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Preface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
HIS book originated in a course of lectures held at T Columbia University, New York, during the summer 

session of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1936. 
It is an elementary treatise throughout, based entirely on 

pure thermodynamics; however, it is assumed that the 
reader is familiar with the fundamental facts of ther- 
mometry and calorimetry. Here and there zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill be found 
short references to the statistical interpretation of thermo- 
dynamics. 

As a guide in writing this book, the author used notes of 
his lectures that were taken by Dr. Lloyd Mots, of Columbia 
University, who also revised the final manuscript critically. 
Thanks are due him for his willing and intelligent col- 
laboration. 

E. FERMI 

V 
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Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
HERMODYNAMICS is mainly concerned with the T transformations of heat into mechanical work and the 

opposite transformations of mechanical work into heat. 
Only in comparatively recent times have physicists recog- 

nized that heat is a form of energy that can be changed into 
other forms of energy. Formerly, scientists had thought 
that heat was some sort of fluid whose total amount was 
invariable, and had simply interpreted the heating of rl body 
and analogous processes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas consisting of the transfer of this 
fluid from one body to another. It is, therefore, noteworthy 
that on the basis of this heat-fluid theory Carnot was able, 
in the year zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1824, to arrive at a comparatively clear under- 
standing of the limitations involved in the transformation of 
heat into work, that is, of essentially what is now called the 
second law of thermodynamics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see Chapter 111). 

In 1842, only eighteen years later, R. J. Mayer discovered 
the equivalence of heat and mechanical work, and made the 
first announcement of the principle of the conservation of 
energy (the first law of thermodynamics). 

We know today that the actual basis for the equivalence 
of heat and dynamical energy is to be sought in the kinetic 
interpretation, which reduces all thermal phenomena to the 
disordered motions of atoms and molecules. From this 
point of view, the study of heat must be considered as a 
special branch of mechanics: the mechanics of an ensemble 
of such an enormous number of particles (atoms or mole- 
cules) that the detailed description of the state and the 
motion loses importance and only average properties of large 
numbers of particles are to be considered. This branch of 
mechanics, called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstatistical mechanics, which has been de- 
veloped mainly through the work of Maxwell, Boltzmann, 
and Gibbs, has led to a very satisfactory understanding of 
the fundamental thermodynamical laws. 

ix 
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But the approach in pure thermodynamics is different. 

Here the fundamental laws are assumed as postulates based 
on experimental evidence, and conclusions are drawn from 
them without entering into the kinetic mechanism of the 
phenomena. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis procedure has the advantage of being 
independent, to a great extent, of the simplifying assump- 
tions that are often made in statistical mechanical considera- 
tions. Thus, thermodynamical results are generally highly 
accurate. On the other hand, it is sometimes rather un- 
satisfactory to obtain results without being able to see in 
detail how things really work, so that in many respects it is 
very often convenient to complete zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa thermodynamical result 
with at least a rough kinetic interpretation. 

The first and second laws of thermodynamics have their 
statistical foundation in classical mechanics. In recent 
years Nernst has added a third law which can be inter- 
preted statistically only in terms of quantum mechanical 
concepts. The last chapter of this book will concern itself 
with the consequences of the third law. 



CHAPTER I 

Thermodynamic Systems 
1. The state of a system and its zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtransformations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe 

state of a system in mechanics is completely specified at a 
given instant of time if the position andvelocityof each mass- 
point of the system are given. For a system composed of a 
number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN of mass-points, this requires the knowledge of 
6N variables. 

In thermodynamics a different and much simpler concept 
of the state of a system is introduced. Indeed, to use the 
dynamical definition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstate would be inconvenient, because 
all the systems which are dealt with in thermodynamics 
contain a very large number of mass-points (the atoms or 
molecules), so that it would be practically impossible to 
specify the 6N variables. Moreover, it would be unneces- 
sary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto do so, because the quantities that are dealt with in 
thermodynamics are average properties of the system; 
consequently, a detailed knowledge of the motion of each 
mass-point would be superfluous. 

In order to explain the thermodynamic concept of the 
state of a system, we shall first discuss a few simple examples. 

A system composed of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAchemically dejined homogeneous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
fluid. We can make the following measurements on such a 
system: the temperature t ,  the volume V ,  and the pressure p. 
The temperature can be measured by placing a thermometer 
in contact with the system for an interval of time sufficient 
for thermal equilibrium to set in. As is well known, the 
temperature defined by any special thermometer (for 
example, a mercury thermometer) depends on the particular 
properties of the thermometric substance used. For the 
time being, we shall agree to use the same kind of thermom- 
eter for all temperature measurements in order that these 
may all be comparable. 

1 
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The geometry of our system is obviously characterized 

not only by its volume, but also by its shape. However, 
most thermodynamical properties are largely independent 
of the shape, and, therefore, the volume is the only geometri- 
cal datum that is ordinarily given. It is only in the cases 
for which the ratio of surface to volume is very large (for 
example, a finely grained substance) that the surface must 
also be considered. 

For a given amount of the substance contained in the 
system, the temperature, volume, and pressure are not 
independent quantities; they are connected by a relationship 
of the general form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A P ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI', zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, (1) 

which is called the equation of state. Its form depends on 
the special properties of the substance. Any one of the 
three variables in the above relationship can be expressed 
as a function of the other two by solving equation (1) with 
respect to the given variable. Therefore, the state of the 
system is completely determined by any two of the three 
quantities, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ,  V, and t .  

It is very often convenient to represent these two quanti- 
ties graphically in a rectangular system of co-ordinates. 
For example, we may use a (V ,  p )  representation, plotting V 
along the abscissae axis and p along the ordinates axis. A 
point on the (V, p )  plane thus defines a state of the system. 
The points representing states of equal temperature lie 
on a curve which is called an isothermal. 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem composed of a c h i c a l l y  dejned h g e n e o u s  
solid. In this case, besides the temperature t and volume 
V ,  we may introduce the pressures acting in different 
directions in order to define the state. In most cases, 
however, the assumption is made that the solid is subjected 
to an isotropic pressure, so that only one value for the 
pressure need be considered, as in the case of a fluid. 

A system composed of a homogeneous mixture of several 
chemical compounds. In this case the variables defining the 
state of the system are not only temperature, volume, and 
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pressure, but also the concentrations of bhe different chemical 
compounds composing the mixture. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Nonhomogeneous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystems. In order to define the state of rt 
nonhomogeneous system, one must be able to divide it into a 
number of homogeneous parts. This number may be finite 
in some cases and infinite in others. The latter possibility, 
which is only seldom considered in thermodynamics, arises 
when the properties of the system, or at least of some of its 
parts, vary continuously from point to point. The state of 
the system is then defined by giving the mass, the chemical 
composition, the state of aggregation, the pressure, the 
volume, and the temperature of each homogeneous part. 

It is obvious that these variables are not all independent. 
Thus, for example, the sum of the amounts of each chemical 
element present in the different homogeneous parts must be 
constant and equal to the total amount of that element 
present in the system. Moreover, the volume, the pressure, 
and the temperature of each homogeneous part having a 
given mass and chemical composition are connected by an 
equation of state. 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem containing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmoving parts. In almost every 
system that is dealt with in thermodynamics, one assumes 
that the different parts of the system either are at rest or are 
moving so slowly that their kinetic energies may be neg- 
lected. If this is not the case, one must also specify the 
velocities of the various parts of the system in order to 
define the state of the system completely. 

It is evident from what we have said that the knowledge 
of the thermodynamical state alone is by no means sufficient 
for the determination of the dynamical state. Studying the 
thermodynadcal state of a homogeneous fluid of given 
volume at a given temperature (the pressure is then defined 
by the equation of state), we observe that there is an infinite 
number of states of molecular motion that correspond to it. 
With increasing time, the system exists successively in all 
these dynamics1 states that correspond to the given thermo- 
dynamical state. From this point of view we may say 
that a thermodynamical state is the ensemble of all the 
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dynamical states through which, as a result of the molecular 
motion, the system is rapidly passing. This definition of 
state is rather abstract and not quite unique; therefore, 
we shall indicate in each particular case what the state 
variables are. 

Particularly important among the thermodynamical 
states of a system are the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstates of equilibrium. These 
states have the property of not varying so long zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the 
external conditions remain unchanged. Thus, for instance, 
a gas enclosed in a container of constant volume is in 
equilibrium when its pressure is constant throughout and 
its temperature is equal to that of the environment. 

Very often we shall have to consider transformations of a 
system from an initial state to a final state through a 
continuous succession of intermediate states. If the state 
of the system can be represented on a (V, p) diagram, such tl 
transformation will be represented by a curve connecting 
the two points that represent the initial and final states. 

A transformation is said to be reversible when the succes- 
sive states of the transformation differ by infinitesimals from 
equilibrium states. A reversible transformation can there- 
fore connect only those initial and final states which are 
states of equilibrium. A reversible transformation can be 
realized in practice by changing the external conditions so 
slowly that the system has time to adjust itself gradually 
to the altered conditions. For example, we can produce a 
reversible expansion of a gas by enclosing it in a cylinder 
with a movable piston and shifting the piston outward very 
slowly. If we were to shift the piston rapidly, currents 
would be set up in the expanding gaseous mass, and the 
intermediate states would no longer be states of equilibrium. 

If we transform a system reversibly from an initial state A 
to a final state B, we can then take the system by means of 
the reverse transformation from B to A through the same 
succession of intermediate states but in the reverse order. 
To do this, we need simply change the conditions of the 
environment very slowly in a sense opposite to that in the 
original transformation. Thus, in the case of the gas 
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discussed in the preceding paragraph, we may compress it 
again to its original volume and bring it back to its initial 
state by shifting the piston inward very slowly. The 
compression occurs reversibly, and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas passes through 
the same intermediate states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas it did during the expansion. 

During a transformation, the system can perform positive 
or negative external wonk; that is, the system can do work 
on its surroundings or the surroundings can do work on the 
system. As an example of this, we consider a body enclosed 
in a cylinder having a movable piston of area S at one 
end (Figure 1). If p is the pressure of the body against the 
walls of the cylinder, t,hen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp$ is the force 
exerted by the body on the piston. If the 
piston is shifted an infinitesimal distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdh, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA_ _ _ _ _ _  _ _ _ _ _ _  
an infinitesimal dL amount = pSdh, of work, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA_)jj 
is performed, since the displacement is paral- 
lel to the force. But Sdh is equal to the in- 
crease, dV, in volume of the system. Thus, 
we may write' : 

dL = pdV. (3) Fig. 1. 

1 I t  is obvious that (3) is generally valid no matter what the shape of 
the container may be. Consider a body at the uniform pressure p, enclosed 
in an irregularly shaped container A (Figure 2). Consider now an infini- 
tesimal transformation of our system during which the walls of the con- 
tainer move from the initial position A to  the final position B, thus permit 
ting the body inside the container zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto expand. Let do be a surface element 
of the container, and let dn be the displacement of this element in the 
direction normal t o  the surface of the container. The work performed on 
the surface element & by the pressure p during the displacement of the 
container from the Situation A t o  the situation B is obviously p & dn. 
The total amount of work performed during the infinitesimal transforma- 
tion is obtained by integrating the above expression over allsthe surface 4 of 
the container; since p is a constant, we obtain: 

dL = p f & dn. 

It is now evident from the figure that the variation dV of the volume of the 
container is given by the surface integral, 

dV = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 & dn. 

Comparing these two equations, we obtain (3). 



6 ‘L’HEItNIODYNAMIC SYSTEMS 

For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa finite transformation, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwork donc by the system 
is obtained by integrating equation (3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ , H  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 

where the integral is taken over the entire transformation. 
When the state of the system can be represented on a 

(V, p) diagram, the work 
performed during a trans- 
formation has a simple 
geometrical representa- 
tion. We consider a trans- 
formation from an initial 
state indicated by the point 
A to a final state indicated 
by the point B (Figure 3). 
This transformation will be 
represented by a curve con- 
necting A and B the shape 

Fig. 2. 

of which depends on the type 
of transformation considered. 
The work done during this 
transformation is given by the 
integral 

L = 6:”pdv, (5) 

where V ,  and V, are the vol- 

states A and B. This integral, 
and hence the work done, can 
be represented geometrically by the shaded area in the 
figure. 

Transformations which are especially important are those 
for which the initial and final states are the same. These are 
called cyclical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtransformations or cycles. A cycle, therefore, 
is a transformation which brings the system back to its 
initial state. If the state of the system can be represented 
on a (V, p) diagram, then a cycle can be represented on 

umes corresponding to the V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Yi 

Fig. 3. 
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this diagram by a closed curve, such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the curve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAABCD 
(Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4). 

The work, L, performed by the system during the cyclical 
transformation is given geometrically by the area enclosed 
by the curve representing the cycle. Let A and C be the 
points of minimum and maximum abscissa of our cycle, 
and let their projections on the V-axis be A‘ and C’, re- 
spectively. The work performed during the part ABC of the 
transformation is positive and equal to the area ABCC’A’A. 
The work performed during the rest of the transforma- 
tion, CDA, is negative and equal in amount to the area 
CC’A’ADC. The total amount of positive work done is 
equal to the difference between these two areas, and hence is 
equal to the area bounded by the cycle. 

It should be noted that the total 
work done is positive because we 
performed the cycle in a clockwise 
direction. If the same cycle is per- 
formed in a counterclockwise direc- 
tion, the work will again be given I I 1 

by the area bounded by the cycle, 
but this time it will be negative. I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V A transformation during which A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 
the system performs no external Fig. 4. 

work is called an isochore tramfortnation. If we assume 
that the work dL performed during an infinitesimal 
element of the transformation is given, according to equa- 
tion (3), by pdV, we find for an isochore transformation 
dV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, or, by integration, V = a constant. Thus, an 
isochore transformation in this case is a transformation at 
constant volume. This fact justifies the name isochore. 
It should be noticed, however, that the concept of isochore 
transformation is more general, since it requires that dL = 0 
for the given transformation, even when the work dL cannot 
be represented by equation (3). 

Transformations during which the pressure or the tem- 
perature of the system remains constant are called isobaric 
and isothermal transformations, respectively. 

I 
I 

I I 
I 
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2. Ideal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor perfect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases. The equation of state of a 

system composed of a certain quantity of gas occupying 
a volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV at the temperature t and pressure p can be 
approximately expressed by a very simple analytical law. 
We obtain the equation of state of a gas in its simplest 
form by changing from the empirical scale of temperatures, 
t ,  used so far to a new temperature scale zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. 

We define T provisionally as the temperature indicated 
by a gas thermometer in which the thermometric gas is kept 
at a very low constant pressure. T is then taken propor- 
tional to the volume occupied by the gas. It is well known 
that the readings of different gas thermometers under these 
conditions are largely independent of the nature of the 
thermometric gas, provided that this gas is far enough from 
condensation. We shall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee later, however (section 9), 
that it is possible to define this same scale of temperatures T 
by general thermodynamic considerations quite independ- 
ently of the special properties of gases. 

The temperature T is called the absolute temperahre. 
Its unit is usually chosen in such 8 way that the temperature 
difference between the boiling and the freezing points of 
water at one atmosphere of pressure is equal to 100. The 
freezing point of water corresponds then, as is well known, 
to the absolute temperature 273.1. 

The equation of state of a system composed of m grams 
of a gas whose molecular weight is M is given approximately 
by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

m 
M PV I: - RT. 

R is a universal constant (that is, it has the same value for all 
gases: R = 8.314 X 10' erg/degrees, or (see section 3) 
R = 1.986 cal/degrees). Equation (6) is called the equation 
of state of an ideal or a perfect gas; it includes the laws of 
Boyle, Gay-Lussac, and Avogadro. 

No real gas obeys equation (6) exactly. An ideal sub- 
stance that obeys equation (6) exactly is called an ideal 
or a perfect gas. 
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For a gram-molecule (or mole) of a gas (that is, for a 

number of grams of a gas equal numerically to its molecular 
weight), we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM, so that (6) reduces to: 

pV = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBART. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7) 

From (6) or (7) we can obtain the density p of the gas in 
terms of the pressure and the temperature : 

For an isothermal transformation of an ideal gas (trans- 
formation at constant temperature), we have : 

p v  = cmtiant. 

On the (V, p) diagram the isothermal transformations of an 
ideal gas are thus represented by equilateral hyperbolas 
having the V- and p-axes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas asymptotes. 

We can easily calculate the work performed by the gas 
during an isothermal expansion from an initial volume V1 
to a final volume V2. This is given (making use of (5)  and 
(6)) by: 

where p l  and p2 are the initial and final pressures, respec- 
tively. For one mole of gas, we have: 

A mixture of several gases is governed by laws very similar 
to those which are obeyed by a chemically homogeneous 
gas. We shall call the partial pressure of a component of a 
mixture of gases the pressure which this component would 
exert if it alone filled the volume occupied by the mixture 
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at the same temperature as that of the mixture. We can 
now state Dalton’s law for gas mixtures in the following 
form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The pressure exerted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby a mixture of gases & zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeqwll to the 
sum of the partial pressures of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall the components present 
in the mixture. 

This law is only approximately obeyed by real gases, but 
it is assumed to hold exactly for ideal gases. 

Problems 

1. Calculate the work performed by a body expanding from an 
initial volume of 3.12 liters to a ha1 volume of 4.01 liters at the 
pressure of 2.34 atmospheres. 

2. Calculate the pressure of 30 grams of hydrogen inside a 
container of 1 cubic meter at the temperature of 18°C. 

3. Calculate the density and specific volume of nitrogen at the 
temperature of 0°C. 

4. Calculate the work performed by 10 grams of oxygen 
expanding isothermally at 20°C from 1 to .3 atmospheres of 
pressure. 



CHAPTER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 

The First Law of Thermodynamics 
3. The statement of the first law of thermodynamics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The first law of thermodynamics is essentially the statement 
of the principle of the conservation of energy for thermo- 
dynamical systems. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs such, it may be expressed by stating 
that the variation in energy of a system during any trans- 
formation is equal to the amount of energy that the system 
receives from its environment. In order to give a precise 
meaning to this statement, it is necessary to d e h e  the 
phrases “energy of the system” and “energy that the 
system receives from its environment during a transfor- 
mation.” 

In purely mechanical conservative systems, the energy is 
equal to the sum of the potential and the kinetic energies, 
and hence is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa function of the dynamical state of the system; 
because to know the dynamical state of the system is 
equivalent to knowing the positions and velocities of all the 
mass-points contained in the system. If no external forces 
are acting on the system, the energy remains constant. 
Thus, if A and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB are two successive states of an isolated 
system, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUA and UB are the corresponding energies, then 

When external forces act on the system, UA need no 
longer be equal to UB. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- L is the work performed by the 
external forces during a transformation from the initial 
state A to the final state B (+L is the work performed by 
the system), then the dynamical principle of the conserva- 
tion of energy takes the form: 

U B  - U A  = -L. (11) 

From this equation it follows that the work, L, performed 
during the transformation depends only on the extreme 

UA = U B .  

11 
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states A and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB of the transformation and not on the par- 
ticular way in which the transformation from A to B is 
performed. 

Let us assume now that we do not know the laws of 
interaction among the various mass-points of our dynamical 
system. Then we cannot calculate the energy of the system 
when it is in a given dynamical state. By making use of 
equation ( l l ) ,  however, we can nevertheless obtain an 
empirical definition of the energy of our system in the 
following way zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

We consider an arbitrarily chosen state 0 of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAour system 
and, by definition, take its energy to be zero: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

uo = 0. (12) 

We shall henceforth refer to this state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the standard state 
of our system. Consider now any other state A ;  by apply- 
ing suitable external forces to our system, we can transform 
it from the standard state (in which we assume it to be 
initially) to the state A. Let L A  be the work performed by 
the system during this transformation ( - L A  is, as before, 
the work performed by the external forces on the system). 
Applying (1 1) to this transformation, and remembering (12), 
we find that 

U A  = - L A .  (13) 

This equation can be used as the empirical definition of the 
energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,, of our system in the state A. 

It is obviously necessary, if definition (13) is to have a 
meaning, that the work LA depend only on the states 0 and 
A and not on the special way in which the transformation 
from 0 to A is performed. We have already noticed that 
this property follows from (11). 'If one found experi- 
mentally that this property did not hold, it would mean 
either that energy is not conserved in our system, or that, 
besides mechanical work, other means of transfer of energy 
must be taken into account. 
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We shall assume for the present that the work performed 

by our mechanical system during any transformation 
depends only on the initial and final states of the trans- 
formation, so that we can use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(13) as the definition of the 
energy. 

We can immediately obtain (11) from (13) as follows: A 
transformation between any two states A and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB can always 
be performed as a succession of two transformations: first a 
transformation from A to the standard state 0, and then a 
transformation from 0 to B. Since the system performs 
the amounts of work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-LA and +L, during these two 
transformations, the total amount of work performed 
during the transformation from A to B (which is independent 
of the particular way in which the transformation is per- 
formed) is: 

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - L A  + LB. 

From (13) and the analogous equation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U B  = -LB, 

W B  - u, = -L, 

we obtain now: 

which is identical with (11). 
We notice, finally, that the definition (13) of the energy is 

not quite unique, since it depends on the particular choice 
of the standard state 0. If instead of 0 we had chosen a 
different standard state, 0’, we should have obtained a 
different value, U:, for the energy of the state A. It 
can be easily shown, however, that U: and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT7, differ only 
by an additive constant. Indeed, the transformation from 
0’ to A can be put equal to the sum of two transformations: 
one going from 0’ to 0 and the other going from 0 to A. 
The work L: performed by the system in passing from 0’ to 
A is thus equal to: 

L: = Lolo + L A ,  
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALo.,, is the work performed by the system in going 
from 0' to 0. We have now: 

UA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -LA; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu: = -L> ,  

so that 

UA - u: = L O # O ,  

which shows that the values of the energy based on the two 
definitions differ only by the constant Lo.o. 

This indeterminate additive constant which appears in the 
definition of the energy is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas is well known, an essential 
feature of the concept of energy. Since, however, only 
differences of energy are considered in practice, the additive 
constant does not appear in the final results. 

The only assumption underlying the above empirical 
definition of the energy is that the total amount of work 
performed by the system during any transformation depends 
only on the initial and final states of the transformation. 
We have already noticed that if this assumption is contra- 
dicted by experiment, and if we still do not wish to discard 
the principle of the conservation of energy, then we must 
admit the existence of other methods, besides mechanical 
work, by means of which energy can be exchanged between 
the system and its environment. 

Let us take, for example, a system composed of a quantity 
of water. We consider two states A and B of this system at 
atmospheric pressure; let the temperatures of the system in 
these two states be tA and tB, respectively, with tA < tB. 
We can take our system from A to B in two different ways. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

First zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAway: We heat the water by placing it over a flame 
and raise its temperature from the initial value tA to the 
final value tB.  The external work performed by the 
system during this transformation is practically zero. It 
would be exactly zero if the change in temperature were not 
accompanied by a change in volume of the water. Ac- 
tually, however, the volume of the water changes slightly 
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during the transformation, so that a small amount of work is 
performed (see equation (3)). We shall neglect this small 
amount of work in our considerations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Second way: We raise the temperature of the water from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tA to tB by heating it by means of friction. To this end, we 
immerse a small set of paddles attached to a central axle in 
the water, and churn the water by rotating the paddles. 
We observe that the temperature of the water increases 
continuously as long as the paddles continue to rotate. 
Since the water offers resistance to the motion of the paddles, 
however, we must perform mechanical work in order to 
keep the paddles moving until the final temperature tB is 
reached. Corresponding to this considerable amount of 
positive work performed by the paddles on the water, there 
is an equal amount of negative work performed by the water 
in resisting the motion of the paddles. 

We thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee that the work performed by the system in 
going from the state A to the state B depends on whether 
we go by means of the first way or by means of the second 
way. 

If we assume that the principle of the conservation of 
energy holds for our system, then we must admit that the 
energy that is transmitted to the water in the form of the 
mechanical work of the rotating paddles in the second way 
is transmitted to the water in the first way in a nonmechani- 
cal form called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAheat. We are thus led to the fact that heat 
and mechanical work are equivalent; they are two different 
aspects of the same thing, namely, energy. In what follows 
we shall group under the name of work electrical and 
magnetic work as well as mechanical work. The first two 
types of work, however, are only seldom considered in 
thermodynamics. 

In order to express in a more precise form the fact that 
heat and work are equivalent, we proceed as follows. 

We first enclose our system in a container with non-heat- 
conducting walls in order to prevent exchange of heat with 
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the environment.' We assume, however, that work can be 
exchsnged between the system and its environment (for 
example, by enclosing the system in a cylinder with non- 
conducting walls but with a movable piston at one end). 
The exchange of energy between the inside and the outside 
of the container can now occur only in the form of work, and 
from the principle of the conservation of energy it follows 
that the amount of work performed by the system during 
any transformation depends only on the initial and the 
final states of the transformation.2 

We can now use the empirical definition (13) of the energy 
and define the energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU as a function of the state of the 
system only? Denoting by AU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= UB - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACIA the variation 
in the energy of our system that occurs during a transfor- 
mation from the state A to the state B, we can write 
equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 l), which is applicable to our thermally insulated 
system, in the form: 

A U + L = O .  (14) 

If our system is not thermally insulated, the left-hand side 
of (14) will in general be different from zero because there 
can then take place an exchange of energy in the form of 

1 We need only mention here that no perfect thermal insulators exist. 
Thermal insulation can be obtained approximately, however, by means of 
the well-known methods of Calorimetry. 

2 I t  would be formally more exact, although rather abstract, to  state the 
content of the preceding sentences zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas follows: 

Experiments show that there exist certain substances called them?al 
insulators having the following properties: when a system is completely 
enclosed in a thermal insulator in such a way that work can be exchanged 
between the inside and the outside, the amount of work performed by the 
system during a given transformation depends only on the initial and ha1 
states of the transformation. 

* It should be noticed here that if definition (13) of the energy of a state 
A of our system is to be applicable, it must be possible to transform the 
system from the standard state 0 to the state A while the system is ther- 
mally insulated. We shall show later (see section 13) that such a trans- 
formation is not always possible without an exchange of heat. In such 
cases, however, the opposite transformation A --.) 0 can always be per- 
formed. The work performed by the system during this reverse transfor- 
mation is -LA ; we can therefore apply (13) to such cases also. 
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heat. We shall therefore replace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(14) by the more general 
equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

AU + L = Q, (15) 

where Q is equal to zero for transformations performed on 
thermally insulated systems and otherwise, in general, is 
different from zero. 

Q can be interpreted physically as the amount of energy 
that is received by the system in forms other than work. 
This follows immediately from the fact that the variation 
in energy, AU, of the system must be equal to the total 
amount of energy received by the system from its environ- 
ment. But from (15) 

AU = -L + Q, 

and - L is the energy received in the form of work. Hence, 
Q stands for the energy received in all other forms. 

By definition, we shall now call Q the amount of heat 
received by the system during the transformation. 

For a cyclic transformation, equation (15) takes on a very 
simple form. Since the initial and final states of a cycle are 
the same, the variation in energy is zero: AU = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. Thus, 
(15) becomes: 

L = Q. (16) 

That is, the work performed by a system during a cyclic 
transformation is equal to the heat absorbed by the system. 

It is important at this point to establish the connection 
between this abstract definition of heat and its elementary 
calorimetric definition. The calorimetric unit of heat, the 
calorie, is defined as the quantity of heat required to raise 
the temperature of one gram of water at atmospheric 
pressure from 14OC to 15°C. Thus, to raise the temperature 
of M grams of water from 14°C to 15OC at atmospheric 
pressure, we require m calories of heat. Let Aue denote the 
variation in energy of one gram of water, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  the work 
done as a result of its expansion when its temperature is 
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raised from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14°C to 15°C at atmospheric pressure. For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 
grams of water, the variation in energy and the work done 
are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

At', = mAu, ; L, = ml,. (17) 

We now consider a system S which undergoes a transfor- 
mation. In order to measure the heat exchanged between 
the system and the surrounding bodies, we place the system 
in contact with a calorimeter containing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm grams of water, 
initially at 14°C. We choose the mass of the water zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin such a 
way that after the transformation has been completed, the 
temperature of the water is 15°C. 

Since an ideal calorimeter is perfectly insulated thermally, 
the complex system composed of the system S and the 
calorimetric water is thermally insulated during the trans- 
formation. We may therefore apply equation (14) to this 
transformation. The  total variation in energy is equal 
to the sum: 

AU = AU, + AU,, 

where AU, is the variation in energy of the system 8, and 
AU, is the variation in energy of the calorimetric water. 
Similarly, for the total work done, we have:. 

L = La + L , .  

From (14) we have, then, 

AUa + AU, + La + Lo = 0; 

AUB + La = -(Aue + Lo) 

= -m(Au, + Z,). 
But from the definition (15), AU, + L, is the amount of 
heat Qa received by the system S. Thus, we have : 

QS = -m(Auc + L). (18) 
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We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee from this that the amount of heat is proportional 
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm. 

On the other hand, in calorimetry the fact that m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgrams of 
calorimetric water have been heated from 14°C to 15°C 
means that m calories of heat have been transferred from 
the system S to the calorimeter; that is, that the system S 
has received -m calories, or that Q8, expressed in calories, 
is equal to -m. We see also, by comparison with (1@, 
that the amount of heat, as given by the definition (15), is 
proportional to the amount when it is expressed in calories; 
the constant of proportionality is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Auc + Zc). 

According to (15), heat is measured in energy units (ergs). 
The constant ratio between ergs and calories has been 
measured by many investigators, who have found that 

(19) 

In what follows we shall generally express heat measure- 
ments in energy units. 

Quation (15), which is a precise formulation of the 
equivalence of heat and work, expresses the $mt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlaw of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
thermodynamics. 

1 calorie = 4.185 X lo' ergs. 

4. The application of the first law to systems whose 
states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be represented on a (V, P) diagram. We shall 
now apply the first law of thermodynamics to a system, 
such as a homogeneous fluid, whose state can be defined in 
terms of any two of the three variables Y, p, and T. Any 
function of the state of the system, as, for example, its 
energy, U, will then be a function of the two variables 
which have been chosen to represent the state. 

In order to avoid any misunderstanding as to which are 
the independent variables when it is necessary to differ- 
entiate partially, we shall enclose the partial derivative 
symbol in a parenthesis and place the variable that is to 
be held constant in the partial differentiation at the foot - 

of the parenthesis. Thus, (g) means the derivative of 
V 
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U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith respect to T, keeping zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV constant, when T and V 
are taken as the independent variables. Notice that the 

above expression is in general different from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(;;) - ?because 

in the first case the volume is kept constant while in the 
second case the pressure is kept constant. 

We now consider an infinitesimal transformation of our 
system, that is, a transformation for which the independent 
variables change only by infinitesimal amounts. We apply 
to this transformation the first law of thermodynamics as 
expressed by equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(15). Instead of ACJ, L ,  and Q, we 
must now write dU, dL, and dQ, in order to point out the 
infinitesimal nature of these quantities. We obtain, then, 

dU + dL = dQ. (20) 

P 

Since for our system, dL is given by (3), we have: 

dU + pdV = dQ. 

If we choose T and V as our independent 
becomes a function of these variables, so that: 

dU = ( g ) v d T  + r$) dlr,  

and (21) becomes: 

(21) 

variables, U 

Similarly, taking T and p as independent variables, we have: 

Finally, taking V and p as independent variables, we obtain: 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthermal capacity of a body is, by definition, the ratio, 
dQ/dT, of the infinitesimal amount of heat dQ absorbed by 
the body to the infinitesimal increase in temperature dT 
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produced by this heat. In general, the thermal capacity 
of a body zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill be different according zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas to whether the body 
is heated at constant volume or at constant pressure. 
Let Cvand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC ,  be the thermal capacities at constant volume 
and at constant pressure, respectively. 

A simple expression for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACv can be obtained from (22). 
For an infinitesimal transformation at constant volume, 
dV = 0; hence, 

CP = 

Similarly, using (23), 
for C, : 

(25) 

we obtain the following expression 

cp  = @), = (g), + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPeg),. 
The second term on the right-hand side represents the 

effect on the thermal capacity of the work performed during 
the expansion. An analogous term is not present in (25), 
because in that case the volume is kept constant so that no 
expansion occurs. 

The thermal capacity of one gram of a substance is called 
the specifi heat of that substance; and the thermal capacity 
of one mole is called the molecular heat. The specific and 
molecular heats at constant volume and at constant pressure 
are given by the formulae (25) and (26) if, instead of taking 
an arbitrary amount of substance, we take one gram or 
one mole of the substance, respectively. 

5. The application of the first law to gases. In the case 
of a gas, we can express the dependence of the energy on the 
state variables explicitly. We choose T and V as the 
independent variables, and prove first that the energy is a 
function of the temperature T only and does not depend 
on the volume V. This, like many other properties of 
gases, is only approximately true for real gases and is 
assumed to hold exactly for ideal gases. In section 14 we 
shall deduce from the second law of thermodynamics the 
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result that the energy of any body which obeys the equation 
of state, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7), of an ideal gas must be independent of the 
volume V. At this point, however, we shall give an experi- 
mental proof of this proposition for a gas; the experiment 
was performed by Joule. 

Into a calorimeter Joule placed a container having two 
chambers, A and B, connected by a tube (Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5).  He 
filled the chamber A with a gas and evacuated B, the two 
chambers having first been shut off from each other by a 
stopcock in the connecting tube. After thermal equilibrium 
had set in, as indicated by a thermometer placed within the 
calorimeter, Joule opened the stopcock, thus permitting 
the gas to flow from A into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB until the pressure everywhere 

Fig. 5, 

in the container was the same. 
He then observed that there was 
only a very slight change in the 
reading of the thermometer. 
Thismeant that there had been 
practically no transfer of heat 
from the calorimeter to the cham- 
ber or vice versa. It is assumed 
that if this experiment could be 
performed with an ideal gas, 

there would be no temperature change at all. 
We now apply the first law to the above transformation. 

Since Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, we have from equation (15) for the system 
composed of the two chambers and the enclosed gas: 

AU + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL = 0, 

where L is the work performed by the system and AU is the 
variation in energy of the system. Since the volumes of the 
two chambers A and B composing our system do not change 
during the experiment, our system can perform no external 
work, that is, L = 0. Therefore, 

AU = 0 ;  

the energy of the system, and, hence, the energy of the gas, 
do not change. 
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Let us now consider the process as a whole. Initially 

the gas occupied thevolume A, and at the end of the process 
it filled the two chambers A and B; that is, the transforma- 
tion resulted in a change in volume of the gas. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT$e experi- 
ment showed, however, that there was no resultant change 
in the temperature of the gas. Since there was no variation 
in energy during the process, we must conclude that a 
variation in volume at constant temperature produces no 
variation in energy. In other words, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhe energy of an ided 
gas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis a function of the temperature Only and not a function of 
the volume. We may therefore write for the energy of an 
ideal gas: 

U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= U(T). (27) 

In order to determine the form of this function, we make use 
of the experimental result that the specific heat at constant 
volume of a gas depends only slightly on the temperature; 
we shall assume that for an ideal gas the specific heat is 
exactly constant. In this section we shall alwabs refer to 
one mole of gas; Cv and C, will therefore denote t e molecu- 
lar heats at constant volume and at constan, P pressure, 

that the volume is to be kept constant in 

respectively. 

I 

Since U depends only on T, it is not necess 

(25); so that, for an ideal gas, we may write: 

(28) 

Since Cv is assumed to be constant, we can intebate at once, 
and we get: 

U = CVT + W, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(29) 

where W is a constant of integration which represents the 
energy left in the gas at absolute zero temperature.' 

4 This additive constant dec ts  the ha1 results of the calculations only 
when chemical transformations or changes of the states of aggregation 
of the substances are involved. (See, for example, Chdpter VI.) In all 
other cases, one may place the additive constant equal to zero. 
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For an ideal gas, equation (21), which expresses the first 

law of thermodynamics for infinitesimal transformations, 
takes on the form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C d T  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ pdV = dQ. (30) 

Differentiating the characteristic equation (7) for one mole 
of an ideal gas, we obtain : 

pdV + Vdp = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARdT. (31) 

(Cv + R)dT - Vdp = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdQ. (32) 

Since dp = 0 for a transformation at constant pressure, 

Substituting this in (30), we find: 

this equation gives us: 

cp = f$) = CV + R. (33) 

That is, the difference between the molecular heats of a gas 
at constant pressure and at constant volume is equal to the 
gas constant R. 

The same result may also be obtained from (26), (29), and 
(7). Indeed, for an ideal gas we have from (29) and (7): 

a RT R (!!) P =d_v=cv; dT (3p = (zTT)p = p' 
Substituting these expressions in (26), we again obtain (33). 

It can be shown by an application of kinetic theory that: 

Cv = + R for a monatomic gas; and 
Cv = g R for a diatomic gas. (34) 

Assuming these values, which are in good agreement with 
experiment, we deduce from (33) that: 

Cp = 8 R for a monatomic gas; and 
Cp = 4 R for a diatomic gas. (35) 

If we place 
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we also obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

K = 9 for a monatomic gas; and 
K = 5 for a diatomic gas. (37) 

6. Adiabatic transformations of a gas. A transformation 
of a thermodynamical system is said to be adiabatic if it is 
reversible and if the system is thermally insulated so that no 
heat can be exchanged between it and its environment 
during the transformation. 

We can expand or compress a gas adiabatically by enclos- 
ing it in a cylinder with non-heat-conducting walls and 
piston, and shifting the piston outward or inward very 
slowly. If we permit a gas to expand adiabatically, it does 
external work, so that L in equation (15) is positive. Since 
the gas is thermally insulated, Q = 0, and, hence, AU must 
be negative. That is, the energy of a gas decreases during 
an adiabatic expansion. Since the energy is related to the 
temperature through equation (29), a decrease in energy 
means a decrease in the temperature of the gas also. 

In order to obtain a quantitative relationship between 
the change in temperature and the change in volume 
resulting from an adiabatic expansion of a gas, we observe 
that, since dQ = 0, equation (30) becomes: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CvdT + pdV = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 

Using the equation of state, pV = RT, we can eliminate p 
from the above equation and obtain: 

CvdT + Y d V  = 0, 

or 

d T +  R d V  - --=(I. 
T Cv V 

Integration yields : 

R 
C" 

log T + - log V = constant. 
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Changing from logarithims to numbers, we get: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
TVC' = constant. 

Making use of (36), we can write the preceding equation 
in the form: 

TV6-' = constant. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(38) 

This equation tells us quantitatively how an adiabatic 
change in the volume of an ideal gas determines the change 
in its temperature. If, for example, we expand a diatomic 
gas adiabatically to twice its initial volume, we find from 
(38) (assuming, according to (37), that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK = 4) that the 
temperature is reduced in the ratio 1 : 2''' = 1 : 1.32. 

Using the equation of state, pV = RT, we can put equa- 
tion (38) of an adiabatic transformation in the following 
forms: 

pvlC = constant. (39) 

T 
= constant. - 

I[ 

P 
Equation (39) is to be compared with the equation, 

pV = constant, 

of an isothermal transformation. On the (V, p) diagram, 
the isothermals are a family of equilateral hyperbolae; the 
adiabatic lines represented by equation (39), are qualita- 
tively similar to hyperbolae, but they are steeper because 
K > 1. 

Isothermal and adiabatic curves are represented in 
figure 6, the former by the solid lines and the latter by the 
dotted lines. 

An interesting and simple application of the adiabatic 
expansion of a gas is the calculation of the dependence of the 
temperature of the atmosphere on the height above 8ea 
level. The principal reason for this variation of tempera- 
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consider a column of air of unit 
cross section, and focus our 
attention on a slab, of height zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dh, having its lower face at a 
distance h above sea level. If 
p is the pressure on the lower 
face, then the pressure on the 
upper face will be p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ dp, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV 

or, remembering (S), 

where M is the average molecular weight of air; M = 28.88. 
The logarithmic derivative of (40) gives us: 
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dT K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1dp - -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T--- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK P '  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

This, together with the previous equation, gives: 

dT R - 1gM -= - - -  
dh K R '  

Assuming 

R = 3; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg = 980.665; M = 28.88; R = 8.214 X lo', 
we obtain: 

-- dT - - 9.8 X lO-'degrees/cm. 
dh 

= - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8.8 degrees/kilometer. 

This value is actually somewhat larger than the observed 
average decrease of temperature with altitude. The dif- 
ference is mainly owing to our having neglected the effect 
of condensation of water vapor in the expanding masses 
of air. 

Problems 
1. Calculate the energy variation of a system which performs 

3.4 X lo8 ergs of work and absorbs 32 calories of heat. 
2. How many calories are absorbed by 3 moles of an ideal gas 

expanding isothermally from the initial pressure of 5 atmaphe? 
to the final pressure of 3 atmospheres, at the temperature of O"C? 

3. One mole of a diatomic ideal gas performs a transformation 
from an initial state for which temperature and volume are, 
respectively, 291°K and 21,000 cc. to a final state in which 
temperature and volume are 305°K and 12,700 cc. The trans- 
formation is represented on the (V,  p) diagram by ti straight line. 
To find the work performed and the heat absorbed by the system. 

4. A diatomic gas expands adiabatically to a volume 1.35 
times larger than the initial volume. The initial temperature is 
18°C. Find the final temperature. 
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The Second Law of Thermodynamics 
7. The statement of the second law of thermodynamics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The first law of thermodynamics arose as the result of the 
impossibility of constructing a machine which could create 
energy. The first law, however, places no limitations on the 
possibility of transforming energy from one form into 
another. Thus, for instance, on the basis of the first law 
alone, the possibility of transforming heat into work or 
work into heat always exists provided the total amount of 
heat is equivalent to the total amount of work. 

This is certainly true for the transformation of work into 
heat: A body, no matter what its temperature may be, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
can always be heated by friction, receiving an amount of 
energy in the form of heat exactly equal to the work done. 
Similarly, electrical energy can always be transformed into 
heat by passing an electric current through a resistance. 
There are very definite limitations, however, to the pos- 
sibility of transforming heat into work. If this were not 
the case, it would be possible to construct a machine which 
could, by cooling the surrounding bodies, transform heat, 
taken from its environment, into work. 

Since the supply of thermal energy contained in the soil, 
the water, and the atmosphere is practically unlimited, 
such a machine would, to all practical purposes, be equiva- 
lent to a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAperpetuum mobile, and is therefore called a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAper- 
petuum mobile of the second kind. 

The second law of thermodynamics rules out the pos- 
sibility of constructing a perpetuum mobile of the second 
kind. In order to give a precise statement of this law, we 
shall define what is meant by a source of heat of a given 
temperature. 

A body which is at the temperature t throughout and is 
29 
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conditioned in such a way that it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan exchange heat but no 
work with its surroundings is called a source of heatof 
temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs examples of this, we may consider 
bodies enclosed in rigid containers or bodies which undergo 
negligible variations of volume. A mass of water which is 
at the temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt throughout may be taken as a source of 
heat, since its volume remains practically constant. 

We can now state the second law of thermodynamics in 
the following form: 

A transformdim whose only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$nul result is to t r a m j m  into 
work heat extracted f r om a source which is at the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtem- 
perature throughout is impossz'ble.' (Postulate of Lord 
Kelvin.) 

The experimental evidence in support of this law consists 
mainly in the failure of all efforts that have been made to 
construct a perpetuum mobile of the second zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkind. 

The second law can also be expressed as follows: 

A transformation whose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAonly $final result is to transfer heat 
from a body at a given temperature to a body at a higher tem- 
perature is impossible. 

Until now we have made use only of an empirical tem- 
perature scale. In order to give a precise meaning to the 
postulate of Clausius, we must first define what we mean 

(Postulate of Clausius.) 

1 An essential part of Lord Kelvin's postulate is that the transformation 
of the heat into work be the only final result of the process. Indeed, it is 
not impossible to transform into work heat taken from a source all at one 
temperature provided some other change in the state of the system is 
present at the end of the process. 

Consider, for example, the isothermal expansion of an ideal gas that is 
kept in thermal contact with a source of heat at the temperature T. Since 
the energy of the gas depends only on the temperature, and the temperature 
does not change during the process, we must have AU = 0. From the 
first law, equation (15), we obtain, then, L = Q. That is, the work, L, 
performed by the expanding gas is equal to the heat Q which it abaorba 
from the source. There ie thus a complete transformation of heat, Q, into 
work L. This, however, is not a contradiction of Kelvin's postulate, 
since the transformation of Q into L is not the only fins1 result of the process. 
At the end of the process, the gas occupies a volume larger than it did at 
the beginning. 
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when we say that one body is at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa higher temperature than 
another body. If we bring two bodies at different temper- 
atures into thermal contact, heat flows spontaneously by 
conduction from one of these bodies to the other. By 
definition, we shall now say that the body away from which 
heat flows is at a higher temperature than the other body. 
With this understanding, we can now state the postulate of 
Clausius as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

If heatfEoz0s by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconduction from a body A to another body B, 
then a transformation whose only Jim? result is to transfer 
heat from B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto A is impos&bk. 

We must now prove the equivalence of the Clausius and 
the Kelvin postulates. To do this we shall prove that if the 
Clausius postulate were nW valid, the Kelvin postulate 
would not be valid, and vice versa. 

Let us first suppose that Kelvin’s postulate were not 
valid. Then we could perform a transformation whose 
only ha1 result would be to transform completely into 
work a definite amount of heat taken from a single source 
at the temperature t l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. By means of friction we could then 
transform this work into heat again and with this heat raise 
the temperature of a given body, regardless of what its 
initial temperature, tz. ,  might have been. In particular, we 
could take tr to be higher than t 1  . Thus, the only final 
result of this process would be the transfer of heat from one 
body (the source at the temperature tl) to another body at a 
higher temperature, t , .  This would be a violation of the 
Clausius postulate. 

The second part of the proof of the equivalence of the 
two postulates requires first a discussion of the possibilities 
of transforming heat into work. We give this discussion 
in the next section. 

8. The Camot cycle. Since, according to Kelvin’s pos- 
tulate, it is impossible to transform into work heat taken 
from a source at a uniform temperature by a transformation 
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that leaves no other change in the systems involved in it, we 
need at least two sources at different temperatures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt l  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtt 
in order to perform such a transformation. I€ we have two 
such sources, we can transform heat into work by the 
following process, which is called a Curnot cyck. 

Consider a fluid whose state can be represented on a 
(V, p) diagram, and consider two adiabatics and two iso- 
thermals corresponding to the temperatures t l  and t 2 .  
These four curves intersect each other in the four points A, 
B, C, and D, as shown in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. Let AB and CD be the 
two isothermal lines having the temperatures t t  and t l ,  
respectively. AC and BD are the two adiabatic lines. 

The reversible cyclic transfor- 
mation ABDCA is called a Cur- 
not cycle. 

The following example will il- 
lustrate how a Carnot cycle can 
actually be performed. Ween- 
close our fluid in a cylindrical 
container which has nonconduct- 
ing lateral walls and a noncon- 
ducting piston at one end, so 

that heat can leave or enter the cylinder only through 
the other end (the base of the cylinder), which we take 
to be heat-conducting. Let tl and It be two sources of 
heat that are so large that their temperatures remain 
sensibly unaltered when any finite amounts of heat are 
added to or subtracted from them. Let t t  be larger than t l .  

We assume that initially the volume and the pressure of 
the fluid inside the cylinder are V4 and p , ,  respectively, 
corresponding to the point A in Figure 7. Since this point 
lies on the isothermal corresponding to the temperature t t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, 
the temperature of the fluid is equal to t2 initially. If, 
therefore, we place the cylinder on the source t 2 ,  no transfer 
of heat will occur (Figure 8, A). Keeping the cylinder on 
the source t o ,  we raise the piston very slowly and thus 
increase the volume reversibly until it has reached the value 

Fig. 7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIk:, 
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VB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, B). This part of the transformation is rep- 
resented by the segment AB of the isothermal t 2 .  The 
state of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAour system is now represented by the point B in 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. 

We now place the cylinder on a thermal insulator and 
increase the volume very slowly until it has reached the 
value VD (Figure 8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0). Since the system is thermally 
insulated during this process, the process is represented in 
Figure 7 by the adiabatic segment BD. During this adia- 
batic expansion, the temperature of the fluid decreases 
from t o  to t , ,  and the state of the system is now given by 
the point D in Figure 7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

El 
A C A1 

Placing the cylinder on the source t l  , we now compress 
the fluid very slowly along the isothermal DC (Figure 7) 
until its volume has decreased to V ,  (Figure 8, C). Finally, 
we place the cylinder on the thermal insulator again and 
very slowly compress the fluid adiabatically along the 
segment CA until its temperature has increased to t r .  
The system will now be at its initial state again, which is 
given by the point A in Figure 7 (Figure 8, A) .  

During the isothermal expansion represented by the 
segment AB, the system absorbs an amount of heat Qr 
from the source t 2 .  During the isothermal compression 
represented by the segment DC, the system absorbs an 
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amount of heat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Q1 from the source zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; that is, it gives up 
an amount of heat Q1 to the source zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt i .  Thus, the total 
amount of heat absorbed by the system during the cycle is 
Qt - Q1. Let L be the amount of work done by the 
system during the transformation. This work is equal to 
the area bounded by the cycle in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. Making use of 
equation (16), which expresses the first law of thermo- 
dynamics for a cycle, we have: 

L = Qz - 421 .  (43) 
This equation tells us that only part of the heat that is 

absorbed by the system from the source at the higher 
temperature is transformed into work by the Carnot cycle; 
the rest of the heat, Q1, instead of being transformed into 
work, is surrendered to the source at the lower temperature. 

We define the e$iciency of the Carnot cycle as the ratio, 

L Q 2 - & 1 - , - -  Qi 

t l =a*= - -  Qz Q2’ 

of the work performed by the cycle to the heat absorbed at 
the high temperature source. 

Since the Carnot cycle is reversible, it can be carried out 
in the reverse direction. This can be done by performing 
all the transformations described above in the opposite 
sense. When this is done, the cycle absorbs the work L 
instead of producing it; and it absorbs the amount of heat 
Q1 at the temperature t l  and gives up the amount of heat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Qt at the temperature t t  . 

As a first application of the Carnot cycle, we shall com- 
plete the proof of the equivalence of the Clausius and the 
Kelvin postulates by showing that if the Clausius postulate 
were not valid, Kelvin’s postulate would not be valid either. 

Let us assume, in contradiction to Clausius’ postulate, 
that it were possible to transfer a certain amount of heat 
Q2 from a source at the temperature t l  to a source at a 
higher temperature t t  in such a way that no other change in 
the state of the system occurred. With the aid of a Carnot 
cycle, we could then absorb this amount of heat Qt and 
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produce an amount of work L. Since the source at the 
temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtt receives and gives up the same amount of 
heat, it suffers no final change. Thus, the process just 
described would have as its only final result the transfor- 
mation into work of heat extracted from a source which is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
at the same temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt l  throughout. This is contrary 
to the Kelvin postulate. 

9. The absolute thermodynamic temperature. In the 
preceding section we described a reversible cyclic engine, 
the Carnot cycle, which performs an amount of work L 
during each of its cycles by absorbing a quantity of heat Qt 
from a source at the temperature t t  and surrendering a 
quantity of heat Q1 to a source at the lower temperature t l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 
We shall say that such an engine works between the tem- 
peratures ti and t t  . 

Consider now an engine working between the tempera- 
tures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1  (lower) and tt (higher). Let L be the work per- 
formed by the engine during each cycle, and let &% and Q1 
be the amounts of heat per cycle absorbed at the tempera- 
ture tt and expelled at the temperature t l ,  respectively. 
This engine need not be a Carnot cycle; the only condition 
we impose on it is that it be cyclic: at the end of the process 
it must return to its initial state. 

We can easily show that if L > 0, that is, if the engine 
performs a positive amount of work, then &t > 0 and 

Let us assume first that &I 4 0. This would mean that 
the engine absorbed an amount of heat Q1 from the source tl 
during the cycle. We could then place the two sources in 
thermal contact and let heat flow spontaneously by con- 
duction from the hotter source tt to the colder source t l  
until the latter had received exactly the same amount of 
heat as it had surrendered to the engine during the cycle. 
Since the source ti would thus remain unaffected, and the 
engine would be back in its initial state, the only final result 
of this process would be the transformation into work L of 

Qi > 0. 
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heat absorbed from a single source which was initially at the 
same temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAti throughout. Since this is in contra- 
diction to Kelvin’s postulate, we must have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 

The proof that Q2 > 0 is now very simple. Since our 
engine reverts to its initial state after the cycle, we have 
from the first law (see equation (16)) : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 2  - 91. 
But L > 0 by assumption, and we have already proved 
that Q1 > 0; hence, we must have Q 2  > 0. 

We consider now a second engine working between the 
same temperatures t l  and t r  for which L’, Q: , and Q: are the 
quantities corresponding to L, Q p ,  and Q1 for the first 
engine. We shall prove the following fundamental theorem: 

a. If the first engine is a reversible one,2 then, 

b. If the second engine &o .is reversible, then, 

In part (a) of the theorem, we make no assumption 
whatever about the second engine; thus, it may or may not 
be reversible. 

If we apply equation (16) (the special form of the first 
law for a cycle) to our two engines, we see that the work 
performed by each engine during a cycle must be equal to 
the difference between the heat received from the source 
to and the heat given up at the source t i .  Thus, we must 
have : 

and 
L’ = Q: - Q:. 

* By a “reveraible” engine we mean one which operates around a revers- 
ible cycle. 



SECOND zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALAW OF THERMODYNAMICS 37 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ& can certainly be approximated by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 

rational number to MI high an accuracy as we may wish. 
We may therefore place 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN and N' are positive integers. 
We now consider a process consisting of N' cycles of the 

second engine and N reverse cycles of the first engine. 
This is a permissible process, since we have assumed that 
the first engine is reversible. When operated in the reverse 
sense, the first engine absorbs an amount of work L during 
each reverse cycle, giving up an amount of heat QI to the 
source zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt s  and absorbing an amount of heat Qt from the 
source t l .  

The total work performed by the two engines during the 
complex process described above is: 

Lbt.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= NIL' - NL. 

The total amount of heat absorbed from the source tt is: 

Q2,wt.i = N'Q: - NQ2; 

and the total amount of heat given up to the source tl is: 

Q1,tot. i  = N'Q: - N Q i .  

From (47) and (48) we obtain immediately: 

Ltot.1 = Q2.tot.1 - Q ~ t o t a ~ .  

But from (49) we deduce that: 

Q2,tot.l = 0. (m 

Ltot.1 = -& I .  tot.1. (51) 

Equation (50) states that the complete process produces 
no exchange of heat at the high te:nperature t ,  ; and equation 
(51) states that the heat absorbed from the source t l  

(equal to -Q1,tot.l) is transformed into the work L w ~ .  

Hence, 
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Since the complete process is composed of several cycles 
of each engine, both engines will come back to their initial 
states at the completion of the process. From this we see 
that Lwtsl cannot be positive; for if it were positive, the 
only final result of the complete process would be the trans- 
formation into work, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL,,,t, of heat, -Ql,wal, absorbed 
from a source which is at the temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt i  throughout. 
But this would contradict Kelvin’s postulate. Hence, we 
must have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

L t . 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 

Because of equation (51), this inequality is equivalent to 

Qi,bk~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0; 

and remembering the expression for Ql,bu,  we obtain: 

N’Q: h N Q t .  

If we eliminate N’ and N from this expression with the aid 
of equation (49), we get, since all the quantities in (49) 
are positive, 

QtQ: 2 d Q i ,  
or 

which is identical with (45). 
In order to compete the proof of our fundamental theorem, 

we must show that if the second engine also is reversible, 
then the equality sign holds, as shown in equation (46). 

If we take the second engine to be reversible, we have, on 
interchanging the two engines and applying the inequality of 
part (a) of our theorem to the new arrangement, 

Both this inequality and (45) must hold in the present case 
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because both engines are reversible. But these two in- 
equalities are compatible only if the equality sign holds. 

We can restate the theorem just proved zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
If there are several cyclic heat engines, some of which are 

reversible, operating around zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcycles between the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtem- 
peratures ti and t s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaU the reversible ones have the same efi- 
&my, while the wnreverdble ones have e.@iencies which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan 
never exceed the e$iciemy of the reversible engines. 

We consider first two reversible engines. The fact that 
their efficiencies are equal follows immediately from (46) 
and the definition (44) of efficiency. 

If we have a reversible and a nonreversible engine, we 
obtain from the inequality (45) : 

Hence, 

QI Q: 1 --2 1 -- 
&a Q: a 

Comparing this with equation (44), we see that the 
efficiency of the irreversible engine can never exceed that of 
the reversible one. 

Our fundamental theorem shows us that the ratio Qt/Q1 
has the same value for all reversible engines that operate 
between the same temperatures t i  and t t  ; that is, this ratio 
is independent of the special properties of the engine, 
provided it is reversible: it depends only on the temperatures 
t i  and t t .  We may therefore write: 

where f ( t l  , t t)  is a universal function of the two tempere 
tures t l  and t t  . 

We shall now prove that the function f ( t l ,  t t)  has the 
following property: 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt o ,  tl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI t  are three arbitrary temperatures. 

Let A1 and At be two reversible cyclic engines which 
work between the temperatures t o  and t 1  and t o  and t 2 ,  

respectively. If A1 absorbs an amount of heat Q1 at the 
temperature t l  and gives up an amount of heat Qo at the 
temperature t o  during a cycle, then from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(52) we have: 

Qi - = f ( t 0 ,  tl). 
Qo 

Similarly, if A2 absorbs an amount of heat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQt at the 
temperature t t  and gives up an amount of heat Q0 at the 
temperature t o  (we assume, for the sake of simplicity, that 
the two engines are so chosen that they give up equal 
amounts of heat at the temperature to) during each cycle, 
then, 

Dividing this equation by the preceding one, we have: 

Consider now a complex process consisting of a direct 
cycle of the engine A2 and a reverse cycle of the engine A 1 .  
This process is obviously a reversible cycle, since it consists 
of two separate reversible cycles. During the complex 
process no heat is exchanged at the temperature t o ,  because 
the amount of heat QO which is surrendered by the engine 
At at the temperature t o  is reabsorbed at that temperature 
by the engine A 1  operating in the reverse sense. However, 
at the temperature t s  an amount of heat Q 2  is absorbed by 
A t ,  and at the temperature t l  an amount of heat Q1 is 
expelled by the engine A1 during the cycle. We may 
therefore consider A 1  and A t ,  when working together in the 
manner described above, as forming a reversible cyclic 
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engine which operates between the temperatures t i  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 
For this engine we have, by definition of the function f: 

Comparing this equation with (a), we obtain (53). Q.E.D. 
Since the temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt o  in the above discussion is 

arbitrary, we may keep it constant in all our equations; 
from this it follows that we may consider zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( t o ,  t )  aa beiig a 
function of the temperature t ody; we therefore place 

W ( t 0  , 0 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, (55) 

where H is an arbitrary constant. 
Making use of (55), we can now put (53) in the form: 

This equation tells us that f ( t l ,  t 2 )  is equal to the ratio of a 
function of the argument t 2  to the same function of the 
argument ti . 

Since we have used an empirical temperature t ,  it is 
obviously impossible to determine the analytical form of 
the function 6(t). Since, however, our scale of tempera- 
tures is an arbitrary one, we can conveniently introduce a 
new temperature scale, using 8 itself as the temperature, 
instead of t. 

It should be noticed, however, that 8(t) is not quite 
uniquely defined; it can be seen from (56) or (55) that 8(t) is 
indeterminate to the extent of an arbitrary multiplicative 
constant factor. We are therefore free to choose the unit 
of the new temperature scale 8 in any way we see fit. The 
usual choice of this unit is made by placing the difference 
between the boiling temperature and the freezing tem- 
perature of water at one atmosphere of pressure equal to 
100 degrees. 

The temperature scale which we have just defined is 
called the absolute themnodgnamic scale of temperature. 
It has the advantage of being independent of the special 
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properties of any thermometric substance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; furthermore, all 
the thermodynamic laws take on a simple form when this 
scale of temperature is used. 

We shall now show that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe absolute themtodynamic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtt?m- 
perature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoincides with the absolute temperature T intro- 
duced in section 2 with the aid of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas thermometer. 

We consider a Carnot cycle performed by an ideal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas 
(for simplicity, we take one mole of gas). Let Ti and Tt be 
the temperatures (as measured by a gas thermometer) of 
the two isothermals of the Carnot cycle. (See Figure 7.) 
We first calculate the amount of heat Q2 absorbed at the 
temperature T2 during the isothermal expansion AB. 
Applying the first law, equation (15), to the transformation 
AB, and indicating by the subscripts A and B quantities 
that belong to the states A and B, we have: 

UB - U A  + LAB = Q2 9 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALa is the work performed during the isothermal 
expansion and can be calculated with the aid of equation (10) : 

V B  
L A B  = RT2 log - 

V.4' 

We now make use of the fact that the energy of an ideal 
gas is a function of T only (see section 5). Thus, since A and 
B lie on the same isothermal, we must have UA = UB, so that 

V B  
Q 2  = L A B  = RT2 log E. 

In a similar fashion, we can prove that the amount of heat 
given up at the source Ti during the isothermal compression 
represented by the segment DC is: 

Since the two points A and C lie on an adiabatic curve, we 
have, from (38): 

Ti V5-I = T2 V2-I; 
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and similarly, 

Dividing this equation by the preceding one and extracting 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1)th root, we get: 

From this equation and the expressions for Qt and Q1, 
we obtain: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Q2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT2 

Qi Ti. 
- = -  

This equation shows us that the ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ2/Q1 is equal to 
the ratio,' T 2 / T 1 ,  of the temperatures of the sources when 
these temperatures are expressed on the gas thermometer 
scale of temperature. But from (56) it follows that Qt/Ql 

is also equal to the ratio of the temperatures of the sources 
when these temperatures are expressed in units of the 
absolute thermodynamic scale. Hence, the ratio of the two 
temperatures on the absolute thermodynamic scale is 
equal to that ratio on the gas thermometer scale; that is, 
the two temperature scales are proportional. Since the 
units of temperature for both scales have been chosen equal, 
we conclude that the two scales themselves are equal, 
that is, 

0 = T. (57) 

Since 8 and T are equal, we need no longer use two 
different letters to indicate them; henceforth, we shall 
always use the letter T to denote the absolute thermo- 
dynamic temperature. 

Using T in place of 8, we have from (56) for a reversible 
cycle between the temperatures Ti and Tt : 
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Arid the efficiency (44) of a reversible engine becomes: 

10. Thermal engines. We have already proved that no 
engine working between two temperatures can have a 
higher efficiency than a reversible engine working between 
the same two temperatures. Thus, (59) represents the 
highest possible efficiency that an engine working between 
the temperatures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT1 and Ta can have. 

In most thermal engines the low temperature 2'1 is the 
temperature of the environment, and is thus uncontrollable. 
It is therefore thermodynamically desirable to have the 
temperature T2 as high as possible. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOf course, we must 
always bear in mind the fact that the actual efficiency is 
generally considerably lower than the maximum efficiency 
(59) because all thermal engines are far from being reversible. 

A Carnot cycle operated in the reverse sense can be used 
to extract an amount of heat Q1 from a source at the low 
temperature T1 by absorbing an amount of work L. F'rom 
(43) and (58) we easily deduce that: 

(60) 

On this principle we can construct a refrigerating machine 
using the temperature of the environment as the high 
temperature T2. A Carnot cycle operated in the reverse 
sense could thus be used to extract the heat Q1 from a body 
cooled to a temperature, TI ,  lower than the temperature 
of the environment, Tr. It is evident from (60) that the 
amount of work needed to extract a given quantity of heat 
&I from a body which is at the temperature TI becomes 
larger and larger as the temperature T1 of the body decreases. 

As in the case of an ordinary thermal engine, the efficiency 
of a refrigerating machine is considerably lower than the 
thermodynamical efficiency (60) because irreversible proc- 
esses are always involved in refrigerating devices. 

Ti 
Q1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 1 -  T2 - TI* 
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Problems 

1. One mole of a monatomic gas performs a Carnot cycle 
between the temperatures 400" K and 300" K. On the upper 
isothermal transformation, the initial volume is 1 liter and the 
final volume 5 liters. To find the work performed during a cycle, 
and the amounts of heat exchanged with the two sources. 

2. What is the maximum efficiency of a thermal engine 
working between an upper temperature of 400" C and a lower 
temperature of 18" C? 

3. Find the minimum amount of work needed to extract one 
calorie of heat from a body at the temperature of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0" F, when the 
temperature of the environment is 100" F. 
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The Entropy 
11. Some properties of cycles. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALet us consider a system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S that undergoes a cyclic transformation. We suppose 
that during the cycle the system receives heat from or 
surrenders heat to a set of sources having the temperatures 
TI, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATs, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA... , T,. Let the amounts of heat exchanged 
Between the system and these sources be QI , Q2, , Q,, 
respectively; we take the Q’s positive if they represent heat 
received by the system and negative in the other zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase. 

We shall now prove that: 

and that the equality sign holds in (61) if the cycle is 
reversible. 

In order to prove (61) we introduce, besides the n sources 
listed above, another source of heat at an arbitrary tem- 
perature To, and also n reversible cyclic engines (we shall 
take n Carnot cycles, C1, C2, . - , C,) operating between 
the temperatures TI, Tt , , T,, respectively, and the 
temperature To. We shall choose the ith Carnot cycle, 
Ci, which operates between the temperatures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATi and To, 
to be of such a size that it surrenders at the temperature Ti 
the quantity of heat Qi, that is, an amount equal to that 
absorbed by the system S at the temperature Ti. 

According to (58), the amount of heat absorbed by Ci 
from the source To is: 

Qi.0 = ‘Qi. (62) 
Ti 

We now consider a complex cycle consisting of one cycle 
of the system S and one cycle of each of the Carnot cycles 

46 



THE ENTROPY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA47 

Ci, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC t ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. * *  , C,.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe net exchange of heat at each of 
the sources zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATI, Tt, . , Tn during the complex cycle is 
zero; the source Ti surrenders an amount of heat Qi to the 
system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, but it receives the same amount of heat from the 
cycle Ci. The source To,  on the other hand, loses an 
amount of heat equal to the sum of the amounts (given by 

Thus, the source zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo surrenders altogether an amount of 
heat equal to 

(62)) absorbed by the Carnot cycles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC1, Cs, * * Cn- 

n 

Q o -  CQi.o=ToC " & i  (633) 
i-1 i-i Ti' 

Hence, the net result of our complex cycle is that the 
system composed of S and C1, Ct, . , C n  receives an 
amount of heat QO from the source TO. But we have 
already seen that in a cyclic transformation the work 
performed is equal to the total heat received by the system. 
Thus, since S, C1, C1, -. , Cn return to their initial states 
at the end of the complex cycle, the only final result of the 
complex cycle is to transform into work an amount of heat 
received from a source at a uniform temperature To.  If Qo 
were positive, this result would be in contradiction to 
Kelvin's postulate. It therefore follows that Qo s 0, or, 
from (63), 

2Qi60,  
i-i Ti 

which is identical with (61). 
If the cycle performed by S is reversible, we can describe 

it in the opposite direction, in which case all the Qi will 
change sign. Applying (61) to the reverse cycle, we 
obtain: 

2 - gi 0, 
i-I Ti 

or 
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Thus, if the cycle is reversible, this inequality, as well as 

(61), must be satisfied. This is possible only if the equality 
sign holds. For a reversible cycle, therefore, we must have: 

This completes the proof of our theorem. 
In establishing (61) and (M), we assumed that the 

system exchanges heat with a finite number of sources zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TI, TI, .. , T,. It is important, however, to consider 
the case for which the system exchanges heat with a con- 
tinuous distribution of sources. In that case, the sums in 
(61) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(64) must be replaced by integrals extended over 
the entire cycle. 

Denoting by f the integral extended over a cycle and by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dQ the infinitesimal amount of heat received by the system 
from a source at the temperature T, we have: 

/$SO, 

which is valid for all cycles, and 

which is valid only for reversible cycles.' 
12. The entropy. The property of a reversible cycle 

which is expressed by (66) can also be stated in the following 
form. Let A and B be two equilibrium states of a system S. 

1 In order to  avoid misunderstandings as to the meaning of (65) and (a), 
we must point out that T represents the temperature of the source which 
surrenders the quantity of heat dQ, and is not necessarily equal to  the 
temperature T' of the system (or of part of the system) which receives the 
heat dQ. Indeed, if the cycle is irreversible (relation (a)), T' S T when 
dQ is positive, because heat cannot Bow from acolder body to a hotter body; 
and when dQ is negative, T' 2 T. If the cycle is reversible, however 
(equation (a)), we must always have T' - T, because an exchange of heat 
between two bodies at different temperatures is not reversible. In (60) 
we may therefore take T to be the temperature of the source and also the 
temperature of the part of the system that receives the heat dQ. 
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of the system can be repre- 
sented on a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp )  diagram, 
any continuous curve connect- 
ing the two points A and B (rep- 
resenting the initial and final 
states of the system) corre- 
sponds to a possible reversible zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

where the two integrals are taken along the paths I and 11, 
respectively. 

Consider the cyclic transformation A I B I1 A.  This is a 
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reversible cycle, since it is made up of two reversible trans- 
formations. We may therefore apply zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(66) to it, so that 

This integral can be split into the sum of two integrals: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U B  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%* The second integral in this expression is equal to - 

because in the transformation from B to A along 11, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-dQ 
takes on the same values, except for sign, as it does in the 
transformation from A to B along 11. Hence we obtain 
(67), and thus prove our theorem. 

The property expressed by (67) enables us to define a 
new function of the state of a system. This function, 
which is called the entropy and is of utmost importance in 
thermodynamics, is defined in the following way: 

We arbitrarily choose a certain equilibrium state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 of our 
system and call it the standard state. Let A be some other 
equilibrium state, and consider the integral: 

S(A) = LA$ 
taken over a reversible transformation. We have already 
seen that such an integral depends only on the states 0 and 
A and not on the particular reversible transformation 
from 0 to A. Since the standard state 0 is fixed, however, 
we may say that (68) is a function of the state A only. 
We shall call this function the entropy of the state A.2 

* The necessity of restricting this definition of the entropy to equilibrium 
atatea only arises from the fact that the transformation from 0 to A must 
be reversible; that is, it must be a succession of equilibrium states. Hence 
it follows from continuity Considerations that the initial and ha1 states 
0 and A must also be equilibrium states. 

In many cases, however, it is possible to define the entropy even for 
non-equilibrium states. Let us consider, for example, a system composed 
of several homogeneous parts at Werent temperatures and pressures. 
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Consider now two equilibrium states A and B, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S(A) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS(B), respectively, be the entropies of these 
states. We shall show that: 

where the integral is taken over a reversible transformation 
from state A to state B. 

In order to prove this, we note that the integral on the 
right-hand side of (69) has the same value for all reversible 
transformations from A to B. We may therefore choose a 
particular transformation consisting of two successive 
reversible transformations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: first a reversible transformation 
from A to the standard state 0 and then a reversible 
transformation from 0 to B. Thus, the integral in (69) 
can be written as the sum of two integrals: 

We have by the definition (68): 

S(B) = /"$, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

since the transformation from 0 to B is reversible. We 
have further: 

Substituting these two values for the integrals on the 
right-hand side of (70), we obtain (69). Q.E.D. 

The definition (68) of the entropy requires the arbitrary 
choice of a standard state 0. We can easily prove that if, 
instead of 0, we choose a different standard state 0', then 

Let each part, however, have a uniform temperature and pressure. If the 
ditrerent parts are in direct contact with each other, the system will evi- 
dently not be in equilibrium, since heat will flow from the hotter to the 
colder parts, and the differences of pressure will give rise to motion. If, 
however, we enclose each part in a thermally insulating rigid container, our 
system will be in equilibrium, and we shall be able to  determine its en- 
tropy. 
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the new value, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS’(A), which we find for the entropy of the 
state A differs from the old one, &A), only by an additive 
constant. 

If we take 0‘ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the new standard state, we have, by 
definition, 

S‘(A) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj”8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 9  

where the integral is extended over a reversible transforma- 
tion from 0’ to A. By applying (69) to this integral, we 
find that 

S’(A) = S(A) - S(O’), 

S(A) - S‘(A) = S(0’). (71) 

Since the new standard state 0’ is fixed, however, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS(0’) is a 
constant (that is, it is independent of the variable state A). 
Thus (71) shows that the difference between the entropies 
of state A obtained with two different standard states, 0 
and 0’, is a constant. 

The entropy is thus defined except for an additive con- 
stant. This indeterminacy will not trouble us when we are 
dealing with entropy differences; in severa1 problems, 
however, the additive constant in the entropy plays an 
important role. We shall see later how the third law of 
thermodynamics completes the definition of the entropy and 
also enables us to determine the entropy constant (see 
Chapter VIII). 

Both from (68) and from (69) it follows, if we consider an 
infinitesimal reversible transformation during which the 
entropy varies by an amount dS and the system receives an 
amount of heat d& at the temperature T, that 

or 

That is, the variation in entropy during an infinitesimal 
reversible transformation is obtained by dividing the amount 
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of heat absorbed by the system by the temperature of the 
system. 

The entropy of a system composed of several parts is very 
often equal to the sum of the entropies of all the parts. 
This is true if the energy of the system is the sum of the 
energies of all the parts and if the work performed by 
the system during a transformation is equal to the sum of 
the amounts of work performed by all the parts. Notice 
that these conditions are not quite obvious and that in 
some cases they may not be fulfilled. Thus, for example, 
in the case of a system composed of two homogeneous 
substances, it will be possible to express the energy as the 
sum of the energies of the two substances only if we can 
neglect the surface energy of the two substances where they 
are in contact. The surface energy can generally be 
neglected only if the two substances are not very finely 
subdivided; otherwise, it can play a considerable role. 

Let us assume for the sake of simplicity that our system s 
is composed of only the two partial systems s1 and s2. We 
suppose that the energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU of s is equal to the sum of the 
energies U 1  and U2 of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$1 and s2: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= u1+ u2; 

and that the work L performed by s during a transformation 
is equal to the sum of L1 and LI, that is, to the sum of the 
work performed by s1 and s2, respectively: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L = L1 4- L2. 

From these assumptions and from (15) it follows that the 
heat Q received by the system s during a transformation 
can be written as the sum, 

Q = QI + Qz, 

of the amounts of heat received by the two parts. This 
enables us to split the integral (68), which defines the 
entropy, into the sum: 
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of two integrals which define the entropies of the two partial 
systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs1 and ss.* 

When the conditions for its validity are fulfilled, this 
additivity of entropy enables us in several cases to define 
the entropy of a system even though the system is not in a 
state of equilibrium. This is possible if we can divide the 
given system into a number of parts each of which alone 
is in a state of equilibrium. We can then define the entropy 
of each of these parts and, by definition, place the entropy 
of the total system equal to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs u m  of the entropies of all 
the parts.' 

13. Some further properties of the entropy. Consider 
two states A and B of a system. We have from (69): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S(B)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- S(A)  = /" 7, 
provided the integral is taken over a reversible transforma- 
tion from A to B. If, however, the integral is taken from 
A to B over an irreversible transformation, the preceding 
equation no longer holds. We shall show in that case that 
we have, instead, the inequality 

S(B) - S(A) 2 I B  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 4. (73) 

In order to show this, we take our sys- 
tem from A to B along an irreversible 
transformation, I, and back to A again 
along a reversible transformation R (see 
Figure 11). I and R together form an ir- 
reversible cycle A I B R A. If we apply 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
(65) to this irreversible cycle, we obtain: 

* It should be noticed that if the standard state 0 and the state A of the 
total system are given, the corresponding states of the two parts that 
compose the total system are known. These states of the two partial 
systems have been indicated by the same letters 0 and A. 

4 I t  can easily be proved that all the properties already shown to apply 
to the entropy apply also to this generalized definition. 
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Oh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$=(I”T)I+(6’F)B. 

A I B R A  

Since (69) can be applied to the reversible transformation, 
R, from B to A, we have: 

Substituting this in the preceding inequality, we obtain: 

so that, for the general case of any type of transformation 
from A to B, we have: 

which is identical with (73). 
For a completely isolated system, (73) 

simple form. Since for such a system dQ 
that: 

Q.E.D. 

S(B) h N-4); 

takes on a very zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= 0, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnow find 

(74) 

that is, for any transformation occurring in an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAisolated system, 
the entropy of the final state can never be less than that of the 
initial state. If the transformation is reversible, the 
equality sign holds in (74)) and the system suffers no change 
in entropy. 

It should be clearly understood that the result (74) 
applies only to isolated systems. Thus, it is possible with 
the aid of an external system to reduce the entropy of a 
body. The entropy of both systems taken together, 
however, cannot decrease. 

When an isolated system is in the state of maximum 
entropy consistent with its energy, it cannot undergo any 
further transformation because any transformation would 
result in a decrease of entropy. Thus, the state of mmimum 
entropy is the most zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstable state for an isolated system. The 
fact that all spontaneous transformations in an isolated 
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system proceed in such a direction as to increase the entropy 
can be conveniently illustrated by two simple examples. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As the first example, we consider the exchange of heat by 
thermal conduction between two parts, A 1  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 2 ,  of a 
system. Let T1 and T2 be the temperatures of these two 
parts, respectively, and let T I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< T2. Since heat flows by 
conduction from the hotter body to the colder body, the 
body A 2 gives up a quantity of heat Q which is absorbed by 
the body A1.  Thus, the entropy of A 1  changes by an 
amount Q / T I ,  while that of A2 changes by the amount 
-Q/T2. The total variation in entropy of the complete 
system is, accordingly, 

--- Q Q  
Ti T2. 

Since T I  < T; ,  this variation is obviously positive, so that 
the entropy of the entire system has been increased. 

As a second example, we consider the production of heat 
by friction. This irreversible process also results in an 
increase of entropy. The part of the system that is heated 
by friction receives a positive amount of heat and its entropy 
increases. Since the heat comes from work and not from 
another part of the system, this increase of entropy is not 
compensated by a decrease of entropy in another part of 
the system. 

The fact that the entropy of an isolated system can never 
decrease during any transformation has a very clear inter- 
pretation from the statistical point of view. Boltzmann 
has proved that the entropy of a given state of a thermo- 
dynamical system is connected by a simple relationship 
to the probability of the state. 

We have already emphasized the difference between the 
dynamical and thermodynamical concepts of the state of a 
system. To define the dynamical state, it is necessary to 
have the detailed knowledge of the position and motion of 
all the molecules that compose the system. The thermo- 
dynamical state, on the other hand, is defined by giving 
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only a small number of parameters, such as the temperature, 
pressure, and so forth. It follows, therefore, that to the 
same thermodynamical state there corresponds a large 
number of dynamical states. In statistical mechanics, 
criteria are given for assigning to a given thermodynamical 
state the number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu of corresponding dynamical states. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(See also section 30.) This number u is usually called the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pt.obabiZity of the given thermodynamical state, although, 
strictly speaking, it is only proportional to the probability 
in the usual sense. The latter can be obtained by dividing u 
by the total number of possible dynamical states. 

We shall now assume, in accordance with statistical 
considerations, that in an isolated system only those 
spontaneous transformations occur which take the system 
to states of higher probability, so that the most stable 
state of such a system will be the state of highest probability 
consistent with the given total energy of the system. 

We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee that this assumption establishes a parallelism 
between the properties of the probability u and the entropy 
S of our system, and thus suggests the existence of a func- 
tional relationship between them. Such a relationship was 
actually established by Boltzmann, who proved that 

S = k log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,  (75) 

where k is a constant called the BoZtzmann Constant and is 
equal to the ratio, 

R 
a, 

of the gas constant R to Avogadro’s number A. 
Without giving a proof of (75), we can prove, assuming 

the existence of a functional relationship between S and ‘K, 

s = m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n) 
that the entropy is proportional to the logarithm of the 
probability. 

Consider a system composed of two parts, and let XI and 
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S2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe the entropies and r1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr )  the probabilities of the 
states of these parts. We have from (77): 

s1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= f(4; s2 = f ( T 2 ) .  

But the entropy of the total system is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs u m  of the two 
entropies : 

s = s1 + Sr; 

and the probability of the total system is the product of 
the two probabilities, 

T = rim. 

Fkom these equations and from (77) we obtain the 
following : 

/ ( * I 4  = f(*d + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(T2). 

The function f must accordingly obey the functional 

f(4 = f(4 + f(ll). (78) 

This property off enables us to determine its form. Since 
(78) is true for all values of 2 and y, we may take y = 1 + e, 
where e is an infinitesimal of the first order. Then, 

equation : 

f@ + $4 = f(4 + f(1 + 4. 
Expanding both sides by Taylor’s theorem and neglecting 
all terms of an order higher than the first, we have: 

f(4 + 4 4  = f(4 + f(1) + 40). 
For e = 0, we iindf(1) = 0. Hence, 

zf’(z) = f’(1) = k, 

where k represents a constant, or: 

k 
5’ 

f(x) = - 

Integrating, we obtain : 

f(z) = k log 2 + const, 
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Remembering (77), we finally have: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT + const. 

We can place the constant of integration equal to zero. 
This is permissible because the entropy is indeterminate 
to the extent of an additive constant. We thus finally 
obtain (75). 

Of course, it should be clearly understood that this 
constitutes no proof of the Boltzmann equation (75), since 
we have not demonstrated that a functional relationship 
between S and 'K exists, but have merely made it appear 
plausible. 

14. The entropy of systems whose states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be repre- 
sented on a (V,p)  diagram. For these systems the state is 
defined by any two of the three variables, p, V ,  and T. 
If we choose T and V as the independent variables (the 
state variables), the heat dQ received by the system during 
an infinitesimal transformation as a result of which T and V 
change by amounts dT and dl' is given by the differential 
expression (22) 

From this and (72) we obtain: 

These two differential expressions for dQ and dS differ in 
one very important respect. We know from the general 
theory that there exists a function S of the state of the 
system. In our case, S will therefore be a function of the 
variables T and V, which define the state of the system: 

s = S(T, V ) .  (81) 

The differential expression on the right-hand side of (80) is 
therefore the differential of a function of the two independent 
variables T and V .  
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In general, a differential expression of two independent 

dz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM(z,  y)dz + N(z ,  @MY, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(82) 

is said to be a perj’ect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdiserentiul if it is the differential of a 
function of x and y. We may accordingly say that (80) is a 
perfect differential of the independent variables T and V .  

It is well known that if dz is a perfect differential, then M 
and N must satisfy the following equation: 

variables z and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, such as : 

When this condition is fulfilled, it is possible to integrate 
(82) and thus find a function which satisfies that equation. 

Otherwise, no such function ex- 
ists, and dz cannot be considered 
as being the differential of some 
function of x and 9; then, the in- 

nectingtwo points on the (x, 9) 
plane depends not only on these 
two points (the limits of the in- 

tegral) but also on the path joining them. 
As regards the two differential expressions (79) and (W), 

we have already noticed that dS is a perfect differential. 
If we consider two states A and B on the (V ,  p) diagram 
connected by two different reversible transformations I and 
I1 (see Figure 12), and integrate dS along the two paths I 
and 11, we get the same result in both cases, namely, 
S(B) - S(A).  If, on the other hand, we integrate dQ 
along these two different paths, we obtain two results, 
Q1 and Q 2 ,  which in general are not equal. This can be 
easily verified by applying the first law of thermodynamics, 
(15), to the two transformations I and 11. On doing this, 
we find that: 

I I I tegral of (82) along a path con- 
I I 

A’ ‘a’ 
Fig. 12. 
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Taking the difference of these two expressions, we obtain: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

QI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- QII = LI - LI I .  

LI and L I I  are given by the areas AIBB’A’A and AIIBB’A’A, 
respectively. Since the difference between these two areas 
is equal to the area AIBIIA, it follows that LI - LII and, 
therefore, QI - QI I  also, are, in general, different from zero. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Thus, (79) is not a perfect differential, and no function Q 
of the state of the system can be found. It should be 
noticed that if a heat fluid really existed, as had been 
assumed before modern thermodynamics was developed, a 
function Q of the state of the system could be found. 

Let us consider, as an example of the preceding con- 
siderations, the expressions for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdQ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdS for one mole of an 
ideal gas. From (30) we have: 

dQ = CdT + pdV, 

or, on eliminating p with the aid of the equation of state, 

(84) 

This expression is not a perfect differential, and one can 
immediately verify that the condition (83) is not fulfilled. 

pV = RT, 
RT 

dQ = CvdT + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 dV. 

From (84) and (72) we obtain: 

Since the condition (83) is now fulfilled, this expression is a 
perfect differential. 

On integrating (85), we obtain: 

S = Cv log T + R log V + a, (86) 

where a is a constant of integration. This additive constant 
remains undetermined in accordance with the definition 
(68) of the entropy. (See, however, section 32.) 

We can transform the expression (86) for the entropy of 
one mole of an ideal gas by introducing in place of V its 
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value V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR T / p  obtained from the equation of state. 
Remembering zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(33), we obtain: 

S = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, log T - R log p + a + R log R. (87) 

Returning to the general case of any substance whose 
state can be defined by the variables T and V ,  we obtain 
the expression (80) for the differential of the entropy. 
The condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(83), when applied to this expression, gives: 

where we have omitted the subscripts Vand T because in 
all these formulae we shall always use V and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT as the 
independent variables. If we perform the partial differ- 
entiations indicated in the preceding equation and collect 
terms, we obtain the important result: 

As an application of (M), we shall use it to show that the 
energy U of a substance which obeys the equation of state 
pV = RT is a function of the temperature only and does not 
depend on the volume. We have already seen that this was 
experimentally verified by Joule; it is interesting, however, 
to obtain this result as a direct consequence of the equation 
of state. 

Substituting the expression p = RT/V in (a), we find 
that: 

= 0, 

which proves5 that U dues not depend on V .  
If we choose T, p or p, V instead of T ,  V as the hde- 

6 Notice that this result is not quite independent of the Joule experiment 
described in section 6. Indeed, the proof of the identity between the gas 
thermometer temperature T and the thermodynamic temperature e given in 
aection 9 was based on the results of the Joule experiment. 
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15. The Clapeyron equa- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
;;;zYe!!gEFj:; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
system composed of a liquid 
and its vapor in equilibrium. 

We consider a liquid en- 
closed in a cylinder with a 
piston at one end. The space 
between the surface of the 

pendent variables, we obtain two other equations which are 
substantially equivalent to (88). Thus, if we take T and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as the state variables, dQ is given by (23). Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdS = dQ/T 
is a perfect differential, we easily obtain, with the aid of (83) : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

v 

Similarly, taking p ana V as the independent variables, we 
obtain from (24) and (83): 
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When the volume has been increased to such an extent 

that all the liquid has evaporated, a further increase in 
volume will result, as shown in Figure 13, in a decrease in 
pressure just as in the case of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 gas. 

If we now compress our system, still keeping the tem- 
perature constant, the pressure will increase until it becomes 
equal to the pressure of the saturated vapor for the given 
temperature. At this point, a further decrease in volume 
does not produce an increase in the pressure; instead, some 
of the vapor condenses and the pressure remains unchanged 
(the horizontal stretch of the isothermal). 

When the volume has been reduced to such an extent 
that the substance is completely in the liquid state, a further 
compression produces a very large increase in pressure, 
because liquids have a very low compressibility. This 
part of the isothermal will therefore be very steep, as shown 
in the figure. 

In Figure 13 several isothermals of the kind just discussed 
have been drawn for various values of the temperature 
(lines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, b, c, and d) .  It can be seen from the figure that 
the length of the horizontal stretch of the isothermal 
(that is, the volume interval for which the liquid and vapor 
can coexist in equilibrium at a given temperature) decreases 
with increasing temperature until for the isothermal ee it 
reduces to an infinitesimal length (that is, to a horizontal 
point of inflection). This isothermal ee is called the critical 
isothermal, and its temperature T, is called the critical 
temperature. The volume V ,  and the pressure p ,  cor- 
responding to the horizontal point of inflection are called 
the critical volume and the critical pressure; the state cor- 
responding to V,, p , ,  T ,  is called the critical state (or 
critical point) of the system. 

The isothermals for temperatures above the critical 
temperature are monotonic decreasing functions which have 
no discontinuities. For very large temperatures, they go 
over into equilateral hyperbolae, because the properties of 
the substance in the range of very high temperatures become 
more and more similar to those of an ideal gas. 
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The dotted line in the figure and the critical isothermal ee 

divide the (V, p) plane into four sections: the section 
marked L, which corresponds to the liquid state; the section 
marked L, V, which corresponds to the mixture of the liquid 
and the saturated vapor; the section V which corresponds 
to the nonsaturated vapor; and the section G, which corre- 
sponds to the gas. 

We shall now apply (88) to the liquid-vapor system 
represented by region L, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV of the (V, p) plane in Figure 13. 
In this region the pressure and the densities of the liquid 
and the vapor depend only on the temperature. Let ul and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u2 be the specific volumes (that is, the volumes per unit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
mass, or the inverse of the densities) of the liquid and the 
vapor, respectively; and let u1 and u2 be their specific 
energies (that is, the energies per unit mass). The quanti- 
ties p, u l ,  u2, u l ,  and u2 are all functions of the temperature 
only. If m is the total mass of the substance, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm1 and 
m2 are the masses of the liquid and vapor parts, respectively, 
then, 

m = m l + m 2 .  

S i r l y ,  the total volume and the total energy of the 
system are: 

V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= mlvl(T) + m t s m  

U = m u d T )  + m2u2(T). 

We now consider an isothermal transformation of our 
system which causes an amount dm of the substance to pass 
from the liquid state to the vapor state, and which results 
in a change dV of the total volume and a change dU of the 
total energy of the system. At the end of the transforma- 
tion there will then be present (ml - dm) grams of liquid 
and (m2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdm) grams of vapor, so that the total volume 
will be equal to : 

V + dV = (ml - dm)v~(T)  + (m2 + dm)ys(T) 

= V + b2(2 ' ) . -  vdT))dm, 
or 

dV = { v 2 ( T )  - vl(T)}dm. 
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Similarly, the total energy will change by an amount zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

dU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u*(T) - Ui(T))dm. 

From the first law, equation (21), we have: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(92) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dQ = dU + pdV 

dm(Ut - UI + p(v2 - d ) ,  
or 

Equation (93) is the expression for the amount of heat 
that is needed to vaporize one gram of liquid at constant 
temperature; it is called the latent heat of vaporization, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX. 
The value of X is different for different liquids, and it also 
depends on the temperature. For water at the boiling 
temperature and standard pressure, X = 540 cal./gm. 

Since (91) and (92) refer to isothermal transformations, 
the ratio dU/dV gives us: 

%(TI - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU d T )  
T s(T) - Ul(T) ’ 

or, using (93) : 

If we compare this equation with (88) and write dp/dT 

instead of (s) , which we may do because the pressure is a 
V 

function of .T only for our system, we find that: 

This is called Clupeyron’s equation. 
As an example of the application of Clapeyron’s equation, 

we shall calculate the ratio dp/dT for water vapor at the 
boiling temperature and at standard pressure. We have: 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA540cal./gm. = 2260 X 107ergs/gm.; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
vz = 1677; V I  = 1.043; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 373.1. 

Substituihg these values in (94), we get: 

* = 3.62 X lo' dynes/cm? degrees = 2.7 cm. Hg/degreea. dT 

An approximate value for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdp/dT can be obtained from 
Clapeyron's equation by assuming that o1 is negligible 88 

compared to ot, and then calculating 02 by assuming that 
the vapor satisfies the equation of state of an ideal gas. 

For one gram of vapor, we have, from equation (6) : 

R 
M PS = - T, 

where M is the molecular weight of the vapor. Equation 
(94) now becomes: 

AM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 = mP, 
or 

For water vapor at the boiling temperature, this formula 
gives dp/dT = 3.56 X 104; this is in very good agreement 
with the value 3.62 X lo4 obtained from the exact cal- 
culation. 

If the heat of vaporization X is assumed to be constant 
over a wide range of temperatures, we can integrate (97) 
and obtain: 

logp = -- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxM + constant, RT 

or 
X Y  

p = const. e y  

This formula shows in a rough way how the vapor pressure 
depends on the temperature. 
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We have derived Clapeyron’s equation for a liquid-vapor 

system, but the same formula can be applied to any change 
of state of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa substance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs an example of this, we shall 
apply Clapeyron’s equation to the melting of a solid, A 
solid subjected to a given pressure melts at a sharply defined 
temperature which varies with the pressure applied to the 
solid. Hence, for a solid-liquid system the pressure for 
which the solid state and the liquid state can coexist in 
equilibrium is a function of the temperature. We shall 
now use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(94) to calculate the derivative of this function. 
The quantities A, vl, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv2 in this case represent the heat of 
fusion and the specific volumes of the solid and the liquid, 
respectively. 

If we take the melting.of ice as an example, we have: 
X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 80 cal./gm. = 335 X lo7 ergs/gm., ul = 1.0907 cm.*/ 
gm., 112 = 1.00013 cm.a/gm., T = 273.1. Substituting these 
values in (94), we obtain: 

dp = -1.35 X 10’ dynes/cm? degrees = -134 atm./degrees. dT 

That is, an increase in pressure of 134 atmospheres lowers the 
melting point of ice by lo. 

It should be noticed, in particular, that the melting point 
of ice decreases with increasing pressure. In this respect 
water behaves differently from the way in which most 
substances behave; in the majority of cases, the melting 
point increases with increasing pressure. This anom$ous 
behavior of water is due to the fact that ice is less dense than 
water, whereas in most other cases the solid is denser than 
the liquid. 

The fact that the melting point of ice is lowered by pres- 
sure is of considerable importance in geophysics because this 
phenomenon is responsible for the motion of glaciers. 
When the mass of ice encounters a rock on the glacier bed, 
the high pressure of the ice against the rock lowers the 
melting point of the ice at that point, causing the ice to 
melt on one side of the rock. It refreezes again immediately 
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after the pressure is removed. In this way the mass of ice 
is able to flow very slowly around obstacles. 

16. The Van der Waals equation. The characteristic 
equation of an ideal gas represents the behavior of real gases 
fairly well for high temperatures and low pressures. How- 
ever, when the temperature and pressure are such that the 
gas is near condensation, important deviations from the 
laws of ideal gases are observed. 

Among the numerous equations of state that have been 
introduced to represent the behavior of real gases, that of 
Van der Waals is especially interesting because of its 
simplicity and because it satisfactorily describes the behavior 
of many substances over a wide range of temperatures and 
pressures. 

Van der Waals derived his equation from considerations 
based on kinetic theory, taking into account to a first 
approximation the size of a molecule and the cohesive forces 
between molecules. His equation of state (written for one 
mole of substance) is: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ u/V*)(V - b) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBART, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(99) 

where a and b are characteristic constants for a given 
substance. For a = b = 0, (99) reduces to the char- 
actecistic equation of an ideal gas. The term b represents 
the effect arising from the finite size of the molecules, and 
the term a/V* represents the effect of the molecular cohesive 
forces. 

In Figure 14 some isothermals calculated from the Van 
der Waals equation of state have been drawn. If we 
compare them with the isothermals of Figure 13, we see 
that the two sets possess many similar features. In both 
cases there exists an isothermal having a horizontal point of 
inflection C. This is the critical isothermal; and the point 
of inflection is the critical point. The isothermals above 
the critical temperature show a similar behavior in both 
figures. However, the isothermals below the critical 
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temperature exhibit differences. The Van der Waals 
isothermals are continuous curves with a minimum and a 
maximum, whereas the isothermals of Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13 have two 
angular points and are horizontal in the region where the 
Van der Waals isothermals take on their maxima and 
minima. 

The reason for the qualitatively different behavior of the 
two sets of isothermals in the region marked L, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV in Figure 
13 is that the points on the horizontal stretch of the iso- 
thermals in Figure 13 do not correspond to homogeneous 
states, because along this stretch the substance splits into a 
liquid and a vapor part. If we compress a nonsaturated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I v  
Fig. 14 

vapor isothermally until we 
reach the saturation pressure, 
and then reduce the volume 
still further, condensation of 
part of the vapor generally oc- 
curs without further increase 
in pressure. This corresponds 
to the isothermals of Figure 
13. However, if we compress 
the vapor very gently and 
keep it free of dust particles, 
we can reach a pressure con- 
siderably higher than the sat- 

uration pressure before condensation sets in. When this 
situation is realized, we say that the vapor is supersatu- 
rated. The supersaturated states, however, are labile; any 
slight disturbance may produce condensation, causing the 
system to pass over into a stable state characterized by a 
liquid and a vapor part. 

The labile states are important for our discussion because 
they illustrate the possibility of the existence of homogene- 
ous states in the region of the saturated vapor. We assume 
that these labile states are represented by the part BCDEF 
of the Van der Waals isothermal ABCDEFG (Figure 15), 
whereas the horizontal stretch BF of the discontinuous 
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we first show that the work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 
performed by a system dur- 
ing a reversible isothermal 
cycle is always zero. F’rom 
(16) we see that the work 
performed during a cycle is 
equal to the heat absorbed 
by the system. But for a 
reversible cycle, (66) holds; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbyG 

V 
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The objection might be raised against the above demon- 
stration that since the area of the isothermal cycle BCDHB 
is obviously non-vanishing, it is not true that the work 
performed during a reversible isothermal cycle is always 
zero. The answer to this objection is that the cycle 
BCDHB is not reversible. 

In order to see this, we should notice that the point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD 
on our diagram represents two different states, depending 
on whether we consider it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas being a point on the Van der 
Waals isothermal BCDEF or a point on the liquid-vapor 
isothermal BHDIF. Although the volume and pressure 
represented by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD are the same in both cases, in the case of 
the Van der Waals isothermal, D represents a labile homo- 
geneous state, whereas in the case of the liquid-vapor 
isothermal, D represents a stable nonhomogeneous state 
composed of a liquid and vapor part. When we perform 
the cycle BCDHB, we pass from thk state D on the Van 
der Waals isothermal to the state D on the liquid-vapor 
isothermal. Since the liquid-vapor state D is more 
stable than the Van der Waals state D, this step is h e -  
versible because it could not occur spontaneously in the 
opposite direction. Thus, the entire cycle BCDHB is 
irreversible, and therefore its area need not vanish. 

The critical data T,, V,, and p, of a substance can be 
expressed in terms of the constants a and b which appear in 
the Van der Waals equation of the substance. 

The Van der Waals equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(99), when p and T are given, 
is an equation of the third degree in V. In general, there- 
fore, there are three different roots of V for given values of 
T and p. The critical isothermal, T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= T, , however, has a 
horizontal point of inflection at p = p,, V = V, ; that is, 
there is a third-order contact at V = V, between the 
critical isothermal and the horizontal line p = p, . Hence, 
it follows that the cubic equation for V which is obtained by 
placing p = p, and T = T, in (99) has a triple root V = V, . 
This cubic equation can be written in the form: 

p,V3 - (p,b + RT,)V* + aV - ab = 0. 
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Since V, is a triple root of this equation, the left-hand side 

must be of form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,(V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- VJ3 .  Hence, we find, by compari- 
son, that: 

If we solve these three equations for V,, p,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,, we 
obtain the equations: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(100) 
8 a  a * and T, = -- 
27 Rb’ v*=3b; p c =  - 

27b2’ 

which express the critical data in terms of the constants zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a and b. 

It is worth noticing that if we takeVc,!Pc,and T, as the 
units of volume, pressure, and temperature, respectively, 
the Van der Waals equation mumes the same form for all 
substances. Placing 

and making use of (loo), we obtain from (99) : 

Since this equation contains only numerical constants, it is 
the same for all substances. The states of various sub- 
stances which are defined by the same values of 9, 3, and, 3 
are called corresponding states, and (101) is often called 
“Van der Waals’ equation of corresponding states.” 

In section 14 we showed that if a substance obeys the 
equation of state, pV = RT, of an ideal gas, we can deduce 
thermodynamically that its energy depends on the tem- 
perature only and not on the volume. This result is true 
bnly for 
volume. 

From 

ideal gases. For real gases, U depends also on the 

(99) we deduce that: 



74 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATHE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAENTROPY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
this together with (88) gives: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtv>T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT d ( _  RT - -} a - - RT + - a 

aT V - b  V2 V - b  Vz 

If we integrate this equation with respect to V (keeping T 
constant), we obtain: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

u = - - a +f(T), 
V ( 103) 

since the constant of integration need be constant with 
respect to V only but may still be a function of T. The 

term - - in (103) represents the potential energy of the 

cohesive forces between the molecules. 
f ( T )  cannot be further determined by means of thermo- 

dynamics alone; its determination requires some data on 
the specific heats. Let us assume, for example, that the 
molecular heat at constant volume, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACv, is constant. From 
(25) and (103) we obtain, then, 

a 
V 

cv = (g) =f(T). 

Integrating, we get : 

f(T) = CvT + W, 

where 20 is a constant. Equation (103) now becomes: 

With this expression for the energy, we can easily calcu- 
late the entropy of one mole of a Van der Waals gas. From 
(72), (21), (102), and (104), we obtain: 
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= ;(... + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG d V )  + b(rb RT - ,>dV a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

&T dV = c v T + R m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
or, on integrating, 

S = C;. log T + R log (V - b) + const. (105) 

Notice the similarity of this formula to (86), which is the 
expression for the entropy of an ideal gas. 

In section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 we defined an adiabatic transformation as a 
reversible transformation during which the system is 
thermally insulated. Thus, along an adiabatic transforma- 
tion dQ = 0, so that from (72), dS = dQ/T = 0, or S = 
const. That is, if a system suffers an adiabatic transforma 
tion, its entropy remains constant. For this reason, 
adiabatic transformations are sometimes called isoentropic. 

The  equation of an adiabatic transformation of a Van der 
Waals gas is immediately obtained from (105) by taking the 
entropy constant. This gives : 

C;. log T + R log (V - b) = const. 

or 
R - 

T(V - b)Cy = const. (106) 

This equation for the adiabatics of a Van der Waals gas is 
very similar to equation (38) for the adiabatics of an ideal 
gas. 

Problems 

1. What is the entropy variation of 1,OOO grams of water when 
raised from freezing to boiling temperature? (Assume a constant 
specific heat = 1 cal./gm. deg.) 
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2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA body zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAobeys the equation of state: 

pv1.2 1 0 9 p 1  

A measurement of its thermal capacity inside a container having 
the constant volume 100 liters shows that under these conditions, 
the thermal capacity is constant and equal to 0.1 cal./deg. Ex- 
press the energy and the entropy of the system as functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T and V. 

3. The boiling point of ethyl alcohol (C;HsO) is 78.3OC; the heat 
of vaporization is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA855 joules/gm. Find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdp/dT at the boiling 
point. 
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Thermodynamic Potentials 
17. The free energy. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn a purely mechanical system the 

external work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL performed during a transformation is 
equal to &us the variation, AU, of its energy. That is, 

L =  -AU. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(107) 

For thermodynamical systems there is no such simple 
relationship between the work performed and the variation 
in energy because energy can be exchanged between the 
system and its environment in the form of heat. We have, 
instead, the first law of thermodynamics (15), which we 
can write in the form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -AU + Q. (108 
Many transformations of thermodynamical systems occur 

while the systems are in thermal contact with the environ- 
ment, so that an exchange of heat between the system and 
the environment can take place. In that case L may be 
larger or smaller than -AU, depending on whether the sys- 
tem absorbs heat from or gives up heat to the environment. 

We suppose now t.hat our system s is in thermal contact 
with an environment which is at ti constant temperature T 
throughout, and we consider a transformation of our system 
from an initial state A to a final state B. Applying the 
inequality (73) to this transformation, we have: 

Since the system receives heat only from a source whose 
temperature is constant, we may remove 1/T from under 
the integral sign, and we find that 

77 
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We thus obtain an upper limit to the amount of heat 

which the system can receive from the environment. If the 
transformation from A to B is reversible, the equality sign 
holds in (73) and therefore in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(109) also. In this case (109) 
gives exactly the amount of heat received by the system 
during the transformation. 

From (108) and (109) we obtain, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon putting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= U(B) 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU(A) :  

This inequality places an upper limit on the amount of work 
that can be obtained during the transformation from A to B. 
If the transformation is reversible, the equality sign holds, 
and the work performed is equal to the upper limit. 

Let us suppose now that the temperatures of the initial 
and final states, A and B, are the same and equal to the 
temperature T of the environment. We define a function F 
of the state of the system as follows : 

F = U - TS. (1 11) 

In terms of this function F, which is called the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfree energy 
of the system, we can write (110) in the form: 

In (112), also, the equality sign holds if the transformation 
is reversible. 

The content of equation (112) can be stated in words as 
follows : 

If a system suffers a reversible transformation from an 
initial state A to a h a 1  state B both of which states have a 
temperature equal to that of the environment, and if the 
system exchanges heat with the environment only, during 
the transformation, the work done by the system during 
the transformation is equal to the decrease in the free 
energy of the system. If the transformation is irreversible, 
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the decrease zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin the free energy of the system is only an 
upper limit on the work performed by the system.' 

By comparing (112) with (107), which is true for purely 
mechanical systems only, we see that the free energy, in 
thermodynamical systems which can exchange heat with 
their environments, plays a role analogous to that played 
by the energy for mechanical systems. The main difference 
is that in (107) the equality sign always holds, whereas in 
(112) the equality sign holds only for reversible trans- 
formations. 

We now consider a system that is dynamically (not 
thermally) insulated from its environment in the sense 
that any exchange of energy in the form of work between 
the system and its environment is impossible. The system 
can then perform only isochore transformations. 

If the pressure at any instant of time is the same for all 
the parts of the system, and work can be performed by the 
system only M an effect of the forces exerted by thk pressure 
on the walls, then the system is dynamically insulated when 
it is enclosed inside a container with invariable volume. 
Otherwise the dynamical insulation might require more 
complicated devices. 

We assume that, although our system is dynamically 
insulated, it is in thermal contact with the environment and 
that its temperature is equal to the temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT of the 
environment. For any transformation of our system, we 
have L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ;  we obtain thus from (112): 

or 

1 This result is very often stated as follows: 
When a system undergoes an isothermal transformation, the work L 

performed by it can never exceed minus the variation, AF, of its free energy; 
it is equal to - AF if the transformation is reversible. 

Our result is more general because it holds not only for isothermal 
transformations but also for transformations during which the system 
assumes temperatures different from Tin the intermediate states, provided 
only that the exchange of heat occurs solely with the environment which 
is at the same temperature T throughout. 
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That is, if a system is in thermal contact with the environ- 
ment at the temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, and if it is dynamically isolated 
in such a way that no external work can be performed or 
absorbed by the system, the free energy of the system cannot 
increase during a transformation. 

A consequence of this fact is that, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi f  the free e w g y  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis a 
minimum, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.is in a state of stable equilibrium; this is 
so because any transformation would produce an increase 
in the free energy, and this would be in contradiction to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(113). In the case of mechanical systems, stable equilib- 
rium exists if the potential energy is a minimum. Since 
the condition for stable equilibrium of a thermodynamical 
system enclosed in a rigid container and having the tem- 
perature of the environment is that the free energy be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
minimum, the free energy is often called the “thermody- 
namic potential at constant volume.” Notice, however, 
that, strictly speaking, the condition for the validity of 
(113) is not only that the volume of the container be 
constant but also that no external work be performed by 
the system. If the system is at a uniform pressure, how- 
ever, the two conditions are equivalent. 

We now consider an isothermal transformation, I, of a 
system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat the temperature T from a state A to a state B, 
and also an isothermal transformation, 11, between two 
states A’ and B’ at a temperature T + dT. A’ is obtained 
from A by an infinitesimal transformation during which the 
temperature is raised by an amount dT while no external 
work is done. If the system is at a uniform pressure 
throughout, this can be realized if the volumes of A and A‘ 
are equal (isochore transformation). Similarly, during the 
infinitesimal transformation from B to B‘ no work is to be 
performed. 

Let L and L + dL be the maximum amounts of work 
that can be obtained from the transformations I and 11, 
respectively. We have, then 

(1 14) L = F(A) - F(B) 
L + dL = F(A’) - F(B’), 
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or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(115) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdL dF(A) dF(B) 
dT dT dT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’ 

where we denote by dF(A) and dF(B) ,  respectively, F(A’) - 
F(A)  and F(B’) - F(B). But we have: 

-=---  

F(A) = U(A)  - TS(A),  

or, taking the differentials of both sides, 

dF(A) = dU(A) - TdS(A) - dTS(A). (1 16) 

Since no work is performed in the transformation from 
A to A‘, the amount of heat received by the system during 
this infinitesimal transformation is, according to (15), 

and, from (72), 
dQA = dU(A) ;  

Equation (116) now gives: 

Similarly, we obtain : 

From (114) and (115) we thus find: 

(117) 
dL 
dT - 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAU = U(B) - U(A) is the variation in energy 
resulting from the transformation from A to B. Equation 
(117) is called the &ochore of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVun’t Ho$ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas many 
useful applications. 

At this point we shall derive a useful expression for the 
pressure of a system whose state can be represented on a 
(V,  p) diagram. Let us consider an infinitesimal, iso- 
thermal, reversible tramformation which changes the 

L -  T - -  -AU, 
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volume of the system by an amount zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdV. We can apply to 
this transformation equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 12) with the equality sign zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
because the transformation is reversible. Since: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= pdV, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAZ? = ($)=dV, 

we have, from (1 12), 

or 

(>.= -P. 

We conclude this section by giving the expression for the 
free energy of one mole of an ideal gas. This is immediately 
obtained from equations (1 1 1) , (29), and (86) : 

If we use (87) instead of (86), we obtain the equivalent 
formula: 

F = CVT + w - T(C, log T - R l o g p  + a + R log R). (120) 

F = CVT + W - T(CV log T + R log V + u). (119) 

18. The thermodynamic potential at constant pressure. 
In many thermodynamical transformations the pressure 
and the temperature of the system do not change but, 
instead, remain equal to the pressure and the temperature 
of the environment during the course of the transformation. 
Under such circumstances it is possible to define a function 
@ of the state of the system which has the following prop- 
erty: if the function @ is a minimum for a given set of 
yalues of the pressure and the temperature, then the system 
will be in equilibrium at the given pressure and temperature. 

We consider an isothermal, isobaric transformation at the 
constant temperature T and the constant pressure p which 
takes our system from a state A to a state B. If V ( A )  and 
V(B) are the initial and final volumes occupied by the 
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system, then the work performed during the transformation 
is: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= p[V(B)  - V(A)] .  

Since the transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis isothermal, we may apply 
equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(112) to it; on doing this, we obtain: 

We now define a new function Q, of the state of the system 

(121) 

@(B) s *(A).  (122) 

The function Q, is called the thermodynamic potentid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat 
constant pressure. It follows from (122) that in an isobaric, 
isothermal transformation of a system, the thermodynamic 
potential at constant pressure can never increase. 

We may therefore say that if the temperature and the 
pressure of a system are kept constant, the s ide  of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem 
for which the thermodynamic potential Q, is a minimum is a 
state of stable equilibrium. The reason for this is that if @ 
is a minimum, any spontaneous change in the state of the 
system would have the effect of increasing Q,: but this would 
be in contradiction to the inequality (122). 

The following properties of Q, for systems whose states 
can be represented on a (V,  p) diagram are sometimes 
useful. 

If we choose T and p d the independent variables and 
differentiate (121) with respect to p, we find that: 

88 follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ip = F + PV = U - TS + pV. 

In terms of Q,, the preceding inequality now becomes: 

But from the definition of the entropy and from the first 
law, we have for a reversible transformation: 

d Q  = TdS = dU + pdV; 
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or, in our zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase, for an isothermal change of pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

Hence, we find that: 

Similarly, differentiating (121) with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, we can 
show that: 

($) =-s. 
P 

As 8~ example of the usefulness of the potential 9, we shall 
emplcy it to derive Clapeyron’s equation, which we have 
already derived in section 15 by a different method. 

We consider a system composed of a liquid and its satu- 
rated vapor enclosed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa cylinder and kept at a constant 
temperature and pressure. If U 1 ,  US, SI , S2, and Trl , YI 
are the energies, entropies, and volumes of the liquid and 
the vapor parts, respectively, and U,  S, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV are the 
corresponding quantities for the total system, then, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

u = u1 -l- U t  

s = 81 + 8 2  

v = v1 + v2, 
so that, from (121), 

0 = 01 + 0 2 ,  

where O1 and a2 are the potentials of the liquid and vapor 
parts, respectively. 

Let ml  and m2 be the masses of the liquid part and the 
vapor part, respectively, and let u l ,  sl, u l ,  and q1 and 
u2 , st,02 , and ~2 be the specific energies, entropies, volumes, 
and thermodynamic potentials of the liquid and the vapor. 
We have, then, 

a1 = mlvl 

= mw2. 
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We know from the general properties of saturated vapors 

that all the specific quantities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu l ,  u 2 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsl ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, ol, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo 2  

and the pressure p are functions of the temperature only. 
Hence, p1 and p2 are functions of T only, and we may write: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

cp = rnlcol(T) + mzcnm. 

We start with the system in equilibrium and perform an 
isothermal transformation, keeping the pressure constant 
so that only ml and m2 can vary. Let ml be increased by an 
amount dml as a result of this transformation. Then, 
since ml + m2 = m = const., m2 will decrease by an amount 
dml . The thermodynamic potential will now be given by 
the expression : 

(mi + dml)(pl + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(mz - dml)(pz = Q + dml(pl - ~ 2 ) .  

Since the system was initially in a state of equilibrium, 0 
must have been a minimum initially. From this and from 
the above equation it follows that: 

(PI = 9 2 ,  

or 

Differentiating with respect to T, we find that: 

(ut - U l )  - T(s2 - 51) + p(u2 - Ul) = 0. 

But 
ds du dv 
dT dT+ '@* 

T -  = 

Hence, the preceding equation reduces to: 

4 8 2  - Sl) + $(op - u,) = 0. 

But (s2 - sl) is the variation in entropy when one gram of 
liquid is vaporized at constant temperature; hence, it is 
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equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX/T, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX is the heat of vaporization of the 
substance. We thus obtain the Clapeyron equation: 

We shall now write down the expression for the thermo- 
dynamic potential at constant pressure for one mole of an 
ideal gas. From (121), (120), the equation of state, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBART, and (33), we obtain: 

= CpT + W - T(Cp log T - R log p + u + R log R).  (125) 

19. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe phase rule. When a system consists of only a 
single homogeneous substance, it is said to consist of only 
one p h e .  If a heterogeneous system is composed of 
several parts each of which is homogeneous in itself, the 
system is said to consist of as many phases as there are 
homogeneous parts contained in the system. 

As an example of a system composed of only one phase, we 
may consider a homogeneous liquid (not necessarily a 
chemically pure substance ; solutions may also be considered), 
a homogeneous solid, or a gas. 

The following are some examples of systems that consist 
of two phases: a system composed of water and water vapor; 
a saturated solution of salt in water with some of the solid 
salt present; a system composed of two immiscible liquids; 
and so forth. In the first example, the two phases are: a 
liquid phase composed of water, and a gaseous phase 
composed of the water vapor. In the second example, the 
two phases are: the salt-water solution, and the solid salt. 
In the third example, the two phases are the two liquids. 

All the specific properties of a phase (that is, all the prop- 
erties referred to a unit mass of the substance constituting 
the phase: for example, the density, the specific heat, and 
so forth) depend on the temperature T, the pressure p, 
and the chemical constitution of the phase. 

In order to define the chemical constitution of a phase, we 
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must give the percentage of each chemically defined sub- 
stance present in the phase. 

Strictly speaking, one could state that if the percentage of 
each chemical element (counting the total amount of the 
element, both free and chemically bound to other elements) 
were known, the percentage of the different compounds 
that could be formed with the given elements would be 
determined by the given temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and pressure p of 
the phase. Indeed, it is well known from the laws of 
chemistry that for any given temperature, pressure, and 
relative concentrations of the various elements present, 
chemical equilibrium will always be reached within the 
phase. We may therefore say that a phase is a homo- 
geneous mixture of all the possible chemical compounds 
which can be formed from the chemical elements present in 
the phase, and that the percentage of each compound 
present is completely determined by T, p, and the relative 
concentrations of all the elements in the phase. 

Consider, for example, a gaseous phase consisting of 
definite concentrations of hydrogen and oxygen at a given 
temperature and pressure. The most abundant molecules 
formed from hydrogen and oxygen are H2, 0 2 ,  and HI0 
(for the sake of simplicity, we neglect the rarer molecules 
H, 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOs, and HSOt). The number of water molecules 
which will be formed in our gaseous mixture at a given 
temperature and pressure is uniquely determined, and hence 
the constitution of the gaseous mixture also, by the con- 
centrations of the hydrogen and the oxygen only. Strictly 
speaking, we may therefore say that the independent com- 
ponents of a phase are the chemical elements contained in 
the phase (each element is to be counted as an independent 
component whether it is present in its elementary form or in 
chemical combination with other elements). However, it is 
known from chemical considerations that under certain condi- 
tions many chemical equilibria are realized only after a period 
of time that is exceedingly long as compared to ordinary time 
intervals. Thus, if we have a gaseous mixture of Ht and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOt 
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at normal temperature and pressure, chemical equilibrium is 
reached when a large amount of the hydrogen and the 
oxygen combine to form water vapor. But the reaction 

2H2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 0 2  = 2H2O 

proceeds so slowly under normal conditions that practically 
no combination of hydrogen and oxygen takes place in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
reasonably short period of time. Of course, the reaction 
would take place much more rapidly if the temperature 
were high enough or if a suitable catalyzer were present. 

We see from the preceding discussion that in all cases for 
which we have a chemical compound that is formed or dis- 
sociated at an extremely slow rate, we may consider the 
compound itself (and not its constituent elements) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a 
practically independent component of the phase. If, for 
example, we have a gaseous phase consisting of hydrogen, 
oxygen, and water vapor at such a low temperature that 
practically no water is either formed or dissociated, we shall 
say that our phase contains the three independent com- 
ponents 02, H2, and H2O (and not only the two com- 
ponents hydrogen and oxygen) ; the chemical constitution 
of the phase is then determined by the masses of 02, Hz , 
and H20 per unit mass of the phase. 

It is clear from the above considerations that the number 
of independent components can be either larger or smaller 
than the total number of chemical elements present. In the 
previous example we had three independent components 
(HI ,  02, and H20) instead of only two (H and 0). On the 
other hand, if water vapor alone is present, we can neglect 
its dissociation into hydrogen and oxygen and consider the 
phase as consisting of only one component, the water, and 
not of two. 

Consider now a system composed of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf phases and of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 
independent components. Let n2p be the mass of the kth 
component present in the ith phase. Then the distribution 
of the components among the various phases can be con- 
veniently described by the array: 
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ml1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, m21, ... ¶ na/l 

m12, m22 , . - - , "a/* 

min , min , * * * , min. 
.................. 

(126) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
At a given temperature and pressure, the condition for 
equilibrium of our system is that the thermodynamic 
potential Q, be a minimum. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis condition gives rise to a 
set of relations among the quantities (126). 

We shall assume that the surface energy of our system is 
negligible, so that + can be put equal to the sum of the 
thermodynamic potentials of all the phases: 

+ = + 1 + + 2 + . * *  +a/. (127) 

The function +i depends on T, p, and the masses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmil, 

~ 2 ,  - , min of the various components in the ith phase: 

+i = +i(t, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ,  mil , - - . , mi,,). (128) 

The form of this function depends on the special prop 
erties of the ith phase. We notice, however, that +i, 

considered as a function of the n variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmil , mi2, * * , 
min, is homogeneous of the first degree. Indeed, if we 
change m i l ,  mi2, * * * , mi, by the same factor K, we do not 
alter the constitution of our phase (since it depends only on 
the ratios of the m's), but increase the total mass of the 
phase by the factor K. Thus, +i becomes multiplied by 
the same factor K. 

If our system is to be in equilibrium at a given tem- 
perature and pressure, must be a minimum. This means, 
analytically, that if we impose on our system an infinitesimal 
transformation at constant temperature and pressure, the 
resulting variation in Q, must vanish. We consider a 
transformation as a result of which an amount 6m (to be 
considered as an infinitesimal of the first order) of the kth 
zomponent is transferred from the ith to thej th phase, all 
the other components and phases remaining unaffected. 
Then, ma becomes ma - 6m, and mjk becomes mjk + 6m. 
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In the variation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, only aPi and aj will change. Thus, we 
obtain as the minimum condition: 

or 

Since a similar equation must hold for any two phases and 
for any one of the components, we obtain altogether the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ndf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1) equations of equilibrium: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ml - a h  
amll aml am, 1 

asl - a h  8% 
amn amp amn 

- - - = . . . = -  

- - -  = . . . = -  
........................ 

We notice that these equations depend only on the 
chemical constitution of each phase and not on the total 
amwnt of substance present in the phase. Indeed, since 
(128) is a homogeneous function of the first degree in the 
m’s, its derivative with respect to any one of the m’a is 
homogeneous of zero degree ;*that is, its derivatives depend 
only on the ratios of mil , mi2 , - - - , mi,. From the array 
(126), we see that there are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n - 1)fsuch ratios (the n - 1 
ratios of the n variables contained in a column of (126) 
determine the constitution of one phase). Besides these zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(n - l)f variables, we also have the variables T and p in 
(130). We thus have a total of 2 + (n - 1)fvariables. 

The difference, v, between this number and the number, 
n(f - l), of equations (130) is the number of the (n - 1)f 
+ 2 variables which can be chosen arbitrarily, the re- 
maining variables then being determined by the equations 
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(130). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWe therefore call zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdegree of variability or the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
number of degrees cf freedom of the system. We have: 

v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (n - 1)f + 2 - (f - l )n, 

or 
v =  2 + n  - f .  

This equation, which was derived by Gibbs, expresses the 
phase rule. It says that a system composed off phases and 
n independent components has a degree of variability 
v = 2 + n - f. By “degree of variability” is meant the 
number of variables (we take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas our variables T, p, and the 
variables that determine the constitutions of all the phases) 
that can be chosen arbitrarily. 

To avoid misinterpretations, one should notice that only 
the composition and not the total amount of each phase is 
considered, because thermodynamic equilibrium between 
two phases depends only on the constitutions and not on 
the total amounts of the two phases present, as shown by 
(129). A few examples will illustrate how the phase rule 
is to be applied. 

Exumple 1. A system composed of a chemically defined 
homogeneous fluid. We have only one phase (f = 1) and 
one component (n = 1). From (131) we obtain, then, 
v = 2. Thus, we can, if we wish, choose the two variables, 
T and p ,  arbitrarily; but we then have no further possibility 
of varying the constitution, since our substance is a chemi- 
cally defined compound. (Notice that the total amount of 
substance, as we have already stated, is not counted as a 
degree of freedom.) 

Example 2. A homogeneous system composed of two 
chemically defined gases. Here we have one phase (f = 1) 
and two independent components (n = 2). From (131) it 
follows that v = 3. Indeed, we may freely choose T,  p ,  and 
the ratio of the two components that determines the com- 
position of the mixture. 

Exumple 3. Water in equilibrium with its saturated 
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vapor. Here we have two phases, liquid and vapor, and 
only one component, so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 and n = 1. Thus, we 
must have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. We can choose only the temperature 
arbitrarily, and the pressure will then be equal to the 
pressure of the saturated vapor for the given temperature. 
Since there is only one component, we obviously have no 
freedom of choice in the composition of the two phases. 
Notice also in this example that for a given temperature 
we can have equilibrium between arbitrary amounts of 
water and water vapor provided the pressure is equal to the 
saturation pressure. However, the amounts of water and 
water vapor are not counted as degrees of freedom. 

D 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Exumpk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. A system composed of a definite chemical 
compound in three different phases: solid, liquid, and vapor, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as, for example, ice, water, and water vapor. We have 
here one component and three phases: n = 1, f = 3. We 
therefore find from (131) that u = 0. This means that 
there is no freedom of choice of the variables at all: the 
three phases can coexist only for a fixed value of the tem- 
perature and a fixed value of the pressure. 

This fact can be illustrated with the aid of the diagram in 
Figure 16, in which temperatures and pressures are plotted 
as abscissae and ordinates, respectively. 

The curve AB represents the pressure of the saturated 
water vapor plotted against the temperature. When the 
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values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and p correspond to a point on this curve, water 
and water vapor can coexist. If, keeping the temperature 
constant, we increase the pressure, equilibrium between the 
water and the vapor no longer exists, and all the substance 
condenses into theliquid phase. If, instead, we decrease the 
pressure, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall the substance evaporates. Hence, for points 
above the curve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAB we have water, and for points below it 
we have vapor, as indicated in the figure. 

The curve AC is analogous to AB, but it corresponds to 
the pressure of the saturated vapor in contact with ice and 
not with liquid water. Above the curve AC ice is stable, 
and below it vapor is stable. 

Since water and vapor can coexist along AB, and ice and 
vapor can coexist along AC, it is necessary that the point 
on the diagram corresponding to the values of T and p for 
which ice, water, and vapor coexist lie on both curves; that 
is, that this point coincide with the point of inter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
section A of the two curves. We see now that the 
three phases can coexist only for a definite value of the, 
temperature and the pressure. 

The point A is called the triple point because it is the 
intersection not only of the water-vapor curve and the ice- 
vapor c u m  but also of the ice-water curve AD. These 
three curves divide the T, p plane into three regions that 
represent the ranges of stability of vapor, ice, and water; 
the triple point is at the boundary of the three regions. 

The triple point of water is at T = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.0075"C and p = 
0.00602 atm. Since the pressure at the triple point is less 
than atmospheric pressure, the horizontal line p = 1 atm. 
(the dotted line on the diagram) intersects the three regions 
ice, liquid, and vapor. The intersection of the dotted line 
with the curve AD corresponds to a temperature equal to 
the freezing point f of water at atmospheric pressure (0°C). 
The intersection b with the curve A B  corresponds to the 
boiling temperature of water at atmospheric pressure 
(100°C). 

For some substances the pressure at the triple point is 
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higher than one atmosphere. For these substances the 
dotted hrizontal line corresponding to atmospheric pressure 
lies below the triple point and passes, therefore, directly 
from the solid to the vapor region without intersecting the 
liquid region. At atmospheric pressure these substances 
do not liquefy but vaporize directly from the solid phase 
(sublimation); they can exist in the liquid phase only at 
sufEciently high pressures. 

20. Thermodynamics of the reversible electric cell. In 
all previous applications of the laws of thermodynamics, we 
have generally considered systems that could perform only 
mechanical work. But, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas we have already seen in section 
3, mechanical and electrical work obey the same thermo- 
dynamical laws; they are thermodynamically equivalent. 
The reason for this is that there are processes which can 
transform mechanical work completely into electrical 
energy, and vice versa. 

As an example of a system which can perform electrical 
work, we shall study in this section the reversible electro- 
lytic cell. By a “reversible electrolytic cell” we mean a cell 
such that a reversal of the direction of the current flowing 
through it causes the chemical reactions taking place in it to 
proceed in the opposite sense. A reversible cell can always 
be brought back to its initial state by reversing the flow of 
current through it. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo be the electromotive force of the cell. The electrical 
work performed by the cell when we permit an amount e of 
electricity to flow through it is: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ev. (132) 

Of course, the cell actually performs this amount of work 
only if we keep just a very small amount of current flowing 
through it, that is, if we make sure that the process occurs 
reversibly. Otherwise, some energy will be transformed 
into heat inside the cell as a result of the Joule effect. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU(T)  be the energy of our cell before any electricity 
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has flowed through it. We assume that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU(T) depends only 
on the temperature because we assume that the volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
our cell is practically invariable (that it is an isochore cell), 
and consequently neglect any possible effects which the 
pressure may have on the energy. 

We now consider the state of the cell after a quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe of 
electricity has flowed through it. The flow of electricity 
through the cell results in certain chemical changes within 
the cell, and the amount of substance which is chemically 
transformed is proportional to e. Thus, the energy of the 
cell will no longer be equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU(T)  but will be changed by 
an amount proportional to e. Denoting by U(T, e) the new 
energy of the cell, we have thus: 

u(T, e) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(T) - 40, (133) 

where u(T) is the decrease in the energy of the cell when a 
unit quantity of electricity flows through it. 

We now apply the Van’t Hoff isochore (117) to the iso- 
thermal transformation from the initial state before any 
electricity has flowed through the cell (energy = U(T) )  to 
the final state after the amount e has flowed through 
(energy given by (133)). From (133) we have for the 
variation in energy: 

AU = -m(T) 

The work performed is given by (132). Substituting in 
(117) and dividing both sides by e, we obtain: 

dv 
dT v - T- = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU. 

This equation, which is called the equation of Helmholtz, 
establishes a relationship between the electromotive force u 
and the energy u. We notice that if no heat were ex- 
changed between the cell and its environment, we should 
expect to find u = u. The extra term Tdv/dT in (134) 
represents the effect of the heat that is absorbed (or given 
out) by the cell from the environment when the electric 
current flows. 
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We can also obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(134) directly without using the 

Van't Hoff isochore. Let us connect the cell to a variable 
condenser having a capacity C. The amount of electricity 
absorbed by the condenser is: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Cv(T). 

We now consider C and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the variables which define the 
state of the system composed of the cell and the condenser. 
If we change the capacity of the condenser by an amount 
dC by shifting the plates of the condenser, the system 
performs a certain amount of work because of the attraction 
between the plates. This amount of work i s 2 :  

dL = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 dCr?(T). 

The energy of our system is the sum of the energy (133) 
of the cell, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U(T) - 4 0  = U(T) - (w+W(T), 

and the energy of the condenser, $CtP(T). From the first 
law of thermodynamics (15), we find that the heat absorbed 
by the system in an infinitesimal transformation during 
which T and C change by amounts dT and dC is: 

dQ = dU + dL = d [U(T )  - CV(T)U(T) + 3Cv2(T)] + 3dCv'(T) 

dT dT "1 du [ad: dT = d T  - - C V - - C U - + C V -  

+ dC[v2 - UV]. 

The differential of the entropy is, therefore, 

dv dv dC 
T - Cun + Cva] + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[v' - uv]. 

'This formula is obtained as follows: The energy of an isolated con- 
denser is te*/C. If we change C, the work done is equal to minus the varia- 
tion in energy, that is, 

where e ie kept constant because the condenser is isolated. S h e  e = Cv, 
we obtain the formula used in the text. 
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Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAds must be a perfect differential, we have: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
du zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdu du zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcu- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- C U D  + cu- dU 

d T -  a U ~ - U U V  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz T aT T * 

-7- 

a dT- dT 

If we perform the differentiations indicated and remember 
that  U, u, and v are functions of T only, we immediately 
obtain (134). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Problems 
1. With the aid of the phase rule discuss the equilibrium of a 

saturated solution and the solid of the dissolved substance. 
2. How many degrees of freedom has the system composed of a 

certain amount of water and a certain amount of air? (Neglect 
the rare gases and the carbon dioxide contained in air.) 

3. The electromotive force of a reversible electric cell, as a 
function of the temperature, is: 

0.924 + 0.0015 t + O.oooOO61 t2 volts, 

t W i g  the temperature in "C. Find the heat absorbed by the 
cell when one coulomb of electricity flows through it isothermally 
at a temperature of 1 8 O  C. 
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Gaseous Reactions 

21. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAChemical equilibria in gases. Let us consider a gas- 
eous system composed of a mixture of hydrogen, oxygen, 
and water vapor. The components of this system can 
interact chemically with each other according to the follow- 
ing chemical reaction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

2H2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA02 2H20. 

The symbol e means that the reaction can proceed from 
left to right (formation of water) or from right t o  left (dis- 
sociation of water). Indeed, it is well known from the laws 
of chemistry that for any given temperature and pressure a 
state of equilibrium is reached for which the total amount of 
water vapor present remains unchanged, so that apparently 
water vapor is neither being formed nor dissociated. The 
actual state of affairs that exists at this equilibrium point is 
such that the reaction indicated above is proceeding at 
equal rates in both directions, so that the total amount of 
H20 present remains constant. If we subtract some water 
vapor from the system after equilibrium has set in, the 
reaction from left to right will proceed with greater speed 
than the one from right to left until a sufficient amount of 
additional H2O has been formed to establish a new state of 
equilibrium. If we add some water vapor, the reaction 
from right to left becomes preponderant for a certain length 
of time. Chemical equilibria in gaseous systems are 
regulated by the law of mass action. 

We write the equation of a chemical reaction in the 
general form : 

d1+n2A2+ * * *  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+%A*WBl+mrB t+  * * *  +m,B,, (135) 
98 
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where A l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA2,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. , A, are the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsymbols for the molecules 
reacting on one side and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB1, Bt , . . . , B, the symbols for 
those reacting on the other side. The quantities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn l ,  n2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 . .  , and ml ,  mt, . . are the integer coefficients of the 
reaction. We shall designate the concentrations of the 
different substances expressed in moles per unit volume by 
the symbols [AJ, [AJ, ..- ,and [BJ,  [Be], 0 . -  . We can 
now state the law of mms action as follows: 

When equilibrium is reached in a chemical reaction, the 
exp-ession 

is a junction of the temperature only. 

The quantity K(T) can mume quite different values for 
different chemical reactions. In some cases it will be very 
small, and the equilibrium will be shifted toward the right- 
hand side; that is, when equilibrium has been reached for 
such cases, the concentrations of the molecules on the 
right-hand side are much larger than those of the molecules 
on the left-hand side. If, instead, K(T) is large, the 
opposite situation exists. 

It is instructive to give a very simple kinetic proof of the 
law of mass action. The chemical equilibrium of the re- 
action (135) might conveniently be called "kinetic equilib- 
rium," because even after the equilibrium conditions have 
been realized, reactions among the molecules continue to 
take place. At equilibrium, however, the number of 
reactions that take place per unit time from left to right in 
(135) is equal to the number taking place per unit time from 
right to left, so that the two opposing effects compensate 
each other. We shall therefore calculate the number of 
reactions that occur per unit time from left to right and set 
this equal to the corresponding number of reactions pro- 
ceeding in the opposite direction. 

A reaction from left to right can occur as a result of a 
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multiple collision involving nl molecules A1,  n2 molecules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A t ,  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ,  nt molecules A,. The frequency of such multiple 
collisions is obviously proportional to the nlth power of 
[A1], to the n2th power of [Ad ,  - - - , to the Gth power of 
[A,], that is, to the product: 

[AJ" [A$' * [A,]"'. 

Thus, the frequency of reactions from left to right must 
also be proportional to this expression. Since the tem- 
perature determines the velocities of the molecules, the 
proportionality factor, K'(T),  will be a function of the 
temperature. For the frequency of reactions from left to 
right, we obtain, then, the expression: 

K'(T) [AJ"' [A2P * * [A,J"'. 

Similarly, for the frequency of the reactions in the oppo- 
site direction, we find: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

K"(T) [BJ"' [&]"' * * * [B,]"'. 

At equilibrium these two frequencies must be equal: 

K'(T) [Ad"' [ A s p  * * [A,]"' = K"(T) [BJ"' [BJ'"'' * * * [B,]"", 

or 

This is identical with the law of mass action (136) if we place 

K"( T) R(T) = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
WT) 

This simple kinetic argument gives us no information 
about the function K(T). We shall now show that by 
applying thermodynamics to gaseous reactions we can not 
only prove the law of mass action independently of kinetic 
considerations, but can also determine the dependence of 
H(T)  on the temperature. 
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22. The Van’t Hoff zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAreaction box. The equilibria of gase- 

ous reactions can be treated thermodynamically by assum- 
ing the existence of ideal semipermeable membranes en- 
dowed with the following two properties: (1) A membrane 
semipermeable to the gas A is completely impermeable to 
all other gases. (2) When a membrane semipermeable to 
the gas A separates two volumes, each containing a mixture 
of A and some other gas, the gas A flows through the 
membrane from the mixture in which its partial pressure is 
higher to the one in which its partial pressure is lower. 
Equilibrium is reached when the partial pressures of the 
gas A on both sides of the membrane have become equal. 

Notice that a gas can flow spontaneously through a 
semipermeable membrane from a region of lower total 
pressure toward a region of higher total pressure, provided 
that the partial pressure of the gas that passes through the 
membrane is higher in the region of lower total pressure 
than in the region of higher total pressure. Thus, if a 
membrane semipermeable to hydrogen separates a box con- 
taining hydrogen at one atmosphere of pressure from a box 
containing oxygen at two atmospheres, hydrogen will flow 
through the membrane even though the total pressure on 
the other side is twice as large. 

We should notice, finally, that in reality no ideal semi- 
permeable membranes exist. The best approximation of 
such a membrane is a hot palladium foil, which behaves 
like a semipermeable membrane for hydrogen. 

In order to study the equilibrium conditions for the 
chemical reaction (135), we shall first describe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa process by 
which the reaction can be performed isothermally and 
reversibly. This can be done with the aid of the so-called 
Van’t Hoff reaction box. 

This box is a large container in which great quantities of 
the gases A1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA2, and B1, B2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. - *  are in chemical 
equilibrium at the temperature T. On one side of the box 
(the left side in Figure 17) is a row of T windows, the kth 
one of which, counting from the top down, is semipermeable 



102 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGASEOUS REACTIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to the gas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA h ,  while on the other side (the right-hand side of 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17, where we have assumed that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= a = 2 ) i s a  
row of s windows semipermeable in the same order to the 
gases zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB1, Bz, + . - , B,. On the outside of these windows 
are attached some cylinders with movable pistons, as shown 
in the figure. 

We shall now describe a reversible, isothermal trans- 
formation of our system and calculate directly the work L 
performed by the system during this transformation. 
According to the results of section 17, however, L must be 
equal to the free energy of the initial state minus that of 
the final state of the transformation. By comparing these 
two expressions for L, we shall obtain the desired result. 

We start with our system initially in a state for which the 
pistons in the cylinders, B, on the right-hand side of the 

Fig. 17. 

box are in contact with the windows, so that these cylinders 
have zero volumes, while the pistons in the T cylinders, A, 
on the left are in such a position that the kth cylinder 
contains ?ak moles of the gas A h  (see Figure 18) at a con- 
centration equal to the concentration, [ A h ] ,  of this gas inside 
the box; the partial pressures of the gas on both sides of the 
semipermeable membrane are therefore equal, and a state of 
equilibrium exists. 

The reversible transformation from the initial to the h a 1  
state can be performed in the following two steps: 

Step 1. Starting from the initial state (Figure l8), we 
shift the pistons in the cylinders on the left-hand side of the 
box very slowly inward until all the gases contained in these 
cylinders have passed through the semipermeable mem- 
branes into the large box. At the end of this process, the 
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system will be in the intermediate state that is shown in 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA18. 

We assume that the content of the large box is so great 
that the relative change in concentrations resulting from 
this inflow of gases is negligible. The concentrations of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
gases A during this process, therefore, remain practically 
constant and equal in order to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ A  J, [A21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ + - [A,]. 

The work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL per- 
formed by the system 

dently negative because 
work must be done on 

pressures of the gases. 
In the fist cylinder the 
pressure remains con- 
stant and equal to the 
partial pressure pl of the 
gas A 1  inside the box, * 6 

while the volume of the 
cylinder changes from r 
the initial volume V1 to 

I 
during this step is evi- --(",A,[ 

the pistons against the ---(nAj 

I 
Initiul state 

I I 

Zntermdiute state 

the final volume 0. The : 
work is equal to the 
product of the constant 
pressure p and the vari- 
ation in volume, that is, 
p1(0 - Vl) = - PlV1. 

Since the cylinder, in- 
itially, contained nl 
moles, we have, from the equation of state, plVl = nlRT. 
The work is thus equal to -nlRT. Summing the work for 
all the cylinders on the left, we obtain: 

:m, 4 

I 

jm.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt- 
I 

Final stute 
Fig. 18. 

LI = - RT 2 ni. 
i-1 

Step 1. Starting from the intermediate state, we now 
shift the pistons in the s cylinders on the right-hand side 
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of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbox (they are initially in contact with the windows) 
very slowly outward. Since the bottom of the kth cylinder, 
counting from the top down, is semipermeable to the gas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Bk, this cylinder zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill absorb the gas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABb during the process 
and its concentration in the cylinder will be equal to that of 
the gas inside the large box, that is, equal to [&I. w e  shift 
the pistons outward until the cylinders, in the order from 
the top one down, contain ml, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmt,  , m. moles of the 
gases B1, Bt, . , B., respectively. 

We thus reach the final state of our transformation shown 
on the right in Figure 18. Here the cylinders A have their 
pistons touching the windows so that their volumes are 
zero, while the pistons in the cylinders B are so placed 
that the kth cylinder, counting from the top down, contains 
mk moles of the gas Bb at a concentration equal to the 
concentration, [&I, of that gas inside the box. The gases 
B1, B*, , B, in the cylinders and box are thus in equilib- 
rium through the semipermeable bottoms of the cylinders. 
The work performed by the system during this second 
step wil l  obviously be positive. 

can be calculated in the same way as in 
Stepl. We find: 

This work 

8 

= RT C m j .  
j-1 

The total work performed during the entire transforma- 

L =  R T ( 2 m j -  5 4  i-1 gni). ( 137) 

This work is equal to the difference between the free 
energy of the initial state and that of the final state. To 
calculate this difference, we note that the content of the 
large box is the same in the initial and ha l  states. Indeed, 
in going from one state to the other, we fist introduced into 
the large box n1 moles of A 1 , na moles of A t  , , n, moles 
of A, (Step l), and then extracted ml moles of B1 , ma moles 

tion is the sum of LI and Ln , that is, 
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of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABat , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, moles of B,. But according to the chemical 
equation (135), the substances introduced into the large 
box are equivalent to the substances withdrawn. More- 
over, since the temperature and volume of the large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbox do 
not change, the chemical equilibrium of the gases in the 
box readjusts itself in such a way that the initial and 
final states of these gases are identical. The only difference 
between the initial and final states of the system is in the 
contents of the cylinders. Therefore, the difference be- 
tween the free energies of the two states is equal to the 
difference between the free energy of the gases A contained 
in the cylinders A in the initial state and the free energy of 
the gases B contained in the cylinders B in the final state. 

The free energy of the nl moles of A in the first cylinder 
(initial state) can be calculated as follows: The volume 
occupied by one mole of the gas is evidently equal to the 
inverse of the concentration [A1]. The free energy of one 
mole of A 1  is then obtained from (119) by substituting in 
that equation l/[A1] for the volume V of one mole. Since 
we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn1 moles of A , the free energy of this gas is: 

ni{CviT + WI - T(CVI log T - R log [Ail + 4, 

where Cvl , W 1  , and al are the molecular heat and the energy 
and entropy constants for the gas A1 . Using similar 
notations for At  , , A,, we find for the free energy of the 
gases A contained initially in the cylinders A the expression: 

The free energy of the gases B in the cylinders B at 
the end of the process is similarly given by: 

2 mi { CijT + w; - T(Cij log T - R log [Bj] + a;) ) ,  
j-1 

where C:, , W i ,  and a] are the molecular heat and the 
energy and entropy constants for the gas B j  . 
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The difference between these two expressions must be 

equal to the work L given by (137). We thus have: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWi - T(C:j log T - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR log [Bj] 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa:> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(138) 

Dividing by RT and passing from logarithms to numbers, 
this equation reduees to: 

The right-hand side of this equation is a function of T 
only. Thus, equation (139) not only proves the law of mass 
action (136), but it also gives the form of the function 
K( T) explicitly. 

We shall discuss the formula (139) in section 24. In the 
next section we shall give another proof of the same formula. 

23. Another proof of the equation of gaseous equilibria. 
In this section we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshall derive equation (139) by using the 
result obtained in section 17 that the states of equilibrium 
of a system at a given temperature and volume are those for 
which the free energy is a minimum. 

We consider a mixture of the gases A1, , A, and 
B1, , B, at the temperature T enclosed in a container of 
fixed volume V and reacting chemically in accordance with 
equation (135). When a quantity of the gases inside the 
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container takes part in the chemical reaction, the con- 
centrations of the various gases present change; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a result 
of this, the free energy of the mixture changes also. We 
shall now obtain the equilibrium condition for the chemical 
reaction by making the free energy a minimum. To do 
this, we must first obtain the expression for the free energy 
of a mixture of gases of given concentrations. 

Dalton’s law zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see section 2) states that the pressure of a 
mixture of (ideal) gases is the sum of the partial pressures 
of the components of the mixture (the partial pressure of a 
component is the pressure that this component would 
exert if it alone occupied the total space occupied by the 
mixture). This law indicates that each component is 
unaffected by the presence of the other components and so 
retains its own properties in the mixture. We shall now 
generalize Dalton’s law by assuming that in a mixture of 
ideal gases the energy and the entropy also are equal to 
the sums of the energies and entropies (partial energies and 
partial entropies) which each component would have if it 
alone occupied the total volume occupied by the mixture 
at the same temperature as that of the mixture. 

From the definitions (111) and (121) of the free energy 
and the thermodynamic potential at constant pressure, it 
follows now immediately that for a mixture of ideal gases 
these quantities are equal, respectively, to the sum of the 
partial free energies and the sum of the partial thermo- 
dynamic potentials at constant pressure of the components 
of the mixture. 

With these assumptions we can now write down the ex- 
pression for the free energy of our mixture of gases. The 
free energy of one mole of the gas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA1 is given, as in the 
preceding section, by the expression : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CnT + W1 - T(Cv1 log T - R log [A11 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat). 

Since the concentration of A1 in the volume V is [A1], 
there are present altogether V [ A J  moles of the gas A I .  
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The partial free energy of this component of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAour mixture is, 
therefore zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V[A1]{CnT + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT(Cn log T - R log [A11 + uJ). 

The free energy of the total system is obtained by summing 
up the partial free energies of all the components in our 
mixture. On doing this, we obtain for the total free energy 
the expression : 

r 

i-1 
F = V C [A<] { C V ~ T  + Wi - T(CVi log T - R log [At] + a+) 1 

8 

+ V C [Bj] { CbjT + W; - T(Ch j log T - R log [BjI + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu;) } (140) 
j-1 

We consider now an infinitesimal reaction of the type 
(135) (that is, a reaction in which an infinitesimal amount of 
substance is transformed). If the reaction proceeds from 
the left to the right of (la), infinitesimal amounts of the 
gases A1, A o ,  . . , A, disappear and infinitesimal amounts 
of the gases B1, BZ,  . - . , Be are formed. The fractions of 
moles of the gases A1,  AS, 0 . .  , A ,  that disappear are 
proportional to the coe5cients nl,  no, * * , nr , respectively; 
and the fractions of moles of the gases BI, Bz, . - , B8 that 
are produced as a result of the transformation are propor- 
tional to the numbers ml,  mz, , m8, respectively. Con- 
sequently, the concentrations [Ad, [ A 4  * * * , and [BJ, 
[Bt], . - undergo the variations: 

-€?&I, -ea, * ' *  , --En,; e m ,  em, 1 . -  , 
where e is the infinitesimal constant of proportionality. 

If F is to be a minimum for our state, the variation in F 
resulting from the infinitesimal reaction must vanish. 
Since this variation can be calculated as though it were a 
differential, we have : 
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Dividing this equation by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeV, and replacing the derivatives 
by their values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas calculated from (140), we obtain the 
following equation: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA712 (CViT + wi - T(Cvi log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT - R log[Ail+ a$) + RT) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i-1 

I 

+ C { C: jT + W: - T(C: j log T - R log [BJ + u:) + RTJ =O. 
j-1 

It is immediately evident that this equation and equation 
(138) are identical. The equilibrium equation can thus be 
obtained at once in the same way as in the preceding section. 

24. Discussion of gaseous equilibria; the principle of 
Le Chatelier. From (136) and (139) we can obtain the 
explicit form of the function K(T) ,  which appears on the 
right-hand side of (136). [K(T)  is sometimes called the 
constant of the law of mass action; of course, it is a constant 
only if the temperature is constant.] Comparing (136) 
and (139), we obtain: 

In order to discuss the way in which K (  T) depends on the 
temperature, we first define the heat of reaction H of the 
chemical reaction (135). We consider a mixture of the 
gases A and B at constant volume and at a fixed temperature. 
Let these gases react according to equation (135), so that 
nl, nz, , n, moles of the gases A 1 ,  A s ,  - * *  , A,,  re- 
spectively, interact and give rise to ml , mz , * . - , me moles 
of the gases B1 , BZ , . -. , B, , respectively. The heat H 
developed by the system during this isothermal process is 
called the heat of reaction at constant volume. The reaction 
is said to be ezothermal or endothermal, depending on whether 
heat is given out or absorbed by the system when the 
reaction proceeds from the left to the right in equation (135). 



110 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGASEOUS REACTIONS 

Since the reaction takes place at constant volume, no 
work is performed by the system. Therefore, the heat 
absorbed by the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-H) is equal, according to the 
first law (15), to the variation AU in energy of the system: 

H = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-AU. 

Remembering that the energy of one mole of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 1 ,  for 
example, is equal to CvlT + W1, and that the numbers of 
moles of the gases A1,  A * ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 . .  , A ,  and B1, B s ,  0 . .  , B, 
increase by the amounts -nl , -na, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.. , -n, and ml , 
ma, ..* , m, , respectively, as a result of the reaction, we 
find that the variation in energy associated with (135) is 
given by the expression: 

AU = 2 mj(C:jT + W i )  - 2 ni(CviT + Wi). 
j-1 i-1 

The heat of reaction is thus: 
c 

H = C ni(C~iT + Wi) .- 2 mj(C:jT + W;). (142) 
+I j-1 

Taking the logarithmic derivative of (141), we obtain: 

From this equation and (142), we now find that: 

dlogKiT)  - H - -  
dT RT2' 

It is clear from this equation, which was derived by 
Helmholtz,* that K(T)  is an increasing or a decreasing 
function of T, depending on whether the heat of reaction is 
positive or negative; K(T) increases with the temperature 
for exothermal reactions and decreases with increasing 
temperature for endothermal reactions. 

1 Thia equation can also be derived directly by applying the Van% Hoff 
ieochore (117) to a process similar to that described in section a. 
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One can easily zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee from (136) that an increase in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ( T )  

means a change of the equilibrium conditions in the direction 
of increasing concentrations of the gases A and decreasing 
concentrations of the gases B, that is, a shift of the equilib- 
rium from the right to the left of equation (135). A 
decrease of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK(T), on the other hand, means that the equilib- 
rium is shifted from the left to the right of that equation. 

The effect which a change in the external conditions has 
on the equilibrium of a chemical reaction can best be sum- 
marized by the Le Chatelier pincipk. This principle, which 
enables one to determine without calculations the direction 
in which a change in the external conditions tends to shift 
the equilibrium of a thermodynamical system, states the 
following: 

If the eztemLal conditions of a thermodynamical system are 
altered, the equilibrium of the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwiU tend to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmove in such a 
directwn aa to oppose the change in the external conditions. 

A few examples will serve to make the meaning of this 
statement clear. We have already shown that if the reac- 
tion (135) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis exothermal, then an increase in the temperature 
shifts the chemical equilibrium toward the left-hand side of 
equation (135). Since the reaction from left to right is 
exothermal, the displacement of the equilibrium toward the 
left results in the absorption of heat by the system and thus 
opposes the rise in temperature. 

As a second example of the application of Le Chatelier’s 
principle, we shall study the effect that a change in pressure 
(at constant temperature) has on the chemical equilibrium 
of the reaction (135). We notice that if the reaction (135) 
proceeds from left to right, then the number of moles in our 
gaseous system changes; if 

n l +  nt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ - - .  + n, < ml + m2 + ... + m a ,  (144) 

the number of moles increases, and if the opposite inequality 
holds, the number of moles decreases. If we suppose that 
the inequality (144) applies, then a displacement of the 
equilibrium toward the right will increase the pressure, and 
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vice versa. From Le Chatelier's principle we must expect, 
therefore, that an increase in the pressure of our gaseous 
mixture will shift the equilibrium toward the left, that is, in 
such a direction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas to oppose the increase in pressure. (In 
general, an increase in pressure will displace the equilibrium 
in such a direction as to decrease the number of moles in the 
system, and vice versa.) This result can be obtained 
directly from the law of mass action (136) as follows: 

If we increase the pressure of our system while keeping the 
temperature constant, the concentrations of the components 
of our gaseous mixture increase. If the chemical equilib- 
rium were not affected, the concentrations of all the 
components would be increased by the same factor, and, 
assuming (144) to hold, we should expect the left-hand side 
of (136) to decrease. But since the expression on the right- 
hand side of (136) remains constant, the left-hand side 
cannot decrease. Hence, the equilibrium must be shifted 
toward the left in order to keep the left-hand side of (136) 
constant. 

We may conclude this section by stating that, in general, 
low pressures favor dissociation processes while high 
pressures favor combination processes. 

Problems 
1. For a chemical reaction of the type: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 A = A z  

the equilibrium constant K(T) of the law of mass action at the 
temperature of 1 8 O  C is 0.00017. The total pressure of the 
gaseous mixture is 1 atmosphere. Find the percentage of dis- 
sociated molecules. 

2. Knowing that the heat of reaction for the reaction considered 
in problem 1 is 50,000 cal./mole, find the degree of dissoci&tion 
at 19" C and 1 atm. 



CHAPTERVII 

The Thermodynamics of Dilute Solutions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
25. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADilute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsolutions. A solution is said to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd2ute 

when the amount of solute is small compared to the amount 
of solvent. In this section we shall develop the funda- 
mental principles of the thermodynamics of dilute solutions. 

Let us consider a solution composed of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANo moles of solvent 
and N 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, N 2 ,  . , Nu moles of the several dissolved sub- 
stances A 1  , A t ,  * .  - , A,, respectively. If our solution is 
very dilute, we must have: 

Ni << No; N2 << No; * * * ; N,, << No. (145) 

Our fist problem will be to find the expressions for the 
energy, the volume, the entropy, and so forth, of our dilute 
solution. A straightforward application of the thermo- 
dynamic equations wil l  then yield all the other propertiea 
of the dilute solution. 

We consider first the energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU of our solution. Let u 
be the energy of a fraction of the solution containing one 
mole of solvent. This fraction of the solution will contain 
N1/No  moles of the solute A1, N2/N0 moles of the solute 
A 2 ,  - - , N,/No moles of the solute A, .  Its energy will 
be a function of T, p, and the quantities N I / N o ,  N t / N o ,  

, N,/No ; that is, 

Since the entire solution contains No moles of solvent, its 
energy U is No times larger than (146) ; that is, 

We now make use of the fact that, since our solution is 
, NJNo are very dilute, the ratios N I / N o ,  Nt /No,  

113 
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small. We assume, therefore, that it is possible to develop 
the function (146) in powers of these ratios and to neglect 
all powers above the first. If we do this, we obtain: 

It should be noted that although the various terms in the 
expression (148) for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU are formally quite similar, the first 
term is much larger than all the others because of the 
inequalities (145). 

By a similar process of reasoning, we can show that, to 
the same order of approximation, the volume can be written 

V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANovo(T, p )  + Nivi(T, P) + * * * + N ~ V J T ,  p )  
as: 

We must now obtain the expression for the entropy of our 
solution. To do this, we consider an infinitesimal reversible 
transformation during which T and p change by the infini- 
tesimal amounts d T  and dp,  while the quantities N o ,  
N 1  , + , N, do not vary. The change in entropy resulting 
from this transformation is: 

Since dS is a perfect differential for all values of the N's, 
the coefficient of each N in (150) must be a perfect differen- 
tial. If we integrate these perfect differentials, we obtain a 
set of functions SO(T, p ) ,  sl(T, p ) ,  + - , s,(T, p )  such that: 
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If we now integrate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(150), we obtain the expression for 

(152) 

The constant of integration C, which is constant only with 
respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and p, depends on the N's; we have put this in 
evidence in (152). We can determine the value of this 
constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas follows: 

Since no restriction has been placed on the manner in 
which T and p may vary, the expression (152) for 8 still 
applies if we choose p so small and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT so large that the entire 
solution, including all the solutes, vaporizes. Our system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
wil l  then be completely gaseous, and for such a system we 
already know that the entropy is equal to the sum of the 
partial entropies of the component gases (see section 23). 
But the entropy of one mole of a gas at the partial pressure 
pi and having the molecular. heat C, is (see equation (87)) : 

(153) 
Hence, for our mixture of gmes we have (since the partial 

pressure pi of the substance Ai is equal to pNi/(NO + - + 
Nu), where p is the total pressure) : 

the entropy: 

S = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf: NisdT,  p )  + C(No, NI, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 0 -  , Nu). 
i-0 

C, log T - R log pi + + R log R. 

= f: Ni(C,i log T - R log p + ai + R log R )  
i4 

- R k N i l o g N o +  ... Ni +Nu' 
i-0 

If we compare this with (152), which applies to our 
gaseous mixture also, we find that: 

and 
86 = C, log T - R log p + ai + R log R, 

But the constant C(No , N 1  , - - , N,) does not depend on 
T or p. Its value (154) therefore applies not only to the 
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gaseous mixture, but also to the original solution. Hence, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(152) becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

It is convenient to simplify the last term of (155) by 
taking the inequalities (145) into account. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABy neglecting 
terms of an order higher than the first in the small quantities 
Nl , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN z  , .I - - No ,we find that: 

and that: 

Hence, 

Instead of the functions 8,  we now introduce the new 
functions : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

aov,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP) = s o v ,  P) 
ai(T, P) = si(T, P) + R 

(Notice the difference in the limits of the two summations.) 
Although the quantities us, ui,  and ui are, strictly speak- 
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ing, functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and p, changes in these quantities result- 
ing from variations in the pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare very s m d ,  in general, 
so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAut, US, ci, for all practical purposes, can be con- 
sidered zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas being functions of T only.1 

In the theory of dilute solutions we shall always make use 
of these approximations. We shall therefore write (148), 
(149), and (157) as follows: 

U = 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANiui(T) 
5 - 0  

With these expressions for U, V ,  and S, we can imme- 
diately write down the formulae for the free energy Fand 
the thermodynamic potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see equations (111) and 
(121)). We have: 

1 To consider t ) ~  as being independent of p is equivalent to neglecting 
the small compressibility of liquids. Similarly, U S  is very nearly inde- 
pendent of p i  indeed, if we compress a liquid isothermally, we know from 
experiment that only a negligible amount of heat is developed. The work 
also is negligible because of the small change in volume. It follows, 
then, from the first law, that the variation in energy ie very small. In 
order to show that U S  also is practically independent of p ,  we observe, 
with the aid of (156) and (151), that: 

Since ui and v i  are practically independent of p ,  the partial derivatives 
on the right-hand side are negligible. Hence, (auJap) ie very small, and 
ui thus depends practically on T alone. 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

26. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOsmotic pressure. In dealing with solutions, we 
shall call a semipermeable membrane a membrane that is 
permeable to the solvent and impermeable to the solutes. 
Semipermeable membranes for aqueous solutions are often 
found in nature. For example, the membranes of living 
cells are very often semipermeable. A very convenient 
artificial semipermeable membrane is a thin layer of copper 
ferrocyanide imbedded in a wall of porous material. 

When a solution is separated from the pure 
solvent by a semipermeable membrane, a 
difference of pressure between the solution 
and the pure solvent exists at equilibrium. 
This can be shown by the following simple 
experiment. 

Through the top wall of the container we 
insert a vertical tube, as shown in Figure 19, 

Into a container with semipermeable walls 
we place a solution of sugar in water. 

where the semipermeable walls of the container havebeen 
indicated by dotted lines. The height of the meniscus in 
this tube serves to indicate the pressure of the solution 
inside the container. We now dip the container in a bath 
of pure water, and observe that the meniscus inside the tube 
rises above the level of the water bath. This indicates 
that some water has passed from the bath into the solution. 
Equilibrium is reached when the meniscus in the tube is at a 
certain height zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh above the level of the water bath, showing 
that the pressure in the solution is higher than the pressure 
in the pure water. The difference in pressure is called the 
osmotic pressure of the solution. If we neglect the small 
difference between the density of water and the density of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 

Fig. 19. 
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the solution, the osmotic pressure is equal to the pressure 
exerted by the liquid column h, and is given by the product zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

Height, h, X Density X Acceleration of Gravity. 

To obtain the expression for osmotic pressure thermo- 
dynamically, we make use of the general result that the 
work done by a system during an isothermal reversible 
transformation is equal to minus the variation of the free 
energy. We consider the system represented in Figure20. 
A cylindrical container is divided into two parts by a semi- 
permeable membrane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEF parallel to the bases AB and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACD 
of the container. The part of the container on the left is 
filled with a solution composed of NO moles of solvent and 
N1,  N o ,  . , N ,  moles of several dissolved substances. 
The right-hand part of the A 
container is completely filled 
with Nb moles of pure 
solvent. Solution 

Since the membrane sep 
arating the two parts of ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASolvent 

the container is permeable D 
to the pure solvent, there zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFig. 20. 
will be a flow of the pure 
solvent through the membrane in both directions. When 
these two flows become equal, the system will be in 
equilibrium, and there will then be a difference of pressure 
between the left-hand part of the container and the right- 
hand part. This difference of pressure P is equal to the 
osmotic pressure. 

We assume now that the semipermeable membrane is 
movable, and we consider an infinitesimal transformation of 
our system during which the membrane is shifted an infini- 
tesimal distance toward the right, so that the volume on the 
left increases by an amount dV and the volume on the right 
decreases by the same amount. Since the pressure exerted 
on the left face of the membrane by the solution is larger 
by an amount P than the pressure exerted on the right face 
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of the membrane by the pure solvent, the work done by the 
system is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPdV. 

During the motion of the membrane, a certain amount 
(dNo moles) of the solvent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflows from the right-hand side 
of the container into the solution on the left-hand side, thus 
diluting the solution. The volumes V and P' of the solution 
and the pure solvent, respectively, prior to the transforma- 
tion are, according to the second of equations (158) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

V = Not10 + Nit11 + * a *  + Nuvu 

Y' = N:uo. (162) 

If N o  increases by an amount &No, we have from the fist 
equation? 

dV = tIodN0; 

and the work done by the system is, therefore, 

PvodNo. (163) 

The free energy of the solution is given by (159). and is 
equal to: 

The free energy of the pure solvent is obtained from this 

. . . = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANu = 0. Thisgives: 
formula by replacing No by NI and putting N1 = Nr - - 

Nifo.  

The total free energy of our system is equal to the sum of 
these two: 

Since N: decreases by an amount zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWO , we have dV' - -90 WO , 8 0  
that the total volume remains unchanged. 
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Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand N; change by amounts dN0 and -dNo, 

respectively, as a result of the transformation, the variation 
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF is given by 

The negative of this quantity must be equal to the work 
(163) because the transformation is reversible. Thus: 

PvodNo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= F d N o  2 N i ,  
No i-i 

or 

Nouo, which is the volume occupied by No moles of pure 
solvent, differs very little from the volume V of the dilute 
solution (see (145) and the first of equations (162)). Neg- 
lecting this small difference* and replacing Novo by V in 
(164), we obtain: 

PV = R T & N $ ,  
$91 

or 

P = ( N I  + N Z  + ... + No). (166) V 

The above expression for the osmotic pressure of a sdu- 
tion bears a very close resemblance to the equation of state 
of a gas. Equation (166) can be stated as follows: 

8 It is immediately seen that this approximation consists in disregarding 
terms containing the squares of the concentrations of the solutes, and is 
therefore consistent with all the approximations already made in the theory 
of dilute solutions. 
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The omnotic pressure of a dilute solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s  equal to the 

prewure exerted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi&al gas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat the same temperature and 
occuming the same volume as the solution and containing a 
number of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmoles equal to the number of moles of the solutes 
dissolved in the solution. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

This simple thermodynamical result can be easily inter- 
preted from the point of view of the kinetic theory. We 
consider a container divided into two parts by a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsemi- 
permeable membrane with pure solvent in each part. 
Since the solvent can pass freely through the semipermeable 
membrane, the pressure on both sides of the membrane will 
be the same. Now let us dissolve some substances in one 
part and not in the other. Then the pressure on the side 
of the membrane facing the solution will be increased by the 
impacts against it of the molecules of the dissolved sub- 
stances, which cannot pass through the membrane and 
which move about with a velocity that depends on T. The 
larger the number of molecules dissolved and the higher the 
temperature, the larger will be the number of impacts per 
unit time and, hence, the greater the osmotic pressure. 

It can be shown from kinetic theory that the velocities of 
the molecules of the dissolved substances are not affected by 
the molecules’ being in solution, but are equal to the veloci- 
ties that they would have if they were in a gaseous state. 
Therefore, both the number and the intensity of the impacts 
of the molecules of the dissolved substances against the 
membrane are equal to the number and intensity of the 
impacts that one expects for a gas. The pressures exerted 
in both cases are therefore equal. 

In order to calculate the osmotic pressure with the aid of 
(166), it is necessary to know the total number of moles of 
the dissolved substances in the solution. If no chemical 
change takes place in the solutes as a result of their being in 
solution, this number can be calculated immediately from 
the knowledge of the molecular weights of the solutes and the 
percentage by weight of these substances present in the 
solution. For example, a normal solution, that is, a solution 
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containing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 mole of solute per liter of water, has, at 15"C, 
an osmotic pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

288'1 = 2.4 X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo' dq = 23.7 atm. 
1000 cm. Pnorm.1 = 

In many cases, however, a chemical transformation takes 
place when a substance is dissolved, so that the number of 
moles of the substance in the solution need not be the same 
as the number of moles before the substance is dissolved. 
The most important example of this is that of an electrolyte 
dissolved in water. When, for example, NaCl is dissolved 
in water, almost all the NaCl molecules dissociate into Na+ 
and C1- ions. The number of molecules in the solution is 
thus about twice the number one would expect to find if no 
dissociation occurred. Some electrolytes, of course, dis- 
sociate into more than two ions. For strong electrolytes, 
the dissociation is practically complete even when the 
solution is not very dilute. For the case of weak electro- 
lytes, on the other hand, chemical equilibrium sets in 
between the dissociation of the electrolyte into ions and the 
recombination of these ions. The dissociation in this case, 
therefore, is generally incomplete. 

27. Chemical equilibria in solutions. We have already 
seen that the law of mass action (136) applies to chemical 
reactions taking place in gaseous systems. We shall now 
derive a corresponding law for chemical reactions occurring 
in solutions. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA .  represent a molecule of the solvent and Al,  - , A, 
and B 1 ,  -. , Bu represent the molecules of the solutes. 
We assume that a chemical reaction defined by the equation: 

noAo + niAi + * * *  + %A,F?miBi + + rn,BU (167) 

can take place among these substances. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno # 0, the 
solvent also takes part in the reaction; whereas if no = 0, 
only the solutes react among themselves. 

Just as in section 23, we shall require that when chemical 
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equilibrium is reached, the free energy shall be a minimum.' 
The free energy of the solution is given, according to (159), 
by: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ni zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlog 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ j -1 2 NI log$}, (168) 

where fi and are the functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT for the dissolved 
substances As and Bj which correspond to the functions 
fl ,, - ? fo appearing in equation (159), and No ? N i p  and 
N j  are the numbers of moles of the solvent and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdis- 
solved substances Ai and Bj  , respectively. 

Just as in section 23, we now consider an infinitesimal 
isothermal reaction of the type (167) as a result of which 
N o ,  N 1 ,  , N, and N i t  - - N: change by the amounts: 

-€no, -enl, *. .  , -%; eml, ... , em,, 

respectively, where e is an infinitesimal constant of pro- 
portionality. Since F is a minimum at equilibrium, its 
variation must vanish when the system is in a state of 
equilibrium. We thus have: 

Dividing by e and calculating the derivatives with the aid of 
equation (168) (thef's are functions of T only and therefore 
do not vary during an isothermal transformation), we find, 
on neglecting all terms proportional to the small quantities 
Nd/No and N] /No  : 

4 Since the variations in volume of a solution are always very small, it is 
immaterial whether we consider the equilibrium condition at constant 
volume or at constant pressure. 
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or 

The right-hand side of this equation is a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT 
only. If we place it equal to log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK (  T), K being a convenient 
function of the temperature, we finally obtain: 

This equation is the expression of the law of mass action for 
chemical equilibria in solutions. 

The discussion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(169) for the case where the solvent does 
not take part in the reaction (that is, when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 in (167)) 
is the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the discussion of the law of mass action for 
gases (see section 24). It follows, in particular, from 
equation (169) that if we dilute the solution, the equilibrium 
is shifted in the direction of increasing dissociation. Of 
course, in this case we have no simple way of determining 
the form of K(T) ,  as we did in the case of gases. We know 
only that K( T) is a function of the temperature. 

As a particularly important example of the case for which 
the solvent participates in the chemical reaction, we consider 
the reaction : 

HzO = H+ + OH-, (170) 

that is, the dissociation of water into hydrogen and hydroxyl 
ions (the hydrolysis of water). Let [H+] and [OH-] be the 
concentrations of the hydrogen and the hydroxyl ions 
(numbers of moles per cc.). If we consider a cubic centi- 
meter of water, we have N o  = A. Hence, the ratios of 
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the number of moles of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[H'] and [OH-] to the number of 
moles of water are, respectively, 18[H+] and 18[OH-I. 
Applying equation (169) to the reaction (170), we thus 
find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

1 
18* [H+] [OH-] = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK(T), 

or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

WK(T) [H+][Off] = - = K'(T), 

where K'(T) is a new function of the temperature only. 
We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee from this equation that the product of the con- 

centrations of the hydrogen and the hydroxyl ions in water 
is a constant when the temperature is constant.& At room 
temperature, this product is approximately equal to 10-14 
when the concentrations are expressed in moles per liter; 
that is, 

[H+][OH-] = lo-". (172) 

In pure water, the concentrations of H+ and OH- are 
equal, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that for this case we have from (172) : 

[W] = [OH] = lo-'. 

If we add some acid to the water, there is an increw of 
m'], and, since the produ& (172) must remain constant, a 
corresponding decrease of [OH-]. 

The opposite occurs if a base is added to the water. It is 
usual to indicate the acidity of a water solution by the 
symbol: 

pH = -Log [H+]. (173) 

(Log stands for the logarithm to the base 10; [HT is ex- 
pressed as before in moles per liter.) Thus, pH = 7 means a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I From the law of mass action applied to the reaction (171), one would 
expect the ratio [H+][OH-]/[&O] to be a fmction of T only. Since the 
denominator is practically constant, however, the numerator also must 
be a function of T only in accordance with equation (171). We see thus 
that (171) is essentially equivalent to the law of mass action in its usual 
form. 
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neutral reaction; pH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 indicates acidity; and pH > 7 
indicates a basic reaction. 

The above discussion of chemical equilibria in solutions is 
incomplete, since no account has been taken of the electro- 
static forces between ions. It has been shown by Debye and 
Huckel that such forces are often of importance and may 
affect the chemical reaction considerably. A discussion of 
this point, however, lies beyond the scope of this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbook. 

28. The distribution of a solute between two phases. 
Let A and B be two immiscible liquids (as, for example, 
water and ethyl ether) in contact. Let C be a third sub- 
stance soluble both in A and in B. If we dissolve a certain 
amount of C in the liquid A, the substance C diffuses 
through the surface that separates A and B; and after a 
short time, C will be in solution in both liquids. The 
concentration of C in the liquid B will continue to increase, 
and the concentration of C in A will decrease until equilib- 
rium is reached between the two solutions. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANA and NB be the numbers of moles of the two 
solvents A and B, and let N1 and N: be the numbers of 
moles of the solute C dissolved in A and B, respectively. 
The thermodynamic potential, a, of our system will be the 
sum of the potentials of the two solutions. 

We have first a solution of N1 moles of C dissolved in NA 
moles of the liquid A. The thermodynamic potential at 
constant pressure of this solution is, according to (161) : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
*A = N A { ~ A ( T )  + PA(T))  + Ni{.MT) + PI(T)I 

+ RTNl log - N1 (174) NA’ 
where fA , f l  , vA , and ~1 correspond to fo , f1 DO and 01 of 
the general formula (161). 

Second, we have a solution which contains NB moles of 
the solvent B and N: moles of the solute C. Its thermo- 
dynamic potential is given by: 

a8 = N B { ~ A T )  + ~ B ( T ) }  + N:{JI(T) + P:(T)I 

+ RTN: log - N: 
NU’ (175) 
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where the quantities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfB, f:, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvB, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv: correspond to 
f o  , f l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, uo , and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01 of (161). 

The thermodynamic potential 9 of the complete system 
is: 

= a.4 + a B .  (176) 

For a given temperature and pressure, the equilibrium 
condition is that 9 be a minimum. 

We consider an infinitesimal transformation of our system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as a result of which an amount dN1 of C passes fromthe 
liquid B into the liquid A. N1 and N: will change by 
amounts dN1 and -dN1,  respectively, and the variation in 
9 will be given by: 

aip aip 

aN1 aN:' 
dNr - -dNi- 

If 0 is to he a minimum, this expression must vanish. 
Dividing by dN, we thus obtain the equation: 

Using (176), (175), and (174), we obtain the equilibrium 
condition : 

IdT) + p d T )  + RT log 2 + RT 

= $(T) + p : ( T )  + RT log + RT, NB 
or 

where the function K(T,  p )  depends only on the temperature 
and pressure and not on the concentrations. 

Equation (178) expresses the following law: 

When two dilute solutions of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsame solute in two diflkred 
immiscible solvents are in  c d a c t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand in  equilibrium, the ratio 
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of the concentrations of the two solutions at a given temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis constant. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A problem analogous to the preceding one is the following: 
A solution of a gas dissolved in a liquid is in contact with 

the gas itself; to find the relationship between the pressure 
of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas and the concentration of the solution for which 
the system is in equilibrium at a given temperature. 

Let N o  and N1 be the numbers of moles of the liquid sol- 
vent and the gaseous solute in the solution, respectively; 
and let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN: be the number of moles of gas in the gaseous 
phase. Since variations in volume of the solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 
practically negligible as compared with variations in volume 
of the gaseous phase, we can neglect the term pV in the 
expression for the thermodynamic potential of the solution 
and identify this potential with the free energy of the 
solution. According to (159), this is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

The thermodynamic potential of the gaseous phase is 
obtained from (125) by multiplying it by the number, N: , 
of moles of gas: 

N:(C,T + W - T(Cp log T - R log p + a + R log R)].  (180)  

Adding (179) and (180), we obtain the thermodynamic 
potential @ of the total system. Just as in the preceding 
problem, we obtain equation (177) as the condition for 
equilibrium. Substituting the explicit expressions for the 
derivatives in (177), we obtain as the condition for equili- 
brium the following equation: 
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or, dividing by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBART and passing from logarithms to numbers, 
we find that: 

CpT+R-T(Cp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT+a+R log R)-f1( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT b R T  
1 N1 RT x = e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

= K(T), (181) 

where K(T) is a function of the temperature alone. 
Equation (181) expresses the following law: 

The concentration of a solution of a gas dissolved in a 
liqtlid at a given temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis proportional to the pressure of 
the gas above the solution. 

It can be proved in a similar fashion that if there is a 
mixture of several gases above a liquid, the concentration of 
each gas in solution is proportional to its partial pressure in 
the &we above the liquid. The constant of propor- 
tionality in each case depends on the temperature as well as 
on the nature of the solvent and of the particular gas 
considered. 

29. The vapor pressure, the boiling point, and the freez- 
ing point of a solution. The vapor pressure, the boiling 
point, and the freezing point for a solution are not the same 
as for the pure solvent. This fact is very important from a 
practical point of view, because, rn we shall show in this 
section, the changes in the boiling and freezing points, at 
least for dilute solutions, are proportional to the molecular 
concentrations of the solutes. The observation of these 
changes affords, therefore, a very convenient method of 
determining the molecular concentration of the solution. 

We shall assume that the solutes are nonvolatile. In  
that case, the vapor of the solution will contain only pure 
vaporized solvent. We shall assume further that, when 
the solution freezes, only the pure solidified solvent separates 
out, leaving all the solute still in solution. 

We can now show, from very simple considerations, that 
the vapor pressure for a solution at a given temperature is 
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lower than that for the pure solvent at the same tem- 
perature. To this end, we consider the apparatus shown in 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21. It consists of a rectangular-shaped tube in 
which the pure solvent and the solution are separated from 
each other on the lower side by a semipermeable membrane 
at B. The levels A and C of the pure solvent and the 
solution, respectively, will not be at the same height because 
of the osmotic presure; the level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC of the solution will be 
higher. Since the dissolved substance is nonvolatile, the 
region in the tube above A and C will be filled with the 
vapor of the pure solvent only. 

We first wait until equilibrium is established; the vapor 
pressure in the immediate neighborhood of the meniscus A 
will then be that of a saturated vapor 
in equilibrium with its liquid phase, 
and the vapor pressure at C will be 
that of a saturated vapor in equilib- 
rium with a solution. It is evident 
that the pressures at A and at Care 
not equal, since A and C are at dif- 
ferent heights in the vapor. Since C 
lies higher than A, the vapor pressure 
at Cis lower than that at A; that is, 
thepressure of the vapor above the 
solution is lower than the vapor pressure above the pure 
solvent. 

To calculate this difference in pressure, Ap, quantitatively, 
we notice that it is equal to the pressure exerted by a column 
of vapor of height h. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp' is the density of the vapor, and 
g is the acceleration of gravity, we have: 

A 

Fig. 21. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ap zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= p'hg. 

On the other hand, the pressure exerted by the liquid 
column zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACD is equal to the osmotic pressure P of the solution. 
If p is the density of the pure solvent, we have for the 
osmotic pressure (neglecting the difference between the 
density of the solution and that of the pure solvent, and also 
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neglecting the density of the vapor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas compared to that of 
the liquid) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P=phg. 

Dividing the first equation by the second, we obtain: 

or 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADO and ul are the volumes occupied by one mole of 
the pure solvent in the liquid phase and in the vapor phase, 
respectively (that is, vo and vi are inversely proportional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto 
p and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp’, respectively). Replacing the osmotic pressure P 
by the expression (165), and assuming, for the sake of 
simplicity, that there is only one solute present in the 
solution, we obtain : 

which is the expression for the difference between the vapor 
pressure of the solution and that of the pure solvent. 

The fact that the vapor pressure for a solution is lower 
than that for the pure solvent is directly related to the fact 
that the boiling point of a solution is higher than that of 
the pure solvent. The reason for this is that the boiling 
point is the temperature at which the vapor pressure is 
equal to one atmosphere. Consider a pure solvent at the 
being point; its vapor pressure is equal to one atmosphere. 
If we now dissolve some substance in this solvent, keeping 
the temperature constant, the vapor pressure will fall below 
one atmosphere. Hence, in order to bring the pressure back 
to its original value of one atmosphere, we must raise the 
temperature of the solution. With the aid of equation 
(182) and Clapeyron’s equation, one can easily derive an 
expression for the variation of the boiling point of a solution. 
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Instead of doing this, however, we shall calculate both the 
decrease in the vapor pressure and the increase in the boil- 
ing point of a solution by a direct method. 

We consider a dilute solution composed of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANo moles of 
solvent and N1 moles of a solute in equilibrium with the 
vapor of the pure solvent. Let N: be the number of moles 
of solvent contained in the vapor phase. From zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(148), 
(149), (155), and (121), we obtain for the thermodynamic 
potential CP-1 of the solution: 

N I  or01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= No(Po(T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP) + N I P I ( T ,  p )  + RTNl log so, 
where 

cpo(T, p )  = uo - TUO + pvo , and (PI = u1 - Tul + p v l .  

Let &(T, p) be the thermodynamic potential of one mole 
of vapor of the solvent. The thermodynamic potential of 
the N: moles of the vapor phase is, then: 

%Il = N:P: (T, PI; 

and the thermodynamic potential of the total system is: 

+ N : ~ : ( T ,  PI. (183) 

The equilibrium condition is that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACP be a minimum at 
constant temperature and pressure. We must therefore 
have d@ = 0 for an infinitesimal, isothermal, isobaric 
transformation. If dN0 moles of the solvent are transferred 
from the vapor phase to the solution 8s a result of such a 
transformation (that is, if No and N: vary by the amounts 
dNo and -dNo , respectively), then we must have: 

ao a@ do = &No - - d v o  - = 0, 
aNo alv: 

or 
ao a@ 
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Replacing the derivatives in this equation by their 

explicit expressions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas calculated from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(183), we obtain: 

or 

This equation expresses the relationship between the tem- 
perature and the vapor pressure of our solution. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo  be the pressure of the saturated vapor of the pure 
solvent at the temperature T. T and po will satisfy equa- 
tion (184) if we place zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 in that equation, because in 
that case no solute is present. Thus: 

(185) 

When N1 moles of solute are dissolved in the solvent, the 

oo(T, Po) - V i V ,  Po) = 0. 

pressure p of the vapor becomes: 

P = Po + AP, 

where A p  is a small quantity. Expanding the left-hand 
side of (la), in powers of Ap up to terms of the first order, 
we find that: 

Since po is the thermodynamic potential of one mole of pure 
solvent, we obtain from (123) : 

where uo is the volume of one mole of solvent; and, similarly, 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu: is the volume of one mole of vapor of the pure 
solvent. Substituting these expressions in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(186), we have: 

Since the volume, u:, of one mole of vapor is larger than 
the volume, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtrot of one mole of liquid solvent, Ap is negative; 
this means that the pressure of the vapor of the solution is 
lower than that of the pure solvent. If 00 is negligible zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 
compared to u:,  which we assumed to be the case in the 
derivation of equation (182), equation (187) becomes 
identical with (182). (The minus sign means that the vapor 
pressure of the solution is lower than that of the pure 
solvent.) 

We have deduced the expression for the decrease in the 
vapor pressure from equation (184). With the aid of the 
same equation and by a method analogous to the one just 
used, we can also calculate the change in the boiling point 
of a solution. 

We consider a solution whose temperature is such that 
the pressure p of its vapor is equal to one atmosphere. Let 
To be the boiling point of the pure solvent and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= To + AT 
the boiling point of the solution. Since the vapor pressure 
at the b o i i g  point is equal to the atmospheric pressure, p, 
it follows that the vapor pressure of the pure solvent at the 
temperature To is equal to p. Since N1 = 0 for the pure 
solvent, we find, with the aid of (184), that: 

( 188)s ~ T O ,  P) - &To, P) = 0. 

Applying (184) to the solution, we obtain: 

Developing the left-hand' side of the preceding equation 
in powers of AT, and dropping all terms above the first, we 
obtain, with the aid of (188), the following equation: 
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From zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(124) we have: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuo and ui are the entropies of one mole of solvent in the 
liquid and vapor phases, respectively. From the preceding 
two equations, we now obtain: 

Let A be the heat of vaporization of one mole of solvent. 
If we permit one mole of the solvent to vaporize at the boii- 

A 
h g  point, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATO, the amount of heat absorbed is A, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

TO 
is the change in entropy. Hence, 

I A 
uo - a0 = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

TO' 

Substituting this in equation (189), we obtain: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This is the expression for the difference between the 

boiling point of the solution and the boiling point of the 
pure solvent. Since A T  > 0, the boiling point of the solu- 
tion is higher than that of the pure solvent. We see also 
from the equation that the change in the boiling point is 
proportional to the molecular concentration of the solution. 

As an example, we shall apply the above equation to a 
normal solution of some substance in water. For such a 
solution, we have : 

R = 1.986 calories; TO = 373.1"K. 
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(We can express both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR and A in calories in equation (190) 
because their ratio is obviously dimensionless.) Substitut- 
ing these values in equation (NO), we find that: 

AT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.51 degrees. 

The same formula (190) can also be used to calculate the 
change in the freezing point of a solution. The only 
difference is that, instead of having a vapor phase, we have a 
solid phase. A in that case represents the heat absorbed 
by one mole of the solvent in passing isothermally from 
the liquid to the solid state at the freezing point. This 
heat is negative and equal to -Af ,  where Af is the heat of 
fusion of one mole of the solvent. For the case of freezing, 
(190) becomes, therefore, 

From this equation we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee that the freezing point of a 
solution is lower than that of the pure solvent; the decrease 
is proportional to the molecular concentration of the 
solution. 

In the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase of a normal solution in water, for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N1= 1; No= - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'OoO * 

18 ' A' = 80 X 18 calories; 

R = 1.986 calories; TO = 273.1°, 

we find that: 
AT = - 1.85 degrees. 

It should be noticed that in all these formulae N1 rep- 
resents the actual number of moles of substance present in 
the solution. For electrolytic solutions, therefore, each ion 
must be considered as an independent molecule. Thus, for 
the case of very strong electrolytes (having a high degree of 
dissociation), N1 is obtained by multiplying the number of 
moles of solute by the number of ions into which a single 
molecule of the solute dissociates when in solution. 
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Problems 

1. Calculate the osmotic pressure and the variation in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
boiling and freezing points of a solution containing 30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgrams of 
NaCl per liter of water. 

2. A solution of sugar (C&OS) in water and a solution of 
NaCl in water have the same volume and the same osmotic 
pressure. Find the ratio of the weights of sugar and of sodium 
chloride. 

3, Discuss with the aid of the phase rule the equilibrium of a 
solution and the vapor of the solvent. 

4. The concentration of a saturated solution (the ratio of the 
number of moles of the solute to the number of moles of the 
solvent) is a function of the temperature. Express the logarith- 
mic derivative of this function in terms of the temperature and 
the heat of solution. (Assume that the laws of dilute solutions 
can be applied also to the saturated solution. The formula can 
be obtained by applying a method analogous to that used for 
deriving Clapeyron’s equation.) 
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The Entropy Constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
30. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe Nernst theorem. We have already seen that the 

definition of the entropy given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(68) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

S(A)  = \A 0 7 ,  
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 is an arbitrarily chosen initial state, is incomplete 
because the arbitrariness in the choice of the initial state 
introduces an undetermined additive constant in the defhi- 
tion. As long as we deal only with differences of the 
entropy, this incompleteness is of no consequence. We have 
already found, however, that cases arise (for example, in 
dealing with gaseous equilibria, Chapter VI) for which the 
knowledge of this constant becomes important. In this 
chapter we shall introduce and discuss a principle that will 
enable us to determine the additive constant appearing in 
the definition of the entropy. This principle, which was 
discovered by Nernst, is often referred to as the third Zuw of 
thermodynamics or as Nerwt’s theorern. 

In the form in which it was originally stated by Nernst, 
this theorem applied only to condensed systems, but it has 
since then been extended to apply to gaseous systems also. 
We may state this theorem in the following form: 

The entropy of every zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem at absolute zero can always be 
taken equal to zero. 

Since we have defined only differences of entropy between 
any two states of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa system, the above statement of Nernst’s 
theorem must be interpreted physically 85 meaning that all 
possible states of a system at the temperature T = 0 have 
the same entropy. It is therefore obviously convenient to 
choose one of the states of the system at T = 0 as the 

139 
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standard state 0 introduced in section 12; this will permit us 
to set the entropy of the standard state equal to zero. 

The entropy of any state A of the system is now defined, 
including the additive constant, by the integral: 

where the integral is taken along a reversible transformation 
from any state at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 (lower limit) to the state A. 

In this book we shall assume Nernst’s theorem a pos- 
tulate; a few words concerning its theoretical basis, however, 
will serve to demonstrate its plausibility. 

We have seen that a thermodynamical state of a system is 
not a sharply defined state of the system, because it cor- 
responds to a large number of dynamical states. This 
consideration led to the Boltzmann relation (75): 

S = k log r, 

where u is called the probability of the state. Strictly 
speaking, u is not the probability of the state, but is actually 
the number of dynamical states that correspond to the given 
thermodynamical state. This seems at first sight to give 
rise to a serious difliiculty, since a given thermodynamical 
state corresponds to an infinite number of dynamical states. 
This dBiculty is avoided in classical statistical mechanics by 
the following device : 

The dynamical states of a system form an oov array, 
where f is the number of degrees of freedom of the system; 
each state can therefore be represented by a point in a 
2f-dimensional space, which is called the phase space of the 
system. Instead of an exact representation of the dynamical 
state, however, which could be given by designating the 
precise position in the phase space of the point representing 
the state, the following approximate representation is 
introduced : 

The phase space is divided into a number of very small 
cells all of which have the same hyper-volume T ;  the state is 
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then characterized by specifying the cell to which the point 
representing the state belongs. Thus, states whose rep- 
resentative zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApoints all lie in the same cell are not considered 
as being different. This representation of the state of a 
system would evidently become exact if the cells were made 
infinitesimal. 

The cell representation of the dynamical states of a system 
introduces a discontinuity in the concept of the state of a 
system which enables us to calculate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu by the methods of 
combmatory analysis, and, hence, with the aid of the 
Boltzmann relation, to give a statistical definition of the 
entropy. It should be noticed, however, that the value of U, 

and therefore the value of the entropy also, depends on the 
arbitrarily chosen size of the cells; indeed, one hds that, if 
the volume of the cells is made vanishingly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmall, both I 
and S become infinite. It zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be shown, however, that if 
we change zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, u is altered by a factor. But from the Bolts 
mann relation, S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= k log T, it follows that an undetermined 
factor in ‘K gives rise to an undetermined additive constant 
in S. We see from the foregoing considerations that the 
classical statistical mechanics cannot lead to a determina- 
tion of the entropy constant. 

The arbitrariness associated with ‘K, and therefore with 
the entropy a h ,  in the classical picture can be removed by 
making use of the principles of the quantum theory. The 
reason for this is that the quantum theory introduces a 
discontinuity quite naturally into the definition of the 
dynamical state of a system (the discrete quantum states) 
without having to make use of the arbitrarydivision of the 
phase space into cells. It can be shown that this discon- 
tinuity is equivalent, for statistical purpose8, to the division 
of the phase space into cells having a hyper-volume equal 
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhf,  where h is Planck’s constant (h = 6.55 X 10-2’ cm.2 
gm. sec.-1) and f is the number of degrees of freedom of the 
system. We may note here, without entering into the 
details, which lie outside the scope of this book, that in a 
statistical theory based consistently on the quantum theory 
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all indeterminacy in the definition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, and therefore in the 
definition of the entropy also, disappears. 

According to the Boltemann relation, the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘K 

which corresponds to S = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis T = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Statistically inter- 
preted, therefore, Nernst’s theorem states that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto the 
thedynumka l  state of a system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat absolute zero there car- 
responds only one dynumieal state, namely, the dynamhl 
state of lowest energy compatz’bk with the given crystalline 
structure or state of aggregation of the system. 

The only circumstances under which Nernst’s theorem 
might be in error are those for which there exist many 
dynamical states of lowest energy. But even in this case, 
the number of such states must be enormously large‘ if 
deviations from the theorem are to be appreciable. Al- 
though it is not theoretically impossible to conceive of such a 
system, it seems extremely unlikely that such systems 
actually exist in nature. We may therefore assume that 
Nernst’s theorem is generally valid. 

We shall now develop some of the consequences of 
Nernst’s theorem. 

31. Nernst’s theorem applied to solids. We consider a 
solid body which is heated (at constant pressure, for ex- 
ample) until its temperature increases from the absolute 
zero to a certain value, T. Let C(T) be its thermal capacity 
(at constmt pressure) when its temperature is T. Then, 
if the temperature changes by an amount dT, the body will 
absorb an amount of heat dQ = C(T)dT. The entropy of 
the body at the temperature T is therefore given (see 
equation (192)) by: 

We can obtain the first consequence of Nernst’s theorem 
from equation (193): we observe that if the thermal 
capacity, C(O), at absolute zero were Merent from zero, 

1 Of the order of eN, where N is the number of molecules in the system. 
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the integral (193) would diverge at the lower limit. We 
must therefore have: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C(0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. (194) 

This result is in agreement with the experiments on the 
specific heats of solids. 

We shall limit ourselves here, for the sake of simplicity, 
to the consideration of solid chemical elements, and perform 
the calculations for one gram atom of the element. Figure 
22 is a graphical representation of the general way in which 
the atomic heats of solids depend on the temperature as 
found empirically. One can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee from the figure that the 
atomic heat actually vanishes at absolute zero. At higher 
temperatures, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(T) approaches a limiting value which is 
very nearly the same for all solid 
elements and which lies very 
close to the value 3R. Since 
this limiting value is practically 
attained at room temperature, 
this result is an expression of 
the well-known law of Dulong 
and Petit, which can be stated 
as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

AU solid elements at room temperature have the same atomic 
heat, which & equal to 3R (that is, the product: speca& heat X 
atomic weight is the same for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall solti& and is equal to 3R). 

A theoretical formula for the specific heats of solid ele- 
ments, which is in very good agreement with experiment, 
wm derived by Debye on the basis of the quantum theory. 
The Debye expression can be written in the form: 

T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj.-m 
Fig. 22. 

where 8 is a characteristic constant of the substance, which 
has the dimensions of a temperature; it is called the Debye 
temperature. D represents the following function: 
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3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ellE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 * 

- 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
o(€) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12t3 li zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz”dz - - € ( 1%) 

Since D(t)  approaches the limit 1 for large values of 5, 
it follows from (195) that the atomic heat for high tem- 
peratures tends to the limit 3R, as required by the law of 
Dulong and Petit. 

For small values of 2, we may replace the upper limit of 
the integral in (196) by infinity, and we may neglect the 
second term in that expression because that term becomes 
an infinitesimal of a very high order for infinitesimal values 
of E. For ---t 0, we therefore obtain: 

ez - 1 

From this asymptotic expression for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI)(€), we obtain the 
following expression for the atomic heat in the limit of low 
temperatures: 

We see from this expression that at low temperatures the 
atomic heat is proportional to the cube of the temperature. 
This consequence of the Debye theory is in good agreement 
with experiment. 

Using the Debye formula, we can calculate the entropy 
of a gram atom of our substance by substitutihg (195) in 
(193). On doing this, we find that: 

T 

Replacing D(E) in (199) by its explicit expression, we 
find that*: 

2 The following integral formulae are used: 
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where the last formula is valid for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT >> 8, that is, in the 
range of temperatures for which the law of Dulong and 
Petit holds. 

With the aid of Nernst's theorem, we shall now discuss 
the transformation of a solid from one crystalline form to 
another. As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan example, we shall consider the transforma- 
tion from grey to white tin. Grey tin is the stable form at 
low temperatures and white tin is stable at high tempera- 
tures. The transition temperature, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT o ,  is equal to 19°C or 
292'K. 

The transformation of tin from one of these allotropic 
forms to the other is analogous in many respects to the 
melting of a solid. Thus, for example, a certain amount of 
heat is absorbed by the tin in passing from the grey to the 
white form. This heat of transformation, Q, is equal to 
535 calories per gram-atom at the transition temperature. 

Although grey tin is the stable form below the transition 
temperature, white tin can exist in a labile form down to the 
lowest temperatures. It is therefore possible to measure 
the specific heats of both grey and white tin all the way from 
the lowest temperatures to the transition temperature. 
The atomic heats of the two forms are not equal; the atomic 

or, interchanging the order of integration in the double integral, and intro- 
ducing l/t as a new variable in the second integral, we obtain: 

For large vduea of W, we obtain the following asymptotic expression: 
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heat of grey tin at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa given temperature is less than that of 
white tin at the same temperature. 

The transformation from white to grey tin is nonreversible 
at temperatures below the transition temperature (since 
the grey form is stable below the transition temperature, a 
spontaneous transformation can occur only from the white 
to the grey form). At the transition temperature, how- 
ever, the transformation between the two forms is reversible. 

If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS ~ ( T O )  and &(To) are the entropies at the transition 
temperature of one gram-atom of grey zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand white tin, 
respectively, then, applying (69) to the reversible, isother- 
mal transformation from grey to white tin, we obtain: 

If we indicate the atomic heats of grey and white tin by 
CI(T) and C,(T), respectively, we can express SI(TO) and 
Sr(To), with the aid of equation (193), as follows: 

We thus obtain from (201) the equation: 

which expresses the heat of transformation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&, of the 
process in terms of the transition temperature To and the 
atomic heats of the two forms of tin. 

In order to test the validity of equation (203), we shall 
perform the two integrations indicated numerically. The 
results of the numerical integrations are: 

Csl. 
degrees * 

dT = 10.53 - 

Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo = 292, we obtain from (203): 
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Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA292 (12.30 - 10.53) = 517 cal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The good agreement between this value and the experi- 
mental value, Q = 535 calories, can be taken as strong 
evidence in support of Nernst’s theorem. The small 
ditrerence between the two values can be accounted for by 
the experimental errors. 

32. The entropy constant of gases. In section 14 we 
calculated the entropy of one mole of an ideal gas (see 
equation (86)) and found that: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACv log T + R log V + U. 

The undetermined additive constant a which appears in this 
expression is called the entropy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconstant of the gas. 

If we could apply Nernst’s theorem directly to the 
formula (86) for the entropy, we could hope to determine a 
from the condition that the entropy S must vanish at 
T = 0. If we attempt to do this, however, we see that the 
term Cv log T on the right-hand side of (86) becomes 
infinite, and we obtain an infinite value for the entropy 
constant. 

The reason for this apparent failure of Nernst’s theorem 
for ideal gases is that we assumed, as one of the properties 
of an ideal gas, that the specific heat Cv is a constant; we 
have already shown (at the beginning of the preceding 
section) that this is incompatible with Nernst’s theorem. 

One way out of this difliculty could be sought in the fact 
that no real substance behaves even approximately like an 
ideal gas in the neighborhood of absolute zero: all gases 
condense for sutlticiently low temperatures. It is therefore 
physically not permissible to apply (86) to a gas in the 
neighborhoodof T = 0. 

But quite apart from this consideration, it follows from 
quantum mechanics that, even for an ideal gas (defined as a 
gas whose molecules have a negligible size and do not exert 
forces on each other), the specific heat at very low tem- 
peratures decreases in such a way as to vanish in the neigh- 



148 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATHE ENTROPY CONSTANT 

borhood of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. Thus, even for an ideal gas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas defined 
above, (86) can be applied only if the temperature is not 
too low. 

By statistical methods and also by a straightforward 
application of Nernst’s theorem, it is possible to calculate 
the entropy of an ideal gas for all temperatures. In the 
limit of high temperatures, the entropy takes the form (86), 
with the constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, instead of being undetermined, ex- 
pressed as a function of the molecular weight and the other 
molecular constants of the gas. 

The simplest case is that of a monatomic gas, for which 
the entropy of one mole is given by: 

where M is the atomic weight; h is Planck’s constant 
(= 6.55 X 10-27 C. G. S. units); A is Avogadro’s number 
( = 6.03 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1023)  ; and w is a small integer that is called the 
statistical weight of the ground state of the atom. The value of 
w for different atoms is obtained from the quantum theory; 
we shall give the value of w for all the examples considered 
here. e is the base of the natural logarithms. 

Formula (204) was fist obtained by Tetrode and Sackur. 
In order to show that (204) can be put in the form (86), we 
must take (34) into account. On doing this, we obtain 
for the entropy constant of one mole of a monatomic gas 
the expression : 

(2TMR) 8 4  we 
a = R log -- ha A4 

(205) 
3 = R -5.65 + 310gM + log@ . 

We can also write the entropy of an ideal monatomic gas in a 
form corresponding to (87) : 

) ( 
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We cannot give a proof of these formulae in this book; we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

shall therefore limit ourselves to some examples showing the 
applications of these formulae. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa first example, we shall 
consider the problem of calculating the vapor pressure for a 
solid monatomic substance. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp be the vapor pressure of the substance at the tem- 
perature T. Keeping the temperature (and the pressure) 
constant, we vaporize one mole of the substance by inureas- 
ing the volume very slowly. During this process, the body 
absorbs from the environment an amount of heat, A, equal 
to the heat of vaporization (per mole, not per gram). Since 
the vaporization of the one mole of substance occurs 
reversibly, the change in entropy during the transforma- 
tion is: 

A 
T' Svapor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- &lid = - 

Using the approximate expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(200) for the entropy of 
the solid and the formula (206) for the entropy of the vapor, 
we obtain: 

A - 4 R + 3 R l o g 8  = -  T' 
or, passing from logarithms to numbers, 

A 

(207) 
(27rM)+R%ea - 1 -= 

This formula should be compared with (98), which was 
obtained from Clapeyron's equation. The factor l/<T in 
(207) arises from our having taken into account the de- 
pendence of the heat of vaporization on the temperature. 
We 6ee that the factor of proportionality, which remained 
undetermined in (98), has now been completely determined 
in (207) by the use of Nernst's theorem and the Sackur- 
Tetrode formula for the entropy of a gas. 

fie P -  
e8 ha A4 
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Since in many cases we have to deal with the vaporization 

of a liquid and not of a solid, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(207) cannot be used in general. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan example of the vaporization of a liquid, we shall 
consider the vaporization of one mole of mercury, because 
this element has a monatomic vapor. 

The boiling point of mercury is 630°K. This means that 
the vapor pressure of saturated mercury vapor at 630°K is 
equal to one atmosphere. 

We shall now calculate the entropy of one mole of mercury 
at T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 630°K and p = 1 atmosphere by two different 
methods and compare the two results. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Method zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. The Sackur-Tetrode formula (206) applied to 
our case (the atomic weight of mercury is 200.6) gives: 

s = 191 x 107. 

Method 8. We start with one mole of solid mercury at 
absolute zero. Its entropy, according to Nernst's theorem, 
is zero. We then heat the one mole of mercury, keeping 
the pressure equal to one atmosphere, until its temperature 
has reached the melting point, T,,l,i, = 234.2"K. During 
this process the entropy of the mercury increases; its value 
for T = 2342°K can be calculated with the aid of (193) : 

248.2 

&lid (243.2) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 ' q d T ,  

where C(T) is the atomic heat at constant pressure of 
mercury. The above integral can be calculated numeri- 
cally by using the experimentally determined values of 
C(T). On doing this, we obtain: 

Smlid(243.2) = 59.9 x 10'. 

We now let the mole of mercury melt at atmospheric 
pressure. During this process, the body absorbs reversibly 
an amount of heat equal to the heat of fusion for one mole of 
mercury (2330 X lo7 ergs/mole). The change in entropy 
resulting from this b therefore obtained by dividing the 
heat of fusion by the melting point; that is, the change in 
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entropy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis equal to 2330 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 107/243.2 = 9.9 x 107. The 
total entropy of the mole of mercury is now: 

sliquid(M3.2) 59.9 x 10' + 9.9 x 10' = 69.8 x 10'. 

Next we heat the liquid mercury and raise its temperature 
from the melting point to the boiling point. During this 
process, the entropy changes by the amount: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACl(T) is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAatomic heat at constant pressure. Using 
the experimental values of Cl(T), we can evaluate this 
integral numerically. Its value is 26.2 x 107. Adding 
this to the value of the entropy of the liquid mercury at the 
melting point, we find that: 

&iquid(630°) = 69.8 x 10' + 26.2 x 10' = 96.0 x 10'. 

We finally permit the mole of liquid mercury to vaporize 
at atmospheric pressure. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a result of this, the mercury 
at the temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 630" absorbs an amount of heat 
equal to the heat of vaporization of one mole of mercury 
(59,300 x lo7 ergs/mole). The change in entropy is 
therefore equal to 59,300 x 107/630 = 94 x 107, and we 
finally obtain for the entropy of the mole of mercury vapor 
at the boiling temperature: 

This is in excellent agreement with the value found directly 
from the Sackur-Tetrode formula. 

The result which we have just obtained may be taken as 
an experimental proof of the expression for the entropy of a 
monatomic gas. Similar calculations have been performed 
for argon and carbon, and in these cases also very satis- 
factory agreement was found. 

s = 96 x 107 + 94 x 107 = 190 x 107. 

33. Thermal ionization of a gas: the thermionic effect. 
In Chapter VI we established the law of mass action (equa- 
tion (139)) for chemical equilibria in gaseous systems. The 
constant coefficient (the factor which does not contain the 
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temperature) on the left-hand side of equation (139) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcon- 
tains the entropy constants of gases that take part in the 
reaction. The knowledge of the entropy constants enables 
us, therefore, to calculate this coefficient completely. 

Since we gave the expression for the entropy constant of a 
gas only for monatomic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases, we must choose, as an ex- 
ample, a reaction in which only monatomic gases take part. 
It is evident that no reaction of this kind can be found in 
chemistry. We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshall therefore consider the following 
nonchemical process. 

When a gas, such, for example, as an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalkali vapor, is 
heated to a very high temperature, some of its atoms 
become ionized; that is, they lose one of their electrons, and 
are thus changed into ions. If, for example, we denote by 
Na, Na+, and e sodium atoms, sodium ions, and electrons, 
respectively, the process may be represented by the reaction: 

Na Na+ + e. (2W 

It is found that, at any given temperature, this ionization 
reaction reaches a state of thermhl equilibrium which is 
quite analogous to the chemical equilibrium for ordinary 
chemical reactions. 

In sodium vapor at very high temperatures, we actually 
have a mixture of three different gases: 

Neutral sodium, Na, having a concentration ma]; sodium 
ions, Na+, having a concentration ma+]; and an electron 
gas (a gas composed of free electrons), having a concen- 
tration [el. 

Each of these three substances behaves like a monatomic 
gas; we may therefore apply the general results, in partic- 
ular, equation (139), of the theory of chemical equilibria 
in gaseous systems to the ionization process (208). 

Since all the gases in the mixture are monatomic, we must 
use the first of the expressions (34) for the molecular heats 
of the gases. The entropy constants can be found with the 
aid of equation (205); and the statistical weights zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo are 
equal to 2, 1, and 2 for neutral sodium, sodium ions, and 
electrons, respectively. We place M = 23, the atomic 
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weight of sodium, and neglect the very small difference 
between the masses of sodium atoms and sodium ions, so 
that we may also place zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM equal to the atomic weight of the 
sodium ions. Tbe atomic weight of the electrons (that is, 
the mass of the electrons divided by Tlg of the mass of 
oxygen) is M,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= &. Let us finally denote by W 
(= 4.91 x 10-12 ergs/mole) the energy needed to ionize all 
the atoms in one mole of sodium vapor. We have, then, 

C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW ,  - C ni Wi = Wionr + ~ c l e r c r o n s  - w.,,, = W .  

Making all the necessary substitutions in equation (139), 
we finally obtain, as the condition for thermal equilibrium 
in the thermal ionization of sodium vapor, the following 
equation : 

This formula can be put into a more convenient form as 
follows: Let 2 be the degree of ionization, that is, the 
fraction of atoms that are ionized : 

“8’1 
[Na] + [Na+j; 

X =  

and let n = “a] + “a+] be the total concentration of the 
sodium (atoms + ions). We have, then, 

“a+] = nx; [Na] = n(l - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx). 

Since there is obviously one electron present for each sodium 
ion, we have: 

[el = “a+] = nx, 

and we finally obtain: 

26.000 
-9 8 = 3.9 X 10 T lo?. 

The degree of ionization can be calculated from this formula. 
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Equation (209), which was firsf derived by M. N. Saha, 

has found several important applications in the physics of 
stellar atmospheres. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As a further application of t%e Sackur-Tetrode formula, 
we shall obtain the expression for the density of an electron 
gas which is in equilibrium with a hot metal surface. When 
a metal is heated to a sufficiently high temperature, it gives 
off a continuous stream of electrons. If we heat a block of 
metal containing a cavity, the electrons coming from the 
metal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwil l  fill the cavity until a state of equilibrium is 
reached, when as many electrons will be reabsorbed per 
unit time by the metal as are emitted. We propose to 
calculate the equilibrium concentration of the electrons 
inside the cavity as a function of the temperature. 

Let N be the number of moles of electrons inside the 
cavity of volume V. The entropy of these electrons is 
obtained from (204) by multiplying that expression by N 
and replacing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV in it by V / N ,  since V/N is the volume 
occupied by one mole of the electron gas. Making use of 
(34) and (29), we obtain for the energy of the electrons: 

U = N(+RT + W), 

where W is the energy needed to extract one mole of electrons 
from the metal. 

For the free energy of the electron gas, we now obtain the 
expression : 

+log (2wM, -- R)' 2'1 , 
haA4 

where we have put M, = Go DD the atomic weight of the 
electrons, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw for the electrons = 2. 

The free energy F of our complete system is the sum of 
the previous expression and the free energy F,, of the metal: 
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The condition for equilibrium zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF be a minimum for a 
given temperature and volume. Assuming that F,, is 
independent8 of N, we thus obtain: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

dF 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - = 
dN 9 RT + W - RT logT + log V - logN 

Passing from logarithms to numbers, we obtain the equation: 

which gives, as required, the concentration of the electron 
gas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwithin the cavity. 

Problems 

1. Calculate the degree of dissocition of sodium vapor at a 
temperature of 4,000' K and a pressure of 1 cm. of mercury. 
(Take into account not only the pressure due to the sodium sbms, 
but also the contribution of the ions and the electrons.) 

2. Find the relation between the Debye temperature0and 
the temperature for which the atomic heat of a solid element is 
equal to 3B/2. (Apply graphical or numerical methods.) 

a The experimental bade for this assumption ia that the electrons inside a 
metal do not contribute to the specific heat of the metal; the specific heat is 
completely mounted for by the motion of the atom. For a rigorous 
justification of this assumption, see any treatiee on the theory of metals. 
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