely from first principles would 
describe a piece of matter as a collection of elementary constituents, the 
nuclei and electrons, interacting through electromagnetic forces - which for 
most problems are the only relevant ones. Such an approach, however, is too 
complex to be viable. Moreover, even if supercomputers could deal with so 
many particles, their output would be unintelligible and useless, because the 
understanding of a phenomenon requires simplification and elimination of 
a huge amount of irrelevant data. We are thus reduced to finding a model 
which has a sufficient number of features in common with the real system so 
that we can draw useful conclusions from it, but which is simple enough so 
that we can treat it mathematically. 

In order that a sample can show paramagnetic behaviour, it is essential 
that it contains microscopic magnetic moments. We know that such moments 
are associated with the orbital motion and the spins of the electrons. We also 
expect that in paramagnetic salts the permanent moments, localized in the 
vicinity of the paramagnetic ions, are the result of the interactions between 
electrons and nuclei. We wish to avoid, at least to begin with, any sophistica
tions associated with the structure of the solid; we shall therefore postulate 
that there be a magnetic moment P.i associated with each paramagnetic ion 
and we shall not inquire after its origin. In order to simplify the problem, 
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we assume, without any further justification, that each J.l.i behaves like the 
magnetic moment associated with an electron spin, that is, 

~ e ~ en ~ 
J.l.i = - m Si = - 2m (1i, 

where the caret indicates quantum-mechanical operators, where the angular 
momentum Si is that of a spin ~ represented by Pauli matrices, (1, and 
where -e is the electron charge. We shall take the z-axis along the direction 
of the applied magnetic field. The z-component of Jii is an operator Jii with 
two equal and opposite eigenvalues -(J'i/LB, where /LB is the Bohr magnet on , 
that is, the absolute magnitude of the electron spin magnetic moment, /LB = 
en/2m = 9.27 x 10-24 J T- 1 , and where (J'i = ±1 denotes the z-component 
of (1i. 

We thus portray our system as a collection of N magnetic moments J.l.i, 
each associated with a paramagnetic ion and having an energy - (B . J.l.i) in 
the applied magnetic field B. The magnetic part of the Hamiltonian is thus 

the operator - (B. (L:{:1 Jii) ). Each of its eigenstates is characterized by 

a set of N quantum numbers (J'1, ... , (J'N which independently take the values 
±1. The corresponding eigenvalue of the magnetic energy is 

N 

E(1J"1,"" IJ"N) = /LB B L (J'i· (1.2) 
i=1 

Our model thus reduces to a set of N identical two-level systems. This is 
the simplest possible model of statistical mechanics. We deliberately ignore 
all other degrees of freedom of the crystal. In particular, the moments are 
treated as being localized. Clearly, this last assumption is invalid in the case of 
paramagnetism in metals, since in that case the relevant magnetic moments 
are associated with itinerant electron spins: a different theory is required to 
take into account the role played by the electronic kinetic energy (Exerc.l0b). 

We neglect not only all interactions between the magnetic moments and 
the other degrees of freedom of the system, but also their interactions with 
one another through the magnetic fields they generate. This is justified for 
the substances that we are considering, such as CuS04.K2S04.6H20 where 
the paramagnetic Cu2+ ions are fairly dilute and hence well separated so 
that their magnetic interactions are cut down by their large distances apart. 

Note that the indices i = 1, ... , N refer to the sites of the paramagnetic ions 
in the crystal. These sites are distinguishable, even though the particles concerned 
may not be; we therefore do not need worry about the Pauli principle: the eigenket 
1(J'1, ... , (J' N) of the Hamiltonian represents a state which implicitly has the sym
metry properties appropriate to indistinguishable particles, the electrons and the 
nuclei. 

Note also that quantum mechanics is essential for the understanding of para
magnetism. There would be no magnetism in nature, if electrons and nuclei be
haved according to classical mechanics. In fact, the electron spin and its associated 
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magnetic energy ±ttBB are quantum properties. The treatment of orbital mag
netism is more complicated, but it also requires quantum mechanics (Exerc.4d). 
The magnetic energy associated with the motion of a particle of charge q in a field 
B = curl A is obtained by replacing in the Hamiltonian the momentum p by p-qA. 
In the case of an ion localized near the origin it is convenient to choose the gauge 
where A = ~[B x Tj. The Hamiltonian for each electron then contains the term 

(e/2m) (B. [T x Pl) = ttB (B. L) In, where L is the orbital angular momentum; this 

term has the same form - (B.i') as the spin contribution. The Hamiltonian includes 
2~2 

an extra term e A 12m which usually can be neglected. Orbital paramagnetism 
may then occur, if the angular momentum L is quenched. 

1.1.3 The Probabilistic Nature of a Macroscopic State 

The states usually encountered in quantum mechanics courses, which are 
represented by kets in the Hilbert space of the system concerned, should 
experimentally be generated by fixing the values of a complete set of observ
ables. For instance, in our model, in order completely to prepare one of the 
eigenkets 10"1, •.• ,0" N) of the Hamiltonian, it would be necessary to orient 
each of the N magnetic moments Pi parallel or antiparallel to B. Hence
forth we shall refer to such states, characterized on the microscopic scale by 
specification of all their quantum numbers, as pure states or micro-states. 

However, on a macroscopic scale the concept of a state is a different 
one. It relies on the specification of only a small number of macroscopic 
variables. In fact, experiments deal with incompletely prepared states. The 
number of degrees of freedom of the system is very large, and only a few of 
them can be observed. We can, for instance, measure the total magnetization 
of a paramagnetic sample or prepare such a sample that it has a given total 
magnetization, in each case to a fair degree of accuracy, but the values of the 
individual ionic magnetic moments cannot be determined. The only thing we 
know about the ket 10"1, .•. , O"N) that describes the system is thus the sum 
0"1 + 0"2 + ... + O"N. The state of the system after a macroscopic experiment, 
where only a few observables are actually measured, is imperfectly known, 
as there are many micro-states, all corresponding to the same values of the 
measured observables. 

As is usual when insufficient information is available, one resorts to a 
statistical treatment. A given macroscopic state is therefore, in terms of the 
microscopic structure of the system, represented by a probability distribution, 
which we call a macro-state. We assign to each of the micro-states, compatible 
with the available data, a probability of finding the system in it and the 
macro-state is represented by the set of these probabilities. 

Predictions about macroscopic systems therefore are not deterministic 
in nature, but rather are best guesses in a statistical sense. Rather than 
describing a particular system, one treats a statistical ensemble of identical 
systems, all prepared in the given experimental conditions, but differing from 
one another on the microscopic scale due to the uncertainties arising from 
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the incomplete nature of the preparations. This kind of theoretical approach 
corresponds to the problem as it occurs in practice: a physical law is estab
lished by repeating the same experiment a large number of times and the 
microscopic variables are not the same for each experiment. Only the prob
ability law for these microscopic variables remains the same for all samples, 
for given macroscopic conditions. Predictions in physics are thus always sta
tistical in nature, as only macroscopic quantities can be controlled, and as 
science does not deal with individual objects. 

In order to avoid difficulties connected with the structure of the Hilbert 
space of the micro-states - a problem to be dealt with in Chap.2 - we assume 
here that the only micro-states allowed are the kets 10"1, ... , 0" N). We do not 
take their linear combinations into account and also forget about the x
and y-components of the spins. A macro-state is thus characterized by the 
probability P(O"I, ... , O"N) that the various magnetic moments are parallel or 
anti parallel to the applied magnetic field. 

1.1.4 Calculation of Expectation Values 

The various observables with which we are concerned in the present chapter 
are functions A(O"I' ... ,O"N) of the random variables 0"1, ••• ,O"N each of which 
can take the values ±1. Their expectation values (A) follow immediately from 
the probability law p, which contains all the information about the system: 

(1.3) 

the sum is over the 2N configurations 0"1 = ±1, ... , O"N = ±1. 
For instance, the expectation value of the magnetic moment iii = - /LB(Ti 

of the ion on the i-th site is 

(1.4) 

we have introduced the reduced probability law Pi(O"i) for the i-th ion: 

(1.5) 

where the sum is over the 2 N - 1 configurations 0"1 = ±1, ... , O"i-l = ±1, 
O"i+l = ±1, ... , O"N = ±1. Hence we get for the expectation value of the 
z-component of the total magnetic moment 

(1.6) 

and for the expectation value of the energy 

(1.7) 
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which we can identify with the macroscopic internal magnetic energy. 
Similarly we can derive all other physical quantities from the probability 

law p(O"l' ... ' O"N). For instance, the correlations between the i-th and the 
j-th ions are characterized by the reduced probability for two ions, 

Pij(O"i,O"j) = I:' P(O"l, ... ,O"N), 
ij 

(1.8) 

where the summation is over all spins bar i and j. In particular, we find 

absence of correlations is expressed by Pij((j, 17') = Pi((j)Pj((j'). 

1.2 Microscopic Interpretation of Thermal Equilibrium 

1.2.1 Maximum Disorder 

Once we have been given the probabilities p((jl, ... , (jN), we can calculate 
the properties of the macro-state. The problem which we are then faced with 
is thus how to associate a probability to each possible configuration. 

Let us, to begin with, assume that there is no applied magnetic field in the 
system. In that case there is no reason to assume that the magnetic moment 
of an ion is aligned in one direction in preference to another. We are thus led 
to assume that the various possibilities are equally probable, as in a game of 
dice. There is no possibility to distinguish between the various micro-states 
so that they must all be considered to be equiprobable. As their total number 
is 2N , we have therefore 

(1.9) 

We have thus introduced the natural postulate that, if we have no infor
mation about the system, the probability law which we must associate with 
it must reflect that our uncertainty is maximal. In less subjective terms we 
can say that the macro-state of the system is the most disordered of all states. 
In Chap.3 we shall put the relation between uncertainty and disorder on a 
quantitative footing. 

As we could have anticipated, we find that the expectation value (1.4) of 
the magnetic moment is zero for each ion. We see similarly that there is no 
correlation between the various magnetic moments, since 

The statistical fluctuation of the total magnetic moment is 
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(1.10) 

When N is large, we must compare this quantity with the maximum total 
magnetic moment ILBN which is found when the moments of all ions are 
aligned with B. Its relative value, I/VN, is small. We have here an example 
of the "law of large numbers": despite the complete disorder which prevails 
in the system, a macroscopic quantity such as the total magnetic moment is 
defined with a small relative error due to the large number of the elementary 
magnetic moments. From the maximum uncertainty about the micro-states 
a near certainty about this macroscopic quantity has emerged. 

As an exercise one can evaluate the probability p(M) dM for the total magnetic 
moment of the N spins to have a value M with a margin of dM. Using the technique 
described later on, one can show that, if N is large, this distribution, p(M), is 
Gaussian (see Eq.(1.l6) and § 1.2.4). 

1.2.2 The Role of Energy Conservation 

The systems in which we are interested in practice are, however, not com
pletely random. Some of their parameters have been measured, so that they 
are partially prepared. In order to associate with a system a probability law 
which takes into account the experimental data, we can analyze how such a 
system evolves with time and how much it remembers of the way it has been 
prepared. To do this, we shall use intuitive rather than rigorous arguments. 

When defining our model we neglected the interactions between the mag
netic moments in expression (1.2) for the energy levels. Nonetheless, inter
actions, even infinitesimal ones, make it possible over a more or less long 
period for transitions to occur between micro-states which are characterized 
by different quantum numbers 0"1. .•. , O"N but which in the field B have the 
same, or nearly the same energy. In particular, an interaction of the form 
(tTi • tTj) between the i-th and j-th magnetic moments can, if they are an
tiparallel, lead to flip-flops, the two spins flipping simultaneously from the 
+- to the -+ configuration, and vice versa. If one waits long enough, this 
uncontrollable mechanism will lead to an equalization of the probabilities for 
the micro-states of the same energy even if at the start some of them were 
preferred. The state thus evolves towards disorder, while conserving the en
ergy it orginally had (Exerc.2a). 

The process which we have just described can be observed on a macro
scopic scale: when various parts of a system are prepared separately and put 
in contact, one observes that they exchange energy until a permanent regime 
emerges - thermal equilibrium. The evolution towards thermal equilibrium 
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can microscopically be interpreted as an evolution towards the most disor
dered macro-state possible with an energy equal to the initial energy. In our 
model, this evolution will tend, in particular, to equalize the mean values 
of the magnetic moments of the ions within the sample. The thermal equi
librium macro-state, characterized by giving the energy U of the system, is 
thus the one for which all accessible micro-states with energies close to U 
are equally probable. This choice of probabilities is also the natural one for a 
statistical ensemble of systems characterized by only knowing U. Just as in 
§ 1.2.1 the least biased distribution corresponds to equiprobability. 

Strictly speaking, as the spectrum is discrete, the energy takes on only 
discrete values. However, due to the large size ofthe system, the levels practi
cally form a continuum: in fact, when B = 1 T, which corresponds to a rather 
large field, J.LBB only equals 10-23 J so that the distances between levels are 
always negligible as compared to the experimental errors LlU. Moreover, the 
interaction terms in the Hamiltonian tend to blur the spectrum (1.2) by an 
amount which also should be taken into account in LlU. We shall therefore 
avoid the complications arising from the discrete nature of the spectrum 
by assuming that the energy of the system is equal to U within a margin 
LlU, where LlU «: U. In thermal equilibrium the micro-states, the quantum 
numbers of which 17t, •.• , 17N satisfy the inequalities 

N 

U ::; J.LBB L 17i < U + LlU, (1.11) 
i=1 

are thus taken to be all equally probable. Let W be the number of these 
micro-states which, as we shall see in a moment, is always huge, even when 
LlU «: U. The macro-state describing the system at thermal equilibrium for 
a given value U of the energy is thus characterized by probabilities which are 
equal to 

1 

W 
(1.12) 

for t7; satisfying (1.11) and which are zero for other micro-states. Such a sta
tistical ensemble, in which the possible micro-states, with equal probabilities, 
are the ones with an energy U, within a margin LlU, is traditionally called 
a microcanonical ensemble. This name has a historical origin without much 
logical justification and it reminds one of the fact that the energy is well 
defined with small fluctuations LlU IU. 

Note that whereas on the macroscopic level a thermal equilibrium state 
is uniquely determined by a few characteristic variables, the concept of an 
equilibrium macro-state has a statistical character at the microscopic level. 
The orientations of the magnetic moments are random and badly known; 
they fluctuate from one sample to another and with time. Their probability 
distribution is the quantity which remains unchanged and it corresponds to 
the most disordered situation possible. 
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1.2.3 The Degree of Disorder 

In order completely to determine p( 0"1, ... , 0" N) we still must find the num
ber W of micro-states involved. This number is always huge. For instance, 
one can easily check that for 1 kg of CuS04.K2S04.6H20 in a field of 1 T 
there are altogether 101024 magnetic energy levels distributed over 25 J. The 
number W is connected with the random nature of the probability law: the 
more the number W of possible events increases, the less we know about the 
system. Disorder increases with W. In Chap.3 we shall introduce the statis
tical entropy S which is a measure of the disorder and we shall see that it is 
proportional to the logarithm of W. 

To evaluate W we must know the values and multiplicities of the energy 
levels (1.2). The simplicity of this last expression would in the present case 
make it possible to find W directly using combinatorial arguments. However, 
we prefer to use here, as an exercise, a more general technique which will be 
useful later on. 

We introduce the "canonical partition function" 

I Z«(3) == L e-f3E I ' (1.13) 

where the sum is over all energy levels, each one weighted with its multiplicity. 
We shall evaluate Z«(3) directly and afterwards use it to find the values and 
multiplicities of the levels. To evaluate Z we use the fact that the energies 
(1.2) are sums of N independent terms: 

Z«(3) = L e-f3 IJ.B B Ei u, = L e-f3 IJ.B Bul ... e-f3 IJ.B BuN 

O'I,· .. ,UN 

II [L e-f3 IJ.B BU.] = (ef3IJ.B B + e-f3IJ.B B )N . 

, u, 

(1.13') 

By expanding Z «(3) as a sum of exponentials we can now find the energy 
spectrum: 

N N! 
Z«(3) = " e-f3 [-NIJ.BB+2QIJ.B B 1. 

~ q!(N - q)! 
q=O 

The energy levels thus have the values (-N + 2q)/LBB, where q is an integer 
lying between 0 and N, and have a spacing equal to 2/LBB. Their multiplicity 
equals N!/q!(N - q)!, a result which we could have found directly from (1.2) 
by noting that the set of micro-states corresponding to a given energy level is 
obtained by letting q spins point downwards and N - q spins point upwards. 

The number W of eigenstates of the Hamiltonian with energies between 
U and U + ,,1U is thus approximately equal to 

W c:::,,1U N! 
2/LBB q!(N - q)!' 

(1.14) 
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where we have taken the multiplicities into account and where q is connected 
with the energy U through the relation 

-N+2q U (M) 
~--=---={! 

N - N J-tBB N J-tB - . (1.15) 

Expression (1.14) holds, provided the multiplicity N!/q!(N - q)! does not 
change much over the range .6.U, that is, provided 2J-tBB « .6.U « N J-tBB. 
The quantity (!, defined by (1.15), lies between -1 and +1; according to 
(1.2), (1.6), and (1.7), it can be interpreted as the mean value of any of the 
spins ai. Provided U does not lie near either the top or the bottom of the 
spectrum, we can use Stirling's formula, 

to evaluate (1.14). To dominant order in N we find 

W ~ A.6.UeS/ k , 

where we have introduced the quantities 

S(U, B, N) == kN -(1 + (!) In -- + -(1 - (!) In -- , [ 1 2 1 2 ] 
2 1+{! 2 1-{! 

1 
A == J-tBB J27r N(1 - (!2) 

(1.16) 

(1.17) 

(1.17') 

In (1.16) and (1.17) there appears a constant k which at the moment is ar
bitrary, but which will later be determined when we identify S with the en
tropy. Note that S is proportional to N and that W is large as an exponential 
of N. 

The definition (1.15) of {! and its interpretation in terms of (1.5), 

imply that we can express the probability distribution for the i-th spin in 
terms of the internal energy U as follows: 

1±{! 1 ( U) Pi(±I) = - = - 1 ± -- . 
2 2 NJ-tBB 

(1.18) 

We can then rewrite (1.17) as 

S rv kIn W rv -kN L pi(a) In pi(a) (1.19) 

Equation (1.19) anticipates the general expressions for the statistical entropy 
which will be introduced in Chap.3. In particular, it will be shown there that 
in the case of W equally probable configurations the statistical entropy, which 
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measures the degree of disorder, is just equal to kIn W. In the case of our 
example we can understand this by considering Eqs.(1.16) and (1.17) for 
W. In fact, the degree of disorder must, on the one hand, be an increasing 
function of Wand, on the other hand, be proportional to the number N of 
paramagnetic ions; this is true for k In W. We shall also see in § 1.2.5 that the 
magnetic moments are statistically independent in the limit as N -7 00. The 
total degree of disorder of the sample should therefore be equal to N times 
the degree of disorder of one of the magnetic moments. The latter quantity 
can thus be identified with the right-hand side of (1.19). We shall find the 
same expressio~ in Chap.3 from a completely general argument. 

InW S 
---

N Nk 

In 2 

-1 

p 

1 

Fig. 1.2. The entropy as function of 
the energy U = NI-£BB{2, or of the 
magnetization (M) = -N I-£B{2 

The change of S with energy, shown in Fig.1.2, confirms its interpretation 
as a measure of the disorder or of our uncertainty. When U is close to the 
ground state energy, nearly all the magnetic moments are aligned in the same 
direction as B; W is rather small and the system is nearly perfectly ordered. 
When U increases, W grows very fast - exponentially with N: the number 
of possible micro-states becomes larger and larger while (M) decreases and 
the number of magnetic moments antiparallel to the field increases. When 
U = 0 and (M) = 0, we find in the large N limit that W is close to 2N , 

that is, to the total number of micro-states: the disorder is maximal and the 
situation differs little from the one we studied in § 1.2.1. It makes, indeed, 
practically no difference whether we let the energy fluctuate freely around its 
expectation value U = 0, or constrain it to lie between 0 and LlU, since we 
saw in the former case that the fluctuations in M, which are proportional to 
"ffii, were relatively small. When U continues to grow, the magnetic moments 
progressively become more ordered in a direction opposite to that of the field, 
and the disorder again decreases. 

Later on we shall identify the degree of disorder S with the entropy of 
the thermodynamicists. Figure 1.2 thus shows the change in the entropy of 
the paramagnetic ions as function of the internal magnetic energy for a given 
magnetic field. 
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1.2.4 Thermal Contact and Partition of Energy 

The technique used in the previous section to determine the probability dis
tribution of the magnetic moments may seem to be uselessly complicated. 
We shall apply it here to a less simple situation. Consider two samples a and 
b, similar to the ones which we have studied, but of different sizes and sub
ject to different magnetic fields (Fig.1.3). The macro-state of each of them 
is characterized by three variables, namely, the energy, the magnetic field, 
and the number of paramagnetic ions; we shall use (1.14), or, more explic
itly, (1.16) and (1.17), to express the number of micro-states as a function of 
these variables: 

Wa W(Ua, Ba, Na), 

Wb W(Ub, Bb, Nb). 

L---_
u,_' B,,_N, _----'r u u 1L---_U_b, B_b, Nb--...J 

(a) (b) 

Fig.l.3a, h. Thermal contact between two paramagnetic samples 

When the samples are isolated from one another, these six variables are 
independent. We now put them into contact, that is, we assume that their 
magnetic dipoles interact very weakly with one another; this makes it pos
sible for a and b to exchange energy. As the combined system is isolated, 
Ua and Ub can vary, but the total energy U = Ua + Ub remains fixed -
within a margin LlU - and so do Ba, Bb , Na, and Nb . On the other hand, 
in thermal equilibrium, the expectation value of the energy of a reaches a 
stationary value Ua - and so does Ub - around which it fluctuates thanks 
to energy exchanges with b. We now want to find out how, on average, the 
energy U will be split between the two systems when thermal equilibrium has 
been established. This problem of the so-called energy partition is of major 
importance: it will enable us to answer, starting from microscopic physics 
and using statistical calculations, a question which on a macroscopic level 
only the Second Law of thermodynamics could resolve, and thus to prove 
this Second Law, in the particular case considered here. Moreover, we shall 
understand the microscopic meaning of the equalization of the temperatures 
of two systems brought into thermal contact. 

As in the case of a single sample we assume that the system is, in ther
mal equilibrium and at the microscopic level, described by a miCTOcanonical 
distribution, that is, we assume that all accessible micro-states with energies 
between U and U + LlU, 
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Na 

U :::; Ea + Eb = /LBBa L {ji + /LBBb 
i=l 

Nb 

L (jj < U + ..1U, (1.20) 
j=l 

are equally probable. In the macro-state defined in this way, the energy Ea is a 
random variable and we determine its probability distribution p(Ea) dEa. Let 
us classify the micro-states (1.20), of which there are altogether W' (U, B a, Bb, 
Na, N b), according to the energies Ea and Eb of the two subsystems. For 
one of the subsystems, a or b, we counted in § 1.2.3 the number of micro
states between two neighbouring energy values and found expression (1.16). 
The number of micro-states of the system a+b such that the energy of a lies 
between Ea and Ea + dEa while the energy of b lies between Eb and Eb + dEb 
is thus, as function of the expressions defined by (1.17) and (1.17'), 

(1.21) 

We assume that the systems are sufficiently large so that the spectra can be 
treated as continua; if we want greater rigour we replace the variables Ea 
and Eb by EalNa and EblNb which behave as continuous variables in the 
limit of large systems. The total number W' is the integral of (1.21) over 
the domain U < Ea + Eb < U + ..1U. The number of micro-states of the 
class (1.20) such that the energy of a lies between Ea and Ea + dEa is found 
simply by replacing dEb by ..1U in (1.21), since ..1U is rather small while 
dEa is infinitesimal. Using the fact that the accessible micro-states (1.20) are 
equiprobable we find the required probability density: 

AaAb e(Sa+Sb)/k 

p(Ea) = J dEa AaAb e(Sa+Sb)/k· 
(1.22) 

In both the denominator and the numerator of (1.22) Ea and Eb are related 
through Ea + Eb = U. Moreover, their values cannot go beyond the ranges 
lEal < Na/LBBa and IEbl < Nb/LBBb. We were able to get rid of the integra
tion over Eb in the denominator of (1.22) thanks to our assumptions about 
the size of the systems and the magnitude of ..1U. 

In order to analyze the behaviour of (1.22) we shall distinguish between 
extensive quantities, such as Ea and Eb, which are proportional to Na or 
N b, and intensive quantities, such as B a, Bb, (la, or (lb, which are finite 
in the limit as Na --+ 00, Nb --+ 00. Expression (1.17) shows that S is an 
extensive quantity so that the probability (1.22) is completely dominated by 
its exponent. In terms of the intensive variable x == EalNa, and for given 
values of B a, B b, NblNa, and UlNa, we have 

In p f"V Na f(x), 

where f is an intensive quantity. In the domain l(lal :::; 1, l(lbl :::; 1 where 
the function f, which is a sum of two expressions like (1.17), is defined, it 
is concave and its derivative changes continuously from +00 to -00. It thus 
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attains a maximum at some value Xo which determines the energy Ua = Naxo. 
Expanding f around xo, where df /dxo = 0 and where d2 f /dx6 == _a-- 2 < 0, 
we find for the dominant behaviour of p, apart from a multiplicative constant, 

(1.23) 

In the limit considered the statistical distribution of the energy Ea is thus 
very strongly peaked around the value Ua with a fluctuation a-,;N;" the rel
ative value of which is of the order of 1/,;N;, and thus negligible, and it is 
approximately a Gaussian. This property is a consequence of the enormous 
disparity between the number of configurations with energies Ea near Ua and 
the number of other configurations with total energy U. The former are so 
numerous that the system remains in them practically all the time during 
an evolution where all states with energy U have the same chance of be
ing reached. The maximum of p is so pronounced that the probability for 
a noticeable deviation is infinitesimal: when two macroscopic samples are in 
thermal contact, everything happens as if their energies have well defined val
ues Ua and Ub = U - Ua; fluctuations, which are associated with the existing 
freedom to exchange energy, only give rise to a negligible relative error. This 
is another example of the law of large numbers. 

In order to determine Ua more explicitly we use (1.17) and (1.15) to 
rewrite the dominant contribution to (1.22) as follows: 

(1.24) 

The value Ua at thermal equilibrium is obtained by looking for the maximum 
of (1.24) with respect to Ea. This remark will help us to identify - in § 1.3.3 
- the function S with the entropy of the thermodynamicists. We introduce 
the quantity 

(3 __ - ~ as(U,B,N) a ( ) 
k aU = aU In W U, B, N , (1.25) 

which is associated with each of the subsystems a or b at thermal equilibrium. 
To express the fact that (1.24) reaches its maximum when Ea = Ua we can 
then write down the condition that the energies Ua and Ub = U - Ua take on 
values such that the parameters (3a and (3b become equal when a and b are in 
thermal contact. This will enable us, in § 1.3.1, to identify (3 with a relative 
temperature scale. 

Summarizing, the microscopic solution of the problem of energy partition 
has shown us two important facts: 

- Because the two systems in contact are large, each one takes a well 
defined fraction Ua and Ub of the total available energy, while the proba
bilistic nature of the partition is invisible at the macroscopic scale: 1/ VN 
is of the order 10-10 . 
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- The values of Ua and Ub are such that (1.24) is a maximum or that 
the state variables f3a and f3b, defined by (1.25), are equal in thermal 
equilibrium. 

As an exercise, this study can be completed by calculating explicitly the statis
tical fluctuations in the energy Ea for the micro canonical equilibrium of the a+b 
system, and expressing it in terms of the specific heats of the two parts of the 
system, given in § 1.4.4. 

1.2.5 Absence of Correlations Between Magnetic Moments 
at Thermal Equilibrium 

As a further exercise we shall evaluate the probability law P12(O"l, 0"2) for two 
magnetic moments at thermal equilibrium for the microcanonical ensemble defined 
in § 1.2.3. Using a method which can be generalized to apply to P12, we shall first 
rederive the probability law P1(0"1) for the magnetic moment 1. As all admissible 
micro-states are equally probable, P1( +1) is equal to the ratio W +/W of the number 
W+ of micro-states satisfying (1.11) and such that 0"1 = +1, to the total number 
W calculated in § 1.2.3 as function of U and N. To calculate W + we note that when 
0"1 = +1, inequality (1.11) becomes 

N 

U - t£BB :S t£BB L O"i < U - t£BB + ilU. 
i=2 

As a result W + follows from the expression for W by replacing U by U - t£BB and 
N by N - 1. In the limit where Nand U are large, and introducing 8 through 
(1.16) and (1.17), we have thus 

kIn P1(+I) 8(U-t£BB,B,N-l) - 8(U,B,N) 
a8 a8 

-t£BB au - aN· 

A simple calculation then leads again to (1.18). 
The same method enables us now to evaluate P12( +1, +1). The number of 

micro-states satisfying (1.11) and such that 0"1 = 0"2 = +1 is the number of config
urations of 0"3, ... , O"N for which 

N 

U - 2t£BB :S t£BB L O"i < U - 2t£BB + ilU. 
i=3 

We must replace U by U - 2t£BB and N by N - 2 in the expression for Wand we 
now find 

kIn P12(+1, +1) 
a8 a8 

-2t£BB - -2-
au aN· 

In the limit where Nand U are large we have thus 

In P12(+1, +1) = 2 In P1(+1) = in P1(+I) + In P2(+1), 
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or 

Similarly one can show that 

while 

follows from the normalization. Altogether we have therefore 

(1.26) 

so that the magnetic moments on different sites are statistically independent. 
In the canonical ensemble (Exerc.4c) the absence of correlations between mag

netic moments at thermal equilibrium is exact and will correspond to maximum 
disorder. The microcanonical equilibrium ensemble considered in the present chap
ter is characterized by the constraint (1.11) which correlates the N ions; this con
straint produces correlations between two ions, which are finite when N is finite, 
but which tend to zero for large N so that in the infinite-N limit the two equilibrium 
ensembles are equivalent. 

1.2.6 Spin Thermostat 

In § 1.2.4 we studied the thermal equilibrium between two paramagnetic samples 
which were both macroscopic. Let us assume now that the system b is much larger 
than a so that the energy which it can exchange with the latter represents only a 
negligible part of its energy Ub which remains close to U; hence i3b which is defined 
by (1.25) hardly changes when b is put in contact with a. As far as magnetic 
energies are concerned, the system b thus plays the role of a thermostat and the 
energy of a adjusts itself in such a way that i3a takes the given value i3b. 

In case the system a remains microscopic, one cannot avoid the use of a proba
bilistic description for it. Let us find in that case the probability Pm for a micro-state 
m, with energy em, of the system a. This probability is proportional to the number 
of micro-states of the system b such that 

U ~ em + Eb < U + LlU, 

that is, to the number Wb evaluated for the energy U - em. Taking into account 
the large size of the system b we can express Wb by using (1.16) and (1.17) and 
expanding in powers of em, which is much smaller than U; this leads, apart from 
an additive constant, to 

aSb 
k In Pm '" - au em· 

Using (1.25) we thus find that 
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(1.27) 

where Za is a normalization constant. 
The exponential form (1.27) which we found for the probability for the micro

state m in the thermostat b is a first example of a Boltzmann-Gibbs distribution. 
Equation (1.29) below is a particular case of (1.27), where a is the spin 1 placed in 
the same field B as the N - 1 other spins, which form the system b. Similarly, the 
property (1.26) follows directly from (1.27) and the fact that the energies of the 
spins 1 and 2 are additive. 

When the size of the system a becomes macroscopic - though remaining small 
as compared to that of b - we find again the probability distribution (1.23) for 
the energy Ea, starting from (1.27). We must bear in mind that p(Ea) dEa is the 
product of Pm and the number (1.16) of micro-states in the range Ea, Ea + dEa; 
since Na is large we can use the same approximations as in § 1.2.4. 

1.3 Identification of the Thermodynamic Quantities 

1.3.1 Relative Temperature 

Empirically the concept of a relative temperature was defined on the macro
scopic scale by the observation of two systems in thermal contact, evolving 
until thermal equilibrium is reached. One associates with each system a vari
able depending on its state, the temperature, such that the temperatures of 
the two systems become equal when thermal equilibrium is established. On 
the microscopic scale thermal contact can be interpreted as a weak interaction 
which allows energy exchanges, and the establishment of thermal equilibrium 
as an evolution towards maximum disorder. This is just the problem studied 
in § 1.2.4, where we postulated that the most disordered macro-state pos
sible is the one where all accessible micro-states are equally probable. The 
microscopic and statistical analysis provided us with the equilibrium condi
tion that the parameters {3, defined as function of U, B, and N, must be equal 
in the two parts. 

On the microscopic scale the quantity {3 is connected with the statistical 
nature of the macro-state of the system in thermal equilibrium; however, on 
the macroscopic scale it can thus be interpreted as a relative temperature. If 
we use (1.25), (1.17), and (1.15) we can easily express it as a function of the 
field B applied to the sample and of its energy U, in the form 

ip " H~i 
= _I_In l-e = 

2J-tBB 1 + e 
1 In NJ-tBB - U. 

2J-tBB NJ-tBB+U 
(1.28) 

This expression shows that {3 is an intensive variable, like Band U / N. 
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1.3.2 The Boltzmann-Gibbs Distribution 

Consider the probability distribution for one of the magnetic moments, which 
at thermal equilibrium is given by (1.18), and replace the mean energy U/N 
in (1.28) by its expression in terms of the probabilities P1 (0"1). We find 

that is, 

Since the energy of the magnetic ion 1 is 6"1 = /LBB0"1, we see that 

(1.29) 

where Z1 is a normalization constant. 
Therefore, for the system consisting of one magnetic moment in equi

librium with the rest of the sample, which plays the role of a thermostat, 
the probability for each micro-state is proportional to an exponential of the 
energy of this state. In Chap.4 we shall find this exponential form for the 
probability as a quite general result: it is the Boltzmann-Gibbs distribution. 
The quantity f3 that on the macroscopic scale can be interpreted as a relative 
temperature thus appears on the microscopic scale as a parameter which is 
the conjugate of the energy and which characterizes the probability distribu
tion of one of the magnetic moments. 

We saw in § 1.2.6 and we shall find as a general result in § 5.7.2 that, if the 
sample considered is in thermal equilibrium with a much larger thermostat, the 
probability distribution p( 0"1, ... ,0" N) has the so-called "canonical" form 

p(O"l. ... ,O"N) = ~ e-{3E(ul> ... ,uN ), 

whereas here we worked in the so-called "microcanonical" statistical ensemble 
(1.12). Notwithstanding the difference of the form of these two probability laws, 
they are practically equivalent for the evaluation of macroscopic quantities. In par
ticular, both lead to the same expression (1.29) for the reduced probability P(O"i) 
for the i-th ion and to the same expression (1.26) for the reduced probability for 
two ions. Technically, it is more convenient to use the canonical ensemble, but in 
the present chapter we have preferred to use the micro canonical ensemble which 
needs fewer new concepts (ExercAc). 

Note finally that the normalization constant Z1, which is equal to 

Z1 = L e-{3€l = e{3I-'BB + e-{3I-'BB, 

€1 

(1.30) 
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is nothing but the partition function for the site 1, as we can see from the 
definition (1.13). 

1.3.3 Entropy and Absolute Temperature 

The macroscopic state of our system is characterized in thermal equilibrium 
by three variables: the internal energy U, the applied magnetic field B, and 
the number N of paramagnetic sites. In thermodynamics one shows that in 
an infinitesimal transformation, where the field B changes by dB, while N 
remains constant, the magnetic work done on the sample equals 

oW = -MdB, (1.31) 

where M is the total magnetic moment. On the microscopic scale the latter 
can be identified with the expectation value (M), while the work (1.31) can 
be interpreted as the expectation value of the infinitesimal change in the 
Hamiltonian (1.2) when B changes. 

Expression (1.31) for the magnetic work done is not an obvious one because the 
electromagnetic forces have a long range and the definition of the system studied 
itself is, as a result, ambiguous. Accordingly, the thermodynamic definition of the 
internal energy of a dielectric or magnetic substance and of the work done on it is 
not unique and depends on how one wants to take into account the field in which 
the sample is placed (§ 6.6.5). Here we use the method which is best suited for 
connecting microscopic and macroscopic physics: the field B is the one created by 
the same system of external currents as when there is no paramagnetic salt present, 
and the work (1.31) does not contain the electric work necessary to maintain these 
given currents (Eq.(6.107)). 

One should also compare (1.31) with the work -Pdn done on a fluid when 
its volume n changes by dn. The field B, as well as n, are parameters which are 
controlled from the outside and which occur in the Hamiltonian - the volume n 
occurs through an external potential, confining the particles to that volume. The 
work done is proportional to the changes in these parameters. 

During any infinitesimal transformation, the balance of the internal en
ergy (1. 7) gives for the heat received 

o Q = dU - oW = dU + M dB = - B dM. (1.32) 

We shall be able to identify on the microscopic scale the entropy and the 
absolute temperature of the thermodynamicists, if we are able to express 
the change oQ between equilibrium states in the form T dB, where T is a 
function of the relative temperature f3 and where dB is the total differential 
of some function B of the variables U, B, N which characterize the macro
state of the system. In thermodynamics one shows that if one can make this 
identification, it uniquely defines T and B, up to a multiplicative factor for 
T and B and an additive constant for B. 
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Anticipating the result which we want to prove, we differentiate expression 
(1.17), keeping N constant: 

dS = 8S dU + 8S dB 
8U 8B 

dS [8g dU 8g dB] 
dg 8U + 8B 

1 l-g 
-2kN In -- dg = - k(3B dM. 

l+g 

We have simplified the calculation by noting that S is a function of M = 
-JLBN g = -U / B only, and we have used the definition (1.28) of (3 and 
Eq.(1.15). Comparison with (1.32) gives us 

1 
8Q = k(3 dS. (1.33) 

Through a suitable choice for the constant k depending on the system of 
units in which the entropy is measured, we can thus identify the quantity 
S, defined by (1.17) and (1.19), with the entropy. We can also identify the 
absolute temperature T in terms of the parameter (3, which so far had been 
recognized as being a relative temperature, by writing 

(1.34) 

If the temperature is measured in kelvin - the unit defined by stating 
that the temperature of the triple point of water is 273.16 K - and the 
entropy in joules per kelvin, k can be found from experiments which combine 
microscopic and macroscopic physics. The value of k, in 81 units, is 

(1.35 ) 

it is called the Boltzmann constant. A system of units, better suited for 
microscopic physics, consists in putting k = 1; the entropy will then be a 
dimensionless quantity and the temperature is measured in energy units. 
The fact that the value (1.35) of k, in 81 units, is small shows that in the 
natural units the entropies will always be very large - of the order of the 
Avogadro number, as can be seen from (1.17) - and the temperatures very 
low: 1 K, in fact, corresponds to 1.38 x 10-23 J, or to 8.5 x 10-5 e V. It is useful 
to remember that room temperature of 300 K in energy units corresponds to 

410 eV. 
Implicitly we have put the additive constant, which appears when we 

identify S with the thermodynamic entropy, equal to zero. Doing this we 
satisfy the Third Law automatically, since (1.17) vanishes as g ----+ -1 or 
(3 ----+ 00, that is, in the limit of low temperatures T = l/k(3 ----+ O. 

Finally, note that the equilibrium state of the composite system con
sidered in § 1.2.4 is obtained by looking for the maximum of the function 
Sa + Sb which characterizes the total disorder of a and b, taking into account 



1.4 Experimental Checks 37 

the constraint Ua + Ub = U imposed by energy conservation. Let us compare 
this idea with the formulation of the Laws of Thermodynamics as given in 
Chap.6: there we postulate the existence of a function of the variables charac
terizing the macroscopic state of a homogeneous system, namely the entropy, 
which possesses the following property. To determine the equilibrium state of 
a composite system we only need look for the maximum of its total entropy 
with respect to the parameters which can vary. Here, we have proved this 
property for two paramagnetic samples which can exchange energy, by iden
tifying our function S with the entropy. Moreover, we have established the 
explicit form (1.17) of the entropy; this cannot be done by thermodynamics. 

When the energy U changes from -NJ-tBB to +NJ-tBB, the parameter f3 changes 
from +00 to -00, and T changes from +0 to +00 and then from -00 to -0: if 
we put energy into a system of spins, the temperature first increases, but after 
that it may become negative (Exerc.1a). These negative temperatures should be 
considered higher than temperatures for which T > O. The inverse temperature 
scale f3 is thus more natural than the ordinary temperature scale. 

1.4 Experimental Checks 

1.4.1 Equations of State 

We have seen that, if we restrict ourselves to magnetic phenomena, the macro
scopic state of our paramagnetic solid is characterized by three thermody
namic variables, for instance, U, B, and N. To make comparisons with ex
periments easier, it is more convenient to choose the absolute temperature T 
as state variable rather than the internal magnetic energy. 

We can then express the various macroscopic quantities as functions of 
T, B, and N. First of all, we invert relation (1.28) in order to evaluate the 
magnetic energy at a given temperature: 

e 2/-iB B /kT - 1 
U = - N fLBB e2/-iBB/kT + l' (1.36) 

It varies from - N fLBB at T = 0 to 0 when T » fLBB /k. For 1 kg of CUS04' 
K2S04.6H20 in a field of 1 T this change equals 12.7 J, which is small 
compared to other forms of energy in solid state theory. 

We can use (1.7) to find from U the total magnetic moment M == (M), 

fLBB 
M = NfLB tanh kT ' (1.37) 

a relation which we can also check directly, using (1.6), (1.29), and (1.30). 
Finally, expression (1.29) easily gives us the entropy as function of the tem
perature, if we use (1.29), (1.30), and (1.34): 
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s N k In (2 cosh J1BB) _ N J1BB t h J1BB 
kT T an kT· (1.38) 

1.4.2 Curie's Law 

The magnetization of a body is equal to its magnetic moment per unit volume 
so that the magnetic susceptibility in our model follows from (1.1) and (1.37): 

_ N J1~ 
X - [} kT· (1.39) 

The magnetic susceptibility is inversely proportional to the absolute tem
perature. We have thus established a theoretical justification of Curie's law 
of which we showed in Fig.1.1 an experimental example. The constant of 
proportionality, or Curie's constant, can also be evaluated using (1.39) and 
be compared with experiments. Remember that in 81 units 

J1B = ~ = 0.927 X 10-23 J T-1. 
2m 

(1.40) 

In the example of Cu804 .K2804.6H20 which has a molecular mass of 442, 
we thus find for the Curie constant per unit mass, in 81 units, 

6 x 1023 1 2 
442 X 10-3 x 1.38 X 10-23 (0.927 x 10-23) = 8.5, 

whereas the experimental curve led to XmT = 10.3. Our model gives a good 
explanation of Curie's law, but the agreement with experiment is only qual
itative, as far as the value of Curie's constant is concerned. 

1.4.3 Saturation 

Whereas when the field is weak, the magnetization is proportional to the 
applied field, Eq.(1.37) shows that it must increase less and less rapidly as 
the field increases and that finally it must tend to a maximum value. The 
latter corresponds to a complete alignment of all the P.i moments in the 
same direction as B. The change in behaviour occurs for a field of the order 
of kTIJ1B. 

Measurements have been made for several paramagnetic salts. Figure 1.4 
shows the values in Bohr magnetons obtained for the mean magnetic mo
ment per ion. Here again, our model gives a qualitative understanding of the 
saturation effect. In particular, the observed magnetization only depends, as 
expected from (1.37), on the ratio BIT of the field to the absolute tempera
ture. However, the quantitative agreement is not good, as the tanh(J1BB I kT) 
behaviour predicted by (1.37) and shown by the dashed curve in Fig. 1.4 tends 
to 1 for strong fields, and not to 3, 5, or 7, and altogether does not have the 
same shape as the experimental curves, even if we forget about the different 
normalization (Exerc.1b and 1c). 
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Fig. 1.4. The magnetization as function of the field and of the temperature for 
various paramagnetic salts: Brillouin curves 

1.4.4 Thermal Effects; Characteristic Temperature 

When taking the derivative of (1.36) or (1.38) with respect to T we get the 
specific heat - at constant magnetic field: 

_ 8U _ 8S _ N f.L~B2 
C---T-- . 

8T 8T kT2 cosh2(f.LBB/kT) 
(1.41 ) 

It is shown in Fig.1.5. It has a maximum for T ::: 0.88, where 8 is a tem
perature which depends on the applied field and which is defined by 

8 = f.LB B . 
k ' 

(1.42) 

8 is small, even for a strong applied field: when B = 1 T, we have 8 = 0.67 K. 
When we cool the system down to a temperature of the order of magnitude 

of 8 , order sets in. One calls 8 the characteristic temperature associated with 
the paramagnetism of the system. When T » 8, the spins are disordered; 
the corresponding specific heat is small, as a change in temperature hardly 
changes the state of the spins. On the other hand, when T « 8, the spins 
are nearly completely oriented parallel to the field; one says that they are 
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Fig. 1.5. The paramagnetic contribution to the molar specific heat 

"frozen in". The specific heat again is small, as the system hardly reacts to 
changes in the temperature. 

Experimental checks are difficult , as the total specific heat contains other 
contributions than the peak shown in Fig.1.5 , which come from the other 
degrees of freedom of the crystal, such as the vibrations of the ions around 
their equilibrium positions, and which dominate at room temperatures. 

This thermal coupling between the moments of the paramagnetic ions and 
the other degrees of freedom leads, nevertheless, to an interesting technical 
application, often used in laboratories: it produces, in fact, one of the best 
methods for obtaining very low temperatures, the adiabatic demagnetization 
of a paramagnetic salt. One starts from a situation where the paramagnetic 
salt is magnetized, thanks to a rather strong initial magnetic induction B i , 

say of 1 T, at an initial temperature Ti which is already rather low, say 1 K, 
so that MBBi/kTi ~ 1. Then the salt being in contact with the sample which 
we want to cool down, while the total system is isolated from the outside 
world, one reduces the magnetic field to a final value Br which is as small as 
possible (Fig.1.6). If the transformation is sufficiently slow, the total entropy 
remains constant. In order to understand how the temperature changes, let 
us first argue as if the magnetic moments did not interact with the rest of 
the system. As the entropy (1.17) then only depends on the magnetization, 
the latter remains constant while B decreases from Bi to Br - the term 
"demagnetization" traditionally used to denote this technique is an improper 
one, as the magnetization remains fixed when the field decreases, at least as 
long as we ignore the other degrees of freedom. As the magnetization depends 
only on the ratio BIT, the temperature of the spins decreases by a factor 
Bd B i . . We could also have reached this conclusion from Eq.(1.38) for the 
entropy. Let us now include the thermal contact between the spins and the 
rest of the system and let us write down the condition that the total entropy 
remains almost constant. If we denote the sample which has to be cooled 
as well as the non-magnetic degrees of freedom of the salt by a and the 
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Fig. 1.6. Cooling by adiabatic demagnetization 

corresponding entropy by Sa, we find that the final temperature Tf is given 
by the equation 

( 1.43) 

We know that the entropy is an increasing function of the temperature, which 
tends to 0 for T = 0 and we shall see later on why this is the case. If the 
sample to be cooled down is sufficiently small and if the initial tempera
ture is sufficiently low, Sa is rather small and the total entropy S + Sa has 
the shape shown in Fig.1.6. The horizontal arrOw shows the cooling from 
Ti to Tf , a temperature slightly higher than TiBd Bi. Altogether, the very 
large initial magnetic order is transferred to the other degrees of freedom 
and their ordering is reflected in the lowering of the temperature. The pro
cess is quite efficient: it enables one to cool down to temperatures of the 
order of millikelvin substances which were first cooled down to liquid helium 
temperatures of about 4.2 K (Debye 1926, Giauque 1927). 

1.4.5 Magnetic Resonance 

So far we have only studied the thermodynamic behaviour of a paramagnetic sample 
at equilibrium. We restricted ourselves to handwaving arguments when describing 
how equilibrium is established. Nonetheless, it is important to elaborate the theory 
for the dynamics of the spins as many experiments are based upon the detection of 
oscillating magnetic moments - measuring the field they produce. In fact , magnetic 
resonance under the influence of an oscillating field applied to a sample constitutes 
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an extremely powerful tool for exploring the structure and the properties of sub
stances, whether we are dealing with the paramagnetic resonance of electrons or 
the nuclear magnetic resonance of the nuclear magnetic. moments - which are much 
smaller, but which provide vital information. As examples we mention the deter
mination of molecular structures and scanning of the brain with recent studies of 
the metabolism of some of its parts. 

The study of the dynamics of the spins makes it necessary to take the three 
components of the operator li into account. In a - possibly time-dependent - field B 
the equation of motion of their mean values, which is governed by the Hamiltonian 
Ii = I-tB(B . li), is (Exerc.2a) 

d~:) = 2~B [B X (IT)]. (1.44) 

If B is a steady field along the z-axis, the magnetic moment precesses around that 
axis at the Larmor frequency WL = 2I-tBB/h. This frequency also corresponds to the 
difference hwL = 2l-tBB between the two energy eigenlevels of the spin in the field 
B. In thermal equilibrium, the precession ceases, as (IT) is parallel to B. Note that 
we cannot use (1.44) to describe the approach towards equilibrium for which we 
must include extra terms representing spin-spin and spin-other degrees of freedom 
interactions. 

A magnetic resonance experiment can thus be described as follows. Starting 
from a paramagnetic system at equilibrium in a field B along the z-axis, we perturb 
it by applying a second oscillating field bsinwt along the x-axis. This induces 
transitions between the levels Ui = +1 and Ui = -1 of each spin. The transition 
rate has a very pronounced maximum when the frequency of the perturbation agrees 
with the energy difference between the levels, that is, when w = WL. Bearing in 
mind the form (1.44) of the equation of motion, we can understand this behaviour 
by seeing it as a resonance effect of a periodic perturbation of a system which has 
a natural oscillation frequency. When B = 1 T, the Larmor frequency is equal to 

= 2 x 0.93 X 10-23 = 2.8 X 1010 Hz 
6.6 X 10-34 ' 

and the frequency of the perturbing field lies in the radio-frequency band with 
wave-lengths of the order of cm. By varying the frequency of the perturbing field 
we thus observe a sharp resonance and its position gives us information about the 
energy difference between the magnetic levels, while its shape gives us a great deal 
of further information. 

This kind of experiment provides, moreover, a direct measurement of the prob
ability for the occupation of each level and hence an experimental check of the 
Boltzmann-Gibbs distribution (1.29). Let us describe the spin dynamics by a bal
ance method, details of which will be given in Chap.15. Let A be the transition 
rate per unit time, which is the same for the Ui = -1 ---+ Ui = +1 transition as for 
the inverse Ui = +1 ---+ Ui = -1 transition. We study the evolution during a time 
dt of the probabilities Pi(ud, by examining the change in Pi( +1). This probability 
decreases by AdtPi(+l) due to the Ui = +1 ---+ Ui = -1 transitions, but it increases 
also by AdtPi(-l) due to the Ui = -1 ---+ Ui = +1 transitions, so that 

(1.45) 
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If we now use Eqs.(1.6) and (1.7) for the energy, we see that the solid absorbs an 
amount of power equal to 

(1.46) 

One measures the strength of the resonance lines by observing the attenuation of the 
radio-frequency field after it has passed through the paramagnetic sample. When 
the latter is kept at thermal equilibrium, one can determine the absorbed power 
(1.46) and hence the probabilities Pi(±l) and one can check that their variation 
with temperature is given by (1.29) and (1.34). 

1.4.6 Discussion of the Model 

Notwithstanding the gross and somewhat arbitrary simplifications which we 
have made in § 1.1.2 our model produces results much as we had expected 
from it. Being rather similar to the paramagnetic substances which we want 
to study it has enabled us to understand their properties, to make reason
able predictions about the order of magnitude of various measurable quan
tities and about functional dependences. Its study has thus been justified 
a posteriori by its explanatory value and by its qualitative agreement with 
experiments. 

However, one can be more ambitious and try to construct a theory which 
quantitatively accounts for the experimental facts. In that case our model 
would appear as the first stage in the working out of such a theory. 

To do this we must first analyze more seriously the origin of the magnetic 
moments J.l.i. In the case of an isolated ion whose ground state has an angular 
momentum J = L + S, with l, s, j, and jz being good quantum numbers, 
the magnetic moment associated with the orbital and spin angular momenta 
of the electrons is the operator (see end of § 1.1.2) 

One can prove that the matrix elements of p between the lowest, degenerate, 
energy states are proportional to those of J: 

gJ.LBJ 
---n with (1.47) 

3 s(s+l)-l(l+l) 
9 = "2 + 2j(j + 1) . 

An approximation which is more realistic than out model thus consists in 
assuming that each of the paramagnetic ions of the solid in the field B has 
the same energy levels, 

Jz -j, ... ,+j, 
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as if it were isolated. Our earlier results can now easily be generalized, by 
replacing the two levels with IJi = ±1 for each ion by 2j + 1 equally spaced 
levels (Exerc.1b). One can then successfully derive the Curie constants of 
many substances from the values for 1, s, and j of their paramagnetic ions. 
One can also explain quantitatively and with good accuracy the saturation 
curves of Fig.1.4. For instance, in the case of Gd+3 we have 1 = 0, j = s = ~, 
9 = 2; the saturation curve has the asymptote (M)/NIl-B = 7, as predicted. 
Figure 1.4, moreover, shows the full-drawn theoretical curves - Brillouin 
curves - associated with the various values of Sj their agreement with the 
experimental data is remarkable. 

A question now arises about the Cu2+ salt for which we successfully compared 
in § 1.4.2 the Curie constant with experiment. The ground state of the Cu2+ ion is 
a 2DS/2 state, that is, 1 = 2, s = ~, j = !, 9 = 1.2; the Curie constant calculated 
from (1.47) starting from these values would be 36 SI units, which is in much 
worse agreement with experiment than the result of our simplistic theory where 
the magnetic moment was that of a spin- ~. Everything happens as if the orbital 
motion of the electrons does not contribute to the magnetic moment. To explain 
this, we must take into account the fact that the Cu2+ ions are not isolated, but in 
a crystal. The neighbouring ions produce an anisotropic potential which perturbs 
the state of the Cu2+ ion. In particular, the rotational invariance is broken, and 1 
and j are no longer good quantum numbers; the ground state is no longer 2j +! = 6 
times degenerate, but only 2s + ! = 2 times, corresponding to the electron spin. 
Only two levels with Sz = ±~ are involved for each ion and we find again the 
results of the simplified model. One says that the orbital degrees of freedom of the 
electrons, which do not contribute, are quenched, or frozen in. Moreover, one can 
show that the (L. S) coupling which modifies the magnetic moment of the two-fold 
degenerate ground state explains the deviation of the experimental value from the 
Curie constant predicted by the s = ~ theory, a deviation which we noted in § 1.4.2. 

Many other experimental facts can still change our theoretical ideas and those 
will, in turn, suggest the study of new effects. For instance, the anisotropy of the 
crystal potential seen by the paramagnetic ions, which we mentioned a moment 
ago, leads to an anisotropy of the magnetic susceptibility. More exactly, the latter 
is a 3 x 3 tensor which connects the components of B with those of M. In order 
to measure it one must study a single crystal rather than a powder and vary the 
orientation of B. The results are depicted in Fig.1.! where the solid curve shows 
the susceptibility of the powder and the dashed curves the three eigenvalues of the 
susceptibilities, which are measured by applying the field B successively in the three 
principal directions. We see thus that the susceptibility of a CuS04.K2S04.6H20 
single crystal is anisotropic, in agreement with our theoretical predictions based 
upon the anisotropy of the crystal potential. 

A study of the deviations from the Curie law, illustrated in Fig.1.7 which gives 
both experimental values and theoretical curves, gives us a means for investigating 
the structure of the substance under consideration. They can be explained either by 
the effect of excited levels of each paramagnetic ion, or by the interactions between 
these ions and the other atoms in the crystal, or by their interactions with one 
another. 
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Fig. 1. 7. Deviations from the Curie 
law 

Note finally that at very low temperatures these interactions between ions start 
to play an important role, especially in a weak or zero magnetic field. In fact, we see 
from (1.26) and (1.29) that the magnetic moments will, for B = 0, remain perfectly 
disordered at all temperatures if there is no interaction between paramagnetic ions. 
Interactions of the form - (~i . ~j) tend to align the magnetic moments parallel to 
one another. At very low temperatures the energy must diminish, which implies 
that the magnetic moments become spontaneously correlated with one another: all 
magnetic moments align in the same direction and ferromagnetic order appears. 
The applications of ferromagnetism to electrical engineering are very crucial - al
ternators, transformers, motors, electromagnets. As far as physics is concerned, its 
theoretical explanation will pass through stages which are similar to the ones of the 
present chapter: solve a model with interactions like - (Pi"/Jj) between the magnetic 
moments in order to understand qualitatively the way the moments align sponta
neously (Exercs.9a, 9b, and 11£); then discuss the origin of the localized magnetic 
moments and of their interactions to explain, in particular, why these interactions 
have the necessary sign to produce ferromagnetism in a given substance. 

Summarizing, our model has, on the one hand, helped us to introduce 
the basic ideas of statistical mechanics which we shall again meet with in the 
remainder of the present book and, on the other hand, has enabled us to un
derstand qualitatively some phenomena connected with the paramagnetism 
of salts. Through improvements and modifications it, finally, has enabled us 
to predict or to explain quantitatively the experimental data. We have here 
a characteristic example of scientific reasoning: our knowledge progresses 
thanks to a give-and-take between theory and experiment and the present 
chapter has shown the first stages of such a process. 
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Summary 

After having shown some experimental facts about paramagnetism and defined 
a schematic model of a paramagnetic solid on the microscopic scale, we have 
characterized a macroscopic state of this solid by a probability law for the 
various possible microscopic states. The expectation values of all observables 
can be derived from this probability law. 

The evolution of a macroscopic system to thermal equilibrium can on the 
microscopic probabilistic scale be interpreted as an evolution in time of the 
macro-state to the maximum disorder compatible with energy conservation. If 
the energy is assumed to be well defined initially, the macro-state reached at 
thermal equilibrium is characterized by equal probabilities for all micro-states 
with that energy: the "microcanonical ensemble". Its degree of disorder is 
measured by (1.17) or (1.19); it can be identified with the macroscopic ther
modynamic entropy. Comparing the microscopic probabilistic description of 
the thermal contact between two spin systems with the Laws of Thermodynam
ics, we can interpret the absolute temperature as a parameter characterizing 
the probability distribution (1.29), (1.34) of one of the magnetic ions - or the 
Boltzmann-Gibbs distribution - and we can explain why the statistical nature 
of the underlying microscopic theory does not show up at the macroscopic 
level. 

This theory enables us to explain experimental facts: Curie's law (1.39), 
saturation of the magnetic moment in strong fields, cooling by adiabatic de
magnetization. In passing we introduced the technique of using the partition 
function (1.13) and the concept of a characteristic temperature (§ 1.4.4) in 
the vicinity of which order sets in. 

Exercises 

1a Negative Temperatures 

How do the parameter {3, the entropy S, and the temperature T vary when the 
internal energy (1.36) of a system of paramagnetic ions, which are assumed 
not to interact with the other degrees of freedom of the solid, changes con
tinuously from its minimum value - N /-LBB to its maximum value + N /-LBB? 
Note that the temperatures T = ±oo should be regarded as being identical, 
but that T = +0 corresponds to the ground state, while T = -0 corresponds 
to the highest state. 

Using the fact that the entropy is a concave function of the energy, show 
that one can distinguish two kinds of systems, the first, and most common 
one, such that the energy spectrum is bounded only from below and for which 
{3 varies from +00 to +0, and the second such that the spectrum has both 
an upper and a lower bound, while {3 varies from +00 to -00. Show that 
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thermal contact between two systems, of either type, which initially are at 
different temperatures (3a and (3b, leads to a final equilibrium state with an 
intermediate temperature (3, such that (3a < (3 < (3b, if (3a < (3b. Discuss 
this result in terms of the temperatures T for each of the three possible 
combinations of temperature signs. 

Hint. Consider the curves Sa(Ua) and Sb(Ub); start from the final equilibrium 
state, where (3a = (3b = (3, and study the change in the temperatures when energy 
is transferred from one system to the other. 

Comments. Equilibrium states with negative spin temperatures can be observed 
in paramagnetic substances in the common cases where the coupling between the 
spins and the "lattice" - that is, the other degrees of freedom, such as the vibrations 
of the atoms in the crystal which have a spectrum without an upper bound - is 
much weaker than the spin-spin coupling: for a fairly long time a quasi-equilibrium 
of the spin system occurs which can have any temperature, positive or negative, 
depending on the value of the magnetic energy. There coexist therefore in the same 
substance two different temperatures, as would be the case for two weakly coupled 
thermostats. Of course, ultimately the combination of all the degrees of freedom 
reaches equilibrium at a positive temperature. 

If (3 < 0, there is a population inversion: it follows from (1.29) that there 
are more spins with positive energies than with negative energies. In contrast, 
a Boltzmann-Gibbs distribution with positive temperature shows a preference for 
micro-states with lower energy; this explains microscopically why (3 must be positive 
if the spectrum has no upper bound. 

1 b Brillouin Curves 

Study the paramagnetism of a salt containing paramagnetic ions with a 
magnetic moment (1.47) corresponding to arbitrary spin j. Start from the 
Boltzmann-Gibbs distribution (1.29) which describes each of the magnetic 
moments at thermal equilibrium at a temperature T. Calculate the normal
ization constant Zl and hence derive - by differentiating with respect to 
B - the average magnetic moment of an ion as function of the field and of 
the temperature and the susceptibility as function of the temperature. Show 
that Curie's law is satisfied and that the saturation curves have the Brillouin 
shape shown in Fig.1.4. Check the results by comparing them with those in 
the text for l = 0, j = s = ~. 
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Results: 

x 

sinh [(1 + ~) ,B9JLBBj 

sinh (~,B9JLBB) 

+j 

L P1(jz) [-9JLBjzj = ~ 8~ In Zl 
jz=-j 

= 9JLB {(1 +~) coth [(j +~) ,B9JLBBj- ~ coth (~j19JLBB)}. 

N JL~ ij(j + 1) 
n kT 3 

Ie Langevin Paramagnetism 

Before the birth of quantum mechanics, Langevin explained paramagnetism 
by assuming that each paramagnetic ion possessed a permanent magnetic 
moment, a classical vector p. which could freely align itself in any direction. Its 
energy E = - (p.. B) depends on the direction n = p./ J.l of p.. The probability 
law for n in thermal equilibrium is the Boltzmann-Gibbs distribution 

Calculate Z and hence find (p.) and X. Compare these results with quantum 
theory: show that the results of Exerc.lb reduce to classical paramagnetism 
in the limit as j -t 00, J.l = J.lBg(j + ~). The Langevin saturation curve is 
quantitatively incorrect. 

Results: 

Z = r2rr d<p 1+1 d cos (j /J,-,B cos IJ = 47r sinh(,BJLB). 10 -1 (3/lB 

(JLz) = J d2n p(n)JLz = ~ 8~ In Z = JL (coth(,BJLB) - j1/~B)' 
N JL2 

X = n 3kT' 

In the classical limit j -+ 00 and JL = JLB9(j + ~) we find that the Brillouin 
expressions for (JLz) and X tend to the Langevin expressions. However, there is 
in Z an extra factor 47r/(2j + 1) which comes from the normalizations which are 
different: Ljz 1 = 2j + 1 in the Brillouin case, and J d2 n = 47r in the Langevin 
case. 
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"Une cause tres petite qui no us echappe determine un effet 
considerable que nous ne pouvons pas ne pas voir, et alors 
nous disons que cet effet est dii au hasard." 

Henri Poincare, Calcul des Probabilites, 1912 

"Probabilitatem esse deducendam." 

Letter from Einstein to Pauli, 1932 

"We meet here in a new light the old truth that in our de
scription of nature the purpose is not to disclose the real 
essence of the phenomena but only to track down, so far as 
it is possible, relations between the manifold aspects of our 
experience." 

Niels Bohr 

In the present chapter we start the study of the general formalism of statisti
cal physics by showing how one can mathematically represent a system which 
is not well known on the microscopic scale. We deliberately use quantum me
chanics for several reasons. On the one hand, microscopic physics is basically 
quantal; classically there would exist neither atoms nor molecules with dis
crete bound states. On the other hand, we shall see that, notwithstanding a 
few conceptual difficulties to begin with, quantization brings about simpli
fications by replacing integrals by discrete sums. Last and not least, many 
important phenomena, such as the very existence of solids or magnetic sub
stances, the properties of black-body radiation, or even the extensivity of 
matter, can only be explained by a quantum-mechanical approach. Even in 
the case of gases or liquids, classical statistical mechanics is insufficient; it 
does not enable one to elucidate the Gibbs paradox or to understand the 
values of the specific heats. 

We assume that the reader is familiar with the elements of quantum 
mechanics such as one can find in introductory textbooks. In order to fix the 
notation and to remind ourselves of a few results for future reference, we start 
with a survey of the mathematical tools; we review the basic postulates in the 
Dirac formalism, only considering, as is usually done, completely prepared 
states, the so-called micro-states; these are characterized by their ket (§ 2.1). 
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In quantum statistical mechanics, however, the preparations are always 
incomplete and a system is not in a state characterized by a well defined 
keto The state of an incompletely prepared system, a so-called macro-state, 
is only partially known and corresponds to assigning a probability law for 
all possible kets. The synthesis of this probabilistic nature with the prob
abilities arising from the quantum mechanics of kets will be made using a 
mathematical entity, the density operator, which generalizes the probability 
concept to quantum statistical mechanics. In fact, the density operator for
malism, introduced independently in 1927 by Lev Davidovich Landau and 
Johann (John) von Neumann (Budapest 1903-Washington 1957), enables us 
to reformulate the laws of quantum mechanics more generally than with the 
formalism using kets or wavefunctions, and to get rid of these concepts. Even 
in microphysics, it will turn out that density operators are more basic and 
easier to understand than state vectors. We develop the various aspects of 
density operator theory in § 2.2, and collect for convenience in § 2.2.7 the 
main results, the only ones to be used in what follows. 

In classical mechanics a micro-state of a system of particles is character
ized once we know their positions and momenta; a macro-state - which is 
imperfectly known at the microscopic level - is characterized by a proba
bility measure in the phase space representing these positions and momenta 
(J.Willard Gibbs). All the same, we must define this measure with some care 
in order that classical statistical mechanics appears, as it should, as a limiting 
case of quantum statistical mechanics. We shall use the classical formalism 
only in Chaps.7 to 9 and in Chap.15; one can postpone the study of § 2.3 
until we start applying statistical physics to gases or liquids. 

2.1 Elements of the Quantum Formalism 

2.1.1 Hilbert Spaces 

One can associate with any physical system, described in a given frame of 
reference, a Hilbert space £H with elements, or kets, denoted by I'¢). The 
physical significance of this space and of the entities connected with it will 
be made clearer starting from § 2.1.3, but for the moment we shall only be 
concerned with its mathematical properties. A Hilbert space possesses the 
structure of a vector space, involving addition, I'¢I) + 1'¢2), and multiplication 
by a complex number c, cl,¢). Moreover, one associates with each ket I'¢) a 
bra (1/11 which is an element of the dual space of £H, £H; the bra which is the 
conjugate of cl1/l) is (1/Ilc* and we define a scalar product, (cpl1/l), of bras and 
kets, which satisfies the relation (cpl1/l) = (1/Ilcp) * . 

For some systems the space £H has a finite number of dimensions. For 
instance, the dimensionality of £H is 2 for the spin-~ of an electron, if we 
forget about all other degrees of freedom. Usually, its dimensionality is in
finite. For instance, for a particle in one dimension £ H is the space of all 
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square integrable complex functions of x, which may possibly be confined to 
a box, 0 < x < L. To avoid mathematical complications without any physi
cal relevance, we disregard in this book all convergence problems which are 
connected with the infinite dimensionality of eH. 

In order to define coordinates in e H we choose in it a complete orthonormal 
base {Ik)} of vectors Ik), which are characterized by an index, or by a set of 
indices, k and which satisfy the orthonormality relations, 

(2.1) 

and the closure relation, 

L Ik) (kl = I; (2.2) 
k 

here I denotes the identity operator of the space defined by i]-,p) = l-,p). Every 
ket l-,p) can thus be represented by its coordinates (kl-,p): 

l-,p) = L Ik) (kl-,p), (2.3) 
k 

and we find for the scalar product (cpl-,p) 

(cpl-,p) = L (cplk) (kl-,p)· (2.4) 
k 

For instance, for a spin-~ (Exerc.2a) the two base vectors I±) are character
ized by the quantum numbers (J'z = ±1. For a one-dimensional particle, we 
can choose for {Ik)} the enumerable base of eigenfunctions of the harmonic 
oscillator, with k = 0,1,2, .... An alternative base {Ix)} of kets localized 
at the point x is physically convenient, but encounters some mathematical 
difficulties as Ix) is not normalizable; it is characterized by a continuous in
dex x, in which case the Kronecker 8 in (2.1) should be replaced by a Dirac 
8-function and the sum in (2.3) by an integral. 

When a composite physical system a+b consists of two parts a and b, with 
which the spaces e~ and e~ are associated, its Hilbert space eH is the tensor 
product eH = e~ ® e~. A base {Ika )} of the space e~ and a base {Ilb)} of e~ 
generate the base {Ikalb)} of eH labelled by the combination of the quantum 
numbers ka of system a with the quantum numbers lb of system b. The same 
procedure can be extended to the case where a and b denote independent 
degrees of freedom. For instance, the Hilbert space of a particle moving in 
the x, y-plane can be constructed as the direct product of the Hilbert spaces 
associated, respectively, with the x- and the y-dimensions. For an electron, eH 
is the direct product of the space of the wavefunctions -,p(r) == (rl-,p) and the 
two-dimensional space associated with the spin. More generally, the systems 
we have to deal with in quantum statistical mechanics will usually have a 
very large number of degrees of freedom; it will be convenient to choose as a 



52 2. Probabilistic Description of Systems 

base spanning their Hilbert space the tensor product of the bases associated 
with each of the degrees of freedom. For instance, in Chap.1 we used the base 
l(Tl, ... ,(TN) associated with N spin-~ particles. 

The direct sum fH = f~ EB f~ of two spaces f~ and f~ is the set of linear 
combinations of the kets of f~ and f~. The union of the base vectors of f~ 
and f~ forms the base of f H . For instance, the Hilbert space of a particle 
moving in three dimensions is the direct sum of its subspaces, chacterized 
by the values 1 = 0, 1 = 1, 1 = 2, ... of the angular momentum. In Chaps.4 
and 10 we shall define the Fock space associated with a system consisting of 
an arbitrary number of indistinguishable particles as a direct sum of spaces 
representing N-particle systems (N = 0,1,2, ... ). 

2.1.2 Operators 

Still discussing only purely mathematical questions let us review the prop
erties of operators. An operator X of the Hilbert space fH defines a linear 
transformation XI'if) of the kets. Its action on the bras follows from the as
sociativity of the scalar product: ((<pIX)I'if) = (<pI(XI'if)) == (<pIXI'if). In the 
base {Ik)} an operator is represented by a matrix (kIXlk'); we can write the 
operator in terms of this matrix as the linear combination 

X = L Ik) (kIXik') WI, (2.5) 
kk' 

and the action of X on a ket l'if) is represented by the matrix product 

(kIXI'if) = L (kIXlk') (k'I'if)· (2.6) 
k' 

The operators form an algebra. This algebra has a specific structure which 
is characteristic for the physical system we are stud~ing. y; also has general 
properties, involving (i) linear operations: a sum Xl + X 2 and a product 
cX with a complex number; (ii) a non-commutative product X l X 2 which 
produces commutators [Xb X2 ]; and (iii) the operation of Hermitean con
jugation X ¢:::::} xt such that the bra ('iflxt is the Hermitean conjugate 
of XI'if); this implies (Xl X2)t = XJX{. For a given base {Ik)} the prod
uct is represented by matrix multiplication, and Hermitean conjugation by 
(kIXtlk') = ((kIXlk')) *. The expansion (2.5) shows that the linear structure 

of the set of operators X is isomorphic with that ofthe vector space fH ® f M. 
Indeed, the dyadics Ik) (k'i are operators which form a base for the opera
tor space and the coordinates of X in that base are, according to (2.5), the 
matrix elements (kIXlk'). 

One can choose other bases in the fH 181 fM space such that any operator X 
can be expressed as a linear combination of the operators of the base considered. 
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This defines the Liouville representations which are more general than the rep
resentations in the Hilbert space and which are often useful.! For instance, for a 
spin- ~, instead of representing the operators as 2 x 2 matrices, it can be of interest 
to represent them as linear combinations of the Pauli matrices and the identity 
(Exerc.2a). 

Similarly, for a one-dimensional particle one can write any operator X in the 
form 

X = J dxdp Xw(x,p) D(x,p), (2.7) 

as a linear combination of the operators D(x,p) defined by 

(2.8) 

It is important to make a clear distinction between the position and momentum 
operators X, p and the variables X,p which are a pair of continuous indices char
acterizing each operator (2.8). The set of operators D(x,p) form a base spanning 
operator space. Their use rests upon the identity 

which follows from the commutation relation [x,pj = in.. For instance, this can be 
used to prove that (2.7) can be inverted to give 

Xw = 2n1iTrD(x,p)X, (2.9) 

a relation enabling us to express any operator X as (2.7) in the base D(x,p). The 
equations (2.7), (2.9) define the~Wigner representation, a special case of a Liouville 
representation. Each operator X is then represented not by a matrix as in Hilbert 
space, but by a function Xw(x,p) of commuting variables which play the role of 
coordinates in a classical phase space. The Wigner representation is particularly 
simple for operators of the form f(x) + g(p) or exp(iax + i/fP), the transforms (2.9) 
of which are, respectively, f(x) + g(p) and exp(iax + ifJp). The Wigner transform 
of the operator D(x',p') itself is, according to (2.7), just 8(x - x')8(p - p'). This 
enables us to interpret D(x', p') as an observable which probes, within the limits 
allowed by the Heisenberg relations, whether the particle is at the point x',p' of 
phase space. The occurrence of ordinary variables x and p, even when n. =1= 0, thus 
introduces a classical structure in the bosom of quantum mechanics. Hence, the 
Wigner representation is a convenient way to study the classical limit of quantum 
mechanics (§2.3.4), in which case [x,p] --+ 0 and D(x,p) --+ 8(x - x)8(p - p), 
and to calculate the lowest-order quantum corrections, for instance, for gases at 
low temperatures. To do this we note that the algebraic relations in the Wigner 
representation are summarized by the identity 

! N.L. Balasz and B.K. Jennings, Phys.Repts 104, 347 (1984); M. Hillery, R.F. 
O'Connell, M.O. Scully, and E.P. Wigner, Phys.Repts 106, 121 (1984); R. Balian, 
Y. Alhassid, and H. Reinhardt, Phys.Repts 131, 1 (1986). 
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.f.?(x,p) .f.?(x',p') = _1_ J dad{3 .f.? (x + x' + {3h p + p' - a1i) 
4w2 2 ' 2 

x e ia (x-x')+ij3(p-pl) (2.10) 

for the operators of the .f.? base. This relation implies (see Eq.(2.80) below) that 
the Wigner representations of a product XY or of a function f(X) are different 
from Xw(x,p)Yw(x,p) or from f(Xw) when 1i oF 0, but not when h = o. In the 
classical limit, the Wigner transforms X w of quantum observables thus become 
identical with the classical observables which are simply functions of x and p. 

For a composite system the tensor product of two ol!..erators, Xa operating 
in the sp~e t'i associated with the system a, and Yb acting in t'~, is an 
operator Xa ® Yb acting in t'H, represented by the matrix 

(2.11) 

In particular, the operator Xa in t'ij acting on the system a can also be 
regarded as an operator acting on the system a+b; this extension is effected 
by identifying the operator Xa of t'H with the tensor product Xa ® Ib where 
Ib is the identity operator in t'~, that is, by writing 

(2.12) 

Unitary operators U are those which conserve the scalar products, (rpl'I/J) = 
((rpIUt)(UI'I/J)). They thus satisfy the relations UUt = UtU = 1. By a uni
tary transformation an orthonormal base {Ik)} becomes another orthonormal 
base {U!k)}. The algebra of the X operators also remains invariant under a 
unitary transformation, X ===} utXU. For a given X such a transformation 
leaves the determinant of the matrix X - >'1 unchanged, that is, it leaves the 
eigenvalues of X invariant. 
~ He.r.mitean or self-adjoint operators A are those satis~ing the relation 
A = At. The matrix representing a Hermitean operator A in a given base 
{Ik)} can be diagonalized by a unitary transformation; in other words, 
there exists a base {Ulk)} such that the matrix representing A is diago
nal. This base constitutes a set of eigenvectors of A, defined by the equation 
A!'l/Ja) = aa!'l/Ja); the associated eigenvalues aa are real. Hermitean operators 
which commute with one another can be diagonalized by a single unitary 
transformation. 

A positive operator is a Hermitean operator, all eigenvalues of which 
are "positive, or, equivalently, an operator the diagonal elements of which, 
(rp!X!rp), are real and positive in any base. For a non-negative operator, such 
as A2 , the eigenvalues and the diagonal elements are positive or zero. 

If f(x) is an entire function, the operator function f(X) of the opera
tor X is defined by its series expansion. For instance, the operator exp(X) 

or eX is positive when X is Hermitean and unitary when iX is Hermitean. 
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Alternatively, one can define the operator f(X) through diagonalization when 
X is Hermitean: f(X) and X have the same eigenvectors I'¢a) and the eigen
value of f(X) corresponding to the eigenvalue aa of X is equal to f(aa). 
This definition can be extended to arbitrary functions f(x) of a real variable. 
It enables us to define the logarithm, In X, of a positive operator X, or its 
inverse, X -1. Similarly, the projection Pa onto the eigenvalue aa (or onto 
several eigenvalues) of X is of the form f(X), where f(x) equals 1 for x = aa 
(or for the selected set of eigenvalues) and vanishes for the other eigenvalues; 
this definition holds even when the eigenvalue aa is degenerate, in which 
case the dimension of Pa is the multiplicity of aa. One can decompose the 
operator X in its eigenprojections, 

(2.13) 

Finally, the trace of an operator is defined by 

Tr X = L (kIXlk), (2.14) 
k 

which is independent of the base {Ik)}. In what follows we shall need some 
of its properties. The trace of a dyadic is equal to 

Tr I'¢) (cpl = (cpl,¢)· (2.15) , 

The trace of a projection is equal to the dimensionality of the space it spans. 
A trace is invariant under a cyclic permutation: 

Tr XY = Tr Y X = L (kIXlk') (k'IYlk). (2.16) 
kk' 

The complex conjugate of a trace satisfies the relation 

(2.17) 

In a space £H = £ij ® £~ the trace can be factorized as 

Tr = Tra Trb, 

where TrbX is an operator in £ij defined by 

(kalTrb Xlk~) = L (kalbIXlk~lb) (2.18) 
lb 

in a tensor product base. If we change the operator X infinitesimally by 8X, 
the trace of an operator function f(X) can be differentiated as if X and 8X 
commuted: 

8 Tr f(X) = Tr 8X !'(X). (2.19) 
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The equation 

Tr X 8.4 = 0, (2.20) 

implies that X = o. 

2.1.3 Observables 

Having surveyed the mathematical formalism we shall now recapitulate the 
general principles of quantum mechanics. 

One can associate with any physical quantity A an observable .4 which 
is a Hermitean operator in the Hilbert space EH of the system considered. 
When this system interacts with an apparatus which can either prepare it 
or carry out measurements on it, the only possible values for the quanti1;y 
A, controlled by this apparatus, are the eigenvalues an of the observable A. 
This postulate is the principle of quantization. 

One associates with the physical quantity f(A) the observable f(.4), 
which is a function of the operator A. Consider now a quantity P, taking 
the value 1, if a particular proposition is true, and the value 0, if it is false. 
It satisfies the identity p 2 = P, and is thus represented by an observable P 
satisfying the relation p2 = P which characterizes projections. A proposition 
or a "true or false" experiment is thus associated with a projection opera
tor. In particular, the proposition A < .\ is represented by the projection 
B('\ - .4) onto the eigenvalues an < .\. We shall denote by B the Heaviside 
step function, B(x) = 1 when x> 0, B(x) = 0 when x < o. 

If two observables commute, they are compatible in the sense that they 
can be controlled simultaneously in a preparation or measurement process. 
A complete set of commuting observables is characterized by the following 
property. Any set of eigenvalues of these observables defines a single common 
eigenket - apart from a multiplying phase factor. 

Not every Hermitean operator in Hilbert space necessarily represents a phys
ical observable. On the practical level it is certainly not true that every quantity 
can, in fact, be controlled. This is especially true for the large systems studied in 
statistical mechanics where the number of accessible quantities is small. Moreover, 
even as a matter of principle, there are - microscopic - systems for which some 
Hermitean operators do not make sense as observables. For instance, in the case 
of a system of two indistinguishable particles 1 and 2, any physical observable is 
necessarily symmetric under an exchange of 1 and 2, even if it is mathematically 
legitimate to deal with other operators such as the position of particle 1. In the 
case of a particle of charge q in an electromagnetic field the position r is a physical 
observable, but the momentum p is not an observable. In fact, the choice of the 
gauge in which the system is described is arbitrary and formal differences occurring 
in the theoretical description when we carry out a gauge transformation are not 
observable. Especially, the momentum p and the vector potential A(r) change un
der such a transformation and are thus just mathematical tools; only the invariant 
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combination p - qA(r) is an observable. A final example is given by the superse
lection rules associated, for instance, with the charge, the baryon number, or the 
parity of the angular momentum. The Hilbert space is then a direct sum of spaces 
£A ffi £~ ffi ... such that the operators which have matrix elements across two of 
them are not observables. In particular, all physical observables commute with the 
charge, a quantum number distinguishing the subspaces £A, £~, .... Under those 
conditions the superposition principle does not hold since one cannot prepare any 
state vector which would be a linear combination of kets associated with different 
charge values. 

2.1.4 Pure States, Preparations and Measurements 

Most elementary courses assume that the state of a system is at all times 
represented by a ket I'lj!), normalized according to ('lj!I'lj!) = 1. In fact, kets 
represent only a special class of states which we shall denote by the names 
pure states or micro-states, in order to distinguish them from the more gen
eral states introduced in § 2.2.1. Identifying the pure states with the vectors 
in a Hilbert space constitutes the superposition principle, according to which 
each normalized linear combination of pure states is again a pure state. 

A preparation of a system is a process that produces it in a certain state 
thanks to the control of an observable A, or of several commuting observables, 
associated with the preparation apparatus. This control is generally carried 
out through filtering of an eigenvalue ao: of A, with all other eigenstates 
eliminated. The pure states are those which result from complete preparations 
where one controls a complete set of commuting observables. In that case 
the ket I'lj!), produced by the preparation, is the common eigenvector of those 
observables, which is defined by the chosen set of eigenvalues. 

A measurement aims to determine the value of the quantity A in a state, 
prepared beforehand. One is always dealing with a statistical process, the 
probabilistic nature of which is implied by quantum mechanics. Even if the 
preparation is complete and one knows that the system is in the micro-state 
I'lj!) just before the measurement, the outcome of the latter is not certain. In 
fact, a ket does not describe the properties of one single system, but of a 
statistical ensemble of systems prepared under the same conditions. Knowing 
I'lj!) then determines not an exact value of the quantity A, but its expectation 
value given by 

(2.21) 

This is a basic expression in the formalism of the kets, since together with 
the equation of motion it makes it possible to make predictions about any 
physical quantity A for a system in the state I'lj!). 

The general expression (2.21) implies the existence of statistical fluctuations of 
a quantum origin. They are, in fact, given by the variance of A, 
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which vanishes only when 1'1/1) is an eigenket of A, with the eigenvalue (A). In 
particular, if two observables A and B do not commute, and [A, B] = ie, we have 
Heisenberg's uncertainty inequality 

Moreover, expression (2.21) implies the quantization laws. Indeed, the expecta
tion value of any function I(A) equals 

(t(A)) = ('I/II/(A) 1'1/1) , 

and knowing it for any I is equivalent to knowing the probability distribution of 
A. In particular, if we choose for I(x) a function which vanishes for all eigenvalues 
x = aa:, the expectation value of I(A) vanishes. This implies that the probability 
distribution of A vanishes outside the points aa: of the spectrum; hence only the 
values aa: can be obtained in a measurement. 

Finally, the probability P(aa:) that the measurement provides one or other of 
the possible values aa: also appears as a consequence of (2.21). In fact, the projection 
Pa: onto the eigenvalue aa: is an observable which takes the value 1, if one finds the 
value aa:, and the value 0 otherwise. Its expectation value, 

(2.22) 

can thus be identified with the probability for finding aa:. This expresses the spectral 
decomposition law. Conversely, (2.21) follows from (2.13) and (2.22). 

Immediately following a measurement the system is no longer in the same state 
as before. Some measurements, such as the detection of a particle, may even destroy 
the system; at the other extreme, ideal measurements perturb it as little as possible 
(§ 2.2.5). However, since finding aa: is a probabilistic phenomenon, even an ideal 
measurement process produces, in general, a change in the state of the system 
which cannot be foreseen a priori. The wavepacket reduction law states that, if one 
has observed the eigenvalue aa: in an ideal measurement of A and if the system 
was in a pure state 1'1/1) before its interaction with the measuring apparatus, it will 
afterwards be in the pure state 

(2.23) 

This property enables one to use an ideal measuring process with filtering as a 
preparation. 

2.1.5 Evolution, Transformations, Invariances 

When the evolution of a system is known on the microscopic scale, it is 
generated by the Hamiltonian ii, which is a Hermitean operator. The change 
with time of a micro-state I'¢) of this system is governed by the Schrodinger 
equation 

ili :t I,¢(t)) ii I,¢(t)). (2.24) 
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Formally, we can integrate this equation to obtain 

I,¢(t)) = U(t) I'¢(O)), (2.25) 

where I,¢(O)) is the micro-state prepared at the initial time t = 0, and where 
U(t) is the unitary evolution operator, defined by the equations 

.~ dU = iiu~ 
l,~ dt ' U(O) = f. 

If ii does not explicitly depend on the time, U(t) is given by 

(2.26) 

(2.27) 

The Hamiltonian of an isolated system is, in general, independent of the 
time. Nevertheless, we shall have to consider systems in interaction with 
sources exerting known external forces which may depend on the time. For 
instance, this is the case when we have a fluid in a cylinder, compressed 
by a moving piston, or a substance in an oscillating electromagnetic field. 
The evolution of the system itself remains governed by (2.24), but with a 
Hamiltonian which depends on the time through parameters controlled from 
the outside. 

The evolution (2.24) of a micro-state implies that the expectation value 
(2.21) of an observable A, in general, changes with time. In order to find this 
evolution we need the conjugate of Eq.(2.24), that is, 

-in ! (,¢(t)1 = (,¢(t)1 ii, (2.28) 

and we find 

in ! (,¢(t)IAI,¢(t)) ('¢(t)I(Aii - iiA)I,¢(t)) + ('¢(t)1 ~~I,¢(t)). 
The last term, which is quite often absent, takes the possible explicit time
dependence of the observable A into account. From this equation we find the 
Ehrenfest theorem 

d / 1 ~ ~) /8A) 
dt (A) = \ in [A,H] + \ at (2.29) 

which relates the change in time of the·expectation value of a physical quan
tity to the expectation value of its commutator with the Hamiltonian. 

To describe the evolution of a system we have used so far the Schrodinger 
picture. As any measurable quantity involves both a state and an observable in 
the combination (2.21), it amounts to the same whether we change I'¢') into UI'¢'), 
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keeping A unchanged, or change, with time, the observables A into UtAU, leav
ing l"p) unchanged. In the Heisenberg picture, defined in this way, l"p) represents 
the state at all times, the evolution is reflected through the Heisenberg equation 
ihdA/dt = [A,H] for the change in the observables, and (2.29) follows directly. 

The evolution is a special case of a transformation of the state vector of a 
system; it corresponds to displacements with time. More generally, the laws 
of quantum mechanics must specify how the observables and the states of a 
system transform under physical operations such as translations, rotations, 
dilatations, parity changes, and so on. Actually, we have defined a ket of £H 
as representing a state, not in an absolute sense, but in some given frame of 
reference. A so-called passive transformation is thus induced by changing the 
reference frame - or the units of measurement, the sign convention for the 
charges, and so on. The spaces £ H associated with the two frames of reference 
are isomorphic; they can be identified, and the transformation is described as 
a mapping from the ket l"p) in the first frame to the ket l"p') representing the 
same state of the system in the second frame. Usually, this mapping is linear 
and unitary, l"p') = fjl"p). The observables attached to the reference frame, 
such as the position with respect to the origin, remain unchanged, whereas 
the absolute observables transform according to A' = fj Afjt. The unitarity 
of fj implies that any algebraic relation connecting observables remains un
changed. For instance, a parity transformation or reflection in space changes 
the signs of rand p, but the relation [r, p] = in does not change. Transfor
mations can alternatively be considered as being active, that is, applied to 
the system itself, while the reference frame remains unchanged. 

Systematically taking advantage of symmetries or invariances under 
transformations is, together with the use of statistical methods, an efficient 
way to study complex systems. We shall see in Chap.14 how non-equilibrium 
thermodynamics uses it to reach non-trivial results. Let us here already men
tion conservation laws, which follow from a symmetry or invariance principle 
and on which the idea of thermodynamic equilibrium relies (ChapsA and 5). 
For instance, thermodynamics stresses conservation of energy. This is asso
ciated with the invariance of the theory under translations in time; indeed, 
the evolution (2.24) is in this case produced by a time-independent Hamil
tonian ii, and Ehrenfest's equation (2.29) then implies that d(ii)/dt = O. 
We find similarly a conservation law corresponding to each invariance. In 
the simplest cases, invariance under a time-independent transformation fj is 
reflected by the invariance ii = fj iifjt of the Hamiltonian. It follows that 
[fj, ii] = 0 and hence, if we use (2.29), that the expectation value of any 
function f(fj) remains constant with time. For instance, conservation of the 
number of particles it is associated with the invariance of the theory under 

the transformations fj = eiAN which change the relative phases of the kets 
describing systems with different numbers of particles. In the case of Galilean 
invariance, the argument is changed, as fj = exp[i(v· {Pt - RM})/n] de-
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pends on the time; P is the total momentum, M the total mass, and it 
the position of the centre of mass. Here we have [U, Hl + indU / dt = 0, and 
the conserved quantity is (Pt - itM). 

When the transformations U form a continuum which includes the iden
tity f, they can be produced as a succession of infinitesimal transforma
tions represented by a Hermitean generator. The Hamiltonian appears in 
this way as the generator of the evolution operator (2.26). Similarly, an in
finitesimal spatial translation displacing the reference frame by 6r transforms 
in the r-representation the wavefunction 1jJ(r) into U1jJ(r) = 1jJ(r + 6r) = 
1jJ(r) + (6r . V'1jJ(r)). It is thus represented by the translation operator 

U = f + k (P . 6r) so that the total momentum P is the generator of trans
lations. The invariance under translation, [P, Hl = 0, is then equivalent to 
the conservation of the momentum (P). The rotation operators similarly are 
generated by the angular momentum operators and invariance under rotation 
is equivalent to conservation of angular momentum. 

When a system of identical particles is described by labeling its particles, 
a permutation of their indices is a transformation with which a symmetry 
law is associated. In fact, not only H, but all physical observables must 
commute with this permutation; this just expresses the indistinguishability 
of the particles in all experiments (§ 10.1.1). The Pauli principle (§ 10.1.2) 
postulates that, depending on the nature of the particles, the Hilbert space 
£H contains only kets which are either symmetric or antisymmetric under 
the exchange of the indices of two indistinguishable particles, that is, they 
remain unchanged or change their sign. In Chaps.l0 to 13 we shall review 
many important consequences of the Pauli principle in statistical mechanics. 
Bose-Einstein statistics must be used for indistinguishable particles with 
integer spin, bosons, for which the kets are symmetric, and Fermi statistics 
for indistinguishable particles with half-odd-integral spin, fermions, for which 
the kets are antisymmetric. 

For completeness let us mention here another category of transformations which 
are represented by antilinear and unitary operators. The prototype is time reversal; 
from a passive point of view it describes a change in the convention of the sign of t 
with respect to the initial time. This transformation amounts to changing the signs 
of the momentum and spin observables without changing the position cbservables; 
these operations must be accompanied by changing i into -i as well as inverting 
the magnetic fields. Such an anti-unitary transformation associates cilw~) +ciIWz) 
with cllwl) + c2Iw2), if Iw/) is associated with Iw); it preserves the commutation 
relations and the algebra of the observables. One can show that, conversely, the only 
transformations of observables which leave their algebra and their traces unchanged 
are the unitary and anti-unitary transformations. 
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2.1.6 Shortcomings of the State Vector Concept 

For various reasons the representation of states by kets is not completely 
satisfactory. This representation is not unique, since a state vector is only 
defined within an arbitrary phase vector, which drops out of (2.21). This 
phase has no more physical meaning than the choice of gauge in electromag
netism. Note, however, that the relative phase oftwo kets is important when 
we superpose them. 

The ket formalism is inadequate when we want to represent the state of a 
subsystem. Consider an ideal preparation of a composite system a+b, which 
leaves it in a pure state, 

I'I/J) == L Ikalb) (kalbl'I/J), (2.30) 
k,l 

of the £H = £fI ® £~ space. Using (2.12) we can construct the set of expecta
tion values ('l/JIAa ® Ibl'I/J) of the observables Aa pertaining to the subsystem 
a. If there existed, for the subsystem a, some state vector I'l/Ja) of £fI describ
ing the same physics as I'I/J) for the measurements carried out on a, it would 
have to satisfy the relations 

However, there is, in general, no ket I'l/Ja) satisfying these conditions, as Ex
ercs.2a and 3b show. It is thus impossible to describe the state of a part of a 
quantum system in the formalism of kets. Two systems which have interacted 
in the past and thus have become correlated cannot separately be represented 
by kets: the state vector language does not allow us to isolate a system from 
the rest of the Universe. 

In particular, the theory of measurement in quantum mechanics implies 
that one treats the object of the experiment together with the measuring 
apparatus during their interaction as a single system; afterwards one sepa
rates them in order to talk about the state of the object. This separation is 
precluded by the representation of states by kets. 

Moreover, the ket formalism is not suited to retrieve classical mechanics in 
the 1i --+ 0 limit, starting from quantum mechanics. In general, wavefunctions 
do not have a classical limit: a finite momentum gives rise to oscillations with 
an infinite wavenumber. 

Finally, it is necessary to change the formalism to treat circumstances 
where an ordinary random feature occurs which must be added to the in
trinsic random nature of quantum mechanics. This occurs for incompletely 
prepared systems like unpolarized or partly polarized spins. Such a situation 
is the rule in statistical physics, since for macroscopic systems one controls 
only a few observables, far fewer than those of a complete set of commuting 
observables. A random evolution where ii is badly known can also not be 



2.2 Quantum Systems: Density Operators 63 

described in the ket language. Section 2.2 will deal with all these require
ments, both for microscopic systems and for the macroscopic systems which 
we want to study. 

It was the impossibility to describe a subsystem by a state vector - one of the 
difficulties ofthe state vector formalism - which led Landau in 1927 to introduce the 
density operator concept. On the other hand, von Neumann was led to this both in 
order to apply quantum mechanics to macroscopic systems and in order to construct 
a theory of measurement. He also noted the ambiguity of the representation (2.33). 

2.2 Quantum Systems: Density Operators 

2.2.1 Pure States and Statistical Mixtures 

We shall in the present section construct a new formalism of quantum me
chanics by enlarging the concept of a state. We have just seen that the kets 
represent states which are known as well as is allowed by quantum mechanics. 
Depending on the context we call them pure states when we want to stress 
that their preparation was ideal, or micro-states when we use them as the 
building blocks for constructing a macro-state. 

In thermodynamics or in statistical physics we want to describe statis
tical ensembles of systems which are defined solely by the specification of 
macroscopic variables. To simplify the language, we shall usually talk about 
"a system" to denote an element of a statistical ensemble of systems, all pre
pared under the same conditions. Such a system is on the microscopic scale 
represented by a macro-state, that is, by a state which is not completely 
known, or ideally prepared. The representative ket is thus not completely 
defined; all we can give is the probability that the system is described by one 
state vector or another. The multiplicity of the possible ket is reflected by 
the terminology" statistical mixture" , an alternative name for a macro-state. 

A macro-state thus appears as the set of possible micro-states I'¢'A) each 
with its own probability qA for its occurrence. The probabilities qA are positive 
and normalized, 

L qA = l. (2.31) 
A 

The various micro-states I'¢'A) are arbitrary kets of £H which are normalized, 
('¢'AI'¢'A) = 1, but not necessarily orthogonal to one another. The values of ,\ 
can be discrete or continuous; in the latter case, the notation ~A ••• must 
be understood to mean J d'\ . .. and qA must be interpreted as a general 
normalized measure in the space £ H. 

Because of the quantum nature of the kets I1PA)' the numbers qA can not truly 
be interpreted as ordinary probabilities. In classical probability theory the various 
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possible events to which one can assign probabilities must be mutually exclusive. 
Here, the various possible micro-states of £H are distinguishable, but not exclusive: 
the overlap l(cplw)1 2 represents the probability that the system be observed in Icp), 
if it had been prepared in Iw). The set of micro-states, obtained in a given ideal 
preparation, forms an orthonormal base of exclusive events, but there exist other 
micro-states which are linear superpositions of these and which can be produced 
by another preparation apparatus. If then the IWA) are not orthonormal, we must 
understand by the weights qA the relative frequencies in a population which mixes 
these various micro-states. Expression (2.34) for the mean value of an observable 
thus combines quantum expectation values with a weighted average. Anyway, we 
shall see that in a statistical mixture the micro-states IWA) hardly have a meaning. 
The concept of a density operator will enable us to get rid of these difficulties by 
introducing a new probability theory imposed by quantum mechanics. 

2.2.2 The Expectation Value of an Observable 

Let us consider a macro-state described by a set of micro-states 11fIA) with 
probabilities qA' This set is represented by a statistical ensemble of systems, 
all prepared under similar conditions. In this ensemble a fraction qA is in the 
ket 11fIA)' For them the expectation value (A) of a physical quantity A equals 

(1fIAIAI1fIA) by virtue of (2.21). For the whole population represented by our 
macro-state we have thus for the expectation value of A: 

(A) = L qA (1fIAIAI1fIA)' (2.32) 
A 

In order to evaluate (2.32) we note that, taking (2.15) into account, (2.32) 
is the trace of the operator 

Let us now associate with the macro-state considered, which so far was char
acterized by the possible micro-states IWA) and their probabilities qA, the 
density operator 

D = L 11fIA) qA (1fIAI· (2.33) 
A 

We can then rewrite Eq.(2.32) in the form 

(2.34) 

We are thus led to represent the macro-state by the density operator D 
or, in a given base {Ik)}, by the density matrix (kIDlk'). The results (2.34) 

of any possible measurements at a given instant will only involve D. All in
formation about the macro-state of the system is contained in the density 
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operator jj. This density operator, which represents the macro-state, com
bines in a compact form its probabilistic nature due to quantum mechanics, 
and connected with the l"p.x), with that coming from our incomplete knowl
edge of the micro-state, and included through the q.x. 

Several seemingly different descriptions or preparations of statistical mixtures 
can lead to the same density operator. Consider, for instance, a spin-~ with a 
probability ~ of being oriented in the +z-direction and the same probability of 
being oriented in the -z-direction. Its density operator is (Exerc.2a) 

D = ~ [1+)(+1 + 1-)(-1] = fl. (2.35) 

One finds the same operator if the spin is oriented along the +x- or the -x
directions with probabilities ~, since 

1 [ 1 1 - -(1+) + 1-))((+1 + (-1)-2J2 J2 

+-(1+) -1-))((+1- (-1)-1 1 ] 
J2 J2 

(2.35') 

One finds also the same operator if the probability that the spin is prepared to lie 
within a solid angle d2w around the direction w is equal to d2w/47r. In fact, let us 
denote by Iw) the ket representing a spin oriented in the direction w; apart from 
a phase, it can be obtained from 1+) through a rotation which brings the z-axis 
along w. (We are dealing with the case where oX = w is a continuously changing 
variable and where the I'l/I.x) = Iw) are not orthogonal onto one another.) One can 
by a direct calculation check that 

(2.35") 

more simply, one can note that the operator (2.35") is invariant under a rotation 
and has unit trace and that, apart from a multiplicative factor, I is the only rota
tionally invariant operator. In a Stern-Gerlach type experiment, one may imagine 
that before any preparation the spin, oriented completely at random, is described 
by the probability (2.35"), which is clearly isotropic. However, if we combine the 
two emerging beams without filtering them, it looks as if the state of the spin is 
described either by (2.35) or by (2.35'), depending on the orientation of the ap
paratus. In actual fact, however, in contrast to what one expects intuitively, all 
these various situations are completely indistinguishable. The equivalent descrip
tions (2.35), (2.35'), and (2.35") all represent the same macro-state, that of an 
unpolarized spin. 

Let us, more generally, consider two equivalent macro-states, {I"p.x), q.x} 
and {I"p~), q~}, such that 
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According to (2.34), no experiment can enable us to distinguish between them. 
The two descriptions {I'l/J,x) , q.>J and {I'l/J~), q~} thus correspond to the same 
physical reality just as two kets which differ by a phase factor describe one 
and the same pure state. The existence of apparently different descriptions 
of the same statistical ensemble of systems indicates that the state vector 
formalism becomes inadequate, as soon as the ket of the ensemble is not 
uniquely defined. Such a description cannot be given a physical interpre
tation, and the only meaningful representation of macro-states is given by 
density operators. 

The density operator formalism includes pure states as special cases. A 
pure state, represented in the formalism of § 2.1.4 by the ket vector I'l/J) in the 
Hilbert space tH, is now represented by an operator in that space, namely, 
the density operator 

jj = I'l/J) ('l/JI, (2.36) 

which, moreover, reduces to the projection onto I'l/J). Note that the description 
of a micro-state by the density operator I'l/J) ('l/JI rather than by the ket I'l/J) 
has the advantage of eliminating the arbitrary phase which is inherent to the 
ket formalism. 

Finally, we see that the example of Chap. 1 falls into the new formalism. 
The density operator representing the macro-state defined in § 1.1.3 can, in 
fact, be written as 

(2.37) 

where the sum is over (T1 = ±1, ... , (TN = ±1. In Chap.1 we restricted 
ourselves (see the remark at the end of § 1.1.3) to special density operators 
and observables that were diagonal in the I (T1, ... , (TN) representation, in 
which case (2.34) reduces to (1.3). In fact, this restriction was not crucial for 
the study of thermal equilibrium: as we shall see, the thermal equilibrium 
macro-state is always represented by a density operator which is diagonal in 
a representation where the Hamiltonian is diagonal. 

2.2.3 Characteristic Properties of Density Operators 

In the foregoing we have introduced the density operator D representing a 
macro-state by means of (2.33). This expression has the following properties: 

(a) Dis Hermitean: jj = Dt. This follows from the fact that the q,x are real. 
By using (2.34), (2.17), and (2.16), we see that this property means that 
the expectation value of any observable is real. 

(b) jj has unit trace: Tr D = 1. This follows from the definition (2.33), 
the normalization of the micro-states I'l/J,x), and the normalization (2.31) 
of the q,x. This property means that the expectation value of the unit 
operator f is equal to 1. 
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(c) D is non-negative: (rpIDlrp) ~ 0, V Irp) E CH. This follows from the 
fact that the q>.. are positive, as it follows from (2.33) that we have 
(rpIDlrp) = 2:>.. q>.. I (rpl'¢'>..)12· This property means that the expectation 
value (2.34) of any positive operator is positive, or, if we bear in mind 
that the variance (A2) - (A)2 of A is the expectation value of (A - (A))2, 
that every variance is positive. 

Conversely, consider an operator D which satisfies these properties. The 
Hermiticity of D means that we can write it as a function of its orthonor
malized eigenvectors 1m) and its real eigenvalues: 

(2.38) 

From (b) and (c) it follows that the numbers Pm are positive or zero, and that 
their sum equals 1. We can thus regard them as probabilities for the micro
states 1m) so that (2.38) is a realization of (2.33) and jj is, indeed, a density 
operator. Note that in the diagonal representation (2.38) of D the micro
states 1m) are orthonormal, whereas in (2.33) the I'¢'>..) were not necessarily 
orthogonal onto one another. 

The representation (2.38) of the density operator in terms of an orthonor
mal base {1m)} plays a special role amongst the various possible equivalent 
representations (2.33). Its arbitrariness is smaller, being reduced to unitary 
transformations in each of the subspaces for which the eigenvalues Pm are 
equal, as in the case of (2.35) and (2.35'). It is more convenient for practical 
purposes since the density matrix is diagonal if one chooses {1m)} for the 
representation base, as we did implicitly in Chap.I. We shall use it whenever 
we need the explicit form of D. 

Finally, the physical interpretation of (2.38) is simpler than that of (2.33). In 
fact, imagine an ideal preparation process in which the eigenkets of the controlled 
observable are the 1m). We can then regard jj as the density operator of an ensemble 
of systems which have interacted with the apparatus without filtering of the results; 
the fraction of systems for which we have found the result m is Pm. We can then 
interpret the Pm as probabilities for exclusive events, and the 1m) as pure states 
which can be obtained by a preparation of the system. In the general case (2.33) 
the non-orthogonal kets 11P>..) are associated with distinguishable, but not exclusive, 
events - such as the polarization of a spin in arbitrary directions; they cannot be 
prepared by a single apparatus, but the q>.. can again be interpreted as the fraction 
of systems prepared to be in the micro-state 11P>..). 

Even though the density operators and the observables have in com
mon the property of being Hermitean operators in the Hilbert space CH 
- forgetting about difficulties connected with the infinite dimensionality of 
this Hilbert space - one should note that they play a completely different 
role, not only in their physical meaning, but also in a mathematical sense: 
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jj defines a quantum macro-state as a mapping (2.34) of the observables onto 
their expectation values (end of § 2.2.7). Quantum statistical mechanics thus 
introduces a new kind of probability calculus where random variables are re
placed by non-commuting objects, the observables, and where the probability 
distribution is replaced by the density operator. 

Let us finally note that amongst the various possible density operators, 
satisfying the properties (a), (b), and (c), those which represent a pure state 
are characterized by the fact that one of their eigenvalues equals 1, while all 
others vanish. This special feature is reflected, for instance, by the relation 
jj2 = D; in this case D is a projection. 

2.2.4 The Density Operator of a Subsystem 

Statistical mechanics often uses the concept of a subsystem, by taking out 
of a composite system one of its parts which is described independently of 
the remainder. For instance, one might be interested in the study of systems 
in thermal contact with a heat bath or in volume elements of an extensive 
substance. Under such circumstances and in other cases which we shall men
tion at the end of the present subsection, it is necessary, starting from the 
state of the composite system a+b, to eliminate the subsystem b in order to 
focus on the state of the system a in which we are interested. Let us therefore 
assume that the Hilbert space CH is the tensor product (§§ 2.1.1 and 2.1.2) 
of two spaces c~ and c~ spanned by the bases {Ika)} and {Ilb)}. A macro
state of the system is characterized by its density matrix (kalbIDlk~l~) in CH. 
Amongst the various observables X, those Xa that describe measurements 
relating to the subsystem a are described in CH by matrices such as (2.12) 
which represent Xa 18) lb. Their expectation values, 

L <kalbIDlk~l~) <k~l~IXa 18) lblkalb) 
ka ,k~ ,lb ,l~ 

= L <kalbljjlk~lb) <k~IXalka), 
ka,k~,lb 

involve only the matrix in c~ 

<kaIDalk~) = L <kalbIDlk~lb)' 
lb 

or, in a form independent of the base, only the operator 

(2.39) 

defined through (2.18) in the partial Hilbert space c~. This Da operator 
is Hermitean, has unit trace, and is non-negative. One can thus define the 
density operator Da of the subsystem a, starting from the density operator D 
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of the global system a+b. The expectation value of any operator Aa relating 
to this subsystem is, in fact, found from the equation 

(2.40) 

without going beyond the subspace Efl. For the set of measurements that 
only involve the subsystem a, one does not need to know the whole D: the 
partial density operator Da suffices to characterize all the properties of this 
subsystem. 

As an example consider two spins- ~, a and b, coupled into a singlet state with 
zero angular momentum: 

1 
I~) = .;2(1+-)-1-+)). 

The density operator D of a+b is given by (2.36) so that the density operator of 
the spin a following from (2.39) is 

Da = ~ ( 1+)(+1 + 1-)(-1 ). (2.41 ) 

It describes an unpolarized spin. Similarly, the spin b is in an unpolarized state. 
Note that the operator D is not equal to the tensor product Da®Db; it represents 
not only the individual states of the two spins a and b, described by Da and Db, 
but also their correlations. It is important to note that (2.41) does not have the 
form (2.36) so that the state of the system a cannot be represented by a ket, even 
though a+b are represented in that way. 

More generally, in agreement with the remarks in § 2.1.6, it is impossible to 
describe the state of part of a quantum system, remaining in the framework 
of pure states. Considering subsystems forces us to introduce the density 
operator concept (Exercs.2a and 3b): even if a system is in a pure state, its 
subsystems are, in general, statistical mixtures. A complete preparation for 
a composite quantum system is not complete for its subsystems, in contrast 
to what happens in classical physics. 

Let us finally note that with our definitions, the subsystems of a given sys
tem are not necessarily separated in space. One may be dealing with different 
degrees of freedom chosen to be studied separately for the sake of simplicity. 
For instance, in Chap.1 we studied the spins of the paramagnetic ions of a 
solid. The density operator used, (2.37), represented the state of a subsys
tem of the solid consisting only of the spin degrees of freedom. The density 
operator of the solid would act in a much larger Hilbert space and would 
involve all the degrees of freedom of this solid, such as the vibrations of the 
atoms around their equilibrium positions. The partial density operator (2.37) 
should be regarded as the result of using the trace (2.39) to eliminate the 
irrelevant degrees of freedom. 

This is a very general observation and we shall often have to consider 
density operators of subsystems. For instance, for a gas, we shall introduce 
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the density operator relating to the degrees of freedom of the centres of mass 
of its molecules, and forget about the internal motions of the molecules; 
on the other hand, we shall also introduce the internal density operator for 
one molecule, which describes the behaviour of its elementary constituents 
relative to the centre of mass. In this way we can study separately one or 
other part of a system. In order that this separation be adequate, the coupling 
between these parts should be weak. Under such conditions exchanges of 
energy and angular momentum between them are similar to heat exchanges. 
Each part behaves like a system put in a heat bath, but in this case the bath 
is superimposed in space upon the system studied. 

2.2.5 Measurements in Quantum Mechanics 

The concept of a density operator and its use for describing the state of 
a subsystem can usefully clarify the theory of measurements in quantum 
mechanics. 2 The analysis of a measurement process assumes that one sepa
rates the system considered, that is, the apparatus plus the object, into two 
subsystems. Neither the apparatus, not the object will, in general, be in a 
pure state after the measurement, and one is led to describe them in terms 
of density operators. 

In order better to understand the postulates for quantum measurements 
(§ 2.1.4) it is useful to make a mental decomposition of the experiment into 
two stages, one during which the apparatus and the object interact and 
then separate, and the other corresponding to the observation of the result. 
Before the first stage, the object and the apparatus are not correlated; the 
density operator of the system is the tensor product of those of the two 
parts. The interaction changes the density operator of the system, creating 
correlations between object and apparatus; this modification is specific of the 
observable that the apparatus is meant to measure. However, a measurement 
has another characteristic: after the interaction the apparatus and the object 
are separated and the only experiments that one eventually carries out refer 
to observables relating to either one or the other. One should thus replace 
the global density operator by the only relevant density operators, those of 
the object and apparatus subsystems. 

Let us remember the postulate (2.22), (2.23) of the wavepacket reduction, which 
we shall justify at the end of the present subsection. If the object is initially in the 
pure state I'I/!,\), an ideal measurement of the observable A forces it to change into 

one or other of the states Pal'l/!,\) [('I/!,\IPal'l/!,\)] -1/2 with the respective probabilities 

P,\(aa) = ('I/!,\IPal'l/!,\). This means that, forgetting about the apparatus, the first 
stage of the measurement before the result is observed replaces the initial pure 
state (2.36) 

2 J.A.Wheeler and W.H.Zurek (Eds.), Quantum Theory and Measurement, Prince
ton University Press, 1983; M.Cini and J.-M.Levy-Leblond (Eds.), Quantum The
ory without Reduction, Hilger - lOP Publishing, 1990. 
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(2.42) 

of the object by the statistical mixture 

(2.43) 

the normalization factor of each possible final micro-state has been compensated 
by its probability P)..(aCt). More generally, if before measurement the system is 
prepared in the state (2.42) with the probability q).., it will have the same probability 
q).. for being in the final state (2.43). Altogether, the interaction of the object with 
the apparatus me?:..suring A and their subsequent separation transform the initial 
density operator D of the object into 

(2.44) 

p a base where A is diagonal this change amounts to truncating the density matrix, 
D, by replacing all the off-diagonal elements which connect two different eigenvalues 
aCt and a{3 by zero, while leaving all diagonal blocks relating to a given eigenvalue 

unchanged. If jj commutes with .:4, it is not changed by the operation (2.44). 
The second stage, the observation of a particular result aCt on the measuring 

apparatus and selection of the state corresponding to a in (2.43) or (2.44), is of the 
same nature as the observation of any random process. The specifically quantum 
stage is not the observation, but rather the separation of the apparatus and the 
object, after the interaction, which changes the density operator of the object into 
(2.44), even if the result of the measurement has not been observed. In a base which 
diagonalizes .:4, the final state selected by the observation of aCt is represented by 
the diagonal block, associated with aCt, in the truncated density matrix (2.44); 
taking the normalization into account we find that this final state is represented 
by the density operator 

PCtDPCt 
Do: = 

Tr jj Po: . 
(2.45) 

In terms of density operators we can finally express the !?ostulate of the 
wavepacket reduction as follows. If an ideal measurement of A carried out on 
a system in the macro-state i5 has given the result aCt, it leaves the system 
in the state (2.45) which has thus been prepared. If there is no observation, 
the macro-state of the system after it has been separated from the measure
ment apparatus is (2.44). Of course, when we talk about the system, we are 
always dealing with a statistical ensemble of systems prepared under similar 
conditions. 

The concept of a state as a mapping (2.34) of observables on their expecta
tion values can, moreover, help us to understand the quantum phenomenon of 
wavepacket reduction, expressed by (2.44) and (2.45), and thus reduce the number 
of quantum-mechanical postulates to a minimum. Let us, first of all, note that the 
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reasoning of § 2.1.4, which showed the quantization of the measurement results, can 
without any difficulties be extended to statistical mixtures by replacing (2.21) by 
(2.34) so that we have now 

(f(A}) = Tr D f(A}. 

Similarly, the probability P(aa} that the measurement gives the result aa is the 
expectation value (2.34) of the projection Pa, which equals 

(2.46) 

replacing (2.22). 
Let us next consider the statistical ensemble of systems initially described by 

D. We want to determine the final state Da that, after we have measured A and 
selected the result aa, we should attribute to our resulting sub ensemble of systems. 
We assume the measurement to be ideal, which implies that repeating it, after 
having observed aa, does not modify the state. Any subsequent measurement of A 
will thus necessarily again give au. This can be expressed by the condition 

(2.47) 

since the expectation value of the projection 1- Pa is the probability that we ob
serve something different from aa. From the identity I -Pa = a -Pa}2, (2.47), and 
the cyclic invariance ofthe trace, it follows that a -Pu}Da(I - Pa } has zero trace. 
This operator must therefore vanish, since it is non-negative. The fact that Da 
itself is non-negative then implies that its off-diagonal matrix elements connecting 
the two subspaces spanned by Pa and 1- Pa are zero. (To prove this we only need 
note that any 2 x 2 diagonal submatrix taken from the matrix representing Da in a 
representation where A is diagonal is non-negative.) As a result, Da contains only 
the diagonal block associated with aa: 

Da = PaDaPa . 

The next stage consists in relating the Da to DA. The population which origi
nally was described by D has been split by the measurement into sub-populations, 
each associated with a particular result au; each sub-population contains a fraction 
of systems P(aa}, given by (2.46). As the Da realize the mapping A => (A) in the 
form (2.34) for the various sub-ensembles, whereas DAis associated with the whole 
ensemble, we get by weighting 

DA = L P(aa}Da . (2.48) 
a 

There remains finally the task to express Da and D A in terms of D. To do 
this we use the fact that commuting observables represent compatible physical 
quantities. Slightly generalizing the principle given in § 2.1.3, we postulate that in 
an ideal measurement the expectation value of any observable which commutes 
with A is the same before and after measuring A. This identity applies to the 
whole population, originally described by D and afterwards by D A. Hence, if B 
is an arbitrary observable, measuring A has no effect on the expectation value of 
PaBPa , which commutes with A. Using (2.48), we thus find 
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-- --Tr DPOlBPOl 

and hence 

As this identity holds for any Hermitean operator ii, it gives us the required ex
pressions (2.45) for DOl and (2.44) for DA. 

Altogether, the wavepacket reduction is simply a consequence of the compatibil
ity of ideal measurements on commuting observables, of their repeatability, of the 
expression (2.34) for the expectation values, which can be regarded as the defini
tion of D, and of the property that the density operators are non-negative, which 
expresses the fact that any variance is non-negative. 

2.2.6 Evolution with Time 

The evolution of the micro-states of an isolated quantum system (or a quan
tum system subject to forces which vary in a well defined manner) is governed 
by the Schrodinger equation (2.24) where the Hamiltonian ii (which may 
possibly depend on the time) is completely known. Each component I'¢>.) of 
a statistical mixture evolves according to the same equation. The probabili
ties q>. are independent of the time, as they simply describe the composition 
of the population of micro-states of which the macro-state is made up. Com
bining (2.33), (2.24), and (2.28) we find that the evolution with time of a 
density operator is governed by 

dD = ~ [ii D] 
dt iii ' 

(2.49) 

called the Liouville-von Neumann equation. 
One can formally solve this equation, using the evolution operator U(t) 

given by (2.26) or (2.27), in terms of the density operator D(O), assumed to 
be known at time t = O. In fact, one can easily check that 

D(t) = U(t) .0(0) U(t)t (2.50) 

is the solution of (2.49). 
The evolution f)f the expectation value of an observable follows from (2.34) 

and (2.49) which yield 

d ~~ 1 ~ ~~ 1 ~~~ 

dt Tr DA = iii Tr [H, D]A = iii Tr D[A, H]. 

We thus find again the Ehrenfest equation (2.29). In particular, the observ
abIes A which commute with ii and which do not contain the time explicitly 
are constants of the motion: their expectation values (A) remain constant 
during the evolution of the system. 
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It is important to note that the Liouville-von Neumann equation (2.49) is writ
ten in the Schrodinger picture, where the states evolve and the observables remain 
fixed, provided they do not depend explicitly on the time. On the other hand, as 
we saw in § 2.1.5, in the Heisenberg picture these observables evolve according to 

dA 1 ~ ~ 
dt = in [A, H], 

which is an equation with the opposite sign of (2.49), while the density operator of 
the system remains unchanged in time during the Hamiltonian evolution. 

Considering statistical mixtures enables us to describe situations where 
the evolution is not well known, that is, situations which cannot be described 
in the conventional framework of quantum mechanics. This was the case 
in Chap.1 where the interactions between the magnetic ions were treated 
as small random perturbations producing transitions between the micro
eigenstates of the Hamiltonian of independent spins. More generally, this is 
the case for the macroscopic systems considered by statistical physics which 
are so complicated that the Hamiltonian always contains small random parts. 
Since the system is assumed to be isolated it evolves according to a law such 
as (2.49), but this evolution is not well known, that is, there exists a class of 
possible Hamiltonians iij each with a probability JLj (j may be a continuous 

index). If we assume that the Hamiltonian is iij , the evolution operator will 

be Uj(t) and, according to (2.50), the density operator at time t will be equal 
to 

where 13(0) is its initial value at time t = O. The expectation value of A at 
time t will then be Tr 13j(t)1. This situation occurs with a probability JLj so 
that the expectation value of A at time t for all possible evolutions, starting 
from time t = 0, is 

(A}t = L JLj Tr 13j(t) A = Tr [ L JLj13j(t) ] A. 
J J 

This equation defines the density operator at time t, which is thus given by 

(2.51) 
j j 

Therefore, we can simply find the density operator resulting from a random 
evolution by taking the average over the various possible evolutions. Here 
again, the ket formalism would be inadequate, as a state which is pure at 
time t = 0 will not remain pure for ever afterwards. 
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2.2.7 Summary: Reformulation of Quantum Mechanics 

Starting from the idea that the state vector of a system is not well known 
when the preparation is not ideal, we have noted that the random nature of 
the predictions has two origins, on the one hand, the quantum nature of each 
of the possible micro-states I,¢A) and, on the other hand, poor knowledge 
of those micro-states which is reflected in the weights qA. These two kinds 
of probabilities merge together into a single object, the density operator D. 
Once we have made this synthesis, however, the distinction between the two 
different kinds of randomness can no longer be disentangled unambiguously. 
Not only is it clear, that the use ofthe I'¢A) kets and their probabilities qA was 
uselessly complicated, but also that these quantities I'¢A) and qA themselves 
hardly had a meaning because the decomposition of D into (2.33) is not 
unique. It is therefore natural to forget our starting point and to reformulate 
the laws of quantum mechanics in terms of the density operator and no longer 
in terms ofthe kets. The main changes concern § 2.1.4 where expression (2.21) 
for the expectation value (A) of A is replaced by (2.34) and the wavepacket 
reduction (2.23) by (2.45). The transformations fJ which acted in § 2.1.5 on 
the kets as fJl'¢) act as fJ DfJt upon the density operators. For the sake of 
convenience we summarize below the principles upon which the remainder 
of this book will be based. Recall that quantum mechanics has a statistical 
nature: when we talk about one system, we are, in fact, dealing with an 
ensemble of systems prepared under similar conditions. 

With each system is associated a Hilbert space CH. The physical quanti
ties A relating to this system have a probabilistic character and are repre
sented by observables A which are Hermitean operators in CH. The states 
of the system are represented by density operators D which are Her
mitean, non-negative, and have unit trace, while the expectation value 
of a quantity A in the state D equals 

(A) = Tr D A. (2.34) 

The states of an isolated system with a known Hamiltonian jj evolve 
according to 

dD 1 ~ ~ 
dt = in [H, D]. (2.49) 

Amongst the consequences of these principles we shall use the concept 
of d;f.nsity operator of the subsystem a of a composite system a+b, described 
byD, 

(2.39) 

the Ehren/est theorem (2.29) which is especially useful to express the con
servation laws, the form (2.45) of a state prepared by an ideal measurement 
and expression (2.51) for a random evolution. 
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Finally, in practice, for most of the applications we shall be dealing with, 
we shall know the base {1m)} which diagonalizes D and the eigenvalues Pm 
of D. In that base (2.34) becomes 

(A) = L Pm (mIAlm) (2.52) 
m 

The expectation value of A can then be calculated as if the micro-states 1m) 
were ordinary probabilistic events with probabilities Pm and as if the quantity 
A were an ordinary random variable (mIAlm). The non-commutability will 
only play an important role when we are dealing with the evolution of a 
system or for problems involving strong interactions when it is impossible to 
diagonalize D. The reason why we have in the present section discussed a 
few quantum subtleties is not so much because we are going to use them, but 
in order to understand better the significance of the concepts introduced. 

Note that for the large systems, in which we are interested, the micro
states 1m) are characterized, as in the example (2.37) of Chap.l, by a large 
number of quantum numbers over which we must sum in order to calculate 
traces such as (2.34) or (2.52). Note also that, depending on which problem 
we are considering, the number N of particles may either be fixed, or occur 
amongst the quantum numbers m characterizing the 1m) micro-states. In the 
first case the trace means a sum over micro-states with fixed N, whereas in 
the second case the trace includes a summation over N (§ 2.3.6). 

The formulation of the principles of quantum mechanics in terms of den
sity operators is useful as much for the physics of microscopic systems as for 
the statistical physics of macroscopic samples. We have seen that it enables 
us to describe states which are incompletely prepared or which are not well 
known, to consider subsystems, and to treat random evolutions; it also helps 
us better to understand the theory of quantum measurements and prepara
tions. We have also noted that a density operator is a faithful representation 
of a state in the sense that it contains exactly the information needed to 
characterize the set of all measurements which one may perform on that 
state. Finally, the formalism is closer to experiments than the wavefunction 
or ket formalism: indeed, stress is laid here on the density operator as a 
tool to predict the expectation values for all observables in the form (2.34). 
Giving D is equivalent to giving these expectation values, since its matrix 
elements (kIDlk') can, according to (2.15) and (2.34), be identified with the 
expectation values of the dyadics Ik') (kl. 

The algebraic formulation of quantum statistics which was started by Jordan, 
von Neumann, and Wigner, is based upon this idea. 3 Even more general than the 

3 W.Thirring, A Course in Mathematical Physics, Springer, New York, Vo1.3, 1981; 
G.G. Emch, Mathematical and Conceptual Foundations of 20th Century Physics, 
North-Holland, Amsterdam, 1984. 
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density operator formalism, it disregards Hilbert space. Its starting point is the 
algebra of the observables representing the physical quantities which are associated 
with the system (§ 2.1.3). A state is then defined directly as the collection of ex
pectation values (A) of all the observables, that is, as a mapping from the algebra 
of observables onto the set of real numbers. This mapping must be linear, it must 
associate the number 1 with the unit observable, and a non-negative number to any 
observable of the form :;12. Such a definition has a conceptual advantage in that it 
exhibits the similarities and the differences between classical and quantum statis
tics: the classical random variables are here replaced by non-commuting operators, 
while the concept of a state as a mapping of the observables A onto their expec
tation values (A) remains the same. Moreover, this definition of a state involves 
directly the measurable quantities. 

If we disregard mathematical difficulties arising when the algebra of observables 
has an infinite dimension, we can represent the operators by matrices and in this 
way construct the Hilbert space. Taking as base in the vector space of the observ
abIes the dyadics Ik)(k'l, according to (2.5), and denoting the expectation value 
of Ik)(k'i by (k'IDlk), we then realize the mapping A ~ (A) in the form (2.34) 
and we can associate a density operator with this mapping. However, the general 
definition of a state as a set of average values (A) does not need the introduction of 
a matrix representation for the algebra of observables. In fact, it is sufficient for the 
characterization of a state to specify the expectation values of a set of operators, 
forming an arbitrary base for this algebra; the expectation values are the Liouville 
representation of the state for the base considered (§ 2.1.2). Exercise 2b illustrates 
this point, showing that if we express for a spin-~ the observables in the base made 
up from the Pauli matrices and the unit operator, a state is simply represented by 
the polarization vector. Similarly, in the Wigner representation, the expectation 
values of the observables (2.8) constitute a representation of states which is well 
suited for the classical limit of quantum mechanics (§ 2.3.4). 

In the algebraic formulation, the states appear as elements of a vector space 
which is the dual of that of the observables; as a matter of fact, the mapping 
A ~ (A) is linear, and the space which is the dual of the space of observables is, by 
its very definition, the set of linear forms. This remark fixes the difference in math
ematical structure between the observables and the density operators mentioned at 
the end of § 2.2.3. For the finite systems in which we are interested in the present 
book, we shall be satisfied with representing these two kinds of objects by matri
ces. Nonetheless, if one wants to pass to the infinite volume limit, the Hilbert space 
becomes mathematically pathological whereas the algebra of localized observables 
remains manageable. The density operator concept loses its meaning and must be 
replaced by that of state as a mapping. The algebraic formulation also enables one 
to short-circuit the difficulties mentioned at the end of § 2.1.3. In what follows we 
avoid these difficulties by always studying large systems and letting their volumes 
tend to infinity at the end, and by working in the Hilbert space. 

Note finally that the algebraic formulation of quantum mechanics not only 
makes the concept of state, as we have just seen, or the analysis of measuring 
processes (§ 2.2.5), but also the evolution equation and the Pauli principle, easier 
to understand. In the Heisenberg picture, the equation of motion for A simply 
expresses the fact that the algebraic relations between the observables remain un
changed,since this invariance implies the existence of a unitary operator U(t) which 
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transforms A(O) into A(t) = U(t)tA(O)U(t). As to the Pauli principle (Chap.IO), 
it follows from the hypothesis that all Hermitean matrices of the Hilbert space of 
a system of indistinguishable particles can represent physical observables. 

2.3 Classical Systems: Densities in Phase 

In the general chapters 3 to 6 we shall mainly use the quantum formalism 
which is simpler and more general. Nevertheless, for the sake of giving a 
coherent picture we right now introduce the formalism of classical statistical 
mechanics that we shall need in Chaps.7, 8, 9, and 15 for applications to the 
physics of gases and liquids. In fact, we must even in such cases take into 
account the quantum nature of the underlying microscopic physics. 

2.3.1 Phase Space and Micro-states 

Whereas the motion of electrons in atoms, the relative motions of atoms in 
molecules, or the properties of solids can only be described by quantum me
chanics, the translational degrees of freedom of the molecules in a gas or in 
a liquid are described with great accuracy by the laws of classical mechan
ics. In such a classical system of N molecules the physical quantities which 
play the role of classical observables are the positions Ti (i = 1,2, ... , N) 
of their centres of mass, their momenta Pi and, more generally, functions 
f( Tl, Pl' ... ,T N, PN) of these 6N variables. (In fact, when the particles are 
indistinguishable, the physical quantities only consist of functions which are 
symmetric under permutations of the particles.) 

A micro-state, which is a state of the system about which everything 
is known, is defined by giving the values of all the observables. It is thus 
characterized by giving the 6N coordinates and momenta of the particles. We 
introduce the phase space Ep, a 6N -dimensional space with as coordinates 
Tl,Pl' ... , TN,PN. A micro-state is then represented by a point in phase 
space. 

More generally, we shall show that when the temperature is sufficiently 
high some internal degrees of freedom of the gas molecules, such as the orien
tation of these molecules while they are rotating, can be treated classically. 
Under such conditions the classical observables are functions not only of 
the coordinates Ti and the momenta Pi' but also of these internal variables 
and their conjugate momenta. In general, we shall denote the configurational 
variables, the positions of the molecules and their internal coordinates, by 
qk and their conjugate momenta by Pk. The phase space Ep is spanned by 
the qk,Pk coordinates, the observables are functions defined in Ep , and the 
micro-states correspond to points in E p. 
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2.3.2 Classical Macro-states 

A classical macro-state, which is not well known or completely prepared, is 
characterized by giving a probability law for the possible micro-states, that 
is, for the set of possible points in phase space. A classical macro-state is 
thus represented by a probability measure in phase space: 

(2.53) 

where DN is called density in phase or phase density. The quantity (2.53) is 
the probability that the representative point of the N particles of the system 
is within the volume element dTN of phase space. The phase density is real, 
normalized, and positive, properties of which we have listed the quantum 
counterpart in § 2.2.3. 

A classical observable A( rl, Pl' ... , r N, P N ) then becomes a random vari
able governed by the probability law (2.53) when the system is in the macro
state represented by the density in phase D N. Its mean or expectation value 
is equal to 

(2.54) 

which is the classical equivalent of (2.34). The trace is replaced by integration 
over the phase space £p and the density operator by an ordinary probability 
measure. 

Strictly staying within the framework of classical mechanics, one could 
choose for dTN any normalization whatever, as the mean values (2.54) remain 
unchanged when one multiplies dTN and divides DN by the same factor. 
Nevertheless, one wants classical statistical mechanics to appear as a limiting 
case of quantum mechanics. When constructing the density in phase as a 
classical limit of the density operator, we shall see in § 2.3.4 that we need 
normalize the phase space volume element dTN as follows: 

(2.55) 

in the case of N indistinguishable particles, where h = 27rn is Planck's con
stant. 

The exact form of (2.55) will be crucial, even in the study of classical 
gases (see, for instance, § 8.1.5 or § 8.2.1). It can only be justified, if we start 
from quantum mechanics, which retains its imprint even in the classical limit 
(§ 2.3.4). We can, however, use rules of thumb to get an intuitive feeling for 
(2.55). 

On the one hand, the factor h -3N appears as a natural means to define the 
volume element dTN, and hence the density in phase D N , as a dimensionless 
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quantity, since Planck's constant has the same dimension as the product 
dxdp. 

On the other hand, the factor 1 IN! is associated with the indistinguish
ability of the particles. This idea is ambiguous in a purely classical context. It 
would, for example, be permitted to imagine that the particles, though they 
are strictly identical, are labelled initially and after that can be followed as 
they move along their orbits, even during collisions, so that we can always 
distinguish between them. Nevertheless, quantum mechanics suggests, in con
trast to this, that two points in phase space which derive from one another 
by a permutation of the indices i of the particles represent the same physical 
micro-state. Moreover, this is consistent with the fact that even in classical 
mechanics all physical observables are symmetric under particle permuta
tions. From this point of view phase space is not a faithful representation of 
the space of micro-states: each of them appears, in general, N! times when 
one sweeps through the whole of phase space. The factor liN! in (2.55) com
pensates for this redundancy in the counting. Of course, the density in phase 
itself must be symmetric under any interchange of indistinguishable particles. 

The density in phase can be a function; more generally, it is a measure, 
that is, a positive distribution. Let us, for instance, consider N particles with 
perfectly well known positions and momenta, r~,p~, ... ,rlJv,plJv. Using the 
normalization of the probability 

(2.56) 

and the indistinguishability of the particles, this state is represented by the 
density in phase 

D (r P r P ) = h3N ~ !;3(r1 - rO,,!) !;3(Pl - pO,,)) N 1, 1, .. ·, N, N L..J U U 

(2.57) 

where the sum is over the N! permutations of the indices {iI, i 2, .. ·, iN} = 
{I, 2, ... ,N}. This sum is necessary in the present framework: nothing in our 
classical formalism should enable us to distinguish the particles and, indeed, 
(2.57) preserves the symmetry under their permutations. 

Another example is the density in phase of a perfect gas in thermal equili
brium. On the microscopic scale, a perfect gas is defined as a classical macro
state in which the N particles are uncorrelated. The probability measure thus 
reduces to a product of factors relating to the separate particles, 

N 

D N(r1,P1, .. ·,rN,PN) = h3N N! II g(ri,Pi), 
i=l 

(2.58) 

where all factors Q( r, p) are the same because of the indistinguishability of 
the particles. 
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The extension to arbitrary configuration variables qk and their conjugate 
momenta Pk is straightforward. The phase densities D{ q, p} and the observ
abIes A{q,p} are functions of the point qk,Pk in phase space. The volume 
element dT occurring in the expression J dT D A for the mean value of A 
equals 

dT = ~ II (dq\dPk ). 
k 

(2.59) 

It contains a factor h-1 == (271"11,)-1 for each pair of conjugated variables; also 
it contains a factor l/S, where S is a symmetry number, equal to the number 
of configurations in phase space which describe the same situation, if we take 
into account the indistinguishability of the particles. For instance, if the 
system is a mixture of fluids consisting of Nl molecules of the first kind and 
N2 molecules of the second kind, S equals Nl!N2!. Another example concerns 
the rotation of polyatomic molecules; we shall it study in Chap.8 in order to 
calculate the specific heats of gases and the chemical equilibrium constants. If 
we can model a molecule as a rigid classical rotator, the integration variables 
q, p are the Euler angles and their conjugate momenta; the symmetry number 
S for each molecule is the order of the group which leaves this molecule 
invariant, for instance, S = 2 for O2 or H20, S = 3 for NH3 , and S = 12 for 
CH4 or C6H6 . 

2.3.3 Evolution with Time 

On the microscopic scale the dynamics are described by analytical mechan
ics and we shall briefly recall its laws.4 In the Lagrangian formalism the 
instantaneous micro-state of the system is characterized by the configuration 
variables qk - which in the simplest case reduce to the 3N particle coordi
nates Tl, ... ,TN - and their velocities qk == dqk/dt. We look for the physical 
trajectory q(t) in configuration space which starts from a given point q(to) 
at time to and ends at a given point q(tl) at time h. To do that we introduce 
arbitrary virtual trajectories q(t) connecting these two points. The equations 
of motion can be deduced from a Lagrangian L{q, q}, which is a function 
of the positions qk and of the velocities qk, and possibly of the time. The 
Lagrangian generates the action 

i tl 

S({q(t)}) = dt L{q,q}, 
to 

(2.60) 

which is a functional of the virtual trajectories q(t). (Other types of action are 
defined in mechanics, but in the present book we shall use only (2.60).) Ac
cording to Hamilton's variational principle, the action (2.60) must be station
ary along the trajectory actually followed by the system. More precisely, we 

4 H.Goldstein, Classical Mechanics, Addison-Wesley, 1950; D.ter Haar, Elements of 
Hamiltonian Mechanics, Pergamon, 1971; R.Abraham and J.E.Marsden, Foun
dations of Mechanics, Benjamin/Cummings, 1978. 
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must have 8S = 0 for arbitrary variations 8q(t) such that 8q(to) = 8q(td = 0, 
that is, 

8S = if! dt L [:L 8qk(t) + :~ 8qk (t)] = o. 
~ k % % 

Integrating by parts we then get the equations of motion in their Euler
Lagrange form, 

8L d 8L - - -- = O. 
8qk dt 8qk 

(2.61 ) 

For instance, for a particle of mass m and charge e in an electromagnetic 
field, the Lagrangian is equal to 

L(r, r) == ~mr2 + e(A(r) . r) - eP(r), (2.62) 

where P is the scalar potential and A the vector potential; the Lorentz force 
can be derived from this. For interacting particles, L is the difference between 
their kinetic energy and their interaction potential. 

The Lagrangian formalism is well suited to changes of variables; they are 
carried out by writing down that the action remains invariant. We shall use 
this formalism in non-equilibrium statistical mechanics to establish the local 
conservation laws (§ 14.3.1). However, in the case of equilibrium statistical 
mechanics we wish to retain a parallelism between classical and quantum 
systems and also to stress the conservation of the total energy. To do this 
we shall base ourselves mainly on the Hamiltonian formalism. The motion 
is then described not in configuration space but in the phase space £p which 
has twice as many dimensions. It is generated by the Hamiltonian H{q,p}, a 
function of the positions qk and their conjugate momenta Pk which are defined 
by eliminating the qk, considered to be independent variables, between 

H{q,p} (2.63) 

and 

8L 
(2.63') = Pk· 8qk 

This relation between the Lagrangian and the Hamiltonian is a Legendre 
transformation (§ 6.3.1). The equations (2.61) are then equivalent to Hamil
ton's equations 

dqk 8H 
dt - 8Pk' 

(2.64) 

which describe the motion of a micro-state in £p. The Hamiltonian for a 
system of N non-relativistic particles of masses mi and charges ei has the 
form 
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N [Pi - eiA( ri)] 2 
N 

L + L V(ri) 
2mi i=l i=l 

N 

+ L W(lri - rjl), (2.65) 
i,j=l;i<j 

where W is the potential for the interaction between the particles, V (r) the 
potential accounting for the box in which the particles are contained, and, 
possibly, also for an external, gravitational or electric, field, while A( r) is a 
possible electromagnetic vector potential. 

Let us now find the equations of motion for classical macro-states. In 
quantum mechanics we derived the equation of motion for the density opera
tor from that for the micro-states, noting that the probability for each of the 
latter was conserved during the motion. Here again, the probability (2.53) 
is conserved along the trajectories, which are defined by the Hamiltonian 
equations (2.64). However, the evolution transforms a volume element drN 
(around a point qk, Pk of phase space) at time t into another volume element 
drfv (around the point q~,p~) at time t+dt. In view of (2.53) we must, if we 
want to describe the evolution of the density in phase D N, know not only 
how the representative point of a micro-state in phase space changes, but 
also how a volume element around that point changes. 

For this we shall use the important Liouville theorem: the volume of a 
region in phase space remains constant when one follows this region during 
the temporal evolution. 

For a proof of this theorem it is sufficient to show that the Jacobian J of the 
infinitesimal transformation in £p 

Pk ===} p~ 
dpk 

Pk + Tt dt , (2.66) 

which changes a point at time t to its position at time t+dt, equals 1. The Jacobian 
J is the determinant of the 6N x 6N matrix of the derivatives of the q~,p~ with 
respect to the qk, Pk. This matrix is of the form 1 + K dt and, to first order in dt, 

J det (1 + K dt) = 1 + Tr K dt 

1 + ~ (a a dqk + ~ dpk ) dt, 
~ qk dt apk dt 

k 

or, if we use the equations of motion (2.64), 

o. QED 

According to (2.54), (2.56), or (2.69), a volume in phase space plays in classical 
mechanics the same role as the number of states in quantum mechanics. Liouville's 
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theorem is thus the classical analogue of the following property: a set of N or
thonormal states in £H is with time transformed into N other orthonormal states, 
because the unitary transformation (2.27) conserves the scalar product. 

The Liouville theorem is the reason why we chose to work in phase space. In 
fact, it expresses the homogeneity of £p: one can always imagine an evolution in 
time leading from some point in £p to any other one; whatever pair of points we 
are dealing with, the surrounding corresponding volume elements are the same. 
This property would not be valid, if we had chosen to characterize the system by 
an arbitrary set of 6N coordinates, for instance, velocities, rather than momenta, 
and positions, except for some special forms of the Hamiltonian. 

The equation of motion of the density in phase can then be derived from 
the conservation of the probability (2.53) along the trajectories in phase space. 
By virtue of the Liouville theorem we have dTN = dTN' and hence 

If we use the Hamiltonian equations (2.64), we find to first order in dt 

The Poisson bracket of two functions of a point in phase space is defined by 

(2.67) 

so that we can write the equation for the evolution of the density in phase, 
the so-called Liouville equation, in the form 

aDN at = {HN, DN}. (2.68) 

2.3.4 The Classical Limit of Quantum Statistics 

It is important to know how the formalism of classical statistical mechanics 
that we have just given can be derived starting from quantum mechanics 
which is the theory best suited for the microscopic scale. This is essential 
for a discussion of the validity of the classical approach, for an evaluation 
of possible quantum corrections, and for a justification of expressions (2.55) 
and (2.59) for the volume element. The classical approximation of quantum 
mechanics is valid when Planck's constant h is negligible as compared to 
quantities with the same dimensions which appear in the problem. These 
quantities typically are the product of a characteristic length and momentum, 
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or the product of a characteristic energy and time. A complete discussion of 
this limit would go beyond the confines of the present textbook, but we 
shall show here how the contents of §§ 2.3.1 to 2.3.3 can be derived from the 
principles laid down in § 2.2.7. 

Note, first of all, that the algebra of observables is generated by the posi
tion operators qk and the conjugate momentum operators Pk, the commuta
tors of which are equal to in. Any observable can be written as a function of 
those operators. In the classical limit the algebra becomes commutative: the 
elements qk and Pk can be regarded as ordinary variables and the observables 
as classical functions of these variables. Similarly, the density operators jj, 
constructed from the generators qk, Pk of this algebra, become functions of 
a point in phase space. 

In order to justify, starting from (2.34), the classical expression (2.54) 
for the expectation value of an observable, we must calculate the classical 
limit of the trace of an operator F which in the present case is DA. We shall 
in what follows show that for a system of N indistinguishable particles this 
limit is equal to 

Tr F == L (mIFlm) -+ J dTN F(rl,Pl'···' rN,PN) 
m 

(2.69) 

where F( rl, Pl' ... , r N, P N) is the function which is derived from F by ne
glecting all commutators, and where dTN is defined by (2.55). More generally, 
for systems of the kind considered at the end of § 2.3.2, the trace tends to an 
integral with (2.59) as the volume element. Expression (2.69) of the classical 
limit of a trace can be interpreted by saying that the measure L dTN of a do
main w in phase space is asymptotically, for sufficiently large w, equal to the 
number of orthogonal quantum micro-states located in the domain w, within 
the margins of the uncertainty relations. We can now understand the factor 
[N!]-l in dTN as reflecting the Pauli principle. In fact, if the N particles were 
distinguishable, the Hilbert space would be the direct product of the spaces 
associated with each particle and the volume element would be the product 
of the volume elements dqk dpk/h for each degree of freedom. However, the 
indistinguishability obliges us to restrict the Hilbert space and to retain only 
either symmetric or antisymmetric wavefunctions. Those represent only one 
in N! of the functions produced by the permutations of the particles, if we 
start from a generic wavefunction without any particular symmetry proper
ties; this gives us an intuitive idea of the quantum origin of the factor [N!J-l 
in (2.55) or of S-l in (2.59). 

Note that one can take the classical limit only for some of the degrees of 
freedom, for which the characteristic lengths and momenta are the largest, 
whereas other degrees of freedom, for which the product of a characteric 
length and a characteristic momentum is of order n, must still be treated 
quantum-mechanically. For instance, for a diatomic gas, we can for the molec
ular translations use the classical approximation, whereas their vibrations 
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must be treated by quantum statistical mechanics (Chap.8). Similarly, if the 
N elementary constituents have spin s, there is no classical equivalent of the 
latter. When there is no coupling with the other degrees of freedom, the trace 
over the spins gives in the classical limit an extra multiplying degeneracy fac
tor d = (2s + l)N for dTN. These remarks play an important rOle in chemical 
thermodynamics (§ 8.2.2). 

In order to prove (2.69) we proceed in stages. Let us, to begin with, consider 
a system consisting of a one-dimensional particle for which the operator algebra is 
generated by the two operators x and p. Let us examine first the special operators 
of the form 

F = f(p)g(x). (2.70) 

Classically, the function F(x,p) = f(p)g(x) corresponds to F. Let us calculate 
the trace of (2.70) in the base Ix), each element of which is an eigenstate of x 
representing a particle localized at the point x: 

Tr F = J dx (xlf(p)g(x) Ix) = J dx (xlf(p)lx) g(x). 

We use the closure relation (2.2) for the base of plane waves which are normalized 
as follows: 

this leads to 

dx (xlf(p)lp) dp(plx) g(x) J dxdPI(xlp)1 2 f(p)g(x) 

dxdp 
-h- F(x,p). 

Equation (2.69) is thus exact for the special operators of the form (2.70) 
Let us now consider an arbitrary operator F of the algebra. As the commutators 

are small in the classical limit, we are allowed to change inside F the order of the 
operators p and x, and neglect terms which come from commuting them. One 
can thus, through successive commutations, bring all x operators to the right so 
that in the classical limit every operator is equivalent to a sum of terms of the 
form (2.70). Its trace can then be expressed as an integral over phase space of 
the corresponding classical function F(x,p) with a weight h-1 associated with the 
two degrees of freedom (x,p). The extension to an arbitrary number of degrees of 
freedom gives us the factor h-3N of (2.55), (2.69). 

This calculation applies to Cartesian coordinates and their conjugate momenta. 
If we want to describe the rotations and vibrations of molecules in the classical limit 
(Chap.8) we must extend the result we have obtained in order to justify (2.59). We 
shall restrict ourselves here to the case of a rotation in a plane, where q is an angle 
varying from 0 to 211" and p the associated angular momentum, taking on values 
which are integral multiples of n. Using the above reasoning the integration over 
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p is replaced by a sum, and (qlp) is an eigenfunction of the angular momentum, 
normalized as eipq/ Ii /V21r. The replacement of the summation over p by an integral 
gives again the above-mentioned measure dq dp/27rn. 

A more rigorous approach to the classical approximation, which enables us to 
evaluate the quantum corrections when they are small, is provided by the Wigner 
representation of quantum mechanics already outlined in § 2.1.2. We saw for a 
one-dimensional system that the observables A can be represented, even when n 
is finite, by the functions Aw(x,p) defined by (2.9). Let us similarly define the 
Wigner representation of the density operator Jj as the function 

Dw(x,p) == 27rn Tr Jj n(x,p). (2.71) 

We can evaluate the trace in the Wigner representation using the relations 

~ 1 
Tr n(x,p) = h' 

~ ~ I I 1 I I 
Tr n(x,p) n(x ,p) = h 8(x - x) 8(p - p ), (2.72) 

which follow from the definition (2.8) of the n(x,p) observables and expression 
(2.10) for their product. From this we get for the expectation value of an observ
able A 

~ ~ J dxdp (A) = Tr D A = 27rn Dw(x,p) Aw(x,p). (2.73) 

The transform Dw(x,p) of Jj can thus be interpreted as a quantum density in phase, 
with Eq.(2.73) formally having the same structure as the relation (2.54) for classical 
probabilities with the weight (2.55). Nevertheless, the quantum nature of the theory, 
when n is finite, subsists in a hidden manner in (2.73); indeed, the fact that the 
operator Jj is positive does not imply that Dw(x,p), defined by (2.71), is a positive 
probability measure. However, we indicated in § 2.1.2 that, in the limit when n is 
negligible as compared to any other quantity of the same dimensions, the Wigner 
transform of a product of operators becomes the product of their transforms. Then 
Aw can, indeed, be identified as a function of the classical random variables x 
and p and Dw as a classical phase density. For instance, the Wigner transform of 

the density operator Jj ex e -(3H, which describes a quantum equilibrium macro
state, tends in this limit to e-(3Hw which describes the corresponding classical 
equilibrium macro-state, and (2.73) can be identified with a classical average. 

Going over to three dimensions is straightforward. For N distinguishable parti
cles, the integral of DwAw is then a trace over a Hilbert space which is the direct 
product of N one-particle spaces. However, when the particles are indistinguishable 
the trace which we must calculate is only over either symmetric or antisymmetric 
wavefunctions. We can take this restriction into account by writing 

(A) = Tr it Jj A, (2.74) 

where the trace is still over all wavefunctions, but where the projection it over the 
symmetric or antisymetric states eliminates those which are undesirable. For two 
particles, we can write this projection in the form 

~ 1 ~ ~ 

II = 2(I±E), (2.75) 
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where E is the operator which exchanges the labels of the two particles and where 
the + and - signs correspond, respectively, to bosons and fermions. A simple 
calculation gives us the Wigner representation of this exchange operator; in three 
dimensions it is equal to 

(2.76) 

In the classical limit the exchange term in (2.75) is thus negligible and there remains 
only the first term which contains a factor ~. More generally, in the case of N 

particles the projection it is equal to 

it = ~! L (±)na Pa , (2.77) 
a 

where the sum is over the N! permutations Pa of the N particles and where na de
notes the parity of the permutation P a. Since these permutations are generated as 
products of two-particle exchange operators, the classical limit of the projection it 
only involves the identity permutation, and reduces to liN!. The indistinguishabil
ity of the N particles thus introduces in (2.74) the factor (N!) -1 that we anticipated 
in (2.55). 

Note finally that the volume element dT is invariant under canonical changes in 
variables, that is, those which conserve the conjugation of the coordinates q with 
the momenta p. In fact, an infinitesimal canonical transformation is produced by 
a Poisson bracket, like the evolution (2.66), and the proof of the Liouville theorem 
can immediately be adapted. This obvious invariance appears as the classical limit 
of the invariance of the trace under unitary changes of the base. 

We still must prove that the Liouville equation (2.68) is the classical limit 
of the Liouville-von Neumann equation (2.49) which governs the evolution 
of the density operator. This rests upon the following property that we shall 
prove in a moment. When one replaces in the limit as n ~ 0 the observables 
and the density operators by functions of the qk, Pk variables, the commu
tators are to dominant order equivalent to the Poisson brackets (2.67), as 
follows: 

1 ~ ~ 
in [X, Y] ~ {X, Y} (2.78) 

This property is also useful to find the classical limit of the transformations 
fj Afjt or fj jjfjt of observables or density operators, when fj is produced from 
a generating operator a (§2.1.5). In fact, the infinitesimal transformation 
fj = f + iat:/n changes A to A + ira, A]e/n, whose classical limit is A -
{G,A}t:. Similarly, the classical limit of the Ehrenfest theorem (2.29) is 

d / f)A) 
dt (A) = ({A,H}) + \ at ' (2.79) 

and the constants of the motion are the mean values of the observables which 
have vanishing Poisson brackets with H. 
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In order to prove (2.78) we return to the Wigner representation. Consider a 
one-dimensional system - the generalization to an arbitrary dimensionality does 
not present any problems. If we use (2.7) and (2.10) we can write the product of 
two operators in the form 

Xy = (2~)2 J dxdpdx' dp' dadf3 Xw(x,p) Yw(x',p') 

ia:(x-x')+i,8(p-p') n (x + x' + f3n p + p' - an) 
xe .. 2 ' 2 . 

The Wigner representation of the product XY can be derived from this expression 
and, after changing variables, can be written in the form 

(XY)w = (2~)2 J d)"dlLd~d'f/Xw(x+~)..n,p+~lLn) 
(2.80) 

We must expand this expression to first order in n, which leads to 

(XY)w X ( ) y; ( ) + in [OXw(X,P) oYw(x,p) 
= w x,p W x'P"2 ox op 

_ oXw(x,p) oYw(x,p) ] 0(n2) 
op ox + , 

and the expected result (2.78) follows. This proof enables us to find the domain 
of validity of the classical approximation. In fact, each factor n is accompanied by 
derivatives of X wand Yw with respect to x or p. The classical limit is thus valid 
if 8x 8p ~ n, where 8x and 8p denote characteristic distances and momenta over 
which the physical quantities change significantly. 

2.3.5 Reduced Densities 

Many physical quantities involve one-particle observables ofthe form ~i a(ri, 
Pi)' For instance, the kinetic energy is found for a( r, p) = p2/2m and the par
ticle density at the point ro for a(r,p) = 83 (r - ro). We shall also encounter 
two-particle observables, such as the interaction energy ~i<j W(lri - rjl) 
in (2.65), but rarely does one have to calculate averages of more compli
cated observables. We do not need therefore the complete density in phase 
DN which includes, in addition to the information of interest, also informa
tion about correlations between 3, 4, ... , N particles. Just as in Chap.1 we 
defined reduced probabilities (Eqs.(1.5) and (1.8)) and as in quantum me
chanics we introduced density operators of subsystems, we can here define 
one- and two-particle reduced densities 

f(r,p) == :3 J dTN-l(2, ... , N) 

(2.81) 
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h(r,p, r',p') == ~6 J dTN-2(3, ... , N) 

x DN(r,p, r',p', r3,P3'···' rN,PN). (2.82) 

To evaluate the expectation value (2.54) of a one-, or two-, particle observ
able, we take into account the symmetry under permutation of the labels of 
the particlesj the integration over the variables of the remaining N -1, or 
N - 2, particles can then be done beforehand, introducing f, or h, directly 
in the calculation ofthe averages. For instance, the internal energy U, which 
is the average of the Hamiltonian (2.65), can be written in the form 

J [ (p - eA(r))2 1 
U = d3r d3p f(r,p) 2m + V(r) 

+ ~ J d3r d3pd3r' d3p' h(r"p, r',p') W(lr - r'l). (2.83) 

The one-particle reduced density f(r,p) can be interpreted as the particle 
density in the one-body phase space, since the average number of particles in 
a volume element d3r d3p around the point r, p of this phase space is equal 
to the expectation value 

(~ .3(r, _r).3(p, -p)d3rd'p ) 

Similarly, the particle density in ordinary space equals J d3p f (r, p). The 
integral of f over all its coordinates gives the total number of particles. One 
can check that for a perfect gas in thermal equilibrium with the phase density 
(2.58) f(r,p) reduces to N g(r,p)j we shall use this fact in Chap.7 when we 
study gases at equilibrium. 

We shall also calculate in Chap.I5 the non-equilibrium properties by 
studying the evolution equation of the one-particle reduced density. It can 
easily be written down when the Hamiltonian (2.65) reduces to a sum of 
one-particle terms, 

N 

HN = L h(ri,Pi)' 
i=l 

(p- eA(r))2 () 
h(r,p) = 2m + V r . 

In fact, in this case the Hamiltonian equations (2.64) become 

dr 
dt 

p - eA(r) 
m 

== v, dp = _ V h == III, dt r ..,. 

(2.84) 

(2.85) 

where (r,p) must successively be replaced by (r1,pd, ... , (rN,PN)' and 
where <p represents the force produced by the scalar and vector potentials. 
The problem has been simplified considerably since Eqs.(2.85) no longer cou
ple the motions of different particles and since all particles now have the same 
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equations of motion. This enables us to work in the six-dimensional single
particle phase space, rather than in the 6N-dimensional full phase space. 
The reduced density f(r,p) represents the particle density in that space. 
The number of particles f d3r d3p within a volume element is conserved dur
ing the motion (2.85) so that we can obtain the evolution equation for f in 
the single-particle space by the same arguments as that for DN in the N
particle space. The Liouville theorem is valid for the Hamiltonian evolution 
(2.85) in the single-particle phase space, so that the density f is conserved 
along the trajectories in that space: 

d 
dt f(r(t),p(t); t) = o. (2.86) 

Hence we find the evolution equation for f: 

(2.87) 

In the general case where the particles interact, the presence of the two
particle potential W in the Hamiltonian (2.65) gives rise to collisions which 
change the momenta of the particles. The number of particles within a volume 
element in the single-particle phase space is no longer conserved, as a collision 
can make a particle appear in or disappear from the volume element d3r d3p 
around the point (r,p). The total derivative (2.86) of f is therefore no longer 
equal to zero, and Eq.(2.87) is changed to 

(2.88) 

The term on the right-hand side represents the balance from collisions. It 
can be evaluated by using various approximations, depending on the physical 
situation. In Chap.I5 we shall establish the form of that term in the case of 
a rarefied gas with short-range forces; the resulting equation is called the 
Boltzmann equation. 

By integrating the Liouville equation (2.68) we can obtain an exact expression 
for the change in time of the reduced density (2.81); it is, however, useless without 
extra approximations. A preliminary remark will help us to simplify the integration 
of the right-hand side: consider a term in the Poisson bracket relating to the pair 
of conjugate variables qk and Pk and assume that we integrate over those variables; 
noting that the density in phase D is, in general, zero at infinity - otherwise (2.56) 
would not converge - integration by parts leads to 

o. 
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The only terms in the Poisson bracket that remain after integration are thus those 
corresponding to variables over which we do not integrate. In particular, integrating 
the Liouville equation over all variables, we see that the normalization (2.56) of a 
density in phase is conserved in time. If we integrate over the variables which are 
associated with particles 2, ... , N, we find 

3 af(r,p, t) J [() ( )] h at = dTN_l(2, ... ,N) VrH·VpD - VpH·VrD . 

On the right-hand side, the one-particle terms in H do not involve the variables 
r2, P2, ... , rN, PN so that we can integrate over those variables, using (2.81); this 
produces the left-hand side of (2.88). Amongst the two-particle terms in H, only 
those survive which come from W(lr-rkl) with k = 2, ... , N; because of symmetry 
their contributions, of which there are N -1, are all equal to 

J d3r2 d3p2 
(N-1)h3 dTN_2(3, ... ,N) (VrW(lr-r21)·VpD), 

which, if we use (2.82), can be expressed as a function of the two-particle reduced 
density. Altogether we find 

~{ +(v.Vr)f+(cp.Vp)f 

= J dV d3p' (VrW(lr - r'l). Vph(r,p,r',p')). (2.89) 

The exact form of the collision term thus introduces a new unknown function, 
the two-particle reduced density. Similarly, if we write down the evolution equation 
for h by integrating the Liouville equation as above over the variables relating to 
particles 3, ... , N, we find a coupling with the three-particle reduced density, and 
so on. The chain of equations that we obtain in this way is called the BBGKY 
(Bogolyubov, Born, Green, Kirkwood, Yvon) hierarchy. It replaces the Liouville 
equation which involves a very large, 6N, number of variables by a chain of equa
tions with a finite number, 6, 12, ... , of variables. On the other hand, solving the 
chain implies approximations which allow us to reduce the number of unknown 
functions to the number of equations. 

For instance, the approximation which consists in neglecting the correlations 
between particles in phase space amounts to assuming that 

h(r,p,r',p') = f(r,p) f(r',p'). 

One can show that it is often justified for a gas of charged particles because of 
the long-range nature of the Coulomb potential W. In this approximation (2.89) 
leads to a closed equation, called the Vlasov equation, for the one-particle density. 
This equation has the same form Eq.(2.87) as for a single particle in an external 
one-particle potential V(r), but we must include here in V(r) the effective potential 

J d3r' W(lr - r'l) J d3p' f(r',p'), (2.90) 

produced on the average by the other particles; the last factor is the particle density 
at the point r' in ordinary space. 
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2.3.6 Uncertain Particle Number 

In many applications we shall need to assume that not only quantities such 
as the particle density or the energy, but also the number of particles N itself 
is a random variable. One can easily generalize the above formalism to such 
situations. 

In the quantum case, the Hilbert space £H is then the direct sum (§ 2.1.1) 
of the Hilbert spaces £/1 each associated with a fixed number of particles 
N. This space £H is called the Pock space (§ 10.2). The number N occurs 
amongst the quantum numbers characterizing the base states and the trace 
(2.34) includes a summation over N. 

In the classical case, phase space is the union of the N-particle phase 
spaces. The density in phase D is a set of functions D N of the kind considered 
earlier which are normalized in such a way that 

(2.91) 

is the probability that the system contains N particles. 
A physical quantity A is also represented by a set of symmetric functions 

AN - for instance, the energy is represented by the set offunctions HN given 
by (2.65) - and the expectation value of A is equal to 

(A) = L J dTN DNAN; 
N 

(2.92) 

this formula is analogous to the general quantum expression (2.34) if we make 
the substitution 

(2.93) 

In particular, the one- and two-particle reduced densities are now obtained 
by summing (2.81) and (2.82) over N. 

Summary 

All predictions - of a statistical nature - that one can make at a given time 
about a physical system can be found once we know its density operator. The 
density operator formalism, which we review in § 2.2.7, enables us to extend 
quantum mechanics to the description of statistical mixtures, or quantum 
macro-states, representing systems which are not well known or subsystems 
(Eq.(2.39}). The eigenvalues of a density operator fj can be interpreted as 
the probabilities for its eigenkets; the average values (2. 34}, (2.52) can be 
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evaluated in the base which diagonalizes D as expectation values in probability 
theory. 

The classical limit is obtained by replacing the observables by functions 
defined in phase space, the density operator by the density in phase, and the 
trace by the integration {2.69} with the measure {2.55}. The evaluation of 
most observed quantities involves, in general, only the one-particle reduced 
density. The particle number can possibly be a random variable. 

Exercises 

2a Density Operators for a Spin- ~ 

Recall that the observables Bx, By, Bz which represent the three components 

of the angular momentum of a spin- ~ particle can be written in the form S = 
~1iiT, where the ax, ay , az operators are represented by the Pauli matrices 

~ (0 1) 
(J'x = 1 0 ' 

~ (0 -i) 
(J'y = i 0 ' 

~ (1 0) 
(J'z = 0 -1 ' 

in the base, 1+),1-), which diagonalizes Bz . 

1. Evaluate the components of the polarization vector fl = (iT) which is 
proportional to the expectation value of the spin in an arbitrary pure state 
1'1/1) = 0:1+) + ,81-)· On how many independent real parameters does this 
state depend? What is the locus of the vector fl in three-dimensional space? 
Compare (8)2 with (82). Is it possible to characterize, inversely, a ket by 
giving fl? What kets are represented by two vectors fl in opposite directions? 
Write down the density matrix 

which represents the pure state 1'1/1), first as function of 0:,,8 and then as 
function of fl. 

2. Answer the same questions for an arbitrary statistical mixture. Use the 
representation of a density operator jj in terms of a vector fl to show that 
the decomposition jj = I: l'I/1A)qA('I/1A 1 is, in general, not unique. What is the 
statistical mixture described by a ket o:ei<pI+) + ,8eiIP I-), where the phases 
cp and '1/1 are completely random? Compare this mixture with the pure state 
0:1+) + ,81-)· 

3. Starting from the Pauli matrices algebra, find directly the expression 
for the density operator jj as function of the polarization fl. What is the 
geometric meanin~ of J1le eigenvectors and the eigenvalues of D? Express the 
entropy S = -TrDlnD as function of fl. How does it change with {}? 
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4. Consider a two-spin system in the pure state 11P) = 0.1 + -) + ,61- +). 
What is the density operator for the first spin? Can its state be described 
by a ket? Answer the same question for 11P) = 0.1 + -) +,61 + +) and for 
11P) = 0.1 + -) +,61- -). 

5. Larmor precession: The Hamiltonian of the spin of an electron in a 
magnetic field B is H = -(B· iJ), where the magnetic moment is given by 
iJ = -(en/2m)'ii. Write down the evolution equation for fj and use it to find 
the evolution equation for g. How does the entropy vary? 

6. What happens for a spin placed in a magnetic field which either has 
a random strength, or a random direction? More precisely, consider a spin 
population where each spin sees a different field. In that case there is a 
probability law for the field seen by an arbitrarily chosen spin; this field is 
fixed in time, but not well known (§ 15.4.5). 

7. What happens for a spin placed in a field which evolves in a well known 
manner? or in a random manner? Study only the case where the field lies in 
the z-direction. 

8. Consider a two-level system where the Hilbert space is spanned by 
11) and 12) and where the Hamiltonian v[ll)(21 + 12)(11] couples the levels, 
inducing transitions between 11) and 12). Show that the system spends as 
much time in 11) as in 12). 

Answers: 

1. {lx = a*f3+f3*a, (ly = -ia* f3 + if3* a, 

Two parameters, as the phase of I1/!) is irrelevant, and as 10.1 2 + 1f31 2 = 1. 
The surface of the sphere Ii = 1. 

If 11 is characterized by the Euler angles (J, rp with (l = 1, I1/!) is - apart from its 
phase - determined by 10.1 = cos !(J, 1f31 = sin ~(J, arg(f3/a) = rp. 

III = -112 correspond to two orthogonal kets. 

b = c* = af3* = H{lx - i{ly). 

2. {lx = b + b*, (ly = i(b - b*), {lz = a-d. 

Three real parameters: b = c*, a + d = 1, ad 2 Ib1 2 . 

The interior of the sphere 112 = 1. 

(8)2 = i r,,2i. 

D = L>.I1/!>.)q>.(1/!>.1 is represented by the barycentre, with weights q>., of the 
points representing 11/!>.) on the surface of the sphere. For this reason {l lies inside 
this sphere. Conversely, any point inside this sphere can be considered in an infinite 
number of ways as the barycentre of points on the surface of the sphere; this leads 
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to an infinity ofrepresentations l"p-x) , q-x. These various, discrete or continuous, rep
resentations are, however, of no interest whatever, as they cannot be distinguished 
physically. 

D = 1+)laI2 (+1 + 1-)1,812 (-1. The off-diagonal elements of D are associated 
with a phase coherence between the components of the ket in the base considered. 
The two states give the same polarization {lz along the z-axis; however, in the one 
case flx = fly = 0, and in the other fl; + fl~ = 1 - fl~ takes the maximum value 
which characterizes a pure state. 

3. The Pauli matrix algebra is characterized by the relations (huj = Oij + 
i ~ eijkUk, Trui = o. Any observable can be written in the form A = uI + (v ·u), 
where u and v are real; the average of A is (A) = u + (v ·11). The fact that (A2) is 
positive implies that fl ~ 1 and (A) = TrDA leads to D = ! (l + (f!. 0')). 

The eigenvectors of D are represented by the endpoints of the diameter through 
II and its eigenvalues are equal to ! (1 ± fl). The entropy 

S = k (1 + fl In _2_ + 1- fl In _2_) 
2 l+fl 2 1-fl 

decreases from k In 2 to 0 as fl increases from 0 to 1. 

4. flx = fly = 0, 

There is no ket, except when a,8 = o. 
For the last two examples the states are pure: 1+) and al+) + ,81-). 
5. It follows from D = ! (l + (II . 0')) that dill dt = [w x II], with w == eB I m. 

The end of the vector f! precesses in a plane perpendicular to B with the Larmor 
frequency eB 127rm. The entropy remains constant. 

6. When we state that the field is random, we say, in fact, that various evolutions 
are possible, each with its own probability. Each evolution leads to a point lI(t) on 
the sphere with radius (l(t = 0). However, the average spin at time t which is the 
barycentre of the points lI(t) lies inside the sphere: due to the random evolution the 
spin gets depolarized and the entropy increases. If, for instance, we consider the 
various, non-interacting, spins in a paramagnetic solid as constituting a statistical 
ensemble, the local field to which each of them is subject is proportional to the 
applied field, but varies from one site to another; if all spins were initially oriented 
in the same way, the statistical average - that is, the total magnetization of the 
solid - decreases in length: we end up with a disordered state. We refer, however, 
to the § 15.4.5 for a discussion of spin echo experiments. 

When the field B along the z-axis has a random strength, the Larmor rotation 
around the z-axis equals cp = eBtlm after a time t; this is also a random variable 
with a fluctuation Llcp = eLlBtlm. When t is sufficiently large, Llcp is large as com
pared to 27r so that the points corresponding to different evolutions are distributed 
evenly over the circle (lz(t) = (lz(O), (l(t) = (l(0) and that {lx and fly tend to zero. 
When the direction of B is also random, f! tends to zero in the final state. 

This discussion also applies to the total magnetic moment of a set of spins 
which interact neither with one another nor with the surroundings and which are 
placed in an inhomogeneous magnetic field B (§§ 1.4.5 and 15.4.5). 

7. The precession equation from 5. remains valid and the polarization II evolves 
on a sphere while the entropy remains constant. If B(t) varies randomly, we must 
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again take an average over the various possible evolutions; this makes (l smaller. Let 
w(t) be the instantaneous Larmor frequency; if B is along the z-axis, {lz remains 
constant; the other components {lx + i{ly == ( vary as 

((t) = ((0) exp [i lot dtW(t)] . 

Let us assume that w(t) is a Gaussian random function; its probability law is then 
described by the characteristic function 

\ exp [i 1:00 
dt' A(t')W(t')]) 

= exp [iW J dt' A(t') - ~ J dt' dt" A(t')A(t")g(t' - til)] , 

which is a functional of A(t) and which is defined by an average taken over the 
various evolutions; W is the average of W; the autocorrelation function g(t' - til) of 
the signal w(t) is non-vanishing only for very small values of t' - til, as w(t') and 
W(t") are no longer correlated when the time interval t' -til becomes large. We find 
thus the average of ((t) over the random evolution by taking A(t') = 8(t')8(t - t'). 
This yields 

(((t)) = ((0) exp [iwt - ~ lot lot dt' dt" g(t' - til)] 

~ ((0) exp[iwt - rt], 

1 1+00 

r = 2 -00 dtg(t). 

An exponential relaxation of {l; + {l~ with a characteristic time Ifr is superim
posed upon the precession (§ 14.1.2). In other words, the off-diagonal elements of 
fj in the base which diagonalizes if tend to disappear. 

The part of B(t} which varies randomly with time can be considered as a model 
of the effect, on the spin considered, of other spins with which it interacts, as these 
spins themselves change in a complex manner (§ 1.2.2). 

8. This problem is formally similar to the Larmor precession of a spin around the 
x-axis, if we identify 11) with 1+) and 12) with 1-). The rotation implies that (II1/!) 
and (211/!) oscillate in a complementary way. If two levels with the same unperturbed 
energy are coupled by a small random potential v, their populations tend to become 
equal, the density operator being rl. More generally, for N levels with close-lying 
energies, this remark can justify the use of a microcanonical ensemble, as in Chap. 1. 
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2b Density Fluctuations 

Disregarding the velocities, the macro-state of a gas is characterized by the 
probability distribution of the positions of the molecules. In equilibrium the 
N particles contained in a vessel of volume fl are statistically independent 
and uniformly distributed in fl. The number n of particles contained in a 
small volume v is a random variable. Check that n = vN / fl. Calculate the 
variance of n, defined by 

Determine for a gas under normal conditions the values of v such that the 
relative fluctuation iln/n be smaller than 10-6 . 

What is the probability distribution Pn of n? What is it in the limit as 
N ---.. 00, fl ---.. 00, v fixed, N / fl fixed? What in the same limit, with moreover 
n ~ 1, In-nl «n2/ 3? What in the limit as N ---.. 00, n ---.. 00, In-nl «n2/ 3 , 

In - nl « (N - n)2/3? 
What is the probability that In - nl/n > 10-9 in a volume v of 1 cm3 , 

under normal conditions? 

Results: 

If one measures the densities within a margin of 10-6 , the gas is homogeneous 
only over distances larger than 0.03 mm. 

Binomial law : Pn 

Poisson law : Pn -+ 

Gaussian law: Pn -+ 

Gaussian law: Pn -+ 

N! 
n!(N - n)! 

1 -n -n 
n! n e 

_1_ exp [_ (n - n)2] . 
~ 2n 

/ N [ N(n - n)2] V 2'Tm(N - n) exp - 2n(N - n) . 

The probability we are looking for is 

~2 JOO dx e-x2/2 = 7 2.2 x 10- , 
7r lO-9v'n 

so that n is practically certain. 
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Hints. The above results can be derived by alternative methods. 

(i) Probability Law Method: By counting arguments, one can first establish the 
probability law Pn, and from this one finds 'it and Lln, as well the asymptotic forms 
ofpn. 

(ii) Indicator Method: For each particle i we introduce a random variable ai 
which is equal to 1 if the particle is in v and 0 if it is not in v, and we use the fact 
that n = al + ... + aN, and that (ai) = (a~) = vjfl, (aiaj) = (ai)(aj) for i -I- j. 
This defines the probability law for the variables ai, from which 'it, Lln, and Pn are 
deduced. 

(iii) Characteristic Function Method (cf Eq.(1.13)): Start from 

Z(a) = (eOn) = II (~eO+l-~) = (~eO+l_~)N, 
i 

and take twice the derivative of In Z for a = 0; this gives us 'it and Lln2 • The 
probability Pn is found by expanding Z in powers of eO. 

The first two methods are common in probability theory, and the third one is the 
prototype of the partition function method, which we shall use systematically in the 
present book for calculating most of the physical quantities in equilibrium statistical 
mechanics. However, the function Z(a) introduced here is not the partition function 
of the gas, which takes into account the velocity distribution and which will be 
introduced in Chap.7. 
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"La science est un produit de l'esprit humain, produit con
forme aux lois de notre pensee et adapte au monde exterieur. 
Elle offre donc deux aspects, l'un subjectif, l'autre objectif, 
taus deux egalement necessaires, car il nous est aussi impos
sible de changer quai que ce soit aux lois de notre esprit qu'a 
celles du Monde." 

Bouty, La Verite Scientijique, 1908 

"- Vous savez, naturellement, ce que c'est que l'entropie? 
- Qui, dit-elle, essayant, sans succes, de s'en rememorer la 

formule. 
- Eh bien, l'entropie, c'est-a-dire, en gros, l'usure, la deca

dence de l'energie, guette l'erotisme comme l'univers tout 
entier." 

E.Arsan, Emmanuelle, 1973 

In Chap.2 we made a synthesis of quantum mechanics, which governs on the 
microscopic scale the systems that we are studying, and statistics, which is 
necessary because systems are macroscopic and thus incompletely known. 
Here we shall complete the formalism by introducing information, a math
ematical concept associated with probability theory, which in the following 
chapters will turn out to be essential in statistical mechanics as it will enable 
us to understand the microscopic significance of the entropy. 

The density operator in quantum mechanics or the phase density in clas
sical mechanics represent our knowledge about the system. This knowledge 
is more or less complete: clearly our information is a maximum when we can 
make predictions with full certainty, and it is larger when the system is in a 
pure state than when it is in a statistical mixture. Moreover, this system is 
better known when the number of possible micro-states is small or when the 
probability for one of them is close to unity than when there are a large num
ber of possible micro-states with all approximately the same probability. The 
object of the present chapter is to formulate mathematically these intuitive 
ideas: we shall show how we can quantify the amount of information that 
we are missing due to the fact that the only knowledge we have about the 
system is a probability law. Using a less subjective language we shall identify 
this missing information with a quantitive measure for the degree of disorder 
existing in a system the preparation of which has a random nature. We shall 
first of all introduce the concept of information in the context of probabil-
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ity calculus and of communication theory (§ 3.1). We shall then consider its 
application to quantum or classical statistical mechanics. This will enable 
us to associate with each density operator, or density in phase, a number 
which measures our uncertainty arising from the probabilistic nature of our 
description (§§ 3.2 and 3.3). This number, called the statistical entropy, has 
various mathematical properties which confirm its interpretation as a mea
sure of disorder (§§ 3.1.2 and 3.2.2). In Chap.5 we shall identify it with the 
macroscopic entropy introduced by the Second Law of thermodynamics. 

We shall end this chapter with a historical survey of the entropy concept 
from various angles and of the role it has played in the evolution of science 
since the middle of the nineteenth century (§ 3.4). 

3.1 Information and Probability Theory 

3.1.1 Statistical Entropy: The Measure of Missing Information 

We consider a set of M events with respective probabilities pI, ... , Pm, ... , 
PM, which are non-negative and add up to 1. The degree of predictivity 
of such a probability law is an intuitive concept which we want to make 
more quantitative by assigning a number to the amount of information which 
is missing because the expected event is random. When all probabilities, 
except Pm = 1, vanish, we are certain that the event m will occur; there is 
no information missing. On the other hand, when all possible events have 
the same probability, our perplexity increases with the number M of such 
events. The lack of information which will characterize the random nature 
of the probabilities PI, ... , PM is a certain function S (PI, ... , PM) of those 
probabilities, also called the statistical entropy, or the uncertainty, or the 
dispersion, associated with the probability law considered. 

We shall in § 3.1.2 construct an expression for S, starting from a small 
number of postulated intuitive properties. We give this result here. Apart 
from a multiplicative factor k, the expression for the statistical entropy is the 
following: 

M 

- k L Pm log Pm· 
k=1 

(3.1) 

An important special case is the one where the M events are equiprobable. 
The statistical entropy then reduces to 

aM = S(~, ... , ~) = k log M. (3.2) 

These expressions were, in fact, first introduced in statistical mechanics. 
They also appear in the context of communication theory where one tries to 
quantify the amount of information contained in a message. One regards each 
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message m which can be transmitted from an emitter to a receptor as an 
event with a probability Pm- The set of probabilities Pm is a characteristic 
of the language, that is, of the collection of all conceivable messages. The 
quantity of information, 1m , acquired in the reception of the message m 
must satisfy some simple properties. In particular, the information brought 
by the reception of two statistically independent messages must be additive. 
One can then show (§ 3.1.3) that the quantity of information carried by the 
message m should be defined by 

1m = -k log Pm. (3.3) 

This quantity may also be considered as measuring the surprisal produced 
by the occurrence of the event m: the less probable a message, the smaller 
Pm, the larger 1m , and the more surprised we are to receive it. 

Expression (3.1) can in this framework be interpreted as the information 
which is gained on average by receiving one of the possible messages; the 
least expected messages with a small probability Pm are those which carry 
most information, but their contribution to the mean information (3.1) is 
small, precisely because there is little chance of receiving them: as Pm -+ 0, 
- log Pm -+ 00, but -Pm log Pm -+ o. The maximum of each term in (3.1) 
is reached when Pm = lie. 

Even though the same concept, called statistical entropy, lack of infor
mation, uncertainty, or disorder, appears in different guises in probability 
calculus, in communication theory, or, as we shall see, in statistical mechan
ics, the points of view differ, depending on whether one is looking at things 
before or after the realization of the event. In communication theory, ex
pression (3.3) refers to the situation after the reception of the message m. 
Accordingly, expression (3.1) can be interpreted as the average gain in infor
mation associated with the transmission of a message. However, one can also 
look at (3.1) before the transmission, while the recipient is waiting for it: from 
that standpoint the number S appears as the entropy of the language, that 
is, as an uncertainty about the set of all messages which may be received. 
We shall always adopt that point of view in statistical mechanics as one is, 
in practice, never getting to know the "message" of a macroscopic physical 
system completely, that is, never carrying out a complete measurement. The 
statistical entropy will characterize, for a macro-state prepared according 
to a given probability law, our uncertainty about the set of all microscopic 
experiments which are conceivable, but which will not be performed. 

The information is defined apart from a multiplying factor k which de
termines the unit of information. In communication or information theory, 
one often chooses k = 1 with logarithms to the base 2. The information unit, 
called the "bit" or "binary digit", is then the one acquired in a head or tail 
draw, since 0"2 = 1 for a simple alternative with equal probabilities. With 
that choice the quantity of information associated with a message written in 
binary characters, 0 or 1, and containing n uncorrelated characters is equal 
to n bits, since there are 2n equiprobable possible messages and 0"2n = n. 
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In statistical mechanics, the systems are so complex and the possibilities so 
numerous that it will be more convenient to choose k very small (Exerc.3a). 
The discussion in § 1.3.3 suggests already that, if we take for k Boltzmann's 
constant, k = 1.38 X 10-23 J K- 1, and natural logarithms, we can identify 
8 with the entropy of thermodynamics measured in J K- 1 (§ 5.3.2). In fact, 
the choice of the kelvin as the unit of temperature and the joule as the unit 
of energy leads to thermodynamic entropies of macroscopic bodies which 
are numerically neither too large nor too small. For instance, the statistical 
entropy of one mole of spins with 2NA equiprobable configurations (§ 1.2.1) 
equals NA bits, where NA = 6 X 1023 mol- 1 is Avogadro's number, but re
duces to kNA In 2 = 5.76 J K-1 mol- 1 in thermodynamic units. Had we 
chosen to measure entropies in dimensionless units such as bits, their typical 
values would have been large like N A for macroscopic objects. It is thus no 
accident that the value of Boltzmann's constant in J K- 1 is of the order of 
the inverse of Avogadro's number. 

3.1.2 Properties of the Statistical Entropy 

In order to make expression (3.1) for the statistical entropy more translucent 
we list below some of its properties which support the idea that we are dealing 
with a measure of uncertainty or of lack of information. We shall prove these 
properties in § 3.2.2 where we shall return to the form that they take in the 
statistical mechanics framework. 

(a) Maximum. For a fixed number M of events, 8 reaches a maximum, equal 
to (J'M = k log M, when these events are equiprobable. Indeed, we know least 
about the system in this case. More generally, 8 increases whenever two 
probabilities Pm and Pn get closer to one another. 

(b) Minimum. The quantity 8 reaches a minimum, equal to zero, when one 
of the events is a certainty: 

8(1,0, ... ,0) = o. (3.4) 

One gains no information, when one knows in advance which message one is 
about to receive. 

(c) Increase. In the case of M equiprobable events the statistical entropy (J'M 

increases with M. If all possible events are equally probable, the more their 
number increases, the more information we lack. The logarithmic behaviour 
of the increase in (J'M is connected with the fact that information acquired 
when reading a message is proportional to its length, and that the number of 
possible equiprobable messages increases exponentially with the number of 
characters in the message, provided the latter are equally probable and not 
correlated. 
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(d) Impossibility of Events. If some events have zero probability, they can 
just as well be left out of the reckoning when we evaluate the uncertainty: 

(3.5) 

(e) Symmetry. As the M events are treated on the same footing, S(PI, ... ,PM) 
is a symmetric function of its M arguments. 

(f) Additivity. If we consider the occurrence of anyone among the set of 
events 1, ... , m as a single event A, with probability qA = PI + ... + Pm, and 
similarly one of the events m + 1, ... , M as a single event B, it follows from 
(3.1) that 

S(PI, ... ,Pm,Pm+I,··· ,PM) 

== S(qA,qB) +qAS (PI, ... , pm) +qBS (Pm+1 , ... , PM). 
qA qA qB qB 

(3.6) 

This equation expresses that the average information acquired in two stages 
must be added: the first term corresponds to the choice between A and B, 
and the next two terms to the choices inside the groups A and B. We shall 
comment in detail on the form of these terms and their interpretation in 
§ 3.1.3. 

Another form of the additivity of information refers to the particular case 
of M N equiprobable events each characterized by a pair of indices, 1 :::; m :::; 
M and 1 :::; n :::; N. When one of the events (m, n) is realized, we acquire 
the same quantity of information by finding m and n simultaneously, as by 
finding them successively; this can be expressed by 

(3.7) 

(g) Sub-additivity. Consider a composite event corresponding to the combination 
of two events belonging one to a set a = { ... , m, ... , M} and the other to a 
set b = { ... , n, .. . , N}. If the composite event m, n has a probability Pmn, the 
probability of the event m is 

p~ = L Pmn, 
n 

and that of n 

p~ = L Pmn· 
m 

One can show (§3.2.2e) that the statistical entropies associated with these proba
bility laws satisfy the so-called sub-additivity inequality: 

S(p~, ... ,p~, ... ,PM) + S(pt ... ,p~, ... ,p';.) 
(3.8) 
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The equal sign holds when the sets a and b are statistically independent, that 
is, when there is no correlation between the events m and n, in which case the 
factorization of the probabilities, 

a b 
Pmn = PmPn, 

entails the additivity of the statistical entropies. Inequality (3.8) thus expresses that 
we lack less information about a composite system when we know the correlations 
between the events m and n than when we only know the separate probabilities of 
these events. 

(h) Concavity. Consider two probability laws PI, ... ,PM and p~, ... ,p~, relating 
to the same events. Let A be a number such that 0 < A < 1; from P and p' we can 
form a new probability law p~ = API + (1- A)p~, ... , P'lv.r = APM + (1- A)p~. The 
statistical entropy is then a concave function of the probabilities: 

(3.9) 

The proof of this inequality follows from the fact that each term of (3.1) is concave. 
Its interpretation is simple: it means that if we combine two statistical ensembles 
relating to the same events into a single new ensemble, the uncertainty is larger 
than the average of the initial uncertainties. Let us, for instance, consider two bags 
containing balls of M different colours: the probabilities PI, ... ,PM and p~, ... ,p~ 
to draw a ball of a given colour from each bag are proportional to the number of 
balls of each colour in the two bags; if A and 1 - A are proportional to the total 
number of balls in the two bags, the probabilities p~, ... ,p'lv.r correspond to the 
mixture of their contents. The concavity of the statistical entropy, considered as a 
measure ofthe disorder, means simply that this mixture has increased the disorder, 
and it gives a quantitative measure for this increase. 

(i) Shannon's Theorems. In communication theory, one is mainly interested in ex
pression (3.1) for the statistical entropy because of Shannon's theorems (1948). We 
shall here only give the main ideas. I One can distinguish the following elements 
in a transmission system, for texts, numbers, images, sound, and so on. A source 
produces messages, in a language characterized by a probability law with which we 
can associate a statistical entropy. This entropy (3.1) increases with the number of 
possible messages; it decreases if the elementary constituents of the message have 
unequal frequencies or are correlated with one another. The messages are trans
formed by a transmitter into signals which are going to be emitted. This operation, 
which involves coding, that is, a translation into a new language, is necessary to 
make the message suitable for being sent over long distances by a physical process, 
such as electromagnetic waves, electric signals, optical signals, acoustic signals, .... 
Moreover, different codings can be implemented using the same physical process, 
such as amplitude or frequency modulation in radio waves. This flexibility is es
sential for optimizing the communication system, as the elementary signals which 
are to be transmitted have a probability distribution depending both on that of 

1 C.E.Shannon and W.Weaver, The Mathematical Theory of Communication, Uni
versity of Illinois Press, 1949. 
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the original messages and also on that of the chosen code. The channel through 
which the signals are then sent is characterized by the flow rate of the elementary 
signals and by its trustworthiness. In fact, the transmission can be accompanied 
by errors where some of the signals are randomly lost or altered; such noise thus 
destroys signals with a certain probability law, and the capacity of the channel is 
defined in a way which is derived from that of the statistical entropy (3.1), taking 
into account both the flow rate of the signals and the probability law for the noise. 
The chain is completed by a receiver which decodes the received signals for use by 
the addressee. 

Shannon's theorems give a limit to the efficiency of such a communication sys
tem in the form of an upper bound for the amount of information received, on 
average, per unit time. In particular, there exists an optimum coding which de
pends on the initial language and the characteristics of the channel; this makes it 
possible to transmit messages with a mean rate of errors which can be arbitrar
ily small notwithstanding the presence of noise, provided the flow of information 
received is smaller than the capacity of the channel. In order to reduce the trans
mission time, the signals encoding the most frequent elements of the message must 
be the shortest. In Morse telegraphy, the letter E which has the largest frequency 
- 0.10 in English and 0.14 in French - has a single point as its code, whereas the 
rare letters have four elements: for instance, the letter Z which has a frequency of 
5 x 10-4 in English and 6 x 10-4 in French is - - . " and we have - - . - for Q which 
has a frequency of 8 x 10-4 in English and 10-2 in French. Similarly, in stenog
raphy, words or groups of letters which occur frequently are coded by single signs. 
In order to overcome the noise, the coding must be redundant; repetition of the 
signals and their correlations make it possible to compensate for their destruction, 
as the probability for multiple faults is small. In a written text the redundancy 
comes from the existence of groups of correlated letters or words; this enables us 
to understand the meaning of a message without consciously seeing all its letters, 
rapid reading playing the role of transmission with noise. The genetic code con
tains redundancies which make it possible to overcome errors when the DNA is 
duplicated or the proteins are produced. Similarly, the control letter added to the 
number code of cheques reduces banking errors. In all cases, the optimum coding 
realizes a compromise between a compression of the message and redundancies. 

3.1.3 The Statistical Entropy Derived 
from the Additivity Postulate 

We have given earlier (3.1) as the definition of the statistical entropy and we have 
derived from it several properties to support its interpretation as a measure for 
the lack of information. Conversely, we can construct (3.1) from a few intuitive 
requirements which must be satisfied by the information. 

One possible approach consists in first constructing I m , the quantity of infor
mation acquired in the reception of a particular message m. To justify its expression 
(3.3), we postulate the following properties. This information is a function of the 
probability of the event considered; it depends neither on the language used, nor 
on the probabilities of the other messages which could have been received. The 
function Im = I(Pm) is a decreasing function on the interval [0,1]: the more stereo
typed a message is, that is, the larger its probability for being received, the less 
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information it imparts. Finally, the information acquired from two independent 
messages is additive: let us assume that we receive two messages nand m, where 
one is part of a set 1, ... , N with probabilities ql, ... , qN, and the other part of a 
set 1, ... , M with probabilities PI, ... , PM. The information associated with these 
two messages is I(qn) and I(Pm). Let us consider the composite message (n, m) as 
a single message and let us assume that the two sets are statistically independent, 
so that the probability for the composite message (n, m) is qnPm. It is natural to 
postulate that the information I(qnPm) is the sum of the informations I(qn) and 
I(Pm) acquired separately. One could equally well have postulated another kind 
of additivity, grouping the messages as in § 3.1.1£ and considering, for instance, as 
the first message, with probability qA, the specification of the group A, and as the 
second message, with probability PmlqA, the specification of m inside the group 
A, the composite message being the message m itself; the resulting equation for I 
would have been the same. 

One is thus led to construct a function I(p) which decreases in the interval (0,1) 
and which satisfies the identity 

I(pq) = I(p) + I(q). (3.10) 

One can easily prove that the only solution of this problem is given by (3.3). In 
fact, if one restricts oneself first of all to integer lip = M and puts I(lIM) == UM, 

(3.10) implies (3.7). This is an equation which produces the UM for integer M, 
starting from the UM for prime M, with UI = O. In order to determine UM for 
prime M we take advantage of the increase of U as follows: let M and N be given 
and let m be a large integer given beforehand; there then exists an integer n such 
that 

n < 
In N n 1 

< + , 
m In M m m 

that is, such that 

M n :::; N m < Mn+l. 

From the increasing nature of U we find that 

or, if we use (3.7) and divide by m, 

n UN n 1 -<-<-+
m - UM m m 

From the definition of n it then follows that 

which proves (3.2). The constant k is positive, since UM increases with M, but it 
remains otherwise arbitrary. As we thus know I(lIM) = k In M for integer M, 
(3.10) with q = 11M and pq = liN gives us I(p) = -k In(MIN) when P = MIN 
is rational. Finally, the decreasing nature of I(p) extends this function to irrational 
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values of p, which justifies (3.3). The lack of information (3.1) follows by taking the 
average over the various messages m. 

The proof is simpler, if we require that l(p) be a function with a derivative. In 
fact, one can deduce from (3.10) that p1'(pq) = 1'(q), that is, if we put x = pq, 
that 1'(x) = -k/x, where k == q1'(q) is a constant which does not depend on x. By 
integration we then find again (3.3); the integration constant follows from 1(1) = 0, 
itself a consequence of (3.10). 

Alternatively, we can try to construct expression (3.1) for the statistical entropy 
directly. In that case the additivity of the entropy for composite events is not 
sufficient for its complete determination. One can, for instance, check that the 
equality (3.8) for uncorrelated events is satisfied not only by (3.1), but also by the 
so-called a-entropies 

M 
k 

In '" (Pm)Ot, 
I-a L...J 

m=l 

where a is positive and arbitrary. We find the ordinary statistical entropy as a 
-> 1. We shall, nevertheless, prove that, in order to justify (3.1), it is sufficient 
to postulate some of the other properties listed in § 3.1.2. To do this we shall, for 
illustrative purposes, reproduce the reasoning which enabled Shannon to introduce 
this expression. 

The most important postulate is the additivity of the statistical entropy in the 
form (3.6), the interpretation of which we have briefly indicated. We shall add a few 
comments in order to make this property obvious and to explain the role played by 
the various terms in (3.6). The first term, S(qA,qB), expresses that one does not 
know whether the random event is part of the group A or of the group B, and it 
quantifies that uncertainty. We must then estimate the extra uncertainty that, if 
the event is in the group A, we do not know whether it is event 1, or ... , or event 
m, and, if it is in the group B, whether it is m + 1, or ... , or M. We have thus 
two alternatives. Let us assume that the event pertains to group A. The respective 
probabilities of the events 1, ... , m are in that case Pl/qA, ... , Pm/qA; in fact, we are 
dealing with conditional probabilities for 1, ... , M, for the case when A is realized. 
Under that alternative we obtain 'S(Pl/qA,'" ,Pm/qA) for the conditional lack of 
information, for the case when A is realized. Similarly, if we knew that the event 
was part of group B, we would for the associated conditional lack of information 
get S(Pm+1/qB,'" ,PM/qB)' On the other hand, there is a probability qA for the 
group A and a probability qB for the group B. For this reason the second term on 
the right-hand side of (3.6) has the weight qA and the third term the weight qB: 
the ratio of the conditional lack of information to the contribution to the global 
lack of information is thus equal to the ratio of the conditional probabilities to 
the global probabilities Pm. If, in fact, the group A is practically impossible, so 
that qA '::' 0, one does not care much whether one knows what are the relative 
chances for the events 1, ... , m to be realized, as one will hardly ever encounter 
that case. Conversely, if the group A is almost a certainty, so that qA '::' 1, the lack 
ofinformation S(Pl/qA,'" ,Pm/qA) about the events in that group must be almost 
the total lack of information S(Pb ... ,Pm,Pm+b'" ,PM), Similarly, the factor qB 
of the last term on the right-hand side of (3.6) can be dropped if the events m + 1, 
... , M are impossible; it must play the leading role if they are the only possible 
ones. Altogether one can thus interpret (3.6) by stating that one gains the same 
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quantity of information on average whether the observation is made in one or in 
two stages. 

One can, moreover, postulate the continuity of S(P1, ... ,PM) with respect to 
its M arguments and the increase of UM with M. The proof of (3.1) is then carried 
out in two stages. First, we determine the statistical entropy (3.2) for equiprobable 
events and then we derive the general expression (3.1). 

By iterating over the number a of groups of events, we first derive from (3.6) a 
more general form of the additivity, 

S(P1, ... ,Pml,Pml+1, ... ,Pm2,···,Pm",) = S(q1,q2,···,qa) 

( P1 pm1 ) (Pm"'-l +1 Pm", ) + q1 S -, ... , -- + ... + qa S , ... , -- , 
q1 q1 qa qa 

(3.11) 

where q1 = P1 + ... +Pml' ... , qa = Pm",-l +1 + ... +Pm",. A consequence of (3.11) 
when all events have the same probability is then that 

(3.7) 

The construction of UM which satisfies (3.7) has been carried out at the beginning 
of this subsection and led to (3.2). 

One then uses (3.11) to determine S(q1, .. . , qa) when the probabilities ql, ... , qa 
are rational. In fact, let us write q1 = ml/M, ... , qa = maiM. The left-hand side 
of (3.11) corresponds to all probabilities being equal to 11M and is thus equal to 
UM. The first term on the right-hand side is the unknown. The other terms all 
correspond to equal probabilities and thus also follow from (3.2), which leads us to 

( m1 ma) 
S M"'" M 

(3.12) 

Finally, continuity enables us to use (3.12) to find the value of S(P1"",PM) 
for irrational probabilities Pm and this determines S in the form (3.1). 

3.1.4 Continuous Probabilities 

So far we have only considered the case of a finite number of possible events. The 
definition (3.1) can without difficulties be generalized as an infinite series to the 
case of countable events. To extend (3.1) to continuous events, such as the random 
position of a point x along the interval [a, b], we reduce the problem to the case of 
discrete events by cutting this interval up into sections Llxm, centred around a finite 
number of points Xm. For a continuous probability density p(x), the probability Pm 
that x lies within Llxm is p(xm)Llxm, if Llxm is sufficiently small. One then lets 
the Llxm tend to zero, by taking for them the form Llxm = cX(xm), where c --> 0 
and X(x) is a continuous function. We can then use (3.1) to write for the statistical 
entropy 

S = -k L p(xm) Llxm 10g[P(xm) Llxm] 
m 

(3.13) 
m 



3.2 The Statistical Entropy of a Quantum State 111 

The last term tends to infinity. This can be understood: one acquires incomparably 
more information by observing the exact position of a random point along a segment 
than by making measurements with a finite accuracy. We can therefore no longer 
define 8 absolutely. 

If we are only interested in the relative changes in 8 from one probability density 
to another, we can drop the constant term -k log c and limit ourselves to the first 
term on the right-hand side of (3.13), which tends to 

8' = -k J dxp(x) log[P(x)X(x)]. (3.14) 

There is still an arbitrary function X(x) which is, moreover, modified when we 
change the variable x. 

To choose this function X(x) in order to define the lack of information associated 
with a continuous probability density in a natural manner, invariance arguments 
are indispensable for determining the a priori weight X(x). If, for instance, the 
precision of the measurements is the same all along the segment, we must, of 
course, choose the Llxm to be equal, that is, put X(x) = 1. The same choice is 
also compelling in the case of a random signal for which x is the time, because in 
that case the phenomena are invariant when the time origin changes. Apart from 
an additive constant the lack of information is then 

8' = -k J dxp(x) log p(x). (3.15) 

3.2 The Statistical Entropy of a Quantum State 

3.2.1 Expression as Function of the Density Operator 

Let there be a macro-state represented by the density operator jj which can 
be written as 

D = I: 1m) Pm (ml, (3.16) 
m 

in terms of its eigenstates and eigenvalues, and which plays for the system 
a role, similar to that of a probability law. We want to associate with D 
a number S which quantifies the missing quantity of information, that is, 
the quantity of information that one might acquire by knowing the system 
better through microscopic measurements. However, quantum measurements 
differ from the events considered in probability theory as, in general, they 
perturb the state of the system (§§ 2.1.4 and 2.2.5). The results of these 
measurements do not directly give us information about the initial state jj, 
but about the state which is reduced through interaction with the measuring 
apparatus, Ea PaDPa. In order to use the results of § 3.1.1 we must thus 
restrict ourselves to considering those particular measurements which do not 
reduce jj, that is, the ideal measurements represented by the observables, 
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m 

which commute with D. In this case an event is an observation of am and 
the probability that one observes am is Pm, in the general case where the am 
are discrete. We shall examine the case of other measurements in § 3.2.4. 

One is thus led to an ordinary probabilistic problem and it is natural to 
define, as above, the quantity of missing information, or the dispersion, or the 
statistical entropy associated with the density operator D by (von Neumann, 
1927) 

1 S(D) ~ -k ~ Pm Inp," ~ ··k T,-(D In D) I_ (3.17) 

One obtains the last expression by noting that the matrix D is diagonal 
in the base {1m)} and that its eigenvalues are the probabilities Pm. If the 
latter are all equal and if there are W of them, (3.17) reduces to kIn W. 
The constant defining the units, k, is from now on chosen to be Boltzmann's 
constant, k = 1.38 X 10-23 J K- 1 as discussed in § 3.1.1. 

The statistical entropy (3.17) is invariant when one changes the density 
operator D through a unitary transformation as it depends only on the eigen
values Pm of D. This property which reflects the invariance of the structure of 
Hilbert space under a unitary transformation is the quantum generalization 
of the invariance of (3.1) under a permutation (§ 3.1.2e). 

One can also interpret the statistical entropy (3.17) as a measure c:J the 
disorder which exists in the state represented by the density operator D be
cause of the random nature of that state. It may seem shocking to identify 
the lack of information, a quantity of a subjective nature measuring our un
certainty about an incompletely known system, with the degree of disorder, 
a quantity seemingly objective and to be connected with the system inde
pendent of whether we observe it (see § 3.4.3). A comparison will help us to 
understand this identification. Let us consider a game of 52 cards which are 
initially arranged in the natural order: ace of spades, king of spades, queen of 
spades, .... After a thorough shuffling the pack of cards looks to us as being 
perfectly disordered and this transformation seems irreversible. However, if 
the shuffling was done by a nimble conjurer who has arranged the cards in 
an order known only to him, the final configuration is just as ordered for 
him as the initial configuration was for us. Moreover, he can reconstruct the 
former without looking at the cards. The nature of the order is not the same 
in the original and the final situations, but the quantity of disorder is the 
same: it is zero, as knowledge is perfect. The shuffled pack is disordered for 
us because we consider it to be just one possible realization of the 52! possi
ble permutations; we assume these to have the same probability since we do 
not know how the particular configuration was brought about. We shall meet 
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with a similar situation in physics when we analyze spin echo experiments 
(§ 15.4.5). 

The following table shows the correspondence between the various aspects 
of diverse concepts from information theory, depending on the context: 

Probabilities Communications Statistical Physics 

m event message micro-state 

Pm probability law language macro-state 

S 
uncertainty, 
dispersion 

missing 
information 

entro£y, 
disor er 

3.2.2 Inequalities Satisfied by the Statistical Entropy 

We shall review some properties of the statistical entropy in statistical me
chanics, like we did in § 3.1.2 in the framework of information theory. This 
will turn out to support the interpretation of (3.17) as a measure of the in
complete nature of the probabilistic knowledge or as a measure of disorder. 
We shall before that prove an inequality which will be useful several times 
in the present book. 

Lemma. For any pair of non-negative operators X and Y we have 

1 TrXlnY-TrXlnX ::::; TrY-TrX I· (3.18) 

'!:,he eq~l sign holds only when X = Y. The right-hand side vanishes when 
X and Yare normalized density operators. 

Let 1m) and Xm be the eigenvectors and eigenvalues of X, and Iq) and Yq those 
of Y. Let us first assume that the Xm and the Yq are positive. By writing X and Y 
in their respective eigenbases we can write the left-hand side of (3.18) in the form 

L Xm(mlq) In Yq (qlm) - L Xm In X m. 
m,q m 

Using the closure property of the base Iq), that is, the fact that 

L (mlq)(qlm) = 1, 
q 

we can also write this expression in the form 

'"' 2 Yq ~ l(mlq)1 Xm In -. 
Xm 

m,q 
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We use the inequality In x ~ x-I, where the equal sign holds only when x = l. 
This leads to 

m,q 
~ ~ 

TrY-TrX, 
q m 

where we have again used the closure property of the bases 1m) and Iq). Using 
continuity we can extend the result to non-negative operators X and Y; if some of 
the eigenvalues Yq are zero, the left-hand side of (3.18) may be -00. The equal sign 
holds only when Yq = Xm for all pairs m, q such that I (mlq) 12 f:. o. This implies 
that (mlq)(Yq - Xm) = 0, 'if (m,q), whence 

L Im)(mlq) (Yq - Xm) (ql = 0, 
m,q 

which gives Y - X = o. QED 

(a) Maximum. If the possible kets are those of a finite W-dimensional sub
space £: of £H, the statistical entropy is a maximum and equal to 

IS = k log W I (3.19) 

if the probabilities of all the kets are equal to one another. 
To prove this property it is sufficient to apply lemma (3.18), taking for 

X an arbitrary density operator and for Y the operator Iw jW, where Iw 
denotes the unit matrix in the subspace £: considered. The density opera
tor corresponding to the state of maximum disorder in the space £: is thus 

fw jW, which means that all the kets of an orthonormal base of £: have the 
same probabilities, equal to IjW. For instance, for a spin ~ the most disor
dered state is the unpolarized state (2.35). In Chap.l we stated intuitively for 
the example considered that the microcanonical thermal equilibrium state, 
that is, the most disordered macro-state with an energy between U and 
U + LlU, was the one corresponding to equal probabilities Pm. We see now 
that this choice corresponded to looking for the maximum degree of disorder 
as measured by the statistical entropy S, and we regain expression (1.19) or 
(3.19) for the maximum of S. 

(b) Minimum. The statistical entropy S is a minimum and equal to zero in 
a pure state. 

Inversely, the vanishing of S can be used to characterize a pure state, as 
(3.17) is zero only when all Pm except one vanish. The pure states, the ones 
where our knowledge is best, even though they involve quantum uncertainties, 
are those for which the degree of disorder is zero. 
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(c) Additivity. Let us consider a physical system consisting of two statistically 
independent subsystems a and b with density operators Da in the Hilbert 
space c~ and Db in the Hilbert space c~, respectively. The statistical entropy 
of the composite system is the sum, 

(3.20) 

of the entropies of its parts. 
We can prove this equality by writing the density operator D = Da®Db of 

the composite system in the space C H = c~ ® c~ in the factorized base which 
diagonalizes Da and Db. It expresses the fact that the amount of disorder 
contained in a system consisting of two statistically independent parts is the 
sum of the amounts of disorder in each of the parts. 

(d) Correlations. If a composite system is described by the density operator 
D in the space CH = c~ ® c~, the statistical entropies of its parts satisfy the 
sub-additivity inequality 

(3.21 ) 
~ ~ ~ 

where the equal sign holds only when D = Da ® Db. 

We saw in § 2.2.4 that the density operator of the subsystem a, given by 

Da = Trb D, 
is sufficient to characterize the state of the subsystem a as it enables us to evaluate 
the mean values of all observables Aa relating to the subsystem a. Similarly, 

Db = TraD 

characterizes the state of the subsystem b. We introduce a new density operator 

-, - -. 
D == Da®Db. (3.22) 

The state D' is equivalent to D for all measurements carried out on a and b 
separately and represented by operators which have the factorized form Aa ® Ab; 
but it does not contain the information, included in D, about the correlations 
between a and b. To prove (3.21) we express S(Da) as a trace in the space EH: 

and we note that 

an obvious identity in the factorized base of EH which diagonalizes Da ® Db. Using 
(3.20) and (3.22) we have thus 

(3.23) 
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~ ~ ~ ~, 

and applying lemma (3.18) with X = D and Y = D leads immediately to the 
stated result. 

Reciprocally, one can prove that the statistical entropy (3.17) is the only func
tion of the density operator which is invariant under a unitary transformation 
and which satisfies the sub-additivity condition (3.21) and the additivity condition 
(3.20). 

The interpretation of (3.21) is obvious: i\ and Db together contain less 
information than D, which describes as well the correlations between the 
subsystems a and h. In other words, a system is more disordered when its 
parts are statistically independent than when they are correlated. For instance, 
in the case of two spin-~ particles which are coupled in the singlet state (see 

Eq.(2.41)), we have S(Da) = S(Db) = k In 2 and S(D) = 0: each of the spins 
a and b is unpolarized, that is, completely disordered, whereas the correlation 
due to their coupling makes the global system completely ordered. 

In Chap.1 we had another example of an approximate additivity of the type 
(3.20) and of a sub-additivity of the type (3.21). In thermal equilibrium, each 
paramagnetic ion is in a state characterized by the probabilities Pi(±l) given by 
(1.18). In the density operator formalism, the density operator of this ion is 

Di = L 100i) Pi (O"i) (O"il, 
O"i=±l 

and its statistical entropy equals 

Si = -k L Pi(O";) In Pi(O"i)· 
O"i=±l 

Equation (1.19) then simply expresses the fact that the global statistical entropy 
behaves, in the limit as N ..... 00, as the sum of the statistical entropies of the 
paramagnetic ions 

S = k In W "" LSi. (3.24) 

This was to be expected as in that limit the magnetic moments tend to be statis
tically independent in thermal equilibrium (§ 1.2.5). 

Moreover, (1.19) contains corrections for finite N. As there are small, but for 
finite N non-negligible, correlations between the magnetic moments, we expect, by 
virtue of (3.21), that S < I:i Si. Indeed, for large N, the quantity S = k In W, 
given by (1.14), (1.17'), differs from (1.17) by 

L Si - k In W "" k In ALlU "" ~ k In N. (3.25) 

This expression, which is clearly positive, represents the order associated with the 
weak correlations between the spins resulting from the fact that their sum is fixed, 
with a finite dispersion when N -> 00. 
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The additivity (3.20) and the sub-additivity (3.21) are generalizations of (3.8), 
but quantum mechanics brings in new, sometimes unexpected, features. For in
stance, one might think that a partial statistical entropy S(Da) is smaller than the 
global statistical entropy S(D), and that there is less disorder in part of the system 
than in the whole system. This is not always so in quantum mechanics. Let us, for 
instance, consider two spin-~ particles coupled in the completely ordered singlet 
state; the global entropy S is zero. Nonetheless the spin a, which is unpolarized, is 
completely disordered (Sa = kin 2). If, on the other hand, one considers a com
posite system, the density matrix D of which is diagonal in a factorized base of 
t:ii 0 t:~, one can easily prove that S ~ Sa. Because of correlations of a quantum 
nature between the subsystems a and b one cannot state in general that the whole 
contains more disorder than one of its two parts. Inequality (3.21) shows, on the 
other hand, that the whole always contains less disorder than the sum of its two 
parts. 

(e) Concavity. The statistical entropy is a concave function on the set of 
density operators in a given Hilbert space t'H: for any pair fh and D2 we 
have, if 0 < A < 1, 

(3.26) 

where the equal sign holds only when DI = D2 • 

The proof is less direct than in § 3.1.2h because DI and D2 may not commute. 
If we write 

and apply lemma (3.18) successively to the two terms on the right-hand side of 
(3.26) first with X = DI, Y = D, and then with X = D2, Y = D, we find that 

AS(DI) + (1 - A)S(D2) ~ -kA Tr DI In D - k(l - A) Tr D2 In D, 

whence (3.26) follows. The equal sign holds only when D = DI and D = D2. 

The concavity inequality, on the interpretation of which we have already 
commented using an example in § 3.1.2h, means that combining two states 
of the same system in a single statistical mixture increases the disorder as 
measured by the statistical entropy. For instance, if we include in the same 
statistical ensemble spin particles which are differently polarized, we lose 
information. 

Inequality (3.26) can immediately be generalized, by iteration, to any 
number of states Dj relating to the same system. If one regroups within the 
same statistical ensemble several populations described by density operators 
Dj with respective weights ILj, where ILj > 0 and L:j ILj = 1, the resulting 
statistical mixture is on average more disordered than the initial statistical 
mixtures: 
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(3.27) 

3.2.3 Changes in the Statistical Entropy 

The change in an operator function f(D), such as D In D, which results 
from an infinitesimal change 8D in the density operator, is not necessarily 
equal to f'(D)8D, because D and 8D may not commute. However, when one 
considers the trace, taking the derivative is justified (Eq.(2.19)). In fact, we 
have 

n-l 

L Tr xm 8X xn - m-1 

m=O 

whatever the value of n, and we can imagine f(D) to be expanded in powers 
of X = f - D. We get thus 

8S(D) = -k Tr8D (In D + 1) -k Tr(8D In D), (3.28) 

wh~e the last term in the second part of this equation vanishes since 
TrD=l. 

In particu~r, if the system evolves freely according to (2.49), with a 
Hamiltonian H which is completely known, we have, if we use the cyclic 
invariance (2.16) of the trace, 

in dS = _ Tr [it D] In D 
k dt ' 

- Tr it [D, In D] = 0, (3.29) 

and its statistical entropy remains constant in time: when an isolated system 
evolves according to a perfectly known equation of motion, its density op
erator may change, but the missing amount of information associated wit,E 
it remains unchanged. We know, in fact, that during such an evolution D 
changes according to a unitary transformation (2.50) and we have indicated 
in § 3.2.1 that the statistical entropy is invariant under a unitary transfor
mation. 

Let us now consider an isolated system, with an evolution which we do 
not know completely. The density operator changes according to (2.51). Each 
of the possible evolutions j would conserve the information: 

(3.30) 

However, the concavity inequality (3.27) together with (3.30) shows imme
diately that 

S(.o(t)) > S(.o(O)) ,. (3.31 ) 
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Even though the Schrodinger equation is invariant under time reversal, 
statistics has thus introduced a preferred time direction. One loses infor
mation during the evolution of an isolated system, if its Hamiltonian is not 
completely known. This evolution is irreversible: the statistical entropy, that 
is the disorder, increases. Of course, the time necessary for this loss of mem
ory, or for this increase in disorder, may be very long if the Hamiltonian is 
nearly certain. 

Let us finally note that the statistical entropy of a system which is not 
isolated may either increase or decrease: such a system can, in fact, gain 
order, when it interacts with an external system which is well ordered, by 
yielding to it part of its statistical entropy. 

3.2.4 Information and Quantum Measurements 

A measurement always involves a system which is not isolated, since the object 
considered and the apparatus must interact at some time and afterwards be sepa
rated. Let us analyze the changes in the statistical entropy of the object during this 
process, distinguishing as in § 2.2.5 two stages. The first stage, which is specifically 
quantum-mechanical, consists in letting the object interact with the apparatus and 
then separating them in such a way that one no longer will be interested in the 
observables which would couple them. We have seen (Eq.(2.44)) that in an ideal 
measurement this stage brings the object to a state DA = L:a PaDPa through an 
irreversible transformation. Let us prove that the statistical entropy has increased 
through this truncation of the density operator: 

(3.32) 

If we use the cyclic invariance of the trace we can write SeD A) in the form 

In a base which diagonalizes A, the matrices D A and thus In D A consist of diagonal 
blocks each relating to a projector Pa so that In D A remains unchanged under a 
new truncation. We have thus 

S(DA) -k Tr {D ~ Pa(ln DA)Pa } 

= -k Tr (D In DA ). 

The use of lemma (3.18) with X = D and Y = D A then proves inequality (3.32) 
which reduces to an equality only when D commutes with A. The reduction of 
the density operator thus increases the disorder irreversibly; using communication 
theory language, it makes us lose information. This is natural, as by separating the 
apparatus from the object we are forced to neglect certain correlations which exist 
between them and which appeared during their interaction. These correlations, of 



120 3. Information Theory and Statistical Entropy 

a quantum nature, are related to the presence in D of off-diagonal elements which 
prevent it from commuting with A. 

After this stage there remain between the apparatus and the object other cor
relations, of a classical nature, which mean simply that if one observes a", in the 
apparatus, the object is in the state 

These correlations refer to each individual experiment performed on the statistical 
ensemble described by D; they are essential when one uses an ideal measurement 
as a preparation of a state D A, since they allow one to sort out the systems of this 
ensemble according to the outcome a", of the measurement. The statistical entropy 
of the final state D", characterizes the degree of disorder reached by the systems on 
which aa has been observed. In the case of a complete ideal observation, where the 
space a has one dimension, the final state is pure with zero entropy and the quantity 
of information gained by the observation is S(D A)' In the case of an incomplete 
observation, the uncertainty S(D",) about the final state is not necessarily smaller 
than S(D), nor even than S(DA)' This fact may seem surprising, but it also occurs 
in communication or probability theory where an incomplete observation may also 
lead to a loss of information. For instance, if one draws a card from a pack containing 
1000 aces of hearts, 1 ace of spades, and 1 ace of clubs, the initial uncertainty, 0.02 
bit, is small; however, in the case where a partial observation indicates that the 
card drawn is black, the remaining uncertainty would equal 1 bit. Nevertheless, on 
average, observation will increase our information as is natural. In fact, the mean 
information gained by reading the results a", of measuring A when the system was 
initially in the state jj equals, according to (3.1), 

SA = - k L P(a",) In P(a",), (3.33) 

'" 
where P(a",) = Tr DP", is given by (2.46). The identity 

(3.34) 

expresses that this information gained by observing the results a", is equal to the 
average decrease in the uncertainty between the final state D A of the whole sta
tistical ensemble and the states D", after the sorting out. Identifying S(D) with 
the thermodynamic entropy, (3.34) means therefore that an observer may make 
the entropy of a statistical ensemble of systems decrease, at the expense of some 
information which he possesses. 

The statistical entropy satisfies several other relations related to the transfer of 
information in a quantum measurement.2 We shall here restrict ourselves to sum
marizing them with a short interpretation, and without any proofs. The inequality 

(3.35) 

2 R.Balian, Europ. J. Phys. 10, 208 (1989). 
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shows, on comparison with (3.11), that quantum mechanics spoils the additivity of 
the information. Acquiring information about A must in a quantum measurement 
be paid for by the destruction of some information (3.32) when D does not commute 
with A. 

On the other hand, one can show that 

S(D) ~ L P(ao;) S(Do;), (3.36) 

where the equal sign holds only when S(Do;) S(D) for all O!. According to 
this inequality an ideal quantum measurement makes the statistical entropy of the 
systems that we observe decrease on average. In other words, the gain of information 
SA through observation is larger than the loss S(D A) - S(D) due to the reduction 
of the wavepacket. In the special case where the initial state D is pure, (3.36) 
implies that the reduced states Do; themselves also are pure; one can check this 
from (2.45). 

As we noted towards the end of § 2.2.5, the definition of an ideal measurement 
implies that the perturbation produced in the system by the measuring apparatus 
is minimal and that it involves only the observables which do not commute with 
A. Let us introduce the class of density operators D' which are equivalent to D as 
far as all observables e which are compatible with A are concerned: 

-,- --
Tr DC = Tr DC, ve, such that [e, A] = o. (3.37) 

The state D A belongs to this class and one sees easily that 

(3.38) 

where the equal sign holds only when D' = DA. As a result S(DA) is the upper 
~I ~ ~ 

bound of the entropies S(D ). The reduction of D to DA not only leads to a loss 
of information, but that loss (3.32) is the largest possible one, taking into account 
the conserved information (3.37). 

In classical physics we have D A = D so that according to (3.34) the information 
gained by the observation cannot be larger than the initial uncertainty S(D). This 
is not necessarily so in quantum mechanics. For instance, a-complete measurement 
will always leave the object in a pure state and SA then reduces to S(DA): by a 
complete observation one gains on average the information S(D A) which is larger 
than S(D). This apparent paradox, peculiar to quantum mechanics, is related to 
the fact that an observation does not give us information directly about the initial 
state, but about the reduced state D A which itself retains a certain memory of the 
former, but which is more disordered. 

One should note finally that the quantity S characterizes the lack of information 
about the set of measurements of all the observables associated with the object. 
One may be inclined to drop certain measurements which cannot be realized, for 
instance, those which imply correlations between a large number of particles; one 
thus discards information which, in principle, is contained in the density operator 
but which in practice is out of reach. An example of such an omission was provided 
by the first stage of the measurement of A with which the loss of information (3.32) 
was associated; the density operator D A retains the same information as D about 
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the observables that commute with A but some information associated with other 
observables has been dropped. The apparent disorder of a system relative to the 
set of measurements considered is thus larger than the absolute disorder defined 
by (3.17). In particular, the latter remains constant in time (Eq.(3.29)) whereas a 
relative disorder S(D A) can grow if some quantity of information, connected with 
practicable measurements, flows towards those which are not practicable. These 
remarks enable us to understand one possible origin of irreversibility (§ 3.4.3, Ex
erc.3c, and § 15.4). 

3.3 The Statistical Entropy of a Classical State 

3.3.1 Classical Statistical Entropy 

Taking the limit (2.69), (2.93) which enables us to change from quantum 
mechanics to classical mechanics, we find that the statistical entropy can be 
expressed in terms of the phase density function as follows: 

(3.39) 

which is the classical limit of (3.17). If the number of particles N is well 
defined, (3.39) reduces to a single integral over the 6N variables of phase 
space. 

The density in phase is a continuous probability measure so that the direct 
justification of (3.39) without starting from quantum mechanics runs into the dif
ficulties underlined in § 3.1.4. In order to lift the arbitrariness of formula (3.14) 
we should choose a division of phase space into volume elements considered to be 
equivalent a priori. The equivalence of equal volumes dTN of phase space has, in 
fact, been justified in § 2.3.3 by Liouville's theorem which expresses the invariance 
of the volume dTN during any temporal evolution. As to a comparison between 
different values of N, we have given in § 2.3.2 an interpretation of the factor liN! 
in dTN: since the particles are indistinguishable, the information that would consist 
in stipulating which of the particles is at a given point of phase space cannot be 
made available. Quantum mechanics provides us with a simpler justification, as it 
identifies the volume dTN with a number of orthonormal quantum states, which all 
have the same a priori weight. 

It may appear surprising that the continuous structure of EH has not led to any 
similar difficulties in quantum mechanics, and that the statistical entropy (3.17) 
has the same form as the lack of information (3.1) for discrete probabilities. In fact, 
one has used implicitly the invariance under unitary transformations which means 
that S(D) is independent of the orthonormal base 1m) of the eigenstates of D. 
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3.3.2 Properties 

In contrast to the quantum statistical entropy which is non-negative and 
vanishes for a pure state, the classical statistical entropy (3.39) has no lower 
bound. As a result, if we get a negative S(D), it means that the density in 
phase D cannot be considered to be the classical limit of a density matrix 
jj and that the classical limit therefore is not valid. For instance, S -+ -00 

for the density in phase (2.57) which represents a completely known classical 
state; this kind of state, for which LlxLlp = 0, clearly violates the principles 
of quantum mechanics and cannot be allowed. 

The other properties of the classical statistical entropy are like those of 
the quantum statistical entropy provided we replace traces by integrations 
over phase space. In particular, we note that for a system, the representative 
point of which is constrained to lie inside a domain w of the N-particle phase 
space, the entropy is a maximum when the density DN is constant inside w, 
and vanishes outside it. We denote by 

W = 1 dTN (3.40) 

the volume of the domain w in phase space, measured in units which depend 
on Planck's constant through the definition (2.55) of dTN. If W is large, it 
can be interpreted as the number of orthogonal quantum micro-states in w. 
The density in phase D N , which is constant in w, is normalized by (2.56) as 
D N = 1 jW; its corresponding statistical entropy is thus 

S(DN) = k log W, (3.41) 

which is the classical equivalent of (3.19). 

3.4 Historical Notes About the Entropy Concept 

It has often been said that expression (3.41), which is written on Boltzmann's 
grave (Fig.3.1), symbolizes one of the major advances in science. Indeed, it 
was an essential beacon for the understanding of the important concept of 
entropy. This concept plays a central part in the present book, where we are 
following a logical path,in contrast to the historical order in which the various 
ideas were introduced. In order better to understand the ideas in question we 
shall sketch how, during the last century and a half, they developed thanks 
to a fruitful interplay of many different disciplines, namely, thermodynam
ics, analytical mechanics, statistical physics, and communication theory. As 
so often in science, progress has been made through gradually enlarging our 
horizons; however, in the present case the road has been a particularly diffi
cult one.3 

3 S.G.Brush, The Kind of Motion we call Heat, Studies in Statistical Mechan
ics, Vol.VI, North-Holland, 1976; C.C.Gillespie (Ed.), Dictionary of Scientific 
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= k. log \\ 

Fig. 3.1. The Boltzmann memorial in Vienna. Photograph by courtesy of the Picture 
Archive of the Austrian National Library, Vienna 

3.4.1 Entropy in Thermodynamics 

The creation of thermodynamics can be attributed to Sadi Carnot (Paris 1796-
1832) who in his "Reflexions sur la puissance mot rice de feu" (1824) introduced 
the Second Law in the following form : "La puissance motrice de la chaleur est 
independante des agens mis en ceuvre pour la realiser; sa quantite est fixee unique
ment par les temperatures des corps entre lesquels se fait en dernier resultat Ie 
transport du calorique" . This statement contains the germs of a possible construc
tion of the entropy, but for this to be done it was necessary that the equivalence 
between work and heat was recognized. 

At that time scientists were wondering about the nature of heat. Was it a 
substance made of particles or was it an imponderable fluid, called "calorique" by 
Guyton de Morveau, Lavoisier, Berthollet , and Fourcroy in 1787, which could be 
conserved during exchanges? Was it a kind of radiation, perhaps similar to light 
- that Young and Fresnel had just shown to have a wave nature - as Herschel's 
experiments on infra-red rays suggested? Was it connected with the motion of 
molecules or was it even a "mode of motion" as was proposed by Rumford and 

Biography, 16 Volumes, Scribner, New York, 1981; the complete scientific works 
of most authors quoted below have been gathered in book form, and extensive 
references are given in this dictionary. 
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Davy, who relied on their experiments on the boring of cannon (1798) or the melting 
of ice by friction? 

Carnot himself understood between 1825 and 1832 that "la chaleur n'est autre 
que la puissance motrice ou plutot que Ie mouvement qui a change de forme, c'est un 
mouvement"; he stressed that the quantity which was conserved was not the heat, 
as he had still thought in 1824, but the energy: "Partout ou il y a destruction de 
puissance motrice dans les particules des corps, il y a en meme temps production de 
chaleur en quantite precisement proportionnelle it la quantite de puissance detruite 
.... On peut donc poser en these generale que la puissance mot rice est en quantite 
invariable dans la nature, qu'elle n'est jamais it proprement parler ni produite ni 
detruite. A la verite elle change de forme". Unfortunately, Carnot's posthumous 
notes which stated the position so clearly were not published until after 1878. It 
was therefore only after 1847, the year when conservation of energy was definitely 
established (§ 5.2.1), that the Second Law could be expressed in a mathematical 
form. 

Between 1848 and 1854, William Thomson, the later Lord Kelvin (Belfast 1824-
Netherhall, Scotland 1907) and Rudolf Clausius (Coslin, Prussia 1822-Bonn 1888) 
analyzed Carnot's principle of the maximum efficiency of heat engines in the light 
of energy conservation. They only knew Carnot's work through a publication of 
Clapeyron who had in the meantime introduced the concept of reversibility. They 
reformulated and numbered the First and the Second Laws in a logical order. In 
1848, Thomson defined the absolute temperature, which made it possible to give a 
simple expression for the efficiency of reversible engines. Clausius, in 1854, made a 
decisive step forward by introducing under the term "Aequivalenzwerth" (equiva
lence value) or "Verwandlung" (conversion) what was to become the entropy. He 
defined the equivalence value in the conversion of work into heat Q at a temperature 
T as Q/T, in such a way that for a reversible engine one has Q1/Tl + Q2/T2 = o. 
More generally, he showed that i {;Q/T vanishes for any reversible cyclic process 
and is positive otherwise. 

The quantity {; Q/T which is conserved in reversible processes was by some 
people identified with the old "caloric". In 1865, the terminology was a source of 
confusion and Clausius, after having proved that the equation dS = {;Q/T defines 
a function S of the state of a system which increases in a spontaneous adiabatic 
process, gave it the name entropy; this name was based on the Greek rp01rr, (trans
formation) by analogy with the name energy. Entropy thus appeared as an indicator 
of evolution, giving a mathematical expression for the "arrow of time". Clausius's 
book ends with the famous words: "Die Energie der Welt ist konstant. Die Entropie 
der Welt strebt einem Maximum zu" . 

3.4.2 Entropy in Kinetic Theory 

Having been introduced in this way in thermodynamics the entropy remained a 
rather mysterious quantity. There was nothing which enabled one to understand the 
significance of irreversibility, a concept directly coupled with the entropy, whereas 
energy conservation swept all before it. The situation gradually became clearer, at 
least as far as the physics of gases was concerned, thanks to the introduction of 
statistical methods in kinetic theory. 

Starting in 1860, James Clerk Maxwell (Edinburgh 1831-Cambridge 1879) 
developed the theory of gases, that he described as assemblies of uncorrelated 
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molecules with a statistical position and velocity distribution characterized by the 
single-particle density f (§ 2.3.5); slowly there began to appear connections between 
thermodynamics, dealing with macroscopic scales, and probability theory, dealing 
with microscopic scales. The irreversibility accompanying the conversion of work 
into heat was interpreted as an increase in the disordered motion of the molecules: 
while their total energy is fixed, the molecules can have, for instance, a distribution 
f peaked around the value p = mv for a cold gas which is moving as a whole, or 
they can have an isotropic, but broader distribution f for a heated gas which does 
not move in bulk. The disorder is larger in the second case. 

It fell to Ludwig Boltzmann (Vienna 1844-Duino near Trieste 1906) to make 
this argument a quantitative one. Being convinced that analytical mechanics should 
govern all natural phenomena, he set himself the task, right from the beginning of 
his career, to find a mechanical interpretation for the entropy so as to understand 
why it always increases; this long quest he pursued during the whole of his life. 
His first attempt, in 1866, resulted in associating an entropy with a molecular 
system which followed a periodic trajectory. Soon, however, Boltzmann recognized 
under the influence of Maxwell that in less exceptional situations, it is necessary to 
introduce statistics. This enabled him, between 1868 and 1871, to find an equation 
which is the forerunner of Eq.(4.30) that we shall find in the next chapter; this was 
the first time that the entropy of a classical system in equilibrium was expressed as a 
function of the Hamiltonian describing the molecular dynamics on the microscopic 
scale. 

The problem of the increase in the entropy remained unsolved. In 1872, Boltz
mann wrote down the equation that bears his name to describe the evolution of 
the single-particle distribution for a rarefied gas (Chap.15). He associated with f 
a quantity, 

(3.42) 

which he called H. He proved that H decreases with time, remaining constant only 
if f is the thermal equilibrium distribution introduced by Maxwell: the celebrated 
H -theorem. He noted that for a perfect gas at equilibrium, apart from the sign and 
additive and multiplying constants, H is identical with Clausius's entropy. This 
enabled him to conclude that he had extended this concept to non-equilibrium 
situations and that he had found- at least for gases - a microscopic explanation 
of the Second Law. 

In 1877, Boltzmann returns to the problem of an arbitrar-y system, changing 
from kinetic theory to a more general statistical mechanics. Identifying the proba
bility concept with that of the number- of microscopic configurations, he poses that 
the macroscopic thermal equilibrium state is the "most probable" state; as we did 
in § 1.2.2 he suggests that this macro-state is on the microscopic scale the micro
canonical equilibrium state where all W possible configurations, compatible with 
the macroscopic data, are equally probable. He thus identifies the entropy with 
a measure of likelihood: "so konnen wir diejenige GroBe, welche man gewohnlich 
als die Entropie zu bezeichnen pflegt, mit die Wahrscheinligkeit des betreffenden 
Zustandes identifizieren", which is represented by the famous formula (3.41). Irre
versibility expresses the evolution from a less probable to a more probable state, 
where Wand S are larger. Nonetheless, the significance of Wand S was not yet 
completely clarified. Indeed, the probability concept itself had not been used in an 
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absolutely clear manner. Moreover, it was difficult to define W in classical mechan
ics since the configurations form a continuum (§§ 3.1.4 and 3.3.1). We have seen 
that it is impossible to write down the correct expression (3.40) for W without 
considering classical mechanics as the limit of quantum mechanics. This problem 
does not arise for problems which are truly quantal (§ 1.2.2). In fact, Boltzmann 
himself replaced, as a mathematical artifice, the continuous energy spectra of clas
sical mechanics by discrete spectra; this suggestive idea was going to help Planck 
in 1900 to introduce the quantization of radiation (§ 3.4.4). 

In thermodynamics the entropy concept was from the beginning intimately 
connected with that of heat. Kinetic theory helped to decouple these two concepts 
and to demonstrate the more general nature of the entropy, as a measure of disorder. 
For instance, the mixing of two distinguishable gases at the same temperature and 
with the same density is not accompanied by any thermal effect, but nevertheless 
it leads to an increase in entropy. Maxwell had already in 1868 compared this 
mixture with that of black and white balls (§ 3.1.2h), stressing its irreversibility. The 
paradigm of a mixture has later on taken the place of that of heat transfer as a guide 
to an understanding of entropy. Moreover, between 1873 and 1878, Josiah Willard 
Gibbs (New Haven 1839-1903) extended the realm of entropy in thermodynamics 
to open systems which can exchange molecules: mixtures of several components, 
equilibria between phases, chemical equilibria, .... He came back to this question 
in 1902 in the framework of equilibrium statistical mechanics (§§ 2.3.6 and 4.3.2). 

3.4.3 The Period of Controversies 

The probabilistic and microscopic interpretation of the entropy was not accepted 
easily. In order to understand why the discussion of this topic during the last quar
ter of the nineteenth century was so animated, one must steep oneself in the ideas 
dominating that period. Continuum sciences, such as electromagnetism, thermody
namics, or acoustics, were all the vogue and atomism was therefore considered to 
be old-fashioned. Kinetic theory was subjected to serious scientific criticism: there 
was a lack of rigour, one used hypotheses which did not have a proper foundation, 
one adjusted the intermolecular forces empirically, depending on which effects one 
was studying, and there were serious failures, such as the impossibility to explain 
the specific heats of gases, other than monatomic ones. Moreover, the philosophi
cal background had changed. Many scholars rejected the mechanistic vision of the 
world of which kinetic theory was the latest step, and were against introducing 
hypothetical objects such as the atoms were at that time. Energeticists like the 
physical chemist Wilhelm Ostwald considered energy rather than matter as the 
final reality; positivists like the physicist and physiologist Ernst Mach went even 
further by stating that science should restrict itself to establishing empirical rela
tions between the perceptions of our senses. Under those circumstances, why should 
one worry and go beyond the framework of thermodynamics? 

The opponents of kinetic theory were not the only ones to lodge objections. The 
advocates of the statistical interpretation of entropy, trying to understand it better, 
themselves encountered difficulties. They illustrated these by stating paradoxes 
which were not completely solved until much later - in the framework of information 
theory or of quantum theory. 

The Gibbs paradox (1875) is based upon the following observation. When one 
mixes two gases, the entropy does not change if the molecules are identical, but it 
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increases by a finite amount if they are distinguishable. Gibbs asked what would 
happen, if the molecules a and b of the two gases could be distinguished, but 
only through their interactions with a third kind of molecules, c. In so far as the 
existence of these last molecules is not known, the mixture of a and b behaves like 
that of two parts of the same gas; however, afterwards, one has an opportunity 
of separating the mixture a+b into its components through a reversible process 
involving c. From this Maxwell concluded that the entropy to be assigned to the 
mixture differs according to whether or not the c molecules have been discovered. 
The entropy is therefore not a property only of the system, but depends also on our 
knowledge: "confusion, like the correlative term order, is not a property of material 
things in themselves, but only in relation to the mind which perceives them" . The 
Gibbs paradox was not unravelled, not even for perfect gases, without the help of 
quantum statistical mechanics (§ 8.2.1). As a matter of fact, it helped to sort out 
the problem of the indistinguishability of particles in quantum mechanics. 

The irreversibility paradox (W.Thomson 1874, J.Loschmidt 1876) is based upon 
a qualitative difference between thermodynamics and analytical mechanics: how 
can one reconcile the macroscopic irreversibility which shows up in the increase 
of S with a microscopic dynamics which is invariant under time reversal? This 
contradiction led to passionate controversies, with kinetic theory as the stakes, as 
we have seen, and they went on long after kinetic theory was well established. 

Even though they have not always been satisfactory, the solutions proposed for 
the irreversibility paradox have been essential for an understanding of statistical 
mechanics. Maxwell's idea was a subterfuge: he imagined that there were stochas
tic perturbations superimposed upon Hamiltonian dynamics; Eq.(3.31) shows in 
modern terminology that such perturbations increase the disorder as measured by 
the entropy. This, however, does not enable us to understand what happens to 
an isolated system governed by deterministic and reversible microscopic dynamics. 
W.Thomson (1874), and later Boltzmann (1877), using as an example a volume 
filled with air, noted that there is only an infinitesimal fraction of configurations 
such that the oxygen and nitrogen molecules are separated in space; taking the 
value of Avogadro's number which was used at that time, Thomson made a nu-

12 
merical estimate which came to 10-10 . This demonstrates the improbability of a 
spontaneous separation of the mixture. The law of large numbers makes violations 
of the Second Law so rare that the increase in the entropy appears to be inescapable 
on the macroscopic scale. 

Starting in 1877, Boltzmann considered another important idea which was later, 
in 1902, developed systematically by Gibbs. Statistical mechanics describes not 
a single object, but an ensemble of systems: the entropy is a statistical concept 
attached to this ensemble, rather than a function of the coordinates of the molecules 
of an individual system. Its increase is a probabilistic property, which is practically 
certain for macroscopic systems. However, the possibility that one might observe 
for some individual system an increase in order is not completely ruled out. For 
instance, it is not excluded that the molecules of a mixture at a later stage divide 
up, but only starting from certain very special and extremely improbable initial 
conditions. 

The debate was sustained by Poincare's recurrence theorem (1889) which states 
that almost all trajectories of a dynamic system return to the vicinity of the initial 
point after some shorter or longer period. The mathematician Ernst Zermelo con
cluded from this (1896) that, if thermodynamic systems obey the laws of mechanics 
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on the microscopic scale, the entropy should behave periodically rather than mono
tonically. Boltzmann replied by coming back to the idea that the entropy was not 
simply a function of the dynamic variables, but that it had a probabilistic nature. 
He also noted that the Poincare recurrence times are huge and unobservable for 
macroscopic systems; even for a few particles they already reach billions of years. 

The irreversibility problem was also extended in this period to cosmology. Does 
the Universe show a recurrent behaviour like a dynamic system, or does it evolve 
towards a "thermal death" where the temperature and the density are uniform, 
as Clausius's statement requires? In that case, why has equilibrium not yet been 
reached? One should note that the current idea of the Universe at that time was 
one without a beginning and without boundaries. Boltzmann's reply (1897) is in
teresting. As certain specific initial conditions can lead to the creation of order -
which eventually will disappear - there is nothing to prevent that that part of the 
Universe in which we find ourselves is the result of such a fluctuation; this is very 
improbable, but not prohibited for an infinite Universe. 

These discussions of the irreversibility paradox remained, however, qualitative. 
In the only case studied with a certain amount of mathematical rigour - that of di
lute gases - there remained a contradiction between the reversibility of microscopic 
mechanics and the irreversibility expressed by the H-theorem. This sowed doubts 
either about the Boltzmann equation from which the H-theorem followed directly, 
or about the microscopic and probabilistic interpretation of the entropy. This ques
tion was elucidated by Paul Ehrenfest (Vienna 1880-Amsterdam 1933) and his wife 
Tatyana. They proposed in 1906 a simple statistical model which helped to under
stand how a reversible and recurrent evolution like the ones in mechanics can be 
compatible with an irreversible progress to thermodynamic equilibrium (Exerc.4g). 

They also discussed in 1911 the H-theorem and, more generally, the irreversibil
ity of dynamic systems. In § 15.4 we shall come back to the modern explanation 
of this question, which is based upon their ideas; we give here the main outline of 
that discussion. As Boltzmann's equation is irreversible, it cannot be entirely exact. 
This, however, is not the difficulty, as the evolution of the reduced single-particle 
density f that it provides is an excellent approximation if the gas is dilute; the error 
does not become significant until after periods of the order of Poincare's recurrence 
time. The essential point is that, away from equilibrium, one must consider simul
taneously several more or less detailed microscopic descriptions. Each of those is 
associated with an entropy so that the entropy is not a unique quantity. If one were 
able to follow the evolution of all the observables, that is, of all the matrix elements 
of D or of all details of the phase density D, the associated entropy S(D) would 
remain constant, according to (3.29). However, if one only follows f, the evolution 
of which obeys Boltzmann's equation, one is led to introduce another statistical 
entropy, which measures only the uncertainty relative to f. It is this entropy, di
rectly related to (3.42), of which the H-theorem proves the growth. It is the same 
as S(D) when there are no correlations between the molecules, in which case D can 
be factorized (Eq.(2.58) and § 2.3.5). We shall also show that for a dilute gas it is 
identical with the entropy of non-equilibrium thermodynamics on not too short a 
time scale. Its increase can then be interpreted as a leak of information from the 
single-particle degrees of freedom, described by f, towards the inaccessible degrees 
of freedom associated with the correlations between a large number of molecules, 
produced during the evolution of the system. More generally, let us assume that the 
observables can be classified into two categories, the simpler ones being considered 
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as the only relevant ones, while the other ones are too detailed to be significant. 
For example, a coarse-graining of space into little cells eliminates those observables 
which correspond to measurements with a greater precision than the size of the 
grains. One can then introduce a statistical entropy associated with the relevant 
observables (Exerc.3c). Its growth characterizes the fact that the evolution appears 
to be irreversible when one disregards the irrelevant variables. 

The most famous paradox is the one of Maxwell's demon which Maxwell in
vented in 1867. He considered a vessel with two compartments A and B connected 
through a small hole. A tiny demon posted in front of the hole can open or shut 
it with a cover which is so light that one can neglect the work involved in manip
ulating it. Initially A and B contain gases at the same pressure and temperature. 
The demon lets only the fastest molecules pass from A to B and the slowest ones 
from B to A - or, alternatively, he only lets those molecules pass which go from A 
to B. The temperature, or the pressure, of B therefore increases at the expense of 
A so that the entropy of the A+B system decreases, violating the Second Law. It 
has taken more than a century to give a complete refutation of this paradox. 

First, W. Thomson remarked (1870) that the demon, being alive, might per
haps not obey the laws of thermodynamics. This argument was not satisfactory, as 
the Second Law holds for biological processes; however, this validity was not estab
lished until much later through theoretical and experimental work by physicists, 
biochemists, and physiologists, and in the most diverse sectors of biology. In actual 
fact, in living organisms order increases, but the decrease of their entropy is more 
than compensated for by a larger increase in the entropy of their environment. 

Avoiding this kind of problems, Marian Smoluchowski (Vienna 1872-Cracow 
1917) returned in 1912 to the analysis of Maxwell's paradox, but with an auto
matic demon. Indeed, let us consider the situation where the demon and its cover 
are replaced by an automatic device, a valve which lets through only molecules 
travelling in one direction, from A to B, in the same way as diodes in electronics 
rectify a current, filtering the electrons according to their direction of propagation. 
Earlier, Smoluchowski had worked out the theory of fluctuations which always oc
cur in small systems at non-zero temperatures (Exerc.2b and § 5.7). He noted that 
for all imaginable mechanisms of the Maxwell demon type the apparent violation 
of the Second Law occurs through taking advantage of the fluctuations of the sys
tem. For instance, the possibility to let the pressure in compartment B increase is 
based upon the existence of fluctuations of the molecular velocities around their 
- zero - average value; these fluctuations imply that at certain moments there are 
more molecules in the vicinity of the hole which move from A to B than from B 
to A, and this makes it possible to select them. If the demon is replaced by an 
automatic valve, it must be governed by the fluctuations themselves, opening or 
closing according to the dominant direction of the velocities. The mechanism must 
therefore have a very small inertia in order that the fluctuations in the gas can op
erate it. Smoluchowski noted, however, that the valve cannot be perfect, as it must 
itself suffer thermal fluctuations; these cause random openings and closings which 
are not governed by the gas fluctuations and which let molecules through with the 
wrong sense of direction. The required effect can thus only be produced provided 
the valve is sufficiently cold, in which case its fluctuations decrease and opening 
errors are rare. Smoluchowski showed that under those conditions the valve cannot 
operate if its temperature is equal to that of the system; if it is colder, it can provide 
a filtering, but the Second Law is not violated, as there are a hot and a cold source. 
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Similarly, in an electric circuit consisting of a resistance and a diode one might 
imagine that the diode acting as a rectifier would filter the thermal fluctuations 
of the current in the resistance (Exerc.5b), and thus give rise to a non-vanishing 
electromotive force by means of a single heat source; this is, however, prevented 
by the fact that the diode acts as an efficient filter only if it is colder than the 
resistance. Maxwell's demon can therefore not be made automatic. However, the 
paradox remains for an "intelligent" demon. 

3.4.4 Entropy and Quantum Mechanics 

It may seem that entropy is a concept alien to quantum mechanics; however, it has 
played a seminal role at the very birth of this science. The first time quantization 
appeared was at the end of an important series of papers devoted by Max Planck 
(Kiel 1858-Gottingen 1947) to black-body radiation (§ 13.2). When he started on 
this problem in 1895, Planck, who was a thermodynamicist and a pupil of Clausius, 
was still rejecting the statistical and mechanistic interpretation of entropy. He was 
involved in trying to find a new solution of the irreversibility problem to be based, 
not on kinetic theory, but on electromagnetism which he considered to be more 
fundamental. To do this, he studied a system of charged oscillators interacting 
with the electromagnetic field and enclosed in a vessel with reflecting walls. His 
main aim was to prove that this conservative system would evolve irreversibly to 
thermodynamic equilibrium; a by-product would be a microscopic derivation of 
the spectral distribution of the thermal radiation. His first attempt which left out 
statistics met in 1897 a rebuff through a remark by Boltzmann. The equations 
of electrodynamics, like those of analytical mechanics, are invariant under time 
reversal: one cannot get around the irreversibility paradox. 

Planck then turned to an approach which combined macroscopic thermody
namics with the statistical ideas of Boltzmann. Writing the entropy of an oscillator 
as a function of its energy was one of the guidelines used in his subsequent work. 
He started by writing down an empirical expression for this entropy which should 
satisfy the Second Law, and from it he derived Wien's radiation distribution law 
(1899). He then modified this empirical law to take into account new experimental 
results; this led to the famous Planck law (1900). Finally, in his celebrated paper of 
December 1900 he tried to base his expression for the entropy of an oscillator upon 
a statistical foundation. To do this, he wrote down for the first time the form (3.19) 
for Boltzmann's entropy - he wrote W as ~o, "die Zahl der moglichen Comple
xionen". He then applied this formula to an assembly of N oscillators, all with the 
same frequency V; in this way he justified the expression he had proposed earlier 
(Exerc.3e). In order to calculate W by combinatorial methods he had had to make 
the possible energy values discrete, as Boltzmann had done in 1877; however, he 
noted that one could not let the "energy elements" go to zero, but that one must 
take them to be of the form hv in order to get agreement with the experimental 
results, and he thus introduced the constants hand k at the same time. 

The entropy is also at the heart of Einstein's papers on radiation (1905) and on 
the specific heat of solids (1907), where he showed that photons and phonons behave 
like particles with energy hv. His theoretical results, confirmed by measurements 
by Walther Nernst (Briesen, Prussia 1864-Bad Muskau 1941), led the wave-particle 
dualism to be based upon the statistical form of the Second Law. Moreover, Nernst's 
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principle (1906), the Third Law of thermodynamics, which made it possible to 
define an absolute entropy, provided a guidepost for quantum statistical mechanics. 

Let us also note Ehrenfest's method for extending quantum mechanics to other 
systems than oscillators. Rather curiously, these papers by Ehrenfest (1911-6) are 
based as much upon thermodynamics as upon analytical mechanics. He identifies 
very slow changes in the parameters occurring in the Hamiltonian of a microscopic 
system with adiabatic transformations. As the entropy has to remain constant in 
those processes, the same must be true of the number W of quantal micro-states. 
That number must therefore be an adiabatic invariant in the sense of mechanics, 
to wit, a quantity which remains unchanged under the effect of slow perturbations. 
Ehrenfest conjectured more generally that the adiabatic invariants were the quanti
ties which should be quantized. This adiabatic principle, used in 1914 by Einstein, 
clarified the quantization rules of N.Bohr (1913) and A.Sommerfeld (1916), and 
helped to establish the final form of quantum mechanics in the nineteen twenties. 

This final form of quantum mechanics brought in an extension of the entropy 
concept. In order to understand the significance of the wavefunction in a measuring 
process it appeared essential to analyze the role of the observer, a role the impor
tance of which was already clear from the Gibbs and the Maxwell paradoxes. When 
attempting to construct a consistent theory of quantum-mechanical measurements 
Johann von Neumann (Budapest 1903-Washington 1957) introduced in 1927 both 
the density operator concept and expression (3.17) for the quantum-mechanical 
statistical entropy which is, by the way, often called the von Neumann entropy. 
In this task he was guided by Boltzmann's expressions (3.41) and (3.42) and by 
Nernst's principle. We gave in §§ 2.2.5 and 3.2.4 his main ideas about the analysis of 
measuring processes (1932). In this context he established the distinction between 
Hamiltonian evolutions, which conserve S (Eq.(3.29)), and irreversible measuring 
processes, which lead to a growth of S (Eq.(3.32)). At the same time he laid the 
mathematical foundations of quantum statistical mechanics and showed that at 
equilibrium the statistical entropy (3.17) becomes identical with the thermody
namic entropy.4 

3.4.5 Entropy and Information 

Von Neumann foresaw that the statistical entropy which he had introduced could 
be used to evaluate the amount of information involved in a measurement. He 
based himself upon a paper by Leo Szilard (Budapest 1898-La Jolla 1964) who 
had in 1929 returned to the study of the Maxwell demon. Szilard analyzed in detail 
several thought experiments, where the entropy can be lowered without expenditure 
of work through the action of an intelligent being. In each case he showed up an 
essential aspect: if the intelligent being succeeds in violating the Second Law, this 
happens thanks to some knowledge he possesses about the microscopic state of 
the system, knowledge which was acquired beforehand and which he retains in his 
memory at the time when he manipulates the control mechanism. Szilard concluded 
from this quite generally that a decrease in entropy can only be accomplished 
through exploiting information which is memorized by the being who is acting upon 
the system. Smoluchowski's discussion suggested that acquiring this information 

4 This work by von Neumann is reprinted in the reference quoted in § 2.2.5. 
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had to be paid for through an increase in entropy elesewhere, but the information 
concept still remained vague and qualitative. 

The progress which followed illustrates vividly the cross-fertilization of two dis
ciplines: statistical physics and communication science. The latter, on the frontier 
of mathematical research and technology, contains, for instance, cybernetics which 
was founded in 1938 by Norbert Wiener and which was developed by von Neumann; 
it is not by accident that these two have also contributed to statistical mechan
ics. An essential step was the creation, in 1948, of information theory by Claude 
Shannon and Warren Weaver. Here also, it was the form of Boltzmann's expression 
(3.42) which guided them to introduce the measure of a quantity of information. 
We have summarized their theory in § 3.l. 

The analogy between Shannon's statistical entropy (3.1) and the entropy of sta
tistical mechanics remained formal and semantic until 1950 when Leon Brillouin 
(Sevres 1889-New York 1969) once again resurrected Maxwell's demon. Szilard had 
shown that information could be transformed into negentropy, a word coined by 
Brillouin to denote the opposite of entropy. Brillouin, and many of his followers, 
examined the inverse problem of the acquiring of information: the demon was now 
replaced by a scientific observer. In order to be able to select the molecules the 
demon must measure their velocities with more or less precision, but the precision 
of any measurement is limited by the thermal fluctuations in the apparatus used 
for the observations - see the remarks at the end of Chap.5. Brillouin analyzed, for 
instance, how one can detect the molecules optically: in an isothermal enclosure 
the equilibrium radiation (§ 13.2) does not depend on the positions and velocities 
of the molecules, so that the demon cannot see them, in contrast to what Maxwell 
assumed. The demon must use radiation to illuminate the molecules with a fre
quency exceeding the range of frequencies of the equilibrium thermal radiation. 
This requires the use of a lamp, that is, a hot source, and the interaction of the 
photons emerging from this source with the gas molecules makes the total entropy 
grow. Using the very new information theory, which made it possible to quantify 
the information acquired, Brillouin analyzed the transformation of negentropy into 
information, which accompanies a measurement, and the inverse transformation of 
information into negentropy, previously discussed by Szilard. He showed not only 
that the Second Law is satisfied in the balance of the two processes combined, as 
Smoluchowski had already suggested, but also that each of the two stages can only 
be accompanied by loss, either of information or of negentropy. This enabled him 
to confirm that the two concepts are related, more or less like heat and work, as 
information and negentropy are measurable quantities which can be interchanged 
one with the other, possibly with losses. Equation (3.34) gives an example of such 
an equivalence. 

Brillouin also considered the registration and the transport of messages through 
a physical system.5 He showed that the material used cannot be in thermal equi
librium: its entropy is less than the maximum entropy by an amount, at least equal 
to the information which is recorded. This enabled him to use entropy to define a 
quantity of information, either as the minimum of entropy necessary to record it, or 
as the maximum of negentropy which can be created by exploiting this information. 
The establishing of equilibrium entails the loss of the message.Well known examples 
are the finite lifetimes of movie films or of magnetic tape recordings. 

5 L.Brillouin, Science and Information Theory, Academic Press, New York, 1956. 
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Conversely, the entropy concept can be based upon the information concept; this 
approach, introduced in 1957 by E.T.Jaynes, is the one followed by us in the first few 
chapters of the present book. It is based upon the principle of maximum statistical 
entropy used to assign a density operator to a statistical ensemble of systems. 
Actually, Boltzmann and Gibbs already used a maximum entropy principle as an 
inductive method, both in thermodynamics and in statistical mechanics, to make 
predictions about the state of a system in thermodynamic equilibrium. Information 
theory enables us to understand this procedure, thanks to the interpretation of the 
statistical entropy as a measure of the dispersion in probability laws. We shall see 
in Chaps.5 and 6 how the maximum of this quantity can be identified with the 
thermodynamic entropy. 

3.4.6 Recent Trends 

In the last few decades the use of the entropy concept has expanded in various forms 
and in new directions thanks to the application of statistical mechanics techniques 
to problems related to information theory: theory of memory, computer theory, 
studies in economics, traffic movement, operational research, control theory, .... In 
physics, the connections between information and entropy have been strengthened. 
For instance, the idea has been expressed that the irreversibility of a measuring 
process arises from the necessity of destroying some information to obtain other. 
The entropy of black holes in astrophysics appears to be related to their property 
of decisively trapping information. Even the old Maxwell paradox has been the 
subject of some recent developments: it has been shown that the final "exorcism" 
of the demon needs recourse to quantum mechanics. 

Important developments have taken place in mathematical physics. The condi
tions for the validity of the thermodynamic limit (§ 5.5.2) have been established, 
showing under what circumstances the entropy is an extensive quantity. This en
ables us to understand the limitations that exist, for instance in astrophysics, on 
the stability of matter. We can also note the proof of some new properties of the 
entropy, for instance, an inequality which is stronger than the sub-additivity in
equality (3.21). 

However, the most striking modern progress related to the entropy concept has 
been made in another domain of mathematical physics, the theory of dynamical sys
tems. Created by Henri Poincare (Nancy 1854-Paris 1912), this branch of analytical 
mechanics aims at a qualitative study of the geometrical and topological structure 
of the set of trajectories produced by non-linear dynamics - in particular, by Ha
miltonian dynamics, which in phase space satisfies the Liouville theorem of § 2.3.3. 
At the frontier of mathematics, mechanics, and physics, it has from its start made 
progress thanks to the work of people such as Alexandre M.Lyapunov or Jacques 
Hadamard, and later on of people such as J.von Neumann and George D.Birkhoff 
(ergodic theorem, 1931), but its great upsurge in development started in 1955. The 
major advances in the central question of the stability of trajectories when the 
initial conditions or the dynamics are slightly perturbed, have resulted from the 
proof of the KAM theorem (A.N.Kolmogorov, V.I.Arnold, and J.Moser, 1953-62) 
about the structural stability of small motions, and the theorem by D.Ruelle and 
F.Takens (1971) about the generic instability of trajectories, whenever the number 
of degrees of freedom of the system equals at least 3. Another point of view about 
the chaotic nature of the trajectories is provided by ergodicity. A dynamics is said 
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to be ergodic, if each trajectory passes through practically the whole of phase space, 
in the sense that the time average of a function of a phase point over long peri
ods, calculated along the trajectory, equals its average over phase space. Ya.Sinai 
showed in 1963 that kinetic theory is ergodic, on a constant energy subspace, if the 
molecules are described as hard spheres. At the present moment the extension of 
the ideas of chaotic dynamics to quantum mechanics is actively pursued.6 

Such studies give, at least in classical mechanics, a new clue to the old irre
versibility problem, which has already been clarified by other modern approaches 
mentioned in § 3.4.3. If the trajectories are chaotic, they are extremely sensitive to 
a change in the initial conditions, and two neighbouring points in the phase space 
[p will almost always get much further apart from one another on a macroscopic 
time scale. Let us consider a phase density which initially is uniform in some com
pact volume W; according to Liouville's theorem, the measure of W, and hence the 
entropy (3.41), does not change with time. However, a volume element of W must 
become elongated in certain directions, while contracting in other directions, and 
then branch out, fold over, and produce many thinner and thinner sheets. There
fore, if the positions in [p are not defined with infinite precision, but only within a 
more or less coarse graining, everything evolves as if the phase density in the final 
state did not have a finely multi-sheeted domain, of volume W, as support, but 
was spread out over a larger, more regular domain, showing a rather hazy occupa
tion. Any coarse-graining, even an infinitesimal one, of [p thus defines an entropy 
which increases over sufficiently long periods; information gets lost to details which 
cannot be observed with the chosen accuracy. In this context, the Second Law can 
be understood as a consequence of the combination of an extremely complicated 
evolution and an inevitable coarse-graining. Actually, for thermodynamic systems 
not all variables show chaotic motion; even on our time scales, the conservative 
variables remain relevant and their evolution will be the subject of our studies 
when we deal with non-equilibrium thermodynamics (Chap.14). 

While statistical mechanics has benefited from the study of dynamical systems, 
in turn it has inspired the introduction of new entropy concepts. In particular, the 
Kolmogorov entropy (1949) appears as a useful measure for the chaotic nature of 
the evolution of a dynamical system, whereas the measure of the disorder existing 
at a certain moment is represented by the ordinary entropy. 

Notwithstanding the many interrelations which have been established be
tween the different kinds of entropy, the identification of the thermodynamic 
entropy and the statistical entropy has not yet been accepted universally. 
While the former can be measured more or less directly for systems in ther
modynamic equilibrium and thus appears to be a property of the system 
itself, the latter refers to the knowledge of the system by an observer and 
does have a nature which is partially subjective, or at least anthropocentric 
and relative. It certainly may appear paradoxical that these two quantities 
would be equal to one another. However, an analysis of non-equilibrium pro
cesses (§ 14.3.3) and also the interpretation of such experiments as spin echo 

6 The proceedings of the sessions XXXVI, XLVI, and LII of the Les Houches Sum
mer School (North-Holland, 1981, 1986, and 1989), and references therein, provide 
an introduction to these fields. 



136 3. Information Theory and Statistical Entropy 

experiments, which are an actual realization of a Maxwell demon (§ 15.4.5), 
compel us to think nonetheless of the entropy in the framework of information 
theory. 

Summary 

Information theory enables us to associate a number with each state of a sys
tem represented by a density operator. This number, the lack of information 
or the statistical entropy {3.17}, measures the degree of disorder, coming from 
the random nature of the state. The statistical entropy lies between 0, for a 
pure state, and kIn W, when all the kets in the W -dimensional Hilbert space 
are equiprobable. It increases when the disorder grows, in particular, when we 
discard correlations between subsystems, join up several statistical ensembles 
into a single one, or are dealing with an imperfectly known evolution. The 
entropies of statistically independent subsystems are additive. The classical 
limit is given by {3.39}. 

Exercises 

3a Information and Entropy: Orders of Magnitude 

Assuming that the macro-state describing 1 mg of water at room tempera
ture corresponds to a certain number of quantum micro-states which are all 
equally probable, evaluate that number, knowing that the entropy of water 
is 70 J K- i mol-i. 

Estimate, in thermodynamic units, the order of magnitude of the quan
tity of information contained in the French National Library, which has 
10 million volumes with an average of 350 pages, each containing on av
erage 1500 characters per page. Compare this with the entropy of 1 mm3 of 
a perfect gas, or with the increase in entropy when 1 mm3 of ice melts; the 
latent melting heat for 1 g of water is 80 cal. 

Compare it also with the order of magnitude of the genetic information 
of a living being - after development the DNA of the chromosomes of a 
bacterium measures 2 mm in total; its constituent nucleotides, of which there 
are 4, are at distances apart of 3.4 A; the human genetic material is 1000 times 
larger. Evaluate the genetic information per unit mass for the chromosomes, 
where each nucleotide has a mass of about 300 u, and DNA is a double 
helix, and for the proteins: a protein is a long chain formed by 20 different 
amino-acids of average mass 100 u, and each acid is coded by three successive 
bases. Why is the information per unit mass smaller in DNA? What is the 
maximum number of different proteins which can exist in a bacterium? 

The brain contains 10lD neurons, each connected with 1000 neighbours. 
If one assumes that the memory consists in activating or deactivating each 
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bond, what is the maximum amount of information which may be stored in 
the brain? What is the quantity of information necessary to describe the way 
the neurons are connected? Show that this organization is too complex to be 
coded completely in the genetic material. 

In order to realize how huge Avogadro's number is, or how small Boltz
mann's constant is, evaluate the probability that air inhaled in one breath 
(11) contains one ofthe molecules from Julius Caesar's last breath, assuming 
that this last breath has been distributed uniformly over the whole of the 
atmosphere. Evaluate the length attained if the atoms of 1 mm3 of iron were 
put in a straight line, rather than put on a lattice - the specific weight of 
56Fe is 7.9 x 10-3 kg m-3 ; to estimate the distances between neighbouring 
atoms, assume that the lattice is cubic; compare the distance found with the 
distance between the Earth and the Moon. What is the mass of a monomolec
ular petrol film with an area of 1 km2 on the surface of the sea? Assume that 
the molecules have a mass of 100 u and are at distances apart of 3 A. 

3b Subsystem of a Pure State 

1. Consider a system, consisting of two subsystems a and b, with a density 
operator D which represents a pure state: S(D) = O. Show that the two 
subsystems have the same entropy: S(Da) = S(Db). In particular, if ab and 
a are in pure states, b is also in a pure state. 

2. Show that a system a with an arbitrary density operator Da can always 
be considered as a subsystem of a larger composite system ab which is in a 
pure state. 

Hints. Write the pure state down in a factorized base, in the form L:k1Ikalb)Ckl. 
Express Da and Db as functions of C, to be considered a rectangular matrix. Use 
the identity Ctf(CCt ) = f(CtC)ct for any function f. 

3c Relevant Entropy 

The statistical entropy S(D) characterizes the lack of information associated 
with all conceivable observations on the macro-state, that is, with the whole 
algebra of the observables. We are solely interested in a set of relevant observ
abIes which span a vector subspace X of the space of the observables. These 
observables are, for instance, only those which can be measured in practice, 
or only those which represent the macroscopic quantities, or those observ
abIes which we define through a coarse-graining eliminating the finer details. 
Define a relevant statistical entropy Sx(D) relative to the observables X. 
This entropy needs to take into account only the information associated with 
these observables. To do that introduce the set of density operators fj which 
lead to the same expectation values as jj for the observables .Ii belonging 
to X, but to arbitrary expectation values for other observables. Construct a 
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density operator Dx from among these density operators D, which are equiv
alent to D for the expectation values of the relevant observables, by looking 
for the maximum S(Dx) of S(D). This maximum defines the relevant en
tropy Sx(D) relative to the set X, since Dx contains the least amount of 
information compatible with the data X. 

1. Construct Dx in the following cases: (a) X contains only the energy 
and the number of particles; (b) in classical statistical mechanics X is the 
set of single-particle observables; (c) given a set of orthogonal projectors Pa , 

with unit sum, let X be the set of operators which commute with the Pa ; 

(d) X is the set of these Pa . 

2. Show that Sx(D) decreases when the space X gets larger and that 
Sx(D) is a concave function of D. Interpret this result. 

In all these cases Sx(D) - S(D), which is positive, defines the information 
which hypothetically could be gained if one were able to measure not only 
the relevant observables A pertaining to X, but also all other observables, 
for the macro-state D under consideration. The relevant entropy Sx(D) is 
an essential quantity in the discussion of irreversibility (§§ 3.2.4, 3.4.3, 4.1.5, 
14.3.3, and 15.4). 

Answers: 

1. (a) If X contains solely if and N, Dx is the grand canonical equilibrium 
density operator (§ 4.3.2) which would be associated with the same values of (H) 
and (N) as D. At equilibrium, we have Sx(D) = S(D); the idea of a relative en
tropy is therefore only useful for non-equilibrium problems. 

(b) If X represents the single-particle observables, Dx is a phase density 
without correlations, and Sx(D) is the Boltzmann entropy SB, the increase of 
which is expressed by the H-theorem (§§ 3.4.2 and 15.4.2). 

(c) In this case, Dx = L,a PaD Pa is obtained by cutting off the elements 

of D which lie outside the diagonal blocs associated with the Pa in the base where 
these are diagonal. When the Pa are the projections onto the different eigenvalues 
of an observable A, S(D x) - S(D) defines the information included in D and asso
ciated with the set of observables which do not commute with A; this information 
is lost by measuring A (§ 3.2.4). The suppression of the off-diagonal elements of D 
thus increases the disorder, or induces a loss of information. 

(d) The density operator Dx is obtained by first of all truncating D as above, 
and then replacing each diagonal bloc a by a matrix which is a multiple of the unit 
matrix, in such a way that the average value of the diagonal elements of the bloc 
a remains unchanged. This kind of reduction of the density operator D to produce 
Dx is called "coarse-graining"; the numbers (Pa ), which are the only information 
retained when changing from D to D x, are the probabilities that the observable A 
has the value aa in the macro-state considered. The evolution of these probabilities 
is given by an approximate equation, the so-called Pauli equation; its study is an 
approach to irreversibility when one restricts oneself to the observable A. 

2. The introduction of a new constraint on V prevents S(15) from attaining 
higher values. One gains information by giving an extra expectation value. 
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The definition of SX(Dl) and of SX(D2) and the concavity (3.26) imply that 

A SX(Dl) + (1 - A) SX(D2) A S(DIX) + (1 - A) Sx(Ihx) 

< S(ADlX + (1- A)D2X). 

The density operator ADlx + (1 - A)D2X is a member of the set of operators 15 
which are equivalent to ADI + (1 - A)D2 as far as the expectation values of the 
relevant observables pertaining to X are concerned. Its entropy is thus at most 
equal to SX(ADI + (1 - A)D2). The mixture of the two populations in a single 
statistical ensemble makes us lose a certain amount of information relative to the 
relevant observables pertaining to X, which is a generalization of the ordinary 
concavity property (§ 3.2.2e) for which X was the set of all observables. 

3d Inequalities Concerning the Entropy 

1. Show that the statistical entropy of a mixture of ensembles, which has 
a lower bound given by (3.27), also has an upper bound as follows: 

S(~ M;D;) oS ~ M;S(D;) +S(M), 

S(J-t) == - k L J-tj In J-tj, 
j 

where the equality holds only if fjJjj = 0, '<I i f:. j. This expresses the fact 
that the increase in disorder through mixing is not larger than the dispersion 
of the relative weights J-tj of the ensembles j. 

2. Consider the set of descriptions by wavefunctions I'l/IA) and probabilities 
qA which are equivalent to a given density operator fj (§ 2.2.2). Associate with 
each the quantity Sq = -k L qA In qA. This would be the lack of information 
corres£ondl.ng to the events >. if the latter were exclusive. Show that S = 
-kTrD In D is the lower bound of the Sq. One can interpret this result by 
noting that the descriptions I'l/IA)' qA contain, with respect to a particular 
description Im),Pm on an orthonormal base, a disorder which has no physical 
meaning, as the events>. considered to be distinct in that description are, in 
fact, not exclusive. 

Hints: 

1. Show first of all that the operator In(X + Y) - In X is positive, if X and 
Yare two positive operators. Hence, one finds that TrXln(X + Y) > TrXlnX, 
an inequality which we can apply to X = JljDj, X + Y = Lj JljDj. Discuss the 

limiting cases where X and Y have zero eigenvalues. 
2. Use the preceding result for Dj = l'l/JA)('l/JAI. 
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3e Entropy of Quantum Oscillators 

Consider a set of N - distinguishable - oscillators, each of which has quan
tized energy levels pe (p = 0,1,2, ... ). The total energy ofthis set equals Pe, 
where P is an integer. Assume that all possible micro-states with this energy, 
characterized by integers Pl, P2, ... , P N such that Pl + P2 + ... + Pn = P, have 
the same probability. Evaluate the statistical entropy (3.19). Hence deduce, 
in the limit as N -+ 00, the average entropy per oscillator B / N as a function 
of its mean energy E = Pe/N. Write finally E in terms of the temperature 
T by identifying T with N dE/dB. 

This calculation was the basis for Planck to establish his radiation law 
(§§ 3.4.4 and 13.2.2). Each mode of the electromagnetic field in a cavity is 
then a different oscillator. Planck introduced the hypothesis that its energy 
can only take the discrete values pe = phv, and he used the additivity of 
energy and entropy for all the modes. 

Hint. Ehrenfest remarked that the number of ways in which we can choose N 
positive integers Pl + 1, P2 + 1, ... , PN + 1 having a sum equal to P + N is equal 
to the number of ways of distributing N - 1 points in P + N - 1 boxes. 

Answer: 

s = 

E 

k I (P + N - 1)! 
n (N -1)!P! 

Nk [(1 + ~) In (1 + ~) - ~ In ~] . 
ec / kT - l' 



4. The Boltzmann-Gibbs Distribution 

"L'equilibre est la loi supreme et mysterieuse du grand 
Tout." 

V. Hugo, Post-scriptum de ma Vie 

"En remontant chez moi pour y passer la soiree it travailler 
de mon mieux, je me disais que Ie monde n'est pas construit 
pour l'equilibre. Le monde est desordre. L'equilibre n'est pas 
la regIe, c'est l'exception." 

G. Duhamel, Maitres, 1937 

The preceding two chapters helped us to set up the formalism of statisti
cal mechanics. We introduced in Chap.2 the density operators D, and their 
classical limit, the densities in phase. They sum up our knowledge about 
the system and enable us to make predictions of a statistical nature about 
physical quantities, the expectation values of which we can calculate, starting 
from D. In Chap.3 we defined the statistical entropy S(D) which measures 
the random nature, or disorder, of a density operator. In those two chapters 
we assumed that the latter was given. However, in order actually to be able 
to calculate the properties of a system which has been prepared in some given 
way we must know how to assign to it a density operator representing the 
physical situation that we want to describe. This problem of the choice of D 
will be solved in the present chapter for thermodynamic equilibrium states. 
In order to find the general form, the so-called Boltzmann-Gibbs distribution, 
of the density operators, or the densities in phase, describing these states, 
we shall use a postulate of a statistical nature which is similar to the criteria 
used in statistics to find the unbiased probability law for a set of random 
events. We introduce in this way a general prediction method (§ 4.1.3). This 
method leads us to represent a system in thermodynamic equilibrium by the 
most disordered macro-state compatible with the macroscopic data (§ 4.1). 

We can then construct the density operator with the largest statistical 
entropy under the constraints accounting for the macroscopic equilibrium 
data (§ 4.2). Depending on the nature of these data, the equilibrium state 
may take on various specific forms (§ 4.3), all encompassed in the exponen
tial Boltzmann-Gibbs expression (4.6). We introduce at the same time the 
important partition function method which we shall use systematically in the 
remainder of this book when studying the equilibrium properties of various 
physical systems. The main results of this chapter are gathered in § 4.2.6. 
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4.1 Principles for Choosing the Density Operators 

4.1.1 Equal Probabilities 

The problem of the choice of the density operator, or the density in phase, 
which in statistical mechanics describes a given physical situation, is similar 
to the problem of statistical estimation in probability calculus: how should 
one choose the probabilities for the various possible events that a random 
process can give rise to? 

When one does not know anything the answer is simple. One is satisfied 
with enumerating the possible events and assigning equal probabilities to 
them: before throwing a die, there is no reason to suspect that it is loaded 
more heavily on one side than the other. Any probability law other than PI = 

... = P6 = i would be biased and would introduce, without justification, 
preconceived ideas. Such a choice constitutes Laplace's indifference principle, 
that he called "principe de raison insuffisante". It rests upon the existence 
of a group, in this case the group of permutations of the faces of the die, 
which defines an equivalence between the elementary events expected at the 
start. This invariance group was already more or less implicitly involved in 
the definition of the entropy in §§ 3.1.2e, 3.1.4, and 3.3.1. 

Similarly, when we studied in § 1.2.1 a perfectly random set of N spin-! 
particles about which we knew nothing, we were led to assign equal prob
abilities to all possible micro-states. More simply, if we consider a single 
unprepared spin-!, there is no reason to assume that it is polarized in one 
direction rather than in another; we should assign to it the most disordered 
macro-state possible, where all possible micro-states have the same probabil
ities: the probability to find Sz = ! along some z-axis is equal to !. 

Thus, if we do not know anything about a system it is natural to repre
sent it by the statistical ensemble which is completely disordered, where the 
probabilities of the W possible micro-states are equal. We saw in §§ 3.2.2a 
and 3.3.2 that this state is characterized by the fact that its statistical en
tropy is a maximum and equal to k In W. It is also the only state which is 
invariant under a unitary transformation in quantum statistical mechanics, 
or under a canonical transformation in classical statistical mechanics; these 
invariances play the same role as the symmetry of the faces for the die. Our 
predictions remain unchanged under a unitary or canonical transformation 
of the observables. 

4.1.2 Information About the System 

The above argument cannot be applied when the state of the system is par
tially known. In general, we want to study the properties of a system as a 
function of macroscopic parameters such as the density of a given kind of 
particles or the total energy, and the density operator D, or the density in 
phase, must account for these. However, it is important to distinguish two 
different kinds of data at the microscopic level. 
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Some of the available information consists of data given with certainty, 
similar to the number of faces of a die: the spin and the nature of the particles, 
the shape and the volume of the box in which they are enclosed, .... Those 
we take into account through the definition of the Hilbert space or the phase 
space in which we are working. For instance, in §§ 1.2.2 and 1.2.4 we assumed 
that the energy of the system was lying between U and U + LlU. We had 
thus some certain information about the system, to wit, we knew that its 
representative ket was lying in a W-dimensional subspace Elf of EH , spanned 
by the micro-states 10"l, ... ,O"N) satisfying (1.11). As in the preceding § 4.1.1, 
we were led to postulate that in thermal equilibrium the macro-state is the 
most disordered one possible, but in this case in the allowed Hilbert space 
Elf. Its density operator is the so-called "microcanonical" macro-state, 

~ 1 ~ w 1 
D = W Iw = Lim) W (ml, 

m=l 

( 4.1) 

where 1m) is a base in Elf; its statistical entropy, k In W, is a maximum 
within Elf. 

There are, however, other situations where the information available 
about the system is in the form of data of a statistical nature, to wit, ex
pectation values of some observables, averaged over the statistical ensemble 
of which the system considered is a member. For instance, one could ask in 
the model of Chap.1 what is the density operator of a single spin in thermal 
equilibrium, without first writing down the density operator of the system 
of N spins; we have one piece of information about the state of this spin, 
namely, the expectation value of its energy. More generally, when the system 
studied is put into contact with a large system with which it can exchange 
energy, its own energy is only fixed on average and it can fluctuate freely 
around that average. This is just what happens when we fix the tempera
ture through an interaction with a heat bath, as we shall check in § 5.7.2. 
A statistical ensemble of this kind, where the energy at thermal equilibrium 
can fluctuate freely around the given average value U = Tr i5jj (§ 4.3.1), is 
called a "canonical" ensemble. 

More generally, this kind of statistical data shows up when the state of 
the system on the macroscopic scale is characterized by our knowledge of the 
expectation values (Ai) of some observables Ai, the Hamiltonian operator, as 
a moment ago, or the particle number operator for a given kind of particles, 
or the momentum operator, .... Each of these data is reflected by the fact 
that the density operator is not arbitrary in the Hilbert space considered, 
but must satisfy the constraint 

(4.2) 

Note that, depending on the circumstances, the value ofthe same physical 
quantity can be given either with certainty, or as a probabilistic average. We 
have just seen that the so-called micro-canonical and canonical ensembles 
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are distinguished by the fact that the energy U is in the one case given with 
certainty - within a margin LlU which is large compared to the distances 
between levels - and in the other case solely on average. Similarly, if the 
number of particles N in the system is exactly known, its value determines 
the Hilbert space in which the density operator acts, namely, that of N
particle states. If, on the other hand, only the average of this number is 
known, we must work in a larger Hilbert space, that of the states where 
the number of particles can take on all possible values, which is called the 
Fock space; the number of particles is now a random variable and we must 
impose on the density operator a constraint like (4.2) which expresses that 
the expectation value of the number of particles (N) is given. Similarly, in 
classical mechanics, giving N exactly leads to a description by a density in 
phase DN in the 6N-dimensional phase space, whereas giving the average (N) 
makes it necessary to use the formalism of § 2.3.6 with a constraint on (N). 
A statistical ensemble where both the energy and the number of particles are 
given on average is called a "grand canonical" ensemble (§ 4.3.2). 

We shall see in § 5.5.3 that, in the limit of large systems, the two ways of 
giving the information which characterizes a state on the macroscopic scale 
lead to the same predictions for most physical properties. Nevertheless, it is 
essential to distinguish these two situations carefully, since the techniques for 
studying them are different, as we shall see in § 4.3. 

4.1.3 Maximum of the Statistical Entropy 

The information we have available or the conditions we impose on the state 
of the system are thus reflected by a certain number of restrictions and con
straints on the density operator fj, but they clearly are insufficient to de
termine it completely. In order to be able to make predictions about other 
quantities from the formula (B) = Tr fjjj, we must manage to determine D. 
To do this we must find a criterion which enables us to choose fj as reason
ably as possible. This criterion must appear as an extension of the method 
of § 4.1.1 to the case where fj is subject to constraints of the kind (4.2). 

The obvious concept of equal probability means, as we saw, that one 
chooses the most random probability law possible; any other choice is biased, 
introducing arbitrarily an order, for which there are no reasons of believing 
that it exists. On the other hand, the various properties of the statistical 
entropy that we proved in the preceding chapter suggest that we should 
consider that quantity as a measure for the disorder. It is thus natural to 
take it as an "estimator" in the sense of probability calculus and to use it to 
choose the density operator describing a given physical situation. We assume 
therefore that the best guess for fj is provided by the following prescription: 1 

1 E.T.Jaynes, Phys.Rev. 106, 620 (1957), 108, 171 (1957); starting in 1979, the 
proceedings of an annual workshop on maximum entropy methods are being 
published (MIT Press, Reidel, Cambridge University Press, Kluwer). 
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Maximum Statistical EntropJ!. Principle. Amongst all statistical distri
butions - density operators D or phase densities D - compatible with 
the available data we must represent the system by that macro-state 
which has the largest value of the statistical entropy S(D). 

This principle is commonly used not only in statistical physics but also 
for the most diverse applications of statistics, of which Exerc.4h gives an 
example; it generalizes the equal probabilities criterion which already led to 
the maximum of S. Here we must maximize the statistical entropy taking the 
constraints into account, so that the system be in the most disordered macro
state possible compatible with the data. In information theory terms, we would 
say that the various density operators reproducing the known information 
lack a more or less large amount of information. We must choose amongst 
them that one which contains no more information than is strictly necessary 
to take the data into account, that is, that one which corresponds to the 
largest amount of lack in information, S. Choosing any other density operator 
would mean that we assumed we possessed more information about the state 
of the system than the data actually supply us with, and thus would lead us 
to make biased predictions. 

We have just tried to make the principle of maximum disorder intuitively 
understandable by using statistical arguments drawn from information the
ory, but it is possible to give a more convincing justification by relying solely 
on the equal probabilities principle (see § 5.7.2). We shall see in § 4.1.5 how 
an analysis of the dynamic processes which produce the disorder can also 
help us to understand this principle. Its best justification will come a poste
riori from the remarkable agreement between the many predictions which it 
enables us to make and the experimental observations. 

In fact, the maximum entropy principle is nothing but a method of sta
tistical inference leading to predictions of a statistical nature and it is not 
precluded that it would not account properly of experimental facts. If that 
were the case, this disagreement would simply reveal that our premises were 
incomplete and that we had used an insufficient number of (Ai) parameters 
to describe the macroscopic state of the system. We shall progress in our 
understanding of the phenomena through introducing new parameters which 
impinge on the macroscopic physics, but we shall continue to rely on the prin
ciple of maximum statistical entropy. Examples of such "hidden variables" 
which we need to introduce in the theory in order to make our description 
adequate will be given in §§ 8.4.5, 9.3.3, 12.3.3, and 15.4.4. 
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4.1.4 Macroscopic Equilibrium and Conservation Laws 

In § 4.2 we shall apply the maximum entropy principle and explicitly con
struct the density operator associated with a set of data. We discuss before
hand the choice of these data, a question, the importance of which we want 
to stress. They should characterize the state of the system on the macro
scopic scale, whereas on the microscopic scale they give us constraints on 
the macro-state. For non-equilibrium systems we shall see in the last two 
chapters that their choice may be a subtle point. However, we shall mainly 
study in the present book equilibrium systems on the macroscopic scale. In 
that case the choice of state variables is guided, usually without any ambi
guity, by thermodynamics. In fact, the data which on our scale characterize 
the equilibrium state of a system are, in general, the values of the constants 
of the motion, such as the energy, the momentum, the angular momentum, 
or the number of particles of a given kind. One must also add to these data 
parameters which one can control, such as the volume of the system or a field 
acting upon it. 

We saw in § 4.1.2 that the constants of the motion can, depending on 
the statistical ensemble considered, be given either exactly, or statistically; 
in the latter case the quantity which remains constant from one sample to 
the next is the expectation value of a conservative quantity. Let us remind 
ourselves that the statistical ensemble is called canonical when the energy 
is determined on average, and it is called grand-canonical if both the en
ergy and the number of particles are given on average. The control variables 
- the volume and the fields - will, in most examples that we shall be deal
ing with, be treated as exact data and they will occur as parameters in the 
Hamiltonian. 

It is important to note that in an equilibrium situation the macroscopic 
quantities do not change. The corresponding macro-state, that is, the prob
ability law describing in statistical mechanics an ensemble of systems, all 
prepared in the same way as regards the data considered, is stationary. How
ever, the motion takes place on the microscopic scale for each of the samples 
in this statistical ensemble. If the system appears to us to be stationary, this 
is due to statistical reasons, with only the probability law and the macro
scopic variables remaining constant. Microscopic observations (§ 5.7.3) reveal 
that a particular system, in fact, evolves rapidly while we have macroscopic 
equilibrium. One can consider its micro-states at successive times to be dif
ferent instances of samples in the statistical ensemble. An example was given 
in Exerc.2a-8: the system evolves rapidly, spending as much time in each of 
the possible micro-states, so that successive sampling produces an ensemble 
of equally probable micro-states. More generally, consider a classical dynamic 
system with a representative point {q,p} which moves through phase space. 
Given a function F{q,p}, let us associate with each trajectory {q(t),p(t)}, 
o < t < T, of energy E its average value F over the period T. The ergodic 
theorem, which is valid for a large class of systems, states that in the limit as 
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T --> 00 this average F tends to the expectation value (F) in a microcanonical 
ensemble of energy E: provided the time T is sufficiently long, the evolution 
realizes an almost complete covering of the energy surface E in phase space. 
Nevertheless, for a macroscopic system, the number of micro-states involved 
in an equilibrium macro-state is so huge (§ 1.2.3) that application of the er
godic theorem would need gigantic times T, much longer than the age of 
the Universe. In actual fact, therefore, evolution in time enables us only to 
explore an extremely small fraction of the possible configurations. 

A system at equilibrium can be isolated, but it can also be a subsystem 
of a larger system which itself is in equilibrium. For instance, an object in 
contact with a heat bath can be described as a macro-state of a canonical 
ensemble, characterized by giving the average value of its energy; exchanges 
with the thermostat allow the latter to fluctuate. 

Whether a system be isolated Or not, it can have macro-states which 
are stationary, but non-equilibrium. In the case of an isolated system the 
evolution is governed by (2.49) and any density operator commuting with 
the Hamiltonian - for instance, a projection on an eigenstate of the latter 
- will describe a stationary state, whereas the equilibrium states must COr
respond to a maximum of the disorder. This kind of stationary macro-state 
is not stable as its entropy increases (Eq.(3.31)) if there are small pertur
bations present. In the case of a non-isolated system the interaction with 
external systems which can evolve may give rise to non-equilibrium station
ary solutions. For instance, a substance in contact at its two ends with two 
thermostats maintained at different temperatures will transfer heat from one 
to the other. As the thermostats are large, their temperatures only change 
imperceptibly over not too long a period. If one is interested only in the con
ductor itself, one ascertains that, after a short transitory period, it reaches a 
permanent non-equilibrium regime; such a macro-state is characterized not 
only by giving the constants of the motion, but also, for instance, the value 
of the energy flux. We refer to Chap.14 for a study of this kind of stationary 
non-equilibrium states. 

Depending on the constants of motion involved, the concept of thermo
dynamic equilibrium covers a variety of physical situations. When the total 
energy is given, the state of maximum disorder is that of thermal equilibrium. 
When the system is, moreover, a fluid with a conserved number of parti
cles, for instance a liquid and its saturated vapour in the field of gravity, 
we are dealing with hydrostatic equilibrium. In the case of particles in so
lution which can cross semipermeable membranes, we talk about osmotic 
equilibrium. When the system consists of several kinds of atoms which can 
combine to form molecules, the constants of motion are the numbers of atoms 
of each kind and we have chemical equilibrium. Finally, in the case of a sys
tem of charged particles, the state of maximum disorder compatible with 
conservation of charge is electrostatic or magnetostatic equilibrium. 

The identification of the quantities that are conserved or nearly conserved 
(§ 4.1.6) is one of the important stages in the construction of the microscopic 
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model suitable for the description of a system under the circumstances we 
are considering. Whereas the energy almost always occurs amongst these 
conserved quantities, the choice of the other variables sometimes raises prob
lems, even in equilibrium situations. For instance, a mole of hydrogen under 
normal conditions is described by giving the number N of its molecules. A 
more fundamental description might involve the number of atoms, or even 
the numbers of protons and electrons as constants of the motion. This, how
ever, would introduce useless complications, as the probability for observing 
a molecule which is dissociated into atoms or ionized is usually negligible. 
On the other hand, at very high temperatures, we must take the total num
ber of atoms, whether isolated or bound into molecules, as a constant of the 
motion in order to characterize the state of chemical equilibrium H2 t:+ 2H. 
A correct description of the same mole of hydrogen inside the sun similarly 
requires the consideration of its 2N protons and 2N electrons, and even of 
nuclear reactions. Depending on the circumstances, the conserved entities 
may thus be molecules, atoms, radicals, ions, or elementary particles. The 
choice of the constants of the motion is thus neither universal, nor always 
obvious; in some cases there even exist hidden constants of motion which 
only appear when we test the model experimentally, as we already indicated 
at the end of § 4.1.3. 

4.1.5 Approach to Equilibrium 

The maximum entropy principle which determines the equilibrium macro
state of a system relies upon purely statistical considerations, without worry
ing about how this macro-state has been reached in time. In thermodynamics, 
however, equilibrium is defined as the final outcome of an evolution. We are 
thus led to wonder about the problem of the approach to equilibrium. Let us 
assume that the system was initially prepared in a known non-equilibrium 
macro-state. How will it evolve starting from this state? The constants of 
motion will remain constant during that evolution. However, as far as the 
other variables are concerned, will the system reach after a more or less long 
period the equilibrium macro-state defined by the principle of a maximum 
statistical entropy? 

Let us consider, for instance, two vessels, each filled with a different kind 
of gas at the same pressure and temperature, which we connect at the initial 
time. Experience indicates that after some time the Na and Nb molecules 
of the two kinds will be perfectly mixed. The system evolves towards max
imum disorder and macroscopic equilibrium is reached irreversibly. During 
this process the statistical entropy has increased by an amount LlS. In § 8.2.1 
we shall see that LlS = k In [(Na + Nb)!jNa!Nb!]; this expression can be in
terpreted as the information that would be acquired by learning which are 
the Na atoms of type a amongst the Na + Nb molecules. However, the mi
croscopic dynamic laws are reversible and they leave, according to (3.29), 
the statistical entropy unchanged. It is therefore not easy to understand the 
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irreversibility of the observed evolution which is revealed by the fact that 
ilS is positive. This contradiction is the so-called irreversibility paradox; the 
importance of which we discussed in § 3.4.3 and to which we shall return in 
Chaps.14 and 15. 

Let us right now give a few indications about the approach to equilibrium. 
Two essential points are the macroscopic size of the system and the statistical 
nature of its description. Let us first of all consider a system the Hamiltonian 
of which contains small random parts. This happens, for instance, if we are 
interested in part of a substance which interacts with the remainder In a 
badly controlled way. We indicated in § 1.2.2 and we proved for the model 
of Exerc.2a that such random interactions tend after some time to make 
the probabilities for the micro-states with the same energy equal, and thus 
to increase the disorder. More generally, the irreversibility inequality (3.31) 
shows that if the Hamiltonian of a system is not known with certainty, one 
loses information during the evolution: as long as the system has not reached 
the most disordered state possible which is allowed by the evolution, its 
statistical entropy may grow under the effect of small random parts of the 
Hamiltonian. In this evolution the constants of motion conserve the value 
that they had been given during the preparation of the initial state, while 
the statistical entropy cannot decrease. We thus understand why the process 
can proceed until the statistical entropy has reached its maximum, compatible 
with the constraints on each of the constants of motion, and this provides us 
with a dynamic justification for the principle of maximum statisticai entropy. 
However, it is assumed that we have taken into account all conservation laws 
which hold during the evolution; hence the only information about the initial 
state still existing in the final state is that about these constants of motion. 

The explanation of the approach to equilibrium and of its irreversibility is more 
subtle when the Hamiltonian is completely determined. In fact, the system in that 
case keeps, in principle, a memory, not only of the constants of motion, but also 
of all other characteristics of the initial state. Nevertheless, since the system and 
its equations of motion are not very simple, this information is transferred with 
time to degrees of freedom that we cannot observe in practice. In the example 
of the mixing of two gases, the fact that the molecules a and b were initially in 
different containers is reflected after the mixing by extremely complicated corre
lations between the positions and velocities of the molecules. The evolution has 
transformed simple information into information which in practice is inaccessible 
since it is associated with correlations between a macroscopic number of particles. 
The irreversibility of the approach to equilibrium comes from the fact that we are 
justified in discarding all information about the degrees of freedom which are too 
complicated to be observable in any imaginable experiment. The increase in the 
relevant statistical entropy thus expresses this loss of accessible information (see 
Exerc.3c and § 15.4). The source of irreversibility for deterministic evolutions is 
therefore the complexity of the dynamics. In the framework of classical mechan~ 
ics, we have already seen in § 3.4.6 how the chaotic behaviour of trajectories can 
produce a spreading of probability or a loss of information. 
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4.1.6 Metastable Equilibria 

Many interesting physical systems are in quasi-equilibrium states. On a time
scale which can be long they hardly evolve at all. Such a kind of metastable 
equilibrium may be distinguished from true thermodynamic equilibria con
sidered in § 4.1.4 by the fact that the macroscopic variables which character
ize the state include, apart from the exact constants of motion, approximate 
constants of motion. The theoretical treatment, however, is based upon un
changed principles. 

Let us as an example consider a system consisti~g of J;wo ~arts ~ and b 
which are very weakly coupled, with a Hamiltonian H = Ha + Hb + V where 
V is extremely small. For definiteness we can imagine that a and b are two 
samples of a substance, separated by a wall which is practically impermeable 
to heat. If V = 0 the energies (Ha) and (Hb) of the two parts are two 
constants of motion which can be fixed independently and the macro-state 
of the system is obtained by maximizing the statistical entropy under these 
two constraints. If V is very small, transfer of energy between a and b is 
very slow. If we wait sufficiently long we reach true equilibrium where (H) 
is the only constant of motion. However, if we restrict ourselves to a rather 
short period during which the energy has not had enough time to tr}nsfer 
between a and ~ the sitJation is hardly different from the one where V = O. 
The quantities Ha and Hb are no longer exactly conserved - this is true only 
for it - but their expectation values vary slowly; at a given time we can 
treat them as if they were two independent data (Chap.14). The method 
for studying equilibrium systems, the principles of which we gave in §§ 4.1.3 
and 4.1.4 and which we shall develop further in what follows, can thus be 
extended to a quasi-equilibrium state during the period considered. 

The same situation occurs in a more subtle fashion in magnetic substances, 
especially in the case of nuclear magnetism. In this case the system a is represented 
by the degrees of freedom of the nuclear spins and the system b by the other 
degrees of freedom of the substance which are often just called the "lattice", since 
they mainly represent the vibrational modes of the crystal lattice. The mechanisms 
for establishing equilibrium can be classified into three categories, depending on 
whether they involve energy exchanges between the spins and the lattice, between 
one spin and another one, or between the various lattice degrees of freedom. These 
exchanges are, respectively, governed by V, by Ha , and by Hb . The characteristic 
time for the thermalization of the lattice itself, which is of the order of ps, is much 
shorter than the spin-lattice relaxation time 71 and the spin-spin relaxation time 72. 

These latter, which can be measured by magnetic resonance experiments, depend 
strongly on the temperature and the substance; they are the longer, the weaker 
their associated interactions. After times much longer than 71 and 72 the system is 
at equilibrium and the total energy is a constant of motion. However, spin-lattice 
interactions V are often so weak that the time 71 is very long, typically between 
0.1 s and several minutes, whereas 72 is of the order of 20 to 100 J1,S. In that case, 
on intermediate time scales between 71 and 72, V does not play any role, and 
the two quantities (Ha) and (Hb), which are practically constant in time, can be 
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controlled independently. Since the macroscopic state depends on the two energy 
variables (Ha) and (Hb ), two temperatures coexist in the substance, the ordinary 
lattice temperature and the spin temperature, which, in fact, can also be negative 
(Exerc.la). 

Similar considerations apply to the number of constituent particles in sys
tems which can exchange matter or which can undergo chemical reactions. 
Let us, for instance, consider a mixture of chlorine and hydrogen. At temper
atures of a few hundreds of degrees, or even at room temperatures when the 
gas is illuminated, a stable chemical equilibrium is reached; the data which 
characterize it are, apart from the total energy and the volume, the numbers 
of Hand CI atoms, the only variables which are conserved in the reactions, 
and these data determine the number of Ch, H2 , and HCI molecules at equi
librium. However, at room temperature in the dark, the reaction rate is so 
low that a mixture of arbitrary amounts of Ch, H2 , and Hel will not react 
during several days. Thermal equilibrium and homogeneity are attained fast, 
but there is not enough time for chemical equilibrium to be reached and the 
mixture is metastable. During the period when the chemical reactions are 
inhibited, the numbers of Ch, H2 , and HCI molecules are practically con
served. These numbers are the data characterizing the metastable state and 
they can be fixed independently of one another - rather than the numbers of 
Hand CI atoms which in this case are insufficient to determine the state; of 
course, one also must give the energy and the volume as in the case of true 
equilibrium. 

The characteristic times for nuclear reactions at room temperature are in most 
cases so large that as far as they are concerned, metastability is the rule. Under 
the usual conditions on Earth, a substance is adequately described if one uses as 
variables the numbers of molecules or of atoms, or, in the case of solids, in more 
detail, the numbers of electrons and nuclei of each species. If we want to take into 
account the possibility of nuclear reactions, we must descend to a still more micro
scopic scale and characterize the state by giving instead the numbers of electrons, 
of protons, and of neutrons. The true nuclear equilibrium is obtained by comparing 
the energies and entropies of the various elements which can be made up out of 
these constituents. We find then that the light elements are unstable with respect 
to fusion - for instance, hydrogen into helium with a change of nuclear energy into 
heat - and the heavy elements are unstable against fission, with the maximum sta
bility range lying around the Fe nuclei. If we wanted to proceed with full rigour we 
should, for instance, consider hydrogen to be in metastable equilibrium as regards 
the formation of helium. However, the probability that such reactions would take 
place spontaneously is completely negligible at room temperatures: we must wait of 
the order of 101000 years to obtain one reaction per mole of matter! As in the case of 
chemical reactions the evolution towards the most stable macroscopic equilibrium 
state is accelerated by increasing the temperature. However, it is necessary to reach 
temperatures of 108 K for nuclear reactions, such as the fusion of two deuterons 
into a helium nucleus, to have a chance to occur during a reasonable length of time. 
This happens inside the stars. This is also the reason why very high temperatures 
are needed to realize controlled fusion. 
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Another kind of metastability is associated with phase changes. For in
stance, depending on the temperature and the pressure, the equilibrium form 
of carbon can be graphite or diamond; even though we observe diamonds at 
room temperatures, only graphite is stable up to pressures of the order of 
16 000 atm. Glycerine should crystallize towards 20° C, but it remains liq
uid in a supercooled state even in the worst winters. Similarly, glasses are 
metastable substances with a structure akin to that of liquids. They evolve 
spontaneously towards the stable, crystalline state: for instance, glasses pro
duced in antiquity or even two or three centuries ago become opaque because 
of the formation of small crystals within them. The study of such metastable 
equilibria at the microscopic scale does not need, in general, the introduc
tjQn .of extra approximate constants of motion as in the case of the earlier 
e~a~ples. We can carry it out by looking for the maximum of the statistical 
entropy in a restricted space containing only those configurations that can be 
reached within a limited time when we take the dynamics of the system into 
account (§ 9.3.3). For instance, the theory of a supercooled liquid is hardly 
different from that of a stable liquid, provided we only consider configura
tions where the molecules are randomly distributed over space; in this way 
we exclude them from being arranged on a crystalline lattice which is the 
more stable equilibrium form. 

4.2 Equilibrium Distributions 

In order to apply the above principles we must first use those data which are 
certain so as to find the Hilbert space or the fraction of space in which we are 
operating. We then have to construct the density operator which produces 
maximum disorder while satisfying constraints such as (4.2) relating to the 
data given on average. In § 4.2.1 we shall carry out this construction by 
the Lagrangian multiplier method. We shall then directly check the results 
obtained employing another, variational, method, which is the basis of many 
often used approximation schemes (§ 4.2.2). The following subsections will 
introduce the general and powerful partition function technique. 

4.2.1 Lagrangian Multipliers 

Let us choose an arbitrary base {Ik)} in the Hilbert space defined by those 
data about our system which are certain. The matrix elements (kIDlk') of 
the density operator are the unknowns which we must determine by looking 
for the maximum of 8(i5), taking into account the constraints (4.2). We add 
to those the condition 
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Tr D = 1, (4.2') 

which has the same form as (4.2) with Ao == f and (Ao) == 1, and recall that 
i5 must be Hermitean and non-negative. 

We shall find a first solution of this problem by means of the Lagrangian 
multiplier method, which we shall describe beforehand, using a general for
mulation. Let I ( { x d) be a function of K variables xl, ... , X k, •.. , X K. These 
variables are related to one another through J constraints gj({xd) = aj 
(j = 1,2, ... , J). We look for the values of {xd for which I is stationary un
der the constraints satisfied by the {xd. To do this we associate with every 
constraint a new variable Aj, called a Lagrangian multiplier, we introduce 
the expression 

1({Xk}) - L Ajgj({Xk}), 
j 

and we look for the stationary values of this expression lor arbitrary changes 
in the Xk, keeping the Aj fixed. We must thus solve the K equations 

(4.3) 

and in this way determine the {Xk} as functions of the Aj. The Aj parameters 
can eventually be expressed as functions of the aj by substituting the solution 
for the {xd into the constraints gj({xd) = aj. 

The mathematical justification of the Lagrangian multipliers method is an ex
ercise in linear algebra. Let us assume that we have found a solution {Xk}. If we 
consider its representative point z, we have in its vicinity 

df == (Vf·dz) == L :!k dXk = 0 
k 

for all variations {dXk} which satisfy the constraints 

( 4.4a) 

(4.4b) 

The rank R of the J x K (K > J) matrix 8gj/8xk is at most equal to J. To fix the 
ideas, let us assume that the determinant of the submatrix 8gj/8xk for 1 ~ j ~ R 
and 1 ~ k ~ R is non-vanishing. We can then imagine that the K variables dXk are 
expressed as linear combinations of the R variables dgj (1 ~ j ~ R) and of K - R 
variables dhk == dXk (R + 1 ~ k ~ K). The differential df can be written in terms 
of these new infinitesimal independent variables in the form 

R K 

df = L )..jdgj+ L Il-kdhkj 
j=l k=R+l 
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if R < J, the differentials dgj for R < j :::; J are linear combinations of the dgj for 
1 :::; j :::; R. We know that df must vanish identically for all changes in the dXk, 
or equivalently of the dgj and the dhk> such that the dgj vanish. This implies that 
i-£k == 0 (R + 1 :::; k :::; K); hence df is a linear combination of the dgj for j :::; R. In 
terms of the original variables dXk this condition is expressed by (4.3). If R < J, 
the existence of linear relations between the dg j (1 :::; j :::; J) implies that the Aj 
are not unique. QED 

A different approach consists in showing that the compatibility of (4.4a,b), 
considered as linear equations in the dXk> implies that the rank of the (J + 1) x K 
matrix 8f /8xk> 8gj/8xk is at most equal to J. Under those conditions, if we 
consider (4.3) as a set of linear equations for the Aj, it will have at least one 
solution. 

The Lagrangian multipliers method can also be justified by geometric consid
erations. The differentials dx, with components {dxd, constitute a vector space c 
with a finite number K of dimensions. The forms (4.4a,b) define V f and V gj as el
ements in the dual space c*. Let us consider the subspace g of c* which is spanned 
by the vectors V gj. The constraints (4.4b) express that the allowed variations dx 
are those which belong to the subspace go of c which is orthogonal to g. Condition 
(4.4a) therefore means that Vf is orthogonal to go. However, one can show that 
the orthogonality of two subspaces from c and c* is a symmetric property. Hence, 
V f belongs to g: it must therefore be a linear combination of the V gj. 

In our problem, the Xk variables are the matrix elements of D and the 
function f is the statistical entropy S(D)/k, while the constraints gj = aj 

are the relations (4.2) and (4.2'). We introduce Lagrangian multipliers ).,j 

associated with each of the constraints (4.2) and ).,0 associated with the 
normalization constraint (4.2'). We must thus ask for the stationarity of the 
quantity 

( 4.5) 

where we can now vary the matrix elements (kIDlk') freely, except for the 

fact that D is Hermitean. If we use (2.19) or (3.28), we obtain in this way 

o = - Tr [8D (In D + 1 + ~ )";A; +).,0) 1 

~ (kI8Dlk') (k'i (In D + ~ )";A; +).,0 + 1) Ik ). 

In this expression we can choose as the real independent variations the quan
tities (kI8Dlk), (kI8DIk') + (k'18Dlk), and i(kI8Dlk') - i(k'18Dlk), the coef
ficients of which must vanish (k < k'). This means that 
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for any k and k', or 

D~ - '" A:4 0 -Ao-1 = e L-i" " t • 

Putting Z == eAO +1 we thus find 

I b ~ ~ e- L. A;A; I (4.6) 

This expression, which is called the Boltzmann-Gibbs distribution, represents 
the general form of the density operators in thermodynamic equilibrium when 
the averages of the constants of the motion Ai are given. It will be the foun
dation for all applications to the physics of equilibrium phenomena in the 
remainder of the present book. We shall also find it useful to introduce 
time-dependent distributions of the form (4.6) for non-equilibrium systems 
(§ 14.3.4). When the energy (H) is amongst the quantities which are given 
on average, the multiplier relating to ii is traditionally written as (3. 

In § 1.3.2 we met already with an example of a Boltzmann-Gibbs distribution. 
The system consisted of a paramagnetic ion with Hamiltonian H1 = -(B ·1'1) in 
the Hilbert space of a spin-~ particle, and with a given average energy, 

According to (4.6) its density operator in thermal equilibrium has the form 

D~ - ~ -{3Hl 
- Zl e , 

where {3 is the Lagrangian multiplier related to the constraint on the energy and 
where Zl is a normalization factor. We find again expression (1.29) and we have 
seen that (3 is directly related to the temperature. The method used in Chap. 1 to 
justify this distribution did not appeal to the maximum entropy principle, but was 
solely based upon the indifference principle. We shall show more generally in § 5.7.2 
how the Boltzmann-Gibbs equilibrium distribution can be derived from the latter 
principle. 

Historically the fact that the equilibrium distributions have the exponential 
form (4.6) was established gradually, in the case of classical statistical mechanics, 
during the second half of the nineteenth century. This discovery preceded that of 
the logarithmic form of the statistical entropy, that is, the order was the inverse 
of the one we are following in the present book (§ 3.4.2). The Maxwell distribution 
(1860) was the first occurrence of an exponential law. Maxwell showed by a heuristic 
argument (§ 7.2.2) that the distribution of the velocities v of the molecules of mass 
m in a perfect gas was proportional to exp(-~.Bmv2). In 1868 he extended this 
exponential form to a gas subject to an external potential. However, the expressions 
that he wrote down referred to a single molecule taken from the population which 
makes up the gas, and not to the whole of the macroscopic system. It was left to 
Boltzmann to recognize in 1871 that the phase density of a more general classi
cal system of interacting atoms, with a Hamiltonian H, should be proportional to 
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e-(3H, and to find in connection with this result expression (4.30) for the entropy 
which we shall derive below. Boltzmann justified the form e-(3H mainly by using 
dynamical arguments, defining the equilibrium state as the one which is reached 
in an evolution during which the entropy increases (§§ 3.4.2 and 4.1.5); he also 
relied on agreement with the results from thermodynamics. The extension to open 
systems, where the number of particles can change thanks to exchanges with the 
outside world, is due to Gibbs who, in his book of 1902, introduced the distinction 
between micro-canonical, canonical, and grand canonical ensembles. In the last 
case he noted that the constraints (4.2) contain not only the given value of the 
average energy, but also that of the average number of particles, and he wrote 
down the corresponding equilibrium distribution (4.33). He only considered the 
equilibrium state itself and not the way the system evolves towards this state, and 
the justifications he gave for the equilibrium distributions were of a statistical kind 
(§ 5.7.2), anticipating the arguments given in § 4.1.3. 

4.2.2 Variational Method 

The above proof is not totally complete: we must, in fact, still prove that 
expression (4.6) makes the statistical entropy S(D) a maximum and not 
merely stationary as we have just shown. Moreover, the Ai variables remain 
to be determined. 

A possible method for checking that, in fact, (4.6) gives the maximum of SCD) 
starts from the remark that our calculation has produced only one stationary value 
whereas we expected at least one maximum and one minimum. However, we have 
not taken into account the condition that the operator D must be positive. The 
domain in which the unknown quantities (kIDlk') vary therefore has a boundary, 
defined by the vanishing of at least one of the eigenvalues Pm ~ 0 of D. On this 
boundary we may find other extrema of S(D); however, S(D) cannot be a maximum 
at a boundary point, as -kpm In Pm increases with an infinite slope near Pm = O. 
The maximum of S(D) is thus necessarily the single stationary value that we have 
found and it lies inside the allowed domain for D. 

One could also note that the second differential of (4.5) with respect to the 
matrix elements of D is the same as that of - Tr D In D. On the other hand, the 
concavity property (3.26) of the statistical entropy can be extended, if we take 
(3.18) into account, to operators D which. have arbitrary traces. This implies that 
the second differential of (4.5) is negative at all points where it is defined, that is, 
at all points where D is positive. In particular, at the point (4.6) expression (4.5) 
takes the value Tr D = 1, its first differential vanishes, and its second differential 
is negative. This point is therefore the absolute maximum of (4.5) for arbitrary 
variations of D. (One can use (3.18) and check, as an exercise, that (4.5) is equal to 
or less than 1). As a result, if we impose the constraints (4.2), the Boltzmann-Gibbs 
distribution is, indeed, the one which provides the maximum of S. 

Below we shall give, without using the Lagrangian multiplier method, a 
direct proof of the fact that the maximum of S under the constraints (4.2) 
is reached for the Boltzmann-Gibbs density operator (4.6). 
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Let us consider the statistical entropy S(D) associated with the Boltzmann
Gibbs distribution (4.6). Starting from (3.17) we readily find 

(4.7) 

Let us compare this statistical entropy with the SeD) which is associated 
with an arbitrary, normalized, density operator fj different from D. To do 
this we apply the lemma (3.18), replacing X by fj and iT by (4.6): 

(4.8) 

Let us now assume that fj gives the same expectation values for the given 
observables as D, namely, that 

(4.9) 

Comparing (4.7), (4.8), and (4.9) we see immediately that in that case 

S(D) > S(fj). 

The Boltzmann-Gibbs distribution thus provides us, indeed, with a statistical 
entropy which is larger than that of any other density operator satisfying the 
same constraints (4.9) and it gives us the general formal solution for the 
macro-state resulting from the maximum entropy principle. 

As a useful by-product of the proof that we have just given we can 
construct an approximation method which allows us to replace the exact 
Boltzmann-Gibbs density operator (4.6), when it is too complicated, by a 
more manageable approximate density operator fj. Let is consider fj in (4.8) 
as a trial density operator, with unit trace, and let us rewrite this inequality 
in the form 

'V V =F D. (4.10) 

For given values of the multipliers Ai the left-hand side of (4.10) appears to 
be a function of fj which reaches its maximum, equal to in Z, when fj is 
the Boltzmann-Gibbs equilibrium distribution (4.6). Let us assume that the 
latter is too complicated to allow us to evaluate physical quantities (Ai) or S 
and let us assume that we have chosen a class of density operators fj which 
are sufficiently simple for us to be able to carry out these calculations. We 
are looking for a criterion to find from that class the approximate density 
operator which provides the best possible approximation for in Z; from the 
latter quantity we can derive the thermodynamic properties of the system 
at equilibrium, as we shall see in what follows. In the restricted class of trial 
density operators that we are considering the best choice for fj is the one 
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which gives the maximum value for the left-hand side of (4.10), the closest to 
In Z. Finding this maximum thus gives us an approximation which will be of 
interest when the Boltzmann-Gibbs distribution cannot be used for practical 
calculations, especially in the case of interacting particles or when we want 
to explain phase transition phenomena (§§ 9.3.1 and 11.2.1, Exercs.9a and 
11f). 

4.2.3 Partition Functions 

We still must determine the Lagrangian multipliers AD, or Z = e'\o+l, and Ai 
as functions of the data (Ai) by expressing that (4.6) satisfies the constraints 
(4.2) and (4.2'). 

First of all, the normalization (4.2') gives 

(4.11) 

This equation enables us to consider the normalization constant Z of the 
equilibrium distribution (4.6) as a function of the Lagrangian multipliers Ai 
and of the data given with certainty which include control parameters. The 
former dependence appears explicitly in (4.11), while the latter is implicit, 
through the definition of the trace over the Hilbert space and through the 
form of the operators Ai, in particular of the Hamiltonian. This function 
Z{Ai} is called the partition function associated with the equilibrium statis
tical ensemble where the values of the observables Ai are given on average. It 
was introduced by Planck in 1921 and called "Zustandssumme" (state sum) 
whence the notation "Z". We have already seen an example of an application 
in Chap.1 (Eqs.(1.13), (1.30)). In the general case it is of great practical use 
to evaluate it. 

Let us, indeed, write down the conditions (4.2) which should determine 
the multipliers Ai as functions of the averages (Ai): 

TrDAi = ~ Tr e- L, A,A, Ai 
Z 

- ~ ~ Tr e - ~) A)A) 
Z 8Ai ' 

where we have used the form (2.19) of the derivative of a trace of an operator. 
Using the definition (4.11) we find now 2 

(4.12) 

2 If the system is macroscopic and can undergo a phase transition, it can happen 
(§ 5.7.1) that the partial derivatives ofln Z are not defined for some values of the 
multipliers Ai; this occurs, for instance, when we describe a solid-liquid transition 
by means of a grand canonical ensemble. 
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Determining the Lagrangian multipliers Ai thus amounts to inverting equa
tions (4.12), which we can write down immediately once we know the parti
tion function Z. 

The function Z{Ai} has special properties which imply that the solution 
of Eqs.(4.12) in terms ofthe {Ai}, if it exists, is unique. Let us, in fact, assume 
that we have found two sets of values {Ad and {Ai} which are solutions of 
(4.12). The density operators D and jj' which correspond to them would, 
by virtue of (4.7) and (4.8), be such that S(D') < S(D) and S(D) < S(jj,) 
which is impossible. The maximum of the statistical entropy is thus unique. 
However, it is possible that (4.12) has no solutions, no density operator being 
able to satisfy the constraints (4.2); this would happen, for instance, if Ai 
is the particle number operator it and one requires that its average (N) be 
negative. 

In practice, one usually avoids inverting Eqs.(4.12) by taking the Ai rather 
than the averages (Ai) as the parameters characterizing the equilibrium. This 
is what we did in § 4.1 where we studied the equilibrium of a system of spins 
as a function of the parameter /3, that is, of the temperature, rather than 
as a function of the associated variable, the energy U. We shall see more 
generally in Chap.5 that the Lagrangian multipliers, introduced here as a 
mathematical artifice to take the constraints imposed by the data (4.2) into 
account when we look for the maximum of S(D), have direct macroscopic 
physical interpretations. 

We can also derive the correlations and the statistical fluctuations of the 
constants of motion Ai from the partition function, in the most common case 
when the observables Ai commute. In fact, we find that 

a2z ,,~ 
- Tr - L.. AkAk A~·A~· - e k • J' aAiaAj 

and hence 

a2 ln Z = (AiAj) - (Ai) (Aj ). 
aAiaAj 

(4.13) 

The matrix of the right-hand side of (4.13) is positive as, for arbitrary Gi , 

~ GiG; [(AiAj) - (Ai) (Aj)] = (~ Gi (Ai _ (Ai)) 2). 
Y • 

The function In Z is thus a convex function of its variables Ai, which directly 
explains why the solution of Eqs.( 4.12) in terms of the Ai is unique. 
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4.2.4 Equilibrium Entropy 

Finally, using (4.7) and (4.12), we can easily express the equilibrium entropy 
associated with the Boltzmann-Gibbs distribution in terms of the partition 
function: 

S a 
k = In Z - ~ Ai aAi In Z (4.14) 

• 

Let us consider a shift in the equilibrium, that is, an infinitesimal change 
in the parameters (Ai) which characterize this equilibrium, and hence in the 
parameters Ai which are related to the (Ai). By virtue of (4.12) we have 

dIn Z = - L (Ai)dAi, ( 4.15) 

whence, if we use (4.14), 

dS = k L Ai d(Ai). (4.16) 

These relations show that the natural variables for S are the data (Ai), 
whereas In Z is useful as a function of the Ai. Considering S as a function 
of the (Ai) we then find from (4.16) that 

1 as 
k a(Ai) = Ai, ( 4.17) 

a relation which expresses the Lagrangian multipliers as the changes in the 
statistical entropy when the equilibrium is shifted. 

The relations (4. 7) and (4.17) make it possible to write the expression for 
In Z in terms of Sjk: 

S a S 
In Z = k - ~ (Ai) 8(Ai) k· 

• 
(4.18) 

Comparing (4.14) with (4.18) and (4.12) with (4.17) shows that there exists, 
apart from a sign, a complete symmetry between the function In Z of the 
variables Ai and the function Sjk of the variables (Ai). The transformation 
(4.14) which allows us to go from one to the other is a Legendre transforma
tion. We shall in § 6.3.1 give the general formalism of such transformations 
and some applications; they are very useful whenever one wants to change 
from one set of variables to the conjugate ones, which are defined as the 
partial derivatives of some function. Simultaneously with this change in vari
ables, one should arrange a change in the function through the Legendre 
transformation, in order to be able to get again the old variables by simple 
differentiations, as in (4.12) and (4.17). It will be essential to make absolutely 
clear - especially for applications to thermodynamics - which variables we 
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consider to be independent when calculating partial derivatives. For instance, 
the partial derivatives of S are simple only if all the variables are the (Ai). 

The general theory of Legendre transformations (§ 6.3.1) makes it possible to 
connect the second derivatives of In Z and S with respect to their natural variables 
with each other. In the present case we have, according to (4.13), 

whereas by taking the derivative of (4.17) we get 

1 82 S 
k 8(Ai)8(Aj) 

8(Aj) 
- 8>'i ' 

(4.19) 

(4.20) 

The matrices of the second derivatives of In Z and of -S/k are thus the inverse of 
each other. As a result S is a concave function of the variables (Ai) with its second 
derivatives forming a negative matrix. 

4.2.5 Factorization of Partition Functions 

The Hilbert space of a macroscopic system is characterized by a very large 
set of quantum numbers; this makes the evaluation of the trace (4.11) labo
rious and often impracticable. However, most applications which we shall be 
concerned with refer to systems consisting of non-interacting entities; these 
entities can be particles, or spins, or more abstract objects such as vibrational 
modes or defects in a solid. In such a case the Hilbert space CH in which the 
trace is calculated can be decomposed into a direct product (§ 2.1.1) of simple 
Hilbert spaces c~ associated each with one entity, and the Hamiltonian ii, 
one of the constants of motion Ai, can be written as a direct sum of oper
ators iiq , each of which operates in an elementary Hilbert space c~, while 

the action of iiq in c~ is defined by (2.12). The system is thus decomposed 
into subsystems, characterized by the index q, which do not interact with one 
another. The other constants of motion Ai, such as the numbers of particles 
or the momentum, are usually additive so that, for the system considered, 

(4.21 ) 

has the form of a direct sum of operators Kq which act, respectively, in the 
Hilbert space c~ associated with the subsystem q. 

Under those conditions the evaluation of the partition function (4.11) is 
greatly simplified. In fact, 
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becomes the trace, in EH, of a tensor product of operators. According to 
(2.11) this trace can be factorized as a product of traces trq , each of which is 
calculated in a space E~: 

( 4.22) 

Because of its practical importance we shall give another proof of this re
sult. Let us choose in each space E~ a base {Imq)} which diagonalizes Kq; in 
the most often encountered case where the observables Aq commute, Imq) is 
their common eigenbase. Let us denote by Kq(mq) the eigenvalue of Kq asso
ciated with Imq). The space EH is spanned by the base {Ima, ... , mq, ... )} and 
the eigenvalue of Ei .xiAi corresponding to the micro-state Ima, . .. ,mq, ... ) 
is Ka(ma) + Kb(mb) + ... + Kq(mq) + .... In this base the trace (4.11) may 
be written as a multiple sum, 

Z = 
rna ,mb , ... ,mq " .. 

= Za Zb ... Zq ... , ( 4.22') 

which we can factorize immediately. 
We note also that for the non-interacting systems which we are consider

ing the Boltzmann-Gibbs density operator (4.6) can be factorized as a tensor 
product, 

D~ 1 - E A·A" q==-e ,tt, 
Zq 

(4.23) 

of density operators relating to the various subsystems. The absence of inter
actions thus implies in thermodynamic equilibrium the absence of correlations 
between subsystems. 

The factorization (4.22) of Z implies that In Z is a sum of terms In Zq 
relating to the various subsystems. All quantities such as (4.12) or (4.14) 
which are found by differentiation are also additive. In particular, we find 
again the additivity, S = Eq Sq, of the statistical entropy, in agreement 
with (3.20) and (4.23). 

In this book we shall meet with many examples of factorizations like 
(4.22) and (4.23). However, one should in this respect note the importance 
of the choice of the equilibrium statistical ensemble. In Chap.1 the spins, 
situated at the sites i = 1, ... , N, did not interact, but because of the re
striction (1.11) one could not consider them as independent entities in the 
microcanonical ensemble. One takes better advantage of the absence of in
teractions, if one works in the canonical ensemble (Exerc.4c). Even in the 
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microcanonical ensemble, we evaluated the canonical partition function Z 
as a technical artifice in order to find the micro canonical partition function 
W, and its expression (1.13) was found just by using the factorization of the 
contributions from the various sites. 

More generally, we shall often choose the statistical ensemble with a view 
to take advantage of a factorization of Z. Moreover, a comparison of the 
various approaches in different ensembles can enable us to obtain interesting 
results (Exercs.2b, 4f, 5a, and 9g). 

4.2.6 Summary: Technique of Studying Systems at Equilibrium 

In this section we shall collect the essential results which we have just derived 
from the maximum disorder principle and which provide us with a system
atic method for studying equilibrium problems in statistical physics. Most 
applications considered in what follows will be treated using this method. 

In order to study a system at equilibrium we start by defining the Hilbert 
space of its states and by looking for the constants of the motion and their 
associated observables Ai, such as the energy or the number of particles of 
each kind. The averages (Ai) of these observables are data which character
ize equilibrium on the macroscopic scale; we associate with each of them a 
Lagrangian multiplier Ai. 

The density operator describing the system at equilibrium is then the 
Boltzmann-Gibbs distribution 

D~ 1 -" AA = Z e LJi • '. (4.6) 

At equilibrium, the expectation value of any observable A can be calculated 
using the general relation (A) = Tr Dl. However, for the particular observ
abIes Ai entering (4.6), this calculation is simplified, if we first evaluate the 
normalization constant Z, that is, the partition function 

Z{ \ } Tr -" A·A Ai = e Ui ' " ( 4.11) 

considered as function of the variables Ai. In fact, we find the average values 
(Ai) by differentiation: 

(4.12) 

as well as the correlations and fluctuations (4.13). 
More generally, let us assume that we are interested in the average value 

of an observable X that can be produced, starting from one of the conserved 
quantities Ai, through differentiation with respect to a parameter ~ which 
occurs in the definition of the latter. For instance, the derivative of the Ha
miltonian with respect to an external magnetic field is, apart from the sign, 
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the magnetic moment operator. Knowing Z as function of ~ is sufficient to 
evaluate (X), since 

(X) = \ aa~i ) 
1 a 

In Z 
Ai a~ 

(4.24) 

This expression is proved in the same way as (4.12); the fact that some 
operators may not be commuting does not matter when we take the first 
derivative (2.19) of a trace. 

The applications treated in the present book will, in general, be simple 
enough for the eigenvalues of the constants of the motion Ai to be known. 
We shall therefore work in the representation in which the observables Ai are 
diagonal and we shall calculate the trace (4.11) as a sum over eigenvalues, all 
the time taking advantage of factorizations such as (4.22). We must beware 
of possible degeneracies, as in the trace (4.11) each distinct eigenvalue is 
weighted by its multiplicity. 

The logarithm of the partition function, In Z, can also be obtained as the 
maximum of 

1 ~ L ~~ - S(D) - A·TrDA· k t t, 

i 

(4.10) 

over the set of all density operators D. By restricting this set to a class D 
which allows a manageable calculation of (4.10), for instance, by taking D as 
factorized, we can, by looking for the maximum of (4.10) in this class, find a 
variational approximation to In Z. 

The equilibrium entropy is the maximum of the statistical entropy over the 
set of density operators satisfying the constraints (4.2) on the given averages 
(Ai). As a function of Z{Ai} it can be expressed as 

a 
S = k In Z - L Ai aAi k In Z. (4.14) 

The partition function Z {Ai} thus plays an essential role in the practical 
calculation of the properties of a system at equilibrium: the averages (Ai) or 
(X) can be found from it through differentiation, (4.12) or (4.24), and the sta
tistical entropy, considered as a function of the variables (Ai), is connected 
with k In Z through the Legendre transformation (4.14). The expressions 
Tr DA for the quantities (A) or -k Tr D In D for S will therefore be useless 
for systems at equilibrium after the preliminary calculation of Z{Ai}. We 
shall, moreover, see (§ 5.6) that the parameters Ai and the function Z can be 
interpreted in terms of commonly used macroscopic quantities. For instance, 
the Lagrangian multiplier {3 associated with the energy observable jj is di
rectly related to the absolute temperature, {3 = l/kT. To make the physical 
interpretation easier we shall be led to changes in the functions, using for in
stance -kT In Z instead of Z, and in the variables, using T instead of {3, in 
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order to work directly with the traditional macroscopic quantities. Equations 
(4.12) and (4.14) will thus be replaced by equivalent formulre which have an 
obvious thermodynamic interpretation (see the tables in § 5.6.6). 

4.3 Canonical Ensembles 

The previous section presented in a very general way the density operator 
formalism for thermodynamic equilibrium. To make these results look less 
abstract we shall show how they apply to a fluid. The nature of the fluid will 
appear through the form of the Hamiltonian fiN which contains the kinetic 
energy of the N particles, their interaction potential, as in (2.65), and which 
depends possibly on their internal degrees of freedom, if they have a struc
ture. The container that encloses the fluid is described by a box potential 
which is zero inside and infinite outside, and which also occurs in fiN. In 
agreement with the remarks in § 4.1.4, the data characterizing a thermody
namic equilibrium state are the energy U, the number N of particles, and 
the volume {} of the box. Depending on whether these data are given exactly 
or only on average, we obtain different descriptions of the equilibrium state 
through different statistical ensembles which were defined in § 4.1.2. We shall 
show in § 5.5.3 that they are equivalent for the evaluation of most physical 
quantities, provided the system is macroscopic. In practice, it will thus be 
convenient, when we want to deal with a problem, to choose the ensemble 
which gives rise to the simplest calculations, taking into account the remark 
at the end of § 4.2.5. 

4.3.1 The Canonical Ensemble 

In the canonical ensemble proper, also called "petit canonical" ensemble, 
which we introduced in § 4.1.2, thermal equilibrium is characterized by giving 
the number of particles N and the volume {} exactly and the energy U on 
the average. A Lagrangian multiplier, commonly denoted by j3, is associated 
with the corresponding constraint 

The Boltzmann-Gibbs distribution reduces to 

D = ~ e- f3HN 
Zc 

(4.25) 

(4.26) 

If we denote the eigenkets of fiN by 1m} and the eigenenergies by Em, the 
probability Pm for the eigenstate 1m} is the exponential 

1 
Pm = - e- f3E", 

Zc 
(4.26') 
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The canonical partition function, as function of the multiplier (3 and of the 
exact data Nand fl, is given by 

( 4.27) 
m 

where the summation is over all N-particle states. The parameter (3 is con
nected with the average energy U through 

_ Oln Zc((3, N, fl) = U 
8(3 . (4.28) 

It is important to note that the sum (4.27) is over the eigenstates 1m}, 
and not over the energy values Em; when the energy levels are degenerate 
each ofthem appears as often as the degree of degeneracy of the level d(Em). 
One method of summation consists in grouping the terms which belong to 
the same energy value together and writing (4.27) in the form 

Zc = L d(Em) e-{3Em 
(4.29) 

Em 

In this connection one should note that the probability distribution for the 
energy is not an exponential one: it contains as factor of the decreasing expo
nential (4.26') a distribution, which in general increases rapidly, representing 
the level density, that is, the factor multiplying dE in the expression for the 
number of eigenstates of the Hamiltonian with energies lying between E and 
E + dE (§ 5.5.3 and Exerc.9g). 

Nevertheless, it is often difficult to calculate the degrees of degeneracy 
and this restricts the use of (4.29). For most practical applications the states 
m will be characterized by a set of independent quantum numbers, m = 
(ml' m2, .. . ), and the energies Em will have the special form Em = cl(ml) + 
c2(m2) + ... ; under those conditions the simplest way to evaluate (4.27) is 
to characterize the states m not by their energies but by the set of quantum 
numbers m = (ml' m2, ... ). Thanks to the factorization (4.22) the calculation 
is then simplified without there being any need to worry about degeneracies, 
as we have 

Exercises lb, 4c, and 4f give examples of this situation. 
The equilibrium entropy S(U) is given by 

S(U) = k In Zc + k(3U, (4.30) 

and the Lagrangian parameter k(3 is its derivative with respect to U. Finally, 
the energy is not defined exactly, and its statistical fluctuations in canonical 
equilibrium can be found from (4.13) or (4.20), 
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(4.31) 

Of course, Zc depends also on the variables Nand n. However, its second 
derivative with respect to N is, for instance, not connected with the statistical 
fluctuations in N, which are zero. 

4.3.2 The Grand Canonical Ensemble 

The grand canonical ensemble, also called "grand ensemble", was defined in 
§ 4.1.2. It corresponds to situations where the number of particles N in the 
system, considered to be a random variable, and the energy U are both given 
in the form of averages. Technically speaking it is very useful, as it often leads 
to simpler calculations than the canonical ensemble, of which it is anyway 
the equivalent for a macroscopic system. In the case of a finite system these 
ensembles represent different physical stuations. We saw in § 4.1.2 that the 
canonical ensemble was suited for the description of a system which can 
exchange heat with a thermostat. The grand canonical ensemble similarly 
describes an open system, that is, a system which can exchange particles and 
heat with the outside. This is, for instance, the case for the part of the fluid 
lying in a fixed volume element, while the rest of the fluid plays the role of 
a particle and energy bath. Exercise 4b provides another example. 

When the system is in a pure state with a well defined particle number 
N, its representative ket belongs to a Hilbert space £r). In the case we are 
now considering N is not exactly known; we have indicated in § 2.3.6 that we 
must associate with the system a Hilbert space £H, called Fock space, which 

is constructed as the direct sum ; £~N) of N-particle spaces (§ 2.1.1). In 
N=O 

this space we introduce the particle number observable N in order to treat 
the energy and the particle number on the same footing. Its eigenvalues are 
the integers N and its eigenvectors the kets for which the system has a well 
defined number of particles. Its eigensubspace corresponding to N is £~N); 
for N = 0, £~O) is a one-dimensional space which describes the vacuum. In 
the situation under consideration the eigenvalue N of N is a random variable 
and only its expectation value (N) is known, as is the case for the energy 
which is the eigenvalue of the Hamiltonian. Observables such as N, ii, or 
the total momentum, which do not change the number of particles of the 
ket on which they operate, commute with N and must be considered as a 
set of observ~les each operating in a subspace £~N). More precisel:!' the 
Hamiltonian H in Fock space is the direct sum of the Hamiltonians HN in 
the N-particle subs paces £~N). The density operator D operates in the Fock 
space, and the constraints (4.2) on the average of the energy, U, and of the 
particle number, (N), can be written in the form 

Tr Dii = u, TrDN = (N). (4.32) 
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Note that the symbol Tr has no longer the same meaning as in § 4.3.1 as we 
are now dealing with a trace over £H = EB £i{"). Writing TrN for the trace used 

N 

for the canonical ensemble with N particles and D N for the component of D 
in £~N) obtained by projection, the constraints (4.32) and the normalization 
(4.2') can be written as 

(N), 
N 

The quantity TrN DN represents the probability that the system consists of 
N particles. 

Traditionally the multipliers associated with the constraints (4.32) are 
denoted by (3 and -0: so that we can write for the grand canonical density 
operator (4.6) 

D = ;G e-(3H+OtN. (4.33) 

Its normalization coefficient is the grand partition function 

ZG(o:,(3) = Tre-(3H+OtN 

= L eOtN L e-(3Er,:) L eOtN Zc((3, N) , (4.34) 
N m N 

where the E~) are the energies of the N-particle micro-states. The grand 
partition function ZG (0:) is thus a Laplace transform with respect to N of 
the canonical partition function Zc(N). 

Writing for the sake of simplicity N instead of (N), we find the following 
relations between the averages U and N and the Lagrangian multipliers (3 
and 0:: 

8ln ZG = -U 
a(3 , 

aln ZG = N, 
ao: 

and we have for the equilibrium entropy 

S(U, N) = k In ZG + k(3U - ko:N. 

Inverting the relations (4.35) we have 

1 as 
k au = (3, 

1 as 
k aN = -0:. 

(4.35) 

(4.36) 

(4.37) 

Finally, the statistical fluctuations in the energy and the particle number are 
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82 In ZG 
8f32 

-k !;, /[!;, ;;:, -(a~:Sl 
8 2 In ZG 

80:2 

-k ~~~ / [:; ~~ - (8~:N r] 

(4.38) 

Expressions (4.31) and (4.38) for the equilibrium fluctuations as functions of 
the second derivatives of S can be obtained directly from the general theory 
of Legendre transformations (Eq.(6.16)). 

4.3.3 Other Examples of Ensembles 

The remainder of the book will provide us with a large number of substances 
where knowledge of the energy levels enables us to use either (4.26-30) or 
(4.33-37) to calculate the physical properties in thermal equilibrium, either 
in the (petit) canonical ensemble, or in the grand canonical ensemble. Some
times, for specific applications, we shall use statistical ensembles based on 
other choices of the data (4.2) in order to benefit from the flexibility of the 
partition function technique. 

For instance, in Chap.1 we worked in the microcanonical ensemble, as
suming that the energy U was given exactly and not as an average. Because 
of the discrete nature of the eigenenergies of jj we must, however, in such 
a case ask that the energy is not exactly equal to U, but lies between U 
and U + .1.U, where .1.U must be small as compared to the measuring ac
curacy of U, but large as compared to typical energy level spacings. These 
conditions are compatible for large systems as the level density tends rapidly 
- exponentially - to infinity with the volume. The constraint on the energy 
defines an allowed Hilbert space Elf with a large dimensionality, W. Here we 
need only one Lagrangian multiplier which takes account of the normaliza
tion (4.2') and the Boltzmann-Gibbs distribution reduces to the result (4.1), 
as expected: 

~ 1 ~ 

D = W Iw· (4.39) 

The micro canonical partition function is nothing but the number of levels, 
W, and (4.14) reduces to the equiprobability entropy, 

S=klnW. ( 4.40) 

One could reconstruct the theory of Chap.1 (Exercs.1b and 4c) by using a 
canonical ensemble. The calculations are simpler and expressions (4.26-30) 
lead to the same physical results as in § 1.4. 
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Returning to the grand canonical ensemble, let us now consider a fluid 
containing several species of molecules a, b, .... We must introduce for each 
species a constraint expressing the conservation of the number of molecules 
Na , N b , • ..• There thus appear several associated Lagrangian multipliers 
aa, ab,' .. , and the grand canonical density operator is 

(4.41 ) 

The grand partition function (4.29) has been generalized to become 

( 4.42) 

However, if the molecules can change into one another through chemical 
reactions, the constants of the motion are no longer the numbers of molecules, 
but the numbers of the constituent atoms. In that case, the density operator 
has still the form (4.41), but now Na , N b , ..• represent the total number of 
the various atoms which combine to make up the molecules (§§ 6.6.3 and 
8.2.2). 

One can easily extend the method to other physical systems and to other 
observables; this enables us to introduce new conjugate variables. For in
stance, if the system, rather than being enclosed in a box, can freely move 
in space, we introduce three Lagrangian multipliers -.x which are associated 
with the three components of the total momentum P. The density operator 
has the form 

where -.x occurs as the conjugate of the constant of motion (P) just as (3 
is the conjugate of the energy. As always, the Lagrangian multipliers have 
an interesting physical meaning: .xl (3 can be interpreted as the velocity of 
the whole system, as one can see through a change in the frame of reference 
(Exerc.4e). 

Let us give still a few other examples. Consider a sample of a magnetic 
substance with Hamiltonian ii when there is no field and assume that we 
try to study its properties as a function of the total magnetic moment. The 
data are (H) and (M) and the Boltzmann-Gibbs distribution is 

~ e-i3H +i3(B oM ) z . 
The Lagrangian multiplier -(3B associated with the magnetic moment can be 
identified, apart from the factor -(3, as the external magnetic induction which 
would be necessary to produce the moment (M). The same considerations 
can be applied to a dielectric for which the conjugate variables would be the 
dipole moment and the electric field. 
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Similarly, consider a fluid kept in a cylinder by a moving piston; the 
volume [! can fluctuate around its given average value. The associated La
grangian multiplier will be identified (§ 5.6.5) with (3P, where P is the pres
sure exerted on the piston. In the study of thermal engines, and also in 
chemistry, it is often useful to take as the state variable the pressure rather 
than the volume and thus to work in the so-called isobaric-isothermal en
semble where the natural variables include the temperature and the pressure 
(Exerc.5a). 

Another example is provided by nuclear physics: a nucleus is a set of 
interacting protons and neutrons; if we want to study its moment of inertia, 
we must know how it behaves when it rotates, that is, when we require it to 
have an angular momentum J. The Lagrangian multipliers associated with J 
are the components of the vector -(3w and the equilibrium density operator 
can be written in the form 

~ e-{3H+{3(w.J). 
Z ' 

here we can identify w with an angular velocity. In this case, the three com
ponents of J are constants of the motion which do not commute with one 
another, but that hardly affects the general formalism. The same idea can 
be applied to the equilibrium of a fluid in a rotating cylinder (Exerc. 7b). 

4.3.4 Equilibrium Distributions in Classical Statistical Mechanics 

There is little to be changed in the formalism of §§ 4.2 and 4.3 when we go over 
to the classical approximation. The density operators and the observables 
are replaced by functions defined in phase space. The trace is replaced by 
an integration over that space, possibly with a summation over N: Tr ==:} 

L:N J dTN. When the particle number N can fluctuate, the density in phase 
D is a set of components D N , each of which is a function in the phase 
space t'~N). We change from the discrete to the continuum: whereas the 
statistical entropy S(D) is a function ofthe unknown matrix elements of D, 
in classical statistical mechanics S(D) is a functional of the phase density D. 
The equation expressing the stationarity of (4.5) is replaced by 

( 4.43) 

where the variations 8DN are arbitrary functions; it leads to the vanishing of 
the expression inside the square brackets which is the functional derivative 
of (4.5). The classical Boltzmann-Gibbs distribution is thus 

DN = ~ e- L:i A,A, 
Z ' ( 4.44) 

where the partition function is defined by 
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( 4.45) 

All relations between the average values (Ai) and the Lagrangian multi
pliers Ai, the equilibrium entropy S and the partition function Z, remain 
unchanged. 

For instance, the classical microcanonical ensemble is described by a 
constant phase density, equal to l/W, in the volume W of the N-particle 
phase space which lies between the surfaces HN(rl,Pl, ... ,rN,PN) = U 
and HN(rl, Pl' ... ' rN,PN) = U + t1U. 

The classical canonical ensemble has a phase density 

1 f3H DN = - e- N, 

ZC 
( 4.46) 

with as partition function (Exerc.4d) 

Zc(N) = J dTN e-f3HN . ( 4.47) 

Finally, the classical grand canonical ensemble is described by a density 
in phase D with components DN in each of the 6N-dimensional phase spaces, 
which are equal to 

D = ~ e-f3HN+aN 
N ZG ' ( 4.48) 

while the classical grand partition function is related to Zc through the same 
Laplace transformation (4.34) as in quantum mechanics. 

Summary 

An equilibrium state, which is characterized by macroscopic data, is micro
scopically and statistically described as the state of maximum disorder com
patible with these data. During the approach to equilibrium the density op
erator evolves in the allowed Hilbert space where the conservation laws are 
satisfied; information is lost and the statistical entropy increases. Looking 
for the maximum of the statistical entropy under the constraints that some 
constants of motion are given as averages, leads to the Boltzmann-Gibbs dis
tribution (4.6) which corresponds to the maximum of (4.10). 

The calculation of the equilibrium macroscopic quantities is made easier 
by using partition functions; this technique is summarized in § 4.2.6: know
ing the partition function (4.11) is sufficient (i) to find the relations (4.12) 
between the data characterizing the equilibrium state which are, on the one 
hand, the average values of conserved observables and, on the other hand, 
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their associated Lagrangian multipliers, and (ii) to calculate the statistical 
entropy (4.14), the expectation values (4.24), and the correlations or fluctu
ations (4.13). We describe two general methods, factorization and the varia
tional method, to evaluate partition functions. 

Depending on the number and nature of the data, we introduce differ
ent statistical equilibrium ensembles with their own natural variables, for in
stance, U and N for the microcanonical ensemble, f3 and N for the canonical 
ensemble, and f3 and a for the grand canonical ensemble. 

Exercises 

4a Relation Between Fluctuation and Response 

1. Consider a system which is in equilibrium in a uniform magnetic field 
B in the z-direction. This field occurs in the Hamiltonian, fi = fio - BM, 
through the second term. The Hamiltonian fio when there is no field present 
commutes with_.!he operator M which is the z-component of the total mag
netic moment M. We neglect the "diamagnetic" term which is quadratic in 
B and which comes from the term in A2 from (p-eA)2/2m. Write down the 
general expression for the magnetic susceptibility, that is, the static linear 
response of the system to an infinitesimal perturbation B. Compare it with 
the statistical fluctuation in M. This kind of relation between fluctuations 
and linear responses is very general. 

2. Application: Show that Curie's law is satisfied whenever the energy 
levels in the presence of the field B have the form En>.(B) = -BMn + E>., 
where the Mn are the eigenvalues of M, where ,\ denotes the other quantum 
numbers, and where E>. is independent of nand B. The models studied in 
Chap.1 and Exercs.Ib and Ic were special cases of this general form. Check 
that the expression for the Curie constant in Exerc.1 b satisfies the general 
relation between fluctuations and responses. 

Solution: 

1. Taking twice the derivative of In Z with respect to B and using (4.24) and 
(4.13) we find 

(M) = TrDM 
1 D 
(3 DB In Z((3, B), 

L1M2 = ;2 D~2 In Z. 

On the other hand, 

x = ~ D(M) I 
[l DB B=O 

_1_ L1M21 . 
[lkT B=O 
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The linear response X is proportional to the fluctuations in the associated observable 
M, evaluated for the case when the perturbation B is not there. 

2. Curie's law is valid provided LlM2 is independent of T when B = O. This is 
true for the models considered since, for any function f, 

(f(M)) I = 2:nA f(Mn) e-{3E), = 2:n f(Mn). 
B=O 2:nA e-{3E), 2:n 1 

The Curie constant of Exerc.1b is equal to NJ-t~ij(j + 1)/3flk and 

4b Adsorption 

When a gas is in equilibrium with a solid wall, its molecules can become 
attached to that wall on special sites where they are trapped in a way which 
depends on the structure of the wall. Adsorption is thus an equilibrium be
tween two phases, the gas and the system of bound molecules, similar to a 
chemical equilibrium. 

To study this we consider a model: the wall has N sites on each of which 
a molecule can get bound with a binding energy -u. The molecules which 
are not adsorbed form a perfect gas. Calculate the grand partition function 
for the adsorbed molecules and hence, using the thermodynamic properties 
of gases, which we shall obtain in § 7.3.1, calculate the average number N of 
adsorbed molecules as function of the gas pressure and the temperature. 

Solution: 

The micro-states are characterized by stating for each of the N sites whether 
it is occupied or not by a molecule. The grand partition function can be factorized 
into contributions relating to each of the sites. If the site is occupied, the energy is 
-u and the number of particles equals 1; if it is not occupied, both quantities are 
zero. Hence we have 

/If 
ZG(a, /3) = (e{3u+a + 1) . 

From (4.35) it follows that 

N = 8ln ZG = N 
8a 1 + e-({3u+a) . 

At equilibrium the values of /3 = l/kT and of a are the same in the wall and in 
the gas. In the gas, a is related to the pressure P through 

so that we have 



N 

N 
P 

P+Po' 

Exercises 175 

where 

This relation which is called the Langmuir adsorption isotherm gives for each value 
of T, which enters through Po, the number N of adsorbed molecules as a function 
of the pressure. This number decreases with pressure. When T -+ 0, we find that 
N -+ N and practically all sites are occupied; this effect resembles the condensation 
of vapours on cold walls; for instance, the drying of crockery in dishwashers is 
achieved by cooling the walls by a cold water jet. When T :» ujk, we find that 
N -+ 0 and the walls are degassed; this is the reason why one heats the walls of 
containers in which one wishes to make high vacua (Exerc.14c). 

We can obtain the same results by treating the N adsorbed molecules on the 
N sites in a canonical ensemble. Their canonical partition function is equal to 

N! f3Nu 
Zc(N,f3) = N!{N _ N)! e , 

which for macroscopic values of Nand N gives 

N N 
In Zc ,..., N In N + (N - N) In N _ N + f3Nu. 

In order to write down the condition that these molecules are in equilibrium with 
those in the gas, we must equate the chemical potentials I-t = oj 13 in the two 
systems. For the wall we find 0 in the canonical ensemble by using (5.48); this 
leads to 

a N 
o = - aN In Zc = In N _ N - f3u. 

Langmuir's law then follows by again using the relation between 0 and P in the 
gas. 

4c Free Energy of a Paramagnetic Solid 

Rederive the results of § 1.4, starting from the canonical Boltzmann-Gibbs 
equilibrium distribution: 

1. Write down the general expressions for the internal energy U, the sta
tistical entropy S, the magnetic moment (M), the susceptibility X, and the 
spin specific heat C, as functions of In Zc. Show that F == -{3-1ln Zc can 
be identified with the free energy, l/k{3 with the absolute temperature T, 
and S with the entropy. 

2. Evaluate Zc in the model of Chap.1 and hence derive the above ther
modynamic quantities. 

3. Compare for that model the canonical and micro canonical ensembles. 
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Hints: 

1. The results follow from (4.30) and the relation 

1 
dF = -Sd k(3 - (M)dB. 

2. Factorization leads to Zc in the form (2cosh (3P,BB)N. 
3. The macroscopic quantities are the same; only the fluctuations in the energy 

and the magnetic moment are different. The entropies differ by a non-extensive 
contribution of order In N. 

4d Absence of Magnetism in Classical Mechanics 

Show that if the particles, the electrons and nuclei, which make up a sample of 
matter were to obey the laws of classical mechanics, introducing an arbitrary 
magnetic field would, at thermal equilibrium, have no effect whatever (Bohr
van Leeuwen theorem). Write down first the Hamiltonian in a magnetic field 
and then the probability distribution in canonical equilibrium for the various 
observables, which are functions of the positions and the velocities of the 
particles. Remember that the momentum of a charged particle is not an 
observable (§ 2.1.3). 

The existence of magnetic moments is thus a purely quantum effect, 
whether we are dealing with the intrinsic magnetic moments of the particles, 
which are proportional to their spins, or with magnetic moments related to 
currents. Langevin paramagnetism (Exerc.lc) is only apparently classical: 
the magnetic moment J.I. which was a priori associated by Langevin with a 
paramagnetic ion has necessarily a quantum origin. 

Solution. In the Hamiltonian which has the form (2.65) the magnetic field B = 
curl A only occurs through the kinetic energy term. The velocity of the i-th particle 
is 

dTi 
dt 

8H 
Bpi 

1 
[Pi - eiA(Ti)]. 

If we use the volume element (2.55) we find that in canonical equilibrium (4.46) 
leads to a probability density for the particle positions Ti and velocities Vi which 
is equal to 

1 1 

Zc N! 

N 

(~miV; + V(T;)) - (3 L 
i,j=l; i<j 

This probability density is independent of the field B. The same is true for the 
expectation value of all the observables, which for identical particles are symmetric 
functions of the Ti and Vi, such as the current density at a particular point. 
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4e Galilean Invariance 

Show that the entropy of a system at equilibrium in the absence of external 
fields remains unchanged, if the system is subjected to a uniform translation 
(§ 4.3.3). In order to do this, express the Lagrangian multiplier associated 
with the momentum P as a function of the translational velocity and compare 
the thermodynamic quantities in the two frames of reference. 

Solution. If the momentum P is given on average, the partition function is equal 
to 

where H' differs from the Hamiltonian H in that the particle momenta Pi are 
replaced by P~ = Pi - miu, with .\ = {3u, and by adding an extra term Ll = 
M)..2j2{32, where M is the total mass. In the Galilean frame with velocity u, P~ is 
the momentum of the i-th particle and the interaction energy is the same as in the 
initial frame, so that H' - Ll has the same form as H. The calculation of Z in this 
frame shows that In Z = In Zo + {3Ll, where Zo is the partition function at rest. 
The term (3Ll gives, as expected, the average momentum DIn ZjD.\ = Mu and a 
contribution !Mu2 to the energy -DIn ZjD{3, but it does not contribute to the 
entropy (4.14). 

4f Oscillators in Canonical Equilibrium 

1. Write down the canonical partition function ZI of a quantum harmonic 
oscillator of frequency w/27r (c: = nw). 

2. What happens in the case of an isotropic two- or three-dimensional 
oscillator? Write down the partition function ZN for N oscillators with the 
same frequency. 

3. Express the statistical entropy S as function of the energy U for N 
oscillators. Compare this result with Planck's in the form it was obtained in 
Exerc.3e. 

4. Derive from ZN the number of ways WN(P) to decompose an integer 
P into a sum PI + P2 + ... + PN, where the Pi are non-negative integers - the 
method is the same as the one used in § 1.2.3. 

Solution: 

1. The energy levels are Ep = (p + ~ )liw with P ~ 0, and hence 

Z ,,-/3E 1 1=L....t e P= . 
2 sinh( ! (3c) 

p 

2. In two dimensions the micro-states are characterized by two quantum num
bers PI and P2 with E p1P2 = (PI + P2 + l)liw. The factorization of Z gives us 

2 
Z2 = (Zl) . Note that using (4.29) to calculate the partition function would 
have been more complicated: the allowed energy levels are Em = mliw, with 
m a positive integer, but they have a multiplicity d(Em) = m which leads to 
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Z2 = 2: me-{3mfiw = (Zl( 

m 

Similarly, factorization gives us Z3 = (Zl)3, ZN = (Zl)N. 
3. We find from Zl and Z: 

8 
U = -N 8(3 In Zl 

2U+Nc 
2U -Nc' 

1 e{3e + 1 
-Nc ---
2 e{3e - l' 

S = Nk [(~ +!) In (~ +!) - (~ - !) In (~ - !)] . 
Nc 2 Nc 2 Nc 2 Nc 2 

Planck did not include the "zero-point" energy iliw in the expression for the 
oscillator levels so that his average energy per oscillator, E, is related to the internal 
energy by U/N = E + ic. Replacing U as function of E enables us to identify the 
entropy of the canonical ensemble which we have calculated above with the entropy 
of a micro-canonical ensemble for N -> 00 which was calculated in Exerc.3e. 

4. The eigenvalues of Ii are (P + iN)c with a multiplicity WN(P). We have 
thus 

00 

ZN 2: WN(P) exp [- (p + ~N) (3c] , 
p=o 

00 

""' p 1 L..J WN(P) z = (1- z)N· 
p=o 

Comparing the expansions of the left- and the right-hand sides we find 

(P + N -I)! 
WN(P) = (N - l)!P! ' 

which is the same result as we found in Exerc.3e by a combinatorial analysis 
method. Using the partition function Z3 is, for instance, the fastest way to find the 
multiplicities of the levels of a three-dimensional harmonic oscillator. 

4g The Ehrenfests' Urn Model 

In order to understand how the approach to equilibrium is compatible with 
the reversibility of the motion, P. and T. Ehrenfest (§ 3.4.3) considered the 
following process. Two urns A and B contain, respectively, N + m and N - m 
numbered balls. Every second, one draws a number at random and one moves 
the ball with that number from the one urn to the other, thus changing m 
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by + 1 or by -1. Like the trajectory of a classical micro-state in phase space, 
the m(t) curve, with t and m both integers, is reversible and recurrent. 

1. Show that nevertheless, whatever the value of m(O), m(t)/N is practi
cally always small for sufficiently large t. To do this, calculate the probability 
distribution P(m) and the variance (m2(t)) for t --+ 00. 

2. Consider a rather improbable situation mo, for instance, N = 100, 
mo = 90. The curve m(t) intersects m = mo as often when ascending as when 
descending. At first sight this seems to indicate that m has as much chance 
of increasing as of decreasing, if it starts from an initial value m(O) = mo, 
and this seems to contradict the approach to equilibrium, m/N --+ O. In 
order to resolve this paradox, calculate the probabilities for m to increase 
or to decrease, when it starts from mo, and show that thP- most frequent 
configuration for the curve m(t) in the neighbourhood of a point m(t) = mo 
is neither a descent, nor an ascent, but a maximum. 

Answers: 

1. We find 

(2N)! P(m) --+ 
22N (N + m)!(N - m)! 

(m2) --+ ~ N. 

2. Notwithstanding the symmetry of the m(t) curve and the fact that it in
tersects m = mo as often when ascending as when descending, the probability 
of increasing, when starting from mo, is (N - mo)/2N and that for decreasing 
(N + mo)/2N. However, the probability that mo is crossed either when ascend
ing or when descending is (N2 - m~)/4N2, whereas the probability that it is a 
maximum, (N + mo)2 /4N 2 , is very much larger. 

4h Loaded Die 

Observations on a badly balanced die have shown that 6 occurs twice as 
often as 1. Nothing peculiar was observed for the other faces. What are the 
probabilities Pm (1 :::; m :::; 6) which according to the maximum statistical 
entropy criterion we should assign to the various faces? 

Solution. The constraints are 

6 

L Pm = 1, o. 
m=l 

Hence we find 

Pm 

with 
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2, Am 

-1, Z 

O. for 2 S; m S; 5, 

e- 2A + 4 + E'\ 
and 8Z /8)" = 0 leads to 

PI = 0.107, pm = 0.170, for 2 < m < 5, PG 0.214. 



5. Thermodynamics Revisited 

"On a pense que la chaleur pouvait etre produite par un 
mouvement intestin et vibratoire des molecules des corps; 
mais ce systeme, qui parait combattu par des observations 
indirectes, est maintenant generalement abandonne. Ce n'est 
plus qu'en Allemagne qu'il peut encore compter quelques 
partisans." 

c. Bailly, Manuel de Physique, 1826 

"- N'avez-vous point quelques principes, quelques commence
ments des sciences? 
- Oh! oui, je sais lire et ecrire." 

Moliere, Le Bourgeois Gentilhomme 

"La ou je cherchais les grandes lois, on m'appellait fouilleur 
de details." 

Marcel Proust, Le Temps Retrouve 

In this chapter we shall travel the last stage of the journey which, for a 
physical system in equilibrium, leads us from its microscopic description to 
an understanding of its macroscopic properties. After having incorporated 
statistics in the microscopic description of the state of a system (Chap. 2), 
we learned how to calculate the uncertainty in that state (Chap. 3). This 
provided us with a criterion for assigning to a system, only known through a 
small number of data, the least biased probability law. For an equilibrium sit
uation we obtained in this way the Boltzmann-Gibbs distribution (Chap. 4) 
which, at least in principle, enables us to evaluate the expectation value of 
any microscopic physical quantity. Our task, however, is not yet finished as 
we must still investigate the relevance of our theoretical results to our actual 
macroscopic experience, which is reflected in the elaborate results of thermo
dynamics. Let us first of all note that on a macroscopic scale the properties 
of the various substances do not seem to have any probabilistic character; 
we must thus explain how our microscopic theory, in which statistics plays 
such a fundamental role, can account for the determinism of macroscopic 
phenomena (§ 5.5). 

Moreover, it is essential for us to recognize the counterparts in our micro
scopic approach of the many concepts introduced in thermodynamics. This 
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is easy for such macroscopic quantities as the momentum, centre-of-mass po
sition, magnetic moment, or charge density, which can be identified as the 
expectation values of the corresponding observables, provided their statisti
cal fluctuations are relatively small. Similarly, the number of moles is directly 
connected with the number of molecules. Also, it is natural to equate the in
ternal energy with the expectation value of the Hamiltonian. A macroscopic 
electromagnetic field applied to a sample enters directly the Hamiltonian, at 
least in the unquantized approximation (see § 13.1). Nevertheless, the micro
scopic description of thermodynamic equilibrium by a probability law with 
the maximum uncertainty is already less obvious, and the arguments given 
in § 4.1 will be completely justified only in the present chapter. Still worse, 
thermodynamics is based upon many, more or less intuitive, concepts which 
cannot be readily formulated mathematically and whose nature is far from 
clear on a microscopic scale: temperature, pressure, work, heat, entropy, .... 
For the particular physical system considered in Chap.1 we were able to find 
the probabilistic meaning of the temperature and the entropy. Before under
taking the study of other systems in Chaps.7 to 13, we shall show in general 
how to identify microscopically the thermodynamic quantities. We shall thus 
be able to interpret the results obtained by applying statistical physics to 
some substance or other. 

Doing that, we shall also prove the Laws of thermodynamics. The latter 
discipline, gradually developed during the nineteenth century, distilled from 
empirical data general principles governing the behaviour of all equilibrium 
systems. We shall recall them here in their traditional form, numbered from 
zero to three (§§ 5.1 to 5.4), and we shall show that they are not just irre
ducible "laws", as their name suggests, but just consequences of the micro
scopic laws of matter and of the probabilistic approach expounded in Chap.4. 
We shall return to this proof in § 6.1.3 and again find the principles of equi
librium thermodynamics in a more modern form. In that sense, statistical 
mechanics shows up as a more "fundamental" discipline than thermodynam
ics, as the latter appears to follow from the former. 

The proof of the Laws of thermodynamics in their conventional form 
helps us to understand the microscopic significance of quantities connected 
with energy exchanges: temperature (§§ 5.1.2 and 5.3.2), entropy (§ 5.3.2), 
heat (§ 5.2.2), work (§ 5.2.3), and pressure (§ 5.6.5). Moreover, we stress the 
importance of the chemical potentials, quantities associated with exchanges of 
particles of a given kind (§§ 5.1.4 and 5.6.3). In fact, the concepts of chemical 
potential and of temperature will appear at the same level in all what follows 
in the present book. We also emphasize the relations between the partition 
functions introduced through the microscopic approach of Chap.4 and the 
various thermodynamic potentials (§ 5.6). The tables in § 5.6.6 summarize 
these relations; they will be useful for us when we apply the methods of 
equilibrium statistical physics to actual problems. 

Finally, in § 5.7 we discuss finite size systems; they give rise to observable 
fluctuations which can be predicted by statistical mechanics. 
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5.1 The Zeroth Law 

5.1.1 Relative Temperatures in Thermodynamics 

The first concept introduced in thermodynamics is that of relative temper
ature. It is based upon a, seemingly trivial, property of thermal contact 
between two bodies. When such a contact has no effect, the two bodies are 
in thermal equilibrium one with the other. One then observes that, if two 
bodies are separately in thermal equilibrium with a third body, they remain 
in thermal equilibrium with each other if they are put in contact with one 
another. It took some time to realize the importance of this property for the 
logical structure of thermodynamics. For this reason, it was considered to 
be a preliminary law, as fundamental as the other ones. Mathematically, the 
Zeroth Law reflects the existence of an equivalence relation between systems 
in thermal equilibrium, which defines their common temperature. The possi
bility to index the temperature by comparison, using its correspondence with 
some physical quantity directly measurable on a thermometer, rests on this 
law. 

5.1.2 Thermal Contact in Statistical Physics 

From the microscopic view-point of statistical mechanics, if two systems a 
and b are thermally isolated, their Hamiltonian H is the sum of two terms 
Ha and Hb WEich onl] depend on the dynamical variables of the systems in 
question. As Ha and Hb commute, there are two constants of the motion, the 
energies Ua and Ub of the two systems, respectively. Let us write down the 
conditions that a and b are separately in thermal equilibrium in a canonical 
ensemble. For each system we must introduce a Lagrangian multiplier (3, and 
this results in 

(5.1) 

The global density operator of the two systems is the tensor product 

1 ~ ~ 

jj = Da ® Db = Za({3a)Zb({3b) e-f3aHa-f3bHb, (5.2) 

where Ha stands for Ha ® lb. There is clearly no correlation between the two 
systems a and b in (5.2). 

Bringing the two systems a and b in thermal contact means on the mi
croscopic scale that they are coupled through a weak interaction. (In § 5.2 we 
shall see the form of the coupling between two systems which can exchange 
work rather than heat.) We must thus include in the Hamiltonian, 



184 5. Thermodynamics Revisited 

H 

an interaction term V depending on observables of the two parts a and b. 
The interaction V is so weak that we can neglect it as compared to fi a and 
fib. Nevertheless, its presence is sufficient to allow slow energy exchanges 
between a and b, so that there remains only a single constant of the motion, 
the total energy U. Similarly, in Chap.1 the interactions between magnetic 
moments were necessary in order that the total available energy be divided 
up among the moments in a completely random way; however, they were 
negligible in expression (1.2) for the energy levels and in the probability 
distribution (1.20) which follows from it. The canonical density operator is 
now expressed in terms of only one Lagrangian multiplier {3 which is related 
to the total energy: 

~ _ 1 -(3H 
D - Z e , (5.3) 

and it is legitimate, neglecting V as compared to fia + fib, to approximate 
it by 

D= (5.3') 

Comparison with (5.2) shows that thermal contact has the effect of making 
the Lagrangian multipliers {3a and {3b equal. If we then again separate the 
two systems which were brought into thermal contact, that is, if we suppress 
the interaction V between them, their density operator remains unchanged 
and equal to (5.3'), and we have for each of the isolated parts a and b the 
expressions (5.1), but now with {3a = {3b. Inversely, if we bring two systems 
such that {3a = {3b into thermal contact, their density operator will remain 
practically unchanged, as (5.2) is then practically the same as (5.3). 

The Zeroth Law of thermodynamics follows immediately and we see that 
the Lagrangian multipliers {3 provide a relative temperature scale, since ther
mal equilibrium between two systems is reflected in the equality of their 
associated {3's. 

At the same time we have solved the general problem of energy partition, 
that is: How does the total available energy Ua + Ub divide up when we 
bring two systems in thermal contact? Before the contact, equations (5.1) 
determine {3a and {3b as functions of Ua and Ubi after thermal contact, it is 
sufficient to write that {3a and {3b transform to {3~ = {3~ = {3 and the total 
energy Ua + Ub remains unchanged, so as to determine the final values U~ 
and U£. 

Since for each of the systems the function U ({3) is a decreasing function, 
a property following from the convexity (4.31) of In Z and the form (4.28) of 
the relation between U and {3, the final, common, value of the "temperature" 
{3 lies between the initial values {3a and {3b. The "colder" system, that is, the 
one which takes energy from the other, is, though, the one with the larger 
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value of the parameter {3; the {3 scale of relative temperatures is thus graded 
in a sense opposite to that of the ordinary scales. This simple remark shows 
at the same time one of the forms of the Second Law of thermodynamics: it 
is always the system with the higher temperature which gives up heat to the 
other system when they are brought into thermal contact. 

We have noted (§ 4.1.6) that the parts a and b may well correspond to 
independent degrees of freedom of the same system, rather than to subsys
tems which are separated in space. For instance, in a paramagnetic solid, the 
part a may correspond to the electron spin degrees of freedom and b to the 
vibrational degrees of freedom of the atoms in the crystal lattice. The spin
spin interactions happen to be large enough to establish thermal equilibrium 
between the spins in a time of the order of 10-7 to 10-8 s. The spin-lattice 
interactions, though, are weak so that global equilibrium of the spin plus 
lattice degrees of freedom is established much more slowly, after times of the 
order of 10-2 to 10-4 s. For intermediate times, the subsystems a and bare 
separately in equilibrium, and we can talk about a spin temperature and a 
lattice temperature. These two temperatures tend to become equal due to the 
spin-lattice coupling in a time of the order of 10-2 to 10-4 s, but magnetic 
resonance experiments performed sufficiently fast show up metastable situ
ations of the type (5.1). Further on we shall meet with other examples of 
substances in which the smallness of some couplings allows, at least over not 
too long periods, the coexistence of two temperatures (for gases, see § 8.4.5 
and for semiconductors, see § 15.2.2). 

As expression (4.27) for Zc shows, the parameter {3 varies between 0 and 00, 

provided the energy spectrum is bounded from below but not from above; it varies 
between -00 and +00 in the rarer cases where the spectrum is bounded both 
from below and from above (spin temperature). In the second case, the tendency 
to equalize the relative temperatures f3 is reflected in a behaviour which looks 
pathological in terms of the absolute temperature T = 1/kf3. In particular, negative 
absolute temperatures must be regarded as higher than ordinary, positive, absolute 
temperatures (Exerc.1a). 

The above argument was developed for a canonical ensemble. We shall 
show in § 5.5.3 that for macroscopic systems the results are independent of 
which statistical ensemble we use. Better to understand the significance of 
the relative temperature and of the Zeroth Law, we shall, however, as we 
did in Chap.1, treat the problem of thermal contact once again, but in a 
microcanonical ensemble. Before coupling, each of the systems is, for given 
values of the energies Ua and Ub (within a margin of LlU) represented by 
the density operator (4.39) which maximizes the corresponding statistical 
entropy Sa or Sb. The latter are given by (4.40) as functions of Ua or Ub. After 
coupling, the total energy remains unchanged, but now the total statistical 
entropy must be a maximum. Let us assume that each of the two systems 
is in micro canonical equilibrium, with energies U~ and U~ that we must 
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determine. The total entropy Sa(U~) + Sb(U£) must be a maximum, with 
U~ + U£ = Ua + Ub given (within a margin of 2..1U). If one now defines a 
parameter f3a associated to the system a by 

1 a a 
f3a = k aUa Sa(~a) = aUa In Wa, (5.4) 

the condition for a maximum statistical entropy can be written as 

a~' [Sa(U~) + Sb(Ua + Ub - U~)l = k(f3a - f3b) = 0, 
a 

so that the energies U~ and U£ are still determined by requiring that the 
relative temperatures f3a and f3b are equal. However, the temperature 13 is 
now no longer defined microscopically as a Lagrangian multiplier as in the 
case ofthe canonical equilibrium, but as the derivative (5.4) of the logarithm 
of the micro canonical partition function with respect to the energy; the latter 
is now given exactly, and no longer on average. 

In fact, even if we neglect the interaction V between the systems a and b, 
neither of them is any longer in micro canonical equilibrium contrary to our above 
assumption, even though the ensemble a + b is in such an equilibrium. The energy 
Ua can, at the expense of Ub, show fluctuations which exceed LlU and which we 
have just neglected. Nevertheless, for macroscopic systems of the kind considered 
in thermodynamics, the calculations of § 1.2.4, which can easily be extended to 
the general case, show that the relative values of these fluctuations are negligible; 
this completely justifies the above results. At any rate, when we find in § 5.5.3 
that in the limit of large systems all ensembles are equivalent, we shall identify the 
Lagrangian multiplier f3a and the average energy U a of the canonical ensemble with 
the derivative variable f3a and the exact energy Ua of the microcanonical ensemble. 
On the contrary, in the case of finite systems, the Zeroth Law, which remains 
rigorous in the canonical ensemble, is not rigorous in the microcanonical ensemble 
where the shape of the probability distribution plays a role. The definition (5.4) of 
the micro canonical temperature then depends, in particular, on the choice of LlU; 
together with the microcanonical entropy, it loses its meaning if LlU tends to zero 
for fixed volume, due to the discrete nature of the spectrum. We cannot therefore 
apply without ambiguity the thermodynamic concepts to small systems unless we 
work with canonical, or grand canonical, ensembles. 

5.1.3 Thermometers and Thermostats 

When we bring two systems with different relative temperatures f3a and f3b 
into thermal contact, their density operator changes from (5.2) to (5.3), and 
we find the final temperature 13 by requiring that the sum of the energies 
U~ and U£, given by (5.1) in terms of f3~ = f3~ = 13, equals the sum of the 
initial energies Ua and Ub. If the system b is very small compared to a, the 
variation in the energy U~ - Ua = Ub - U£ of the system a has the same 
order of magnitude as the energies of b, that is, it has a very small relative 
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magnitude. As a result, the change in the temperature 13 - f3a of the larger 
system a is negligible: the state of the system a is practically unchanged by 
its interaction with b. On the other hand, the system b changes by adjusting 
its temperature to that of a. 

A thermometer is thus a system b for which one observes some property, 
such as the volume, the resistivity, ... , depending on the energy Ub, and 
hence on the common temperature f3b = f3a; the temperature f3a is therefore 
characterized by that property. The system b must be small compared to 
the system a whose temperature one wants to measure, but sufficiently large 
that the relative statistical fluctuations of the observed quantity are small 
(§ 5.7.3). On the other hand, a thermostat is a large system a which serves as a 
heat source; the temperatures of much smaller systems b which are brought 
into thermal contact with a adjust themselves to the practically constant 
temperature of a. 

5.1.4 Extensions: Open Systems 

The Zeroth Law of traditional thermodynamics only deals with thermal equi
librium between two systems which can exchange heat. Neither of these sys
tems is isolated, but each one is closed, that is, it does not exchange matter 
with the outside. The extension of thermodynamics to open systems is essen
tial in all those cases where a weak coupling enables not only heat exchanges, 
but also particle exchanges. There are numerous examples: adsorption (Ex
erc.4b), chemical equilibrium (§§ 6.6.3 and 8.2.2), phase equilibrium (§§ 6.4.6 
and 9.3.3), osmosis (§ 6.6.2), electrostatic equilibrium (§ 11.3.3). The argu
ments of § 5.1.2, when extended to the grand canonical ensemble (§ 4.3.2), 
then show that the Lagrangian multiplier 0: associated with N plays, apart 
from its sign, exactly the same role with regards to particle exchanges as 
the temperature 13 with regards to heat exchanges. When two systems a and 
b can exchange particles (and energy) their parameters 0: (and (3) become 
equal. A large system, which plays the role of a particle reservoir, imposes its 
value of 0: on systems which are brought into contact with it; this determines 
the number of particles which flow from one to the other. The variable 13, 
the conjugate of the energy, characterizes the tendency of a system to absorb 
heat; the variable 0:, the conjugate of N, characterizes the tendency to lose 
particles. This concept is just as important as the temperature and can be 
used in the same way. Of course, one must introduce for each kind of particle 
which can be exchanged a different parameter 0:. 

In the micro canonical ensemble 0: is defined as -k-18S/8N, and in the 
canonical ensemble as -8lnZc/8N, expressions which are the analogues of 
(5.4). Here again, the system must be a macroscopic one in order that N can 
be treated as a continuous variable and that the equilibrium between two 
systems implies the equality of the variables 0:. 

These ideas can be extended to any other conservative quantity Ai which 
can be exchanged between two systems, such as momentum, angular momen-
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tum (Exerc. 7b), or, for two fluids separated by a mobile piston, volume. In all 
these cases, exchanges leading to equilibrium are determined by expressing 
that the final state is the most disordered state possible, as measured by the 
statistical entropy. This introduces a quantity Ai which is the conjugate of 
Ai and which takes the same value in the two systems between which the 
exchange of Ai may take place. As in the case of {3 or a, we can microscopi
cally introduce the variable Ai in two different ways which are equivalent for a 
large system. If the statistical ensemble is characterized by giving the average 
(Ai), the corresponding Lagrangian multiplier Ai is the conjugate variable. 
If, however, the statistical ensemble is characterized by an exactly given Ai, 
the variable Ai which is the conjugate of Ai is the derivative with respect to 
Ai of the logarithm of the partition function of the ensemble considered -
like (5.4) for {3 and the energy. 

5.2 The First Law 

After we have identified the macroscopic scales of relative temperatures with 
decreasing functions of {3, we now turn to the microscopic interpretation of 
the concepts of internal energy, heat, work, and pressure. 

5.2.1 Internal Energy 

If a system which can exchange work and heat with the outside undergoes 
a change from an initial state 1 to a final state 2, the First Law of thermo
dynamics expresses that the sum of the work Wand heat Q received equals 
the change in a function U of the state of the system, the internal energy: 

(5.5) 

The history of the discovery of the First Law and of the concept of the internal 
energy shows how difficult that was. It required bringing together ideas from many 
different fields. This can be seen from the interests of the dozen or so scientists who, 
more or less at the same time, between 1837 and 1847, and independently, estab
lished the equivalence between work and heat or who enounced the principle of the 
conservation of energy. Let us mention: Marc Seguin (Annonay 1786-1875), Gus
tave Hirn (Colmar 1815-1890), and William Rankine (Edinburgh 1820-Glasgow 
1872), engineers who perfected the steam engine, Julius Robert Mayer (Heilbronn, 
Wurttemberg 1814-1878), a naval doctor, interested in metabolism, Justus von 
Liebig (Darmstadt 1803-Munich 1873), a chemist and physiologist, William Grove 
(Swansea 1811-London 1896), an electro chemist , Hermann von Helmholtz (Pots
dam 1821-Berlin 1894), a young doctor starting in that period his work in physics, 
James Prescott Joule (Manchester 1818-Sale 1889), a rich brewer who had become 
a physicist and had already studied the thermal effect of electric current, Ludvig 
Colding (Holbaek 1815-Copenhagen 1888), motivated by metaphysical ideas. The 
equivalence between the two forms, kinetic and potential, of mechanical energy 
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had been established during the eighteenth century and, starting from Lavoisier, 
the study of heat had become quantitative. At that time it used to be classified 
under the name "caloric", as one of the four "imponderable fluids" , together with 
light, electricity, and magnetism. Between 1798 and 1804, Benjamin Thompson, an 
American officer, who had become minister of war in Bavaria under the name of 
Count Rumford, measured the production of heat starting from mechanical energy 
in the drilling of cannon, a first step towards the equivalence of heat and work. 
Nevertheless, the idea of caloric as a conserved fluid was still wide-spread. One can 
understand how in those circumstances Carnot enounced the Second Law in 1824 
before the discovery of the First Law (§3.4.1): more or less consciously the flow of 
caloric from a hot source to a cold one was commonly compared with that of water 
producing work in the waterwheel of a mill. A few years later, Carnot realized that 
the work provided by a thermal engine was, in fact, due to the transformation of 
part of the heat transferred (§ 3.4.1). However, he died during the 1832 cholera epi
demic and most of his furniture and papers were destroyed as a hygienic measure 
- even though at the present time one wonders whether he died from that illness. 
Some of his writings, recovered later on, were published, but only half a century 
later. One therefore had to wait for the important experimental and theoretical 
work of Mayer (1842), Joule (1843), Colding (1843), and Helmholtz (1847), before 
science was enriched both by the idea of the quantitative equivalence of work and 
heat and by the concept of internal energy. Very soon the latter was extended to 
include chemical and electric energies, even though a direct proof of the equivalence 
of the reaction heat and the electrical energy in electrochemistry was difficult to 
give. At the end of the nineteenth century the idea of energy as an uncreated and 
indestructible substance even gave birth to a philosophy tainted with mysticism: 
energetics. Its adherents, in particular the physical chemist Ostwald, were amongst 
the obstinate opponents of kinetic theory and of Boltzmann, for whom the ultimate 
reality in Nature lay in material particles, rather than in energy. 

From the point of view of statistical mechanics, the principle of the conser
vation of energy is a simple consequence of the dynamical laws. The internal 
energy~ U is first identified with the mean value of the Hamiltonian jj in the 
state D: 

(5.6) 

For an isolated system (§ 2.2.6) the change with time of the internal energy 
can then be derived from Ehrenfest's equation (2.29) which gives 

dU 1 / [~ ~]) dt = in \ H,H = 0, (5.7) 

so that the internal energy U is a constant. If we consider the system un
der study together with the one with which it exchanges work and heat as 
a single, isolated system, conservation of the total macroscopic energy of 
this composite system thus immediately follows from that of the microscopic 
energy (5.6). 
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5.2.2 Heat 

Let us now consider a non-isolated system which may exchange energy with 
the outside. One can on the macroscopic scale distinguish the various forms 
of energy exchange, heat, on the one hand, and (mechanical, electrical, ... ) 
work, on the other hand; this distinction is of considerable practical impor
tance. At the moment, however, we have on the microscopic scale only avail
able the internal energy concept (5.6). In order to interpret the concepts of 
heat and work in our microscopic and statistical formalism, we must analyse 
the energy exchanges of a system with the outside and discriminate between 
the reasons which may change its internal energy (5.6). 

We have seen (§ 5.1.2) that heat exchange with the outside is due to a 
coupling potential V.:vhich is not well defined and which is small compared 
to the Hamiltonian H of the system itself. Because of the presence of this 
potential the evolution of the density operator D of the system is coupled with 
that of the outside, and D varies by dD during a time dt; the Liouville-von 
Neumann equation indD /dt = [H, D], valid when th~ system was isolated, 
is no longer suitable for describing such changes in D. Hence, the internal 
energy (5.6) can now change under the influence of the thermal contact, by 
an amount dU equal to 

18Q = Tr(dD H) I (5.8) 

during a time dt. One can interpret this change as a heat exchange with the 
outside. 

For instance, in § 5.1.2 the system a changes from an equilibrium state 
(5.1) with temperature (3a to the state (5.3') with temperature (3, thus gaining 
an amount of heat, 

(5.9) 

The gain of heat by the system b in the same transformation is clearly the 
opposite of (5.9), because of the conservation of the total energy U = Ua + 
Ub c::: (Ha + Hb). 

If, as in (5.9), the density operator D commutes with the Hamiltonian H, 
it is characterized by the probabilities Pm for the eigenstates 1m) of H with 
energies Em: 

D = L 1m) Pm (mi· 
m 

The internal energy (5.6) is then equal to U = 2:m PmEm, so that the gain 
of heat, 
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(5.10) 
m 

corresponds to a redistribution of the probabilities of the various states 1m}: 
the system heats up when the relative probabilities of the states with the higher 
energies increase. The concept of heat is thus intimately associated with the 
probabilistic nature of the macro-states. 

5.2.3 Work and Forces 

In the preceding subsection we have given a microscopic interpretation to the 
concept of heat received by a system. In order to interpret the exchanges of 
work we must now consider couplings which, in contrast to coupling through 
thermal contact, are not infinitesimal. As a first approach we assume that 
the system studied does not exchange heat with the outside, but that it is 
in contact with external sources of work which impose on some macroscopic 
variables ~'" a given time dependence. This situation can be modelled by 
assigning to the system a Hamiltonian ii(t) which is time-dependent through 
parameters ~'" changing in a controlled way (§ 2.1.5). If, for instance, the 
system is the fluid of a thermal engine enclosed in a cylinder, its Hamiltonian 
depends on the position of the piston or, what amounts to the same, on the 
available volume 0 which is there the variable ~"'; the displacement of the 
piston, assumed to be given, is associated with exchange of work at the 
macroscopic scale and is microscopically reflected in the time-dependence of 
ii through o. Similarly, the work done by an external (electric, magnetic, 
or gravitational) field is associated with parameters ~'" in the Hamiltonian 
that characterize this field. Generally speaking, macroscopic physics defines 
the work received by the system as 

(5.11) 

'" 
for an infinitesimal change d~", in the ''position'' variables ~",. The coefficients 
X", play the role ofthe associated ''forces''. If d~", denotes the displacement of 
the piston, X", is the force applied to the piston; if d~", = dO is the expansion, 
-X", = P is the applied pressure. If ~'" is an induction field B, in which the 
system has been placed, the outside source is the set of coils producing the 
field, and the work received has again the form (5.11), as we saw in (1.31); 
nevertheless, here the magnetic moment M = -X", plays the role of the 
"force" while the "displacement" d~", is the change dB of the field. As we 
shall see many times, the traditional nomenclature of thermodynamics is not 
always suitable, and we must be careful to avoid confusions. 

Returning to the microscopic scale, we want to study the effect of a change 
~'" in the parameters ~'" which takes place during the time dt. The Hamil
tonian is changed from ii = ii ( {~"'}) to 

(5.12) 

'" 
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The operators 

~ aii 
Xo: == a~o:' (5.13) 

which we shall interpret as the "force" observables of the system, conjugate 
to the "position" variables ~o:, characterize the way the system reacts to the 
coupling with the outside. If, for instance, ~o: is the field of gravity g, which 
occurs in ii in the form mg 2: i Zi, where Zi is the height of particle i, the con-

jugate observable Xo:, coupled to the field strength, is Xo: = m 2:i Zi which 
is proportional to the height of the centre of mass.! Similarly, an external 
electric potential at a point T is coupled to the charge density observable at 
that point. In the case of a uniform magnetic induction B, the observable 
-Xo: is the magnetic moment of the system in the direction of B. Finally, 
if eo: is an ordinary position variable, such as that of a piston, Xo: is the 
observable describing the ordinary force applied by the piston on the system. 

The slow change (5.12) in ii gives rise to a change in the energy of the 
system, which we shall interpret as an exchange of work with the outside in an 
adiabatic transformation. Let us, first of all, note that while the Hamiltonian 
changes the statistical entropy remains constant since (3.29) is valid even 
when ii is time-dependent; this is in agreement with identifying S(D) with 
the thermodynamic entropy. To evaluate the change in the internal energy we 
use Ehrenfest's equation (2.29) extended to statistical mixtures (§2.2.6). The 
observable ii, whose expectation value we are studying, depends explicitly 
on time through the parameters eo: so that the second term in (2.29) makes 
a contribution; the first term vanishes, as in (5.7). Hence we find, according 
to (5.12), 

dU = ~ (ii) = '" (aii) deo: 
dt dt ~ aeo: dt' 

0: 

and the infinitesimal increase in U is 

(5.14) 

This equation enables us to interpret the change in the microscopic energy 
for the transformation studied as the macroscopic work received (5.11), and 

to identify the mean values of the observables (5.13) in the state D, 

! It might shock people to find m(2:zi)dg as the work done by the field of grav
ity. We are, in fact, dealing here with the energy received by the system if the 
gravitational acceleration 9 were to change. More generally, the definition of work 
gives rise to subtleties when there are long-range forces or fields which one either 
mayor may not include when defining the system studied. We shall discuss this 
point in the context of electromagnetism (§ 6.6.5). 
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(5.15) 

with the "forces" occurring in expression (5.11) for this work. 

The word "adiabatic" has here been used in its macroscopic thermodynamic 
meaning, a reversible transformation without exchange of heat with the outside. 
In quantum mechanics, one uses the same word to denote the limit where the 
Hamiltonian depends very weakly on time, that is, where the parameters ~Q vary 
very slowly. The "adiabatic theorem" which is valid in this limit states the following. 
Let Im(t)) and Em(t) be the eigenstates and eigenvalues of H(t) at time t. Assume 
that at the initial time to the system is in the state Im(to)), and let us find out how 
this state changes according to the Schri:idinger equation (2.24). One can show that 
the solution of this equation tends, apart from a time-dependent phase factor, to 
Im(t)) in the adiabatic limit as d~Q/dt -+ 0; more precisely, the condition for the 
validity of the adiabatic approximation I'l/!(t)) ex Im(t)) is 

(5.16) 

at all times and for all other energy levels m'. It is tempting to adapt this result 
to statistical physics by combining the two meanings of the word adiabatic. If the 
macro-state at time t is 

D(t) = L Im(t)) pm (m(t)l, (5.17) 
m 

and if the adiabatic theorem is valid, we have at time t + dt 

D(t + dt) = L Im(t + dt)) Pm (m(t + dt)l, (5.18) 
m 

where the probabilities Pm remain constant in time. To calculate the change in the 
internal energy, 

U(t) = Tr D(t) H(t) L Pm Em(t), 
m 

we use 

dEm (m + dmlH + dHlm + dm) - (mIHlm) 

(mldHlm) - Emd((mlm)) = (mldHlm), 

whence 

dU = L PmdEm = Tr DdH. 
m 

(5.19) 

(5.20) 

We thus recover expression (5.14) for the work received, which here appears asso
ciated with the shift in the energy levels of the system resulting from the change 
in the external parameters. 
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Although this reasoning is common and although its final consequences (5.19) 
and (5.20) are correct, it is fallacious and rests upon a semantic confusion. The 
adiabatic theorem does not allow us to derive (5.18) from (5.17) unless the condition 
(5.16) is satisfied for all pairs m, m' oflevels. However, even if there are no accidental 
degeneracies or quasi-degeneracies, the energy levels of a macroscopic system, even 
a small one, lie extraordinarily densely. A typical numerical estimate was given in 
§ 1.2.3. The right-hand side of (5.16) is extremely small, and the characteristic time 
which follows from this for the quantum adiabaticity is enormously huge - much, 
much longer than the age of the universe! On the other hand, the characteristic 
times for thermodynamic adiabaticity are, although long compared to the times 
for microscopic evolution, on our scale. Expression (5.18) is therefore not valid for 
a macroscopic system. 

Moreover, an adiabatic evolution in the thermodynamic sense must at all 
times pass through macro-states which lie very closely to thermal equilibrium. 
If, therefore, in (5.17) pm is proportional to exp[-,BEm(t)], the canonical equili
brium expression, we expect the eigenvalues of D(t + dt) to be proportional to 
exp[-,B' Em(t + dt)] with a temperature ,B' = ,B + d,B which may have changed. 
However, expression (5.18) gives as eigenvalues the Pm, which, in general, are not 
proportional to an expression like exp[-,B'(Em + dEm)] to first order in dt. In 
order that this would occur, the spectrum Em(t) should undergo only a simple 
dilatation and translation as t changes. In the case where levels cross during the 
evolution of H(t) there might even occur a population inversion, with a lower level 
having a smaller probability than a higher level. Retaining at all times a canonical 
equilibrium therefore makes it necessary that the probabilities for the micro-states 
Im(t)) do not remain constant, as in (5.18), but change from Pm ex exp( -,BEm) to 
p~ ex exp[-,B' (Em + dEm)]. The macro-state resulting from a thermodynamic adi
abatic transformation differs thus in the case of canonical equilibria from the one 
resulting from the adiabatic theorem. The situation looks better for micro canonical 
equilibria, where Pm = l/W = p~ remains constant, so that the adiabatic theorem 
associates the equiprobability in the range ,1E at time t with the equiprobability 
for the resulting levels at time t + dt; however, for a large system one may expect 
crossing, or quasi-crossing, of levels, which prevents either the adiabatic theorem 
to hold or the state (5.18) to be microcanonical. 

Anyhow, for a study of thermodynamic adiabatic transformations, one still 
should prove that an evolution of H(t), which is slow on the microscopic scale but 

violates condition (5.16), will lead D(t) approximately through equilibrium states. 
Assuming this result, one can prove as an exercise, using the properties (5.14) or 
dB = 0 found above, that the change in temperature d,B = ,B' - ,B is for a canonical 
ensemble given by 

d,B 
,B 

(HdH) - (H)(dH) 
(H2) - (H)2 

(5.21) 
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5.2.4 Exchanges Between Systems and Sources 

We have assumed above that a source of work could be represented by a 
time-dependent Hamiltonian. Let us return to the microscopic study of the 
work concept, using a more fundamental method similar to the one of § 5.1.2. 
We shall thus treat the ensemble formed by the system of interest and the 
sources with which it is interacting as a single system. This will enable us 
(i) to take heat and work exchanges into account at the same time; (ii) 
to replace the parameters ~o: whose time-dependence was assumed to be 
known by dynamical variables governed by their own equations of motion; 
(iii) to show explicitly the microscopic conditions for the validity of the work 
concept; (iv) to consider the possibility of feedback of the system on the 
work source and on the dynamics of the ~o: variables. This last possibility 
must necessarily be taken into account when an exchange of work takes place 
between two systems of comparable size rather than between a system and 
a much larger source which imposes on the ~o: their changes. 

Let us assume that the system a can exchange heat with the system b and work 
with the system c, without coupling between band c. The Hamiltonian H of the 
system a+b+c can be written as 

(5.22) 

where Hb and He contain only variables referring to band c, respectively, where V 
is a small term which describes the thermal coupling between a and b, and where 
the interaction responsible for the work done by c on a is included in Ha. This 
last operator contains therefore not only observables pertaining to a, but also some 
observables eo: of the system c. The latter commute with one another and with the 
operators of the system a; this enables us to identify Ha with the Hamiltonian H 
of § 5.2.3 and to define, as in (5.13), operators Xo: which can, however, still involve 
the operators eo: of the system c. Let us note that including into Ha the term 
which describes the coupling between a and c introduces between these systems an 
asymmetry on which the definition of work itself depends (§ 6.6.5). 

The internal energies of a, of b, and of c are, respectively, the expectation values 
of Ha, Hb, and He and (Ha) includes the energy of the coupling between a and 
c. We can again write down their changes using Ehrenfest's equation (2.29). The 
heat given up by b to a during the time interval dt is thus found in the form 

(5.23) 

where we have used (5.22). Similarly, the work done by c on a equals 

dt ~ ~] dt ([~ ~]) oW = -dUe = - in ([He,H ) = - in He,Ha . (5.24) 

The thermal coupling V is sufficiently weak that its average value can be neglected 
when compared with Ua, Ub, and Ue. The total system a+b+c being isolated, we 
have 
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dt / [~ ~] ) dt / [~ ~ ~] dUa = 8Q + 8W = ili \ Ha, H = ili \ Ha, V + He ). (5.25) 

We must still rewrite expression (5.24) so that we can recognize it as the macro
scopic work (5.11). The non-commutativity of Ha and He comes solely from the 
presence of the operators ea in Ha. Let us, to begin with, assume that this is 
dependence is linear. In that case we have 

--( ~ d~a) Xa dt dt, (5.26) 

where 

--
~: = i~ [ea , He] = i~ [ea, H] (5.27) 

is the velocity operator of ea in the Heisenberg picture (§ 2.1.5). If we neglect the 
correlations between the "force" and the "displacement", we get from (5.26) 

(5.28) 

which enables us to identify (Xa) = Xa and (ea) = ~a with the macroscopic 
"force" and "position" in (5.11), respectively. 

We obtain the same result under more general conditions by assuming that the 
statistical fluctuations in ea are negligible, that is, that the quantities ~a behave 
classically. In fact, in this case Xa practically commutes with [ea , He] , although it 

may contain the operators ea which do not commute with He. Equation (5.26) re
mains valid, and (5.27) is, according to (2.78), equal to the Poisson bracket {ea, H} 
which determines the classical velocity of ea. The absence of correlations, which 
we used to get to (5.28), is implied by the absence of fluctuations in ea, and hence 
in ~a. The dynamics of the ea, assumed in § 5.2.3 to be given, are now provided 
by the equations of motion (5.27). 

The heat received 8Q is, according to (5.23), (5.24), (5.25), given by the two 
equivalent expressions: 

(5.29) 

We can also, by eliminating the systems band c, see that the work (5.26) is noth
ing but (dHa), where the operator dHa is calculated through the change in the 
variables ea, as in (5.20). By subtraction we thus recover again in the general case 
expression (5.8) for the heat received by the system a. 

From the above we shall remember that when a closed system can ex
change work and heat with the outside, the change in its internal energy 
(5.6) during an infinitesimal transformation consists of two parts: 

dU = Tr(D dit) + Tr(dD it). (5.30) 
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The first term is identified with the mechanical, electric, magnetic, ... work 
received during the transformation and can, according to (5.20) or (5.14), be 
expressed in terms of the shift in the energy levels of the system or of the 
change in the coupling parameters ~Q' The second term vanishes when there 
is no infinitesimal coupling iT with the outside, as then in dD = [if, D]dt. It 
is the heat received, (5.8) or (5.10), associated with the change in the state 
of disorder of the system. 

The microscopic expression (5.30) for the change in the internal energy 
exhibits the reversibility of the work excEan~es, established by macroscopic 
experiments. In fact, the work 8W = Tr(D dH) received during a given trans
formation d~Q is the opposite of that associated with the inverse transforma
tion -d~Q' In contrast, there is no reason why the changes dD should change 
sign with d~Q' since they may occur even when the ~Q remain fixed: the heat 
exchanges 8 Q = Tr( dD if) cannot be controlled like the work exchanges by 
letting the parameters change. This fact is now found at the microscopic level 
and we shall make it more rigorous by proving the Second Law. 

5.3 The Second Law 

5.3.1 Energy Downgrading in Thermodynamics 

The Second Law of thermodynamics can be stated in various ways which all 
reflect the irreversibility of the evolution of macroscopic systems. In § 5.1.2 
we recalled Clausius's statement (1854): spontaneous exchanges of heat be
tween two systems can only take place in one direction, from hot to cold; 
mathematically this makes temperatures have an ordered structure. In an
other form the Second Law establishes a fundamental distinction between 
work and heat: work, whether mechanical, electric, magnetic, chemical, ... , 
can always be downgraded into heat whereas it is impossible to construct a 
perpetual motion of the second kind which would produce work in a closed cy
cle taking heat from a single source at a uniform temperature (Kelvin 1854). 
Similarly, we know Carnot's statement (1824) which allows us to define the 
thermodynamic absolute temperature starting from the maximum yield of 
thermal engines functioning with two heat sources at different temperatures, 
and which has many important technical applications. Caratheodory (1909) 
gave a form which led to interesting mathematical developments: there ex
ist in the neighbourhood of any initial state other states which cannot be 
reached by an adiabatic transformation. In § 3.4.1 we saw how the Second 
Law of thermodynamics led to the introduction of the entropy concept, in a 
form which was not yet statistical. 

All these statements are, as one can show through macroscopic consider
ations, equivalent to one another and to Clausius's statement (1865) which 
expresses the Second Law in analytic form as follows. If a system is in ther
modynamic equilibrium, one can assign to it two quantities, the absolute 
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temperature T, which is a special case of the relative temperatures defined 
by the Zeroth Law, and the entropy S, which is a function of the variables 
characterizing the state of the system. In a quasi-static, but not necessar
ily reversible transformation, during which the system at all times passes 
through equilibrium states while exchanging heat and work with the outside, 
one has 

(5.31) 

In mathematical terms the heat hQ received during the time interval dt, 
which is not an exact total differential, has T as an integrating factor. Any 
other transformation leading from an equilibrium state 1 to another equili
brium state 2 is irreversible, and the change in entropy satisfies the inequality 

(5.32) 

where TP) is the temperature of the source j providing the amount of heat 
hQj. The system, which passes through non-equilibrium states, may not have 
a well defined temperature, in contrast to the sources. 

We note that the Second Law defines the absolute temperature and the 
thermodynamic entropy up to a possible multiplicative constant depending 
on units; moreover, it defines the thermodynamic entropy up to an additive 
constant. When a system consists of several independent subsystems, the 
addition of the equalities (5.31) shows that the thermodynamic entropy is 
additive. 

5.3.2 Entropy and Absolute Temperature 

Generalizing the results of § 1.3.3 we shall now recover the Second Law as 
a consequence of statistical mechanics. Let us first of all consider a quasi
static transformation from the microscopic point of view. At any time the 
system, in canonical thermal equilibrium, is described by a Boltzmann-Gibbs 
distribution, but the exchanges of work and heat with the outside are reflected 
in changes with time in f3 and in ii through the parameters ~Q: 

D = _1_ e-{3(t)H(t) 
Zc(t) , (5.33) 

We note that the time-dependence of D does not follow Eq.(2.49) which 
would be valid for an isolated system with a Hamiltonian H(t): the system 
is, in fact, in thermal contact with the outside and we assume that this 
coupling leads it at all times to the state with maximum disorder. 

In §§ 5.2.2 and 5.2.4 we have identified the amount of heat received by 
the system during the time dt with 
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8Q = TrdDH, 

where we can use (5.33) to express dD as a function of the changes d/3, d~Ot. 
We have also shown in (3.28) that for an arbitrary infinitesimal change dD 
of the density operator D the statistical entropy changes by 

dS = -kTrdD In D. 

In the present case we can, if we use (5.33) and the relation Tr dD = 0, write 
this quantity in the form 

dS k Tr dD In Zc + k Tr dD /3H 

= k/3TrdDH, 

which, finally, gives by comparison with (5.8) 

~ ~ 1 
8Q = TrdDH = k/3 dS, v d/3, d~Ot. (5.34) 

We saw in § 5.1 that the Lagrangian multiplier /3, introduced to take 
into account that the energy is a constant of the motion, defined a relative 
temperature scale. We must identify (5.34) with the expression T dSth , where 
the thermodynamic entropy Sth is a function of the various variables /3, ~Ot 
which characterize the equilibrium, and where T depends only on /3. There 
is a unique solution to this problem. Apart from a multiplying constant, /3 is 
the inverse of the thermodynamic absolute temperature: 

(5.35) 

and the statistical entropy 

S = - k Tr(D In D) = kIn Zc + k /3U, (5.36) 

which was introduced at the microscopic and statistical level as a measure of 
the disorder, can be identified with the thermodynamic entropy Sth defined 
by Clausius's equation (5.31), apart from an additive constant. 

To prove this result we rewrite the identity 

dS = k (3T dSth 

in the form 

as 
a(3 

as 
aeOt 

k(3T 8St h 
8(3 , (5.37a) 

(5.37b) 
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Taking the derivative of (5.37a) with respect to ea and of (5.37b) with respect to 
f3, and using the fact that T is not a function of the ea, we get 

8 28 = k f3T 828th = k f3T 828th d(kf3T) 88t h 

8f38ea 8f38ea 8f38ea + df3 8ea' 

which implies that f3T is a constant. Integration of (5.37), after we have made the 
choice k f3T = 1, then shows that 8th - 8 is a constant. 

In (5.35) and (5.36) we meet again with the arbitrary multiplicative con
stant k which we introduced in Chap.3 into the definition of the statistical 
entropy. If we want to take for the unit of the absolute temperature T the 
kelvin, the most commonly used scale in practice, which is defined by putting 
the temperature ofthe triple point of water equal to 273.16 K, we must iden
tify k with the Boltzmann constant (1.35), as in § 1.3.3. Another choice which 
follows naturally from statistical physics would be to put k = 1; the quantity 
1/ (3 then defines the absolute temperature measured in energy units and the 
entropy S is dimensionless. In order to remember the magnitude of k, bear in 
mind that room temperature T = 300 K corresponds to an energy kT equal 
to 10 eV. 

If the system consists of several non-interacting subsystems, each at ther
mal equilibrium, the additivity of the entropy follows immediately from the 
statistical independence of the various parts (§ 3.2.2c). We have also seen that 
in this case (§ 4.2.5) the partition functions are multiplied, and the entropies 
are added. 

Statistical mechanics enables us to prove simply a few inequalities satisfied by 
the absolute temperature and the entropy. For most systems the Hamiltonian has 
no upper bound and we have seen that then f3 > 0, and hence T 2': O. It then 
follows from (5.34) that 8 is an increasing function of the internal energy U, for 
a given Hamiltonian ii (8W = 0). For systems where f3 can vary between +00, 
corresponding to zero absolute temperature T, and -00, the entropy 8(U) has a 
maximum at T = ±oo (Exerc.1a). On the other hand, it follows from (4.31) that 

(5.38) 

so that, for given ii, T is an increasing function, and 8 a concave function of U 
(Exerc.5d). 

Above we have used a canonical ensemble. In a grand canonical ensemble we 
have 

d8 = - k Tr dD In D = k f3 Tr dD ii - k a Tr dD it. (5.39) 

The second term, -kad(N), vanishes in a transformation (5.30) of a closed system, 
and the first term can be identified, as above, with 8Q/T. In a microcanonical 
ensemble the temperature f3 is defined by (5.4) for transformations which keep the 
parameters ea fixed, that is, where dU = 8Q, and we find again d8 = kf3 8Q. 
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The microscopic interpretations of the absolute temperature and of the 
entropy, and also that of the chemical potential, as we shall see, are basically 
statistical by nature and are associated with a Boltzmann-Gibbs equilibrium: 
the temperature is a parameter occurring in the canonical probability distri
bution, and the entropy represents lack of information. On the other hand, 
for the interpretation of the various quantities, such as heat, work, or forces, 
associated with energy, we did not need assume that jj represented an equi
librium macro-state. In Chaps.14 and 15 we shall see that the local temper
ature concept retains a meaning for some non-equilibrium states, and that 
the dynamical analysis of irreversibilities leads to the introduction of several 
entropies, all following from the lack of information defined in Chap.3. 

5.3.3 Irreversibility 

We have just proved the equivalence between the microscopic degree of disor
der and the thermodynamic entropy for the equilibrium states, or the states 
close to equilibrium, which a system passes through during a quasi-static 
transformation. The second part (5.32) of the Carnot-Clausius principle refers 
to irreversible transformations in which the intermediate states may be close 
to equilibrium - a situation which we shall study in Chap.14 - but also quite 
far from equilibrium, like the sudden mixing of two fluids with different tem
peratures or explosive chemical reactions. In such states thermodynamics 
does not define an entropy whereas statistical mechanics allows us at any 
time to associate a statistical entropy with the density operator given by 
theory. We can, however, continue to identify the two entropies in the initial 
or final states which are, by assumption, in equilibrium. We saw in §§ 3.2.3 
and 4.1.5 that on the microscopic scale the entropy of an isolated system 
increases for statistical reasons, such as badly known coupling between the 
various parts of the system, loss of information to inaccessible degrees of free
dom, or increase in microscopic disorder. It follows that the thermodynamic 
entropy of an isolated system which undergoes an arbitrary transformation 
from one equilibrium state to another cannot decrease. In § 6.1 we shall come 
back to this point from both the macroscopic and the microscopic points of 
view. 

This conclusion remains valid if the system, although thermally isolated, 
can exchange work with the outside. In fact, the proof of § 3.2.3 did not 
assume the Hamiltonian to be time-independent; it only used the unitarity 
of the evolution operator fJ, which holds for a time-dependent Hamiltonian, 
even though the specific form (2.27) for fJ is no longer valid. 

On the other hand, the entropy may decrease for a system in thermal con
tact with the outside. For instance, a system in thermal equilibrium which 
cools off loses entropy whereas the outside gains more entropy; similarly, bio
logical organisms become ordered while the neighbouring disorder increases. 
In such a case we shall again find the irreversibility property (5.32), pos
tulated in the framework of macroscopic thermodynamics, by regarding the 
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system under study and those with which it exchanges heat as a single ther
mally isolated system, whose total entropy increases as we have just seen. 
The changes in entropy of the heat sources j at temperatures TP) can eas
ily be calculated, as these sources are large systems undergoing quasi-static 
transformations and receiving, respectively, amounts of heat -8Qj during 
the time dt. The change in the statistical entropy of the system is 8 2 - 8 1 , 

and altogether we have thus 

~ J 8Q· 82 - 81 - L.J (S3) 2: 0, 
j Tj 

which completes the proof of the Second Law. 
We shall study in greater detail in Chap.14 the irreversibility of processes 

for which the various parts of the system are at all times in a state close to 
equilibrium. 

In our discussions we have neglected correlations between the system and the 
sources; these are absent, by assumption, in the initial state, but may appear in the 
final state due to the interactions describing thermal contact. The entropy of the 
final state is, because of these correlations, smaller than the sum of the entropies 
of the system and the sources (Eq.(3.21)) so that the appearance of correlations 
has no effect other than strengthening inequality (5.32). 

As an exercise, let us analyse the irreversibility of a transformation of two 
systems, initially in thermal equilibrium at different temperatures, which leads from 
the state D given by (5.2) to another, not necessarily equilibrium, state Dt. Due 
to the random coupling V between a and b, the total statistical entropy increases 
(§3.2.3). The systems a and b exchange heat; their internal energies become 

as we can neglect Tr Dt V. Combining the irreversibility inequality (3.31) with the 
lemma (3.18), we find 

- k Tr D In D = S :S St :S - k Tr Dt In D, 

and hence, using (5.2), 

(5.40) 

The sign of the heat Q received by a is that of the difference Tb - Ta of the initial 
temperatures. 

This example shows that statistical mechanics can express irreversibility in a 
more general way than thermodynamics since, in contrast to the thermodynamic 
entropy, the statistical entropy is defined for non-equilibrium states. 



5.4 The Third Law or Nernst's Law 203 

5.4 The Third Law or Nernst's Law 

5.4.1 Macroscopic Statement 

The Third Law (1906), due to Walther Nernst, expresses the impossibility to 
reach the absolute zero. In analytical form this impossibility is reflected by the 
fact that at zero temperature the entropy is independent of the parameters 
~a which characterize the equilibrium state of the system: otherwise one 
could reach the absolute zero by an adiabatic transformation, varying some of 
the ~a. 

The thermodynamic entropy was defined apart from an additive constant. 
The Third Law shows that this constant is independent of the system; one 
can therefore choose it in such a way that the entropy vanishes at the absolute 
zero (Planck). 

5.4.2 Statistical Entropy at the Absolute Zero 

In contrast to the thermodynamic entropy defined by the Second Law, the 
statistical entropy associated with a macro-state does not contain an arbi
trary additive constant. When we identified in (5.36) those two entropies 
with one another we implicitly fixed the additive constant of the thermody
namic entropy. We shall see that this adjustment of the constant corresponds 
exactly to Nernst's law. In other words, the statistical entropy should vanish 
at the absolute zero. 

When T ---> 0 or f3 ---> 00, the probabilities 

e-(3E", e-(3(E",-Eo) 

Pm = Ln e-(3En = Ln e-(3(En- E o) 
(5.41) 

tend exponentially to zero for all excited states 1m) with energies larger than 
that ofthe ground state, Eo. The density operator i5 reduces to the projection 
onto the ground state, provided it is not degenerate, and thus describes a pure 
state with an entropy S = - k Lm Pm In Pm equal to zero. The Third Law 
therefore follows from the statement that the ground state of most systems 
is not degenerate. 

In fact, this condition is too restrictive. For large systems such as are 
considered by thermodynamics, the Third Law means that the entropy per 
unit volume tends to zero. To derive it from microscopic physics, it is thus 
sufficient to prove that 

1 
lim lim n S ---> 0, 

(3 --> 00 n --> 00 J& 
(5.42) 

where the volume [l tends to infinity before the temperature tends to zero. 
At low temperatures the entropy, whether canonical or microcanonical, is of 
the order of k In W, where W is the number of eigenstates of jj with energies 
below Eo + LJ.E, the interval LJ.E remaining finite as [l ---> 00. This number 
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W thus represents the multiplicity of the ground state Eo together with the 
weakly excited states; it depends on the volume of the system. Nernst's law 
only requires In W / n -+ 0; it therefore holds as long as the multiplicity W 
grows less rapidly than an exponential of the volume. In practice, W is always 
large, as the ground state of a macroscopic system is always degenerate or 
nearly degenerate; however, experiments show that in most cases In W / n 
tends to zero in the large volume limit, and this explains why the vanishing 
of Sat T = 0 has been given the status of a Law. 

One could imagine systems with a pathological behaviour, In W ex il, but it 
doesn't look like they exist in nature. For instance, when there are no applied 
fields (§ 1.2.1), all states of the independent spin system, which is a model for a 
paramagnetic solid, have the same energy, and W = 2N. The entropy per unit 
volume is, at all temperatures, equal to (kN/il)ln2 and it violates Nernst's law. 
Nevertheless, in a real solid, the interactions between the magnetic moments cannot 
be neglected at very low temperatures. They tend to correlate these moments, that 
is, to increase the order; in general, below a certain temperature the solid becomes 
ferromagnetic or antiferromagnetic, and the entropy of this new phase tends to zero 
at zero temperature, as should be the case. We shall find a similar effect (§ 12.2.3) 
in solid helium 3 where each atomic nucleus has spin ~. The only interactions felt 
by these N spins, due to the magnetic moments of the nuclei, are very weak, of the 
order of 10-7 eV. As a result, when the temperature is lowered, but stays above a 
few mK, everything behaves as if the ground state were 2N -fold degenerate. The 
entropy tends to the value kN In 2: it looks as if Nernst's law is violated. Only below 
1 mK does the entropy fall towards zero because of the establishment of nuclear 
magnetic ordering. 

Another, more common, effect where Nernst's law is violated in practice oc
curs when matter, cooled down to very low temperatures, remains during a nearly 
infinite time in a non-equilibrium disordered state, so that the experimentally mea
sured entropy remains positive and does not tend to zero. For instance, glass is in a 
metastable amorphous state, even at the lowest temperatures that can be reached 
which, nevertheless, are much lower than its crystallization temperature; only the 
entropy of the equilibrium crystalline state would tend to zero (§ 4.1.6). 

Let us finally note that the Third Law is quantum mechanical in origin. Whereas 
the quantum mechanical statistical entropy is always positive or zero, we have 
seen (§ 3.3.2) that there is no lower bound for the classical statistical entropy. The 
classical approximation would lead to negative, non-physical values for the entropy 
and it is therefore certainly violated at the low temperatures where Nernst's law is 
relevant. 
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5.5 The Thermodynamic Limit 

5.5.1 Extensive and Intensive Variables 

Thermodynamics is usually interested in systems which are, at least locally, 
homogeneous on a macroscopic scale. The dimensions of such systems can be 
considered to be infinite as compared to the distances between the elementary 
microscopic constituents; the number of the latter is very large, and the 
relative magnitude of surface effects becomes negligible. This is called the 
thermodynamic limit. 

In this limit macroscopic experiments show that the various quantities 
of interest can be classified either as extensive - varying proportionally to 
the volume of nested subsystems of the system under study - or intensive -
remaining invariant under such a subdivision. Amongst the extensive quan
tities we have the volume n, the entropy S, the constants of motion such 
as the internal energy U, the number of particles N of each kind, and the 
total momentum, as well as other additive quantities such as the mass or the 
magnetic moment. Amongst the intensive quantities we have the variables 
which are the conjugates of the constants of motion, such as the reciprocal 
(3 of the absolute temperature or variables Ai of the same kind (§ 5.1.4); let 
us also mention the pressure, the magnetic field, or the average energy per 
particle. These various quantities are connected with one another through 
thermodynamic relations which make their extensive or intensive nature ob
vious, as soon as one postulates, for instance, for a fluid, that the entropy, 
considered as a function of the volume n and of the constants of motion such 
as U and N, is homogeneous of degree 1: 

S(xn, xU, xN) = x S(n, U, N). (5.43) 

Moreover, the thermodynamic quantities are independent of the shape of the 
sample. 

These properties present such a body of evidence that, notwithstanding 
their importance, one did not feel compelled to state them as a separate Law 
of thermodynamics. They reflect, in fact, our intuition about what is matter 
at our scale: a homogeneous continuum, the characteristics of which are not 
altered by subdivision, except by scaling of extensive quantities; a stable sub
stance which remains locally unchanged when one brings fragments together. 
Two counter-examples will help us to feel why extensivity is less trivial than 
it looks. (i) A metal at equilibrium, carrying a negative charge which is 
proportional to its mass, is not extensive. In fact, the excess electrons posi
tion themselves in this case near the surface of the material (§ 11.3.3). Their 
(Coulomb) contribution to the internal energy, although macroscopic, is not 
proportional to the volume, and it depends on the shape of the sample; the 
metal is not homogeneous and if it is cut into pieces at least its electrostatic 
properties are changed. (ii) Stellar matter cannot reach an equilibrium state 
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where it is stable and homogeneous; a star evolves perpetually while con
tracting under the influence of gravitation, which violates extensivity. Even 
if they have exactly the same composition, two stars with different masses 
can differ considerably (Exerc.6e, 15f). 

5.5.2 Extensivity from the Microscopic Point of View 

A complete justification of the Laws of thermodynamics, starting from sta
tistical physics, requires a proof of the extensivity (5.43), a property which 
was postulated in macroscopic physics. This proof is difficult and appeals 
to special conditions which must be satisfied by the interactions between 
the particles. In particular, they must repel one another at small distances 
apart, in order that matter doesn't collapse, and they must not have too long 
a range. Using these conditions one can prove in one or other of the canoni
cal ensembles that In Z / n has a finite limit, independent of the shape of the 
container, when the volume of the latter tends to infinity while u/n, N/n 
or {3, 0: remain fixed. This property is the same as (5.43) since the entropy 
is the Legendre transform (4.14) of kIn Z and both therefore have the same 
degree of homogeneity. 

In order to get a feel for the proof one may imagine that one cuts up a large 
volume of matter at equilibrium into elementary cubes with macroscopic dimen
sions. To begin with one neglects the correlations between the cubes. At this stage 
the extensivity is a clear consequence of the factorization property (4.22). If the 
interatomic forces have a finite range, the contribution of the interactions between 
one cube and another comes from near their interface. It is thus expected to be 
negligible compared to the contributions from the interior of the cubes, provided 
the size of the cubes is much larger than the range of the forces. However, it is not 
simple to make this argument rigorous. 

The proof is even more complicated if, instead of modelling the system as a 
combination of atoms which interact through short-range forces, one represents 
it in a more fundamental way by electrons and nuclei, which is the structure of 
most substances; their interactions are long-range Coulomb forces. The proof of the 
extensivity in this case requires that the total charge be zero and it is crucial to use 
quantum mechanics. In several instances we shall see that the indistinguishability of 
quantum particles plays an essential rOle in the extensivity: Gibbs paradox (§ 8.2.1), 
stability of neutron stars and white dwarves (§ 10.1.4). 

Extensivity is violated and the system collapses if the potential V(r) between 
two particles is attractive at short distances apart (end of § 9.3.1). In fact, if V(O) = 
-a is negative, the energy is dominated by a term -~aN2 in the configurations 
where the particles stick together; hence at equilibrium the internal energy per 
particle U IN cannot tend to a finite limit as N --+ 00. This is the mechanism which 
leads to the instability of stellar matter through gravitation. In fact, the absence 
of short-range attractions is not sufficient to guarantee extensivity: the latter can 
be violated even when there are no interactions (Exerc.12d). 

We note that at the microscopic level the extensivity of the microcanon
ical entropy S = kIn W means that the energy level density W /.t1E of a 
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macroscopic system is large, of the order of magnitude of an exponential of 
the volume. For extensive substances one can also derive a general concavity 
property (Exerc.9g). 

The extensivity of physical systems in the thermodynamic limit is an 
important property. It expresses the stability of matter and it is thanks to it 
that we can speak of samples of some substance or other without having to 
specify the shape or size. It has many consequences both at the theoretical 
level: the vanishing of statistical fiuctuations in the thermodynamic limit 
(§ 5.7.1) and the pairing off of intensive and extensive variables as conjugate 
pairs (§ 5.6), and also at the technical, mathematical level: the equivalence 
of various ensembles (§ 5.5.3), the Gibbs-Duhem relation (§ 5.6.5), and the 
necessity to use the canonical ensemble for a finite subsystem (§ 5.7.2). 

5.5.3 Equivalence of Ensembles 

We shall show that, if a system is extensive, we obtain for all, extensive or 
intensive, macroscopic physical quantities the same value whatever statistical 
ensemble we are using, be it a microcanonical, canonical, grand canonical, 
or any other one. In other words, in the thermodynamic limit giving the 
constants of motion exactly or only as averages leads to the same results. 

As thus the thermodynamic conclusions are, for a macroscopic system, 
independent of our choice of ensemble, we shall put this latitude to our 
advantage in the remainder of this book and work in the statistical ensemble 
that leads to the simplest calculations, taking into account, in particular, 
the possibilities of factorizing the partition function (§ 4.2.5). Most often it 
will be the canonical or grand canonical ensemble. For instance, one can 
check that in the example of Chap.1 for a paramagnetic salt (Exerc.4c) the 
canonical ensemble leads to the same results as the micro canonical one, but 
more easily. 

To establish this equivalence we only need compare the partition functions 
associated with two different ensembles, as all macroscopic quantities follow 
from them (§ 4.2.6). To fix ideas, let us consider the same system in canonical 
equilibrium (§ 4.3.1) and in grand canonical equilibrium (§ 4.3.2); the number 
of particles is fixed exactly to be N in the first case and as an expectation 
value in the second case. The partition functions are related to one another 
through the Laplace transform (4.34): 

ZG((3, fl, a) = 2:= eoN Zc((3, fl, N). (5.44) 
N 

Let us assume that extensivity has been established for the canonical ensem
ble, so that 

1 
fl In Zc((3, fl, N) f((3,x) (5.45) 
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is a function of x == N / fI, and is practically independent of fl. The intensive 
variable x can be treated as continuous in the limit as fI -+ 00 and we can 
write (5.44) as 

Z ( f.? n ) = n rooo dxe!1[Qx+f(,B,x)l. 
G !-"H,a H in (5.46) 

As in §1.2.4 we note that in the vicinity of the maximum of ax + f((3, x) 
with respect to x == N / fI the integrand in (5.46) has a very pronounced 
maximum in the neighbourhood of which it behaves as a Gaussian with a 
narrow peak; the width of this peak is small as fI-IJ2. The integral (5.46), 
which is completely dominated by this maximum (Exerc.5b), gives as fI -+ 00 

the dominant behaviour of In ZG in the form 

In ZG((3,fI,a) '" max [aN +In Zc((3,fI,N)]. 
N 

(5.47) 

The relation (5.47) between the canonical and the grand canonical parti
tion functions in the thermodynamic limit is just a Legendre transformation 
(§§ 4.2.4 and 6.3.1). The variables a and N are in that relation connected 
through 

a 
a = - aN In Zc((3, fI, N), (5.48) 

which, taking the derivative of (5.47) with respect to a, implies that 

(5.49) 

The number of particles N in the canonical ensemble which dominates the 
sum (5.44) is thus the same as the average number (N) in the grand canonical 
ensemble, as (5.49) and (4.35) are the same. The variable a, the conjugate of 
N, which in the canonical ensemble is defined by the derivative (5.48), just as 
the temperature (3 is defined in the micro canonical ensemble by (5.4), can be 
identified with the Lagrangian multiplier a of the grand canonical ensemble. 
Even though ZG and Zc are not functions of the same variables and though 
they take on different values, their partial derivatives with respect to -(3 (the 
energy), with respect to fI, which is proportional to the pressure (§ 5.6.1), 
or with respect to other variables occurring in the Hamiltonian, are equal, 
as one can see by differentiating (5.47). This completes the identification of 
the quantities a, N, (3, U, and so on, in the canonical and grand canonical 
ensembles. We note that we had implicitly anticipated this result by using 
the same notation in the two ensembles. Finally, the entropy, given by (4.30) 
in the canonical ensemble and by (4.36) in the grand canonical ensemble, also 
takes asymptotically the same value when ZG and Zc are related through 
(5.47). Of course, the statistical fluctuations are not the same; for instance, 
ilN vanishes in the canonical ensemble, but is large, as VN, in the grand 
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canonical ensemble. We shall show, however, that the relative size of fluctua
tions is small in any ensemble, except at a critical point or when the system 
splits into phases (§ 5.7.1). 

Using the saddle-point method (Exerc.5b) enables us to establish (5.47) in a 
more rigorous manner and to calculate the corrections in lower orders in il. Formula 
(5.94) thus yields, if we assume that the solution of (5.48) is unique and we denote 
it by No(f3, il,o), 

In Ze(/3, il, a) = oNo + In Zc({3, il, No) 

_ ! In IJ... {)21n Ze I O(~). 
2 27r {)N6 + il 

(5.50) 

From (5.50), (4.30), (4.36), and (5.48) it follows that the two entropies differ by 

k {)No 
Se - Se = 2 In {)o + 0(1) .. (5.51) 

Although this quantity is large, of order In il, it has a small relative size, of order 
In il / il. The fact that Se is larger is the result of the definition itself of the grand 
canonical ensemble, which we found by looking for the maximum of the entropy for 
given (N), a weaker constraint than in the canonical ensemble where we have the 
additional condition t1N = O. Expression (5.51), which is equal to k In t1N, where 
t1N2 is the variance (4.38), (4.35) in the grand canonical ensemble, measures the 
uncertainty about the value of N in that ensemble. 

We have here derived Ze from Ze. Inversely, if the extensivity has been estab
lished in the grand canonical ensemble, one must start from the Laplace transform 

1 l 00+i
7l" Zc({3,il,N) = -. doe-oN Ze({3,il,o), 

27rl . ao -17r 
(5.52) 

which is the inverse of (5.44) and where 00 is arbitrary. The argument is analogous 
to the earlier one, interchanging the roles of the variables a and x. Nevertheless 
we work here in the plane of the complex variable a and we should deform the 
contour of integration so that it passes through the saddle point (Exerc.5b), that 
is, through the point 00 where -aN + In Ze({3, il, a) is stationary. This point is a 
minimum for real a, but a maximum along the contour 00 - i7r, 00 + i7r. We get in 
this way 

In Zc({3, il, N) ~ min [-oN + In Ze({3, il, a)]. 
o 

(5.53) 

Using the fact that In Ze and In Ze are concave functions, we see that this relation 
is the inverse Legendre transform of (5.47), which proves again the equivalence of 
the two ensembles. 

Either the calculation leading from (5.44) to (5.47) or the one leading from 
(5.52) to (5.53) can be adapted to any other pair of ensembles; for instance, Nand 
a are replaced by U and {3 to show the equivalence between the microcanonical 
and the canonical ensembles. 

The canonical distribution depends exponentially on the energy of the micro
states whereas the microcanonical distribution of those energies is localized at a 
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point U, with a margin f).U. It may seem surprising that such different behaviours 
lead to equivalent results in the thermodynamic limit. In fact, the distribution p(E) 
of the probability for the energy in the canonical ensemble is proportional to the 
product of the Boltzmann factor e- f3E and the level density (§4.3.1). The latter is 
itself proportional to eS(E)jk, where S(E) is the microcanonical entropy, so that 
we have 

p(E) oc e -f3E +S(E)jk. (5.54) 

The extensivity of S(E) then entails that p(E) is close to the Gaussian (Exerc.5b) 

[ 1 I a2 
S I 2] p(E) oc exp - 2k au2 (E - U) . (5.54') 

This probability is centred around the point U determined by the standard relation 
between energy and temperature, 

_a .!. as(U) = 0 
I-' + k au ' 

with statistical fluctuations small as n-1j2 in relative magnitude. The exponential 
decrease e -f3E is thus combined with the very rapid increase in the level density 
to give rise to a sharp peak which differs little from the microcanonical energy 
distribution. 

5.6 Thermodynamic Potentials 

5.6.1 Entropy and Massieu Functions 

The use of thermodynamic potentials is one of the important tools of ther
modynamics. A thermodynamic potential is a function of certain variables 
characterizing the state of the system, which has the property of being a 
maximum or a minimum at equilibrium, and whose partial derivatives with 
respect to these variables have a simple interpretation. Having available such 
a function allows us in practice to calculate heat capacities, equations of 
state, and, more generally, all equilibrium properties of the system. We shall 
systematically use this approach for most applications that we shall treat. 

The prototype of a thermodynamic potential is the equilibrium entropy as 
function of conserved quantities such as the energy U or the particle number 
N, and of the parameters ~Q which occur in the Hamiltonian such as the 
volume [} or an external field. Its partial derivative with respect to U is the 
inverse kf3 of the absolute temperature; its derivative with respect to N is 
a variable, -ka, of the same kind which governs the exchange of particles 
(§ 5.1.4). To find the physical meaning of its derivatives with respect to the 
"positions" ~Q we bear in mind the general expression for the differential of 
the internal energy 
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(5.55) 
o 

In § 5.6.3 we shall discuss the term associated with the variation of N; the last 
terms represent the work received (5.11). From (5.55) we get the differential 
of S: 

1 J1, L Xo dS = - dU - - dN - - d' . T T T ~o 
(5.56) 

o 

It assigns to each of the natural variables U, N, ~o of S its conjugate variable 
with respect to S, namely, 

1 T = kj3, 
J1, 

T 
= -ka, (5.57) 

Hence, the partial derivatives of S with respect to the ~o are directly related 
to the "force" variables Xo' 

From the microscopic point of view the natural variables U, N, ~o occur
ring in S are exactly those which characterize a microcanonical equilibrium. 
The entropy as a thermodynamic potential can thus be identified with 

(5.58) 

where the weight W is the microcanonical partition function. 
It is important to note that the entropy, if we consider it to be a function 

of other variables, for instance, T, N, ~o instead of U, N, ~o, does not have 
simple partial derivatives; it is no longer a thermodynamic potential. If one 
wants to change variables while conserving the duality between conjugated 
variables, we must perform a Legendre transformation (§§ 4.2.4 and 6.3.1), 
which consists in changing the function at the same time we change the 
variables. In particular, substituting liT for U leads to the introduction of 
the Massieu function 

(5.59) 

where U and T are related to one another through aSlaU liT. This 
function is the thermodynamic potential for the variables liT, N, ~o, as its 
differential is equal to 

(5.60) 

Through its derivatives tPc provides the same relations as S(U, N, eo); the 
first pair (U, liT) of conjugate variables has become (liT, -U), and the 
others remained the same. 

The natural variables of (5.59) are in statistical mechanics those which 
characterize a canonical equilibrium state, apart from a change in units by k 
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in l/T = k{3. Comparing (5.59) with (4.30) enables us to identify the Massieu 
potential (5.59) with the logarithm oj the partition junction, 

(5.61 ) 

and Eqs.(5.59), (5.60) repeat the results of §§4.2.6 and 4.3.1, while giving 
a physical interpretation to the various quantities which occur as partial 
derivatives. 

One can in the same way introduce another Massieu potential, 

lPa (~, - ~,~a) = kIn Za({3, ex, ~a) 
1 fL 

= S(U,N,~a) - T U + TN, (5.62) 

suited to the variables l/T = k{3, -fL/T = -kex, ~a which character
ize the grand canonical equilibrium. In (5.62) U and N are determined by 
as/aU = l/T and as/aN = -fL/T, and the Massieu function lPa appears 
as the Legendre transform of (5.58) with respect to U and N. Here again, 
the differential 

(5.63) 

shows that lPa is, indeed, a thermodynamic potential. 
We can readily generalize this to any other canonical ensemble. This en

ables us to interpret k In Z as a thermodynamic Massieu potential, provided 
we take as variables the natural parameters characterizing the equilibrium 
macro-state for that ensemble. Its partial derivative with respect to each of 
the variables is the conjugate variable, apart possibly from a sign; this sign is 
easily determined by bearing in mind Eqs.(5.56) or (5.57) and the fact that 
each Legendre transformation changes one sign. We have implicitly assumed 
that the system is extensive, by assuming that the entropy has the same 
value in each ensemble. For each pair of conjugate variables, one is then ex
tensive and the other one intensive. The extensive variables are the conserved 
quantities (U, N) together with some of the parameters ~a occurring in the 
Hamiltonian, like the volume fI; on the other hand, the other ~a parameters, 
such as the magnetic field B, are intensive. 

For many decades thermodynamics put more emphasis on the energy con
cept than on the entropy concept. As a result the differential form (5.55) has 
been the foundation for fixing the traditional nomenclature and formalism. 
Nonetheless, it would have been more satisfactory to use (5.56) systemati
cally. In fact, with that expression it is easier to connect thermodynamics 
and statistical mechanics, as we have just seen. Moreover, (5.56) puts the 
quantities U and N which are of the same, conservative, nature on a par, 
whereas the entropy S, which plays a very different role from that of all 
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other variables, occurs on the left-hand side. In the case of an irreversible 
transformation, the equation (5.56) is replaced by an inequality which shows 
up the increase in entropy of an isolated system. The use as thermodynamic 
potentials of the entropy and of the Massieu functions, which follow from it, 
fits in well with these remarks. An extra simplification would follow if we 
chose our units such that k = 1, with T = 1/(3 being measured in joules 
and S being dimensionless. Nevertheless, we have given in to the weight of 
tradition and mainly used in what follows the thermodynamic potentials fol
lowing from the energy, which are the ones used in most of the literature. In 
fact, the basic quantities (5.57) which occur in connection with the Massieu 
potentials, in particular I/T = k(3, -IlJT = -ka, P /T do not even have 
a name, notwithstanding the important role they play in thermodynamics, 
and we shall have to talk about the temperature T, the chemical potential 
f.J" and the pressure P, following the common usage. We shall work with the 
variables (5.57) more natural albeit less usual, only in Chaps. 6 and 14 where 
we discuss non-equilibrium thermodynamics. 

Fran<;ois Massieu, engineer, geologist, physicist, and mathematician (Vatteville 
1832-Paris 1896) introduced in 1870 the above kind of thermodynamic potentials, 
which are Legendre transforms of the entropy, and which he called "characteris
tic functions". His aim was to determine indirectly the specific heat of a vapour, 
starting from its equation of state which can be found more easily experimentally, 
with applications to steam engines in view (Exerc. 6a). Notwithstanding their im
mediate success, the Massieu functions soon became forgotten. Gibbs's (1875) and 
Helmholtz's thermodynamic potentials became in final reckoning the popular ones, 
in particular, through Planck's treatise (1897) on thermodynamics; nevertheless, 
besides these standard thermodynamic potentials, Planck had rediscovered and 
used one of Massieu's potentials! 

5.6.2 Free Energy 

Expression (5.55) for the change in the internal energy for a reversible trans
formation shows that this quantity is a thermodynamic potential, provided 
one expresses it as function of the variables S, N, and ea. We have just em
phasized the drawbacks of this traditional starting point. Moreover, from a 
statistical mechanics point of view, the function U(S, N, ea) is not directly 
given in any ensemble, in contrast to S(U, N, ea); furthermore, it is inconve
nient to treat S as a variable. 

If, nevertheless, one wishes to take the temperature T, instead of S, as 
state variable side by side with N and the ea, it is convenient to introduce 
the (Helmholtz) free energy as thermodynamic potential: 

F(T,N,ea) = U(S,N,ea) - TS. (5.64) 

This is the Legendre transform of the internal energy with respect to the 
entropy, with 8U / 8S = T. In fact, the differential of F which follows from 
(5.55) is 
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dF = -8dT + p,dN + L Xo; d~o;. (5.65) 

The pairs of conjugate variables with respect to the free energy are (T, -8), 
(N, p,), (eo;, Xo;), and the partial derivatives of F with respect to its natural 
variables T, N, eo; give, at equilibrium, the values of the other variables in 
each pair. 

In contrast to the internal energy, the free energy as thermodynamic 
potential can easily be calculated in the framework of statistical mechanics. 
In fact, the natural variables T, N, eo; of F are directly connected with 
those of the canonical ensemble and comparing (5.64) with (5.59) and (5.61) 
shows that the free energy can be simply expressed in terms of the canonical 
partition function Zc((3, N, eo;) through 

F(T, N, eo;) = - kT In Zc (k~' N, eo; ) . (5.66) 

Therefore, in order to obtain the macroscopic properties of a system from the 
canonical formalism, it amounts to the same to work with the Massieu func
tion (5.61) or with the free energy (5.66), and to use the partial derivatives 
(5.60) or (5.65), respectively. 

The free energy is used when one is interested in exchanges of work of a 
system with the outside during quasi-static isothermal transformations: the 
work is, in fact, in that case given by the change (5.65) in F. On the other 
hand, if one is considering adiabatic transformations, the internal energy U, 
whose change (5.55) gives the work, is more advantageous. 

In § 6.3.3 we shall see that the free energy is also introduced in the study 
of a system, possibly in a non-equilibrium state, which is coupled to a ther
mostat. In that case, T denotes the temperature of the latter. In equilibrium 
the free energy is a minimum; this explains why it is called "thermodynamic 
potential" . 

For a system, in communication not only with a thermostat, but also with a 
manostat which maintains its pressure P at a constant value, the proper thermo
dynamic potential is the free enthalpy, or Gibbs potential, 

G(T,N, P) = U - TS + Pil = - kT In Zj, (5.67) 

the double Legendre transform of U with respect to Sand il. It is suited to the 
natural variables T, N, and P, since 

dG = -SdT + p,dN + ildP, (5.68) 

and it can, according to (5.67), be derived directly from the isobaric-isothermal 
ensemble. 

The enthalpy 

H(S, N, P} = U + Pil, (5.69) 

the thermodynamic potential suitable for a system in communication with a mana
stat, but thermally insulated, cannot be simply derived in statistical mechanics. 
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5.6.3 Chemical Potentials 

In § 5.1.4 we saw that the Lagrangian multiplier 0 associated with N in 
the grand canonical ensemble measures the tendency of a system to give up 
particles. The relation (5.62) between the grand partition function and the 
entropy enables us also to express 0 in terms of the variable J.L, introduced 
in thermodynamics through (5.55), that is, 

o au I aF I J.L - - -- 73 - aN s,n - aN T,n 
(5.70) 

One gets the expression for J.L in terms of the free energy from (5.65). 
The variable J.L is called "chemical potential". Notwithstanding this name, 

it is a quantity which is useful in many other fields than just chemistry; more
over, the term "potential" does not refer to a thermodynamic potential like 
the entropy, the Massieu functions, the internal energy, the free energy, or the 
enthalpy, since J.L is the conjugate variable of N with respect to U. Again, it is 
necessary here to beware of semantic confusions which are easily introduced 
through the nomenclature inherited from history. The word "potential" ap
plied to J.L has another meaning: at a given temperature, if two systems have 
different J.L, or 0, the one with the higher chemical potential will give up 
particles to the other one. In principle, it would be better to work with the 
variable 0, but its replacement by J.L is legitimate in all circumstances where 
the temperature is uniform, which is often the case. A notable exception is 
connected with thermoelectric effects, which are phenomena mixing particle 
and heat exchanges (see § 14.4.3). 

We have implicitly assumed that the system consisted of N particles 
which were all of the same kind. Often we shall encounter circumstances 
where the existence of several kinds of particles entails the introduction of 
several chemical potentials J.L1, J.L2, ••• which are, respectively, associated with 
each of the constituent species (§§ 4.1.4 and 4.1.6). For instance, in a gas 
mixture (§ 8.2), the grand canonical equilibrium is characterized by several 
multipliers, 01 = f3J.L1, 02 = f3J.L2, ••• which are conjugate to the conserved 
variables Nl, N 2 , .• , • Nevertheless, if this gas is subject to chemical reac
tions, N 1 , N 2 , ..• denote numbers of molecules which can be transformed 
into one another, and the above grand canonical distribution describes a 
quasi-equilibrium state where the numbers of molecules are frozen in. The 
final chemical equilibrium, after reactions, is obtained by writing down re
lations between the chemical potentials J.L1, J.L2, ••• (§§ 6.6.3 and 8.2.2). This 
is the context in which historically the variables J.L were introduced, and this 
explains their name. 

However, the chemical potential concept is fruitful in all circumstances 
where exchange of particles between two systems is allowed. To determine the 
equilibrium one writes down that the chemical potentials of those particles of 
which the total number is conserved, but which can be exchanged - they may 
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be molecules, atoms, ions, radicals, electrons, elementary particles, depend
ing on the case considered - must be equal in the two systems (Exerc.8e). If 
the chemical potentials are unequal, knowing them enables us to determine 
the direction of the exchanges, just as the sign of the temperature difference 
determines the direction of the heat exchange. For instance, a liquid in the 
presence of its vapour evaporates if its chemical potential is higher. Equili
brium between phases (§ 6.4.6) requires that the chemical potentials, as well 
as the temperatures and the pressures, are equal. Similarly, two fluids of the 
same kind separated by a porous partition exchange molecules through the 
pores: effusion (§ 7.4.1). In the case of osmosis (§ 6.6.2) the semi-permeable 
wall can let through the solvent molecules, so that their chemical potentials 
become the same on the two sides, but it cannot let through the molecules 
in solutionj the numbers of molecules in solution are separately conserved 
on both sides, which, in general, will lead to different chemical potentials for 
them. This asymmetry produces a difference in osmotic pressure. Adsorp
tion and desorption of a gas on the wall of the vessel that encloses it result 
from the exchange of molecules between the gas and some sites on the wall, 
in particular, microscopic irregularities where they can possibly be trappedj 
the two systems of which we must compare the chemical potentials are in 
this case the gas and the collection of sites that may be occupied (Exerc.4b). 
It is useful to compare this situation with that of a gas of photons (Chap.13) 
in an enclosure. In that case the number of photons is not conserved by the 
interactions with the walls, so that we should not introduce a Lagrangian 
multiplier Qj it comes to the same to put Q = 0, and hence the chemical 
potential vanishes (§ 1O.5.2). 

The chemical potential is similarly a major tool in electrostatics and elec
trodynamics, where it is often called the "electrochemical potential". We are 
dealing in that case with the chemical potential J1, of the mobile charge car
riers, ions in ionic solutions, electrons in metals, or electrons and holes in 
semiconductors. Electrostatic equilibrium (§ 11.3.3) is determined by requir
ing that the chemical potential is uniform. If the latter varies from one point 
to another, the charged particles tend to move in the direction of decreas
ing J1,. In fact, if there is a difference LlJ1, between the chemical potential for 
particles with charge q at two points, on a macroscopic scale the quantity 
LlJ1,/ q can be identified with the electromotive force felt by these particles 
between the two points in question (§ 14.4.2). We must again beware of the 
nomenclature: in general, although J1, is called the electrochemical potential, 
LlJ1,/ q is not equal to the difference in the macroscopic electric potential, since 
the latter contains also a contribution from the charge density (§ 11.3.3). In 
particular, if charged substances are in electrostatic equilibrium, their elec
tric potential, in contrast to J1" is not uniform. A characteristic example is 
the spontaneous appearance of an electric potential between two metals or 
semiconductors which are brought into contact. The chemical potential of 
the electrons would not be the same in each of them if they were taken in 
isolation. As soon as they are brought into contact this produces a transfer 
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of electrons from one substance to the other in order to equalize the chemical 
potentials. The double layer of positive and negative charges which is pro
duced in this way at the interface gives rise to an electric potential (§ 11.3). 

In the above examples the systems a and b which can exchange parti
cles are either separated objects, such as the gas and the wall in the case of 
adsorption, or different parts of the same, continuous object, for instance, 
volume elements of a substance which is not uniformly charged; they may 
even be entities superposed upon one another in space. In fact, in a mix
ture of molecules in the gaseous phase or of ions in a dilute solution, it is 
useful to treat the sets of molecules of each species as different systems a, 
b, ... , and then to assume that one brings a, b, ... into chemical contact, 
allowing reactions involving exchanges of atoms, ions, or radicals. Similarly, 
in a semiconductor it will be fruitful to regard the conduction electrons and 
the holes as two independent systems which can annihilate one another, and 
then to require that the difference of their numbers be conserved, but not 
the numbers of the charge carriers of each kind (§ 11.3.4). 

Along the lines of § 5.1.4 we have interpreted the chemical potential as 
the quantity governing the exchange of particles. Its expression (5.70) gives 
us another interpretation, namely, that of the marginal energy of an extra 
particle. Let us, in fact, assume that we add a particle to an open system 
while keeping the entropy and the ~o parameters, such as the volume, fixed; 
the transformation is reversible so that both the initial and the final state 
are in equilibrium. The change dU in the internal energy is then equal to 
the chemical potential Jt. The latter is, according to (5.65), also equal to the 
change in the free energy when, for a given temperature, one reversibly adds 
a particle to the system. This interpretation of Jt as the energy of an extra 
particle is particularly useful for systems of non-interacting fermions at zero 
temperature (§ 10.4.2), where Jt is called the Fermi energy. More generally, 
if the numbers of constituent particles change by dNj during a reversible 
infinitesimal shift in equilibrium, the change (5.55) in the internal energy 
contains a contribution Lj JtjdNj which corresponds, for instance, to the 
chemical energy of a reaction (§ 6.6.3). 

The distinction between work and heat was established for transformations of 
closed systems and the change in energy JtdN in (5.55) has a different status from 
both work and heat. Even from the point of view of statistical physics, the splitting 
of dU into the two terms (5.30), which are, respectively, interpreted as work and 
heat when dN = 0, cannot unambiguously be extended to transformations of open 
systems. In fact, in the grand canonical ensemble it must be treated as a quantity 
which is independent of N, but has components for the different values of N; when 
there is no work done, (5.30) then reduces to its second term TrdD it. However, 
(5.39) shows that this term equals TdS + JLdN so that it seems legitimate to 
consider JL dN as a contribution to the heat, added to the usual contribution. On 
the other hand, in the microcanonical or canonical ensembles, N appears through 
the Hamiltonian and plays the same role as the eo parameters; the energy JL dN is 
thus analogous to a work term X de, even though the two terms of (5.30) have in 
this case hardly any meaning. It is thus preferable to regard JL dN neither as heat 
nor as work, but as another form of energy. 
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5.6.4 Grand Potential 

Suppose we want to replace at the same time in the characterization of the 
state of a system the entropy S and the number of particles N by their conju
gate variables with respect to the internal energy, that is, by the temperature 
T and the chemical potential IL. We must introduce the thermodynamic poten
tial A suited to these new variables, which is defined as the double Legendre 
transform of U, 

(5.71) 

This function is called the grand potential. Its differential 

(5.72) 
Q 

shows that one obtains the various thermodynamic quantities of interest and 
their mutual interrelations by taking derivatives of A with respect to the 
natural variables T, IL, and ~Q. 

Just as the free energy is suitable for the description of a system coupled 
to a thermostat, the grand potential is particularly convenient whenever one 
studies an open system coupled both to a thermostat and to a particle reser
voir, which fix the values of T and of IL, respectively. The grand potential 
is also useful when one studies the equilibrium of two systems which can 
exchange energy and particles, as in that case it is sufficient just to require 
that the values of T and of IL are the same in the two systems. 

From a microscopic point of view a comparison of (5.71) and (4.36) shows 
that the grand potential is expressed in terms of the grand partition function 
ZG(j3, a, ~Q) through 

A(T,IL'~Q) = - kT In ZG (:T' :T'~Q) . (5.73) 

This result was expected, since the natural variables T, /1, of the grand po
tential are simply related to those which characterize a state in the grand 
canonical ensemble, that is, {3, a. In most applications that we shall con
sider, the latter ensemble will be the most convenient. We shall thus evalu
ate (5.73), and after that use (5.71) and (5.72) to find the properties of the 
system. It would have been slightly simpler to rely on the Massieu potential 
!ltG defined by (5.62) and on its differential (5.63) in terms of {3 and a, but 
we shall conform to tradition and rather introduce the grand potential 

A = -T!ltG. (5.74) 

The correspondence (5.47) between different ensembles in the thermody
namic limit implies the macroscopic relation (5.71) between A and F. 
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5.6.5 Pressure; The Gibbs-Duhem Relation 

The macroscopic state of a fluid consisting of a single kind of particles is 
characterized by three variables, for instance, the extensive quantities U, N, 
and n. The volume n is a ~a type variable and its conjugate variable Xa = 
- P defines the pressure. The "equation of state" which connects pressure, 
temperature, and particle density N In is obtained in the canonical ensemble 
by using (5.60) or (5.65). We find thus 

a 
P = kT an In Zc 

aF(T, IL, n) 
an (5.75) 

In the grand canonical ensemble the equation of state is given in a para
metric form, involving IL, through the equations 

aA 
N = - aIL' 

aA 
P = - an· (5.76) 

However, In ZG or A are functions of one extensive variable n only, plus 
two intensive variables. The extensivity of In ZG for a fluid (§5.5.2) therefore 
results in A being proportional to n for fixed T and IL, or in AI n being a 
function of T and IL only, which can be expressed as 

aA(T, IL, n) 
an 

A 
n' 

It then follows from (5.76) that 

1-1' Il = A = - ~ In ZG = U - T S - ~N 1 ' 

(5.77) 

(5.78) 

which shows that, apart from the sign, the grand potential per unit volume 
is equal to the pressure. 

Taking the differential of (5.78) and using (5.55) yields 

S dT - n dP + N dIL = 0, 

an equation which means that the intensive variables T, IL, and P are not 
independent. This identity is known in thermodynamics as the Gibbs-Duhem 
relation. It implies that, if one wants to characterize a fluid through three 
independent variables, at least one of them must be extensive (§ 6.2.3). 

5.6.6 Summary: Tables of the Thermodynamic Potentials 

We shall now complete the arguments of §§ 4.2.6 and 4.3 for a practical solu
tion of problems of statistical physics at equilibrium by gathering in two ta
bles the various statistical ensembles and the corresponding thermodynamic 
potentials for a fluid consisting of a single kind of particle. 
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Table 5.1. Canonical ensembles and their Massieu potentials W = k In Z 

Natural 
Ensemble 

Partition 
Entropy Differential 

variables function 

U,N,{} Microcanonical W S=klnW 
k-ldS = 

{3dU - adN + {3'Pd{} 

Zc = TrN e-{3HN 

k-1dwe = 

{3, N, {} Canonical we + k{3U 
-U d{3 - adN + {3'Pd{} 

Grand 
ZG = Tre-13H+aN 

k-1dwG = 

{3, a, {} canonical wG + k{3U - kaN 
-Ud{3 + Nda + {3'Pd{} 

Isobaric-
Zj = f d{}Tre-13H-13Pn 

k-1dwj = 
{3, N, {3'P isothermal Wj + k{3U + k{3'P{} 

-U d{3 - adN - (}d({3'P) 

Table 5.2. Thermodynamic potentials. The partition functions are defined in Table 5.1 

Natural Thermodynamic 
Ensemble Relations Differential 

variables potential 

Internal energy dU= 
S,N,{} 

U TdS + JLdN - 'Pd{} 

Free energy dF= 
T,N,{} Canonical F= U -TS 

F= -kTlnZc -SdT + JLdN - 'Pd{} 

Grand Grand potential dA= 
T,JL,{} canonical A=U-TS-pN 

A = -kTlnZG -SdT - NdJL - 'Pd{} 

Isobaric- Free enthalpy dG= 
T,N,'P isothermal G = U -TS+'P{} 

G = -kTlnZj -SdT + JLdN + {}d'P 

Enthalpy dH= 
S,N,'P H=U+'P{} 

H TdS + JLdN + {}d'P 
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The ~arious ensembles differ in the choice of the three natural variables 
used to describe the equilibrium state. In all cases one starts by evaluating 
the partition function and from that one derives at once a thermodynamic 
potential. The expression for the differential of the latter then provides the 
various thermodynamic quantities through simple differentiations with re
spect to the natural variables. It will hardly ever be useful for this purpose 
to use the Boltzmann-Gibbs density operator itself. 

Table 5.1 summarizes the Massieu potential formalism, which is simpler 
and more directly connected with statistical mechanics. The pairs of con
jugated variables with respect to 8 are (U, k{3), (N, -ka), (il, k{3P). In all 
cases, the Massieu functions are given by k In Z, which in the case of the 
microcanonical ensemble reduces to 8 = k In W. 

However, one usually rather employs the potentials connected with the 
energy which are summarized in Table 5.2. The pairs of conjugated variables 
with respect to U are (8, T), (N, /L), (il, -P), and their thermodynamic 
interpretations are obvious. We shall usually work in the canonical ensemble 
or in the grand canonical ensemble which lead to the simplest calculations of 
the partition function. The other rows in the table are especially useful when 
one is concerned with macroscopic thermodynamics. For instance, a heat 
engineer, interested in a gas the pressure of which is fixed from the outside, 
will use the enthalpy; a chemist studying reactions at given temperature and 
pressure will use the free enthalpy. Note that the inclusion of 8 amongst the 
natural variables prevents us from connecting the thermodynamic potential, 
that is, the energy or the enthalpy, to a canonical partition function. 

5.7 Finite Systems 

5.7.1 Statistical Fluctuations 

If we want to identify the results of statistical mechanics with our every
day experience, we must still understand why the predictions of macroscopic 
physics appear to be deterministic notwithstanding the probabilistic nature of 
the underlying theory. To explain this, at least for equilibrium situations, we 
must prove that the various statistical quantities, the mean values of which 
have been identified with the corresponding macroscopic variables, show neg
ligible relative statistical fluctuations in any of the canonical ensembles. For 
the example of Chap.1 we have already shown this kind of property in § 1.2. 
In the general case, we shall see that the existence of a thermodynamic limit, 
expressed by the extensivity ofln Z, guarantees that the relative fluctuations 
in macroscopic systems are extremely small. 

Let us, in fact, consider the variance (4.31) of the energy, L\U2 , in the 
canonical ensemble. It is the second derivative of In Zc (an extensive quan
tity) with respect to {3 (an intensive quantity) so that it is proportional to 
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the volume or to the number of particles, N. The energy U is itself propor
tional to N, with U j N > 0 if we choose the origin suitably. As a result, the 
relative fluctuation of the energy, lJ.U jU, tends to zero as N- 1/ 2 in the ther
modynamic limit. The dimensionless coefficient has no reason for being large; 
hence we expect that, for instance, for one mole where N = 6 X 1023 , the 
energy will be defined better than to one in 1010. The statistical uncertainty 
in U is thus much smaller than the experimental errors. 

It is remarkable that this result follows from our principle of maximum 
uncertainty which has been the foundation for obtaining the canonical prob
ability distribution. The energy had been left free to fluctuate around the 
mean value that we had assigned to it; nevertheless, it hardly ever strays far 
from it, as its probability distribution in the limit of a large system tends to 
the Gaussian (5.54) with a small width of relative order N- 1/ 2 • Even though 
the uncertainty S about the whole set of degrees of freedom of the system is 
a maximum, the energy is known practically exactly. 

The situation is the same when one brings two macroscopic objects into 
thermal contact. We saw in § 5.1.2 that the equalizing of the temperatures 
determined the mean values Ua and Ub of the energies of the two systems. 
We did not discuss the statistical partition of the total energy between a 
and b. Nevertheless, the answer to this question can be found in § 1.2.4. 
In the micro canonical ensemble all configurations where the total available 
energy Ua + Ub is split arbitrarily between a and b have the same probability. 
However, by far the most of the micro-states correspond to situations where 
the energy of a is close to Ua , with a relative spread of order N- 1/ 2 • Statistical 
mechanics explains in this way why the total energy practically always splits 
up in the same way between two systems which are in thermal contact, even 
though all partitions are possible, in principle. 

These considerations can immediately be extended to energy or parti
cle number fluctuations in a grand canonical ensemble, which are given by 
(4.38). The smallness of these fluctuations, when the thermodynamic limit 
exists, enables us to understand intuitively the equivalence between the var
ious ensembles which may describe the equilibrium of a macroscopic system 
(§ 5.5.3). Indeed, it comes to the same whether we give a constant of the 
motion such as U or N exactly or only give its mean value, as in the second 
case its relative statistical fluctuations turn out to be negligible anyway. 

Nevertheless, there is one important exception. When a system can un
dergo a phase transition (§§ 6.4.6 and 9.3.3), the characterization of its state 
on the macroscopic scale is not always unique if the number of intensive data 
is too large. For instance, if we give the temperature, the chemical potential, 
and the volume of a fluid, the proportion of the two phases remains unde
termined along the liquid-vapour coexistence curve in the T, J.L plane. The 
microscopic counterpart of this situation corresponds to the grand canonical 
ensemble, where the macro-state is characterized by the same variables. It is 
thus not surprising to find that the Boltzmann-Gibbs distribution provides 
energy and particle number fluctuations, lJ.U and lJ.N, which are proportional 
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to n rather than to v'ri when the values of a and /3 correspond to an equili
brium between the two phases. This pathological behaviour results from the 
fact that in the thermodynamic limit In ZG / n is not an analytical function of 
a and /3: its first derivatives are discontinuous and its second derivatives di
verge along the coexistence curve. Moreover, we shall see (§§ 6.4.5 and 6.4.6) 
that the phase transition is characterized by the vanishing of the denominator 

of (4.38). Note finally that the various ensembles are not equivalent as regards 
fluctuations when there is a phase transition (§ 5.7.3, Exercs.9g, 12b, 12c). For 
instance, LlU and LlN remain always zero in the micro canonical ensemble, 
even if it describes several phases, whereas we have just seen that they can 
be macroscopic in the grand canonical ensemble. 

As regards the thermodynamic variables €a, we saw in § 5.2.4 when we inter
preted them on the microscopic scale as dynamic variables of the source c of work, 
that the definition itself of work makes it necessary that their fluctuations are neg
ligible. This implies, in particular, that the source of work must be a macroscopic 
system for which the thermodynamic limit is valid. 

We now turn to the fluctuations of the conjugated variables Xa , to be evaluated 
in the system a. For the sake of simplicity, let us assume that the latter is in 
canonical equilibrium, that its Hamiltonian ita is linear in the €a, of the form 

ita = ito + L €aXa, (5.80) 
a 

and that the operators ito and Xa commute with one another. The mean values 
and the fluctuations of the Xa are then given by 

~ 1 8 
(Xa) = -lJ 8€a In Zc, 

2 1 82 
LlXa = f.l2 -2 In Zc· 

tJ 8€a 
(5.81) 

The existence of a thermodynamic limit for In Zc again implies that the relative 
fluctuations of the Xa are small as N-1/ 2 , whether the €a be extensive or intensive 
variables. 

The temperature T = 1/k{3 is defined exactly in the canonical and grand canon
ical ensembles, but its definition (5.4) in the microcanonical ensemble, where, in 
contrast, the energy is given practically exactly, within a margin LlU, is imprecise 
for a finite system: it depends on the way the smoothing LlU is done. Similarly, 
a is badly defined in the micro canonical and canonical ensembles, since we are 
dealing with a "derivative" with respect to the discrete variable N. In order to 
estimate, for instance, the precision of a in the canonical ensemble, let us compare 
it with the grand canonical ensemble where a does not fluctuate at all. Expression 
(5.52) shows Zc as an integral of ZG over a, and the dominant contribution to this 
integral gives us information about the distribution of a-values in the canonical en
semble. We have seen that, as N ---> 00, only the saddle-point ao(N) contributes so 
that a = ao is defined exactly in the thermodynamic limit. If N is large, but finite, 
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the weight of (5.52) is concentrated in a region 10' - 0'01 which is small as N-1j2, 

so that the absence of fluctuations in N is compensated by a small uncertainty in 
a. Nevertheless, we are not dealing here with a true statistical fluctuation, as a in 
this case is a complex variable. 

Statistical mechanics allows us not only to calculate thermodynamic 
quantities, but also quantities like statistical fluctuations which on a macro
scopic scale are not relevant. For instance, the statistical fluctuation of the 
energy of a small system in canonical equilibrium, which is given by (4.31), 
equals 

.d.U = VkT 2C, (5.82) 

where C denotes the specific heat of the sample. 
More generally (Exerc.2b, 4a, 5c, 5d) the theoretical predictions for a 

finite system are statistical by nature. The first observation of a random 
phenomenon of this kind goes back to 1826; it was the motion of grains 
of pollen in suspension, observed through a microscope by Robert Brown, 
hence the name "Brownian" motion (§ 15.3.5). We shall see in § 5.7.3 how 
measurements on a small system enable us to confirm the probabilistic nature 
of thermal equilibrium. 

5.7.2 Finite Part of an Infinite System 

It is immaterial which ensemble describes an infinite system in equilibrium, 
but one may wonder what probability distribution one should attribute to 
a finite part of an infinite system. Let us as an example consider a finite 
system a weakly coupled to a thermostat b, that is, an energy bath of infinite 
dimensions. These two systems in thermal contact form an infinite system 
which, using the canonical ensemble, we can legitimately describe by the 
density operator (5.3'). We can directly eliminate the energy bath b through 
a partial trace and we then get the density operator of the system a: 

(5.83) 

This result, obtained by assuming that the system a+b was in canonical 
equilibrium, is a general one, since for the infinite system a+b all ensembles 
are equivalent; we shall check it below for a microcanonical equilibrium of 
a+b. 

A finite system, interacting weakly - or having interacted in the past -
with a thermostat is thus described by a canonical Boltzmann-Gibbs distribu
tion. Similarly, a small system a which can exchange -- or which in the past has 
exchanged - particles with the reservoir b is in grand canonical equilibrium. 
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The probability distribution of the finite system, which has thus been deter
mined theoretically, can be measured experimentally, for instance, by mea
suring statistical fluctuations. Statistical mechanics can thus be tested exper
imentally, not only through its thermodynamic predictions, but also through 
its statistical consequences for the equilibrium of small systems (§5.7.3). 

Let us give an alternative justification for the canonical Boltzmann-Gibbs dis
tribution for a finite part of an infinite system. The proof, due to Gibbs, will be 
solely based on the statistical equiprobabiZity hy£othesis of § 4.1.1. We assume thus 
that the system a+b, with Hamiltonian Ha + Hb plus a small coupling which we 
can legitimately neglect, is described by a microcanonical distribution. We want to 
prove that a is described by a canonical distribution, provided b is large. Let us 
denote the eigenstates of the Hamiltonian Ha + Hb in the Hilbert space [if 0 [~ of 
the global system a+b by Ikalb) and the corresponding eigenenergies by Ek + Ep. 
The microcanonical density operator (4.39) can be written as 

L 
(U <E~+E~<U +L1U) 

The density operator of the subsystem a in the Hilbert space [if can, according to 

(2.39), be obtained by taking the partial trace over the states of [~: 

Da = L Ika) Pk (kal, (5.84) 

k 

Pk = ~ L 1, for I such that U - Ek < EP < U - Ek + dU. (5.85) 

The probability Pk is thus proportional to the number of states of the system b 
with energies between U - Ek and U - Ek + dU, that is, to the microcanonical 
partition function W b of the system b, calculated at the energy U - Ek. Let us 
assume that the thermodynamic limit is valid for the system b; we shall return 
to this point. The quantity Sb = kIn W b is then extensive, like U, whereas Ek is 
finite. The Ek dependence of 

(5.86) 

is obtained by expanding Sb in (5.86). However, as Sb is extensive, the successive 
terms in [P Sb / au2, a3 Sb / au3 , .•• are, respectively, negligible as n-l, n- 2 , ... , 

where n is the size of the system b. Defining the temperature of b through 

and introducing a new normalization constant, 

we obtain in the limit as n ---> 00 the required result: 
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1 -(3Eka 
Pk = Za e , D~ _ 1 -(3Ha 

a - - e 
Za 

(5.87) 

The extensivity of the system b, which was necessary for the above proof, is 
ensured if we assume that b has the structure of a "Gibbs ensemble", that is, if it 
consists of N subsystems, bI, b2, ... , bN, all identical and weakly coupled, with 
N -> 00. The canonical partition function ofb is in this case (Zl)N, where Zl is the 
one of b1. Its behaviour for large N ensures that the canonical and microcanonical 
entropies are the same (§ 5.5.3), and hence, it implies the extensivity of Sh, which 
is proportional to N. 

Reinterpreting these arguments, we see that they give us, interestingly enough, 
a justification for the maximum entropy criterion that we introduced as a postulate 
in § 4.1.3. Here, we only assume the indifference principle of § 4.1.1, which looks 
completely natural. Let a be the finite system with which we want to associate a 
probability law, or, in quantum mechanics, a density operator, in order to make 
predictions from the sole knowledge that the expectation value of its energy is u. 
Let us introduce a statistical ensemble of N copies b1, b2, ... , bN of the system a; 
this Gibbs ensemble, with N -> 00, which can be either a real system, or a thought 
experiment, describes a collection of experiments performed on the system a. Each 
of the samples a, b1, b2, ... , bN is the result of the same macroscopic preparation 
which uniquely determines the expectation value u of the energy, but not its exact 
value, nor that of other variables. Let us now regard a+ b1 + ... bN as a single 
"supersystem". We identify the expectation value u for the energy of a with the 
arithmetic mean of the energies of the N + 1 samples, so that the supersystem is 
constrained to have the energy U = (N + l)u. In contrast to what happened above 
when b1 + ... + bN was a thermostat, the systems a, b1, ... , bN are in this case not 
coupled. The distribution of energy between them is no longer governed by random 
exchanges produced by the coupling, but arises solely from statistical considera
tions. According to the indifference principle we assume that all possible results of 
experiments performed on a or its copies are equiprobable. This amounts to assign
ing to the supersystem the microcanonical probability distribution characterized 
by the energy U, which is the only existing datum. As we are solely interested in 
the system a itself, we eliminate its copies by taking a partial trace over bI, ... , bN. 
According to the above proof, this implies that we must assign to a a canonical 
distribution when the only datum is the expectation value u of its energy. This 
result is the same as what we established in Chap.4 by looking for the maximum of 
the statistical entropy of a, but that principle is now by-passed. The same method, 
with technical complications due to the non-commutation of observables, can be 
employed more generally2 in the case where an arbitrary number of statistical data 
for a are given; that enables one to derive the maximum entropy "principle" from 
the indifference principle, and hence, to construct von Neumann's expression (3.17) 
for the quantum entropy starting solely from the equiprobability concept. 

2 R.Balian and N.Balazs, Ann. Phys. 179, 97 (1987). 
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5.7.3 Observation of Statistical Distributions 

Starting at the beginning of the twentieth century the combination of thermo
dynamics and kinetic theory made it possible to elucidate phenomena where 
one can observe directly the statistical nature of the microscopic physics: 
Einstein's theory of Brownian motion, which had remained ununderstood 
for decades (end of §5.7.1), Smoluchowski's theory of fluctuations, the ob
servation and explanation of "critical opalescence". This last phenomenon 
is the milky appearance of a fluid in the presence of its saturated vapour 
in the vicinity of the critical point, where the statistical fluctuations in the 
density become important and show up over distances of the order of JLm; 
the medium loses its transparency because light is scattered by irregularities 
which are all the time present (Exerc.6d). 

The theory of the fluctuations in an equilibrium system results directly 
from the use of the appropriate Boltzmann-Gibbs distribution and the elim
ination of the microscopic variables which are not observed. In this way we 
obtained in (5.54) the probability distribution p(E) for the energy E of a fi
nite system in canonical equilibrium. The Boltzmann factor e-{3E is weighted 
in that case by the number of configurations with energy E, W = eS(E)/k, 

and the concavity of S provides for p(E) a shape which shows a maximum 
near the equilibrium value E = U. A similar calculation (§ 1.2.4) provided 
the probability that the energy of one system in thermal contact with an
other has a given value; this probability is an exponential of the sum of the 
entropies of the two systems. 

More generally, let A = {Aa} be a set of macroscopic variables, including 
the energy, of which we want to know the probability distribution; the sys
tem, which is finite and maintained by a thermostat at a temperature T, is 
therefore in canonical equilibrium (§ 5.7.2). As the variables Aa are macro
scopic, the number W(A) dA of microscopic configurations for which they lie 
between Aa and Aa + dAa is large; we have written here dA for ITa dAa. 
This number defines S(A) == k In W(A), an extension of the microcanonical 
entropy to the state close to equilibrium defined by putting constraints on the 
Aa. Denoting the energy of this state A by E(A) the required probability 
equals 

p(A) dA ex e-{3E(A)+S(A)/k dA. (5.88) 

It contains the Boltzmann factor multiplied by an exponential of the en
tropy S(A), which produces the exponential of a Massieu potential of the 
type (5.59). If the finite system considered here can also exchange particles 
with an external reservoir, we would similarly obtain p(A) as the exponential 
of a Massieu potential of the type (5.62). The probability that macroscopic 
variables A deviate from their equilibrium values is thus directly expressed in 
terms of the entropy S(A) of the state A, or one of its Legendre transforms 
depending on the nature of the equilibrium studied. 
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Expression (5.88) shows that, as we saw in § 5.7.1, the statistical fluctu
ations are the larger, the smaller the system. The expectation values (Au), 
the only quantities considered in macroscopic thermodynamics, are close to 
the values for which the Massieu function S(A) - E(A)jT is a maximum. The 
fluctuations in Au around (Au) can become large if the maximum is not very 
pronounced, which is the case near a critical point; that is the reason why 
critical opalescence can be observed on a macroscopic scale. In the case of 
a large system displaying phase separation the maximum of S - E jT may 
even be reached for some range of A-values (§§ 5.7.1 and 6.4.6, Exerc.9g). For 
a finite sample, p( A) is then spread over this range, but its shape is sensitive 
to detailed effects, such as surface phenomena or a gravitational field. 

Camera with a film 
continuously moving 
vertically 

Point light source 

Fig. 5.1. Kappler's experiment 

thermostat 

Vacuum 
bell jar 

The direct observation of the probability law for a macroscopic object at equi
librium in a thermostat was the object of Kappler's experiment (1931). Using the 
displacement of a reflected light beam, he registered the rotational motion of a very 
light and small (1 to 2 mm2 ) vertical mirror, suspended by a torsion wire of quartz 
with a diameter of the order of Mm, and placed in an isothermal enclosure (Fig.5.1). 
The temperature and the pressure of the gas surrounding the mirror could be varied 
at will (Exerc.5e). 

The mirror is a system with one pair of degrees of freedom, the angle of rotation, 
e, and its conjugate momentum. One observes that the angle of rotation e does not 
remain zero with respect to its equilibrium position. The Hamiltonian describing 
the motion of the mirror itself as if it were isolated is that of a classical harmonic 
oscillator, 
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H 
2 P(J 1 2 

2I + 2CO , (5.89) 

where I is the moment of inertia of the mirror and CO the restoring couple, 
previously measured. The momentum p(J is proportional to the angular velocity 
w = dO/dt = p(J/I. Apart from these two collective variables, the micro-state of 
the mirror depends on a large number of microscopic variables which do not play 
any rOle here, since the energy and the entropy associated with them are indepen
dent of 0 and p(J. The mirror is a finite system, weakly coupled to the gas and to 
the thermostat which surrounds it. According to § 5.7.2 it must be described by 
the (classical) canonical distribution law at the temperature of the thermostat. We 
should thus check experimentally that the probability distribution for the variables 
o and w is the Gaussian law 

p(O,w}dOdw = 2~ e-(Iw2+C(J2)/2kT dOdw. (5.90) 

We used the fact that the volume element dr = dOdp(J/h of classical statistical 
mechanics is proportional to dO dw. 

At each time the ordinate of the registration curve gives the position 0 of 
the mirror and its slope gives w. One can clearly not predict the values of these 
random variables at a given time. A study of the system over a very long time 
nevertheless enables one to determine directly the probability law p( 0, w}. Successive 
measurements, in fact, are a repeated experiment and they provide samples governed 
by the Boltzmann-Gibbs distribution. Hence the relative length of time during 
which the values of 0 and w lie within the range dO dw should be equal to the 
probability p(O,w} dOdw given by (5.90). 

o 10 20 305 
Fig. 5.2. Trace of the spot in Kappler's experiment 

This was confirmed by the analysis of more than a hundred hours of registration 
(Fig.5.2) thus giving direct experimental support for the theoretical ideas which 
led to the Boltzmann-Gibbs distribution (5.90). These measurements also made it 
possible to check that the mean values of the kinetic and potential energies, 

(5.91) 

satisfy the equipartition theorem (§ 8.4.2). Finally, the proportionality constant 
measured through (5.91) is Boltzmann's constant k = R/NA, where R is the mo
lar gas constant. Kappler's experiment is thus an experimental determination of 
Avogadro's number N A and this is done with a 1 % accuracy. 
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Let us note, to end with, that this experiment illustrates an inherent 
difficulty for high accuracy measurements. Expression (5.91) shows, in fact, 
that the angle of the mirror of a galvanometer at a temperature T shows 
fluctuations of the order of JkT Ie so that it is impossible to measure very 
weak electric currents which would give rise to deflections below the size of 
the thermal fluctuations. These thermal noise effects are very general and are 
commonly found in electronics: for instance, there exists at the ends of an 
open resistance a random potential difference, due to the fluctuations in the 
electron velocities, with a zero mean but with fluctuations proportional to the 
square root of the temperature. Each signal with an amplitude smaller than 
those fluctuations is drowned in the noise background which one cannot make 
disappear completely. The reduction of thermal noise, which is indispensable 
in order to carry out high precision measurements, makes it necessary to 
use apparatus maintained at low temperatures, as this is the only means of 
decreasing the statistical fluctuations of thermal origin. 

Summary 

All thermodynamic laws and concepts - such as relative temperatures, thermal 
equilibrium, conservation and downgrading of energy, heat, work, entropy, 
absolute temperature, vanishing of entropy at the absolute zero, chemical po
tential, pressure - can be derived from the microscopic statistical approach, 
involving density operators, averages of observables, statistical entropy, and 
Boltzmann-Gibbs equilibrium ensembles. Just as the temperature governs heat 
exchanges, the chemical potentials govern particle exchanges. 

In the thermodynamic limit, which is reached for most large systems, the 
variables can be classified as intensive or extensive, the canonical ensembles 
are all equivalent, and the relative statistical fluctuations become negligible. A 
finite system placed in a thermostat is in canonical equilibrium. The statistical 
distribution of macroscopic variables is obtained by extending the entropy to 
states close to equilibrium. 

To calculate in practice the macroscopic properties of a system in thermal 
equilibrium one uses a thermodynamic potential, such as the free energy or 
the grand potential, which one evaluates through the partition function in 
the natural variables of the potential. We summarized the useful formulae in 
§ 5.6.6. 
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Exercises 

5a Elasticity of a Fibre 

The object of this exercise is to understand how the elasticity of organic 
materials such as wool or rubber is governed by an entropy mechanism. We 
shall use here a very rough model, schematising a wool fibre; Prob.2 discusses 
a slightly more realistic model, better suited to rubber. Characteristic of 
these models is that we neglect the energy. We shall see that nevertheless the 
thermodynamic concepts can still be applied. 

On a microscopic scale a wool fibre consists of long polymer chains. Each 
chain is itself formed by a sequence of identical links, which are more or less 
large protein radicals and which are connected with one another. Each of 
the links can, nevertheless, be in various quantum states, to each of which 
corresponds a certain length of the link. Transitions between these states 
change the total length of the fibre and they are the origin of the elasticity. 
We shall therefore represent a chain by the following model. It consists of N 
elements, where N is large, each of which can occur in two micro-states, a 
short state of length l - a and a long state of length l + a. To simplify we 
assume that the energies of the two states are the same and that the energy 
associated with the hooking up of the links is independent of their states. 
Choosing a suitable energy origin one can thus assume that the total energy 
of the chain equals zero in each of the 2N possible micro-states. The chain 
is placed in a thermostat at temperature T. Its total length L is determined 
by applying a force j at its end. 

1 
I-a *-8 L 

o 
I+a r=P-

t f 
Fig. 5.3. Model of a wool fibre 

1. Write down the equation of state of the chain, that is, the relation 
between j, L, and T, and evaluate its entropy. To do this one may consider 
that the total length is given as a constraint and introduce a Lagragian 
multiplier, the physical meaning of which must be found, or one may start 
from the entropy as function of the length of the chain, or one may write down 
the canonical equilibrium for the total system, that is, the fibre together with 
the weight providing the tension. 
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2. Study the behaviour of the length as function of the tension at the 
given temperature. How does the elasticity modulus vary with temperature? 

3. What happens if one heats the fibre for a given tension? What, if 
one releases the tension adiabatically? These results can be observed, for 
instance, by using a hair-drier to heat a strong elastic band under tension 
by a weight. The shortening produced in this way is due to the origin of the 
elasticity of the fibre: for a metallic wire the term dominating in f = of/En 
is the energy; for a fibre, as well as for rubber consisting of an entanglement 
of long chains without intrinsic elasticity, the dominant term is the entropy 
in F = U -TS, and its contribution has the opposite sign to U. In our model 
the entropy term is even the only one. 

Entropic elasticity was first observed for rubber by Gough (1805) and 
studied quantitatively by Joule (1859). 

Solution: 

la. Constraint on L method (see ChapA). Let li = l+aO"i, with O"i = ±l, be the 
random length of the ith link. A macro-state is characterized by the probability 
D( 0"1, ••• ,0" N ). In order to take the constraint 

on the average length of the chain into account we introduce a Lagrangian multiplier 
cpo Thermal equilibrium is found by looking for the maximum of S(D) under this 
constraint. Chapter 4 shows that the result is the Boltzmann-Gibbs distribution 

D ~ ~ "'+~?+=;)l 
Z = L exp [cp L (l + aO"i)] = (2 cosh cpa)N ecpNI, 

{<Til i 

and that the relation between Land cp is 

We work here in an isobaric-isothermal kind of ensemble (§§ 4.3.3 and 5.6.6), with a 
Hamiltonian which vanishes identically so that D is independent of the (3 multiplier. 
The product -pn is replaced by fl, and the cp multiplier plays the rOle of -P/kT. 

In order to interpret these results macroscopically we introduce the thermody
namic potential, identified with the free enthalpy of §§ 5.6.2 and 5.6.6, 

G(T, f) = - kT In Z = - f Nt - NkT In (2 cosh :~) , 

as function of the variable f = kTcp. This change in variable is similar to the 
introduction of the chemical potential J-! = kTex as variable instead of ex in the 
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grand potential A; it is also exhibited in (5.57) which, in terms of the forces X a , 

expresses the variables which are the conjugates of the displacements d~a, here dl, 
with respect to the entropy. We can thus identify G and dG with 

G = U-TS-fL, dG = -SdT - Ldf, 

and f can be interpreted as the tension. From this we get the equation of state 

aG 
L(T, f) = - Of Nl + Na tanh :~ 

and the entropy 

S = - - = N k In 2 cosh - - -- tanh -. aG (af ) N af af 
aT kT T kT 

One can check that the internal energy U = G + T S + f L vanishes. 
lb. Microcanonical ensemble method (see Chap.l). The length of the chain can 

have the values 

L = NI+2na-Na, o :s: n :s: N. 

The equilibrium macro-state corresponding to the length L of the fibre is char
acterized by stating that all micro-states corresponding to a length L, within a 
margin 1.1L such that 2a ~ 1.1L ~ 2N a, are equiprobable. The - statistical or 
thermodynamic - entropy is 

S(L) = k In W = k 1.1L In N! 
2a n!(N - n)! 

kN [_ (! + L - Nl) In (! + L - Nl) 
2 2Na 2 2Na 

_ (! _ L - Nl) In (! _ L - Nl)] 
2 2Na 2 2Na ' 

where we have used Stirling's formula. The length L varies from Nl- Nato Nl+ N a 
and the variation of S is given by the curve in § 1.2.3 with a maximum of kN In 2 
at L = Nl. 

The use of the standard thermodynamic formulre, such as T = as/au, is made 
here difficult by the fact that the energy U, on which S normally depends, only 
takes on a single value U = O. Nevertheless, like the volume of a fluid, the length 
is here imposed from outside by the constraint f, and can change in reversible 
transformations when f and T change. The chain in such a transformation takes 
up an amount of heat T dS and an amount of work f dL; however, the internal 
energy remains always equal to zero so that we find T dS + f dL = 0, that is, 

f = -T dS = kT In Na - Nl + L. 
dL 2a N a + Nl - L 

This expression is equivalent to the equation of state L(T, f) that we found earlier. 
Another way to find the meaning of f consists in using the free energy F = 

U - T S which here reduces to 

F(T, L) = -TS(L), 
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and has the differential 

dP = -SdT + fdL. 

The relation f = OP /iJL again gives f = - T dS / dL. 
By expressing S as a function of f we can check that the results are the same 

as under a). 
lc. Canonical ensemble method (see Exerc.4c). We change the definition of the 

system by including in it not only the fibre, but also the weight f suspended from 
it. The energy of each microstate of this new system is now 

We write down the expression for the canonical equilibrium of this system: 

which gives the same results as under a) when we identify cp with f3f. The thermo
dynamic potential is interpreted here as a free energy: 

P'(T,f) = U' - TS, 

where U' is the internal energy of the fibre plus weight system, which equals - f L. 
Here f appears as one of the ~o: variables entering the Hamiltonian, whereas in 
G we had U = 0 while f /kT was the Lagrangian multiplier associated with the 
length L. Notwithstanding the differences in the definition of the systems and in 
the interpretation, we have P'(T, I) = G(T, I). We can also compare P' with the 
free energy of method b): P' = P - f L, where the last term is the free energy of 
the weight in the gravitational field. 

We notice the formal analogy with paramagnetism (Chap.l and Exerc.4c). The 
lengths l ± a correspond to the two spin values, f to B, L to M, and the energy of 
the fibre plus weight system has the same form as the energy of the N magnetic 
moments placed in an external field B. 

Note. The assignment of an interaction energy of the kind - f L to one or other 
part of a composite system is arbitrary. It is useful in the methods a) and b) to 
assign the interaction - f L to the exterior of the fibre, which allows exchanges 
of free energy between the fibre and the outside; the free energy of the fibre is 
in that case of a pure entropy nature. In method c) we include the energy - f L 
in the system, as in § 5.2.4; if f remains constant, there is no exchange of work 
between the system and the exterior, and conservation of energy can in a reversible 
transformation be expressed as dU = - f dL = 8Q = T dS. 

We also find this kind of situation, for instance, in magnetism (see § 6.6.5). If 
the system studied is a magnetic moment M, placed in a magnetic field regarded, 

as in Chap.I, to be external, it receives an amount of work Wl = - JOB M dB 
during a change in B, which also changes M; the interaction energy -MB between 
the matter and the field is counted as part of the system. If, on the other hand, 

we include the field itself in the system, the work received W2 = JoM B dM = 



Exercises 235 

WI + BM includes the extra energy given up by the windings to produce the 
field B. 

2. If the tension is not too large, the elongation is proportional to it: Hooke '8 

law. In this linear regime we have 

f kT 
L - Nl "'" Na2 ' 

and the elasticity modulus is proportional to the temperature, a property similar 
to Curie's law. The rigidity increases with the temperature. 

L ! 

N (/ + a) 

increasing T 
Nl 

f 
Fig. 5.4. Elongation of a fibre as function of the applied force 

3. The fibre shortens from its maximum length N(l + a) at T = 0 to Nl as 
T ----> 00, whatever the given value of f, except for f = 0 when the dilatation 
coefficient vanishes. This behaviour is the opposite of that of a metallic wire, which 
lengthens if one heats it under constant tension. 

During an adiabatic release, when 

as as 
dS = aT dT + of df = 0, 

the fibre cools down according to 

dT df 
T f' 

The length remains constant since the release of the tension (which for fixed T 
makes the fibre shorten itself) is compensated by a cooling (which by itself would 
make the fibre lengthen itself). The cooling through adiabatic release resembles 
adiabatic demagnetization (§ 1.4.4). In that case also, if the paramagnetic salt were 
not coupled to the outside, an adiabatic lifting of the field B would cool the sample 
without changing M. 

Thanks to the behaviour of its isotherms and adiabats in the L, f plane, rub
ber can evolve along a Carnot cycle between a cold and a hot source, like water 
vapour in a steam engine. The design, practical realization, and theoretical and 
experimental study of the yield of small thermal engines working on that principle 
is of considerable pedagogical interest. 
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5b Saddle-point or Steepest Descent Method 

In statistical mechanics one often must evaluate integrals of the kind 
J eAf(x) dx in the limit as A --. 00. The symbol x may represent a real or a 
complex variable, or several variables, or even a discrete variable over which 
one must sum. One also meets with integrals ofthe form J eAf(x) g(x) dx (see 
§§ 1.2.4, 1.2.6, 5.5.3, Exerc.9b). The integration limits may be either finite or 
infinite. One obtains the final result in all cases by noting that the exponen
tial greatly exaggerates the variations of f(x). Therefore, if the maximum of 
f(x) is reached for x = xo, a point either on the integration path or at one 
of its limits, the weight eAf(x) is extremely strongly peaked around xo, and 
the integral is completely dominated by the vicinity of Xo. To lowest order 
one thus finds 

In J eAf(x) dx '" Af(xo), f(xo) = maxf(x), (5.92) 

J eAf(x) g(x) dx 
J eAf(x) dx '" g(xo). (5.93) 

The proof of these results as well as the calculation of correction terms are 
based on expanding f(x) and g(x) around Xo. If, for instance, f(x) is a real 
function of a real variable, and if Xo lies within the integration limits, with 
f'(xo) = 0, f"(xo) < 0, we have 

J eAf(x) dx ~ eAf(xo) J eA!"(xo)(x-xo)2/2 

[ "'( )(x-xo)3 ] x 1 + Af Xo 3! + . .. dx 

'" eAf(xo) [ -271" ] 1/2 

Af"(xo) 

If Xo is the lower integration limit, with f'(xo) < 0, we find 

J eAf(x) dx ~ eAf(xo) J eAfl(xo)(x-xo) 

[ 
II ( ) (x - xo) 2 ] x 1 + Af Xo 2 + . .. dx 

'" eAf(xol [-A!'(xo)r 1 . 

(5.94) 

(5.95) 

In the case of a function f(x) of a complex variable, the dominant point Xo is 
the one where Ref(x) is a maximum. If this point does not lie at an endpoint 
of the integration contour, it satisfies f'(xo) = ° and we are dealing with a 
saddle-point on the map which represents the relief of the surface Ref(x) 
in the complex x plane. We must thus first deform the contour such that it 
passes through this saddle-point, following the path of the steepest descent 
- hence the name of this method. One proceeds in the same way, if x is real 
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and f purely imaginary, in which case the condition f'(xo) = 0 means that 
Xo is the point where the phase of the integrand is stationary; this provides 
the so-called stationary phase method. 

1. Prove the Stirling formula (see the list of formulae at the end of this 
volume). 

2.1£ S(N, P) denotes the micro canonical entropy of a system of oscillators, 
which was calculated in Exerc.3e, explain why it is the same as the canonical 
entropy of Exerc.4f in the limit as N -t 00, PIN finite. 

3. Consider a system of N spins 1 in a magnetic field. As in Chap.I, its 
energy levels are given by 

N 

E = cP = c L (Ti, IPI < N, 
i=l 

where now each (Ti can take on the values +1, -1,0, and P is an integer. 
Evaluate the multiplicity W(N, P) of the levels in the limit N » 1, N -IPI » 
1, starting from the canonical partition function found in Exerc.Ib. 

4. Adapt the arguments of § 5.5.3 to prove the equivalence of the canonical 
and the microcanonical ensembles for extensive systems, starting from either 
the one or the other. Evaluate the difference between the entropies. 

Hints: 

2. Using the extensivity of S(N, P) one finds from 

ZN = L exp [~S(N,P) - (p+ ~)13c] 
p 

the asymptotic form 

As a result, the canonical entropy for that value of P is equal to 

S = k (1- 13 : 13 ) InZN '" S(N,P). 

3. Starting from 

ZN = (l+e.Be +e-.Be)N 

we find 

w = 1 
211"i f dz P ( l)N -;-z l+z+; 

The contour encircling the origin can be deformed in such a way that it passes 
through the two saddle-points, on the real axis, of which only the highest, 
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zo 1 [J4N2 _ 3p2 _ p] 
2(N + P) 

(when P 2: 0) contributes. After some calculations we find from Eq.(5.94) 

5c Electric Shot Noise 

An electric current always shows statistical fluctuations because of the dis
crete nature of the carriers. For instance, a heated cathode in a radio valve 
emits electrons at random: the thermionic effect. The result is a mean current 
(1) = ev, where v is the average number of electrons emitted per unit time. 
Calculate the statistical fluctuation 111 in the thermionic current during an 
interval t. Evaluate that fluctuation for a current of 1 JiA and a measuring 
time of 1 s. 

Answer. The number of electrons n emitted during the time t is a random variable 
like the variable n in Exerc.2b in the limit as n --+ 00; here t is similar to v, v to 
N/fl. Its fluctuation is thus .1n2 = (n) = vt. The probability Pn is the Poisson 
law, 

(vt)n -vi 
Pn = ---;:;:y- e . 

Numerical Application: .11 = OAx 10-12 A. The resulting fluctuation .1V of 0.1 JlV 
at the ends of a resistance of 1 Mf2 can be detected by a sensitive amplifier. 

5d Energy Fluctuations and Heat Capacity 

1. The energy of a system weakly coupled to a thermostat with which it 
exchanges heat is a random quantity. Express its statistical fluctuations as 
a function of the heat capacity. This relation is yet another example of the 
relation between fluctuations and response (Exerc.4a). Numerical example: 
a water drop of 1 Jim diameter. 

2. Consider a waterdrop with a well defined energy U in micro canonical 
thermal equilibrium. The energy El of a part A (in mass) of the drop is a 
random variable which can fluctuate around its mean value U1 = AU. What 
is the number W of levels of the drop such that the part A has an energy 
situated within a small range {j around E1? What is the probability law for 
the relative change x = (E1 - Ud/U1 in E1? 
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Hints: 

1. We have 

As the specific heat of water is 4.18 J K- 1 g-1, we have C = 2.2 X 10-12 J K-l, 
and hence flU = 1.6 X 10-15 J, which is comparable with the change of 2.2 x 10-15 
in U produced by a heating up by 1 mK. 

2. As in §§ 1.2.4 and 5.7.3 we find 

which reduces to a Gaussian with variance 

when we expand around x = o. 

5e Kappler's Experiment 

1. In Kappler's experiment (§ 5.7.3) one does not know the equilibrium 
position of the pendulum, as it moves without ceasing. How can one measure 
((}2)? 

2. Numerical application: evaluate I for an aluminium mirror (density 
2.7 x 103 kg m-3) of thickness 0.1 mm and with a surface area of 2 mm2 • 

To evaluate C one measures the period T of the oscillations of the pendulum. 
What is the order of the displacement of the spot at 1 m for T = 300 K and 
T = 60 s? 

3. What happens, if one evacuates the air from the bell jar? 

Answers: 

1. It is sufficient to measure the angle (h by taking an arbitrary origin for 
directions, since ((}2) = ((}~) _ ((}1)2. 

2. I ~ 10 -13 kg m 2 . As C = 47r2 I/ 7 2 , we find for the displacement of the spot 
about 2 mm. 

3. The probability law for (} is independent of the gas pressure, as long as the 
collisions between the gas and the mirror occur sufficiently often. If the gas is too 
rarefied, however, the mirror is no longer at thermal equilibrium at the temperature 
T of the surrounding gas. Neverthelesss, it might still be brought to equilibrium 
through the suspension wire which transmits thermally excited mechanical vibra
tions, and also through the equilibrium electromagnetic radiation under the bell 
jar (Chap.13). This radiation acts upon the mirror through the random radiation 
pressure. However, in both cases it takes a long time to establish equilibrium, as 
the couplings are extremely weak, and measurements over shorter periods are not 
significant. 



6. On the Proper Use 
of Equilibrium Thermodynamics 

"Abandonnant les theories ambitieuses d'il y a quarante ans, 
encombrees d'hypotheses moIeculaires, nous cherchons au
jourd'hui it elever sur la Thermodynamique seule l'edifice 
tout entier de la physique mathematique. Les deux princi
ples de Meyer et de Clausius lui assureront-ils des fondations 
assez solides pour qu'il dure quelque temps? Personne n'en 
doute; mais d'on nous vient cette confiance?" 

H. Poincare, La Science et l'Hypothese, 1906 

"Je ne sais ce que c'est des principes, sinon des regles qu'on 
prescrit aux autres pour soL" 

D. Diderot, Jacques le Fataliste 

"Quelque loi qu'il vous dicte, il faut vous y soumettre." 

Racine, Phedre 

"Voulez-vous de bonnes lois; brUlez les votres, et faites-en de 
nouvelles." 

Voltaire, Dictionnaire Philosophique 

Like the other two traditional branches of macroscopic physics, mechan
ics and electromagnetism, thermodynamics was constructed progressively 
by induction. To start with, experimental observations were synthesized by 
laws, such as Newton's, Coulomb's or Gay-Lussac's laws; this process, which 
started very early for mechanics (Archimedes), accelerated from the seven
teenth to the nineteenth century for the whole of macroscopic physics. During 
the nineteenth century one realized through a new induction that these laws 
could be derived from a few unifying principles which were more abstract, but 
very general: Lagrangian or Hamiltonian analytical mechanics, the Maxwell 
equations, and the Laws of thermodynamics. Finally, the first third of the 
twentieth century has brought a new understanding and unification by bas
ing all these principles upon the new, microscopic, quantum and statistical 
physics. Apart from its philosophical interest, each stage ofthe unification has 
extended the possibilities for predictions by allowing one to proceed hence
forth by deduction. From fundamental principles one derives new laws, on 
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which one can confidently build even before experimental checks; in particu
lar we have seen and we shall see how statistical physics allows us to calculate 
equations of state which thermodynamics introduces as empirical data. One 
can thus consider, at the present level of knowledge, that thermodynamics is 
incomplete: statistical mechanics must intercede when one tries either to get 
a better understanding of the significance of thermodynamic quantities, or 
to calculate them for some substance or other starting from its microscopic 
structure. The preceding chapters have shown us in a general way how to 
realize this programme; the following chapters will present us with many 
applications to simple substances. 

Nevertheless, for many practical or technical applications where one is 
dealing with more complicated objects, it is often more efficient not to start 
from the most fundamental level possible and not to try and calculate every
thing. Macroscopic thermodynamics then provides a framework which, while 
rigorous and general, is economic, and which suffices to establish many re
lations and inequalities between different quantities. It is therefore essential, 
especially for the engineer, to be able to apply thermodynamics autonomously 
by appealing only to its own foundations. In Chap.5 we have reminded our
selves of the traditional formulation of these foundations, which we inherited 
from the nineteenth century. Nevertheless there exists a more modern and 
more synthetic presentation, due to Callen, which enables us better to master 
the subject and which has the advantage of being sufficiently close to statis
tical physics to benefit from contributions from it. To this aim we shall draw 
inspiration from Callen's book, 1 and again discuss the basic principles in the 
unified form that he has given where the entropy plays the dominant role 
(§§ 6.1 and 6.2). We shall then indicate the powerful techniques used when 
applying thermodynamics, especially those dealing with changes of variables 
(§ 6.3) and with general properties derived from the Laws of thermodynamics 
(§§ 6.4 and 6.5). Finally we discuss various examples (§ 6.6). 

At the price of sometimes repeating ourselves, we have written the present 
chapter in such a way that it can be read and used independently of the 
remainder of the book. On the other hand, the contents of Chaps.2 to 5 
suffice for an understanding of the applications of statistical physics which 
we shall consider, starting from Chap.7. 

Below we shall restrict ourselves to macroscopic, stable or metastable, 
equilibrium states, reserving until Chap.14 the study of the temporal devel
opment of macroscopic processes. The term "thermodynamics" is therefore 
twofold inadequate: the Laws deal not with "dynamics", but with "statics". 
Moreover, thermodynamics is not solely a theory of "thermal" phenomena: 
it covers all exchanges, of energy and of heat, of course, but also of parti
cles, of momentum and of any other conserved quantities. We shall often use 
in this chapter the term "thermostatics" in order to contrast it to the true 
"thermodynamics" of Chap.14. 

1 H.B.Callen, Thermodynamics, Wiley, New York, 1960. 
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6.1 Return to the Foundations of Thermostatics 

6.1.1 The Object of Thermodynamics 

The complete characterization of a physical system would involve the knowl
edge of a huge number of microscopic data. Macroscopic physics, on the 
other hand, restricts itself to the study of a reduced number of collective 
variables: shapes, densities, mean positions or velocities for mechanics - and 
the disciplines connected with it, such as acoustics, fluid dynamics, elastic
ity, or the strength of materials - charges, currents, or electric and magnetic 
polarizations for electromagnetism, molecular concentrations for chemistry. 

Nevertheless, there persist at the macroscopic level some consequences 
of the hidden microscopic degrees of freedom. For instance, energy can be 
transferred to them from the collective degrees of freedom in the form of 
heat. Thermodynamics enables us, without explicitly introducing these mi
croscopic coordinates on which, in principle, the mechanical, electromagnetic, 
or chemical collective coordinates depend, to take into account their residual 
macroscopic effects, such as heat or electric resistivity. 

Thermostatics deals with thermal, and also osmotic, electric, or chem
ical, equilibrium states which remain unchanged with time and which are 
independent of the history of the system. These equilibrium states often are 
metastable, since the time for the establishing of absolute equilibrium, where 
all physical, chemical, or nuclear reactions have come to an end, can be huge 
(see the end of § 4.1.5). On the other hand, statistical mechanics and ther
modynamics of irreversible non-equilibrium processes enable one to explain 
a large number of phenomena, but they do not constitute a discipline which 
is as coherent or systematic as the theory of thermostatic equilibria, to which 
we shall restrict ourselves in the present chapter. We shall embark upon the 
study of the dynamics near equilibrium in Chap.14. 

6.1.2 The Maximum Entropy Principle 

Instead of basing thermodynamics on the traditional principles reviewed in 
Chap.5, we start from Callen's formulation which is directly based upon a 
postulate about the existence and the maximum property of the entropy. We 
shall first state this principle in a general and abstract form, and then clarify 
its meaning through comments. Later on we shall see that it encompasses 
the standard Laws. 
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The equilibrium states of a system are characterized on the macro
scopic scale by a set of extensive variables Ai and by a function of these 
variables, the entropy, S, which is continuously differentiable, positive, 
and additive: the entropy of a composite system is the sum of those 
of its parts, the entropy of a homogeneous substance is extensive. In 
an isolated composite system the lifting of some constraints may allow 
exchanges between subsystems, which are reflected in changes in the 
Ai; the domain A that is allowed for the Ai variables is restricted by 
the remaining constraints and by the conservation laws. In the final 
equilibrium state that the system reaches, the value of the Ai vari
ables is determined by looking for the maximum of the entropy in the 
domain A. 

Amongst the extensive Ai variables we have the internal energy; the state 
of a fluid is further characterized by its volume n and its number N of 
molecules. Mixtures and chemical equilibria may involve several numbers of 
the various kinds of particles. When the system consists of several homoge
neous fragments, the Ai comprise the variables, such as energies, volumes, 
numbers of moles, ... , relating to each of the fragments, and the index i 
denotes both the nature of the variable and the subsystem. It is also possi
ble that the properties of the system at equilibrium, such as an electrically 
charged substance or a solid under constraints, vary continuously from point 
to point, on a scale which is large compared to microscopic distances. The 
Ai variables then refer to each volume element, and the index i includes the 
point coordinates. These variables may also denote in electromagnetism the 
charge or the magnetic or electric dipole moment of each volume element, 
or for an elastic solid the product of the 6 components of the deformation 
tensor with the volume elements. Note that the extensive Ai variables can 
include, depending on the circumstances, either the eo or the Xo variables 
introduced in the definition (5.11) of work; this will be discussed in §§ 6.2.1 
and 6.6.5. 

Most of the Ai variables are conservative, their change being compensated 
by an opposite change of the corresponding variable for another part of the 
system. This is the case for the internal energy, for the numbers of molecules 
of each type when there are no chemical reactions, or for the numbers of moles 
of atoms, ions, or radicals in the case of chemical equilibrium. The volume 
can also be considered to be conservative if the system consists of two parts 
separated by a moving piston, the volumes of which occur amongst the Ai. 
The conservation laws and in particular the First Law appear indirectly in 
the above principle, through the definition of the domain A. 

The present formulation is directly adapted to the determination of the 
macroscopic equilibrium state of a composite system with parts which are 
more or less partially in communication with one another, once we know 
the expressions for the entropies of these parts: the partition of the energy 
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between systems in thermal contact, of molecules in osmotic equilbrium, of 
the charge density in electrostatic equilibrium, of constituent atoms between 
the various molecules which they can form in chemical equilibrium, or even 
the position of a moving piston separating two fluids. We shall see that the 
generality of exchange situations makes it actually possible for the maximum 
entropy principle to encompass the whole of thermostatics. 

In particular, even though we are dealing with equilibrium states, it also 
applies to quasi-static processes which are sufficiently slow that the system at 
each moment can be considered to consist of parts all nearly in equilibrium; 
in this case it implies that the total entropy is a non-decreasing function of 
time. If, however, we are dealing with an irreversible process, such as a Joule 
expansion, a sudden mixing, or a chemical reaction, the principle refers only 
to the initial and the final time; it states that the total entropy of the system 
must increase from an initial equilibrium state to a final equilibrium state, 
even though the intermediate states are arbitrary. For a non-isolated system, 
any decrease in the entropy must be accompanied by an increase, at least as 
great, in the entropy of the systems to which it is coupled. 

We may under certain circumstances partly abandon the additivity con
dition on the entropy. For instance, if we want to use a semi-macroscopic 
theory to determine the density variation at a liquid-vapour interface near 
the critical point, we divide space into volume elements where the fluid is 
practically uniform. The Ai variables are the energy, the number of particles, 
and the volume of each element. The additive part of the entropy is the sum 
of the entropies of these volume elements; however, experiments show that 
one must include an extra contribution which is not there for a uniform fluid 
and which tends to restore uniformity. A simple empirical model, valid for 
slow spatial variations in the density n(r), consists in taking for that con
tribution the expression -K J (V'n)2 d3r. Looking for the maximum of the 
total entropy, under the constraint that the density changes in space from 
that of the liquid to that of the vapour, gives us the structure of the inter
face. The latter must have a minimum area to reduce the effects of the extra 
entropy term. In this way we understand the origin of capillary forces which 
are proportional to K (Exerc.6c and 6d). 

Similarly, in electromagnetism or gravitational theory (Exerc.6e), the en
ergy is no longer extensive because of the existence of long-range potentials, 
but one can easily extend the principle of maximum entropy to such cases. 

The additivity of the entropy is somewhat subtle in the case of chemical 
equilibria. In the gaseous phase, it is useful to analyze the system as consisting 
of subsystems, not separated in space, consisting of the molecules of the 
various species. For instance, for a H, H2 mixture, the state variables Ai 
are the volume il, the energy Ul and number Nl of unbound H atoms, and 
the energy U2 and number N2 of H2 molecules. The H2 =:; 2H equilibrium 
is determined by looking for the maximum of the total entropy under the 
constraints that Ul + U2 and Nl + 2N2 are fixed. This entropy is, indeed, 
the sum of the entropies Sl(UI, il, Nl ) and S2(U2, il, N2) of each chemical 



246 6. On the Proper Use of Equilibrium Thermodynamics 

species, calculated as if the molecules occupied the whole of the volume fl. 
However, if one assigns to each species a volume fll or fl2' proportional to the 
number of particles, the entropy contains besides the sum Sl(Ul , fll' Nd + 
S2(U2, fl2' N 2) a contribution which is the mixing entropy (§ 8.2). 

We have already stressed (§§ 4.1.4 and 4.1.5) the frequent occurrence of 
quasi-equilibrium situations where there is not enough time to establish a 
true equilibrium. Such situations can be treated in the general framework 
defined above. Amongst the extensive Ai variables we must include certain 
quantities which enable us to distinguish a metastable state from a stable 
state. For instance, a metastable supersaturated vapour and the stable liquid 
phase are distinguished by the volume they occupy. It is sufficient in order 
to determine a final metastable state to constrain these quantities in such a 
way that only the metastable region is accessible; the quasi-equilibrium that 
we are looking for is provided by the maximum of the entropy in the domain 
A thus demarcated. The true equilibrium, on the other hand, corresponds to 
the absolute maximum. 

These remarks show that, notwithstanding its power and its generality, 
the principle of thermostatics cannot be used without precautions. The choice 
of the Ai variables which characterize the macroscopic state is essential, but 
not always obvious. For instance, when there is no applied magnetic field, 
one is tempted to forget to include the magnetic moment amongst the Ai; 
this omission, in general without any consequences, is nevertheless unfortu
nate for a ferromagnetic substance below the Curie temperature. Similarly, 
when we want to describe certain plastic substances or materials which have 
shape memory, it may be necessary to introduce "hidden variables", the 
macroscopic meaning of which is not evident. The choice of such variables 
can sometimes be guided by statistical physics; by default we must resort to 
empiricism. We have just seen that a certain amount of empiricism was also 
necessary to introduce adequate constraints in the case of metastability. 

6.1.3 Connection with Statistical Physics 

The formal analogy between the maximum entropy principle of thermostat
ics and the maximum statistical entropy principle (§§4.1.3 and 5.7.2), on 
which the microscopic study of equilibrium systems is based, suggests that 
identifying these two entropies would enable us to have the former princi
ple based upon the latter one. Things are, however, not quite that simple, 
as the statistical entropy SeD) is related to the microscopic description of 
the macro-state of the system by means of the density operator, whereas 
the entropy S(A;) of thermostatics depends solely on the macroscopic Ai 
variables. 

Before the various parts of the system are put into contact, the Ai can 
take on arbitrary values. Thermostatics determines their final value in the 
equilibrium state reached after interaction. We also know that the latter is 
on the microscopic scale described by the density operator which makes the 
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statistical entropy a maximum under the constraints defining the domain A. 
We are thus led to justify the maximum entropy principle of thermostatics 
by proceeding in two stages, just as we did in § 5.1.2 where the Ai variables 
were the energies Ua and Ub of the two subsystems. 

In the first stage we find out what is the least biased density operator 
D A, describing the situation where all Ai variables are frozen into a given 
arbitrary value. Assuming, for instance, that these constraints all relate to 
the expectation values of the observables Ai, the procedures of § 4.2.1 show 
that DAi has the exponential form (4.6), that is, 

(6.1) 

where the Lagrangian multipliers Ai are adjusted in such a way that 

8ln Z _ A 
8Ai - - i· (6.2) 

We are then led to identify the entropy S(Ai) of thermostatics, which is a 
function of the Ai variables, with the statistical entropy of the distribution 
(6.1), which by means of (4.7) and (6.2) can be expressed in terms ofthe Ai 
parameters and hence of the Ai parameters. The entropy of thermostatics is 
thus the maximum of the statistical microscopic entropy S(D) over the set 
of distributions D compatible with the constraints (Ai) = Ai: 

1 S(A,) '" if S(D), for 'fr D 1, ~ A, I. (6.3) 

More generally, if some data Ai, such as the volumes of the subsystems for 
a canonical ensemble, are given exactly and not as expectation values, they 
enter directly into D, either through the definition of the Hilbert space or 
through the Hamiltonian, and there is no need to introduce the conjugate 
Ai variables (§ 4.1.2). The relation (6.3) still holds, some constraints on the 
Ai variables now being implemented directly and not through the equations 
Tr DAi = Ai. As in the case of the canonical equilibrium ensembles (§ 5.5.3), 
here also the specific procedure followed is immaterial: the extensivity of 
each subsystem implies that the same function S(Ai) is obtained, whether 
microscopically the Ai are treated as expectation values or as exact data. 

The interpretation of S(Ai) in the framework of information theory is 
clear. We are dealing with the uncertainty in the macro-state of the system 
when the Ai are the only quantities which are known. In fact, any density op
erator D different from (6.1) and satisfying the constraints on the Ai yields 
S(D) < S(Ai); being biased it contains not only the relevant information 
on the Ai, but also a certain amount, S(Ai) - S(D), of irrelevant informa
tion about other quantities (§ 4.1.3). The entropy S(Ai) of thermostatics can 
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thus be interpreted as the relevant statistical entropy relating to only the Ai 
variables. 

The second stage of statistical physics, looking for the maximum maxi
morum of S, when some of the constraints on the Ai have been lifted, then 
coincides with the maximum entropy principle of thermostatics. The latter 
is therefore just a restriction on the macroscopic variables of the maximum 
statistical entropy principle of § 4.1.3, which itself is a consequence of the 
indifference principle (§ 5.7.2). 

Thus, even if a substance is too complex for us to be able to evalu
ate (6.3) from its microscopic structure, statistical physics allows us to base 
the maximum entropy postulate on information theory. When one relies on 
experiments to find S(A i ), one determines, actually, the degree of disorder 
prevailing at the microscopic scale for given values of the macroscopic vari
ables Ai' The additivity and the extensivity of the entropy, postulated at the 
macroscopic scale, are related to the sub-additivity of the statistical entropy 
(§ 3.2.2) and appear as approximations, justified if the thermodynamic limit 
exists: the difference between the global entropy and the sum of those of the 
parts is, in general, a negligible surface effect. The interface and capillarity 
phenomena evoked in § 6.1.2 provide a notable exception. 

6.1.4 Entropy and Disorder 

In the statement of § 6.1.2 the entropy appeared as a quantity which is clearly 
fundamental, but abstract and rather mysterious. Its significance as a mea
sure of the microscopic disorder, or, what amounts to the same, ofthe lack of 
information, enables us to understand its maximum property. The unavoid
able increase in entropy reflects simply the increase in disorder which takes 
place when certain constraints preventing exchanges between subsystems are 
lifted. The amount by which it increases itself measures how much infor
mation has been lost at the microscopic scale when the Ai variables change 
spontaneously from the value to which they were constrained initially to their 
final value which allows a larger microscopic disorder. 

It may be illuminating to analyse the thermodynamic processes in this 
light. For instance, the existence of a latent heat of melting, L = T £lS, 
means that the crystallization of a substance increases its order suddenly, by 
an amount measured by £lS. In a refrigerator the lowering ofthe temperature 
is accompanied by an increase in order; we must pay a price for this, namely, 
we must create elsewhere a larger disorder, for instance, through the chemical 
reaction of burning fuel in an electrical plant which feeds the grid. Similarly, 
living organisms are more ordered than the inert matter from which they 
emerge; they can develop only thanks to subtle physico-chemical mechanisms 
which increase the disorder in their surroundings. 

The role of the hot source in a thermal engine is clear, namely, it provides 
energy. However, in cooling off, this source becomes more ordered, which is 
impossible without creating disorder elsewhere. The cold source plays the 
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indispensable role of a source of order. The total disorder increases when the 
temperatures of the two sources approach one another, and heat thus tends 
to flow from one to the other. We take advantage of this spontaneous flux to 
deflect part of it for our purposes in the form of work in the engine (§ 6.6.1). 

These examples involve the energy, but conceptually the latter is not an 
essential ingredient: one should not restrict dissipation, that is, irreversible 
increase in entropy, to the transformation of work into heat. For instance, a 
mixture of coffee and milk, at the same temperature, will entail an increase 
in entropy without involving any thermal effect. 

It took a century before it was recognized that entropy and lack of infor
mation or disorder were equivalent (§ 3.4.5). The fact that this equivalence 
is far from being intuitive occurs because Avogadro's number, and hence 
Boltzmann's constant, are large in SI units. To be sure, one can use informa
tion to make the entropy decrease, as in the Maxwell demon paradox. One 
must, however, at the same time, in a closed cycle, increase the entropy of 
an apparatus in order to gain that information. Nevertheless, the thermody
namic entropy of a macroscopic body is always equivalent to a huge amount 
of information, since the natural thermodynamic unit of 1 J K-1 is equiva
lent to 1.05 x 1023 bits. Hence such transformations cannot easily be studied 
experimentally. 

6.2 Thermodynamic Identities 

Important identities between various physical quantities can be derived from 
the very existence of a fundamental function S(Ai}. 

6.2.1 Intensive Quantities 

Given that we are going to reduce the problems of thermostatics to the 
quest, for an isolated system, of the maximum of S in a domain A for the Ai 
variables, it is natural to introduce and to interpret the partial derivatives of 
S with respect to these variables. Separating the total energy U = Ao from 
the other Ai variables, we write 

(6.4) 

(6.5) 

We assume here that only one of the Ai variables is an energy; if not, one 
introduces several temperatures. 

The partial derivatives "/i, like T, are homogeneous functions of degree 
o of the extensive Ai variables: they are the intensive variables which are 
conjugate to the Ai with respect to the entropy. Their relations with the Ai, 
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1 
T 

as 
au' (6.6) 

define the equations of state of the system. These equations of state are not in
dependent, since they should be derivable from a single function S (U, { Ai} ); 
inversely, giving one of them is not sufficient to characterize the system, as 
integrating it introduces arbitrary functions. 

Identifying (6.4) with (6.3) enables us to connect the intensive variables, 
through liT = k(3, "ti = kAi' with the Lagrangian multipliers Ai which 
appear in (6.1) and which take the constraints (Ai) = Ai into account. 

On the other hand, if the "position" variables ~a which are involved in 
the empirical definition (5.11) of the work are all extensive, they are, with U 
and N, part of the macroscopic variables that we have here called Ai. The 
differential (6.5) is thus the same as (5.56), so that the intensive variables, 

IL when Ai N, 

} "ti T 
Xa 

when Ai ~a, "ti = -- = 
T 

(6.7) 

can directly be interpreted in terms of the chemical potential IL and the forces 
Xa. Those include, in particular, -P if Ai = fl, or the components of the 
stress tensor if Ai denotes the corresponding component of the deformation 
tensor of an elastic solid. Recall that one usually inverts the relation (6.4) 
between entropy and energy as U (S, {Ai}) and that one uses the differential 
form (5.55) instead of (6.5). 

We shall not reconsider here the discussions of Chap.5 which enabled us to 
find the meaning of the diverse quantities eo, X a , /1-, now replaced by the Ai 
and the "ti, and to identify work, chemical energy, and heat. Let us, nevertheless, 
note that here the Ai variables are all extensive whereas in Chap.5 for the sake of 
greater generality we allowed some of the "position" variables eo to be intensive. 
For instance, we introduced magnetic work (1.31) of the form -M dB for a quasi
static transformation of a paramagnetic system; in § 5.2.3 (footnote 1) we have also 
considered work done by gravitational forces where the eo variable was intensive. In 
fact, such situations occur in electromagnetism and in gravitational theory because 
the long-range nature of the interactions makes the definition of the physical system, 
and at the same time that of work, ambiguous. In § 6.6.5 we shall discuss in detail 
the example of work in a dielectric where the eo and Xa variables can exchange their 
roles, depending on the point of view. In what follows we shall restrict ourselves 
to circumstances where the variable eo = Ai is extensive, for instance, a magnetic 
or electric moment; the conjugate variable Xa = -Tli is then the B or E field, 
whereas in § 1.3.3 we had the opposite situation. 
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6.2.2 Conditions for Equilibrium Between Two Systems 

When conservative quantities can be exchanged between various parts of a 
system, equilibrium is reached when the corresponding intensive variables are 
equal. If, in fact, for two subsystems, Al and A2 denote the same conservative 
quantity which can be exchanged, equilibrium is determined by looking for 
the maximum of S(Al, A 2, ... ) for a fixed value of Al + A 2. In the domain A 
defined in this way we have dAI + dA2 = 0, so that dS = 0 implies /1 = /2. 

We have thus found again the Zeroth Law and its extensions (§ 5.1), as a 
consequence of the maximum entropy principle: equalling of temperatures, of 
the variables -1l,jT, or PIT in the case of exchanges of, respectively, energy, 
particles, or volume. 

In the case of chemical equilibrium (§ 6.6.3), the relations which express 
the conservation laws in terms of the extensive Ai variables are not as simple 
as Al + A2 = const; in that case the equilibrium conditions take a different 
form, but can again be written in terms of the intensive variables. Finally, if 
an Ai variable is allowed to take on arbitrary values, without any constraint 
imposed by a conservation law, its conjugate intensive variable vanishes at 
equilibrium, since 8S18Ai = O. For instance, photons can be created or 
absorbed by the wall of the vessel in which they are enclosed; their number 
is not conserved, and the chemical potential vanishes for a gas of photons at 
equilibrium (§ 10.5.2 and Chap.13). 

6.2.3 Gibbs-Duhem Relations 

These relations, which we have already written down in § 5.6.5 for a fluid, express 
mathematically the extensivity of S for each homogeneous part of a composite 
system. Changing the volume Q by AQ multiplies all extensive quantities by a 
factor A, so that S satisfies the identity 

S(AU,{>..Ad) = AS(U,{Ad) (6.8) 

for an extensive system. Differentiating (6.8) with respect to A and using (6.6) for 
A = 1, we get the identity 

¥ + L 'YiAi == S(U,{Ad) 
i2:1 

between the various intensive quantities T, 'Yi, U / S, and AdS. 

(6.9) 

The Gibbs-Duhem relation is derived from (6.9) by differentiation and use of 
(6.5), which gives us 

U d (~) + L Ai d'Yi == 0, (6.10) 
i2:1 

again expressing the fact that the intensive variables T, 'Yi are not independent. 
If the system consists of several homogeneous phases one can take the additivity 

of the entropy into account and write a Gibbs-Duhem relation for each part; the 
number of independent intensive variables is reduced accordingly (§ 6.4.6). 
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6.2.4 Mixed Second Derivatives Identity 

A large number of experimental physical data are response coefficients, that 
is, ratios between variations of two extensive or intensive variables. All those 
quantities can be expressed in terms of the second derivatives of the funda
mental function 8 = 8(U, {Ai}), or of U = U(8, {Ai}). 

For instance, the specific heat at constant volume of a fluid, which is 
defined by 

Cy == T (=:) , 
n,N 

(6.11) 

equals 

= T/{PU(8,D,N) 
Cy 882 . (6.11') 

As an exercise one can prove that the expansion coefficient, 

(6.12) 

is given by 

1 82U 82U 82U / 82U 
; = D 888D - D 882 8D2 888D· (6.12') 

Quantities such as the isothermal compressibility or the specific heat at con
stant pressure can similarly be expressed in terms of second derivatives of 
the fundamental function, using elementary differential calculus. 

Whereas the Gibbs-Duhem identity used the extensivity, one can find 
other relations between various physical quantities by simply using the fact 
that a mixed second derivative can be evaluated in two ways: 

(6.13) 

For instance, if we write, for U(8, D, N), that 

8 (8U) 8 (8U) 
8D 88 n,N = 88 8D S,N 

we find the identity 

(~) S,N = - (~~) n,N' 

or 

(6.14) 
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which connects the expansion coefficient in an adiabatic transformation with 
the change in pressure produced by supplying heat. 

This example illustrates a field of useful applications of thermodynamics: 
from a mathematically trivial identity One deduces non-trivial identities be
tween response coefficients, which can be checked experimentally, or which 
enable us to predict One from the knowledge of another. More generally, in 
order to establish identities involving quantities, such as the expansion coef
ficient (6.12), which have more complicated expressions in terms of second 
derivatives, it will be useful to combine the above idea with a change of vari
ables technique (§ 6.3.5). Let us remark right nOw that when the entropy of 
a homogeneous substance depends On n extensive variables, the number of 
its independent second derivatives is through (6.10) and (6.13) reduced to 
~n( n - 1) so that there exist only ~n( n - 1) independent response coeffi
cients. For a fluid, we have n = 3 which provides 3 independent coefficients. 
Thus, though the existence of the fundamental function S(U, {Ai}) is diffi
cult to demonstrate experimentally, it has many implications for the response 
coefficients, which are readily measured and tabulated. 

We also note that identities such as (6.14) are constraints on the equations of 
state (6.6). If one wants to characterize a system by its equations of state, it is 
necessary that they have equal mixed derivatives; moreover, they must satisfy the 
Gibbs-Duhem relation which reduces the number of equations of state by one. Con
versely, these constraints suffice to determine the fundamental function S, which 
one obtains by integrating the differential system (6.6), with the integration con
stant being fixed by Nernst's Law. 

6.3 Changes of Variables 

The whole complexity, but also the richness, of thermodynamics arises from 
the multiplicity of the variables which may be brought into play for One actual 
problem or another. The present section gives the appropriate techniques for 
changing the variables. 

6.3.1 Legendre Transformations 

The fundamental function S(U, {Ad) is well suited to a study of situations 
governed by the maximum entropy principle where the system is isolated 
and where the data refer to its extensive variables. Nevertheless, One often is 
dealing with certain features of the equilibrium state under study, which in
volve the associated intensive variables. For instance, if the system studied is 
not isolated, but maintained at a temperature T through thermal exchanges 
with a much larger system which plays the role of a thermostat, we must not 
only let the Ai (i ~ 1) vary in a certain domain A, but also let U vary in 
such a way that l/T = as/aU remains constant. Of course, the values of U 
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and the Ai for this kind of equilibrium can be obtained (§ 6.3.3) by applying 
the maximum entropy principle to the composite system including both the 
thermostat and the system proper; however, looking for the maximum of the 
entropy of the system by itself over the manifold defined by as/au = l/T 
and over the domain A for the Ai would lead to a wrong result, as energy 
exchanges also modify the entropy of the thermostat. 

In fact, we have already stressed (§§ 2.3.3 and 4.2.4) that when we change 
variables, changing, for instance, from U to its conjugate variable l/T with 
respect to S, we must also change the function. The fundamental function 
S (U, {Ai}) contains all the thermostatic information about the system; elim
inating U between S and the definition l/T = as/au allows us to consider S 
as a function of the temperature and the Ai; however, the expression obtained 
in this way would no longer suffice to characterize completely the properties 
of the system, since the two different entropies 

and 

where <p is an arbitrary function, lead to the same function S of T and 
the Ai. We have already indicated that in order after a change of variables 
to conserve the information contained in the function S(U, {Ad) we should 
perform a Legendre transformation. 

The mathematical theory of Legendre transformations is simple. Let 

be a differentiable function of the n + p variables Xl, ... , X n , h, ... , tp, and 
let 

Yi = af 
aXi 

(6.15) 

be the conjugate variables of the Xi with respect to f. We want to use the 
Yi and the tj as the new variables. The Legendre transform g( {Yi}, {tj}) of 
f is the new function obtained by eliminating the {Xi} between (6.15) and 

n 

9 = f - L xiYi· (6.16) 
i=l 

It is essential to note that 9 is of interest only as a function of the {Yi}, 
{tj}, whereas f must always be considered as a function of the {Xi}, {tj}. 
To go back from the Yi variables to the Xi variables and from g( {yd, {tj}) 
to f({xd, {tj}) we differentiate the function f and (6.16), which gives 

df = L Yidxi + L ujdtj, 

} j 
(6.17) 

dg -L XidYi + L Uj dtj, 
j 
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where the Uj = 8f18tj are the conjugate variables of the tj. As a result the 
Xi variables can be expressed as functions of the Yi and the tj, as follows, 

8g 
X· - - - (6.18) 

• - 8Yi' 
and j({Xi},{tj}) is obtained by eliminating the Yi between (6.18) and 

j = 9 + L XiYi· (6.19) 

Apart from a few signs, the Legendre transformation is symmetric; the inverse 
transformation is obtained without integration. The relations (6.17) show also 
that the Uj, the conjugate variables of the tj with respect to j, are also the 
conjugate of the tj with respect to g: 

8j 8g 
Uj = - = -. (6.20) 

8tj 8tj 
Finally, we get the relations between the second derivatives of j and 9 with 
respect to their natural variables by taking the derivatives of (6.18) and (6.20) 
with respect to Xi, tj: 

c5il L 82g 82 j 
8Yi8Yk 8Xk8xl 

, 
k 

82g L 82g 82 j 
(6.21) 

8Yi8tj 8yi8Yk 8xk8tj' k 
82g 82 j 82 j 82g 82 j 

= 8tj8tk + ~ 8tj8xi 8Yi8Yl 8xl8tk· 8tj8tk 

In particular, the matrices of the second derivatives of j with respect to the 
Xi and those of -g with respect to the Yi are each other's inverse. 

The mathematicians prefer to define -g as the Legendre transform of j, which 
leads to a simplification of the signs in the formulae and to a greater symmetry. That 
convention is used in analytical mechanics to connect the Hamiltonian with the 
Lagrangian, according to (2.63); the conjugated variables are then the momenta Pk 
and the velocities ilk> whereas the positions qk play the role of the tj variables above. 
Nevertheless, the sign convention (6.16) is more convenient in thermodynamics 
where one often wishes to be able to perform successive Legendre transformations 
on several variables. 

If the function j is arbitrary, its Legendre transform 9 is not necessarily 
single-valued. Nevertheless, if j is convex (or concave), its matrix of second 
derivatives with respect to the Xi is positive (or negative), and its Legendre 
transform is not only single-valued, but also concave (or convex). We shall 
see in § 6.4.1 that the thermostatic entropy S(U, {Ad) is concave and that 
U (S, {Ad) is convex so that the thermodynamic potentials which follow from 
them by Legendre transformations are single-valued. 
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6.3.2 Massieu Functions and Thermodynamic Potentials 

Let us remind ourselves that the Massieu functions (§ 5.6.1) are the thermo
dynamic potentials adapted to the replacement of some Ai variables (i ~ 0) 
by their conjugates Ii with respect to the entropy: they are the Legendre 
transforms of the entropy with respect to those Ai variables. Similarly, the 
usual thermodynamic potentials are the Legendre transforms of U (S, { Ai} ) 
with respect to some of its natural variables (§ 5.6). 

Thermodynamic potentials are not just purely technical means for chang
ing from one variable to its conjugate. We have seen (§§ 5.6.1 and 5.6.6) that 
the Massieu functions can in statistical mechanics be calculated directly in 
terms of the partition functions. We have also seen (§ 5.7.3) that their expo
nential can be identified with the probability distribution of the macroscopic 
Ai variables in one canonical equilibrium or other. When searching for the 
equilibrium of non-isolated systems in § 6.3.3, we shall meet them again as 
"potentials", in the sense that their maximum enables us to determine that 
equilibrium. Finally, knowing the thermodynamic potentials of a system is 
convenient for an evaluation of its exchanges of work and heat when it is in 
communication with sources (§ 6.3.4). 

It follows from the Gibbs-Duhem identity that one cannot Legendre transform 
S or U with respect to all their extensive variables: for instance, for a fluid this 
transform would vanish, since U - T S + P Q - p,N == O. More generally, one must 
retain at least one extensive variable for each homogeneous phase. 

6.3.3 Equilibrium in the Presence of Sources 

Let us return to the problem of the equilibrium of a system in communication 
with a thermostat at temperature T. We must look for the maximum of 
the total entropy S + Sth of the isolated combined system consisting of the 
system proper plus thermostat; the Ai (i ~ 1) parameters of the system 
vary over the domain A, while the energies U and Uth of the system and 
the thermostat also can change under the constraint that dU + dUth = O. 
To simplify the discussion we assume that U is the only energy occurring 
amongst the Ai (i ~ 0) variables of the system; one can, however, readily 
extend the discussion to a composite system in which internal exchanges of 
energy may take place. Changes in the entropy around its equilibrium value 
must satisfy 

d(S + Sth) = 0, (6.22) 

As the thermostat is at a temperature T, the variations of its entropy and 
its energy satisfy 

1 
- - dUo 

T ' 
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moreover, the thermostat is assumed to be so large that its temperature does 
not change, which means that 

d2St h = - ~ d2U + ~ dU = - ~ d2U. 

We can thus get rid ofthe thermostat in (6.22) and write down the conditions 
for the equilibrium of the system in contact with the thermostat in the form 

(6.23) 

for all changes of U and of the Ai in the domain A. 
The form S - U IT of the expression, the maximum of which we must 

find, reflects the tendencies to which the system is subject. The first term 
expresses that the evolution towards disorder tends to make the entropy S 
increase. The second term expresses that this effect is opposed and controlled 
by the coupling to the thermostat. The latter appears in (6.23) solely through 
its temperature T. The energy U of the system also tends to decrease, as U 
enters (6.23) with a minus sign, and this the more strongly, the lower the 
temperature T of the thermostat, as the coefficient of U is liT. 

From the point ofview of statistical physics we have seen (Eq. ( 4.10)) that 
the Boltzmann-Gibbs canonical equilibrium distribution is obtained when we 
look for the maximum of 

SCD) - k(3 Tr vii (6.24) 

over all possible trial density operators V. We also know (§ 5.7.2) that a 
system in contact with a thermostat at temperature T reaches canonical 
equilibrium with as multiplier (3 = 1/kT. Comparing (6.24) with (6.23) shows 
that we can directly justify (6.23) by, as in § 6.1.3, looking for the maximum 
of (6.24) in two stages: the first stage, under the constraints Tr vii = U 
and TrVAi = Ai for i 2: 1, gives for V the form (6.1): expression (6.24) then 
becomes the same as (6.23) and the second stage gives again the macroscopic 
equilibrium condition for a system coupled to a thermostat. This condition 
(6.23) is thus a restriction on the macroscopic variables U and Ai (i 2: 1) of 
the microscopic variational principle introduced in § 4.2.2. 

One of the equilibrium conditions (6.23), aSlaU = liT, simply expresses 
that the temperature of the system adjusts itself to T. This enables us to 
eliminate U as function of the Ai and T. This elimination is nothing but the 
Legendre transform of S with respect to U. It leads to the Massieu function 
l/Fc defined by (5.59) and we must now look for its maximum with respect 
to the Ai variables, while the value of T is imposed by the thermostat. It is 
traditional to state this result in terms of the free energy: 

When a system is maintained at a temperature T and when certain 
internal exchanges allow the Ai parameters, other than the total energy, 
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to change in a domain A, the equilibrium values of these parameters are 
obtained by looking for the minimum of the free energy on A for the 
given value of T. 

More generally, let us assume that we are trying to determine the equi
librium state of a system which, instead of being isolated as in § 6.1.2, is in 
contact with a reservoir which forces some of the intensive variables Ii to be 
fixed. We proceed as in the case of the thermostat - which is an energy reser
voir. As variables we take, on the one hand, the intensive variables fixed by 
the reservoir and, on the other hand, the extensive variables pertaining to the 
other degrees of freedom; the domain A then occurs as a constraint on the lat
ter. We perform the appropriate Legendre transform on S, which introduces 
a Massieu function depending on the intensive variables. The equilibrium 
state is obtained by looking for the maximum of this Massieu function over 
A for fixed values of its intensive variables. 

A more usual procedure is based upon the remark that for an isolated 
system the maximum entropy postulate is, in the general case of systems at 
a positive temperature, equivalent to the search for the minimum energy for 
a given entropy. Indeed, the relation 

1 
dS = - dU + L Ii dAi T . 

l 

shows that in equilibrium we have I:i Ii dAi = 0 on the domain A, which 
means that, if U is expressed in terms of S and the Ai variables, it is sta
tionary for S fixed. At equilibrium the second differential, 

d2 S = ~ d2 U + 8~ (~) dU 2 + 2 L 8~~~i dU dAi 
l 

(6.25) 

is negative when dU = d2U = 0 and for variations of the Ai in A. As a result 
d2U is positive for variations of the Ai in A, if dS = d2S = dU = O. Thus, 
for an isolated system, the maximum of S(U, {Ai}) for U fixed and the Ai 
in A coincides with the minimum of U (S, {Ai}) for S fixed and the Ai in A. 
This discussion shows that in order to find the equilibrium of a system in 
contact with a reservoir we must look for the minimum of the thermodynamic 
potential which is the Legendre transform of U(S, {A;}) with respect to the 
variables whose conjugates are fixed externally. 

Thus, we must look for the minimum of the enthalpy if a system is main
tained at a given pressure; if it is maintained at given temperature and given 
pressure, we must find the minimum of the free enthalpy; and if it is in com
munication with a thermostat and a particle reservoir, we must look for the 
minimum of the grand potential. 
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6.3.4 Exchanges Between Systems in the Presence of Sources 

Work done on a system during an infinitesimal reversible transformation, that 
is, a quasi-static transformation such that the total entropy of the system and 
the sources with which it interacts remains constant, is, according to (6.5), 
defined by 

8W = dU -TdS =-T L 'YidAi. 
i2:1 

(6.26) 

In an adiabatic transformation, that is, a reversible transformation without 
heat exchange, the work received is equal to the change in the internal en
ergy U. 

Let us assume that the system a is in communication with a thermostat 
and with another system b to which it, reversibly, supplies useful work 8Wb. 
The work 8W = -8Wb done on the system a is given by (6.26), where T 
remains fixed, or 

- 8Wb = 8W = d(U-TS) = dF. (6.27) 

It is thus equal to the change in its free energy at the constant temperature 
fixed by the thermostat. As the latter can provide or absorb heat, the work 
8Wb supplied to b is not equal to the decrease in the energy U of the system 
itself, but to the decrease in F. The existence of irreversibilities changes (6.27) 
into the inequality 8Wb < -dF. This justifies the name of "free energy", as 
-dF is the work which, at best, one can get from the system, taking into 
account that the latter is itself coupled to the thermostat. 

Let us similarly consider a system a which is in contact with a volume 
reservoir and which adiabatically provides an amount of work 8Wb to another 
system b. This time, we must, if we want to find 8Wb, subtract from the total 
work -8W provided by the system a, the work, - P dfl, that it provides to 
the reservoir maintaining the constant pressure P. In the case of a reversible 
transformation we have thus 

8Wb = -8W - Pdfl = - d(U + Pfl) = - dH. (6.28) 

Here, the available work is given by the decrease in the enthalpy H at the 
constant pressure imposed by the reservoir, and at constant entropy since 
the transformation is adiabatic. 

The enthalpy is also useful to determine heat exchanges undergone by a 
homogeneous substance maintained at constant pressure, since 

dH = TdS + fldP + J.LdN 

then reduces to its first term. In technical applications thermal exchanges 
often occur in the open air and the atmosphere plays the role of the pressure 
reservoir. This is why engineering handbooks often give the enthalpy of sub
stances at atmospheric pressure per mole or per unit mass as function of the 
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temperature. We must note that the latter variable is not one of the natural 
variables of H in its role of thermodynamic potential, since one can extract 
all the properties of the material only through differentiation of H(S, P, N); 
however H(T, P, N) is adapted to the required aim: heat exchange determi
nation. 

Finally, if the system a is in contact both with a thermostat at a tem
perature T and with a volume reservoir at a pressure P, we see similarly 
that the useful work that it can supply to another system b in a reversible 
transformation is the decrease in its free enthalpy 

8Wb = - d(U-TS+PD) = - dC, (6.29) 

at given temperature and pressure. The use of the free enthalpy C is par
ticularly useful for the study of transformations in the open air where the 
atmosphere plays the roles both of an energy and a volume reservoir, for 
instance, for chemical reactions which often start and finish at atmospheric 
temperature and pressure. In that case, by virtue of the Gibbs-Duhem re
lation, C equals I: /LjNj , where the /Lj and the N j denote the chemical 
potentials and the number of atoms of the various species. 

These considerations stress the practical and technical use of the ther
modynamic potentials as means of evaluating exchanges of work and of heat 
with a system, some intensive variables of which are fixed through contact 
with a reservoir. This is just the reason why the functions F, C, or H were 
originally introduced, and they are called thermodynamic "potentials" be
cause their changes can be interpreted as work. 

6.3.5 Calculational Techniques 

(a) Maxwell Relations. The relation (6.13) between the mixed second deriva
tives, written out for either one of the fundamental functions S (U, {Ad) or 
U(S, {Ai}), provided us with interesting identities between some response co
efficients. On the other hand, we have seen that a convenient way to change 
variables consists in performing a Legendre transform on one of the funda
mental functions, by introducing the appropriate Massieu function or ther
modynamic potential. Writing down that the mixed derivatives of any of 
those functions are equal leads to new identities - the Maxwell relations. 
If we call the pairs of conjugate variables, either with respect to S or with 
respect to U, (Xl, yd, (X2' Y2), ... , (Xn, Yn), where for each couple (x, y) one 
variable is extensive and the other one intensive, the Maxwell identities have 
the form 

(6.30) 

the + sign corresponds to the case where the variables YI and Y2 are of the 
same kind, and the - sign to the case where one is intensive and the other 
one extensive. 
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The interest of the Maxwell relations for establishing relations between 
response coefficients lies in the fact that they encompass the equations (6.21) 
which follow from Legendre transforms and the identities (6.13). 

(b) Use of Jacobians. The foregoing calculation techniques, Legendre trans
forms and thermodynamic potentials, Gibbs-Duhem relations, Maxwell rela
tions, have a drawback. The n variables which were used to characterize a 
state are, in fact, not arbitrary: each of them should be taken to be one or 
other of each of the n pairs of conjugated variables, (A i ,l'i) with respect to 
S, or (~a,Xa,) with respect to U. We cannot as yet deal with cases where, 
for instance, we need include both P and {} among the state variabes. 

Nevertheless, a response coefficient has the general form of a partial 
derivative ay/ax1 of a function y of n arbitrary state variables Xb X2, ... , 
Xn; each of these is a function of the n original variables Ab A2, ... , An. It is 
thus useful to know how simply to carry out arbitrary changes of variables. If 
we have n functions yl, Y2, ... , Yn of n variables Xl, X2, ... , Xn, the Jacobian 

d(Y1, Y2,···, Yn) == det aYi 
d(X1, X2, ... , xn) aXj 

(6.31) 

is defined as the determinant of the first derivatives of the Y's with respect 
to the x's. The Jacobians are antisymmetric with respect to the X and the Y 
variables. They occur in the calculations of response coeffcients through the 
identity 

d(y, X2, . .. , xn) 
d(X1,X2, ... ,Xn)· 

(6.32) 

Under changes of variables, they have simple properties which result from 
those of determinants, and which are reflected in the important group laws 

d(Y1,Y2,···,Yn) 
d(xl, X2,· .. , xn) 

[d(Xl, X2, ... , xn)]-l 
d(yl, Y2,· .. , Yn) 

d(Y1,Y2,.··,Yn) d(Zl,Z2, ... ,Zn) 
d(Zl, Z2,· .. , Zn) d(Xb X2, . .. , Xn)· 

(6.33) 

Manipulating the relations (6.33) is an efficient method for finding relations 
between response coefficients, once these are written in the form (6.32). 

(c) Exterior Algebra. A still more powerful method, but slightly less elementary, uses 
exterior differential calculus; we shall here review a few elements of it which may 
be useful for thermodynamics. Consider a manifold characterized by n variables 
Xl> X2, ... , Xn, with differentials dX1, dX2, ... , dXn. A O-form is identified with a 
function f(xl> X2, ... , Xn). A I-form, 

W(l) -_- '" f d ~ i Xi, (6.34) 
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is an element of the n-dimensional vector space spanned by the base of differentials 
dxI, dX2, ... , dXn; the fi are arbitrary functions of the XI, X2, ... , Xn. To introduce 
the 2-forms, we define exterior products, also called Grassmann products, dXi /\ 
dXj == -dxj /\ dXi which are a set of in(n -1) antisymmetric objects deduced from 
the differentials. Now, a 2-form, 

j2) = '" f·. dx· /\ dx· - L..J 'J • J' 
(6.35) 

i,j 

is an element of the in(n - 1)-dimensional vector space spanned by the dXi /\ dXj; 
this space is generated as the antisymmetrized tensor product of the space of 
the 1-forms with itself. Only the antisymmetric part of fij with respect to its 
indices is involved in (6.35). Similarly one constructs by recurrence up to n
forms; the antisymmetrization implies that there exists for n-forms only a single 
base element dX1 /\ dX2 /\ ... dXn and hence that all n-forms can be expressed as 
f(xI, X2, ... , Xn) dX1 /\ dX2 /\ ... dXn. The operations on the forms obey the rules 
of ordinary algebra, except for the fact that products of differentials are always 
understood as being completely antisymmetrized, and that the order in which they 
are written matters. For instance, the product of the 2-form dX1 /\ dX2 with the 
1-form dX3 is dXl /\ dX2 /\ dX3; the product of dX1 /\ dX2 with dX1 vanishes. 

One can easily change variables using the equations 

together with their exterior products. In this way we find for the 2-forms 

'" d(Xi, Xj) 
dXi /\ dXj = L..J d( ) dYk /\ dYI, 

k<l Yk,YI 

and for the n-forms 

d(Xl,X2,.·.,Xn) d d d 
d( ) Yl /\ Y2 /\ . .. Yn. 

Yl,Y2,··· ,Yn 

The Jacobians thus occur here naturally. 

(6.36a) 

(6.36b) 

(6.36c) 

The exterior derivative of some form w(k) is a form w(k+l), obtained by dif
ferentiating the coefficients according to the ordinary rules, and by considering the 
products of differentials generated in this way as exterior products. This amounts 
to combining the normal rules of differential calculus with the antisymmetrization 
rule for exterior products, and also with the convention ddxi = o. The exterior 
derivative of a O-form 1 is the same as its ordinary differential: it is a 1-form (6.34) 
with fi = 81/8xi. The exterior derivative of the 1-form (6.34) is the 2-form 

(1) L 8t L (8f · 8t ) dw = --' dx· /\ dXi = _J - -' dXi /\ dx .. 8x . J 8x· 8x . J 
i,j J i<j' J 

(6.37) 

The essential property on which the use of exterior calculus in thermodynamics 
relies is the fact that differentiating any k-form twice always leads to zero: 

ddw(k) = o. (6.38) 
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For a O-form this reduces to the identity (6.13) of the mixed derivatives; the rule 
ddxi = 0 is just a special case of (6.38). Exterior calculus thus enables us to system
atize, to generalize, and to combine conveniently several tools introduced above: 
the use of Jacobians in arbitrary changes of variables and the mixed derivatives 
identity. 

As an example we derive for a fluid directly from ddU = 0 the identity 

dT /\ dS - dP /\ dn + dtt /\ dN = o. (6.39) 

By taking P and n as variables in (6.39) we get for N fixed the relation 

d(T, S) _ (fJT) ( fJS ) ( fJT ) ( fJS ) 
d(P, n) = fJp n fJn p - fJn p fJP n = 1 

(6.40) 

between the changes in temperature and exchanges of heat during expansions or 
compressions. 

(d) Examples. We have seen in § 6.2.4 that for a fluid only three response coef
ficients are independent. As an exercise one could apply the above techniques 
to prove the identity 

C _ C _ Trla2 
p v-

KT 
(6.41 ) 

between the specific heats at constant pressure and constant volume (6.11), 
the expansion coefficient (6.12), and the isothermal compressibility 

(6.42) 

One could also express in terms of these coefficients, which are the simplest 
ones to measure, the change of pressure through heating, 

( 8P) a 
8T n,N = KT' 

(6.43) 

the adiabatic compressibility, 

(6.44) 

the changes in the temperature and in the chemical potential through adia
batic compression, 

( 81-l) rl ( STa) 
8P S,N = N 1 - Cp , 

(6.45) 

the change in temperature through a Joule expansion, that is, a sudden 
irreversible expansion without exchange of work or heat with the outside, 
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( aT) _ ~ (p _ Ta) 
an U,N - Cv "'T' 

(6.46) 

or through a Joule-Thomson expansion, 

(aT) =!.!.- (aT - 1). ap H N Cp , 
(6.47) 

The latter is an irreversible expansion without heat exchange with the out
side, but where the initial and the final pressures are fixed. We shall show 
in § 9.2.5 that in that kind of expansion the enthalpy remains constant. The 
inversion temperature (§ 9.2.5), below which the Joule-Thomson expansion 
is an efficient means of cooling, is given by aT = 1 according to (6.47), as 
aT increases when T decreases. 

6.4 Stability and Phase Transitions 

In this section we use the fact that S is not only stationary, but maximum 
at equilibrium. 

6.4.1 Concavity of the Entropy 

We shall now see that the maximum entropy principle itself implies that, 
for a homogeneous extensive substance, the entropy S({Ai}) is a concave 
function of the Ai coordinates (i ~ 0), including the energy. Let us mentally 
split the system into two equal parts; the number of Ai variables is doubled. 
If the function S( {Ad) were not concave, we could find changes €i in the Ai 
such that 

Due to the extensivity of S, the left-hand side equals S ( { Ai} ), that is, the 
entropy of the whole of the homogeneous system; the formation of hetero
geneity associated with non-zero €i could thus make the entropy increase, so 
that the substance would not be homogeneous at equilibrium in contradiction 
to our original assumption. 

Experiments show that the entropy is practically everywhere twice dif
ferentiable; its second derivatives can be discontinuous, but they remain 
bounded. The concavity of the entropy is thus equivalent to the fact that its 
second derivatives form a non-positive matrix. However, the extensivity im
plies that the determinant of this matrix vanishes. In fact, the Gibbs-Duhem 
relation (6.10), which we can also write in the form 

v j ~ 0, 
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entails the existence of an eigenvector Ai associated with the eigenvalue 0 of 
the 82Sj8Ai8Aj matrix. 

It is advisable to check for any approximate theory or any empirical deter
mination of the entropy that it is, indeed, a concave function of the extensive 
variables. 

It follows from (6.25) that the second differential d2U of the function 
U(S,{Ai})' when expressed in terms of dS and the dAi (i ;::: 1), is equal to 
the product of -T with the second differential d2S of S(U, {Ai}), expressed 
in terms of dU and the dAi (i ;::: 1). As a result, the energy zs a convex 
function of the extensive S and Ai variables. 

6.4.2 Thermodynamic Inequalities 

The response coefficients that are most often the subject of measurements 
and of practical applications are functions of the second derivatives of S 
(§ 6.3.5), which are the elements of a negative matrix. From this we can 
derive inequalities necessarily satisfied by these coefficients, which enable us 
to check the consistency of an approximate theory, to detect experimental 
errors, or to make predictions. 

In particular, the second derivative of S with respect to the variable U 
must be negative or zero. Hence, T is an increasing function of U, and the 
specific heat at constant volume is positive. The second derivatives of -S 
and of U with respect to the other Ai variables must similarly be positive or 
zero. For instance, the adiabatic compressibility of a fluid, 

1 (8[l) 1 /82U "'s = - [l 8P = [l 8[l2' 
S,N 

(6.48) 

is positive. 
More generally, all the diagonal minors of a positive matrix are positive, 

which leads to new inequalities. Conversely, an n x n matrix for which a set 
of n nested diagonal minors of ranks 1, 2, ... , n have positive determinants 
is positive. Here, the determinant of the 82Sj8Ai8Aj matrix is zero due 
to the extensivity, so that n - 1 conditions are necessary and sufficient to 
express that it is a non-positive matrix. The ~n(n -1) independent response 
coefficients are thus constrained to satisfy n - 1 fundamental inequalities. 

Even without writing those down, it is easy to find some of their con
sequences by manipulating the thermodynamic potentials. Let us, in fact, 
consider the Legendre transform g( {Yi}, {tj}) of a convex function: the ma
trix of the second derivatives of f( {xd, {tj}) is positive. The relations (6.21) 
show that the matrix of the 82gj8Yi8Yk is negative, whereas the matrix of 
the 82gj8tj8tl is positive. One can see this by evaluating d2 f for 
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and using (6.21). The second derivatives of a thermodynamic potential with 
respect to its extensive variables are thus positive or zero; with respect to its 
intensive variables, they are negative. By considering, for instance, the free 
energy and the D variable, we see that the isothermal compressibility, 

1 (8D) 1/82F 
liT = - D 8P = D 8D2 ' T,N (6.49) 

is positive. From (6.41) it follows that Cp > CV ' 

6.4.3 The Le Chatelier Principle 

Let us consider a fluid, the thermostatic properties of which are characterized 
by its internal energy U = U(S, D, N). The matrix of the second derivatives 
of U is non-negative. One of its eigenvalues is zero, expressing the extensivity, 
and one can eliminate it by letting N be constant. We shall write down the 
two fundamental inequalities which we have shown to exist in § 6.4.2; in the 
present case n = 3. To do that we express the conditions that two nested 
minors are positive: 

The first condition can be rewritten as T ICv ;::: 0, or 

Cv > O. (6.50) 

If we use the properties of Jacobians and the definitions (6.11) and (6.49), 
we see that the second condition is equivalent to 

or 

o < d(T,-P,N) 
d(S, D, N) 

d(T,-P,N) d(T,D,N) 
d(T, D, N) d(S, D, N) 

- (~~)TN (~~) nN , , 

T 

(6.51) 

The two conditions (6.50) and (6.51), which are necessary and sufficient 
for the stability of the equilibrium of a homogeneous fluid, are called Le Chate
lier's principle: a system is stable if heating it increases its temperature, and 
if an isothermal expansion decreases its pressure. In another form, along the 
lines of § 6.4.1, Le Chatelier's principle expresses the fact that if we create a 
heterogeneity in the system, the reaction produced by this tends to restore 
the equilibrium. Indeed, if two parts of the system are brought to different 
temperatures Tl > T2 , the resulting heat flux, directed from 1 to 2, has as a 
consequence that the temperature difference diminishes (Eq.(6.50)); if they 
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are brought to different pressures, P1 > P2, the transfer of matter from 1 
to 2 which tends to shift the densities towards the initial value has as a 
consequence that the pressure difference diminishes (Eq.(6.51)). 

The additivity of the entropy implies that the stability of the equilibrium 
of a system consisting of several parts is guaranteed by the stability of its 
homogeneous components. 

6.4.4 The Le Chatelier-Braun Principle 

The Le Chatelier-Braun principle is concerned with deviations from equilibrium 
which involve no longer one, but two variables. To fix ideas, let A1 be the energy 
and A2 the volume. We assume that initially their conjugate intensive variables 
with respect to the entropy, /1 (equal to liT) and /2 (equal to 'PIT), have been 
determined through contact with two reservoirs, one of which can exchange energy 
and the other volume; after that the system has been isolated. First of all, the 
equilibrium is shifted by changing A1 to A1 + dA1, while A2 is fixed: transfer of 
energy without change in volume. The conjugated variable /1 changes by 

(6.52) 

in the opposite sense to A1 according to Le Chatelier's principle. Nevertheless, the 
other intensive variables are also, indirectly, changed by 

(6.53) 

for instance, heating changes not only the temperature, but also the pressure. Sec
ondly, we bring the system in communication not with the thermostat for /1, which 
would merely bring it back to its initial state, but with the second reservoir for /2 
which can change the volume A2. In the final equilibrium state, /2 will thus re
turn to its original value, but Al (the energy) remains fixed at the perturbed value 
A1 + dA1. During this process, /1 (the temperature) changes indirectly by d' /1. 
Let us compare d' / 1 with the initial change d/1. As /2 changes by -d/2, given by 
(6.53), we obtain 

d"~l = - (8/1 ) d/2 = _ (8/1 ) 
8/2 Al 8/2 Al 

(6.54) 

Taking the ratio of (6.54) and (6.52) we find 

It thus follows from the concavity of S that 
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o < - d"Yl < l. 
dl'l -

(6.55) 

The Le Chatelier-Braun principle reflects these inequalities: Let us consider a 
system, the equilibrium of which is shifted by a transfer referring to AI; the con
jugated intensive variable 1'1 has been perturbed, as well as another variable 1'2. A 
later process which brings 1'2 back to its initial value, thanks to a transfer refer
ring to the quantity A2, has indirectly the effect of reducing the intial perturbation 
of 1'1· 

6.4.5 Critical Points 

The eigenvalues of the matrix of the second derivatives of 8(U, {Ad) are 
negative or zero. We saw in § 6.4.1 that one of them, associated with the 
extensivity property, vanishes everywhere. The critical points correspond to 
particular values of the variables where at least one other eigenvalue vanishes. 
One can classify these points as critical, tricritical, ... points according to 
the rank of the determinant of the second derivatives of 8. 

For instance, for a fluid characterized by 8(U, fl, N), the rank of this 
determinant is 2 in an arbitrary point but falls to 1 in a critical point. This 
can be expressed by stating that the Jacobian 

J 
d(IIT, PIT, N) 

d(U, fl,N) 
(6.56) 

vanishes, for fixed N. As a result several response coefficients diverge: in fact, 
the expressions for the expansion coefficient, 

(6.57a) 

the specific heat at constant pressure, 

(6.57b) 

or the isothermal compressibility, 

(6.57c) 

all have the Jacobian J in the denominator, whereas the specific heat at 
constant volume, 

(6.57d) 

may remain finite. 
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u Fig. 6.1. The U, fl plane for a liquid
vapour system 

In general, the vanishing of a function of two variables U and fl determines in 
the U, fl plane a curve. Nevertheless, the function J(U, fl) has special properties 
imposed on it by the concavity of the entropy, which restrict the possibilities. 
Assuming that S(U, fl) can be differentiated at least thrice, one might imagine 

isolated critical points, as in the case when S (X - [(U - UO)2 + K(fl _ flO)2] 2, 

or lines of critical points, as in the case when S (X -(U - UO)4 - K(fl - fl)2. 
However, such points have not been observed in Nature, as they are not generic. 
One expects, in fact, that in a real system the phenomena are not qualitatively 
sensitive to a small change in the physical parameters such as the particle masses 
or interactions. In the above-mentioned cases, however, the behaviour near the point 
U = Uo, fl = flo or near the line U = Uo would be changed by a small change 
in the parameters, which either would make the critical points disappear or would 
destroy the concavity of S. The real critical points, the properties of which remain 
stable when such a change takes place, have as their prototype the liquid-vapour 
transition. The structure of the function S(U, fl) is then the following (Fig.6.l). A 
curve C where the second derivatives of S are discontinuous bounds a region in the 
U, fl plane inside which J is identically equal to zero. In that region the S(U, fl) 
surface is developable,2 and it describes the coexistence between the two, liquid 
and gas, fluid phases (§ 6.4.6). Outside the C curve the function S is concave with 
J > 0 and describes a homogeneous fluid. The critical point c is the apex of the 
C curve. The second derivatives of S are continuous in that point, J is zero, but 
S(U, fl) behaves, as experiments have shown, non-analytically. The theory of this 
critical behaviour, which had for a long time remained an unsolved problem, was 
seriously tackled only in the 1970s, inspired by Kenneth G. Wilson. Landau's theory 
which came earlier provides us with many useful results as a first approximation 
(Exerc.6d), even though it is not satisfactory in the immediate vicinity of the critical 
point. 

2 A developable surface in a 3-dimensional space is a surface which can be mapped 
onto a plane by means of a length-preserving transformation. This property is 
characterized by the relation J == O. It entails the existence on the surface of a 
set of straight lines, all tangent to some space curve. 
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6.4.6 Phase Separation 

Experiments show the existence of systems which, while being homogeneous 
for certain values of the extensive parameters, for other values of these para
meters split up spontaneously into two or more distinct homogeneous phases. 
The latter can either be qualitatively different (solid-fluid, or solids with dif
ferent crystalline structures) or be qualitatively similar (liquid-gas). To show 
how this phenomenon enters the framewotk of thermodynamics, let us as
sume that an approximate theory which is only valid for a homogeneous 
system, or that an extrapolation of experimental measurements carried out 
on a homogeneous sample, have led to an expression for the entropy 80 which, 
as function of the extensive variables, is not concave. Let 8 1 be the convex 
envelope of 80 ; it is defined, for each set of values of the extensive variables, 
as the upper bound of the set of points which can be regarded as barycentres 
of the points of 80 . Part of the surface that represents 8 1 is the same as cer
tain sheets a, b, ... of 80 ; in such points, such as 4 (see Fig.6.2), the system 
is stable. The remainder of 8 1 consists of a set of segments such as 2-3 in 
the figure - or, more generally, triangles, tetrahedra, ... , depending on the 
number of state variables - which are bitangent to 80 at their ends; the cor
responding sheet of 8 1 is thus a fragment of a ruled surface which connects 
the sheets a, b, ... where 8 1 = 80 . If 8, as in § 6.4.5, depends on two state 
variables, 8 1 is a developable surface. In the example of the liquid-vapour 
equilibrium (Fig.6.1), the part 8 1 = 80 describing homogeneous phases lies 
outside C and is connected; however, 80 includes two separate sheets when 
the phases a and b differ qualitatively. 

S, 

So 

So 

stable phase a metastable phase a 

3 

So = S, 
stable phase b 

Fig. 6.2. Vertical section of the entropy surface for a system with two phases 

Let us consider a point 0 of 80 such that 80 < 8 1 , situated on the con
tinuation of the sheet a where 8 1 = 80 . If 0 is sufficiently close to the region 
which represents stable homogeneous states such as 4 (Fig.6.2), it describes a 
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state which is also homogeneous, but unstable. Such extrapolations of stable 
states to unstable homogeneous states are often observed when the lifetime of 
the latter is rather long: we are dealing with metastable states - supercooling 
of liquids or gases, superheating of solids or liquids, allotropic metastabilities 
as in diamond, hysteresis, and so on. 

Nevertheless, in the strict framework of thermostatics the state 0 must be 
excluded. Let us, indeed, show by the reasoning of § 6.4.1 that the entropy 
can be increased by separating the system into two (or more) phases. The 
point 1 of 8 1 that is associated with the same extensive variables as the point 
o is the barycentre of points 2 and 3, with weights .A2 and .A3 (.A2 +.A3 = 1), 
respectively. The two points 2 and 3 describe stable homogeneous phases 
a and b; the point 1 describes an inhomogeneous system, consisting of two 
parts which are similar to 2 and 3, but for which all extensive variables 
are weighted by .A2 and .A3. Thus, through transfer of the various conserved 
quantities from one region to another, the entropy can increase from the 
homogeneous state 0 to the heterogeneous state 1: the maximum entropy 
principle therefore implies that the system spontaneously splits into two (or 
more) phases. At equilibrium the proportions of each phase are .A2 and .A3, 
and the entropy is equal to 

(6.58) 

In the region of coexistence of the phases we may characterize the system 
by its global extensive variables as above; since the representative surface 
of the entropy 8 1 contains in those regions straight lines (or planes), the 
rank of the matrix of the second derivatives of 8 1 decreases by one whenever 
a new phase appears. Nevertheless, it is better to characterize the system 
by the overabundant set of extensive variables for each of the m possible 
phases, rather than by its global extensive variables. The entropy in that 
representation is the sum of the contributions from the various phases; the 
extensivity of the phases entails the existence of m Gibbs-Duhem relations, 
so that the rank of the matrix of the second derivatives of 8 is decreased by 
m in the coexistence region. However, the extensive variables of the various 
phases are not independent. We must write down the equilibrium conditions 
between the phases, expressing that the total entropy is a maximum, that is, 
stationary against the transfer from one phase to another of any conservative 
quantity - energy, volume, or matter. As in § 6.2.2 these conditions can be 
found by writing down that all intensive variables calculated in one phase 
are equal to the corresponding variables in the other phases. 

For instance, the conditions for equilibrium between the phases a and b 
of a pure substance, where one is a solid and the other a fluid, or one a liquid 
and the other a saturated vapour, can be expressed in terms of the three 
equations of state of each phase, by writing down that the temperatures, the 
pressures, and the chemical potentials must be equal: 
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Ta(Ua/Na, Da/Na) 

Pa(Ua/Na, Da/Na) 

/La(Ua/ N a , Da/ N a ) 

Tt(Ub/Nb, Db/Nb), 

Pb(Ub/Nb, Db/Nb), 

/Lb(Ub/Nb, Db/Nb). 
} (6.59) 

Maxwell's rule for constructing the horizontal part of the isotherms (§ 9.3.3) 
follows from this. The equality of the intensive variables entails the existence 
of 3 relations (6.59) between the 2 x 2 independent ratios Ua/Na, Da/Na, 
Ubi Nb, and Db/ Nb of extensive variables. If, for instance, we consider the 
temperature as an independent variable, all other variables - pressure, chem
ical potential, energy, or entropy per particle for each of the phases, density 
for each of the phases - are determined when the two phases coexist. It is 
customary to represent the states of a substance by a phase diagram: for 
instance, in the T, P plane, the coexistence of two phases is possible along 
curves, outside which the stable equilibrium state is homogeneous. On such a 
coexistence curve the relative amount Na/ Nb of the two phases still remains 
undetermined. If 3 phases coexist, we obtain, instead of (6.59), 6 equations 
for 3 x 2 ratios U / D and D / N: instead of a coexistence curve, we have a 
triple point, as for the solid-liquid-vapour equilibrium. 

These considerations can be generalized for arbitrary phase equilibria, 
involving, for example, mixtures of fluids; in that case it is customary to 
draw the phase diagrams in terms of relative concentrations rather than in 
terms of chemical potentials. The number of independent intensive variables, 
obtained by writing down relations similar to (6.59), is, for a mixture of r pure 
substances in m phases, equal to r + 2 - m. This count, called the Gibbs phase 
rule, enables us to classify the various kinds of equilibrium between phases 
and the corresponding shapes of phase diagrams. We still must specify an 
extensive variable for each of the phases in order completely to characterize 
the state of the system. 

Equations (6.59) show that the energy per mole and the density are dis
continuous when we pass from one phase to another. This is why such a 
change is called a first-order phase transition, in contrast to critical points 
which are considered to be second-order, as the above quantities are there 
continuous. Actually, for a liquid-gas transition the area lying inside the curve 
C in Fig.6.1, which describes the coexistence region, is represented in the T, P 
phase diagram by the first-order transition line Ps(T), also called the satu
ration curve. This line ends in a critical point (§ 6.4.5), the equivalent of the 
point c in Fig.6.1. Along it the discontinuities of U / Nand D / N decrease, 
until they vanish at the critical point. Nevertheless, there remains in that 
point a trace of these discontinuities, as the derivatives of the functions U / N 
and D / N at the critical point are infinite. The divergences of the specific 
heat, of the compressibility, and of the expansion coefficient appear as the 
limit of the discontinuities associated with the first-order transition. 

The discontinuity of the entropy across the coexistence line is reflected 
by the existence of a latent transition heat per mole, 
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(6.60) 

where Sal Na and Sbl Nb are the entropies per mole of each of the phases. The 
transition from one phase to another, which occurs at constant temperature 
and pressure, needs an amount of heat proportional to the amount of matter 
transformed. It is easy to relate this latent heat to the density difference 
between the two phases and to the slope of the coexistence curve. To do this, 
we first of all write down that the free enthalpies (5.67) of the two phases are 
proportional to one another along the saturation line Ps(T) by virtue of the 
Gibbs-Duhem identity (5.78) and of the fact that the chemical potentials are 
equal, 

By taking the derivative with respect to T along the curve Ps(T) we then 
get 

~ (8Ga 8Ga dPs) = ~ (8Gb 8Gb dPs) 
Na 8T + 8P dT Nb 8T + 8P dT ' 

which gives us the Clapeyron relation 

(6.61) 

6.5 Low Temperatures 

6.5.1 Nernst's Law 

The maximum entropy principle of § 6.1.2 encompasses all Laws of thermo
statics in the standard formulation of Chap.5, except the Third Law. For the 
continuity of our discussion we remind ourselves here of the statement of this 
law (§ 5.4.1): the macroscopic entropy S of any system tends to zero, as well 
as the temperature, when the energy tends to its minimum value. 

6.5.2 Vanishing of Some Response Coefficients 

A specific heat, for instance at constant volume or at constant pressure, is 
related to the entropy through 

Cy = T (~~)y' 
where Y denotes the set of all variables which are kept constant. As S(O) = 0, 
the integral 
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S(T,Y) = (CY dT 
io T 

converges at T = 0, so that all specific heats vanish in the low temperature 
limit. 

The vanishing of S implies also that every partial derivative of S with 
respect to an extensive variable Ai or an intensive variable Ii tends to 0, 
when the temperature and a set Y of other, extensive or intensive, variables 
are kept constant: 

-- ----. 0 (as) 
aAi T,Y T-+O ' 

- ----. o. (as) 
a,i T,Y T-+O 

(6.62) 

The changes in the entropy associated with any shift in the equilibrium at 
constant temperature thus vanish with the temperature. 

It follows from (6.62) and the Maxwell relations (6.30) for a thermody
namic potential of the free energy type that 

( ali) ----. 0 
aT A"Y T-+O ' 

(aAi) -- ----. 0 aT Y T-+O . 
"(,, 

(6.63) 

The changes with temperature of any, intensive or extensive, quantity van
ish at low temperatures. For example, expansion coefficients, or increases of 
pressure with temperature, vanish as T ---. O. 

6.6 Other Examples 

The domain of applications of thermodynamic methods which we surveyed 
in §§ 6.2 to 6.5 is huge, even if we restrict ourselves, as we have done, to equi
libria. We shall limit ourselves here to mentioning a few significant problems. 

6.6.1 Thermal Engines 

Even though the processes involved in thermal engines are irreversible, ther
mostatics enables us to strike a balance by comparing an initial state with a 
final state, both of which are at equilibrium. The aim of a thermal engine is 
either to provide a given system with a certain amount of work, or to reduce 
its entropy. This would clearly be impossible if the system were isolated, as 
it would evolve towards a "dead" state with maximum entropy, while its en
ergy would remain constant. The principle of the thermal engines (§ 6.1.4) 
consists just in taking advantage of the increase in entropy of a composite 
isolated system, one part of which is the system of interest. When the inten
sive variables (temperatures or pressures) of the various parts are different, 
spontaneous (heat or work) transfers occur from one part to another in or
der to raise the total entropy. One exploits these transfers to arrive at the 
required result, which is to provide work or to decrease the entropy locally. 
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The analysis of the exchanges occurring in a thermal engine which pro
vides work, or a thermal power station which produces electricity, then in
volves three elements: 

(i) A subsystem a, the engine itself, consisting of a heat source - which can 
be of chemical origin, involving combustion, or of nuclear, solar origin -
together with its fuel supplies, and various mechanical, magnetic, or elec
tric elements (cylinders, turbines, blast pipes, alternators, ... ) which help 
to transform various kinds of energy one into another and to exchange 
them with the rest of the system; 

(ii) A subsystem b which is meant to receive, from a, some (mechanical or 
electrical) work Wb; 

(iii) A cold source c which can exchange heat with a; it consists, for instance, 
of the atmosphere or of cool water, and may include various devices, such 
as radiators, circulators, evaporators. 

When the engine operates, the subsystem a provides altogether some 
(positive) energy -L1Ua . Present technology does not allow us to use chem
ical or nuclear energies other than by first transforming them into heat; the 
energy provided, -L1Ua , will thus be of thermal origin so that the change 
in entropy L1Sa is negative. As the entropy of the complete system a+b+c 
cannot decrease, the decrease in the entropy of a must be compensated by 
an increase of the entropy of c: 

(6.64) 

This increase L1Sc occurs thanks to the supply of a certain amount of heat, 

(6.65) 

which must be deducted from the total energy, 

(6.66) 

provided by a. Only part of this energy is finally transformed into useful work, 
the remainder having been given up as heat to the subsystem c. Thus, because 
the energy source a cannot give up energy without a decrease in entropy, the 
double balance, of energy, which is conserved, and of entropy, which must 
increase, makes it necessary that there are exchanges with a system c, which 
is the source of negentropy. In § 6.1.4 we stressed this essential role played by 
the subsystem c for transforming the heat generated by a, which is disordered 
energy attached to the microscopic degrees of freedom, into work, which is 
ordered energy attached to some collective degrees of freedom. The "thermal 
pollution" through giving up heat to c is the price to be paid for this necessary 
increase in order. 

It is the aim of the engineer to extract the maximum useful work Wb 
for a given change in the state of a - a given fuel consumption - and for a 
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given temperature of the cold source. Equations (6.64) to (6.66) show that 
we have, in agreement with (6.27), 

(6.67) 

the upper bound is attained when the total entropy remains constant during 
the process. In fact, inequality (6.67) is valid between two equilibrium states 
for each elementary stage of the operation of the thermal engine, even when 
the signs of the exchanges are arbitrary, and even when ..1Ua contains both 
heat and work. In particular, it is possible that during some elementary 
process, such as compression in a petrol engine, the engine recovers from the 
subsystem b part of the work that it gave up to it during another stage of the 
cycle; Wb is negative in that case. It follows from (6.67) that the efficiency is 
optimum for reversible transformations. By letting the total entropy increase, 
any irreversibility in final reckoning has the effect of dissipating part of the 
available energy -..1Ua in the form of extra heat given up at a total loss to the 
cold source c. The elimination of causes for irreversibilities should thus be a 
primary concern in the designing of thermal engines. Nevertheless a difficulty 
arises; a quasi-reversible transformation is on principle slow, as the system 
must at all times be close to equilibrium. To produce the wanted power one 
must realize a compromise, allowing the smallest amount of irreversibility, 
while providing the energy Wb in the required delay. There is still much to 
be done in this direction, since the actual efficiency of thermal engines rarely 
reaches more than 30 to 40 % of the theoretical maximum efficiency. 

When one applies inequality (6.67) to each of the elementary stages of 
the operation of the engine, ..1Ua consists both of work and of heat. Never
theless, these stages are, in general, organised as closed cycles which return 
all variables of the system a, except the energy and the entropy, to their 
initial values. If we apply the above reasoning to the whole of a closed cycle, 
and if the hot and the cold sources have fixed temperatures Ta and Te, the 
change in energy ..1Ua of a reduces to the heat ..1Ua = Qa = Ta..1Sa , and the 
theoretical maximum efficiency, given by (6.67), can be written in the form 

(6.68) 

The maximum efficiency only depends on the temperatures of the hot and the 
cold sources(Carnot's theorem). Apart from reducing the irreversibilities, the 
only means of improving the efficiency of thermal engines consists thus of 
increasing the difference between the temperatures of the sources. 

A refrigerator or a heat pump contains the same theoretical elements, a, 
b, and c, as an engine, but the signs of the exchanges are the opposite. The 
goal we are now aiming at is, in both cases, to extract heat - Qe > 0 from 
the cold subsystem c and to give it to the hot subsystem a. Of course, this 
process would be forbidden if the subsystem b were not present, as it would 
entail a decrease in the entropy of the system a+c. The price to be paid 
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to make this possible is to supply work - Wb. The double balance of energy 
and entropy of Eqs.(6.64) to (6.66) remains valid; thanks to the work done 
- Wb on the subsystem a, its energy increases by more than the amount - Qe 
received from c, and its entropy increase is larger than the decrease - LlSe in 
the entropy of the cold source c. 

The efficiency of a refrigerator is the ratio (-Qe)j(-Wb) of the heat 
- Qe extracted from the subsystem c of interest to the work supplied - Wb. 
From (6.67), which is valid whatever the signs of the energy exchanges, it 
follows that the efficiency again is optimum for reversible transformations 
and that for a closed cycle it then equals 

( -Qe) Te 
- Wb max = Ta - Te· 

(6.69) 

This theoretical efficiency becomes infinite as Ta - Te ~ 0: it needs very 
little work to cool down a system c, when its temperature is just below that 
of the surrounding air, which usually plays the role of the hot source a. 
This efficiency decreases as the temperature difference increases: one needs 
to supply an infinite amount of work to extract heat from a system close to 
the absolute zero, in agreement with the Third Law. 

For a heat pump the system of interest is the room a to be heated, while 
the cold source c is the atmosphere, and the work supplied, Wb, is electric 
energy. One could, of course, transform this into heat Qa using an electric 
radiator; however, it is much more efficient to use it to transfer an extra 
amount of heat - Qe > 0 from the surrounding air to a. The efficiency of a 
heat pump, the ratio of the total amount of heat received by a to the electric 
energy consumed, - Wb, has for a closed cycle a theoretical maximum equal 
to 

( Qa ) Ta 
- Wb max = Ta - Te . 

(6.70) 

For Ta = 20° C, Te = _10° C, this ratio equals 10 so that one could save up 
to 90 % electricity by heating houses by heat pumps instead of radiators. 

Extremely varied elementary processes are involved in thermal engines. 
During each of the stages of the operating cycle, the subsystems which to
gether make up the engine evolve in relation to other parts which fix some of 
the variables. For instance, in a steam engine, the cycle is close to a Carnot 
cycle: isothermal expansion at a temperature Ta , adiabatic expansion with 
cooling, isothermal compression at a temperature Te , adiabatic compression 
with heating. Mechanical energy is exchanged with b in those 4 stages, the 
total balance for Wb being positive: heat is absorbed and given up during 
the isothermal transformations. The operating of a petrol engine, for which 
the irreversibilities are large, can be idealized by an Otto cycle, where the 
heat exchanges do not take place at constant temperature, but at constant 
volume; the ratio between the minimum volume (ignition) and the maximum 
volume (exhaust) is the compression ratio. In a diesel cycle the combustion 
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occurs at constant pressure. The theoretical analysis of each of these ele
mentary processes is made easier if one uses the appropriate thermodynamic 
potential (§ 6.3.5). 

6.6.2 Osmosis 

Osmosis effects are made possible by the existence of semi-permeable mem
branes that let some kinds of molecules through, but not other kinds. Such 
membranes play, in particular, an important role in biology. The system con
tains two solutions a and b, separated by a semi-permeable membrane; to 
simplify the discussion we assume that there are only two kinds of molecules, 
where the molecules 1 can pass through the partition, but the molecules 2 
cannot. The possibility of transfers of energy and of particles 1 between a 
and b implies (§ 6.2.2) that the temperatures are equal, 

and also the chemical potentials of 1, 

/Lla = /LIb, (6.71) 

On the other hand, the numbers N 2a and N 2b are fixed. There remain two 
independent parameters, the volumes of the two parts a and b; if, for instance, 
these two volumes are fixed, the pressures on the two sides of the wall will, 
in general, be unequal. The presence of a semi-permeable membrane will, in 
producing concentration differences, also produce a pressure difference, the 
so-called osmotic pressure. For instance, in blood the pressure is the same on 
the two sides of the wall of the red cells. However, if we replace the plasma 
by pure water, which can freely pass through the membrane, this produces 
an osmotic pressure because there are extra molecules inside the red cells 
that cannot pass the wall, and the red cells explode. 

In order to study osmosis, it is convenient to take as variables the tem
perature and the pressures P a and Pb, supposed to be fixed by external 
reservoirs. The appropriate thermodynamic potential is the Gibbs function, 
or free enthalpy (§ 5.6.2), 

G = U - T S + P af1a + Pb flb 

G(T, Pa , N Ia , N 2a ) + G(T, Pb, NIb, N 2b ), 

the minimum of which, as function of N la and NIb again gives the equilibrium 
condition (6.71) in the form 

8 8 
8NIa G(T, PM N Ia, N 2a ) = 8NIb G(T, Pb, NIb, N2b). (6.72) 

This relation enables us to find N la and NIb, and to express the osmotic 
pressure Pa - Ph as function of the different concentrations, the temperature, 
and Pb. If, on the other hand, we let the pressures vary, not only the volumes 
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but also the concentrations vary indirectly (as in § 6.4.4) by the transfer of 
molecules of the kind 1 through the membrane. This is the principle of a 
method for desalination of sea water. 

6.6.3 Thermochemistry 

The study of chemical equilibria, like that of osmotic equilibria, enters the 
framework of the maximum entropy principle through repla.cing energy ex
changes which lead to thermal equilibria by particle exchanges. The differ
ence in the nature of these two conserved quantities, though, leads to the 
appearance of some new aspects. 

The extensive variables that characterize the macroscopic state of a sys
tem in which chemical reactions can take place include not only the energy 
and the volume, but also the numbers of molecules of each species, or of ions 
in the case of ionic solutions. If the system contains several phases, for in
stance, crystals in contact with solutions, we must take into consideration the 
extensive variables of each phase. An initial metastable state, where all chem
ical reactions are blocked, is described by giving all these extensive variables 
arbitrary values. The allowed exchanges and chemical reactions establish be
tween these variables constraints defining the domain A of § 6.1.2, and we find 
their equilibrium values by looking for the maximum of the entropy in the 
domain A, provided the system is isolated. Transformations of particles into 
one another are automatically accompanied by energy exchanges so that the 
temperature T is uniform in the state of chemical equilibrium. Let us suppose 
that the volumes of the various phases have been determined by the maxi
mum entropy principle; the total volume is fixed because we have assumed 
that the system exchanges neither work nor heat with the outside. We still 
must write down the conditions which ensure that S is a maximum for all 
allowed changes in the numbers of particles. Each partial derivative (6.7) of 
S with respect to a number of molecules or of ions equals "f = -fJJT = -ka, 
where JL is the appropriate chemical potential; because T is uniform, any 
relations between the "f variables are reflected by the same relations between 
the chemical potentials JL. In chemistry one usually works with numbers of 
moles rather than with numbers of particles; this multiplies the chemical po
tentials with Avogadro's number. We prefer in the present book to measure 
the chemical potentials in energy units, J or eV, rather than in J mol-I. 

Let us denote the numbers of the various particles X j , which may be 
molecules or ions, by N j . For greater generality we use a different index to 
indicate particles of the same kind which are part of different phases, and we 
treat their passing from one phase into another as a reaction. We thus use 
the notation 

as 
JLj == -T aN. = kTaj 

J 

(6.73) 

for the chemical potential of Xj, that is, a particle of a given kind in a 
given phase. We can then write down all possible reactions which lead to 
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equilibrium in the general form 

" (k)X +- 0 L..J Vj j -+ , 

j 

(6.74) 

where, for each reaction k, the numbers vY) are positive, negative, or zero 
integers. For instance, for the dissociation equilibrium of water 

(6.75) 

at high temperatures, the Vj are, respectively, -2 for the H20 molecules, 
+2 for the H2 molecules, and +1 for the O2 molecules. For the equilibrium 
of carbon dioxide gas with water one must, besides the chemical reaction 
proper, 

(6.76a) 

of water with dissolved CO2 , take into account the equation 

(6.76b) 

for the equilibrium between gaseous CO2 and CO2 in solution. In the first 
reaction the vJ1) are 0 for gaseous CO2 , -1 for dissolved CO2 , -1 for H 20, +1 

for the C03H- ion, and + 1 for the H+ ion; in the second reaction the v?) are 
-1 for gaseous CO2 , +1 for dissolved CO2 , and 0 for the other components. 
We look for the maximum of 8 when all reactions (6.74) are allowed. The 
variations dNj in the numbers N j of the Xj particles are then no longer 
arbitrary, but subject to constraints determined by these reactions. If we 
denote by dM(k) the infinitesimal shifts associated with each of the reactions 
(6.74), the general form of the allowed dNj is 

dNj = - L vY) dM(k). (6.77) 
k 

As the dM(k) are independent differentials, the conditions for chemical equi
librium can be written as 

88 
8M(k) = 0, V k, 

that is, 

L 88 8Nj 

8N· 8M(k) 
j J 

= 0, 

or, if we use (6.73) and (6.77), 

(6.78) 
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Chemical equilibrium is thus determined by writing down that the chem
ical potentials are conserved for each of the allowed reactions with a weight 
corresponding to the number of particles involved. For instance, for the equi
librium (6.75) we must have 

for the equilibrium (6.76) the chemical potentials of CO2 are the same in the 
two phases and we must also have 

The whole theory of chemical equilibria rests on the above result. In § 8.2.2 
we shall use it to derive the laws for chemical equilibria in the gas phase, 
using the explicit formula, which we find from statistical physics, for the 
chemical potentials in a gas containing several kinds of particles. 

Another point of view can help us to see intuitively the meaning of the 
relations (6.78). Let us use the example of the reaction (6.75). According 
to a remark in § 6.1.2 we can regard each of the sets of H20, H2, and O2 
molecules as a subsystem of the, isolated, system consisting of the whole gas. 
By assigning to each subsystem the whole volume fl, the total entropy is 
the sum of the three entropies of the H20, H2, and O2 gases. These three 
subsystems are thus superimposed upon one another in space. If we argue in 
terms ofthe elementary constituents, the Hand 0 atoms - for other problems 
we might have to consider radicals or ions - the extensive state variables 
are the numbers N(H/H20) and N(H/H2) of H atoms in the H20 and H2 
subsystems, and the numbers N(0/H20) and N(0/02) of 0 atoms in the 
H20 and O2 subsystems. They have their own atomic chemical potentials 
JL(H/H20), JL(H/H2), JL(0/H20), and JL(0/02). The numbers of atoms are 
conserved and they can be exchanged between the subsystems for chemical 
equilibium, in the same way as energy is exchanged for thermal equilibrium. 
As a result the atomic chemical potentials are equal: 

(6.79) 

Moreover, the numbers of atoms and molecules are in each subsystem re
lated through N(HjH20) = 2N(OjH20) = 2N(H20), N(H/H2) = 2N(H2), 
N(0/02) = 2N(02)' It follows then from the variation (6.73) of Sunder 
changes in the number of particles, for instance, from 

JL(H20) dN(H20) 

JL(H/H20) dN(H/H20) + JL(0/H20) dN(0/H20) 
[2JL(H/H20) + JL(0/H20)] dN(H20), 

that a molecular chemical potential is the sum of the chemical potentials of 
the constituent atoms: 
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p,(H20) 

p,(H2) 

p,(02) 

2p,(H/H20) + p,(0/H20), 

2p,(H/H2 ), 

2p,(0/02)' 
} (6.80) 

Transferring a molecule amounts to transferring the set of atoms which make 
it up, and Eqs.(6.80) mean simply that the tendency of a system, such as 
water, to transfer molecules is the sum of the tendencies to transfer the 
constituent atoms, H, H, and O. Eliminating the atomic chemical potentials 
from (6.79) and (6.80) gives us the required relation 2p,(H20) = 2p,(H2) + 
p,(02)' 

On the microscopic scale we find this additivity of the chemical potentials 
by the same reasoning as in § 6.1.3, when we analyse the form of the grand 
canonical equilibrium distribution. To fix ideas, let us again take the example 
of the equilibrium (6.75) for which the grand partition function is equal to 

ZG[a(H), a(O)] = Tr exp [-,BH + a(H)N(H) + a(O)N(O)] . (6.81) 

Given that we are here writing down the formalism of a fundamental theory, 
the basic objects occurring in (6.81) are the Hand 0 atoms which automat
ically have at equilibrium a unique chemical po,!ential kTa(H) or kTa(O) 

in the whole of the system. The Hamiltonian H includes the interactions 
which are responsible for binding the atoms into molecules. In order to eval
uate (6.81) let us imagine that we have classified the resulting configurations 
according to the number of H20, H2 , and O2 molecules formed, and let us 
denote by H' the effective Hamiltonian which describes the kinetic energies 
and the residual interactions between these molecules, as well as the inter
nal dynamics of the molecules assumed to be indivisible. Let us define the 
molecular grand partition function by 

Z~[a(H20), a(H2 ), a(02)] 

Tr exp [-,BH' + a(H20)N(H20) 

+ a:(H2)N(H2) + a:(02)N(02)] ; (6.82) 

it describes a metastable macroscopic state where the average numbers of 
molecules, (N(H20)), (N(H2)), and (N(02)), independently given, are taken 
into account through Lagrangian multipliers. We can then identify (6.81) with 
(6.82) provided the molecular chemical potentials satisfy the relation 

a(H)N(H) + a(O)N(O) 

== a(H20)N(H20) + a(H2)N(H2) + a(02)N(02)' 

This equation expresses that the system is at equilibrium; it is equivalent to 
(6.79) and (6.80), which microscopically proves (6.78). We see here again that 
the chemical potentials of the atoms add up, whether the atoms are bound or 
not. 
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So far we have assumed that the reactive system was isolated: its volume 
remained fixed and it did not exchange heat with the outside. In practice, its 
temperature and its pressure are often fixed from the outside, so that neither 
its internal energy, nor its volume are given. The equilibrium is then deter
mined by looking not for the maximum of the entropy, but of the isobaric
isothermal Massieu function (§§ 5.6.6 and 6.3.3). This amounts to looking for 
the minimum of the free enthalpy C, where T and P are fixed, while the N j 

vary under constraints as above. We find again the conditions (6.78), with 
J.Lj = 8C/8Nj • 

The reaction heat is defined, for fixed temperature and pressure, as the 
heat supplied to the outside thermostat by the system when the reaction 
considered takes place. More precisely, let us assume that near equilibrium 
a shift occurs for the kth reaction (6.74). By referring this shift to one mole, 
the numbers of molecules or ions of each species change by 

(6.83) 

quantities which, notwithstanding the presence of Avogadro's number NA, 
we must treat as infinitesimal. According to § 6.3.4 the reaction heat, supplied 
to the outside at constant pressure, is given by the change in enthalpy 

-dH -d(U+Pfl) 

= - T dB - fl dP - L J1 j dNj = - T dB (6.84) 
j 

at constant T and P for the given changes (6.83) in the dNj • 

When a system consisting of m phases can undergo p independent chemical 
reactions between r molecular species, Gibbs' phase rule, which results from (6.78) 
and generalizes the remarks of § 6.4.6, gives r + 2 - p - m as the number of inde
pendent intensive equilibrium variables. 

Finally, Le Chatelier's principle (§ 6.4.3) takes on its most useful form in the 
case of chemical equilibria: it indicates how outside parameters affect the con
centrations. When the temperature is increased at constant pressure the chemical 
equilibrium shifts in the endothermic direction. Increasing the pressure at constant 
temperature shifts the chemical equilibrium in the direction corresponding to a 
decrease of volume. 

6.6.4 Elasticity 

The mechanics of deformable media is tightly bound up with thermody
namics since any realistic description of a fluid or solid substance needs a 
simultaneous discussion of its mechanical and thermal behaviour. We shall 
restrict ourselves here to a few remarks about the equilibrium of a homoge
neous elastic solid in the limit of small deformations. 

The points in the solid are characterized by their coordinates T in a state 
which we take as the reference state. They become s after deformation, and 
the tensor 8sa /8rj3 is independent of T for homogeneous deformations. Its 
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antisymmetric part describes a rotation; its symmetric part, the deforma
tion tensor, describes the dilatations and shears and contains 6 independent 
elements. In particular, its trace represents the relative increase of volume. 
The entropy, which is independent of the position and the orientation of 
the solid, is a function of 8 extensive variables, the energy, the number of 
particles, and the product of the 6 elements of the deformation tensor with 
the volume of the solid in its reference state. All mechanical and thermal 
equilibrium properties of the substance can be derived from this function. 
Expression (5.11) for the work done in an adiabatic transformation defines 
the intensive variables which are conjugate to the deformation tensor; they 
also form a symmetric tensor, the stress tensor, the 6 elements of which can 
be interpreted as forces per unit area, either parallel or at right angles to 
such an area. 

The Maxwell relations reduce the number of independent response coef
ficients. For instance, for small deformations, the isothermal elasticity coef
ficients, defined as the partial derivatives, for constant T, of the 6 elements 
of the deformation tensor with respect to the 6 elements of the stress tensor 
depend solely on the temperature and the substance (Hooke's law). Their 
number is 21, rather than 36, for an arbitrary substance, as the 6 x 6 matrix 
that they form is symmetric as a consequence of (6.30). 

Depending on the nature of the substance one can obtain other rela
tions between the response coefficients from symmetry considerations. We 
shall come back to this in § 14.2.3 in the more general framework of non
equilibrium thermodynamics (Curie's principle). Let us note, for instance, 
that the number of elasticity coefficients drops from 21 to 2 for an amorphous, 
isotropic substance, and to 3 for a crystal with all the cubic symmetries. More 
generally, the techniques of §§ 6.3 and 6.4, combined with the exploitation of 
the symmetries of the substance, enable us to establish many relations and 
inequalities, mixing mechanical and thermal properties, between the various 
response coefficients, such as the dilatation coefficients, the elasticity coeffi
cients, or the specific heats. 

6.6.5 Magnetic and Dielectric Substances 

Like the mechanical properties, the electromagnetic properties of substances 
are not independent of their thermal properties. We must thus introduce 
a fundamental function, the entropy or the internal energy, which depends 
on electromagnetic variables to characterize completely all the electromag
netic and thermal equilibrium properties. This synthesis, the subject of many 
treatises on electromagnetism of matter, goes beyond the framework of the 
present book. 

Nevertheless we shall address the subtle problem of the choice of ther
modynamic variables which often leads to confusion. The difficulty lies in 
the fact that the charges and currents interact at a distance through the 
intermediary of fields, so that the separation of the various parts of the sys-
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tern cannot be carried out in a unique way; this affects even the definition of 
work (§§ 5.2.3,5.2.4, and 6.2.1). Moreover, a substance placed in an electric or 
magnetic field is a non-isolated system and this makes it necessary to use the 
proper thermodynamic potential. As a consequence, several procedures exist 
for the definition of the system and of its pairs of conjugate variables; they 
differ by the way in which the fields are taken into account. Different books 
on thermodynamics and electromagnetism use different procedures and, for 
that reason, often seem to contradict one another. We thus find it useful 
to compare here the various methods used in order to make access to the 
existing literature easier. 

In § 11.3.3 we shall elucidate the meaning ofthe macroscopic electrostatic 
quantities by studying a solid at the microscopic scale. Let us just note now 
that the fields as well as the microscopic charge and current densities vary 
wildly over distances of the order of atomic sizes. The quantities characteriz
ing the electromagnetic properties of a substance at the macroscopic scale are 
spatial averages which allow us to get rid of these variations on the atomic 
scale. We thus define a first category of quantities varying slowly on our 
scale, the averages E and B of the microscopic electric field and magnetic 
induction, and the total average charge and current densities gtot and itot. 

Nevertheless, if the medium is polarizable or magnetizable, its macroscopic 
properties depend on the charge and current distributions on the atomic scale 
in two ways. On the one hand, there may exist microscopic itinerant charges 
that are free to travel through the medium. On the other hand, microscopic 
localized charges and currents, qi and qiVi, give rise to the polarization 

(6.85a) 

the average dipole moment per unit volume, and the magnetization 

(6.85b) 

the average magnetic moment per unit volume. The sums in (6.85) are over 
all charges situated inside a volume w which contains a sufficiently large 
number of crystal cells for a solid or of molecules for a fluid; the coordinate 
origin for Ti is chosen to be at the centre of this volume. The vectors P 
and M vary slowly on our scale and the total average charge and current 
densities, 

gtot = {! - div P, itot (6.86) 

can thus be split into the average contributions, {! and i, from the free charges 
and those from the electric and magnetic dipoles. The various average quan
tities, E, B, {!, i, P, M are related to one another through the charge 
conservation law, div i + 8g/8t = 0 and through the macroscopic Maxwell 
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equations, which are obtained by taking a spatial average of the proper, mi
croscopic, Maxwell equations, using Eqs.(6.86). We find for slow space-time 
variations and fixed substances 

curl E 
aB 

div B 0, 
at ' 

div D curl H 
aD . 

[J, at + J; 

1 (6.87) 
D coE + P, H -B-M; 

JLo 
aA 

B curlA. E -'VtP --at ' 

The last two equations are equivalent to the first two and define, up to gauge 
transformations, the scalar and vector potentials tP and A. Here, as every
where in the present book, we use SI units, a table of which is given at the 
end of each of the two volumes. It now remains for us to embed these equa
tions into the framework of thermostatics, and, in particular, to introduce 
thermodynamic potentials and work. We shall show how such thermodynamic 
potentials can be constructed through an integration of the equations of state, 
which express here the polarization and the magnetization at equilibrium in 
terms of the fields. 

Let us consider an uncharged dielectric at thermal and electrostatic equilibrium. 
In order to construct a thermodynamic potential which will characterize its prop
erties we try to evaluate the work received during a transformation which changes 
its electric variables P, E, and D. To do this, let us assume that the material is 
subjected to the action of a set of charges qa carried by conductors C\' at potentials 
Pa , for instance, that it lies between the two plates of a capacitor. The potential 
p( r) is chosen so as to vanish at infinity. If there were no dielectric, these same 
charges qa would produce a field Eo(r}; when the dielectric is present, it produces 
an extra field by becoming polarized. This replaces Eo by the field E which in the 
whole of space is given by the Maxwell equations (6.87) in terms of the qa. To shift 
the equilibrium state we must modify the charges qa carried by the conductors. Let 
us imagine that infinitesimal charges oqa are dragged for that purpose from infinity 
onto the conductors. The total work received during this adiabatic transformation 
by the total system consisting of the external charges, the field, and the dielectric, 
is 

(6.88) 

Using the Maxwell equations (6.87) we can also write this expression in terms of 
the field as follows: 

(6.89) 

where the integral is over the whole of space. The field E appears as an intensive 
variable or a "force", and the product of the electric induction D with the volume 



6.6 Other Examples 287 

as the associated extensive variable or "position", for the system consisting of the 
ensemble of the dielectric, the fields, and the external conductors. 

(i) So far there is no ambiguity. The difficulties arise when one tries to split the 
work (6.89) into contributions from one or other part of the system. Actually, this 
work contains not only the energy supplied to polarize the dielectric, but also some 
energy used to produce the field. When there is no dielectric, the field generated by 
the charges qa equals Eo = - 'I7<Po, and the work provided by the change considered 
in the charges is 

A natural procedure in this context consists in splitting the energy into two parts, 
one relating to the sources or to the field when there is no dielectric, which equals 

1 J 2 3 2 EO Eo d r, (6.90) 

and another relating to the dielectric and its interactions with the field. The change 
of the latter during an adiabatic transformation is the work 

which, if we use (6.87), can be transformed into 

8W(0) = J {(E· [8D - 8Doll + ([D - Do]' 8Eo) - (p. 8Eo)} d3r. 

The first term can, if we once again use (6.87), be written as 

-J ('I7<p. [bD - bDoll d3r = J <Pdiv [8D - 8Do] d3r 

J <P[8Q - 8£10] d3r 

o· , 

it vanishes because the free charges carried by each conductor are the same and are 
changed in the same way whether or not there is a dielectric. Similarly, the second 
term, equal to 

J ([D - Do] . Eo) d3r = L (qa - qOa) 8<Poa , 
a 

vanishes, and the work 8W(0) equals 

(6.91) 
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The two conjugate variables appearing in this definition of the work received by the 
dielectric are the applied field EO, calculated from the charges qo; as if there were no 
dielectric, and the polarization of the latter. In contrast to the work (6.89) which 
involves the whole space, the work (6.91) received by the dielectric is expressed as 
an integral over the volume of the dielectric only. 

If we know, theoretically or experimentally, the equation of state which gives 
the polarization P as function of the field E, or, what amounts to the same, of Eo, 
we can find a thermodynamic potential by integrating (6.91). Since usually P is 
expressed as a function of the applied field Eo and the temperature, this naturally 
introduces a free energy F(O)(T, Eo); F(O) is the thermodynamic potential suitable 
for the description of the dielectic in the field produced by given charlles, which 
would produce Eo if there were no dielectric. Expression (6.91) for 8W 0) enables 
us to express F(O) as 

(6.92) 

The difference (6.92) can be interpreted as the work done on the dielectric if one 
brings it from infinity to the region where the field is Eo when the dielectric is not 
there, this transformation taking place at constant temperature and for fixed values 
of the outside charges. The Legendre transform 

(6.93) 

of (6.92) with respect to T is the internal energy of the system consisting of the 
dielectric and of its interactions with the applied field Eo which would be created by 
the external charges alone. 

For a study of the dielectric at the microscopic scale, rather than writing down 
a global Hamiltonian of the dielectric and the outside charges, it is useful to re
strict oneself to a partial Hamiltonian describing the dielectric in the field Eo and 
forgetting about the charges; this Hamiltonian depends on Eo only through the 
term 

J ~ 3 
- (Eo· P) d r, (6.94) 

where J P d3r is the sum of the microscopic electric dipoles; it contains other 
terms accounting for interactions between the latter. This approach is the micro
scopic counterpart of the preceding one. In fact, according to (5.14) and (5.15), if 
Eo is varied slowly and if the dielectric does not exchange heat with the outside, 
the change 8(H) can be identified with (6.91) where P is interpreted as the sta
tistical average of P. By regardin~ this energy variation as work in an adiabatic 
transformation, we can identify (H) with the macroscopic internal energy (6.93) 
that we have just defined. The replacement of the applied field Eo in the macro
scopic Maxwell equations (6.87) by the total field E is the result of the interactions 
between the dipoles (§ 11.3.3). 

(ii) We have so far included in the definition of our system not only the di
electric, but also its interaction with the field Eo. Nevertheless, we can completely 
get rid of the latter as follows. We no longer include in the Hamiltonian the inter
action term (6.94); to fix the polarization, now to be considered an independent 
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variable characterizing the state of the system, we must introduce a constraint. In 
the resulting Boltzmann-Gibbs distribution, expression (6.94) appears as the con
straint term, and (3Eo can now be interpreted as the Lagrangian multiplier.3 On 
the macroscopic scale the fundamental function corresponding to the new variables, 

U(S, P) = F(O) + J (Eo· P) d3r + TS, (6.95) 

is obtained through a Legendre transformation of U(O) with respect to Eo. As it 
is also the expectation value of the new Hamiltonian, we can interpret it as the 
internal energy of just the dielectric without the field. Its differential, 

dU = TdS + J (Eo· 8P) d3r, 

allows us to consider 

(6.96) 

as work received by the dielectric itself, whereas 8W(0), given by (6.91), includes 
the interaction of the field with the dielectric. 

(iii) There is, however, another way to split the total work (6.89) into two 
parts, one to be related to the field without the dielectric and the other to the 
dielectric itself. Let us assume for this purpose that the system is controlled, no 
longer by fixing the charges qo. carried by the external conductors, but by fixing 
their potentials Po., for instance, through a system of generators. If there is no 
dielectric, the potentials Po., which we assume to be invariable, produce the field 
El. It is essential to note that this new applied field differs from Eo; in fact, when 
the dielectric is removed, the generators deliver currents and change the external 
charges qo., while producing some electric work. The energy of the field when there 
is no dielectric is now 

1 J 2 3 "2 cO El d r, 

and we are led to define work received by the dielectric during an adiabatic trans
formation as the difference : 

This work is generated by a change 8po. in the potentials, and the fields El and 
E are this time associated with the same set of potentials Po., whereas Eo and E 
were associated in 8W(0) with the same charges qQ. Using the Maxwell equations 
we can transform 8W(1) into 

3 Similarly, in Exerc.5a when we described the elasticity of a fiber, we could in the 
Hamiltonian include or not the term coupling the length of the fiber with the 
stretching weight, which played the role of the field. 
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The first term now eqnals 

.I (<p - <PI) divbD d3 r 

I 3 . (<p-<Pl)bl2d r 

L (<Po: - <PIn) bqo: = 0, 
0: 

as the values of the <Po. are now kept fixed. The second term vanishes similarly, and 
hence bW(ll is equal to 

(6.97) 

Even though the work bW(ll differs from bW(O) and from bW, because the applied 
fields Eo and El, which are, respectively, related to fixed charges and fixed poten
tials, differ, (6.97) is still expressed as an integral over the inside of the dielectric 
only. It can be interpreted again as work receiv(,d by the dielectric and by its inter
action with the field but for fixed external potentials. The conjugate variables are 
now the polarization and the applied field E 1, mlculated from the potentials <Po. as 
if there were no dielectric. Throngh integration we introduce a new free energy, 

(6.98) 

which represents the total work supplied to bring the dieledric from infinity to the 
region where it gets the polarization P, when this transformation is carried out at 
constant temperature and for fixed values of the external potentials. 

(iv) The work (6.98) includes an electrostatic contribution 

L <po.(qo. - qlo.) = .I [(El' D) - (E· Dl)l d3r 
a 

(6.99) 

delivered by the generators. If, as in § 6.3.4, we want to eliminate this extra work, 
we are led again to introduce a new thermodynamic potential 

through a Legendre transformation. The variation of F(2l, 

F(2 l (T, El) - F(2 l (T, 0) = .I bW(2) 

11 d)" .I (P(T, )..El)· El) d3r, 

(6.100) 

(6.101) 

then represents the work supplied to bring the dieledric from infinity to the region 
where the field El was produced by the fixed potentials <Po., excluding the work done 
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by the generators. The free energy F(2) is the thermodynamic potential describing 
the dielectric itself, in the field produced by fixed potentials and equal to El when 
there is no dielectric. Notwithstanding their similarity, one should not confuse the 
free energies F(O) and F(2): they do not describe the same physical system as they 
do not take the field into account in the same way. 

Table 6.1. Work done on a dielectric 

Interaction with field 

Field produced by included not included 

fixed charges -(p. bEo) (Eo· bP) 

fixed potentials (El · bP) -(p. bEl) 

The various possible definitions that we have thus obtained for the energy 
"of the dielectric" share this energy out differently among the various parts 
of the complete system formed by the external conductors, the field, and the 
dielectric proper. In fact, only the global expression (6.89) which includes 
the field sources has an intrinsic significance. All other expressions, defined 
through differences, must be regarded as convenient calculational tools suited 
to some physical situation or others. The external sources for the field are 
eliminated in all cases, but this elimination leads to different results, depend
ing on the nature of the sources, which are fixed charges in the case of (6.91) 
to (6.96), and fixed potentials in the case of (6.97) to (6.101). Moreover, in 
each of those two situations one can either include or not in the physical 
system the interaction of the dielectric with the field. These possibilities lead 
to introducing the four different definitions (6.91), (6.96), (6.97), and (6.101) 
of the work received by unit volume of the dielectric, which are summarized 
in Table 6.1. In all cases the conjugate variables are the polarization P and 
the so-called "applied" field Eo or El that would be produced by the fixed 
charges or potentials, if there were no dielectric. However, in the first and the 
last case, the field plays the role of "position" and the polarization that of 
"force", whereas the opposite situation occurs in the second and third cases. 
It is important to distinguish those cases clearly in order correctly to identify 
the natural variables of the thermodynamic potentials which always are the 
"position" variables ~a. The latter may differ from the extensive variables Ai 
of § 6.1.2 in the case of long-range forces. 

It is also important to note that the first point of view is the best suited 
for the microscopic study of dielectrics. The applied field Eo, which does not 
include the field produced by the polarization of the dielectric, then occurs 
in the Hamiltonian through (6.94). It is coupled to the elementary charge 
observables, the average dipole moment of which per unit volume can be 
identified with the polarization. 
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We have restricted ourselves so far to an uncharged dielectric, assuming that 
the only free charges were the qo. carried by the external conductors. If the system 
studied not only can be polarized, but also can carry a density g( r) of free charges, 
the total work (6.88) can be expressed as 

where the second integral does not include the external charges. Hence we find 
an additional contribution to 8W(O), equal to J g 8<Po d3 r. Similarly, in the four 
cases of Table 6.1, the contribution of the free charges to the work results from the 
replacement of P by -g and of Eo, or EI, by <Po, or <Pl. 

The same considerations hold for magnetic substances in thermal and magne
tostatic equilibrium. In general, the electric and magnetic fields are assumed to 
be generated by charges and currents carried by external conductors. To change 
the fields we must apply on those charges external forces, which during a time 8t 
provide the total work 

(6.102) 

where we have used relations (6.87) for the field E in terms of the potentials. 
Equation (6.102) extends to the regions where there are free charges and where 
currents flow; by using the Maxwell equations (6.87) we can change it into an 
expression in terms of the fields: 

(6.103) 

We are thus, by including in the system the sources of the fields, led to consider 
the inductions Band D as "position" variables and the fields Hand E as "forces". 
From now on, we focus on the first term of (6.103), as we have already discussed 
the second term. 

(i) Let us define Bo as the magnetic induction that would occur if we removed 
the magnetizable substance without acting upon the external currents. We can, 
for instance, imagine that these currents flow in superconducting spools, to avoid 
dissipation into heat, without them being connected to generators. Under those 
conditions we can subtract from the magnetic contribution to (6.103) the part 
which survives when there is no magnetic substance; this defines a work 

Evaluating it explicitly gives 

8W(O) = j(H' [8B - 8BoD d3r + j ([B - Bol' 8Ho) d3 r 

- j (M· 8Bo) d3r. 

The first term can be transformed as follows: 
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J (H. curl[8A - 8Ao]) d3r 

J (curlH· [8A - 8Ao]) d3r 

J (j. [8A - 8Ao]) d3r, 

and it vanishes because we assume that no work is done on the circuits generating 
the field. The second term similarly vanishes, and we are left with 

(6.104) 

This work can be assigned to the transformation of the magnetic substance, but it 
includes a contribution associated with its interaction with the field. The substance 
is brought into the field without other actions on the circuits; this induces currents 
and hence the currents i and io will be different. Part of 8W(O) is used to achieve 
this. 

(ii) The physical situation of interest is the one where the external currents are 
kept constant while the magnetizable substance is being introduced. If the latter 
were not present, they would produce the induction BI. The work received by the 
substance, including its interactions with the field, for an arbitrary change in the 
parameters, is obtained by subtracting from (6.103) the value of the work when 
there is no substance present, that is, 

This expression can again be changed into 

8W(I) = J ([H - HI]· 8B) d3r + J ([8H - DHI]· BI) d3 r 

+ J (BI· 8M) d3r, 

where the first two terms, 

and 

vanish because the currents are kept constant. We have thus 

(6.105) 

Using this we get by integration the total work released by the generators to main
tain the external currents constant and by an observer to brinr the substance from 
infinity. This work appears as a change in the free energy F(I , defined by 
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(6.106) 

(iii) If we are solely interested in the work, 8W(2), done on the substance itself 
with the external currents being kept constant, and not in the electric work provided 
by the generators, we must subtract the latter from 8W(l). This electric work is 
equal to 8 J (A· j) d3r or to 8 J (Al . h) d3r, depending on whether or not the 
magnetic substance is present. We get thus 

or 

8W(2) - 8W(l) = - 8 J {(A- j) - (Al . h)} d3r 

-8 J {(A·h)-(Al·j)}d3r 

- 8 J {(A· curlHl) - (Al . curlH)} d3r 

-8 J {(B.Hl)-(Bl·H)}d3r 

- 8 J (Bl . M) d3 r, 

(6.107) 

This is the point of view which is best suited for a microscopic study of magnetic 
substances. In fact, in the Hamiltonian (2.65) of an arbitrary system of spinless 
charged particles with charges ei we can choose the vector potential in the form 
A(r) = ~[Bl x r], if Bl is a uniform field produced by external currents assumed 

to be fixed. This applied field occurs in it as a parameter and the corresponding 
"force" observable, defined by (5.13), or, 

L 
i 

L --M, (6.108) 

can, apart from a sign, be identified as the total magnetic moment observable, 
in agreement with expression (6.107) for the macroscopic work. One can, by in
tegrating (6.107) and (6.108), also identify the mean value of the Hamiltonian 
with the macroscopic internal energy. These results can be extended to the case 
of particles with spin, with magnetic moments iiii equal to -/-tBlTi for electrons, 
as the applied magnetic field Bl then occurs in the Hamiltonian through the term 
- L:i(Bl . iiii). The terms in the Hamiltonian describing the interactions between 
currents and magnetic moments are responsible for the total field B occurring in 
the macroscopic Maxwell equations (6.87). This analysis justifies expression (6.107) 
for the magnetic work which we assumed without proof in § 1.3.3. 
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Altogether, for magnetic substances we have again the same ambiguities 
in the definition of work, of energy, and of conjugated variables as for di
electrics. The polarization P is simply replaced by the magnetization M, 
and the "applied" electric fields Eo (for fixed external charges) or El (for 
fixed external potentials) by the applied magnetic inductions Bo (for the case 
when one does not act upon the external circuits) or Bl (for fixed external 
currents). The last case (6.107) is now the best suited for a microscopic analy
sis, as the applied field Bl produced by fixed external currents is coupled to 
the magnetic moment observable. 

The extreme variety of substances in existence, dielectrics, piezoelectrics, 
diamagnetics, paramagnetics, ferromagnetics, ... , is associated with a large 
variety of forms for the electromagnetic thermodynamic potentials. As usual, 
thermodynamics provides us with general relations, while statistical mechan
ics allows us to determine the particular form of the thermodynamic poten
tials according to the circumstances. We have seen an example in Chapter 1 
which enabled us, in particular, to study a magneto-caloric effect - cooling 
through adiabatic demagnetization - where electromagnetism and thermo
dynamics are intimately connected. 

Summary 

The macroscopic equilibrium states of an isolated system are determined by 
the maximum entropy principle, a consequence of the maximum statistical 
entropy principle which itself follows from probability and information theory. 
The thermodynamic entropy can be interpreted as the microscopic disorder 
{6.3} associated with given values of the macroscopic variables. The intensive 
variables, which are the partial derivatives of the entropy with respect to the 
extensive variables, become balanced at equilibrium. 

The thermodynamic potentials are useful to determine the equilibrium 
state of a system in contact with sources of heat, work, matter, ... , and to 
evaluate their mutual exchanges. Methods involving differential calculus, Leg
endre transforms, and lacobians provide general relations between response 
coefficients. The latter also satisfy inequalities which can be derived from the 
fact that the entropy is concave. 

We have reviewed various applications: the stability of equilibria, criti
cal points, phase separation, thermal engines, as well as osmotic, chemical, 
elastic, and electromagnetic equilibria. In particular, we established relation 
{6.78} between chemical potentials which governs chemical and similar equi
libria, and we have discussed in detail the concept of work for dielectric and 
magnetic substances. 
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Exercises 

6a Equation of State, Specific Heats, and Chemical Potential 

Assume that the equation of state P( v, T) of a fluid, where v is the molar 
volume, has been determined experimentally. What can one say about the 
specific heats? about the chemical potential? Applications: the van der Waals 
equation (P + a/v2)(v - b) = RT; a perfect monatomic gas, in which case 
one can use dimensional analysis. 

Solution: 

All equilibrium properties will be known once we have determined a thermodynamic 
potential. As the natural variables involved here are v and T we must calculate the 
Massieu function lftc or the free energy F = -Tlftc, starting from 

aF(T,N,n) = _ p (nNA T) 
an N' . 

Integrating from some fixed reference volume Vo we find 

N l.flNA/N 
F(T, N, n) = - N P(v, T) dv + Ncp(T), 

A va 

where the form of the integration constant takes the extensivity of F into account; 
the unknown function cp(T) is independent of the density. The entropy, chemical 
potential, and specific heats per mole can now be derived: 

s = _ aF(T, NA, n) = l.v ap(v, T) d _ N '(T) 
aT aT v A cp , 

va 

aF F n (nNA ) 
aN = N + N P --y;j' T , 

a2 F l v a2p " -T 8T2 = va T 8T2 dv - NAT<p (T), 

Cp = C Tva2 = C _ T (8P) 2 / ap 
v+ "'T v aT avo 

Extra information follows from the fact that the entropy is concave, which is 
expressed through (6.50) and (6.51), that is, Cv > 0 and ap/av < o. For all T the 
function cp must therefore satisfy the condition 

" . 1 l.v a2p cp (T) < mm -N -a 2 dv. 
v A va T 

As cp depends only on T, measuring a specific heat at low density, where the 
gas is perfect, is sufficient to determine cp", and thus F apart from a linear function 
ofT. 

For the van der Waals fluid we find for one mole 
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a 
-- - RT In(v - b) + NA<.p(T), 

v 
R In (v - b) - NA<.p'(T), 

kTv 2a 
- kTln(v - b) + - - - + <.p(T) , 

v - b VNA 

Cv - NAT<.p"(T), 

" R2T 
- NAT<.p (T) + RT _ 2a(v _ b)2Iv3' 

with <.p" < O. The specific heat at constant volume is independent of the density. 
The results for the perfect gas correspond to a = b = O. Dimensional analysis 

then achieves almost completely the determination of all equilibrium properties of 
a perfect monatomic gas. In fact, the expression for F shows that the combination 
In v - <.p(T)lkT must be dimensionless. Hence, <.p(T)/3kT must behave as the log
arithm of a quantity which has the dimension of a length and which is constructed 
uniquely from k, n, T, and the atomic mass m. This leads to 

[ N ( n )3/2] F(T,N,n) = NkT In n c mkT . 

There remains a single unknown, the dimensionless constant c which cannot be 
determined except through a statistical physics calculation. In Chap.7 we shall see 
that c equals (211')3/2 Ie. This constant only occurs, additively, in SINk and p,lkT. 
The molar specific heats Cv = ~ Rand Cp = ~ R are completely determined from 
the equation of state Pv = RT and dimensional analysis. 

Note. Using (6.21) shows that the convexity conditions of U(S, N, n), 

are equivalent, after a Legendre transformation, to 

V T and n. 

For one mole of a van der Waals fluid and T < Te = 8al27 Rb, the quantity 

82F(T,v) 2a RT =--+-:---:-:-;;: 
8v2 v3 (v - b)2 

is negative between two v values which describe the limits of metastability of the 
liquid and gas phases. Just as we did for S in § 6.4.6, we are led to replace, for given 
T, the F(v) curve determined above by its convex envelope. This contains, between 
the values VI and Vg, corresponding to the liquid and the gas in stable coexistence, 
a straight line segment which is tangential to F(v) at both ends. Its slope -Ps(T) 
determines the saturated vapour pressure at the temperature considered, T < Te , 
that is, the height of the plateau in the isotherms between VI and Vg. From the 
expression for F in terms of the equation of state we find, for fixed T, 
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This equation determines the position of the liquefaction plateau in the (v, P) plane 
and reflects analytically the Maxwell construction (§ 9.3.3). 

6b Isotherms, Adiabats, and Absolute Temperature 

Knowing the network of isotherms of a mole of fluid in the (v, P) plane we 
can determine a relative temperature scale. Let us assume that we also know 
the adiabat network. Are those two networks arbitrary? Can one use them to 
derive the absolute temperature and the entropy of each state, characterized 
by v and P? Application: constant Pv isotherms, constant Pv' adiabats. 

Hints: 

Condition (6.40) which connects v, P, S, and T is necesssary and sufficient for the 
existence of a thermodynamic potential such as U(S,v), as it is equivalent to the 
identity of the mixed derivatives, 

~ 8U __ (8P) _ d(P,v) 
8S8v - 8S v - d(v,S)' 

8 8U (8T) d(T, S) 
8v 8S = 8v 5 = d(v, S) . 

It expresses the fact that the work provided by the fluid during an infinitesimal 
Carnot cycle equals the heat it receives because the Jacobian d(P, v)/d(T, S) equals 
the ratio of the areas f P dv and f T dS. 

Let us characterize the isotherms by a relative temperature 0, a function O(v, P) 
which has a constant value along each isotherm. We try to reparametrize these 
isotherms by the absolute temperature which is an unknown function, T(O), of O. 
Similarly, knowing the adiabat network gives us a function u( v, P) and we want to 
determine the entropy S(u) in terms of the parameter u. Condition (6.40) gives 

J - d(P,v) _ dT dS 
= d(O,u) - dO duo 

This relation implies that the isotherm and adiabat networks cannot be arbitrary: 
they must be such that the Jacobian J, known as function of 0 and u, can be factor
ized as J = f(O)g(u), which is expressed as 82 In J/808u = O. In fact, knowing the 
isotherm network and two adiabatic curves only, we can reconstruct the whole adia
bat network by solving that equation, which is invariant under a reparametrization 
of the curves. If it is satisfied, we find T and S, respectively, as the primitives of 
af(O) and g(u)/a. The arbitrary multiplicative factor a corresponds to the choice 
of the unit of temperature; the additive integration constants of T and S are not 
determined by the isotherm and adiabat networks - we could have expected this 
for S but not for T. 

In the example Pv = 0, Pv' = u, we have 
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which can be factorized with 1(8) = 1, g(lT) = 1/(-y - 1)0". We find 

T 

S 

a8 + b = aPv + b, 
1 

( ) InO"+c = 
a,-1 

1 
In Pv' + c. 

a(-y - 1) 

For b = 0 we find the properties of a perfect gas (a = 1/ R), but fluids with a 
Pv = R(T - b) equation of state are allowed. 

6c Interfaces and Capillarity 

We indicated in § 6.1.2 that the extension of the methods of thermodynamics 
to inhomogeneous systems often requires the introduction of non-local terms, 
either in the entropy or in the energy. Even if we are not dealing with forces 
with a macroscopic range, we are thus led to violate the extensivity in those 
regions of space where the properties change rapidly, for instance, in the 
vicinity of an interface between a liquid and its saturated vapour. We want 
to study the variation with the height z, across the interface, of the density 
n(z), from the value n] of the liquid as z --. -00 to the value ng of the gas 
as z --. +00, in a fluid kept at a constant temperature. We must look for 
the minimum of the free energy F {T, n} considered as a functional of the 
unknown density n(r). We take for F the semi-empirical form 

where the integration is over a fixed volume and where the total number of 
particles N = J n d3r is also fixed. The first term, calculated as if the energy 
and the entropy were additive, involves the free energy density J[T, n] of a 
fluid of density n, if it were homogeneous. The second term, with a > 0, 
describes a short-range non-local effect which tends to make the fluid homo
geneous and which comes either from the microscopic entropy or from the 
microscopic energy; in Exerc.ge we shall derive it in a statistical mechanics 
model. The last term is the gravitational energy which tends to separate the 
phases. 

1. Write down the equations which determine n(r). Introduce a La
grangian multiplier f-L to take into account the constraint on N. 

2. According to Landau's model for phase transitions the behaviour of f 
near the critical point Te, ne, f-Le is dominated by the terms 

apart from a possible additive constant, where band e, as well as a, are 
positive constants. Neglect the gravitational term and show that there exists 
only one homogeneous phase for T > Te, and also for T < Te, f-L i= f-Le in 
which case the density takes on different values n] for f-L = f-Le + 0 and ng for 
f-L = f-Le - o. 
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3. When ng < N / [l < nl for T < Tc we must take JL = JLc. The system is 
then necessarily heterogeneous. Calculate the density n(z) as function of the 
height z, taking into account that the gravitational term is small compared 
to the others. How does the thickness of the liquid-gas interface change as 
T -> Tc? 

4. Show that the grand potential of the liquid in equilibrium with its sat
urated vapour contains not only a term proportional to the volume - taking 
the same value per unit volume in the two phases - and the gravitational 
energy, but also a term proportional to the area of the interface. Evaluate 
the latter term. Show that there is a surface tension, also called capillary 
force, which tends to reduce the area of the interface. What becomes of this 
force as T -> Tc? 

Answers: 

1. The minimum of the free energy for fixed N is equivalent to that of the grand 
potential: 

J d3rn(r) = N. 

2. The solution of 

aJ[T,n(r)] (T)'<"72 --'--'--::-a-n-'-'-'- - a v n + mg z - JL 

C 3 
b(T - Tc)(n - nc) + 6(n - nc) + JLc - JL = 0, 

0, 

found graphically, is unique for T > Tc. Among the 3 solutions which exist for 
T < Tc the two extreme ones are local minima; the lowest minimum is reached for 
the largest value of n if JL > JLc, and for the smallest value of n if JL < JLc, with 

V6b(TC - T) 
nc+ , 

c 
if JL -> JLc + 0, 

n ...... ng = nc _ V6b(Tcc - T), if JL --> JLc - o. 

3. From the equation 

it follows that 

- f - JLcn - - a -d [ 1 (dn)2] 
dz 2 dz 

= o. 

The integration constant E: must be such that dn/dz --> 0 as z --> ±oo in the two, 
gas and liquid, phases. By construction, f - JLcn has the same minimum E: in these 
two phases, whence we find that E: = -3b2(Tc - T)2/ 2c. The final result is 
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dz -~ J ~Vr=if=-=~=en=-=E - 2 (:k;Ca J --::-:=---=-:--:--d n---;---------:-;o V --;; 6b(Te - T)/c - (n - ne)2' 

or 

J6b(Te - T) h [Jb(Te - T) ( )] n = ne - tan z - Zo . 
c 2a 

The rOle of the field of gravity is to fix the orientation of the interface z = Zo and 
the side z < Zo on which one finds the liquid. The density falls from nl to ng over a 

thickness of the order of [2a/ (Te - T)bJ 1/2. The thickness of the interface increases 
and becomes macroscopic close to the critical point, where it diverges, while nl - ng 

tends to zero. 
4. The grand potential density, which depends on r through n, 

f[T, n]- JLn + ~ a(Vn)2 + m.gzn, 

at JL = JLe equals 

1 
f - JLen + - a 

2 
( dn ) 2 _ ( dn) 2 - E+a-dz - dz' 

where we have dropped the gravitational term. It gives, apart from the volume 
term ED, a positive contribution in the interface region, proportional to the area 0" 

of this interface, with a coefficient 

j +OO (dn)2 inl 
a dz dz = a 

-00 ng 

rae r l dn [6b(Te - T) _ (n _ ne)2] = ~ J ab3 (Te _ T)3/2. 
V 12 in C C 2 

g 

When the geometry changes in such a way that the interface area increases by 
dO", while the total volume, T and JL = JLe stay constant, an increase in the grand 
potential can be identified as an amount of work done, equal to 'P dO". The coefficient 
'P can thus be interpreted as a force, the surface tension per unit length of the 
border of the interface. It vanishes as T --> Te while the difference between the 
phases disappears. 

6d Critical Behaviour in the Landau Model 

Many phase transitions have the following distinguishing feature which in
volves a qualitative change with temperature: an extensive variable, the "or
der parameter", vanishes in the high-temperature, disordered phase and be
comes non-vanishing in the low-temperature, more ordered phase. For in
stance, in an Ising ferromagnet (Exerc.9a) the order parameter is the mag
netization M in the z direction. When there is no field, it vanishes above 
the Curie point while below it, it can spontaneously take on one of the two 
val ues ±Ms . In the presence of a field B (r) in the z direction and at a tem
perature T, the order parameter M( r) at equilibrium is a function which has 
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to be determined. To do this we use the method of § 6.3.3 and look for the 
minimum of the free energy as functional of M (r). Landau has suggested to 
take for the free energy in the vicinity of the critical point Te , which here is 
the Curie point, the empirical form 

F{T,M} = J d3r {f[T,M(r)]+!a[V'M]2- B (r)M(r)}, (6.109) 

(6.110) 

where f describes the extensive part, the only one which exists for a homo
geneous system; the last term of (6.109) is the coupling between the order 
parameter and the external field, and the term with V'M represents the ten
dency for the material to become homogeneous. The same model has been 
used in Exerc.6c for describing the liquid-vapour transition near the criti
cal point, replacing M(r) by n(r) - ne, B(r) by -mgz + J-L - J-Le, and the 
free energy by the grand potential. Landau's model can also be extended 
to study other transitions through including cubic terms, describing, for in
stance, asymmetry in the liquid-vapour transition, or terms of a degree higher 
than 4, for tricritical points. One can also introduce several order parame
ters, such as the components of the magnetization for a ferromagnet which 
can become magnetized in arbitrary directions or the concentrations for a 
multi-phase mixture. 

1. Determine for a homogeneous equilibrium situation with B = 0 the 
behaviour as function of IT - Te I of the spontaneous magnetization Ms below 
Te , of the magnetic susceptibility X = 8M / 8B, and of the specific heat C at 
constant volume, on both sides of Te. How does M(B) behave at T = Te in 
the case of a homogeneous field B which tends to zero? 

2. If the field B( r) is inhomogeneous and weak, the magnetization behaves 
like 8M(r) == M(r) - Ms '"'"' J d3r x(r - r')B(r'). Calculate x(r - r') for 
T > Te, T < Te, and T = Te, and give the value of its range A. 

3. Recalling Exerc.4a, show that in canonical equilibrium the fluctuation 
..:1M of the magnetic moment in unit volume when there is no field diverges 
as T ---+ Te. Give an expression for the correlation (8M(r)8M(r')) in terms of 
the non-local susceptibility x(r -r') for B = 0, and show that the correlation 
length diverges as IT - Tel ---+ O. 



Results: 

1. We find 

_ [6b(Te - T)] 1/2 
Ms - , 

c 

x 
1 

b(T - Tc)' 
1 

T > Te , 

x 2b(Te - T)' 
T < Te , 

C = 3b2 DT B(Te _ T), 
c 

M(B) ~ (6:f/3
, T=Te , 
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vanishes as (Te - T)1/2. 

diverges at Te. 

diverges at Te. 

discontinuous at Te. 

singular as Bl/3. 

2. Expanding to first order in 8M(r) and Fourier transforming the equation 

c 3 2 b(T - Te)M +"6 M - a V' M - B(r) = 0, 

we find 

x(r - r') 

with 

>. = 00, 

3. We have 

e-1r-r'I/A 

41Talr - r/l' 

T = Te. 

T > Te, 

T < Te , 

I 1 82 In Z 
(8M{r)8M{r)) = (32 8B{r)8B{r') 

.! 8M{r' ) 
(3 8B{r) 

the correlation length>. diverges as IT - Tel- 1/2 . 

kTx{r - r'); 
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Note. Long-range correlations occur in the vicinity of a critical point, even though 
the microscopic interactions may have a range of the order of A. For instance, for 
the liquid-vapour transition near criticality, A may become /Jm or larger. Light, 
with wavelengths of 0.4 to 0.6 /Jm, is then scattered strongly by the fluctuations of 
the material which looks milky: "critical opalescence". Strong fluctuations and long 
range correlations indicate pathological behaviour at the critical point. They are 
neglected in Landau's theory and must be taken into account by a correct theory 
of critical phenomena. 

Wilson's theory responds to this objective. Along the lines of the remarks made 
in §§ 5.7.3 and 6.1.3 one imagines that the canonical partition function Z is calcu
lated in two stages, by first taking the trace over the microscopic variables with 
exact constraints on the values of the order parameter M (r) in each volume ele
ment. Those are free to vary in canonical equilibrium, and Z will subsequently be 
obtained as a weighted integral over their possible values. They play the role of the 
A variables of (5.88) so that the probability distribution of M(r) is proportional to 

p{ M} ex e -,BF{T,M} , (6.111) 

where the two terms U - T S of F {T, M} have the same origin as in § 5.7.3. This free 
energy under constraints, F{T, M}, is taken to be Landau '8 free energy (6.109). 
The required partition function, which is the normalization constant of (6.111), 

Z = e-,BF = J dM(r)e-,BF{T,M}, (6.112) 

is found in the second stage of the calculation through functional integration over 
all values of M (r) at each point. Sufficiently far from the critical point the minimum 
of F{T, M} is well pronounced so that the free energy F is just that minimum, 
in accordance with the saddle-point equation (5.92). We see thus that Landau's 
theory is justified in that region. However, in the immediate vicinity of the critical 
point, where the coefficient of the term in M2 in (6.110) vanishes, the statistical 
fluctuations of M(r), given by (6.111), become important. As a result, the correc
tions to the saddle-point method (Exerc.5b) make sufficiently large contributions 
to (6.112) to invalidate the critical behaviour found above in Landau's theory. Wil
son and his followers showed that the form (6.110) was sufficient to calculate the 
correct critical behaviour and they actually did this, starting from (6.112), thus 
obtaining results in agreement with experiments for the various kinds of observed 
critical points. 

6e Equilibrium of Self-Gravitating Objects 

The size and the structure of objects such as planets or stars of various types 
and ages are governed by an interplay between the thermodynamic properties 
of matter and the gravitational forces within the object. At each point, the 
entropy density s( r) is a function of the internal energy density u( r) and of 
the densities of the constitutive particles. The total energy E = U + EG is 
the sum of the internal energy U = J u( r )d3r and of the self-gravitational 
energy 
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E = - G Jd3 d3 ,e(r)e(r') 
G 2 r r lr - r/l ' 

where e( r) is the mass density. Forgetting about the radiation emitted by 
the star and about the nuclear reactions which may take place in its core, we 
assume that equilibrium is reached. 

1. As a simple model, consider a homogeneous spherical object of radius 
R and volume D. Show that EG = -3GM2 /5R, and that the equilibrium 
radius is determined from the equation of state by the condition 3P D = - EG . 

Show that the object is unstable if the adiabatic compressibility is larger than 
3/4P. 

2. In the general case of a non-uniform density, the gravitational potential, 
related to e(r) by V' 2V = 47rGe, is given by V(r) = -G I d3rle(r')/lr - r/l. 
Show that the equation of hydrostatics V'P = -eV'V is a consequence of the 
fact that the entropy is a maximum at equilibrium. Prove also the so-called 
virial theorem 3 I d3rP = -EG· 

3. Many stellar objects can be approximately described as sets of non
interacting and non-relativistic particles, for instance, the Sun can be mod
elled as a perfect ionized gas of protons, electrons and He nuclei, or a neutron 
star as a Fermi gas of neutrons (Exerc.l0e, Prob.9). The internal energy is 
then related to the pressure by U = ~PD (Exerc.13a). By using either di
mensional arguments or the techniques of §6.3.5, write down the general 
form of the thermodynamic functions. Show that the internal energy and the 
gravitational energy are related by U = -~EG. The object loses energy by 
radiation; assuming that it remains at equilibrium, determine the resulting 
changes in its size, internal energy, entropy and temperature. 

Hints: 

1. For a fixed value of the total energy E, the entropy must be stationary under 
an infinitesimal change 8R around equilibrium, that is, 

1 P 1 3Pfl 8R 
88 = -8U + -8fl = --8EG + -- - = 0 T T T T R . 

Its second variation for 88 = 0, T828 = _82 EG + 8P 8fl, must be negative, which 
yields 

( aP ) a 2 EG 4 EG 4 P 
afl s < afl2 = 9 fl2 = -"3 n . 

2. In an infinitesimal deformation which brings each point r to r + 8r where 
8r is a function of r, the volume element d3r becomes d3r(1 + div8r) and the 
gravitational energy becomes EG + I d3r e(V'V· 8r). The stationarity of 8 - k(3E 
with respect to u(r) implies that the temperature is uniform and equal to l/k(3; 
its stationarity under deformations yields 
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for any fir and hence VP = -eVV at any point. The virial theorem is obtained by 
taking fir = e:r, in which case flEG = -e:EG. 

We can alternatively start from the uniformity at equilibrium of the tempera
ture and of the chemical potentials J-tj for each particle species. As in electrostatic 
equilibrium (§11.3.3), neither the density nj(r) nor the reduced chemical potential 
J-tj (r) are uniform; the latter quantity, J-tj (r) = J-t j - V (r)m j is defined locally by 
(14.93) through a shift in the origin of the single-particle energies which eliminates 
the gravitational potential at r. The Gibbs-Duhem relation, which expresses ex
tensivity when there is no field, then has the form sdT = dP - Lj njdltj, and the 

interpretation of differentials as changes in space provides VP + Lj njmjVV = o. 
3. The Massieu potential - FIT depends on nand T only through the 

combination T 3n 2, or through the dimensionless variable /i2/mkTn2/3. From 
u(r) = ~P(r), we get U = ~ JP(r)d3r = -~EG. A decrease in the total en

ergy E = U + EG = ~EG = -U produces a contraction fiR = RflEIU, a rise 
flU = -fiE in the internal energy, and a decrease fl5 = -flU IT in the entropy. The 
change in temperature, given by 

CyflT _ 4 3 _ 2TCy 1 
8fJ - - P"'T - ----u- - , 

is negative in the Fermi gas limit but positive in the classical limit which holds for 
a star in formation. Such paradoxical features arise because a decrease occurs in 
the gravitational energy, which is twice the radiated energy. When a star is being 
formed, it contracts and heats while radiating. If its mass is larger than 0.1 MCih the 
temperature of its core eventually reaches values of the order to 107 K necessary for 
initiating thermonuclear fusion of hydrogen. A stationary regime is then reached, 
in which the emission of radiation from the surface of the star is balanced by the 
production of heat in its core by fusion. 



7. The Perfect Gas 

"«C'est pour Ie gaz!» hurlait un employe dans la porte qu'un 
enfant lui avait ouverte." 

A.Camus, L'Exil et le Royaume 

"La purete de l'air entre pour beaucoup dans l'innocence des 
mceurs." 

Balzac, Le Medecin de Campagne 

"Front eternel paume parfaite 
Puits en plein air essieu de vent" 

Paul Eluard, Medieuses 

"Nobody is perfect." 

Billy Wilder, Some like it Hot (reply of Joe Brown to Jack 
Lemmon) 

In the second part of the book which covers Chaps.7 to 13 we study the 
properties of various simple substances using the concepts and methods which 
we have developed earlier. We start with rarefied monatomic gases, which we 
describe in the perfect gas model as a set of non-interacting mass points 
following the laws of classical mechanics. We start by justifying this model 
(§ 7.1), showing, in particular, that the translational degrees offreedom of the 
molecules in a gas or liquid can to a very good approximation be treated by 
classical statistical mechanics, in contrast to the internal degrees of freedom 
of the atoms, associated with the motion of the electrons, or of the molecules, 
associated with the rotations and vibrations of the constituents relative to 
one another. The partition function technique then enables us to explain the 
macroscopic thermodynamic properties of those gases at equilibrium, which 
have been known experimentally for a long time (§§ 7.2 and 7.3). 

We finish the chapter with an elementary introduction to kinetic gas the
ory (§ 7.4), which is based on two ingredients: (i) The trajectories of the 
atoms, which include brief collisions with one another, are treated using 
the laws of classical dynamics. (ii) We use statistics to deal with the ve
locity of each of the atoms, which are hardly correlated - whereas in the 
Boltzmann-Gibbs treatment the statistics deals with the complete system. 
Although kinetic theory applies only to classical gases, it has the advantage 
that it explains simply and in a mechanistic way not only their thermostatic 
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properties, but also a large number of non-equilibrium phenomena, such as 
effusion, viscosity, heat conduction, or diffusion. It played an essential his
torical role in the development of statistical mechanics as it was the form in 
which the latter first appeared. Already foreseen by Bernoulli, who showed 
how the pressure of a gas could be calculated from the kinetic energy of the 
constituent molecules, kinetic theory was especially the achievement of Clau
sius, Maxwell, and Boltzmann in the second half of the nineteenth century. 
We have already described (Introduction and § 3.4) how difficult it was to 
get kinetic theory accepted by the scientific community. We shall discuss its 
most elaborated form, the Boltzmann equation, in Chap.I5. 

7.1 The Perfect Gas Model 

As in most theories, we shall start by idealizing the physical system we are 
studying and we shall represent it by a model. This model is based upon three 
ideas: the structure of the constituent particles does not play any role, their 
interactions can be neglected, and they can be treated by classical mechanics. 

7.1.1 Structureless Particles 

In contrast to a solid where the interatomic distances are of the same order 
as the characteristic sizes of the molecules, which are a few A, a gas is a 
substance where the constituent molecules are sufficiently far apart that they 
can be differentiated. Under "normal conditions", that is, room temperature 
and atmospheric pressure, one mole occupies a volume fl = 22.4 1, so that 
the typical intermolecular distances, d = n-1/ 3 = (fl/NA)1/3 ~ 3 X 10-9 m, 
are an order of magnitude larger than their sizes. 

We replace here each of the N molecules, which are assumed to be iden
tical, by a point particle situated at its centre of mass. In other words, we 
neglect the structure of the molecules. We shall get rid of this hypothesis 
in Chap.8 where we study the role played by the internal structure of the 
constituent molecules of the gas and where we discuss the validity of the 
present model. Without going into the details of that discussion we note 
that we can restrict ourselves solely to the translational degrees of freedom 
of the molecules provided they are practically all in their ground state at the 
temperatures considered. 

The neglect of the internal structure of the molecules requires, in par
ticular, that their ground state be neither degenerate nor quasi-degenerate. 
Morover, the probability Pm for a molecule to be in an excited state m must 
be very small as compared to the probability Po for it to be in its ground 
state. If Eo and El are the energies of the lowest two states of the molecules 
at rest, the ratio pI/po for their occupation probabilities, which is given by 
the Boltzmann-Gibbs distribution, equals exp( -f3LlE) where LlE = El - Eo 
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is the excitation energy. This ratio is negligibly small, as well as all other 
ratios Pm/PO, if 

LlE » kT. (7.1) 

This condition is never satisfied at room temperature for diatomic or poly
atomic molecules, as the excitation of their lowest levels, which describe ro
tations, needs only energies LlE of the order of 10-3 e V, which is small com
pared to typical kinetic energies of the order of kT ~ 410 eV. This condition 
is satisfied (Exerc.8b) for a large number of monatomic gases, in particular, 
for the inert gases (or "rare gases") such as argon, neon, helium, or krypton 
where LlE is of the order of ten or twenty eV; in the present chapter we 
shall restrict ourselves to those gases. To simplify the notation we choose the 
energy origin for each atom such that Eo = O. 

Condition (7.1) implies that Pm «: Po for each one of the excited states; how
ever, it is not sufficient to ensure the condition Po ~ 1, since we need, in fact, that 
after summation over all excited states 

L Pm = 1 - Po «: Po· 

miO 

(7.2) 

Ionization of an atom gives rise to a very large number of energy levels which are 
very closely spaced, even tending to become a continuum when the size of the 
container in which the atom is placed becomes large. It is therefore not at all clear, 
not even for an inert gas with an ionization energy LlEi of several tens of eV, that 
condition (7.2) can be satisfied when we take the summation over all ionized states 
into account. In fact, Exerc.8c shows that the degree of ionization is weak, provided 

1 (mekT)3/2 -LlE-jkT 1 --- e 1 «:, 
n 27rn2 

(7.3) 

where me is the electron mass. Normally, condition (7.3) is amply satisfied and it 
is legitimate to use the perfect gas model. However, a highly rarefied or very hot 
gas is always ionized and cannot be described as a system of structureless, non
interacting atoms. We are then dealing with an ionized gas, or plasma, in which 
the long-range Coulomb interactions between the ions or the electrons cannot be 
neglected under any circumstances whatsoever. 

Let us also note that quantum mechanics plays an essential, though hidden, 
role to guarantee the existence of perfect gases. In fact, in classical physics an atom 
or molecule with a structure would not have a ground state separated from excited 
states by a finite gap LlE, and (7.1) could not be satisfied. Morover, (7.3) would 
also be violated in the limit as n -> O. The fact that one can treat the atoms of the 
rare gases as point particles is based upon a quantum phenomenon, the freezing-in 
of the internal degrees of freedom of each atom which has a nearly unit probability 
of remaining in its ground state, even at room temperatures (§ 8.3.1). We have 
already seen how this phenomenon works in § 1.4.4: if the temperature is low as 
compared to a characteristic temperature e which is such that ke is of the order of 
magnitude of the excitation energy of the first excited state, the system practically 



310 7. The Perfect Gas 

remains in its ground state and the excited states play no role. For the rare gases 
8 is very high, of the order of 105 K, and the atoms thus behave as structureless 
entities, frozen in their ground state when T « 8. 

7.1.2 Non-interacting Particles 

The constituent atoms of a rare gas, or, more generally, the molecules in any 
gas, interact with one another through forces with a range of the order of 
a few A, which is short compared to the distances apart. In the perfect gas 
model we neglect these interactions at thermal equilibrium. This assump
tion is justified because the gas density is low, even though the strength of 
the forces, in particular, the short-range repulsion, becomes very large be
low 1 or 2 A. In fact, assuming to a first approximation that the molecules 
are distributed uniformly, the average volume occupied by each of them is 
n -1 = fl / N, whereas the volume inside which the interactions with the other 
molecules playa role is of order 83 where 8 is the range of the interactions. 
The probability that a molecule feels the interactions with its neighbours is 
thus n83 so that the interaction can be neglected provided 

(7.4) 

that is, provided the range of the forces is short compared to the intermolecu
lar distances. Under normal conditions, for 8 c::: 3 A, we have n83 c::: 10-3 and 
we are justified to replace the Hamiltonian in the Boltzmann-Gibbs equili
brium distribution by an approximate Hamiltonian without interactions. The 
model Hamiltonian then includes only the kinetic energies of the molecules, 
while their structure is neglected, and the potential confining the molecules 
to the container in which the gas is enclosed. We shall see in Chap.9 that 
the interactions between the molecules are responsible for corrections to the 
perfect gas laws which become important when the density increases, and 
that they are essential to explain the origin and the properties of the liquid 
state where (7.4) does not hold. 

Nevertheless, even in a rarefied gas the interactions play an important role 
in non-equilibrium situations. Because of their short range and due to the low 
density, the interactions give rise to brief binary collisions. In each collision 
the total momentum and the total energy of the pair of molecules are con
served; for a rare gas with an excitation energy LlE which is large compared 
to typical kinetic energies, of the order of kT c::: 4~ eV, an atom remains in 
its ground state during a collision with another atom so that the collisions 
are elastic and the total kinetic energy is conserved. Even though they are 
rare, these collisions explain properties such as the viscosity or the thermal 
conductivity of the gas (§§ 7.4.5 and 15.3.3). They are also responsible for 
the fact that a gas which initially is prepared in an arbitrary state, which 
may, for instance, be a heterogeneous state, tends to an equilibrium macro
state. Like the interactions between the spins in Chap.1 they, in fact, make it 
possible for the available energy to be distributed between the molecules in 
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the most random manner during the processes which lead to equilibrium. The 
use of canonical distributions is thus justified by the existence of interactions 
between the molecules, even though these interactions hardly contribute at 
all to the energy and can be neglected in the equilibrium formalism. 

As a model for the container in which the molecules are enclosed we 
take a "box" potential V(r) which is zero inside, and infinite outside the 
container. A molecule hitting a wall is thus elastically reflected. In reality 
these collisions are inelastic as the solid walls are made up of molecules which 
can vibrate more or less strongly according to the temperature and which 
can thus absorb or give off energy. Collisions are the mechanism through 
which the gas exchanges work with a moving wall (Exerc.7f). On the other 
hand, they contribute during the establishment of thermal equilibrium to 
the equalization of the temperatures of the gas and of the wall through heat 
energy exchanges. 

7.1.3 Classical Particles 

The perfect gas model contains a last simplification: we assume that the 
motion of the centre of mass of the molecules, or of the atoms of the rare 
gases which we are considering here, obeys the laws of classical mechanics. 
The formalism which we must use to describe the macro-state is thus that 
of classical statistical mechanics (§§ 2.3, 3.3, and 4.3.4). This assumption is 
always satisfied in the gas phase, but we shall see in Chaps.l0 to 13 that 
there are many other substances the constituents of which must be treated 
quantum mechanically. We shall also in § 10.3.4 recover the results of the 
present chapter as the low density limits of the general properties of non
interacting quantum gases. 

Let us determine the validity domain of the classical approximation. For 
this a dimensional analysis will suffice. In canonical equilibrium the state of 
the gas is characterized by the density n, the temperature T, and the mass 
m of the constituent particles. If the latter behave like point particles and do 
not interact, there are no other parameters. Combining these quantities with 
one another and with the fundamental constants nand k we can construct 
only one dimensionless variable, and the particles can therefore be treated 
classically provided 

nA~ « 1. 

We have defined the "thermal length" AT at a temperature T by 

A2 = 27rn2 

T - mkT 

(7.5) 

(7.6) 

where the factor 27r has been introduced to simplify later formulae. The 
thermal length AT is the only quantity with the dimension of a length which 
can be constructed starting from the temperature. It is of the same order of 



312 7. The Perfect Gas 

magnitude as the de Broglie wavelength hlp of a particle with a kinetic energy 
p2/2m of the order of kT. Later we shall see that at a temperature T the 
mean kinetic energy of the particles is just equal to ~kT. The condition (7.5) 
means therefore that at equilibrium the particles have de Broglie wavelengths 
which are small as compared to their distances apart. 

Another interpretation of condition (7.5) refers to the Heisenberg inequal
ity Llx Llp > ~1i for the statistical fluctuations in a position variable and in 
its conjugate momentum. The Ehrenfest equations (2.29) for the average 
position and momentum of a particle reduce to the classical Hamiltonian 
equations (2.64) if the fluctuations can be neglected, that is, if the extent of 
the wavepacket in phase space is small compared to the characteristic vari
ables for the motion of the centre of the packet. The classical approximation 
will thus be valid, if the fluctuations Llx in the particle coordinates are small 
compared to the characteristic interparticle distance d = n- 1/3, and if the 
fluctuations Llp in the momentum are small compared to the characteristic 
momentum, equal to hi AT at a temperature T, as we have just seen. In agree
ment with what we said at the end of § 2.3.4 these conditions are compatible 
only provided d hi AT » h, the same inequality as (7.5). 

We can write down yet another condition equivalent to (7.5) by noting 
that in the grand canonical ensemble the variable n is replaced by the chem
ical potential 1-". The only dimensionless quantity is then a = I-"lkT which 
can take on any value between -00 and +00, and which changes in the 
same direction as n. We thus expect that the condition (7.5) is equivalent 
to -I-" » kT, that is, to eO « 1. Dimensional analysis and the equivalence 
between ensembles also show that nA~ can only be a function of a = I-"lkT. 
In fact, we shall see that nA~ = eO in the classical limit, so that the condition 
for the validity of the classical approximation can be written in the form 

(7.7) 

For oxygen under normal conditions, d = n-1/ 3 is equal to 30 A, whereas 
AT equals 0.2 A; as a result the left-hand side of (7.7) is as small as 2 x 10-7 

and the classical treatment is well justified. The chemical potential f-L equals 
-0.37 eV which in absolute magnitude is much larger than kT = lo eV. 
Comparison with these values shows us that (7.7) remains valid, (i) even if 
the temperature is lowered to 1 K in which case one loses a factor 5 x 103, (ii) 
even for lighter molecules such as H2 for which one loses a factor 60, and (iii) 
even if the density increases by a factor 103. The use of classsical statistical 
mechanics is thus legitimate for all gases and even for almost all liquids down 
to solidification, as the typical density of a liquid is of the order of 103 times 
that of a gas under normal conditions. The only exception is liquid helium in 
the form of its two isotopic forms 4He and 3He, at temperatures T < 10 K; in 
that case, the high density, the low mass, and the low temperatures conspire 
to make (7.7) invalid (Chap.12). It is true that hydrogen is lighter, but it is 
solid and not liquid at these temperatures. Condition (7.7) is often violated 
for the atoms in solids and always for the electrons in metals, whose mass is 
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only 1/1800 times that of the proton (Chap.ll), and for photons which have 
zero mass (Chap.13). 

One should note that even in a gas where the classical perfect gas model is 
justified at equilibrium, it is not always legitimate to treat the collisions classically. 
Their possible quantum features are taken into account by the formalism used in 
Chap.15 where they are studied. 

Altogether, the rare gases, where the interatomic distances are larger both 
than the range of the interatomic forces and than the thermal length, and 
where the excitation energy is much larger than kT, can be satisfactorily de
scribed by the perfect gas model - except under extreme conditions, realized 
in astrophysics, where the temperature is so high or the density so low that 
the gas is ionized. For other gases one must almost always take the structure 
of the molecules into account (Chap.8). For compressed gases and especially 
for liquids, the intermolecular interactions play an essential role even though 
one can treat the motion of their centre of mass classically (Chap.9). 

7.2 The Maxwell Distribution 

The simplicity of the perfect gas model enables us to study it in any of the 
ensembles. We shall here work mainly in the canonical ensemble, but we 
shall also recover the same results in the grand canonical and micro canonical 
formalisms. 

7.2.1 The Canonical Phase Density 

According to our earlier discussions a perfect gas of N structureless molecules 
is governed by the classical Hamiltonian which is a function of the position 
coordinates and their conjugate momenta, 

(7.8) 

The potential V(ri) represents the box in which the molecules are enclosed: 
it is zero inside the volume fl and infinite outside it. It may also include 
an external potential applied to the molecules such as the potential of the 
gravitational field (§ 7.3.3). 

In classical statistical physics a macro-state of the gas is described by a 
phase density D N, that is, a probability distribution for the 6N coordinates 
rl, PI' ... , r N, PN of the molecules in phase space (§ 2.3.2). In canonical 
thermal equilibrium DN is the classical Boltzmann-Gibbs distribution (4.46): 

DN = ~ e-{3HN 
ZN 

(7.9) 
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In evaluating the normalization constant, that is, the canonical partition 
junction, 

ZN = Tr e- f3HN , 

the trace must be replaced in the classical limit by an integration over phase 
space with measure (2.55). Using expression (7.8) for the Hamiltonian we 
find 

J dTN e- f3HN 

~! J IT (d3r~~3pi exp { -~ [:!, + V(rd]} ) . 
,=1 

(7.10) 

The contributions from each of the N particles factor out (§ 4.2.5) so that 
Z N can be written as 

(7.11) 

in terms of the single-molecule partition function, 

(7.12) 

The integration over r gives a factor [l for a box potential and the integra
tions over the components of p can again be factorized. Using the formula 
(see the table of formulae at the end of the book) 

[:00 e _ay2 dy = If 
we find 

D (2m7r )3/2 
Z1 = 

h3 ~ 

(7.13) 

(7.14) 

Using Stirling's formula, where we keep only the extensive contributions to 
In ZN and introducing the notation (7.6), we find finally 

( De) N 

N'\~ 
(7.15) 
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7.2.2 The Momentum Probability Distribution 

We now want to study the equilibrium distribution of the momenta Pi of the 
gas molecules. According to the definitions in § 2.3, D N dTN represents the 
probability that the gas consists of N molecules and that its representative 
point in the 6N -dimensional phase space lies within dTN. This information 
is too detailed: in order to obtain the probability distribution g(p) d3p of 
the momentum p of one of the particles we must examine how D N depends 
on the three components of p and get rid of the 6N - 3 other coordinates 
through integration. Because of the symmetry of D N in the set of all particles 
and its factorized exponential form (7.8), (7.9), we find without calculations 

Ig(p) d3p IX e-p2/ZmkT d3p I. (7.16) 

The normalization constant follows from (7.13) and we thus get for the prob
ability that a molecule has a momentum within a volume element d3p around 
p in momentum space: 

(7.17) 

The distribution of the velocities plm of the molecules in thermal equili
brium is therefore proportional to the exponential of the kinetic energy divided 
by kT. This is Maxwell's law (1860), which one can consider as the reduction 
to a single molecule of the canonical Boltzmann-Gibbs distribution. 

In fact, the original proof by Maxwell was much earlier than the work by Boltz
mann and Gibbs (§ 4.2.1). It was based upon the isotropy of g(p) and a hypothesis, 
which was not justified a priori, that the three components of p were statistically 
independent. As an exercise one may show that these two properties are sufficient 
to find the form (7.16) for g(p). For Maxwell g(p) d3 p simply represented the frac
tion of molecules which had a momentum within d3p. Boltzmann introduced in 
1877 the concept of an ensemble of systems, emphasizing the probability law for 
the 6N particle coordinates in phase space. That enabled him to derive (7.16) from 
the micro canonical distribution (§ 7.2.5) without needing Maxwell's factorization 
hypothesis. 

Let us generalize this result and evaluate the reduced single-particle den
sity f(r,p) defined in § 2.3.5. We remind ourselves that f(r,p) d3r d3p is the 
average number of molecules in the one-particle phase space volume element 
d3 r d3p and that it follows from the density in phase through (2.81), or 

f( ) d3 d3 = d3r d3p N J 2- rrN (d3ri d3Pi ) 
r,p r p h3 N! h3 

i=Z 

x DN(r,p, rz,Pz, ... , rN,PN); (7.18) 

the measure dTN associated with DN in the N-particle phase space is multi
plied by a factor N since (7.18) represents the sum of the probabilities that 
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each of the particles 1, 2, ... , N successively occupies the volume element 
d3r d3p while the positions and momenta of all the other particles are arbi
trary. Using in (7.18) the expression (7.8), (7.9), (7.11), and (7.12) for the 
perfect gas density in phase, we find 

f(r,p) = Z~3 e~i3[P2 /2m+V(rl] 

This reduced density can be factorized: 

f(r,p) = n(r)g(p), 

where 9 is the Maxwell distribution (7.17). The factor 

n(r) = N [J d3r e~i3V(r)] ~1 e~i3V(r), 

(7.19) 

(7.20) 

(7.21) 

equal to the constant N / n for a gas in a box if there is no external field, is 
nothing but the density of molecules at the point r since d3r J d3p f (r, p) is 
the average number of molecules, with arbitrary momenta, within the volume 
element d3r. Expression (7.20) reflects the absence of correlations between 
the positions and the momenta of the molecules in the classical limit. This 
property may not hold for quantum gases. 

7.2.3 Applications of the Maxwell Distribution 

To use the Maxwell distribution for practical applications we must remember 
that, if we change variables, the probability g(p) d3p remains invariant and 
the probability measure g(p) must be multiplied by the Jacobian. As an 
example, let us calculate the average number of molecules per unit volume, 
dn(v), with an absolute magnitude ofthe velocity lying between v and v+dv. 
We must integrate g(p) d3p between spheres with radii mv and m(v + dv), 
which leads to 

dn(v) = n J 
mv<p<m(v+dv) 

47rnm3 g(mv) v 2 dv. (7.22) 

The curves of Fig.7.1 give examples of molecular velocity distr·ibutions. Typ
ical velocities are of the order of the sound velocity in the gas considered, 
which is 300 ms~l in air, as the average molecular velocity is 

1 J /f!!kT - vdn(v) = --, 
n 7r m 

while the sound velocity is 

if P = VI' kT. 
nm m 

(7.23) 
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1000 2000 3000 

Fig. 7.1. Molecular velocity distributions 

Here 'Y is the specific heat ratio Cp/Cv , and we shall see in Chap.8 that 'Y = ~ 
for the perfect gas and 'Y = i for diatomic gases. 

The molecular velocity distribution has an effect upon the shape of the 
spectral lines emitted or absorbed by a gas, because of the Doppler shift. This 
effect (Michelson 1892) is important in astrophysics for the determination of 
the temperatures of stellar objects (Exerc.7d). 

The composition of planetary atmospheres is directly affected by the 
molecular velocity distribution. In fact, the escape velocity from a star, 
.J2G M I R, where G is the gravitational constant, depends on the mass, M, 
and the radius, R, of the star. Molecules with larger velocities can escape 
from the gravitational field of the star. The curves of Fig.7.1 show that this 
escape is easier for light molecules and that it is helped by high tempera
tures. This enables us to understand why there is no hydrogen in the Earth's 
atmosphere, even though that element is so very abundant in the Universe. 
If the temperature at the top of the atmosphere is sufficiently high and if 
the molecules are sufficiently light, we have in equilibrium an appreciable 
fraction of molecules with velocities above the escape velocity, which for the 
Earth is 11 000 ms- I . Those molecules can escape and at equilibrium will be 
replaced by others which, in their turn, escape. This has happened for hydro
gen. For oxygen and nitrogen the molecular masses are sufficiently large that 
the losses are insignificant, even at the rather high temperatures prevailing 
when the Earth was formed. On the Moon the escape velocity is so low that 
the whole atmosphere has had time to escape. 

The Maxwell distribution enables us to express the average kinetic energy 
of the molecules as a function of the temperature. We have 
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/ p2 ) I 3 p2 
\ 2m =. d p g(p) 2m' 

which can be calculated, using Cartesian coordinates, (7.13), and its deriva
tive with respect to a: 

/ 2) 3 :3 \:m = 2f3 = 2kT. (7.24) 

The average kinetic energy of the molecules is thus proportional to the tem
perature and is independent of the nature of the gas. Numerically, it is small 
compared to 1 e V, as kT equals 410 e V at room temperatures. The value of the 
proportionality coefficient in (7.24) is a particular case of the equipartition 
theorem for energy (§ 8.4.2) which assigns at equilibrium, to each classical de
gree of freedom on which the Hamiltonian depends quadratically, an average 
energy of ~ kT. Here the degrees of freedom are the translations in the three 
space directions which are governed by the p2/2m term in the Hamiltonian. 
Note that the dispersion of the kinetic energy round that average value is 
large, as the relative statistical fiuctuation given by (8.51) equals fij3. If 
initially all molecules had the same kinetic energy (7.24), their collisions with 
one another would change these individual energies and they would end up 
with a distribution in agreement with Maxwell's law. 

oven 

-------.~--.. ---.- -deposit of slow atoms 

vacuum 

1 
I 

collimator 

I 

deposit of fast 

rotating cylinder _.---

j atoms 

Fig. 7.2. Experimental determination of the Maxwdl distribution 

Let us finally note that one can directly measure the molecular velocity 
distribution of a gas and thus experimentally check Maxwell's law at the 
microscopic level. To do this, consider a vessel containing a gas and being 
maintained at a temperature T which we can control. The wall of the vessel is 
pierced by a very small hole which connects it with an empty enclosure and 
through which the gas can escape through effusion (§ 7.4.1)) with a small 
flux. The characteristics of the molecular jet which is thus produced allow us 
to reconstruct the velocity distribution in the vessel: after being collimated 
the jet consists of molecules with momenta all in the sallle direction but with 
different absolute magnitudes; as an exercise one can show, using; Eq.(7.50), 
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that the probability distribution of the velocities in the jet is proportional 
to v 3g(mv) dv, which makes it possible to use it to find the distribution 
g(p) d3p in the vessel (Exerc.7d). Figure 7.2 shows a method for measuring 
the velocities in the jet: a molecular jet of vaporized silver enters a rotating 
cylinder and the molecules are deposited on different parts of the cylinder, 
depending on their velocity. The measure of the thickness of the deposit gives 
us g(p). The first experiment ofthis kind for directly measuring the Maxwell 
distribution was performed by Otto Stern (1920). 

7.2.4 Grand Canonical Equilibrium of a Gas 

Including the number of molecules N as one of the state variables and using 
a canonical ensemble is appropriate for the study of a closed system which 
cannot exchange matter with the outside world. If the volume of the gas 
considered can exchange molecules with its environment, which may con
sist either of an identical gas surrounding it, or of solid walls which adsorb 
molecules (Exerc.4b), or of another, liquid or solid, phase with which it is in 
equilibrium (§ 9.3 and Prob.8), or if the gas can undergo chemical reactions 
(§ 8.2.2), it is better to use the chemical potential J1 as state variable instead 
of N and to work with a classical grand canonical ensemble. The density in 
phase D is then a set of functions DN which at equilibrium have the form 

DN = _1_ e-(3HN+oN 

ZG 
(7.25) 

The formalism resembles that of § 7.2.1, but now includes summations 
over N. The grand partition function, 

00 

ZG = L ZN eoN, 

n=O 

can be calculated using (7.11) and we find 

where Zl is given by (7.12). If there is no external field, (7.14) gives 

In ZG(a,(3) = {lA:r 3 ((3) eO. 

(7.26) 

(7.27) 

(7.28) 

The thermodynamic properties can be derived either from Z N, given by 
(7.15), or from ZG, given by (7.28), using the formalisms of §§ 4.2.6 or 5.6.6. 
In § 7.3 we shall use the canonical ensemble. To see, without explicit calcu
lations, that the same results are obtained when we start from the grand 
canonical ensemble it is sufficient to prove that the two ensembles are equiv
alent (§ 5.5.3) by checking that In ZG and In ZN derive one from the other 
through a Legendre transformation (§ 6.3). To do that, we start from (7.28) 
and use the relation BIn ZG/Ba = N to connect N and a, whence follows 
that 
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o NA} 
e = {1' 

Eliminating a between (7.28) and (7.29) then gives 

Z oln ZG 
In G-a --oa 

(7.29) 

(7.30) 

which is the same equation as (7.11) when N » 1. The equivalence of the 
canonical and the grand canonical ensembles is here a consequence of Stir
ling's formula. As an exercise one can also check this equivalence, as in § 5.5.3, 
by evaluating the sum (7.26) over N, or the integral (5.52) over a, using the 
saddle-point method. 

The evaluation of the reduced density f (r, p) in the grand canonical en
semble starts from (7.18), except that DN is here given by (7.25) and that 
we must sum over N. That summation is easy; it gives the result 

1 f(r,p) = h3 eO -(3Hl(P,r), (7.31 ) 

which is the same as (7.20), as the molecular density can now be expressed 
in terms of a through 

(7.32) 

Using (7.29) we can check the equivalence of (7.21) and (7.32). 
In Chap.l0 we shall find that the perfect gas is the classical limit of a 

non-interacting quantum gas when condition (7.7) is satisfied. We shall then 
use the grand canonical ensemble, the only one which enables us to make 
simple calculations. Expressions (7.27) for ZG and (7.32) for the density will 
appear as the limits of the more general expressions (10.52) and (10.53) 
when eO « 1. We shall also study non-equilibrium gases (Chap.15) in the 
grand canonical formalism, as we shall need to take into account exchanges 
of particles between neighbouring volume elements; inside each of them a 
quasi-equilibrium will be realized so that the reduced density f(r,p) will 
have the form (7.31) where a and f3 can vary from point to point in space. 

Although the reduced single-particle density f(r,p) is the same for the canon
ical and for the grand canonical ensembles, there occurs a small difference in the 
calculation of the reduced two-particle density h(r, p, r', p'), defined by (2.82), 
with a possible summation over N. As an exercise, one can obtain in the canonical 
ensemble: 

h(r,p,r',p') - f(r,p) f(r',p') = - ~ f(r,p) f(r',p'), (7.33a) 

and in the grand canonical ensemble: 

h(r,p, r',p') - f(r,p) f(r',p') = o. (7.33b) 
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As a result, there is no correlation between the molecules of the perfect gas in the 
grand canonical equilibrium. There is a weak correlation between them in canonical 
equilibrium, produced by the fact that the total number of molecules is fixed; this 
correlation clearly vanishes in the thermodynamic limit. 

7.2.5 Microcanonical Equilibrium 

The phase density DN of the classical microcanonical equilibrium (§4.3.4) is con
stant in the region of phase space where 

(7.34) 

and vanishes elsewhere. If t1U is sufficiently small, we can replace D N by 

(7.35) 

except when we evaluate the entropy (3.36) which involves the volume W of the 
region (7.34) with measure dTN. 

It is inconvenient to use (7.34) or (7.35), as the contributions from the various 
molecules do not factorize, even though there are no interactions. The calculations 
involving the micro canonical ensemble are therefore in general carried out using 
techniques which reduce it to other ensembles. For instance, Fourier transforming 
(7.35), 

<X 1 df3 e-i3HN+i3U, l i3O +ioo 

27ri 130 - ioo 
(7.36) 

we see that DN can be written as a simple integral over canonical distributions 
that we can easily factorize. Starting from (7.36) we can prove the equivalence of 
the microcanonical and canonical ensembles using the saddle-point method (§5.5.3 
and Exerc.5b). 

As a further exercise about the equivalence of ensembles, let us start directly 
from (7.35) and find again the Maxwell distribution (7.16). We must integrate 
(7.35) over the momenta of all particles, bar one, which leads to 

In the 3(N - I)-dimensional space we take as variables the length 

and the 3N - 4 angles fixing the direction of the vector P. Apart from a constant 
factor which is equal to the surface area of the hypersphere in 3(N -1) dimensions, 
we get 

100 3N-4 (p2 p2 ) g(p) <X P dP 8 - + - - U . 
o 2m 2m 
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Let us remind ourselves that the 15-distribution has the following property (see the 
formulae at the end of the book): if the Xi are the zeroes, which we are assuming 
to be simple, of f(x), we have 

15[f(x)] = L 1f'(~i)1 15(x - Xi)· 
, 

This can easily be proved by taking as variable f (x) instead of X in the vicinity of 
each Xi, and introducing the appropriate Jacobian. As a res nit we have 

8 - + - - U = - 8 P - V 2mU - p2 , ( p2 p2 ) m. ( ) 
2m 2m P 

and hence, apart from a new constant factor, 

( 
p2 )(3N-5l/2 

g(p) ex 1---
2mU 

In the thermodynamic limit, where N -+ CXJ with U / N finite, this expression tends 
to (7.16), provided we put kT = 2U /3N. We have thus again found the Maxwell 
distribution and also the relation (7.24) between the average kinetic energy of the 
molecules and the temperature. 

7.3 Thermostatics of the Perfect Gas 

7.3.1 Thermostatic Pressure 

The free energy which follows from (7.15) is 

( 
N)..3 ) F(T, N, st) = NkT In aT - 1 . (7.37) 

As we are dealing with a thermodynamic potential, we can derive all equili
brium properties of the perfect gas from it. 

In particular, according to (5.75), the derivative of (7.37) with respect to 
a gives the equation of state 

I Pst = NkT I· (7.38) 

The theory has thus enabled us to prove the perfect gas law which was es
tablished experimentally in the form 

(7.39) 

between the seventeenth and the nineteenth centuries by studying gases in 
the low density limit (Boyle 1661, Mariotte 1676, Charles and Gay-Lussac 
1802). The so-called "perfect gas temperature" scale, defined empirically by 
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(7.39), can thus be identified with the absolute temperature of statistical 
physics and of the Second Law of thermodynamics. The gas constant, R = 
8.3 J K- 1 mol-I, is then identified with kNA, where NA = 6 X 1023 is Avo
gadro's number and where k = 1.38 X 10-23 J K- 1 is Boltzmann's constant, 
introduced in Chap.3 to adjust the units of entropy and of temperature to 
the values used in macroscopic experimental physics. 

To find the same result in the grand canonical ensemble we start from 
(7.28), write down the grand potential 

A(T II Jl) - -kTJlA-3 e/1/kT 
'1-'"" - T , (7.40a) 

and then we eliminate J-L from (5.76) and (5.78) to write 

oA 
NkT = -kT - = -A = P Jl. 

OJ-L 
(7.40b) 

From Eqs.(7.40a and b) we find the chemical potential J-L as a function 
of the density and the temperature. In Chap.8 we shall study some physical 
and chemical properties which follow directly from this expression. 

7.3.2 Thermal Properties 

Using (5.65) we find from (7.37) the thermal properties of the perfect gas 
by taking the derivative with respect to the temperature T. The entropy 
S = -oF/aT can thus be expressed as a function of the temperature through 
the Sackur-Tetrode formula (1911-13) 

S = Nk (In N~~ +~) (7.41) 

where AT is given by (7.6). A consequence of (7.41) is the relation between 
volume and temperature for an adiabatic expansion of the perfect gas, 

JlT3/ 2 = constant, 

which, if we use (7.38), can also be written in the form 

P Jl5/3 = constant. 

(7.42) 

(7.43) 

This behaviour, which has been amply verified experimentally for rarefied 
mon-atomic gases, does not hold for gases where the molecules have a less 
simple structure (Chap.8). 

Expression (7.41) becomes negative at low temperatures when AT be
comes of the order of the intermolecular distance d. This, in agreement with 
the statement made at the beginning of § 3.3.2, is a sign of the failure of the 
classical approximation used here. In fact, as we saw in § 7.1.3, the condition 
for the validity of this approximation is just Jl / N A~ » 1, that is, S / N k » 1. 
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This implies that the entropy (7.41) per molecule is always not only positive, 
but also large compared to k, whenever the perfect gas model is justified. 

The extensivity of the entropy of the perfect gas, obvious from (7.41), 
would not have been satisfied without the presence of N! in the denomi
nator of (7.10), which gives rise to the term -Nk In N in (7.41). We have 
stressed in §§ 2.3.2 and 2.3.4 that this factor liN! which is connected with 
the indistinguishability of the molecules has a quantum origin. Even though 
it is based upon classical statistical mechanics, the theory of a perfect gas 
contains this ingredient which cannot be justified strictly in the framework 
of classical physics and which is necessary to ensure the extensitivity and to 
resolve the Gibbs paradox (§ 8.2.1). 

The internal energy which follows from (5.64) and (7.41) equals 

1 U = ~NkT I· (7.44) 

As the Hamiltonian in our model reduces to the translational kinetic energy 
of the molecules, the expression for the internal energy per molecule is the 
same as the average value (7.24) of the kinetic energy. We see thus that the 
internal energy of the perfect gas depends solely on the temperature. This 
property, which we shall generalize in Chap.8 to real gases at low density, 
is Joule's law: Joule established it experimentally by showing that a sudden 
expansion of a gas, without exchanging mechanical or thermal energy with 
the outside, also was isothermal (Gay-Lussac 1807, made more precise by 
Joule in 1845). 

A microscopic study, based upon kinetic theory, of an adiabatic expansion 
(Exerc.7f) moreover enables us to understand, using merely conservation of 
mechanical energy, how molecules, by shedding some of their kinetic energy 
to the piston in the form of work, change their momentum distribution g(p), 
which thus decreases the value of (p2) and with it the temperature according 
to (7.42). 

We find the specific heat at constant volume by taking the derivative of 
(7.44) with respect to the temperature, whence 

C = ~Nk = ~R~. 
y 2 2 NA (7.45) 

To find the specific heat at constant pressure we must add to the change in 
internal energy the work, P dn, done on the outside during the expansion, 
in accordance with the general result (6.41). We then get Mayer's relation 

Cp - Cy = Nk. (7.46) 

The ratio of the specific heats is in this case 

5 
(7.47) -

3 
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According to (6.44) it is equal to the ratio of the isothermal and adiabatic 
compressibilities, and hence we have liS = li,P. This explains the presence 
of the index, in Eq.(7.43) for the adiabatic expansion, and as a consequence, 
its appearance in expression (7.23) for the sound speed in the gas. 

These results can easily be checked by experiments which give us the 
specific heats through calorimetry and, either by measuring the sound speed 
or by studying adiabatic expansions. Mayer's relation is well satisfied for all 
gases at low densities. On the other hand, (7.45) and (7.47) are only found for 
monatomic gases. We shall see in Chap.8 how the structure of the molecules 
affects the various macroscopic properties of gases. 

7.3.3 The Role of an Applied Field 

In §§ 7.3.1 and 7.3.2 we have restricted ourselves to a perfect gas for which the 
molecules were not subject to any applied external field. Including an applied 
field does not present any difficulties, as the potential V(r) occurring in (7.12) 
can be arbitrary. We have seen that the kinetic and the spatial properties 
are independent of one another, as is, especially, seen in the factorization 
(7.20) of the reduced density. The density nCr) given by (7.21) or (7.32) now 
changes from one point to another. The internal energy can be split into the 
sum of a contribution associated with the field and a kinetic contribution 
which is the same as its value when there is no field. 

For instance, in a field of gravity (Exerc.7a) we have 

VCr) = mgz, 

and the density is proportional to 

nCr) ex e-mgzjkT. (7.48) 

It decreases exponentially with height, the effect being more pronounced 
when the molecular mass is larger. Equation (7.48) is Laplace's barometer 
formula which has been checked in the laboratory (Jean Perrin 1908) for 
dilute solutions, where the particles of the solute behave like the molecules 
of a perfect gas. In the atmosphere the situation is less simple as the gas 
is not in isothermal equilibrium: exchange of heat between layers of air at 
different altitudes is difficult, there are convection currents, and radiation 
plays an important role. 

The situation is similar in the case of a gas enclosed in a vessel rotat
ing with an angular velocity wand in thermal equilibrium with the vessel 
(Exerc. 7b). If r 1.. is the distance from the axis of rotation we find that the 
density of the gas in this relative equilibrium is proportional to 

(7.49) 

The centrifugal effects tend to increase the density at the periphery, the 
more strongly, the larger the mass of the molecules involved. This property 
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is the basis of an isotope separation process, which might compete with gas 
diffusion but which is much less used in industry, called ultra centrifuging: in 
a centrifuge rotating at high velocities the concentration of the heavy isotope 
is larger at the periphery than at the centre. 

7.4 Elements of Kinetic Theory 

In this section we shall again prove some of the earlier results using a more 
direct and older method than the general formalism of equilibrium statistical 
physics used so far, and which is particularly useful for studying gases -
kinetic theory, due to Maxwell and Boltzmann. This method will allow us, 
moreover, to deal with problems where the gas is not in thermal equilibrium. 
We shall limit ourselves here to some elementary discussions, postponing 
until Chap.15 a more quantitative theory. 

7.4.1 Effusion 

Kinetic theory is based upon the analysis of the elementary mechanical pro
cesses, free motion of the molecules between two successive collisions, colli
sions between those molecules, and, furthermore, upon calculating averages 
over the system of gas molecules and striking the balance. Its simplest appli
cation is effusion. A gas, at thermal equilibrium, is enclosed in a vessel with 
a wall which is pierced by a very small hole through which molecules can es
cape so that the density will decrease (Exerc.7e). In practice this phenomenon 
may also concern the passage of a gas through porous walls (Exerc.7g) where 
each pore is modelled as a hole through which molecules can pass. The only 
role played by collisions is to maintain equilibrium conditions up to the im
mediate vicinity of each hole. The free path of molecules between successive 
collisions (§ 7.4.5) is assumed to be large compared to the hole size so that we 
can neglect the interactions between the molecules during the time that they 
enter and pass through the hole. As a result the dynamics of effusion, which 
is a non-equilibrium process, is governed mainly by the flux of molecules 
which arrive at the appropriate angle of incidence at the opening iJ.S of each 
hole. 

We wish thus to evaluate the number of molecules iJ.N with momentum 
p (within d3p) which impinge upon the element of area iJ.S at an angle of 
incidence () between times t and t + iJ.t. Let the x-direction be at right angles 
to iJ.S so that cos () = Px/p (Fig.7.3). Following the motion of molecules 
backwards in time and neglecting collisions we see that at time t - iJ.t those 
which will hit the area iJ.S during the time interval iJ.t are necessarily situated 
in a slanted cylinder of base iJ.S and length viJ.t = piJ.t/m, that is, of height 
pxiJ.t/m. The volume of that cylinder is iJ.S pxiJ.t/m, and the total number 
of molecules contained in it is therefore 
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Fig. 7.3. Calculating the flux of molecules through a hole 

v, ill 

n..18 Px ..1t , 
m 

where n is the density of molecules in the region and at the time considered. 
Among all these molecules we want to distinguish the ones which are aimed 
towards the area ..18 with a momentum p within d3p. The hole is sufficiently 
small that the equilibrium in its vicinity is not perturbed - except, of course, 
for the molecules which pass through it - and the momenta of the molecules 
in the cylinder are therefore distributed according to Maxwell's law (7.17), 
so that the number we look for is given by 

I..1N = n..18 ~ ..1t g(p) d3p I. (7.50) 

Assuming that the porous wall separates the gas from vacuum we get the 
rate of effusion by integrating (7.50) over those values of p which are in the 
appropriate directions determined by the geometry of the hole - for instance, 
over Px > 0, if all molecules which hit the hole at any angle of incidence 
emerge on the other side. This gives us for the number of molecules escaping 
per unit time, apart from a geometric factor, 

dN oc -n8 fkT 
dt V --:;;;:' (7.51 ) 

where 8 is the total area of the pores. If there is gas on both sides, we 
must strike the balance of passages in both directions (Exerc.7g); this gives, 
if the temperature is uniform, a rate of effusion which is proportional to the 
difference in the densities n, that is, to the difference in pressure at the two 
sides. 

Formula (7.51) shows that effusion is the faster, the smaller the mass of 
the molecules. This property poses a problem for the construction of balloons, 
as they must be filled by a light gas (helium) which thus rather easily passes 
through the cover. It also implies that effusion of a gas mixture through a 
large number of very small holes in a porous wall selects the molecules as 
function of their mass, thus producing isotope separation; this process is, in 
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practice, the only one used on an industrial scale to enrich uranium in its 235 
isotope. The difficulty remains that the difference in mass between the 235 
and 238 isotopes is so small, which means that one must have many passages 
through porous walls before obtaining an appreciable change in the relative 
concentration (Exerc.14a). 

Effusion through a hole followed by collimation also provides us with an 
efficient laboratory process, often used to produce molecular jets with average 
velocities which depend on the initial thermal motions. Of course, these jets 
are not in equilibrium and have a non-Maxwellian velocity distribution. 

As the faster particles escape preferentially, effusion produces a cooling of the 
residual gas which reaches new equilibria while the molecules escape. As an exercise 
one can show, by integrating (7.50) after weighting it with p2/2m, that the kinetic 
energy lost with the escaping molecules produces a loss in internal energy according 
to 

dU = 2kT dN. 
dt dt 

(7.52) 

It then follows from (7.44) that the temperature decreases as N 1/ 3 for a monatomic 
gas. 

7.4.2 Kinetic Pressure 

In kinetic theory the pressure is interpreted as resulting from the collisions 
of the molecules with the wall of the vessel in which the gas is enclosed. 
Each collision imparts to the wall a small momentum. During a time interval 
.dt, a macroscopic surface area .dB of the wall undergoes a large number 
of collisions and the average over all these collisions gives rise to a pressure 
force which is proportional to .dB. On the macroscopic scale one thus ob
serves a collective effect, with temporal and spatial fluctuations which can 
be neglected (Bernoulli 1738). 

p' 

p 

x 

Fig. 7.4. Scattering of a molecule by 
the wall 

In order to calculate this kinetic pressure we consider a surface element 
.dB ofthe wall which between the time t and the time t+.dt scatters a certain 
number of molecules. We choose the x-axis at right angles to the wall. Let us 
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consider one collision during which the momentum of the molecule changes 
from p to p' (Fig.7.4). The wall has a complex microscopic structure so that 
the scattering is not a specular reflection, that is, we have not necessarily 
Px = -p~, Py = p~, pz = p~, and the details of the process are complicated. 
However, as the duration of the collision is very short, typically 10-11 s, as 
compared to L1t, we can apply the shot theorem in order to evaluate the 
integral of the force F(t) exerted by the molecule on the wall over the time 
interval L1t: 

I t+Llt 

t dt' F(t') = p - p'. (7.53) 

This is a simple consequence of the equation of motion, dp/dt = cp, where cp 
is the force applied to the molecule at time t'. 

The total impulse received by the wall during the interval L1t is the sum of 
(7.53) over all collisions taking place during that interval. In (7.50) we have 
evaluated the number of molecules of momentum p, within d3p, reaching 
the surface area L1B during the time interval L1t. We similarly need the 
number of molecules of momentum p', within d3p', which leave the surface 
area L1B during the interval L1t. In a stationary regime the distribution of 
the molecules before and after their collisions with the wall must be the same 
so that the latter number is equal to 

(7.54) 

Summing (7.53) over all molecules which during the interval L1t reach L1B 
and leave it, we get the integral of the total force Ftot(t) that they exert on 
this surface area element: 

It+Llt 1 p 
dt' Ftot(t') = nL1B ~ L1tg(p) d3p P 

t Pz>O m 

-1 n L1B Ip~ I L1t g(p') d3p' p' 
p~<O m 

= L1B L1t : J d3p g(p) pxp· (7.55) 

Because of the inertia of the wall one observes macroscopically the time 
average of this force. As expected, it is at right angles to the wall, because 
g(p) is isotropic, and is proportional to its surface area. We have thus proved 
the existence of a pressure P which is uniform and constant in time, and we 
have derived an expression for it: 

(7.56) 

Using the isotropy of g(p) and the homogeneity of the gas we obtain 
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p = ~ ~ \ ::) = ~~. (7.57) 

We find thus that the pressure is proportional to the density and to the av
erage kinetic energy of the molecules. It has not been necessary to use the 
explicit form ofthe distribution g(p); we needed only its isotropy (Exerc.13a). 
Expression (7.57) would thus be valid, even if equilibrium had not been es
tablished. 

We took as a model of the wall a simple plane; this may appear to be 
too rough an approximation as we work at the atomic level. Nevertheless, the 
above result remains unaltered, if one makes up the balance of the momenta of 
the molecules which in one direction or another traverse a plane situated away 
from the actual solid wall itself. The molecules which carry the momenta p 
and p' in (7.55) are then not the same, but this does not make any difference. 

We note that the principle of this calculation of the pressure by kinetic 
theory differs significantly from the one which follows from the general for
malism of partition functions and thermodynamic potentials. We have here 
defined the pressure as the resultant of the forces exerted by the gas molecules 
on the wall whereas the thermodynamic pressure was more globally defined 
starting from the work done on the gas through a quasistatic compression. 
It is true that we have found again the same result, but it is not surprising 
that the calculations were so different, as the two definitions of pressure were 
not a priori equivalent on the microscopic scale. 

7.4.3 Kinetic Interpretation of the Temperature 

Comparing (7.57) with the empirical equation of state (7.39) of rarefied gases 
enables us to identify, apart from a multiplying constant, the average kinetic 
energy of the gas molecules with the absolute temperature: 

/ L) = ~ ~ T = ~ kT. 
\2m 2 NA 2 

(7.58) 

We thus find here again the relation (7.24) between the energy and the tem
perature and a microscopic explanation of the properties of the Joule expan
sion. 

This microscopic interpretation of the temperature has historically played 
an important role in showing that, at least in a perfect gas, a purely ther
modynamic concept such as the absolute temperature can be understood by 
using only mechanistic ideas. This was a first step towards the unification, us
ing microscopic and statistical physics, of theories which on the macroscopic 
scale looked very different - mechanics and thermodynamics. 

Nevertheless, even though kT has the dimension of an energy, this quan
tity is directly related to energetic properties of a particle only for a perfect 
gas. In fact, as we have seen in Chaps.5 and 6, f3 rather than kT is the fun
damental quantity; it is conjugated to the energy of the system through its 
relation with the entropy and it has the dimensions of an inverse energy. 
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7.4.4 Transport in the Knudsen Regime 

The main interest of kinetic theory is not so much the calculation of equili
brium properties as the study of processes where this equilibrium has been 
disturbed by external perturbations. In fact, the kinetic approach is rather 
more complicated than that of § 7.3, but more general and more powerful. In 
§ 7.4.1 effusion has provided us with a simple example which demonstrates 
the effectiveness of the kinetic theory for non-equilibrium situations; in that 
case the presence of a hole prevents the establishment of equilibrium. 

That example illustrates, moreover, a situation where the collisions be
tween the molecules, which can be neglected when equilibrium has been es
tablished, can still be neglected notwithstanding the fact that the system 
is evolving. In effusion it is legitimate to forget about collisions when the 
dimensions of the holes are sufficiently small so that there are no collisions 
in them. The same holds whenever the gas system which we are considering 
has either very small dimensions or a very low density. A situation of this 
kind is called a Knudsen regime or a ballistic regime and the phenomena are 
ultimately governed essentially by the collisions of the molecules with the 
walls. Under such conditions transfer of heat from a hot to a cold wall, for 
instance, is due to the fact that the collisions are inelastic: they make the 
kinetic energy of the molecules increase or decrease on average, depending on 
whether the wall is hot or cold. In § 11.3.4 we shall see that a semiconductor 
behaves like a gas; the charge carriers, negative electrons and positive holes, 
play the role of non-interacting classical particles; in the processes leading 
to equilibrium their collisions with one another are replaced by the collisions 
with impurities in the semiconductor. The ballistic regime is then relevant 
for some thin parts of semiconductor devices and for the very small samples 
involved in the technologies presently being developed in microelectronics. 

The ballistic regime is reached when the dimensions of the system are 
small compared to the mean free path, that is, the average distance traversed 
by the molecules between successive collisions. Below we shall give its order 
of magnitude. 

7.4.5 Local Equilibrium and Mean Free Path 

Nevertheless, transport phenomena occur most often not in the ballistic 
regime, but in the Boltzmann regime, or local equilibrium regime, or hy
drodynamic regime, in which the prime role is played by collisions inside 
the substance. Generally speaking, one will be dealing with a transport phe
nomenon whenever one forces a quantity which should be uniform in equili
brium to vary from point to point. Let us, for instance, assume that initially 
the temperature is not uniform. Thermostatics indicates what will be the final 
state of the isolated system (§§ 5.1.2 and 6.1), but does not tell us anything 
about the evolution in time of energy transport processes associated with the 
equalization of the temperatures. Kinetic theory gives an intuitive picture 
of this effect of approach to equilibrium (§ 4.1.5): the molecules situated in 
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the hotter regions are faster; those which move from the hotter to the cooler 
regions therefore carry with them a larger kinetic energy than those which, 
in equal numbers, move in the opposite direction. This transported energy 
can macroscopically be interpreted as heat and the phenomenon which we 
have just described is none other than heat conduction in a gas. 

We have disregarded here convection, a transfer mechanism which is very impor
tant in gases and which is connected with transport of matter. On the microscopic 
level the mass flux vanishes on average in pure conduction processes, whereas the 
particle fluxes moving in the two opposite directions through a surface element are 
not balanced when there is convection. This global transfer contributes significantly 
to the equalization of the temperatures. 

If one counteracts the tendency towards equilibrium, for instance, if a 
gas is put in contact at opposite ends with two thermostats at different 
temperatures, which perturb it permanently and prevent its temperature 
from becoming uniform, one obtains after a very short time a stationary non
equilibrium state (§ 4.1.4): the temperatures of the thermostats hardly change 
notwithstanding the transfer of heat from one to the other, as they are very 
large; there is a permanent energy flux passing through the gas, but its macro
state does not change with time. This heat conduction is on the macroscopic 
scale characterized by a transport coefficient, the heat conductivity, .x, which 
is the ratio of the heat current density, that is, the energy flux per unit area, 
to the temperature gradient. 

We shall in Chaps.14 and 15 return to this analysis of transport phenom
ena by generalizing it and making it more precise. Here we are satisfied with 
a qualitative approach based upon the balance (7.50) of the displacements 
of the molecules in the gas and upon the idea that the collisions enable 
them to exchange energy or momentum. We have indicated (§ 7.1.2) how 
these collisions are responsible for the approach to equilibrium of the gas; 
the mechanism is the same for transport phenomena, which are akin to the 
approach to equilibrium even though the regime is stationary. To simplify the 
discussion, we restrict ourselves here, as in Chap.15, to a gas with molecules 
which are practically frozen in their ground state (§ 7.1.1) so that each colli
sion is elastic. The strongly repulsive nature of the forces at short distances 
makes it possible to treat the collisions as impacts which last very briefly 
and to model the molecules as impenetrable spheres of radius ~8, where the 
distance of closest approach 8 is of the order of 1 to 4 A. 

The properties of the collisions are then characterized by the mean free 
path 1 which is the average distance traversed by a molecule before it hits 
another. To estimate the order of magnitude of 1 we neglect the motion of 
all molecules but one, forget for the time being about the interactions of 
the latter molecule, and assume that it has travelled, rectilinearly, a distance 
L. A sphere of radius 8 centred on the molecule considered sweeps through 
a cylinder of length L and volume 7r82 L. The number of collisions that it 
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undergoes when one restores the interactions is then given by the number 
of other molecules with centres inside this cylinder; it equals 7rtP Ln, if the 
density is n. As a result, the mean free path between two successive collisions 
is of the order of 

1 
I '" 7rn{j2. (7.59) 

Under normal density conditions we find, assuming {j to lie between 1 and 
3 A, a mean free path of 1 to 0.1 p,m which is much larger than the mean 
distances between the molecules (30 A). In rarefied gases, the mean free 
path may become large as it reaches the order of km at a pressure of 10-6 

to 10-7 Torr. 
The characteristic time associated with collisions is the period between 

successive collisions of a molecule. It follows from (7.59) and the mean speed 
of the molecules (§7.2.3). Under normal conditions its order of magnitude is 
10-9 s. 

In the local equilibrium regime the mean free path is much shorter than 
the distances over which macroscopic quantities such as the temperature 
change appreciably. Similarly, the period between collisions of one molecule 
is much shorter than the times over which the external parameters change. On 
the other hand, each collision suffered by a molecule makes its momentum and 
its energy change in a random manner, governed by the distribution of the 
momenta of the other particles in the region considered. The molecule loses 
the memory of its preceding motion - it even loses its identity when it collides 
with another molecule of the same kind - and after a few collisions we may 
assume that the probability for its momentum components is the same as that 
of the medium. We can thus assume that the gas consists of volume elements 
which are large as compared to the mean free path and therefore practically 
at equilibrium, but sufficiently small that we can consider parameters such 
as the temperature and the chemical potential to be uniform inside them. 
In this local equilibrium regime transport phenomena, and especially heat 
transfer from one end of the sample to another, are the result of a very large 
number of collisions between the molecules: the excess kinetic energy in the 
hot region is transferred gradually, from point to point over short distances 
through the intermediary of the collisions. In contrast, in the Knudsen regime 
where I is large as compared to the dimensions of the vessel distant regions 
can have direct exchanges with one another through molecular motions and 
equilibrium is not established locally. 

7.4.6 Heat Conductivity and Viscosity 

In order to exemplify the methods used by kinetic theory to study vari
ous transport phenomena we shall evaluate by a rather rough, but semi
quantitative, method the heat conductivity. Assuming that the gas is in local 
equilibrium with a fixed temperature gradient, we must determine the ki
netic energy flux of the molecules, taking their collisions into account. The 
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essential idea which we shall use systematically in this book whenever we are 
dealing with a non-equilibrium phenomenon, is to consider the detailed bal
ance of exchanges. Here we are dealing with kinetic energy exchanges across 
a surface area at right angles to the temperature gradient, which are caused 
because molecules cross that area in one direction or the other. 

z 

x 

----T 

dT 
T -/-

dz 

Fig. 7.5. Transport across an area 

Let us assume that the temperature gradient is directed vertically and let 
us consider the molecules which cross, from below to above, the horizontal 
surface area L1S during a time interval L1t (Fig.7.5). According to (7.51) their 
number is proportional to 

{kT 
n L1S V -:;;;: L1t, (7.60) 

where T is the temperature at the height considered; we drop numerical 
factors which do not affect the results in any crucial manner. It is reasonable 
to assume that the molecules were thermalized at their last collisions, which 
occurred below the area L1S on average at a distance l of the order of the 
mean free path. The kinetic energy transported on average by each of the 
molecules is therefore equal to 

3 3 ( dT) 2kT(z - l) '" 2k T - l dz ' 

which is the kinetic energy (7.58) associated with the temperature T(z - l) 
prevailing at the altitude z -l whence the molecules come. The kinetic energy 
transported from below to above is thus, apart from a numerical factor, equal 
to 

{kT ( dT) n L1S V -:;;;: L1t k T - l dz . (7.61) 

From above to below the flux of molecules is still (7.60) as the heat con
duction occurs in a permanent regime, without convection, that is, without 
mass transfer on average; however, the average kinetic energy transported 
per molecule is now 

~k (T+l dT). 
2 dz 
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Altogether, the heat flux crossing L1S from below to above is thus - apart 
from a numerical factor - equal to 

f!T dT 
L1Q ex: -n L1S - kl -, 

m dz 

and the corresponding energy current density equals 

(kT 
J E ex: -n V --;;;: kl '\IT. (7.62) 

Using (7.59) we thus find for the heat conductivity 

JE fkT fkT k 
,\ = - I '\IT I ex: n V --;;;: kl ex: V --;;;: 82. (7.63) 

This expression, obtained by Clausius (1862) and Maxwell (1866), shows 
two properties: the conductivity is independent of the density and it is pro
portional to ,;T. Experiments have made it possible to check these properties 
for all densities where the mean free path is large as compared to the inter
atomic distances d, in order that the perfect gas model may be used, but 
sufficiently short that we are not in the Knudsen regime. The quantitative 
theory of Chap.15 will confirm the result (7.63) by giving us expressions 
for the transport coefficients in terms of the characteristics of the collisions 
between the molecules. 

Other transport phenomena can be approached in the same way. In all 
cases one imposes a gradient of a quantity which characterizes local equili
brium; there then appears a current for the conjugate quantity. The transport 
coefficient characterizes the response of the system, that is, the current which 
it creates to react on the imposed departure from equilibrium. 

In this way viscosity is associated with a transport of momentum. A gas 
which moves with a uniform velocity u in the horizontal x-direction is in a 
state of equilibrum (Exerc.4e). In this case we must include the total momen
tum amongst the constants of motion in the Boltzmann-Gibbs distribution; 
we shall see in § 14.2.1 that the intensive quantity, conjugated to the momen
tum with respect to the entropy, is -u/T. The momentum distribution of 
the molecules still obeys Maxwell's law, but centred on p = mu rather than 
on p = O. If we create a departure from equilibrium by letting the velocity 
u( z) in the x-direction depend on the height z, the molecules have in local 
equilibrium an average momentum mu(z) corresponding to that height. The 
transfer of molecules from below to above and from above to below, due 
to thermal motions, then produces momentum exchanges which are not in 
balance. A total momentum L1P is in this way imparted during the time 
interval L1t through the surface area L1S by the gas layer below it to the gas 
layer above it. The latter thus receives a momentum L1P == F L1t, and hence, 
a force F is exerted by the layers below on the layers above each surface 
element. This force, due to a transfer of momentum from the region where 



336 7. The Perfect Gas 

the motion is faster to the region where it is slower, can macroscopically be 
interpreted as the Newtonian viscosity associated with the difference in ve
locity between layers. The evaluation of <1P is again based upon the number 
of molecules (7.60) crossing <1S either from below to above or from above to 
below. The first have on average a momentum 

du 
mu(z -l) ,....., mu(z) - ml -

dz 

in the x-direction, as they were thermalized at a height z - l according 
to an appropriately decent red Maxwell distribution g(p). The average mo
mentum of the molecules crossing <1S from above to below is similarly 
mu(z) + ml du/dz so that we have, in the x-direction, 

fIT du 
<1P 0( -n <1S - <1t ml -. 

m dz 
(7.64) 

The viscosity 'fJ is defined as the ratio between the horizontal force per unit 
surface area and the velocity gradient. It is thus equal to 

(7.65) 

The viscosity of a gas is thus independent of the density and increases with 
the temperature as /T. This result is physically reasonable as the vertical 
transport of momentum is favoured by an increase in the average velocity 
of the molecules. Moreover, equations (7.63) and (7.65) show that, apart 
from a numerical factor, the ratio of the viscosity to the heat conductivity is 
proportional to the molecular mass of the gas, 

'fJ m mNA 
:x 0( k = ~' (7.66) 

and is independent of the size {j of the molecules. These remarkable results, 
predicted by Maxwell in 1860, were regarded to be surprising at that time: 
everybody knows, in fact, that the viscosity of liquids, such as lubricating 
oils or honey, decreases with increasing temperature. Moreover, unless one 
remembers to associate the viscosity force with transfer of momentum, it is 
not obvious that the viscosity of a gas is independent of the density and that 
it is as large as is expressed by (7.65). The unexpected nature of the results 
predicted by Maxwell using the present theory led him to check them by 
experiments which lasted several years. Their complete success contributed 
to a confirmation of the young kinetic theory. The difficulties in measuring 
the viscosity and thermal conductivity in gases are connected with the fact 
that one must avoid turbulent and convective motions. The experiments are 
easier to perform in liquids but it has not been easy to explain those, starting 
from microscopic phenomena and using statistical physics. 
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Summary 

The perfect gas model, which is justified for a theory of inert gases at 
low enough densities, is based upon the description of molecules as non
interacting structureless point particles in the classical limit. In one or other 
of the canonical ensembles it gives us the equilibrium properties of those gases, 
such as the Maxwell distribution (7.16) for the molecular velocities, the equa
tion of state (7.38), the entropy (7.41), and the specific heat (7.45). 

Kinetic theory enables us to explain mechanistically pressure and trans
port phenomena. By using the idea of a mean free path for the molecules 
and the balance equation (7.50), we derive the properties of effusion rates, 
thermal conductivity, and viscosity of gases. 

Exercises 

7a Barometric Equation 

The molecules of the atmosphere are in the Earth's gravitational field. Ide
alize the atmosphere as an isothermal perfect gas at rest and at equilibrium. 

1. Evaluate the variation of the atmospheric pressure with height. 
2. The air contains impurities - rare gases, large molecules, dust particles. 

Calculate the distribution of these impurities with height. 

Solution: 

1. From (7.48) we get dP/dz = -Pmg/kT in agreement with the macroscopic 
hydrostatic equilibrium equation dP = {!gdz. The pressure decreases by 12 % over 
1000 m for a density (! = 1.3 kg m -3. 

2. Equation (7.48) is valid for each ofthe components, which are thus distributed 
with height as exp( -z/zo) over an average height Zo = kT /mg which depends on m. 
It follows that, for 300 K, Zo = 9000 m for N2; this is the correct order of magnitude, 
even though the hypothesis of isothermal equilibrium is incorrect at those heights; 
Zo = 64 000 m for He; zo = 800 m for tetraethyl lead, which is an additive for 
motor fuels and the dilution of which therefore remains practically unchanged in 
the air at the top of the Eiffel tower; zo = 1 m for macromolecules with a molar 
mass of 2 x 105 u; Zo = 1 /-tm for small dust particles of mass 0.3 x 10-12 g. 

Application: Measurement of Avogadro's Number. In 1909 Jean Perrin measured Zo 
for granules suspended in a liquid. The determination of the mass of the granules 
then gave him an experimental value for the Boltzmann constant, and hence for 
Avogadro's number R/k. To observe the distribution of the granules with height 
he employed a small cell with a depth of 0.1 mm in which he deposited a droplet 
which he flattened using a cover-glass. By changing the focus of a microscope 
one can observe successive horizontal layers; the optical field of the microscope is 
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restricted so that one can count each time only a small number of granules. The 
mass of the grains follows from their density and their diameter. The density was 
measured in different ways: for example, by comparing the mass of pure water 
and that of the suspension which occupies the same volume, or by measuring the 
residual mass after desiccation at no°c. One can estimate the diameter of the 
granules by following their fall under the action of the gravitational field when one 
distributes the emulsion in a sufficiently tall column in a capillary tube: the grains 
fall in a uniform motion to produce ultimately the exponential distribution which 
one is studying; the acting force is equal to the apparent weight of the grain in the 
liquid; the friction force is given by Stokes's law (61l"1]va) which is a function of the 
viscosity 1], the velocity v, and the radius a. One can also obtain the mass of the 
grains directly by producing, for instance in a centrifuge, a precipitation on the 
walls of the cell, which makes it possible to count them; as one knows the strength 
of the solution and its total mass, one finds the mass of the grains. 

7b Isotope Separation by Ultracentrifuging 

1. Consider a perfect gas at equilibrium in a cylinder of radius R and vol
ume Sl rotating with a high angular velocity w around the z-axis. Write down 
the corresponding classical Boltzmann-Gibbs distribution. Note (§ 4.3.3) that 
the constants of motion now are the energy and the component Jz of the total 
angular momentum J = L:i[ri x pJ We must thus introduce not only the 
multiplier j3, but also a multiplier associated with Jz ; identify this multiplier 
with -j3w by evaluating the mean velocity at each point. 

2. Find the same result also by changing the frame of reference: determine 
first the Lagrangian and then the Hamiltonian in the rotating frame (§ 2.3.3) 
and write down the canonical equilibrium in that frame; the collisions with 
the walls force the gas to follow the rotation of the cylinder. 

3. Use the distribution thus obtained to find, through integration over 
the momenta, an expression for the molecular density as a function of the 
distance from the cylinder axis. What happens in the case of a gas mixture? 
When using ultracentrifuges for isotope separation one injects hexafluoride 
UF6 , which is a gaseous uranium compound, into a rotating cylinder. The 
UF6 consists of a mixture containing the two isotopes 238U and 235U, and 
one wants to enrich it in the rarer fissile 235 isotope which is fuel for nuclear 
power stations. How does the ratio of the concentrations change as a function 
of the distance to the axis for a cylinder of radius R = 20 em, rotating with 
10 000 revolutions per minute at T = lOO°C? 

Solution: 

1. The fluid carried along by the walls of the rotating vessel acquires a non
vanishing average angular momentum (Jz) around the axis ofrotation. This angular 
momentum is a constant of the motion. In order to be able to assign to it a definite 
value one associates with it a Lagrangian multiplier A, in exactly the same way 
as one associates the multiplier (3 with the energy in canonical equilibrium. The 
average (Jz) will be a function of A. Let us give N not on average, but exactly - one 
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could also work with a multiplier a for (N). The density in phase which represents 
the rotating gas is thus of the form 

D 1 -(3H -AJ 1 {'" [{3p; \ ( )] } = Z e Z = Z exp - 7 2m + /\ XiPyi - YiPxi , 

with the usual measure dTN. The energy and the average angular momentum are 
given by 

8 
U = - 8{3 In Z, 

8 
(Jz ) = - 8A In Z. 

We must still find the physical meaning of the multipliers {3 and A, the values 
of which are fixed by energy and angular momentum reservoirs connected with the 
gas, that is, by the walls of the vessel. The multiplier (3 associated with energy 
exchanges can be identified with l/kT using the usual thermodynamic reasoning. 
On the other hand, A is mechanical in nature and to identify it we need to compare 
our microscopic description with the macroscopic description of fluid mechanics. 
To do this we write down the single-particle reduced density 

f(r,p) oc exp { - ~~ - A (xpy - ypx)} 

= exp {- ! (p+ ;[>t x r]r + ~~2 (x2 +y2)}, 

whence we find the velocity distribution at a point r to be proportional to 

The mean velocity of the fluid at the point r is thus equal to -[>t x r]/{3. It can 
be identified with the velocity [w x r] in a uniform rotation with angular velocity 
w, provided we put w = -A/{3. On the macroscopic scale the gas rotates as a 
rigid body; on the microscopic scale the molecular velocities keep fluctuating, as 
in a gas at rest, and they are larger than the global rotation speed. The angular 
momentum is imparted to the gas when the molecules collide with the rotating 
walls, which changes the Maxwell distribution at every point, shifting its origin. The 
walls play the role of an angular momentum reservoir; their motion is characterized 
by a certain angular velocity, and the angular velocities w of the fluid and of the 
walls become equal at equilibrium, exactly like the equalization of the temperature 
through energy exchanges. 

2. The Lagrangian can be taken as remaining invariant under any change of 
reference frame, because the stationary action principle is independent of the frame. 
On the other hand, the Hamiltonian is changed, and we need the latter to write 
down the equilibrium conditions as it is a constant of the motion. For a single 
particle with position r' and velocity v' in the rotating frame, the Lagrangian in 
the two frames is given by 
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Hence we get the conjugate momentum of r/: 

I aLl I I 
P = av' = m( v + [w x r ]), 

and the Hamiltonian of the particle in the rotating frame is 

12 

H~ = (pl. v') - Ll = ~m - (w . [r ' x p']). 

The equilibrium in the rotating frame is given by the canonical density in phase, 

D - ! -(3H' 
- Z e , 

where H' is the sum of H~ over the N particles. To switch back to the original 
coordinates, we note that p' and [r ' x p'] can be derived from p and [r x p], 
respectively, by means of the same change of coordinates that leads from r to r'o 
Hence we get H' = H - (w· J), and D can be identified with the earlier expression, 
provided ~ = -(3w. 

3. Integrating the reduced density f(r,p) over p gives us, after normalization, 
the molecular density as function of the distance r J.- from the axis: 

The increase of n with r J.- reflects the effect of the centrifugal force on the molecules, 
which is the more efficient, the larger their mass and the lower the temperature. 
For a mixture the two species are independent of each other and the ratio of the 
concentrations varies as 

Nlml exp(m2w2R2/2kT) -1 [(ml -m2)w2r1] 
= N2m2 exp(mlw2R2/2kT) -1 exp 2kT . 

The relative enrichment of 235U of the gaseous UF6 in the centre and its depletion 
at the walls are given by 

The gas extracted from the periphery is depleted and that remaining at the centre 
enriched, as compared to the mixture which was injected originally. Starting from 
a natural isotopic mixture which contains 0.7 % of 235U, this process can produce, 
after a few tens of stages, percentages of the order of the 3 % used in nuclear power 
stations, and it is thus more efficient than gas diffusion (Exerc. 7 g). However, the 
technology is difficult to master - fast rotation, leak-free shaft-seals, lubrication, 
corrosion - so that gas diffusion remains the main industrial process. 
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Comments. As in the case of equilibrium of a gas in a gravitational field (Exerc.7a) 
we could have obtained the result by a macroscopic calculation from thermodynam
ics and fluid mechanics, using locally the perfect gas laws and the balance between 
the forces, here centrifugal forces and pressure gradients. The above considerations 
must be regarded a microscopic justification of such a calculation. 

Usually, when one writes down the condition for a system to be in canonical 
equilibrium one does not inquire about the Lagrangian multipliers for dynamical 
constants of motion such as the angular or the linear momentum. To be rigorous, 
one should do so; afterwards one should fix the value of these multipliers by re
quiring that on average the angular and linear momenta vanish: the system is at 
rest. In fact, for symmetry reasons these quantities vanish at the same time as the 
corresponding multipliers. For instance, we have 

(Jz ) = _ 3ln Z = N R2 [ 1 2kT ] 
3)" mw 1 - exp( -mw2 R2 /2kT) - mw2 R2 

~ ~wNmR2. 
w->O 

Therefore, if one omits a constant of the motion such as Jz by not introducing the 
appropriate multiplier, it amounts to introducing a zero multiplier, and hence to 
requiring, as we wanted to do, that on average the angular and the linear momenta 
vanish. 

The method used under 1 to identify the hydrodynamic velocity on the mi
croscopic scale can also be applied to non-equilibrium situations (§ 14.2.1). This 
velocity, which is much lower than the individual molecular velocities, appears as a 
local statistical property. One should note that two different methods were used to 
identify macroscopic quantities. The comparison with thermodynamics is suitable 
for the temperature, the chemical potential, and the global pressure of a homoge
neous system, writing the work as - P dJ2. For quantities which vary from one point 
to another, such as the local velocity or the local pressure in a non-uniform system, 
we must compare the local microscopic results with macroscopic hydrodynamics. 

In the change of frame under 2 the velocity, which is equal to p/m in the 
fixed frame, becomes Vi = pi /m - [w x r'l in the rotating frame so that the linear 
momentum mv' is no longer equal to the momentum p'. The situation resembles 
that of a particle of charge q in a magnetic field, which has a velocity (p - qA)/m. 
In fact, whereas positions and velocities are physical quantities, momenta have 
a certain amount of arbitrariness which is connected with the fact that we can 
change the Lagrangian by adding to it a time derivative without changing the 
equations of motion. For instance, in a Galilean transformation with velocity u, 
the procedure of 2 where the Lagrangian is assumed to be invariant gives p~ = Pi, 

whereas v~ = Vi - u; the Hamiltonian becomes H' = H - (u· P), where P is the 
total momentum. However, there is also another procedure which better exhibits 
the Galilean invariance; it consists in adding to the Lagrangian the ineffective term 

at the same time as changing from the ri, Vi to the 7'~, v~ coordinates; in that case 
the momentum which is conjugate to 7'~ is p~' = Pi - miu = miv~, and not p~ = Pi, 
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and the Hamiltonian H" = H - (u· P) + i M u 2 has in terms of the p~' exactly the 
same form as H in terms of the Pi. 

The expression for the angular momentum (Jz) is to lowest order in w the 
same as for the rotation of a cylinder with uniform density, which has a moment 
of inertia equal to iNmR2. However, the larger density at the periphery of the 
cylinder makes the moment of inertia increase with w in an important manner, 
as mw2 R2 /2kT is equal to 2.5 for the numerical values of the problem, which 
multiplies the moment of inertia by a factor 5. 

The energy 

8ln Z 3 1 
U = - fii3 = "2NkT +"2w (Jz ) 

contains a contribution due to the motion, in agreement with the macroscopic 
dynamics. One can check that the entropy (4.14) also depends on the rotational 
velocity, but only to order w4 . It decreases with w, as the rotation produces changes 
in density which increase the spatial order. 

7c Relativistic Gas 

Evaluate the grand partition function of a hypothetical non-interacting very 
hot classical gas with "relativistic" energies: 

c(p) = v' c2p2 + m 2c4 rv cpo 

Hence find the equation of state and the internal energy. Compare the re
sults with those for the non-relativistic perfect gas and for the photon gas 
(Chap.13). 

Solution. We get from (7.27) 

A = kT D Q J d3 -(3g(p) - h3 e P e 

_ £ 87T(kT)4 eJ1./kT = _ P D 
h3 c3 

-NkT, 

u 3NkT. 

The equation of state is the same as for the non-relativistic perfect gas - it is 
independent of the functional relation for c(p) - but the internal energy is twice as 
large. 

For a photon gas, the number of particles is not conserved, and /1 = 0; moreover, 
quantum effects are important. In this case the average number of photons at 
equilibrium and the pressure are equal to (Chap.13) 

N D (kT)3 ~ «3), 
hc 7T 2 

U 7T2(kT)4 
P = 3D = 45(hc)3 

7T4 NkT 
90~· 

The relation between P and U is the same as for the state has been changed by 
a factor which comes partly from the non-conservation of the number of photons 
and partly from their, quantum, indistinguishability. 
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7d Doppler Profile of a Spectral Line 

1. Find from the Maxwell law the probability distributions for the absolute 
magnitude of the velocity, for the kinetic energy, and for the components vII 
and V.l of the velocity along and at right angles to a particular direction. 

2. Let ,xo be the wavelength of an emission line corresponding to a transi
tion between two energy levels of a molecule or an atom; we assume the line 
to be infinitesimally thin - "natural width" of the order of Ll,X/,Xo ,....., 10-9 . 

If the molecule moves, the observed wavelength is shifted because of the 
Doppler effect. Under the usual experimental conditions where the molecules 
are in the gas phase, thermal motion produces a broadening of the line which 
should be calculated, together with the strength of the line, as function of 'x. 
Numerical application: hydrogen lines at room temperature. 

3. Evaluate the thickness of the deposit as function of the angle () over 
which the cylinder has rotated in the experiment described at the end of 
§ 7.2.3 for a cylinder with radius R and angular velocity w. 

Hints: 

1. Do not forget that, if one changes variables, the probability density is not 
invariant, but its product with the volume element remains unchanged. 

2. From the Doppler shift 

A - AO 
AO 

we get 

v , 
c 

The Doppler broadening is small, but not negligible as compared to fine structure 
splittings, which are a few A for Na, that is, of relative order 10-4 . It is of the 
order of the hyperfine splitting: the existence of the 21 cm line of H gives rise 
in the visible spectrum of the hydrogen atom to a splitting of relative order 0.6 x 
10-6 /21 X 10-2 = 0.3 X 10-5. This is the reason for the interest in recent "recoilless" 
spectroscopy techniques. 

3. The thickness is proportional to 
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7e Liquid Nitrogen Trap 

An efficient way to produce a good vacuum in a vessel is to condense the 
residual gases - in particular, the oil vapours coming from the pumps - on 
a cold surface. This is the "liquid nitrogen trap" which connects the vessel 
through a small hole with a tube plunged into liquid nitrogen. 

Hole with area S 

Liquid nitrogen 

Volume n 

Fig. 7.6. Liquid nitrogen trap 

1. What is the number of particles passing per unit time through the hole 
S? Assume that the diameter of the hole is small as compared to the mean 
free path and count all particles reaching its aperture from above. 

2. Assume that each molecule entering the hole is "trapped", that is, 
condenses in the tube. Assume also that the temperature of the gas in the 
volume {l is maintained constant through collisions with the walls. How does 
the pressure change with time? Starting from Po = 1 Torr (mm Hg), how long 
will it take to reach P = 10-6 Torr? Take for oil vapour at room temperature 
(v) ~ 100 m/s; {l = 1 litre; S = 1 mm2 . 

3. How are the above results changed if we take into consideration the 
molecules which pass the hole in the opposite direction? Assume that on the 
cold side the gas is in equilibrium at the temperature Ts of liquid nitrogen 
and at its corresponding saturated vapour pressure Ps . 

4. What happens, if the vessel is thermally insulated? 

Answers: 

1. 

2. 

dN 1 {ffT - = - -nS(v) = -nS -. 
dt 4 2~~ 

P = Po exp (- ~ J kT t). n 2~~ 

P jPo = 10-6 in 10 minutes. The mean free path does, actually, not exceed a value 
of 1 mm until the pressure has dropped to 10-3 Torr, so that our calculation is not 
realistic at the beginning of the process. 
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3. dN = _ nS J kT + SPs . 
dt 27rm J27rmkTs 

P= 

The pressure does not tend to zero, as t ....... 00. 

4. The temperature of the gas decreases with its density, following (7.52) for 
structureless molecules. In that case integration leads to 

T- 1/ 2 - r.- 1/ 2 .!. ~ J k 
- 0 + 6 n 27rm t, 

{ n J27rm }-s 
P ex t + 6 S kTo 

the decrease is slightly faster than in the isothermal case to begin with, but much 
slower later on. 

Note. The efficiency of this process is primarily limited by adsorption of molecules 
on the walls where they remain stuck. To improve this, one degasses these walls by 
heating them, which reduces the adsorption (ExercAb). 

7f Adiabatic Expansion 

Consider a cylinder of length L and cross-section (J' containing a monatomic 
perfect gas and closed by a moving piston which is assumed to move with a 
uniform velocity w (Fig. 7.7). Assume that the collisions with the walls are 
elastic, and especially those with the piston in the frame fixed to the piston. 

L w 

--y 
Fig. 7.7. Adiabatic expansion 

1. What changes must one make to Eq.(7.50)? 
2. Write down an expression for the energy given by the gas to the piston 

during a time interval dt by analysing the collision mechanism, assuming that 
initially the gas is in equilibrium at a temperature T. 

3. Evaluate this energy to first order in w. If w is small as compared to 
the molecular velocities and if the mean free path is short compared to the 
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dimensions of the cylinder, one may assume that the gas is able to thermalize, 
that is, that its energy at all times is distributed amongst the molecules 
according to the Maxwell distribution. For that case write down the relation 
between the volume and the temperature during the expansion. Compare the 
result with (7.42). 

4. How does the entropy change to the next order in w? What happens 
when w becomes very large and positive? 

Solution: 

1. By considering the frame fixed to the piston we see that the height of the 
infinitesimal cylinder considered in Fig.7.3 is changed to (vx - w)Llt so that (7.50) 
is changed to 

2. Analysing a collision in the moving frame, we see that it changes px, Py, pz 
into -2px + 2mw, Py, pz and that only molecules with px > mw reach the piston. 
Hence, the energy given to the piston is 

dU 
dt 

2nuw 1 3 2 --;:;;- g(p) d p (Px - mw) 
px>mw 

4nuwkT [00 2 {[ [Tn] 2} 
y'1r io dx x exp - x + w V 2kT . 

3. If ~mw2 ~ kT the above expression reduces to 

dU N dfl 
- '" -nuwkT = - - - kT. 
dt fl dt 

Hence, using (7.44), we find 

3dT dfl 
2T - n· 

We have found again the equation (7.42) for the adiabatic expansion of a monatomic 
gas. Kinetic theory has enabled us to prove that a change in volume which is slow 
as compared to the molecular velocities conserves the entropy. 

4. The next term in w gives 

3 dT _ ~ dfl T (1 _ w {8;;:) 
fl dt V ~ , 2 dt 

dS = Nk (~dT ~ dfl) = N 2 J 8km . 
dt 2T dt + fl dt L w 1rT 

The entropy increases, independent of the direction of the piston motion. 
If !mw2 » kT most molecules are too slow to hit the piston. The gas does not 

give off any energy to the piston and we are back at a Joule expansion. 
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Comments. The above calculation of the dissipation is, in fact, too simplistic: it 
does not take properly into account the collisions, which play a role in the non
adiabatic processes, as can be seen from § 7.4.6. A correct theory must distinguish 
more clearly the Knudsen and the local equilibrium regimes. 

One could compare this theory of the adiabatic expansion of a perfect gas with 
the behaviour of photons during the expansion of the Universe (§ 13.2.2): in both 
cases a dynamic process which is slow as compared to the particle velocities - here 
the motion of the piston, there the expansion of the Universe changing the photon 
momenta through the Doppler effect - is equivalent to an expansion at constant 
entropy. 

7g Isotope Separation by Gas Diffusion 

Two isotopic gas mixtures of uranium 238 and 235 hexafluoride, 238UF6 and 
235UF6, at different pressures and with different concentrations, are separated 
by a porous wall. The pressures to the left and to the right are maintained at 
fixed values PI and Pr, where PI ~ Pro Write down the equations governing 
the evolution, through effusion across the pores of the wall, of the numbers 
of molecules of both types on the two sides of the wall. Assume that the 
concentration of the light isotope on the right stabilizes around a stationary 
value and evaluate an upper limit for that concentration as a function of the 
concentration on the left. How many diffusion stages does one need at least 
to change from natural uranium with 0.7 % of 235U to enriched uranium with 
3 %, which is used in most industrial reactors? 

Effusion, called "gas diffusion" in this context, is the main process for 
uranium treatment: it covers 98 % of the production. One uses barriers with 
about 1010 pores per cm2. In Exerc.14a we shall indicate how the diffusion 
stages are organized in the Eurodif factory in the Rhone valley. In Exerc.8a 
we shall also give entropy and energy estimates for this process. 

Solution. Let the subscript 1 and 2 indicate, respectively, 235UF6 and 238UF6, and 
I and r the two sides of the wall. Integrating (7.50) over Px > 0 we get 

dNlr _ ~ _1_ (P C _ PC) __ dNu 
dt - 'vhTrkT yIml I U r lr - dt· 

We have assumed that each molecule which enters a pore from one side emerges on 
the other side and we have denoted the molecular concentrations by C (Cl + C2 = 
1). If the concentrations on the right are stabilized, we have 

dNlr dN2r 
Nlr N2r 

, 

that is, 

1 (PPu -1) = 
1 ( PJ(l - Cu ) _ 1) . 

yIml PrClr ym:2 P r (l- Clr) , 

the pressures and the concentrations on the left may go on changing. At best, with 
PI ~ P r and with a small Cu , the concentration Clr on the right reaches a value 
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Cll Jm2/ml = Cll J352/349 = 1.0043Cll. The increase in concentration after a 
single operation is thus very small. To change from natural uranium (0.7 %) to 
uranium enriched to 3 % which is used in nuclear power stations needs therefore a 
very large number of successive effusions: even with unit efficiency and a very large 
pressure difference one would need 340 barrier passages. In practice the Eurodif 
factory has 1400 diffusion stages which operate in a stationary regime. 
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"On peut concevoir les parties integrantes de I'air comme 
de petits filaments contournes en forme de spires flexibles et 
elastiques, et leur assemblage a peu-pres comme un paquet 
de cot on ou de laine cardee que l'on peut reduire en un plus 
petit volume lorsqu'on Ie presse, mais qui tend toujours a 
se remettre dans son premier etat. Cette idee n'est qu'une 
esquisse bien grossiere de la nature de I'air; et j'avoue qu'il 
y a peut-etre cent contre un a parier, que les parties de cet 
element n'ont point la figure que je leur attribue; parce que 
pour les supposer telles, je n'ai d'autre raison que leur flexi
bilite et leur ressort, et qu'elles peuvent etre elastiques avec 
cent figures differentes d'un fil spiral: aussi lorsque j'adopte 
cette hypothese avec la plupart des Physiciens, je ne pretends 
point dire ce qu'elles sont, mais seulement ce qu'elles peuvent 
etre." 

Abbe Nollet, Lel;ons de Physique Experimentale, 1775 

"L'atmosphere etait saturee de gaz sulfureux, d'hydrogene, 
d'acide carbonique, meles a des vapeurs aqueuses .... Bien
tot, avec ce bruit, les combinaisons chimiques se trahirent 
par une vive odeur, et les vapeurs sulfureuses saisirent a la 
gorge I'ingenieur et son compagnon. Voila ce que craignait Ie 
capitaine Nemo! murmura Cyrus Smith, dont la figure palit 
legerement." 

Jules Verne, L'Ite Mysterieuse 

In the following chapters we shall successively drop the three simplifying hy
potheses which defined the perfect gas model (§ 7.1). We start by taking into 
account the structure of the gas molecules, which we had taken schematically 
to be point particles. We shall see that this structure plays an essential role in 
the determination of the macroscopic properties of most gases at equilibrium 
at sufficiently low densities. In particular, we shall use molecular spectroscopy 
(§ 8.4.1) to find the thermal properties of gases (§ 8.1), the properties of mix
tures (§ 8.2), and their chemical equilibrium laws (§ 8.2.2). We shall study the 
quantum phenomenon of the freezing in of the internal molecular degrees of 
freedom which occur when the temperature is sufficiently low (§ 8.3.1), and 
the simplifications brought in by the classical limit, which is valid at suf
ficiently high temperatures (§ 8.4.2). We shall also in §§ 8.3 and 8.4 discuss 
some characteristic examples showing how the structure of the molecules in 
a gas is reflected in macroscopic effects. 
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8.1 General Properties 

8.1.1 The Internal Partition Function 

Let us consider one of the gas molecules, with centre of mass position r, total 
momentum p, and total mass m. Let Ua be the coordinates of the various 
constituents of the molecule, the atomic nuclei and electrons, with respect to 
its centre of mass, /La their masses, and 1I"a their momenta in the centre of 
mass frame. We have L- /LaUa == 0 and L-1I" a == O. The total kinetic energy 
of the constituents of the molecule can be written in the form 

p2 11"2 

2m + L 2;a· 
a 

The interaction potentials depend only on the relative positions, the relative 
momenta, and the spins Sa of the nuclei and the electrons, so that the motion 
of the centre of mass can be split off. We can thus write the Hamiltonian of 
the molecule in the form 

~2 p ~ 

2m +h, (8.1) 

where h depends only on the internal observables Ua' ia, Sa. The energy 
levels eq of the molecule, which are associated ~ith its ground state and its 
excited states, are the discrete eigenvalues of h. As an exercise, one could 
show, using ideas from §§ 2.1.5, 2.3.3, and 14.3.1, that the specific form (8.1) 
is just a consequence of invariance under translations, rotations, and Galilean 
transformations. 

In the present chapter we neglect the interactions between the molecules, 
which is legitimate as long as the gas is sufficiently rarefied. The Hamiltonian 
of the gas is then the sum ofthe Hamiltonians (8.1) of the N molecules, which 
for the moment we assume to be all identical: 

N (~2 ) N 
fiN = ~ :~ + V(ri) + ~ hi. 

~=1 ~=1 

(8.2) 

We have denoted by V(r) the potential which confines the molecules within 
the volume [} of the box, as in (7.8). The two terms in (8.2) commute and 
can thus be treated separately. The first one acts in the Hilbert space of the 
centre of mass variables, where the observables are the positions ri and the 
momenta Pi of the molecules; the second one acts in the Hilbert space of the 
internal variables, itself the direct product of the individual Hilbert spaces 
for each molecule. 

The kinetic part is exactly the same as if the molecules had been replaced 
by structureless and non-interacting point particles. As in the perfect gas 
idealization we can treat that part in the framework of classical statistical 
mechanics whatever gas we are considering. In fact, we have seen (§ 7.1.3) 
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that the condition (7.5) for the validity of the classical approximation is 
satisfied for all gases. (When one takes the structure of the molecules into 
account, condition (7.7) must be modified into (eO: « 1 by subtracting from 
a = p,jkT the contribution (8.13) from the internal variables.) 

On the otEer hand, the internal degrees of freedom, described by the 
Hamiltonians hi which are all similar, must be treated quantum mechanical~. 
Indeed, the discrete nature of the energy levels Cq, that is, the eigenvalues of h, 
cannot be accounted for by classical mechanics. As they refer to the internal 
variables of different molecules, the various Hamiltonians hi commute with 
one another and the energy levels of fiN are, apart from the kinetic part, 
obtained simply by taking the sum of the energies Cqi of each molecule. 

The evaluation of the canonical partition function is most easily carried 
out by taking advantage of the factorization of the kinetic contribution, on 
the one hand, which has already been evaluated in § 7.2.1, and of the con
tributions from the various molecules, on the other hand. We are, in fact, 
dealing with situations where the conditions for the applicability of the rules 
of § 4.2.5 hold. Denoting by TrN the trace over the Hilbert space of the inter
nal variables of the N molecules and by tr the trace over the internal space 
of a single molecule, and using the classical limit (2.69) for the space of the 
external variables, we find 

(8.3) 

where AT again denotes the function of the temperature defined by (7.6). 
The internal degrees of freedom give rise to N identical factors (, each of 
which defines the internal partition function of a single molecule: 

((T) = tr e-lh = L e-eq/kT 
q 

(8.4) 

The evaluation of ( involves only the energy levels of a single, isolated 
molecule at rest. In the evaluation of the sum (8.4) we must bear in mind 
that if an energy level Cq is d-fold degenerate, it must be counted d times as 
we are summing over states q and not over energy levels. 

Even though the various results of the present chapter could be obtained 
in the canonical ensemble by starting from (8.3), we shall in what follows 
work with the grand canonical ensemble. By summing (8.3) over N, as in 
(7.26), we obtain the grand potential 
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A(T, IL, Q) = - kT In ZG = - kT In L ZN eo. N 

N 

(8.5) 

which we shall use to find the thermodynamic properties of a real gas at 
equilibrium and at sufficiently low density. 

The macroscopic role of the structure of the molecules at equilibrium is 
completely reflected in the internal partition function (, a function of T which 
occurs multiplicatively in the grand potential. In the free energy which follows 
from (8.3) -NkTln( occurs additively. The theory of the thermodynamic 
and chemical properties of gases therefore requires the explicit evaluation of 
(8.4); this will be our task in §§ 8.3 and 8.4. 

The fact that the molecules are all made up from elementary constituents of 
the same kind poses a number of questions which we have avoided when we went 
from (8.1) to (8.2). First of all, if we consider, for instance, a gas of N oxygen 
molecules, each oxygen nucleus acts in principle with the same potentials on the 
2N - 1 other oxygen nuclei and on the 16N electrons; however, the approximate 
Hamiltonian (8.2) contains only its interactions with the other nucleus and with the 
16 electrons of the molecule to which it belongs. The fact that we have neglected 
the other interactions, thus breaking the symmetry between the elementary con
stituents of the molecules, is justified by the short range of the forces and the low 
density of the gas. By associating in (8.2) each nucleus and each electron with a 
definitely chosen molecule we have eliminated ipso facto all configurations where 
an electron, or more generally a group of particles, switches from one molecule 
to another. The approximation is thus well suited for our aim of describing a gas 
consisting of untouchable molecules of a well defined kind without any possibilities 
for ionization or chemical reactions. Just as the Hamiltonian (7.8) of the perfect 
gas did not produce any energy exchanges, (8.2) cannot account for transfers of 
constituents between different molecules. We shall, nevertheless, see (§ 8.2.2) that 
the present approach is sufficient to describe chemical equilibria in gases where 
such transfers are allowed. It is true that during the establishing of equilibrium the 
interactions between the constituents of different molecules play an essential role in 
each collision: they are responsible for a redistribution of these constituents in the 
most random way possible which characterizes chemical equilibrium - just as for a 
perfect gas the collisions produce energy exchanges which govern the approach to 
equilibrium (§ 7.1.2). However, in both cases it is legitimate to treat the molecules as 
being independent of one another once equilibrium has been established, as long as 
the range of the forces is short as compared to the distances between the molecules, 
or the mean free path long as compared to these distances. 

Another important aspect of the indistinguishability of the constituent parti
cles, the electrons and nuclei, is the Pauli principle (Chap.10) according to which 
the Hilbert space only contains wavefunctions which are symmetric under the ex
change of the coordinates of two particles, if we interchange atomic nuclei contain
ing an even number of nucleons, or antisymmetric, if we interchange odd nuclei 
or electrons. Here the Pauli principle manifests itself in two ways. First of all, we 
must take it into account for each molec1Lle when constructing the eigenstates of 
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h which are characterized by the index q; in the calculation of the trace (8.4) we 
must thus watch out and retain only those states which have the proper symmetry 
character (§ 8.4.5). Next, we should apply the same restriction when we go over 
to the whole system and interchange molecules. Nevertheless, we have earlier con
structed the micro-states of the system as tensor products characterized by the set 
of quantum numbers qi, without bothering explicitly about the Pauli principle. In 
fact, as at low densities bound states of the various molecules do not overlap one 
another, the symmetrization or anti-symmetrization of the global wavefunction of 
each micro-state does not change its energy L:i eqi' the only quantity which occurs 
in the calculation of (8.3). Hence, the only trace of the quantum indistinguishability 
which remains is the following: when we integrate over the centre of mass coordi
nates and the momenta of the molecules in the classical limit, the measure dTN 

in phase space contains a factor liN! which we have carefully included in (8.3). 
This factor is in the classical limit the remainder of the symmetry or antisymme
try of the wavefunctions under a simultaneous exchange of the coordinates of the 
elementary particles which make up two different molecules (§ 2.3.4 and Chap.lO). 

Let us finally note that expression (8.4) for the internal partition function does 
not make sense literally, if we want to be precise. In fact, if we include in the 
spectrum of h the continuum which describes the ionized states of the molecule -
or, more generally, the excited states when it is split up - the contribution from this 
continuum to (8.4) is infinite. This is a real difficulty for a very dilute or a very hot 
gas for which condition (7.3) is violated; we need a different approach for that case. 
It is then appropriate to treat the gas as a reactive mixture (§ 8.2.2) consisting (i) 
partly of neutral atoms, the internal partition function of which will be calculated by 
retaining in (8.4) only the bound states, (ii) partly of free electrons, and (iii) partly, 
finally, of ionized atoms having their own internal partition function (Exerc.8c). For 
the not too rarefied gases which we study in the present chapter there are practically 
no free electrons or ionized atoms, and it is legitimate to retain only the bound 
states q in (8.4) which then becomes a discrete sum. There is still a divergence, 
since there are an infinite number of bound states describing an electron moving 
at large distances around the ion which is the remainder of the molecule; they all 
have energies practically equal to the ionization energy. However, amongst those 
states we can forget about the ones with dimensions larger than the intermolecular 
distances: they are comparable to the ionized states and can be dropped under the 
same circumstances. As a result, when condition (7.3) is satisfied, it is legitimate to 
omit from the series (8.4) the higher-order terms for which the excitation energies 
eq - eO get close to the ionization or dissociation energy of the molecule. We can 
disregard the divergence of this series, which is thus dominated by its first terms 
for which the eq - eO are not large as compared to kT. 

8.1.2 The Equation of State 

As indicated in §5.6.4, we can find from (8.5) all properties of the gas in 
thermal equilibrium by taking derivatives. The pressure is given by (5.78), 

aA A 
p=--=--an n (8.6) 

whereas the density follows from (5.76): 
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N 
[} 

1 8A A 
- [}kT· (8.7) 

The equation of state which we obtain by eliminating J.l from (8.6) and 
(8.7) is 

P[} = NkT. (8.8) 

We see thus that for low density gases the internal structure of the molecules 
does not affect the equation of state at all, which remains the same as for a 
perfect gas, in agreement with experiments. 

8.1.3 Thermal Properties 

The entropy which follows from (5.72) and (8.5), where AT ex: T-1/ 2 , is equal 
to 

s = 8A 
aT 

or, if we use (8.7) 

S 5 J.l d 
N = 2" k - T + kT dT In (. (8.9) 

We can from this equation and Eq.(5.71) find the internal energy per 
molecule of the gas: 

U A S 3 d 
N = N + T N + J.l = 2" kT + kT2 dT In (. (8.10) 

This expression differs from expression (7.44) for the perfect gas by the extra 
term coming from the internal degrees of freedom of the molecules. It is, 
nevertheless, remarkable that the right-hand side of (8.10) still depends only 
on the temperature. This property also follows from the equation of state 
(8.8), using the thermodynamic arguments of Exerc.6a. As a result, for all 
low density gases we get the Joule expansion property: a sudden irreversible 
expansion of a gas into a vacuum does not change its temperature, if there 
is no exchange of heat or work with the exterior. 

Similarly, in a reversible, isothermal expansion the gas does not change 
its internal energy U. On the other hand, the work received during heating 
at constant pressure equals - P d[} = - N k dT. Hence, by striking an energy 
balance, we get Mayer's relation between the specific heats at constant pres
sure and constant volume, which has been well supported experimentally for 
low density gases, and which also follows from (6.41) and (8.8): 

Cp - Cv = Nk. (8.11) 

We find the specific heat at constant volume from (8.10) by taking a 
derivative: 
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3 d ( 2 d ) Cv = ""iNk + dT T dT In ( Nk. (8.12) 

To the perfect gas term is added a second term which is associated with 
the thermal excitation of the internal degrees of freedom, and which can be 
obtained from the energy levels of the molecule, if we use (8.4). These levels 
are known experimentally with a high precision thanks to spectroscopic data, 
as the emitted or absorbed wavelengths A are inversely proportional to the 
energy differences between the levels, ..:1c = hc/ A. Remember that 2 eV 
corresponds to visible light, namely, A = 6000 A, so that room temperature 
(4~ e V) corresponds to the infrared. The specific heats of gases can thus be 
derived easily from data on the infrared spectra of the molecules in the gas, 
and experiments have checked this relation between thermal and spectroscopic 
properties. 

We shall proceed more theoretically in §§ 8.3 and 8.4 by calculating di
rectly, though approximately, the form of ( for various kinds of molecules. 
Our starting point will be the Hamiltonian h which describes the nuclei and 
electrons, interacting through Coulomb forces. This will enable us to derive 
the specific heat of a gas from the structure of its molecules. 

8.1.4 The Chemical Potential 

The definition, the physical interpretation, the properties, and the impor
tance of the chemical potential J.L, which characterizes the tendency of a gas 
to give up molecules, have been discussed in § 5.6.3. As function of the density 
and the temperature it follows from (8.5) and (8.7) that 

J.L 
kT In (~A~) -In ((T) 

N 3 mkT 
In - - - In -- - In ((T). 

fI 2 27[",2 
(8.13) 

The dependence of J.L on variables other than the temperature is solely 
through the first term; for given T it logarithmically increases with the den
sity, or, what amounts to the same, with the pressure: the more it is com
pressed, the more easily the gas gives up molecules. 

If we choose as energy zero for a molecule the energy of its ground state, 
we have ( > 1. The condition N A~ / fI « 1 for the validity of the classical 
approximation for the translational degrees of freedom then implies that the 
chemical potential of the molecules of a gas is negative. We have estimated 
(§ 7.1.3) the kinetic contribution to J.L for oxygen under normal conditions; if 
one adds to it the contribution from the rotation of the molecules (§ 8.4.3) one 
gets an order of magnitude of J.L ~ -0.5 eV, to be compared with kT ~ 10 eV. 
This sign of J.L implies that a gas loses free energy when it gains molecules 
at constant volume and temperature. Just as its volume tends to increase 
when it is surrounded by a vacuum because its pressure is positive, the gas 
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would tend to absorb molecules which would hypothetically be available at 
zero chemical potential, that is, quantum molecules at low temperature and 
low density. 

Finally, J.L decreases with increasing temperature either at constant den
sity or at constant pressure: a cold gas tends to give up molecules to a hotter 
gas at the same density or the same pressure. 

8.1.5 The Entropy 

We get from (8.9) and (8.13) an expression for the entropy as function of the 
temperature and the number of particles, 

S n 5 d 
Nk = In N'\~ +"2 + dT [T In ((T)] , (8.14) 

which generalizes the Sackur-Tetrode formula (7.41). Using (8.4) we can check 
that the last term in (8.14), which is the entropy associated with the internal 
quantum degrees of freedom of a molecule, is positive. The preceding terms 
are also positive, if we bear in mind (7.5), so that the entropy of the gas is 
certainly positive under the conditions where (8.14) is valid. 

The equation for an adiabatic expansion follows immediately from (8.14) 
combined with the equation of state (Exerc.8d). 

When the temperature decreases or the density increases, the entropy 
(8.14) decreases and one ends up by reaching a regime where the present 
approximations become incorrect. On the one hand, interactions between 
molecules start to playa part: dense gases or liquids (Chap.9); on the other 
hand, quantum effects begin to dominate: solidification (Chap.U). The way 
expression (8.14) for the entropy of a gas goes over into those for the low
temperature condensed, liquid or crystalline, phases plays an important role 
in the experimental check of the Third Law. In fact, (8.14) is defined without 
an additive constant and must go over into an entropy which vanishes as 
T - 0 (§ 5.4.2). Let us, for instance, assume that there is only one solid 
phase, in which the specific heat at constant pressure is G~(T), and let L be 
the latent sublimation heat. The change in entropy under a transformation 
at constant pressure from the temperature Ts where the gas solidifies to the 
absolute zero is then equal to 

L (T. GS(T) 
ST. -ST=O = Ts + 10 T dT. (8.15) 

The check on whether the entropy actually vanishes at the absolute zero thus 
reduces to comparing the right-hand side of (8.15), which can be determined 
experimentally by calorimetric measurements, with that of (8.14), which one 
evaluates for T = Ts in the gas phase. This check has been carried out 
for a large number of substances; it shows that the entropy, normalized so 
that it vanishes at the absolute zero, contains, indeed, for a gas the additive 
constant occurring in (8.14). Note that this expression depends not only on 
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Boltzmann's constant k, but also on Dirac's constant Ii which can thus be 
measured indirectly by calorimetry. 

8.2 Gas Mixtures 

8.2.1 Non-reacting Mixtures 

The above formalism can easily be generalized to a gas containing several 
kinds of molecules, XI, X2 , •••• When the gas is chemically inert, that is, 
when all numbers NI, N 2 , ••• are conserved, we must introduce in the grand 
canonical equilibrium, apart from the Lagrangian multiplier (3 associated 
with the energy, a multiplier (Xj for each kind of molecule Xj, and define 
the grand canonical ensemble by summing over NI, N2 , •••• In this way the 
grand potential A for a mixture of gases now depends on a chemical potential 
for each kind of molecule. In the classical limit the volume element (2.59) in 
phase space contains here the symmetry factor 1/NI !N2! .... The canonical 
partition function can then be factorized into a product of contributions like 
(8.3). The same is true for the grand partition function so that for two kinds 
of molecules, for example, the grand potential is a sum of terms like (8.5): 

(8.16) 

Al and A2 differ in the values of the masses mI, m2 which occur in AT 
and in the expressions for the internal partition functions (I(T) and (2(T). 
Everything behaves as if we had two independent systems occupying the same 
volume. 

The partial densities of each species in the gas are given by 

Aj(T,n,lLj). 
nkT ' 

(8.17) 

these expressions should in practice be inverted into (8.13) when one gives the 
relative concentrations of the molecules rather than ILl and 1L2. The pressure, 
internal energy, and specific heat are sums of contributions from the various 
molecules. In particular, the pressure satisfies, because of (5.77) and (8.17), 
Dalton's law (1801), 

A kT 
P = - n = fi 2: N j , 

j 

(8.18) 

which expresses that the different kinds of molecules in the gas contribute 
independently to the total pressure. 

The entropy is also additive, in the sense that it is a sum of contributions 
(8.14), calculated as if each of the sets of molecules occupied the whole volume 
n. Let us, nevertheless, assume that we start from an initial situation where 
the molecules are separated, the NI molecules of kind Xl being placed in a 
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vessel of volume ill == Nlil/(NI + N2) and the N2 molecules of kind X2 in 
a vessel of volume il2 == N2il/(NI + N2). The two gases are at the same 
temperature T and thus at the same pressure. If we connect the two vessels, 
there occurs an irreversible transformation during which the molecules of the 
two species mix. The fact that the internal energy (8.10), which is conserved 
during the mixing, is independent of the volume has as a consequence that 
the temperature remains unchanged; the pressure, given by (8.18) in the final 
state, remains equally unchanged. The process is, nevertheless, distinguished 
by the existence of a mixing entropy. In fact, everything happens, for each 
set of molecules, as if the volume increased from ill or il2 to il = ill + il2 
at constant temperature; this makes the entropy increase - and the chemical 
potentials decrease - by an amount coming from the first term in (8.14), 

il il 
LlS = kNI In ill + kN2 In il2 

kN I NI + N2 kN I NI + N2 
= I n NI + 2 n N2 

k In (NI + N 2 )! . (8.19) 
NI!N2! 

The mixing entropy measures the increase in disorder associated with the 
mixing of the molecules of the two species. It does not correspond to 
any thermal phenomenon. In its last form, (8.19) involves the number, 
(NI +N2)!/NI!N2!, of different ways to arrange the NI and the N2 molecules, 
which can be distinguished between the two groups, but not within a group; 
we recognize therefore in LlS the information lost when we randomly dis
tribute all the molecules, starting from a situation where they were separated 
according to their type. If, conversely, we would wish to separate the Xl and 
X2 molecules, at given temperature and pressure, we should decrease the 
entropy of the gas. This is, according to the Second Law, impossible, unless 
we supply at least an amount of work equal to T LlS; the energy of the gas 
remains constant so that the work done is downgraded into heat given to the 
outside (Exerc.8a). 

The Gibbs paradox (§ 3.4.3) originates from the existence of the mixing entropy. 
Before the end of the nineteenth century it seemed conceivable that one could 
change the nature of the molecules of a gas continuously. Under such an operation 
the mixing entropy (8.19) would remain invariant, except at the exact moment 
where the molecules Xl and X2 became identical; in fact, in that case, mixing 
them would not change anything. This discontinuity is one way of presenting the 
Gibbs paradox. In fact, the problem can no longer be put in those terms as we 
know that the structure of atoms and nuclei does not allow continuous changes 
which could be imagined to happen in classical physics. 

In the form given in § 3.4.3 the Gibbs paradox shows up the relative and an
thropocentric nature of the mixing entropy. As long as one does not know how to 
distinguish the Xl and X2 molecules, one cannot separate them, so that the fact 
whether or not we include the mixing entropy has no consequences - except as far 
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as the Third Law is concerned. On the contrary, ilB becomes relevant when one is 
dealing with the separation of the Xl and X2 molecules. 

Let us finally note that the quantum indistinguishability also plays an important 
role in the existence of the mixing entropy. It is the reason for the appearance of 
the factor liN! in (8.3). If that factor were not there, the canonical entropy would 
contain an additional term k In N! and it would not be extensive. This would lead 
to a paradox much worse than the Gibbs paradox: the mixing of two samples of 
the same gas containing NI and N2 completely identical molecules, at the same 
temperature and pressure, would, in fact, make the entropy increase by the term 
(8.19); this, of course, is completely inadmissible. 

8.2.2 Chemical Equilibria in the Gas Phase 

Whether or not a gas is pure, inelastic collisions between molecules can pro
duce transitions between the energy eigenlevels of the molecules; this ensures 
that the internal motions are brought in thermal equilibrium with the trans
lations, as we have assumed them to do until now. In a gas mixture where 
chemical reactions may take place, collisions can, moreover, change the make
up of the molecules. In that case the numbers Nl, N 2 , ••• of the molecular 
types Xl, X2, ... are no longer conserved, because of those collisions. The 
disappearance of some conservation laws implies that the chemical poten
tials /-Ll, /-L2, .•. are no longer independent variables, as they were in the 
non-reacting mixtures studied above; the numbers N I , N2 , ••• adjust them
selves to values which make the disorder a maximum and which correspond 
to equilibrium. Our aim is to find their values. 

As a preliminary stage, it is useful to consider situations which are not in 
chemical equilibrium and where the numbers of molecules of each species are 
assumed to be frozen in. These situations can be observed over rather long 
periods, if the reaction processes between the molecules are not very efficient; 
in any case, considering them is a useful preliminary for the construction of 
chemical equilibrium states. They are just described by the formalism of 
§ 8.2.1. In particular, the interactions between the molecules are sufficiently 
weak so that they contribute only negligibly to the thermodynamic functions. 
In order afterwards to go over to chemical equilibrium situations we shall use 
the concept of chemical potential along the lines sketched in §§ 5.1.4 and 5.6.3 
and worked out in detail in § 6.6.3. Before recalling the results of that study 
we shall discuss a simple example. 

We shall consider the dissociation equilibium, H2 i:::+ 2H, of gaseous hy
drogen at high temperatures and low densities. Neglecting the interactions 
between molecules, the Hamiltonian jj can be split into components, 

(8.20) 

describing the dynamics of NI monatomic H molecules, of mass ml, and N2 
diatomic H2 molecules, of mass m2 = 2ml. Collisions produce transitions 
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between eigenstates of jj with the same energy and with the same value of 
the total number of hydrogen atoms in the gas, 

(8.21) 

Let us, to begin with, assume that the transitions which change Nl and N2 
are prohibited; we can then give separately the expectation values (N1 ) and 
(N2). The resulting grand canonical equilibrium is represented by the density 
operator 

(8.22) 

and the grand potential is given by (8.16). To describe the chemical equili
brium we now allow the H2 ~ 2H transitions which may change Nl and N2 
under the constraint (8.21). Apart from the energy there is only one other 
constant of motion, N, instead of Nl and N 2, which we can take care of 
through a single Lagrangian multiplier a. The Hamiltonian is still (8.20), 
apart from negligible interaction terms, so that the grand canonical density 
operator can now be written in the form 

fj = ~ e-(3ii+a(Nt+2N2) , 
Za 

(8.23) 

instead of (8.22). In the grand canonical formalism it is thus sufficient, for 
going from a non-reacting mixture to a gas in chemical equilibrium, to write 
down the relations between the chemical potentials. Here these relations have 
the form 

(8.24) 

and the grand potential of the H, H2 mixture in chemical equilibrium follows 
simply from (8.16) through the replacement 

(8.25) 

The total number N of atoms is equal to -8A/8/t whereas the number Nl 
of monatomic molecules at equilibrium equals -8AI/8/t and the number N2 
of diatomic molecules -8A2/8(2/t). 

Extending these results to the equilibrium of arbitrary reacting gases 
was the aim of § 6.6.3. One starts by listing the possible reactions k which 
transform the various kinds of molecules Xj of the gas into one another, 
writing them in the form 

L 1I?)Xj ~ o. 
j 

(8.26) 
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In the above example there is only a single reaction 2H - H2 !::; 0, and we 
have Vt = 2, V2 = -1. One then introduces a chemical potential J.Lj for each 
kind of molecule and determines the relations between the thermodynamic 
quantities as if the mixture were not reacting. One obtains in this way the 
chemical equilibrium by constraining the molecular chemical potentials by 
the relations 

L vjk)J.Lj = o. 
j 

(8.27) 

In § 6.6.3 we justified the chemical equilibrium conditions (8.27) in different 
ways: (i) by looking for the maximum of the entropy in two stages, as in
dicated in § 6.1.3, the first stage leading to the thermal equilibrium of the 
non-reacting mixture, and the second one to the chemical equilibrium; (ii) 
by treating each population of molecules of one given kind as a subsystem of 
the gas, and studying the exchanges of particles between these subsystems, 
superimposed in space; (iii) by proceeding as above in the grand canonical 
ensemble. We also refer to § 6.6.3 for the interpretation of the relations (8.27). 

In practice one wants to determine the concentrations in the gas of the 
molecules of the various kinds in chemical equilibrium. To calculate them it 
suffices to start from Eqs.(8.17) or (8.13) which are valid in thermal equi
librium, whether or not chemical equilibrium has been established, and to 
connect each number of molecules with the appropriate chemical potential; 
after that one can use the conditions for chemical equilibrium (8.27) to elimi
nate the chemical potentials. This gives us the required relations between the 
various numbers of molecules: one obtains as many equations as are neces
sary to evaluate the various concentrations as functions of the temperature, 
the volume - or the pressure - and the initial composition of the gas. The 
simplest case is the one where we have a single chemical reaction (8.26). 
Eliminating the chemical potentials from condition (8.27) and expressions 
(8.13) for each of the chemical species Xj then gives us a relation between 
the partial densities N j / n, 

1, (8.28) 

which determines them when n is given. When the chemical equilibrium 
is established at a fixed total pressure, elimination of n in (8.28) by using 
Dalton's Law (8.18) gives us a relation between the relative concentrations, 

(8.29) 

where Ntot = I:j N j is the total number of molecules in the gas. The quantity 
on the right-hand side, the so-called equilibrium constant, 
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(8.30) 

depends for a given reaction only on the temperature. 
Relation (8.28) or (8.29) is called the mass action law. Established in 1867 

by Guldberg and Waage in the framework of kinetic theory, it was rediscov
ered a little later by Gibbs using purely thermodynamic arguments. Statisti
cal mechanics enables us to use (8.4) to determine the equilibrium constant 
(8.30) starting from the energy levels of the various species of molecules, 
which themselves can be calculated theoretically or supplied experimentally 
by spectroscopy; indirect information about the (j(T), and thus about K(T), 
is also obtained by calorimetry (§ 8.1.3). In our example of the dissociation 
of hydrogen molecules the mass action law can be written as 

(8.30') 

which determines NdN2 as function of the temperature and the pressure, 
once we know the lowest levels of the hydrogen atom and the hydrogen 
molecule. If there are several reactions which can occur between the vari
ous kinds of molecules in the gas, each of them leads to an equation like 
(8.28) or (8.29). 

If we know the thermodynamic potentials (8.16) of the mixtures, we are 
also able to determine theoretically the thermal or mechanical effects which 
accompany the chemical reactions in the gas. In particular, in § 6.6.3 we 
defined the reaction heat, at given temperature and pressure, and gave an 
expression (6.84) for it as the change in the enthalpy H = U + PD. From 
the energy (8.10) and the pressure (8.18) we find the enthalpy of the mixture 
of gases, whether or not in chemical equilibrium, 

H = L N j (~kT + kT2 d~ In (j) . 
) 

(8.31) 

When expressed thus in terms of T, P, and the Nj it has the features of 
depending linearly on the N j and being independent of P. For a reaction 
characterized by the Vj coefficients the reaction heat per mole is the decrease 
in H following from changes N j = vjNA in the numbers of molecules. It 
therefore is equal to 

Q = -NAk " V· (~T+T2 ~ In r.) ~ ) 2 dT '»' 
j 

or, if we use the definition (8.30), 

2 d 
Q = -RT dT In K(T). (8.32) 



8.3 Monatomic Gases 363 

The reaction heats in gases therefore depend solely on the temperature and 
are directly connected with the equilibrium constants K{T). In our example 
(8.30') and (8.32) give us the dissociation heat of one mole of H2 at a tem
perature T. The relation (8.32) between the equilibrium constant (8.30) and 
the reaction heat is van it Hoff's Law (1884) which can also be proved by 
purely thermodynamic arguments for any reaction in the gas phase. That 
law has been well verified experimentally. 

8.3 Monatomic Gases 

In this section and the next we shall evaluate the internal partition function 
({T) and the thermodynamic properties which follow from it for various kinds 
of gases. 

8.3.1 Rare Gases; Frozen-In Degrees of Freedom 

The molecules of inert, or rare, gases are monatomic and the energy levels eq 

of h are those of the electron cloud in the potential of the nucleus, which is 
situated at the centre of mass. The ground state corresponds to a set of filled 
electron shells and the excitation energies are of the order of magnitude of the 
distance to the next shell, which is at least of the order of tens of eV, about 
20 e V for helium. In the calculation of the internal partition function (, from 
which we derive the various physical quantities, we split off the contribution 
from the ground state. Its multiplicity is g = 2sn + 1, where sn is the spin 
of the nucleus, as the electron shells are filled and the 1 So electron state is 
non-degenerate, both with regard to the spin and with regard to the orbital 
motion. We thus have 

In ( = - :; + In [g + I:: e-<cq-co)/kT] , (8.33) 

where the sum is over the excited states of the electrons in the atom. 
It is convenient to express the excitation energies in temperature units 

and to introduce, as in § 1.4.4, the concept of a characteristic temperature 
associated with the excitation energies. We know that room temperature cor
responds to 410 e V so that typical electron excitation energies of, say, twenty 
eV correspond to a value of Be = (eq - eo)lk of the order of 200000 K. We 
call Be the characteristic temperature associated with the electronic degrees 
of freedom of the atom. It is much higher not only than normal temperatures 
but even than those on stellar surfaces, so that the exponentials exp{ -BelT) 
which appear in (8.33) are negligible and the internal partition function re
duces to just the contribution from the ground state 

co 
In ( = - - + In g. 

kT 
(8.34) 
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This form implies that we must simply add to the internal energy of the 
perfect gas the energy NED of the molecules in their ground state, and to the 
entropy of the perfect gas a term N kIn 9 which corresponds to the gN possible 
configurations of the spins of the atomic nuclei, all with the same energy. 
This additive constant does not have any thermodynamic consequences, but 
it plays a role in the experimental check of Nernst's principle. 1 Similarly, 
the chemical potential contains a contribution due to the structure of the 
molecules and equal to EO - kT In g. The specific heat (8.12) is not changed, 
when we take the structure of the molecules into account, if ( has the form 
(8.34), so that for an inert gas 

Cv = ~Nk. (8.35) 

We have indicated in § 7.1.1 that the inert gases behave practically as 
the idealized model of a perfect gas of structureless point particles, even 
though their molecules consist of a nucleus surrounded by a complex electron 
cloud. One says that the electronic degrees of freedom are "frozen in": at any 
temperature well below the characteristic temperature Be the electrons cannot 
be excited thermally since the fraction exp( -BelT) of excited states remains 
always negligible at equilibrium at those temperatures. Everything behaves, 
as if the electronic degrees of freedom did not exist (Exerc.8b). 

On the other hand, if we assume for a moment that we reach tempera
tures T of the order of magnitude of the characteristic temperature Be, we 
must add an electronic contribution to the specific heat, as the internal par
tition function no longer has the simple form (8.34). The electronic degrees 
of freedom are freed and the excited states playa role. This can clearly not 
happen in the case of rare gases, as we should reach 200 000 K, but we shall 
see examples of similar effects for more complex gases. 

8.3.2 Other Monatomic Gases 

Let us turn to monatomic gases other than the rare gases. The differences in 
energy between the ground state and the first excited states are much smaller 
than for the rare gases, but they still often provide characteristic tempera
tures of the order of 10 000 K. For instance, for sodium vapour the first 
excitation energy is that of the yellow 5893 A doublet line corresponding to 
2.1 eV or 24 000 K. The excited states therefore remain frozen in; the internal 
partition function retains the form (8.34), but the multiplicity 9 = (2sn+1)ge 
now includes, on top of the contribution from the nuclear spin, a factor ge 
coming from the possible existence of several electronic wavefunctions with 

1 Because the interactions between the nuclear spins are so weak, the quasi
degeneracy gN of the ground state persists after solidification. The spins become 
ordered (nuclear antiferromagnetism) only at extremely low temperatures, of the 
order of nanokelvin, where the entropy decreases below kN In g and tends finally 
to zero. 
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the same minimum energy. For instance, for the alkalines the electron ground 
state is 2S1/2 and we have ge = 2 which for 23Na gives g = 4. 

Nevertheless, when the lowest levels are split by magnetic interactions 
connected with the spins their differences are much smaller. For instance, for 
the hydrogen atom the hyperfine interaction between the spins of the proton 
and the electron gives a non-degenerate ground state of energy co and an 
excited triplet with energy co + Dc, where Dc, which is associated with the 
21 cm line, is 6 x 10-6 eV, or, in temperature units, 0.07 K. In the internal 
partition function, 

( = e-co / kT (1 + 3e-Oc / kT ) , 

the temperature kT is now much larger than the excitation energy 8c of this 
first excited level. We can therefore completely neglect the hyper fine splitting 
in the calculations of the thermodynamic properties, and write 

( = 4e-co / kT • 

Everything happens in this case, as ifthe ground state were 4-fold degenerate. 
Fine-structure splittings, which are due to spin-orbit interactions, have 

larger characteristic temperatures and it turns out that they will affect the 
thermal properties. For instance, for monatomic CI, the ground state 2 P3/2, of 
multiplicity 4, is separated from the 2 P1/ 2 level, of multiplicity 2, by an energy 
8c = 0.11 eV, corresponding to an infrared line of wavenumber 881 cm-1. 

The associated characteristic temperature, Dc/k = 1270 K, can certainly not 
be neglected, even at the high temperatures at which one must work in order 
that the gas be not completely composed of Ch. From the internal partition 
function associated with these electron states, 

(8.36) 

we find an electronic contribution to the specific heat which must be added 
to (8.35): 

eel = 
v 

2X2 eX 
------,,-2 Nk, 
(2ex + 1) 

x == (8.37) 

This contribution, shown in Fig.8.1, is negligible both at temperatures low 
as compared to 8c/k, where only the four sublevels of the ground state are 
equally populated, and at high temperatures, where all the six sublevels of 
the doublet are equally populated. In both limits kT «: 8c and kT ~ Dc, 
the internal state of the molecules is frozen in. The specific heat (8.37) shows 
a characteristic peak, the Schottky anomaly, at a value of kT of the order 
of the distance between the ground state and the first excited state. This 
kind of contribution has actually not been observed in the specific heats 
of monatomic gases because of experimental difficulties, but this shape often 
occurs for other kinds of substances. We have already encountered an example 



366 8. Molecular Properties of Gases 

0.2 

0.1 

kT/B/3 

0.5 1.5 

Fig. 8.1. Schottky anomaly in the 
specific heat 

in § 1.4.4 for the specific heat of a paramagnetic substance placed in a fixed 
magnetic field. 

8.4 Diatomic and Polyatomic Gases 

8.4.1 The Born-Oppenheimer Approximation 

In order to determine the internal partition function (8.4) and to find from 
it the thermal properties of the gas, we need to evaluate the eigenenergies Cq 

of one molecule, for the ground state co and for those excited state which lie 
sufficiently close to the ground state that Cq - co is at most of the order of 
magnitude of kT. To do this we shall use the so-called Born-Oppenheimer 
approximation (1927) which is of major interest not only in the theory of 
molecules, but also in the theory of solids (§ 11.1.1). 

In the case of a molecule consisting of several atoms an analysis of the 
spectrum implies not only a study of the motion of the electrons, as in the 
case of a monatomic molecule, but above all a study of the relative motion 
of the nuclei. To carry that out we note that the atomic nuclei are several 
thousand times heavier than the electrons and therefore move much more 
slowly than the latter, if the kinetic and potential energies are of the same 
order of magnitude. The Born-Oppenheimer approximation now consists in 
solving the problem in two stages. 

We start by studying the motion of the electrons, neglecting that of the 
nuclei which we assume to be fixed in some, arbitrary, positions. We must 
thus solve a Schrodinger equation describing the electrons, which interact 
through Coulomb forces, and are subject to a fixed external potential due 
to the nuclei and depending on the relative positions of the latter. For most 
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molecules which have rather large binding energies this equation produces 
electron levels with spacings of the order of 1 eV, corresponding to charac
teristic temperatures of the order of 10 000 K. As a result, for most gases 
at room temperature the electron cloud is frozen in into its lowest state. 
The electronic degrees of freedom will therefore, as in the case of monatomic 
gases, lead only to supplying a multiplicity factor in (, if several electronic 
wavefunctions have the same, or almost the same, energy. In Chap.ll we 
shall see that the situation is not quite as simple when we apply the Born
Oppenheimer method to solids, since in that case the electron cloud is ther
mally excited at room temperatures. For the rather tightly bound and rather 
small molecules considered here we can, on the other hand, restrict ourselves 
to the single electronic eigenstate with minimum energy, for each, assumed 
given, arrangement of the nuclei. 

To be more precise, the Hamiltonian of one molecule, in the model of 
§ 8.1.1, has the form 

(8.38) 

where Tn and Te are the kinetic energies of the nuclei and the electrons and 
V the total Coulomb interaction energy, which depends on both the electron 
coordinates re and the nuclear coordinates Rn. The ~lobal translational ki
netic energy of the molecule, ii 12m is included in Tn, as the mass of the 
electrons is small compared to the nuclear masses. The first stage of the 
Born-Oppenheimer method consists in looking for the ground state of the 
Schrodinger equation 

(8.39) 

in the Hilbert space of only the electrons, dropping Tn and regarding the 
Rn not as operators, but as parameters. The energy W(Rn) of the electronic 
ground state thus depends on the positions of the nuclei. 

In the second stage we study the motion of the nuclei for the lowest 
electron configuration which we have just determined. To do that we must 
reintroduce the term Tn from (8.38) that we omitted until now, and regard 
the Rn again as operators which do not commute with Tn - a feature which 
did not occur in (8.39). The approximation made consists in assuming that 
the electron cloud, which is very mobile, adjusts itself instantly to the configu
ration of the nuclei which in this way feel the effect of the electrons indirectly. 
The Hamiltonian of the nuclei thus contains, on top of the kinetic energy Tn, 
the energy W(Rn} which comes both from the Coulomb interaction between 
the nuclei and from their interaction with the electrons, after the electron 
coordinates have been eliminated as a result of their being frozen in into 
the lowest energy state of (8.39). The lowest energy levels of the molecule 
are thus finally obtained by looking for the eigenvalues of the Schrodinger 
equation 
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(S.40) 

in the Hilbert space of only the nuclei. 
We should note that the motion of the centre of mass of the molecule 

can be separated off in the Born-Oppenheimer approximation (S.40), as it 
could be done in the case of the exact Hamiltonian (S.l). The eigenenergies 
C of (S.40) contain therefore a trivial contribution, the translational kinetic 
energy p2/2m, which must be subtracted when we construct the required 
energies Cq contributing to ((T). 

For instance, for a diatomic molecule such as HCI the energy W depends 
only on the distance {! between the two nuclei. If for the moment we disregard 
the direct Coulomb interaction between the nuclei, the energy of the ground 
state of the IS electrons is negative; it increases with {! from the binding 
energy of an atom of charge IS - the combined charge of the CI and H nuclei 
- for {! = 0, to the sum of the binding energies of the two separate, CI and H, 
atoms for {! = 00. To obtain W we must add to this function the repulsion 
between the Hand CI nuclei which becomes very large as (! --; o. The result 
is the curve W({!) shown in Fig.S.2 where we dropped an additive constant. 
At small distances apart the direct repulsion dominates; at larger distances 
apart the binding energy ofthe electrons becomes dominant and W({!) shows 
a pronounced minimum near some value (! = e. The energy W({!) plays the 
role of an effective interaction potential for the nuclei in the Schrodinger 
equation (S.40), where the total energy of the system is equal to W({!) plus 
the kinetic energy Tn of the nuclei. The latter can be split into a sum of two 
terms, 

(S.41) 

where p is the momentum of the centre of mass of the diatomic molecule, 
m its total mass, 11' the relative momentum of the two nuclei, the masses of 
which are J.Ll and J.L2, and J.L the reduced mass 

(S.42) 

Finally, if we drop, as in (S.l), the translational kinetic energy of the molecule, 
there remains for us the task to solve a Schrodinger equation (S.40), where the 
coordinates of the electrons and of the centre of mass have been eliminated, 
with an effective internal Hamiltonian 

(S.43) 

which is the same as that of a single particle with coordinates D in a central 
potential W({!). 
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Fig. 8.2. Energy levels of the Hel molecule 

The eigenvalues Cq of (8.43) are found by separating the angular and the 
radial variables and they are characterized by the quantum numbers q = 
l, m, n where l has a multiplicity 2l + 1 connected with the quantum number 
m. Moreover, we should include the quantum numbers of the nuclear spins 
which may give rise to additional degeneracies - or to quasi-degeneracies, 
as the magnetic interactions of those spins are negligibly small. In the rest 
of this chapter we shall study the rotational motion (associated with the 
quantum numbers land m) and the vibrational motion (associated with the 
radial quantum number n) and their thermodynamic consequences. 

A study of the quantum harmonic oscillator shows that the vibrational 
frequencies w/27r, and thus the spacing nw ofthe levels, are for a given poten
tial inversely proportional to the square root of the mass of the oscillator. As 
the masses of the nuclei are much larger than the electron mass, one expects 
that the energy levels of h, associated with the relative motion of the nuclei, 
are much more closely spaced than the excited levels of the electron cloud -
which we have justifiably assumed to be frozen in into its ground state. In 
fact, a numerical estimate of the inertia coefficients for the rotations and vi
brations of diatomic molecules, defined by (8.63), shows that they are usually 
rather large. Hence the corresponding levels lie densely and the character
istic rotation and vibration temperatures are much lower than the electronic 
characteristic temperatures. For instance, for Hel the characteristic rotation 
temperature is Br = 15 K, and the vibration temperature Bv = 4100 K, 
corresponding, respectively, to excitation energies of the order of 10-3 e V 
and 0.35 eV. 
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If the gas is at a temperature well above these characteristic temperatures 
quantization of the levels does not play any role as they lie densely on the 
scale kT; one can therefore treat the effective Hamiltonian (8.43) as a clas
sical Hamiltonian and replace the calculation of the trace in (8.4) by an 
integration, as we saw in §2.3.2, which leads to 

(c1 = J d3~~3fl e-h (1r,(J)/kT. (8.44) 

As a first approximation, valid at temperatures which are high as compared to 
8 r and 8 v , we shall thus treat in § 8.4.3 the internal molecular rotational and 
vibrational variables by classical statistical mechanics using (8.44). Before 
doing this we shall prove the energy equipartition theorem which will be 
useful in that analysis. 

Expression (8.44) must in actual cases be multiplied by a multiplicity factor g 

similar to the one in § 8.3.2. Moreover, if the two atoms of the molecule are indis
tinguishable we must introduce a factor ~, which is a special case of the factor 1/ S 
of (2.59), to compensate for the fact that a single configuration of the molecule is 
represented by two different points in phase space, 11", /I and -11", -/I. These con
stant factors do not affect the specific heats, but appear, for instance, in expression 
(8.14) for the entropy and in the mass action law through (8.30); they thus play an 
important role in chemical thermodynamics. Ehrenfest and Trkal recognized the 
importance of the symmetry factor S in this context in 1921. 

8.4.2 The Energy Equipartition Theorem 

One of the problems of statistical mechanics consists in determining how the 
energy of a system is distributed over its various degrees of freedom. We have 
seen that the general answer to this question is obtained by writing down 
that the temperatures associated with the independent degrees of freedom 
become equal. The result takes a particularly simple form for all problems in 
classical statistical mechanics where the Hamiltonian is quadratic in each of 
the phase space variables which occur in it. Let Xl, ... , Xn be those variables; 
they can be either coordinates or momenta. The Hamiltonian is supposed to 
be a sum of n terms of the form 

n n 1 
H = I: hj = I: 2(XjX;; 

j=l j=1 

(8.45) 

the (Xj are arbitrary positive constants, which can be interpreted as elastic 
force coefficients if X j is a position coordinate, and as inverse masses or inertia 
coefficients if Xj is a momentum. In thermal equilibrium the internal energy 
U = (H) is the sum of the average energies (h j ) associated with the n degrees 
of freedom. 

The energy equipartition theorem states that under those conditions the 
internal energy per degree of freedom (h j ) is equal to ~kT, whatever the 
value of the constants (Xj: 
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(h ) (h ) ~kT = U. 1="'= n=2 n (8.46) 

The total energy is equally distributed over all degrees of freedom and it 
is proportional to the temperature. 

To prove this result we calculate the classical canonical partition function cor
responding to (8.45), which has the form 

(cl = a 1+00 
dX1 ... dXn exp [-~t3 ~ ajX~] 

-00 J 

a IT !jF.. 
j=l V 73;;; 

(8.47) 

The factor a comes from the coefficients in (2.55) or (2.59). We get the (hj) through 
taking the appropriate derivatives: 

() 1 8 cl 
hJo = --ao-In( t3 J 8aj 

QED 

The variance of the h j similarly has a universal form since, according to 
(4.13), it is given by 

Llh2 = ~ a 2 {)2 In rcl = ~(kT)2 2 (hJo )2. (8.48) 
J (32 J {)a ~." 2 

If we add all degrees of freedom, we get 

2 
n 

(8.49) 

The equipartition theorem remains valid, if the system depends on other 
variables yl, ... , Ym which do not occur in the Hamiltonian and which have 
values in a finite domain. It can even be generalized to the case when the 
coefficients aj depend on these extra variables Yl, ... , Ym, as one can see 
from (8.47) by first integrating over the xl, ... , Xn variables. One should, 
however, take care, in practical applications of the equip art it ion theorem, 
not to include the y-kind variables among the n degrees of freedom. To avoid 
any mistakes in the counting it is advisable to check that the Hamiltonian 
actually has the form (8.45). 

For instance, in the case of a perfect gas, the 3N position variables Tl, ... , 

TN do not contribute, as we must freely integrate over them; there remain 
the 3N classical quadratic translational degrees of freedom corresponding 
to the momenta PI' ... , PN, and we find again the internal energy (7.44) 
and the average kinetic energy per molecule (7.24). Another example was 
given in § 5.7.3: the oscillating mirror is a classical one-dimensional harmonic 
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oscillator with a Hamiltonian depending on the two conjugated variables 
o and Pe. Its average energy is kT in thermal equilibrium with its kinetic 
and potential energies being equal to ~kT in accordance with (5.91). In this 
case, 0 does not vary from -00 to +00 like the Xj in (8.47). This has no 
consequences, since the probability law (5.90) is concentrated on O-values 
not too large as compared to (kT jC?/2 and Exerc.5e has shown that this is 
small. It is thus legitimate to extend the integration range for 0 from -00 to 
+00 in the calculation of the partition function. 

We should, nevertheless, not forget the conditions for the applicability of 
the equipartition theorem which is restricted to classical statistical mechanics 
and to quadratic Hamiltonians. In particular, the resulting specific heats do 
not depend on the temperature, a property which is necessarily violated at 
low temperatures, as the corresponding entropy, 

(8.50) 

would tend to -00 at zero temperature. We thus see again that it is necessary 
to use quantum mechanics at low temperatures in order to explain the fact 
that specific heats vanish, so that the integral (8.50) can converge at T = O. 
During the last quarter of the nineteenth century the disagreement of (8.46) 
with specific heat measurements on polyatomic gases provided the opponents 
of kinetic theory with one of their main objections. In fact, we shall see below 
that the reason for this disagreement was not statistical mechanics, but its 
classical approximation: one needs to understand the quantization of the 
energy levels to explain why the vibrational degrees of freedom are frozen in 
- the main source of the violation of the equipartition theorem. The high
temperature behaviour of the specific heat of hydrogen (Figs.8.3 and 8.5) 
exemplifies another cause for violations: anharmonicity. 

8.4.3 Classical Treatment of Polyatomic Gases 

Let us return to expression (8.44) for the internal partition function of a 
diatomic molecule in the classical limit. The temperature is assumed to be 
high, but not high enough for the distance apart (! to differ appreciably 
from its equilibrium value e where the potential W has a minimum. We can 
therefore replace the latter by its quadratic approximation, a harmonic well 
centred around e, 

(8.51 ) 

shown by the dashed line in Fig.8.2, and characterized by Wo = co, the min
imum energy in classical mechanics, and by the coefficient w which follows 
from the curvature of the potential. We thus obtain from (8.51) an approxi
mation for the internal partition function: 
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~ I..- e-co/kT 
Br By , 

n2 

Br == 2p,7Pk' 
nw 

B =
y - k' 

(8.52) 

Br « By « T. 

The integration over (}, which is concentrated around g, could be extended 
to -00. By substituting (8.52) into (8.10) we find the classical contribution 
from the rotations and vibrations of the molecules to the internal energy, 

uel = NkT2 ~ In l'eI = Nco + 2NkT 
r,y dT'" , (8.53) 

and thus to the specific heat, which is 2Nk. As a result, for a diatomic gas 
at temperatures above the rotation and vibration characteristic temperatures, 
but below the electronic characteristic temperature, the total specific heat at 
constant volume is equal to 

Cy = ~kT. (8.54) 

One could have derived this result directly from the equipartition theo
rem. In fact, the internal partition function (8.52) depends on four variables, 
1r and (}, which occur quadratically in the Hamiltonian and thus provide a 
contribution 2kT to the the internal energy per molecule, which must be 
added to the translational energy ~kT. Note that the two angular variables 
() and rp, which characterize the orientation of the molecule, do not occur in 
the Hamiltonian and therefore do not count when we apply the equip art it ion 
theorem. 

However, for most diatomic molecules room temperature lies between the 
characteristic temperatures for rotation and for vibration, which we gave in 
§ 8.4.1 for the case of HCI, and one does not observe the value (8.54) for the 
specific heat. As T » Br the rotational levels are still lying densely in the 
temperature region considered: in Fig.8.2 the rotational levels shown on top 
of the vibrational ground state level are drawn on a much expanded scale. 
Thus we can still treat the molecular rotations classically. On the other hand, 
as T « By the vibrational degrees of freedom remain frozen in: if we consider 
the Schrodinger equation (8.59) for (} and its conjugate momentum, only the 
radial wavefunction corresponding to the lowest energy needs be considered, 
and (} is practically restricted to the value g, within a margin Vnj2p,w « g. 
The effective Hamiltonian (8.43) now only depends on the angular variables 
() and rp, characterizing the orientation of g, and on their conjugate momenta 
Pe and pcp; we can treat it in the framework of classical statistical mechanics, 
since T » B r• The molecule can thus be idealized as a dumbbell, a classical 
rigid linear rotator consisting of the two nuclei at a fixed distance apart g 
and being able to rotate around the centre of mass. The Hamiltonian (8.43) 
reduces to the classical rotational Hamiltonian, 
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1 (2 p~) 
h = 2I P(J + sin2 B + eo, (8.55) 

where the moment of inertia I equals JLe2 • Hence we find the approximate 
internal partition function 

(8.56) 

from it we get the rotational specific heat of the molecules, Nk, and hence 
the total specific heat, 

Cy = ~Nk, (8.57) 

in agreement with most experiments carried out on diatomic gases at room 
temperature. 

Here again, (8.57) follows directly from the equipartition theorem. At 
the temperatures considered, fJ r « T « fJy , only the rotational degrees of 
freedom are unfrozen and they are treated classically. The internal partition 
function (8.56) per molecule involves two variables, P(J and P<p, quadratically; 
the variables Band cp do not contribute, even though B occurs in the coeffi
cient of p~, since they are y-type variables, as defined in § 8.4.2. These two 
rotational degrees of freedom per molecule are added to the three transla
tional degrees of freedom to give a total internal energy of ~ N kT and the 
specific heat (8.57). 

In the case of a polyatomic gas, consisting of molecules containing three or 
more atoms, there are more vibrational degrees of freedom, but they usually 
remain frozen in at room temperature. On the other hand, the characteristic 
rotational temperatures are very low, as the moments of inertia increase with 
the size of the molecule and with the mass of the constituents; they are of 
the order of 10 K for NH3 . Under those conditions, the molecule behaves as 
a classical rigid body which can rotate, and its orientation depends on the 
three Euler angles 'IjJ, B, cpo The Hamiltonian depends quadratically on the 
three conjugate momenta Pt/J, P(J, P<p, which are the three degrees of freedom 
contributing to the equipartition theorem. Hence we find a total specific heat 
equal to 

Cy = 3Nk. (8.58) 
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8.4.4 Quantum Treatment of Diatomic Gases 

We know how to calculate the thermal properties of gases in the two extreme 
cases, when the temperature is much lower than the characteristic temper
atures of certain internal degrees of freedom of the molecules, which remain 
frozen in, or much higher, in which case these degrees of freedom give a con
stant contribution to the specific heat. In the intermediate regions, where 
the temperature is of the order of a particular characteristic temperature, we 
can find the behaviour of the specific heat only by evaluating the internal 
partition function ((T) in the framework of quantum mechanics. 

A correct quantum treatment must take into account the discrete nature 
of the energy levels. This we have done in preceding sections for the electron 
motion, but we must still solve the Schrodinger equation with the effective 
Hamiltonian (8.43) of the nuclei, for temperature values where the semi
classical approximation of § 8.4.3 is no longer valid. 

As in § 8.3.2, the magnetic coupling between the atomic and nuclear spins 
can be neglected and the effective interaction potential between the nuclei is 
practically independent of the spins. Nevertheless, we must, as in the case of 
the monatomic gases, take the nuclear spins into account for the calculation 
of the multiplicity of the energy levels; the latter can also include a factor 
due to the degeneracy of the ground state level of the electron cloud. 

A last important quantum effect for molecules is the Pauli principle 
(Chap. 10). In § 8.1.1 we have stressed that the eigenenergies Cq involved 
in the calculation of ( are associated with wavefunctions which must have 
a well defined symmetry character with respect to the exchange of the co
ordinates of indistinguishable particles. For electrons, the antisymmetry of 
the eigenfunctions of (8.39) is essential in the calculation of the shape of 
the effective potential W(e) between the nuclei. The indistinguishability of 
the nuclei shows up more directly for a molecule containing identical atoms: 
the eigenfunctions of the effective Hamiltonian of the nuclei, (8.40), must be 
symmetric under an exchange of those nuclei, if they are bosons, that is, if 
the total number of protons and neutrons in each of them is even so that 
they have integer spin, and antisymmetric if they are fermions - nuclei with 
an odd number of nucleons and a half-odd-integral spin. 

Let us first of all consider diatomic molecules with distinguishable atoms, 
such as HCI, with wavefunctions which are not subject to any symmetry 
restrictions. The Hamiltonian (8.43) of the relative motion of the nuclei is 
invariant under rotation; its eigenfunctions 'l/J(U), characterized by the three 
quantum numbers l, m, n, can therefore be split into a product of a spherical 
harmonic yr (l~, cp) which is an eigenfunction of the angular Laplacian with 
a radial function Rln(e). We must still solve the radial eigenvalue equation 

[ 
1i2 (d2 2 d l(l + 1)) ] 

- 2f-l de2 + Q de - e2 + W(e) Rln(e) = clnRln· (8.59) 

The eigenfunctions of the lowest states, the only ones involved in the eval
uation of (, remain localized near e = e. We can thus replace the effective 
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interaction W(g) by (8.51) and the centrifugal potential h2 l(l+1)/2JLg2 by its 
average value h2l(l + 1)/2I, where I is the moment of inertia JL7P. Putting 
x = g - {j, a variable which we can extend to -00 as the wavefunction is 
practically equal to zero when g« {j, and introducing Pin (X) = gRln(g), we 
can rewrite (8.59) in the form 

[ h2 d2 1 ] - - - + -JLW2X2 Pln(X) 
2JL dx2 2 

[ h2l(l + 1)] 
= Cln - Wo - 2I Pln(X). (8.60) 

On the left-hand side we see the Hamiltonian of a one-dimensional harmonic 
oscillator with eigenvalues hw( n + ~). 

As a result the energy levels are given by 

Cln = co + l(l + 1)kBr + nkBy, 

where we have introduced the ground state energy 

co = Wo + ~hw, 

and the rotational and vibrational characteristic temperatures, 

hw 
B =

y - k 

(8.61 ) 

(8.62) 

(8.63) 

They are characterized by the quantum number 1 = 0,1,2, ... of the orbital 
angular momentum, which describes the rotation of the diatomic molecule, 
and the radial vibrational quantum number n = 0,1,2, ... , which is associ
ated with the oscillations about {j of the distance between the nuclei. The 
second angular quantum number m gives rise to a multiplicity 2l + 1 for each 
level (8.61). We have schematically shown these levels for Hel in Fig.8.2; as 
Br is much lower than By, the levels are organized in rotational bands which 
are repeated regularly on top of each vibrational level with zero angular 
momentum. 

The internal partition function following from (8.61) turns out to be a 
product of several factors: 

(8.64) 

with 

(8.65) 

00 

(r(T) = L (2l + 1) e-I(I+1)«9 r /T, (8.66) 
1=0 

00 
1 

(8.67) 
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where 9 is the degeneracy due to the spins Sl and Sl of the nuclei and to 
the electronic state. These equations cover the various regimes studied in 
the earlier approximations. When T «: E>y, the vibrations are frozen in and 
(y = 1; when T «: E>r the rotations are frozen in, and (r = 1. On the other 
hand, if T » E>r, (8.66) tends to the integral 

(r ~ 100 dl (2l + 1) e- I(I+l)e r /T 

= dxe- xer / T = -, 100 T 
o E>r 

(8.68) 

as the sum is over a large number of levels; similarly, if T » E>y, (8.67) tends 
to 

T 
(y ~ -. 

E>y 
(8.69) 

Using the definitions (8.63), one checks easily that these two limits lead to 
the classical expressions (8.52) and (8.56). 

The resulting specific heat(8.12) can be split into a sum of three terms, 
the translational specific heat, the same as for a perfect gas, the rotational 
specific heat, 

d ( 2 d ) Crot = dT T dT In (r Nk, (8.70) 

and the vibrational specific heat, 

C d (T2 d I ,.) Nk = [ E>y/2T ] 2 Nk. 
yib = dT dT n ,>y sinh(E>y/2T) (8.71) 

The last two both tend to zero at low temperatures and to their semi-classical 
value Nk at high temperatures. Their form, though, is different; in particu
lar, (8.71) increases monotonically, whereas (8.70) has a maximum. We show 
the results in Fig.8.3 for HD, where D is the deuteron, the hydrogen iso
tope consisting of a proton and a neutron. At very low temperatures, just 
above the liquefaction temperature, only the three translational degrees of 
freedom contribute. As T increases one observes the defreezing of the rota
tions, with Cy changing from ~Nk to its semi-classical value ~Nk at room 
temperatures (E>r «: T «: E>y). The vibrations in turn contribute at very 
high temperatures, where the experimental results start to differ from the 
simple theory given above: at those temperatures one should, in fact, take 
the anharmonicity of the potential W({!) into account. 

For heavier diatomic gases we have always E>r «: T; the rotations can 
be treated classically and always give a contribution Nk. Similarly, the E>y 
temperatures are lower than for hydrogen (2200 K for O2 ) and theory gives 
us the curve (8.71) when T becomes of the order of E>y. Figure 8.4 shows 
excellent agreement with experimental data. 
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Figure 8.4 includes the 02, N2, and Cl2 molecules which have indistinguishable 
atoms. We shall see in § 8.4.5 that this changes the form of (r(T). However, when 
T ~ B r, this change reduces to dividing (8.66) by a factor 2 which does not alter 
the theoretical curve in Fig.8.4. 
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8.4.5 The Case of Hydrogen 

The effect of the indistinguishability of the atoms which make up each 
molecule of a gas shows up strikingly in the specific heats of the various 
hydrogen isotopes. Let us, for instance, compare HD and H2. The interac
tions between electrons and nuclei are the same for the two molecules. The 
nuclear spins differ, but the resulting change in the hyperfine coupling can at 
the temperatures considered be completely neglected. The reduced masses J.L 
differ by a factor ~ which results in a slight shift of the characteristic tem
peratures: since W remains unchanged, Br varies as J.L-l, and Bv as J.L-1/2. 
However, these differences are insufficient to explain the large difference in 
the shape of the rotational specific heats of HD and H2 which are shown 
in Figs.8.3 and 8.5. The important effect here is the fact that the two nu
clei in H2 are identical. These two nuclei, simple spin- ~ protons, are fermions 
and the wavefunctions must therefore be antisymmetric under their exchange 
(Chap.lO); this changes the counting of the eigenstates of (8.43). 

The eigenfunctions of the molecular Hamiltonian are the product of a spin part 
and a space part, which itself is a function of the relative position 1/ of the nuclei, of 
the form Rln(g)~m((J,<p). Let us, to start with, assume that the two nuclear spins 
are coupled into a singlet state; this function is antisymmetric under an exchange 
of the spin coordinates, and the space part of the wavefunction must therefore be 
symmetric under an exchange of the space coordinates. The latter changes 1/ to -1/ 
in the wavefunction; under this space reflexion the spherical harmonics transform 
according to 

whereas Rln remains unchanged. We must therefore retain only those wavefunctions 
for which 1 is even when the nuclear spins are in the singlet state. One usually 
calls all those states of the hydrogen molecule parahydrogen and they lead to the 
following contribution to the internal partition function: 

(para(T) = L (2l+1)e- 1(1+1)<9r/T, (8.72) 
1=0,2,4, ... 

while the vibrations remain frozen in at the temperatures considered. Similarly, 
when the nuclear spins are coupled into one of the three triplet states, the spin 
wavefunction is symmetric, and the spatial wavefunction must be antisymmetric 
and therefore have odd 1 values. This second family of molecular hydrogen states is 
called orthohydrogen and makes the following contribution to the internal partition 
function: 

3 L (2l+1)e- 1(1+1)<9r/T, (8.73) 

1=1,3,5, ... 

where the factor 3 is due to the degeneracy of the spin states. The total internal 
rotational partition function, 

((T) = (para(T) + (ortho(T), (8.74) 
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differs from the HD one which equals 6(para + 2(ortho, as the deuteron has spin 1. 
For D2 we would find 6(para + (ortho. From (8.74) it follows that for T « Bv the 
specific heat is equal to 

Cv 3 d [ 2 d ] Nk = "2 + dT T dT In (para + (ortho) , (8.75) 

which is shown by the dashed line in Fig.8.5 and which exhibits a much more pro
nounced maximum than for HD. The agreement with the full drawn experimental 
curve is clearly extremely poor! 

To resolve this puzzle, let us consider in more detail the mechanisms which 
bring the gas to equilibrium at temperatures where we want to measure the spe
cific heat. Energy exchanges between molecules take place when they collide; they 
are the more difficult, the weaker the interactions between the molecules. In par
ticular, whereas transitions between the various excited l = 0,2,4, ... states of a 
parahydrogen molecule take place easily during a collision with another molecule, 
transitions from para- to orthohydrogen, or the other way round, are very rare: 
changing from a singlet to a triplet state needs, in fact, the flipping of one of 
the two nuclear spins, and we know that the interactions involving these spins 
are extremely weak. As a consequence, if hydrogen is cooled down without special 
precautions it will not have time to reach equilibrium as far as the proportions of 
ortho- and parahydrogen are concerned, and these proportions will remain fixed at 
their room temperature equilibrium values. Actually, it needs several days to attain 
equilibrium. 

We can easily calculate these proportions. Each eigenstate of h, with energy cq, 
has a probability given by the Boltzmann-Gibbs distribution, 
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Hence, the numbers of molecules, Npara and Northo, of molecules in the states of 
para- or of orthohydrogen are, respectively, 

(para 
Npara = N -(-, N N (ortho 

ortho = -(-, (8.76) 

for a gas in thermal equilibrium at a temperature T. We could, of course, also have 
written down these relations directly by noting that the equilibrium for the reaction 

Hpara ;- Hortho 
2 -+ 2 

is a kind of chemical equilibrium with equal chemical potentials j.tpara = j.t0rtho. 
We can thus apply the mass action law (8.29), (8.30), which here reduces to 

Npara 

Northo 

(para 
(ortho· 

In the case when T :» Br the two sums over l in (8.72) and (8.73) both tend 
to half the semi-classical integral (8.68). We see thus that the indistinguishability 
of the two nuclei introduces, in accordance with (2.59), a factor l/S with the 
symmetry number S being equal to 2. The factor 3 in (8.73) remains and describes 
the multiplicity of the nuclear spin states, so that (8.76) for T:» Br reduces to 

Npara 
N 

1 

4' 
Northo 

N 
3 
4 

(8.77) 

On the other hand, in the limit when T ~ B r , only the lowest state, with 1 = 
0, contributes to ( so that at very low temperatures the gas consists solely of 
parahydrogen, if it is at equilibrium. The equilibrium curve (8.75) takes these large 
changes in the proportions of para- and orthohydrogen into account. However, if 
one assumes that these proportions remain constant and equal to (8.77) when the 
temperature is lowered, one must compare the experimental full drawn curve with 
the specific heat of a mixture consisting of the constant proportions ! and i of 
para- and orthohydrogen, that is, one must compare it with 

Cv 3 d [ 1 2 d 3 2 d ] 
Nk = "2 + dT 4 T dT In (para + 4 T dT In (ortho , (8.78) 

instead of (8.75), and now the agreement between theory and experiment is ex
cellent. While Npara and Northo remain frozen in into their values (8.77), as T 
decreases, their associated chemical potentials (8.13) move apart according to 

ortho para kT 1 3(para 
j.t -j.t = n--

(ortho 
---- 2kBr - kT In 3; T«er 

such a discrepancy shows that when hydrogen is cooled down, it no longer remains 
in a true equilibrium state. 

This explanation has been confirmed in several ways. First of all, one can repeat 
the measurements in the presence of a catalyst which accelerates the transitions 
between the parahydrogen and the orthohydrogen states; in that case one observes 
the equilibrium specific heat (8.75) shown by the dashed curve in Fig.8.5. One can 
also start at low temperatures where the equilibrium form is pure parahydrogen 
and heat the gas: in that case one observes the specific heat of pure parahydrogen, 
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Cv 3 d ( 2 d ) 
Nk = "2 + dT T dT In (para , (8.79) 

which is shown by the dash-dot curve in Fig.8.5 and which differs quite considerably 
from both the equilibrium curve (8.75) and from the curve (8.78) that we find when 
we cool the gas down. Finally, spectroscopy enables us to determine the average 
occupations of the various quantum states of the molecules through measuring the 
line intensities and to check the predicted values of Npara and Northo in the different 
cases. 

This study of the specific heat of hydrogen shows the importance of the 
choice of variables characterizing an equilibrium state ~ or rather a quasi
equilibrium state since the so-called equilibrium states usually are strictly 
speaking quasi-equilibria. In § 4.1 we have mentioned this important and 
sometimes subtle problem. Gaseous hydrogen is a typical example where the 
existence of a quasi-constant of motion, the ratio of para- to orthohydrogen, 
impedes the establishment of an ordinary grand canonical equilibrium when 
one lowers the temperature. An appropriate description needs the introduc
tion of this hidden variable, with which we must associate a new Lagrangian 
multiplier: we must introduce two, rather than one, chemical potentials. 

Summary 

The effects of the internal structure of the molecules in a rarefied gas show up 
through the internal partition function (8.4), which is a factor of the grand 
potential. The equation of state of a perfect gas and the Joule law remain 
valid, but the specific heats are changed. 

Mixing two different gases increases the entropy without involving heat or 
work. Writing down the relations between the chemical potentials enables us 
to establish the mass action law and the van't Hoff law for chemical equili
brium in a gas. 

The specific heats of gases follow once we know the lowest energy levels 
of their molecules, which we can calculate using the Born-Oppenheimer ap
proximation. One can associate with each, electronic, vibrational, rotational, 
degree of freedom a characteristic energy of the order of magnitude of the 
distances between the corresponding levels, or a characteristic temperature. 
Each degree of freedom is frozen in at temperatures which are low as com
pared to the characteristic temperature; at high temperatures one can treat 
them in the classical approximation, and often use the equipartition theorem. 
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Exercises 

Sa Entropy and Work in Isotope Separation 

Starting from natural uranium, with a molecular concentration G = 0.7 % 
of the 235U isotope, one uses isotope separation of the UF 6 compound to 
produce enriched uranium, with G' = 3.2 % of 235U, which is used as fuel 
in nuclear power stations. UF6 is a gas above 55°C and one works at T = 
80°C. Together with the enriched uranium one gets depleted uranium with 
Gil = 0.2 % of 235U. This latter value represents an economic compromise: 
having Gil too large produces wasted depleted uranium which still contains 
a significant fraction of 235U; taking Gil too small involves too many cycles 
of the treatment needed to reject almost pure 238U. 

1. How much natural uranium must be treated in order to produce 1 kg 
of fuel? By how much does the entropy of the UF6 which is involved increase 
for given temperature and pressure? 

2. What is the ideal thermodynamic yield, characterized by the minimum 
work required in order to produce 1 kg of enriched uranium? Compare this 
with the electric energy actually consumed by the Eurodif factory, which is 
9 MWh per kg. 

3. In order to understand the origin of such a difference, consider a single 
porous barrier (Exerc. 7 g). The pressures PI and P r and the temperature 
T are kept at fixed values; in practice PI/Pr c:::: 5 and PI does not exceed 
atmospheric pressure for safety reasons. Write down the change in the entropy 
of the system of gases on both sides of the wall resulting from the effusion 
of UF6 molecules during a time interval dt. What are the amounts of work 
and heat received altogether by these gases? In what limit would the process 
become reversible? 

4. We assume that the effusion is preceded by an isothermal and reversible 
decompression and followed by an isothermal and reversible compression of 
the gas on the right-hand side, in order to compare states where all gases are 
at the reference pressure PI. What is the total amount of work provided in 
the totality of these processes? Why is it so much larger than the minimum 
work indicated by thermodynamics? 

Solution: 

1. Denoting the 235U and 238U isotopes by 1 and 2, and by N' and Nil the 
numbers of molecules in the enriched and depleted mixtures, conservation of the 
two kinds of molecules gives N = N' + Nil, GN = G' N' + Gil Nil ,whence we find 
that Nil = N'(G' - G)/(G - Gil). The numbers N' and N are therefore equal to 

N' 

N 

0.238(1 - G) + 0.235G 

G' - Gil , 24 
G _ Gil N = 15 x 10 , 
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and from this we get the mass to be treated, namely, 6 kg. The decrease in entropy 
when one separates this into an enriched and a depleted mixture is the difference 
between the associated mixing entropies (8.19), that is, 

.1S "c' , , 1 - C' 
k = N C In C + N (1 - C ) In 1 _ C 

C" 1 C" + N"C" In - + N"(1 - C") In ----
C l-C 

~ N' [c' 1 c' _ c' - C c" 1 ~ + ~(C' - C)(C' - CII)] 
- n C C _ C" n C" 2 ' 

which gives us .1S c:: 1.3 J K-1kg- 1. 
2. The decrease in entropy means that we must provide at least an amount 

of work equal to T.1S c:: 0.5 kJ kg-I, for T c:: 350 K. This amount is smaller 
by a factor 7 x 107 than the actual amount of work provided! Notwithstanding 
this deplorable theoretical yield, the operation remains economically profitable: 
the energy consumed in enriching the uranium represents only 3 % of the electrical 
energy produced afterwards in a reactor with the same uranium, which is 250 MWh 
per kg of fuel. In the apportioning of the cost of producing nuclear fuel, the enriching 
process hardly represents one quarter. 

3. The numbers of molecules of the two UF6 isotopes which pass through the 
wall during a time dt were evaluated in Exerc.7g. Denoting by IT the area of the 
pores, we found 

In evaluating the change in (8.14) summed over the two sides and over the two 
isotopes we find 

As the temperature is fixed the internal energy remains unchanged. The work 
received equals 

- d (Plnl + Prnr) 

-d[(Nll+N21+Nlr+N2r)kT] = o. 
and as a result the heat received also vanishes. The transformation would thus be 
reversible only if we had dS = O. However, because of the form of dNl and dN2 
both terms in dS are positive, unless PICI = PrCr and PI(1 - CI) = Pr(1 - Cr). 
The effusion will therefore only become reversible in the limit as the pressures and 
the concentrations are practically equal at both sides; that, however, implies that 
the process is extremely slow and inefficient. 

4. In order to make N molecules pass from a pressure PI to a pressure Pr , at a 
given temperature, we must provide work equal to kT N In P r /PI. The totality of 
the operations therefore consumes an amount of work equal to 
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and the system gives up to the outside altogether an amount of heat equal to 
-8Q = 8W. The total change in entropy is thus equal to 

8Q Cr 1 - CI 
dSo = dS + - = -kdNl In -C + kdN2 In --C-· 

T I 1- r 

One can check that -dSo is the decrease in entropy associated with a partal sorting 
out of the molecules through effusion, at given temperature and pressure, that is, 
the infinitesimal analogue of .1S which was calculated in 1. The fact that dS is 
positive implies that 

8W > 8Wo == -TdSo, 

which shows the existence of a minimum work done in the separation, 8Wo, in 
agreement with the Second Law. In order that the effusion be efficient, we need 
a large difference in pressure; Pr/PI is of the order of 5 in the Eurodif factory. 
Morover, the concentrations are very close to one another on the two sides, as we 
saw in Exerc.7g; in practice Cr/CI-l == € '" 2 X 10-3 . These are two reasons which 
together make 8W / 8Wo very large. To lowest order we find that 

( 1 +..!.) In PI c::: 230 
C Pr ' 

'" € [1 f#£ 2(1 ~ C) 

Additional losses in efficiency are, for instance, caused by irreversibilities connected 
with the viscosity of the gas flow and by the large heat exchanges which are neces
sary to carry away the work done by the compressors and dissipated into heat. The 
above numbers, calculated for a single separation barrier, are compatible with the 
global value obtained in 2 for the 1400 stages in the factory: most of the consumed 
power is not used directly for the separation itself; it serves to perform the many, 
rather large compressions and decompressions which are necessary in order that 
the gas passes through the barriers with some degree of efficiency (Exerc.14a). 

8b Excitation of Atoms by Heating 

The ground state of helium is a ls2 1 So state: two electrons in the Is shell, 
with S indicating a zero orbital angular momentum, 1 the spin multiplicity, 
and 0 the total angular momentum. The excitations of the lowest excited 
states are characterized by the wavenumbers 1/,\ = (cq - co)/hc which are 
given in Table 8.1, in units of cm -1. Table 8.1 also indicates the multiplicities 
of the levels. What is the fraction of atoms in each excited state in the 
Earth's atmosphere, where T = 300 K? and in the solar atmosphere, where 
T = 6000 K? 
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Table 8.1. Lowest excited states of the helium atom 

2s 3S1 2s ISO 2p 3P2 2p 3Pl 2p 3pO 2p IPI 

159850 166272 169081 169081 169082 171129 

Solution. The temperature is sufficiently low for us to have Z rv exp( -!3co) so that 
the fractions are equal to 9i exp[ -!3(ci -co)], where 9i is the multiplicity of the leveL 
At room temperature, exp[!3(cl - co)] = e- 767 ~ 10-333 is completely negligible, 
even when it is multiplied by the total number of helium atoms in the Earth's 
atmosphere. In the solar atmosphere there are a fraction 3exp[-!3(cl - co)+ ~ 
6.8 x 10-17 of atoms in the 3S state, 4.8 x 10-18 in the IS state, 2.2 x 10-1 in 
all three 3p states, which are equally populated, and 4.5 x 10-18 in the Ip state; 
these are small numbers, but significant when we remember how large Avogadro's 
number is. 

8e Ionization of a Plasma: Saha Equation 

Most of the matter in the Universe is so rarefied or so hot that it is ionized, 
while remaining globally neutral. It thus forms what has been called the 
"fourth state of matter", a plasma. Let us for the sake of simplicity consider 
a monatomic gas; we denote by cO and go the energy and the degree of 
degeneracy of the ground state of a molecule, and assume that it has only a 
finite number of excited bound states, with energies c: such that c: - C:o » kT. 
Let LlEi be the first ionization energy, the threshold above which an electron 
can be torn from the atom, leaving behind a positively charged ion in its 
ground state, with multiplicity g+. We assume that this ion satisfies the 
same conditions for its excited states as the atom and that the temperature 
is sufficiently low that one can neglect multiple ionizations. Finally, we treat 
the electrons produced through thermal ionization as a classical perfect gas, 
neglecting the Coulomb interactions between these electrons and the ions. 
Write down the Saha equation, which gives us the ratio n+/no of the number 
of ionized atoms to the number of neutral atoms as function of the electron 
density nel. Estimate the degree of ionization of hydrogen in a gas nebula 
where T ~ 104 K, n ~ 1012 m-3 , and in the solar photosphere where T ~ 
6000 K, n ~ 1023 m-3 . 

Answers. If we use (8.34), the mass action law (8.28) reduces to Saha's equation 

n+ = -...!... 29+ (me kT)3/2 e-4.E;/kT. 
no nel 90 21T1i2 

The degree ofionization is found by writing nel = n+, which expresses the electrical 
neutrality, and n = no+n+. For atomic hydrogen in the nebula, with 90 = 4 = 29+ 
and .:lEi = 13.6 eV, the ionization is nearly complete, n+ rv n, as 

n 2 
----±. = 3.4 x 108 rv n 
nno no 
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In the photosphere, it is small but significant, as 

8d Adiabatic Transformation and Specific Heats 

Consider an arbitrary gas with specific heats Cp and Cy which may be func
tions of the temperature. Write down the relations between changes in pres
sure, volume, temperature, and energy, as functions of the specific heats, 
during an infinitesimal adiabatic transformation. 

Answer. We have 

dP = _ Cp dQ 
P Cy Q 

8e Hemoglobin 

Cp dT 
Nk T 

Cp dU 
Cy NkT' 

A hemoglobin molecule (Hb) behaves like a trap able to capture and release 
one to four oxygen molecules (02), To simplify the discussion we assume, 
except in 5, that a single O2 molecule can be fixed to each of the Hb molecules 
and that its energy is then equal to -€, where € = 0.65 eV; as energy origin 
we choose the energy of a free molecule at rest in air. When the blood is in 
contact with air in the lungs a chemical equilibrium is established between 
O2 fixed in the blood in the form of oxyhemoglobin Hb02 and O2 in the air. 
Let n be the number of oxygen molecules per unit volume. 

1. Write down the fraction f of oxyhemoglobin molecules as function of n 
and the temperature T. We treat here the oxygen in the air as a perfect gas 
of point particles. Calculate this fraction fo at body temperature, 37°C, and 
normal atmospheric pressure; the air in the lungs contains 15% O2 molecules. 

2. The average distance between the two nuclei in the O2 molecule is g = 
1.2 A. In air the molecules can rotate freely; in Hb02 the orientation of O2 is 
fixed. Show that taking these facts into account does not change the results 
of the model of 1, provided we replace at the same time € by a new value 
which must be determined. In what follows we shall for the sake of simplicity 
continue to treat the O2 molecules as point particles with € = 0.65 eV. 

3. When carbon monoxide CO is present in the air, each Hb molecule 
can on a given site capture either an O2 molecule, or a CO molecule, in 
which case Hb can no longer take part in the transfer of O2 to the tissues. 
The binding energy of CO is €' = 0.78 eV. Find the new value of f for the 
equilibrium which is now established. as function of n and of the CO molecule 
density n'. Starting from what fraction of CO in the air will the fraction f of 
oxyhemoglobin be divided by 2? What is then the fraction f' of hemoglobin 
with CO attached? What happens, if the air contains 5% of CO? 
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4. We assume that in the tissues irrigated by the blood the dissolved oxy
gen still behaves like a perfect gas with a partial pressure equal to 5 Torr. 
Calculate the fraction II of oxyhemoglobin in the blood in equilibrium with 
these tissues. Is the result of the model treated here physiologically satisfac
tory? 

5. In reality each hemoglobin molecule possesses four sites on which it can 
fix up to four O2 molecules; the binding energy el of a first O2 molecule is 
rather small, but the presence of this molecule changes the configuration of 
Hb in such a way that the binding energy e of the next molecules on the other 
sites is larger. One makes a model of this behaviour by assuming for the sake 
of simplicity that each Hb can trap either one or two O2 molecules, but no 
more, on two distinguishable sites. The binding energy of the first molecule 
is el = 0.38 eV, and that of the second one is e = 0.65 eV. Express the 
average number I of O2 molecules fixed at equilibrium to each Hb molecule. 
Calculate the numerical values of 10 and II for the conditions of 1 (lungs) 
and of 4 (tissues). Draw conclusions. 

6. Hemoglobin can also bind carbon dioxide gas (C0 2 ), but on sites dif
ferent from those for oxygen. For the sake of simplicity we again assume that 
there is just one site per Hb molecule to bind O2 with an energy e = 0.65 eV, 
and one other site which can bind CO2 with an energy e" = 0.65 eV. How
ever, the deformation of the oxyhemoglobin molecules mentioned in 5 has 
another consequence: it reduces the total binding energy of C02Hb02 which 
is not equal to e + e", but to e + e" - 8, with 8 = 0.2 eV. Write down the 
respective average numbers I and I" of O2 and CO2 molecules fixed per 
Hb molecule. How does the existence of a reduction 8 in the binding energy 
change I and f"? Discuss the physiological implications of this effect, on the 
one hand, for the tissues and, on the other hand, for the lungs, using numer
ical estimates. In particular, what is the consequence for the oxyhemoglobin 
in the tissues, where there is an excess of CO2 characterized by a partial 
pressure of 80 Torr? What is the consequence of good oxygenation of the 
lungs, in which the partial pressure of CO2 is 40 Torr? 

Solution: 

1. The same method as in Exerc.4b gives 

f 
1 eO = (27rh2 )3/2 

mkT n. e-o-{3e + l' 

In the lungs we find eO ~ 1.9 x 10-8 ; the body temperature gives {3 ~ 37 eV- 1 , 

whence e-{3e ~ 2.7 x 10-11 so that f ~ 1 - 1.4 X 10-3 nearly equals 1: practically 
all hemoglobin has 02 attached. 

2. For 02 in the air, the characteristic rotational and vibrational temperatures 
satisfy 8 r «: T «: 8 v . The internal partition function is thus given by half of 
(8.56), if we take into account the indistinguishability of the two atoms, or 



IkT -2 kT 
n 2 JL{}--,;} 

~ 8 x 10-3 . (1.2 x 10-10) 2 
6 x 1023 

1.38 X 10-23 . 310 

(1.06 x 10-34)2 
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74. 

For given n the rotation of the 02 molecules in the air thus divides eO by 74. 
As a only occurs in the combination eo+i3e we may compensate for this effect by 
changing £ = 0.65 eV into £ ~ 0.77 eV. 

3. The new fraction of Hb02 is 

eO+i3e 

f = 1 + eo+i3e + eO' +i3e' 

If we use the notation r = 0.15n'/n for the fraction of CO in the air, we find 

( m )3/2 r -7 
m' 0.15 ~ 1.6 x 10 r, 

so that 

f- 1 = fOI + ei3(e-e')+o'-o ~ 1 + 1000r. 

As a result f is divided by 2 as soon as the air contains 0.1% of CO. Moreover, 
f + !' ~ 1 and all the hemoglobin fixes either 02 or CO. When r = 5%, 98% of 
the Hb is unusable, in the form HbCO, and only 2% transports 02. These numbers 
illustrate the poisonous character of CO. 

4. As eO is proportional to the partial pressure of 02 we have here eO ~ 1.9 x 
10-8 x5/(760·0.15) ~ 8.4x 10-10, whence h = 0.97. In this model the hemoglobin 
would only release 3% of its oxygen to the tissues, which would either make the 
feeding of them in oxygen very inefficient, or make it necessary for the blood to 
circulate much faster. 

5. The average number of 02 fixed per Hb is 

2 (eo+i3q + e2o+i3q +i3e) 

f = 1 + 2eo+i3q + e2o+i3el +i3e . 

In the lungs, where eOo = 1.9 x 10-8 , we have 

20 = e2oo+i3q +i3e ~ 1 ~ eOO+i3el = 0.03, 

so that fo ~ 2 (calculations give 1.9). The blood fixes the oxygen nearly as efficiently 
as in the first model. However, in the tissues, where eOl = 8.4 x 10-10 , we have 

1 ~ e20l +i3q +i3e = 0.04 ~ eOl +i3q = 1.3 x 10-3, 

so that h ~ 0 (calculations give 0.08). Practically all transported oxygen is re
leased when it arrives. The adaptation of hemoglobin to its functions - fo takes 
its maximum possible value and h the minimum value - is due to the difference 
between the two successive binding energies €I and £. This makes it possible for 
f to vary with eO, that is, with the partial oxygen pressure, much faster than if 
£ = £1. in which case one finds again, apart from a factor 2, Langmuir's law as 
in 1. 
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In fact, this model with two sites applies not to hemoglobin but to myoglobin, 
the protein which takes care of oxygen exchanges within the muscles. In a more 
realistic model of Hb where the binding energy of a first molecule equals El, those 
of a second or a third equal E2 = ~ (El + E), and that of the fourth equals E, we find 

4[z(1+z)3+bz4] 
f = (1+z)4+b(1+z4)' 

b == ef3 (g-q)/2 - 1, 

which leads to an even better result: fo ~ 4(1 - 10-2) and h ~ 10-2. 
6. Each molecule has four possible configurations, Hb, Hb02, C02Hb, and 

C02Hb02. If a" / (3 is the chemical potential of CO2, we find 

1 
f = 1 ' e-Dl-f3g(l + eDlII+f3gll) (1 + eDl"+f3g"-(36) - + 1 

f " - 1 - 1 . 
e- Dl" _f3gl1 (1 + eDl +f3g ) (1 + eDl+f3g-(36) - + 1 

If 8 = 0, f is independent of the C02 pressure; similarly, f" is independent of that 
of 02. Denoting the value of f for 8 = 0, which was calculated in 1, by fo, we get 

ef36 - 1 
f - fo = - f(l - fo) e-Dl"-f3(g"-6) + l' 

The existence of 8 thus leads to a decrease in the oxyhemoglobin fraction. This 
effect is the more marked, the larger is a", that is, the larger the partial pressure of 
C02. It is negligible if fo ~ 1, that is, if the fraction of Hb02 when there is no C02 
is large; if, however, the fraction of Hb02 is small, it is made even smaller by the 
presence of C02. In particular, in the lungs fo is large, and f remains practically 
equal to 1. However, in the tissues, it is reduced so that 02 is better released: 
the higher the production of C02, the larger the oxygenation of the tissues. One 

obtains the numerical value of fusing ef36 = 1.8 x 103 , ef3g = ef3 g11 = 3.7 X 1010 , 

and 

eDl" = 8.4 x 10-10 . 80 (32 )3/2 = 8.3 X 10-9 
5 44 

for C02 at 80 Torr. This replaces fo = 1 found under 1 by a not much reduced 
f = 0.83, and h = 0.97 found under 4 by a considerably diminished f = 0.1. 

The situation is symmetric for C02 where 

f36 1 
f" - f~ = - f" (1 - f~) e - . 

e-Dl - f3 (g-6) + 1 

In the lungs where the 02 pressure is high, f" is much smaller than f~, calculated 
for 8 = 0: the hemoglobin gets rid more easily of the CO2 which it transports. In 
the tissues it attaches slightly less C02, but f" luckily remains large. Numerically, 
we find for 8 = 0 that f~' would be almost equal to 1, both in the lungs - which 
would be annoying - and in the tissues; however, when 8 = 0.2 eV and when we 
take into account the partial pressures of 02, we get f" = 0.2 in the lungs and 0.9 
in the tissues. 

These interrelation effects carry the name of Christian Bohr (1904), the father 
of Niels and Harald Bohr. 



9. Condensation of Gases 
and Phase Transitions 

"Le chaleur de l'eau est independante de la violence de 
l'ebullition et de sa duree; l'eau moins comprimee par l'atmos
phere bout plus tot, et elle bout fort vite dans Ie vide." 

d' A lembert, L' Encyclopedie 

"La marmite de cuisson ou auto-cuiseur permet de realiser 
une cuisson tres rapide, puisque la temperature, a l'interieur 
de la marmite, s'eleve sous pression a 110 ou 120 cC." 

Ginette Mathiot, Je sais cuisiner 

"Les Arabes tirent Ie sel de l'eau par ebullition. 

Chateaubriand, Itineraire de Paris Ii Jerusalem 

"Les alchimistes arabes designerent comme al koh'l toute 
poudre impalpable obtenue par sublimation, ainsi que tous 
principes volatils isoles par la distillation." 

Marguerite Toussaint-Samat, Histoire Naturelle et Morale de 
la Nourriture, Bordas, 1987 

In Chaps. 7 and 8 we restricted ourselves to the study of low density gases. 
When a gas is compressed, its molecules get closer to one another and the 
approximation which consists in neglecting their interactions is no longer 
valid. As the density increases there thus appear corrections to the perfect 
gas laws and we shall now give a theory for those. However, the occurrence 
of interaction terms in the Hamiltonian gives rise to a new mathematical 
difficulty: the partition function can no longer be factorized into the con
tributions of the single molecules. Calculating it involves more or less well 
controlled approximations, even when one introduces simplified models for 
the interactions (§§ 9.1 and 9.2). 

The interactions between the molecules play a more interesting role, 
namely, they produce a phenomenon which is remarkable, although well 
known from experience: liquefaction. We know that if the temperature is 
not too high - more precisely, if it does not lie above the critical temperature 
- compressing a gas makes it abruptly go over into the liquid state, when 
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one reaches the saturated vapour pressure. If we try to forget that this is 
a trivial fact and try to examine it critically, we find that it has surprising 
aspects: the thermodynamic quantities show a discontinuity or a singular
ity, and the fluid separates into two phases, the liquid and the vapour one. 
How can we explain that these two phases coexist and how can we explain 
their qualitatively different properties, if they consist of the same molecules 
which interact with the same forces? How can we derive from a single micro
scopic theory a discontinuous macroscopic behaviour? The same questions 
crop up for the numerous other instances of phase transitions which one ob
serves on a macroscopic scale: solidification, the possibility to obtain various 
liquid phases for mixtures or various crystalline phases for solids, ferromag
netism, superconductivity, and so on. Their discontinuous nature is difficult 
to understand when we start from the microscopic structure of matter, and 
this has given rise to a long controversy: is there a sudden change in the 
forces between the elementary constituents? or is it possible to explain the 
existence of phases which are macroscopically so different starting from a 
single microscopic model? The second solution has won the day thanks to 
many researches which constitute one of the most spectacular contributions 
of statistical physics. We cite amongst the first important stages the elab
oration of approximate microscopic theories of magnetism (P.Weiss, 1924; 
W.L. Bragg and E.J.Williams, 1934) and of liquefaction (J.Yvon, J.E. Mayer, 
1937), which showed the appearance of a phase transition as a cooperative 
phenomenon - where, for instance, the magnetic moments orient themselves 
all in the same direction below the Curie temperature due to their mutual 
interactions. A decisive conceptual step was the first rigorous solution of 
a microscopic model which shows a phase transition, the two-dimensional 
Ising model (L.Onsager, 1944). More recently, the singular behaviour of the 
thermodynamic functions near a critical point, which had been known and 
studied experimentally for a long time, found its explanation thanks to the 
work by K.Wilson (1971). Below we shall restrict ourselves to an as simple 
as possible approximate theory for the gas-liquid transition (§ 9.3), while we 
shall study some other phase transitions in the form of exercises at the end 
of this chapter and of problems in the second volume. 

9.1 Model and Formalism 

In § 7.1 we saw that the perfect gas model, which is sufficient for describing 
rarefied monatomic gases, is based upon three approximations: the internal 
degrees of freedom of the molecules are frozen in, their centre of mass motion 
has a classical nature, and there are no interactions between the molecules. 
The first condition was abandoned in Chap.8 when we wanted to study rare
fied di- and poly-atomic gases. On the other hand, we showed in § 7.1.3 that 
the second approximation - the use of classical statistical mechanics for the 
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translational degrees of freedom - is valid not only for gases, but also for 
almost all liquids. However, we must take into account the interactions be
tween the molecules, if we want to study the properties of a compressed gas 
or of a liquid. 

9.1.1 Interactions Between Molecules 

It is difficult to make a simple model of the interactions between di- and 
poly-atomic molecules as their collisions can produce transitions from one 
state to another in each of the molecules. The interactions thus affect the 
internal structure of the molecules. The situation is simpler for monatomic 
fluids and we shall restrict ourselves to those in the present chapter. In 
all cases the interactions between the molecules are due to the Coulomb 
forces between their constituents, the electrons and the nuclei. In the case 
of a monatomic gas, the electrons remain frozen in into their ground state 
at the temperatures of interest; when two atoms aproach one another, the 
deformation of the electron cloud produces an effective potential between 
them. 

We sketched the theory of this interaction in § 8.4.1 where we were in
terested in the binding between two atoms produced by the effective forces 
which they exert upon one another. Here also the potential W is determined 
by the Born-Oppenheimer approximation as a function of the distance be
tween a pair of atoms in the monatomic gas. It has the same shape as between 
CI and H atoms: attractive for long distances apart and repulsive for short 
distances apart. On the other hand, it is much weaker than in § 8.4.1, as the 
two atoms considered do not have a bound state. For instance, for argon 
(Fig. 9.1) the minimum of W is of the order of 10-2 eV, rather than 1 eV 
for HCl. The position of the minimum, at a few A, corresponds to the in
teratomic distances in the solid or liquid state: in fact, the potential energy 
tends to become as weak as possible at low temperatures while the kinetic 
energy becomes negligible, and the atoms then tend to arrange themselves 
so as to make W a minimum. 

Of course, even though the elementary forces between the constituents. 
the nuclei and electrons, which are Coulomb forces, are two-body forces, tIl(' 
effective interactions between the atoms also contain three-, four-, .,. body 
forces; however, at the usual gas densities and even at liquid densities, til<' 
probability for three or more atoms to be sufficiently close to one another so 
that the effects of these three-, four-, ... body forces can come into play is 
small. We shall therefore restrict ourselves mainly to a study of Hamiltonialls 
which, apart from the kinetic energy, contain solely the binary potential 
which we have just described and which is a function of the relative positiolls 
of the molecular nuclei, taken in pairs. 
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Fig. 9.1. The potential W between two argon atoms. The dashed curve shows 9 == 
e- i3w - 1 

Thus, we can write for the effective Hamiltonian 

N 2 

" J!.i... + " W L..J 2m L..J lJ' 
i=l i >j 

(9.1 ) 

where the potential Wij == W(lri - rjl) of the interaction between the 
molecules i and j depends only on their distance apart since they are 
monatomic, and has the shape shown in Fig.9.1. This potential W has a 
quantum mechanical origin as its calculation involves crucially the freezing
in of the electronic degrees of freedom into their ground state. Nevertheless, 
the effective Hamiltonian H N, which results from eliminating the motion of 
the electrons and which depends on the positions and momenta of the nuclei 
of the atoms in the gas, can be treated classically for all monatomic fluids -
bar helium at low temperatures - as we saw in § 7.1.3. The fluid is therefore 
finally satisfactorily described by a model of classical point particles with the 
Hamiltonian (9.1). 

In order to take into account that the gas is confined to the volume none 
must add to (9.1) a box potential 2:i V ( r i) which vanishes inside n and is 
infinite outside it; in fact , as in Chaps.7 and 8, it will be sufficient to restrict 
the integrations over r 1 , ... , r N to the domain n. 

9.1.2 The Grand Potential of a Classical Fluid 

The grand partition function is equal to 

ZG(a , (3) = f ecxN J dTN e- i3HN . 
N = O 

(9.2) 

We can immediately integrate over the momenta, which leads to 
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ZG L 
eoN 

[J d~; e-(3p2 12m] N In d3rl ... d3r N e -(3 Li>i WiJ 
N! 

N 

L 
eoN 

(mkT) ~ In 3 3 -(3L w· (9.3) d r d r e i>i'J 
N! 27rn2 

1 ... N . 

N 

For the grand potential we get thus 

A(T, n, JL) 

= -kTln{~ ~ In d rl ... d r N e L...Ji>i 'J , 
3 3 -(3 '" w· } (9.4) 

where we have written 

( mkT)3/2 f == eJ-llkT Xr3 == eJ-llkT --2 
27rn 

(9.5) 

Once we know (9.4) we can derive from it the thermodynamic quantities 
through 

dA = - P dn - S dT - N dJL. 

The presence of the interaction not only changes (through T) the thermody
namic or (through JL) the chemical quantities, but also the equation of state, 
which now differs from that for a perfect gas. Unfortunately, the canonical 
partition function which occurs in (9.4) for each N is a multiple integral over 
a very large number, 3N, of variables, and its evaluation is impossible, even 
for the simplest models for the potential W. We must therefore in what fol
lows appeal to various approximations without always being able to give a 
rigorous justification for them. 

Let us bear in mind that (9.4) is based solely on two approximations: 
the interactions between the molecules are taken into account by a binary 
isotropic potential, which is realistic for a monatomic gas, and we use the 
classical limit. This expression is therefore justified not only for the gas phase, 
but also for the liquid phase of the substance studied. As we indicated at the 
start of this chapter, statistical mechanics thus provides a single expression, 
which contains a potential W, fixed once and for all, and which should de
scribe the liquid-vapour transition as function of the two variables (3 and a, 
or T and JL. Nevertheless, nothing enables us to discern from (9.4) the pres
ence of a line of singularities in the (3, a-plane which would separate the two 
phases, liquid and vapour. The theory of the transition and of the critical 
point must start from (9.4), but we expect that it will be difficult mathemat
ically. To give an idea of how complicated it is we note that even the proof 
itself of the extensivity, that is, of the existence of a limit for AI n as n ---> 00 

- which is such an essential property (§ 5.5.2) and which is the preliminary 
step for the study of AI n as function of (3 and a - is by no means easy. The 
proof requires that the potential W be repulsive at short distances apart 
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and that its absolute magnitude decreases sufficiently fast at large distances 
apart. 

Expression (9.4) can be extended to fluids containing several kinds of 
molecules and, in principle, can serve as the departure point, for instance, 
for a study of the mixing and demixing properties which give rise to phase 
transitions. A special, simple case is that of dilute solutions (Exerc.9f) where 
the particular form of (9.4) enables us to account for a large number of prop
erties without having to elaborate the difficult theory of the liquid solvent 
itself. 

The presence of interactions produces correlations between the particles, 
which are characterized by the two-body density fz. The latter, defined by 
(2.82), depends here on the momenta only through a Maxwellian and on the 
positions only through the distance apart r of the two particles. The short
range repulsion between the latter leads to fz being very small for r < ro; 
at large distances apart, the particles are no longer correlated and fz rv hh 
tends to a constant value. In (2.83) we expressed the internal energy in terms 
of fz. We shall see in (14.119) that the grand potential (9.4) can also be 
expressed in terms of pair correlations. 

It is remarkable that (9.4) depends on the mass m of the molecules only 
through (9.5) and that a change in this mass can be absorbed in a change in 
the origin of Q == JL/kT. Besides, the Born-Oppenheimer method shows that 
two isotopes of the same element produce exactly the same potential W. As 
a result two isotopes have the same equation of state and the same thermal 
properties, both in the gas and in the liquid phase ~ except in the case of 
liquid helium at very low temperatures where the quantum effects become 
macroscopic as we shall see in Chap.12. 

9.2 Deviations from the Perfect Gas Laws 

9.2.1 The Maxwell Distribution 

One property remains very simple, notwithstanding the presence of inter
molecular interactions, namely, the velocity distribution. The density in 
phase, 

(9.6) 

depends on the momenta only through the kinetic energy. As a result the 
number of molecules with momenta within a volume element d3p around a 
value p equals 
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exactly as in the case of a system without interactions. It is remarkable that 
the Maxwell distribution is thus valid in the, gas or liquid, fluid phases, even 
at higher densities. The spatial correlations between molecules become very 
strong in the liquid, but their velocities remain statistically decoupled, at 
least as long as the classical approximation is valid. 

9.2.2 Perturbation Methods 

If the gas density remains sufficiently low, the molecules are practically always 
far from one another and only see the attractive tail of the potential W. The 
latter is not very strong and one expects that the lowest-order correction 
to the perfect gas laws can be obtained by expanding the grand potential in 
powers oj the interaction Wand only retaining the first-order terms. We find 

A = -kT In{2: ~ [ d3rl ... d3rN 
N . in 

x [1 - ~j3N(N - l}W(lrl - r21} + ... J } 

-kT In { en! - ~j3J2 en! J d3rl d3r2 W 12 + ... } 

-kTflJ - aflJ2 + ... , (9.7) 

where we have defined the constant a by 

1 J 3 3 a == - 2fl d rl d r2 W12 

= -~ J d3rW(r} = -27r 100 
r 2 drW(r}. (9.8) 

Note that the series expansion in (9.7) poses a convergence problem. The suc
cessive terms within the braces behave, in fact, as an, a2n2, .. , ,and they become 
larger and larger, in the large volume limit. This could have been foreseen because 
A is extensive: ZG is the exponential of a sum of terms which are proportional 
to the volume, and its expansion in powers of the interaction involves higher and 
higher powers of the volume. Actually, to establish (9.7), even when a is small, one 
should check that the terms in an nn in ZG have the proper coefficients needed to 
reconstitute an exponential. Put differently, one should expand A, rather than ZG, 
directly in powers of Wand check that each term is proportional to n. 

As the potential appears in the combination j3W, the expansion in powers 
of the potential is at the same time an expansion in powers of the inverse 
temperature and therefore it can provide a good approximation only at high 
temperatures. 

The approximation used would. however, be valid only if the potential 
were everywhere weak. That is not the case at short distances, where W in
creases rapidly; the integral (9.8) is, moreover, dominated by just this interior 
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region which must be eliminated, if one wants to obtain reasonable results. 
As we have seen, at low densities only the attractive tail of W should be 
involved and the repulsive core should not play any role. We should thus 
retain only the negative part of the potential and define a, rather than by 
(9.8), by 

a = -27r 100 
r 2 drW(r), 

TO 

(9.9) 

where ro, which corresponds roughly to the point where W changes sign, is 
of the order of magnitude of atomic dimensions. More complicated methods 
are needed to take the repulsive core into account. 

From the approximation (9.7) we get through differentiation the pressure, 

and also the gas density, 

N 2a 2 

n = f + kT f , 

and the internal energy, 

8A 8A 3 
A - T - - IL - = -2 n f kT + 2an f2. 

8T 8IL 

Eliminating IL from those equations we find, to first order in the interaction 
potential, 

N (N)2 
P = kT n - a n ' (9.10) 

U 3 N 
N 2kT - a n· (9.11) 

9.2.3 The van der Waals Equation 

The equation of state (9.10) contains a correction term as compared to the 
perfect gas law and it is a first step towards the establishment of the van der 
Waals equation (1873), 

(9.12) 

which we know reproduces with rather a good accuracy the isotherms of 
simple gases and liquids. This empirical equation cannot receive a complete 
theoretical justification, but a qualitative argument allows us to understand 
the origin of the term b: whereas the term with a takes the long-range weak 
attractions into account, we still need to take into account the fact that the 
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short-range (of order ro) repulsions prevent the molecules to penetrate one 
another. Due to this the volume fl available for each molecule is reduced to 
fl- Nb, where b is of the order of magnitude of the volume 4rrr5l3 which is 
excluded due to the presence of each of the other molecules. If we replace fl 
in the dominant term of (9.10) by fl- Nb, we find (9.12), and the numerical 
values (9.9) for a and r5 for b are of the same order of magnitude as the 
empirical values. 

A less cavalier justification for the replacement of n by n - Nb is provided by a 
model where the potential W{r) is schematized as follows. For r < rO, W{r) is very 
large so that the particles cannot approach one another to distances less than ro: 
everything takes place as if each particle were a hard sphere of radius ~ro. Outside 
the hard core, r > ro, W{r) is negative and small. Let us, to begin with, drop the 
regions r > ro of the potentials, and let us consider the term of order N in (9.4). 
The multiple integral is over the domain Tij > rO, V i,j, and the integrand is there 
equal to 1. Let us first of all integrate over r N; we must find the volume outside 
N - 1 spheres, r j N > ro, j < N, of radius ro centred on the other particles. If those 
spheres do not overlap, we find n-47r{N -1)r5/3. However, they may well overlap, 
as the distances between their centres are constrained in the integrations over the 
rj to be larger than ro, not larger than 2ro. Because ofthis we have underestimated 
the integral over r N, but the error is small if the density is sufficiently low so that 
Nr5 ~ n, in which case the molecules j < N rarely approach one another closely 
in the integration. Iterating this process gives us for the multiple integral of (9.4) 

IT [n - (j - 1) 4~5] , 
3=1 

and hence 

A = -kT I {~ (-2bf)N r(N - n/2b)} 
n L...J N! r(-n/2b) 

N=1 

We have introduced the coefficient 

b 2 3 = 3 7rrO , 

kTn 
- ~ In{l + 2bf). 

(9.13) 

which is half the volume of the hard core, and used the binomial formula (see end of 
the book). The resulting free energy, obtained through a Legendre transformation 
with respect to /-£, is 

The approximation which we have just made is justified when Nb/n is sufficiently 
small, since the two expressions for F differ by less than 0.5 x 10-3 for n = 20Nb, 
and by less than 3% for n = 4Nb; moreover, their difference has the appropriate 
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sign partly to correct the error we made above in the evaluation of A. Finally, we 
include the contribution from the r > ro part of the potential by treating it as a 
small perturbation, and we then find for the free energy the approximation 

( N>..3 ) N 2 
F = NkT In Q _ 'Jvb - 1 + n a, (9.14) 

where a is defined by (9.9) 
Differentiating (9.14) with respect to Q we get the van der Waals equation 

(9.12). Inversely, we could derive (9.14) from (9.12) using a thermodynamic argu
ment (Exerc.6a) which is completed by knowing F at low densities, where it is 
given by (7.37). 

The justification of replacing Q by Q - Nb is more rigorous in one dimen
sion where b will be identified with the distance of shortest approach ro, the one
dimensional equivalent of (9.13). To evaluate the integral (9.4) we order the particles 
in the box, of length L, according to 

o < rl < r2 < ... < rN < L, 

which compensates for the factor liN!. If we then choose as new variables 

we can take the impenetrability condition, rij > ro, exactly into account by reduc
ing the integration domain to 

o < r~ < r~ < ... < r~ < L - Nro. 

The hard cores are thus eliminated by simply replacing L by L' == L - Nro. 
Neglecting the rij > ro part of the potentials, we obtain exactly, even if Nro 
is not small as compared to L, 

By using the r~, ... ,r~ as variables, one can then easily calculate the free energy 
to first order in the attractive T > TO part of W (T), and the result is 

F = NkT [In L ~ i;ro - 1 ] - ~2 a, 

L 100 d -yN/L' a == - L' ye 
o 

[ yN y2 N 2 ] 
x W(ro + y) + V W( 2ro + y) + 2L'2 W(3ro + y) + ... 

100 N 12T
O 

~ - dr W(r) - L dr (2ro - r) W(r) + .... 
TO TO 

(9.15) 

If the density is sufficiently low so that Nro «: L, expression (9.15) reduces to its 
first term, so that we have proved the one-dimensional equivalent of (9.9), (9.13), 
and (9.14). 
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The internal energy U, derived from (9.14), has the same form as (9.11) 
and is independent of b. In a Joule expansion the gas temperature therefore 
changes, in contrast to what happens in the case of a perfect gas. If the 
volume increases suddenly from D to D + .dD, the change in temperature, 

2a (N) 2aN .dD 
.dT = :3.d D = - 3kD(D + .dD)' (9.16) 

is always negative. The observed cooling at low densities and high temper
atures is always very small in practice and in agreement with expression 
(9.16). 

9.2.4 The Virial Series 

Both in § 9.2.2 where, in (9.9), we changed the integration limit in the defini
tion of a and in § 9.2.3 where we replaced the volume D by D - Nb we have 
used rather debatable heuristic arguments. We shall now construct more sys
tematically an expansion of the thermodynamic quantities in powers of the 
density. 

This expansion is called the virial expansion for historical reasons: one of the 
proofs uses the Clausius virial theorem 

~kT 
2 ' 

(9.17) 

where Fi is the total force exerted on particle i and where the virial is defined as the 
left-hand side of (9.17). It is also called the Ursell-Yvon-Mayer expansion after the 
authors who first constructed (1927-37) the general term of this expansion. Here 
we shall restrict ourselves to evaluating the lowest-order terms in the expansion. 
The contribution of the box potential to the virial is easily related to the pressure 
of the walls (§ 14.4.4). 

Considering the general expression (9.4), (9.5) for the grand potential 
we note that f is none other than the density (7.32) which the gas would 
have had, if there were no interactions, for given temperature and chemical 
potential. It is thus natural to start with expanding A in powers of f. To do 
this, we introduce the function 

g(r) = e-!3W(r) - 1, (9.18) 

which for the case of argon is shown by the dashed curve in Fig.9.1 for 
T = 100 K. Like the potential this function has a short range, but it is 
bounded by -1 in the region where W becomes infinite. If we expand the 
integrand of (9.4) in powers of gij up to third order, use the identical nature 
of the particles, and perform the integrations, we get 
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ZG 

L fN In d3r1 ... d3rN 
N 

[ 1 1 
X 1 + 2(N _ 2)! g12 + 2. 22(N _ 4)! g12g34 

1 1 
+ 2(N - 3)! g12g13 + 23 . 3!(N _ 6)! g12g34g56 

1 1 
+ 22(N - 5)! g12g13g45 + 3!(N _ 4)! g12g13g14 

1 1 ] + 2(N - 4)! g12g23g34 + 3!(N _ 3)! g12g23g31 + ... 

= en! [1 + [lf2 B1 + ~ ([lf2 B1)2 + 2[lf3 B~ + ~ ([lf2BI)3 
2 3. 

(9.19) 

+ (2[lf3 Bn ([lf2 B 1) + ~[lf4B: + 4[lf4 B: + [lf3 B2 + ... ] . 

Hence we find for the grand potential 

A 2 3( 2 ) 16 4 3 - [lkT = f + f B1 + f 2B1 + B2 + 3 f B1 + ... , 

where the quantities B1 and B2 are functions of T defined by 

B1 = ~ J d3r g(r) = ~ J d3r [e-W(T)/kT - 1] , 

B2 = ~ J d3r1 d3r2g(rdg(r2)g(lr1 - r21). 

(9.20) 

(9.21) 

(9.22) 

One sees easily that the power of f appearing in each term of (9.20) is equal 
to the number of particles which are involved in the integrations producing 
the coefficients B 1, Br, B 2, .... We have thus constructed the start of the 
expansion of A in powers of f, that is, of el-'/kT, and at the same time its 
expansion in g, keeeping all terms up to third order in either f or g. 

A complete proof of (9.20) requires showing that the higher-order terms in 
(9.19), which contain higher and higher powers of il, together produce an expo
nential, thus generalizing what we saw at the start of the expansion. To carry this 
out it is convenient to represent each term in (9.19) by a diagram (Fig.9.2) formed 
of segments which connect, in all possible ways, points representing the particles 
concerned. Each segment provides a factor gij and each point a factor /, while the 
contribution from a diagram is obtained by integrating over the coordinates of the 
points; one can show that one must divide the quantity obtained in this way by 
the symmetry number of the diagram, that is, by the number of permutations of 
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the labels of the particles which leave this diagram invariant. One can then prove 
that expression (9.19) is equal to the exponential of the contributions (9.20) of the 
connected diagrams, which are proportional to the volume il. This demonstrates 
the extensivity of the successive terms of the expansion of A and enables us to write 
these terms down systematically to each order in gij or in f . 

..... 

Fig. 9.2. The diagrams which contribute to (9.20) 

The quantity f, which is proportional to exp(p/kT), tends to 0 with 
the density so that (9.20) produces the expansion of the thermodynamic 
quantities in powers of the density. To see this explicitly, let us find from 
(9.20) the density as function of f. To third order we find 

N 1 oA 2 3( 2 ) n = - n op ~ f + 2f Bl + 3f 2Bl + B2 , (9.23) 

or, if we invert this, 

N (N)2 (N)3 f ~ n - 2Bl n + (2Bi - 3B2) n ' (9.24) 

which, together with (9.5), gives us the expansion of the chemical potential 
in powers of the density: 

P 
kT 

~ In __ T - 2Bl - - 3B2 
N>..3 N (Nn )2 
n n (9.24') 

In order to express the other thermodynamic quantities as series in N / n we 
must eliminate p from (9.20) and (9.24). It helps to carry out a Legendre 
transformation at the Same time, that is, to change from the grand potential 
A to the thermodynamic potential associated with the variables T, n, N, 
that is, to the free energy F. Using (9.24') we then find finally the expansion 
of F up to second order in powers of the density: 

F(T, n, N) = A + pN 

= -NkT [In N~~ +1+B1 ~ +B2 (~r + ... ].(9.25) 
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From the equivalent series (9.20) or (9.25) we obtain the expansion of all 
thermodynamic quantities in powers of e'" or of N / fl, and, in particular, the 
equation of state 

of N (N)2 (N)3 P = - ofl = fl kT - Bl fl kT - 2B2 fl kT + .... (9.26) 

In contrast to the perturbation expansions of § 9.2.2, expressions (9.20), 
(9.25), or (9.26) enable us to face up to the pathology associated with the 
strong singularity of the potential at short distances, which was cured in 
§ 9.2.3 only by rough means. Expanding in powers of the density leads, in 
fact, to expanding at the same time in powers of g, a function of T which 
remains bounded at short distances, in contrast to W. 

50 

100 T/K 

-50 

Fig. 9.3. The first virial coefficient Bl for argon 

In order to compare the expansions (9.25) and (9.26) to the results ob
tained earlier we shall restrict ourselves to first order in 9 and evaluate B l , 

defined by (9.21), as function of the temperature. The behaviour of Bl is 
shown in Fig.9.3 for the case of argon, the potential of which was shown in 
Fig.9.1. At high temperatures the repulsive part of the potential dominates 
(9.21) and Bl is negative; on the other hand, when the temperature is low
ered, the attractive region dominates and Bl increases. One can model this 
behaviour by separating in Bl the contribution from the two parts of the po
tential - weak attraction at distances larger than TO and strong repulsion at 
short distances. A reasonable approximation thus consists in replacing g(T) 
by -,BW(T) for T > TO and by -1 for T < TO, assuming that at the temper
atures considered we have - W (T) ~ kT for most of the region T > TO and 
W(T) ~ kT for most ofthe region T < TO. We thus treat again the attraction 
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as a perturbation of first order in Wand the repulsion as an infinitely hard 
core. This gives us 

(9.27) 

This simple approximation for Bl is clearly a rough one, but it reproduces 
qualitatively the characteristics of the B1(T) curve shown in Fig.9.3. From 
(9.26) and (9.27) we get at low densities for the pressure 

P = kT ~ (1 + b ~) - a (~ r (9.28) 

Expression (9.28) is the same as the expansion of the van der Waals equation 
up to second order in Nj fl, if a is defined by (9.9) and b by (9.13), that is, half 
the volume of the hard core. The virial expansion, which is more trustworthy 
than the van der Waals approximation, enables us to recover the latter, at 
least at rather low densities, and also to justify cutting off the integration 
domain as we did in § 9.2.2 when we defined a. 

To higher orders the expansion of the van der Waals equation for P gives 
terms kTlJP-1(N/Q)p. On the other hand, one can prove that successive terms in 
the virial expansion (9.25) of -F/QkT can be represented by diagrams similar to 
the ones of Fig.9.2, apart from two changes: (i) one must only take into account 
diagrams which remain connected when one takes away anyone of the points; (ii) 
one must associate with each point a factor N / Q, rather than f. The two terms 
written down in (9.25) represent the contributions from the first and the third 
diagram of Fig.9.2, the only ones which remain for the calculation of F. When T 
is sufficiently high, each diagram is dominated for each of its gij factors by the 
Tij < TO region where gij is equal to -1. A diagram containing p points thus gives 

a contribution to F which is proportional to kTQr~(p-l)(N/Q)p. For instance, 
B2, defined by (9.22), can be calculated by taking as the integration variables the 
distances between the three particles rI, r2, r3; the volume element d3r2 equals, 
when rl is fixed, r2r3 dr2 dr3 dcp/rl and we find (the integration domain is defined 
by Ir2 - r31 < rl < r2 + r3, rl < rO, r2 < rO, r3 < ro) 

47[2 J 57[2 6 
B2 = - 3 qr2r3 drl dr2 dr3 = - 36 roo (9.29) 

The resulting p = 3 term in the expansion (9.26) is equal to ~kTb2(N/Q)3. Its 

coefficient is not the same as that of the corresponding term kTb2(N/Q)3 in the 
expansion of the van der Waals equation. More generally, the expansion found here 
does not produce the geometric series expected from (1 - bN/Q)-l, so that for 
higher than second order in N / Q the van der Waals equation cannot be taken to 
be more than an empirical expression. 
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9.2.5 The Joule-Thomson Expansion 

We shall use expression (9.25), taken only to first order in N / il, to explain the 
thermodynamic properties ofthe Joule-Thomson (or Joule-Kelvin) expansion 
which was studied in 1850 by James P.Joule and William Thomson - the later 
Lord Kelvin. We are dealing with the expansion of a gas from a vessel kept 
at a pressure PI into a second vessel kept at a pressure P2 < PI without 
exchange of heat with the surroundings. We assume that a stationary regime 
has been reached, where the temperatures of the two parts remain fixed at 
Tl and T2 , the gas flowing in an irreversible manner at a rate controlled by 
a valve or a porous plug which connects the two vessels. The pressures PI, 
P2 and the initial temperature Tl being given, we want to determine T2 in 
this stationary regime. 

Porous plug 
or valve 

Fig. 9.4. J oule-Thomson expansion 

dDz>O 

During a time interval dt, a number dN2 = -dNI of particles pass through 
the plug. In this process, the system does not exchange heat, but it exchanges 
work, with the outside, in contrast to the Joule expansion where the gas 
expands into an empty vessel. The energy balance provides 

dUI + dU2 = -PI dill - P2 dil2, 

which we can rewrite as 

(9.30) 

Hence, if Pl, P2, TI, and T2 do not vary with time, the enthalpy per particle, 
defined as function of P and T by 

H == U+Pil = ~ [F- of _il OF ] 
N N N T aT oil' (9.31) 

is the same in the two vessels when the permanent regime is reached. To first 
order in the density or the pressure we find the enthalpy from (9.25), (9.31), 
(9.26): 

H 
N 

~kT+kTN (T dBI -BI) 
2 il dT 

= ~kT + P (T dB l - BI) . 
2 dT 

(9.32) 
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If we write down the condition that (9.32) remains constant during the ex
pansion, we determine in the P, T-plane the lines along which the expansion 
may take place. 

To have an idea about the shape of these expansion curves we replace 
Bl in (9.32) by its approximate expression (9.27). The result is shown in 
Fig.9.5. We see that there exists an inversion temperature, which follows 
from the equation Bl - T dBddT '::::: 2a/kT - b = 0, 

2a 
T j '::::: kb' (9.33) 

above which the Joule-Thomson expansion heats the gas and below which it 
cools the gas. 

T OL-______ ~ __ L-__ L_ __ l_ __ ~ __ ~ __ ~ ______ ~ 

Ti 
Fig. 9.5. Constant enthalpy curves 

This is a general effect. In fact, it follows from the identity dH = n dP + 
T dB + JL dN that 

(~~)p = Cp , 

so that at low densities, where expression (9.33) holds, the slope of a constant 
enthalpy curve is equal to 

~~ = - (~~)T/ (~~)p = ~ (BI-T~~l). (9.34) 

The bracket in (9.34) is in Fig.9.3 represented by the ordinate of the in
tersection of the tangent to the Bl (T}-curve with the vertical axis. We see 
that it changes sign at the temperature Tj where this tangent passes through 
the origin and we find again the inversion effect. For argon the inversion 
temperature Tj is 720 K, in qualitative agreement with (9.33). 

As an exercise, one could prove, starting from (9.30), that the stationary 
regime is stable in a Joule-Thomson expansion: if, with PI, P2, and Tl fixed, 
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the temperature T~ of the second vessel deviates from the value T2 defined by 
Hl/Nl = H2/N2, the difference IT~ - T21 decreases with time, according to the 
relation [T~(t) - T2]N2(t) = constant. 

The shape of the Bl (T)-curve and hence the inversion effect itself are 
consequences of the shape of the potential W(r): at high temperatures the 
repulsion between the molecules dominates and the expansion produces heat
ing; at lower temperatures the attraction dominates and that is the origin 
of the cooling. The effect has been widely observed experimentally; however, 
expression (9.34) is quantitatively exact only in the low pressure limit as it 
was derived using the truncated expansion (9.32). In fact, if the initial pres
sure is high, the inversion temperature depends on it and when we evaluate 
it we must take into account the next term in (9.32). The cooling through the 
Joule-Thomson expansion is used in practice for obtaining low temperatures, 
for instance, for liquefying gases; the lowering of the temperature, (9.34), 
is small - of the order of 0.1 K per atmosphere - but the process has the 
advantage of being able to function in a stationary regime and to be suitable 
for industrial applications (Linde, 1895). 

9.3 Liquefaction 

Expression (9.4) for the grand potential describes in principle not only the 
properties of gases, but also those of liquids and those of the liquid-vapour 
transition. However, in that region we do not have a small parameter at our 
disposal, so that approximation methods based upon series expansions are 
inappropriate. We shall appeal to a more roundabout approximation to de
termine the grand potential, namely, the variational mean field or effective 
potential method which will enable us to understand theoretically the prop
erties of the liquid-vapour transition (§ 9.3.2, Prob.7). This kind of method, 
although rather rough, is efficient; it can be extended to other examples of 
phase transitions, such as sublimation and melting (Probs.8 and 10), fer
romagnetism (Exerc.9a), ferroelectricity (Prob.5), or changes in crystalline 
phases (Probs.4 and 12). 

9.3.1 The Effective Potential Method 

We start from the following remark. Whereas it is practically impossible to 
evaluate the grand potential (9.4) for interacting particles, there exist sim
ple probability distributions for which the calculation of the thermodynamic 
quantities and of mean values of observables does not present any difficul
ties. For the problem we are interested in here, we are dealing with densities 
in phase V which describe a gas of non-interacting molecules subject to an 
external potential V( r). The Hamiltonian in that case has the form 



9.3 Liquefaction 409 

(9.35) 

and the contributions from the different particles can be completely factor
ized. Of course, such distributions V differ from the Boltzmann-Gibbs dis
tribution D associated with the Hamiltonian HN with interactions, given by 
(9.1), which we wish to study; but we can try to choose V in such a way 
as to simulate as well as possible the properties of the real system by those 
of the model without interactions with an adjustable potential V. We shall 
thus replace the two-body potential W ij by an effective potential Vi of inde
pendent particles which will depend on the temperature and on the chemical 
potential and which on average describes the effect of all the other molecules 
on the molecule i. This procedure neglects the correlations which exist in the 
exact equilibrium state D as a result of the interactions Wij, but they are 
partly simulated in the approximate state V through the mean field V(r). 

The determination of the best possible approximation for V is based upon 
the variational method of § 4.2.2. Let D be the grand canonical density opera
tor which we are interested in and which is associated with the Hamiltonian 
(9.1), and let fj be a trial density operator which is sufficiently simple to 
allow us to perform calculations and which we want to choose in the best 
possible way to replace D. For the case of a grand canonical equilibrium we 
can write inequality (4.10) in the form 

(9.36) 

or, if we define averages of the energx and of the number of particles with 
respect to the trial density operator V, 

u 
N 

Trfjil, 

TrfjiV, 

in the form 

} 
A < A == U - T S(V) - pN. 

(9.37) 

(9.38) 

This inequality remains valid in the classical limit we are considering here. 
The best choice for V corresponds to an approximate grand potential A which 
is as close as possible to the exact grand potential A and is thus obtained by 
looking for the minimum of A. This criterion gives us an approximate density 
in phase V which will enable us to calculate simply the averages ofthe various 
observables of interest and which we can reasonable hope to be sufficiently 
close to the exact, but impracticable, Boltzmann-Gibbs distribution D. 

Let us apply this method to the gas with interactions and take as a trial 
density in phase V the one which the system would have in grand canonical 
equilibrium, if its Hamiltonian were simply the Hamiltonian (9.35) without 
interactions rather than (9.1): 
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(9.39) 

We shall determine the adjustable arbitrary potential V( r) using the above 
variational method. The distribution D describes uncorrelated molecules with 
a density at the point r given by (7.32), that is, if we use the notation (9.5), 
by 

n(r) = Xr3 e/-t/kT e-V(r)/kT = f e-V(r)/kT. (9.40) 

The normalization constant of (9.39) is equal to 

(9.41) 

Let us for the moment restrict ourselves and take for V(r) a constant V. 
Either V or n remains the only adjustable parameter, which must be deter
mined variationally by looking for the minimum of (9.38). The approximate 
average number of particles is 

(9.42) 

We also need the average energy U. Note that this is the average (9.37) over 
the trial density in phase D of the true Hamiltonian H, and not of the trial 
Hamiltonian; in other words, the trial grand potential A which occurs in the 
inequality (9.38) is not equal to -kT In (, in contrast to the exact quantity 
A = U - T S - p,N = -kT In ZG. For the kinetic part, as in the case of a 
perfect gas, the equipartition theorem gives ~NkT, where we must replace 
N by an; this result is valid quite generally, even for the average TrDH over 
the exact classical Boltzmann-Gibbs distribution. For the potential energy 
we get, using the fact that there are no correlations in the trial state, 

As we might have expected, since the particles are uncorrelated, this expres
sion for the potential energy is the same as that for a continuous medium of 
uniform density n which interacts with itself through the potential W. The 
exact value of the internal energy would be given by the general form (2.83) 
and would involve the reduced two-particle density 12, a function of Irl - r21 
which is difficult to determine and which describes the correlations between 
the molecules. Altogether the approximate internal energy is therefore 

(9.43) 
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We still must evaluate the approximate entropy 8(D). To do this we need 
only note that (9.39) is nothing but the density in phase of a perfect gas with 
a chemical potential equal to 11- V rather than to 11 and with a density equal 
to n; expression (7.41) then gives 

8 (D) = f.?nk (~ - In nA~) . (9.44) 

Altogether, the trial grand potential A is equal to 

A U - T8(D) - J1,N 

= kTf.? [n In 7 -n] + ~f.?n2 J d3r W(r), (9.45) 

and we must look for its minimum with respect to the parameter V, or, what 
is the same, with respect to n which is related to V through (9.40). We thus 
get the equation 

kT In 7 +n J d3rW(r) 0, (9.46) 

which can also be written as 

(9.47) 

If, more generally, we look for the minimum of A with respect to a potential 
VCr) which varies arbitrarily in space, Eqs.(9.45) and (9.47) become 

A = kT J d3rn(r) [In nj) - 1] 

+~ J d3rd3r'n(r)n(r')W(lr-r'I), (9.48) 

VCr) = J d3r' W(lr - r'l) nCr'). (9.49) 

The latter condition, which expresses that the effective one-body potential 
V takes in the best possible manner the two-body potential W into account, 
has a simple intuitive meaning: the molecules i, which are distributed in space 
with a density n, create at the point r an average potential 

(~ W(lr - ril)) = VCr) 

given by (9.49). We then assume that each molecule moves independently 
of the others in this average potential V( r) which it has helped to create; 
when we finally write down that thermal equilibrium is established, this 
implies that the density n can be derived from V through the equation (9.40) 
for independent particles. We must thus solve a pair of coupled equations, 
(9.40) and (9.49), which express approximately the density n of the molecules 
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as function of the effective potential V to which they are subject, and vice 
versa. The procedure is the same as in the Hartree method (§ 11.2.1) which 
we shall use to describe the electrons in a solid: we shall replace in that case 
the Coulomb repulsion between electrons by a potential which is determined 
by successive approximations, assuming the density known and then deriving 
from it the potential as if we were dealing with a charged continuous fluid; 
after that we recalculate the density in thermal equilibrium for that potential, 
and so on, iterating the procedure until the coupled equations are satisfied. 
Such methods, based upon the use of a self-consistent potential which is 
determined from that potential itself, are currently employed in different 
fields of physics under various names: molecular field or Weiss field method 
in magnetism, Bragg-Williams method for alloys, self-consistent potential in 
nuclear physics, or "bootstrap" theory in elementary particle physics - the 
potential is assumed to pull itself up by its bootstraps. 

If J d3r W(r) is positive, (9.46) has always one and only one solution which 
gives us the unique minimum of (9.45). The corresponding density n or the effective 
potential V depend on the temperature and the chemical potential. We then find 
from (9.46) the approximate grand potential of the fluid and hence its thermody
namic properties, with A depending on T and /-L both explicitly and through n. 
To first order in W this expression is the same as the approximation (9.7), (9.8). 
However, it includes higher-order contributions in Wand one may thus hope that 
it is a better approximation. 

If J d3r W(r) is negative, (9.45) has no lower bound as n ---; 00. As a result, by 
virtue of (9.38) which is now an inequality, satisfied whatever the value of n, the 
grand partition function diverges. One cannot have a grand canonical equilibrium 
state in this case, where the ground state energy decreases as _N2 as N ---; 00. 

Placed in a thermostat and a particle reservoir, the system would indefinitely cap
ture particles, its density would become infinite, and all thermodynamic properties 
depending on the extensivity would be violated. In fact, the existence of a thermo
dynamic limit (§ 5.5.2) and the stability of matter require that the potential for the 
interaction between molecules is sufficiently repulsive, at least at short distances. 

9.3.2 The Gas-Liquid Transition 

The above method is only of academic interest if one tries to apply it directly 
to the kind of interactions which one finds in a real gas. In fact, the potential 
energy must be negative when the density is relatively low, and become pos
itive at high densities, as is suggested by the shape of the two-body potential 
W. The variational method which we used does not enable us to take this 
property into account for the realistic two-body Hamiltonian (9.1), as the 
approximation (9.43) for the potential energy depends in that case solely On 
a single parameter, the integral of the potential, and is simply proportional 
to n2. Nevertheless, a discussion of a model Hamiltonian which differs from 
(9.1), but retains its essential characteristics, will enable us to understand 
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the microscopic origin of the gas-liquid transition without needing recourse 
to a more elaborate approximation technique than the method of § 9.3.1. 

We therefore introduce a model system which we expect to have some 
resemblance to the fluid we are studying. Its properties are the following: the 
two-body potential is attractive and its integral, -2a, is negative; in order 
to avoid the catastrophe which then would make A divergent as we noted at 
the end of § 9.3.1, we add repulsive three-, four-, ... body potentials which 
are intended to prevent the density from becoming infinite. In the mean field 
approximation a three-body potential makes a contribution to U which is 
proportional to n3 . Denoting the value of that repulsive potential by Cl and 
assuming that its range is of the order of the radius of a molecule, we have 
thus for the coefficient of the term in n 3 in U 

where b is of the order of magnitude of the volume (9.13) of a single molecule. 
Similarly, the four-, five-, ... body potentials give terms proportional to b3n 4 , 

b4n 5 , .••• To simplify the discussion we shall choose their coefficients such 
that the approximate internal energy associated with the trial density (9.39) 
has the form (we have put C = b2Cl) 

3 2 cfln3 
U = -kTfln-afln + --, 

2 1- bn 
(9.50) 

instead of (9.43). The second term takes the attractive part of the two-body 
potential into account and the last term simulates its repulsive part, as the 
density n cannot exceed the value lib for which the energy U becomes infinite. 

Another model, that of the lattice gas, also enables us to describe simply both 
the short-range repulsion and the long-range attraction. It consists in imagining 
that the molecules can only be situated on the sites of a lattice of mesh size TO, 

rather than occupying arbitrary positions. Forbidding two molecules to occupy the 
same site imposes a minimum distance apart TO as if they had a hard core. Nothing 
prevents us then to introduce an attractive potential between molecules placed on 
different sites and after that to describe the liquid-gas transition by the effective 
potential method (Prob. 7). 

We must now, for variable n, look for the minimum of the trial grand 
potential 

A(n, T, fl, 1-") = kTfl (n In ~ - n) _ afln2 + cfln3 
, 

f 1- bn 
(9.51 ) 

the value of which will give us approximately the grand potential A(T, fl, 1-"). 
From the vanishing of the derivative of (9.51) with respect to n we then 
obtain the equation 



414 9. Condensation of Gases and Phase Transitions 

n cn2(3 - 2bn) 
kT In 7 - 2an + (1 _ bn)2 = 0, 

or, if we use (9.5), 

_ 3 cn2(3 - 2bn) 
p, = p,(n) = kT In nAT - 2an + (1 _ bn)2 ' (9.52) 

which determines the density n as function of T and p,. Eliminating p, from 
(9.51) and (9.52), and using a Legendre transformation as in (9.25), we find 
for the free energy the approximation 

(9.53) 

which is consistent with (9.44) and (9.50). 
Hence we get the approximate equation of state 

A of 2 cn3(2 - bn) 
P = - n = - an = kTn - an + (1 _ bn)2 . (9.54) 

The isotherms of the equation of state (9.54) show the same behaviour as 
those of the van der Waals equation. In particular, there exists a critical tem
perature Tc below which (9.54) shows a minimum and a maximum (Fig.9.6), 
and P may even become negative. The equation of state (9.54) thus contra
dicts the general properties P > 0, oP / an < 0 predicted by both thermo
statics and equilibrium statistical mechanics. 

However, this expression is not completely correct. In fact, Eq.(9.52) 
which we have used gives all the maxima and minima of the variational 
expression (9.51) whereas we should only have chosen the absolute minimum 
of A. We must therefore discuss in more detail the solutions of Eq.(9.52). 
Let us, for fixed nand T, consider the function p,(n) which is the right-hand 
side of this equation, and let us write down its successive derivatives: 

op,(n) 1 o2A kT 2c [1 ] = --- ---;;-2a+ b (1-bn)3 -1 , an n on2 

o2p,(n) 1 o3A kT 6c (9.55) --- - ~ + (1 - bn)4' on2 n on3 

o3p,(n) 
> o. --a;T 

We note that there exists a temperature Tc such that the function p,(n) has 
a point of inflection with a horizontal tangent; we find it by letting the first 
two equations (9.55) be equal to zero and this defines the critical point Tc, 
nc, P,c, Pc through the equations 
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Fig. 9.6. Isotherms of a fluid with the internal energy (9.50) 

kTe 
6cn~ 

(1 - bne)4' 
1 + 2bne ab 

(1 - bne)4 
1+-, 

c (9.56) 

J.Le J.L(ne, Te), 

Pc P(ne, Te) 
cn~(2 + bne) 

(1 - bne)4 . 

When the temperature lies above Te, equations (9.55) show that J.L(n) in
creases monotonically from -00 to +00 so that Eq.(9.52) has a single solution 
n(J.L, T)i therefore A has a single minimum which is equal to the approximate 
grand potential A (Fig.9.7). Expressions (9.53) and (9.54) for the free energy 
and the pressure, P = -A/D, are then valid whatever the value of n. In 
the P(l/n)-diagram of Fig.9.6 the isotherms are monotonically decreasing 
curves, as, for given T, 

oP 3 OJ.L(n) 
--- = -n --. 
o(l/n) an 

(9.57) 

The situation is more complicated when T < Te where it follows from 
(9.55) and (9.56) that J.L(n) has a maximum and a minimum. When J.L is 
negative and large, the equation J.L = J.L(n) has still only one solution and 
A( n) has therefore a single minimum A, reached at a low value of the density 
n which increases with J.L (Fig.9.8). When J.L increases, the equation J.L = J.L(n) 



416 9. Condensation of Gases and Phase Transitions 

}.L(n) 

lib 

A 

}.L 

n 

Fig. 9.7. The chemical potential M(n) at a fixed 
temperature T above the critical temperature 

changes from having one to having three solutions and a second minimum 
of A appears for a larger value of n; as J-l increases, the two minima become 
deeper, the second one faster than the first one. As long as the latter remains 
the absolute minimum, it provides us with the required value of n and hence 
of A = A(n) and of the other physical quantities. The second solution of 
(9.52), which corresponds to a less deep minimum of A(n), and a fortiori 
the third one, reached for an intermediate value of n, which corresponds to 
a maximum, must be rejected. For a certain value J-ls(T) of J-l the two minima 
have the same depth (Fig.9.8). There are thus two solutions ng(T) and nl(T) 
associated with that value of J-l, which give the same value As for A. The 
latter, together with the values of ng, nl, and J-ls, are for given T determined 
by solving the equations 

J-l(ng) = J-l(nJ) , 

- Ps[} = A(ng) = A(nl)' 
(9.58) 

When J-l goes on increasing beyond J-ls(T) , the deepest minimum of A becomes 
the one on the right and n increases starting from the value nl. From here 
on the solutions of (9.52) which must be discarded are the minimum on the 
left and the maximum. Finally, for even larger values of J-l only the solution 
on the right remains and A( n) once again has a single minimum, this time 
for a high density which grows until it reaches lib. 

For a given T below Te , we have thus found a discontinuous behaviour, 
which is characteristic of the so-called first-order transitions (§ 6.4.6). The 
density n, as function of J-l, increases, but it jumps from ng(T), the density of 
the saturated vapour, to nl(T), the minimum liquid density at temperature 
T, when J-l passes through J-ls(T). The fluid thus undergoes a sudden change 
of state at the transition point J-l = J-ls(T): it is a gas when J-l < J-ls(T) and 
in that case n < ng(T), and it is a liquid when J-l > J-ls(T) in which case 
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Fig. 9.8. The chemical potential p(n) when T < Te and the solution of (9.52) 

n > nl(T). In each of these two regions the approximate expressions (9.53) 
for the free energy and (9.54) for the pressure as functions of n are valid; 
however, we must exclude the parts with ng < n < nl from the F(n) and 
P(n) curves which, for constant T, are defined by (9.53) and (9.54). On the 
other hand, the P(IL, T) isotherms are continuous as functions of IL with a 
discontinuous derivative. In fact, the Gibbs-Duhem identity (5.79), which can 
be written in the form 

dP = - d ( ~) = ~ dT + n dlL, (9.59) 

gives a jump nl - ng in the slope ofthe P(IL) isotherm at IL = ILs. As function 
of n an isotherm appears in Fig.9.8 as the locus of the absolute minima of A, 
since we have P = -AI n. It therefore consists of two sections of the curve 
in Fig.9.6; the pressure increases with n according to (9.57), but it is in the 
present approximation not defined when ng(T) < n < nl(T). 

In the vicinity of T = Te , the difference nl - ng between the liquid and 
the saturated vapour densities can be evaluated by expanding Eqs.(9.58) near 
the critical point. We find 

nl - ne '"" ne - ng '"" [3(Te - T)(l - bne)] 1/2 

ne ne Te(1 + bne) , 
(9.60) 

so that the densities of the two phases tend towards one another when T --+ 

Tc - 0, whereas there exists only a single fluid phase when T > Te. 
Our model has thus enabled us to explain the well known properties of 

the gas-liquid transition: at a given temperature T < Te the saturated vapour 
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pressure Ps(T) is a limit beyond which the gas cannot be compressed in 
thermal equilibrium without condensing as a liquid; the density ng(T) of 
the saturated vapour is the upper bound of the gas densities. Symmetrically, 
the liquid density cannot go lower than nl(T) and the liquid vaporizes if its 
pressure is lowered below Ps(T). The density has a discontinuity. However, 
the differences between the liquid and its saturated vapour diminish as T in
creases towards Tc and one can pass continuously from the one to the other 
beyond Tc. Coexistence of liquid and vapour is permitted provided these two 
phases have the same temperature, the same chemical potential, and the 
same pressure which are given by It = J-Ls(T), P = Ps(T). If the pressure 
is fixed and less than Pc the temperature which is defined by Ps(T) = P 
is the boiling temperature of the liquid or the condensation temperature of 
the gas. It increases with the pressure according to the law (9.63) which will 
be given below. For instance, water already boils at 80°C at an altitude of 
5000 m where the atmospheric pressure has dropped by half. The increase 
of Ps(T) with T is used in the drying of dishes in dishwashers: by cooling 
the inside wall with cold water, one lowers the corresponding value of Ps(T), 
which makes water condense there, thus drying the air and the hot dishes. 
All these everyday facts to which we are accustomed, as well as the results 
of macroscopic experiments, have thus found a satisfactory microscopic the
oretical foundation. Yet, we stressed at the start of this chapter how a phase 
change such as the liquid-gas transition looked a puzzling phenomenon from 
the microscopic point of view. 

The discontinuity in the density between the liquid and the saturated 
vapour implies a discontinuity in the internal energy given by (9.50), the free 
energy given by (9.53), and the entropy given by (9.44). The latter, which in 
our approximation is equal to 

nl 
Sg - SI = Nk In -, 

ng 
(9.61) 

is a measure of the sudden increase in disorder when the liquid evaporates. It 
is associated with a remarkable thermal property of the transition, namely, 
the existence of a vaporization latent heat L = T(Sg - SI) which must be 
provided in order that, at given temperature T and pressure Ps(T), a liquid 
of N molecules can evaporate. Independent of the approximation used L is 
connected with the saturated vapour pressure through Clapeyron's relation 
(6.61). We find the latter also by using (9.59) to write down that the change 
in Ps(T) on the two sides of the J-Ls('T) curve, in the two phases, is the same: 

(9.62) 

From (9.62) we find the latent heat per mole, 

(9.63) 
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and also the slope of the saturation curve in the T, J.1, plane, 
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Fig. 9.9. The phase diagram in the 
T,j.£ plane 

A convenient graphical representation of the transition consists in drawing 
the phase diagram in the T, J.1, plane (Fig.9.9). The saturation curve J.1,s(T) 
separates the gas phase, which lies below it, from the liquid phase, which lies 
above it. It ends at the critical point around which the distinction between 
the two fluid phases loses its meaning. We have shown by dashed curves two 
isobars P = const; along these lines AI [} = -Pis constant, so that the 
T, J.1" P diagram is also a graphical representation of the grand potential as 
function of its natural variables. This enables us to consider it as an abacus 
providing us graphically with the various thermodynamic quantities. In fact, 
(9.59) shows that the horizontal and vertical distances between isobars are 
inversely proportional to the entropy per unit volume and to the density. The 
slope of an isobar, 

(9.65) 

gives us directly the entropy per particle, and its curvature, 

( d2J.1,) _ Cp 

dT2 P - - NT' (9.66) 

the specific heat at constant pressure. It follows from (9.65) and (9.66) that 
the isobars are decreasing and concave curves. Above the critical pressure, for 
which the isobar passes through the critical point, they are regular. Below it, 
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they show a discontinuity in slope at the point where they cross the saturation 
curve. In fact, the pressure is continuous, but its partial derivatives (9.59) 
are not continuous for It = Its(T). The discontinuity in the slope of the 
isobar represents according to (9.65) the difference between the entropies per 
particle in the two phases, that is, LINT. 

9.3.3 Coexistence of Gas and Liquid Phases 

The use of the grand canonical ensemble hides a difficulty. In practice, at 
the same time as the available volume il, the total number of particles N 
is given rather than the chemical potential. If, for a given T < Tc , N I il 
lies between the values ng(T) and 7J.](T), which we found above, our theory 
does not work as we do not find a solution which is admissible for Eq.(9.52). 
The reason for this is simple. We know that, if ngil < N < n]il, the fluid 
splits in space into two phases, one a liquid with density n] and the other a 
gas with density ng , which are in equilibrium with one another. However, our 
approximation in § 9.3.2 assumed a uniform density n. Let us therefore return 
to our variational treatment, allowing henceforth the effective potential V( r) 
and hence the trial density n( r) to be inhomogeneous. 

Let us, for instance, assume that we divide the available volume il into 
two parts, ill and il2 = il- ill in which the potential V takes on two distinct 
values VI and V2• The interactions W, W3 , ... have a short range; we can 
therefore neglect the contributions to the trial internal energy U coming from 
the boundary between the two domains ill and il2 , so that the trial grand 
potential is equal to 

(9.67) 

where A(n, T, il, It) is given by (9.51). We must look for the minimum of 
(9.67) with respect to the three adjustable parameters, nI, n2, ill' When 
It # Its(T), this minimum is reached for nl = n2 and does not differ from the 
one which we obtained above. However, along the transition line It = Its(T), 
A is a minimum not only in the two cases ill = il, nl = ng and ill = 0, 
n2 = nJ, that describe the uniform gas and liquid states which we studied 
earlier, but also for nl = ng, n2 = n], ill arbitrary. The grand potential per 
unit volume thus remains constant when we let the fractions of the two phases 
vary and also the shape of their boundary, when It = Its(T). In particular, 
we can choose ill such that ill ng + il2n] = N so that the values ng < n < n] 
which we had not found in § 9.3.2 are now obtained for a separation of the 
fluid into two phases with It = 1t~.(T). Each point of the saturation curve 
Its(T) thus represents not only the two uniform phases with densities ng and 
n], but also a juxtaposition of these two phases in arbitrary ratios. 

We can easily generalize this argument to any number of domains. It then 
provides us for It = Its(T) with a whole family of solutions for which the den
sity in each point takes either the value ng or the value n] and which describe 
a liquid in arbitrary regions of space and its saturated vapour elsewhere. The 
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grand potential takes on the same value for all these solutions, so that the 
pressure remains constant when T is given while N In varies between ng and 
nl. This describes the evaporation plateau, which is the part of each isotherm 
of Fig.9.6 between ling and llnl and along which the system is made up of 
two separated phases. 

Since the entropy (9.44) generalized to inhomogeneous states is an integral 
over the volume with an integrand which is a function of the density, for 
given T and n, the entropy varies linearly with N in the coexistence region 
ngn < N < nln. (In fact, the volumes occupied by each of the two phases 
are themselves linear functions of N.) It also varies, for given T and N, 
linearly with n in this region. The same holds for the internal energy and for 
the free energy. This property implies that during the evaporation, for fixed 
temperature and pressure, the heat supplied is proportional to the amount of 
evaporated liquid, a well known experimental fact. 

We have just found a large number of solutions which are characterized by the 
regions occupied by one or other of the two phases inside the vessel. In practice, 
gravity determines these regions. In order to see how the effective potential theory 
takes this fact into account we include the gravity term, which we have so far 
neglected, in the Hamiltonian. The variational energy (9.50) is replaced by 

J 3 [3 2 cn3 ] U = d r 2kTn - an + 1 _ bn + mgzn , (9.68) 

where z is the height and where n = n(r) is the trial density which now depends 
on the position. At each point Eq.(9.52) is replaced by 

JL - mgz == JLs - mg(z - zs) = JL(n), (9.69) 

where we have denoted by Zs the height for which JL-mgzs equals JLs(T). If the vessel 
is not too high so that the gravity term mglz - zsl remains small, the solution of 
(9.69) is n = ng for z > zs, n = nl for z < Zs. As a result, even though gravity hardly 
alters the thermodynamics, it plays an essential rOle in affecting the search for the 
absolute minimum of A. Through (9.69) it requires that the density decreases with 
increasing height and it chooses a particular solution, where the liquid assembles 
at the bottom of the vessel, separated from its saturated vapour by a horizontal 
interface z = Zs. 

The approximations made above give us a sudden jump in the density at the 
interface. A microscopic theory of the structure of the interface needs taking into 
account non-local contributions to the trial grand potentiaJ (Exerc.ge). This enables 
us to understand the origin of an interface free energy and of capillary forces. We 
thus justify the more macroscopic and semi-empirical approach to the same problem 
(Exerc.6c) . 

We have so far constructed only stable equilibrium states which are associ
ated with the absolute minimum of the trial grand potential A. In fact, a local 
minimum can describe approximately a metastable phase (§4.1.6, Exerc.9d, 
Prob.7). Let us, indeed, assume that, for reasons which we shall discuss later 
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on, the density is constrained to stay within a given range during a period 
which is long according to our own time scale. The minimum of A in this 
range then describes in our model an equilibrium state which is metastable if 
elsewhere there exists a deeper minimum; the state of the system is described 
by the former minimum during a si-z;eable time, but eventually changes to
wards the latter if one waits sufficiently long. Let us consider a temperature 
much lower than the critical temperature; this enables us to distinguish two 
density ranges which are very different, that of the gas phase and that of the 
liquid. Let us, for instance, start from a stable gas state (n < ng(T)) which in 
Fig.9.8 is described as the absolute minimum of A, reached for the left-hand 
solution of the equation J.L = J.L( n). Let us now make J.L increase by raising the 
pressure at constant T, and let us assume that the density be constrained to 
remain within the range of gas densities. When J.L passes J.Ls(T) we get under 
that constraint for the minimum of .A a local minimum, which is still associ
ated with the left-hand solution of J.L = J.L(n) and which describes a metastable 
state; the absolute minimum n > nl is not accessible. The system remains a 
gas, but its density increases continuously with J.L beyond the density ng(T) 
of the saturated vapour. This phenomenon is often observed: supersaturated 
vapour. Symmetrically, if we start from a liquid phase J.L > J.Ls(T), n > nl(T) 
and if we make J.L decrease below J.Ls(T) by lowering the pressure at fixed T, 
under conditions where the density is forced to remain in the liquid range, 
we find another metastable phase, a superheated liquid. In Fig.9.8 this phase 
is represented by a local minimum of A which is reached for a density just 
below nl(T); it continues the absolute minimum which for J.L > J.Ls describes 
the stable liquid phase. Of course, neither of these two metastable phases 
can exist outside the T, J.L region where the equation J.L = J.L( n) has three so
lutions. This condition, for given T, gives an upper bound for J.L and n for 
the supersaturated vapour and a lower bound for the superheated liquid. On 
the P(l/n) isotherms in Fig.9.6 the metastable phases are indicated by the 
descending parts of the dashed curves in the n g , nl interval. In the T, J.L phase 
diagram of Fig.9.9, the region representing the supersaturated vapour con
tinues the gas region by being superimposed upon part of the liquid region; it 
is bounded below by the saturation curve and above by another curve which 
ends at the critical point. Similarly. the region representing the superheated 
liquid, which is situated below the saturation curve, is superimposed upon 
a part of the gas region. The limits of metastability are sketched in Fig.9.9 
as dash-dot curves; as an exercise one could determine their shape near the 
critical point, using (9.52), (9.55), and (9.56). 

The physical relevance of such loeal minima of A is a question of dynamics. 
One can, for instance, only observe superheated liquid if the time it takes for this 
metastable phase to change to the true equilibrium state is very long. When T, 
N, and fl are given this equilibrium state is a saturated vapour coexisting with 
liquid. The metastable superheated liquid can usually be reached, starting from 
the stable liquid for JL > JLs(T), either by slowly heating at fixed P or by lowering 
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the pressure below Ps(T) at fixed T. The subsequent evolution of this metastable 
state towards the equilibrium state requires a partial boiling, which necessitates 
the formation of vapour bubbles with increasing sizes. However, the appearance of 
bubbles, or "nucleation", implies a sudden decrease in the density at some points, 
together with a slight increase in the liquid density; this dynamic phenomenon is 
governed by many factors. In particular, the probability for producing a bubble by 
statistical fluctuations is, according to (5.88), small if the free energy ofthe interface 
between the liquid and the bubble is large. The mechanism for the growing of the 
bubble depends on the viscosity and the heat conductivity of the fluid. Exterior 
factors also are involved in the nucleation, such as the surface conditions of the 
container. Another example is provided by bubble chambers which are used for the 
detection of elementary particles: liquid hydrogen is first suddenly decompressed 
and made metastable, and the perturbation produced by the passage of a charged 
particle produces a line of bubbles. If the probability for nucleation is small the 
fluid density needs an extremely long time to decrease to values n '" ng which are 
necessary to establish the true equilibrium. Under those conditions a decompression 
or heating of the stable liquid, leading to the JL < JLs(T) region, has little chance of 
making it boil; one reaches a metastable equilibrium and the variational theory for 
this equilibrium is based upon looking for the minimum of the trial grand potential 
A in the region of high densities which are rather close to the initial density. In 
fact, this region is the only one which is accessible, if we are restrict ourselves to 
rather short times during which no bubbles are formed. 

The densities ng(T) and nj(T) of the two stable phases which can coexist at the 
temperature T are analytically determined by Eqs.(9.58). The Maxwell construc
tion gives a simple graphical solution of those equations, merely expressing that at 
the two ends of the evaporation plateau in Fig.9.6 the chemical potential and the 
pressure take the same value. The forbidden part of the isotherm is represented by 
the dashed part of the P(l/n) curve in Fig.9.6; along it P and JL, given by (9.54) 
and (9.52), change continuously from their initial values Ps(T), JLs(T), which they 
take on for n = ng to the same values which they again reach when n = nj. Between 
these points the derivatives of P(l/n) and JL(n) for constant [} and T are related 
by (9.57). To write down the condition that JL takes the same values at the two 
ends of the evaporation plateau we integrate (9.57) by parts along the forbidden 
portion of the isotherm: 

o = i nl aJL -dn 
n an 

g 

fling ap 1 1 

- Jl/nl a(l/n) ~ d(~) 
J, l/ng ( 1 ) ( 1 1 ) P d - -Ps - - - . 

llnl n ng nl 
(9.70) 

On the right-hand side we can identify the oriented area of the domain contained 
between the forbidden part of the isotherm and the plateau. The fact that it van
ishes gives a microscopic theoretical justification of Maxwell's rule which deter
mines the position of the evaporation plateau when the isotherm obtained from an 
approximate theory shows a minimum and a maximum. 
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In thermodynamics one usually gives the following argument for justifying the 
Maxwell construction: in an isothermal transformation along a closed circuit fol
lowing the forbidden part of the isotherm and the plateau, the work received, which 
is equal to the oriented area enclosed, must be equal to zero because of the Second 
Law. This argument is not satisfactory, as it is based upon considering homoge
neous, non-equilibrium states represented by the forbidden part of the isotherm: 
even though those which correspond to the descending parts of the isotherm and 
which are associated with relative minima of A can describe metastable states, 
the ascending part, associated with a maximum of A(n), has no physical meaning 
at all. 

The variational method which we have used has the advantage of being appli
cable even at high densities, in contrast to the approximations of § 9.2 which only 
gave us the van der Waals equation as a debatable extrapolation from the low den
sity region to the region where the fluid is a liquid. Nevertheless, one must wonder 
whether the singularities that we have found are perhaps a spurious phenomenon 
resulting from the approximation made. In fact, though the latter is partly con
trolled by the fact that the minimum of the trial function A is an upper bound to 
the exact value of the grand potential, nothing proves that a discontinuity in the 
slope of that bound indicates a true discontinuity in the slope of the corresponding 
physical quantity. Indeed, the outcome of the variational method may become in
accurate when the system shows large fluctuations. This happens in one dimension 
(Exerc.9c). This also happens in the immediate vicinity of the critical point where 
detailed experiments show significant dh;crepancies from the mean field theory. For 
instance, Eq.(9.60) predicts a decrease in nl - ng ex (Te - T)1/2 as T increases 
and approaches Te. Whereas this behavi.our is almost correct when Te - T is of the 
order of one kelvin, precise experiments show that the exponent is not equal to ~ 
when one approaches the critical point much more closely, but to 0.325 ± 0.002, 
whatever the substance. A correct theory of such exponents requires that one takes 
into account the fluctuations which are neglected here but which play an essen
tial role at the critical point where the distinction between the liquid and the gas 
disappears (Exerc.6d). Nevertheless, even though the nature of the singularity at 
the critical point and the behaviour of the thermodynamic functions in that point 
are, in general, not given correctly by the effective potential approximation, the 
latter gives at least qualitative agreement with experiments and provides us with 
an excellent starting point for more sophisticated theories. 

The existence of singularities in the thermodynamic functions is a consequence 
of the large size of the system. There are no phase transitions in finite systems. In 
fact, the partition function Z in that case is a sum of exponentials; each of them is 
a holomorphic fuction of its natural variables, such as (3, and is positive when (3 is 
real. The thermodynamic potential associated with In Z is thus also holomorphic 
in a strip along the real (3-axis, where it cannot have any singularity. If one makes 
an analytical continuation to complex !~-values, the only thing which can happen 
is the appearance of zeroes in the partit·ion function giving rise to branch points of 
In Z outside the real axis. A phase transition, at a real transition point (30, can thus 
only appear in the thermodynamic limit if some zeros of N-1ln Z in the complex 
(3-plane pinch the real axis by tending on both sides to the point (3 = (30 as N -+ 00 

(Exerc.9b). Only in that case can the thermodynamic quantities show a behaviour 
which is different for (3 < f30 and for (3 > f30· 



9.3 Liquefaction 425 

Let us also note that, although the liquid and gas phases are separated by a 
singularity when T < Te , their properties can be derived from one another through 
an analytical continuation when one follows a contour in the T, It-plane which 
encircles the critical point (Fig.9.9). In the variational approximation of § 9.3.2 this 
is clear: we started from a single analytical expression (9.53) and the singularity 
appeared because we truncated the domain for n. A similar situation occurs for 
other phase transitions such as ferromagnetism (Exerc.6d, 9a). In that case, above 
the critical Curie temperature and when there is no magnetic field B present, 
the magnetization spontaneously takes on a finite value and it is oriented in an 
arbitrary direction. Each of the possible orientations characterizes a phase, similar 
to each of the two liquid or gas phases. The singularity for B = 0, T < Te in the 
thermodynamic quantities plays the role of the liquid-vapour coexistence curve in 
the T, It-plane. Here also, we can go around the critical point by introducing a non
vanishing field, letting the orientation of B vary and finally letting B go to zero; 
we thus pass analytically from one direction of the spontaneous magnetization to 
another. Nevertheless, in a fluid-solid transition the two phases are qualitatively 
different and cannot be connected continuously; the phase diagram separates two 
regions which are not in touch with one another and there is no critical point 
around which one can go to connect them. In a variational theory of this transition 
(Prob.8) the approximations used to describe each of the - fluid and crystalline -
phases are, moreover, different. 

Let us finally stress that in the region where the two gas-liquid phases co
exist one cannot uniquely determine the state of the system by looking for the 
minimum of the grand potential. We have, in fact, found below the critical 
temperature and for /1 = /1s(T) two solutions ng and nl, not to mention the 
solutions which describe states where both phases coexist. For other phase 
transitions this same property shows up even more clearly. When a sub
stance is cooled down below its Curie temperature in zero field, it becomes 
ferromagnetic and it acquires a spontaneous magnetization which is oriented 
in a preferred direction. However, if the substance had a single equilibrium 
macro-state, the latter would be isotropic as one expects a priori to observe 
rotational invariance; as a result, the magnetization should be zero. This is 
observed for T > Te , but the rotational invariance is spontaneously broken 
when T < Te. The magnetization is an order parameter, which must be intro
duced in the macroscopic description of the system (Exerc.6d). The increase 
in disorder, that is, in entropy, with temperature is reflected spectacularly in 
the behaviour of the order parameter M, as the latter is zero when T > Te , 

and non-zero and increasing when T decreases below Te (see Fig.9.13). Each 
low temperature phase, which is here characterized by the direction of M, has 
lost its rotational invariance property; the latter, moreover, implies the very 
existence of several phases, as these can be derived from one another through 
rotation. Because of the equivalence of the phases, small perturbations are 
in practice sufficient to determine the direction of the magnetization, just as 
gravity separates the gas and the liquid phases. Other examples of transitions 
show similarly a spontaneous breaking of invariance, like the crystallization 
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of a fluid (Probs.8, 10, and 13), ferroelectricity (Prob.5), or changes in crys
talline structure (Probs.4, 12, and 19). In particular, in crystallization, the 
fluid, which is the only stable phase at high temperatures, is invariant under 
arbitrary translations or rotations; among this displacement group only cer
tain operations, those which characterize the geometry of the crystal lattice, 
remain below the transition point. 

The broken invariance is less obvious in the case of the liquid-vapour transition. 
One can discover it, though, in the fl~tid on a lattice model of Prob.7: whatever 
T, there is symmetry for M = Me between whether or not there is a particle on 
each of the sites, similar to the Ising model where the flipping of all spins leaves 
the Hamiltonian invariant for B = 0 (I~xerc.9a). In fact, these two models show a 
complete formal similarity: one gets from one to the other by identifying (J"i with 
2ni -1, where ni = 0 or 1 is the number of particles on site i and (J"i = ±1 is the spin 
on that site, and at the same time replacing M - Me by the magnetic field. Above 
Te the invariance is not broken and the density n = (ni) equals ~ when M = Me; 

below it we find two solutions ng and nj which are symmetric with respect to ~. 
In the model of § 9.3.2 we recognize nea.r the critical point the same symmetry by 
taking as order parameter M = n - ne + k(n - ne)2 + ... as is suggested by (9.60). 
An appropriate choice of k then enables us, by eliminating the term in M 3 , to give 
exactly the same form to the expansion of the trial grand potential (9.51) around 
the critical point, as for the Landau expansion (6.109), (6.110) of the free energy of 
a ferromagnetic, through replacing M - /'Le by B. This formal similarity is the origin 
of the universality of the critical phenomena: the properties at the critical point are 
the same for seemingly different transitions ~ liquid-gas, Ising ferromagnetism in 
one direction, binary alloys, demixture of binary solutions ~ when one can establish 
a correspondence between their order pa.rameters and their spontaneous invariance 
breaking. 

Summary 

When a gas is compressed, the interactions between its molecules give rise to 
corrections to the perfect gas laws which can be calculated by power expan
sions in the interaction or in the density. The equation of state is changed 
and an approximate theory enables us to justify the empirical van der Waals 
equation. A Joule expansion cools the gas; a Joule-Thomson expansion heats 
or cools it, according to whether the mitial temperature lies above or below an 
inversion temperature which can be evaluated if one knows the intermolecular 
forces. 

The liquefaction of a gas, taken as a prototype of a phase transition, can 
be theoretically studied by a variational approximation method applied to a 
model. In this way one can explain the various properties which are observed 
at the macroscopic scale: discontinuity in the density, evaporation plateau in 
the isotherms, evaporation heat, phase diagrams, separation of the fluid into 
two phases, critical point, broken invariance, metastable phases. 
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Exercises 

9a Ferromagnetism 

A simplified model of a ferromagnetic solid consists in considering a set of 
interacting spin-~ particles on a lattice with sites i = 1, ... , N. For sub
stances which are weakly anisotropic we take for the interaction between two 
neighbouring spins the "exchange force" -K(Si· Sj), where Si denotes the 
three components of a spin operator (§ 10.1.4); this is the so-called Heisenberg 
model. We shall study a model with a simpler interaction, the Ising model, 
which is adequate for very anisotropic solids which can be magnetized along 
practically only one preferred axis, either in the +z- or in the -z-direction. 
Let (Ti denote the operators is: In which commute with one another and 
which have as eigenvalues O"i = ±1, and let us assume that each spin has a 
magnetic moment -2/-LBSdn. The spin Hamiltonian in a magnetic field B 
applied along the + z-axis is then given by the expression 

it = - L Vij(Ti(Tj + /-LB B L (Ti, 
i>j i 

where the Vij depend only on the distance between the sites i and j. Even 
though the energy levels are known (O"i = ±1) the model is still too compli
cated for a calculation of its equilibrium properties as the density operator 
jj = exp( -f3it)IZ is too difficult to work with. We shall replace it by an 
approximate density operator fj with which we can perform the calculations 
and which has the form 

where x must be determined as well as possible to simulate D. To do that 
we use a variational method which is based on the fact that the free energy 
F = - kT In Z = Tr jj it - T S (D) is the minimum of the trial free energy 
F = Tri3it - TS(i3) with arbitrarily varying fj (§§ 4.2.2 and 9.3.1). In order 
to obtain the best possible approximation, we choose x such as to make F 
as small as possible, that is, as close to F as possible. 

1. Write down and discuss the equation which determines x for the 
case when B = O. Show the existence of a phase transition at a tempera
ture Te (Curie temperature) and determine it in the given approximation. 
In the low-temperature ferromagnetic phase each spin has a non-vanishing 
magnetic moment -/-LB(O"i) and the solid has a spontaneous magnetization 
Ms = -/-LB 2:i (O"i)/fl; determine its behaviour near T = Te and near T = O. 

2. Show that F and S are continuous at T = Te , when B = 0, but that 
the specific heat has a discontinuity. Explain qualitatively the experimental 
curve of Fig.9.lD. 

3. Write down and discuss the equation which determines x for the case 
when B i- O. Show that the system is paramagnetic for T > Te; evaluate its 
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Fig. 9.10. Specific heat of nickel. This metal 
is ferromagnetic for T < 631 K 

magnetic susceptibility for T > Te (Curie- Weiss law), for T < Te, and as 
T ---t O. Hence deduce that the statistical fluctuation of the magnetic moment 
of a sample of volume fl in zero field becomes infinite at the Curie point. 

4. Compare the critical behaviour to that of the Landau theory (Exerc.6d) 
for the case of a uniform field. 

One should note that, although the Ising model gives results in qualitative 
agreement with experiment, it is not justified for metals (Exerc.llf). 

Solution: 

1. The trial free energy can be wrhten in the form 

-x'" o· e L.Jz t 

We evaluate it by noting that for the 'D distribution the CTi are statistically inde
pendent and have an average value equal to 

Tr'DCTi = - tanhx, 

and that the partition function associated with 'D is equal to (ExercAc) 

~ -x'" U· N L..J e L..Ji· = (2 cosh x) . 
{Ui} 

We can thus find the trial entropy and, hence, putting v = ~j Vij, the trial free 
energy, 

F(x, T, B) = - ~Nv tanh2 x + NkT(x tanh x -In 2 cosh x). (9.71) 

We look for the minimum of F with respect to x amongst the solutions of 
of lox = 0 which can be written in the form 
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kTx/v 
/ 

tanh x 

x Fig. 9.11. Graphical solution of Eq. (9.72) 

x 

- NkTln 2 

Fig. 9.12. The trial free energy :F as function of x 

kTx -- = tanh x. 
v 

(9.72) 

When kT > v there is a single minimum of:F at x = 0 which equals (Figs.9.11 and 
9.12) 

F = -NkTln2. 

When kT < v, the point x = 0 becomes a maximum and the minimum is reached 
for the two non-trivial solutions, ±x with x > 0, of Eq.(9.72). There is a phase 
transition at a temperature 

v 
Tc = "k: 

The invariance of the Hamiltonian and of jj under Ui '* -Ui when B = 0, 
which is associated with spin flips, or with a reversal of the z-axis, is spontaneously 
broken when T < Te as the approximation 1) for the state of the system does not 
have that symmetry when x i: o. We find two symmetric solutions for T < Te, as 
for the fluids in § 9.3. The spontaneous magnetization is in the low-temperature ±x 
phases equal to 
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Ms 
N - n I1B ((Til 

N 
± n JiB tanhx 

N kT 
± -I1B -x. n 11 

We solve Eq.(9.72), as T -> Te, by expanding tanh x as x -> 0; this gives us 
x 2 ~ 3(1 - T /Tc) and hence (Fig.9.13) 

T -> Te - O. 

The expansion of tanh x as x -> 00 gives, as T -> 0, 

and the magnetization remains practically constant and equal to its maximum 
possible value, 

M N (1 _ 2 e- 2V / kT ) , s ~ I1B n T -> o. 

Ms 

Fig. 9.13. The spontaneous magnetization and 
the entropy as functions of T 

Note. One can find Eq.(9.72) in a simple way by assuming that the system of 
interacting spins behaves as a system of independent spins, each of which is subject 
to an effective magnetic field. The latter results from the interactions of that spin 
with all the other spins, themselves considered to be in thermal equilibrium in the 
effective field to which they are sub::ected. The effective Weiss field at i equals 
Bi = I:j Vtj((Til/I1B and the self-consistency equation ((Tjl = tanh'sI1BB is the 
same as (9.72). This method is simpler than the variational method used above 
and it gives a physical meaning to x = I1BB/kT, but it has the drawback of not 
giving a criterion for choosing from among the solutions of (9.72) or (9.74) the 
correct one, that is, the one which me,kes (9.71) a minimum. 

2. The parameter x is continuous as T -> Te and this is therefore also true 
of F which is given by (9.71) and (9.72). To evaluate the entropy we use either 
S = -kTrVlnV, or, using the fact that aF/ax = 0, 

S = dF 
dT 

aF aF d;r; 
------aT ax dT 

kN[ln(2coshx) - xtanhx], 

aF 
aT 
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and its continuity as T -+ Te, x -+ 0 is obvious (Fig.9.13). The approximation is 
consistent with Nernst's principle, as 

as T -+ o. The specific heat, which vanishes when T > Te, equals 

C = T dB = _ kN x T dx 
dT cosh2 x dT 

when T < Te. Taking the derivative of (9.72) we find 

k [1 tanh X] dx 
:;; = xcosh2 x -~ dT' 

whence we get 

C = Nk :£ 2x3 

Te sinh 2x - 2x . 

The specific heat tends exponentially to zero as T -+ 0: the system is frozen in 
into the state with maximum absolute magnitude of the magnetization. It increases 
with T up to the value ~Nk, which is reached at T = Te - 0, where x -+ O. Near 
Te its behaviour, 

C ~ ~Nk (1 _ ~ Te - T) 
2 5 Te ' 

is linear and it falls suddenly to zero when T = Te + 0, remaining zero beyond 
that point. Its form is therefore that of a sawtooth. The specific heat of nickel can 
be explained by adding to the specific heat due to the lattice vibrations (§ 11.4.3), 
which increases from 0 to 3Nk - that is, to 6 calories per mole per degree - this 
spin specific heat which has an anomaly at the Curie point where it drops by ~Nk. 

3. If we change the Hamiltonian by adding the magnetic field term ttBB :Ei Ui, 

the trial free energy becomes 

:F = -iNvtanh2 x - NttBB tanh x + NkT(xtanhx -ln2coshx), (9.73) 

and its absolute minimum is, for B > 0, reached for the unique solution, or the 
largest of the three solutions, of the equation 

kTx = vtanhx + ttBB. (9.74) 

This can be seen by noting that, when (9.74) is satisfied, the extrema of (9.73) are 
given by 

F = -iNttBBtanh x - NkT In (2 cosh x - ix tanh x) , 

which is a decreasing function of x. For fixed B # 0, x and F have no singularities 
as functions of T, in contrast to the case when B = O. Since x and therefore M have 
the same sign as B, the solid is paramagnetic. As B -+ 00, (9.74) yields tanh x -+ 1 
and we have saturation, as in ordinary paramagnetism where v = o. 

The magnetization is found by differentiation: 



432 9. Condensation of Gases and Phase Transitions 

ilM 
dF 
dB 

aF 
aB 

aF dx 
ax dB 

ILBNtanhx. 

When T > Tc we have in the limit as B --+ 0 

x(kT-v) ,...., ILBB, 

or 

dMI N IL~ 
X = dB B=O = il k(T - Tc) 

(Curie - Weiss Law). 

(9.75) 

At high temperatures (T ~ Tc) one finds again the Curie law (Exerc.4a). The 
susceptibility is positive (paramagnetism) and becomes infinite at the transition 
point as T --+ Tc-O. At T = Tc the magnetization given by (9.74) and (9.75) varies 
as function of B according to 

N (3ILB B )1/3 
M ,...., ILB il kTc ' B .--> O. 

When T < Tc one gets, as expected, in the limit as B --+ ±O, 

M --+ ± Ms. 

The magnetization tends to the spontaneous magnetization, and the spins align 
themselves due their interactions in a direction which is determined by the sign 
of B. The susceptibility is obtained by differentiating (9.74), (9.75) with respect 
to B: 

X = dM 
dB 

As T --+ Tc - 0, we get, since x 2 ,...., 3(1 -- T /Tc), 

N 21L~ 
X ,...., il k(Tc - T) , T --+ Tc -- O. 

The susceptibility becomes infinite, as when T --+ Tc + 0, but with a coefficient 
which is twice as large. As T --+ 0 we get, since x,...., v/kT, 

N 41L~ e-2v/ kT 
X ,...., - --+ O. 

[] kT 

The system is frozen in into (lTi) ~ ±1, and it no longer reacts to B. 
The statistical fluctuation in the ma.gnetic moment is given by LlM2 = ilkTX 

(Exerc.4a); it diverges thus as IT - Tc l·- 1/ 2 when T --+ Tc ± O. 
4. The parameter x is small near T = Tc. Expanding (9.73) in powers of m = 

Mil/NILB = -(lTi) = tanh x up to and including the fourth order terms gives 

F 1 2 (1 2 1 4) N = -"2vm -ILBBm+kT -11l2+"2m + 12 m . 

The trial free energy F(M, T, B) has thus near the critical point Tc = v/k the same 
form as the Landau expression (6.109), (6.110) for the macroscopic free energy of 
a homogeneous substance when the equilibrium is shifted by imposing a constraint 
upon (lTi). It is therefore not surprising that the results obtained above in the 
vicinity of T = Tc are the same as those of Exerc.6d. 
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9b Spins with Infinite-Range Interactions 

Using the notation of the preceding exercise we assume that the interaction 
potential of the Ising model is a constant, Vij = vjN, where the factor ljN 
has been introduced to ensure that the interaction energy is extensive. This 
is not a realistic model, as two spins here interact in the same way whatever 
their distance apart, but it is interesting as it can be solved exactly in the 
limit of a macroscopic system (N ....... 00), even when there is a non-zero field 
present. Show, in fact, by using the saddle-point method (Exerc.5b) that the 
mean field approximation of Exerc.9a becomes exact as N ....... 00 for this 
potential. 

Study the analytical properties of the canonical partition function Z in 
the vicinity of the critical point B = 0, Te = vjk. Write down the saddle
point approximation for Z for large N, first when B i 0, then when B = 0, 
T > Te, and finally when B = 0, T < Te; in the last case expand to dominant 
order in T = (T - Te)jTe. Extend these results to complex values of T for 
B = ° and hence derive the positions of the zeroes of the partition function 
Z in the complex T-plane. What are, for finite but large N, the singularities 
of the free energy, in zero field, as function of the temperature? 

Solution: 

We want to calculate 

A first method consists in summing over the Ui for a given value of S = L:i Ui 

and then to sum over S which, using the saddle-point method, one can treat as 
a continuous variable in the limit as N -> 00. In order to avoid combinatorial 
calculations, we shall use another method. It consists in getting for the summation 
over the Ui to an expression which has a factorized form, 

e-xS == II e- XUi • 

i 

We use for this the identity 

2 1 1+00 
2 kS _ __ d -y /k-2yS 

e - CJ: ye , 
V7rk -00 

where k == j3v/2N, which leads to 

Z 1 1+00 d _y2/k - xS = -- ye , 
v;k -00 

where x == 2y + j3J-£BB. Summing over the Ui and taking x as integration variable, 
we get 
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z = J 2~V 1:00 
dx exp { -N [(X - ~;:B)2 -ln2coShx]}. 

When N is large, (5.92) gives for the free energy 

where F is the trial free energy (9.73) of the variational method. This expression 
has the same extrema as F itself and they are reached when x is given by (9.74). 

The approximate results which were established in the preceding exercise for 
a general Ising model thus become exact as N -> 00 in the particular case when 
Vij = v / N. This is due to the fact that when the range of the forces becomes very 
large, each spin interacts with a very large number of other spins; it thus becomes 
legitimate to replace these spins by their mean equilibrium value - neglecting their 
fluctuations which cancel in relative magnitude as they are many- and thus to 
assume that each spin is subject to the effective mean field B = I:i v(O"i)/NMB. 

When B i= 0 only the highest saddle-point x, which corresponds to the absolute 
minimum of F, contributes to Z and we get from (5.94) 

( 
T, )-1/2 

Z '" 1- e e- F / kT , 
Tcosh 2 x 

where cosh2 x - Tc/T vanishes only at 1.he critical point. When B = 0, T > Te, we 
find 

When B = 0, T < Te, there exist two saddle-points ±x which make the same 
contribution to Z; with small T == (T - Tel/Te, x 2 '" -3T, this gives 

{2 N (3 2) Z '" V -=-; 2 exp -:tNT . 

When T is complex, the above contributions from each saddle-point remain un
changed for small ITI, but only the highest saddle-point(s) which the integration 
contour passes through when it goes from x = -00 to x = +00 contributes. A 
study of 

Re [2~V -ln2coshx] ~ -ln2 + Re (X~T + ~~) 

in the complex x-plane shows that, if I argTI < ~11", the contour can be chosen in 
such a way that its highest point is x = o. If lrr < I arg T I ::; 11", only the two saddle
points x = ±v' -3T contribute. In these two regions one finds again the results 
obtained for real T, and Z does not have any zeroes there. On the other hand, 
when argT = ±~11", the contour passes through the three saddle-points which have 
the same height and one finds 
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-N 1 (2 (3 2) 
2 Z '" JT + V ~ exp 4 NT. 

This expression is valid not only when I argTI = ~7r, but also in its vicinity where 
only one of its two terms dominates. All the same, we must have INT21 ~ 1, as 
otherwise the three saddle-points lie too close to one another for their contributions 
to be separable; very close to the critical point Z is analytical without zeroes. 

By letting argT = ±~7r ± a we obtain the zeroes of Z from 

( 3.) r;:; (7ri 3 2) exp =FS7rl + y2 exp ±S + 4NT = 0, 

which gives 

In2 
- 3NITI2' 

where k is a positive integer. These zeroes are situated close to two semi-straights 
starting from the critical point. When N is large, they lie extremely densely. The 
free energy and the other thermodynamic quantities - which are all holomorphic 
along the real axis, even around T = Tc - thus have an infinity of branch points; 
these lie on two semi-straights which are symmetric with respect to the real axis. 
They become extremely densely packed towards Tc when N becomes large, and 
this separates in the thermodynamic limit the two regions T > Tc and T < Tc 
when B = O. When B i= 0, these regions remain connected near the real axis. 

9c Linear Chain of Spins 

The one-dimensional Ising model with interactions between nearest neigh
bours, which has as energy levels the expressions 

N-l 

- ¥ L O"iO"i+l + f..LBB L O"i, 
i=l i 

± 1) 

can be solved exactly. Evaluate its free energy and its correlation function 
(O"iO"j) in zero field. In order to do this note that the summation over the 
O"i can be replaced by a summation over the variables Ti = O"iO"i+1' Hence 
find the internal energy and the specific heat. Does the model have a phase 
transition? Make a comparison with the mean field approximation. 

When the field is non-zero, the transfer matrix method consists in con
sidering each factor 

which occurs in the calculation of Z, as a 2 x 2 matrix. The expression for Z 
is then found in terms of a product of N - 1 identical matrices which can be 
evaluated by diagonalizing T. Use that method to evaluate the free energy 
in a non-zero field in the limit as N --+ 00. 
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Solution: 

Taking 0"1 and Ti as variables we have 

z ( 1 )N-1 
2 2 cosh "2(3v 

or, in the limit of large N, 

F = - N kT In (2 cosh 2:T) . 
The system does not have a phase transition, in contrast to what happens for a 
spin system in more dimensions. 

The correlation function is given by 

(O"iO"Hm) = (TiTi+1··· THm-1). 

The Ti variables are uncorrelated and (Ti) = tanh i(3v. Hence, the correlation 
function decreases exponentially with distance as exp( -m/mo}; the correlation 
distance, 

mo == [-In tanh 2:T] -1, 

increases from 0 to 00 as T decreases from 00 to o. 
To understand the absence of a phase transition, we note that in F = U - T S 

the interaction energy is lowest when neighbouring spins are parallel, which tends 
to create correlations between all spins; however, statistical fluctuations raise the 
entropy, enough so that distant spins remain uncorrelated at all non-zero temper
atures. In other words, for 1 ~ m ~ N, O"i and O"i+m do not preferably take equal 
values, because the rather large number of configurations such that O"kO"k+1 = -1 
for i < k < i + m prevents the order to set in between i and i + m. Only at 
zero temperature does the chain become ordered, with (O"iO"Hm) finite as m --+ 00, 

and all spins then point in the same direction, either +1 or -1; in more than one 
dimension, the limit of (O"iO"Hm) for m --+ 00 below Tc is M;' 

The internal energy is 

U = F + TS = F _ T aF aT 
and the specific heat, 

Nv 2 

tends to zero both at high and at low temperatures. 
Note that the approximation of Exerc.9a is not correct in this case as its results 

are independent of the dimensionality. It is true that expression (9.71) is for all 
T an upper bound of the above exact solution, but the discontinuity in its second 
derivative at T = v/k is factitious in one dimension. In fact, the Ising model has a 
phase transition in two or more dimensions and also in the case of very long range 
interactions (Exerc.9b). The mean field approximation is the better justified, the 
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larger the dimensionality: it becomes exact when the dimensionality is infinite in 
which case each spin has an infinite number of neighbours, as in Exerc.9b. 

The canonical partition function for B i= 0 can be expressed in terms of the 
transfer matrix T as follows: 

Z = L (lTIITllT2)(lT2ITllT3) ... (lTN-IITllTN) e-!3J.LBB"N 

kd 

L (lTIITN-1IlTN) e-!3J.LBB"N. 

al,aN 

The matrix T has the form 

and its eigenvalues, 

are positive. It can be diagonalized as 

~ ± sinh2b 

2 2Vsinh2 2b + e- 2!3v 

Hence we find 

( -2b) Z = (1 1) T N - 1 ee2b '" N-l ( -b b)2 = ~ tc e A-c + Ee Ac 

Only the largest eigenvalue E = + 1 contributes in the limit as N --; 00 and this 
gives us the exact solution for the free energy, 

F = -NkT In t+. 

Changing the boundary conditions does not affect this result. 

9d Stable and Metastable Magnetic Phases 

In order to describe the magnetism of substances with spin-1 magnetic atoms, 
we introduce the following schematic model. Let the N atoms, where N is 
large, be arranged at the sites, indicated by i, of a simple cubic lattice. We 
see that each of them has 6 nearest neighbours. We denote the z-component 
of each spin i, which can take the values +1, 0, and -1, by (Ji. We assume 
that the Hamiltonian has the form 
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J I.: (O'i - O'j)2, 

{i,j} 

where J is a positive constant. The sum is over all nearest neighbour pairs 
{i, j} of atoms in the lattice. The same kind of model is also used to describe 
alloys; the three values O'i = +1, 0, and -1 then denote three different atoms 
which can occupy the site i. 

1. Give expressions for the entropy S, the internal energy U, and the 
canonical partition function Z at zero temperature, and at high temperatures 
(T -:» Jlk). 

2. The system is supposed to evolve according to the following mechanism. 
Time is made discrete and at each time only one of the sites i can change by 
altering the value of its O'i; then another randomly chosen site changes, and 
so on. The average energy over a long period is fixed. At low temperatures 
the rate of this process is very small and the large value of N makes it impos
sible to reach true canonical equilibrium within a reasonable period. On an 
intermediate time scale we can, however, reach quasi-equilibrium. Let us, for 
instance, start from the pure state O'i = 0, V i, and let us add a small amount 
of energy. The only accessible micro-states during the periods considered 
are those for which only a small fraction of spins O'i is different from zero. 
Amongst that set of micro-states a Boltzmann-Gibbs distribution will be es
tablished; it describes a quasi-equilibrium macro-state, which represents the 
O-phase of the system at low temperatures. We define similarly the +-phase; 
this is a quasi-equilibrium macro-state where the only accessible micro-states 
are those for which most O'i are equal to +1, namely, only a number which 
is small as compared to N of O'i differ from + 1. Finally, in the --phase most 
of the O'i are equal to -1. We associate with each of these three phases a 
canonical partition function Zo, Z+, Z_. 

Evaluate for T « J I k and N large the dominant behaviour of In Zo, 
In Z +, and In Z _. One method consists in assuming, for instance for the 0-
phase, that Zo can be factorized, when T « J / K, into contributions relating 
to each of the sites i; we then calculate the contribution from the site i by 
assuming that the O'j on the sites which are the nearest neighbours of i remain 
equal to zero. Another possible method consists in evaluating to dominant 
order in N the eigenenergies and multiplicities of the accessible micro-states, 
neglecting configurations where two spins which are nearest neighbours are 
both changed. Find in this way the specific heat per site for the O-phase at 
low temperatures. 

3. We can, at the same low temperatures as above, reach true canonical 
equilibrium, either by waiting an extremely long time, or more simply by first 
bringing the system to a high temperature, where equilibrium can easily be 
established, and then progressively cooling it down to T (annealing methoc£'). 

Use Zo, Z+, and Z_ to find the canonical partition function Z for this 
true equilibrium. What is the value of InZIN in the large N limit? Write 
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down the fractions of each ofthe three, 0, +, -, phases in the true equilibrium 
state. What are the physical consequences of this? 

Is the Nernst principle for the thermodynamic entropy satisfied in the 
three quasi-equilibrium phases? Is it satisfied in the true equilibrium state? 

Solution: 

1. The minimum energy, equal to zero, is reached when all the spins Ui are 
equal to one another, which corresponds to the three micro-states Ui = +1, Ui = 0, 
Ui = -1. We find Z = 3 and S = kln3. 

As T -+ 00 all 3N micro-states are equiprobable, and hence S = kN In 3. The 
lattice contains three times as many bonds as sites. As a result, by taking an average 
over all the micro-states we find for the internal energy 

U = (H) = 3NJ ({Ui-Uj)2) = 3NJb (4xl+2x4) 4NJ. 

Hence we find InZ = Sik - (3U ~ Nln3 - 4N(3J + O(NfPJ2). 
2. For a site i surrounded by neighbours Uj = 0, the partial partition function, 

Zo, is the sum over the states Ui = 0, ±1: 

Zo = 1 + 2e-6j3J , 

as the energy is either 0 when Ui = 0, or 6J when Ui = ±1, in which case there are 
6 nearest neighbours with Uj = o. Hence, 

Similarly, in the +-phase, for a site i surrounded by 6 neighbours with Uj = +1, 
the energy equals 0 when Ui = 1, 6J when Ui = 0, and 6 x 22 J when Ui = -1, so 
that 

1 + -6j3J + -24j3J Z+ = e e , 

and we find 

InZ+ ~ Nln(l+e-6j3J+e-24j3J) ~ Ne- 6j3J ~ InZ_. 

In the second method we note that the first excited states are obtained by 
changing one spin to +1 or -1 in the O-phase. Their number is 2N, and their energy 
6J. Changing two distant spins leads to 22 N (N -7) 12 micro-states of energy 2 x 6J; 
in the case of two neighbouring spins we have a much smaller number, 2 x 3N, of 
micro-states with energy 10J and also 2 x 3N micro-states of energy 14J. Similarly, 
changing n spins gives about (2N)n In! micro-states of energy n x 6J, if we neglect 
configurations where neighbouring spins have been changed. Hence, 

I Z ~ I ~ (2N)n -n6j3J = 2N -6j3J no-nL..,.. tee. n. 
n=O 

This method would enable us to find the next-order correction terms (6N exp( -lO(3J) 
-14N exp( -12(3J) + ... ) in In Zoo For the +- and --phases, changing n spins from 
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(Ti = +1 (or -1) to 0 leads similarly, to highest order in N, to N n In! micro-states 
with energy n x 6J, whence 

00 n 
I Z ,..., I ,,!!.- -n6{3J - N -6{3J n±_nL.." ,e - e . 

n. 
n=O 

The internal energy in the three p:ttases is equal to 

8 
Uo = 2U+ = 2U_ = - - InZo 

8{3 

which gives us for the specific heat per site 

2 2 = 72 _J2 -6J/kT 
Co = c+ = c_ kT2 e 

3. As Z is a sum over all micro-states, without any restrictions, and as in the 
preceding subsection we have taken all t.he low-energy states into account separately 
in Zo, in Z+, and in Z_, we have Z = Zo + Z+ + Z_. For large N, we have 
InZIN ~ InZoIN. 

The probability for a micro-state of energy E is equal to e -(3E I Z so that the 
total probability for the micro-states of the O-phase equals ZoIZ. The relative 
fractions of the three phases are thus ZoIZ, Z+IZ, and Z_IZ. When N is large, 
Z+IZo = Z_IZ ~ 0 so that at low temperatures, after annealing, one will always 
observe only the O-phase, even though at T = 0 the three phases have the same 
probability. The low-teperature behaviour is governed not by the ground state, but 
by the low-lying excited states. 

Nernst's principle is satisfied in all three cases, as it states that the entropy per 
unit volume, that is, SIN for large N, must tend to zero as T ---> O. In fact, we have 

So 
N 

S 
N 

ge Liquid-Vapour Interface 

12J -6J/kT ,..., -- e ---> O. 
T 

We assumed at the beginning of § 9.3.3 that the trial grand potential of an 
inhomogeneous fluid could be obtained by adding the contributions from 
the parts which have different densities. In actual fact, there are corrections 
coming from the regions where the density varies. Use the mean field approx
imation to write down expressions which replace (9.42), (9.43), and (9.44) 
when n(r) is not constant. At the liquid-vapour interface the density n(r) 
does not change suddenly, but gradually from nl to ng over a characteris
tic length which is rather large as compared to the range of the forces. We 
shall take the very-short-range repulsion into account by using the model of 
§ 9.3.2 and by further assuming that the density is practically constant over 
this range. However, the attractive part of the potential - which gives rise 
to the second term in (9.50) when the density is uniform - is now sensitive 
to density variations. Write down to lowest order in \7 n( r) the new form of 
the trial grand potential, generalizing (9.51). Compare the result with the 
semi-empirical macroscopic theory of Exerc.6c. 
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Solution: 

As the trial number of particles, the trial kinetic energy, and the trial entropy 
S(V) are integrals over the position in space, they can be written down simply by 
adding the contributions from each volume element d3r. However, the potential 
energy, which is an integral over two positions, changes its form because the range 
of the interaction is not equal to zero: 

N = / d3rn(r), 

3/3 1/33' " U = "2kT d rn(r)+"2 d rd r n(r)n(r+r )W(r), 

S(V) = k / d3rn(r) {~-ln [n(r)A~l}. 
The only term in (9.51) which is changed in a non-trivial way is the two-particle 

attractive energy, -ailn2 , which becomes 

The second term and the terms with a =f. (3 vanish because W(r') is isotropic. 
Integrating the last term by parts over r and defining 

we find 

A{n(r), T, il, JL} 

, 
-a, 

J d3r [kT (nln 7 -n) - an2 + 1 ~:n] 
+ ~a' / d3 r (V'n)2. 

This result is exactly the starting point of our considerations in Exerc.6c. The 
empirical coefficient a(T) which we then introduced is the same as the coefficient a' 
which is here defined in terms of the attractive part of the intermolecular potential. 
The other terms also have the same form in the two cases. They are obtained by 
adding together the contributions from the various volume elements, evaluated for 
a homogeneous substance with a density which is constrained to have locally the 
value n( r). The mean field theory enables us thus to justify microscopically the 
approach of Exerc.6c and to recover all its results, in particular, those about the 
shape of n( r) across the interface and about the capillary energy. In actual fact, 
not only the interaction energy, but also the entropy, produces non-local terms, in 
(V'n)2, with a temperature-dependent coefficient, if we take correlations between 
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particles into account. One can see this from the virial expansion (9.25) where the 
first-order term becomes for the inholllJgeneous case 

-~kT J d3rd3r' n(r)n(r')g(r - r');:::; -kTBl J d3rn2 (r) 

+ ~kT J d3r'r,2 [e-W(r')/kT - 1] J d3r (Vn)2 

Note. The same idea can be applied to lattice models. In particular, if the field B 
in Exerc.9a is not uniform, or if for zero field one wants to study the wall between 
two ferromagnetic regions, where the magnetization points in different directions, 
one is led to assume that the variable J: depends on the site. The trial free energy 
(9.73) becomes 

F = - ~ L Vij tanhxj tanhxj 
ij 

+ L [-J-lSBi tanh Xi + kT (J:j tanhxj -In 2 coshxd]· 

If x varies little on the scale of one cell, the first term of F produces, apart from 
- iv 2:i tanh2 Xi, a contribution which is proportional to the square of the gradient 
of the order parameter (a-i) = - tanh Xi, as expected. The surface separating the 
liquid and the gas in the lattice model of Prob.7 can be studied in the same way. 

9f Dilute Solutions 

1. Dilute solutions have properties which resemble those of perfect gases, 
notwithstanding the strong interactions of the solvent molecules with one 
another and with the molecules of the solute. In order to understand this 
fact we treat the solution as a clas:,ical fluid and neglect the interactions 
between the molecules of the solute. Start from the extension of (9.3) to a 
mixture of two kinds of molecules and show that the grand potential of a 
dilute solution has the form 

A(T,/-L,J-l',[]) = AO(T,/-L',[]) - akTAr3((T,J-l')eJL/kT, 

where AO refers to the pure liquid, and where ( also depends only on the 
properties of the solvent. Compare this with (8.5). 

2. This form of A will enable us to find many properties of dilute solutions 
(Raoult's Laws). Show that, if a solution contains several kinds of molecules 
which can react chemically, their densities obey the mass action law. If a 
semipermeable membrane lets the solvent through, but not the solute, it 
will be subject to osmotic pressure (§ 6.6.2); show that the latter can be 
calculated for a dilute solution as if the solute were a perfect gas, and the 
solvent were not there. Calculate the difference in the density of the solvent 
on the two sides of the membrane. Evaluate for a solution which is kept at 
constant pressure the density of the solvent as function of the concentration 
of the solute. 
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3. When a bottle contains water with C02 under pressure above it, the 
latter dissolves in the water. Assuming that the gas is pure CO2, find the 
change with its pressure of the dissolved CO2 concentration (Henry's law), 
neglecting ionization into C03H- and H+. 

Consider the equilibrium between a solution (sugar in water) and its 
saturated vapour, which is assumed to consist purely of the solvent (water 
vapour). Calculate the lowering of the saturated vapour pressure and the rise 
in the boiling temperature due to the presence of the solute, in the limit 
of small concentrations. Find the same result by a hydrostatic argument 
involving the osmotic pressure (van 't Hoff's law). Calculate similarly the 
lowering of the melting temperature of a crystal of a solvent in equilibrium 
with the solution. 

Note. This last effect is similar to what one observes when one adds salt to ice. 
There also the establishment of equilibrium leads to a lowering of the temperature. 
One goes from 0° to -20°C by adding one part of salt to four parts of crushed ice, 
which is an ancient process for making sorbet; at the same time the ice melts - this 
is applied to prevent icing in streets. Such thermal properties depend on the solvent 
and on the function ((T, ,./). However, the solution of NaCI is an ionic solution and 
the above theory must be modified to take into account the long-range Coulomb 
interactions between the dissolved ions, as in § 11.3.3. 

Solution: 

1. The general expression (9.3) for the grand partition function can be written 
as 

ZG 

3 I d3 I xdrl··· rN' 

where wIj == W' (r~ - rj) indicates the interaction between molecules i and j of the 

solvent and Wik == W(r~ - rk) the interaction between molecule i of the solvent 
and molecule k of the solute. The term with N = 0 is nothing but zg for the pure 
solvent. To calculate the term with N = 1 we notice that before integration over 
rl the integrand is the same as the grand canonical phase density DO of the pure 
solvent; we can thus write this term in the form 

Z o Q ,-3 J d3 (-{3 2:. w(r:- q )) G e /IT rl e , 

° 
( == (e-{3 2:; W(r;)\, 

where we have used the translational invariance of DO in calculating the average 
( )0 over DO. Similarly, the term with N = 2 is equal to 
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Z o e20 ,-6 J d3 d3 \ -{3 '\~ W(r'-'1l -(3 2:. w(r j -r2l ) G - AT rl r2 e LJ' , e J . 
2 0 

When the solution is dilute, the main contribution comes from points rl and r2 
which are at large distances apart, in which case the correlations between a solvent 
molecule i, close to q, and a solvent molecule j, close to r2, are negligible - except 

at the critical point. We thus get approximately zg (eO AT3 n() N / N! for the terms 
with N ;::: 2 of ZG. The summation over N produces the result which we wanted. 
The contribution to A from the solute has exactly the same form (8.5) as if it 
were a rarefied gas, except that the internal partition function of a molecule with a 
structure must be replaced by (. The latter is a function of the temperature and of 
p,', that is, of the density of the solvent, and it depends on the interactions between 
one molecule of the solute with the solvent. 

2. The density of the dissolved molecules is 

N = _ ..!. oA = A-3 r(T ') /t/kT 
n n op, T'" P, e , 

which is connected with the chemical potential p, through the same relation (8.13) as 
in a gas, for a given chemical potential of the solvent. The formalism of § 8.2.2 which 
leads to (8.28) can thus be applied without changes to dilute solutions. However, the 
chemical properties which involve the pressure and the heat are changed because 
of the contribution A 0 from the solvent. 

The pressure can be split into a sum of independent terms, 

, A 0 , NkT 
P(T,p"p,) = - n = P (T,p,) + ---rl' 

and the contribution from the solute is the same as for a perfect gas. In osmosis p,' 
is the same on the two sides of the wall so that only the solute contributes to the 
osmotic pressure. The density of the solvent for given p,' depends on p" and thus 
on N, according to 

N' 
n = 1 oA = oP(T, p" p,') = N'O (T, p,') kT N ~ I ((T ') 

nap,' op,' n + nap,' n ,p,. 

For given pressure and temperature the chemical potential JL' varies with N as 
follows 

or -kTdN; 

hence, the density of.the solvent varies l.inearly as 

d (~) = a (N'O )' dN a .. op,' 7l dp, + kT 7f op,' In ( 

( N'o 0 a ) (N) - 7l '" + op,' In ( kT d n ' 

where ",0 is the isothermal compressibility of the pure solvent. 
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3. The chemical potential j.L is the same in the gas and in the solution. Using 
(8.5) and (8.6) to eliminate it we find 

N , P 
il = «(T, j.L) kT(g(T)' 

where (g is the internal partition function of the C02 molecule in the gas. A sudden 
decompresion produces bubbles - hence the danger of surfacing after diving into 
deep water. 

In the equilibrium between solution and water vapour the pressure Ps(T, N / il) 
and the chemical potential j.L~(T, N/il), which have the same values in the two 
phases, depend on the density N / il of the solute in the liquid. Denoting by Pg(T, j.L') 
the pressure in the gas, we have when j.L' = j.L~ (T, N / il) 

o , NkT , (N) P (T, j.L ) + ~ = Pg(T, j.L) = Ps T, il . 

Differentiation with respect to n == N / il, directly and through j.L', gives us 

aPs 
an' 

where n;O and n~ denote the water densities in the pure liquid and in the gas, 

calculated for j.L' = j.L~(T, n). For small n we can replace j.L~(T, n) by j.L~(T, 0) in n;O 
and n~, which are thus replaced by the densities of the two coexisting phases of 
the pure solvent; this leads to 

kTn 
j.L~(T, n) = j.L~(T, 0) -,0 , , 

n l -ng 

kTn~n 
Ps(T, n) = Ps(T,O) - ---"-0---"--n; -n~ 

This result does not hold near the critical point where the assumption that the 
vapour is made of pure solvent is no longer justified. It can be obtained directly by 
considering the equilibrium in the field of gravity of a solution in touch with the 
pure solvent across a semipermeable membrane, with both liquids having saturated 
vapour of the solvent above them. Because of the osmotic pressure nkT the solution
vapour interface is higher by z than the pure liquid-vapour interface. The pressures 
at the interfaces are, respectively, Ps(T,n) and Ps(T,O) and they differ by 

Ps (T, n) - Ps (T, 0) = flggz = nkT + fllgz, 

where flg and fll are the mass densities of the gas and of the solution; the latter 
is practically constant and equal to that of the pure liquid, whatever the height. 
This gives the same result as above. The change in the boiling temperature which 
is given by Clapeyron's formula (9.63) is, for given P, equal to 

T(n) = T(O) + RT2 n 
L n'o· 

I 
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The theory is the same for the equilibrium between a solution and a crystal 
of the solvent, except that we must replace the gas density by the solid density. 
However, in Clapeyron's formula for crystallization the melting heat, L m , is positive 
in the solid-liquid direction, whereas the evaporation heat L which we used above 
is positive in the liquid-gas direction; this alters the sign of the change in the 
transition temperature. The melting tEmperature is thus lowered as follows 

Tm{n) = Tm{O) - RLTm2 ~o· 
n' I 

9g Density of States of an Extensive System 
and Phase Separation 

Consider a macroscopic system of volume n with energy levels which prac
tically form a continuum; the number W(E) of micro-states with energies 
between E and E + .1E is proportional to .1E provided .1E is (i) suffi
ciently small so that W(E) and W(E + .1E) differ only slightly, and (ii) 
sufficiently large so that W (E) » 1. This enables us to define the density 
of states [i(E, D) = W{E)/.1E. To simplify the discussion we disregard the 
variable N, the particle number, assuming, for instance, that one considers 
only configurations for which the density N / n has a value which is fixed once 
for all. The extension to a liquid-vapour transition, for instance, can easily 
be made by replacing in the discussion E / n by the two variables E / nand 
N / n. The global density of states [i refers to the micro-states of the whole, 
N-particle, system; it should not be confused with the single-particle density 
of states D(c) which will be introduced in § 10.3.3 and which is proportional 
to n. By taking into account only those micro-states for which the system is 
homogeneous on the macroscopic scale we can define similarly a density of 
homogeneous states [ih(E, n), assumed to be twice differentiable. 

1. Assume that the microcanonical equilibrium entropy S(U, n) is exten
sive, that is, S(U, n) "-' Dks(u), as U ----) 00 with U/D == u fixed. By imagining 
as in §§ 6.4.6 and 9.3.3 the volume D to be split into two parts n l == >-'D and 
D2 , show that S is a concave function of U and that {/' <::: {/2 / (!, where the 
derivatives are with respect to the energy. Can the density of states of an 
extensive system have a minimum'? 

2. Nothing prevents [ih to satisfy [i~ > [i~ 2 / [ih, for instance, between two 
energy values, called E4 and E 5 . Show that under those conditions, in the 
vicinity of an energy E such that E,. < E < E 5 , the number of micro-states 
where the system is homogeneous is negligible as compared to the number of 
inhomogeneous micro-states; for the latter one may only take into account 
the configurations where the system is split into two homogeneous parts, 
characterized by energies per unit volume E4/ nand E5/ n. The existence of 
a region where [i~ > [i~ 2 / [ih thus implies that in equilibrium the system con
tains, for certain values of its internal energy U, at least two phases which are 
separate in space. Disregarding all complications connected with the geome
try of the regions occupied by the different phases, find the micro canonical 
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entropy S(U, n) associated with the two-phase density of states (), starting 
from the entropy Sh which would be associated with the homogeneous states 
by themselves. How can one find () from (}h? Show that the range of energies 
E2 < E < E3 over which the system spontaneously splits into two phases 
extends beyond the E 4, E5 range at both ends; show that the energies per 
unit volume U2 and U3 of each phase remain fixed when U traverses the range 
E 2, E 3. What is the interpretation of the points E4 and E5? 

3. Calculate the canonical entropy Se associated with the homogeneous 
micro-states by themselves. Compare Se with the two micro canonical en
tropies Sh and S. 

4. Compare, in the region where the two phases coexist, the probability 
distributions p(E) of the energy in a microcanonical equilibrium of energy U 
and in a canonical equilibrium of temperature l/kf3. 

Hints: 

1. For an extensive system boundary effects are negligible; hence, the density 
of states satisfies the identity 

Taking into account the relation (!i1E = eS/ k and using (5.92) to evaluate the 
integral over El, we find 

This relation implies the concavity 8" ::; 0 of 8, whence we find the inequality 
"< /2/ {! - {! {!. 

2. By choosing A == (E - E4)/(E5 - E4), we have, with u == E/il, 

since s" > 0 between U4 and U5. The density of heterogeneous states comprising 
two homogeneous phases with, respectively, volumes and energies equal to ill, E1 
and il2, E2 equals 

{!(E, il) = J dEl (!h(Ell ill) (!h(E - Ell il2) 

i1~2 J dy exp [ilA Sh ( U5 + *) + il(l - A)Sh ( U4 - 1 ~ J] , 
which, according to (5.92) satisfies the inequality 

{!(E, il) [J6. 

(E il) > e . 
{!h , 

Even if the macroscopic sample is sufficiently small and the change in entropy 6s 
13 

sufficiently minute so that 68 == ilk6s ~ 10-9 J K- 1 , this ratio exceeds 103.10 . 
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The density of inhomogeneous states comprising two homogeneous phases with 
arbitrary volumes equals, if we assume that the only geometric variable is the 
volume, 

e(E, D) 

so that 

S(U, D) max [Sh(E1, AD) +Sh(U - E1,D - AD)] 
El,A 

Dk ~~ [A Sh ( u + ~) + (1 - A) Sh ( u - 1: J] . 
The microcanonical entropy S(U, D), calculated by including two phases, is thus the 
convex envelope of Sh(U, D). Like Sl in Fig.6.2, its representative curve contains 
a segment which is bitangent to the curve Sh. The contact points U2 = U2/D and 
U3, with U2 < U4 < U5 < U3, are defined by 

(30· 

In the interval U2 < U < U3 we have 

and the stable configuration comprises two phases with energy densities U2 and U3. 
When E2 < U < E4 and when E5 < E < E3, the homogeneous system may 

be metastable, since its density of states decreases, if one splits it into parts with 
energy densities close to the original one; a non-infinitesimal energy transfer is then 
necessary between the two parts to make the density of states increase, whereas 
an infinitesimal transfer suffices when E4 < U < E5, in which case metastability is 
precluded. 

3. The canonical entropy is the Legendre transform with respect to (3 of 

It is the same as the convex envelope of Sh, thus as S. Even though we restricted 
ourselves to homogeneous micro-states, the fact that we are dealing with a canonical 
ensemble has sufficed to reconstruct the correct thermodynamic functions, the same 
as if we had included the states where different phases coexist. 

4. When (3 passes through (30, U jumps from E3 to E2. We always have p(E) '" 
o(E-U) in microcanonical equilibrium, but p(E) is in canonical equilibrium spread 
over the segment E2, E3 when (3 is close to (30. By retaining in the exponential of 
(5.54) or (5.88) only the extensive contributions we would find that p(E) is constant 
over E2, E3, since S is a linear function of the energy with slope k(3o. However, near 
(3 = (30 the non-extensive contributions, for instance, those from the interfaces, or 
those from small external influences, such as gravity, govern the shape of p(E) 
between E2 and E3 in canonical equilibrium. 
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absolute entropy, see Third Law 
absolute temperature 35-36, 125, 

197-201, 223, 298-299, 330; see 
Second Law 

absolute zero 203 
action 81-82, 339 
additivity 105, 107-110, 115, 162, 200, 

244-246, 248, 357-358 
adiabatic compressibility 263, 265 
adiabatic demagnetization 40-41, 235 
adiabatic expansion 323-325, 345-347, 

356 
adiabatic invariants, - principle, 

- theorem 132, 193-194; see 
Born-Oppenheimer 

adiabatic transformations 132, 192-194, 
286,387 

adiabats 298-299, 323 
adsorption 174-175, 216, 319, 345 
algebra 52, 76-78; see exterior, 

observables, operators 
allotropy 271 
alloys 412, 426, 438 
analytical mechanics, see classical 

mechanics 
angular momentum, - velocity 61, 

171, 338-342, 369, 375-376, 379; see 
rotations 

anharmonicity 372 
anisotropy 44 
annealing 438 
antilinear 61 
antisymmetry, see Pauli principle, 

symmetry 
apparatus, see measurements 
approach to equilibrium 148-149, 331; 

see relaxation 
a priori measure or probabilities, see 

prior 
argon 393-394 

assignment of probabilities, - of 
macro-state 22, 141-145; see 
indifference, maximum entropy 

astrophysics 6; see expansion of 
Universe, ionization, planets, stars 

atmosphere 317, 325, 337 
atomic nuclei 375; see nuclear structures 
atomism 5, 127 
atoms, see chemical equilibrium, 

monatomic 
averages, see expectation values 
Avogadro number 104, 137, 229, 323, 

337-338, 462 

balance, macroscopic 275, 277; see 
conservation 

balance, microscopic 8, 91, 326-327, 
330, 332, 334 

ballistic regime 331, 347 
balloons 327 
barometric equation 325, 337 
BBGKY hierarchy 92 
Bernoulli 4, 328 
bias 142, 144-145, 179 
binomial law 98, 464 
bit 103-104 
black-body radiation 6, 131 
black holes 134 
blood 278; see hemoglobin 
Bohr effect 390 
Bohr magneton 19,462 
Bohr-van Leeuwen theorem 176 
boiling 418, 423, 443; see liquid-vapour 

equilibrium 
Boltzmann 5, 123-129, 155-156,326 
Boltzmann constant 26, 36, 104, 112, 

200, 229, 323, 337 
Boltzmann entropy 126, 129, 138 
Boltzmann equation 91, 126, 129 
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Boltzmann-Gibbs distribution 33, 34, 
42,141-180,201,225-226,227,229, 
313 

bootstrap 412 
Born-Oppenheimer approximation 

366-369, 393-394 
Bose-Einstein statistics, see bosons, 

Pauli principle 
bosons 61, 375 
box potential 311, 350, 394 
Boyle 322 
bras 50 
Bragg-Williams method 392, 412; see 

variational 
Brillouin 133 
Brillouin curves 39, 44, 47 
broken invariances or symmetries 

425-426,429 
Brownian motion 9, 224, 227 
bubble chamber 423 

caloric 124, 189 
canonical distribution or ensemble 143, 

146, 165-167, 172, 183,220,224-226, 
229,234 

canonical ensembles 165-172, 220; see 
canonical distribution, equivalence, 
grand canonical, isobaric-isothermal, 
microcanonical 

canonical partition function 25, 166, 
207-209,212,214,220,314,351 

capillarity, see surface tension 
Caratheodory 197 
carbon dioxide and monoxide 280-281, 

378; see hemoglobin 
Carnot 124-125, 189, 197 
Carnot cycle 277, 298 
Camot theorem 276 
centrifuge 325-326, 338-340 
chain 231, 435-437; see polymers 
chaotic dynamics 9, 134-135, 149 
characteristic function 99; see partition 

functions 
characteristic temperature 39, 309-310, 

363-365, 367, 369-370, 373-374, 376 
charge 205, 244, 285-286, 292 
charge carriers 216-217, 331 
chemical equilibrium 147-148, 151, 170, 

215,319,359-363,381,387-390 
chemical equilibrium, macroscopic 

244-246, 279-283 
chemical potentials 213, 215-219, 250, 

251,278-283,306 

chemical potentials in classical fluids, 
in mixtures, or in solutions 296-297, 
357,360-361,416-418,442-445 

chemical potentials in gases 312, 323, 
355-356,403 

Clapeyron relation 273, 418, 445 
classical entropy 122-123,323-324 
classical fluids, - gases 307, 311-313, 

394-396 
classical limit 53-54, 62, 84-89, 351, 

370-372, 377 
classical mechanics 78-84, 126, 132, 

134-153 
classical partition functions 171-172, 

314, 319, 370-373 
classical statistical mechanics, see 

density in phase, reduced densities 
Clausius 125, 197-198; see virial 
closed cycle, see cycle 
closed systems 187; see isolated, open 
closure 51 
cluster expansion, see virial expansion 
coarse-graining 130, 135, 138 
coding 106-107 
coefficient, see compressibility, 

elasticity, expansion, linear expansion 
coexistence of phases 269-273, 279, 

299,418,420-426,440-442,446-448 
Col ding 188-189 
collapse 206 
collective variables, see macroscopic 
collisions 91, 307, 310-311, 326, 

328-334, 352 
communication theory 102-111, 113, 

133 
commutator 52, 58, 88 
commuting or compatible observables 

56, 73, 76, 121 
complete base 51 
composite systems 51, 62,108,115-117, 

183-188, 244-246, 274, 281; see 
subsystems 

compressibility 263, 265-266, 268, 305 
compression, see condensation 
concavity of entropy 106, 117, 139, 161, 

200,264-265,446 
concentration, see chemical equilibrium, 

mixtures, solutions 
condensation 391-408 
condensed matter 3; see liquids, solids 
conductivity, see thermal 
conjugate momenta in classical or 

quantum mechanics 53, 78, 82, 85-87 



conjugate variables in electromagnetism 
284-295 

conjugate variables in thermostatics 34, 
205,207,211-212,214,253-256,260 

conjugation, see Hermitean 
connected diagrams 403 
conservation laws 7, 60-61, 73, 88, 

146-152, 187-188, 244, 382; see 
angular momentum, energy, First 
Law, momentum, particle number 

constants of the motion, see conserva
tion laws 

convexity 159, 161, 255, 258, 265 
cooling 328; see adiabatic demag

netization, freezing mixture, 
Joule-Thomson expansion, refrigera
tors 

cooperative phenomena 392; see phase 
transitions 

correlations 31-32, 106, 115-117, 
119-120,159,162,202,302-304,321, 
396,436 

Coulomb forces 6, 205-206, 393; see 
charge 

critical opalescence 227, 304 
critical phenomena 7, 228, 301-304, 392, 

424-426, 433-435; see fluctuations, 
phase equilibria 

critical points 245, 268-269, 272, 
414-419,428,432 

cryogenics, see cooling 
crystallization 425-426, 443 
crystal structures 152, 426 
Curie 7 
Curie constant, -law 17-18,38,44, 

47,173-174,235 
Curie principle 284 
Curie temperature 301-303, 425, 428 
Curie-Weiss law 428, 432 
current, see electric 
current density 335 
cycle 276; see Carnot, diesel, Otto 

Dalton law 357, 361 
de Broglie wavelength 312 
Debye 7 
deformation tensor 244, 250, 283-284 
degassing 175, 345 
degeneracy 164, 166, 204, 308, 363, 365, 

369,370,375 
degree of disorder, see entropy, 

information 
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degrees of freedom 370-372; see 
electrons, rotations, translations, 
vibrations of molecules 

demixture, see isotope separation, 
mixture 

demon, see Maxwell 
dense gases 391-408 
density in phase 50, 78-93, 101, 

122-123, 141-145,313,321; see 
reduced densities 

density matrix, - operator 50, 
63-78, 101, 111-112, 132, 
141-145; truncation of -, see 
wavepacket reduction 

density of particles, see particle density 
density of states, see level density 
depleted uranium, see isotope 

separation 
desalination 279 
determinism 4, 10, 181, 221 
diagonalization, 54, 55, 67, 76 
diagrammatic expansion 402-403, 405 
diamagnetism 16, 173 
diamond 152, 271 
diatomic gases, - molecules 309, 

366-382 
dielectrics 170, 284-292 
diesel 277 
diffusion, see effusion 
dilatation, see expansion, linear 

expansion 
dilute, see ionization, perfect gas, 

solutions 
dimensional analysis 13, 297 
dipole moment 170, 244, 285 
Dirac constant 462; see Planck 
Dirac distribution or function 51, 322, 

465 
direct sum 52 
disorder 22-27, 112, 127, 142, 

144-145, 248-249, 358; see entropy, 
information 

displacement, see electric induction, 
position variables 

dissipation 249, 276; see irreversibility 
dissociation 280, 359-360 
dissolving, see solutions 
distribution, see Dirac, probabilities 
DNA, see genetic code 
Doppler profile, - shift 317, 343, 347 
Drude 7 
dyadics 52, 76-77 
dynamical systems 134-135 
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dynamic equilibrium, see stationary 
states 

effective field 411-412, 430, 433; see 
variational methods 

effective force, - interaction, 
- potential 367-368, 393-394, 409 

efficiency 276-277, 383-385 
effusion 216, 318, 326-328, 331, 

344-345,347-348, 383-385 
Ehrenfest 129, 132, 178 
Ehrenfest theorem 59, 73, 88, 312 
eigenvalues, eigenvectors, see diagonal-

ization 
Einstein 6, 131, 227 
elasticity 231-235, 283-284 
electric current 285-286, 292-295 
electric dipole, see dipole 
electric displacement or electric 

induction 286-287 
electric energy, - work 250, 286-292 
electric field 170, 285-292 
electric potential 216-217, 286-287, 

290, 292 
electrochemical potential 216; see 

chemical potentials 
electromagnetism 131, 245, 250, 

284-295 
electromotive force 216 
electrons in molecules 363-365, 366-367 
electrostatic equilibrium 147, 205, 

216-217, 245, 286-292; see charge, 
dielectrics, dipole 

empiricism 6, 127 
endothermic 283 
energetics 127, 189 
energy, see electric, Fermi, free, 

internal, magnetic 
energy conservation 23-24, 125; see 

conservation laws, First Law, internal 
energy downgrading 197-198; see heat, 

irreversi bili ty, wor k 
energy eigenstates, see excited states, 

ground state, level density, spectra 
energy partition 28-31, 184-186, 

222, 244-245; see equipartition, 
probability 

energy transfer, see current density, 
flux, transport 

energy units 463 
enriched uranium, see isotope 

separation 

ensembles, see canonical, equivalence, 
grand canonical, isobaric-isothermal, 
microcanonical, statistical 

enthalpy 214, 220, 258-260, 283, 362, 
406-407 

entropic elasticity 232 
entropy, see additivity, Boltzmann, 

classical, Kolmogorov, maximum, 
mixing, quantum 

entropy of gases 323-324, 354, 356-357 
entropy, relative or relevant 129-130, 

137-139, 247-248 
entropy, statistical 26-27, 30, 101-140, 

164, 199, 203-204, 225-226, 246-248 
entropy, thermodynamic 35-37, 124-

125, 132, 197-201, 203-204, 210-211, 
220, 242-248 

equations of motion, see evolution 
equations of state 37, 219, 231, 249-250, 

253, 286, 296-298, 322-323, 353-354, 
398, 404, 414 

equilibrium 141, 152-165,242,251; see 
approach, chemical, electrostatic, 
gravitational, hydrostatic, liquid
vapour, magnetostatic, metastability, 
osmotic, phase, rotational, solutions, 
thermal, thermostatics 

equilibrium constant 361-363 
equipartition 370-372, 373-374 
equiprobability 24, 104-105, 142, 

225-226; see indifference principle 
equivalence principle, see First Law 
equivalence of ensembles 34, 165, 186, 

207-210,237,319-320,446-448 
ergodicity 134-135, 146-147 
escape velocity 317 
Euler-Lagrange equations 82 
Euler-Maclaurin formula 464 
evacuation 175, 239, 344-345 
evaporation 216, 421; see liquid-vapour 

equilibrium, vaporization heat 
evaporation plateau, see Maxwell 

construction 
event 102, 113 
evolution, macroscopic, see approach to 

eq uilibrium, irreversibility, magnetic 
resonance, relaxation 

evolution, microscopic 58-60, 73-74, 
81-84,90-92,118-119 

evolution operator 59, 73-74, 118 
exchange interaction 427 
exchange of particles, see indistin

guishability, Pauli principle 



exchange operator 87-88 
exchanges 183-188, 195-197, 243-248, 

251; see energy, heat, particle 
excited states 308-309, 385-386; see 

level density, spectra 
exclusive events 64, 67, 139 
expansion coefficient 252, 263, 268, 274; 

see linear expansion 
expansion of Universe 347 
expansions, see perturbation 
expectation values 21, 76-77, 79, 93, 

143-144, 146,226 
expectation values at equilibrium 

158-159, 163-164, 166, 168,226 
expectation values, quantum 57,64-66, 

73,75-77 
exponential dominance 29-30, 208, 210; 

see saddle-point method 
exponential of operator 54-55 
extensive variables 29, 205-207, 212, 

244-245, 250 
extensivity 49, 134, 205-210, 221, 226, 

244, 248, 324, 359, 395, 403, 412, 
424, 446-448 

exterior algebra 261-263 

factorization 161-163, 166, 314, 351 
Fermi-Dirac statistics, see fermions, 

Pauli principle 
Fermi energy 217 
fermions 61,375,379 
ferroelectricity 426 
ferromagnetism 45, 204, 301-304, 392, 

425,427-440,442 
fibre 231-235 
field, see electric, magnetic, molecular 
fine structure 365 
finite systems 186, 221-230, 424; see 

fluctuations 
First Law 125, 188-197, 244 
first-order, see phase transition 
fluctuations 98-99, 130-131, 221-224, 

227-229, 238-239 
fluctuations and responses 173-174, 

238,432 
fluctuations, critical 227, 302-304, 424, 

428 
fluctuations, methods of calculation 99, 

159, 167, 169, 371 
fluctuations, quantum 57-58, 312 
fluctuations, smallness 30, 207-209, 226 
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fluids 165, 253, 263-264, 391-426; 
see gases, interfaces, liquid-vapour 
equilibrium, solutions 

fluid-solid equilibrium, see crystalliza-
tion 

flux 326-327, 335 
Fock space 52, 93, 144, 167 
forces 191, 231-235; see pressure, 

surface tension, viscosity 
force variables 191-193,250,291,292 
form, see exterior algebra 
free energy 213-214, 220, 233, 258, 259, 

288,290-291,294,322,403 
free enthalpy 214, 220, 232-233, 260, 

278,283 
freezing, see crystallization 
freezing in 40, 309-310, 359, 363-365, 

367, 372, 373-374, 377, 393-394 
freezing mixture 443 
fusion, see crystallization, thermonu

clear 

Galilean invariance 60-61, 170, 177, 
341,350 

galvanometer 230 
gamma function 464 
gas constant 323 
gaseous diffusion, see effusion 
gases, see adsorption, centrifuge, 

classical, condensation, diatomic, 
ionization, liquid-vapour equilib
rium, monatomic, perfect, photon, 
polyatomic, rare, relativistic 

gauge 20, 56, 286 
Gaussian distribution 30, 97, 98, 210, 

229,239,464 
generating functions 99; see partition 

functions 
generators 61 
genetic code, - information 107, 136 
9 factor 43-44 
Gibbs 5, 127, 156 
Gibbs-Duhem relation 219, 251, 271, 

306 
Gibbs ensemble 128, 226; see statistical 
Gibbs paradox 127-128, 324, 358-359 
Gibbs phase rule 272, 283 
Gibbs potential, see free enthalpy 
glasses 7, 152, 204 
glycerine 152 
grand canonical distribution or 

ensemble 144, 146, 167-169, 172, 
187,215,220,223-224 
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grand partition function 168, 170, 
207-209,212,218,220,319,443 

grand potential 218-220, 258, 323, 
351-352,397,402 

graph, see diagrammatic expansion 
graphite 152 
Grassmann, see exterior algebra 
gravitational equilibrium 206, 245, 250, 

304-306 
gravity 192, 299, 301, 325, 421, 445 
ground state 308, 364 
Guldberg and Waage, see mass action 
gyromagnetic ratio, see 9 factor 

Hamilton equations 82 
Hamiltonian 58, 60-61, 73-74, 82-83, 

255, 340, 350, 367-368 
Hamilton principle 81 
harmonic, see oscillator 
heat 35-36, 124-125, 190-191, 198-199, 

217,243,275; see enthalpy, latent, 
reaction, thermal 

heat baths, see thermostats 
heat capacity, see specific heats 
heat conduction, - death, see thermal 
heat exchanges 195-197, 259-260; see 

energy partition, thermal contact 
heat pumps 276-277 
Heisenberg inequalities 58, 312 
Heisenberg model 427 
Heisenberg picture 60, 74, 77 
helium 204, 312 
Helmholtz 188-189, 213; - potential, 

see free energy 
hemoglobin 387-390 
Henry law 443 
Hermitean conjugation 52 
Hermitean matrix, - operator 54, 56, 

66 
hidden variables 145, 148, 246,382; see 

order parameters 
Hilbert spaces 50-52, 75, 77 
Hooke law 235, 284 
H-theorem 126, 129 
hydrodynamic regime, see local 

equilibrium 
hydrodynamic velocity 335-336, 339, 

341 
hydrogen 245, 312, 378-382, 462 
hydrogen chloride 151, 368-369 
hydrostatic equilibrium 147, 305-306, 

337 
hyperfine splitting 365 

hysteresis 271; see metastability 

ice 443 
ideal, see measurements, perfect gas, 

preparations 
identical particles, see indistinguisha

bility, Pauli principle 
impulse 329 
inaccessibility principle, see 

Caratheodory 
incomplete knowledge, - measure

ments, - preparations 20, 23, 50, 
62, 65, 120-121, 137-138 

indicator method 99 
indifference principle 142, 155, 226, 248 
indistinguishability 56, 206, 342, 

352-353; see Pauli principle, 
symmetry of wavefunctions 

indistinguishability in the classical 
limit 80, 85, 87-88, 359, 370, 378; see 
Gibbs paradox 

induction, see electric, magnetic 
inert gases 309, 313, 363-364 
information 101-140, 145, 149,201, 

247-249, 358 
inhomogeneous systems, see coexis

tence, electrostatic, gravitational, 
interfaces 

insufficient reason, see indifference 
intensive variables 29, 205, 212, 249-251 
interactions 158,310-311, 352, 391-448 
interfaces 245, 299-301, 421, 440-442 
internal degrees of freedom 78, 350-351; 

see electrons, rotations, vibrations 
internal energy 22, 90, 188-189, 

196-197,213,220,244,288,294 
internal energy of classical fluids 324, 

354, 398, 401, 413 
internal partition function 350-353, 

373-374, 376 
International System of Units (SI) 462 
invariance laws 7,60-61, 111, 122,350, 

375, 425-426, 429; see conservation 
laws, Galilean invariance, symmetries 

inversion temperature 407 
ionization 309, 313, 353, 386-387 
ions, see chemical equilibrium, solutions 
irreversibility 4, 119, 120, 122, 125, 

197-198, 201-202, 259, 276; see 
dissipation 

irreversibility paradox 128-130, 131, 
135, 149 



irreversible processes 7, 243, 245, 
276-277, 326-336, 358, 385, 406 

Ising model 301, 392, 426, 427-437 
isobaric-isothermal ensemble 171, 214, 

220, 232-233 
isobars 419 
isolated systems 73, 118, 147, 187, 

244-246; see closed, open 
isothermal transformations, see 

thermostat 
isotherms 298-299, 415 
isotopes 396 
isotope separation by effusion 327-328, 

347-348,383-385 
isotope separation by ultracentrifuging 

326, 338-342 

jacobians 83, 261-263 
jet 318-319, 328 
Joule 188-189 
Joule expansion, - law 263, 324, 346, 

354, 401 
Joule-Thomson expansion 264, 406-408 

Kappler experiment 228-229, 239 
kelvin 36, see Thomson 
kets 50, 57, 62, 66 
kinetic energy 318, 334 
kinetic theory 5, 125-127, 307-308, 

326-336, 345-347 
knowledge, see information, measure

ments 
Knudsen regime, see ballistic 
Kolmogorov entropy 135 

lack of information, see information 
Lagrangian 81-82, 255, 339-342 
Lagrangian multipliers 152-156, 159, 

160, 184, 187-188, 250, 341 
Landau 7, 50, 63 
Landau theory of phase transitions 

299-304, 426 
Lande factor, see 9 factor 
Langevin paramagnetism 48, 176 
Langmuir isotherms 175 
language, see communication 
Laplace 142, 325 
large numbers, - systems 8-10, 23, 30, 

128, 149, 225-226; see extensivity 
Larmor frequency, - precession 42, 

95-97 
latent heat 272-273; see melting, 

vaporization 
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lattice gas 413, 426 
lattice temperature 47,150-151, 185 
Laws of thermodynamics 182; see 

Zeroth, First, Second, Third 
least action principle, see action 
Le Chatelier-Braun principle 267-268 
Le Chatelier principle 266-267, 283 
Legendre transformation 160-161, 

208-209,211,213,218,253-255 
level density 25-26, 166, 169, 206-207, 

210, 446-448 
Linde 408 
linear expansion 232, 235 
linear responses, see responses 
linear transformations 52 
Liouville equation 84, 88-89 
Liouville representations of quantum 

mechanics 53-54, 77, 87-88 
Liouville theorem 83-84, 91, 122 
Liouville-von Neumann equation 73-74 
liquefaction, see liquid-vapour 

equilibrium 
liquids 312, 393-397; see solutions 
liquid nitrogen trap 344-345 
liquid-vapour equilibrium 269, 

299-301,302,391-392,395,408-426; 
see interfaces, solutions 

local equilibrium 331-336, 347; 
- temperature 201 

long-range interactions 205, 206, 433 
Lorentz force 82 
Loschmidt 128 
low temperatures, see cooling 

macroscopic data or variables 142-144, 
146-152, 182, 222, 243 

macro-state 20-21, 63-70, 79-81, 
113; see Boltzmann-Gibbs distri
bution, density in phase, density 
operator 

magnetic dipole or moment 17-19,43, 
170, 192, 285, 294 

magnetic energy, - work 35, 250, 
292-295 

magnetic field H, - induction B 17, 
43, 170,285-286,292-295 

magnetic resonance 41-43, 150; see 
relaxation 

magnetic susceptibility 16, 18, 173, 
302-303,428,432 

magnetism 16, 49, 176, 204, 234, 
285-286, 292-295; see dia-, para-, 
and ferromagnetism 
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magnetization 16, 38-39, 302-303, 
285-286,292-295,427,430,432 

magneton, see Bohr 
magnetostatic equilibrium 147, 170; see 

magnetism 
many- body theory 7 
marginal energy 217 
Mariotte 322 
mass action law 362, 381, 442-445 
Massieu functions 211-213, 220-221, 

227, 256, 296 
mathematics 2 
matrices, see density operator, 

observables, operators 
maximum of Massieu function 

256-258; see variational methods 
maximum of statistical entropy 114, 

134,141-152,156-158,171,186,222, 
225-226, 246-249; see disorder 

maximum of thermostatic entropy 
243-248,251,264-273,274,279,305, 
361; see Second Law 

Maxwell 5, 125-126, 326, 335-336 
Maxwell construction 272, 298, 423-424 
Maxwell demon 130-131, 132-134,249 
Maxwell distribution 155, 313-322, 

396-397 
Maxwell equations 285-286 
Maxwell relations 260-261 
Mayer 188-189 
Mayer relation 324-325, 354 
mean field, see effective field, variational 

methods 
mean free path 331-336 
mean square, see fluctuations 
mean value 226; see expectation 
measurements 57-58, 62, 68, 70-73, 

111, 119-122, 132, 230 
mechanical equivalents 463 
mechanics, see classical 
melting, see crystallization 
melting heat 248, 446 
message, see communication 
metastability 150-152, 246, 271, 

380-382,421-423,437-440,448 
microcanonical distribution or ensemble 

22, 28-29, 97, 140, 143, 147, 169, 
172, 185-186,220,225, 233, 321-322 

microcanonical partition function 169, 
211, 220; see level density 

microelectronics 331 
micro-state 20-21, 24, 57, 63-64, 78, 

113 

minimum of thermodynamic potentials 
257-258, 409, 411, 421-422; see 
variational methods 

missing information, see information 
mixing entropy 106, 246, 357-359, 

383-385 
mixtures 81, 127-128, 139, 148, 151, 

215, 217, 244-245, 249, 357-363, 
381, 426; see isotope separation, 
solutions, statistical 

modulus, see elasticity 
mole 279 
molecular beams or jets 318-319, 328 
molecular effusion, see effusion 
molecular field 412; see variational 

methods 
molecules 349-390; see chemical 

equilibrium 
moment of inertia 171,342, 374, 376 
momentum 56, 61, 170, 177, 315, 

340-342; see conjugate, conservation 
momentum transport 335-336 
monatomic fluids 309, 363-365, 393-394 
multiplicity, see degeneracy 
multipliers, see Lagrangian 
myoglobin 390 

natural uranium, see isotope separation 
natural variables 210-212, 214, 254 
negative temperatures 37, 46-47, 185 
negentropy 133, 275; see information 
Nernst 131-132; see Third Law 
neutron stars 305 
Newton 336 
nitrogen 344-345, 378 
noise 107, 230, 238, see random 

evolution 
non-equilibrium, see irreversible 

processes, transport 
normal conditions 308, 463 
nuclear energy, see isotope separation 
nuclear magnetism 150-151,364 
nuclear reactions 151, 306 
nuclear structures 3, 171, 375, 412 
nucleation 423 

observables 56-57, 75, 76-77 
one-dimensional models 231-235, 

435-437 
one-particle, see reduced densities 
Onsager 7, 392 
opalescence 227, 304 



open systems 127, 156, 167, 187-188, 
319; see closed, isolated 

operators 52-56 
orbital magnetism 20,43,47 
order parameters 301-304, 425-426 
orthohydrogen, 379 
orthonormality 51, 64 
oscillators 131, 140, 177-178,229, 

237, 370-372; see anharmonicity, 
vibrations 

osmotic equilibrium 147, 216, 245, 
278-279; see solutions 

osmotic pressure 278, 442, 444 
Otto cycle 277 
oxygen 312, 378; see hemoglobin 

paradoxes 127-131 
parahydrogen 379 
paramagnetism 15-48, 95-97, 175-176, 

185, 204, 427, 432 
parity 60 
partial densities, - pressures 357, 361 
particle density 90, 299-301, 316, 320, 

325,337-340,410,417,420,440-441 
particle exchanges 187-188, 215-217, 

244-246, 271, 278-283, 327-328, 
347-348 

particle number 60, 76, 93, 167-168, 
357,359-362; see chemical potentials, 
conservation laws, flux, probabilities 

particle physics 3 
particles, indistinguishable -, see 

indistinguishability, Pauli principle 
partition, see energy, particle exchanges 
partition functions 158-165, 212, 

220-221, 433-435; see canon-
ical, classical, grand, internal, 
microcanonical 

Pauli matrices 94 
Pauli principle 61, 78, 352-353, 379; see 

bosons, fermions, indistinguishability, 
symmetry of wavefunctions 

perfect gas 80, 296-297, 307-348 
Perrin 5, 337-338 
perturbation expansions 397-405 
petit canonical, see canonical 
phase density, see density in phase 
phase diagram 272, 419-420, 422 
phase equilibria, - transitions 7, 127, 

152, 158, 216, 222-223, 269-273, 283, 
301-304, 319, 391-392, 425-448; see 
ferromagnetism, liquid-vapour 
equilibrium 
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phase separation, see coexistence 
phase space 78-84, 89-91, 122-123 
photon gas 216, 347 
physical constants 462-463 
Planck 6, 131 
Planck constant 53, 79, 84, 357, 462 
Planck law 140, 177-178 
Planck length 3 
planets 304-306, 317 
plasma, see ionization 
Poincare 128, 134 
point particles 308-309, 350, 393 
Poisson bracket 84, 88-89 
Poisson distribution 98, 238 
Poisson formula 464 
polarization 285-291; see dielectrics, 

spin 
polyatomic gases, - molecules 309, 

366-368, 372-374 
polymers 7,231-235 
porous wall, see effusion 
position variables 191-192, 250, 291, 

292 
positive operator 54, 67 
positivism 127 
potential, see chemical, electric, 

Massieu, thermodynamic, vector 
power 275-276 
precession, see Larmor 
preparations 57-58, 63; see measure

ments, wave packet reduction 
pressure 171, 213, 219, 305-306, 

328-330, 337, 357; see equations of 
state 

prior measure 111, 122 
probabilities 20-22, 49-50, 68, 72, 75, 

102-103, 113, 126-128, 191, 221, 
228-230; see assignment, statistics 

probability distributions: for energy 
29-30, 166, 210, 447-448; for 
macroscopic variables 227-228; for 
momentum or velocity 315-319; for 
particle number 93, 98-99, 168; for 
subsystems 224-226 

projection 55, 56, 58, 66 
pure states 20, 57-58, 63, 66, 94, 114, 

137 

quantization 56, 58, 72 
quantum entropy 111-122, 131-132, 

139,226 
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quantum mechanics 49-78, 131-132, 
309-310, 312, 324, 351, 375-382; see 
measurements 

quasi-equilibrium 320; see metastability 
quasi-static 198, 245; see reversibility 
quenching 20, 44; see freezing in 

radiation, see black-body, oscillators, 
stars 

random evolution 62, 74, 95, 118, 
128; see chaotic dynamics 

random variables 68, 76-77, 79; see 
probabilities 

Rankine 188 
Raoult laws 442-444 
rare gases, see inert gases 
ratio of specific heats 324-325 
Rayleigh 6 
reaction heat 283, 362-363 
reactive mixture or system, see chemical 

equilibrium, nuclear reactions 
reactor, see isotope separation 
recurrence time 128-129 
red cells 278; see hemoglobin 
reduced densities 89-93, 315-316, 

320-321, 339, 396 
reduction, see wavepacket 
redundancy 107 
refrigerators 248, 276-277; see cooling 
regime, see ballistic, local equilibrium 
relative, see entropy 
relative temperature 33, 183-187; see 

Zeroth Law 
relativistic gases 342 
relaxation 95-97, 148-150 
relevant, see entropy 
repeatability 72-73 
responses in thermodynamics 335-336 
responses in thermostatics 173-174, 

238, 252-253, 261, 263-264, 266-268, 
273-274,432 

reversibility, see irreversibility 
rotational equilibrium 171,325,338-342 
rotations 61, 350, 425-426; see 

invariance laws, angular momentum 
rotations of molecules 81, 369-370, 

373-377,379 
rubber 231-232 
Rydberg 462 

Sackur-Tetrode formula 323,356 
saddle-point method 209-210, 236-238, 

321,433-435 

Saha equation 386-387 
saturated vapour 417-421 
saturation curve 272, 419--420 
saturation of magnetization 38-39, 44, 

47 
scalar potential, see electric 
scattering 328 
Schottky 365-366 
Schrodinger equation 58-59, 367-369, 

375-376 
Schrodinger picture 59-60, 74 
second derivatives 252, 255, 260, 266 
Second Law 28, 124, 126, 130, 133, 185, 

189, 197-202, 243-246, 385 
second-order, see critical points, phase 

transitions 
self-consistent potential 411-412, 430, 

433; see variational methods 
self gravitation, see gravitational 

equilibrium 
semiconductors 7, 217, 331 
semi-permeable membranes, see 

osmotic equilibrium 
separation, see coexistence of phases, 

isotope separation 
Shannon theorems 106-107; see 

communication 
shot noise 230, 238 
SI units 462 
single-particle, see reduced densities 
singlet 69, 379-380 
small systems, see finite 
Smoluchowski 130,227 
solidification, see crystallization 
solids 7,49,283-284 
solutions 325, 396, 442-446; see 

chemical, mixtures, osmotic 
solvent, see solutions 
sound 316, 325 
sources 195-197,202,248-249,274-277, 

291; see exchanges, thermostats 
specific heats 39, 238-239, 252, 263, 

266,268,274,302-303,428,431 
specific heats of gases 296-297, 324-325, 

354-355, 363-382 
spectra 127, 349, 351, 355, 366-369, 

375-376 
spectral decomposition 58 
spectral lines 317, 343, 355 
speed, see sound 
spherical harmonics 375, 379; see 

angular momentum 



spin 19, 65, 69, 94-97, 365, 369, 375, 
379-380, 437-438; see Ising model, 
paramagnetism 

spin temperature 35-37, 47, 150-151, 
185 

spontaneous magnetization, see broken 
invariances, ferromagnetism 

stability 205-207, 264-268, 305; see 
metastabili ty 

standard conditions, see normal 
standard deviation, see fluctuations 
stars 205-206, 304-306, 317; see 

ionization 
states, see density in phase, density 

operator, macro-state 
state vectors, see kets, micro-state, 

pure states 
stationary phase, see saddle-point 
stationary states 146-147,347-348, 

406-408 
statistical ensembles 8, 20, 57, 63, 71, 

75, 128 
statistical entropy, see entropy 
statistical mixture 63-70, 75-77, 94, 

117 
statistics 5, 8-10, 57-58, 145, 149, 221, 

228-230, 307, 326; 
see Bose-Einstein, Fermi-Dirac, 
fluctuations, probabilities 

steady states, see stationary 
steam engines 277 
steepest descent, see saddle-point 
Stern-Gerlach experiment 65 
Stirling formula 26, 237, 464 
stochastic, see random 
Stokes law 338 
strain, see deformation 
stress tensor 250, 284 
structureless particles, see point 

particles 
sub-additivity 105, 115-116 
subsystems 62, 68-72,115-117, 137, 

147,224-226; see composite systems 
sum over states, see partition functions 
Sun 463; see stars 
superconductivity 7 
supercooling 152, 271 
superheating 271, 422 
superposition principle 57 
supersaturation 422 
superselection 57 
surface tension 245, 299-301 
surprisal 103 
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susceptibility, see magnetic 
symmetries 7, 81, 284; see broken, 

conservation, invariance 
symmetry number 81, 370, 381 
symmetry of wavefunctions 61, 87-88, 

352-353, 375, 379; see Pauli principle 
Szilard 132 

temperature, see absolute, characteris
tic, lattice, local, negative, relative, 
spin, thermometry 

tension, see elasticity, surface 
tensor 44, 283-284 
tensor product 51, 54 
thermal baths, see thermostats 
thermal capacity, see specific heats 
thermal conduction, - conductivity 

332-336 
thermal contact 28-31, 183-187, 

201-202, 222, 245; see energy 
partition, heat exchanges 

thermal death 129,274 
thermal engines 171, 197, 235, 248, 

274-278 
thermal equilibrium 22-33, 147, 

183-187 
thermal excitation 363-382, 385-386 
thermal expansion, see expansion, 

linear expansion 
thermal ionization, see Saha 
thermal length 311-312, 351 
thermal noise, see noise 
thermal pollution 275 
thermionic effect 238 
thermochemistry, see chemical 

equilibrium 
thermodynamic entropy, see entropy 
thermodynamic equilibrium, see 

equilibrium, thermostatics 
thermodynamic identities 249-253 
thermodynamic inequalities 265-266 
thermodynamic limit, see extensivity 
thermodynamic potentials 210-221, 

256, 288-295, 296; see enthalpy, 
entropy, free energy, free enthalpy, 
grand potential, internal energy, 
Massieu functions 

thermodynamics 124-125, 241-243; see 
irreversible processes, thermostatics 

thermometry 18, 187, 317 
thermonuclear fission 151, 306 
thermostatics 141, 146-152, 181-235, 

241-306 



460 Subject Index for Volume I 

thermostats 32-33, 186-187, 195-197, 
214, 224-226, 257, 259 

Third Law 36, 132, 203-204, 273, 277, 
356,359,364,372,439 

Thomson, Lord Kelvin 125, 128, 197 
time reversal 4, 61 
trace 55-56, 64, 66, 85, 87 
transfer matrix method 435-437 
transformations 60-61 
transitions, see phase 
translations 61, 170, 350, 426; see 

invariance laws, momentum 
translations of molecules 78, 307, 

367-368, 371, 374, 377 
transport 331-336; see thermal 

conductivity, viscosity 
trap 344-345 
trial state, see variational methods 
triple point 272 
triplet 379-380 
truncation, see wavepacket reduction 
two-level system 19, 95 
two-particle, see reduced densities 

ultracentrifuging 325-326, 338-342 
unbiased, see bias 
uncertainty, see disorder, entropy, 

fluctuations, Heisenberg inequalities, 
information 

unification of sciences 1-4, 241-242, 
330 

unitary operators 54, 59-61, 73-74 
units 462-463 
universality 426 
Universe, see expansion, ionization, 

stars 
uranium, see isotope separation 
urn model 178-179 
Ursell-Yvon-Mayer expansion, see 

virial expansion 

vacuum, see evacuation 
van der Waals equation 296-298, 

398-401, 405, 414 

van't Hoff law 362-363,443 
vaporization, see liquid-vapour 

equilibrium 
vaporization heat 418, 421; see latent 
variance 67; see fluctuations 
variational methods 156-158, 257, 

408-412,421-422,424,427-432,436, 
441 

vector potential 56, 82-83, 286, 294 
velocity 170, 177, 315-318; see hydro

dynamic, probability distributions, 
sound 

vibrations of molecules 369-370, 373, 
376-377; see oscillators 

virial coefficents, - expansion 401-405, 
442 

virial theorem 305-306, 401 
viscosity 335-336, 338 
Vlasov equation 92 
volume 171, 244-245 
von Neumann 50, 63, 112, 132, 226; 
von Neumann entropy, see quantum 

wall 311, 328-330, 331 
wavepacket reduction 58, 70-73, 

119-121, 138 
Weiss field 392,412,430; see variational 

methods 
Wigner representation or transform 

53-54, 87-89 
Wilson theory 304 
wool 231-232 
work 125, 191-197,214,217,223,250, 

259, 275, 277, 383-385; see electric, 
magnetic 

Young modulus, see elasticity 

Zermelo 128 
zeros of partition functions 424, 

433-435 
Zeroth Law 183-188,251 
zeta-function 465 
Zustandssumme, see partition functions 



Units and Physical Constants 

We use the international system of units, the so-called SI system, which is adopted by most 
official international organizations. Its fundamental units are the metre (m), the kilogram (kg), 
the second (s), the ampere (A), the kelvin (K), the mole (mol), and the candela (cd). 

Derived SI units with special names are the radian (rad), the steradian (sr), the hertz (Hz 
= S-I), the newton (N = m kg s-2), the paseal (Pa = N m-2), the joule (J = N m), the watt 
(W = J S-I), the coulomb (C = A s), the volt (V = W A-I), the farad (F = C V-I), the ohm 
(0 = V A-I), the siemens (S = A V-I), the weber (Wb = V s), the tesla (T = Wb m-2), the 
henry (H = Wb A-I), the Celsius temperature (CC), the lumen (Im = cdsr), the lux (Ix = 
Imm-2), the becquerel (Bq = S-I), the gray (Gy = Jkg- l ), and the sievert (Sv = Jkg-l). 

Prefixes used with SI units to indicate powers of 10 as factors are: deca (da = 10); hecto 
(h = 102); kilo (k = 103); mega (M = 106 ); giga (G = 109 ); tera (T = 1012 ); peta (P = 1015); 
exa (E = 1018); deci (d = 10-1); centi (c = 10-2); milli (m = 10-3); micro (J.L = 10-6 ); nano 
(n = 10-9 ); pico (p = 10-12 ); femto (f = 10- 15); atto (a = 10-18). 

Constants for electromagnetic units J.Lo 47r X 10-7 N A -2 (definition of the ampere) 

velocity of light 

Planck's constant 

Dirac's constant 

Avogadro's number 

(Unified) atomic mass unit 
neutron and proton masses 
electron mass 

Elementary charge 
Faraday's constant 

Bohr magneton 

nuclear magneton 

Fine structure constant 

Hydrogen atom: 

Bohr radius 

binding energy 

Rydberg constant 

1 1 
--, -- ~ 9 x 109 N m 2 C- 2 
/toe2 47r1::0 

EO 

e = 299792458m S-1 (definition of the metre) 
e ~ 3x108 ms- l 

h 6.6260755 x 10-34 J s 
h n = -- ~ 1.055 x 1O-34 Js 

2rr 
NA ~ 6.022 x 1023 mol-l (by definition the 

mass of one mole of 12C is 12 g) 
1 u = 1 g/ N A ~ 1.66 X 10-27 kg (or dalton or amu) 
mn ~ 1.0014mp ~ 1.008 u 
m ~ 1 u/1823 ~ 9.11 x 10-31 kg 
e ~ 1.602 x 10-19 C 
N Ae ~ 96485 C mol- l 

en 
J.LB = - ~ 9.27 X 10-24 J T- l 

2m en 
c::: 5 x 10-27 J T- l 

2mp 

a = 
1 

137 

n 47rEon2 
ao = 2 ~ 0.53 A 

Eo = m~~ _ ~ (~)2 13.6 eV 
2ma6 - 2n2 47rEo 
Eo Roo = - ~ 109737 cm- l 
he 



Boltzmann's constant 
molar gas constant 

Normal conditions: pressure 
temperature 

molar volume 

Gravitational constant 
gravitational acceleration 

Stefan's constant 

Definition of photometric units 

Energy units and equivalents 

electric potential 
heat 
chemical binding 
temperature (kT) 
mass (me2 ) 

wavenumber (he/ >.) 
frequency (hv) 
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k ~ 1.381 X 10-23 J K-1 
R = NAk ~ 8.32 J K-1 mol-1 
1 atm = 760 Torr = 1.01325x105 Pa 
Triple point of water 273.16 K (definition of the kelvin) 

or 0.01 °C (definition of the Celsius scale) 
22.4xlO-3 m3 mol-1 

G ~ 6.67 X 10-11 m3 kg-1 s-2 
9 9.81 m s-2 

7r2k4 
a = -- ~ 5.67 X 10-8 W m-2 K-4 

601i3e2 
A 1 W luminous power, emitted at a frequency of 

540 THz, is equivalent to 683 1m 

1 erg = 10-7 J (non SI) 
1 kWh = 3.6x106 J 
1 eV ...... 1.602 x 10-19 J ...... 11600 K 
1 cal = 4.184 J (non SIj specific heat of 1 g of water) 
23 kcal mol-1 ..... 1 eV (non SI) 
290 K ...... 4J eV (room temperature) 
9.11Xl0-3tkg ..... 0.511 MeV (electron rest mass) 
109 700 cm-1 ...... 13.6 eV (Rydberg) 
3.3 x 1015 Hz...... 13.6 eV 

It is useful to keep these equivalents handy for quickly finding orders of 
magnitude. 

Various non SI units 

Solar data 

1 angstrom (A) = 10-10 m (atomic scale) 
1 fermi (fm) = 10-15 m (nuclear scale) 
1 barn (b) = 10-28 m2 
1 bar = 105 Pa 
1 gauss (G) = 10-4 T 
1 nautical mile = 1852 m 
1 knot = 1 nautical mile per hour = 0.51 m S-1 

1 astronomical unit (AU) ~ 1.5 x 1011 m (Sun-Earth 
distance) 

1 parsec (pc) ~ 3.1 X 1016 m (1 AU/arc sec) 
1 light year (ly) ~ 0.95 x 1016 m 

Radius 7 x 108 m = 109 Earth radii 
Mass 2 x 1030 kg 
Average density 1.4gcm-3 
Luminosity 3.8 x 1026 W 



A Few Useful Formulae 

Normalization of a Gaussian function: 

1+00 

dxe- az2 = 
-00 

differentiation of this formula with respect to a gives us the moments of the Gaussian 
distribution. 

Euler's gamma-function: 

f(t) == 100 x t - 1 e-Z dx = (t - l)f(t - 1), 

f(t)f(l - t) = ~, 
sm 7rt 

f(~) = .,fff. 

Stirling's formula: 

t! = r(t + 1) ~ tt e- t ..;2;i. 
t-oo 

Binomial series: 

Poisson's formula: 

+00 

L f(n) = 
n=-oo 

f(t + 1) 
f(t + 1- n) 

Euler-Maclaurin formula: 

~ (-x)n r(n - t) 
L..J ----;! f( -t) , 
n=O 

Ixl < 1. 

1 l a+e 1 £ la+e £3 la+e 
£ a dx f(x) ~ 2 [f(a) + f(a + £)] - 12 !,(x) a + 720 J"'(x) a + ... 

( 1) £ la+e 7£3 la+e 
~ f a + 2£ + 24 !'(;~) a - 5760 flll(X) a + ... ; 

this formula enables us to calculate the difference between an integral and a sum over n, 
when we put a = n£. 
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Constants: 

e ~ 2.718, 7r ~ 3.1416, 

'Y == lim (1 + ... + ~ - In n) ~ 0.577 Euler's constant. 

Riemann's zeta-function: 

00 1 
((t) == L nt' r(t) ((t), 

t 

( 

n=l 

xt-1 dx 

eX + 1 

1.5 

2.612 

Dirac's 8-function: 

2 2.5 3 

i7r2 1.341 1.202 

1 1+00 _ dxeixy/ a 

27r -00 
= 8 (~) = JaJ8(y); 

1. sin tx l' 1 - cos tx < ( ) 
1m -- = 1m = 7r u X ; 

t~oo X t~oo tx 2 

3.5 4 

1.127 to 7r4 

f(x)8(x) = f(0)8(x), f(x) 8'(x) = -1'(0) 8(x) + f(O) 8'(x). 

If f(x) = 0 in the points x = Xi, we have 

8[f(x)] = L Jf'(~;)J 8(x - Xi)' 

5 

1.037 




