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PREFACE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This is an introductory textbook on equilibrium statistical mechanics. 

It is called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStatistical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThernwdpmics to distinguish it from the author’s 
earlier work, Statistical Mecknzks (McGraw-Hill, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1956). The latter is a 
treatise covering selected topics in detail and at a relatively advanced 
level; it is neither introductory nor primarily a textbook (except for a 
second or specialized course). The two volumes in fact complement each 
other. StatistieaI Themzalyurmics (or some other introductory textbook, 
such as Rushbmoke’s) is prerequisite to Statistical Mechanics. Where 
there is overlapping (e.g., imperfect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases, distribution functions, Ising 
problem, etc.), the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdiscussion given in the present work is more elementary, 
less general, and should serve to smooth the way for a more detailed study 
in statistical Mechcwrics. 

Although introductory, Statistid Thermodyurmics provides a quite 
extensive coverage of topics of current interest in equilibrium statistical 
mechanics. This is its principal justification for existence. However, non- 
equilibrium atatistical mechanics has been omitted because: (a) the 
foundations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare not yet established; (b) it is difficult to discuss this sub- 
ject on the elementary level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAused in the rest of the book; and (c) the author 
is not expert enough in this field, at least at the present time, to do it 
justice. The reader will find treatmenta of nonequilibrium problems in 
Kittel (see the list of references at the end of this Preface) and, much’ 
more extensively, in a book by I. Prigogine.* 

Up to, say, 1945, the usual course in statistical thermodynamics in 
chemistry departments was concerned primarily or entirely with how to 
calculate thermodynamic functions of ideal gases from spectroscopic data. 
Such a choice of subject matter was not inappropriate, for this waa the 
principal area of interest and research in statistical thermodynamics in 
the 1930’s. However, the author feels that a modern introductory course 
in statistical thermodynamics should reflect the developments of the 
1940’s and 1950’s. For this reason, the more traditional material (Chap- 
ters 4 and 8 through 10) referred to above is given a rather condensed 
treatment to provide mom for a survey of more recent advances. 

The book is divided into four parts. Part I (Chapters 1 and 2) is con- 
cerned with the principles or postulates of statistical mechanics. The 
argument is baaxi on elementary quantum-mechanical ideas such as 

*I .  PRIOOOINE, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANonequilibrivm Stdistical Mechanics. New York Inter- 
science, 1961. 

vii 
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energy levels, states and eigenfunctions, degeneracy, etc. The principles 
of classical statistical mechanics are almost entirely omitted because theee 
follow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a limiting form of quantum statistics and also because the classical 
theory is more sophisticated and difficult in many ways than the quantum 
approach (at least in the elementary form given here). The interested 
reader should consult the very elegant exposition of the principles of 
classical statistical mechanics given by Tolman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8ee the reference list 
below). Certainly any student who intends to pursue statistical mechanics 
beyond a first course must turn to a study of Tolman sooner or later, 
preferably sooner. 

Part I1 (Chapters 3-13) contains applications of the principles de- 
veloped in Part I to systems of independent molecules (e.g., an ideal gas) 
or of other independent subsystems. The more complicated but also more 
interesting problems which arise when molecules can no longer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe treated 
as independent of each other (because of intermolecular forces) provide 
the subject matter of Part I11 (Chapters 14-21). 

Most of the applications in Parts I1 and I11 have to do with the classical 
(high-temperature) limit of quantum statistics. Part IV (Chapter 22) is 
concerned with problems for which the classical limit is not valid (e.g., 
helium gas at  low temperatures). The sections of Chapter 22 could have 
been distributed among the appropriate chapters of Parts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 and I11 
(some instructors may in fact prefer to use this order), but the present 
arrangement has the advantage (for many students) that only the most 
rudimentary quantum-mechanical background is necessary in Chapters 
1-21. Somewhat more quantum mechanics is required in Chapter 22 but 
still not very much. 

The level of the first 16 chapters is fairly uniform. Of these, Chapter 1 
may seem the most difficult, at least on first reading, because it is neces- 
sarily the most general. It may be wise for the average student to return 
to this chapter for rereadiig after having acquired some familiarity with 
applications in later chapters. Parts of Chapters 17-22 are somewhat 
more advanced than the earlier chapters. For this reason, and because 
more recent contributions are involved, there are rather more references 
to the research literature in the laat part of the book. 

Throughout the text, the intent, with each topic treated, is not to give 
a complete discussion that brings the reader up to the resesrch frontier 
on the subject, but rather to give an introduction only. Usually this means 
that a somewhat approximate first-order theory is outlined. The most 
recent details and rehements are intentionally omitted to keep the book 
within reasonable compass and also because the level would otherwise be 
too advanced for a beginning textbook. As a next step in pursuing any 
given subject to a more advanced level, the student should ctonsult the 
works listed at  the end of each chapter and the literature references. 
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An author index has been omitted because many of the more advanced 

and important references have not been included in the text-for reasons 
just mentioned. In this connection an apology should be made for the dis- 
proportionate number of references to the author’s own papers. This is a 
consequence not of the relative importance of these papers but rather of 
their relative simplicity and of the author’s familiarity with them. 

The arrangement of chapters is such that a great deal of flexibility is 
possible in adopting the book as a text. As examples, we list below chap- 
ters and sections which might be used for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) a one-semester graduate 
course in chemistry; (b) a two-semester graduate course in chemistry; 
and (c) a one-semester senior or graduate course in physics. 

CHEMISTUY 
one semester (3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh r 8 )  

Chapter 1 
Sections 2-3 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA24 
Chapters 3 through 6 
Sections 7-1 and 7-2 
Chapters 8 through 11 
Sections 14-1, 14-4, and 

Sections 15-1 and 15-2 
Chapter 16 
Section 17-1 
Section 18-1 
Section 20-1 
Sections 22-1 and 22-8 

14-6 

CHEMISTRY 
TlGU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASt?WMSk8 (3 hours) 

Chapters 1 through 16 
Sections 17-1, 17-2, and 

17-4 
Section 18-1 
Section 19-1 
Section 20-1 
Sections 21-1 and 21-2 
Sections 22-1 through 

22-4, and 22-8 

PHYSICS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
&M s e  (3 h 8 )  

chapters 1-4 
Sections 22-1 through 

Chapters 5 and 6 
Section 7-1 
Chapter 8 
Section 22-8 
Chapters 9 and 10 
Chapter 12 
Chapters 14 through 16 
Sections 17-1 and 17-2 
Section 18-1 

22-4 

It will be obvious from the choice of subjects that the author has had 
physical chemists (and physical biochemists) particularly in mind in 
writing the book. However, as just indicated above, by suitable omissions 
and rearrangements one can easily us8 the text for an introductory c o r n  
in statistical mechanics in a physics department. 

The reader is assumed to have studied thermodynamics, calculus, ele- 
mentary differential equations, and elementary quantum mechanics. 

The problems vary widely in difficulty. They range from simple nu- 
mer id  exercises to small-scale “research” problems. The finst problems 
listed in each chapter are referred to, in w i n g ,  in the text. Many of 
thee contain details that the author feela should not be spelled out in the 
text but that the reader should verify. 

The most important sources of reference for the student are the fol- 
lowing: 

BAND, W., Introduch to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQuantum Stdisties. New York: Van Nostrand, 1955. 
h a y ,  P. J., Principles of P02ym.m C h i u t t y .  Ithaca, N. Y.: Cornell, 1953. 
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FOWLER, R. H., and GUGQENHEIM, E. A., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStdistical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT h d y n a m i e a .  Cam- 

GUQGENHEIM, E. A., Miztutes. Oxford: 1952. 
HILDEBBAND, J. H., and Scorn, R. L., Solubility zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Nonelectrolytea. Third 

Edition. New York: Reinhold, 1950. 
HILL, T. L., StutkticaZ Mechaaiea. New York McGraw-Hill, 1956. 
HIRSCHFELDER, J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO., CURTISS, C. F., and BIRD, R. B., Mdeeukar T h e m  of 

KITTEL, C., Elementary Sfutktical Physics. New York: Wiley, 1958. 
LANDAU, L. D., and LIFSHITZ, E. M., Statistieol Physics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFhdbg, Mans.: 

MAYER, J. E., and MAYER, M. G., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStatistical Mechanics. New York: Wiley, 

PRIQOQINE, I., ilfdeeulcrt Theoty of Solutions. Amsterdam: North-Holland, 

bridge: 1939. 

(?as and Liquids. New York: Wiley, 1954. 

Addison-Wesley, 1958. 

1940. 

1957. 
RUSHBROOKE, G. s., znk.oduction to sfutktbd Mechanics. oxford: 1949. 
SCHR~DINQER, E., Statistical Tlremzalyamics. Cambridge: 1948. 
SLATER, J. C., ZntrtxZuc8h to Chemical Physics. New York McGraw-Hill, 

TER HAAR, D., Elements of Stutistical Mechanics. New York: Rinehart, 1954. 
TOLMAN, R. C., PrinCiples of Statktkal itfechunic8. Oxford: 1938. 
WILSON, A. H., Themzodynumiea and Stutktical Mechania. Cambridge: 1957. 

Note. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA supplementary reading list is given at  the end of each chapter. 
To avoid repetition, the above works are listed by authors only. The 
present writer’s earlier book is referred to throughout the present text 
aa 5. M. 

The author is greatly indebted to Dr. Dirk Stigter and Mr. Robert, E. 
Salomon for reading the entire manuscript and making many helpful sug- 
gestions. Parts of the manuscript were also read and valuable criticism 
given by Professors George Pimentel, Ejobuhiko Saito, and Tsunenobu 
Yamamoto. While writing the book, the author had the benefit of many 
stimulating discussions with Professors Saito and Yamamoto. Finally, 
the author wishes to express his appreciation for partial support from 
the Alfred P. Sloan Foundation during the period in which the book 
was written. 

1939. 

Febrwrry 1960 T. L. H. 
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CHAPTER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
STATISTICAL-MECHANICAL ENSEMBLES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND 

THERMODYNAMICS 

1-1 Introduction. The object of thermodynamics is to derive mathe- 
matical relations which connect different experimental properties of 
macroscopic systems in equilibrium-systems containing many molecules, 
of the order of, say, 1020 or more. However useful, these interconnections 
of thermodynamics give us no information at all concerning the interpreta- 
tion or explanation, on a molecular level, of the observed experimental 
properties. For example, from thermodynamics we know that experi- 
mental values of the two heat capacities Cp and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACV for a given system must 
be interrelated by an exact and well-known equation, but thermodynamics 
is unable to furnish any explanation of why particular experimental values 
of either Cp or CV, taken separately, should be observed. Such an explana- 
tion falls rather within the province of statistical mechanics or statistical 
thermodynamics, terms which we regard in this book as synonymous. 
That is, the object of statistical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmechanics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb to provide the wwkmlar theory 
or interpretation of equilibrium pt.qperlies of macroscopic system. Thus the 
fields covered by statistical mechanics and thermodynamics coincide. 
Whenever the question “why?” is raised in thermodynamics-why, for 
example, a given equilibrium constant, Henry’s law constant, equation of 
state, etc., is observed-we are presented with a problem in statistical 
mechanics. 

Although thermodynamics itself does not provide a molecular picture 
of nature, this is not always a disadvantage. Thus there are many com- 
plicated systems for which a molecular theory is not yet possible; but 
regardless of complications on the molecular level, thermodynamics can 
still be applied to such systems with confidence and exactness. 

In recent years both thermodynamics and statistical mechanics have 
been extended somewhat into the nonequilibrium domain. However, the 
subject is new and changing, and the foundations are still a little shaky; 
hence we omit this area from our consideration. An exception is the 
theory of absolute reaction rates, which we discuss in Chapter 11. This 
approximate theory is based on a quasi-equilibrium approach which makes 
it possible to include the theory within the framework of equilibrium 
statistical mechanics. 

Aside from the postulates of statistical mechanics themselves, to be 
introduced in the next section, the foundation on which our subject is 
based is quantum mechanics. If we seek a molecular interpretation of the 

1 
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properties of a system containing many molecules, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a starting point we 
must certainly be provided with knowledge of the properties of the in- 
dividual molecules making up the system and of the nature of the inter- 
actions between these molecules. This is information which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan in prin- 
ciple be furnished by quantum mechanics but which in practice is usually 
obtained from experiments based on the behavior of individual molecules 
(e.g., spectroscopy), pairs of molecules (e.g., the second virial coe5cient 
of an imperfect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas), etc. 

Although quantum mechanics is prerequisite to statistical mechanics, 
fortunately a reasonably satisfactory version of statistical mechanics can 
be presented without using any quantum-mechanical concepts other zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthan 
those of quantum-mechanical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstates, energy levels, and intermolecular 
forces. Only in Part IV pf the book is it necessary to go beyond this 
stage. 

Another very helpful simplification is that the classical l i t  of quantum 
mechanics can be used, without appreciable error, in most problems in- 
volving significant intermolecular interactions. Problems of this type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
are very di5cult without this simplification (Part IV). 

Despite our extensive use of classical statistical mechanics in the appli- 
cations of Parts I1 and 111, we introduce the principles of statistical me- 
chanics, beginning in the next section, in quantum-mechanical language 
because the argument is not only more general but is sctually much 
simpler this way. 

1-2 Ensembles and postulates. As mentioned above, our problem is to 
calculate macroscopic properties from molecular properties. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOur general 
approach is to set up postulates which allow us to proceed directly with 
this task insofar as "mechanical" thermodynamic properties are con- 
cerned; the "nonmechanical" properties are then handled indirectly by an 
appeal to thermodynamics. By "mechanical" properties we mean, for 
example, pressure, energy, volume, number of molecules, etc., all of which 
can be defined in purely mechanical terms (quantum or clrmical) without, 
for example, introducing the concept of temperature. Examples of "non- 
mechanical" thermodynamic variables are temperature, entropy, free 
energy (Gibbs or Helmholtz), chemical potential, etc. 

Let us considerethe pressure as a typical mechanical variable. In prin- 
ciple, if we wished to calculate the pressure in a thermodynamic system 
from molecular considerations, we would have to calculate (by quantum 
or possibly classical mechanics) the force per unit area exerted on a wall 
of the system, taking into account the change in the state of the whole 
system with time. The force itself would be a function of time. What we 
would need, therefore, is a time average of the force over a period of time 
sufficiently long to smooth out fluctuations, i.e., sufficiently long to give 
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a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtime average which is independent, say, of the starting time, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= to, in 
the averaging. Because of the tremendous number of molecules in a typical 
system, and the fact that they interact with each other, such a hypothetical 
calculation is of course completely out of the question in either quantum 
or classical mechanics. 

Therefore we are forced to turn to an alternative procedure, the en- 
semble method of Gibbs, based on postulates connecting the desired time 
average of a mechanical variable with the ensemble average (deiined 
below) of the same variable. The validity of these postulates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArests on the 
agreement between experiment and deductions (such as those in this 
book) made from the postulates. So far, there is no experimental evidence 
available that casts doubt on the correctness of the postulates of statistical 
mechanics. 

Before stating the postulates, we must introduce the concept of an 
ensemble of systems. An ensemble is simply a (mental) collection of a very 
large number 3t of systems, each constructed to be a replica on a thermo- 
dynamic (macroscopic) level of the actual thermodynamic system whose 
properties we are investigating. For example, suppose the system of in- 
terest has a volume V, contains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN molecules of a single component, and is 
immersed in a large heat bath a t  temperature T. The assigned values of 
N, V, and T are sufficient to determine the thermodynamic state of the 
system. In  this case, the ensemble would consist of 3t systems, all of which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
are constructed to duplicate the thermodynamic state (N, V, T )  and 
environment (closed system immersed in a heat bath) of the original 
system. Although all systems in the ensemble are identical from a thermo- 
dynamic point of view, they are not all identical on the molecular level. 
In fact, in general, there is an extremely large number of quantum (or 
classical) states consistent with a given thermodynamic state. This is to 
be expected, of course, since three numbers, say the values of N, V, and T, 
are quite inadequate to specify the detailed molecular (or “microscopic”) 
state of a system containing something in the order of 1020 molecules. 

Incidentally, when the term “quantum state” is used here, it will be 
understood that we refer specifically to energy states (i.e., energy eigen- 
states, or stationary states). 

At any instant of time, in an ensemble constructed by replication of a 
given thermodynamic system in a given environment, many different 
quantum states are represented in the various systems of the ensemble. 
In the example mentioned above, the calculated instantaneous pressure 
would in general be different in these different quantum states. The 
“ensemble average” of the pressure is then the average over these instan- 
taneous values of the pressure, giving the same weight to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeach w t e m  in the 
ensemble in calculating the average. A similar ensemble average can be 
calculated for any mechanical variable which may have different values 
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(i.e., which is not held constant) in the different systems of the ensemble. 

We now state our zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJirst postulate: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(long) time average of a mechanical 
variable M in the thermodynamic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem of interest is equal to the ensemble 
average of Y, in the limit as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3t 00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, provided that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystems of the ensemble 
replicute the ulernzodynamic state and erwirmment of the actual system of 
interest. That is, this postulate tells us that we may replace a time average 
on the one actual system by an instantaneous average over a large number 
of systems “representative” of the actual system. The first postulate by 
itself is not really helpful; we need in addition, in order to actually compute 
an ensemble average, some information about the relative probability of 
occurrence of different quantum states in the systems of the ensemble. 
This information must be provided in a second postulate. 

Note that the ensemble average of M in the limit as SZ + 00, referred 
to above, must be independent of time. Otherwise the original system 
which the ensemble “represents” is not in equilibrium. 

We shall work out details in this chapter for the three most important 
thermodynamic environments: (a) an isolated system ( N ,  V, and E given, 
where E = energy); (b) a closed, isothemzal system (N, V, and !F given); 
and (c) an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAopen, isothermal system (p, V ,  and T given, where p = chemical 
potential). N and p stand for the sets NI, N2, . . . and PI, pa, . . . if the 
system contains more than one component. Also, V might stand for a 
set of “external variables”* if there are more than one. The representative 
ensembles in the above three cases are usually called mictoccmoniccrl, 
canonical, and grand canonical, respectively. The first postulate is applica- 
ble to all these cases and to other ensembles which will be introduced in 
Section 1-7. The second postulate, however, can be limited to a state- 
ment concerning only the microcanonical ensemble. The corresponding 
statement for other ensembles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan then be deduced (as in Section 1-3, for 
example) from this limited second postulate without any further as- 
sumptions. 

Our zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd postulate is: in an ensemble (3t + 00) representative of an 
isolated lilhemzodyMlmic system, the systems of the ensemble are distributed 
uniformly, that is, with equal probability or frequency, over the possible 
Quantum states &tent with the speC&i’values of N ,  V,  and E. In other 
words, each quantum state is represented by the same number of systems 
in the ensemble; or, if a system is selected at random from the ensemble, 
the probability that it will be found in a particular quantum state is the 
same for all the possible quantum states. A related implication of this 
postulate, when combined with the first postulate, is that the single 
isolated system of actual interest (which serves 88 the prototype for the 

* There ia one “external vluiable” for each thermodynamic work term, e.g., 
volume, area, length, etc. 
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systems of the ensemble) spends equal amounts of time, over a long period 
of time, in each of the available quantum states. This last statement is 
often referred zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:to as the quantum “ergodic hypothes’is,” while the second 
postulate by itself is usually called the “principle of equal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp*m* prob- 
abilities. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA” The ergodic hypothesis in classical statistical mechanics is 
mentioned at  the end of Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6-3. For a more detailed discussion, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee 
Tolman, pp. 63-70 and 356361. (For full identification of works referred 
to by only the author’s last name, see Preface.) 

The value of E in the second postulate must be one of the energy levels 
of the quantum-mechanical system defined by N and V. Since N is 
extremely large, the energy levels for such a system will be so close together 
as to be practically continuous, and furthermore, each of these levels will 
have an extremely high degeneracy. We shall in general denote the 
number of quant.um states (i.e., the degeneracy) associated with the 
energy level E for a quantum-mechanical system with N and V by 
Q(N, V, E). Thus the number of “possible quantum states” referred to 
in the second postulate is Q. 

A complication in the above discussion is the fact that, from an opera- 
tional point of view, E cannot be known precisely; there will always be a 
small uncertainty 6E in the value of E. For all thermodynamic purposes 
this complication is completely inconsequential.* Hence for the sake of 
simplicity we ignore it. 

It should also be mentioned that the point of view in the above state- 
ment of the second postulate is not so general as it might be. If the energy 
level E for the system N, V has a degeneracy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, there are orthogonal 
(and therefore linearly independent) wave functions $ which satisfy the 
Schrtidinger equation 3C# = E$. The particular choice of the 51 #’s is 
somewhat arbitrary, since other poasible choices can always be set up by 
forming suitable linear combinations of the $’s in the first choice. In any 
case, the D quantum states” mentioned in connection with the second 
postulate refers to some set of orthogonal $’s all “belonging” to the same 
E. But regardless of the set of +’s chosen, the wave function representing 
the actual quantum-mechanical state of any system selected from the 
ensemble will in general not be one of the chosen set of $’s, but will be some 
linear combination of all of them. The contrary is really implied in the 
above statement of the second postulate. Fortunately, this simplification 
in our statement of the postulate makes no difference? in any deductions 
we shall make that can be compared with experiment. 

*See S. M. (the present author’s earlier work identified in the Preface), 
p. 113, and Mayor and Mayer, pp. 55-56, 100-102. 

t see s. niz., pp. 50-55,79. 



0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASTATIBTICAGMECHANICAL ENBEMBLE8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[CRAP. 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We turn now to a derivation from the above two postulates of the essen- 

tial properties of the canonical and grand ensembles. 

1-3 Canonical ensemble. The experimental system of interest here 
has a fixed volume V, fixed numbers of molecules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN (which stands for 
N1, N2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . in a multicomponent system), and is immersed in a very 
large heat bath at temperature T. The heat bath is aasumed “very large” 
to be consistent with the use of the limit 3Z + 00 below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOur zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfirst objective 
is to set up the machinery necessary for calculating the average value of 
mechanical variables, such aa energy and pressure, in the system. In view 
of the first postulate, this means that we need to be able to calculate the 
ensem& average of such variables. This, in turn, can be done if we know 
the value of the particular variable in question in a given quantum state 
and the fraction of systems in the ensemble which are in this quantum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstate. 
It might be noted that because the thermodynamic system here is not 
isolated but is in contact with a heat bath, the energy of the system can 
fluctuate; therefore quantum states belonging to different energy levels E 
will have to be reckoned with. Since mechanical variables have well- 
defined values in a given quantum state (in fact we can we this property 
aa the definition of a “mechanical variable”), the task that remains is to 
determine the fraction of system in the ensemble in a given quantum state 
(or the probaiility that a system selected arbitrarily from the ensemble is 
in a given quantum state). This is the problem we now consider. 

The experimental, or prototype, system is in a very large heat bath at 
temperature T. Therefore each system in the ensemble repreaentative of 
the experimental system must also be in a very large heat bath at T. 
Specifically, we contemplate the following arrangement, which satisfies 
this requirement. We imagine 3Z macroscopic systems as our ensemble, 
each with N and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV (duplicating the values in the experimental system), 
stacked together in a lattice (Fig. 1-1). The walls between the ditrerent 
systems in the ensemble are heat conducting, but impermeable to all 
molecules. To establish the temperature T, we imagine further that the 
entire stack of systems (i.e., the ensemble) is placed in a sufficiently large 
heat bath at T. After equilibrium is reached, thermal insulation (repre- 
sented schematically by the double lines in Fig. 1-1) is placed on the out- 
side walls of the ensemble, and the ensemble is removed from the heat 
bath. The entire ensemble itself is now an isolated system with volume 
3ZV, numbers of molecules mN, and a total energy which we shall denote 
by E; (t = total). The relation between E; and the temperature T will 
emerge later. Observe that each system in the ensemble is immersed in a 
large (we shall later use the limit 3Z + 00) heat bath at temperature T, 
as is required if the ensemble is to be representative of the original thermo- 
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,System 
with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N and V 

FIQ. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACanonical ensemble of X systems, each with N and V. 

dynamic system. That is, the remaining zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% - 1 systems in the ensemble 
serve as the heat bath for any one selected system. 

At this point we come to the essential step in the argument, which is to 
note that since the ensemble itself is an isolated system, toe ctzn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAapp& tlre 
~ w n d  ptulutt? to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe whle ensemble. Thus the entire canonical ensemble 
shown in Fig. 1-1 is now regarded as a prototype thermodynamic system, 
characterized by the variables %V, W, and Et. We shall refer to thia 
system as a "supkraystem" in order to avoid confusion with the original 
experimental o l d ,  isothermal system. The second postulate tells us, 
then, that every possible quantum state of this supersystem (canonical 
ensemble) is equally probable and hence should be given equal weight in 
the calculation of average values of interest. As we show next, it is possible 
to take advantage of this observation in order to find the required prob- 
ability of occurrence of a given quantum state in the systems of a canonical 
ensemble. 

We return now to a single system in the canonical ensemble. As a quan- 
tum-mechanical system, it is characterized by N and V. Let us list all 
possible energy statea for such a system in increasing order of the energy 
eigenvalue, El,  E2, . . . , Ej, . . . . Here, for later convenience, each state is 
listed separately 80 that when degeneracy m u m  several successive E{s 
will have the same value. For example, in the notation used above and to 
which we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshall return later, the energy value E occurs Q successive times 
in the list. 

Each Ej is a function of N and V. If V is changed infinitely slowly, 
each Ej changes in a continuous manner. However, the number of mole 
culea of any one of the components can be changed only dmontinuously- 
one molecule at a time. Hence the energy levels must jump discontinu- 
ously if N changes. 
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For most systems containing many molecules, it is not possible, for 

purely mathematical reasons, to actually calculate the energies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEl,  E2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. . . from Schriidinger’s equation. But for generality, we assume in the 
present argument that these energies are known. In applications, we shall 
be able to make progress in each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase only to the extent that we can over- 
come this difficulty either by approximation, or by use of classical me- 
chanics, or by reducing this many-body problem to a one-, two-, three-, 
. . . body problem, etc. In any case, the ensemble method has the follow- 
ing advantage over a direct time-average calculation on a single system 
(see Section 1-2) : we need only the stationary states of the system and do 
not have to follow the change in state of the system with time. 

The list of energy eigenvalues El ,  E2, . . . is assumed, then, to be the 
correct l i t  for any given problem. The argument that follows is valid 
irrespective of such complications as intermolecular forces, symmetry 
restrictions on wave functions, eta. 

Since each system in the canonical ensemble has the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN and V, 
all systems have the same set of energy states, represented by El,  E2, . . . , 
Ej, . . . . Now suppose we observe, simultaneously, the energy state of 
each system in the ensemble, and count the number of systems found in 
each of the listed states. We let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn1 be the number of systems found in 
state El ,  . . . , nj in state Ej, etc. The set of numbers n1,122, . . . is called a 
“distribution. There are, of course, many possible distributions that 
might be observed, but obviously all must satisfy the relations 

The individual systems in the supersystem (canonical ensemble) are 
macroscopic in size, are arranged in a certain order, and can be separately 
labeled. Then the energy state of the whole supersystem would be com- 
pletely specified if we indicated the system energy state (i.e., El ,  E2, . . .) 
for each of the (labeled) systems in the supersystem. To take a simple 
example, suppose there are four systems (A, B, C, D) in the supersystem 
(3t = 4) and the possible energy states for each system are El ,  E2, and 
E3. Then one possible energy state for the supersystem‘ would be, say, 

A B C D  

provided that (compare Eq. 1-2) 

El  + 2E2 + E3 = Et (preassigned). 
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Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA121 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, n2 = 2, 128 = I. Actually, there zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 12 possible states of 
the supersystem consistent with this distribution. Three of them are: 

A B C D  

E2 E2 Ea Ei 
E2 Ea E2 El 
Ea E2 E2 El 

But there are four sets of this type, corresponding to the four possible a s  
signments of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEl. In general, the number of states of the Supersystem, 
at(%), consistent with a given distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn1, 122, . . . (n represents the 
entire set nl, 122, . . .) is given by the well-known combinatorial formula 

Recall that we are attempting to find the probability of observing a 
given quantum state (say Ej) in a system selected from a canonical en- 
semble (or the fraction of systems in the ensemble in the state Ej). For a 
particular distribution 121, 122, . . . , this probability or fraction is just 
nj/% for state Ej. But, in general, there are very many possible distribu- 
tions for given I?, V, W, and El. What we need is the over-all probability; 
that is, an average of nj/W over these distributions, based on an ansign- 
ment of equal weight to each state of the supersystem. Assignment of 
equal weights to supersystem states implies immediately that the weight 
assigned to each distribution, in calculating an average over different die 
tributions, should be proportional to 

Now consider the numerical example above, and suppose further that 
there are just two distributions which satisfy the conditions of Eqs. (1-1) 
and (1-2), namely, 

for the distribution. 

121 = 1,732 = 2, 738 = 1, 

n1 = 2, n2 = 0, ns = 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat = 12, 

Slt = 6. 

The probability of observing El is 4 in the first distributioi, ?nd 3 in the 
second distribution, while the over-all probability is 4: 

In general, the required probability of observing a given quantum state 
Ej in an arbitrary system of a canonical ensemble is 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnj(n) means the value of nj in the distribution n. The sum is over 
all distributions satisfying Eqs. (1-1) and (1-2). Of course, by definition, 

Then the desired ensemble averages of, for example, the energy and 
C j P j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1. 

pressure are 
B = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC PjEj (1-5) 

i 
and 

where p j  is the pressure in state Ej, defined by 

p i =  - (55) . 
N 

(1-7) 

That is, -pjdV = dEj is the work that has to be done on the system, 
when in the state Ej, in order to increase the volume by dV. 

In principle, Ey. (1-4) for Pj tells us all we need to know to calculate 
canonical ensemble averages of mechanical variables. But in practice, a 
much more explicit expression for Pj is necessary. We must now face zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis 
problem. 

The most elegant way to proceed is to employ the Darwin-Fowler 
technique,* based on the mathematical method of steepest descents. 
However, in the present discussion, since we can take 32 --.) 00, the 80- 

called mimum-term method, which involves the use of undetermined 
multipliers, is equally rigorous though not so elegant. The latter method, 
which we shall use, has the important advantage of requiring much less 
of the reader in the way of mathematical background. 

In any particular case we are given 32, the Ej (determined by N and V), 
and Ec (determined by 32, N ,  V ,  and T ) .  There are then many possible 
distributions n consistent with the restrictions of Eqs. (1-1) and (1-2). 
For each of these distributions we can calculate from Eq. (1-3) the weight 
Qr(n) to be used in obtaining averages, as already explained. The situation 
here parallels exactly that illustrated in Appendix 11. That is, becape of 
the large numbers involved (the present example is ideal in this respect 
because we can take the limit DE 4 GO), the most probable distribution, 
and distributions which differ only negligibly from the most probable 
distribution, completely dominate the computation of the average in 
Eq. (14). By the most probable distribution, denoted by n*, we mean of 
course that distribution to which the largest zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQt(n) belongs. In effect this 
means that, in the limit as 32 4 00 , we can regard all other weights Qr(n) 

* See, for cxample, SbhrMinger, Chapter 6. 
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n- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fro. 1-2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANumber of states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$21 as a function of the distribution n (schematic). 

as negligible compared with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ:(n*). This is illustrated diagrammatically 
in I?&. 1-2. With I large but finite, there would be a narrow gaussian die- 
tribution centered about n = n*. But in the limit as I + 00, this dis- 
tribution becomes completely sharp (a D i m  &function). 

00 (i.e., increase the size of the ensemble), 
holding N, V, and T fixed, each nj + 00 also. But all ensemble averages 
depend only on the ratio n j / I ,  which remains finite. 

Naturally, as we let I 

Equation (1-4) becomes, then, 

where nf is the value of nj in the most probable distribution, n*. Equation 
(1-8) tells us that in the computation of Pj we can replace the mean value 
of nj by the value of nj in the most probable (largest Q,) distribution. 
This leads us to a purely mathematical question : Which of all possible sets 
of nj’s satisfying Eqs. (1-1) and (1-2) gives us the large& Q;? 

We solve this problem by the method of undetermined multipliers 
(see Appendix 111). The distribution giving the largest Q: is also the dis- 
tribution giving the largest In Q ,  since In z increases monotonically with z. 
We work with In Qt instead of Qt because it is more convenient. From 

where we have used Stirling’s approximation (Appendix 11) and changed 
the running index from j to i. This “approximation” is in fact exact here 
because we are interested in the limit I, nc + 00. According to the method 
of undetermined multipliers, the set of nj’s which leads to the maximum 
value of In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa&), subject to the conditions (1-1) and (1-2), is found from 
the equations 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 are the undetermined multipliers. On carrying out the dif- 
ferentiation, we find 

l n ( T n 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Inn; - a - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABEj = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj =  1,2, ... 

or 
n; = m-*e”Bj, j = 1~2,. . . . (1-9) 

This is the most probable distribution, e x p d  in terms of a and 8. 
If desired, 3t may be substituted for Csn; in In flt(n) at the outset, and 
treated as a constant in the differentiation. This will change the meaning 
of u, but not any physical results. 

The straightforward procedure here is to substitute the distribution 
(1-9) into Qs. (1-1) and (1-2) in order to determine u and 0 as functions 
of 3t and Et, or of 3t and E (since obviously Et = d?). The result is 

(1-10) 

(1-11) 

where 3t has dropped out of both equations. Equation (1-11) provides B 
as an implicit function of E (and also of N and V, since the energies Ej 

are functions of N and V). Equation (1-10) then gives u in terms of B 
(and N, V). However, the independent variables of real interegt here are 
N, V, T rather zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthan N, V, E, and we have no information yet about the 
dependence of E on T. Hence we do not pursue the above approach any 
further (see Problem 1-2, however), but turn instead, in Section 1 4 ,  to 
a thermodynamic argument which provides a direct connection between 
8 and T. 

We note in paasing that elimination of e- in Eq. (1-9) by we of 
Eq. (1-10) (or comparison of Eqs. 1-5 and 1-11) gives us Pj as a function 
of 8, N, and V: 

Anticipating the fact that turns out to be a positive number, we deduce 
from thii equation that the probability of observing a given quantum 
state in a canonical ensemble decreases exponentially with the energy of 
the quantum state. 

1 4  Canonical ensemble and thermodynamics. To bring nonmechanical 
thermodynamic variables such as temperature and entropy into our dis- 
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cussion, we now combine the above "mechanical" considerations with 
thermodynamics. In  the first place, by virtue of the first postulate, we can 
aasociate the thermodynamic pressure p and energy E with the statistical- 
mechanical ensemble averages zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and E. Let us take the differential of E 
in Eq. (1-5)) holding N constant (the system being closed): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d E =  C E j d P j + C P j d E j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i i 

where we have defined 
Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC e--bBi, 

i 
(1-14) 

used Eq. (1-12) in the first sum, and have recognized in the second sum 
that Ej(N, V) can vary only with V if N is fixed. The first sum simplifies 
further in view of the relations 

and 

Thus, using Eq. (la), we can write 

(1-15) 

Since we already have the associations with thermodynamics E c) E and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p t) p, and since in thermodynamics (N constant) 

TdS = dE + p d V ,  

we can deduce from Eq. (1-15) the further association 

(1-16) 

With these associations established, let us digress to note zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthat from 
Eq. (1-13) and 

dE = DQ* - OW, 
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we have 
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DQ* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdS ++ C Ej dPj, (1-17) 

i 

DW = p d V  * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC PjdEj, 
i 

(1-18) 

where Q* and W are heat absorbed and work done by the system, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArespec- 
tively. These relations provide us, in a general way, with the molecular 
interpretation of the thermodynamic concepts of heat and work. We see 
that when a closed thermodynamic system increases its energy infiniteai- 
mally by the absorption of heat from its surroundings, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAth is  is accomplished 
not by changing the energy levels of the system but rather by a shift in 
the fraction of time the system spends in the various energy states. The 
converse statement can be made about the work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAterm. 

We now return to the main argument, the purpose of which is to relate 
S to the Pi. From Eq. (1-16), 

dS * L d G ,  (1-19) 
BT 

where G is defined by 

G =  - C P j I n P j .  
i 

From thermodynamics we know that the left side of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ. (1-19) is an exact 
differential. Hence the right side must be also. This condition will be met 
provided that 1/BT is any function of G, say (p(G). That is, 

From Eq. (1-20), 
s -f(G) + c, (1-21) 

where c is an integration constant independent of G and therefore inde- 

A B 

FIG. 1-3. Systems A and B combined to form AB. All systems are at 
same temperature. 
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pendent of the variables on which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG depends (e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV ,  with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 
constant). In thermodynamic language, c is independent of the thermo- 
dynamic state of a closed system. Experimental information about the 
entropy always involves a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdiflerena in entropy between two states (e.g., 
the entropy change AS between TI and Tz at  constant N and V), never an 
absolute value. The constant c in Q. (1-21) always cancels on taking 
such a difference. Hence its value is completely arbitrary from an opera- 
tional point of view. But for convenience and simplicity, we adopt the 
particular choice c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 from now on. The connection between this choice 
and the third law of thermodynamics will be discussed in Section 2-4. 

Up to this point we have that S t) f(G), but we do not know the func- 
tion f. To settle this matter we make use of a thermodynamic property 
of the entropy, namely its additivity. Specifically, suppose we have two 
thermodynamic systems A and B at the same temperature and with en- 
tropies SA and SB. Then if we regard the combined systems (Fig. 1-3) as 
a new system AB, we have SAB = SA + SB. This relationship suffices 
tb determine j ,  aa we now &ow. 

FIG. 1-4. Canonical ensemble of 3t systems, each of type AB. 

We first investigate whether the statistical-mechanical quantity G is 
additive in the above sense. For this puqme we form a canonical ensemble 
of 3t systems AB (as shown in Fig. 1-4) repreaentative of a thermodynamic 
(prototype) AB system at temperature T. Heat can flow through all in- 
terior walls of the ensemble. The A part of the thermodynamic system 
is characterized further by N A  and VAl and the B part by N B  and V B  
(A and B are not exponents). In general, the typea of molecules may be 
different in A and B. We have two sets of energy states for the separate 
3ystems, Ef, Ef, . . . and Ef, Ef, . . . . If nf stands for the number of 
A systems in the ensemble in state E f ,  with a similar meaning for nf, 
then the number of states of the whole ensemble (Fig. H), or super- 
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system, consistent with given distributions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnA and nB is 

(1-22) 

since the A and B systems are independent of each other (except for 
energy exchange through the walls). The distributions of interest must 
satisfy the equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Cn: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= X, E n ;  = X, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i i 

C (nfEf + n;E:) = E,. 
i 

The argument from here on is e n t i a l l y  the same as before, so we 
omit details (Problem 1-3). The three. restrictions above require three 
undetermined multipliers, a.4, a g ,  and 8, respectively. We note in par- 
ticular that because of energy exchange between the A and B systems, 
only one energy equation and one multiplier 8 are necessary. For the 
probability that the thermodynamic system AB has its A part in state 
Ef and its B part in state E f ,  we find 

e-8E:e-8Er zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A B  Pij = = P i P j ,  

QAQB 

where 

Q A  = C e--BB;, QB = e-8Bi”. 
i i 

This multiplicative property of Pij is of COW= what we should expect 
from the form of l3q. (1-22). We deduce from Eq. (1-23) that if two sye- 
tern are in thermal contact with each other (and therefore have the same 
temperature), they have the same 8. This suggests a close connection 
between B and T, which’ we verify below. 

For the combined system AB, 
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That is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG is additive. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlso, since SAB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= SA + SB, we have 

 GAB) = ~ ( G A )  + ~ ( G B ) .  

Then, from Eq. (1-24)) 

~ ( G A  + GB) = ~ ( G A )  + ~ ( G B ) .  

The question before us becomes, then: Given that 

f(x + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv) = f(4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+f(v), (1-25) 

what is the function f?  Let us differentiate* Eq. (1-25) with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x and y: 

df(z + Id + %r) - d fb  + u) - df(Y) 
4% + v) al/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd(z+v) - 7- 

df(4 dfb) 
dz -7' 

Hence 

This says that a certain function of z is equal to the same function of y. 
But this is only possible if the function is a constant, say k. Then 

where a is another constant. But we have to choose a = 0 in order to 
satisfy Eq. (1-25). Therefore, finally, we have found that f(x) = kx, 
and that 

S -f(G) = kG 

C) -k C Pj In Pj. 
i 

Also, from Eq. (1-20)) 

or 

(1-26) 

(1-27) 

* This argument ie from ScMidinger, p. 13. 
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The constant k is still unevaluated at this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstage. We have seen that if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

any two systems are in thermal contact, they have the same B and T. 
Therefore they have the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk. What zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis more, k is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuniverscrl constant, 
since one system of the pair, say A ,  can be retained and B can be varied 
over all other possible systems, C, D, E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . . The value of k can thus be 
obtained once and for all by comparing statistical-mechanical and ex- 
perimental values of the same property, on any convenient system (A ,  
above). The pressure of an ideal gas is usually used. The numerical value 
of k depends, of course, on the absolute temperature scale employed. We 
anticipate from our treatment of an ideal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas in Chapter 4 that k = 
+1.38044 X erg deg-', with the conventional kelvin tempera- 
ture scale. However, the important fact that k is a positive number can 
easily be checked here in several ways. For example, if we put B = l/kT 
in Eq. (1-ll), differentiate with respect to T, and uee the experimental 
thermodynamic fact that CV = ( a E / a T ) ~ , v  is always positive, we find 
that k must be positive (Problem 1-4). 

We are now in a position to summarize the basic statistical-mechanical 
equations that can be used to calculate the thermodynamic properties of 
a closed, isothermal system. In the first place, the probability that the 
system is in any particular energy a t e  Ej is 

where 

(1-28) 

(1-29) 

We call Q the "canonical ensemble partition function." Because of the 
association (1-27), the independent thermodynamic variables here turn 
out to be N, V,  and T, which is just the desired set for a closed, isothermal 
system (see Section 1-3). The entropy is 

S(N, V,  T )  = -k C ~j In Pj, (1-30) 
i 

where Pj is given by Eq. (1-28). If we substitute Eq. (1-28) into 
Eq. (1-30), we find 

where the last expression is a thermodynamic one ( A  is the Helmholtz 
free energy). Therefore 

A(N, V ,  T )  = -kT In Q(N, V, T). (1-31) 

This equation is particularly useful because A is the "characteristic func- 
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tion” in thermodynamics for the independent variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,  T :  

dA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -SdT - pdV + C p a d N a .  
a 

Thus. 

(1-32) 

(1-34) 

Hence, if the function Q(N, V,  T )  is available from Eq. (1-29), differentia- 
tion of Q yields S, p ,  and E. Furthermore, despite the fact that Eq. (1-31) 
was derived from the study of a closed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem, we can make use of the 
thermodynamic equation (1-32) and Q(N, V ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  to deduce the chemical 
potential of any component, say i, from 

Thus we have a complete set of thermodynamic functions (from which 
all others can be derived) : N ,  V T ;  A ,  E, 8, p ,  p .  Incidentally, whether 
the averaging bars over E and p in the above equations are dropped or 
not is optional; it depends on whether one has in mind primarily the 
thermodynamic or the statistical-mechanical sspect of the equation in 
question. 

The above equations, which allow us to deduce all the thermodynamic 
properties from Eq. (1-29) for the partition function Q, are general but 
quite formal. In fact, the reader may feel that these relations are rather 
useless since, in general, the Ej must be expected to be very difficult to 
calculate for a system with many molecules. While such an attitude is 
perhaps justified in complicated cases, there are many systems for which 
considerable progress of one kind or another can be made. Much of the 
rest of this book will be devoted to such examples. 

For many purposes it is convenient to group together all energy states 
belonging to the same energy level. Let Qi(N, V )  be the number of such 
states (that is, the degeneracy) for an energy level Ei(N, V). In other 
words, in the list of energy states El, E2, . . . , the same value Ei occurs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ+ 
times. Then, 

(statsf0 (levels) 
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&-B/kT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlso, 

P (level) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQP (state) = - (1-38) Q 
is the probability that the system exists in the energy level E. We have 
dropped subscripts here to avoid confusion between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and j. Whether a 
sum such aa one of those occurring in Eq. (1-37) is over  state^" or "levels" 
can always be judged by noticing whether or not degeneracies are included 
as weights for the so-called BQltzmann factors (e-%lkT). 

We have already mentioned that Pj, being proportional to the Boltz- 
mann factor e-%IkT, falls off exponentially with increasing Ej. We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshall 
discuss wentially thii point in more detail in Chapter 3, but in anticiprt- 
tion we shouid mention here two important extreme cases: 

(a) If T + 0 and the lowest level El is nondegeneratc, then 

Q + e--BI/'T[1 + Q2e-('a--BI)IkT + . . .I + e -BIIkT 

and 
P 1 + 1 ,  Pj+O, j = 2 , 3  ,.... 

That is, in the limit aa T + 0, the system is certain to be found in the 
lowest energy state. From Eq. (1-30), S + 0. 

(b) If T + 00, the relative effect of different Ej's on the Boltzmann 
factors is washed out, and Pj (state) + constant (independent of 33; that 
is, the probability distribution over states becomes uniform. Then S + 00, 

assuming that there is an infinite number of energy states (Problem 1-5). 

1-5 Grand canonical ensemble. In this section we suppose that the 
thermodynamic system of volume V, whose properties we wish to calcu- 
late from molecular considerations, is in a large heat bath and is "open" 
with respect to the molecules in the system. That is, both heat and matter 
(molecules) can be transported across the yalh of the system. The bath 
provides a reservoir of heat at  temperature T and of molecules at chemical 
potentials p l ,  pa, . . . . The system is thus characterized by the thermo- 
dymamic variables V, T, pl, p2, . . . . The numbers of molecules N1, N2, 
. . . do not have fixed values, as they do in a closed system, but fluctuate 
about mean values r1, r2, . . . . 

We employ here the same type of argument aa for the canonical en- 
semble: (a) the first postulate pennits us to use ensemble averages over 
mechanical variables in place of time averages on the actual system; 
(b) by regarding the entire ensemble as an isolated supersystem, we can 
deduce ensemble-average weighting (probability) factors from the second 
postulate, in terms of undetermined multipliers; and (c) the significance 
of the undetermined multipliers, aa nonmechanical variables, can then be 
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System 
,with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc' 

FIQ. 1-5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGrand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcanonical ensemble of 3t systems, each with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. 

established by comparing statistical-mechanical and thermodynamic 
expressions for mechanical variables. 

For simplicity, we consider now a one-component system, with V, T, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p given. As an ensemble (which we call a Ugrand canonical ensemble") 
representative of this system, we introduce a lattice (Fig. 1-5) of 3t sys- 
tems, each with volume V and with walls permeable to molecules (indi- 
cated by the dashed lines) and to heat. To establish the desired values of 
T and p in each of the 3t systems, we imagine that the whole ensemble is 
immersed in a giant reservoir a t  T and p until equilibrium is reached. We 
then place walls around the ensemble (solid double lines in Fig. 1-5) 
that are impermeable to both heat and molecules, and finally remove the 
ensemble from the reservoir. The ensemble itself is then an isolated super- 
system to which the second postulate can be applied. The volume of the 
supersystem is 3tV, and we let Et and Nt  be its total energy and number of 
molecules. 

Since the subsequent details are very similar to those in Sections 1-3: 
and 1-4, we condense the discussion here. For each value of NJ there will 
be a different set of energy states Ej(NJ V). The quantum-mechanical 
state of the supersystem (ensemble) is specified when we give the value 
of N and the state Ej(N, V) for each system in the supersystem. In a 
givm state of the supersystem, let nj(N) be the number of system which 
contain N molecules and are in the particular energy state Ej(N, V ) .  
N can range from zero to infinity (unless there is some upper l i t  set by 
the model being u d ) .  For a given distribution n, that is, for a set of 
numbers 

nl(1)~ n2(1), ndl), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* * - 9 

n2(2)J n8(2), * . 9 
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the number of possible quantum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcltates of the supersystem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis 

Acceptable distributions must satisfy the conservation relatiom 

If we let a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, and Y be the respective undetermined multipliersJ the most 
probable dstribution turns out to be (Problem 143) 

(1-43) 

Again, in principle we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan substitute Eq. (1-43) into Eqs. (1-40) through 
(1-42) and h d  a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/3, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 as funotiona of a, El, and Nl. But, i d ,  
we follow a procedure analogous to that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAused for the canonical en- 
semble. 

.;(N) = m-ae-8BjW.V)e-YN 

From Eqs. (1-40) and (1-43), 

and 

where Pj(N) is the probability that a system selected at random from the 
grand ensemble will contain N molecules and be in the energy state 
Ej(N, V); or, P @ )  is the probability that the single prototype thermo- 
dynamic system contains exactly N moleculea and is in the energy state 
Ej(N, V). We note that Pj (N)  has an exponential dependence on both 
Ej(N, V) and N .  An open system has a definite volume, but both the 
energy and number of molecules in the system fluctuate. In a closed, 
isothermal system (canonical ensemble), N is fixed but the energy fluctu- 
ates. The magnitude of these fluctuations will be examined in Chapter 2. 

From the first postulate, we have the associations 
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These are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmechanical variables. To include nomechanical variables and 
to evaluate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB and Y, we utilize the expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

dE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC EjW,  V )  dPj(N) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC Pj(N) dEj(N, V). (1-49) 
A N  j , N  

Since we are summing over all values of j and N,  Ej(N, V )  is in effect a 
functioh of V only in the second term on the right. In the first term, we 
substitute for Ej(N, V )  from Q. (1-45). Then, 

1 dE = - - C [YN + In Pj(N) + In z] dPj(N) 
j . N  

where 

g = C e--bBj(N.V)e-TN (1-51) 
$3 

Using [Eq. (1-47)] 

d r  = C NdPj(N),  
A N  

EQ. (1-50) simplifies to 

- - d [ x P j ( N )  1 In Pj(N)]  = dE + PdV + 3". (1-52) 
j .N 

We compare this with the thermodynamic equation 

T d S  = dE + pdV - pdN,  (1-53) 

(1-54) 

and conclude that 
Y 

""-3' 

(1-55) 

By the same kind of lengthy argument already employed for the canoni- 
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cal ensemble, we arrive at the further results 

S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA++ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-k Pi(N) In PJN),  
i . N  

1 
- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, kT 

(1-56) 

(1-57) 

and therefore, from (1-54)) 

The relation (1-56) has the same formal appearance as Eq. (1-30) in the 
canonical ensemble. In fact, this form for S is quite general (see Problem 
1-8, for example). 

According to Eq. (1-45)) there is only one B (and therefore k )  for all 
values of N .  Furthermore, this is the same B as in Section 1-4 for a closed, 
isothermal system, since a grand ensemble is just an aggregate of canoni- 
cal ensembles. That is, we can imagine "freezing" the composition of the 
systems in a grand ensemble by suddenly inserting, between the systems, 
walls which are heat conducting but impermeable to molecules. Then the 
original grand canonical ensemble becomes simply a collection of canonical 
ensembles (in fact, this is the significance of the word "grand") in thermal 
contact with each other, each characterized by a definite N. 

Let us now summarize results for an open, isothermal system whose 
thermodynamic state is specified by the variables V, T,  and p. The prob- 
ability that such a system contains N molecules and is in the energy state 
Ej(N, V )  is 

e-Bj(N,V)lkT NpIkT 
J (1-59) e 

Z (V,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, PI 
p i w ; v ,  T,P) = 

where 

We call 2 the "grand partition function." The notation used for P in 
Eq. (1-59) means that N and j  are essentially running indices (the notation 
P N ~  might have been used), while V,  T, and p are independent thermo- 
dynamic variables. An alternative form for Z is 

= CQ(N, V,  T)eN'lkT. 
N 
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The probability that the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN molecules, irrespective of the 
energy state, is 

Thus, for example, the average value of N is 

If we substitute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEq. (1-59) into Eq. (1-56), we find 

where the last expression is thermodynamic in origin. Hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= kTln Z (V, T,p) .  (1-64) 

Now pV is the thermodynamic characteristic function for the variables 
V, T, andp: 

(1-65) 

Therefore, from Eq. (1-64), we have the following relations which, to- 
gether with Eq. (1-64), permit us to calculate all the thermodynamic 
properties of a system if Z is known as a function of V ,  T ,  and p :  

d(pV) = S d T  + N d p  + pdV.  

S = k T ( r )  a l n z  + k h Z ,  
V.r 

N = kT(-) a1nZ , 
ap v.T 

The last form of Eq. (1-68) follows from Eq. (1-64) or, OR thermodynamic 
grounds, from the fact that the variables held constant in the derivative 
are both intensive. 

We shall see in Chapter 2 that one can choose an ensemble from which 
to calculate thermodynamic functions on the basis of convenience, and 
imqxxtive of the actual environment of a system (heat bath, constant 
pressure, etc.). In many problems the grand ensemble is easier to use than 
the canonical ensemble. When this is the case, the reason is usually either 
(a) that a mathematically awkward restraint of constant N in the canoni- 
cal ensemble can be avoided by summing over N (Eq. 1-61), or (b) that 
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a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmany-body problem can be reduced to a one-body, two-body, etc., 
problem by viewing Eq. (1-61) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a power series in the "absolute activity" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&kTt 

Z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(V, T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP) = MO, V, T )  + QU, V, T ) X  + Q(2, V, T)Xa + * . (1-69) 

This is the preferable method in treating an imperfect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas, for example 
(Chapter 15). 

The above discussion is limited to a one-component system, but it can 
easily be extended to any number of componenta (Problem 1-7). For 
example, for two components there will be two equations like (1-42) and 
two undetermined multipliers, 71 = -pl/lcT and 7 2  = -po/kT. Equa- 
tion (1-59) becomes 

with 
(1-71) N N  Z = C &(Nip No, v, T ) X i  ' A t  *, 

N I * N ~  

where 

Also 

h1 3 e#dkT, xa = .&kT. 

PV = kT In Z (V, T,  PI, PZ), 

d(pV) = S dT + Ni d ~ i  -I- No ~ P Z  + P d v ,  

(1-72) 

(1-73) 

from which we can immediately write the extensions of Eqs. (1-66) 
through (1-68). 

1-6 Microcanonical ensemble. Here we are concerned with an isolated 
system with given E, V, and N (N again representa a set N1, No, . . . if 
the system is multicomponent). The repreaentative ensemble is called a 
microcanonical ensemble, as stated in Section 1-2. For an isolated system 
it is difficult to achieve a direct connection between our two postulates 
and thermodynamics (e.g., we have used variations in E for this purpose 
in Sections 1-4 and 1-5, but here E is constant). The most common pro- 
cedure for avoiding this dacul ty is to introduce, essentially as a new 
postulate, the equation S = k In Q, where Q(N, V, E) is the degeneracy 
of the energy level E (see Section 1-2). However, a new postulate is not 
really needed; its introduction is therefore unsatisfactory from a logical 
point of view. Instead, we derive the properties of a microcanonical en- 
semble from either the canonical ensemble or the grand ensemble. 

First, consider a canonical ensemble. A microcanonical ensemble, as the 
name is meant to imply, is a degenerate canonical ensemble in which all 
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systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhave (virtually) the same energy. Thus, suppose we start with a 
canonical ensemble, pick out just those systems with an energy level E, 
place thermal insulation around each of them, and then remove theae 
systems from the other systems in the canonical ensemble (with energies 
different from E). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a result of this operation, we have a collection of 
isolated systems, all with the same N, V, and E (a microcanonical en- 
semble). This degenerate canonical ensemble* may be thought of as being 
repmentative of a hypothetical closed, isothermal system that is somehow 
restrained from having values of E other than E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. Another way of 
saying this is that the only quantum states accessible to the system are 
those with energy E. In this new ensemble, according to Eq. (I-B), the 
fraction of systems Pj in a given quantum state (energy E)  is proportional 
to e-''". But E is the same for all quantum states, D(N, V, E)  in number. 
Hence Pj is the same for all D quantum states. Since Cj Pj = 1, Pj = 
l/n. Then, from Eq. (1-30), 

= b In D(N, V, E). (1-74) 

This relation between the thermodynamic S and statistical-mechanical 
(actually, quantum-mechanical) D can then be employed to derive all 
thermodynamic functions of interest, as we shall eee below. 

A microcanonical ensemble is also a degenerate grand ensemble: we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
can pick out of a grand ensemble only those systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith certain pre- 
scribed values of N and E. But there is a different, in fact, complementary, 
way in which Eq. (1-74) can be deduced from a grand ensemble. 

In what follows, we have to make use of Section 1-5, which was re- 
stricted for simplicity to a one-component system, but the method and 
rnult are independent of the number of components. In Section 1-5 we 
applied the second postulate to the whole grand ensemble, or supersystem 
(Fig. 1-5). That is, the supersystem itself is an example of an isolated 
system. The point of view we adopt here is that the supersystem may be 
regarded, for present purposes, not as an imaginary construct but as a 
single, very large, red &OW systent. In this case, the W e d  lines in 
Fig. 1-5, dividing the "supersystem" into "systems," represent mdhe 
mdical rather than physical planes. A "system" (Fig. 1-6) is then an 
imaginary macroscopic portion, between mathematical planes, of the 
total or "supersystem. " Each "system" is open and imthemurl. Note that 

* We shall see in Section 2-2 that, because relative fluctuatiom in E about 
E in a canonical ensemble are virtually negligible in magnitude, this eomewhat 
artificial way of forming a microcanonical ensemble is really unnecessary: 
canonical and microcanonical ensembles are essentially i n d w h a b l e  in any 
C W .  
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............... 
i syetem; 
;with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV i  ............... 

1 

FIQ. 1-6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPortion of 8 larger system forming 8 smaller, open, isothermal 
system of volume V. 

we cannot use this point of view in connection with a canonical ensemble, 
because this ensemble requires that each “system” be closed. The way we 
proceed is to employ Eq. (1-39) to find the total number of quantum 
statea zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0; of the “supersystem” (specified EI, Nt, Vt = %V) and relate 
this number to the entropy St of the “supersystem” using (a) the connec- 
tions with thermodynamics already found for an open, isothermal system 
(Eqs. 1-59 through la), and (b) the additive property of the entropy, 
SI = sls, where S is the entropy of one “system” in the “supemystam.” 
To evaluate In 01, we start with 

~n nt = In C nt(n) = ~n n;(n*) (1-75) 
n 

and then substitute 
m-Bj(N;Y)/kTeNp/kT 

9 (1-76) 
2 $(N) = 

which follows from Eqs. (1-45) and (1-59)) into In Qt(n) from Eq. (1-39)) 
to give In QI(n*). We find 

Innl(n*) = %h% - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc n!(N) hn?(N) 
i .N  

so that 

in agreement with Eq. (1-74). 

S; = klnO;,  (1-77) 
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Equstion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1-74), due to Boltzmann, is possibly the besbknown equa- 

tion in statistical mechanics, mainly for historical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAreasons. We shall dis- 
cuss it further in Chapter 2. But let us note here that: (a) it applies to 
an isolated system; (b) if the ground state of the system is nondegenerate, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n = 1 and S = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T -+ 0) ; and (c) for any isolated system whatever, the 
more quantum states available to the system, the higher the entropy. This 
is the origin of qualitative statements which correlate the entropy with 
'probability, 'randomness, "disorder, * etc. We shall encounter many 
examples of such a correlation in the present book. Incidentally, we can 
appeal to thermodynamics for a quick estimate of the magnitude of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ 
to be expected in statistical mechanics in general. That is, since it is found 
experimentally that* S = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(Nk),  1nQ = O(N) ,  and fl = O(eN) = 
O(lO'opo), an impressively large number. 

Let us assume that, from quantum mechanics, we have B(N, V ,  E)  for 
the system of interest. Our next problem is to calculate all thermodynamic 
functions, not just the entropy S. But S is the characteristic function for 
the variables N, V ,  B: 

1 
dS = -dE T + $dV - Z f d N , .  

(I 

Hence 

( 1-78) 

(1-79) 

(1-81) 

The temperature is determined by the dependence of il on E. Since we 
know from thermodynamics that T is positive, we can anticipate that D 
will increase with E for any macroscopic quantum-mechanical system. 
Clearly, the same statement can also be made about Q(V)'). 

In practice, except in very simple systems, Q(N, V ,  E) is not available, 
and the microcanonical equations (1-74) and (1-79) through (1-81) can- 
not be utilized. In particular, the restriction to constant energy E is 
usually a difficulty. This can be avoided by passing to the canonical en- 
semble. 

* The notation O(z) means "of order zn 



30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASTATISTICAGMECHANICL ENSEMBLE8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ c w .  1 

1-7 Other cmsembles. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMany other ensembles and partition functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
are possible and are often useful. For example, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa one-component eys- 
tem, if we start with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(N, V,  E)  and then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsum one at a time over E, N ,  
and V, we obtain* the four relations (we write l /kT = B here for con- 
venience), 

(1-82) 

(1-83) 

(1-84) 

S 
Z) In Q(N, V,  E )  = BTS = 

In Q(N, V ,  E)e-sg = function of N, V,  B = -6.4, 

Q(N, V,  mehN = function of V,  E, Bp = BIZ, 

B 

In 
N 

In 4(N, V, E)e-bPv = function of N, E, Bp = B(TS - pV). (1-85) 
V 

In Eq. (la), H is the "heat content," E + pV. The summations over 
possible values of E and V may be replaced by integrations in most prob- 
lems, as we shad see. But here we use the present simple notation for 
convenience. The sum in Eq. (1-83) is the same, except for notation, as 
the sum over energy levels in Eq. (1-37). Previously we established only 
Eqs. (1-82) and (1-83)) but the other two cases, and those below, can 
be worked out in detail by the same general methods already zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAused 
(Problem 1-8). 

Continuing, we can also sum two at  a time over E, N ,  and V: 

In Q(N, V ,  E)e-BBe"N = function of V,  8, p = BpV, (1-86) 
B.N 

In C Q(N, V ,  E)e-8Be-6pv = function of N ,  8, p 
B,V 

= -8Np =: -BF, (1-87) 

In C Q(N, V ,  E)ehNe--bpv = function of E, pp,  ~p = BE. (1-88) 

Equation (1-86) is the logarithm of the grand partition function, already 
encountered. The other two equations are new. Equation (1-87) is par- 
ticularly importantt because it is applicable to a system with the familiar 

N.V 

* T. L. HILL, J .  Chem. Phys. 29,1423 (1958). See also A. MWNSTER (Supple- 

ibid. 2, l(1959); R. A. SACK, iM. 2,s (1959). 
t W. B. BROWN, Md. Phys. 1,88 (1958). 

mentary Reading list); w. B. BROWN, Md. PhyS. 1, 68 (1958); A. MUNSTER, 
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set of independent variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, T, and p. In Eq. (1-87), F is the Gibbs 
free energy, A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApV, equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANp for a one-component system. Finally, 
we can sum over all of E, N, and V: 

In C Q(N, V ,  E)e--BBeBrNe-8pv = function of 8, p, p = 0. (1-89) 

This is an exceptional case, since T, p, and p appear to be independent 
variables, whereas we know from thermodynamics that at most two of 
them variables can be independent. The special treatment necessary for 
this partition function is provided elsewhere (S. M., Chapters 2 and 3). 

The characteristic functions are redefined here, in a more systematic 
way, as dimensionless quantities. In every case there is an appropriate 
thermodynamic equation which permits calculation of other thermady- 
namic functions from knowledge of the partition function. For example, 
for Eq. (la), 

(1-90) 

or for Eq. (1-87), 

B 3 . V  

d(-PA) = -E d@ + BpdV - @dN, 

d(-PF) = -Ed@ - V d @ )  - @pdN. (1-91) 

Equation (1-90) is, of course, just a rearrangement of Eq. (1-32) for tr 
closed, isothermal system. 

The reader has perhaps noticed that the characteristic function can be 
written immediately on inspection of the partition function. The rule is: 
if we replace i-2 by eBTs, then the characteristic function is the sum of the 
exponents in the partition function. For example, for Eqs. (1-83) and 
(1-87), respectively: 

(1-92) 
@TS - BE = -@A, 

@TS - BE - PpV = -@F. 

The reason for the existence of this rule will be obvious from our discuasiou 
of the thermodynamic equivalence of ensembles in Chapter 2. It depends 
on the legitimacy of replacing the logarithm of a partition function by the 
logarithm of its maximum term. 

There are two further types of ensemblcs or partition functions we 
should mention, since they will be encountered in the applications. First, 
there are some problems in which the “external variable” V is replaced by 
another external variable (e.g., length or area) or is supplemented by addi- 
tional external variables (e.g., volume and area are both external vari- 
ables). Second, in multicomponent systems, there are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcases in which it is 
helpful or necessary to regard the system as open with respect to some 
components, but not all. 
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PROBLEMS 
1-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.Modify the derivation, in Section 1-3, of the canonical ensemble probability 

distribution (1-12) to obtain Eq. (1-38) directly. That is, use “levels” instead of 
uStatk!S.” 

1-2. Obtain the derivatives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( a E / a V ) b , ~  and @ ~ / ~ B ) N , v  from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEqe. (1-5), 
(1-6), and (1-12), and show that 

This rcsult is of inkrest because comparison with the thermodynamic equation, 

suggissts that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/3 = eonstant/T, as we find in Section 1-4. (Page 12.) 
1-3. Derive the canonical ensemble probability distribution (1-23) for a 

combincd system, starting with Eq. (1-22) and the associated restraints. 
(Page 16.) 

1-4. Make zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuse of Eq. (1-11) for B, the relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB = l /kT,  and the experi- 
mental fact that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACV is always positive to prove that k is a positive constant. 
(Page 18.) 

Pj In Pj, 
subjcct to the condition xj Pj = 1, is a maximum when Pj = constant. 
(Page 20.) 

1-6. Use the method of undetermined multipliers to find the most probable 
distribution in a grand ensemble, Eq. (1-43). (Page 22.) 

1-7. Derive the basic equations (1-70) and (1-72) for an open system with 
two eomponente. (Page 26.) 

1-8. Derive Eq. (1-84) for a system of fixed volume in thermal and material 
contact with a reservoir a t  T and p, but with the transports of heat and mole- 
cules across the walls of the system couplcd in such a way as to maintain E 
constant. (Page 30.) 

1-9. Verify that Eqs. (1-34) and (1-35) for p and B in terms of Q are equiv- 
alent to Eqs. (1-5), (I-6), and (1-28) in terms of ensemble averages. 

1-5. Use the method of undetermined multipliers to show that 
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CHAPTER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FURTHER DISCUSSION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF ENSEMBLES 

AND THERMODYNAMICS 

2-1 Fluctuations. The general approach in Chapter 1 was, first, to 
mt up postdates from which a procedure could be worked out for calcu- 
lating the mean values of mechanical thermodynamic variables, such as 
energy and pressure; then, to extend the treatment to include non- 
mechanical variables, such as temperature and entropy, by comparing 
companding statistical-mechanical and thermodynamic equations. Thus 
we now have at our disposal a set of general equations that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be employed 
to accomplish our primary task, namely, the calculation of thermodynamic 
functions from molecular properties. Beginning with the next chapter, 
we shall encounter many illustrations of such calculations. 

For the strictly thermodynamic purposes referred to above, only the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
mean values of mechanical variables need be considered. Yet any student 
of statistical mechanics will or should be curious about the extent to which 
mechanical variables fluctuate around their mean values. For example, 
in a closed, isothermal system (canonical ensemble), the system has a 
certain probability of being found in any given energy state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEj, though 
the average value of the energy is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. What is the dispersion or spread of 
the energy probability distribution about E? However, curiosity does 
not provide the only motive for investigating fluctuations. The matter 
is of some practical interest as well. For example, (a) a statistical-me- 
chanical investigation of fluctuations justifies or explains, theoretically, 
why it is possible and legitimate to ignore fluctuations in thermodynamics; 
(b) a study of fluctuations leads w to the important conclusion [essentially 
equivalent to (a)] that in the calculation of thermodynamic properties 
of macroscopic systems, we can choose a statistical-mechanical ensemble 
to work with strictly on grounds of convenience, ignoring the actual kind 
of environment (isolated; closed, isothermal; etc.) the system of interest 
is in; (c) some important topics, such as light scattering and the theory 
of solutions, can be analyzed explicitly in terms of fluctuations; and finally, 
(d) fluctuation theory is very important in nonequilibrium statistical 
mechanics. 

Note that we have not mentioned fluctuations in nonmechanical vari- 
ables. The reason for this is the following. To define the mean value 
(or examine the extent of fluctuations about the mean value) of a prop- 
erty of a system which can exist in various states j with probabilities Pi, 
the property itself must be well defined in each state j .  As was mentioned 

33 
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a t  the beginning of Section 1-3, a property that meets this criterion is 
“mechanical,” by definition. For example, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEj, p j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -aEj/aV, N ,  and V 
are all well defined for a single quantum state, but S and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT are not. 
Hence we can discuss fluctuations in E, N ,  etc., but not in S, T, etc.* 

We have remarked that thermodynamic functions calculated in statis- 
tical mechanics turn out to be independent of the ensemble used in the 
calculation. This is not true, however, of fluctuations. For each environ- 
ment (and therefore for each ensemble) the problem is different; in fact, 
even the variables which fluctuate are different. Hence, in a study of 
fluctuations, the actual environment of the system of interest must be 
taken note of and the appropriate ensemble used. For example, if the 
system is closed and isothermal, there will be fluctuations in p and E, 
but not in N and V (since values of N and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV are prescribed and fixed), 
and these fluctuations must be investigated using a canonical ensemble. 

Each environment has a corresponding ensemble and partition function: 
eight possibilities are listed in Section 1-7 for a one-component system 
with a single external variable (V). It is clear then that there must be a 
great many fluctuation formulas which might be derived and discussed 
(see Problem 2-1, for example). We confine ourselves here to perhaps the 
three most important special cases (for a one-component system). 

Let us first consider the fluctuation in the energy of a closed system 
immersed in a large heat bath (N, V,  T given and fixed). Because V and 
N are fixed, fluctuations in energy must be associated with heat exchange 
between system and bath. We use the canonical ensemble, of course. 
Now, as we shall soon verify, these energy fluctuations turn out to be very 
small indeed, so the probability distribution function for different energies 
is gaussian in form about the mean value E (Fig. 2-1). The dispersion 
or spread in this probability distribution may therefore be characterized 
completely by the standard deviation UE, that is, the root mean-square 
deviation from the mean: 

Before evaluating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUE explicitly, we note that 
- 

(E  - E)’ = h” - 2EE + (E)’ = E2 - (Q2. (2-2) 

This is necessarily a positive quantity. 
If we differentiate 

* A leas restricted point of view is taken, for example, by Landau and Lifshitr, 
Chapter 12. 
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' E +  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU E  

E -  

Fro. 2-1. probability dietribution in energy for a closed, isothermal Bystem 
(schematic). 

with respect to T, and then divide by Q, we find 

or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
E2 - (E)' = (E  - E)' = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU: = k T C v .  (24 )  

From thermodynamics, we know that in general CV = O(Nk) and E = 

Thus we have found that in a typical closed, isothermal system the 
standard deviation of the energy probability distribution is of the order 
of 10''OE, an extremely zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmall quantity. The probability distribution is 
therefore practically a Dirac &function at  E = E. It is for this reason 
that in thermodynamics all values of E other than E can, in effect., be 
ignored. 

It may be helpful to look a t  these energy fluctuations from a more 
explicit and slightly different point of view, in a special case. According 
to Eq. (1-38), the probability PB (Fig. 21) of observing a certain energy 
E is proportional to Q(N, V, E)e-&IkT. In order to have a concrete ex- 
ample before us, let us anticipate from Eq. (4-39) that the energy de- 
pendent factor in D for an ideal, classical, monatomic gas is E8N1'. As 
mentioned in Section 1-6, the fact that 0 always increases with E can 
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be seen from Eq. (1-79) (T  is positive). We can write, in our special case, 

ps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= m8N12e-s 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = E/kT and c is independent of x (we need not specify zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc more 
closely here). In the neighborhood of the most probable energy E*(=E), 
x is clearly of order N ,  since E* = O(NkT). Hence one of the factors 
involving x in Pg above is extremely large and increasing, and the other 
extremely small and decreasing. It is this feature which causes PB to have 
such a sharp maximum. To investigate the maximum, we need 

3" 1, X*=-J 3N 
2 

a -- In PB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- o = - -  
ax 2x 

2 
3N t 2x2 - - - when x = x*. 

3N _ - _ -  a2 In PS -- 
ax2 

Then from 

we find 
pe = p B w - ~ B - B * ~ ' 1 2 ~ ~  

where 
2 3 N ( k 0 2  = -. 

2 

This is the conventional form for a gaussian distribution in t e m ~  of the 
standard deviation of the distribution. This result for UB agrees with 
Eq. (2-4, since CV = 3Nk/2 in this special zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase (Chapter 4). We also 
note that E* = x*kT = 3NkT/2, which is correct. 

Next we examine the fiucturttion in N in an open, bthermal system. 
Here V, T, and p are fixed. We differentiate 

W Q(N, V,  T)eNPlkT = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc NQ(N, V, T)eNPlkT 
N N 

with respect to p, divide by Z, and obtain 

or 
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Since, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin thermodynamics, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(kT), u$ = O@) and u ~ / I p  = 
0(fl-'l2). This is the same order of magnitude for the relativeductua- 
tion as we found above for the energy of a closed, isothermal system. 
Indeed, it is the standard result in statistical-mechanical fluctuation 
formulas. We conclude that even an open system contains virtually a 
fixed number of molecules, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, for given V ,  T ,  and p: the probability 
distribution in N is practically a &function. 

The right side of Eq. (2-7) can be put in more familiar thermodynamic 
form. From 

we have 

d p  = v d p  (T constant), 

where v = V / N  and p = N / V .  Then 

( g ) v , T V =  - - va ( " P )  - . 
N 2  dV N , T  

Now we put Eq. (2-8) in Eq. (2-7) and find 

where K, the compreasibility, is defined by 

For an ideal gas, K = l/p and kTK/V = l/m. In view of the fact that 
V ie constant, Eq. (2-9) is also a formula for the fluctuation in number 
density 0, = N / V ) :  

As our zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthird case, let us investigate a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem with N,  p ,  and T fixed, 
but with fluctuations in volume. According to Eqs. (1-87) and (1-91), 
we have as the appropriate starting point, 

V A = VQ(N, V,  T)eepYIkT, 
V 

(2-11) 
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That is, the probability of observing the volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV is 

(2-13) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(N, V,  T)e-pY'kT. 
A Pv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

On differentiation of Eq. (2-11) with respect to p, and division by A, 
there results 

or 

(2-14) 

Hence the formula here for uv/v is the same as that for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU N ~  in an open 
system (Eq. 2-9). 

Finally, we mention an exception to the negligible fluctuations we have 
been encountering above. Consider Eq. (2-9), for example. At a critical 
point or when two phases exist together in the system, (dp/aV)~r)~,~ is 
essentially zero and K infinite. Hence the fluctuations are large rather 
than negligible. To be a little more specific and exact, in a two-phase 
system with the two number densitiea p1 and p2, p in the expression 
(p - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ) 2  can range from p1 to p2 (rather than being centered very closely 
around p ) ,  so that is now of the order of (p)2 itself. Hence 
u& in Eq. (2-10) is of order unity rather zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthan R-"*. That is, the 
standard deviation is of the same magnitude as the mean value itself. 

Fluctuations in density at the critical point are reeponsible for the 
well-known critical opalescence phenomenon. 

2-2 Thermodynamic equivalence of ensembles. The formulas derived 
in the preceding section are typical in showing that fluctuations about 
mean values are so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmall they can be ignored in thermodynamics except 
under very special circumstances (even in a two-phase system, fluctua- 
tions within each phase separately are normal, io., thermodynamically 
negligible). For example, in the grand partition function 

Z = CQ(N, V ,  T)eN"IkT 
N 

(2-15) 
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for a one-component open system, the only values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN which have an 
appreciable probability of being observed experimentally are those that 
deviate only negligibly from the mean value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Therefore, just as we 
found in Appendix 11, we can replace In Z by the logarithm of the largest zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
term in the above zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsum, without making a detectable error to terms 
of thermodynamic order of magnitude. To be more specific: both 
In Z (=pV/-kT) and the logarithm of the largest term in the sum are of 
order IFT, and l3q. (2-7) tells us that there are O(R”2) terms in the sum 
of the same order of magnitude as the maximum term; hence the situa- 
tion is completely analogous to that in Appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 [see Eq. (11-ll)]. 

Let ua proceed to fmd the maximum term in E, for the result is rather 
interesting. Let 

tN(V, T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp) = Q(N, V, T)e”’lkT. 
Then 

If we denote by N* the value of N satisfying Eq. (2-lo), t , ~ *  is the 
maximum term in Z. Then 

or 
N*p - pV = A(N*, V, T) = --kT In Q(N*, V ,  T). (2-17) 

Equation (2-16) determines N* (=m as a function of V, T, and p. But 
if ws take the alternative point of view that the independent variables 
are N*, V, and T, and that Eq. (2-16) gives p as a function of N*, V, 
and T, then Eqs. (2-16) and (2-17) are just the canonical eneemble 
equations (1-36) and (1-31), respectively. In other words, application 
of the maximum-term procedure, which is legitimate because of the small 
fluctuations in N, c a w  the grand ensemble to degenerate into the 
canonical ensemble. This conclusion can be verified by noting further 
that the grand ensemble equations for 8 and p [(1-66) and (I+%)] also 
go over into the corresponding canonical ensemble equations [ (1-33) and 
(1-34)] when In E is replaced by In t ~ *  (Problem 2-2). 

For practical thermodynamic p-, then, there is no distinction 
between a grand ensemble and a canonical ensemble. In a given prob- 
lem one can choose between them simply on the basis of mathematical 
convenience. 

Let us digress to note that we can write, as in &. (II-8), 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUN is given by Eq. (2-7). The grand partition function sum can 
then be replaced by an integral: 

e-2~20;Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/," In Z = In t ~ *  + In 

= In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtN* + In [(21r)''%N], 

where 2 = N - N*. The second term is of order In 7, which is negli- 
gible compared with the first term. 

The argument above can be applied to any of the partition functions, 
(1-83) through (1-88). As one further example, observe the degeneration 
of the canonical ensemble into the microcanonical ensemble: 

In Q = In tg = In tg+, 
B 

where 

Then E*(N, V ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT)(=z) is found from 

--BIkT. t~ = Q(N, V ,  E)e 

1 

Also, 
A E* 
kT kT l n Q =  --=lnQ(N,V,E*)---- ,  

S = klnQ(N, V ,  E*). 
or 

(2-18) 

(2-19) 

Equations (2-18) and (2-19) will be recognized as microcanonical ensemble 
relations. 

In thermodynamics the functional relations between the thermodynamic 
variables of a system are independent of the environment (open, closed, 
isobaric, isothermal, etc.). Another way of saying this is that the choice 
of independent thermodynamic variables is arbitrary and not prescribed 
by the environment. In statistical mechanics, just as we should expect, 
we have now come to the same conclusion: regardlesa of environment, we 
can select whichever ensemble or partition function (and therefore inde- 
pendent thermodynamic variables) we wish in calculating thermodynamic 
properties; the results must be independent of the choice. 

Since the entropy is a particularly important and interesting thermo- 
dynamic function, we add a few comments concerning it. The canonical 
ensemble expression for S, Eq. (1-30)) is 

S =  - k C P j I n P j .  
i 
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Now we have found that in a closed, isothermal system, the probability 
that the system has an energy departing appreciably from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE is virtually 
zero. Hence we may assume that the only P i s  in Eq. (2-20) which 
make a significant contribution to the sum are those associated with 
B (=E*, above). The number of quantum states with energy E is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q(N, V, E), so that each Pj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= l/Q(N, V,  E) on this assumption. Then 

= k In Q(N, V, m, (2-21) 

in agreement with Eq. (2-19). This confirms our aaumption. The 
reader will have noticed that this argument is practically the same as 
that used in deducing Eq. (1-74) as the starting point. for a discussion 
of the microcanonical ensemble. But the point of view here is quite 
different. In Section 1-6 we had to either mentally pick out those sys- 
tems in a canonical ensemble with a certain E, or artificially limit the 
accessibility of quantum ~tates to those with energy E. But. we have 
found from our study of fluctuations in this chapter that these restricting 
devices are really unnece8881y: a canonical ensemble (in fact, any en- 
semble) is, so to speak, by ih ow12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAchoosing virtually a microcanonical 
ensemble. 

Similarly, in the grand ensemble relation (Eq. 1-56), 

s = -k C P ~ ( N )  In P ~ ( N ) ,  (2-22) 
f , N  

the only important Pj(N)’s are those associated with E and 7. The 
number of these states is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(7, V, a. Then 

S = kIn~( lV,  V, E). (2-23) 

Thus the relation S = k In Q(N, V, E) has quite general validity. It 
is restricted in principle but not in practice to isolated systems. But we 
must take for N ,  V, and E in Q(N, V, E) the mean or most probable 
values (when fluctuations are possible), which are themselves functions 
of the independent variables of the system. With this understanding we 
can make a general correlation between the magnitude of S and the num- 
ber of available quantum states 52. The greater the degree of randomness 
or disorder in a system, the larger Q and therefore S. We shall encounter 
many explicit examples in later chapters, but we can anticipate, on 
qualitative grounds, that, for example: Q and the entropy increase in the 
wquencc crystal + liquid + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas for the same substance at the same 
pressure; the entropy of a group of molecules is less than the entropy of 
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the dissocited atoms from which the molecules are made; molecules with 
small vibrational force constants (“weak interatomic springs”) will have 
higher entropies than those with large force constants; a group of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas 
molecules occupying a large volume has a higher entropy than when oc- 
cupying a d l  volume; etc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2-3 Second law of thermodynamics. In this section we discuss the 
second law of thermodynamics from the standpoint of statistical mechanics. 
First we consider an isolated .system. 

If an isolated system changes its thermodynamic state infinitesimally, 
the change in entropy in the process satisfies the relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0. This 
is one way to state the second law of thermodynamics. The inequality 
holds for any spontaneous. (irreversible) change. After the isolated sys- 
tem has exhausted all possible spontaneous changes (each with ds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) 
available to it, the entropy will have reached a maximum value. A further 
infinitesimal change in state will now be reversible, and the equality will 
hold, ds = 0. Similarly, in any finite spontaneous change in thermo- 
dynamic state (i.e., both initial and final states are equilibrium states) 
in an isolated system, AS > 0. It is this inequality in particular which 
we examine. 

Probably no system is ever in complete equilibrium with respect to 
all possible prowses. In practice, we require in thermodynamics only 
that the system be in equilibrium with respect to those rate proceases 
with half-lives short compared with the time available for an experiment. 
Processes so slow as to proceed to a negligible extent during a thermo- 
dynamic measurement present no complication and can be ignored, even 
though the system is not in equilibrium with respect to such processes. 
For example, in the absence of a catalyst, the equilibrium properties of 
a mixture of nitrogen and hydrogen gases can be studied without taking 
into account the possibility of formation of ammonia molecules, because 
the rate of formation of these molecules from nitrogen and hydrogeu is 
extremely slow. In quantum-mechanical language, we would say that 
only those quantum states associated with the presence of only nitrogen 
and hydrogen are, in fact, accessible states; states correaponding to the 
existence of some ammonia molecules in the system are inaeee8sible. In 
effect, there is a restraint (of chemical kinetic origin, in this case-an 
activation energy or, rather, activation free energy) in operation which 
limits the accessibility of quantum states. 

However, if we start in this example with a mixture of nitrogen and 
hydrogen gases at equilibrium in an isolated system and then add a 
small amount of catalyst (not considered part of the system, for sim- 
plicity): (a) some ammonia molecules will be formed spontaneously; 
(b) the states accessible to the system are now extended, by removal of 
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Barrier 

Ahrbiing 
W e r  surface. 

FIQ. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2-2. (a) Gas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconfined to one side of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcontainer by a removable barrier. 
(b) Gas restrained from contact with adsorbing surface by removable barrier. 

the restraint,* to include a group of formerly inaccessible states aa well 
aa the originally accessible ones; and (c) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAafter the new equilibrium point 
is reached, now including the chemical equilibrium, we must have AS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 
for this spontaneous process, according to the second law. 

Quite generally, any spontaneous thermodynamic prows in an isolated 
system can be viewed in this way: the initial equilibrium state of the 
system includes a certain set of accessible quantum states but excludes 
other (inacceasible) quantum states; the spontaneous process leadiig to 
the final equilibrium state occurs because of, or is made possible by, the 
removal of one or more restraints, which makes an additional group of 
quantum states accessible to the system. Further examples are: (a) a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas 
is confined to one side of a barrier (Fig. 2-!2a), and the barrier (restraint) 
is then removed; and (b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas molecules are initially prevented by a barrier 
from coming in contact with an adsorbing surface (Fig. 2-2b), but then 
the barrier is removed. 

The removal of a restraint can probably always be analyzed in terms 
of the reduction or obliteration of an activation energy (i.e., potential 
barrier) or free energy. Thus the function of a catalyst for a chemical 
reaction is to reduce the activation free energy of the reaction (see 
Chapter 11). In casea (a) and (b) in the previous paragraph, the physical 
barrier presents an essentially infinite potential barrier to the passage of 
molecules, which becomes zero when the physical barrier is taken out. 

Suppose an isolated system is characterized by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ,  V,  E (N might be 
a set of numbers of molecules and V a set of external parameters) and in 
its initial state hne accessible to it Q(N, V,  E )  quantum states. Further, 

*We have not defined the word “restraint” because we are using its conven- 
tional meaning. “Removal of restraint” always implies that the number of 
aaceeeible quantum staka increosea. Mayer and Mayer (pp. 81-85) use the word 
“inhibition” instead of “restraint.” 
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let the removal of a restraint initiate (on the thermodynamic level) a 
spontaneous process and make available (on the molecular level) addi- 
tional quantum states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that the total number of states becomes 
V(N, V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE). That is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Q new states are added to the original Q. 
Necessarily, Q‘ > Q. Since S = k lnQ in the initial equilibrium state 
and S‘ = klnQ’ in the final equilibrium state, we have, for the spon- 
taneous proceas, 

(2-24) 
N AS = S’ - S = khz > 0. 

This is the statistical-mechanical version of the second law of thermo- 
dynamics for an isolated system. It is beautifully simple, following directly 
from the ideas of the number and accessibility of quantum states. 

It is interesting to calculate from the above considerations the prob- 
ability of the spontaneous occurrence in an isolated system of a process 
with a negative entropy change, in contradiction to the second law of 
thermodynamics. For example, suppose we have gas occupying the 
whole container ($2‘ quantum states) in Fig. 2-2(a) and we wish to calcu- 
late the probability of observing the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgaa occupying (spontaneously) only 
the left half of the container (Q quantum states). From thermodynamics 
we know that the entropy change in this process for an ideal gas of 
N molecules is -Nkln2. Now in accordance with the notation of the 
preceding paragraph, of the total Q’ quantum states accessible when the 
whole container is available to the gas molecules, Q of these states corre- 
spond to molecules actually being present only in the left half of the 
container. Thus, since all Q‘ quantum states have equal probability of 
occurrence, the probability that all molecules will be found in the left half 
is Q/Q‘. If AS represents the (positive) entropy change for the proceas 
”left half” + “whole,” then (Eq. 2-24) 

Q e-AS lk ,  

s= AS > 0. 

For an ideal gas AS = Nk In 2, and the probability of observing a viola- 
tion of the second law in this case is Q/rY = 1/2N, a very small number 
of order l/lO’o*o. This m l t  can also be deduced from simple prob- 
ability Considerations: the probability that any one of the N molecules 
will be found on the left is 1/2, so the probability that all will be found 
on the left is (1/2)N (ideal gas). 

Equation (2-25) is, of course, a general equation applicable to other 
cases in which the second law would be violated. But as significant 
experimental valuea of AS are always of order Nk, the probability Q/N 
is always very small, of order e-N. That is, a nonnegligible entropy in- 
crease always corresponds to a tremendous increase in the number of 
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accessible quantum states: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA>> 0. Thus, we conclude that while it is 
not rigorously impossible for a spontaneous process with a negative entropy 
change to occur in an isolated system, the probability of such an occur- 
rence is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso slight that the process can be considered impossible in actual 
practice (i.e., operationally), and this is all that thermodynamics requires. 

We turn now to a statistical-mechanical analysis of the second law of 
thermodynamics in closed, isothermal systems. The situation here is a 
little more complicated, but of more practical interest since isolated sys- 
tems are exceptional in experimental thermodynamics. Again we have 
to consider a spontaneous process initiated by the removal of a restraint, 
but since now the system is immersed in a heat bath, initial and final 
equilibrium states have the same temperature rather than the same 
energy (as in an isolated system). The three examples abovc (chemical 
reaction, diffusion, adsorption) also serve as examples here, with the 
understanding that in each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase the system is put in thermal contact with 
a large constant-temperature bath. In all these cases and in general, as 
is well known, the second law of thermodynamics takes the form AA < 0 
for a finite, spontaneous process in a closed, isothermal system. It is 
this inequality that we now wish to deduce from statistical mechanics. 

A system in a heat bath has fluctuations in E, as we have seen in 
Section 2-1. For given N and V, many energy levels E have to be con- 
sidered. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ( N ,  V, E) be the number of quantum states accessible to 
the system, in the initial thermodynamic state, for a particular energy 
level E.  When the restraint is removed, causing the spontaneous process 
in question to occur, the number of accessible quantum states for energy E 
may increase, but cannot decrease since all the 0 original states are still 
available to the system. That is, Q’(N, V,  E )  2 Q(N, V,  E), and this 
toill be true for arery E. Of coum, in principle, some values of E may 
be energy eigenvalues (i.e., energy levels) in the final state but not in 
the initial state. If so, 0 = 0 and 0’ > 0 for such an E. In the initial 
State, 

(2-26) 

and in the fins1 state, 

Q’ = 0‘(N, V ,  E)e-B’kT, (2-27) 
B 

where every possible E in the hal  state is included in the two sums. 
Now no term in the sum in Eq. (2-26) can be larger than the correspond- 
ing term (same E) in Eq. (2-27)) in view of thc relation 0’ 2 0 just 
mentioned above. Hence, since A = -kT In Q, 

&‘ > Q and AA < 0. (2-28) 
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The above argument provides zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa general statistical-mechanical justifica- 

tion of the equilibrium criterion A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= minimum, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd A  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, for a closed, 
isothermal system (i.e., the system runs through all possible spontaneous 
processes-each with AA < &and h l l y  settles, at equilibrium, on 
the lowest available value of A). A frequent theoretical application of 
essentially this principle might be mentioned. Suppose that in a statis- 
tical-mechanical model of a thermodynamic system a continuously variable 
parameter t enters, in addition to the independent thermodynamic vari- 
ables. If we are able to find, from the model, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(N, V,  T, t )  and therefore 
A(N,  V, T, t), then the appropriate value of to assign to the real system 
is that value which minimizes A (maximizes &) for given N, V, T. An 
example would be the fraction ( of holes in a lattice model for a crystal 
or liquid, 6 t h  N, V, T fixed. Or, t might be the udegree of advancement" 
of a chemical reaction, or the fraction of molecules in one or the other 
phase of a two-phase system. 

It may be instructive to examine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhE and A 8  separately for spontaneous 
isothermal processas with AA < 0. Consider first the case where AE = 
I?' - is positive. An example: initial state = a gas of hydrogen mole- 
cules at T; h a 1  state = an equilibrium mixture of hydrogen molecules 
and atoms at T. The spontaneous process here is the dissociation of some 
hydrogen molecules into atoms, a process assumed to have a negligible 
rate in the initial state. E' > E because the newly accessible quantum 
states (belonging to a mixture of hydrogen molecules and atoms) in the 
hal thermodynamic state lie in general at higher energies than the 
original quantum states (belonging to hydrogen molecules only). The 
bond energy of the hydrogen molecule is of course primarily responsible 
for this. From Eq. (2-21)) in the initial state 

S = k h ~ ( N ,  V ,  E), 

S' = k In e ( N ,  V,  E'). 

(2-29) 

(2-30) 
and in the hal state 

In the example, N is the number of hydrogen molecules started with 
(i.e., in the initial state). Now the function Q(N, V,  E )  always increases 
with increasing E (holding N and V constant), aa we have already seen 
(Eq. 1-79). Therefore, since E' > E in this case, 

Q(N, V,  B') > Q(N, v, El. 

Q'(N, V,  B') 2 Q(N, v, B). 

Q'W, V ,  E') > w, V,  E) ,  

But also, as already emphasized for any E, 

Hence 
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FIG. 2-3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASpontaneous isothermal procesa with AA < 0, AE > 0, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As > 0. 

Initial 
State 

FIG. 2-4. Spontaneous isothermal process with AA < 0, AE < 0, and 
AS > 0. 

Initial 
State 

Final 
State zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w3 

FIG. 2-5. Spontaneous isothermal process with AA C 0, AE < 0, and 
AS < 0. 
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and consequently, from Eqs. (2-29) and (2-30), 

As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= S' - s > 0) (2-31) 

as is in fact obviously required if we are to have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA A  C 0 and Ah' > 0. 
This situation is summarized diagrammatically in Fig. 2-3. 

On the other hand, if A E  < 0 (as would occur if the group of new 
quantum states, inaccessible in the initial thermodynamic state, lies in 
general a t  lower energies than the original group of states), As may be 
positive or negative, as shown in Figs. 2-4 and 2-5 respectively. 

We might add the following quite general comment on closed, iso- 
thermal systems. Such a system will be thermodynamically more stable 
the lower A, the larger.&, and therefore, in view of the form of Eq. (2-26) 
for Q (a sum of terms, all positive), the lower the energy levels E available 
to the system and the denser zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Q) the quantum states, especially at low 
energies. 

Because of its importance, we should also mention explicitly the thermo- 
dynamic condition AF < 0 for a spontaneous process occurring in a 
closed system at  constant temperature and pressure. The partition 
function in the initial state is 

A = Q(N, V ,  h3e--&tkTe-pVtkT. 
B ,  V 

In the final state, replace A by A' and Q(N, V,  E )  by Q'(N, V ,  E). For 
any particular V and E, Q'(N, V, E )  2 Q(N, V ,  E), as before. Therefore 

A' > A and AF C 0, (2-32) 

since F = --kTlnA. This is the statistical-mechanical basis for the 
equilibrium condition F = minimum, dF = 0, in a closed system at con- 
stant pressure and temperature. From this condition, well-known (thermo- 
dynamic) results follow, such as Ap = 0 for chemical (see Section 10-1) 
or phase equilibria, where p = chemical potential. Having shown once 
and for all the shtistical-mechanical basis of the criterion F = minimum 
(and therefore Ap = 0), we shall make free use of this condition in ap- 
plications and not feel obliged to rederive it in special zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcasea. 

It will be apparent to the reader that the argument leading to 
Eqs. (2-28) and (2-32) can be extended to any of the partition functions, 
Eqs. (1-83) through (1-88). The characteristic function on the right side 
of any of these. equations will be maximized at equilibrium if the inde- 
pendent variables are held constant (e.g., -@A is a maximum at  constant 
N, v, 8). 
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2 4  Third law zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof thermodynamics. Our object here is to present the 
statistical-mechanical basis of the third law of thermodynamics. But 
first we review very briefly the status of the third law in pure thermo- 
dynamics, and its relation to certain thermodynamic integration constants. 
As usual, there are some fine points that we shall omit or pass over lightly 
in this introductory discussion. The reader is referred zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto the Supple- 
mentary Reading list a t  the end d the chapter for fuller discussion. 

It has been found experimeatally that AS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 0 as T + 0 for a large 
number of isothermal processes involving pure phases. Examples are: 
(a) a phase transition at  temperature T between two different crystalline 
forms of the same substance (e.g., tin or silicon dioxide); (b) the phase 
transition between liquid and solid helium at  T; (c) a chemical reaction 
between pure crystals a t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and T (e.g., Pb + Is + Pb12); and (d) a 
crystal a t  T and z + crystal a t  T and d, where z represents one or more 
independent thermodynamic variables other than T (e.g., 3 = pressure, 
volume, or magnetic field strength). The experimental result, AS + 0, 
for systems of this type is presumed to be general (with some under- 
standable exceptions) and is not a consequence of the first two laws of 
thermodynamics. Hence the third law of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthernwdynamics has been pro- 
posed. It can be stated as follows: for any isothermal process involving 
only pure phases in internal equilibrium (or including frozen metastable 
phases if the process does not disturb the frozen equilibrium), 

lim AS = 0. (2-33) 
T-0 

This statement does not exclude, for example, processes in which meta- 
stable atomic nuclei are present but unchanged in the process, or in which 
negligibly slow chemical reactions are thermodynamically possible but do 
not occur. But it does exclude, say, the proceas glass -+ crystal. Also, 
the word "pure" does not exclude isotopic mixtures if the mixing is un- 
affected by the proceas. 

The term "metastable" is closely related to the t e rn  "accessible" and 
"inaccessible" quantum states. Metastability implies the possibility of 
another, more stable, thermodynamic state which, however, is unavail- 
able because of the inaccessibility of the associated quantum states (see 
Section 2-3). 

An essentially equivalent but slightly more general statement of the 
third law* is: it is impossible by any procedure, no matter how idealized, 
to reduce any thermodynamic system to the absolute zero of temperature 
in a finite number of operations. This is called "the principle of the un- 

* See Fowler and Guggenheim, pp. 224-227. 
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attainability of absolute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzero." We shall not use the thii law in this 
form, or establish the connection with Eq. (2-33). 

To illustrate the u8e of the third law in thermodynamics, consider, as 
an example, the simple gaseous chemical reaction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A + B  

occurring at p and T,  and meeting the metastability restrictions of 
Eq. (2-33). From experimental heat capacities (extrapolated to T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0) 
and heats of phase transitions, we have the well-known equations 

where 

HA(0)  and Sn(0) are integration constants, and the sums zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare over the 
phase transitions encountered at p between TI = 0 and T' = T. S i  
equations can be written for B. Integration of aF&T = -SA gives, 
further, 

(2-36) 

The integration constant FA(O) is equal to Hn(O), since the relation 
F = H - T S b m e s  F = Hat T = 0. Then for thereaction A + B, 

Fn(T) = Hn(0) - T s ~ ( 0 )  - kT vn(T') dT'. 

m(T) = H B ( T )  - H A ( T )  = m(0) + a(T), (237) 

M(T) = + M T ) ,  (2-38) 

dT'. (2-39) AF(T) = AH(0) - T AS(0) - \'Ag(T') 0 

The value of the constant Hn(0) depends on the location of the zero of 
energy, and this is arbitrary for any single substance. But in a process 
such as A + B, the choices of Hn(0) and HB(O) have to be self-consistent. 
That is, aH(0) is not arbitrary, but ia the limit (T 4 0) of an experimental 
quantity. In general, M ( 0 )  # 0. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthird law simplifies Eqs. (2-38) 
and (2-39) considerably by asserting that AS(0) = 0 in these equations. 
There is no operational (experimental) justification-since thermodynamics 
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gives us information about entropy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdi$ert.enees only-for going beyond 
this and simplifying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEqs. (2-35) and (2-36) by setting Sd(0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 as well. 
But this step is obviously convenient and is consistent with the require- 
ment AS(0) = 0, so it is adopted as a convention for pure phases (crystals, 
except for helium). That is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASA(!~') is set equal to the experimental (in- 
cluding an extrapolation) quantity BA (!l') . 

With this condensed thermodynamic survey as background, we turn 
now to the statistical-mechanical side. The first point that requires 
comment is the integration constant c in Eq. (1-21), where we remarked 
that c is independent of the thermodynamic state of a closed system. "his 
is a dc ien t ly  inclusive observation for our present purposes, provided 
we understand "state" in a general way. For example, any of the iso- 
thermal processes (a) through (d) mentioned at the beginning of this 
section may be regarded as involving changes in the thermodynamic state 
of a closed system. In every case, one can in principle proceed reversibly 
from the initial state to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfinal state by infinitely slow changes in one or 
more m e t e r s  on which the state depends (volume, pressure, degree 
of advancement, etc.). Thus for all isothermal proceases embraced by 
the third law of thermodynamics (Eq. 2-33), the constant c is independent 
of these parameters of state, and hence for such a process (the prime 
refers to the final state), 

AS=S'-S= (klnO'+c')-(OlnD+c) 

=kAlnO, A c = O .  (2-40) 

The value assigned to c clearly has no operational significance at all, for 
it always cancels on taking dSerenm. Hence we can put c = 0 if we 
wish, as in Chapter 1. 

Having thus disposed of Ac, the remaining question is whether statistical 
mechanics predicts, as is required for agreement with Eq. (2-33), that 

for the processes included in our above statement of the third law. The 
subscript zero refers to the ground state, the quantum state of interest, 
since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT 0. If we include only the degreee of freedom associated with 
the electrons and centers of mass of the nuclei (electronic, vibrational, 
rotational, translational), we can say that quantum mechanics predicts 
or experiment indicates in known that the ground state of a pure 
crystal or liquid helium is nondegenerate.* For these degreea of freedom, 
then, Oo = Oi = 1. Now, fortunately, this is a much stronger statement 

* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASee Fowler and Guggenheim, pp. 199-205. 
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than Eq. (2-41) requires. For one thing, as far as thermodynamic con- 
sequences (such as the third law) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare concerned, a value of Slo in the range 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< no << eN is indistinguishable from Slo = 1, as can be seen from 
Eq. (2-40) [AS = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(Nk)] .  This is a considerable safety factor. More 
important, if we include intranuclear degreea of freedom, about which 
there is still a vast amount of ignorance, we have to expect in general 
that Inno and lnQ6 are not thermodynamically negligible, owing to 
degeneracy of the nuclear ground state or possibly of a metastable state. 
But the third law is saved despite this because we expect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQO = Qi (ordinary 
thermodynamic changes do not affect the nuclear state), and hence 
A In $2, = 0. Similarly, if we include the entropy of isotopic mixing, 
which is present in most real thermodynamic systems, Inno and Inn; 
will not be negligible, but still Qo = Q;. The same remarks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be made 
yet again concerning any type of metastability, allowed in our statement 
of the third law, which introduces nonnegligible degeneracy at  0°K. 

We come to the conclusion, then, that for the same systems which obey 
Eq. (2-33) thermodynamically, we anticipate on molecular grounds that 
Eq. (2-41) will also be obeyed. This is all that me need for a statistical- 
mechanical understanding of the third law. 

But we also conclude that In Slo and In Sli separately are in general 
unknown and may not be thermodynamically negligible. This conclusion 
destroys any hope of setting up a scale of truly "absolute entropies" for 
single substances (in addition, there is the arbitrariness of the additive 
constant c). 

In spite of the above remarks, it is conventional to introduce, for pure 
substances, what might be called "practical absolute entropies." If we 
exclude any substance which poseesses at 0°K frozen metastability that 
"thaws out" between 0°K and TOK (we shall encounter some of these 
exceptions in Chapter 9)) we have 

S(T) = c + k l n m  + klnSlo = S(0) + g(T), 
QO 

or 

(2-42) 
Q(T) S(T) - c - klnSlo = kln- = g ( T ) .  

QO 

In  these equations one might just as well set c = 0. In Eq. (2-4!2), the 
expression on the left is the definition of the practical absolute entropy, 
the second expression is the statistical form of it, and the third is the 
thermodynamic form (Eq. 2-35). In other words: (a) c + k In 00 has the 
same significance as S(0) in Eq. (2-35), and both are nonoperational 
quantities; (b) Sl& is the number of quantum states associated with the 
electrons and centers of mass of the nuclei (i.e., with the electronic, vibra- 
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tional, rotational, and translational degrees of freedom); and (c) the Q/Bo 
quantum states referred to in (b) are the ones that are “excited zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA” in ordinary 
thermodynamic system when the system absorbs heat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I@* = T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdS) to 
increaae its temperature from 0°K to YK. 

For simplicity, in the regt of the book (except in Chapter 9) we shall 
write Eq. (2-42) simply as 

(2-43) 

with the understanding that we are referring to the “operational” part 
of the entropy only: we count in B only thorn quantum states which are 
actually “excitable” and exclude thaw which are not (nuclear ground 
state, isotope mixing, any metastability frozen over the whole temperature 
range). As we pointed out following Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ml), thia D = 1 in the ground 
state, and hence this S = 0 at T = 0°K. 

The entropy calculated aa A In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ in Eq. (2-43) is often called the “spec- 
troscopic entropy,” since energy levels from spectroscopy are used in 
practice; and the entropy measured aa g (with an extrapolation of C p  
to 0°K) is called the “calorimetric entropy.” We shall compare these 
quantities in Chapter 9, and discuss some exceptions (owing to “thawed” 
metastabdity) to the expected equality. 

S(T) = A In O(T) = g(T) ,  
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PBOBLEMS 

2-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANote that Eqs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1-83) through (1-85) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be written in the form 

where g is intensive and G extensive. Show that 

h, Eqs. (1-86) through (1-88) can be. written 

(l'agc 34.) 
2-2. Show that the grand ensemble equations for r9 and p go over into the 

canonical ensemble equations for the same variables when lnZ is replaced by 
the logafithm of the largest term in 2. (Page 39.) 

2-3. Prove the following: if the probability distribution for G is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgaussian 
about with uo/u very small, then the probability distribution for I/G about 
I/' is gauesian with 

Qll0 00 
-I 

1/0 8' 
Show that this reeult and Eq. (2-14) lead to the density fluctuation for- 
mula (2-10). 

2-4. Show that in the N, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ,  T ensemble (Eq. 2-12), 
- 
H 2  - (ma - k 9 C p  

2-5. Show that in a two-componcnt, open, isothermal system, 

2-6. h v e  that in the canonical ensemble (see Problem 1-2), 
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2-7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAShow that the canonical ensemble equations for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgo over into the 

microcanonid ensemble equations for the same variables when In Q is replaced 
by the logarithm of the largest term in Q. 

2-8. If one combmea Eqs. (2-34) and (2-35) to obtain FA(T) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= HA(!!!') - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T&(T), the resulting expression appears to differ from Eq. (2-36). Prove that 
the two equations for FA(T) are equivalent. 

2-9. Justify the statement above Eq. (2-1) that the energy distribution is 
gaussisn. 
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Part II zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Systems Composed of Independent 

Molecules or Subsystems 



CHAPTER 3 

GENERAL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARELATIONS FOR INDEPENDENT 
DISTINGUISHABLE AND INDISTINGUISHABLE 

MOLECULES OR SUBSYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The simplest problems in statistical mechanics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare those concerned with 

systems composed of molecules, groups of molecules, or d- of freedom 
which are dectively independent of each other. Part I1 of this book is 
devoted to problems of thie type, except for Chapter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, which returns to 
more general considerations. A lack of such independence is usually 
sasociated with two causes: (a) intermolecular forces (treated primarily 
in Part 111), and (b) symmetry restrictions on quantum-mechanical wave 
functions (discussed in Part IV). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOf course, no statistical-mechanical 
system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan consist of stt.icuy noninteracting molecules (or subsystems), 
for then the system could not achieve internal equilibrium. By “inde- 
pendent” we shall imply “weak interaction” only: the molecules or degrees 
of freedom interact sufficiently to maintain thermal equilibrium by energy 
exchange, but not to such an extent as to require taking into account 
intermolecular forces, etc. The “weak interaction” may be direct (e.g., by 
collisions) or indirect (e.g., via the walls or a heat bath), The most obvious 
example is an ideal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas; the density is low enough so that intermolecular 
foms make a negligible contribution to thermodynamic properties (e.g., 
the equation of state), but equilibrium is still maintained by intermolecular 
collisions and/or by collisions with the walls. 

The “subsystem” of a system, other than molecules, referred to in the 
chapter title and above might be, for example: (a) different degrees of 
freedom in the same molecule (translation, rotation, etc.); (b) independent 
vibrational modes in a monatomic crystal; (c) molecules adsorbed on 
independent groups of adsorption sites on a solid surface; etc. 

Before turning in the next chapter to our first specific example of a 
system of independent molecules, we set down in the present chapter 
certain relationships of quite general validity for systems of this type. 
A few brief comments will be made about possible applications, but 
details in every case will be reserved for the appropriate chapter later in 
the book. 

3-1 Independent and distinguishable molecules or subsystems. Let 
H be the classical Hamiltonian function for the macroscopic system under 
consideration. If the system is composed of independent molecules or 
subsystems, by definition H will be given by rr sum of independent 

69 
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contributions, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H =  H a + H b + . * * ,  

where Ha, Hb,  etc., refer to individual molecules, degreea of freedom, etc. 
Similarly, for the Hamiltonian operator, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= % + x b  +*. ' .  (3-2) 

Let the eigenvalues and eigenfunctions of %, x b ,  etc., be denoted by 
t, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, . . . and #a, #b, . . . , respectively. Then we try, as a solution of 
3Qb = E#, the product # = #a #b . . . , and find 

= (xa + X b  + ' ' ')#a#b* ' ' 

= #&c' ' ' %#a + #a#c' ' * x & b  + ' ' ' 
= #&c' ' * &#a + #a#c' * ' e&b + ' ' '  
= (ea + eb + . ' ')# = E#. 

That is, the possible energy eigenvalues for the whole system are of the 
form 

E =  € a + e b + * . . ,  (3-3) 

just the sum of the separate energies €al eb, . . . , aa we might expect. The 
essential practical point here is the following: for a system of independent 
molecules or subsystems, we do not have to solve the complete S c M n g e r  
equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW = E# with O(1020) coordinates, but only the separate 
equations %#a = &#a, etc., each with one or relatively few coordinates. 
Thus we have a redudion of a muny-budy problem to a one (or few-) M y  
problem, because of the form of Eq. (3-1). 

For one molecule or subsystem at a time, let us define partition functions 
of the canonical ensemble type, 

etc., 

where the sums are over molecular or subsystem energy states j (an 
energy level with degeneracy is repreeented by several terms in the sum). 
Next we notice that the product of all the q's generates all possible values 
of E. For example, suppose there are just two subsystems, one with three 
energy states and one with two states. Then 
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The sums of 6's in the exponents exhaust the possible energy states E for 
the system. Thus we have in this simple example, and in general, 

That is, the canonical ensemble partition function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ for the whole system 
is a product of separate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq's for the independent molecules or subsystems. 

In Chapter 5 we shall apply Eq. (3-5) to the small vibrations of identical 
atoms about their equilibrium pcjsitions in a monatomic crystal. The 
model adopted is restricted: each atom in the crystal is confined in its 
motion to the immediate neighborhood of a particular site (equilibrium 
position) in the crystal lattice. Of course, in real crystals the atoms can 
jump occasionally from one site to another, but this is not allowed in the 
model. Now suppose we number the sites in the crystal lattice in some 
regular order. Then these labels can be considered as belonging as well to 
the particular atoms confined to the various sites. In this sense, and for 
this model, we can regard the atoms of the system to be identical and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
distinguishable. This is an exception (owing to the idealized model) to 
the general quantum-mechanical principle that identical molecules are 
indistinguishable, i.e., that no experiment can distinguish between the 
order ab and the order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbcr for two identical molecules (see Section 22-1). 

Note that Eq. (3-5) has been derived on the basis that the molecules or 
subsystems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare independent and distinguishable (labels a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb, . . .). The 
assumption of distinguishability is obviously correct if the molecules or 
subsystems are all different. If, however, the molecules are independent 
and identical, then Eq. (3-5) is correct only if a model artificially introduces 
molecular dietinguishability. In this case, the energy states for each of the 
identical molecules will be the same, and 

qa = qb = . . . q = C e-eilk' 

j 

(W N 
Q = q .  

The Einstein model of a crystal (Chapter 5) is the most obvious example, 
but not the only one. 

Incidentally, the independent subsystems might be macroscopic (and 
therefore distinguishable) parts of the complete system in thermal con- 
tact with each other. Then we would write Eq. (3-5) in the notation 

Q = QAQB . . . . (3-7) 

We have already encountered an example of this in Eq. (1-23). Equation 
(3-7) implies that A, S, E, etc., are additive; that is, 

A = A A  + A e  + * - * , etc. 
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3-2 Independent and indistinguishable moleculets. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas of N 
identical and independent molecules, or in a simplified model of a liquid 
(Chapter 16) in which the molecules are assumed to be independent of 
each other, we are faced with the problem of handling independent and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ind~inguiuhuble molecules. Let return to the simple example following 
Q. (3-4), where now zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and b are identical and indistinguishable. Here, 
from the quantum-mechanical point of view, the arrangement c1+ eb2 

is operationally indistinguishable from the arrangement c2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ %I. That 
is, these two arrangements belong to a single quantum state* and should 

which is supposed to be over all quantum states of the system, with one 
term for each state. 

count only once instead of twice in the sum Q = Cj e-gdkT (Eq. 3-51, 

In general, a term in Q of the form 

where a, b, . . . are identical and indistinguishable molecules, each in a 
difmer~ molecular quantum state (i # j # - .) as in the example above, 
will occur N! times if we urn Eq. (3-6) for Q. This follows because the N 
states i, j ,  . . . can be permuted in N! ways among the N molecules a, b, . . . , 
and all of these N! ways will appear in the product $. The reader may wish 
to verify thii by forming the product q,,qNe for three identical molecules 
and three different molecular states, 1, 2, 3. If Eq. (*M) for Q contained zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
terms of this type only, i.e., with each molecule in a different molecular 
quantum state, the correction for indistinguishability would be easy. We 
would simply divide fl by N! so as not to weight each quantum state 
of the system N! times in the sum C j  e--Bj/kT instead of only once. 

Actually, many terms in Eq. (3-6) are not of this sort. For example, 

(3-9) 

where at least two molecules are in the 8am.e molecular quantum state i. 
These terms lead to complications: (a) such statee of the system are 
allowed in Bose-Einstein statistics (Chapter 22), but N! is no longer the 
proper correction factor; and (b) in Fermi-Dirac statistics (Chapter 22), 
quantum states of the system in which two identical molecules are in the 
same molecular quantum state are not allowed at all, i.e., such states 
should not appear in the sum j e-%lkT. 

In a qurmtum-statistical treatment of identical and indistinguishable 
molecules, the two possibilities, Bose-Einstein and Fermi-Dirac statistics, 
have to be discussed as separate cases. We postpone such a discussion to 
Chapter 22, because it involves more quantum mechanics than we wish to 
use in Parts I, 11, and 111. 

e-(%s~br%j+-*) /kT,  

* Thie point is amplified considerably in Chapter 22. 
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We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan make further p r o m  at this point only if we restrict ourselves 

to an important special zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase, which is a limiting or asymptotic form of both 
Bose-Einstein and Fermi-Dirac statistics: the number of molecular states 
“available” (i.e., with energies between the molecular ground state and the 
ground state plus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsay, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlOkT, more or less) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwrg Zurge compared with N ,  
the number of molecules in the system. In this case, in the product & = fl, 
the number of terms of type (3-9) d l  be negligibly small [virtually all 
terms will be of type (3-8)] simply because so many choices of molecular 
states are available to the molecules that two moleciiles only rarely find 
themselves in the same state. The Bose-Emstein and Fermi-Dim com- 
plications above then disappear. Thus, the correction N! is now appro- 
priate for all terms making a significant contribution to &, and we have 

for a system of identical, indistinguishable molecules satisfying the con- 
dition that the number of available molecular states is much greater 
than N. We shall see in Chapter 4 that for a monatomic ideal gas (or for 
the translational quantum states of a diatomic or polyatomic gas), this 
condition is satisfied at  ordinary temperatures and densities. 

The limiting form of Bose-Einstein and Fermi-Dirac statistics, repre- 
sented by Eq. (3-lo), is called classiccrl or Bollnnann statistics. The 
interconnections between the three types of statistics will be examined in 
Chapter 22. 

In the expresaion q = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACj e4dkT for a molecule in a gas of independent 
molecules, the e j  depend only on the volume V, besides molecular param- 
eters such as mass, moments of inertia, force constants, etc. We shall see 
this in detail in Chapters 4, 8, and 9. In other words, q = q(V, T ) ,  a 
function of the thermodynamic variables V and T only. It is interesting 
that this conclusion alone [i.e., without the exact form of q(V, T) ] ,  together 
with Eq. (%lo), determines the ideal gas equation of state (Problem 3-l), 
for we have 

and 

(3-12) 

Of course, we still have to investigate more closely, in Chapter 4, the 
conditions under which Eq. (3-lo), which we have used here, is valid. 
Incidentally, we cannot deduce Eq. (3-12) for an approximate model 
(mentioned at the beginning of this section) of a liquid in which the 
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molecules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare aseumed to be independent, because in such a model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq will 
be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa function not of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV and T but of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV / N  and T (Chapter 16). 

Returning to the relation Q = b y / N !  for a one-component system, 
where q = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACj e+dkT, an important simplification or approximation 
(Chapters 4,8, and 9) is that each E is itself expressible as a sum of separate 
contributions, because the Hamiltonian for one molecule is at least 
approximately separable. For example, 

(3-13) 

where t = translation, r = rotation, v = vibration, and e = electronic 
In this case (Chapters 8 and 9)) just as in Eq. (3-5)) 

!7 = QtQIQtQe 

(3-14) 
1 N Q = (QtqrqtQs) - 

Quation (3-10) is easily generalized for systems with several com- 
ponents. For example, for a binary mixtiire (Problem 3-2)) 

(3-15) 

3-3 Energy distribution among independent molecules. Consider 
first a system of N independent, distinguishcrb2e molecules, with q = 

e4jlkT. (At the end of this section we shall see that the final equations 
derived here for independent, distinguishable molecules are also valid for 
independent, indistinguishable molecules, provided that the use of Boltz- 
mann statistics is justified.) The question arises: What fraction of these 
molecules will be in some particular molecular quantum state, say state i 
(energy ei)? An equivalent question is: What is the probability that one 
particular molecule, say molecule 1, will be observed, in an experiment, 
to be in state i? Or, what fraction of the time docs molecule 1 (or any 
molecule) spend in state i? To answer, we use Eq. (1-28) as a starting 
point. According to this equation, the probability that molecule 1 is in 
state i, molecule 2 in statej, molecule 3 in state 1, etc., is 

e--&~i.. . IkT e--(c+j+€i+...)lkT 
p i j , .  . . = --- = - 9 (3-16) 

Q QN 

since an assignment of a molecular state to each molecule specifies a 
definite quantum state of the whole system. Let qi be the probability that 
molecule 1 is in state i irrespective of the states of the other molecules. This 
is just the probability asked for above. Then 
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c 

FIQ. 3-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProbability t) of a molecule having an energy c, at three different 
temperatures (schematic). 

(3-17) 

This has precisely the form of Eq. (1-28) itself, but molecular zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstates re- 
place system states. Of course, t)i = 1. The probability t)i decreases 
exponentially with increasing ti, and the fall-off with e i  is more rapid at  
lower temperatures (Fig. 3-1). At very low temperatures, practically all 
molecules will be in the ground state (€1): t ) ~  -+ 1 as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT + 0. At high 
temperatures, t)i -+ constant (independent of ei). We shall encounter 
several numerical examples of Eq. (3-17) in later chapters. 

For simplicity of notation we shall continue in this chapter to use the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
language of molecular states. But for many purposes, it is more convenient 
to use molecular energy levels. If w is the degeneracy of the level c, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We-JkT 
t) (level) = wt) (state) = - 9 (3-18) 

9 

(states) (levels) 
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Subscripts have been dropped in Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3-18) to avoid confusion. The 
analogy with Eqs. (1-37) and (1-38) for 8ysh energy stateg and levels 
is obvious. 

The average energy of a molecule is 

Because of additivity (independent molecules), the average energy of the 

If we denote the average number of molecules in state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACj, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
so that 

(3-22) 

Fluctuations in e are of some interest. If we differentiate the equation 

with respect to temperature, we find 

The last relation follows from Eq. (3-21). Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(Nk) and Z = 
O(kT), we see that [? - (Z)2]''2 is of the same order of magnitude as 0 
itself. That is, the energy probability distribution function for a single 
molecule is broad and not sharp, in contrast to the total energy distribution 
for a system of many molecules (Eq. 2-5). The order of magnitude we 
find here for the molecular energy fluctuations is consistent with the order 
predicted by Eq. (2-5) if we put N = 1. A sharp energy probability dis- 
tribution is a many-molecule effect: the large relative fluctuations in the 
energies of individual molecules practically cancel each other, leaving 
only an extremely small relative fluctuation in the total energy. 

A broad probability distribution is in general not gaussirin, and the shape 
of the curve is not completely characterized by the quantity P - (e)'. 
The most familiar example of a broad distribution is the Maxwell-Boltz- 
mann distribution in velocity or translational kinetic energy for a classical 
one-component system (Chapter 6), usually chosen as an ideal monatomic 
gas. 
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At this point let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus take advantage of the relative simplicity of a system 

of independent molecules to look again zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[see Eqs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1-17) and (1-18)] at 
the molecular interpretation of thermodynamic work (W) and heat (&*). 
From Eq. (3-23), holding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN constant, 

Then 

or 

(3-26) 

Each molecule makes an additive contribution to the pressure, in an 
amount depending on the change of its energy ej with volume. When 
work DW is done by the system, the (average) population of different 
energy states remains fixed, but the energies (ej) themselves shift. The 
negative of the thermodynamic work, - DW, is the total work necessary 
to shift the energy levels of all the molecules in the system when the 
volume is varied by an amount dV. 

Also, from Eq. (3-25), 

o&* = C cj&j, (3-28) 
i 

which says that heat DQ* is absorbed by shifting the population of energy 
states, holding the energy levels fixed. Consider a special case: heat is 
absorbed by the system as a result of a temperature increaae zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdT, with N 
and V both held constant. Then 

The change in population of state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj is, from Eqs. (3-17) and (3-22), 

That is, if dT is positive, the population of states with energy greater than 
2 increases at the expense of those states with energy less than 2. For a 
state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith energy larger than Z by an amount of order kT, the fractional 
population increase (dCjflj) is of the same order 88 the fractional tem- 
perature increase (dT/T). 
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If we substitute Eq. (3-30) into Eq. (3-29), we recover Eq. (3-24) for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CV (Problem 3-3). In the special case (T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.--) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) that all molecules are 
in the ground state (j = l), €j - Z = 0 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = 1 and Cj = 0 for 
j > 1; hence, by Q. ($-30), aCj/aT = 0 at T = 0 for all j and CV = 0 
(Problem 3-3). 

If a molecule has separable or approximately separable "internal" 
degrees of freedom, as for example in Eq. (3-13), the energy distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
can be broken down one step further. Thus, in this example, Eq. (3-17) 
becomes 

(3-31) 

where the molecular quantum state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ijlm) is characterized by the transls- 
tional state (9, rotational state 0, etc. Then the probability that, say, 
the rotational state is j, irrespective of the translational, vibrational, and 
electronic statea (or the fraction of all molecules in rotational state 23, is 

just as in passing from Eq. (3-16) to Eq. (3-17). Applications of this equa- 
tion will appear in Chapters 4,8, and 9. 

So far the 
argument in this section has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbeen concerned with the distinguishable cam. 
We d first that we are limited to situations in which the number of 
available molecular states greatly exceeds the number of molecules. In 
the notation used above, the average population (number of molecules) 
per molecular state must be much less than one, Cj << 1: every molecule 
in the system is in a different molecular state (with negligible exceptions), 
or, an equivalent statement is that each molecular state is either unoc- 
cupied or occupied by just one molecule. 

Equation (1-28) gives the probability of observing a particular quantum 
&ate of the system of N identical molecules. With indistinguishable 
molecules, a single quantum state of the system is specified if we say that 
one molecule (any one) is, say, in molecular state i, another (any other) 
is in state j ,  another in state 1, etc. Which molecule is in which state is 
immaterial since the molecules cannot be distinguished from each other. 
Equation (1-28) then reads 

(3-33) 

Note that thii probability is N! times larger than the corresponding 
probability (distinguishable molecules) for a single quantum state of the 

Finally, we have to discuss indiStinguidmbZe molecules. 

e-(q + ~ + ~ + - ) / k T  

( ! P / N ! )  
Pij1 . . . = 
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system in Eq. (3-16). This is because, in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase of indistinguishable 
molecules (when Cj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< l ) ,  the system has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa total of N !  times fewer quantum 
states from which to choose. To find the probability that any one molecule 
(not one partthdur molecule, such as molecule 1 )  in the system is, say, in 
state i, we should sum Pijl . . . above over all values of j ,  1, m, . . . , How- 
ever, different permutations of the values of j ,  l, m, . . . should not be 
included in the sum, because such permutations do not generate new 
quantum states of the system. For example, if N = 4, in the sum over j ,  
1, and m: j = 4, 1 = 6, and m = 17, say, should be included; but then 
j = 6, 1 = 4, and m = 17, or j = 17,l = 4, and m = 6, etc., should be 
omitted. On the other hand, it is actually simpler to include zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall values of 
j ,  1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, . . . and correct for the permutations referred to above by dividing 
by (N - l ) ! .  With a sufficiently large number of molecular quantum 
states (Cj << l ) ,  we can ignore the rare terms in the sum in which j = I, 
or 1 = m, etc. 

In summary: if we sum Pjjl . . . over all values of j ,  1, . . . and divide by 
(N  - l ) ! ,  the result is the probability that any one molecule in the 
system will be in state i. But this is just the quantity Ci. Therefore 

e - q / k T  N - 1  
q 

(N - l ) ! (@/N! )  Cj = c Pjjl ... = 
(N - 1)’ j,l.... 

(3-34) 

As a check, we note that if we also sum over all values of i and divide by 
N !  instead of ( N  - l ) ! ,  we get 

as we should. If we define ti by qj = Cj/N,  as in Eq. (3-22), then 

e--cjlkT 1 
qj = - I tj << w )  

Q 

which is the same as Eq. (3-17) for distinguishable molecules. That is, 
76 is the probability that one pcrtidur molecule is in state i. Or, more 
properly here, since a “particular” molecule is a nonoperational concept, 
75 is the fraction of all molecules in state i. This is a very small number, 
since Ci itelf is already a smaII fraction. 

Thus, as one would expect intuitively and as we anticipated a t  the 
beginning of the section, the molecular energy distribution for a given set 
of energy states ej is the same for dietinguishable and indistinguishable 
independent molecules. There is the important distinction, however, that 
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Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3-34) is valid for indistinguishable molecules only if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< 1, whereas 
no such restriction is operative for distinguishable molecules (e.g., aa 

The high density of molecular states necessary to satisfy Cj << 1 is 
guaranteed in most applications (as we shall see in the next chapter) just 
by the translational degrees of freedom. Then if there are internal degrees 
of freedom, as for example in Eq. (3-31), qijlm << 1/N for a single molecu- 
lar state. But if we now sum qijlm over all translational states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, the -It 
is the fraction of molecules in a given rotational-vibrational-electronic 
state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjlm- number which is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot required to be small compared with 
unity. In other words, the internal distribution of indistinguishable 
molecules among nontranslational energy states is ordinarily unrestricted, 
just as in the case of distinguishable molecules. Thus, Eq. (3-32) gives 
the distribution over rotational states; the distribution is the same for 
distinguishable and indistinguishable molecules; and there is no restric- 
tion on qyt [for example, a t  low temperatures, qyt + 1 (Chapter S)]. 

T+O,Ci - tN) .  

3-4 llEnsembles” of small, independent %ystems.” In the Einstein 
model of a crystal, each of the N molecules carries out its own independent 
vibrational (and possibly also internal) motion around a definite lattice 
point, and hence is “distinguishable.” Furthermore, the molecules are in 
thermal contact (“weak interaction”) with each other. The reader will 
recognize that this situation is rather closely analogous to that of the 
canonical ensemble of Section 1-3. There we were dealing with an en- 
semble, a collection of 91 independent, distinguishable macroscopic systems 
in thermal contact with each other. Here a single molecule is a “system, 
and the crystal (system) is the “ensemble.” If we reexamine the argu- 
ment in Section 1-3, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee that it is still valid even when the systems of 
the ensemble are very small. In the crystal example, the system is a single 
molecule, but other cases are possible in which the system contains more 
than one but still only a relatively small number of molecules. To avoid 
confusion, let us return now, as in the first part of this chapter, to the use 
of the term “subsystem” in referring to one of these small systems. If we 
let Cj be the number of molecules (or subsystems, generally) in the mo- 
lecular state j with energy ej, then a set of numbers C1, Ca, . . . is a “distri- 
bution,” and we have, in place of Eqs. (1-1) through (1-3), 

(3-36) 

(3-37) 

N! 
nj Cj! n(c) = - 9  
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(C) is the number of quantum states of the macroscopic system 
(e.g., crystal) for a given distribution C. The macroscopic system is iso- 
lated (i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, V, and E are constant). As in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&. (1-12)) we find that 

(3-39) 

which is consistent with Eq. (3-17). The macroscopic system has to be 
very large (i.e., N + 0 0 )  in order fully to justify the replacement of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACj 
by q and the use of Stirling’s approximation on In Cj!. The connection 
with thermodynamics (e.g., = l/kT) is most easily established through 
the relation S = k In Q(C*) and the thermodynamic equation (1-78) 
(Problem 3-4). The most probable or “equilibrium” distribution C* is 
the one which makes Q(C), and therefore S, a maximum in an isolated 
system, in agreement with the second law of thermodynamics (Section 2-3). 

The temperature of a single molecule (or subsystem) is well defined. 
This is the temperature which appears in the Boltamann energy probability 
distribution for a single molecule, Eq. (3-39) with 6 = l/kT. But other 
functions, such aa the energy, are not well defined, in the themzaEyzamic 
sense, for the individual molecules (or subsystems) because of large fluc- 
tuations about mean values [e.g., Z in Eq. (3-24) : a measurement of c will 
not almost certainly yield Z, aa would be the csse for E in a macroscopic 
system]. 

Of course, no new results are obtained by adopting the above “sub- 
system” point of view. Furthermore, the argument is restricted to macro- 
scopic systems made up of independent, distinguishable molecules or sub- 
systems; it is a special case of the more general argument of Section 1-3. 
However, when possible (independent molecules or subsystems), there is a 
considerable intuitive or conceptual advantage to thinking in terms of a 
system containing only one or a few molecules rather than a macroscopic 
number. 

We have seen in the preceding section that when a system of N inde- 
pendent, indistinguishable molecules satisfies the condition Cj << 1, the 
energy distribution is the same aa for distinguishable molecules but the 
total number of quantum states of the macroscopic system is reduced by a 
factor N!. We therefore anticipate that the (molecule, system) t) (system, 
ensemble) analogy, argument, and results above for distinguishable mole- 
cules will still hold for indistinguishable molecules, provided only that 
we use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(C)/N! in place of Q. There is, however, a serious complication: 
since Cj = q << 1, we have to use Stirling’s approximation on very 
small numbers. Actually, this procedure happens to give correct results, 
but the method can hardly be considered satisfactory. The rigorous way 
to handle this problem, with the same results, is to use the Danvin-Fowler 
application of the method of steepest descents. 
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It should be emphasized that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAour derivation in the preceding section of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Eq. (3-34) for i?j in a system of independent, indistinguishable molecules 
is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot open to the above objection. That derivation is based, ultimately, 
on the use of a canonical ensemble of X distinguishable, macroscopic 
systems, with 3t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 00 (Section 1-3). 

In  a number of applications it is very helpful to use an extension to the 
grand ensemble of the “subsystem” point of view brought out above for 
the canonical ensemble. Since these applications are somewhat specialized, 
we shall postpone (see, however, Problem 3-5) our discusion of this 
subject to Chapter 7 (“binding” or adsorption on sites) and Chapter 22 
(Bose-Einstein and Fermi-Dirac statistics). 

PBOBLEMS 

3-1. For a gas of independent molecules, In$ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(V, T ) X  = 7 (Eq. 3-12). 
Uae Eq. (1-68), p = kT (a lnZ/aV),,,~, to deduce that q must have the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q = Vf(T), wheref(2’) is a function of temperatun! only. (Page 63.) 

3-2. Extend the derivation of Eq. (3-lo), Q = by/Nf, for a one-component 
system of independent, indistinguishable molecules to the two-component case, 
Eq. (3-15). (Page 64.) 

3-3. Use Eq. (3-30) to verify that 

ac, I “2 - (a2] cv = cq- kT2 aT 

for a system of independent molecules. Note that CV is never negative. (Page 
68.) 

3-4. Show that substitution of the most probable distribution (3-39) into 
S = k In Wc*) leads to 

i 

. .  

A = -NkT In e-”$. 
i 

Also, with the aid of ( a S / a E ) ~ a  = 1/T (Eq. 1-78), prove that @ = l/kT. 
(Page 71.) 

3-5. Consider a one-component macroscopic system which consists of M 
independent, equivalent, and distinguishable subsystems. Here M plays the 
role that V does in most systems. Each subsystem can contain any number from 
zero up to m molecules, where m 2 1. Modify the notation used in Section 1-5 
(the system here corresponds to the grand ensemble in Section 1-5) to obtain the 
equivalent of Eq. (1-45) for the probability distribution. Use S = k In Q 
(most probable distribution) to establish connections with thermodynamics. 
Note the analogy with Eqs. (1-75) through (1-77). (Page 72.) 

3-6. For a gas of indcpendent molecules, Q = q(V, T)N/N!. From the ca- 
nonical ensemble equations (1-31) through (1-36) prove, as in Problem 3-1, 
thatq = Vf(T). 
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3-7. Use Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3-15) for a two-component system, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq2 are func- 

tions of V and T only, to deduce by the method of Eqs. (3-11) and (3-12) that 

3-8. Show from Eqs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2-4) and (3-24) that 

This emphasisea that the e probability distribution is much broadcr than the E 
distribution for N large. 
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CHAPTER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IDEAL MONATOMIC GAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As our first specific example we consider a one-component monatomic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
gas dilute enough so that intermolecular for= can be ignored. At the 
outset, each atom is treated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a mass point (internal degrees of freedom 
will be discussed briefly in Section 4-4) with three translational degrees of 
freedom. This discussion will also be applicable, in Chapters 8 and 9, to 
the translational degrees of freedom of dilute diatomic and polyatomic 
gases, because of the additivity of the Hamiltonian function [as in 
Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(341.  

4-1 Energy levels and canonical ensemblp partition function. By virtue 
of the high dilution, the molecules of the gas are independent of each other. 
They are also indistinguishable. Therefore, the canonical ensemble 
partition function is (Eq. 3-10) 

provided that the number of available molecular quantum states is large 
compared with N. Our first task is to investigate q. 

Let the volume V be in the shape of a cube of edge L; then V = Ls. We 
choose a cube merely for convenience; thermodynamic properties of the 
gas do not depend on the shape of the container. In the sum q = e4dkT, 
the energies e j  in this case are those aasociated with one molecule pos- 
sessing three translational degrees of freedom only and confined to a cubical 
box. This is a standard problem in quantum mechanics. The poesible 
energy states are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I,, l#, 1, = 1,2, 3, . . . , 
where I,, lv, and 1, are the three quantum numbers. 

In the three-dimensional Z J J ,  space (Fig. 4-1 shows a two-dimensional 
version of this space), there is a one-to-one correspondence between pos- 
sible molecular quantum states and points in the space with positive inte- 
gers as coordinates. Therefore, there is one quantum state per unit volume 
of this space. The equation 
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FIQ. 4-1. Quantum number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(la, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,) space in two dimensions. 

with 

is the equation of a sphere of radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR in bl& space. The volume of the 
positive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Zz, lw, 1, all positive) octant of a sphere of radius R is rR8 /6 .  
This is also the number of quantum states @(e) with energy less than e, 
where e and R are related by Eq. (4-4)) provided that @(e) is very large 
so that edge effects are negligible. That is, 

(4-5) 

For Eq. (4-1) to be legitimate, we have to have 0 >> N when we put 
e = O(kT) in Eq. (4-5)) since states with e very much larger zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthan kT. will 
not be appreciably populated and are therefore effectively unavailable. 
Later it proves convenient to choose the unimportant numerical coeffi- 
cients, of order unity, so that thii condition reads 

or 

- liaN << 1) V 
where 

(4-6) 

(4-7) 

We see that the condition (4-6) is favored by low density, large mass, and 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhigh temperature. This same condition is useful when applied to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdiatomic 
and polyatomic molecules as well, for the total density of molecular 
quantum states is practically determined by the density of the translational 
states alone (i.e., the translational energy levels are relatively zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvery close 
together). 

Even though we are interested in dilute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases here, let us make a strin- 
gent test of (4-6) by using the (experimental) density of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAliquid phase at 
the normal boiling point. We find the results in Table 4-1 , which will be 

4.2 1.5 

20.4 0.44 
27.2 0.015 
87.4 O.OOO54 

TABLE 4-1 

I I T,OK I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA3N/V 

referred to again in Section 6-2 and Chapter 22. In the gas phase at  the 
boiling point, the values of A3N/V would be reduced further by a factor 
of the order of 100. The conclusion we reach, then, is that, except for 
light molecules at appreciable densities and very low temperatures, the 
condition (4-6) is easily satisfied (Problem 4-11. 

It is interesting to note that A is a length of just the order of magnitude 
of the de Broglie wavelength h / m  (v = velocity) of a particle with 
kinetic energy of order kT. Since (V/IV)'Ia is a distance of the order of 
the average neareat-neighbor distance between molecules, Eq. (4-0) 
asserta that quantum effects (requiring the use of Bose-Einstein or Fermi- 
Dirsc statistics) will be absent if neighboring molecules are usually far  
apart relative to the "thermal" de Broglie wavelength A. 

We return now to 

We can replace the sum by an integral if, in pasing from one energy level 
to the next higher level, Ae << kT, for in this case the summand will change 
its value essentially continuously with L, b, and 2,. From &. (P2) ,  
Ae = O(h2/mV2/*) and 

But we already have the restriction (4-6), which can be written 
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A2 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv2,3 << = 0(10-~'). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Thus the requirement Ae/kT << 1 is overwhelmingly satisfied. 

that the number of molecular quantum states between e and e + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk is 
To integrate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEq. (4-8) (see also Problem 4-2), we note from Eq. (4-5) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T 8m ' I 2  
w(e) dc = Z d e  = ;I ( hz ) Ve'l2de. (4-9) 

Therefore [compare Eq. (3-19)], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
=(T) 2umkT ' l a  V = s ,  V 

(4-10) 

where u = e/kT. This confirms Problem 3-1. That is, q is proportional 
to V .  We see that q is dimensionless and has a very simple expression in 
terms of the thermal de Broglie wavelength A. 

The fraction of molecules with energies between e and e + de is [compare 
Eq. (3-35)1 

(4-1 1) 
w(e)e-'lrr de P(e) de = 

This is essentially the well-known MaxwelEBoltzmann distribution 
(Section H), since w a el'*. 

We have for the canonical ensemble partition function 

or 

In& = -N lnN + N + Nlnq  = N l n [ ( T )  2lrmkT ' I 2  T] .  Ve (4-13) 

We can now derive all the thermodynamic properties of the gas from this 
equation. 

4-2 Thermodynamic functions. First, the Helmholtz free energy A 
is simply 

A(N, V ,  T) = --kT In& = - N k T l n [ ( T )  2 ~ m k T  ' I 2  x]. Ve (4-14) 

We can confirm that A is an extensive property. That is, A/N is seen to 
be a function of the intensive variables V/N and T only. We should 
emphasize that in this equation and others below: (a) the zero of energy 
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for each molecule is implicit in Eq. (4-2) (i.e., the zero is a t  the bottom of 
the potential well or box of volume V-classically, this corresponds to a 
particle at  rest); and (b) the entropy S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= k In Cl is based on the number 
Cl of translational quantum states of the system of N molecules (i.e.) the 
zero of entropy is associated with Cl = 1, although this situation is un- 
realizable for a dilute classical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas). 

The pressure is given by 

(4-15) (a1nQ) av T,N 
= N k T ( r ) T  a In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq = NkT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. p = k T  - 

It was pointed out, following Eq. (1-27), that k is a universal constant 
whose value can be obtained from any convenient experimental system. 
We see from Eq. (4-15) that 

PV lim - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N/V-.O NT 

for a real gas of known molecular weight will give k. The value found is 
k = 1.38044 x 10-16erg-deg-'. 

The energy is 
2dln T3" 3 

= NkT ____ = NkT. (4-16) dT 

This is all kinetic energy, kT/2 per degree of freedom per molecule. The 
potential energy is zero because of the absence of appreciable intermolecular 
forces and by virtue of our choice of the zero of energy. Also, 

as is found experimentally. From Eqs. (4-15) and (4-17)) 

p v =  #E. (4-18) 

Equations (4-15) through (4-18) are often called "classicaln results 
because they can be derived directly from classical statistical mechanics 
without any use of quantum theory (Chapter 6). The use of Boltamann 
statistics (Eq. 4-1) and the replacement of a sum over quantum states by 
an integral, as in Eq. (&lo), lead to classical results from a quantum- 
mechanical starting point. This sbatistical-mechanical correspondence 
principle is explored in much more detail in Chapters 0 and 22. 

Equation (4-18) is interesting because it is obtained, for a dilute mona- 
tomic gas, not only from Boltzmann statistics but also from Bose-Einstein 
and Fenni-Dirac statistics (Chapter 22). We can anticipate this result by 
an argument based on the energy-level expression (4-2) alone, without 
use of Eq. (4-1) (Boltzmann statistics). We have to assume that [see 
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Eqs. (3-21) and (3-27)], for a dilute enough zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas in a volume V, p and E 
are proportional to N. That is, each molecule makes an independent or 
additive average contribution to p and E. For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa molecule in state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(j = Z,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlv, Zs), the energy, according to Eq. (4-2), has the form ej = 
uj/V21s, and the contribution of this molecule to the pressure is [compare 
Eq. (1-7)1 

Now we average over all states j, multiply by N, and find 

which is the same as Eq. (4-18). 
The entropy follows from Eqs. (4-14) and (4-16) for A and E: 

S = = N k l n [ ( T )  2 u d T  ' I 2  7 1 -  VeU2 (4-20) 

From (H), we see that the quantity in brackets is necessarily large com- 
pared with unity, say 10' or more, but the logarithm of the quantity will 
be of order unity. Hence S = O(Nk), as expected from thermodynamics. 
In terms of the pressure instead of the number density N/V, Eq. (4-20) 
becomes 

S = N k l n [ ( T )  %mkT '" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp kTesi2 1- 
Equation (421) is in agreement, as it should be, with the well-known 
thermodynamic expression for the entropy increase in an isothermal 
expansion of an ideal gas, 

AS = s(p2, T) - s(pl, T) = N k l n D .  
P 2  

For the chemical potential and Gibbs free energy, we have 

= - k T l n [ ( T )  %mkT ' I 2  N] V 

= - k T l n [ ( T )  2umkT 'la 71- kT 

(4-23). 

(4-24) 
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Equation (4-23) also follows from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= N p  = A + pV and Eqs. (4-14) 
and (4-15) for A and pV (Problem 4-3). 

In thermodynamics one finds that, for an ideal gas, 

A P ,  T) = PO(T) + kT In P, (4-25) 

where po(T), often called a "standard chemical potential" or "standard 
free energy, " is an integration constant. For a monatomic gas, Eq. (4-24) 
provides a statistical-mechanical evaluation of this integration constant 
(based on the zeros of energy and entropy already referred to) : 

po(T) = -kTln[(-p-)'"kT]- 2umkT 

It should be noted that the quantity in brackets here has dimensions of 
pressure, and must be in the same units (e.g., atm, mm Hg, erg-cc-l, etc.) 
as p in Eq. (4-25). Clearly the numerical values of the separate terms on 
the right of Eq. (4-25) depend on the choice of the pressure unit, but 
their sum gives a p(p,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  which is independent of this arbitrary choice. 
In several places in this book it will prove convenient to introduce standard 
chemical potentials po(T). The above point about pressure units must 
always be kept in mind when a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo(T) is encountered. Of course, in com- 
puting any truly operational quantity, the combinntion in Eq. (4-25), 
or peN0lkT, will occur, and the matter will then automatically take care of 
itself [e.g., there is no complication with Eq. (4-24) where the two terms 
in Eq. (4-25) are kept together]. 

This completes our summary of the basic thermodynamic functions of 
an ideal monatomic gas. Other functions (e.g., the heat content H) 
follow from those already given. From this first example, we can see the 
power of the statistical-mechanical method: it provides an explicit and 
detailed theoretical prediction of all the thermodynamic properties of the 
system. We have to reserve comparisons of equations such as (4-21) and 
(4-24) with experiment (entropy, crystal vapor pressure, chemical equi- 
librium constants, etc.) until we have discussed some other systems (see 
Chapters 5,9, and 10). 

For a binary mixture of dilute monatomic gases, according to Eq. (3-15), 

where 

In (4-28), A1 and A2 differ only through ml and m2. From 
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In& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -Nl lnN1 + NI + Nllnql(V, T) 

-N2 In N2 + N2 + N2 In q2(V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  (4-29) 

and Eqs. (1-31) through (1-36), we find easily (Problem 4-4) 

pV = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(N1 + N2)kT, (4-30) 

etc. The familiar thermodynamic formula for the entropy of mixing two 
ideal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases follows from Eq. (4-32) (Problem 4-5). 

4-3 Grand ensemble and others. It is instructive to try out partition 
functions other than the canonical ensemble partition function on this 
simple system. We have in fact already derived the equation of state 
from the grand partition function in Eq. (3-12). We should note that 
Eq. (3-12) also gives 

(4-33) 

which is a slightly disguised form of Eq. (4-23) for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp. 
As another example, let us use the partition function A(N, p, T) of 

Eqs. (1-87), (1-91), and (2-12): 
m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F -- kT = In A = In Q(N, V, T)e--gY'kT d (g) * (4-34) 

Here V is continuously variable, so we use an integration over V instead 
of a sum. The choice of the dimensionleas variable of integration is some- 
what arbitrary,* but pV/kT is particularly convenient for this purpose. 
If we let x - pV/kT, 

Then 

= (g)". (4-35) 

F = Np = -kTInA = -NkT ln (E)  P (4-36) 
PA8 

*See S. M., pp. 63 and 68. 
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which is the same as Eq. (4-24). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlso, 

S =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- &) = Nkln(-), kTesi2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P.N 

in agreement with Eq. (4-21), and 

(4-37) 

We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshall not work out the details of the microcanonical ensemble cxb 
inah.* But we can easily find Q(N, V, E) from the canonical ensemble 
equation (4-20) and the relations S = k In D and kT = 2E/3N: 

(4-39) 

This is a tremendously large number, of order eN or 10'o'o. As a partial 
check (Problem 4-6), we note that [using Eq. (1-79)] 

&4 Internal degrees of freedom. So far in this chapter we have treated 
monatomic molecules as mass points with three translational degrees of 
freedom, using the energy states of a particle of 111898 m in a cubical box of 
volume V. Of course, an atom is not a mass point but has electronic and 
nuclear substructure. Associated with this substructure are electronic and 
nuclear energy states, deducible in principle from quantum mechanics 
but in practice, in most cases, from spectroscopy. We wish to show briefly 
here how these "internal degrees of freedom" influence the thermodynamic 
functions of the system. 

The first comment to make is that the translational Hamiltmian is 
rigorously separable from the electronic and nuclear Hamiltonians. 
Second, the electronic and nuclear Hsmiltonians are also separable, to a 
very high accuracy. Hence the basic equation is (3-14) : 

We have already discussed q:. We now turn to a consideration of the 
nuclear and electronic energy levels, and hence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, and q.. 

Because of the extremely large separation between the two lowest 
nuclear energy levels [Ae, = 0(1 Mev); or Ae, = O(kT) when T = 

* See Mayer and Mayer, pp. 109-117. 



4-41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAINTERNAL DEGREES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF FREEDOM 83 

O(lO1ooK)], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat ordinary temperatures the atom is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcertain to be in the 
nuclear ground state. This follows from Eq. (3-32). We shall denote the 
degeneracy of the nuclear ground state by wnl. The situation is similar, 
but not 80 extreme, for the electronic energy levels. The separation Aee 
between the two lowest levels is usually of the order of 1 ev; Ae6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= O(kT) 
when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = O(lO,OOO°K). Therefore again, according to Eq. (3-32), at  
ordinary temperatures (say T < 1OOOOK) the atom is almost certain to 
be in the electronic ground state. However, since there are exceptions to 
this, we mention a few particular zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcases to give some idea of the range in 
behavior. 

In the inert gases, He, Ne, A, etc., Aee is large, of order 10-20 ev. Hence 
ofily the ground state is important. The degeneracy wel of the electronic 
ground state ('So) is unity for these atoms.* 

For the alkali metal atoms, Aee = O(1.5 ev). Here again excited elec- 
tronic states can be ignored at ordinary temperatures. In this case 
to61 = 2 ('81,2) owing to the unpaired electron spin. Similarly, for the 
hydrogen atom, A€, = 10.2 ev and w e l  = 2. 

In the case of the halogen atoms F, C1, Br, and I, Aee = 0.050, 0.11, 
0.46, and 0.94ev, respectively. The degeneracies of the first two levels 
(the third level has a significantly higher energy and can be ignored here) 
are 4 (2Ps12) and 2 (2P112), respectively. Therefore the fraction of halo- 
gen atoms in the first excited level is (Eq. 3-32) 

At~e = €82 - €81 . 
At 1000°K, we find (Problem 4-7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAve2 = 0.22,0.12,0.0024, and 9 X lo-' 
for F, C1, Br, and I, respectively. Certainly for F and C1, then, and po%- 

sibly Br, we have to retain two terms in the electronic partition function. 
We choose 89 zero of energy here an atom in its ground electronic and 

nuclear states and a t  the bottom (classically, at rest) of the translational 
potential box or well (Fig. 4-2). Then qt (Eq. 4-10) is unchanged and 

Qn = Unl, €781 = 0, (4-43) 

+ W62e-eealkT , €81 = 0, Aee = ee2. (4-44) 

The most common case (the inert gases) is qe = w.1 = 1. All thermo- 
dynamic functions now follow in 8 routine way from Eqs. (4-41), ( 4 4 ,  
and (4-44). 

Q e ( T )  = we1 

* For spectroscopic notation and facts, see G. Hersberg, Atomic Spectra and 
Atomic Structure. New York: Dover, 1944. 
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Potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
energy 

t 

*I + cnl + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACQ 

eel + cnl + el zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+L---d \I + cnl = 0 (eel = cnl = 

FIG. 4-2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAArbitrary location of energy zero. 

For example, the equation of state (pV = NkT) is unchanged, but 

= NZt + Ni& . 
Similar equatione can be derived for Cv, S, etc. (Problem 4-8.) 

In the special case qn = wnl and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq. = 0 6 1 ,  the nuclear and electronic 
degrees of freedom make no contribution to p, E, CV, etc., but they do 
contribute to all functions involving the entropy: S, A, F, p ,  etc. Thus, 

(4-46) 

However, in accordance with the convention established with Eq. (2-43)) 
we shall usually omit (Chapter 22 is an exception) the nuclear degeneracy 
w,,l from all thermodynamic functions. Because of cancellation, it does 
not ordinarily contribute to measurable thermodynamic quantities 
(entropy change with temperature, equilibrium constants, vapor pressure, 
etc.). We do not extend this convention to w,l, however, because when 
we1 > 1 in the gas phase, the stable state at QOK (e.g., Cl2 crystal, Ha 
crystal, sodium metal, etc.) is nondegenerate.* Hence in many cases, 

* See Fowlcr and Guggenheim, pp. 199-205. 



SUPPLEMENTARY READING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA85 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
unlike tonl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw , ~  does not cancel. Also, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas we have pointed out, excited 
electronic states occasionally have to be taken into account. 

Q 
PROS- 

4-1. Calculate the temperature at which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA8N/V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO.OOO1 for He zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas at 
1 atm pressure (use the equation of state pV = NkT) .  (Page 76.) 

4-2. Derive Eq. (4-10) for q by substituting Eq. (4-2) into Eq. (Pg), and 
replacing the sum by a triple integral over l., lv, and 1,. (Page 77.) 

4-3. Obtain Eq. (4-23) for p from Eqs. (4-14) and (4-15) for A and pV,  
and N p  = A + pV.  (Page 80.) 

4-4. Verify the fact that Eqs. (4-30) through (4-32) for a binary gas mixture 
follow from Eq. (4-29). (Page 81.) 

4-5. Derive an equation for AS in the following process: initial state = 
(a) N1 molecules of ideal gas 1 at T in a container of volume V1, plus (b) N2 
molecules of ideal gas 2 at Tin a separate container of volume V2 - N ~ V I / N I ;  
and final state = N1 molecules of 1 and N2 of 2 in a single container of volume 
V1+ V2, at T .  This is usually called the entropy,of mixing, AS,,,&. (Page 81.) 

4-6. Confirm formulas already obtained for p and p (ideal monatomic gas) 
by using the microcanonical ensemble equations (1-80), (I-SI), and (4-39). 
(Page 82.) 

4-7. Verify the values of q.2 calculated from Eq. (442) for F, C1, Br, and 
I at 1OOO"K. (Page 83.) 

4-8. Derive an equation for C V ~ ,  the electronic contribution to CV, from 
Eq. (4-45). Verify that cv6 + 0 as T + 0 or T + CQ,  and paasee through a 
maximum in between. Derive an expression for 8.. Check that S, -+ k In wf: 
as T + 0, and 86 + k In (0.1 + ~ ~ 2 ) ~  as T + CQ. (Page 84.) 

4-9. Use Problem 3-3 to show that the asymptotic behavior of CV. as T -+ CQ 

4-10. For argon gas (assumed ideal) at 1 atm pressure and 25OC, calculate 
A, E, and p in cal.mole-l and CV and S in cal.mole-l-deg-l (see Table 9-2). 
Take w.1 = 1 and omit wll. 

4-11. For a one-component ideal gas, show that the maximum term (a) in 
X occurs at N* = qh, and (b) in A occurs at V* = NkT/p .  

4-12. Show that the result of Problems 3-1 and 3-6, q = Vf(T), implies 
that the number @(t) of molecular quantum states with energy leas than t is 
proportional to V. 

hcv, = constant/T2. 

SUPPLEMENTARY READING 

FOWLER and GUQQENHEIM, Chapter 3. 
MAYER and MAYER, Chapters 5 and 6. 
TOLMAN, Chapter 14. 



CHAPTER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
MONATOMIC CRYSTALS 

In this chapter we investigate the thermodyntunic properties of man* 

tonic crystals, especially the heat capacity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACV. The molecules in a crystal 
vibrate around equilibrium positions which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare arranged in a regular 
lattice. Intermolecular forces, together with the pressure and tempera- 
ture, determine the lattice structure and the spacing and the nature of the 
motion of the molecules in the neighborhood of their equilibrium positions. 
OlThand then, it would appear that a treatment of this system would 
belong more properly in Part I11 (which is concerned with systems of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
depadat molecules). But it turns out that despite the importance of 
intermolecular forces in a crystal, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA80 long as the molecular vibrations are 
small, the system can be decomposed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmathmat i tdg into independent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
subs@ems (normal modes of vibration). 

In the first section we treat a monatomic crystal in a very approximate 
manner, using the model of Einstein. This model has the advantage of 
conceptual and mathematical eimplicity and leads to reeults that are 
qualitatively (but not quantitatively) correct. The remainder of the chap- 
ter is then devoted to more accurate approaches to the problem, with 
emphasis on the Debye approximation. 

5-1 Einstein model of a monatomic crystal. We begin with some 
comments that establish the point of view adopted in the Einstein model. 
This discussion will also be useful later, since it pertains as well to certain 
approximate models (“cell theories”) of the liquid state (Chapter 16). 

The type of lattice structure is assumed given. Each molecule in the 
crystal is surrounded by a group of first (neareet) “neighbors,” a more 
distant group of second neighbors, etc. The central molecule vibrates 
in the vicinity of ita equilibrium or lattice point in a force field which is 
the sum of the separate forces exerted by all the neighbors on the central 
molecule. In the case of inert gas molecules, for example, these inter- 
molecular forces m of the van der Wads (dispersion) type with a rather 
short range (see Appendix IV and Fig. 5-1), so that usually only the first 
and second neighbors make an appreciable contribution to the total force. 
The potential energy of a central molecule in this force field has a minimum 
at the equilibrium or lattice point, by definition. The potential energy 
increases in all directions as the central molecule departs from its equilib- 
rium position and becomes very large, owing to van der Waals repulsion, 

86 
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FIQ. 5-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOne-dimensional crystal with nearest-neighbor distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt*. Curves 
relate to potential energy of B, as a function of position, when other molecules 
( A ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . .) are fixed at equilibrium (lattice) points. Curve a is B-A potential 
energy, and curve c is B-C potcntial energy. The dashed curve is the sum of a 
and c, i.e., the total potential energy of B if second-neighbor interactions are 
neglected. 

when a first neighbor is approached (Fig. 5-1). Thus each molecule is 
confined to a ”cell” or “cage” bounded by its first neighbors. 

The nearest-neighbor distance in the lattice (at low pressures) will cor- 
respond approximately to that distance (r*) between a pair zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof molecules 
which leads to a minimum in the intermolecular potential energy (Figs. 
IV-1 and 5-1). The correspondence will not be exact, however, because 
of second-neighbor, and higher, effects and also because of thermal expan- 
sion when T > 0°K. 

Each molecule has three degrees of freedom-translational degrees which 
have degenerated into vibrational degrees because of the cage of neareat 
neighbors. The vibrations about equilibrium positions can be treated as 
small vibrations if the temperature is not too high. We limit ourselves to 
this c m .  Of course, as the temperature is increased, the vibrations will 
become more violent, lattice imperfections and molecular migrations will 
become more frequent, and eventually the crystal will melt. 

We assume for the sake of simplicity that each molecule vibrates in its 
own cell independently of the vibrations of its neighbors. Actually the 
motions of neighbors are coupled to each other (Section 5-2)) but we 
ignore this complication here. To compute the potential field in which a 
given molecule moves, we can assume, say, that all other molecules in the 
crystal are frozen in their equilibrium positions. This potential will be 
not quite spherically symmetrical. A feature of the Einstein model is to 
insist on spherical symmetry as a further slight approximation. In other 
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words, the vibrational motion of a central molecule is assumed isotropic 
about the equilibrium point. 

Even though this approach is approximate, it provides a quite straight- 
forward connection between intermolecular forces and the potential, 
referred to above, which plays a crucial role in the model. In the canonical 
ensemble, the exact geometry (numbers and distances of neighbors) of a 
cell or cage is fixed by the molecular volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV / N  (or number density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N/Y) and the assumed type of crystal lattice. 

Let (p(r) be the potential of the central molecule (Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5-1 shows a 
simplified onedimensional version), where r is the distance from the center 
of the cell (equilibrium point). The zero of energy is infinitely separated 
molecules at rest. We expand p(r)  about r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, and discard cubic and 
higher terms: 

or 
d r )  = d o )  + 3fr2 + - - - 

d x ,  y, 4 - 43 = 3f (x2  + v 2  + z2) + * - * , 6-11 

where z, y, and .z are cartesian coordinates with the center of the cell as 
origin, and the force constant f = (d2(p/dr2),_o. The linear term is 
missing because dp/dr = 0 at  r = 0. The restriction to small vibrations 
enters here when we drop higher terms in the expansion of (p. The classical 
motion of the central molecule of mass m in the potential field (Eq. 5-1) is 
that of a three-dimensional isotropic harmonic oscillator with frequency 

y =  L?. 
2u m 

The curvature of (p at r = 0 (that is, f) is clearly a function of V / N ;  
therefore v is also a function of V / N .  Of course the Same is true of ~ ( 0 ) .  

In this model, by assumption, the total Hamiltonian for the system of 
N molecules is the sum of N independent and equivalent Hamiltonians, 
one for each molecule. Furthermore, for each molecule, we have by 
Eq. (5-1) that the z-, y-, and z-motions are independent and equivalent. 
Altogether, then, the system decomposes into an aggregation of 3N 
independent onedimensional harmonic oscillators, all of classical fre- 
quency v. These are the "subsystems" in the present model. The partition 
function for the system is 

where q is the partition function of a onedimensional harmonic oscillator 
of classical frequency v, with zero of energy at the bottom of the parabolic 
potential well [as in Eq. (5-l)]. The factor e-N*(0)/2kT in Eq. (5-3) 
would be the partition function of a hypothetical system with all molecules 



5-11 EINSTEIN MODEL OF A MOSATOMIC ClWSTAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA80 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
at rest a t  their lattice points; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANp(0 ) /2  is the potential energy (a negative 
quantity) of such a system relative to a zero at infinite separation of all 
molecules. The factor of two is necessary to avoid counting each inter- 
molecular interaction twice. In the complete zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ in Eq. (5-3) the zero of 
energy corresponds to all molecules infinitely separated and at rest. The 
electronic ground state of the atonis of the crystal is assumed to be non- 
degenerate in Eq. (5-3). 

Next, we have to find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq. The energy levcls of a oncdimensional harmonic 
millator are nondegeneratc, and given by 

(W en zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n + &hu, n = 0, 1,2, - - . , 
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu is the classical frequency. Then 

(5-5) 

e-hv12kT ehu12kT 
- - - - 

1 - e-hUlkT ehUIkT - 1 

e 4 / 2 T  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(5-6) 

where 8 = hu/k and we have used the fact that e-hylkT < 1 . The 
parameter Q has dimensions of temperature and is called the “character- 
istic temperature.” It is a function of V / N .  In a typical case 8 is of the 
order of magnitude of 300°K and u of order 6 X 1012sec-1. This fre- 
quency is about ten times smdler than the internal vibrational frequency 
iu a typical diatomic molecule (Chapter 8), primarily because the forces 
between molecules in a monatomic crystal are in general weak compared 
with chemical bond forces. 

- - 
1 - e + / T ’  

At high temperatures, when 2’ >> 0, 

T kT 
8 - hv 

+---.  1 - ( 8 / 2 T )  + - . *  

(I + 1 - 11 - (Q/T) + -1 (5-7) 

The same result is obtained if we integrate instead of sum in Eq. (5-5). 
This is legitimate if T >> 0. Then 

At low temperatures, q + e-*’/2kT (each oscillator is in its ground state). 
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We should emphasize that throughout this chapter, when we speak 

of the asymptotic behavior of various properties of a crystal at high tem- 
peratures we do not mean to imply that the temperature can be increased 
indefinitely. For in this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase complications, not included in our model, 
would enter. For example, cubic and higher terms in the potential energy 
can no longer be neglected; crystal imperfections and the possibility of 
melt.ing must be considered; etc. 

We now derive expressions for A, E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACv,  and S from Q in Eq. (5-3). 
We have 

The second term on the right in Eq. (5-9) is the zero-point vibrational 
encrgy, and the third term is the vibrationd energy in excess of this 
minimum. At low temperatures, 

Nq(0) 3Nhv 
E - 1 -  2 +2’ 

and at high temperatures, 

In Eq. (5-10) E is the negative of the heat of sublimation of an Einstein 
crystal at 0°K (since E is zero for the infinitely dilute equilibrium vapor 
phase at OOK). 

Only the last term in Eq. (5-9) contributes to the heat capacity: 

We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee that C v / N k  is a universal function of T / @ ,  according to this 
model. This function is shown in Fig. 5-2. In general zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 is different for 
different crystals and also varies with V / N  for the same crystal. But if 
the temperature scales are properly compressed or expanded, all experi- 
mental Cv/Nk curves, at least for monatomic crystals, should coincide. 
This is an example of a law of “corresponding states”: for two crystals 
with 01 and 0 2 ,  if the first crystd is at  T I ,  then the “corresponding tem- 
perature” T2 for the second crystal is T2 = T182/Q1; the two crystals 
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FIG. 5-2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHeat capacity of monatomic cryetsls according to the theories of 
Einstein and Debye. 

have the same value of Cv/Nk at  “corresponding temperatures” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT I  and Ts. 
Actually, it is found that experimental Cv/Nk curves for monatomic crys- 
tals can be made practically to coincide by adjusting the temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
scales in this way, but the common experimental heat capacity curve thus 
obtained does not fit the Einstein function exactly, though it does approx- 
imately. We shall return to this point in Section 5-3 in connection with 
Debye’s theory. 

The limiting forms of Eq. (5-12) are 

C v + 3 N k  89 T + o o ,  6-13) 

aa T + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 6-14] 

The high-temperature limit agreea with experiment (“law of Dulong and 
Petit”), but CV approaches zero much more rapidly in Eq. (5-14) than 
ia the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase experimentally. Experimentally, CV a T8 aa T + 0 (see 
Section 5-3). 

From Eqs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5-8) and (5-9) for A and E we find 

As T + 0, S + 0. That is, D + 1. Here D refers to the total number of 
quantum states of a system of N independent and distinguishable three- 
dimensional isotropic harmonic oscillators (or 3N onedimensional oscil- 
lators). As T + 0, the system sinks into its lowest energy state (with 
D = 1): each molecule is in its vibrationd ground state [n = 0 in 
Eq. (5-4) for all 3N vibrational degrees of freedom]. 

We can w i l y  set down a formal expmsion (Problem 5-1) for the 
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pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp by differentiating In Q with respect to volume, as usual. Spe- 
cifically, we recall that both p(0) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 are functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV / N .  But we do 
not pursue this matter further, since we have not written out here explicit 
expressions for p(0) and 0. We might comment, however, that the 
LennardJones and Devonshire theory of the equation of state of a liquid, 
presented in Chapter 16, is an example of this kind of calculation. 

Actually, for a condensed phase such 88 a crystal, pV is in general small 
compared to A, El etc., 80 that we can use the approximations F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
N p  g A ,  H g E, etc. In view of the crude nature of the Einstein model 
itself, the dropping of pV cannot be considered serious. 

The chemical potential p (Problem 5-1) also involves derivatives of 
p(0) and 8 with respect to V/N. However, an approximate p follows 
immediately from N p  E A and Eq. (5-8): 

Finally, we makc tl few commcnts on the application of the grand parti- 
tion function to M Einstein crystal. In the first place, the sum X = 
EN Q(N, V ,  T)XN, where Q is given by Eq. (5-3), cannot be carried out 
explicitly in general becausc of the dependence of p(0) and Q on N (V 
constant). So thcrc is no advantage in using P instead of Q. Secondly, a 
simplified vemion of the Einstein model is often used in which the crystal 
is assumed to be incompressible. Here it would appear that Z might be 
useful, but there are complications which again lead to the conclusion that 
Q is the partition function of choice. In an incompressible crystal with a 
given type of lattice, the cell geometry (nearest-neighbor distance, etc.) 
is regarded as prcassigned and fixed. Since p(0) and 8 should now be 
considered constants, the sum EN Q(N, V,  T ) X N  becomes easy. However, 
V is no longer an independent variable: V = Nv, where v, the volume 
per molecule, is constant. That is, V is simply proportional to N .  The 
basic thermodynamic equation for A becomes 

d A  = -SdT + p d N ,  

and A = Np. We still have 

but 
A ( N ,  T )  = -kT In Q(N, T), 

In Q(N, !!’)A*’ = In [e-v(o)’2kT q(T)*XIN 
N N 
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just zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas in Eq. (1-89) (where there is one additional independent thermo- 
dynamic variable). Thus, because of the loss of the volume aa an inde- 
pendent variable, the grand partition function requires special instead of 
routine handling.* One fhds without difficulty, by methods* which we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
shall not discuas here, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m 8 .  
- 1 = e-d0) /2kT 

x 
This result also follows, but much more simply, from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N p  = A = -kTInQ 
or 

(5-17) 

(5-18) 

(5-19) 

Equation (5-17) is the same as Eq. (5-16). Thus dropping the pV term 
leads to the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp as assuming incompressibility. 

5-2 General treatment of molecular vibrations in a monatomic crystal. 
Let us begin this section by indicating how, in principle, one would handle 
the problem of small vibrations in a crystal exactly. The nature of the 
problem is clearly exhibited even by a one-dimensional crystal, so we 
consider this relatively simple case (Fig. 5-3). For concreteness, suppose 
only firs& and second-neighbor interactions are significant. Let u(r) be 
the intermolecular pair potential for any two atoms of the crystal (Figs. 
IV-1 and 5-1). Let there be N atoms (N is very large, 80 end effects are 
unimportant) in a length L, and a = L/N. 

-3 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 0 
e i + l  i + 2  i + 3  

o A *  0 €I 
a - 3  i - 2  i -. 1 

FYQ. 5-3. One-dimeneional crystal. Dots represent lattice or equilibrium 
points; circles represent atoms. 

If all the atoms are at their lattice points, the nearest-neighbor separa- 
tion is a. In geiieral, let x i  be the position of atom i with its own lattice 
point chosen as origin. The distance between atom i and atom i + 1 is 
u + xi+l - xi ,  etc. The total potential energy of the crystal is then 
(neglecting end effects) 

N 

i- 1 
~ ( 3 )  = C [U(U + ~ i + l  - Z i )  + 21(2~ + ~ t + 2  - s~)I .  (5-20) 

* S. M., Chapters 2 and 3. 
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With all atoms at lattice points, w h  X i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U(0) = N[u(a) + u(2a)l. (5-21) 

We might digress briefly to indicate the relation between Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5-20) 
and the Einstein model of the previous section. First, U(0) correaponds 
to N(~(0) /2 .  Second, the equation of motion of molecule j ,  according to 
F4. (5-20), is 

wj=- - -  - -u'(a + Z j  - Zj-1) - uf(2a + Z j  - Xj-2) 
ax zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+u'(u + Zj+l - ~ j )  + d(2a + ~ j + 2  - Zj). 

To "uncouple" the motion of molecule j from that of molecules j - 2, 
j - 1 ,  j + 1, and j + 2, aa is required by the Einstein model (each mole- 
cule vibrates independently), we can assume aa an approximation that 
these neighboring molecules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare all fixed at their lattice points: 33-2 = 0, 
etc. Then the equation of motion becomes 

d j  = -u'(c~ + ~ j )  - ~ ' ( 2 a  + Zj) 
*'(a - Zj) + d(2a - Zj) 

=- -  d&j) , 
hi 

where 

(P(z~) = u(a + zj) + u(2a + zj) + u(a - q) + u(2a - zj). 

This potential for molecule j corresponds to o(r) in Eq. (5-1). Also, 

(P(0) = 2 b ( 4  + 4241 ,  

as already indicated above. 
Returning now to Eq. (5-20), we can expand quantities of the form 

u(a + 6) and u(2a + r)), which appear in Eq. (5-20), in powers of 6 and q: 

u(a + 6 )  = u(0) + u'(a) Q + W ( u )  62 + * ,  
u(2a + r)) = u(2a) + uf(2a)q + W(2a)q2 + * . 

If we substitute expansions of this kind (valid for s m d  vibrations) for 
u(a + xi - Zi-l), etc., in Eq. (5-20), we find that 

U(4  = U(0) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc (terms of type Z3, ZPi-1,5fli-2,ZiZi+l, Z&+d 
i 

+.... (5-22) 
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Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU(O)/N and the coefficients of the quadratic terms are functions 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa only. The linear terms cancel because U(x)  has a minimum at  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
xi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 (all 4. 

The kinetic energy is simply Cim3:/2, a sum of independent terms, 
one for each coordinate 5. The total energy H(x ,  3) is the sum of V(x) 
and the kinetic energy. Unfortunately, because of the cross terms 
(x,si+ etc.) in Eq. (5-22)) H - U(0) is not separable, &s in Eq. (3-1) 
[V(O) itself is not important in the present connection-it has to do 
only with locating the zero of energy]. Hence, 88 matters stand, we do 
not have a system of independent subsystems as defined in Chapter 3. 

The situation is saved, however, at least in principle, by a mathematical 
theorem which s ta te  that a linear transformation to a set of new co- 
ordinates, 

€1 = a11~1 + 41222 + * * - + WNXN, 

€2 = 4 2 1 3 1  + 42@2 + ' ' ' + a2NZN) (5-23) 

fN = aN151 + aN2Z2 + ' ' ' + aNNxN, 

can always be found* such that the energy in the new coordinates, H ( f ,  #), 
retains the "diagonalized" form (i.e., no cross terms) of the kinetic energy 
and also has a diagonalid potential energy V(U. That is, H ( f ,  #) can 
be written 

where the fi axe "effective" force constants, functions of the coefficients 
of the quadratic terms in Eq. (5-22) [which in turn depend on u"(a) 
and u"(2a)], and the Y i  axe "effective" masses, functions of m. The 
function H - U(0) is now separable. For each of the new coordinates 
(called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnormal coordinates), ti, there is an independent contribution, 

to H - U(0). Hence, as in Section 3-1, the Schriidinger equation for 
the system is separable into N independent Schrtidinger equations, each 
derived from an expression of the form (5-25). The Hamiltonian function 
Hi is in fact that of D harmonic oscillator and lends to nondegenerate 
energy levels 

t i n  = (n + #)hVi, 12 = 0) 1) 2, . . .) 
* See L. PAULING and E. B. WILSON, JR., Introduction to Quantum Mechanics. 

New York: McGraw-Hill, 1935, pp. 282-290. 
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where 

Each frequency vi is a function of the thermodynamic variable a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL/N. 
Sincc this is a system of distinguishable molecules (each molecule 

restricted to thc neighborhood of n labeled lattice point), no factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN! 
appears in Q. We hare, as in Eq. (3-5), 

N 

i- 1 
(5-27) Q = e-L’(O)IkT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(@,.), 

where 8i = hvi/k (for each ui) and q(0i) is the harmonic oscillator parti- 
tion function, Eq. (5-6), for characteristic tempcraturc 0i. With the 
factor e-u(O’IkT included in Q, the zcro of energy corresponds to infinitely 
separated atoms at rest. 

The conclusion we reach (and it is the same for three-dimensional as 
for onc-dimcnsional crystals) is that, despite the importance of inter- 
moleeular forces in a monatomic crystal, small vibrations in the crystal 
can be dccomposed rigorously into independent normal modes of vibration. 
Hcncc we m dealing here with a system of independent subsystems. This 
es.entially solves the problem in principle [see Eq. (5-27)], but in practice 
we still have to find the N frequencies ui, a vcry difficult mathematical 
problem in most cues. 

The notmal coordinate problem also arises in studying the internal 
vibrations of polyatomic molecules (Chapter 9). In this case chemical 
bonds hold the atoms together, so the vibrational force constants are 
gencrally larger than in a crystal. Also, the number of atoms in a molecule 
is relatively small, so “edge effectsA cannot be neglected, as in a macro- 
scopic crystal. In principle, of course, there is no distinction between a 
crystal and a polyatomic molecule. That is, a crystal may be regarded as 
a giant molecule, usua.lly with relatively weak bonds. If there me N atoms 
in a monatomic crystal, there are 3N degrees of freedom altogether, of 
which three are rrssociated with the translational motion of the whole 
crystal and three more are concerned with the rotation of the crystal. 
There are then 3N - 6 vibrational degreea of freedom. But with 
N = 0(1O2O), we can take this number of vibrational degrees to be 3N, 
without noticeable’error. 

To illustrate the basic principles involved in normal coordinate analysis, 
in Appendix V we work out the problem in detail for an example of a 
hypothetical one-dimensional triatomic molecule. 

Let us bypass the normal coordinate question temporarily and continue 
a little further with thc formal analysis, assuming the normal frequencies 
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ui arc known. In three dimensions, we have 

Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= e-Nc(0)12kT fi d@i), (5-28) 
i- 1 

where there are now 3N n o d  modes of vibration, q(0i) is given by 
Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5-6), and we have defined q(0) as 2U(O)/N. The quantity q(0) has 
the same physical significance as in the preceding section: (~(0) is the 
potential energy of interaction between one particular molecule and the 
other molecules in the crystal when all molecules are at their lattice points. 
It should be understood that Eq. (5-28) is not restricted to any specific 
model, such as Eq. (5-20), for example. Rather, a normal coordiiiate 
analysis of the small vibrations in the crystal is assumed to have been 
carried out whatever the nature of the forces between the molecules. From 
a thermodynamic point of view, q(0) and each 0i are functions of V / N .  

Because of the very large number, 3N, of frequencies ui, it is convenient 
and legitimate to introduce a continuous frequency distribution g(u) such 
that g(u) du is the number of normal modes with frequencics between u 
and u + du. Then, from Eqs. (5-6) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5-28)) 

whcrc 

lm g(u) du = 3 N .  (5-30) 

Thus w e  no longer need to know all the scparate u i s ;  the function g(u) 
is sufficient. In Eq. (5-29), q(0) and g(u) are functions of V / N ;  a more 
explicit notation would be g(u; V / N ) .  

FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5-4. Frequency distribution g(v) for crystal. (a) Einstein approsima- 
tion. (b) Debye approximation. 
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From Q above, one can now derive equations for thermodynamic func- 

tions such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&s El zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACV, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, etc., which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare formally exact but not very useful 
unless g(v;  V / N )  is known, which is not usually the case. For example, 
we find for the heat capacity, 

which is just the sum, as we should expect, of 3N terms of the Einstein 
type (Eq. 5-12). 

In present notation, it is clear that Einstein’s rather crude approxima- 
tion (Section 5-1) amounts to taking g(v) as a Dirac &function (Fig. 
H a ) .  The discrepancy between Einstein’s g(v) and more accurate fre- 
quency distributions will become apparent in Sections 5-3 and 5-4. 

Attempts that have been made to calculate g(v) exactly, from various 
models concerning the intermolecular forces, will be Summarized briefly 
in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5-4. However, because of the mathematical di5culty of the 
problem, this rigorous approach is not very fruitful in practice. Therefore 
we shall first consider the very successful approximation of Debye, which 
is a compromise between Einstein’s extremely simple model and an exact 
treatment. 

5-3 The Debye approximation. In clarsical mechanics, when a single 
normal mode of vibration of a crystal is excited, the value of the 8880- 

ciated normal coordinate varies periodically with time. As is pointed out 
in Appendix V, in such a normal mode each atom in the crystal vibrates 
about its equilibrium position with the same period (or frequency) and 
phase as that of the normal coordinate. Figure 5-5 shows two possible 
normal modes for a onedimensional crystal, one with short, “wavelength” 
(A = 2a) and one with relatively long wavelength (x = 1Oa). In normal 
modes with wavelengths very large compared with the lattice spacing, 
the atomic or discrete nature of the actual crystal is washed out and 
becomes an unimportant feature. The atoms are 80 close to each other 
relative to the length of the wave that the wave “sees” the crystal essen- 
tially as a continuum. Normal modes with long wavelengths may there- 
fore be considered elastic \vaves in a virtual continuum. 

FIG. 5-5. Two norinal vibrational modcs for a onc-dimcnsional crystal. 
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This is the origin of Debye's approximation. The above remarks about 
a continuum are exact for sufficiently long wavelengths (or low frequencies, 
see Appendix VI). Thus the correct asymptotic form of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(u) for small u 
can be deduced by treating the crystal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas an elastic continuum. The 
approximation of Debye is to assume that this low-frequency form of g(u) 
is correct for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaU frequencies. 

It is shown in Appendix VI that in a three-dimensional continuum 
g(u) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= au2, where a is given by Eq. (VI-30). This is, then, the explicit 
low-frequency form of g(u) that Debye adopts for all frequencies. The 
total number of normal modes is 3N, so a cut-off at a maximum frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
urn is necessary (Fig. 5-4b). That is, 

3 r g(u) du = 3N = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAav, 3 , 

(Ti-32) 
= o  (v > urn), 

aa in Eq. (VI-34). From a thermodynamic point of view, urn in Eq. (5-32) 
is a function of V/N. With the complete frequency distribution assigned 
in Eq. (5-32), thermodynamic functions follow in a routine way from 

Before turning to the thermodynamic functions, let us digress briefly 
to make a comment on the range of validity of Debye's assumption 
g(u) = au2, which we know to be accurate at sufficiently low frequencies. 
The question is, what do we mean by sufficiently low frequencies? 
Normal modes with wavelengths X >> (V/N)'l3, where (V/N)'I3 is of 
the order of the lattice spacing, are treated accurately by a continuum 
theory; say, rather arbitrarily, X 2 10(V/N)1'3. If we use X = v3 /u  

and urn = O[(N/V)'/3v3] from Eqs. (VI-22) and (VI-33)) we have the 
condition u 5 urn/10 for the range of validity of g(u) = au2. See also 
Figs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5-8 and 5-10) below, where the exact g(u) can be compared with the 
Debye g(u). 

Eq. (5-29). 

For the energy, according to Debye, we have 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMONATOMIC CRYSTALS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[CHAP. 5 

The resemblance between Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5-33) and Eq. (5-9) for the Einstein model 
should be noted. One of the integrals in Eq. (5-34) is easy, but the other 
has to be evaluated numerically: 

Ndo) 9Nhvm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 3NkTD(u), (5-36) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+s E = -  
2 

where 

D(u) = D(hvm/kT) = (5-37) 

In Eq. (5-36), (p(O), v,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu are functions of V / N .  The asymptotic 
behavior of D(u) is: 

+ l  as T + o o a n d u + O .  x' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdx D(u) --+ - 
U8 0 (1 + x + * . * )  - 1 

(5-39) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ' 
Therefore 

88 T + 0 .  (5-40) NdO) 9Nhvm 3Nr4hv, (kvk)' E d -  2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+8 +5 - 

The second term on the right is the vibrational zero-point energy (Problem 
5-2). Also, 

E + -  N'(o) + 3NkT as T + 00. (5-41) 2 

This is the same as Eq. (5-11) (Einstein model), and is the energy predicted 
by classical statistical mechanics (Chapter 6).  

For the heat capacity, we have (Problem 5-3) 

a 
Cv = t$) = 3 N k z  [TD(u)l 

N. V 

= 3Nk[4D(u) - -1. 3U 
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At this point we introduce the notation 

which is often used. We c d  80 the "Debye temperature." It refers to 
the cut-off frequency vm. In the Einstein theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 refers to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd g  
frequency u. 81, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis different for different crystals and is a function of V/N 
for any given crystal. According to Eq. (5-42), Cv/Nk is a universal func- 
tion of T/@I,.  This function is shown in Fig. 5-2. Thus the Debye ap- 
proximation, like Einstein's, leads to a law of corresponding states. The 
asymptotic behavior of CV is: 

1 2 ~ h ~  8 

c v + ~ ( & )  as T + O ,  (5-44) 

c v + 3 N k ( 4 - 1 + u + . . .  3u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 ) + 3 N k  as T +  m. (5-45) 

That is, the Debye theory predicts CV a T3 at low temperatures (the 
criterion is approximately T < 8D/12) and leads to the Dulong-Petit 
value of C v  at high temperatures. 

Monatomic crystals do, in fact, follow a law of corresponding states 
rather closely. Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5-6 shows a superposition of heat-capacity points 
for Al, Cu, Pb, and C (diamond) after suitable adjustment of the tempera- 
ture scale, taken from a paper by Lewis and Gibson. Many other sub- 

FIQ. 5-6. Superimposed csperimcntal heat capacity points for Al, Cu, Pb, 
and C (diamond). 
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Source of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 D  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Entire csperimentd CV curve 

Esperimental elastic conatants 
T3 part of CV curve 

and Eqe. (VI-15, 16, 33) 

MOSATOMIC CRYSTALS 

C Fe 

1860 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA453 
2230 455 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-- -- 

- - 

[CHAP. 5 

-- -- 
398 
385 

402 

TABLE 5-1 

LOWTEMPERATURE HEAT CAPACITIES 
(CV in cd.mole-l.deg-l) 

A l c u  

315 
321 

332 

T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOK 

32.0 
33.1 
35.2 
38.1 
42.0 
46.9 

staiices, for example 

102c;/* 
Fe, - 

T 

1.67 
1.70 
1.77 
1.73 
1.64 
1.71 

T, OK 

19.1 
23.6 
27.2 
32.4 
33.6 
35.1 

2.12 
2.03 
2.01 
1.95 
2.00 
1.97 

ig, Hg, T1, and Zn, also have curves that coincide 
with those included in the figure. Furthermore, the Debye function (5-42) 
fits the experimental curve, over the whole temperature range, in a very 
satisfactory manner. 

The T3 law for CV at low temperatures is also followved quite accurately, 
as seen in two typical cases in Table 5-1. According to Eq. (M), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACV8/T 
should be a constant; IVC see from the table that it very nearly is. We 
should expect the Debye theory to be essentially exact for the heat ca- 
pacity (and entropy) at low temperatures, because only the low-frequency 
modes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare excited at low temperatures, and the Debye assumption zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g(v) = av2 is correct for low frequencies (Problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5-4). However, the 
vibrational zero-point energy term 9NhVm/S in Eq. (5-40) for E at  low 
temperatures is not correct, because the Debye g(v) contributes to this 
quantity from v = 0 to v = Vm. 

If we press the Debye theory a little harder by using more sensitive 
tests, discrepancies begin to show up, CB they should since the theory is, 
after all, an approximate one. For example, Table 5-2 contains values 
of 80 obtained from different sources for the same substances. Ideally, 

TABLE 5-2 

eD VALUES (OK) 
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Element 

Li 
Na 
K 
Au 
Pb 

TI OK 

FIQ. 5-7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe D  for silver as function of temperature. 

e D  Elerncnt e D  Element 

430 Cr 405 HI3 
160 Ca 230 Be 
99 Mo 375 Mg 

185 Pt 225 Zn 
86 N' 315 Cd 

valuea of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA80 should be independent of source. A more rigorous test is 
shown in Fig. 5-7. For each experimental value of Cv for silver, 80 is 
calculated from Eq. (5-42), using the temperature of the CV measure- 
ment. If the Debye theory were exact, points in Fig. 5-7 would lie near 
a horizontal line (80 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= constant, independent of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT).  Similar non- 
horizontal 80 - T curves are found quite generally for other substances 
as well. 

Table 5-3 (from Blackman*) presents average 80 values for a few more 
substances. From Fig. 5-2 we me that the classical Dulong-Petit value 
of CV is practically reached at room temperature for many of these crystals. 
As mentioned in Section 5-1, a value of 60 = 300°K corresponds to 

T.4BLE 5-3 

80 VALUES (OK) 

e D  

90 
980 
330 
240 
165 

* M. BLACKMAN, Ifandbud der Phpik (Springer, Berlin) 7.1, 325 (1955). 
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v,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 6 X 1012sec-1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwhich is smdl compared with typical diatomic 
molecule vibration frequencies. 

From Eqs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5-29) and (5-34), we find for the entropy, 

At low temperatures [put u = oc, in the upper limit, as in Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5-B)], 

(5-47) 

Thus S + 0 as T + 0. In the nondegenerate (Q = 1, S = 0) ground 
state of the entire system (crystal), each vibrational mode is in its non- 
degenerate ground state. In writing Eq. (5-29), nuclear degeneracy is 
omitted as usual, and the electronic ground state has been assumed 
nondegenerate. 

Finally, let us consider the vapor pressure PO( T) of a monatomic crystal 
at very low temperatures. As T + 0, p o  -+ 0. Hence, for the crystal, 
we can drop the poV term in p = (A + poV) /N ,  and we can assume that 
the gaa phase is ideal. Then, for the crystal, from Eqs. (5-40) and (5-47), 

u4kT4 
5 0 %  

- -A0 - -9 
A E - T S  

c c = - = - -  N N 

The quantity A0 is the heat of sublimation per molecule at  O’K. Equa- 
tion (5-48) may be regarded fls exact provided we use the experimental 
Ao, since the zero-point energy term in Eq. (5-49) is not correct, as d m d y  
mentioned. We may calculate 80 (Scction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5-4) in Eq. (5-48), or it may 
be obtained from experimental elastic-constant or heat-capacity measure- 
ments at  low temperature and low pressure. 

To obtain the vapor pressure po, we use the thermodynamic criterion 
for phase equilibrium: we set pcrystal from Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5-48) equal to pgSa from 
Eq. (4-24). We find 

lnpo = % I n T  - do - “(Ly + ln[{Ty’*k]. 2lrmk (5-50) kT 5 80 

We should emphasize here that the same zeros of energy (isolated gas 
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molecule at rest) and entropy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 for a system of point masses, i.e., 
the crystal, at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 0) have been chosen for both phases. If a term in the 
ground-state nuclear degeneracy had been included in c(owstal and in pga,, 
these terms would cancel in Eq. (5-50). The electronic ground state has 
been assumed nondegenerate in both crystal and gas. 

In the equilibrium between a crystal and its vapor, as in all equilibria, 
competition and compromise between energy and entropy effects determine 
the equilibrium point. Here, the crystal is more stable from an energetic 
point of view (Ao); i.e., it has a lower energy than the gas because of 
intermolecular interactions in the crystal. But the gas is more stable 
insofar as the entropy is concerned; i.e., the gas molecules are in a much 
higher state of disorder and have a higher zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ and entropy. The molecules 
distribute themselves between the two phases in such a way as to equalize 
the chemical potentials in the two phascs: the chemical potentials depend 
on both energy and entropy. An equivalent statement is that the mole- 
cules distribute themselves between the two phases so as to minimize 
the Helmholtz free energy A of the combined system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArrystal+ gas if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V ,  N, and T for the combined system are constant (or F is minimized if 
p, N ,  and T are constant) (see Sections 10-1 and 10-2). 

The last term in Eq. (5-50) is a constant, call it i (the “vapor pressure 
constant”), the only term in the equatioii independent of temperature. 
Now i, which in thermodynamics appears as an integration constant on 
integrating the Clausius-Clapeyron equation for d In po/dT, can be evalu- 
ated experimentally by using data on the vapor pressure, heat of sublima- 
tion, and heat capacities of gas and crystal. Experimental values of i m 
found to agree* with theoretical values of i to within experimental error. 
Historically, this was a very significant check of the methods of quantum- 
statistical mechanics. Although i can be obtained as an experimenlal 
thermodynamic quantity, thermodynamics by itself is powerless, of course, 
to predict or explain i-values. Also, i cannot be deduced from purely 
classical-mechanical considerations (since h is included in i). 

5-4 Exact treatments of the frequency distribution problem. A detailed 
discuasion of attempts to compute g(v) from first principles would be far 
outside the scope of this introductory book. However, we shall give here 
a brief summary, which the rerrder may find instructive, of exact, or 
practically exact, results obtained in certain special cases. Other sources 
must be consulted for details and derivations. We shall not discuss thermo- 
dynamic functions, since g(v) is available for just a few idealized models 
(Problem 5-5). 

* See Fowlcr and Guggcnheim, pp. 199-202. 
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t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2N/.rh - 
0.2 0.4 0.6 0.8 

Debye zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 1.57 

v/m 

FIQ. 6-8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFrequency distributions for onedimensional crystal with nesresb 
neighbor interactions only. 

The first case we consider is a onedimenaa*d lattice with lattice 
spacing u and nearest-neighbor interactions only. The Hamiltonian is 

This is a special case of the Hamiltonian associated with Eq. (5-22) (i.e., 
second-neighbor interactions are omitted). Specifically, the force constant 
f i n  Eq. (5-51) is just u"(u) in the earlier notation (Problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA543). The 
frequency distribution problem here is rather easy and can be solved 
exactly. The result* is 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v, = -&. 1 f  

'A 

The function g(v) is shown in Fig. 5-8. At low frequencies, 

(5-53) 

In the continuum theory (Appendix VI), which must agree with 
Eq. (5-54) at low frequencies, according to Eq. (VI-11) there me n 

* Mayer and Mayer, pp. 246-248. SIX also Blackman, loc. d., pp. 330-331. 
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modes between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 and v = vln/2Na. That is, 

or 
2Na zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
01 

g = -. 

107 

Equating g in Eqs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5-54) and (5-55)) we find 

v1 = ravm = a m .  (5-56) 

This equation expresses the macroscopic quantity v1 (“velocity of sound”) 
in terms of the molecular parameters a, f, and m. In the Debye approxima- 
tion for a onedimensional crystal, g is a constant out to a cutsff frequency 
that we denote here, to avoid confusion, by v,”. We have 

or 

This is larger than the true Vm by 8 factor 1.57 (Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5-8). 
Next, suppose we have a linear crystal with lattic spacing a, force 

constant f (nearest-neighbor interactions only), but with two alternating 

FIG. 5-9. Exact frequency distribution for onedimensional crystal with 
m / m a  = 3. 
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kinds of atoms with masses ml and m2. This problem can also be handled 
exactly without difficulty.* We shall not give any details, but merely 
show in Fig. 5-9 a plot of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(v) against v for m1/m2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 3. There are two 
branches in g(v). The low-frequency branch is called the "acoustical" 
branch, and the high-frequency branch the "optical" branch. In normal 
modes belonging to the acoustical branch, neighboring atoms are dis- 

placed in the same direction (as in Fig. 5-5b). In the optical branch, 
neighboring atoms are displaced in opposite directions (as in Fig. 5-54. 
A gap between branches, as in Fig. 5-9, is common in onedimensional 
crystals with two kinds of atoms, but not invariable. 

In a very elegant paper, Montrollt was able to find the exact g(v) for 
a particular zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwdimen8ioncrl crystal. The lattice studied was simple 
square, with one kind of atom, and lattice spacing a. First- and second- 
neighbor interactions were taken into account. The parameters of the 
problem are a, the mass m, the nearest-neighbor force constant f = u"(a) 
(called a by Montroll), and second-neighbor force constant 27 = u"(2'12a). 
It is convenient to introduce 

(5-58) 
1 

= 1 + (f/27) * 

When r = 0, second-neighbor interactions are absent. An exact analytical 
expression for g(v) was found by Montroll in the special case T = 1/3, 
or f/2v = 2. This value of T corresponds to elastic isotropy. The function 
g(v) is shown in Fig. 5-10. The low-frequency behavior of g(v) agrees 
with continuum theory, g a v:  

8Nv g(v) + - as v + 0, 
m: 

where the maximum frequency v, is given by 

On comparing Eqs. (VI-35) and (5-59), we find (Problem 5-7) 

82 = 

(5-59) 

If we calculate v,D as in Eq. (5-57), we find here v,D/v, = (7r/2)'12 = 1.25 
(Problem 5-8), as indicated in Fig. 5-10. 

* Blackman, Ioe. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtit., pp. 331-333. 
tJ. chenr. PhyS. 15, 575 (1947). h? a h  M. SMOLLETT, PfW. PhYS. SoC. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

London bSA, 109 (1952). 



5-41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFREQUENCY DISTRIBUTION PROBLEM 109 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u/ uur zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FIQ. 5-10. Frequency distributions for special case (7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
sional square crystal. 

3 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h 
? 2 -  

1- 

0.2 0.4 0.6 0.8 

3) of two-dimen- 

0 

U / Y , ,  

FIQ. 5-11. Frequency distribution for special case (7 = 3/40) of a simplc 
cubic lattice. 

The most accurate work on a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree-dimasional case has been done by 
Newell. * Newell studied a one-component, simplecubic lattice with 
lattice spacing a and first- and second-neighbor interactions. Again the 
force constants are f = u”(u) and 2~ = U ” ( ~ ~ ‘ * U ) .  We define 

1 
= 2 + (f/2Y) * 

Although Newell did not obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan exact g(v) for any T,  his calculations 
of g(v) are accurate to one or two percent for T up to almost 1/10. Further- 
more, he was able to describe the exact location and type of singularitiea 
in g(v) for 0 5 7 5 1/10. Figure 5-11 shows g(v) for T = 3/40. There 
are five singularities in the slope of g(v), but g(v) itself is finite and con- 

* G. F. NEWELL, J .  Chem. Phgs. 21, 1877 (1953). 
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tinuous everywhere. The low-frequency behavior of g(u) is g(u) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAup, 
as expected. 

Finally, we mention that Van Hove* was able to come to the following 
definite and quite general qualitative conclusions about g(u) for two- or 
three-dimensional crystals, by a topological argument. In two dimen- 
sions, g(u) has at least one logarithmic infinity in each frequency branch 
and at least a finite discontinuity occurring at u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAum. Montroll’s results 
are in agreement with this statement. I n  three dimensions, g(u) is con- 
tinuous everywhere, but dg/du has at least two infinite discontinuities, 
md zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdg/dV = --OO at Y = Vm. 

PROBLEMS 

5-1. Derive equations for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and p for the Einstein model, considering cp(0) 
and 8 functions of V / N .  Show that ( a A / a N ) v . ~  and (A + pV) /N  give the 
same expression for p. (Page 91.) 

5-2. Show that 9Nhv,,,/8 is the sero-point energy for the frequency distribu- 
tion (5-32). (Page 100.) 

5-3. Work out the details of the derivation of Eq. (5-42) for the Debye CV. 
(Page 100.) 

5-4. Show that, in thc Debye theory, the number of excited [i.e., n > 0 
in Eq. (5-4)] vibrational modea in the frequency range v to v + dv, at tempera- 
ture T,  is proportional to z2e-=, where z = hv/kT. The maximum in this 
function occurs at a frequency v‘ = 2kT/h; hence v’ + 0 as T + 0. (Page 102.) 

5-5. If an exact calculationpf g(v) could be made for a number of different 
monatomic crystals, would a law of corresponding states be expected for CV? 
(Page 105.) 

5-6. Show that the force constant f in Eq. (5-51) is equal to #(a). (Page 

5-7. Verify Eq. (5-61) for &. (Page 108.) 
5-8. Show that v,”/v,,, = (w/2)lI2 in Montroll’s two-dimensional case. 

(Page 108.) 
5-9. Consider a one-dimensional lattice with lattice spacing r*. All atoms 

are at equilibrium points except the “central”.%tom, which move8 in the po- 
tential field of its two nearest neighbors. This is a one-dimensional Einstein 
model. Take Eq. (IV-1) for the intermolecular pair potential. Find ~ ( 0 )  and 
f in the onedimensional form of Eq. (5-1) in terms of r* and e. 

6-10. Considcr a system of onedimensional oscillators, all with characteristic 
temperature 8 [Eqs. (5-4) and (5-6)]. Derive an expression for the fraction P,, 
of these oscillators in the energy level en. Calculate PO, PI, and P p  for T = 4 8 ,  
T = 0, and T = 8/4. 

106.) 

* L. VAN HOVE, ph&Q. Rw. 89, 1189 (1953). 
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5-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADerive an equation for the vapor pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo(T)  of an Einstein crystal, 

assuming the vapor is an ideal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas and using Eq. (5-16). What choice of V / N  
in cp(0) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 is appropriate? 

5-12. The heat capacity CV of a monatomic solid at 300°K is 2R per mole. 
Use the Einstein theory to calculate the frequency v. 

5-13. Use thermodynamic connections between (a) E and CV and (b) S and 
CV to check the self-consistency of Eqs. (5-40), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5-44), and (5-47). 

5-14. Calculate eo for Fe from the value of CV at 32.0°K given in Table 5-1. 
5-15. Use Fig. 5-2 and the e D  values in Table 5-3 to estimate Cv in 

cal.mole-l.deg-l for Pb, Mg, and Be at 25°C. 

SUPPLEMENTARY READINQ 
BLACKMAN, M., Handbuch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&r Phgsik (Springer, Berlin) 7.1,325 (1955). 
FOWLER and GIJGGENHEIM, Chapter 4. 
MAYER and MAYER, Chapter 11. 
SLATER, Chapters 13, 14, 15. 
TOLIUN, Chapter 14. 



CHAPTER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CLASSICAL STATISTICAL MECHANICS 

It is well known that quantum-mechanical results for a given system 
go over asymptotically into classical mechanical equations in the limit 
of large quantum numbers. Also, in the quantum-mechanical canonical 
ensemble partition function (for one or many particles), terms correspond- 
ing to the higher quantum numbers make more and more important 
contributions to the sum as the temperature increaaes. We may anticipate, 
then, that at sufficiently high temperatures, the quantum partition func- 
tion should approach asymptotically a partition function developed from 
a classical mechanical starting point. 

We consider classical statistical mechanics in this chapter. No results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
are obtainable from classical statistics which cannot be found aa limiting 
laws from quantum statistics, but often the classical method is easier to  
use. We shall, however, refrain from discuasing the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprinaples of classical 
statistical mechanics in any detail. Although this is a very elegant subject, 
we shall adopt the point of view here-for lack of space-that the quantum 
method provides the more general postulatory foundation and hence that 
classical statistics does not require separate development since it follows 
aa a special zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcaee from the quantum postulates. The reader interested in 
the principles of classical statistical mechanics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAper se cannot do better 
than to read Tolman's masterly exposition. 

The treatment of the transition from quantum to classical statistics in 
this chapter will be inductive, and proofs will be omitted for the more 
complicated cases. This subject will, however, be discussed in a more 
general way in Chapter 22. 

6-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIntroductory examples. We consider two special zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcases in this 
section. The first is a onedimensional harmonic oscillator, with mass m 
and classical frequency v, restricted to the z-axis (equilibrium point z = 0). 
The particular question of interest is, what is the classical analog of the 
quantum-mechanical equation (5-5), 

This is a sum of e--(enerw)'bT over all possible quantum states of the system. 
The corresponding classicirl expreasion is the sum (or actually integral, 
since the classical state can vary continuously) of e--(ener.g)'bT over all 

112 
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possible zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAckrssieal states of the system. The classical energy is just the 
Hamiltonian function H(q, p) ,  which for this system is 

H(q, PI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 3fx2 + w2 

where f is the force constant [see Eq. (5-2)], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq = x, and p = md zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ap 
pendix VII). We use q and p as independent variables for H because the 
equations of classical statistics which we shall use below turn out to be 
simpler with this choice, as one might anticipate from Eqs. (VII-7). 
The classical state (position and velocity) is specified by assigning values 
to q and p .  Both variables range continuously from - 00 to +so. Hence 
we have 

-I- 
QOlSsr = c j - - - H ( q * P ) / k T  4 dPl (6-3) 

where c is a constant. We have to choose c so that the classical equation 
(6-3) gives the same result as the high-temperature limit of the quantum 
equation (5-6), namely, q --* kT/hv. The fact that Planck’s ‘constant h 
appears in this limit shows that c could not possibly be deduced from 
purely classical considerations. What we are essentially doing here, in 
evaluating c, is egtablishing a statistical-mechanical correspondence prin- 
ciple for this special case. 

We substitute Eq. (6-2) in Eq. (6-3) and carry out the two jute- 
grations. We find qOlars = c kT/v. Therefore c = l / h  in order to satisfy 

The q, p space over which the integration is carried out in Eq. (6-3) is 
called the phuse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAapace of the system, and the integral itself is called the 
phose integral. Any point in phase space corresponds to o definite classical 
state. In quantum mechanics, such a precise (point) specification of state 
is not possible. According to the uncertainty principle, the state of the 
system cannot be located in phase space more closely than within an axea 
Aq Ap of order h. This is consistent with the value just found for c, because 

Qclsu = q (T + 00). 

quantum O l M d O d  
states phnse spaoe 

implies that the volume of classical phase space corresponding to one 
quantum state, in the limit of large quantum numbers, is h. The precise 
value h cannot, however, be deduced from the uncertainty principle itself, 
because this principle reads, to be exact, Aq Ap 2 h / 4 ~  (where Aq and 
Ap are standard deviations). 



114 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACLASSICAL STATISTICAL MECHANICS [CHAP. 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Incidentally, the relation of Eq. (6-4) to the uncertainty principle con- 

firms the convenience of the choice of independent variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp (instead 
of, say, q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ or some other choice). 

An alternative deduction of the factor h in Eq. (6-4), or l / h  in Eq. 
(0-3), is the following. Let us draw paths of constant energy, H(q, p) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
t = constant, in classical q, p space. From Eq. (6-2), we see that theae 
paths are ellipses 

(6-5) - + p = 1 ,  P2 P2 
a2 

where 

and the area of an ellipse is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(e-s) € zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V 
Area = uao = - - 

In particular, let ellipses be drawn, as in Fig. 6-1, for energies B = 
h, and where en is the quantum-mechanical energy level (Eq. 5-4) 
for a laqe quantum number n. The area between two successive ellipses 
in Fig. 6-1 is then the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarea of classical phase space associated with one 
quantum state. We find from Eqs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5-4) and (H), 

h n + l  - Ares, = (n + B h  - (n + 3)h = h, 03-71 

which confirms our previous result. To pursue the matter a little further, 
suppose we assign an area h/2 on either side of the B = ellipse to the 
quantum state n, aa indicated by the shaded region in Fig. 6-1. For large 

FIG. 6-1. Classical constantenergy paths in phase apace for onedimensional 
harmonic oscillator (schematic) ; n = quantum number. 
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n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe classical energy H(q, p )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= e is almost constant ( E  S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAen) throughout 
the shaded area (more precisely, the fractional variation in E within the 
shaded area becomes smaller zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas n increases). We can therefore break up 
the classical integral over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, p space into discreet (as in the quantum sum 
over states) contributions from each "shaded area" (of magnitude h), 
because the integrand is essentially constant throughout each such area. 
Thus. 

as before. This argument becomes exact as T + m and higher quantum 
numbers dominate in the sum. 

As a second example, consider a particle in a cubical box of volume V .  
At sufficiently high temperatures [Eqs. (4-8) and (&lo)], 

lz.IuJ*-l 

The classical analog of the above sum is 

+* 
q,,la8 = d /// / - ~ - H ( p z * p ~ ' p z ) l k T  dx dy dz dp, dp,  d p ,  (G-9) 

4 v  

u-here 

(6-10) 
1 

H(Pz, P,, P A  = g (P: + PZ + P2). 

The momentum p ,  = &, etc. (Appendix VII). The potential energy is 
zero in the box and infinite outside the box. Therefore is zero 
outside, and the integral need be carried out only over the inside of volume 
V .  We find 

q01**s = d(%kT)3'2V. (6-1 1 )  

Comparison with Eq. (6-8) shows that c' = l /h3.  
From these two examples we might surmise that, in general, if there are 

n degrees of freedom, the phase integral has to be divided by h" to give 
the classical (high-temperature) partition function. This is consistent 
with the uncertainty principle (a factor h for each product dq dp).  This 
conjecture turns out to be correct. It can be checked, as above, for each 
special case as it arises. Also, a general quantum-mechanical justification 
can be given (Chapter 22). We therefore adopt this correspondence prin- 
ciple a8 a general rule. 
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6-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMore general systems. We set down in this section a few basic 

equations in classical statistical mechanics that we shall need throughout 
the rest of the book. These pertain to more general systems than those 
considered in the preceding section. 

Suppose that the Hamiltonian for one molecule, in a system of inde- 
pendent molecules, is separable in the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= H c ~ a s a  + Hquant, (6-12) 

mherc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHc~nss refers to n degrees of freedom that can be treated claaScally 
(e.g., translation and often rotation; see Chapters 8 and 9), and Hpuant 
refers to the remaining degrees of freedom that cannot be treated classically 
(e.g., electronic states and vibration). Then, by Eqs. (3-13), (3-14)) 
and Section GI, 

Alternatively, of course, we can use in place of qclass the high-temperature 
limit of the quantum-mechanical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq for the n degrees of freedom included 
in Eq. (6-14). But usually the direct classical calculation is easier. 

As was mentioned at the beginning of this chapter, the qualitative 
criterion for the legitimate employrncnt of classical statistics in a partition 
function q for a single molecule (or in the q belonging to some of the degrees 
of freedom of a single molecule) is that quantum states with large quantum 
numbers contribute heavily to q (Problem 6-1). This will be the case if 
kT >> A€, where At is the magnitude of the energy separation between 
successive energy levels (Problem 62). This is the same criterion we have 
already used [see Eq. (4-8) and following Eq. (5-7)] for replacing the 
quantum sum for q by integral. The use of an integral in place of the 
quantum sum is therefore equivalent to a classical treatment. 

We turn now to the consideration of a system of N indistinguishable 
monatomic molecules in a volume V with translational degreea of freedom 
only and no intermolecular forces. The classical phase integral in this 
case is [see Eq. (6-9) and Appendix VII] 

1 dYl dPXl dPVl dPZl * * * 
I = e--H(p)lkT 

* ‘ h N  dgN h N  d p x N  dp#N dpsN, 03-15) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
where 
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All the integrations in Eq. (6-15) are easy, and we find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [(27rdT)8’2V]N. (6-17) 

We cannot simply set Qolass equal to I /haN here because we are concerned 
with a system of N indistinguishable molecules, and not just a single 
molecule aa in the previous examples in this chapter. In fact, we have 
already found in Chapter 4 that the high-temperature quantum-mechanical 
Q for this system is given by Eq. (4-12)) and Qclass must zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAagree with this 
result. That is, QclaSs = I/h3”! or 

We may understand the division by N !  in this equation as follows. In the 
integral I over all classical states (q, p)  of the system, the molecules are 
treated as distinguishable. For example, let N = 2, and let dr  in Fig. 6-2 
represent an element of volume dx dg dz dp, dp, dpr in the phase space of 
a single molecule and dr’ represent another such element of volume located 
at a different position. Then there are two separate contributions to the 
integral I counted (a) when molecule 1 is in dr  and 2 is in dr’, and (b) 
when 2 is in dr  and 1 is in dr’. In general, with N molecules, there would 
be N !  separate contributions of this type arising from all the possible 
permutations of the molecules. Actually (i.e., from the point of view of 
quantum mechanics), the molecules are indistinguishable, and the inter- 
change of particles in the space of Fig. 6-2 does not lead to new states. 
Thus the classical phase integral overcounts the states by a factor N!,  
and this is corrected for by the division indicated in Eq. (6-18). It should 
be noted that in classical theory dr  and dr’ may be arbitrarily small 80 

that we never have the complication [see Eq. (3-9)] that two molecules 
are in the same classical state. 

FIG. 6-2. Elements of volume in the phase space of 8 single monatomic 
molecule. 



118 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACLAWICAL STATISTICAL MECHANICS [CHAP. 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We have already seen in Chapter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 that the condition (4-6) must be 

satisfied in order that the result given in Eq. (4-12) or (6-18) be correct, 
i.e., in order for classical statistics to be valid. We have also seen in the 
discussion following Eq. (4-8) that the condition (4-6) for absence of 
quantum effects is very much more stringent than the condition AE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
O(Ac) << zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkT; (4-6) is therefore not only a necessary but also a sufficient 
condition for the validity of classical statistics. By "classical statistics" 
here we mean use of (a) the factor l/N!, and (b) the classical phase integral. 

Now suppose intermolecular forces are present in the system just dis- 
cussed, so that there is a potential energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ( q ,  . . . , Z N )  that depends on 
the location of the molecules in the volume V. The classical partition 
function here is 

N!h3N l I  &I * . - dprh'j (6-19) e--H(q.P)/L.T 
Qclass = - 

where 

1 
H(qJ p )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi& (pz1 + ' ' * + p%) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(z1J * * * J Z N ) .  (6-20) 

The explanation following Eq. (6-18) of the use of N! in that equation is 
valid irrespective of the existence of a potential-energy contribution to H. 
Therefore a factor 1/N! is also inserted in Eq. (6-19), though in this case 
we do not have available the high-temperature limit of the quantum Q 
aa a check. This check is provided, however, in Chapter 22. As to the 
criterion for the use of classical statistics in this case, we note that the 
paragraph preceding Eq. (4-8) gives a quite general interpretation of the 
condition (4-6). Hence we may consider (44) to be applicable regardless 
of intermolecular forces and whether the system is condensed or not. 
The values of AaN/V in Table 4-1 are for liquids and become particularly 
pertinent at this point. We see, for example, that at its boiling point 
liquid neon, but not liquid argon, should show noticeable quantum effecta. 
Hence Eq. (6-19) can be applied to liquid argon at its boiling point. 

The momentum integrations in Eq. (6-19) can be carried out immedi- 
ately, aa before, and we obtain 

(6-21) 

. . . &N. (6-22) 

Z N  
Qclass = J 

where 
zN = e - U ( z l . * * * . ~ ~  ) / k T  h1 

I In Eq. 6-22, ZN is called the classical configuration integral. In the absence 
of intermolecular forces, as in Eq. (6-18), U = 0 and ZN = V N .  Equa- 
tions (6-21) and (6-22) are fundamental equations in the study of mona- 
tomic, classical, imperfect gases and liquids (Part 111). 
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Finally, consider a multicomponent system of molecules which may be 

polyatomic. Suppose that the Hamiltonian for the whole system is 
separable, as in Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6-15). Then 

where n; is the number of classical degrees of freedom for a molecule of 
component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi. Usually (see Chapters 8 and 9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHcln.8 includes translation 
and rotation, while Hquant includes internal vibration (and possibly an 
elect,ronic contribution). Because of the relatively strong forces involved 
in the internal vibrations of polyatomic molecules, these vibrations are 
not perturbed much by intermolecular forces, and hence me approxi- 
mately separable, as in Eq. (6-25). 

6-3 Phase space and ensembles in classical statistics. Although we 
shall not use this material later in the book, for completeness we make n 
few very brief comments about the classical phase space of an isolated 
macroscopic system, of volume V ,  containing molecules of one or more 
species. Them remarks would serve as an introduction to a discussion of 
the principles of classical statistical mechanics if we were going to give 
an independent development of this subject. However, as already men- 
tioned, in this book we regard clwical statistics as a limiting form of 
quantum statistics. 

Let the total number of coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqi required to locate the positions 
of all molecules be n. For example, if the system contains N monatomic 
molecules, n = 3N. Thus n is an extremely large number. For each 
coordinate qi, we define a conjugate momentum p i  by Eq. (VII-6). The 
phase space of the system is therefore 2n dimensional: n coordinates and 
n momenta. The state of this cIa3sic8.1 system at any time t is completely 
specified if the position and velocity components of each molecule are 
specified, i.e., if all the q’s and p’s are assigned definite values. All this 
information is condensed into the location of a single point in the 2n 
dimensional phase space. Such a point is called a phrrse point or “repre- 
sentative point.” That is, the point represents the complete clnssical state 
of the system. 

With the forces of the system given, mignment of the position of a 
phase point in phase space at time t completely determines the future 
(and past) trajectory, or path, of the point as it moves through phase 
space in accordance with the laws of mechanics. The equations of motion 
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of the phase point are, in fact, Hamilton’s equations, (VII-7). In prin- 
ciple, this system of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2n first-order differential equations can be integrated 
to give zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAql(t),.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . , qn(t), p l ( t ) ,  . . . , p,,(t). The 2n constants of integration 
would be fixed by knowing the location of the phase point at some time 
1 = to. Of course, in practice, such an integration is quite hopeless. 

Now suppose we make up zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa total of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3l isolated systems, all with the same 
I‘ and number of molecules of each species, and all rep l icwas far as 
thermodynamic properties are concerned-of the single experimental sys- 
tem of interest. This is an ensemble, just as in Chapter 1. The detailed 
classical state of each system can be represented by a point in the same 
phase space. The points move independently, each along its own trajectory, 
since each system is isolated. The whole ensemble then appears in phase 
space as a “cloud” of moving representative points with an essentially 
continuous density (% ---t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00). A very important and interesting theorem, 
due to Liouville, which we shall not prove or use, is that in the immediate 
neighborhood of any particular phase point, as it moves along its tra- 
jectory, the density of p h w  points remains constant. 

Just as in quantum mechanics, we find it necessary to replace the desired 
single-system time average of mechanical variables, such as pressure, by 
instantaneous ensemble averages (jirsl postdate). But in order to calculate 
ensemble averages, we have to know the density of the cloud of representa- 
tive points in the various portions of phase space. Corresponding to the 
quantum postulate (Section 1-2) of equal probability for each quantum 
state of an isolated system (E, V, N1, Nz, . . . fixed), we have the analogous 
clrrssical postulate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(second postulate) of constant density of phase points 
throughout the region of phase space between the surfaces E = constant 
and E + 6E = constant, where 6E is arbitrarily small. As in Section 
1-3, we can deduce from this a density of phase points proportional to 
e--BH(q*p) [compare Eq. (6-19) for example] for an ensemble representative 
of a closed system in contact with a heat bath, etc. 

The two postulates above, combined, lead to the classical “ergodic 
hypothesis”: the representative point of a single isolated system spends 
equal amounts of time, over a long period of time, in equal volumes of 
phase space between the surfaces E = constant and E + SE = constant, 
where 6E is arbitrarily small. 

6-4 Maxwell-Boltzmann velocity distribution. As an example of an 
application of Section 6-2, let us deduce here the important formulae for 
the classical translational yelocity and kinetic-energy distributions. We 
c m  keep the discuasion quite general: we are by no means restricted to 
ideal monatomic gases only. Specifically, let us consider any one-com- 
ponent system for which the internal vibrations are separable, and trans- 
lation and rotation can be treated classically (e.g., liquid nitrogen). 
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This is a special case of Eq. (6-25): 

(6-26) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, refers to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3N translational CI xdinates, 
ordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(% per molecule), and 

to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?bN rotational co- 

H =  UP^) + Ke(qe, Pel + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(qz9 qe). (6-27) 

The first term on the right of Eq. (6-27) is the translational kinetic energy 
(Eq. 6-16); the second term is the rotational kinetic energy (in general 
a function of both rotational coordinates and momenta, see Chapters 8 
and 9); and the third term is the intermolecular potential energy. Inter- 
molecular forces in general depend on rotational orientations of molecules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as well as on distances between centers of ma&, so U is a function of 
and q,. 

By analogy with Eq. (1-28) and as a consequence of the fact that classi- 
cal statistical mechanics is a limiting form of quantum-statistical me- 
chanics, we can state that 

is the probabdity that the system d l  be observed in the classical 
translation-rotation state dq, dp, &@ dp,, irrespective of the (independent) 
quantum-vibrational state. On integrating (6-28) over q,, 98, and pe, we 
then have that 

e-&./kT dp, je - (R,+U) /kT dq d e--KxIkT d p  

l e -K* IkT  d i , / e - ( q + U ) l k T d q ,  ago ap,  je-KxIkTdp, 
- - (6-29) 

2 qodpe 

is the probability that the system is in the translational momentum 
state dp,, irrespective of other conditions (q,, q#, etc.). Finalk?, since K, 
has independent and equivalent contributions (Eq. 6-16) from each of 
the N molecules; we can integrate (6-29) with respect to all translational 
momentum components except those belonging to any one molecule (say 
molecule 1, but we drop the subscript 1 for convenience), and find 

for the probability that any one molecule is in the translational momentum 
state dp, dp, dp,, or for the fraction of all molecules in this state, irre- 
spective of other conditions. The integral over p,, pu, and p+ (- 00 to 4-00) 
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has been carried out in the denominator of (6-30) with the result indi- 
cated. It should be emphasized that (6-30) applies to any system en- 
compassed by Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6-26). Actually, the restriction to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa one-component 
system is not necessary. Each component in a multicomponent system 
has its own molecular mass and its own independent momentum dis- 
tribution, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas in (6-30). 

If we change from cartmian momentum components pr,  p,, pz to the 
corresponding spherical coordinates, p ,  8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp defined by 

pa  = P: + py" + P:, pz = p m n e c o s v ,  

p r  = p COB e, p ,  = p sin 8 sin 9, 

then 

is the fraction of molecules in the momentum state d p d e d p .  On inte- 
grating (6-31) over 8 and p, we have 

(6-32) 

for the fraction of molecules with momentum between p and p + dp. 
Finally, if we put p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmv and multiply by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, (6-32) becomes 

for the number of molecules with velocities between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv and v + dv. This 
is the well-known MaxwelEBoltzmann velocity distribution. If we write 
e = m 2 / 2  for the translational kinetic energy of a molecule, (6-33) 
transforms into 

e--clkTel12 da 
(ukT)8/2 

for the number of molecules with values of e between e and e + de. This zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
agrees (Problem 6-3) with Eq. (4-11), deduced from quantum statistics 
for a special cam (ideal monatomic gas). 

If Eq. (6-30) is integrated over, say, p ,  and p ,  we obtain 

for the fraction of molecules with z-component of momentum or velocity 
in dpr or dvr. 

Applications of the above results are included in the problems. 
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PROBLEMS 

6-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAShow that in a system of independent harmonic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoscillators, all with 
frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv, the quantum number of the state with energy equal to the average 
energy per oscillator is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkT/hv, in the classical limit (kT/hv>> 1). 
(Page 116.) 

6-2. Show that at high temperatures, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq for a simple harmonic oscillator 
(Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5-0) can be expanded in the form 

hv 
kT 

2 ) x = - *  1 

For what value of kT/hv is the approximation q = kT/hv accurate to O.Ol%? 
Show that Ae/kT = hv/kT for a harmonic oscillator, where Ae is the energy 
difference between successive energy levels. (Page 116.) 

6-3. Verify that the Maxwell-Boltrmann energy distribution from Eq. (4-11) 
(quantum statistics) is the same as (6-33) (classical statistics). (Page 122.) 

6-4. Give an argument analogous to Eqs. (6-5) through (6-7), showing that 
the area of phase space per quantum state is h for a particle in a onedimensional 
box. 

6-5. Prove that the surfaces in phase space H(q, p )  = E (constant) and 
H(q, p) = E’, where E # E’, can never cross. 

6-6. Show that in the classical Hamiltonian, any independent term, potential 
or kinetic, of the form at2 ( 4  = q or p ;  a = constant) will lead to a contribu- 
tion kT/2 (per term) to the energy E and k/2 to CV. Examples are Eqs. (5-25), 
(6-2), and (0-20). 

6-7. Show that according to (6-33): (a) the most probable velocity is 
u* = (2kT/m)1/2; (b) the - mean velocity is 5 = (8kT/rm)1’2; (c)  the root 
mean-square velocity is (u2)Il2 = (3kT/m)1/2; and (d) the mcan translational 
kinetic energy per molccule is 3kT/2. 

6-8. Calculate Ei in cm/sec for Hz and 0 2  at  0°C. 
6-9. Show that according to (6-35): - (a) the most probable velocity com- 

ponent u. is zero; (b) Zs = 0; (c) ($)llz = (kT/m)II2; and (d) verify that - 
u2 = Z+?+Z = 32. 
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CHAPTER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
INTRODUCTION TO LATTICE STATISTICS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

ADSORFTION, BINDING, AND TITMTION PROBLEMS 

In the first two sections of this chapter we consider problems in which 
molecules of one species can be “bound” on one-, two-, or threedimen- 
sional arrays of sites presented by regular arrangements of molecules or 
molecular subunits of a different species. A bound molecule executes 
threedimensional vibrational motion in the neighborhood of its site. The 
most familiar example is the binding or adsorption of gas molecules 
on the twodimensional lattice of sites presented by the surface of a 
crystal. But onedimensional cases (e.g., binding of ions from solution 
on a linear polyelectrolyte molecule) and threedimensional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcases (e.g., 
absorption of hydrogen atoms by palladium) are also common. Irre- 
spective of the dimensionality, the system of molecules attached -to a set 
of sites is sometimes referred to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a lattice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas. 

We restrict the discussion in this chapter to models in which the binding 
on any one site (or, poasibly, small group of sites) is independent of the bind- 
ing on the remaining sites. Chapter 14 is devoted to the more complicated 
problems in lattice statistics in which this independence is lacking because 
of interactions between molecules bound on neighboring sites. 

Section 7-3 is concerned with the similar problem of binding of mole- 
cules on (indistinguishable) groups of sites which are free to move (e.g., 
binding of small molecules or ions on protein molecules in solution, or the 
hydrogen ion equilibrium of acid molecules in solution, etc.). Interactions 
between different groups of sites (e.g., between two protein molecules) 
are not included here but will be treated in Chapter 19. 

In Section 7-4 we discuss the elasticity of a linear polymer made up 
of units each of which can be in a “short state” or a “long state.” This 
system, we shall find, is formally equivalent to the lattice gas of Section 7-1. 
Adsorption of another molecular species on such a polymer is also studied 
in Section 7-4. 

7-1 Ideal lattice gas (Langmuir adsorption theory). An ideal lattice 
gas is a system of N molecules bound not more than one per site to a set 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 equivalent, distinguishable, and independent sites, and without 
interactions between bound molecules. The arrangement of the M sites 
in space is immaterial. In the Langmuir adsorption model, the sites are 
arranged in a regular twodimensional array on the surface of a crystal, 
and the bound molecules come from a gas phase which is in equilibrium 
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0 0 0 0 0 0 

FIQ. 7-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAdsorbed molecule -4 near surface of crystal B. 

with the lattice gas (adsorbed phase). For concreteness and because of 
its importance, we shall discuss this particular (adsorption) problem 
explicitly here, but the treatment is not restricted to it, as will be evident 
from Section 7-4 and Chapter 14. 

As an example, suppose the monatomic gas A is adsorbed on the surface 
100-plane of a simple cubic lattice of solid B. We assume for simplicity 
that the forces holding the solid together zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare much stronger than the 
adsorption forces, so that the solid is essentially unperturbed by the 
presence of gas molecules on its surface. Thus the solid merely plays the 
role of providing a potential field for the adsorbed molecules. The thermo- 
dynamic system we consider consists, then, of gas molecules “bound” in 
this potential field. 

Suppose that the potential energy of interaction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(r) between a 
molecule of A and a molecule of B is of the Lennard-Jones type (Appen- 
dix IV). The adsorbing force holding an A molecule to the surface of B 
is then the sum of a number of such interactions. In Fig. 7-1 .s shown an 
adsorbed molecule A at a distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz from the surface of B (taken aa the 
q-plane), and a few of the distances t i  which should be substituted in u(r) 
to give the total potential energy of interaction of A with all molecules 
of the solid, for this particular location of A: 

In Eq. (7-1), U is a function of x ,  21, and z, the coordinates of A. If we hold x 
and y fixed and consider the dependence of U on z (i.e., along a line perpen- 
dicular to the surface), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU(z)  will have a qualitative appearance similar to 
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Gas 

Energy of &option zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

FIG. 7-2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPeriodic variation ovcr surface of depth Uo of the potential well zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U(z) for an adsorhed molecule. 

u(r) in Fig. IV-1 and the approximate mathematical form (Problem 7-1) 

const const' 
29 28 

U(z) = - - -. (7-2) 

Thus the free translational motion of a gas molecule in the zdirection is 
replaced on adsorption by vibration in the potential well associated with 
Eq. (7-2). In the harmonic-oscillator approximation, the frequency of 
vibration v, is determined by the curvature of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU(z) at  its minimum. 
Usually zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv, is of order 10la sec-' (Problem 7-2). 

For different choices of the fixed values of x and y, U(z) will be diflerent 
(in other words, U is a function of x and y also). Thus U(z) directly above 
a B molecule will be different from U(z) above the center of a square of B 
molecules. In particular, the depth Uo of the potential well in U(z) will 
vary periodically in both P and ydirections. Hence UO is a function of 
z and y. Figure 7-2 illustrates this variation, where UO is plotted against 
2 along one particular line (y constant) in the surface, as indicated in the 
figure. It is clear from Fig. 7-2 that motion parallel to the surface involves 
passing over potential barriers Yo. With van der Waals forces, these 
barriers are of order 0.3 to 1 kcal.mole-'. A t  temperatures sufficiently 
low that the thermal energy kT of the adsorbed molecules is small com- 
pared with the height of the barrier Yo, the molecules will be trapped 
("localized") in the neighborhood of potential minima in U(x, 9, z), except 
for occasional passages over the barrier or evaporation and recondensation 
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(necessary for equilibrium with the gas phase). When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkT is large compared 
with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVO, the periodic variation in UO becomes unimportant, and the 
adsorbent surface, in effect, becomes a continuum. 

The Langmuir model corresponds to localized adsorption (kT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< Vo). 
At the end of this section we shall also discuss briefly the case of a dilute 
"mobile" (kT >> VO) adsorbed phase. The transition from localized to 
mobile adsorption, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas T is increased, is an interesting problem which will 
be dealt with in Chapter 9. 

In localized adsorption, the adsorbed molecule has three vibrational 
degrees of freedom (replacing three translational degrees in the gas). 
We have already mentioned the vibration in the zdirection. In addition, 
there is vibration in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx- and ydirections (if these are the normal coordinates 
for the two-dimensional motion) around the minima of Uo(x, y), with 
frequencies v, and up  These frequencies are usually a little less than 
lo'* sec-I. 

The partition function for a single adsorbed molecule, in the harmonic- 
oscillator approximation, is then 

9 (7-3) --UoolkT q(T) = qzquQze 

where ql, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq,, and q, are onedimensional harmonic-oscillator partition 
functions (Eq. 5-6) with frequencies v,, vy, and v,, respectively, and with 
zero of energy in each case at  the bottom of the potential well U(x, I, z). 
As explained above, the crystal surface is assumed to present an external 
and fixed potential field, so that q is a function of T only. Since we want 
to investigate the equilibrium between adsorbed and gas molecules, we 
must choose the same zero of energy for the two phases. We take an 
isolated gas molecule [i.e., z = 00 in Eq. (7-2)] at rest as the zero. With 
this zero, we have to insert the Boltzmann factor in U O O  (a negative quan- 
tity) in Eq. (7-3), where Uoo is the potential energy at  the minima in 
U(x, y, z) [or in UO(X, y)]. Then the heat of adsorption per molecule at  
0°K is Uoo + h(u, + v, + v,)/2. 

If we had a system of N sites and N molecules, we would write Q = qN, 
just as in the Einstein model for a crystal. But here the number of sites 
(equivalent but distinguishable) is d l  1 N. There is therefore a con- 
figurational degeneracy not present in an Einstein crystal (it would be 
present if the crystal had lattice vacancies), which must be taken into 
account. For each quantum state of an Einstein crystal there are here 
Al ! /N! (Af -N) !  quantum states-this being the number of ways N indis- 
tinguishable molecules can be distributed among 111 labeled sites. Hence 

(7-4) 
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and 

In Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM In ill - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN In N - ( d l  - N) In ( M  - N )  + N In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq. (7-5) 

The basic thermodynamic equation for the lattice gas (or adsorbed 
phase) is 

dE = T d S  - CPdM + p d N ,  (7-6) 

where M is proportional to the volume, area, or length, depending on the 
dimensionality of the lattice. That is, M is the “external variable” in this 
case, and @ is essentially a pressure, though it has dimensions of energy 
here. Thus, in two dimensions, if we write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = M u  where a = area and 
a is a constant, then CP/u is t.he so-called surface or spreading pressure 
(dimensions of energy per unit area) 9. 

Prom Eqs. (7-5) and (7-6) we have 

where 8 = N/d€,  the fraction of sites occupied. Equation (7-7) is the 
equation of state. Note that in the limit aa 0 + 0, CP + BkT (which is the 
same, in three dimensions, as p + $T, where p = N / Y ) .  If the adsorbed 
phase is in equilibrium with a gas phase at pressure p [assumed ideal as in 
Eq. (4-2511, 

or 

X(T)P  9 x(T)  = Q ( T ) ~ “ ~ ‘ ~ ” ’ ~ .  (7-10) ’(” = 1 + x(T)p  

Equation (7-10) is the Langmuir “adsorption isotherm, giving the amount 
of gas adsorbed as a function of gas pressure at a fixed temperature. When 
p + 0, e + xp, and when p + 00, 8 + I. Many adsorption systems 
follow this equation approximately. Statistical mechanics provides all 
the necessary molecular details to calculate x(T)  explicitly (Problem 7-3). 

The entropy of the lattice gas (Eq. 1-33) can be put in the form 
(Problem 7-4) 

where 

= &onfig + &ib, (7-11) 

(7-12) M! 
Sconfig = kln N ! ( j f  - N ) !  J 



7-11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIDEAL LATTICE GA8 (LANGMUIR ADSORPTION TBEORY) 129 

Svib zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(In q + T -4 d&q - (7-13) 

We note that Scodig zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis independent of temperature, whereas &ib + 0 as 
T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 (just as for an Einstein crystal). If equilibrium could be main- 
tainedto T = 0, wewouldhaveS > Oat T = 0. Thisisnot anexception 
to the third law of thermodynamics (Section 2-4)) since the combined 
system Sites + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlattice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas is not a pure crystal, but a binary mixture. 
That is, a lattice gas can exist only in the presence of an additional molecu- 
lar matrix (e.g., a crystal) that provides the sites. 

For future reference, let us also apply the grand partition function to 
this system. We have 

= e*MIIT = M!(qA)N 
N!(M - N ) !  N - 0  

(7-14) 

(7-15) 
* _ -  kT - In ( l  + q A ) 2  

where A = @ I k T .  This agrees with the result obtained by eliminating 8 
between Eqs. (7-7) and (7-8). Also, from Eq. (1-67)) 

(7-16) 

which is essentially just Eq. (7-10). 
For contrast we consider a dilute, mobile adsorbed phase (two-dimen- 

sional ideal gas). In this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase the adsorbed molecules still vibrate in the 
z-direction with partition function g., but have free translational motion 
in the zy-plane. The zy partition function for one molecule is [see Eq. (6-9)] 

where a = area. Then 

(7-17) 

(7-18) 

For present purposes, we replace OdM in Eq. (7-6) by qda. Then 
we find 

(7-19) 
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The adsorption isotherm is then 

It is interesting to compare the predicted relative amounts of localized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 where Eq. (7-21) is valid and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

xp in Eq. (7-lo), assuming all conditions the same except for the 
and mobile adsorption in the‘limit as p 
e 
xpmotion. We find from Eqs. (7-10) and (7-21), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-- Nmobile - (2~&T/h’)a , (7-22) 
Nlocalired zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqxqu 

where a = a / M  = area per site. The numerator on the right is the 
partition function for a molecule moving freely in a two-dimensional 
box of area a. The denominator is the partition function of a two-dimen- 
sional oscillator, which would have a numerical value less than the 
numerator because, in classical language, there is a Boltzmann factor 
exp [-(fg2 + fuya)/2kT] (Eq. 5-1) in the integrand of the configuration 
integral for an oscillator, whereas the integrand is unity [Eq. (&a), 
N = 11 for a particle in a two-dimensional box. Therefore, we find 
Nmobile > Nlocaliaed. 

7-2 Grand partition function for a single independent site or subsystem. 
In Section 3-4 we discussed a canonical ensemble of subsystems. Prob- 
lem 3-5 extends the argument to a grand ensemble of subsystems. Bemuse 
of its importance, we discuss here the same question as in Problem 3-5, 
but use a different approach: we start with the ordinary grand partition 
function and show that it reduces to a product of subsystem grand parti- 
tion functions t. 

Consider a macroscopic system of M equivalent, independent, and dis- 
tinguishable sites on each of which any number 8, from zero to a maximum 
m, of molecules can be “bound” (the nature of the binding or association 
with the site is immaterial here). Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(8) = xje-ej(8) ‘kT be the site 
partition function when 8 molecules are bound to the site. If there is a 
total of N molecules bound on the M sites, and if the number of sites having 
8 molecules bound is u,, then the canonical ensemble partition function for 
the system of M sites is 
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where the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsum is over all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsets* a = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,,, al, . . . , a,,, satisfying the re- 
strictions 

(7-24) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This is a straightforward extension of Eq. (7-4) which, in the present 
notation, would be written 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a0 + a1 = M, al = N ,  

q(1) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ. do)  = 1, 

That is, in the Langmuir problem, 8 = 0 (site empty) or 1 (site occupied). 
The grand partition function is 

where we have used the second of Eqs. (7-24) in rewriting XN in the last 
step, and the only restriction on the sets a is now the first of Eqs. (7-24), 
since we want to sum over all possible values of N for given M. By the 
multinomial theorem [this is just a generalization of the binomial theorem 
used in obtaining Eq. (7-14)], 

m, M, 0 = €(A, vM,  (7-26) 

where 
€ = q(0) + q(1)X + - * * + q(rn)X" 

m 
= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc q(s)X'. 

8 9 0  
(7-27) 

This is a good example of a summation having been made easier by passing 

* Here and throughout the rest of the book we use a boldface letter to repre- 
sent a set of numbers with subscripts 1, 2, . . . . For example, we use R for 
N1, N2, . . . (in analogy with the components of a vector). We did not introduce 
thw notation in Chapter 1 for N1, N2, . . . and PI, p2,. . . because there we 
wanted to emphasize the one-component caae for simplicity. Hence we used 
N instead of R, etc. However, N is generally preferable because it is more explicit. 



132 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAINTRODUCTION TO LATTICE STATISTICS [CHAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
from Q to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. The sum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ has exactly the form of a grand partition function, 
but it pertains to only a single site instead of a macroscopic system. It is 
rather obvious that if the sites were all different, but still independent of 
each other, 2 = [1[2 . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[M, where [i is ti sum, as in Eq. (7-27)) for site 
i only. The sites must be independent of each other for thia simplification 
in 2 to occur. Equations (3-5) and (343) are analogs in the canonical 
ensemble. 

If, when all sites are equivalent, we consider each site to be an open 
subsystem, then the macroscopic system of M sites may be regarded as a 
grand ensemble of subsystems (see Problem 3-5). The chemical potential 
and temperature of a single open subsystem are melldehed thermo- 
dynamic properties, for they are determined by the chemical potential and 
temperature of the macroscopic reservoir with which the subsystem is in 
contact. Incidentally, in adsorption problems, this reservoir is real and 
not imaginary: it is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas or solution, in equilibrium with the adsorbed 
phase, providing the molecules or ions being adsorbed. 

The average number of molecules in the macroscopic system is 

or 

where 8 is the average number of molecules per site. Thus the equation 
relating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt and [ (subsystem) is formally the same as that relating 7 and 
2 (macroscopic system). In the differentiation in Eq. (7-29), m is held 
constant, which is analogous to holding M constant in Eq. (7-28). 

The "pressure" @ is related to the site or subsystem grand partition 
function [ by 

e*MIM' = z = [ M ,  

0 = kTln [(A) 0. (7-30) 

Thus, whenever we are concerned with a system of independent, dis- 
tinguishable, and open sites (subsystems), we can go directly to Eq. (7-29) 
to determine the mean population 8 and also the population distribution 
[since q(s)X'/[ is clearly the probability of a population s] of each site. 
This is a simpk procedure than using the full grand partition function, 
but of course lkds to the eame results. The mean population 8 as a func- 
tion of X is essentially the adsorption isotherm in an adsorption system. 

The situation with mpect to fluctuations in s in a subsystem is com- 
pletely analogous to that of fluctuations in the energy of independent 
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molecules in Eq. (3-24). We fhd from Eqs. (7-29) and (2-7), 

or 

just zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas in Problem 3-8. Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU N / ~  is of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM-'/*, u, is of the same 
order of magnitude as 3. That is, the probability distribution in 8 is broad, 
as should be expected, and not sharp. 

We now consider some applications of Eq. (7-29). First, an ideal lattice 
gas. Here, aa waa pointed out following Eq. ( 7 4 4 ,  s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 or 1, q(0) = 1, 
and q(1) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq. Therefore, 

€ = 1 + qx, 

(7-31) 

which is the same as Eqs. (7-10) and (7-16). 
Next, suppose we have a system of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM independent pairs of sites: 

01 01 01 

x 2  x 2  x 2  

Such a system of sites might occur on a linear polymer, for example. The 
two sites in a pair are different: q1 is the partition function [as in Eq. (7-3)1 
for a molecule bound on a site of type 1, and q2 for a site of type 2. Also, 
when both sites of a pair are occupied, let there be a potential energy of 
interaction w between the two bound molecula. So long as there is no 
interaction between molecules on different pairs, the introduction of 10 

does not affect the independence of the pairs. Thus, a pair of sites is the 
independent subsystem here, and 8 = 0, 1, or 2. If we consider all possible 
states of a pair of sites with s molecules bound, we see that 

q(0) = 1, q(1) = q1+ q2, q(2) =  me-^"^. 

... ... 

Therefore 

and 
(7-32) -WILT 2 € = 1 + (q1 + q2)A + q1qae , 
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This is the adsorption isotherm. Except for a factor of two, this reduces to 
a. (7-31) for an ideal lattice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq1 = q2 = q. The factor 
of two has its origin in the fact that the total number of sites is 2M in 

As a third example, we derive the well-known B.E.T. (Brunauer- 
Emmett-Teller) equation for multimolecular adsorption. The model, 
which is physically unrealistic, is the following. A surface has M inde- 
pendent, distinguishable, and equivalent sites, on each of which an in- 
dehi te number of molecules can be adsorted in a vertical pile, so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 = 0,1,2, . . . . Let q1 be the partition function for the bottom molecule 
in a pile (“finst layer”), q2 for the next molecule (second layer), etc. The 
positions in a pile are distinguishable in the same sense as in a onediien- 
sional Einsteii crystal. Then 

(7-34) 

(7-35) 

This is the adsorption isotherm. Now consider the special case q2 = qs = 
q4 = . . . . That is, molecules in the first layer (next to the surface) have 
a partition function q1, and all others q2. (Second and higher layers are 
supposed to be “liquid-like,” though a onedimensional pile is a very poor 
model for a liquid.) With this simplification, 

Eq. (7-33) and M in Q. (7-31). 

= 1 + qlh + qlq2h2 + q1q2q8h8 + ’ ’ 8 

and 
w 
M -  

qlx + 2q1!?2A2 + 3q1q2qsxs + * * * . 
€ 

8 = - -  

cz - - 
(1 - x + cz)(l - 5)  ’ 

where 

(7-36) 

(7-37) 

Equation (7-36) is the B.E.T. adsorption isotherm. 
A typical isotherm (c = 157) is shown in Fig. 7-3. Many experimental 

isotherms with this type of qualitative behavior are known. When c >> 1, 
adsorption in the first layer is strongly favored relative to higher layers, so 
the first layer is almost completely filled before higher layers begin. Thii 
accounts for the “knee” in the isotherm (Fig. 7-3) near 8 = 1. Up to 
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X 

FIO. 7-3. B.E.T. adsorption isotherm for c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 157. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
almost zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 = 1, 8 S cx/(l + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcz) (Langmuir equation) when c >> 1. On 
thermodynamic grounds we h o w  that 8 -B QJ when p + po (the vapor 
pressure of liquid adsorbate at the temperature of the experiment; we 
888ume T < T,, the critical temperature). That is, when p approaches po, 
bulk liquid will begin to condense on the adsorbing surface. On the other 
hand, 8 + 00 when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx -+ 1, according to &. (7-36). Therefore, from 
Eq. (7-37), we have 

which is equivalent to the vapor pressure equation for an Einstein crystal 
(Problem 5-11). 

In the B.E.T. theory, the surface pressure @/a is determined by 

z = p, e*MlkT = 
or 

l -x+c l : .  =.( 1 - x  ) (7-39) 

We note that Q, + 00 as x + 1. But, thermodynamically, @/a is news- 
sarily finite at x = 1. This is a serious fault of the B.E.T. theory. 

The general method of this section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan easily be extended to cases in 
which more than one species of molecule can be bound to a site (i.e., the 
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subsystem is multicomponent). For example, let us return to the system 
above of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM independent pairs of sites, but suppose now the two zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsites in a 
pair are equivalent. Two species A and B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be bound on the sites (not 
more than one molecule per site) with partition functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQA and QB, and 
if both sites in a pair are occupied, there is an intermolecular potential 
energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWAA, WAB, or WBB, depending on the species making up the pair. 
The general equations for two species A and B are (Problem 75) 

and a similar equation for BB. Equation (7-41) is a two-component grand 
partition function for a subsystem. In the special case under consideration, 

Then 

with a similar equation for BB. This is equivalent to Problem 7-6 if W A A  = 
WAB = WBB = 0. 

7-3 Systems composed of independent and indisthgubhable sub- 
systems. Here we extend the treatment of the previous section to systems 
in which binding or adsorption takes place on sites which are attached to 
freely moving adsorbent molecules. Examples are: adsorption of ions from 
solution onto protein or other macromolecules; titration curves (i.e., 
binding of H+) of polybasic acids or polyacidic bases; adsorption of a gas 
on small dust particles; etc. The subsystem here consists of one adsorbent 
molecule (protein, etc.) and 8 bound (H+, etc.) molecules, where 0 I 
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8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbefore. We still assume, for simplicity, that the adsorbent mole- 
cules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare unperturbed in their other properties by the presence of adsorbed 
molecules. We shall use a language appropriate to a gaseous system, since 
we have not yet discussed solutions. But we shall see in Chapter 19 that, 
under suitable conditions, if the adsorbent molecules are in a solvent rather 
than a vacuum, we merely have to replace the adsorbent partial pressure p 
by the osmotic pressure II. The gas is assumed ideal-that is, sufficiently 
dilute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that intermolecular interactions are unimportant. However, 
interactions between adsorbed molecules on the same adsorbent molecule 
are included. Interactions between admrbent molecules will be discussed 
in Chapter 19. 

The system we consider is shown schematically in Fig. 7-4. There are 
21.1 adsorbent molecules in a volume V ,  to each of which is attached from 
zero to m adsorbed molecules, with a total of N adsorbed molecules. Free 
adsorbate molecules are not included in the system for convenience and 
also because this omission leads to equations which are completely anal- 
ogous to the osmotic equations of Chapter 19. Since the gas is assumed 
ideal (each component behaves independently), no error is introduced by 
this procedure, and the pressure p of the system as we have defined it is 
actually the partial pressure of the adsorbent molecules in the adsorbent- 
adsorbate gas mixture. 

This is a two-component system. The basic thermodynamic equations 
are 

(7-46) 
d E =  T d S -  p d V + p d N + p ’ d M ,  

A = E - TS = - p V + p N + p ’ M ,  

where p’ is the adsorbent chemical potential. 

FIQ. 7-4. Adsorbent molecules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(large) with adsorbed molecules (small) 
attached. 
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We let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(s) be the partition function of an adsorbent molecule with s 

adsorbed molecules attached. This will include, as factors, the translational 
[hence each q(s) is proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV], rotational, etc., partition functions 
of an adsorbent (s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0) molecule. Also, for the adsorbed molecules, q(s) 
will include a factor (1" [as in Eq. (7-3)], possibly a configurational factor 
or factors (for distributing s molecules on m sites), and Boltzmann factors 
in the potential energy of interaction between the s adsorbed molecules, if 
such interactions are present. The quotient q(s)/q(O), which we denote 
by qo(s), refers to the adsorbed molecules only and corresponds to q(s) in 
the preceding section [in the preceding section, q(0) = 11. 

We now treat this system as an ideal gas mixture of m + 1 different 
molecular species, cormpondmg to the different numbers of adsorbed 
molecules, s = 0, 1, . . . , m. If there are a. molecules of species s in the 
system, then the canonical ensemble partition function is [according to 
Eq. (3-15)] 

!7(O)"O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(1)"' . . . q(mIa". 
ao! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU l !  4 

However, aa a partition function we want a sum over all possible states of 
the system, not for fixed ao, . . .. , G, but rather for all possible ao, . . . , a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
coiisisteiit with fixed N and M. Therefore 

q(0)'O. . . q(m)"", 
ao!. .  .u#n! Q(N, Jf, v, T) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc * (7-47) 

subject to the restrictions (7-24). Equation (7-47) also follows from 
Eq. (7-23) on dividing by M!, as should be expected. 

We wish next to multiply Q by X = @IkT and sum, as in Eq. (7-25). But 
first we have to digress briefly to consider what kind of a partition function 
this will give us. Summing over N with M fixed corresponds to a system 
open with respect to adsorbed molecules but closed with respect to ad- 
sorbent molecules (see the last paragraph of Chapter 1). From the rule 
mentioned in connection with Eq. (1-92), the partition function, which we 
denote by I', is related to thermodynamics by 

where 
€ = 1 + qo(1)X + - - + qo(m)X". (7-50) 

In Eq. (7-49), q(0) is a function of the thermodynamic variables V and T, 
and is a function of and T. 
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The average number of adsorbed molecules is 

Thus Eq. (7-29), either zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas it stands or with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(s) replaced by qo(s), is also 
valid here: the number of adsorbed molecules per subsystem depends on 
the nature of the group of m sites, but not on whether they zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare moving 
around or not-just what one would expect intuitively. 

It is instructive to consider the grand partition function aa well (system 
open with respect to both components) : 

Now zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P =  

Thia is the expected equation of state. Also, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a = A(*) a In = q(O)X ’X ($ )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V d . T  T 

= F A ( $ )  T 8 

(7-52) 

(7-53) 

(7-54) 

which is equivalent to Eq. (7-51). 
The simplest application of EQ. (7-51) is to a system of adsorbent 

molecules each of which has only one site for binding. The hydrogen ion 
equilibrium of a dilute monobasic acid would be an example. Then Eqe. 
(7-51) and (7-31) are applicable, and we get just the Langmuir adsorption 
isotherm. This is also the familiar equation of a simple titration curve 
(Problem 7-7) if we plot 0 as a function of In X rather than X (X is propor- 
tional to the concentration of adsorbate in a dilute solution). 

If each adsorbent molecule haa two sites and there is an interaction 
energy w between two adsorbed molecules on the same adsorbent, we ob- 
tain Eq. (7-33) again. An example would be the binding of hydrogen ions 
by, say, a diamine with two different sites (-R-NHs and -R‘-NH*). 
In this case w is positive (repulsion between two hydrogen ions). The 
relation between the statistical mechanical equation (7-33) and the equiv- 
alent thermodynamic expression involving successive dissociation con- 
stants is explored in Problem 7-8. 
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If each adsorbent molecule has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm sites and there are no interactions, 

then we again get the Langmuir equation (Problem 7-9). 

7 4  Elasticity of and adsorption on a linear polymer chain. The first 
problem we examine here is superficially unrelated to the preceding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsec- 
tions of the chapter. Actually, though, there is an extremely close analogy, 
as will be seen below. We consider a single linear polymer chain cornpcrsed 
of units each of which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be in a short state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa of length 1, or a long state 8 
of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl# (t# > L). The units are interconvertible (as in the chemical 
reactions of Chapter 10). Thus if a pulling force r is applied to the chain, 
some a units will be converted into longer 8 units and the chain will 
lengthen. This model is crudely representative of some real systems: the 
a - 8 transition in fibrous proteins; the helix-random coil transition in 
solutions of proteins and nucleic acids (r = 0); and possibly the elasticity 
of muscle and some textils. 

Neighboring units in the chain are assumed here to be independent of 
each other. Interactions between units will be considered in Chapter 14. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAill be the total number of units, with M ,  and M,, of the two types. 
We choose Ma to be independent; then M# = M - Ma. The funda- 
mental thermodynamic equation is 

dE = T d S + r d Z + p ' d M ,  (7-55) 

(7-56) 

and p' refers to a single unit (either a or 8). If we replace 1 and M as 
independent variables in Eq. (7-55) by Ma and M ,  we have from 

where 1 is the length, 

1 = LMa 4- b(M - Ma), 

Ea. (7-561, 

dE = T ds - 7(1# - la) ma + (p' + 749) dM. (7-67) 

We let j a (T)  and jp(T) represent the partition functions of one a and 
one 8 unit respectively. The explicit forms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAused for j ,  and j p  would depend 
on the particular system of interest. The ratio of j a  to j,, reflede the rela- 
tive intrinsic (i.e., unbiased by a force; r = 0) stabfity of the two kinds 
of units. 

The canonical ensemble partition function is 

where the configurational factor is the number of ways of distributing 
ill, a units among a total of M possible positions in the chain. We then 
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FIG. 7-5. Length-force zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArelation for linear polymer chain of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and /3 units. 

find from Eqs. (7-57) and (7-a), 

(7-59) 

where 6 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMa/M. Equation (7-59) is essentially the length-force relation 
(Fig. 7-5), since I and 6 are related, from Eq. (7-56), by 

At =en> force, r = 0, 

(7-60) 

(7-61) 

This is the intrinsic stability ratio (or "equilibrium constant"; see Chap- 
ter 10) referred to above. When r + 00, 6 + 0, and 1 + M26 (all "long" 
unite). 

The similarity between Eqs. (7-8) and (7-59) will be obvious. The 
chemical potential of a lattice gas and the force on a polymer chain play 
similar roles in altering the equilibrium ratio of the two possible states in 
each case (empty and occupied sites; a and f l  units). 

Let us consider also the partition function (Problem 7-10) 

(7-62) 

(7-63) 
where 
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In Eq. (7-62), Y is the analog of Z for a lattice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas. Using Eq. (7-58), 
we obtain 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= p, (7-64) 

(7435) € = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjs + jaq. 

This corresponds to 1 + qA for a lattice gas. Also, 

C afa MaQqMa 
Y lua = 

or 

which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAagrees with Eq. (7-59). 
We turn next to a more complicated situation. Suppose that there zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 

x equivalent and independent sites on each unit of the polymer chain for 
adsorption of another molecular species. An example would be the binding 
of hydrogen ions. In this case the length-force curve of the polymer would 
depend on the hydrogen ion concentration. Let qa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(as) be the partition 
function of one adsorbed molecule on a site of an a (s) unit. In general, 
qa # qs, so now we have the possibility of, say, altering the length of the 
polymer chain at constant force as a consequence of a change in the concen- 
tration (or pressure, if a gas) of the adsorbate. For example, if qa > qs, 
an increase in adsorbate concentration will cause some @ units to go over 
into a units, thus shortening the chain. It is conceivable that an effect of 
this kind could be involved in muscle contraction. Thii problem is very 
simple to treat by generalizing above (Eq. 7-65), but it is rather cumber- 
some using Q (Problem 7-11). 

QUA 

FIG. 7-6. Shortening of chain with increasing adsorbate concentration at  
constant T in the arbitrary special case x = 1, I&, = -5, jdj# = 1/10 (/3 units 
longer and more stable than a), and q8 = 0 (no adsorption on @ units). Curve a: 
T = 0 (rest length as function of A). Curve b: exp [ ~ ( l p  - lJ/kT] = 3.5. 
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The thermodynamic equation here is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

dE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdS - ~( l , 9  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZa) dM, + (p' + d#) dM + p dlv, (747) 

where p and N refer to adsorbed molecules. We set up a function ( (q ,  A, T )  
which is analogous to the two-component € in Eq. (7-41). We need a term 
in t for each possible state of a single unit. Thus, the unit can be of type 
@ with 0, 1, . . . , 2 molecules adsorbed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(q#), or of type a with 0, 1, . . . , R: 

molecules adsorbed (q,). The appropriate combination of Eq. (7-65) and 
Problem 7-9 is 

€ = jdl + q,9A)* + j.dl + qJY. (7-68) 
Then 

where 

(7-70) 

(7-71) 

Equations (7-71) give the fraction of sites of the two types which are 
occupied, as in Eq. (7-16). In the limit as X ---t a, 3 + 2 (all sites occupied) 
and 

j a d  . 6 +  
j , d  + 

If we solve Q. (7-09) for q, we fmd for the length-force relation 

This shows the effect of adsorbate concentration (proportional to A). If 
qa > @, the force T must be greater to achieve the same length (or 6) 
when X > 0 as compared with X = 0. This is because the presence of 
adsorbate molecules favora short unite in this case. figure 7-6 illustrates 
an equivalent effect: the shortening of the chain with increase in X at  
constant 7 when qa > q#. 
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PROBLEMS 

7-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAssume that the solid is a continuum with number density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN/V 
and occupies the =mi-infinite region z I 0. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(r) in Eq. (IV-1) be the 
interaction potential between a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas molecule and one molecule of the solid. 
Show that the total interaction between a gas molecule at t > 0 and the entire 
solid is 

(Page 126.) 

(7-73) 

. 712. Show that the frequency of simple harmonic motion at the bottom of 
the potential well (7-73) is 

112 

m 
(Page 126.) 

7-3. Consider argon gas adsorbed on a solid at 2WK, according to Lang- 
muir's equation, (7-10). In Eq. (7-3), take UOO as 1500 cal-mole-l and v. = 
v, = v. = 5 X 1012sec-1. Calculate 0 when p - 1 atm. (Page 128.) 

7-4. Verify Eq. (7-11) for the entropy of an ideal lattice gas. Make a rough 
plot of S/Mk as a function of B over the entire range 0 I B I 1. (Page 128.) 

7-5. Extend the derivation of Eq. (7-26) to include Eq. (7-40) for adsorp 
tion from a binary mixture. (Page 136.) 

7-6. Apply the &method to a two-component (A, B) ideal lattice gas (inde- 
pendent sites; each site can be empty or can be occupied by an A or a B). 
Show that 

(Page 136.) 
7-7. Put Eq. (7-31) in the form 

X e 
A112 1 - e '  In- - In- 

whcrc All2 is the value of X when 8 = +. Make a rough plot of 8 against 
In (X/Xll2) ("titration curve"). Compare with F'ig. 7-5. (Page 139.) 

7-8. Consider a system of adsorbent molecules, each with two adsorption 
sites (q1 and 92). Let w be the interaction energy when both sites of a pair are 
occupied. Let uo, u1, and u2 be the fractions of adsorbent molecules with zero, 
one, and two adsorbed molecules. Let p be the concentration of adsorbate 
molecules in equilibrium with adsorbed molecules. For a dilute solution, from 
thermodynamics, 

c - c*+ k T I n p ,  (7-74) 

where p* is independent of p. We define successive thermodynamic dissociation 
constants by 
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Show that the average number 8 of adsorbed moleculee per zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApair is 

(7-75) 

This is a purely thermodynamic result. Next, we define an "intrinsic" dis- 
sociation constant K1 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsitea of type 1 by 

(7-76) 

T h e  equations refer to adsorption on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAisdaled sites of type 1. Show that Eqs. 
(7-74) and (7-76) give zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e-p*lkT e-c+' kT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K1 = - 8 K2=-. (7-77) 

Q1 q2 

Using this notation, show that the statistical-mechanical equation (7-33) becomes 

Finally, compare Eqs. (7-75) and (7-78) to deduce the connections 

(7-79) 

Give a physical interpretation of Eqs. (7-79). (Page 139.) 
7-9. For a system of adsorbent molecules each of which has m equivalent 

and independent sitea for adsorption, show that - (1 + qX)* and that the 
adsorption isotherm is the same as the Langmuir equation, (7-31). (Page 140.) 

7-10. Use the method of Eq. (1-92) to find the characteristic thermodynamic 
function for the partition function Y. Use this result and thermodynamics to 
show that (""3 . 

na = ' 7 &?,T 

(Page 141.) 

chain from the canonical partition function &(Ma, M, N, T). (Page 142.) 

function, Eq. (1-87). 

(or adsorbed phase) 

7-11. Derive Eq. (7-72) for the length-force relation of an adsorbing polymer 

7-12. Derive the properties of an ideal lattice gas using the N, a, T partition 

7-13. Deduce, from Eq. (7-6), the thcrmodynamic equation for a lattice gas 

a(p) = k~ e(p') zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp' (T constant), 

assuming that the equilibrium gas phase (pressure p) is ideal. Use this equation 
to check the self-consistency of Eqs. (7-10) and (7-15). 
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7-14. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf adsorption in the B.E.T. theory is limited to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn layers (by pore struc- 
ture in the adsorbent, for example), show that 

cz[l - (n + 1)z" + nZ"+1] 

(1 - %)(I - z + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAez - @"+I) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI =  

7-15. Derive the B.E.T. equation, (7-30), from the complete grand partition 
function 2. For a given N, let N1 be the number of molecules in the fmt layer 
and N' be the number in higher layers, where N1+ N' = N. Then Q(N, M, T) 
wil l  involve a sum over either N1 or N'. 

7-10. Show that fl = X(a In r/aX) in Eq. (7-51) follows from kTln r = 
pV - p'Y and Eq. (7-46). 

7-17. Diacuse the equilibrium between gas and adsorbed phase (Langmuir 
model) in terms of an energy-entropy competition (see Section 5-3). 

SUPPLE~~ENTABY &DING 

BAND, Chapter 5. 
FOWLER and GUQQENEEIY, Chapter 10. 
HILL, T. L., in A&ames zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin Cdgsis, Vol. 4. New York Academic Press, 1952. 
8. M., Chapter 7 and Appendixes 4 and 5. 



CHAPTER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IDEAL DIATOBUC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGAS 

In Chapter 4 we studied an ideal monatomic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas. We extend the die 
cussion of ideal gases here to those composed of diatomic molecules, and 
then in Chapter 9 we consider polyatomic molecules. An important a p  
plication of the results obtained in these two chapters is to chemical equi- 
librium and chemical kinetica in ideal gas mixtures (Chapters 10 and 11). 

&1 Independence of degrees of freedom. We shall present in this 
chapter and the following one the simplest possible treatments, based on 
the rather good approximation of independence of degrees of freedom. 
Brief mention of this approximation has already been made in Chapter 3 
[see Eqs. (3-13) and (3-14)], but we discuss it a little more fully here. 

Consider a diatomic molecule consisting of two nuclei (masses nl and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmz) 
and several electrons. In an exact quantum-mechanical treatment of this 
system, all these particles and their (coulombic) interactions have to be 
included in a single Schradinger equation. However, because the electrons 
are very light compared with the nuclei and hence move much faster on 
the average, it is an excellent approximation (called the Born-Oppenheimer 
approximation) to consider the nuclei fixed while studying the electronic 
motion. The procedure, then, is the following. For nuclei fixed at some 
distance apart r, we write and solve the SchrMnger equation in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
coordinates of the electrons. The potential energy in this equation is made 
up of electron-electron, electron-nucleus, and nucleus-nucleus coulombic 
interactions. The last of these interactions is of c o w  qnstant for con- 
stant r. A set of (electronic) energy levels is obtained, which will depend 
on the value of r. In particular, let the dependence of the ground state 
electronic energy on internuclear distance be denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAue(r). This 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be calculated accurately only for very simple molecdea (one 
and two electrons). In more complicated caaes it must be approximated 
or deduced semiempirically from experimental information. The typical 
form of u6(r) is shown in Fig. 8-1. It is qualitatively similar in appearance 
to the van der Wads interaction curve, Fig. IV-1, but is much deeper 
(of the order of 100 kcal-mole-'), and the minimum occurs at smaller 
values of r (often 1 or 2 A). The depth of the ue(r) well is of course essen- 
tially the energy of the chemical bond between the two atoms. The dashed 
curve in Fig. 8-1 is a schematic plot of the first excited electronic energy 
level as a function of r. 

147 
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FIG. 8-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGround (and first excited) state electronic energy u6 rn a function 
of internuclear separation r.  The first few vibrational levela are shown. 

We can now investigate the (relatively slow) motion of the two nuclei. 
The work required to change the value of r when the molecule is in its 
ground electronic state is determined by u6(r). That is, Ue(r) serves as the 
potential function for the nuclear motion. A second Schriidinger equation 
is then written, this time in the six coordinates (XI, y ~ ,  21, x2, y2, 22) of 
the two nuclei with u6(r) as the potential function. Since we want to 
consider the molecule to be in a box of volume V, we must add that the 
potential becomes infinite when the center of maw of the molecule is out- 
side this box. The next step is to change to the coordinates x, y, z, r, e, ya, 

where x, y, and z refer to the position of the center of mass and r, e, and ya 
are indicated in Fig. 8-2. With these new coordinates, the equation 
separates into two equations, one in x, y, and z (translation) and one in 
r (vibration), 8 and cp (rotation). The x, y, z equation is just that of a 
particle of mass ml + m2 in a box of volume V. This problem haa al- 
ready been discussed in Section 4-1. We can take over the ml ts  ob- 
tained there simply by replacing m by ml + ma. The energy levels from 
the r,  8, ya equation are difficult to calculate [for one thing, ue(r) is not 
a simple function] and are not simply additive (vibration + rotation). 
Therefore we make two further approximations. First, we replace ue(r) 
by a parabola which fits u6(r) in the neighborhood of its minimum. Second, 
we separate the vibrational and rotational motions from each other by 
assuming that, aa far as rotation (0, cp) is concerned, the molecule has a 
fixed internuclear distance re, where re is the ("equilibrium") value of r 
at the minimum in ud(r). The rotational motion is therefore approximated 
as that of a rigid, linear, free rotator and the vibrational motion as that 
of a simple harmonic oscillator (a problem already discuesed in Sec- 
tion 5-1). 
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FIQ. 8-2. Vibrational zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand rotational zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0,q) coordinates of a diatomic 
molecule. The center of mass is at the origin. 

We have then the basic equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[see (3-13) and (3-14)] for an ideal 
diatomic gas, 

H =  H t + H , + H , + H e ,  (8-1) 

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= et -k d+ -k CO -k €6, (8-2) 

0 = Mq 9 dv, T) = ~t(v,  T ) q r ( T ) q o ( T ) q e ( T ) .  (W 

The. rotational, vibrational, and electronic statea are obviously inde- 
pendent of the volume, 80 the corregponding q’s are functions of T only. 
We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshall discuas q,, and q, in Sections 8-2 and 8-3, respectively. For 
qt, as already mentioned, we have from Eq. (&lo), 

1 N  

In the notation of Eq. (4-42), q. is simply 

(8-5) 

We shall usually choose the zero of energy as the separated atoms (r 00 

in pis. 8-1) at rest. If the vibrational energy levels are denoted by a,, 
rehtive to the customary choice of the bottom of the potential energy well 
ae(r) as zero, and if the depth of the well (Fig. 8-1) is D,(>O), then 

-%tIkT 
g6 = u6le 



150 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIDEAL DIATOMIC QA8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[CHAP. 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q,qv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArelative to our choice of separated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAatoms as zero is 

q4v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe--(--D.+*n)lkT = W61eD~IkT C e - % I k T .  -- 7I  0 

96 99 

Thus it is self-consistent to put €61 = -D, in Eq. (Hi), as we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshall do, 
and write qv (in Section 8-2) relative to the bottom of the well as zero. 

ordinarily, just as for a monatomic gas, it is only the ground electronic 
state which is of interest becatwe of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlarge separation between electronic 
energy levels, relative to kT. However, there are exceptions; for example, 
NO (above 1 5 O K )  and 0 2  (above 1OOOOK). In these cases, assuming as 
a further approximation that the rotational and vibrational states are the 
same in the Merent electronic states, qI is still a separate factor in Eq. 
(8-3), and we write 

qe = ~61e-C*l'kT + ~ 6 2 e 4 ~ / k T .  (W 
Ae a consequence of Eq. (&3), many of the thermodynamic functions 

receive additive contributions from translation, rotation, etc. For example, 

A =  -kTInQ= A t + A , + A , + A . ,  03-71 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(s-s) 

A ,  = -NkTlnq,, A .  = --NkTlnqv, etc. (84) 

where 

At = -NkT In (y) 9 

Equation (8-8) is the same as Eq. (4-14), except for the mass. Also, 

where 
El = #NkT, 

E, = N k T a a ,  etc. dT 

Similar equations can be written for CV, S, etc. 
The equation of state, 

does not depend on q,(T), q.(T), etc. [see also Eq. (3-12) and Problems 
3-1 and 3-61. 

To continue the discussion, we need further details concerning qv and q,. 
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8-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVibration. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe vibrational motion of a diatomic molecule involves 
only one coordinate, the internuclear distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr. Thus, there is only one 
vibrational degree of freedom. For the potential energy that determink 
the vibrational motion, we take 

ue(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Dm + * f ( r  - rJ2, (8-14) 

as already explained, where f is the force constant, 

(Problem 8-1). Since we wish to use the bottom of the potential well as 
the zero of vibrational energy, we drop D, in Eq. (8-14) and include it 
instead in Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8-5) for qI, as mentioned earlier. 

Let the lime between centers of the two nuclei be the {-axis, with arbi- 
trary origin and, say, I2 (location of nucleus of maw ma) >I1. Then 
r = t2 - f l ,  and 

The classical equations of motion are 

u6 = t f ( 1 2  - 11 - rJ2. 

" 
mlr1 = - - - - f ( r 2  - 11 - r6), 

at1 

We multiply the top equation by -m2, the bottom by ml, add the two 
equations, and divide by ml + m2. Then 

@ = -fxJ 
where 

This is the equation of motion of a onedimensional harmonic oscillator 
with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111888 p (called the "reduced mass"). This is the standard symbol 
used, and is of course not to be confused with the chemical potential. The 
frequency of the classical motion is 

'$. 
k P  

V =  

In quantum mechanics, the energy statea zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 

es = (n f #hv, n = 0,1, 2,. . . , (8-19) 

where v is the classical frequency, (8-18). 
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The vibrational partition function is therefore (Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5-6) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e-8v/2T 

qv  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 - e-%/T' 

where 8, = hu/k. The vibrational contributions E,, CV,, S,, etc., to the 
thermodynamic functions of an ideal diatomic gas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare just those of N one- 
dimensional harmonic oscillators all of the same frequency u. These are 
the same functions as for an Einstein crystal (3N onedimensional oscil- 
lators), except for a factor of three. For example, 

A law of "corresponding states" obviously applies, since Cv,/Nk is a 
function of 8. /T only. 

Although the Einstein equations are applicable, the values of u and 
therefore 8. are in general higher here by a factor of about ten because of 
the fact that chemical bonds are relatively strong (DJ and still zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcf) relative 
to van der Waals and other types of "bonds" in most crystals. In prin- 
ciple, t&) and therefore f, u, and 8, can be calculated from quantum 
mechanics. But in practice, these quantities are usually deduced from the 
experimental vibrational spectrum. Table 8-1 gives a few values of e, 
and 8, (defined in Section 8-3). 

To take two specific numerical examples, the value 8,, = 3340°K 
for Na corresponds to v = 6.96 x 10'8sec-'. At WOK, 8 , / T  = 
hu/kT = 11.1. Hence the fraction of molecules in excited vibrational 
states (n > 0) at this temperature is 

e--rolkT 

!lo 
1 - e-8v/T - - e-ll*l 

This order of magnitude is typical for most diatomic molecules, as is clear 
from Table 8-1. That is, at room temperature, the vibrational degree of 
freedom is practically "unexcited" and makes only a very small contri- 
bution to CV, etc. (Problem 8-2). On the other hand, a few molecules 
have relatively loose vibrations and small values of 8,. For example, 
8 , /T  = 1.57 for Br2 at 300°K, and the fraction of Br2 molecules in 
excited vibrational states at thie temperature is 0.21. 

The vibrational contribution to the heat capacity CV follows the Ein- 
stein curve in Fig. 5-2 and ranges from zero at low temperatures to Nk 
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TABLE 8-1 

PARAMETERS FOB DIATOMIC MOLECULES 

H2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Nt 
0 2  
co 
NO 
HCl 
HBr 
HI 
Cl2 
Bra 
I2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e., OK 

6210 
3340 
2230 
3070 
2690 
4140 
3700 
3200 
810 
470 
310 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e, OK 

85.4 
2.86 
2.07 
2.77 
2.42 

15.2 
12.1 
9.0 
0.346 
0.116 
0.054 

0.740 
1.095 
1.204 
1.128 
1.150 
1.275 
1.414 
1.604 
1.989 
2.284 
2.687 

Do, ev 

4.454 
9.76 
5.08 
9.14 
5.29 
4.43 
3.60 
2.75 
2.48 
1.97 
1.54 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(i.e., R per mole) a t  high temperatures. The upper limit is predicted by 
classical statistical mechanics (see Problem 6-6). The value 0.1Nk for 
Cp. is reached at T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 8./5.8, 0.5Nk at T = 8,,/3.0, and 0.9Nk at  
T = 0,Jl.l. In  the Bra example above (at 30O0K), CV. = 0.82NIc. 

In Table 8-1 and Fig. 8-1, DO is the dissociation energy of the diatomic 
molecule at 0°K. The relation to De is 

Do = D, - ihv. 

Although De cannot be measured by a direct experiment, it may be 
calculated from experimental values of DO and Y. 

8-3 Rotation. The two ends of a symmetrical diatomic molecule are 
indistinguible, just as two monatomic molecules of the same speciea 
in a gw are indiafinguishable. This feature leads to symmetry complica- 
tions and the involvement of nuclear spin in a quantum-statistical treat- 
ment of the rotation of these molecules. We postpone such a treatment 
until Chapter 22. Fortunately, as we shall see below, a quantum treat- 
ment is really necessary only for very light molecules (e.g., hydrogen) at  
low temperaturea Hence, the postponement referred to is not a serious 
limitation. 

These complications do not arise with unsymmetrical diatomic mole- 
cules. Hence we can begin with a discussion of the quantum-mechanical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q, for such molecules. In quantum mechanics one finds that the energy 
levels of a rigid linear rotator are 
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with degeneracy wj  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2j + 1, and where Z is the moment of inertia 
about the center of mass. For a diatomic molecule, Z = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprea (Problem 
8-3). Therefore, 

where 
ha 

8+Zk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, = -. 

In Eq. 8-24, 8, is the characteristic temperature for rotation. The sepa- 
ration A6 between successive rotational levels, relative to kT, is 8,/T 
multiplied by a simple function of j .  Hence the sum in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEq. (8-23) may be 
replaced by an integral when T >> 8,. This will lead to the high- 
temperature or classical limit of qr. Table 8-1 includes values of 0, for a 
number of diatomic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases. It will be seen from the table that for ordinary 
gases at  ordinary temperatures or even fairly low temperatures, T is 
indeed much larger than 8,. In principle again, re, and hence Z, may be 
calculated from quantum mechanics (Pig. 8-1)) but in practice 8,, Z, 
and re are deduced from the experimental vibrational-rotational or pure 
rotational spectrum. 

The sum in Eq. (8-23) cannot be put in closed form. However, it is 
easy to u8c numerically, as it stands, at low temperatures (Problem 8-4). 
At high temperatures, 

(2j + l)e-i(i+l)%lT 
qr + im j 

JO 

T 8gZkT =---. 
8, - ha 

When T is not quite high enough* for use of Eq. (8-25)) 

(8-25) 

The corresponding equation for qo, incidentally, is given in Problem 6-2. 
As a further check on the validity of Eq. (6-14) for qclass, we have 

* Msyer and Mayer, pp. 151-154. 
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where (Problem 8-5) 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ,(,.+ &). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

On zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcarrying out the integrations (Problem &6), we get Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8-25) again. 
The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexpmsion in Eq. (8-25) is also the classical partition function of a 

particle of m888 p moving freely on the surface of a sphere of radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAre 
[ ~ e e  Eq. (7-17)]: 

2r f iT  (b:) = &?IkT -. 
qr = 7 ha 

The above dimmion pertains to unsymmetrical diatomic molecules. 
The principal conclusion we reach, in view of Table 8-1, is that we can 
generally regard rotation as classical-or fully "excited," aa it is some- 
times put. Table 8-1 also contains 8, values for symmetrical molecules. 
Except for hydrogen (and deuterium), these are of the m e  order of 
magnitude as for unsymmetrical molecules. Hence the same conclusion: 
generally rotation of symmetrical molecules can be treated olassically. 
We may therefore apply Eq. (8-27) to symmetrical molecules also, but 
with one correction. For exactly the =me reaeon that division by N! is 
included in Eq. (6-18), we have to divide here by two if the diatomic 
molecule is symmetrical. If we do not do this, the two indistinguishable 
configurations in Fig. 8-3 will both be counted in the integration over 8 
and (p in Eq. (8-27) [see the discussion following Eq. (6-H)]. 

Thus we can write for the high-temperature (classical) q,, 

T %raIkT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq,=-=-, ue, uha 

where u = 1 for unsymmetrical molecules and u = 2 for symmetrical 
ones. The constant u is called the symmetry number. 

FIO. 8-3. Two indistinguishable configurations of a symmetrical diatomic 
molecule. 
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T/& 

FIQ. 8-4. Rotational zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAheat capacity of an unsymmetrical diatomic molecule. 

Equation (8-29) leads to very simple rotational contributions to thermo- 
dynamic functions. For example, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -NkT In (&) 9 

C v , =  ts) = Nk. 
N 

Equations (8-31) and (8-33) could have been predicted immediately 
from Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8-28) for If, and from Problem 6-6. There are two rotational 
d e w  of freedom (0, q), and E, represents kinetic energy only (unlike 
E,,, which has equal kinetic and potential contributions). Incidentally, 
the rotation of a diatomic molecule in an imperfect gas, liquid or solid, 
does involve a potential energy and is therefore not "free" rotation, as in 
the present situation (ideal gas). 

We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan also derive low-temperature rotational contributions to thermo- 
dynamic functions for unsymmetrical molecules directly from the sum 
(8-23). For example, Fig. 8-4 gives Cvr/Nk as a function of T/Q,. 
Again we have a law of corresponding states. The heat capacity has 
practically its classical value for T > 1.58,. An important example is 
HD (e, = WOK), for which the theoretical Cvt curve, including the 
maximum, has been c o n h e d  experimentally (Problem 8-7). 

8 4  Thermodynamic functions. Our main object in this section is to 
bring together the various contributions to the thermodynamic functions 
of an ideal diatomic gas. We shall set down complete equations only for 
the most important special case: translation and rotation treated classi- 
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callg; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvibration treated quantum-mechanically; and electronic degrees of 
freedom unexcited (i.e., only the ground electronic state included). Be- 
fore writing the equations, we emphasize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAagain that (a) the present 
analysis, in which the various contributions are additive, is somewhat 
approximate; and (b) the question of classical (fully excited) v8. quantum 
v8. unexcited (i.e., ground state only) for a particular type of degree of 
freedom is determined by the magnitude of the appropriate energy-level 
separation relative to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkT. In typical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcases (Problem 8-8): 

Ae (translation) = 0(10-’8 ev), Ae (vibration) = O(0.3 ev), 

Ae (electronic) = O(5 ev), Ae (rotation) = O(5 X lo-’ ev), 

kT(300”K) = O(0.03ev). 

The criteria are: 

Classical: Ae << kT, e << T. 

Unexcited: Ae >> kT, e >> T.  

Quantum: Ae = O(kT), 8 = O(T). 

In the special case referred to in the above paragraph, we find from 
Eq. (8-7), etc., 

--- ’h(ml+ m2)kT]”’ -+In- Ve 8r21kT k!I’-’[ h2 N uh2 

[27r(m1+ ~ t p ) k T ] ” ~  +In- SgIkTe 

- In (1 - e-&lkT) + Inwrl; 

n= h2 crh2 

(8-37) 

pV = NkT. (8-38) 

hv/kT + ehr/kT - 

ordinarily, w61 = 1. The moleculea 02 and NO are exceptions (see 
below). The order of terms in these equations is: translation; rotation; 
vibration; and electronic. The heat capacity CV is thus 5Nk/2 (transla- 
tion, rotation) for T << e,, = hv/k and rises to 7Nk/2 (vibration classical) 
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for T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA>> e,. The form of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACV curve between these two zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlimits (Einstein 
curve in Fig. 5-2) has been verified experimentally in a number of cases. 
At very low temperatures, rotation is no longer classical, and CV falls from 
5Nk/2 to 3Nk/2 as the temperature decreases. It is not practical to 
observe t h i  effect experimentally, however, except for very light zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases 
(e.g., HD). Figure 8-4 (unsymmetrical molecules) gives Cvr for HD if 
we put 8, = 64OK. For HD, 8, is 61W°K, so that the two observable 
transitions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(owing to exciting rotation and vibration) in CV from 3Nk/2 
to 5Nk/2 to 7Nk/2 are very widely separated on the temperature scale. 

For the chemical potential, we obtain [see the remarks in connection 
with Eq. (4-26)] 

(8-39) ---+--- F A PY CC - rO(T) 
NkT - NkT NkT - kT - kT + In " 

where 

-hv/kT De + In (1 - e ) - k~ - Inu,l. 

In the above equations the zero of energy has been chosen as the sepa- 
rated atoms at rest, and the zero of entropy corresponds to a dingle (Q = l) 
translation-rotation-vibrationelectronic quantum state for the macro- 
scopic system of N diatomic molecules, i.e., the pure crystal at 0°K. 

We have already referred briefly to the agreement found between experi- 
mental CV measurements and the above theory. Experimental checks of 
the entropy equation, (8-37)) will be mentioned in the next chapter. In 
addition, Eq. (8-39) for the chemical potential has been verified by 
measurements of crystal vapor pressures* [compare Eq. (5-50)] and experi- 
mental gaseous equilibrium constants (Chapter 10). 

For NO and 0 2  we must uset Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8-8) for qe: 

(8-41) qs = eDelkT[ + ueae-(@ea-WIkT 
we 1 I, 

N O : U ~ ~  = 2, 0 8 2  = 2, (€,a - eel) /k = 178OK) 

0 2 :  = 3, = 2, ( 4 2  - e.l)/k = 11,300°K. 

Equation (8-41) leads to a significant electronic contribution to CV for 
NO, with a maximum predicted (Problem 8-9) at 74OK. For a con- 

* See Fowler and Guggenheim, pp. 202-205. 
t See Fowler and Guggenheim, pp. 1W106, for further details. 
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siderable temperature range zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see Table 8-1) on both sides of 74"K, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cvt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ CV, = 5Nk/2 and CV,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. The experimental variation of CV 
with T in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis region is therefore due to Cve. Theory and experiment have 
been checked between 125°K and 180°K. 

Finally, it should be mentioned that instead of deriving thermodynamic 
functions from the slightly idealized energy levels of a simple harmonic 
oscillator and rigid rotator, one can use instead actual energy levels de- 
duced from spectroscopy. This is obviously a more accurate procedure, 
but one which we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshall not discuss. The approximation we have used in 
this chapter takes care very adequately of all the first-order effects. 

PROBLEMS 

'8-1. The empirical Mom function for %(r) is 

u,(r) = D,,{[I - e-0(r-rJ12 - 11. 

Find the force constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf in terms of 0, and a. (Page 151.) 
8-2. Calculate CV. in cal.molc-l.deg-l for N2 and Cl2 at WOK, WOK, 

and 2700°K. (Page 152.) 
8-3. From the definitions of center of mass and moment of inertia, show 

that Z = & for a diatomic molecule. (Page 154.) 
8-4. For HD gas at WOK, use Eq. (8-23) to calculate qr, Er (cal-mole-'), 

and CV., (cal.mole-l.deg-*). Take er = 64°K. Compare this value of qr with 
that obtained from the clsssical qr. What arc the values of E in cal.mole-l 
and C,, in cal.mole-l.deg-l for HD at M"K? A h ,  find the fraction of HD 
molecules in each of the first four rotational energy levcls at 32"K, 96"K, and 
256°K. (Page 154.) 

8-5. In the free rotation of a distomic molecule with center of mass fixed 
at the origin, each nucleus moves over the surface of a sphere. Express the 
kinetic energy of the two nuclei in Cartesian coordinatea, change to spherical 
coordinates, and hencc show that the kinetic energy is 

~ Z ( P  + yb2 sin2 el. 
From this, derive Eq. (8-28). Show that a single particle of maas p moving on 
a sphere of radius r, has this same kinetic energy. (Page 155.) 

8-6. Derive the result qr = T/er from the classical phase integral, Eq. 
(8-27). (Page 155.) 

-8-7. Deduce the value of 8, for HD from er = 85.4"K for H2. (Page 156.) 
8-8. Verify the orders of magnitude listed near the beginning of Section 8-4 

for Ae (translation, rotation, etc.) What wavelengths of light in A and wave 
numbers in cm-' do these energies correspond to (Ae = hv = hc/x)? (Page 157.) 
-8-9. With the aid of Problem 4-8, verify that CV, for NO has a maximum 

at about 74°K. (Page 158.) 
4-10. From spectroscopy it is found that er = 9.0"K for HI. Calculate, 

(a) the moment of inertia of HI in cgs units, and (b) the equilibrium inter- 
nuclear separation r, of HI in A. 
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8-11. Calculate the fraction of Cl2 molecules in the first four vibrational 

8-12. From Table 8-1 calculate the vibrational force conatantfin dynecm", 

8-13. From Table 8-1 calculate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. in cal-mole-' for H2. 
8-14. Calculate S and C, in cal-mole-'-deg-' and p in cabmole-' for N2 

and HBr at 25'C and 1 atm preesure (see Table 9-2). The value of o,l is unity 
for both gases. 

8-15. Calculate the work (in cal.mole-') necessary to stretch the chemical 
bond in HCl from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= re to r = re -k 0.1.4. 

states at 200'K, 800'K, and 3000'K. 

the frequency Y ,  and wave number in cm-' for HCl, C12, and 12. 
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CHAPTER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 

DEAL. POLYATOMIC GAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this chapter we make a direct extension to polyatomic molecules of 

the methods and approximations used in the previous chapter for diatomic 
molecules. One new feature arises: hindered internal rotation (in molecules 
such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas ethane), which is considered in Section 9-5. We also include in 
this chapter a Bection (9-6) on the transition from localized to mobile 
adsorption (these terms were introduced in Section 7-1). Offhand this 
appears to be a completely unrelated subject, but actually this transition 
can be described by the same equations as those developed for the tor- 
sional oscillationdfree internal rotation transition in ethane, etc. 

0-1 Potential energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsurface. A polyatomic molecule consists of three 
or more nuclei and, usually, many electrons. To deduce the thermo- 
dynamic properties of an ideal (i.e., very dilute) polyatomic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas, we first 
need the quantum-mechanical energy levels for a single polyatomic mole- 
cule in a box of volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. This problem is extremely, if not hopelessly, 
complicated unless we make the same simplifications as in the previous 
chapter for diatomic molecules. Actually, there are several refinements 
that could have been introduced without much complication in our treat- 
ment of diatomic molecules, but such refinements are not practical here 
because of the greater complexity of the problem. 

For a given fixed configuration of the nuclei of one molecule, we first 
study the quantum-mechanical problem of the motion of the electrons. 
This leads in principle to a set of electronic energy levels of which only 
the ground state is of much interest to us. If we vary the location of the 
nuclei relative to each other, the ground state electronic energy ue varies. 
The (relative) nuclear configuration of a diatomic molecule can be repre- 
sented by a single variable r, the internuclear distance. One can then 
use a curve (Fig. 8-1) to show how uc depends on relative nuclear con- 
figuration. But for a polyatomic molecule, u. is a function of 3n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 5 
variables for a linear molecule, or 3n - 6 variables for a nonlinear mole- 
cule, where n is the number of nuclei in the molecule. This follows because, 
of the total of 3n coordinates needed to locate the n nuclei in space, three 
are used up on the position of the center of mass of the molecule and 
two (linear) or three (nonlinear) on the rotational orientation of the 
whole molecule in space. The remainder are the coordinatm (vibra- 
tional degrees of freedom) having to do with the position of the nuclei zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
relative to each other and are the only ones on which ue depends. Thus if 
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n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3, u. is a function of a t  least three variables. We have to imagine 
then that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAud is represented by a surface in a space of a t  least four dimen- 
sions. If the molecule is a stable molecule, this ub surface necessarily has a 
minimum (in some cases, several equivalent minima). The nuclear con- 
figuration corresponding to the minimum in u, is the stable configuration 
of the molecule (r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAre in Fig. 8-1). 

The ground state electronic energy Ue is used as the potential function 
for the nuclear motion (Born-Oppenheimer approximation). Hence the 
u, surface is often called a potential surface. An exact calculation of the 
potential surface from quantum mechanics is too difficult mathematically, 
so an approximation, or more often, experimental information, is used to 
construct it (near the minimum). 

The translational motion (3 degrees of freedom) of the center of mass of 
the molecule is separable and again leads to (Eq. 8-4) 

where the sum is over all atoms in the molecule. 
The rotational motion (two or three degrees of freedom) is made separa- 

ble by assuming that, as far as rotat.ion is concerned, the molecule hss the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rigid structure corresponding to the minimum in the potential surface. 

An analysis of the vibrational motion (3n - 5 or 3n - 6 degrees of 
freedom) is rendered practical by use of a quadratic approximation [see 
for example, Eq. (V-l)] to the true potential surface at  the minimum. 
Even with this approximation, a normal coordinate analysis of the vibra- 
tional motion is still required. 

Because of the large separation in electronic energy levels, we shall 
be concerned with only the ground electronic state. Hence 

For ordinary chemically saturated molecules, w,l = 1. Probably the 
most convenient choice of t.he zero of energy is completely sepamted atoms 
at rest. If the depth of the potential minimum is D, (>O) relative to this 
reference point, we put eel = - D,, and choose the bottom of the potential 
surface as the zero of vibrational energy. 

Having carried over the approximations of Section 8-1 to polyatomic 
molecules, we can apply Eqs. (8-1) through (8-3) and (8-7) through (8-13) 
here without modification. 

Potential energy surfaces me also discusscd in Section 11-1. 

9-2 Vibration. Let us assign Cartesian coordinates to each nucleus in 
the molecule, q, yl, 21, . . . , r,, yn, z,, using as respective origins the posi- 
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tions of the nuclei when the molecule is in its stable or equilibrium (bottom 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUe) configuration. For small vibrations about the equilibrium con- 
figuration, the Hamiltonian will have the form of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEq. (V-1), but extended 
to three dimensions. The potential energy Ue (relative to the minimum) 
will be a quadratic function of relative coordinates such aa x2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zl, 
x8 - 51, 1 2  - 211, etc. To make further progresa we must perform a 
normal coordinate analysis aa in Appendix V. This can be carried out for 
fairly complicated molecules. Symmetry in the molecular structure and 
simplifications in the assumed form of Ue help. Of the 3n normal co- 
ordinates, five (linear) or six (nonlinear) will turn out to be associated 
with motion of zero frequency, that is, with translation or rotation. The 
remaining 3n - 5 or 3n - 6 normal coordinates are connected with vi- 
bration (except for internal rotation- complication discussed in Section 
9-5 and not present in the molecules under consideration up to that 
section). 

Corresponding to the diagrams (V-10) and (V-11) of normal modes 
in one dimension, the following are simple schematic examples in three 
dimensions: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 0 0’ 
? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

b d  
The + and - signs refer to displacements perpendicular to the paper. 

Each normal mode of vibration mak& an independent contribution to 
thermodynamic functions such as E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACV, S, etc., as we have already seen 
in Section 5-2 in discussing crystals. Incidentally, we remind the reader 
that the vibration problems in molecules and in crystals do not differ at 
all in principle. In practice, (a) the force constants in molecules are 
usually larger, and (b) the number of atoms in crystals is so large that we 
can ignore (i) translational and rotational degrees of freedom and (ii) 
edge effects. 

If the normal frequenciea vl, v2, . . . , vn’, where n’ = 3n - 5 or 
3n - 6, are known, we have immediately (see Sections 5-2 and 8-2) 
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equations such as 

e - W 2 T  
go= fi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i-1 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- e W T '  
(9-3) 

where 0i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhvi/k. 
In principle, u., and hence the vi, can be calculated by quantum me- 

chanics. In practice, the vi for polyatomic molecules must always be 
deduced empirically from vibrational (infrared and Raman) spectra. 

Numerical examples will be included in Section 9-4. 

9-3 Rotation. If the equilibrium configuration (minimum in ue) of a 
polyatomic molecule is hear ,  as for example in C02, C2H2, N20, etc., 
the rotational problem is exactly that already discussed in Section 8-3. 
The molecules are heavier here, the moments of inertia (about the center 
of mass) are larger, and the classical equations are practically always 
appropriate. Thus we take over Eqs. (8-29) through (8-33) without 
change. In the examples mentioned above, u = 2 for the symmetrical 
molecules C02 and C2H2, but u = 1 for N20 (structure: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"0). 

If the equilibrium structure is nonlinear, three rotational coordinates 
instead of two are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArequired. For example, in addition to two angles, say 
0 and 9, necessary to fix the orientation of an axis in space (as for a linear 
molecule), a third angle is also needed because of the possibility of rotation 
of the molecule around the axis itself. 

The rotational properties of a nonlinear rigid body can be expressed 
most simply in terms of the so-called principal moments of inertia, which 
we now define. First, we locate the center of mass of the equilibrium 
configuration of the molecule. To do this, we use the following definition: 
if the center of mass is chosen as origin of Cartesian coordinates for all 
nuclei in the molecule, then (Problem 9-1) 

Now consider any straight line passing through the center of mass. A 
moment of inertia can be calculated about this line: I = Cimsd:, 
where di is the perpendicular dwtance of the mass mi from the line. On 
this line, mark off a dietance on both sides of the center of mass propor- 
tional to I-112 calculated about the line. Now choose other lines through 



9-31 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAROTATION 165 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the center of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmaas, and on each mark off distances proportional to (same 
proportionality constant) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ-'12 about the line. The locus of the marks 
is an ellipsoid,* called the ellipsoid of inertia. The longest markedsff 
line is one of the principal axes of the ellipsoid, and the moment of inertia 
about this line (that is, the minimum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI) is called a principal moment of 
inertia. The shortest line is also a principal axis, and the aasociated Z 
(the maximum I )  is a principal moment. The third principal moment is 
that about the line perpendicular to both the lines just referred to. Let 
us call the three principal moments of inertia I A ,  ZB,  and ZC.  If all three 
moments are equal, the molecule is called a spherical top (e.g., CH4); if 
only two are equal, the molecule is a symmetrical top (e.g., C6Ha and 
CHCls); if all three moments are different, the molecule is an unsym- 
metrical top (e.g., H2O). 

The rotational energy levels for the most general case (an unsym- 
metrical top) are very complicated. Hence a general quantum-statistical 
treatment is awkward on this account, as well as on account of quantum 
symmetry considerations (as with Ha) for mme molecules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see Chapter 
22). Fortunately, a classical treatment is legitimate except in the case 
of very light (hydrogen-containing) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases at low temperatures (e.g., CHI 
below 80°K). We consider the classical case only. Now even the classi- 
cal Hamiltoniant for a rigid unsymmetrical rotator is a little too com- 
plicated to derive here (since this is not a book on mechanics). We 
conhe ourselves, therefore, to the statement that insertion of the clsa- 
sical Hamiltonian into the classical phase integral leads, after a rather 
straightforward integration,t to (Problem 9-2) 

As before, the symmetry number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu has been introduced in Q. (9-7) to 
correct for repeated counting of indistinguishable configurations in the 
classical phase integral. The symmetry number is the number of Merent 
ways in which the molecule can achieve, by rotation, the same (i.e., 
counting like atoms as indistinguishable) orientation in space. For ex- 
ample, we can see that u = 12 for CH4 (tetrahedral symmetry) as follows. 
If we imagine, say, that the tetrahedron is sitting on a table with one 
hydrogen up and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree down, then there are three ways of arranging the 
"down" hydrogens (rotations of 0", 120°, 240") while keeping the same 
hydrogen up. But there are four possibilities for the ylp" hydrogen. 

* For proof, see Chapter 5 of H. GOLDSTEIN, Clcrsaieal Mechania. Reading, 

t See Mayer and Mayer, pp. 191-194. 
Ma.:  Addison-Wesley, 1950. 
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Therefore, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 3 X 4. 
u = 4 for C2H4, and u = 12 for CsH-6. 

Similarly, u = 2 for H20, u = 3 for NHs, 

Equation (9-7) can also be written, in obvious notation, 

The rotational contributions to some of the thermodynamic functions 
of nonlinear molecules are then: 

A,  = -NkT In ?t2 - (eA::eY2 

E, = $NkT, (9-10) 

Here the rotational (kinetic) energy is 3NkT/2 instead of 2NkT/2, aa for 
linear molecules, because of three. instead of two rotational degreea of 
freedom. We do not need to know In ,  IB,  and Ic to evaluate E,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACV,, 
etc., but these quantities are required for the entropy and any thermody- 
namic function which involves the entropy (e.g., p, A, etc.). The momenta 
of inertia zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be computed if the molecular structure is known. This 
structure (i.e., the nuclear configuration at  the minimum in ud) is too 
difficult to deduce by a quantum-mechanical calculation, so recourse must 
be taken to experimental information (rotational spectrum, electron and 
x-ray diffraction, etc.). 

9 4  Thermodynamic functions. We first bring together the various 
contributions to the main thermodynamic functions. For linear polyatomic 
molecules, Eqs. (8-34) through (8-38) apply, except that ml + m2 must 
be replaced by xi mi, and each term involving the vibrational frequency 
v must be replaced by a sum of similar terms over 3n - 5 vibrational 
frequencies. For nonlinear molecules, 

D 3n--6 

i- 1 

- L&$+ In ( 1  - e-AvilkT)] + $ + lnwsl; (9-13) 
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Cv/Nk 
(calC.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, OK 

203 3.06 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
293 3.61 
390 4.08 
467 4.49 
626 4.89 
733 5.15 

pV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= NkT. 

Cv/Nk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
kXPt.1 

3.10 
3.61 
4.05 
4.46 
4.90 
5.15 

The chemical potential follows immediately from p = (A + pV) /N 
(Problem %3). 

We now turn to examples of applications of the equations for Cv/Nk.  
Aside from the constants 5/2 (linear) and 6/2 (nonlinear), the only con- 
tributions come from the sum over frequencies in Eq. (9-15). We use 
frequencies obtained from infrared and Ramsn spectra. 

(1) For C02, the four values of 8c = hvt/k are 1890, 3360, 954, and 
954OK. The respective vibrational terms in Eq. (9-15) are then calculated 
to be 0.086, O.OO0, 0.483, and 0.483 at 312"K, or a total of 1.05. Hence 
Cv/Nk at 31PK is 2.50 4- 1.05 = 3.55. The experimental value is 3.53. 

(2) For BFs, the 86 are 1270, 995, 2070, 2070, 631, and 631OK. The 
reapective terms in Eq. (9-15), at 278"K, are 0.221,0.378,0.033 (X2), and 
0.662 (~2). The total is 1.99. Hence Cv/Nk is 4.99. The experimental 
value is 4.89. At 189"K, we calculate from the €4 that C v / N k  = 5.05, 
whereas the experimental value is 5.04. 

TABLE 9-1 

HEAT CAPACITY OF N20 
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(3) For N20, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0i are 850, 850, 1840, and 3200’K. Table 9-1 com- 

pares with experiment, over a considerable temperature range, values of 
CV calculated from these vibrational frequencies. 

The agreement between theory and experiment in the above examples 
is very good. Furthermore, this kind of agreement is found quite generally. 
However, the above treatment of the vibrational degrees of freedom is 
not adequate for molecules with internal rotation, such aa ethane. We 
return to this subject in the next section. 

The entropy provides a somewhat more severe test of the theory 
than the heat capacity, since the rotational and translational ccn- 
tributions to the entropy are not just constants. Table 9-2 compares 
values of the molar entropy at 1 atmosphere pressure for a number of 
gases, obtained in two ways: (a) the “spectroscopic entropyn calculated 
from Eqs. (4-21) (monatomic), (8-37) (diatomic or linear polyatomic), 
or (9-16) (nonlinear polyatomic), using spectroscopic data as the source 
of the moments of inertia, vibrational frequencies, and ground state 
electronic degeneracies; and (b) the “calorimetric entropy calculated 
from experimental heat capacities and heats of phase transitions. That is, 
we are using in (a) the statistical-mechanical relation S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk l n 8 ,  and 
in (b) the thermodynamic equation S = g(T) (Eq. 2-35). Both these 
expressions relate to the same zero of entropy, aa explained at  the end 
of Section 2-4, and should lead to results which agree with each other. 
This is seen to be the case in Table 9-2. Three comments about this 
table should be made: (1) If the real gas is not effectively ideal at 
1 atm pressure and the temperature indicated, the calorimetric value of 

TABLE 9-2 

ENTROPY OF GASES AT 1 ATMOSPHERE PRESSURE 

I Gas 

A 
Cd 
Zn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Hg 
N2 
0 2  
HCl 
HBr 
NH3 
c02 
CH3Br 

T, “K 

298.1 
298.1 
298.1 
298.1 
298.1 
298.1 
298.1 
298.1 
239.7 
194.7 
276.7 

37.0 
40.1 
38.5 
41.8 
45.8 
49.0 
44.6 
47.5 
44.1 
47.5 
58.0 

36.4 
40.0 
38.4 
41.3 
45.9 
49.1 
44.5 
47.6 
44.1 
47.6 
57.9 
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T9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOK 

298.1 
184.6 
99.7 

298.1 
298.1 

S has been corrected for gas imperfection by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuse of equation-of-state 
data (the correction is usually less than 0.3 cal.deg-'-mole-'). (2) The 
spectroscopic values of S for the diatomic molecules are slightly more 
accurate than would follow from Eq. (&37), since the actual spectroscopic 
vibration-rotation energy levels have been used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see the last paragraph of 
Section 8-4). (3) The spectroscopic method is capable of greater accuracy 
than the calorimetric method, e.g., the deviations in Table 9-2 for A and 
Hg must be attributed to experimental error in the calorimetric work. 

There zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare, however, a few molecules for which a discrepancy between 
S-t and Sop1 is noted. Some of these are included in Table 9-3. In 
every case, Sop1 < Sapeat. The explanation for CO, for example, is gen- 
erally accepted to be the following. S,,t is calculated from the number 
of quantum states B of the gas and should therefore be considered the 
true entropy of the gas (relative to B = 1 as zero). Solid CO, in its true 
equilibrium state at O'K, would have each CO molecule in some definite 
orientation (corresponding to the lowest possible energy) and B = 1. 
However, the CO molecule is effectively very symmetrical. It has a very 
small dipole moment and is isoelectronic with Na. Hence, in actually 
preparing the crystal at low temperatures, a random mixture of the two 
orientations CO and OC, rather than one particular orientation, is frozen 
into the crystal at each molecular position. Thus the crystal is in a meta- 
stable state, and the rate of the process metastable state (mixed orienta- 
tion) + stable state (definite orientation) is negligibly small at  low 
temperatures. The metastable crystal has B = 2N at O'K, instead of 
B = 1. Since the calorimetric measurements are made on the metastable 
crystal, we have to write [see Eqs. (242) and (2-43)] 

S(T) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS(0) + g(T) = S(0) + &al, 

where S(0) = k l 1 1 2 ~  insteadof S(0) = k l n l  = 0,asusual. If RIn2 
is added to Seal for CO in Table 9-3, the agreement with SBmt becomes 
satisfactory. 

TABLE 9-3 

ENTROPY OF GASES AT 1 ATMOSPHERE PRESSURE 

s,, - sad SrnP &I, 
cal.deg'l.mole-l cal.deg-l.mole-l 

47.3 46.2 1.1 R ln2  = 1.4 
48.5 47.4 1.1 RIn2 = 1.4 
39.5 36.7 2.8 Rln4 = 2.7 
45.1 44.3 0.8 Rln (3/2) = 0.8 
46.7 45.9 0.8 Rln (3/2) - 0.8 

Gns 

co 
NNO 
CHaD 
H2O 
D2O 
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The explanation for NNO is presumed to be the. same as for CO. In 

the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase of CHsD, there is an obvious four-fold effective symmetry of 
orientation, so that the discrepancy is RIn4. The argument for H20 
and D20 is rather more involved,* and we omit it. The conclusion is that 
the discrepancy should be R In (3/2). In all these cases, satisfactory 
agreement with experiment is achieved after the correction is made. 

The next chapter, on chemical equilibrium in ideal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases, will provide zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
testa of our theoretical expressions for the chemical potential of ideal gases 
(monatomic, diatomic, and polyatomic). 

9-5 Hindered internal rotation in ethane. There are many molecules, 
especially hydrocarbons, with internal rotation about bonds. Ethane 
is a relatively simple prototype, and we confine our rather qualitative 
discussion to this caee. One of the 18 normal modes of vibration in ethane 
corresponds to a torsional oscillation of one methyl group relative to 
the other. This mode is neither Raman nor infrared active, so direct 
spectroscopic information about the frequency is unobtainable. However, 
if we measure the heat capacity of ethane and subtract the contributions 
to the heat capacity of the translational, (rigid) rotational and 17 spec- 
troscopically available vibrational degrees of freedom, the remainder 
must be the contribution C of the torsional mode. This calculation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C can be carried out at several temperatures. Values of C obtained in 
this way follow the solid part of curve 1, Fig. 9-1, rather closely. The 
onedimensional Einstein heat-capacity curve which comes nearest to 
fitting these data over the whole temperature range is curve 2 in Fig. 9-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(hv/k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 350'K)) but the fit is not at all good. We have to conclude, 

200 400 600 800 1000 

T, 'I< 

FIG. 9-1. Contribution of torsional mode to heat capacity of ethane. Curve 1 : 
Curve 2: simple harmonic restricted rotator with VO = 3100cal.mole-1. 

oscillator with hv/k = 350'K. Curve 3: free rotator. 

* See Fowler and Guggenheim, pp. 214-215. 



9-51 HINDERED INTERNAL ROTATION IN ETHANE 171 

Potential( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?E 4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2r 

3 3 
* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FIG. 9-2. Potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAenergy hindering rotation in ethane. 

then, that this degree of freedom is not a simple harmonic (torsional) 
oscillation. 

A second possibility is that the degree of freedom in question can be 
considered to be free rotation, about the C-C bond, of one methyl group 
with respect to the other. However, one free rotational degree of freedom 
at the temperatures in question would give the classical result zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC/Nk = 
1/2 = constant. This is shown as curve 3 in Fig. 9-1. Clearly this pos- 
sibility must also be discarded. 

The correct explanation has turned out to be intermediate between 
 the^ two extremes. If 0 is the angle between one methyl group and the 
other, looking along the C-C bond and taking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = 0 when the two methyl 
groups are "staggered" (not lined up or "eclipsed"), then the potential 
energy (ground-state electronic energy) of the molecule varies periodically 
with 0. This variation can be represented approximately by 

+V,(l -- cos30), (9-18) 
as shown in Fig. 9-2. That is, the rotation of one methyl group relative 
to the other is not free, but is hindered by a periodic potential, with barrier 
VO. However, when kT >> VO, the rotation is effectively free and C/Nk 
approaches the value 1/2. On the other hand, when kT << VO, the system 
is trapped in one of the three minima in the potential, and the motion is 
simple 'harmonic (torsional) oscillation. In this limit, C/Nk approaches 
the low-temperature behavior of a one-dimensional Einstein heat-capacity 
curve (Eq. 5-14). 

The following steps are necessary to take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcare of an arbitrary tem- 
perature [e.g., kT = O(Vo)]: (a) the onedimensional Schrtidiinger e q w  
tion in the coordinate CP must be solved, using the potential (9-18), to 
give the energy levels; (b) the energy levels are inserted in the parti- 
tion function qe = Cje-et'"; and (c) CLNk is computed from tem- 
perature derivatives of q*, as usual. This work can be carried out nu- 
merically. Of course, the function C(!!')/Nk will be different for Merent 
choices of Vo. Curve 1 in Fig. 9-1 is actually the theoretical curve for 
V O  = 3100 cabmole-'. This curve fits the experimental points over the 
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temperature range of their availability (solid part of curve 1). Curve 1 
approaches curve 3 asymptotically at high temperatures. The theory 
has also been checked and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVO evaluated by comparing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASeal with SamtJ 
over a temperature range, using the energy levels for hindered rotation 
referred to above for the 18th vibrational mode in Samt. 

9 4  Hindered translation on a surface. Here we investigate an adsorp- 
tion problem that is very closely related in a formal way to the preceding 
section. In Section 7-1 we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdiscussed the two extreme kinds of monolayer 
adsorption: localized and mobile. Here we consider the transition from 
one kind to the other. Suppose that we have a simple square lattice of 
adsorption sib on the surface of a crystal, with nearegt-neighbor distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u. The surface area is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = L' = Mu', where M is the number of sites. 
We restrict the discussion to the case of a very dilute monolayer: N << M, 
where N is the number of adsorbed molecules. The zy-motion of an 
adsorbed molecule is assumed independent of the z-motion. The z-motion 
is taken care of by ql, a onedimensional harmonic oscillator partition 
function, as in Eqs. (7-3) and (7-18). We represent the potential energy 
function for the xpmotion (see Section 7-1 and Fig. 7-2), approximately, 

The resemblance to (9-18) for hindered rotation in ethane is obvious. 
At low temperatures, the molecules vibrate about the minima in Uo(x, y) 
with frequency (Problem 9-4) 

Equation (7-3) is applicable in this limit. At high temperat-, the 
motion is free translation and Eq. (7-17) is appropriate. At intermediate 
temperat-, Eq. (S19) must be used as it stands. We have then to find 
the quantum-mechanical energy levels and partition function for the po- 
tential Uo(z, y). This problem becomes the same as that in the preceding 
section, after a suitable correlation between the notations. 

The exact treatment of this problem, which is complicated, was omitted 
in Section 9-5 and will be omitted here. We present instead a very ac- 
curate (over the entire ternpcrature range) approximate solution which 
was introduced and tested against exact results by Pitzer and Gwinn 
for the hindered rotation problem. The approximation is to write the 
zy-partition function as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

qz# = Qclass x J (9-21) Qhar om-quant 

qhar osc-daaa 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq d M r  is the classical qr, using the potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Uoo in Eq. 
(9-19), qh0+ is the quantum harmonic oscillator partition function for 
motion about the minima in (9-19), and qh0-a is the classical limit of 
q h o q  It is to see that m. (9-21) has the right asymptotic properties: 

T + 00, qho+ + !&o-c, qr, + qolaar, 

T + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, QolaM + Qho-ot qxu + q h o q  

The complete partition function for the system is 

where 
-UmlkT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Q = qrvQfi 9 

with qr, given by Eq. (9-21). 
Next we find qOlars. We have 

If we put u = Vo/2kT and 8 = 2rx/a, 

The integral is equal to 2rlo(u), where lo(u) is a modified Beasel function 
of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfirst kind. Hence 

Q0l.r. = 2.KmkT - ae-2vt(u). (9-25) ha 

We can obtain q h 0 4  easily from q C l M S ,  using the limit T + 0 (i.e., u + 00) : 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv, is given by Eq. (9-20) and we have ueed the property 

e" lim I o ( u )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -- 
U-Kd ( 2 m ) I l 2  

The factor M in Eq. (9-26) is to be expected, since there are M sites in 
the area zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa over which the phase integral in Eq. (9-24) is extended. Finally, 
in view of Eqs. (9-26), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5-6), and (5-7), we must have 

e-b~,12kT 2 

QhO+ = ( 1  - e-bJkT >. (9-27) 

We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan now substitute Eqs. (9-25) through (9-27) into Eq. (9-21). 

(9-%I 

We obtain 
~ ? ~ M W - ~ " ~ - ~ ~ " I ~ ( U )  , 

( 1  - e--Ku)2 !lm = 

where 

The adsorption isotherm is linear here (since the adsorbed phase is 
very dilute), but the proportionality constant between N and p (Eq. 7-20) 
is a function of temperature: 

N = (qzvQze -Uoo/kT~o/kT)p .  (9-29) 

Other thermodynamic properties can be deduced from Eq. (9-22) in 

FIO. 9-3. Theoretical heat capacity curves (contribution from motion in 
plane of surface) for dilute adsorbed phase of argon atoms on 100 plane of KCI. 
Vo is the potential barrier of Fig. 7-2 and Eq. (9-19). 
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the usual way. For example, one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6nds that the xy-contribution to the 
heat capacity (constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

* (9-30) 
C 
Nk - -- 

This equation is illustrated in Fig. 9-3 for argon atoms on a KClIOO-plane. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Vo is probably about 200cal-mole-'. Experimental cuwea of this type 
have not been obsewed as yet. In general, the maximum in the heat- 
capacity curve is predicted to occur at about kT = V0/5. These zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcurves 
belong to  the same family as curve 1 in Fig. 9-1. 

PF~OBLEMS 
9-1. Locate the center of mass of the linear molecule HCN, given that the 

equilibrium internuclear distances are 1.157A for CN and 1.059A for HC. 
Calculate the moment of inertia about the center of mass. Carry out the same 
calculations for DCN. (Page 164.) 

9-2. For a spherical top, the rotational cnergy levels are 

with degeneracy y = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2j + Ignore molecular symmetry, replace the sum 
in q, by an integral, and verify Eq. (9-7) for the case ZA = IB = ZC. (Page 165.) 

9-3. Derive expressions for p and po(!l') for nonlinear polyatomic molecules. 
(Page 167.) 

9-4. Derive Eq. (9-20) for v, from the potential (9-19). (Page 172.) 
9-5. Ha0 haa an OH distance 0.958 A and an HOH bond angle of 10427'. 

Find the center of maea and calculate ZA, ZB, and Zc (see Problem 9-11). 
9-6. CH4 haa a tetrahedral structure with a CH distance 1.094 A. Calculate 

9-7. Show that in localized adsorption, in the limit as N / M  4 0, 
ZA = ZC. 

Equation (9-22) with (9-26) is an example. The equation of state is Cpa = NkT, 
in view of Problems 3-1 and 3-6. This is verified by Eq. (7-7). 

9-8. Calcuhte vr from Eq. (9-20), using VO = 200 cal-mole-l, a = 4 A  
and m for argon. 

9-9. From Eq. (9-28), derive Eq. (9-30) for C / N k  
9-10. In C02, the CO distance is 1.161 A. The vibrational characteristic 

temperatures are 6% = 1890, 3360, 954, and 954°K. Calculate the entropy of 
CO2 per mole at 1 atm pressure and 194.7OK (see Table 9-2). 
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9-11. The normal vibrational frequencies for H2O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 3650, 1590, and 3760 
in cm-'. The moments of inertia are 1.024, 1.921, and 2.947 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 1040 gm.cm2. 
Calculate S and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp per mole at 1 atm pressure and 25OC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see Table 9-3). 

9-12. Use the data given in the text to calculate CV for N2O at 733OK (see 
Table 9-1). 
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CHAPTER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CHEMICAL EQUILIBRIUM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIN IDEAL GAS MIXTURES 

In previous chapters we have shown how the thermodynamic proper- 
ties of ideal monatomic, diatomic, and polyatomic gases can be calculated 
by statistical-mechanical methods. An important application of this work 
is to chemical equilibria occurring in ideal gas mixtures. The object is to 
deduce equilibrium constants for such reactions, using spectroscopic in- 
formation about the individual molecules. Equilibrium constants obtained 
in this way are often more accurate than those found by direct measure- 
ment. Chemical equilibria in imperfect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases will be considered in Chap- 
ter 15. 

10-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGeneral relations. The statistical-mechanical basis of the second 
law of thermodynamics was examined in Section 23. In particular, we 
considered the second law in the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ maximum (isolated system), 
A minimum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( N ,  V, T constant), F + minimum ( N ,  p, T constant), 
etc. Since from these statements of the second law, by thermodynamic 
arguments, one can deduce results such as 4 = 0 for phase or chemical 
equilibria, we may take the position that the equilibrium criterion Ap = 0 
has been given a statistical foundation. We have already adopted this 
attitude, for example, in studying the vapor pressure of a Debye crystal 
(Section 5-3) or of an adsorbed phase (Chapter 7). However, because of 
the importance of chemical equilibria, and for variety, we deviate from 
this policy here on two counts: (a) In this section we give the thermody- 
namic derivation of 4 = 0 for a homogeneous (i.e., one-phase) chemical 
reaction from the equilibrium criterion F + minimum ( N ,  p, T constant). 
(b) In the next section we verify the thermodynamic result in (a) for a 
special case, using a purely statistical argument. 

We now turn to the derivation of Ap = 0 for a chemical reaction. Con- 
sider a closed one-phase system, at  equilibrium, at pressure p, temperature 
T, and containing the numbers of molecules N A ,  N B ,  N c ,  N1, N2, . . . . 
The system may be a gas, liquid, or solid. The equilibrium of the system 
includes equilibrium with respect to a chemical reaction, say 

where VA, VB, and vc are small integers. The species 1,2, . . . are present 
but do not participate in the reaction. The Gibbs free energy of thiie 
multicomponent system is 

F = NAPA + NBPB + NCPC + N i ~ i  + N 2 ~ 2  + * - * . 
177 
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Xow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconsider the infinitesimal process of converting, say, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV A  d l  molecules 
of A and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVB d l  molecules of B into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvc d [  molecules of C. Since the process 
is an infinitesimal one, none of the intensive properties of the system will 
change appreciably and hence all the p’s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare constant during the process. 
The change in F in the process is therefore 

dF = PA dN.4 -k PB dNB + PC dNc 

= (-VAPA - VBPB + vcpc) d t  Ap d l .  

No terms in PI, p2, etc., appear here, since N1 = constant, etc. Since the 
process occurs in a closed system (molecules of A, B, and C are intercon- 
verted but no molecules go in or out of the system) at constant p and T, 
and the system is at equilibrium, we must have, according to the second 
law, dF = 0. We therefore conclude, since d l  is arbitrary, that Ap = 0 or 

VAPA 4- VBPB = VCPC. (10-2) 

The chemical potentials here must be assigned the values they have after 
chemical equilibrium has been achieved. This result is general; it is not 
restricted to an ideal gas mixture, or even to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgsseous reactions. 

Now let us apply Eq. (10-2) to the special case in which we are inter- 
ested in this c h a p t e ~  chemical reaction occurring in an ideal gas mix- 
ture. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFinst we note that the expression for the chemical potential of each 
species i, in terms of Ni,  V, and T, is the same as if only that species existed 
in the system (this is true, of course, only for an ideal gas mixture). To 
see this, consider, say, a binary system. Then from Eq. (3-15) [see also 

where q1 and q2 may refer to monatomic, diatomic, or polyatomic mole- 
cules. We find easily from 

that 

just as for a one-component gas. 
If the reaction (10-1) occurs between molecules A, B, and C in an ideal 

gas mixture, the equilibrium condition is (10-2)) where each chemical 
potential is given by an equation of the form (10-4). Substituting Eq. 
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(10-4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin (10-2), we find 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN's in this equation refer, of course, to the numbers of molecules 
present after the chemical equilibrium has been established. Now, each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q is equal to V multiplied by a function of temperature only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[see Problems 
3-1 and 3-6 and Eqs. (&lo), (8-4) and (9-1)], 80 that q/V is a function 
of temperature only. Therefore, the quotient of q's in Eq. (10-5) is in 
general a function of both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV and T, but we have 

where pc = Nc/V, eta., and K(T)  is a function of temperature only, 
called the equilibrium constant. 

As the partial pressuree are pi = pikT, we also have 

which is, in general, a different equilibrium constant, often wed. 
In thermodynamics, one substitutee 

Pi = d(T) + kT In pi 

for each component in Eq. (10-2) and obtains 

where 

Mo(T) = w % T )  - VAP%T) - YBP%(T). (10-9) 

This is called the "standard free energy change" for the reaction. Equa- 
tions (10-7) and (10-8) are, of course, equivalent and are interrelated by 

(10-10) 

for each participant in the reaction [see, for example, Eqs. (4-26) and 
@-40)1. 
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In Eqs. (10-6) and (10-71, or indeed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAany application of Ap zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, 

it is always understood that the zeros of energy chosen for the different 
molecular species (or states, in a phase equilibrium) involved must be 
self-consistent. For example, one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan chooee as zero for each molecule the 
separated atoms of which the molecule is composed, at rest. Since the 
same atoms occur on both sides of the chemical equation (10-l), this choice 
necessarily leads to the same zero for reactants and products. A number 
of specific examples will be found in Section 10-4. 

1+2 Statistical derivation in a special case. In this section we derive 
Eq. (10-5) for a simple reaction, using a statistical argument which by- 
passes the thermodynamic equation (10-2) (but does use the second law of 
thermodynamics). We could use the more complicated reaction (10-1), 
but there would be no particular advantage in this since we merely want 
to illustrate the equivalence of the two approaches. 

Consider an ideal gas mixture made up of N A  molecules of type A and 
N B  molecules of type B in a closed container with fixed V and T. We 
assume that in the absence of a catalyst, no chemical reaction takes place 
between A and B molecules. The canonical ensemble partition function 

(10-11) 

and the Helmholtz free energy is A = -kT In Q. Suppose a catalyst is 
added, making possible the chemical reaction A 2B, which will take 
p h  spontaneously until equilibrium is established with respect to the 
reaction. Since the system is closed and has constant V and T, we know 
from the second law of thermodynamics that as the reaction proceeds the 
Helmholtz free energy will decrease, and that at equilibrium this free 
energy will have its minimum possible value consistent with V, T, and 
with the fixed amount of material in the container. (We can specify this 
amount by stating that each A molecule contains two B units, and the 
total number of B units is ~ N A  + N B  = N = constant.) Translating 
this into statistical-mechanical language, we can say that the equilibrium 
point of the reaction for given V and T will correspond to the maximum 
possible value of Q (since A = -kT In&) consistent with the restraint 
2N.4 + NB = N = constant. 

We need, then, to max;miZeQ in Eq. (10-11) subject to 2N.4 + N B  = N .  
We could we an undetermined multiplier, but this is unnecessary here 
because the restraint can be used instead to eliminate, my, N B  from 
Eq. (10-11) (see Appendix 111). We have 

1nQ = N A ~ Q A  + (N - 2 N ~ ) h q ~  - N A ~ N A  
- (N - ~ N A )  In (N - ~ N A )  + N - NA,  
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and hence 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN1; is the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN A  making Q a maximum-that is, the value of 
N A  at equilibrium. Therefore, 

(10-12) 

which is the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas Eq. (10-5) for this special CM. 

103 Fluctuations in a simple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAchemical equilibrium. Here we consider 
a situation very similar to that in the preceding section: we have a binary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
gas mixture with numbers of molecules N A  and NB,  in a volume V at 
temperature T. The reaction A P B is then made possible by introduc- 
tion of a catalyst. The system proceeds to equilibrium with V, T, and 
N A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ N B  = N held constant. 

We adopt a slightly more general point of view here than in the pre- 
ceding section. That is, we use the partition function Q(N, V, T )  for the 
system described above, including Cru possible states of the system for 
given N, V, T;  that is, including all possible values of N A  and N B  con- 
sistent with any aasigned value of N. Thermodynamically, this is a one- 
component syetem s. Then 

Q(N, V, T )  = 

(10-14) 

The treatment in the preceding section corresponds to the use of only the 
maximum term in the sum (10-13). With the retention of the full sum, we 
can easily investigate the extent to which we can expect to find fluctua- 
tions about the equilibrium concentrations predicted by equations such 
as (10-5) and (10-12). 

The average value of N A  is clearly 

If Q in Eq. (10-13) is regarded in a purely formal way as a function of N, 
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q A ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand qB, we note from Eq. (10-15) that 

Then, from Eqs. (10-14) and (10-16), 

and therefore, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl ? ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ ??B = N ,  

(10-16) 

(10-17) 

(10-18) 

in agreement with Eq. (10-5). Now if we differentiate 

with respect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto q A ,  we obtain - 
N i  - = q A  - (10-19) 

C:)*B.n . 
Finally, from Eqs. (10-17) and (10-19), we have 

- 
N i  - ( R A ) ~  = - - (10-m 

Fluctuations about the equilibrium composition are therefore very small, 
as we might expect: u N A / i V A  = O(N-''2), the usual result (see Section 
2-1). 

104 Examples of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAchemical equilibria. In t.his &ion we discuss five 
particular illustrations of the above equations. 

(a) Imn& equilibrium. This is the case A # B already considered 
as a fluctuation problem in the preceding section. We wish to examine the 
equilibrium relation (10-18) here. As an example, suppose that some of the 
energy levels of A are lower than those of B (the translational levels 
would be the same in the two cases, because A and B have the same mass 
-so these are not involved), but that the levels of B are closer together, 
as shown schematically in Fig. 10-1. This would a h ,  for example, if 
(a) the chemical bonds in A are more stable than in B (i.e., the minimum 
in the ground electronic energy surface is lower for A), (b) the vibrational 
force constants are in general larger in A than in B (i.e., the chemical 
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I 
B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A B .I + s 

FIQ. 10-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEnergy states for two isomers, A and B (schematic). 

bonds are “stiiTer” in A), and (c) the moments of inertia are larger in 
B than in A (i.e., the atoms are more spread out spatially in B). 

We can take the point of view that a given molecule has accemible to 
it the full set of energy statea indicated by A + B in Fig. 10-1, with 
partition function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, but that these states can be classified into two sub- 
groups called A and B, with partition functions q A  and qB: 

There is a single Boltsmann distribution of molecules among all the 
levels A + B. The fraction of molecules in any level, say e, is e4IkT/q. 
Therefore the fraction of molecules in all levels belonging to subgroup A is 

in agreement with &. (10-17). 
The expression 

shows how the density and energy of the two subgroups of quantum states 
determine the equilibrium composition NB/NA.  The first few terms in 
the sum QA are the largest d all, because the energies in the exponents are 
lowest. But the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnumber of terms in QB is larger, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that QB > q A  is still 
possible. In general, a substance is favored in an equilibrium (i.e., its q 
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is larger) if it has Zow-Zying and dense energy levels. The first is primarily 
an energy effect and the second an entropy effect. In the example in Fig. 
10-1, A would predominate at  low temperatures, because the occupation 
of low levels is emphasized by the Boltzmann factor at low temperatures. 
But B would be favored at high temperatures, because the Boltzmann 
distribution becomes more uniform over all levels, regardless of energy, 
a t  high temperatures. Then the number or density of levels counts most. 
This is quite general: in an equilibrium competition of this sort between, 
say, reactanta with low E and products with high S, the reactants will 
win out at low temperatures and the products at  high temperatures. At 
intermediate temperatures, there will be a compromise between low 
energy (A) and high entropy (B) to give the system (as always) the 
minimum possible free energy E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- TS (N, V ,  T constant). 

(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIonization of hydrogen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaloms. The reaction we consider here is 

H F? H+ + e-. (10-21) 

The concentrations of all species and the temperature me such that classi- 
cal statistics and ideal gas behadior can be assumed. The zero of energy is 
chosen as separated proton and electron at  rest. The ground state (the 
only state we need consider) of the hydrogen atom relative to this zero 
then has an energy 4 1  = -13.53 ev. Because of electron spin, wel = 2 
for the hydrogen atom. There is the same degeneracy w = 2 for the elec- 
tron. The proton spin degeneracy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be ignored as usual (for nuclei), 
since it appears in both H and H+ and cancels in the equilibrium constant. 
Then we have : 

Hence, from Eq. (10-6), the equilibrium constant for the reaction (10-21) 
is 

where we have neglected the difference in mass between H+ and H. If 
the ionization is small, pH is practically equal to p z ,  the total concentra- 
tion of H atoms placed in the volume V .  Also, necessarily PH+ = pr-. 
In this case the fraction u of H atoms which have ionized at  equilibrium is 
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As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa numerical example, let US take T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 10,OOO°K and p i  = 0.01 mole. 
Iiter-I. Then we find from Eq. (10-23), 01 = 7.8 X (Problem 10-1). 
Equation (10-22) has been verified experimentally for Cs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACs+ + e-. 

In the equilibrium (10-21), the hydrogen atoms are favored by a much 
lower energy, but the dissociated state is favored by the entropy. The 
numerical calculation above shows that very high temperatures are needed 
for the entropy to overcome the energy in this particular competition. 

(c) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADissociatian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof hydrogen m2ecule8. We assume that the tempera- 
ture is such that the rotation in Ha is classical and that the hydrogen 
atoms themselves ionize [as in (b)] to a negligible extent. The ground- 
state degeneracy of H2 is unity. The zero of energy is chosen as separated 
atoms at  rest. On this basis, the ground state energy of H2 is (Section 8-1) 
eel = - D, = -4.722 ev. The partitions functions are 

Then, for the reaction 

we have, from Eq. (10-6), 

H a e 2 H ,  (10-25) 

If the fraction u of dissociated molecules is small, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp H 2  
centration of Hz placed in V), and 

p& (total con- 

Thus, aside from p$ and T, u depends on the mass mH, the equilibrium 
internuclear separation rb, the vibrational force constant f, and the ground- 
state electronic energy eel. If we use the values of 8, and @,, for H2 in 
Table 8-1, we find at  1000°K and p&z = 0.01 moleliter-', u = 4.6 x 

(Problem 10-2). Again, as in (b) above, hydrogen molecules are 
favored in the equilibrium by the energy, but hydrogen atoms are favored 
by the entropy. Thia will in fact always be the case in s dissociative 
equilibrium. 
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(d) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIsotopic exchange zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAreaction. Consider the reaction 

H2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ D2 F? 2 HD (10-27) 

at temperatures such that rotation is classical and vibration is unexcited. 
The Born-oppenheimer approximation has interesting consequences in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
reaction of this type. These follow from the fact that in this approxima- 
tion the grounddte electronic energy Ue(r) must be the same function 
for all three species: H2, D2, and HD. Therefore re, f, and €81 [ ~ e e  (c) 
above] must all be the same for the three species. Hence, in the quotient 

(10-28) 

the translational factors cancel except for the masses; the rotational factors 
cancel except for the reduced masses (I = pr:) and the symmetry num- 
bers; and the electronic factors cancel completely. Only the zero-point 
vibrational terms e-e*/2T [see Eq. (10-24)] are left in the (unexcited) 
vibrational partition functions, and in these the frequencies are the same 
except for the proportionality to p-'l2 (Eq. 8-18). Specificslly, the sep 
arate quotienta in Eq. (10-28) are easily seen to be: 

2 K(T)  = - P k D  = A = -, 
PHaPDa P€l#Da qHaqDa 

Vibration: exp(- %[l - 2112(mH + mD)1/2 
mk/2+ mg2 11. 

Putting these together we fhd 

(10-29) 

Using VHD = 3770cm-', we calculate K = 3.46, 3.67, 3.77, and 3.81 
for T = 383,543,670, and 741°K. These are in good agreement with the 
respective experimental values 3.50,3.85,3.8, and 3.70. The theory must, 
in fact, be considered more accurate than the experimental work. 

Isotope effects are not usually this large, of course. Note that if we put 
mH = mD in Eq. (10-29), K = 4 (owing to the symmetry numbers). 
For the chlorine isotopes 35 and 37, K = 4(1 - 6), with 6 = O(10-4). 
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(e) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuWafm-gad' recrction. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6nal example, we calculate the equilib- 

CO2 + H2 * CO + H.90. (10-30) 

We restrict ourselves to temperatures high enough 80 that rotation is 
classical in H2. Then 

rium constant K for the so-called "water-gaa" reaction, 

(1&31) 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq' means the partition function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq with the electronic part 96 omitted: 
q' = q;qrQo. For all these molecules, we1 = 1. The zero of energy is the 
separated atoms (C,O, H) at rest. Actually, we do not need to know 
each €61 separately relative to this zero, but only the combination Aeel. 
For thii reaction (from combined thermal and spectroscopic information), 

= 7000 cal.mole-'. Incidentally, the energy change for the re- 
action at  0% involves the zero-point vibrational energies aa well, and is 

where the vibrational frequencies can be found in Table 8-1 and Problems 
9-10 and 9-11. The rotational data are included in the same sources 
(IcoI = 71.9 X lo-'' gm-cma). With this information (A€el, v's, I's), 
K can be calculated by use of expressions for q;, q,, and q,, which we shall 
not write down again. One finds K = 0.45 at 900°K and 1.41 at 1200°K 
(actually using spectroscopio energy levels instead of the slightly approxi- 
mate equations in Chapters 8 and 9), compared with the respective ex- 
perimental values 0.46 and 1.37. 
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PROBLEMS 

10-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACalculate the fraction of hydrogen atom ionbed at 10,OOO°K when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& = 0.01 moleliter-'. (Page 185.) 

10-2. Calculate the fraction of hydrogen molecules dieaociated into atoms 
when &, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.01 moleliter-' and (a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 1000°K, (b) T = 5 O o O O K .  (Page 
185.) 

10-3. Repeat the argument of Section 10-2, but maximize the partition func- 
tion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(NA, NB, p ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  [see Eq. (4-35)l at constant N, p ,  T instead of Q at con- 
stant N, V, T. 

10-4. In the example of Section 10-3, show that 

Why the negative sign? 

PHI # H2 4- 12. 

Table 8-1). 

10-6. Use the data in Table 8-1 to calculate K at 7000K for the reaction 

10-6. Calculate K at 1000°K for the reaction I2 Ft 21 (see Section 4-4 and 

10-7. Calculate e. for Hg, given that Y = 3770 cm-' for HD. 
10-8. Calculate e. for Hg, given that, for H2, 0. = 4.722 ev and Do - 4.454 

10-9. Calculate K for the ''water-gas" reaction at 1200OK using data in the 
ev. 

text. 

SUPPLEMENTARY REXDINQ 
FOWLER and GUQGENHEIM, Chapter 5. 
MAYER and MAYER, Chapter 9. 
RUBHBROOKE, Chapter 11. 
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THE RATE OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACHEMICAL REACTIONS IN IDEAL 

GAS MIXTURES 

Strictly speaking, the subject indicated in the chapter title is outside 
the scope of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis book, which is devoted to equilibrium statistical me- 
chanics. However, Eyring's approximate absolute reaction rate theory 
has a quasiequilibrium foundation: it is based on an application of the 
chemical equilibrium theory of the preceding chapter. For this reason, 
and because of its importance, it seem appropriate to include an account 
of the Eyring theory in the present work. But the treatment we give will 
be very brief, and we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshall not consider any detailed special caws. The 
reader should consult the book by Glasstone, Laidler, and Eyring (see 
the Supplementary Reading l i i )  for further details. 

More exact approaches to this problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill not be d i s c d  here, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsince 
they cannot be put in quasi-equilibrium form. 

An example of a nonchemical application of Eyring's theory is presented 
in Section 11-3: the surface diffusion of a dilute, l o C a l i  monolayer. 

11-1 potential surfaces. There are two distinct stages in the Eyring 
theory. The finsf is the purely quantum-mechanical one of calculating the 
ground-state electronic energy surface (potential surface, for short) for 
the reaction, and the second is the statistical-mechanical calculation of 
the reaction rate. This division is the same as that which we have en- 
countered in calculating the thermodynamic functions of, say, an ideal 
polyatomic gas (Chapter 9). In this latter problem, we finst have to find 
the potential surface of the molecule by quantum mechanics (or obtain 
equivalent information empirically from spectroscopy). Thii surface 
(see Section 9-1) determines the equilibrium structure of the molecule, 
the moments of inertia, the vibrational force constants and nonnal co- 
ordinates, and the depth of the potential well in the surface relative, say, 
to separated atom as zero. With this information, we can then turn to the 
statistical-mechanical problem of deducing the thermodynamic functions. 

We disc- the potential-surface part of the rate problem in this section, 
and the statistical-mechanical part in the next section. 

For ease of visualization, let UB consider a hypothetical one-dimensional 
reaction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A + BC-, AB + C. (1 1-1) 

Three a tom and (in one dimension) three nuclear coordinates are in- 
189 
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FIG. 11-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPotential surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u,) in the form of a contour disgrsm for a 
hypothetical one-dimenaional reaction A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ BC + AB + C. The numbers on 
the contours are values of u. in arbitrary units. 

volved. One coordinate is concerned with the center of mass and is them 
fore uninteresting for the above process. The other two coordinates de- 
termine the configuration of the three nuclei relative to each other zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see 
Appendix V). For example, we might choose for these two coordinates the 
internuclear distances rdB and rBc. For given values of rAB and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATBC 

the gmund-state electronic energy ud(rAB,rBC) is calculated. From a 
large number of such values of ~ A B  and rBC, one can construct a potential 
surface in the form of a contour diagram, which in a typical case might 
appear aa in Fig. 11-1. The valley at the upper left corresponds to an A 
atom and a diatomic BC molecule. (The curvature of the surface at the 
bottom of and perpendicular to the valley determines the vibrational 
frequency in BC; the depth of the valley is a measure of the energy of the 
bond BC.) The valley at the lower right corresponds to the state AB + C. 
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Reaction coordinate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA__c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A B + C  

(d 

FIG. 11-2. (a) Potential energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u,) along the reaction path in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFig. 11-1. 
Note the potential barrier. (b) Corresponding curvc from Fig. 11-3. Note the 
minimum in ue (stable molecule, ABC). (c) Corresponding curvc from Fig. 11-4. 

The high plateau is A + 13 + C. When reaction (11-1) occurs, the lowest 
possible path from reactants (A 4- BC) to products (AB  + c) is the 
dashed line in Fig. 11-1. The highest point on this path is marked X in the 
figure. This is the “activated state,” and the triatomie system A, B, C 
at this point is referred to as an %ctivnted complex, ” denoted by (ABC) *. 
If one plots the potential energy ue along the dashed path of Fig. 11-1 
ft8 a function of the distance along the path (called the “reaction co- 
ordinate”), one obtains a curve w in Fig. 11-2(a). The height Au,* of the 
potential energy barrier which must be overcomc is called the “act.ivation 
energy. 
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THE RATE OF CHEMICAL REACTIONS 
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A + B + C  L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t, + 
Es 
T 

r m  

FIQ. 11-3. Potential surface (u.) in the form of a contour diagram in one- 
dimensional case where stable molecule ABC is formed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

For the reverse reaction, 

AB + C + A + BC, (11-2) 

the reaction path in Fig. 11-1 must be reversed in direction. In this 
example the activated state and complex zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(X in Fig. 11-1) are the same 
for forward (11-1) and reverse (11-2) reactions. Let 

Au6 = ue(AB + C) - ue(A + BC). (1 1-3) 

This is Aue for the reaction aa written in (11-1) and has the same meaning 
as Atel in Eq. (10-32). In Fig. 11-1 it is determined by the difference in 
levels of the two valleys. In Figs. 11-1 and 11-2(a), Au6 is negative. If 
Au,* is the activation energy for the forward reaction, Au,* - Au6 is the 
activation energy for the reverse reaction. 
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A + B + C  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL 

rgc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FIG. 11-4. Potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsurface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u.) in which a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWin occura between two 

potential barriers. 

In a real (three-dimensional) triatomic reaction we would need a con- 
tour diagram in three-dimensional (rAe, ~ B C ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ A C )  instead of two-di- 
mensional space (or a surface in fourdimensional space). But the general 
concepts introduced above for a hypothetical one-dimensional reaction 
remain the same. Incidentally, it should be noticed that linear configura- 
tions of A, B, C are included in the potential surface (in fact, activated 
complexes in triatomic reactions are usually linear), and we recall that 
linear molecules have four, not three, vibrational coordinates. However, 
this is not contradictory to the statement that u6 is a function of the three 
variables r A B ,  rgc, and r ~ c  only, for two of the normal modes in a linear 
molecule are degenerate (i.e., of the same frequency). For example, the 
positions of the atoms in the two degenerate modes of COa [shown pre- 
ceding Eq. (9-3)] are expressible by the same sets of values of TAB, rec, 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArAC (the triangle ABC is merely rotated 90" in going from one mode 
to the other). 

In contrast to Fig. 11-1, we show in Fig. 11-3 what a typical (one- 
dimensional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&) potential surface might look like in the event that A,  
B, and C formed a stable molecule A BC. The potential well in Fig. 11-3 
is characteristic of a stable molecule. The equilibrium molecular geometry 
of ABC is determined by the location of the bottom of the well, and the 
vibrational motion of the molecule is determined by the shape of the well 
in the neighborhood of the minimum [see ale0 Section 9-1 and Eq. (V-l)]. 
A plot of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu8 as a function of distance along the lowest possible path from 
the upper left valley to the lower right valley in Fig. 11-3 would appear 
as in Fig. 11-2(b). This should be contrasted with Fig. 11-2(a). 

Another type of potential surface is shown in Fig. 11-4. A basin is 
situated between two potential barriers, X and X'. The potential energy 
as a function of the reaction coordinate is shown in Fig. 11-2(c). A baain 
may possibly occur,* for example, in the reaction 

H + H2 + H2 + H. 

11-2 Absolute rate theory. As a concrete example, let us return to the 
reaction (11-1) and disc- it now as a real three-dimensional reaction. 
We suppose that the potential surface is of the general type shown in 
Fig. 11-1; that is, the potential "pro6le" has one potential barrier, as in 
Fig. 11-2(a). 

The fundamental assumption of the Eyring theory is that, during the 
course of the reaction (11-1), molecular configurations corresponding to 
the upper left valley in Fig. 11-1 (i.e., reactant molecules) are in thermo- 
dynamic equilibrium with molecular configurations corresponding to the 
neighborhood of the activated state X in Fig. 11-1 (i.e., activated com- 
plexes). This is an assumption which cannot be rigorously correct, but 
which is probably rather accurate in many cases. This assumption of 
equilibrium between reactant molecules and activated complexes makes it 
possible for us to use the methods of the preceding chapter on chemical 
equilibria to deduce the concentration (defined below) of activated com- 
plexes. From zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis knowledge, as we shall see, we can then calculate the 
number of reactanta passing over the barrier, from upper left to lower 
right, per unit time and per unit volume of the system. This is the desired 
reaction rate. 

An activated complex is very much like an ordinary stable molecule. 
It has a definite mass (mA + mB + mc in this example) and a definite zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

'See GLASSTONE, LAIDLER, and EYRINQ (Supplementary Reading list), 
p. 108, and R. E. WESTON, JR., J .  Chem. Phya. 31,892 (1959). 
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nuclear configuration (corresponding to the position of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX in Fig. 11-1 
at the top of the potential barrier). This configuration determines the 
moments of inertia and the symmetry number. Thus we can immediately 
write (assuming the potential surface is available) the translational and 
rotational partition functions for an activated complex, just as we did in 
Chapter 9 for a stable molecule. 

Furthermore, we can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcarry out a normal-coordinate analysis for the 
vibrational frequencies, based on the shape of the potential surface in the 
neighborhmd of the activated state. If the activated complex is linear, 
there will be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3n - 5 normal vibrational modes, otherwise there will be 
3n - 6. The activated state is located at  a saddle point in the potential 
surface. That is, although the activated state is a maximum point along 
the reaction coordinate, it is a minimum in other directions (e.g., in Fig. 
11-1, in the direction perpendicular to the reaction coordinate). This 
feature will appear automatically in the normal-coordinate analysis when 
the potential energy u, is expressed in terms of the normal coordinates 

[see Eq. (V-13)]. Necessarily (i.e., by definition of a normal coordinate), 
us will be a sum of squared terms in the ti, and the coefficients will be posi- 
tive as usual (Eq. V-13) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe w q t  for one Coordinate, call it t, which will have 
a negative coefficient. This particular normal coordinate is the rigorous 
equivalent of what we have hitherto been loosely calliig the reaction co- 
ordinate. The coe5cient of t' in u, is negative because the potential sur- 
face f& of on both sides of the activated state along this direction (and 
this direction only). 

From the normal-coordinate analysis we thus obtain 3n - 6 (linear) 
or 3n - 7 (nonlinear) ordinary vibrational frequencies vi. The frequency 
associated with t is imaginary because the force constant (twice the coe5- 
cient of t') is negative. We can therefore construct, in the usual way, from 
the vi, a vibrational partition function for the activated complex-except 
we omit the factor belonging to the emotion. Thus of the 3n nuclear 
degrees of freedom of an activated complex, 3n - 1 can be handled just 
as with stable molecules. Only the reaction normal coordinate t requirea 
special treatment. 

Let q: represent the vibrational partition function of the activated com- 
plex, omitting the &factor. Also, let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq* = qFq:q:q: be the complete 
partition function of the activated complex, just as for any polyatomic 
molecule--except, again, omitting the t degree of freedom. 

We wish next to calculate the number of activated complexes per unit 
volume of the system which are in an infinitesimal range d t  of the reaction 
coordinate at the activated state. We shall call this number p' dt ,  so that 
p' is the number of activated complexes per unit volume and also per unit 
length along the reaction coordinate t at the activated state. We want 
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the number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd t  to include all activated complexes in d t  irrespective of 
the value of pg, the momentum conjugate to f .  For the element of phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
space d f  dpt in the coordinate t, the (classical) partition function is 

where m* is defined by pg = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm*#. It should be noted, incidentally, that 
there is always some arbitrariness in defining normal coordinates [see the 
constants Ci in Eqs. (V-12) and (V-14)], and so there is arbitrariness in 
m* and 4. But combinations of these quantities with physical signifi- 
cance (e.g., pi/2m* or dtdpg above) are not arbitrary. Integration of 
(11-4) over pg gives the f partition function for an activated complex in 
d t .  The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcontplete partition function for such an activated complex is then 

(11-5) 

With the assumption, already mentioned, of equilibrium between re- 

(11-6) 

actants (say A and BC, for concreteness) and activated complexes, 

A + BC F? (ABC)*, 

we have, as in Eqs. (10-8) and (10-31), 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq' means, as before, that qI is omitted from q. The quantity Aut is 
defined for the proceas (114) by analogy with (11-2) and (11-3). If the 
ground electronic states are degenerate, a factor w,*,/we~(A)wIl(BC) must 
be included in Eq. (11-7) (w,*, b e i i  the degeneracy of the activated 
complex). 

Equation (11-7) provides us with an explicit equation for p', the num- 
ber of activated complexes per unit volume of the system and per unit 
length along t at the activated state. Our next task is to calculate the 
number of activated complexes per unit volume which crow the potential 
barrier X per unit time in the direction of reaction (left to right in Fig. 
11-1). Assuming all of these complexes become products, this is the rate 
of the reaction. Consider those activated complexes with values of # be- 
tween # and t + d& The fraction of all activated complexes which are 
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in this class is, from (11-4), 

Suppose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAincreases as the activated state is approached from the reactant 
(left) side in Fig. 11-1. Then an activated complex with C > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 is pro- 
ceeding along the reaction coordinate in the direction required for the 
reaction to take place. We note that activated complexes with a given 
value of # > 0 will cross the potential barrier in unit time if they start at 
a distance from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX not greater than a length of magnitude #. The number of 
activated complexes per unit volume and per unit length along zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI having 
values of # in the interval d# is p'f(4) dt. The number of activated com- 
plexes per unit volume in the length # along [ having # in the interval d# 
is then #p'j(#) &. This is the number of complexes per unit volume with 
# in d# which cross the barrier per unit time. To get the total number 
of complexes per unit volume crossing the barrier per unit time, we have 
tointegrate#overtherangeO I # I + co: 

= b A P B C ,  (11-8) 

which is the defining equation for k. The quantity k p ~ p ~ c  is the rate of 
the reaction, and k(T) is called, conventionally, the rate constant. If p' 
is obtained from Eq. (11-7), we find 

(1 1-9) 

If only a fraction K (called the transmission coe5cient) of complexes pass- 
ing the potential barrier in the right direction actually proceed to products, 
then K must be inserted as a factor on the right-hand side of Q. (11-9). 
This situation a r k s ,  for example, in cases such as Fig. 11-4, where the 
system passes over a barrier (X) but then finds itself in a basin. The sys- 
tem may leave the basin (via X') to form products or return (via X) to 
reactants. In the reaction H + H2 -+ H 2  + H ,  the basin is symmetrical 
(if it exists), and it is usually assumed that K = 1/2. 

Equation (1 1-9) furnishes a straightforward statistical-mechanical 
recipe for calculating the rate constant k. The potential surface must be 
available, however, and this is a very serious practical obstacle. Because 
of this, it is dficult to test the theory in a really satisfactory way. Of 
course, one does not expect exact agreement between theory and experi- 
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ment, as the argument used to deduce Eq. (11-9) is not rigorowthe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas- 
sumption of equilibrium between reactants and activated complexes being 
especially questionable. Also, if a transmission coefficient must be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAused, 
this introduces a somewhat nebulous feature into the theory since K is 
in general di5cult to evaluate. 

For the reverse reaction (11-2), the rate constant is 

The equilibrium constant K for the reaction (11-1) is then 

(1 1-10) 

(1 1-11) 

in agreement with Eqs. (10-6) and (10-31). 

11-3 A nonchemical application of the Eyring theory. The fundamental 
ideas in Eyring’s theory of the rate of chemical reactions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be and have 
been applied to many physical rate processes as well. Merely to illustrate 
the possibilities, we consider here a particularly straightforward example, 
namely, the rate at which monatomic molecules adsorbed at localized 
sites on a surface jump from one site to another. This rate is of course 
closely related to the coe5cient of surface dfiusion. The model we con- 
sider is essentially that already discussed in Sections 7-1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=. We 
have a lattice of equivalent surface sites for adsorption, but we need not 
specify the lattice type. The number of adsorbed molecules is small, so 
that each one behaves independently. The potential in which a molecule 
moves is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUo(z, g) [see, for example, Eq. (9-19)]. The potential wells in 
Uo(z, g) are the sites for adsorption. The partition function for an ad- 
sorbed molecule at a site is given by Eq. (7-3). 

To move from a given site to a nearest-neighbor site, a molecule must 
pass over a potential barrier of height VO. The top of the barrier is the 
activated state for this process: 

A (site) A* (top of barrier) --* A (neighboring site). 

Let and q be the normal coordinates at the activated state, which is a 
saddle point in the surface UO. We take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 as the “reaction coordinate.” 
That is, the coefficient of I2 in the expansion of UO in powers of t and q 
about the activated state is negative, while the m5cient of q2 is positive. 
Thus a molecule at the top of a potential barrier vibrates in the usual way 
in the zdirection (perpendicular to the surface) and also in the q-direction 
(perpendicular to the direction of passage from one site to the other, i.e., 
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perpendicular zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, but not in the &direction. We denote the z and q 
vibrational partition functions at the activated state by q: and q r .  

The partition function for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa molecule in the element of length d( at the 
top of a barrier is [see Eq. (11-5)] 

(11-12) 

Let N' d t  be the equilibrium number of molecules in a length d t  at the 
top of barrim, and let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN be the equilibrium number of molecules in sites. 
Then, from JZq. (10-5), the ratio of these two numbera is 

where M * / M  is the ratio of the number of activated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs tah  to the number 
of sites (this ratio is two for a square lattice). By the same argument as 
in the preceding section (Eq. 11-8), 

(11-14) 

is the number of molecules crossing a barrier (or the number of jumps 
beiig made from one site io another) per unit time, where N' is given by 
Eq. (11-13). We are assuming here that there are no "rebounds": zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK = 1. 
If r is the mean time a molecule spends at a site between jumps, then a 
second expression for the number of jumps occurring in unit time is N / r .  
If we set N/T equal to (11-14), we find 

(11-15) 

This is the analog of Eq. (11-9). That is, 1/r is the rate c o a t  for this 
P-. 

To obtain an estimate of the order of magnitude of 7 in Eq. (11-15), 
we set M * / M  = 2, q? = q,, [as would be the case with Eq. (9-19)], 
q? = qr, and qz = kT/hvz (classical). Then 

(11-16) 

This equation has the following approximate interpretation: 2v, is the 
number of "attempts" per second the molecule makea to leave its site; 
e-volkr is the probability that any particular attempt will be successful; 
and hence 1/r is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAactual number of jumps a molecule makes from one 
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site to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAanother per second. If we take Y:. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 10" sec-', zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVo = 500 
cal-mole-', and T = WOK, then e-vonT = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.043 and 7 = 3.9 X lo-'' 

Equation (11-15) also provides a theoretical equation for the 4- 
cient of surface diffusion D, since D is related to 7 (from the theory of 
random walks) by D = Ca2/r, where a is the distance between nearest- 
neighbor sites and C is a constant of order unity which depends on the 
lattice type. 

sec. 

PROBLEMS 

11-1. Write out the explicit forms for the partition functions in Eq. (11-9), 
assuming the triatomic complex (ABC)* is linear. Insert typical orders of 
magnitudes for the masses, frequencies, bond distances, etc., to estimate a 
magnitude fork. 

11-2. Derive an equation for d In k/dT from k in Problem 11-1. 
11-3. Discuss the rate of difiusion of impurity atoms in a monatomic crystal 

from the point of view of Eyring's theory. 
11-4. Consider the rate of evaporation of a dilute localised monatomic 

monolayer into the gas phase. (a) Use Eyring's methd to derive an equation 
for 1/r8, where T, is the mean time a molecule epends on the surface before 
evaporating. (b) Derive the same expression for l/r8 by equating the number of 
molecules condensing on the surface per unit area and per unit time with the 
number evaporathg, at equilibrium: 

where p is the equilibrium gas preseure and N/a is given by Eq. (7-10) in the 
limit as 8 4 0 .  

SUPPLEMENTARY READING 
FOWLER and GUQQENHEIM, Chapter 12. 
FIIENKEL, J., Kinetic Theory of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALiquids. New York Dover, 1965. 
GLASSTONE, S., LAIDLER, I(. J., and EYRINQ, H., The Theory of Rds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~tocesaes. 
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IDEAL GAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAN ELECTRIC FIELD 

Our principal object in this chapter is to deduce the thermodynamic 
properties of a very dilute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas in an electric field. In Chapter 15, this study 
will be extended briefly to slightly imperfect gases. 

In Section 12-1 we give some necessary thermodynamic background, 
and in Section 12-2 we develop general statistical-mechanical equations 
(canonical ensemble). The material in the first two sections is quite 
general and would apply to any fluid (or isotropic) dielectric. The dilute- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
gas special case is then considered in Section 12-3. Finally, insection 
12-4, we discuss a somewhat related problem: a lattice of noninteracting 
magnetic dipoles in a magnetic field. This problem turns out to be formally 
the same as that of the ideal lattice gas in Chapter 7. The interacting 
magnetic dipole case (the Ising model for ferromngnetism) is included 
in Chapter 14. 

12-1 Thermodynamic background. A number of alternative and equiv- 
alent thermodynamic formulations can be devised for a dielectric fluid in 
an electric field. Koenig* has given a very full discussion of this subject. 
The corresponding treatment for magnetic systems is contained in a paper 
by Guggenheim.t We confine ourselves here to the one particular formula- 
tion that is most convenient in the statistical mechanics of gases in an 
electric field. For condensed systems, there are some advantages to other 
choices. 

Consider the parallel plate condenser in Fig. 12-1. The plate surface 
charge densities are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+u and -u, as indicated. The condenser is assumed 
to have a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlarge enough plate area zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA80 that edge effecta can be ignored. The 
volume Y contains the dielectric fluid whose properties we are interested 
in. For simplicity, we take the fluid as one component with N molecules, 
but it could aa well be multicomponent. The same is true in Section 12-2. 
One wall of the fluid container, parallel to the condenser plates, serves as a 
piston to vary the volume V. The equilibrium pressure on the piston is p. 
The regions between the fluid container and the condenser plates are 
evacuated. As a consequence of polarization of the dielectric in the field 
of the condenser plates, there are induced surfacecharge densities --d 

* F. 0. KOENIQ, J .  Phys. Chem. 41, 597 (1937). 
t E. A. GUWENREIM, Pm.  Roy. SOC. MSA, 49, 70 (1936). 

mi 
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FIG. 121. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADielectric fluid in volume V between two condenser plates. V 
can be varied by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 piston with pressure p. 

and +a' on the inside zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsurfaces of the indicated walls (Fig. 12-1) of the 
fluid container. 

Let us consider the electric field acting at any point in the fluid. The 
field due to the condenser zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsurface charge +a is 2uu, aa can easily be de- 
duced from Coulomb's law (Problem 12-1). The field arising from the 
surface charge -u is ale0 2uu (acting in the same direction). The total 
field from the charge on the condenser plates is therefore 4uu. This field 
is called the dielectric displacement D;  D = 4 m .  We regard D as 8 

variable intensive parameter on which the thermodynamic properties of 
the fluid depends. D is an external field; that is, it can be controlled from 
outside the thermodynamic system (fluid) itself. At a point in V, D has 
the same value whether or not a dielectric fills V; that is, it is determined 
solely by u. In addition to the field D due to external charges acting at the 
point in V, there is clearly also a field - 4 d  due to charges induced on 
the surfaces of the dielectric. An equivalent point of view is that this 
second field ariseg from molecular dipoles throughout V oriented some- 
what in the external field D. It is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcustomary to use the symbol P (polar- 
bation) in place of d. Then the total electric field acting at a point in V 
is D - 4uP. This field is denoted by & (electric field strength): 

&, D, and P all have the same sign. The dielectric constant e is then 
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defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= e&; necessarily e 2 1. In this chapter we shall avoid the 
use of the symbol e as a molecular energy level. 

We now consider the thermodynamic functions of the fluid molecules. 
In these functions we include only contributions from the molecules 
themselves, and exclude contributions that would be associated with the 
space V and field D if no molecules were present in V .  This is a natural 
choice in a molecular theory. Thus, the energy E includes the molecular 
kinetic energy, the potential energy of interaction of the molecules with 
the external field D, and the potential energy of interaction between the 
molecules themselves. 

In the expression 
d E = D Q * - D W + p d N ,  (12-2) 

there are two contributions to DW. One is the usual p dV term associated 
with a volume change (N and D constant, DQ* = 0), and the other is 
related to changes in D (N and V constant, DQ* = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0). Consider the work 
that must be done on the entire system shown in Fig. 12-1 if u is to be 
changed by du. Let a be the cross-sectional area of a condenser plate. 
Then we have to transport an amount of positive charge a du from the 
negative condenser plate to the positive plate. This charge has to be 
moved against a field & through the dietance L (fluid) and against a field D 
through the distance L' - L (vacuum). The total work done on the 
system is thus 

But to get the quantity we want, the work done on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe jeuid, we have to 
subtract from (12-3) the work which would have to be done to increase u 
by du when the volume V is evacuated. This work is 

&L&& + D(L' - L)a&. (12-3) 

DL'a du. (12-4 

On subtracting (12-4) from (12-3), we get 

Eutdu - DLadu = -PVdD. 

This is work done on the fluid. The desired contribution to DW is +PV dD, 
since DW is work done by the fluid. 

We note that PV = (da)L ,  which is just the total dipole moment 
(charge x separation distance) of the fluid in V .  We call the total moment 
M and replace PV by M .  Finally, then, Eq. (12-2) becomes 

(12-5) 

dE = TdS - pdV - M dD + pdN.  (126) 

Koenig has shown that the pressure p in this equation has the operational 
significance implied by the particular kind of volume change indicated in 



204 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIDE.4L GAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIN AN ELECl'RIC FIELD [CHAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 12-1. On integrating Eq. (12-6), holding intensive properties con- 
stant, we find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= TS - pV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+pN, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F = pN = A + pV. 

Alternative useful forms of Eq. (12-6) are 

dA = -SdT - pdV - M d D  + pdN, (12s) 

d(pV) = S d T + p d V + M d D + N d p .  (12-9) 

12-2 Statistical-mechanical background. We are concerned with a 
fluid system of N molecules in a volume V .  The system is placed in the 
external electric field D (Fig. 12-1). We regard D as a parameter. The 
possible energy states of the system, when D has a particular value, must 
be found from quantum mechanics and are denoted by Ej(N, V, D). 
The argument up to Eq. (1-13) in Chapter 1 is unchanged, but in 
Eq. (1-13) we now write (N constant) 

d E j  = ( ! ! ) N , D  dV + (!$j)N,v dD- 

Just as me defined pj as the pressure in state Ej (Eq. 1-7), here we define 

as the total moment of the system in state Ej. That is, -MjdD is the 
total work that has to be done on the system, when in the state Ej, in 
order to increase D by dD. Then Eqs. (1-15) and (1-16) become 

(12-10) TdS = dB + pdV + P d D ,  

where P is the ensemble average of the mechanical variable Mi: 

P = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc Pjiuj. 
f  

(12-11) 

Equations (1-29) through (1-31) are still obtained, for any aseigned 
value of D, and we have 

(12-12) 

A(N, V ,  T,  D) = -kT In Q(N, V ,  T ,  D) .  (12-13) 
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Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe connection between thermodynamics and statistical mechanics 
is established. In particular, from Eqs. (12-8), (12-12), and (12-13), we 
find 

(12-14) 

In an open system (independent variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, D), the grand parti- 
tion function is defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ZW, T, P, 0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= QNW, T, WN, (12-15) 
N 

where X = e#IkT and QN(V, T, D) = Q(N, V, T, 0). We can easily verify 
from the rule (1-92) and Eq. (12-7) that 2 = epv/kT here, as in the 
a h n c e  of a field D. Equations (12-9) and (12-15) then provide us with 
all the nece888sjr interconnections between 2 and thermodynamics. For 
example, 

(12-16) 

where MN(V, T, D) is new notation for the canonical ensemble average 
P ( N ,  V, T, D) in Eq. (12-14). The average indicated in Eq. (12-16) is 
over N; each MN in Eq. (12-17) is already averaged over j .  

We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshall return to the above equations for an open system when we 
discuss an imperfect gas in an electric field in Section 15-5 (see also 
Problem 12-2). 

12-3 Dilute gas in an electric field. We consider a one-mmponent gas 
which is ddute enough so that each molecule behaves independently and 
claasical statistics may be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAused. Then in the canonical ensemble (Eq. 3-10), 

(12-18) 

where Q1 here replaces the symbol q used earlier (for example, in Chap 
tern 3,4,8,  and 9). Equations (12-8), (12-13), and (12-18) then give for 
the total moment of the system, 
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where M I  is the canonical ensemble average dipole moment of a single 
molecule at temperature T and in the external field D. The chemical 
potential is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

= -kTln-; Qi X = - *  (12-20) 
N QI 

The equation of state will be deduced below. 
The problem is reduced by the above equations to one of finding the 

partition function Ql(V, T, D) of one molecule in a volume V, external 
field D, and temperature T. We consider, therefore, a single diatomic or 
polyatomic (without internal rotation) molecule, in a box of volume V, 
and in an electric field D. Suppose the molecule has a permanent dipole 
moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApw Also, we assume that the field induces in the molecule a further, 
additive, moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaD (in the direction of the field), where a is the polariz- 
ability. The polarizability is a purely quantum-mechanical quantity, 
independent of T. The work necessary to create this induced moment is 
[compare Eq. (12-6)] 

Let 8 be the angle between the direction of the field and the axis of the 
permanent moment po (Fig. 12-24. In the presence of the field, the 
rotation of the molecule is not free, because of the dependence on 8 of the 
potential energy of the permanent dipole (F'ig. 12-2b) : 

U = - ~ ~ D c o s  8. 

[This problem should be compared with those associated with Eqs. (9-18) 
and (9-19).] The total electrostatic potential energy U1 of a molecule in 
the field D is then 

(12-21) U1 = -3.D' - p0D COB 8. 
D - + 

+ 
+ 
+ 
+ 

FIG. 122. (a) Permanent dipole PO oriented at an angle 0 with respect to 
the field D. (b) Potential energy of dipole as a function of 8. 



12-31 DILUTE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGAS IN AN ELECraIC FIELD 207 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We assume that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU1 simply makes an additive contribution to the 

Hdton ian  of the molecule. Let us call U1 the rotational potential 
energy. The rotational Hamiltonians of Chapters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 contain kinetic 
energy terms only. We treat rotation classically, as in these earlier chapters. 
Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p be an azimuthal angle around the direction of the field D in Fig. 
12-2(a). In the absence of a field, all orientations ( 0 , q )  of the axis of the 
moment po are equally probable. Therefore the probability of finding an 
orientation in the range d0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd(p is proportional to sin 8 dB dq. In the pres- 
ence of a field, some orientations are favored over others because of 
Eq. (12-21). The partition function Ql(D)  in the presence of a field is 
altered from that in the absence of a field, &1(0), only through the rota- 
tional potential energy U1. Thus we can easily take care of the effect of 
the field by extracting from &1(0) the result, 41r, of integrating over e and 
(p with U 1  = 0, and then include an integration over 8 and (p in Ql(D) :  

In the notation of Chapters 8 and 9, 

where qc q,, etc., are unchanged from our earlier treatment. 
We digress to note at this point that the equation of state of the gas is 

We substitute Eq. (12-21) in Eq. (12-22) and find easily 

(1 2-25) 

FIG. 1Z3. Langevin function, 2 ( g )  = coth g - gel. 
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where y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApoD/kT. Then, from Eq. (12-19), 

M1 = aD + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPoJxd ,  (12-26) 

where g(y) ia the Langevin function (Fig. 12-3): 

(12-27) 1 
II 

e(g) = coth y - - * 

In practice, y << 1. For example, if po = 1 Debye, D = loo0 voltmm-I, 
and T = 300°K, y = O(10-4). The expansion of rt(y) about y = 0 is 
(Problem 12-3) 

2(y) =r-y8+... .  3 45 (12-28) 

Ordinarily only the first term is required. Similarly, 

Equations (12-25) and (12-26) become then 

Ql(D) = Q1(0)e''~~'~~'[l + f ($)'I 9 (12-29) 

M I  = D ( a + & , ) .  

Here Y1 is the average dipole moment of one molecule; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaD is the induced 
moment (independent of T) ,  and pgD/3kT = p(T)  is the statistically 
averaged component (in the direction of the field) of the rotating perma- 
nent moment po. If the permanent moment were completely oriented by 
the field [D + Q) or T + 0; B(y) + 11, p would approach po itself. 
That is, pmu = po. It is clear that at ordinary field etrengths and tem- 
peraturea the rotation ie almost free and the orientation of po in the 
field is very slight, for 

P POD 
Pmu 3M' 

- - << 1. 

In the limit as T + 00 or D 0, p + 0. 

D =  € + 4 ~ P = - ; + y '  D 4rM 
From Eq. (12-1), 

or 
a - 1  4rM 

a DV 
-=-. 
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In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe l i t  as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= N/V + 0, we then have the following equation for 
the dielectric constant 6 of the gas: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(12-32) 

A plot of the experimental quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e - 1) /4~~.against  1/T will give a 
as the intercept and &/3k as the slope. This well-known method of 
determining permanent dipole moments is treated in physical chemistry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
texta and will not be considered further here. 

Finally, let us deduce some of the thermodynamic functions for a dilute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
gas in an electric field. First, from Eqs. ( 1 2 2 0 )  and (12-29)) 

where p(0) is the value of p when D = 0 (see Chapters 8 and 9). Next, 
from Eqs. (12-S), (12-18), and (12-29)) we find for the entropy 

The entropy is reduced in the presence of a field because rotation is slightly 
hindered. Also, for the energy, 

The added terms in Eq. (12-35), with the field on, are clearly just the 
average value of Ul/kT (Problem 1 2 4 ) .  

The terms in D2 in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEqs. (12-33) through (12-35) are very small, say of 
order to in typical c88e8. The leading term in each of these 
equations is of order unity. 

1 2 4  Lattice of noninteracting magnetic dipoles. In this section we 
discuss an idealized magnetic problem. Suppoee we have a lattice of M 
equivalent magnetic dipoles (associated, say, with electron or nuclear 
spins), each of which can exist in only two orientations or states: T , in 
the direction of the magnetic field H; or 1 , against the field. The potential 
energy of a dipole or spin is -mH if oriented with the field ( T ) , and +mH 
if oriented against the field ( 5. ), where nt is the magnetic moment. The 
dipoles are assumed not to interact with each,other (or, more accurately, 
only "weak" interaction is allowed- Chapter 3);  each dipole behaves 
independently of the re&. This is a good model for nuclear spin systems 
but not for electron spin systems (e.g., ferromagnetism). In our discuesion 
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of fernmagnetism in Chapter 14 we shall introduce nearest-neighbor 
interactions. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN be the number of 5. states and M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- N the number of t states. 
For a given value of N, the total potential energy of the dipoles in the 
field is 

mHN - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmH(M - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN)  = (2N - M)mH. 

For given M ,  H, and T, let fl be the average value of N (N can range 
fromOtoM). Thenthework neceasarytoincreaseHbydHis-IdH, 
where 

I = (M - 2V)m. (12-36) 

In Eq. (12-36), I is the intensity of magnetization; it is the average excess 
number of t states over 1 states, multiplied by m. In the absence of a 
magnetic field, the two states have the same potential energy (zero), and 
therefore occur in equal numbers; hence I = 0 when H = 0. 

The basic thermodynamic equations we use are* 

dE = TdS - I d H  + p d M ,  (12-37) 

d A  = - S d T  - I d H + p d M .  (12-38) 

On integrating (H is intensive, I extensive), 

A = E - T S  = pM. (12-39) 

For a given value of N ,  there are M!/N! (M - N)  ! possible arrangements 
of the two states 7 and 3- among the M positions. Also, for given N, 
the energy of the dipoles in the field H is (2N - M)mH, as already men- 
tioned. Therefore, the canonical ensemble partition function for a system 
of M dipoles at T and H is 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(T) is the "internal" partition function of a dipo1e-a quantity we 
need not specify further. The summation in Eq. (12-40) is easy to carry 
out. We find 

(1 + e--lnRIM' M MrnHlkT 1 &of, T, H) = qMe 

* In S. M., pp. 288-289, the quantity E,,, ia equivalent to E + HI here, and 
the partition function A ia equivalent to Q here. 
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-3 -2 -1 

Fro. 124. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMagnetisation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( I / m M )  of lattice of noninteracting magnetic 
dipolea zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA88 a function of magnetic field (mH/k!l'). 

From A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= --kTln&, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEqs. (12-38) and (12-41), we find for the 
magnetization I, 

This function is plotted in Fig. 12-4. When H = 0, I = 0 (i.e., = M/2) .  
When H -* +m, all dipoles are oriented t , and I = mM (i.e., R = 0). 
When H -00, I = -d and R = M. 

The formal resemblance between this model and Langmuir adsorption 
(or an ideal lattice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas) is rather obvious. See also Section 7-4 on the 
elasticity of a polymer chain. The two states t and 1 correspond to an 
empty site and an occupied site, respectively. If we denote the fraction of 
dipolea in the state 1 by 8, then 

I d 
tanhkT. 

-- rnM - 1 - 28 = 

The Langmuir adsorption isotherm, 8 = qX/(1 + qx) (Eq. 7-16), can be 
put in the same form: 

1 - qx 
1 + qx x J  (12-44) 1 - 20 = - = 

where 
5 = - In (qx)? 

In the magnetic, adsorption, and polymer elasticity problems, the magnetic 
field, chemical potential, and force, respectively, play corresponding roles 
in shifting the relative population of the two states involved in each case. 
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PROBLEMS 
12-1. Use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACoulomb's law and an integration to show that the (normal) 

electric 6eld of an U t e  plane aheet of charge, with charge density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0; is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk r .  

12-2. Deduce. the equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= NkT, X - N/QI, and M = NM1 from 
(Page 202.1 

Eqs. (12-9), (12-15), and (12-18). (Page 205.) 
12-3. Show that 

8 
S(y) =&+... 1 . 

(Page 208.) 
12-4. Show that 

(- + 1 &) + . . . . 
I-" *2 3 kT 

(Page 209.1 
12-5. Show that 

ff cm e P - ' ~ ~  sin e de 2 
P -  s B&+ .... hw e'oDdlWsin e d~ 

12-0. If POD>> kT, a gas molecule will oscillate about 8 - 0 instead of 
rotating. In this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase it is appropriate to expresa p as a power aeries in T instead 
of T-1. Find the first two t e rn  in the aeries. 

12-7. Obtain the basic thermodynamic functions for a sample of sn ideal gss 
at a height h in a gravitational field. Take the gravitational potential energy e8 

zero at h = 0. Find the density of the gas as a function of h, by use of the 
equilibrium condition p(h) = p(O), where p = chemical potential. 

12-8. Calculate the value of y 5 poD/kT for po = 1 Debye, D - lo00 
voltrs.cm-l, and T = 300°K. 

12-9. Calculate e - 1 from Eq. (1232) for.HZ0 vapor at 100°C and 1 stm 
pressure. Take a = 1.68 X 

12-10. Derive an expression for the equilibrium ratio of the number of 
dipoles to the number of 1 dipoles, for given H and T.  Show that if suddenly 

the field is switched from H to -H, and if the distribution of dipoles between 
T and 1 remains unchanged an appreciable time before adjusting to the new 
direction of the field, then during the time before adjustment the system has, 
in effect, a negative temperature. This is a useful point of view in connection 
with some nuclear spin systems. 

12-11. Derive equations for S / M k  and E/MmH as functions of bT/mH 
(take q = 1). 

12-12. Investigate fluctuations in N and I in the magnetic system of Sec- 
tion 124. 

cm8 and po = 1.84 Debye. 
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FO~LEB and GUWENHEIM, Chapter 14. 
K~TEL, Section 18. 
MAYEB and MAYEB, Chapter 16. 
RUBHBBOOKE, Chapter 10. 
WILBON, Chapter 10. 



CHAPTER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13 

CONFIGURATION OF POLYME2 MOLECULES AND 
RUBBER ELASTICITY 

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthia chapter we present zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa brief introduction to polymer configuration 
problems and to the theory of rubber elasticity. The treatment is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbased 
to a considerable extent on the work of James and Guth (Supplementary 
Reading liet). A number of other topics having to do primarily with 
polymer molecules in solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill be discussed in Chapter 21. 

The basic prototype for polymer chaina zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be represented as 

/"\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR /"\ R /"\ R /"\ R /"\ 

where R is the monomer Unit, and the chain continues indefinitely at both 
en&. The configuration shown above is the fully extended configuration. 
Actually, because of rotation of the attached p u p  of R's around each 
R-R bond, a great many configurations are possible, of which the ex- 
tended con6guration is only one. One of the fundamental problems in 
polymer statistics is to deduce the relative number of configurations of a 
long polymer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAchain consistent with a specified ead-toend distance (Fig. 
13-1). This problem is cloaely related to problems in brownian motion, 
random walks, diffusion, etc. 

2 

FIQ. 

/ 

13-1. Long polymer chain with end-bend 
214 

vector r. 
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One of the simplest polymer chains, polymethylene, has R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= CH2. 

Other well-known possibilities for R are: 

C6H5 CHa 
I 

--CH2--(*/----CH--CHa- 
I 

4 H d H -  
Pol* yrene Rubber 

In typical casea the number of monomers in a chain might be from 100 to 
10,Ooo. 

13-1 Fmely jointed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAchain. To handle this problem we 6rst have to 
generalize the formalism of Section 7-4. Consider a linear polymer chain 
made up of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM units, where M is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlarge enough so that one chain can be 
considered a thermodynamic system. Each unit can exist in the states 
i = 1, 2, . . . , n with partition functions j i (T)  and lengths zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh. The total 
length of the chain is 1. The system (chain) is characterized thermo- 
dynamically by Z, M,  T.  The canonical ensemble partition function is then 

where Mi is the number of unita with length k, and the sum is over all 
sets M = M I ,  M2, . . . , Mn consistent with the restrictions 

2iwi= M, 
i l l  

EQuation (13-1) is a rather obvious generalieation of EQ. (7-58). Here, 
for purposes of symmetry, we choose I 88 independent variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinstead of 
one of the Mi [Me WBB used in Eq. (7-58)]. The appropriate thmody- 
namio equation is 

with 
d A =  - S d T + r d l + p d M ,  (13-4) 

A = --kThQ (13-5) 

and r = force pul l i i  on the chain. 

partition function. We use the partition function 
The restriction (13-3) is troublesome; to avoid it we change to another 
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This zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the analog of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEq. (1-87). The connection with thermodynamics is 

dF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -SdT - I &  + NdM, (13-7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F = A - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 = p M  = -kTlnA. (13-8) 

We substitute Eqs. (13-1) and (13-3) in Eq. (13-6) and obtain 

where now the only restriction on sets M is (13-2). The sum can be car- 
ried out immediately, and we have 

This gives, for example, for the average length 1 of the chain at a given 
force 7, 

1 = - tz) = kT ( F ) ~ , ~  a l n A  = MkT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(F) a h €  
M.T T 

(13-10) 

Equations (13-1) through (13-10) are formally the same as Eqs. (7-23) 
through (7-29). Therefore the notation A = I" in Eq. (13-9) is appro- 
priate. The partition function € for one unit haa the same form as A in 
Eq. (13-6) for the entire chain [just as € in Eq. (7-27) resembles Z in 

We now consider a special case, a chain of M units, each of length a, 
with "free" joints between units. That is, if we choose one end of any 
unit as origin, the other end of the unit moves freely (in the absence of a 
force on the chain) over the surface of a sphere with radius a (Fig. 13-2). 
The ends of the chain are a distance 1 apart and are on the z-axis. If the 
left end of the chain is considered fixed, we want to calculate, among other 
things, the equilibrium force 7 along the z-axis necessary to hold the chain 
extended a distance I (Fig. 13-2). Real polymer chains do not haveafree 
joints between monomers (R units), but an approximate connection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be 
established between real chains and this idealized model (see Section 13-2). 

The contribution of any one unit to 1 can range from -a to +a. Thus 
li in Eq. (13-9) can vary continuously between these limits. We use z for 
this continuous variable. It is clear from Eq. (13-10) thatji is proportional 
to the probability of a length 1s beiig observed when there is no force on 

Eq. (7-%)I. 
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FIG. 13-2. Two-dimensional version of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfreely jointed chain. Each unit is of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. The ends are on the x-axb and are a distance 1 apart. 

the chain (7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0). men there is a force, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj,&/kT is proportional to this 
probability. In the present problem, then, we let j(%, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2‘) & be propor- 
tional to the probability that the end of a freely moving unit (Fig. 13-2) 
will have an %-component in dx. It is easy to see (Problem 13-1) that 
this probability is in fact independent of 2 (in the range -a 5 2 5 +a). 
Therefore we have 

E = /” j (OerZ/kTb 
4 

2ja 
t 

= -8inht, (13-11) 

where t = ra/kT. From Eq. (13-10) we find for the length-force relation 

1 = MkT (”-%) = M&(t), (13-12) 
37 T 

or 

t =  8” &) J (13-13) 

where 8 is the Langevin function defined in Eq. (12-30) and 8-’ is the 
inverse h g e v i n  function. The maximum extension is Ma; to achieve 
this we need t + 00. Figure 12-3 provides ua with a plot of l /Ma (ordinate) 
again& t (abscissa). 

The occurrence of the same (Langevin) function here and in Section 
12-3 is not surprising. In Section 12-3 we were dealing with freely ro- 
tating dipoles perturbed in their rotation by an electric field. Here we 
have freely rotating unita of a chain perturbed in their rotation by a force 
pulling on the chain. 
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At small extensions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMa), we use Z(t) = t/3 and find the linear 

relationship 
3kT1 or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = - .  3i 

M a  Ma2 
t = -  (13-14) 

Thus 1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 when r = 0, which is what we should expect on symmetry 
grounds (1 can be positive or negative; with r > 0 we have 1 > 0). 

The question of fluctuations is of some interest. For example, when 
r = 0 does the value of 1 fluctuate much about 1 = 01 By the methods 
of Section 2-1 we find (Problem 13-2) from Eq. (13-10) for the fluctuation 
in 1 at fixed r. 

(13-15) 

From Fig. 12-3, we see that at/& is largest at small extensions. In the 
limit as r 0 (Eq. 13-14), 

(13-16) 

where we compare the fluctuation @ with the maximum extention Ma in- 
stead of I ,  since 1 + 0 as r + 0. The subscript on refers to r = 0. 
Thus, if M = 3oO0, ul/Ma = a rather significant fluctuation. 
The conclusion we draw from this is that chaiis of this size are not quite 
macroscopic in the thermodynamic sense. Hence, although quantities such 
as r, 1, F, T, etc., are well dehed (see Sections 3-4 and 7-2) and equations 
of the type (13-lo), (13-13), and (13-15) are valid, functions such as E, 
F, S, A, etc., for a single chain are slightly fuzzy in their thermodynamic 
significance. These latter functions become sharply dehed, of course, for 
a system consisting of a Zarge number of chains (as is always the case in 
practice). 

= Ma2/3. Then Eq. (13-14) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan 
be written 

From Eq. (13-16) we have that 

(13-17) 

Actually, the length-force equation in this form is applicable to small ex- 
tensions of any kind of chain with = 0. Thie relation follows directly 
from Eq. (13-15) and the necessary (by symmetry) linear dependence of 
r on 1 at small 1. 

The genediestion of Eq. (13-17) to & # 0 (as, for example, in Section 
7-4) and extensions that are not small can be deduced by a method which 
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has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvery wide applicability in statistical mechanics. Define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA0 from Eq. 

and rewrite Eq. (13-10) 88 

(13-18) 

Now if we expand the exponential in Eq. (134), we find 

where 2, a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM and T in general, is the average value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1' at 
mo fm. This follows from Eq. (13-lo), which etatea that the prob- 
ability of the chaii having a length 1 is proportional to QeT1lkT when the 
force is T and to Q when T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 [see ale0 Eq. (2-13)]. The occurrence of 
"unperturbed" (T = 0)  averages is the easential point here, since these 
are not so di5cult to calculate. Equation (13-18) becomes, then, 

This gives I - &, as a power series in r/kT, or vice versa. We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshall not 
pursue this method further here (but see Problem 13-3). 

Ae just indicated, Q(l, M, T )  is proportional to the probability that the 
free (T = 0) chaii has a length I (for given M and T). An equivalent 
statement is that Q(1, M, 2') is proportional to the number of configurations 
(a configurational degeneracy) the chain can assume consistent with a 
length 1, for given M and T.  The dependence of this probability on 1 is 
perhaps the most important single property of a polymer chain. We 
are now in a position to deduce this dependence for a freely jointed chain 
(and more general chains) from Q. The same results can be obtained from 
the theory of random walks, without use of any of our statistical thermo- 
dynamical formalism. 

The general method we employ is to integrate the length-force relation 
to obtain A and hence Q, using Eqs. (13-4) and (13-5). It should be noted 
that at this point we make use of macroscopic thermodynamics; hence in 
the following we are dealing implicitly with the limit of very long chains 
(M OD). For the freely jointed chain, 

d A  = T dl = kT 8-' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A) dl a 
(T,  21.1 constant), 
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and therefore 

This is the probability of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa free chain having a length I relative to the 
probability of a length 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. It is also the ratio of the number of con- 
@mations of the chain with length 1 to the number with length zero. If 
we use the expansion (Problem 13-4) 

Ec-l(z) = 3z + %8 + * * ) (13-21) 

which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be deduced from Eq. (12-31)) Eq. (13-20) becomes 

when 1 << Mu) we keep just the first term in this expansion and obtain 
the gaussian probability distribution ordinarily used, 

This equation also follows directly on integratiig the linear length-force 
equation, (13-14). Thus the gauasian probability distribution for the 
length of a free chain and the linear length-force relation for a chain under 
an extending force have the same l i i t s  of validity (Problem 13-5). To 
go beyond the linear length-force range, configurations of the chain with 
values of 2 outside the gaussian region become involved. That the "gaus- 
sian region" is in fact quite extensive can be m n  as followe. The ratio of 
the correction term in Eq. (13-22) to the gaussian term is (3/10)(Z/Ma)3. 
Even for a very large extension, this quantity is small compared with 
unity. For example, take M = lo00 and an extension 2' of ten times the 
root mean-square extension (Ma2/3)'l2. Then 

We have been emphasizing the probability significance of Q and Qe'l/kT 
for the length of a chain with$x&force. But one must also keep in mind 
that Q has the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAusual connections with the thermodynamic properties of a 
chain with $x& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlength (fluctuating force). An example is the deduction of 
the linear 1 - T relation from Q(l) in Eq. (13-23) (Problem 13-6). An- 
other example is the derivation of an equation for the dependence of the 
entropy S of a chain on its length 2. In the present model, Q(Z) M ,  T )  has 
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the functional form (Eq. 13-20) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

=---  3ML - - 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(&)2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( I  << Ma). 2Mas 2 
(13-M) 

The entropy is a maximum (largest number of configurations) at I = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
and decreases with increasing Z. The right side of Eq. (13-25) approaches 
-00 when I + Ma. This, however, is pushing the model too far: a real 
polymer molecule, when fully extended, will not be rigid, but will have 
internal vibrational motion. The d o g  of this situation for an ideal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas 
is letting V 

It is possible to write Eq. (13-20) in an alternative and more explicit 
fom. Thus, from Eqs. (13-11) and (13-13), 

0 in Eq. (4-20). 

or 

Here again we should note that the limit 11-1 -+ oo is implicit, since we 
have made use of the thermodynamic equivalence of the partition func- 
tiom Q and A. Equation (13-22) may also be obtained from &. (13-27) 
(Problem 13-7). 

From Eq. (13-19) we can derive a more general version of Eq. (13-23) 
[or Eq. (13-22)] for any polymer chain (see also Problem 13-3). We 
integrate d A  = r dl, where 
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and obtain 

(13-29) 

where Y is a number proportional to the m885 of the polymer molecule. 
Thus a gaussian probability distribution about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 10 = &, for small 
extensions, is aZumys found. Since in general & and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare functions of 
temperature, Eq. (13-26) is somewhat more complicated here. For ex- 
ample, if &(T) = 0, we find (Problem 13-8) 

- 
S(1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM, T )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS(0, M ,  T )  = 

Mk l 2  . (13-30) 
2 M1; 

We should expect to increase with temperature for a real molecule 
owing to increased freedom of rotation about chemical bonds in the chain. 

As a final topic in this section, we consider briefly the one-dimensional 
version of a freely jointed chain. The chain has M units, each of length a. 
Each unit must now always lie on the x-axis so that the possible contribu- 
tions of a unit to 1 are the two values -a or +a. Thus the chain resembles 
a folding ruler. In random-walk language, this is a random walk along a 
line with each step of length +a or -a. In Eq. (13-9), we take 11 = +a, 
12 = -a, and j1 = j 2  = j. Then 

(13-31) 

and, from Eq. (13-lo), 

1 = Ma hnh t ,  t = ra/kT, (13-32) 

t = tanh-' (&) = - 1 1 1  + - &y + - - - . (13-33) Ma 3 

Just as the three-dimensional freely jointed chain under a pulling force 
resembles a gas of dipolar molecules oriented by an electric field (Section 
12-3), the one-dimensional freely jointed chain under a force resembles a 
syetem of magnetic dipoles in a magnetic field (Section 12-4). In  particu- 
lar, Eqs. (12-45) and (13-32) should be compared. Figure 1 2 4  is also a 
plot of l /Mu (ordinate) against t (abscissa). 

The present one-dimensional problem is a special csse of the model 
discussed at  the beginning of Section 7-4 using Merent independent vari- 
ables. The connection in notation is 1, = -a, le = +a, and j ,  = j,9 = j .  
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By the same methods as for the three-dimensional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase, we find 

(Problem 13-9) 

(13-34) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= coshM (tanh-' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA) exp (- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa tanh- 'z Ma ) (13-35) 

and = Ma'. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
13-2 Gaussian probability distribution for free polymer molecules. In 

this section we discuss further the gaussian probability distribution for 
free (7 = 0) polymer molecules with the usual property G = 0. Since the 
whole section is concerned with free chains, we drop the subscript zero on 
1, a, etc. 

We saw in the preceding section that if one end of a long polymer 
molecule is chosen as origin and the other end is forced to lie on a pre- 
assigned line passing through the origin, say the z-axis, then according to 
m. (13-29), the probability that the ends of the molecule will be separated 
by a distance 1 is proportional, for 1 not too large, to exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-12/2F). Since 
the direction of the preassigned line is arbitrary, we can make the equiva- 
lent alternative statement that if one end of a polymer molecule is chosen 
as origin, the probability that the other end will lie in a epecified volume 
element dz dg dz, a distance r from the origin (Fig. 13-1), is proportional 

- 

to 

As a next step, we can conclude that if one end of a polymer molecule is 
chosen as origin, the probability that the other end is at a distance between 
r and r + dr, i r rep t ive  of direction, is 

This probability is normalized to unity. The average values of r2 and r 
are 

7 = /a taP(r) dr = 3i?, (13-38) 
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(4 (b) 

FIG. 13-3. Chsin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith fixed angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 between unita. In part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b), if the left 
unit is on the z-axis, the end of the right unit (point B) can be anywhere on the 
dotted circle. The angle (p is meaaured from some fixed point A. 

Thus 1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 but t > 0 (I can be positive or negative, but r is always 
positive). Using Eq. (13-a), a. (13-37) takes the more appropriate 
form 

Quation (13-40), it will be recalled, follows from the very general 
equation (13-29) and is therefore not restricted to any particular model. 
In various special cases, an explicit expression can be given for p. For 
example, for the freely jointed chain of Section 13-1, P = Ma2/3, and 
hence r"l = Ma2. We now list, without proof,* some further results for 
idealized models of polymer molecules, which, however, are considerably 
more realistic than the freely jointed chain. 

(1) If the chain has M units or bonds of length a, and 8 is the fixed 
bond angle between succemive bonds (Fig. 13-3a), and if rotation about 
bonds (see the angle (p in Fig. 13-3b) is free, then for large M, 

The tetrahedral angle B = 109.5' is the case of most interest: 
If 8 = 90°, P = Ma2, as for a freely jointed chain. 

= 2Ma2. 

* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASee Flory, pp. 414-422, for more details. 
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(2) If fixed bond zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAangles el and 83 alternate (e.g., 0 - S i - O  and Si-O-Si 

in the silicone chain), then 

for large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. 
(3) Here we have the same situation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA88 in (1) except that rotation about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(p is hindered (see Section 9-5). For a hindering potential V(9) which is 
symmetrical about (p = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(13-43) 
(1 - COB e)(i + 
(1 + COB e)(i - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoacpl 

- 
r2 = Ma 

for large M and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoB(p not too near unity, where 

If V((p) P 0 or if V(p) = V(p + 2rm-'), where m 2 2, aa in Eq. (9-18)) 
then cos(p = 0 and Eq. (13-43) reducee to Eq. (1341). However, actual 
polymer chains will not have this symmetry, and the correction will 
be significant. 

Although the models leading to Eqs. (13-41) through (13-43) are 
much more realiiic than a freely jointed chain, they still cannot be taken 
too seriously. For example, bending and stretching of bonds have not 
been taken into account. Much more important, van der Wads (or other) 
attractions and, especially, repulsions between different units of the chain 
have been ignored. The neglect of van der Wads repulsions enters all the 
above models with the implicit assumption that the chain has a length 
but no thickness. Becsuse of this complication alone, the polymer con- 
figuration problem differs significantly from o r d i i  random-walk 
problems: in a given polymer configuration, two parts of the chaii cannot 
cross each other (occupy the same space), but there is no such restriction 
on random-walk (or diffusion) paths. In polymer language, this is called 
the excluded volume problem, and much recent theoretical work has been 
done on it.* 

For the above reasons, detailed theories providing expressions.for 3 
in terms of a model are not very practical. Instead, one can regard ? 

*he, for example, F. T. WALL and J. J. ERPENBECK, J .  C h .  Phys. 30,634, 
637 (1959). These authors find that 3 a Bfb, where b = 1.18 for a tetrahedral 
lattice. 
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in Eq. (13-40) as an empirical quantity to be determined by some physical 
property of the polymer molecules that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be related to 3. 

An zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAapprozimute semiempirical device that may be used to relate a real 
chain of unlmoum F to the simplest model above, the freely jointed chain, 
is the following. Bond angle restrictione exist between one monomer and 
the next in a real polymer molecule. But if we call, say, five or ten (de- 
pending on the stiffness of the chain) monomers one "statistical unit," 
then the (end-to-end) direction of one ststisticsl unit is essentially in- 
dependent of the direction of neighboring statistical units in the chain. In 
fact, enough monomers are included in a statistical unit to ensure this 
independence. Thus we can replace the actual restricted chain of mono- 
mers by an equivalent chain of freely jointed statistical units. If M is 
the number of monomers in the chain and n the number in a statistical 
unit,. then the number of statistical units is M' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= M/n. The length of a 
statistical unit, a', is estimated as the root mean-square end-toend dis- 
tance of a statistical unit (i.e., a chain of n monomers). Then, finally, in 
Eq. (13-40) we put - 

P = M'a'', 03-45] 

as for a freely jointed chain. The excluded volume problem is ignored 
here.- 

If P is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAknown, then M' and a' can be chosen in a unique way so that not 
only does the product M'a'' equal 3 but also so that the fully extended 
length of the effective freely jointed chain, M'a', is equal to the fully ex- 
tended length of the real chain, Lu. That is, from the equations 

r2 = M'a'' and Lu = M'a', 
- 

- we deduce 

(13-46) 
and a ' = - .  r2 M' = 

r2 bU 

Again the excluded volume problem is ignored. 

13-3 Rubber elastidty. Rubber consists of an isotropih network of 
long polymer chains. The space-wg property of the chains, referred to 
in Section 13-2 in connection with the excluded volume problem, is im- 
portant here, for rubber is a condensed phase with some liquidlike proper- 
ties. A rather good analogy to a sample of rubber is a large tightly packed 
collection of very long actively wiggling worms, with each end of each 
worm attached to one end of each of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree other worms (to form a network). 
The junctions joining the ends of four chains (worms) together are called 
cross-links. A real network will of course have imperfections (chains with 
free ends, etc.) just asa real crystal has imperfections. 
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It is commonplace that rubber has rather unique elastic behavior. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis 

behavior is a consequence of the special configurational properties of 
polymer molecules considered in the preceding sectiolie. We shall give 
here only a very brief and semiphenomenological discussion of rubber 
elasticity. An adequate treatment of the details of polymer network 
theory would take us far  beyond the scope zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof this book. The reader inter- 
ested in this subject should see the papers of James and Guth (Supple- 
mentary W i g  list). The alternative, simpler, but less satisfactory 
theory of rubber elasticity, due to Wall, will be presented in Chapter 21. 
This latter theory provides the starting point for the only existiig theories 
of polymer and polyelectrolyte gels, etc. 

Let us begin by summmiziig the observed thermodynamic behavior 
of rubber for extensions up to the order of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30%. First, rubber is approxi- 
mately incompressible (as are typical liquids) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; when rubber is stretched, 
the volume stays almost constant. We can therefore use the following 
rather accurate thermodynamic equations for a sample of rubber of definite 
mass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(L  = length of sample): 

d E =  T d S + r d L ,  03-47) 

(13-51) 

where TE and r s  are the energy and entropy contributions to the force r. 
By meaeuring r as a function of both L and T,  r8 can be calculated from 
( & / ~ T ) L ,  and hence TB can be obtained from Eq. (13-49). It is found 
in this way that r~ is approximately zero: the elasticity of rubber is an 
entropy effect. Thus E depends on T but not on L. The implication of 
this is that when rubber is extended, the intermolecular potential energy 
remains constant, which is not surprising for a condensed phase of con- 
stant volume, and also that the extension is made possible by su5cient 
uncoiling of the polymer chaiis but does not involve any bending or 
stretching of chemical bonds. This behavior is equivalent to that of an 
ideal gas: E is a function of T but not V ;  and in the equation analogous 
to %. (lag), p = p E  + p8, P E  = 0. 
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An zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalternative and equivalent experimental observation is that the force zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T is directly proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT at constant L. From the relation 

(13-52) 

we conclude, then, that (aS/aL)T is a function of L only. This ie consistent 
with a split of the entropy into two parts: 

where Sz(L) is the entropy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA888oci8ted with the configurational degeneracy 
of the polymer chains of the network. Again there is an analogy with an 
ideal gas: (aS/av)~ is a function of V only; S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= &(T) + Sa(V). For an 
ideal gas, replace, in Eq. (13-52), T by p ,  TS by ps,  and -(aS/aL)r by 
(aS/aV)r = Nk/V.  

On the basii of the above diecumion, we postulate that the essential 
molecular mechanism determining the elasticity of rubber is the elasticity 
of the individual chain8 making up the network, and this in turn is de- 
termined by the configurational properties of the chains (Section 13-2). 
We have to superimpose on this postulate the facts that the volume is 
constant on stretching and that a hydrostatic pressure exists in the rubber, 
just as in any liquid. 

Consider an isotropic cube of rubber, with edge LO, when under no 
force. The volume is V = Lt. Now let a force T extend the rubber in the 
direction 80 that L = Ls > LO. Then 

L, = La, v = Lt = LL,La = LLE. (13-w 

Let UB examine the mechanical equilibrium at a surface of the stretched 
rubber perpendicular to the z-axis. There is an outward force pLLv owing 
to the hydrostatic pressure, but this is just balanced by the inward force 
of the molecular chains. We cannot write a satisfactory and completely 
explicit expreaeion for this inward force without a detailed study of the 
properties of the network. However, for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd extensions we are in- 
terested in, we can deduce from %. (13-17) for a single chain that the 
inward force exerted by a network of N chains will have the form CNkTL., 
since La will be proportional to & for 8 single chain. Here, C is a constant 
which depends on the structure of the network. On equating the inward 
and outward forces, and putting L, = L,, we find 

CNkT 
L 

p = - .  
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FIQ. 13-4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComparison of experimental zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand theoretical length-force rela- 
tione for rubber in a typical awe. The vertical scale baa been adjusted to give 
beat fit. 

Next, consider the mechanical equilibrium at the surface (perpendicular 
to the z-axis) which is beiig pulled by an external force zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. Here T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ pLi 
(outward force) is balanced by CNkTL (inward force). Then 

T = CNkTL - pLi. (13-56) 

From Eqs. (13-54) and (13-55) this becomes 

(13-57) 

where a = L/Lo. This is the desired length-force equation, valid for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
small (up to about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 3) extensions. Of course a = 1 when T = 0. 
The initial dope, (d~/d&,l, is 3CNkTLo. Experiment and theory 
are compared in Fig. 13-4, where the vertical d e  has been adjusted to 
give the best fit. The experimental "knee" is well reproduced by the theory. 
Deviations occur, 88 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexpected, at high extensions. 

In the Wall theory of Chapter 21, C = LT2. 
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PROBLEMS 

13-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAShow that the function j(z, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2') for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa unit in a three-dimensional freely 

13-2. Derive Eq. (13-15) for the fluctuation in length of a chain under a 

13-3. For any molecule with 16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= = ... = 0, show from Eq. (13-19) 

jointed chain is independent of z in the range zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-a ,< z 5 + a. (Page 217.) 

constant force. (Page 218.) 

that 

Invert thii series to get zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr/kT in powers of 1, then integrate d A  = r dl to find 

Equation (13-59) is exact only for M + 00,  but Eq. (13-58) is exact in general. 
By comparing Eqs. (13-12) and (13-58), show that, for a freely jointed chain, 

(Page 219.) 
13-4. Deduce the expansion of 8-'(z) from that of &(g) in Eq. (12-31). 

(Pas  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm.1 
13-5. Use the gaUeaian form for Q(l) (Eq. 13-29) to deduce A from Eq. (13-6) 

and f from Eq. (13-10). The result should agree with Eq. (13-28), of course. 
(Page 220.) 

13-6. Derive the length-force equation, (13-14), from the canonical ensemble 
equations (13-4), (13-5), and (13-23). (Page 220.) 

13-7. Deduce the probability expansion (13-22) from Eq. (1347). (Page 221.) 
13-8. Deduce the entropy equation (13-30) from Eqs. (1-33) and (13-29). 

13-9. Derive Eqa. (13-34) through (13-36) for a onedimensional freely 

13-10. Obtain the equivalent of Eqa. (13-60) in Problem 13-3 for the one- 

13-11. Discuss the problem of a two-dimensional freely jointed chain. 
13-12. Derive Eq. (13-33) as a special case of Eq. (7-59). 
13-13. Discuse the problem of a three-dimensional freely jointed chain in 

which each unit can have two lengths, o, and w, with partition functions j,(T) 
and j@(T) [in the notation of Eq. (13-ll)]. Consider ale0 the problem in which 
each unit can have any length between a = 0 and a = a,,, with equal prob- 
ability. Incidentally, in an equivalent chain of statistical unita, a g a d n  die- 

(Page 222.) 

jointed chain. (Page 223.) 

dimensional freely jointed chain. 
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tribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu for the length of a statistical unit would be an appropriate approxi- 
mation (in the text, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe a single length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa'). 

13-14. Calculate a and 8 from the gauasian function (13-23). Compare with 
Problem 13-3. 

13-15. Show the identity of -8. (13-34) and (13-35). 
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CHAPTER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
LATTICE STATISTICS 

In Part I11 we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdiscuse systems of molecules that exert intermolecular 
forces on each other. First we consider, in the present chapter, molecules 
confined to sites in a lattice (the "Ising problem"), and then turn in later 
chapters to mathematically more complicated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystems (imperfect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases, 
liquids, etc.) in which the molecules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare not restricted in this way. A 
feature of particular interest in all this work is the possibility of phase 
transitions (e.g., gas-liquid) when the temperature is low enough. 

We have already considered, in Chapter 7 and in Sections 12-4 and 13-1, 
a number of problems involving lattice statistics. In all these caws, how- 
ever, the individual sites or subsystems were independent of each other. 
In this chapter we extend the discussion to more complicated problems in 
which interactions between nearest-neighbor sites or subsystems exist. 
Second-neighbor, and higher, interactions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare important in some cases 
but, for simplicity, we shall confine ourselves to models with nearest- 
neighbor interactions only. 

Further applications of the results obtained in this chapter will be found 
in Chapters 16 (hole theory of liquids) and 20 (lattice solution theory). 

A more detailed and advanced review of this subject is available in 
S. M., Chapter 7. 

14-1 One-dimeasional lattice gas (adsorption). We consider here the 
following model: we have a linear array of M equivalent sites (M + a); 
each site may be empty or occupied by one molecule; the partition func- 
tion of an isolated molecule on a site is q(T) ; and when two nearestcneighbor 
sites are both occupied by molecules, there is a potential energy of inter- 
action zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw between the molecules (in some caws w is a free energy, a function 
of T, and not a potential energy; also, the zero of energy for w is infinite 
separation). This is a realistic model for the adsorption of molecules or ions 
onto sites on a linear polymer molecule if the forces between the adsorbed 
molecules or ions are of d c i e n t l y  short range that only nearest-neighbor 
interactions need be taken into account. This might well be the case even 
for ions, in the presence of added electrolyte (see Chapter 18). The model 
is the same as that of Eqs. (7-3) through (7-16) except for the added 
complication here of the nearest-neighbor interaction energy 10. 

This onedimensional problem has a special added importance in statis- 
tical mechanics by virtue of the fact that it can be solved easily and exactly. 

286 
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An zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexact treatment has been achieved with great daculty for the corre- 
sponding two-dimensional problem only in the special zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase that half the 
sites are occupied; it has not been achieved at  all for the three-dimensional 
problem (except for various series expansions). 

We shall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuse the canonical ensemble and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmaximum-term method. 
A much more elegant matrix method is available (see S. M., pp. 312-314 
and 323-324), but we avoid this in deference to readers not sufficiently 
equipped mathematically. The system is characterized thermodynamically 
[see Eq. (7-6)) by M sites, of which N are occupied, and the temperature T. 
Equation (7-4) gives the canonical ensemble partition function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(N, M, 5") 
when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw = 0. Our task is to generalize this Q for w f 0. 

When the N molecules are distributed among the M sites in a particular 
configuration or arrangement with N11 nearest-neighbor pairs of sites 
both occupied, the interaction potential energy is Nllw. Actually, it 
proves convenient later to use here, instead of N11, the variable Nol-the 
number of nearesbneighbor pairs of sites with one site empty (subr ipt  0) 
and one site filled (subscript 1). The relation between N11 and No1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan 
be e b l i i e d  by the following argument. If we draw a line from each 
occupied site to its two neighboring sites, we will have drawn 2N lines. 
Also, in this process, we will have placed two lines between each nearest- 
neighbor 11 pair (one starting from each side) and one line between each 
01 pair. Therefore, 

2Iv = 2N11 + No1. (161 )  

A similar argument for empty sites gives 

We see from Eqs. (14-1) and (14-2) that only one of N11, Nol, and No0 
is independent; we choose Not. End effects are neglected m Eqs. (161)  
and (162) because M + QO . 

A configuration or arrangement of N moleculea on M sites with No1 
pairs of type 01 will have an interaction potential energy 

NllW = (N - y ) w ,  
according to Eq. (144). Suppose that there are altogether g(N, M, NOI) 
configurations with exactly No1 pairs of type 01. That is, suppose there 
are g(N, M, Nol) different ways in which N molecules can be distributed 
on M sites giving No1 pains of type 01. The contribution of thee  con- 
figurations to Q is g(N, M, Nol)e-NI1w'kT, and the complete expression 
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for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ is then 

where the sum is over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall possible values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANo1 for given N and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. 
Having related Q formally to g, our next problem is to find an explicit 

expression for g. We might note at the outset that we must have for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
total number of configurations with given N and M, 

In view of this relation, it is clear that Eq. (14-3) reduces, as it should, to 
Eq. (7-4) when w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. 

Since we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshall be using only the maximum term in the sum in Eq. 
(14-3), N, M, and No1 may all be regarded as very large numbers. For 
concreteness, suppose No1 is odd and that the site on the left of the linear 
array of sites is of type 1. For example: 

. . . .  
l l l ; o o ; l ; o ; l ~ o o ~ l l ; o  . . . .  

N = 7, No1 = 7, M = 13, M - N = 6. 

Then there are (Nol + 1)/2 groups of 1’8, (Nol + 1)/2 groups of 0’8, 
and the left-hand group is a 1 group, while the right-hand group is a 0 
group. These remarks follow from the fact that a 01 pair occurs at each 
boundary between a 1 group and a 0 group. Now consider the number of 
ways of arranging N 1’s in (Nol + 1)/2 groups. Each 1 group must have 
at least one site of type 1 in it; thus the required number of arrangements 
is the number of ways of assigning the remaining N - [(No1 + 11/21 (=X) 
1’s among the (No1 + 1)/2 (= Y) groups, with no restriction on the number 
of these 1’s per group. This number is 

(X + Y - I)! - N !  - 
(Y - l)!X! (N01/2)!“ - (NOl/2)1!’ 

where we have dropped unity compared with large numbers in the second 
expression. The corresponding number for the 0’s is obtained by replacimg 
N by M - N .  Then g is twice the product of the above number for the 
1’s and the corresponding number for the 0’s. The factor of two ark% 
because the left group could as well be a 0 as a 1. But this factor is neg- 



238 LAlTICE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASTATISTICS [CEAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ligible, for we use only In g and not g itself. Thus we have finally 

N!(M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN)! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g(N9 M1 = [N - (Nol/2)]![M - N - (No1/2)]![(Nol/2)!]* ’ 

(14-5) 

This formula for g is now inserted in Eq. (14-3) for &. But the sum is 
difficult, so we use the maximum-term method (Appendix 11). Let 
t(No1, N, M, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  = g(ew12kT)No1 in’Eq. (14-3). Then from the condition 

a lng  w - o = - + -  a l n t  -- aNo1 2kT 

and Eq. (14-5), we find 

(e - a)(l - 8 - a) - e-wIkT - 
a2 , 

with 
Nti and a = - 2M ’ 

N 

(14-7) 

where N& is t-a value of No1 giving the maximum term in t-a sum in 
Eq. (14-3). Equation (14-7) is a quadratic equation in a, and gives N& 
as a function of N, M, and T: 

N& 2e(1 - e) a=- -  
2 M -  8 + 1  , 

where 
-wlkT 112 8 = [ i  - 4e(1 - e)(l - e )I . 

The sign on the square root zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be determined from the special case 
w/kT = 0. Before proceeding to find the thermodynamic functions of the 
eystem from &, let us digress to note that Eq. (14-7) can be rewritten as 

if we use Eqs. (14-1) and (14-2). This has the form of a chemical equi- 
librium quotient, as in Eq. (10-5), for the “reaction” 

2(01) * (11) + (00). (14-10) 

The “equilibrium constant” e-IkT/4 is consistent with the “partition 
functions” qoo = q l l  q”lkT, and qol = 2 (configurational de- 
generacy). That is, e-lkT/4 = qllqo0/q&. 8 
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The chemical potential follows from 

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= N In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ e - ~ / ~ ~  + In t(NQ,, N, M, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  (14-1 1) 

and 

The last term drops out because of Eq. (14-6). Then 

From zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis and Eq. (14-5) we find 

(14-12) 

where X = #IkT as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAusual. Finally, we eliminate a in Eq. (14-12) with 
the aid of Eq. (14-8), and obtain 

(14-13) 

This equation gives X as a function of 8 and T. In the awe of adsorption 
or binding, X is (at least approximately) proportional to the equilibrium 
gas pressuw or solute concentration [see, for example, Eq. (7-9)]. Hence 
this is the "adsorption isotherm. Equation (14-13) reducea to the Lmg- 
muir equation, (7-9), when w/kT + 0. Figure 14-1 givea 8 plotted against 

1 nl 

'tl e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 

FIQ. 141. Exact adsorption isotherm for onedimeneionsl lattice with 
nearest-neighbor interactions. The w/kT = 0 case is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALangmuir isotherm. 
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lny zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw/kT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 (hgmuir)  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-2.4. The symmetry evident in 
Fig. 14-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be expressed analytically (Problem 14-1) by 

Next, we find the equation of state. We could use 0 = kT a ln Q/aM 
(Eq. 7-7) but instead, with p available, we employ 

From Eqs. (14-8) and (14-11), we find 

Finally, we use Eqs. (14-5) and (14-8) to eliminate el from In g.  Lengthy 
algebra leads to 

-- 0 b + 1  
kT - In 6 + 1 - 20' (14-10) 

This reduces to Eq. (7-7) (Langmuir) when w/kT + 0. 
For a first-order phase transition to appear in this system, we must 

6nd the familiar van der Wads type of loop in the equation of state, 
(14-16), below a critical temperature. From the symmetry of Fig. 14-1, 
it is clear that if a critical point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexists, the critical value of e is 1/2. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
usual equation-of-stata pu plot corresponds here to a @-l/O plot 
(Problem 14-2). In a van der Wads loop, then, N/a(l/e) will be positive 
at 8 = 1/2; or, */a0 will be negative at 8 = 1/2. But we deduce from 
Eq. (14-16) that 

(14-17) 

This quantity can never be negative, so a loop and ht-order phase transi- 
tion are not observed. If w is negative and T 0, the derivative ap- 
proach@ zero. Therefore the "critical point is at e, = 1/2, T,  = 0. We 
shall see in Sections 14-3 and 14-4 that two- and threedm ' ensional lattice 
system do lead to ht-order phase t d t i o n s  (that is, with T,  > 0). 

Incidentally, it is easy to show from thermodynamics (Problem 14-3) 
that 
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and therefore, in Fg. 14-1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

This dope is steeper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthan the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 slope if w < 0, but leas steep if 
w > 0. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 < 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT 0, the dope approaches +a. 

14-2 Elasticity of a hear polymer chain. In the first part of Section 
7-4 we studied a linear chain of a and /3 units, with lengths of units 2, and 
JP .  We reconsider the same problem here, but now we allow interactions 
between nearest-neighbor units in the chain. The interaction energies 
(hydrogen bonds, for example) are, in obvious notation, w-, wap, and WPP. 

This model, and extensions of it, has been applied to the a-/3 transformation 
in fibrous proteins, and to the helix-random coil transformation in protein 
and nucleic acid molecules in solution (force on chain = T = 0). We shall, 
however, not go into the details of these applications. 

Equation (7-57) is again the thermodynamic starting point. In place 
of the canonical ensemble partition function (7-58), we must use the 
equivalent of Eq. (14-3). We let g(Ma, M I  Nog) be the number of ways in 
which Ma a units zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be distributed among M poisitions on the chain so that 
there are N d  nearest-neighbor pairs of type 4. This is obviously the same 
function as in Eq. (14-5), except for notation. In any one of these g 
configurations, the total interaction potential energy W is 

W NaaWaa Naflab + N P ~ ~ P P  

=- -  wNag + Mawaa + (M - M a ) ~ ~ ~ ,  (14-18) 2 

where we have used Eqs. (14-1) and (14-2) and defined w by 

w = w a  w## - 2Wa& (14-19) 

The energy w is the change in energy (or free energy if the w's are functions 
of T )  in the process (14-10). This composite w plays the same role as w 
in the preceding section. Therefore the problem is not complicated in a 
fundamental way by the occurrence here of Uvee different w's. Then, 
instead of Eq. (7-58), we have 

Q W a ,  M,  T )  = ja a~~ 
M *M-Ma -WIkT  mat MI Nude 

Nu8 
- - (jA-wQ/kT Ma djse-wRplkT) M-Ma g(Ma, M, Nap)(ew12kT)Nd. 

(14-20) 
N d  
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This is now in essentially the same form as Q. (14-3). Equations (14-4) 
through (14-10) apply here without change (except notation). 

For the force on the chain we find, just as in Q. (14-13), 

where 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM,/M (fraction of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa units) and 8 is replaced by 6 in the func- 
tion @(el zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT).  Figure 14-1 is a plot of 6 (ordinate) against 

A negative w means here that aa and @B paim of units attract each other 
more than do 48 pairs. This leads to a tendency for the system to split 
into two phases (predominantly a or predominantly B), a tendency which, 
however, cannot be rea l id  in a one-dimensional system, as pointed out 
in the previous section. In Fig. 14-1, as T + QO, In y + -00, and 6 + 0 
(all long units). 

For free molecules (that is, T = 0), the equilibrium value of 6 is deter- 
mined by Eq. (14-21) with T = 0. This value of b is a function of T, a 
dependence which has been investigated experimentally for the a helix- 
random coil transitiou in proteins by Doty and collaborators. The corre- 
sponding equation when the d s  are all zero is (7-61). 

14-3 Two-dimensional square lattice. Here we u88 the lattice gw 
language again, since the only practical application is to adsorption on a 
surface. The model is the same as in W o n  14-1, except that the sites 
form a twa-dimensional square lattice instead of a onedimensional lattice. 
In particular, q is the partition function of an adsorbed molecule on a site, 
and w denotes the interaction energy between two molecules on nearest- 
neighbor sites. Some of the exact properties of this system have been 
found, especially by Onsager. Thew are confined mostly to the special 
condition 8 = 1/2, but by symmetxy [just as in Eq. (14-14)], it can be 
deduced that 8, = 1/2 if a critical point exists, so this is the most inter- 
esting value of 8. Because of the advanced mathematical techniques 
needed for this problem, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshall confine ourselves to a brief summary, 
without proof, of some of the d t s  obtained. References and more 
details will be found in S. M., Chapter 7. The stme problem is treated by 
approximate methoda in Sections 14-4 and 14-5. 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfirat result we mention is that the two-dimensional lattice gas can 
exist in two phases, a dilute phase ("gas") and a condensed phase ('liquid"), 
and below a critical temperature the two phases can be in equilibrium with 
each other. The transition from one phase to the other involves a latent 
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1 2 10 100 

FIG. 14-2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExact two-phase region for two-dimensional lattice gas with 
20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 0. Dotted curvea are achematic isotherms. 

heat. In other words, the model predicts a first-order phase transition 
under suitable conditions. The critical density is 8, = 1/2, and the 
critical temperature (first found by Kramers and Wannier) is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x, = .\/z - 1 = 0.4142, where x = ew12kT and x, = ew12kTe. Thus w 
must be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnegdive for 8 critical temperature to exist (Problem 14-4) and 
for a ht-order phase transition to occur. A plot analogous to the usual 
p v  plot is given in Fig. 14-2 for w < 0. Inside the solid curve is the two- 
phase region. For a given temperature (i.e., value of x )  below the critical 
temperature, the pressure at which the two phases are in equilibrium 
(i.e., the vapor pressure) is 

(14-23) 

where 

Actually, Eq. (14-23) is more general than just indicated: ip is the pressure 
for any value of x (w positive or negative) at 8 = 1/2 (e.g., any point on 
the dashed line in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFig. 14-2). Thus, if w = 0 ( x  = l), @/kT = In 2, in 
agreement with Eq. (7-7). 

Let 8L be the value of 8, for given x, on the liquid side of the two-phase 
region (Fig. 14-2). Then for the same x, symmetry leads to 80 = 1 - BL, 



244 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALAlTICE STATISTIC8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[aw. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 k T / - ~  

FIG. 14-3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExact configurational heat capacities for ondimensional 
(curve I) and two-dimensional (curve XI) lattice gases. 

where eG is the corresponding value of 0 on the gaa aide. The dependence 
of ea on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx is given by 

The contribution of nearest-neighbor interactions to the energy of the 
system is called the configurational energy, Ewnfig zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG , w .  We assume 
w is independent of T here. For 0 = 1/2, Onsager obtained explicit 
expressions, which we shall not write down, for Econfig and the heat 
capacity Cconfin = aEconfi8/aT, involving elliptic integrals. Figure 14-3 
shows Cconfig plotted against T. This is the configurational heat capacity 
along the dashed line in Pig. 142. As the temperature T, is crosaed, a 
singularity in Cconfig occurs. It is easy to show (Problem 14-5) from 
Section 14-1 that in one dimension (0 = 1/2) 

2 
Cconfig - - - (-& sech -&) - 
Mk (1425) 

This function is also plotted in Fig. 143;  it does not have a singularity. 
Many exact series expansions have been found, not only for the square 

lattice, but for other two- and three-dimensional lattices as well. As an 
example (see also Problem 14-17), we derive the second virial coefficient 
B2(T) in the expansion of @/kT in powers of 0 for an arbitrary lattice with 
c nearest-neighbor sites to a given site (for example, c = 4 for a square 
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lattice). The definition of the nth virial coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, is obvious from the 
expansion 

e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ B ~ ( T ) ~ '  + B ~ ( T ) B ~  + - - - . (14-26) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
kT - _ -  

We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuse the method suggested by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEq. (149), since it reduces the problem 
to a two-body problem. For an arbitrary lattice, Eqs. (14-1) through 
(14-3) become 

CN = 2Nll + NOl, (14-27) 

c(M - N) = 2Noo + NOl, (1+W 

(1449) Q(N, M, T )  = (qe-cw/2kT)N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc g(N, M, N01)ZNOI, 
Noi 

where L = ew/2kT as before. The grand partition function is 

2 = e'M/kT = 1 + Q(1, M, T)A + Q(2, M, T ) A 2  + - - - , (14-30) 

where A = e@lkT. When N = 1, the only poefsible value of No1 is c, and 
g(1, M, c) = M, since the one molecule can be on any of the 211 sites. Thus 

(14-31) 

When N = 2, which is as far as we have to go for B2(T), No1 can have the 
values 2c or 2c - 2. In the former case the two occupied sites are not 
nearest neighbors to each other, but in the latter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase they are. Then 

-cto/ZkT Q(1, M, T )  = qe M x C =  Mq. 

M(M - c - 1) 
2 g(2, Jf, = 

MC 
2 g(2, M, 2c - 2) = - - (14-32) 

The 6rst result, for example, follows from the fact that the first molecule 
can be placed at any one of M sites and then the second can be placed at 
any one of M - (c + 1) sites to avoid "contact." Note that Eqs. 
(14-32) satisfy Eq. (14-4). Equations (14-29) and (14-32) give 

The grand partition function, (14-30), becomes then 

where we define 
2 = qx. (14-35) 
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If we take the logarithm of both sides of Eq. (14-a), we get 

(14-36) 

Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMz is of order MI the legitimacy of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAusing the expansion of 
In (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ Mz + . . -) here is questionable, to say the least. Actually, the 
result can be justified by another argument, which we give later in Set- 
tion 15-1. Next, we use the thermodynamic equation 7 dp = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM d@ 
(T constant), or 

(14-37) 
e = Ict = A(T)T M/kT = z(T) M/kT 

T I  

to obtain from Eq. (14-36), 

e = z + - c - i)z2 + . . (14-38) 

Since, by definition, z is proportional to A, and z + 0 as 0 + 0, it is ap- 
propriate to call z an “activity” in the chemical thermodynamic sense. 
The inverse of Eq. (14-38) is 

Z =  e + ( c + i  - c x - ~ ) ~ ~ + . . . .  (14-39) 

Rnally, we use Eq. (14-39) to eliminate z from Eq. (14-36) and obtain 
ip/kT in powers of e, as in Eq. (14-26). We find 

This agrees with Eq. (7-7) when w = 0 (5 = 1). The second virial coeffi- 
cient can become negative if w/kT is sufficiently negative (Bp -cC2/2). 
On the other hand, if w/kT is large and positive, B2 + (c + 1)/2 (two 
molecules cannot occupy nearest-neighbor sites). 

The method we have used here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be extended to Bg, B d ,  etc., and has 
very general applicability in statistical mechanics.* We shall encounter 
it again several times in this book (Chapters 15 and 19). 

144 Bragg-Williams approximation. No two- or threedimensional 
lattice statistics problem has as yet been given a treatment that is both 
complete and exact. Hence, approximate methods are useful. The present 
approximation is probably the simplest possible that retains the correct 
qualitative features. It is equivalent to the van der Waals approximation 
for imperfect gases and liquids (Chapter 16). 

* T. L. HILL, J .  C h .  PhyS. 27, 661 (1957). 
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In the Bragg-Williams approximation for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa lattice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas with nearest- 
neighbor energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, the configurational degeneracy and average nearest- 
neighbor interaction energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare both handled on the basis of a randum 
distribution of molecules among sites [i.e., aa if w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, 88 in Eq. (7-4)J. 
Thia is obviously an incorrect procedure, except in the limit as T a. 
Thus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinstead of Q. (7-4), we use 

where r l l w  ia the average interaction energy. We calculate ~ I I  as 
follows: a molecule at a site has, on the average (random distribution), 
eB = cN/M occupied nearest-neighbor sites next to it; therefore, rl1 = 
(cN/M)(N/2) = cN2/2M, where the factor of two is inserted to avoid 
counting each 11 pair twice. The same partition function follows from 
Eq. (14-29) if we write 

where ro l  = cN(M - N)/M (random distribution). 

w asgumed constant) from Q. (14-41). For example, 
The various thermodynamic properties may easily be derived (with 

h Q =  --- A M h M - N l n N - ( M - - N ) l n ( M - N )  
kT - 

(14-42) 
CN'W + Nlnq - -* 2MkT ' 

04-47] 

The entropy is seen to be the same as for the ideal lattice gas (Q. 7-11). 
Equation (14-44) is the equation of state, and Eq. (14-46) or (14-47) is 
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FIG. 14-4. Pressure-volume isotherma for a Bragg-William lattice gas. 
The curve labeled zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm/kT = -4 is the critical curve. 

l nv  - 
FIG. 14-5. Adsorption isotherm for Bragg-Williams lattice gas. The 

cw/kT = 0 case is the Langmuir isotherm. 
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the adsorption isotherm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[see Eq. (7-9)). The second virial coe5cient in 
Eq. (14-45) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAagrees with the exact relation (14-40) in the limit as w/kT + 0, 
as we should expect from the nature of the Bragg-Williims approximation. 
We have defined y above in such a way that the symmetry property 
(Eq. 14-14) y(B)y(l - 0) = 1 holds (Problem 14-1). Thia definition of 
y is consistent with that in Q. (14-13), where c = 2. 

Both Eqs. (14-44) and (14-47) lead to loops (as in van der Waals 
equation) and to the prediction of a first-order phase transition (Figs. 14-4 
and 14-5). To draw in the horizontal stable equilibrium path in Fig. 14-4, 
we may use either the thermodynamic equal-area theorem or the symmetry 
condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 L  = 1 - 00. By symmetry, the critical point must be at 
0, = 1/2. We can locate the critical temperature from the condition 

We iind cw/kTc = -4. The exact value for a square lattice (Section 14-3) 
is 4w/kTc = -7.05. The Bragg-Williams theory incorrectly predicts a 
phase transition for a linear lattice (c = 2). 

A number of phase transitions (vertical jumps) in adsorption isotherms, 
as in Fig. 14-5, have been observed experimentally. If we take (Problem 
l H ) ,  say, w = -400 cal.mole-', then for a two-dimensional hexagonal 
lattice we have* T, = 77°K. At this temperature, however, the adsorbed 
phase is probably more nearly mobile than localized (Section 9-6) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso a 
better model for the experimental systems ie a two-dimensional p l i q u i d  
transition (Sections 16-1 and 16-2). A system which is definitely localized, 
which shows a phase transition, and to which the Bragg-Williams theory 
has been applied successfully is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAabsorption of hydrogen gas (as atoms) 
by palladium metal.t The experimental critical temperature is T, = 
568OK. We might then roughly estimate w, using c = 0.6 X 12 = 7.2 
(0 = 1 corresponds to 0.6 H atom per Pd atom), from 

For consistency and convenience we are using throughout thia chapter, 
except in Section 14-2, notation and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlanguage appropriate to a lattice gas. 
We could have used "magnetie language," instead, as in Section 12-4. 
To illustrate this, we turn next to the Bragg-Williams approximation for a 
fernmagnet or antifemmagnet. 

* The exact value of &u/kT, for a hexagonal lattice is -115.80. 
t See Fowler and Guggenheim, pp. 658-563, for details. 
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Section 12-4 should be reviewed for notation and thermodynamics. 

In a femmagnet, the magnetic dipoles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAassociated with electron spin 
in atoms. Parallel spine or dipoles (T T or 3.1) at nearest-neighbor positions 
in the lattice are assumed here to have an interaction energy -J, while 
antiparallel spins ( T i )  have an interaction energy +J. In Section 12-4, 
J = 0. These interaction energiea are not simply dipoledipole interac- 
tions, which are in fact negligibly weak by comparison, but are due instead 
to quantum-mechanical exchange forces, aa in chemical bond theory. If J 
is positive, we have the ferromagnetic case, and if J is negative, we have 
the antifemmagnetic case. 

The partition function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(M, T, H )  of Eq. (1240) has to be modified 
to take care of the nearest-neighbor interaction energies just referred to. 
For a given value of N (the number of 1 dipoles) in the sum in Eq. (1240), 
we insert a factor e-wlkT, where W is the total interaction energy: 

W =  

O =  

1 1 1  = 

This gives 

RllWll + molwol + ~ 0 0 ~ 0 0 ;  

d ( 2 N  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM)*.  
2M 

w =  - 

After putting the factor e-wlkT, with the above W, behind the summation 
sign in Eq. (12-40), we can remange as follows: 

Let us compare this with the grand partition function for the lattice gas, 
based on Eq. (14-41): 

The summation in Eq. (14-50) clearly has the stme form aa Z in Eq. 
(1451). Therefore, instead of rederiving results (Problem 14-6) for the 
magnetic problem, we can merely transcribe t h w  already found for the 
lattice gas. For example, since 

(14-52) 
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the form of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsum in Eq. (14-51) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsufEm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto determine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl?/M as a func- 
tion of -cw/2kT and qh. This relationship has already been egtabliehed 
in Eq. (14-47), using the canonical ensemble [which is the same aa apply- 
ing the maximum term method to Z in Eq. (14-Sl)]. Then, from the sum 
in Eq. (1650) for the magnetic problem, r / M  must be the same fundion 
as above, but with 2cJ/kT and e-2(mE+cJ)1kT as independent variables. 
Thus we have the compondences 

cw 2cJ -- 2 k T c - ) ~  or wc-) -4J, (14-53) 

y QXe--c-T c-) e -2(mE+cJ)lkTe2cJIkT or c.) e-2mH;7La) 

The relation (14-53) also follows from Q. (14-19). Therefore F‘ig. 14-5 
is also a plot, for the magnetic problem, of l?/M = (1/2)[1 - (Z/mM)] 
(ordinate) against -2mH/kT (abscissa). 

The magnetic field strength is the d o g  of the chemical potential for 
a lattice gas, as pointed out at the end of Section 124. The related thermo- 
dynamic equations are 

d(@M) = d(kT In Z) = S dT + N dp + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACP dM 
-dA = d(kT In Q) = 8 dT + I dH - p dM 

(lattice gas), 

(magnet). 

When J > 0 (fernmagnetism), the critical (Curie) temperature is 
given by cJ/kT,, = 1. Below the critical temperature, “spontaneous 
magnethtion” can exist. This i9 the magnetbation I, (Fig. 14-6) that a 

2nrH/kT - 
FIO. 14-6. Magnetiaation as a function of magnetic field for a Bragg- 

Williams ferromagnet. The metastable parts of the curve lead to the possibility 
of hysteregis. This is the same curve as cw/kZ’ = -8 in Fig. 14-5. 
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fernmagnet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< TJ retains if a sample is placed in a magnetic field 
(H > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) and then the field is removed (H -+ W): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I ,  = lim I (H) .  
H+O+ 

In this state, even though H = 0, the majority of the spins are t , in the 
direction of the previously applied field. If T 2 T,, I, = 0. 

In connection with any firsborder phase transition, a hysteresis loop is 
possible, BS illustrated in Fig. 14-6. Hysteresis is well known in magnetic 
and adsorption system, for example. 

As a 6nal topic in this section, we show how the Bragg-Williams lattice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
gas equation (14-47) can be derived very simply from a one-site grand 
partition function f [compare Eq. (7-31)]. We select one particular site 
and regard it as being in the potential field of molecules occupying other 
sites in the lattice at random. Let 0 be the fraction of other sites occupied. 
Then the average number of occupied sites nearest-neighbor to the partic- 
ular site is ce. When the particular site is itself occupied, the potential 
energy of the occupying molecule in the field of its neighbors is c h .  
Therefore, instead of f = 1 + qh, as in Eq. (7-31), we have 

f = 1 + Q e - - d w q .  (14-56) 

The average occupation of the site is 

(14-57) 

where e is considered a hed parameter in the differentiation. Since the 
particular site selected is equivalent to any other site, we have to impose 
the further condition of consistency, ?i = 8. With this substitution in 
Eq. (14-57), we again arrive at Eq. (14-47). 

14-5 Quasi-chemical approximation. In this section we describe an 
approximation that is significantly better than the Bragg-Williams a p  
proximation but sti l l  not of unreasonable mathematical complexity. 
Further refinements of various sorts have been worked out, but we shall 
not pursue these here. 

The essence of the present approximation is that pairs of nearest- 
neighbor sites are treated as independent of each other, though we know 
they are not, since they overlap. For example, in a square lattice: 
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We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstart with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEq. (14-29) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe the assumed independence of paira 

to approximate the function g(N,M,Nol). Each pair of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs ib can be 
occupied in four ways: 11, 01,10, and 00. The total number of paire of 
sites is cM/2. For given values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, M, and Nol, the numbers of pairs of 
merent typea are [Eqs. (14-27) and (14-28)l: 

CN No1 Number of 11 pairs = N11= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 - - 

No I Number of 01 pairs = 7- 

Noi Number of 10 pairs = - - 2 

2 .  

c(M - N) --. No1 
2 2 Number of 00 pairs = No0 = 

If the pairs are independent of each other, each pair in the lattice can be 
assigned to one of the four categories above. The number of ways of 
doing this is 

(14-W 

However, as it stands this cannot be set equal to g(N, M, Nol), for it will 
rather obviously not satisfy the condition (14-4). This is becam many 
configurations counted in w are actually impossible. For example, the 
two pairs of s i b  shown below cannot both be occupied in the manner 
indicated : 

Thus w overcounts the number of configurations. To take care of this, 
we must normalize w:  

g(N, M, Nod = C(N, M)O(N, M, N o d ,  (14-59) 

To find C(N, M), we replace the w sum by its maximum term. From 
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a In w/aNol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe obtain 

and therefore 

c(N' = [ N ! M  M! - N) !  r-". 
Equations (14-58) through (14-60) provide our approximate expression 
for g(N, M,  Nol). It should be noted that this argument accidentally 
givea the right answer for a one-dimensional lattice: put c = 2 in Eq. 
(14-59) and compare Eq. (14-5). Hence all the quasi-chemical relations 
below are exact in one dimension (c = 2). 

From this point we proceed exactly ria in Section 14-1, so we omit 
detaile (Problem 14-7). Equations (14-7) through (14-10) are again 
found, except that now a = N&/cM. From 

In Q = N ~n qe-cwlakT + In t(N&, N ,  M, TI, 

we deduce, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA88 in Eqs. (14-11) through (14-13), 

and 

This is the adsorption isotherm. The symmetry condition y(e)y( 1 - 0) = 1 
is easy to verify. The equation of state is 

The qualitative behavior of Eqs. (14-61) and (14-62) is the same as in 
Figs. 14-5 and 14-4, regpectively, for the Bragg-Williams theory. The 
critical point is at 0, = 1/2 and a temperature determined from Eq. 
(14-62) : 

(VL / a = 0 = c(x - 1) + 2, 

or 

For c = 4 (square lattice), thii gives 4w/kTc = -5.54, which is inter- 
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mediate, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas expected, between the Bragg-Williams value (-4) and the 
exact value (-7.05). As a check on Eq. (14-03), if we put c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2, we find 
T, = 0, as in Section 141.  Incidentally, the Bragg-Williams result 
follows from Q. (14-63) if we let c + co holding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnu constant: no/kT, + 
-4. A h ,  for example, the Bragg-Williams y(0) (Eq. 14-47) can be de- 
rived from the quasi-chemical y(0) (Eq. 14-61) in the same limit 
(Problem 14-8). 

The quasi-chemical approximation was 6rst used by Bethe in connection 
with the orderdisorder transition in alloys (see Chapter 2.0). However, 
the mathematical identity of his quite Merent physical approach with 
the above equations was not obvious at  first. Guggenheim soon introduced 
another method, equivalent to Bethe's and the combinatorial argument 
above, which was responsible for the choice of the term "quasi-chemical. * 
We shall merely sketch Guggenheim's pr0txdure.t The starting point is 
the intuitively reasonable quasi-chemical equilibrium relation, (14-9). 
[Incidentally, in the Bragg-Williams approximation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw = 0 in Eq. (14-9).] 
From this and the conservation equations (14-27) and (1428), we derive 
Eq. (14-8) with u = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANgl/cM. The configurational energy is then 

From this we can obtain Acontia by integrating the thermodynamic 
equation 

between 1/T = 0 (random distribution) and 1/T. This integration is very 
tedious, incidentally. Then from Amdig we get 8 and p by differentiation 
with respect to M and N, respectively. 

14-6 First-order phase transitions. In this section we make some com- 
ments of a general nature on firsborder phase transitions (i.e., transitions 
with a latent heat). The exact treatment of Onsager and the Bragg-Wil- 
liams and quasi-chemical approximations for a lattice gas provide us with 
examples. The familiar van der Waals equation of state for a fluid (Chap 
ter 16) is another example. The Lennard-Jones and Devonshire (LJD) 
theory of liquids (Chapter 16) is still another. 

The solid curve in Fig. 14-7(a) shows typical p v  experimental behavior 
below the critical temperature. The dashed portions represent meta- 

t Seo Fowler and Guggenheim, pp. 437-438, 441-443. 
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FIG. 14-7. (a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATypical experimental zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApu htherm behavior below the 
critical temperature. (b) Corresponding curve from approximate theory with 
restraint of homogeneity. 

stable states sometimes observed. If we start with dilute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgaa ( p  small) 
and then increase the pressure, when p = po (and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu = ua) is reached, 
another phase-liquid with u = ur;--suddenly appears in the system. 
The sharpness of the appearance of a new phsee is the feature of particular 
theoretical intemt. In t h i  respect, a phase transition is quite daerent 
from a chemical transition (i.e., chemical reaction), for in the chemical 
case the equilibrium composition varies in a smooth and continuous way 
with change in a variable (e.g., total preasure or temperature). The 
essential difference is that there is a cooperalive aspect to a phase transition 
which is missing in a chemical reaction. Thus in a dilute gaa reaction 
A B, the probability that any given molecule is in state A (or state B) 
is independent of the state of the other molecules in the gas. But, in a phase 
transition, if A = molecule in dilute phase and B = molecule in dense 
phase, there is a tendency for a large number of molecules to switch as a 
group from state A to state B because the molecules in state B can stabilize 
each other (hence the term “cooperative”) through intermolecular attrac- 
tions. Unlike the chemical reaction example, the tendency for the conver- 
sion of a particular A into a B is not independent of the state of other 
molecules; rather, the conversion is aided by the presence of other B mole- 
cules. Thus a phase transition resembles a landslide or autocatalytic 
PrOCeSS. 

An example of the distinction between a smooth (chemical) transition 
and a sudden (phase) transition can be seen in the magnetic system dis- 
cussed in Sections 12-4 and 14-4. In Section 12-4, there are no interactions 
between magnetic spins, i.e., the spins behave independently. We there- 
fore have a “chemical” type of equilibrium between states T and 1. If 
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8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the fraction of dipoles or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspins in state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 and 1 - 8 is the fraction in 
state t , then Q. (12-46) can be written (in the notation of Chapter 10) 

That is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK is the equilibrium constant and AF" = 2mH is the energy 
change in the process: state 1 + state 1. If we vary the magnetic field 
or temperature, K will change smoothly and the transition from pre- 
dominantly one state (at equilibrium) to predominantly the other will 
take place smoothly. On the other hand, if we introduce a negative inter- 
action energy between nearest-neighbor spins in the same state [J > 0 in 
Eqs. (14-49) through (14-55)], the spins tend to switch states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoopera- 
tively instead of independently and a sudden instead of smooth transition 
will take place at H = 0 if H is vaned holding T constant at T < T., 
(Fig. 144). 

The occurrence of a sharp phase-transition point can also be understood 
from Fig. 14-8. Curve G shows the typical dependence of the chemical 
potential of a dilute gas on pressure at  constant temperature (Eq. 4-25). 
Curve L represents the chemical potential of the liquid. This curve is 
almost flat because of the relatively small volume per molecule in the 
liquid state; i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ap/&p)T = v.  The stable phase at any p is the one with 
lower p. Because of the quite different slopes, the curves intersect at a 
sharply defined pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo  (the vapor pressure at the temperature under 
consideration). Thus, if we start with p < PO, only the gas phase is 
present, for its chemical potential is lower. On increasing p, the liquid 
phase appears very suddenly at p = PO, the crossing point of the p-p 
curves. Both phases are present at p = PO, and only liquid is present when 
p > po. The dashed curves again correspond to metastable states. 

T = eonstant < Tc I 

FIQ. IPS. Chemical potential as a function of prcssure (T constant), 
showing liquid-gss transition. 
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Just zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas for a chemical equilibrium, we can interpret in a general way 

the relative stability of the gas (dilute) or liquid (dense) phase by ob- 
serving that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas phase is favored by a relatively high entropy and that 
the liquid is favored by a relatively low (intermolecular potential) energy. 
The dense phase is always more stable at  low temperature or high pressure, 
and the dilute phase is more stable at  high temperature or low pressure. 
At the transition point (p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp o , ~  = PL), the energy and entropy 
effecte just balance each other. 

From the Bragg-Williams, quasi-chemical, van der Waals, or LJD 
(Chapter 16) theories, we obtain a continuous loop, as in Fig. 14-7(b), 
instead of a three-branched p v  curve such as in Fig. 14-7(a). Why this 
discrepancy? A loop is always encountered in a theory which (a) uses the 
partition function Q and (b) introduces implicitly or explicitly the restraint 
of uniform density through the extent of the system. It is not possible 
under this restraint for two phases of different density to exist together in 
the system, as required at  p = po in Fig. 14-7(a). The loop in Fig. 1&7(b) 
is the pu cuwe of an artificial system forced to be homogeneous (one den- 
sity) under all conditions. A three-branched curve as in Fig. 14-7(a) will 
result if Q is evaluated exactly (all configurations being represented, 
including those in which the density is different in different regions) or 
even if Q is evaluated approximately but all possible densities are allowed 
in any small region of the system. It should be added that mathematically 
sharp corners occur in the curve only in the limit of an infinitely large 
system. If the system is large but finite, the corners will be rounded off 
somewhat. 

It is easy to see that the partition functions E and A can never lead to a 
loop, regardless of the nature of the approximation used in Q. This follows 
from the fluctuation equations (2-10) and (2-14): ( a p / a v ) ~  cannot be 
positive. 

A much more detailed discussion of ht-order transitions will be found 
in S. M., Section 28 and Appendix 9. 

So-called higher-order phase transitions in which there is no latent heat 
are also possible. A theoretical example is the two-dimensional lattice gas 
of Section 14-3, restricted to 8 = 1/2. If the temperature of this system is 
varied, a transition occurs at  T = T,: there is a singularity in the heat 
capacity (Fig. 14-3) though the energy is continuous. The same kind of 
heat-capacity curve is found experimentally and/or theoretically in, for 
example, a ferromagnet or antiferromagnet at H = 0, a binary solution 
with composition held fixed at  the critical composition (Chapter 20)) and 
the orderdisorder transition in alloys (Chapter 20). 

For a review of the whole subject of phase transitions, the reader is 
referred to Temperley (Supplementary Reading list). 
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PROBLEBW 

14-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProve the symmetry property y(O)g(l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 8) = I for Eqs. (14-13) and 
(tP47). (Pages 240 and 249.) 

14-2. Calculate a few points and draw approximate curves for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@/kT against 
8 and 1/8 for an ideal lattice gas, Eq. (7-7). (Page 240.) 

14-3. Derive the thermodynamic equation 

Note the connection with Problem 7-13. (Page 240.) 
144. Calculate To for a two-dimensional (square) lattice gas, using zo = 

0.4142 - eulzwe and w = --400cal-mole-'. 
14-5. Derive Eq. (14-25) for the heat capacity of a one-dimensional lattice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

gas with 8 = 1/2. (Page 244.) 
14-6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUse Eqs. (12-38) and (14-50) to derive the relation between Z and H 

for a Bragg-Williams ferromagnet. (Page 250.) 
14-7. Fill in the details in the derivation of the quasi-chemical equations, 

(1440) through (14-03). (Page 254.) 
14-8. Derive the Bragg-Williams g(0) (Eq. 14-47) from the quasi-chemical 

g(8) (Eq. 14-61), using the limit c + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco (cw constant). (Page 255.) 
14-9. Apply the (quasi-chemical) method of Section 14-5 to a onedimensional 

lattice gas with a first-neighbor interaction energy 01 and a second-neighbor 
interaction energy wa. Instead of assuming independent pairs of sitea, assume 
independent triplets. 

14-10. Introduce second-neighbor, and higher, interactions into the Bragg- 
Williams lattice gas treatment. 

14-11. Derive equations for S and E for a Bragg-Williams lattice gas, con- 
sidering w a function of temperature, w(T). 

14-12. When H2 gas at pressure p is absorbed by Pd metal, the absorbed 
hydrogen is in the form of atoms. Use the equilibrium condition p ~ ,  (Bas) = 
2C(H (absorbed) to deduce the absorption isotherm p(8) using the Bragg-Williams 
approximation. 

14-13. Expand the onedimensional @/kT in powers of 8 in Eq. (14-16) and 
verify Eq. (1440) for B2 when c = 2. 

14-14. Define P(N) = Q ( N ,  M, T ) X N  for a Bragg-Williams or quasi-chemical 
lattice gas. P(N) is proportional to the probability that an open system 
(A, M, T given) will contain N molecules. Discus the form of the function 
P(N) when w < 0, T < To and: (a) X = q-1$v12w (i.e., Iny = 0 in Fig. 
165); (b) X different from the value in (a) but still within the extent of the 
loop (Fig. 14-5); and (c) X outside of the extent of the loop. 

14-15. Apply the argument of Eqs. (14-56) and (14-57) to a pair of nesrest- 
neighbor sites instead of to a single site. That is, treat the p@ exactly 
[see Eq. (7-32)], and assume all other sites in the lattice are occupied at random. 
Show that, in this approximation, 

(Pages 243 and 249.) 

2(3z(e-1)(2w 

(z2 + I - p)1/2 + (I - 2e)z' II(~) 
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Is this result exact in one dimension? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADoes it satisfy y(B)y(l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 0) = l ?  Does 
it reduce to the Brsgg-Willima approximation when w/kT + 01 

1616. Consider the partition function for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa lattice gas, 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = e4Iw. This expansion ie valid at high presgurea where there are 
very few empty sites (0 - 1). Use the same general procedure as in Eqs. (14-30) 
through (16%) to obtain an exact expansion of (1 - e)/0 in powere of p 
through the p* term. 

1617. Obtain the Bragg-Williams In&, Eq. (14-42), by starting with the 
exact Eq. (1629) and making use of the high-temperature expansion 2 = 1 + 
(w/2kT) + - . [This method, due to Kirkwood, can be extended to higher 
terms; see Eqa. (ZO-30) through (20-32).] 
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TEB HUB, Chapter 12. 

NEWELL, G. F., md MONTROLL, E. W., h 8 .  Mod. phg8.25,353 (1953). 



CHAPTER 15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IMPERFECT GASES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

This chapter is concerned with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases which are dilute, but not zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso dilute 
that we can ignore intermolecular forces altogether. The first two zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee 
tions, in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAour main object is to relate thermodynamic virial coeffi- 
cients to intermolecular forces, are the basic ones. The rest of the chapter 
is devoted to a few special topics. A much more complete treatment of 
this subject will be found in S. M., Chapter 5. 

The recurring theme throughout this chapter is that the application of 
the grand partition function to a dilute system such as an imperfect gas 
makes possible the reduction of a many-body problem in statistical me- 
chanics to one-body, two-body, etc., problems. 

15-1 V i i  expansion for a one-wmponent gas. The equation of state 
of a sufficiently dilute gas is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = pkT. This is a universal law, the same 
for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases. At higher concentrations the equation of state (experimental 
or theoretical) can be put in the form 

fi = P + B2(T)P2 + B3(T)P8 + * * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 9  (15-1) 

known as a virial expansion. The B,,(T) are called virial coefficients. 
These coefficients are in general Merent for different gases and depend in 
particular on intermolecular forces. Roughly speaking, when the gas is 
dense enough so that pairs of molecules spend appreciable amounts of time 
near each other, the term in B2 must be introduced. Interactions between 
three molecules involve B3, etc. The series (15-1) converges, when T < T,, 
for values of p up to p = l/va (Fig. 14-7), at which point liquid begins to 
appear in the system and there is obviously a singularity in the function 
p(p). When T > Tc, the series converges for all p. 

From the Taylor expansion 

we have the thermodynamic relations 

(n = 2,3, . . .). (15-3) 

281 
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This emphasim the fact that the virial coe5cients are properties of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
gas in the limit of zero density, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. This feature of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB,, will be 
confirmed by our statistical-mechanical expressions below. 

First we give a quite general statistical-mechanical argument which is 
valid for any one-component gas that poeeesses a virial expansion [not 
all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases do, incidentally; e.g., a plasma of ionized hydrogen atom (see 
Chapter IS)]. The results will be applicable, for example, to polyatomic 
gases, degenerate (quantum) gases (Chapter 22), etc. After deriving gen- 
eral relations, we shall turn specifically and in more detail to a classical 
monatomic gas (Section 15-2). 

The grand partition function is most convenient here, for reasons al- 
ready explained [see Eqs. (1-69) and (14-26)]. We have 

Z(X, V, T) = dv'kT = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc QN(V, T ) X N  = 1 + c Q N X ~ , .  (15-4) 
N 1 O  N L 1  

where 
QN(V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  =Q(N,  V, T), X = edkT. 

In Eq. (15-4), we have put QO = 1 since, when N = 0, the system has 
only one state, and this with energy E = 0 [see Eq. (1-a)]. Quation 
(15-4) is a power series in X, the absolute activity. It proves very con- 
venient later if we define a new activity, z, proportional to X and having 
the property that z + p as p + 0 [aa in Eq. (14-35)]. To find the desired 
connection between z and A, we use the limit X + 0 in Eq. (15-4): 

Then clearly z = QlX/V, since p = '/V. The partition function Q1 

(one molecule in V) is the same quantity as q in Eq. (3-10). If we put 
zV/Q1 in place of X in Eq. (15-4), the result is 

To simplify notation, we define ZN(V, T )  by the relation 

In particular, 21 = V. In classical statistical mechanics, ZN turns out, 
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with this definition, to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe the configuration integral zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[see, for example, 
Eq. (6-22)]. We shall verify this statement in the next section. Then, 
finally, 

(15-6) 

Now we take the logarithm of both sides of Eq. (15-6), expand the 
logarithm on the right, divide by V ,  and obtain an expansion for p in 

Z(X, V ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= epv'kT = 1 4- zN(v' T ,  zN. 
N! N 2 1  

powers of 2: 

where 

l!Vbl = 21 = V ,  bl = 1, 

etc. A general relation is available* relating the bj to the ZN. To convert 
the z expansion, (15-7), into a p expansion, as in Eq. (15-1), we use the 
euuation 

This gives 
(15-10) 

If we invert this series to get z as a power series in p, we can substitute 
z(p) into Eq. (15-7) and obtain the required virial expansion. To invert 
the series, we use for simplicity a straightforward algebraic method, 
though more elegant procedures are available for this purpose. We sub- 
stitute 

z = p + a2pa + asp' + . - - (15-11) 

in Eq. (15-10) to obtain an identity in p. Equating coefficients of like 
powers of p on the two sides of the equation, we find 

a2 = -2ba, 

as = -3b3 - 4a2ba = -3b3 + 8bi, 

*See, for example, S. M., Eq. (23.44). 



264 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIMPERFECT OA8E8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[CHAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15 

etc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfinal step, we then put Eq. (15-11) (with the a's just deduced) 
in Eq. (15-7) and get zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP + B2(T)p2 + Bs(T)pa + . * ., (15-12) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkT - 
where 

Bg -b2, Bg = 4bf - 2b8, etc. (15-13) 

In retrospect, we see, above, that we have found the virial d c i e n t s  
B, in terms of the bj, the b j  in terms of the&, and the& in terms of the 
QN. We note further that to calculate Ba, we need only Q1 and Q 2 ;  to cal- 
culate Ba, we need Q1, Q2, and Q g ;  etc. Now Ql(V, T )  is the partition func- 
tion for a single molecule in a box of volume V ;  QdV, T )  is the partition 
function for two molecules in V ;  etc. Thus even though the actual gas 
has, say, loao molecules in it, we have reduced the calculation of B2 to 
one- and two-molecule problems in quantum mechanics (i.e., we need the 
energy levels for one and two molecules in V to compute Q1 and &a), etc. 
In view of the comments at the beginning of this section, this result is 
intuitively reasonable. Thus we expect that binary interactions become 
signilicant when the B2 term is needed in the equation of state, (15-12), 
and this is confirmed by our finding that Bz depends on the properties 
of at most huo molecules in the volume V. That no additional molecules 
are in V in our computation of Q1 and Q2 (for Bz) correspond to the fact, 
mentioned in connection with Eq. (15-3), that the virial coefficients are 
properties of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas at zero macroscopic density. That is, B2 depends on 
binary interactions in a vacuum, Bg on ternary interactions in a vacuum, 
etc. 

At this point we digress to examine one step in the above argument 
which happens to lead to correct results but which needs justi6cation. 
This is the step (15-6) + (15-7). [We employed the same procedure 
in Eq. (14-36) and in finding the connection between z and X following 
Eq. ( 1 5 4  The difficulty is that the expansion In (1 + z) = z - 
(1/2)z2+ which we have made use of, is valid only if z2 < 1; 
but in 1 + Vz + - . * in Eq. (15-0), Vz is of order m. The following argu- 
ment avoids this complication. We start with the desired form of expan- 
sion, (15-7), and work backward to find the connection between the b j  
and the ZN. That is, at the outset, the b j  in (15-7) are undetermined 
coefficients. From the expansion (15-7), we form the function 

(15-14) 
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This is a power zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAseries in z. The coefficient of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzN in the series is 

(15-16) 

where the sum is over all sets m = ml, . . . , mN satisfying the condition 

On equating coefficients of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzN in Eqs. (15-6) and (15-14)) we have, then, 
that Z N / N !  is equal to the expremion (15-15). The first few relations are 

2 1  = Ybl = v, 
4 2 2  = Yb2 + 3(Vbd2, (15-16) 

&Z3 = Vb3 + (vbl)(h) + g(VblP. 

Thee. are easily seen to be equivalent to Eqs. (15-8)) which give the bj 

explicitly in terms of the ZN. 
We return now to (15-12) and related equations and derive a few more 

general expressions. The fugacity f of an imperfect gas is, like z, propor- 
tional to A, but with a proportionality constant such that f + p as p + 0. 
That is, f + pkT as p + 0; hence the connection between f and z 
i e f  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzkT. Thus Eq. (15-11) gives f/kT as a power series in p. The in- 
verse of Eq. (15-7) would give f/kT as a power series in p/kT (Problem 
15-1). Also, if we define an activity coefficient 'V by the relation z = Tp, 
then, from Eq. (15-11)) 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ a g + a 8 p 2 + . . . .  (15-17) y = - =  

An alternative and more elegant expression for 'Y can be found as follows. 
From z = QlA/V and z = rp, we have 

2 

P 

-= kT l n ( g ) + l n p + l n r ( p , Q ,  (15-18) 

where V/Q1 is a function of T only, since Q1 is proportional to V (see 
Problem 3-1, where q has the same meaning as Q1 here). If we now inte- 
grate the thermodynamic equation 

d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6) = v d (&) = 3 1 (F) ap/kT dp (T constant), 
T 
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using the virial expansion (15-12j for p/kT, we find 

From the definition of z and the limit p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.--) 0, we see that the integration 
constant is In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(V/Q1). Therefore, from Eqs. (15-18) and (15-19), 

where we have defined zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/3k by 

(15-21) 

Incidentally, it should be noted that Eqs. (15-7), (15-lo), (15-12), and 
(15-20) are all thermodynamic expansions that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be interrelated by 
purely thermodynamic operations. Hence the connection8 obtained above 
between the bj, B,,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb& are essentially thermodynamic in origin. 
Molecular theory enters when we relate any of these coefficients to the 
2~ or QN, as in Eqs. (15-8). 

A comment on the orders of magnitude in Eqs. (15-8) may be helpful. 
From Eq. (15-7)) we have that 

Now let us write the equation for bj in (15-8) in the form 

From the definition (15-5), we see that Zj = O(Vi). Therefore each 
separate term (only one is shown) on the right of the above equation is of 
order unity, but the complete right side is of order lm-l, since this is 
the order of the left side. Thus the bj  in Eq. (15-8) represent small terms 
left over after cancellation of the major contributions to the right-hand 
side. 

15-2 One-component classical monatomic gas. The special csse we 
discuss in this section is a one-component classical monatomic gas with 
an intermolecular potential energy assumed pairwise additive. The 
reader should review Eqs. (6-15) through (6-22) and Appendix IV, where 
basic equations and criteria for the use of classical statistics are developed. 
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Eq. (4-10). Then, in Eq. (15-5), &VN/Q1" = Q N A ~ ~ .  Thus, on com- 
paring Eqs. (15-5) and (6-21), we see that the two 2"s have the same 
relation to QN. Hence, in this special case, ZN of Section 15-1 is just the 
configuration integral defined by Eq. (6-22). The first three configuration 
integrals are 

21 = /drl = v, 

z2 = /~-u(r12)/kT&l & 21 

V 

05-22) 
V 

where dr = dx dy dz, r12 = Ir2 - rll, and u(r) is the intermolecular pair 
potential (Appendix IV) which, in principle at  least, can be calculated 
from quantum mechanics. Beginning with 28, the assumption of painvise 
additivity in the potential energy U(rlJ r2, ra) appears. That is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

u = 4 r 1 2 )  + u(r1a) + u(r2a). 

From Eqs. (15-8) and (15-13), the second virial coefficient of a classical 

1 
monatomie gas is 

&(T) = --b2 = - - 2v ( 2 2  - 23 

Since u(rl2) goes rapidly to zero for intermolecular distances r12 greater 
than, say, 15 or 20 A, the integrand in Eq. (15-23) is nonzero only when 
the elements of volume drl and dr2 are close to each other. For this reason 
we change variables from rl and r2 to rl and r12 = r2 - rl (position of 
molecule 2 relative to position of 1 aa origin). Integration over rI2 leads 
to a result that is independent of the location of drl, except when drl  

is in a region of negligible extent (V is macroscopic) within a distance of 
order 20 A from the walls. Then 

a 

- [e-U(r)/kT - 1]4rr2 dr, (15-24) 

where we have put d r 1 2  = 4madr,  and the upper limit r = 00 can be 
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used, since the only contributions to the integral come in the first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 A 
or so. 

For a (hypothetical) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas of hard spheres, 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is the distance of closest approach of the centers of two spheres, 
or the diameter of one sphere. Thus Ba is four times the volume of a 
sphere. 

If we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuse the much more realistic LennardJones potential, (IV-1), for 
u(r), the second virial caeficient becomes 

00 

B2(T) = -2rr."l [exp k% y-' - &, y-I2) - l]y2 dy, (15-27) 

where y = r/r*. This result predicta that for all molecules with an inter- 
molecular potential of the Lennard-Jones form, B2/r*8 is a universal 
function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkT/t.  This is another example of a law of companding states. 
Thus, if experimental values of B2 as a function of T for a given gas 
are plotted by adjusting both horizontal and vertical scales (thereby de- 
termining values of t and r* as given in Table IV-1), then the experimental 
curve can be made to coincide with the theoretical curve of B2/r*8 against 
kT/e calculated from Eq. (15-27). This is illustrated in Fig. 15-1 for A, 
Ne, N2, and CHI. (The two latter gases behave effectively as mona- 
tomic gases as far as the equation of state is concerned.) 

The Boyle temperature TB is the temperature at which B3 = 0. The 
theoretical d u e ,  from Eq. (1&8), proves to be kTB/€ = 3.42. At 
temperatures below TB, B2 is negative owing to the predominant effect 
of the potential well in u(r) on the integral for B2. At dc ien t ly  high 
temperatures, on the other hand, the potential well geta "washed out" 
(c/kT 0) and the 8hort-range repulsion dominates. Hence, B2 is pOai- 
tive, as for hard epheres. At very high temperatures, the effective "hard- 
sphere diameter" decreases with increasing T, because the molecules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan 
approach each other more clmly when they are more energetic. Therefore 
B2(T) pamea through a maximum. 

Turning now to B8, Eq. (16-13) gives Ba in terma of bi and b8. & h e  
z ~ j  = e-u('d'kT, and recall that 

b2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2- J(ZI2 - 1) Q1 dr, = - 1) Q12. 
2v v V 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FIG. 15-1. Reduced second zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvir i i  coefficient (Bz/~*~)  ma function of reduced 

temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(kT/e). Curve C is the classical curve calculated from Eq. (15-27). 
The experimental points on curve C are a mixture of points for A, Ne, Nz, and 
CHI. Curves A and B are the calculated quantum curves (Section 22-5) for He 
and Hz, respectively, with corresponding experimental points also shown. 

Now we notice that 

This gives us an expression for ba. For 213, we have from Q. (15-8), 

For symmetry, we combine Eqs. (15-28) (using the fiiat line) mid (15-29) 
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v -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- (512Xl3Z23 - 512 - 213 - 523 + 2)1 hl h 2  h 3 -  

After cancellation, this gives 

B3(T) = - - \/\(%12 - l)(xia - 1>(22s - 1) dri dr2ha. 05-30) 
./ 

3 v  

A fairly long calculation leads, for hard spheres, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB3 = (5/8)B!, where 
B2 is given by Eq. (15-26). 

For the Lennard-Jones potential, we first change variables to rt, r12, 
r13 and integrate over rl, giving a factor V. Then, as in Eq. (15-27), 

D 

kT/c 

FIG. 15-2. B s / ~ * ~  as a function of kT/e, salculated from the classical equa- 
tion (15-31). The experimental points are a mixture of points for A, N2, and CH4. 
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This gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB3/r*6 as a universal function of kT/e. Figure 15-2 shows this 
function, calculated numerically from Eq. (15-31) (after rearrangement 
for computational convenience). The experimental values of BZ in the 
figure have been “reduced,” using value of B and r* obtained from the 
second virial coefficient (i.e., by fitting the theoretical curve in Fig. 15-1). 
The agreement with experiment is only fair. Possible contributions to the 
discrepancy are: (1) error in the experimental values of B3; (2) lack of 
effective spherical symmetry in N2; (3) approximate nature of the Len- 
nard-Jones potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; and (4) nonadditivity of the intermolecular poten- 
tial of three molecules. 

The dependence of B2/r*3 and B S / ~ * ~  on kT/ t  only, for the Lennard- 
Jones potential, is in fact a general result for all virial coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[see 
Eq. (15-38) below] if pairwe additivity of the potential is assumed for 
Bg, Bq, . . . . In this case the complete equation of state (15-12) can be 
written, using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = l/p, 

,*a 2 
kT = 1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(C) v 2 ( 3  + (y) v 3 ( 3  + . . . 

= v(-& T). (15-32) 

It is clear that not only the Lennard-Jones potential but any two-param- 
eter potential which is of the form 

(15-33) 
r 

u(r) = (energy parameter) x h (distance parameter) 

and which is assumed pairwise additive, will lead to the law of corre- 
sponding states for imperfect gases, (15-32). 

Equations (15-32) and (15-33) imply that (subscript c refers to critical 
point) 

where cl, . . . , cg are dimensionless constants, the same for all gases obey- 
ing Eq. (15-33) with the same function h. Table 15-1 furnishes a test of 
all but the laat of these relations for simple molecules, using experimental 
critical constants reduced by values of B and r* from the experimental 
second virial coefficient. The constancy of the “constants” is very good 
but not excellent. We can conclude that, to a rather good approximation, 
the intermolecular potential for effectively spherical molecules satisfies 
(15-33) and is pairwise additive. 
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r*a 

2.35 
2.23 
2.05 
2.09 
1.90 
2.09 

2.12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

IMPERFECT GASES 

kT, - -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E c -- -- 

1.25 0.157 
1.26 0.164 
1.31 0.187 
1.33 0.185 
1.31 0.201 
1.29 0.178 

1.29 0.179 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[CHAP. 15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TABLE 15-1 

REDUCED CRITICAL CONSTANTE 

Ne 
A 
Xe 
N2 
0 2  
CHI 

Averagc 

1, 
0.292 
0.288 

Equations (15-34) and Table 15-1 provide a method* for the estima- 
tion, from critical constants, of r* and t for other molecules that are of the 
same type but which are not in the table. That is, we can use the relations 

(15-35) 
0.1796 0.139kTc 

P o  P o  
--. v c  r*a = - 2 .12~  or r*' = - - 

There is a Similarity in the form of Eqs. (15-23) and (15-30) for B2 
and Ba which can be shown to be general in the case of pairwise ad- 
ditivity. We give the result but not the proof. But first we digress to 
introduce "cluster diagrams." Define fir = zij - 1. The function 
fij = e--u(r<jlkT - 1 is nonzero only when rJj is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmall. The molecules 
1, 2 are said to form a "cluster" when f12 occurs as the integrand in an 
integral over drl and &%. The term is appropriate because the integrand 
is nonzero only when the two molecules are near each other. Equation 
(15-23) provides an example. Three molecules 1,2,3 form a cluster when 
any of the following integrands occur (nonzero only when all three mole- 
cules are near each other) : f iaf iafm, fi2f28J fiifia, fiafaa. Equation 
(15-30) is an example. The integrands in Eqs. (15-23) and (15-30) can 
be represented schematically by ''cluster disgrams": 

(15-36) 

* T. L. HILL, J .  C h .  Phya. 16,399 (1948). 
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A line between two circles (molecules) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and j meane that a factor fij is 
present in the integrand. The other cluster zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAclisgnrme for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree molecules 
are: 

Now Eq. (15-21) relates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&+1 to &. The general result* referred to at 
the beginning of this paragraph is that 

where S ' 1 , ~ , . . . , k + ~  is the sum of all different products of j 's  that connect 
molecules 1,2,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk + 1 in a "doubly connected" cluster diagram. In a 
doubly connected diagram, between each pair of molecules there zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare at 
least two entirely independent paths which do not cross at any circle. In 
addition, a cluster of two molecules ia considered doubly connected, for 
classification purposes, and is sometimes written m. Thus the 
cliagrams (15-36) are doubly conne&d, but those in (15-37) are only 
singly connected. Hence Stl,2 = 112 and #'1,2,8 = f l l f i 8 f m  This is 
consistent with Eqs. (15-23) and (15-30). However, for and B4, there 
are ten terms in S'13,8,4 corregponding to the following ten doubly con- 
necteddiagnuns: 

(15-39) 

* See S. M., Chapter 5, for proof. 
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Usually zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/& is referred to &s an “irreducible cluster integral,” and bj is 
called a “cluster integral.” Cluster diagrams were first introduced by 
Mayer, starting from the canonical ensemble.* 

153 Two-component imperfect gas. Imperfect gas theory can easily 
be extended to gas mixtures. We illustrate this possibility by considering 
a binary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas and retaining only those terms necessary to deduce the second 
virial coefficient. We start off with equations not restricted to any particu- 
lar kind of gas (classical, quantum, polyatomic, etc.). The grand partition 
function is 

Z(X1, X2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV ,  T) = epVlkT = Q N ~ N ~ ( V ,  T)XylX?. (15-40) 
N i . N a 1 0  

We define zl, r2, and by the equations 

Q i o X i ,  

V 21 = - QoiX2, 
V 23 = - (15-41) 

(1 5-42) 

The coefficients Qlo/V and Qol/V in Eqs. (15-41) are functions of T only. 
The definitions (15-41) and (15-42) will prove below to have the desired 
properties that (a) 21 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp1 and 22 + p2 when p1 and p2 + 0, and 
(b) ~ N ~ N ~  becomes the configuration integral in classical statistical me- 
chanics. Equation (15-40) can now be rewritten as 

On taking logarithms and expanding [see Eqs. (15-14) through (15-M)], 

(15-44) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2-  kT - 21 + 22 + b2o(T)z: + hi(T)z122 + b02CT)za” + * * - 9  

* See Mayer and Mayer, Chapter 13. 
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From 

05-47) 
21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= p1 - 2b2op: - bllPlP2 + 
22 = pa - 2bo2& - bllPlP2 + * . .  * 

' * , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
These last equations also provide series in the activity cdc ien ts  
71 = zi/pi and 7 2  = z2/p2. 

Substitution of Eqs. (15-47) in Eq. (15-44) gives the desired virial 
expansion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

kT - P- p1 + p2 + B20(T)PT + B l m p l p 2  + Bo2(T)pf + - * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 9  (15-48) 

where 
B2o = 4 2 0 ,  B11 = 4 1 1 ,  BOP = 4 0 2 .  (15-49) 

The coefficients B2o and Bo2 are just the second virial coefficients of the 
two pure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases (Section 15-1); B11 is new and depends on the properties 
of two molecules in the volume V, one of each species. 

For a classical monatomic gas mixture, we have from Eq. (6-25) that 

where 

(15-51) 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd(N1)  means & I .  . . &N, for species 1, etc. Comparison with Eq. 
(15-42) shows that, in this special case, Z N ~ N ~  defined in Eq. (15-42) is 
the classical configuration integral, (15-51). Then, in Eq. (15-48), B20 
and Boa are given by Eq. (15-24) for a pure gas [using the appropriate 
u(r) for each gas] and 

1 

= - joe [e-ull(r)ltT - 1 1 4 ~ 2  dr. 

B11 = 4 1 1  = - (211 - V2) 

(15-52) 
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In thia equation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAull is the intermolecular potential between one molecule 
of each type. Information about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu11 can be deduced from very accurate 
measurements on the two pure gases and on the mixture, since only Bll 
in Eq. (15-48) is not a property of a pure gas. If a Lennard-Jones poten- 
tial is used for each of the three pair interactions, a good approximation 
for the parameters of ul l ,  in the absence of other information, is 

where 61, €2, r;, and r: refer to the pure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases 1 and 2. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfirst relation 
follows from the simple theory of dispersion forces, and the second would 
be correct for hard spheres. 

The above equations provide a summary of the statistical-mechanical 
relations that determine the thermodynamic properties of a slightly im- 
perfect binary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas mixture. The (quantum-mechanical) interactions be- 
tween the three kinds of pairs of molecules are the basic quantities ap- 
pearing in these equations. 

Next we investigate briefly an example of a chemical equilibrium oc- 
curring in an imperfect gas mixture. It will be recalled that Chapter 10 
was restricted to chemical reactions occurring in ideal gsses. Suppose 
that in the binary mixture 1, 2 the dissociation (or association) equi- 
librium, 

@ e 2 @ ,  

aa in Section 10-2, takes place. The equilibrium condition is p2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2pl, 
or X2 = Xf. Then from the definitions of 21 and 22 in Eq. (15-41), 

or 

Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK(T) is the same kind of equilibrium constant as in Eq. (10-6), and 
the Q's have the m e  meaning as the 4% in (10-6). However, the equi- 
librium constant is equal to a quotient of activities rather than to a quo- 
tient of concentrations. The fact that zf/z2 is a function of T only, K(!i'), 
is of course a purely thermodynamic result. But the relation of K(T)  to 
the Q's is statistical-mechanical. 

We can also write 
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where 71 and 7 2  are activity coefficients, determined by Eqs. (15-47). 
Thus, 

(15-58) 
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

K(T) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [1 + (b l l  - 4b20)Pl + * * *I. 
P2 

The expansion in brackets here gives the firsborder correction term, aa- 
sociated with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas imperfection, to the ratio p:/p2 [which is exactly equal 
to K(T) only in the limit as p1, p2 + 01. The linear term in p2 is omitted 
because it is of order p:. This expansion is thermodynamic in origin if we 
regard the bjj as beiig determined from the experimental equation of 
state, (15-48), and the relations (15-49). But Eqs. (15-45) for the bjj 
are of a molecular, not thermodynamic, nature. 

A special case of the equilibrium @ # 2 0 ,  above, is the formation 
of dimers, or clusters of two molecules, in a slightly imperfect one-com- 
ponent gas. Of coulge, from a thermodynamic point of view, any dimer 
formation, however defined, is automatically taken zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcare of by the second 
virial coefficient B2 and need not be discussed explicitly. But for some pur- 
poises it is profitable to adopt the alternative but necessarily equivalent 
point of view that dimers exist and are in equilibrium with monomers. 
We shall say something about the definition of a dimer beIow. Higher clus- 
ters (trimers, etc.) can be included in the treatment, but for simplicity we 
coniine ourselves to monomers and dimers (i.e., the gas is assumed very 
dilute). Incidentally, we are referring here to "real " or "physical" clusters, 
not the "mathematical clusters" of Section 15-2. A much more detailed 
treatment of clusters of both kinds will be found in 8. M., Chapter 5. 

The gas is considered an equilibrium mixture of two species: mono- 
mers, @, and dimers, @. The partition function of one monomer in V is 
Qlo;  of two monomers in V is QlO (the two monomers can interact with 
each other); and of one dimer in V is Q o l .  The concentration of mole- 
cules in the gas, from the one-component point of view, is 

P = P1+ 2P2, * (15-57) 

where 

The extra term given in Eq. (15-56) is not involved in B2,so we drop it 
here. From the above two equationa we find 

P = P l + T '  flp: 

I 
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or, for the concentrations of monomers and dimers, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P I =  P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- j f  2 2  P , (15-59) 

2 
p2 = 5 ,  

to terms in p2. If we substitute Eqs. (15-59) and (15-60) in Eq. (15-48) 
for a binary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas mixture, we get for the equation of state 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j$ = p + (- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg - b20)P2+ * - -, 

where 

This should be the second virial coeficient Bs of the one-component gas. 
From Section 15-1, 

Since Qr and Ql0 have the same meaning, we conclude from (15-62) and 
(15-63) that, for selfconsistency, we must have Q2 = Q2o + QOI. But 
this is just what we should expect since, from the monomer-dimer point 
of view, two molecules in V can exist in two sets of states: (a) two mono- 
mers; and (b) one dimer. As far aa thermodynamics is concerned, the 
splitting of Q2 into two parts, &SO and Qol, is quite arbitrary; it depends 
on the definition of “dimer” (but the same Bz is found in any case, pro- 
vided Q ~ o  + QOI = Q2). Hence the numbers of monomers and dimers 
calculated by Eqs. (15-59) and (15-60) are slso arbitrary. The most ob- 
vious classification for the states of Q2 is to include the “bound” states 
(in quantum or claasical mechanics) in QOI and all others in Q20. The 
reader interested in pursuing this subject further should consult S. M., 
Section 27. 

15-4 Imprfect gas near a surface. In thii section and the next we con- 
sider a one-component imperfect gas in an external field. Here the ex- 
ternal field is a short-mnge one provided by a solid Surfsce, as, for example, 
in Eq. (7-2). The present treatment provides a relatively exact (compared 
to Chapter 7) approach to the problem of physical adsorption of gawa on 
solids. We shall merely sketch the basic equations here. Further details 
are available elsewhere.* 

* S. .M., Appendix 10, where additional references are given. Also T. L. HILL, 
J .  Phg8. 63,456 (1959). 
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FIG. 15-3. Gas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV (a) in the absence and (b) in the presence of 
an adsorbing surface. 

The system of interest is a one-component gas in a volume V in the 
absenoe (Fig. 15-3a) and in the presence (Fig. 15-3b) of an adsorbing 
surface of area a. In both caaes the gaa has a chemical potential p (or 
activity z) and temperature T.  If r is the average number of molecules 
in the system with solid present and if ro is the average number with 
solid absent, then the number of adsorbed molecules, by Gibbs' surface 
excess definition, ia - no. The basic thermodynamic equation for the 
system with the solid present is [compare Eq. (7-6)] 

d E =  T d S - Q & - p d V + p d N ,  (15-64) 

where p is the gas pressure far from the surface. Then it follows that 

~ ( p ,  V,  a, T )  = e(pv+cQ)'kT = C QN(V' a, T)hN - 05-65) 
N 

In the absence of the d i d ,  we use the notation 

~"b ,  V ,  T )  = ep"" = Q!O, T ) X N ,  (1566) 
N 

where Zo and Q$ have the same meanings as Z and QN in Section 15-1. 
Although we could pursue this problem using the general formulation of 

Section 15-1, let us investigate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinstead the specific case of a classical mon- 
atomic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas. The potential energy of the gas (when the solid is present) 
is the sum of the usual (Section 15-2) intermolecular potential energy uON 
( d i d  absent) and the potential energy of the gas molecules in the field 
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of the solid, which we denote by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU;. The energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv*, is made up of a mun 
of N separata contributions of the form u*(r), the potential energy of a 
single gas molecule at  r in the field of the solid [see, for example, Eq. (7-2’11. 
Then 

(15-67; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz“, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZN QR = - 
N!A3N QN = ’ 

where 
2% = f i - ’ ; I k T  dr l . .  drN 

zN = f i - ( G + G ) l k T h l .  . . drN. 

(15-68) 
V 

and 

(15-69) 
V 

If we define the activity by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = Q!h/V = h/A3, then 

We now follow the same argument as in Section 15-1, and find 

(15-72) 

where the b’s are related to the corresponding 2’s by Eq. (15-8) (but 
Z1 # V, bi # I), and p(z, T )  is the pressure either in the absence of or 
far from the surface. Equation (15-72) is the “adsorption isotherm” 
giving the amount adsorbed as a function of the activity z (or fugacity, 
f = z k q .  At very low gas pressures (the Henry’s law region), p / k T  = z 
and the number of molecules adsorbed is 

37 - To = V(b1 - b!)z = V(bl - 1) 2- kT ’ 
where 

V(b1 - 1) = z1 - V = /[e-u*(r)/kT - 11 dr. 
V 

If u* is a function of the distance 1 from the surface only [as in Eq. (7-2) 
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and Problem 7-11, we have 

The integral determines the relative extent of binding of different mole- 
cules on a surface, and this in turn depends on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%*({). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs is typical of a 
Henry's law constant (Chapter 19), the constant is determined by the 
interaction of just one "solute" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(gas) molecule with the "pure solvent" 
(solid surface). Equation (15-73) has been applied successfully to ex- 
perimental data by Freeman and Halsey.t 

It is left to the reader to obtain explicit expressions (in terms of u* and 
u) for the quadratic terms in the expansion of 7 - To in powers of z or 

From Eqs. (15-71) and (15-72), the surface pressure in the limit as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPlkT.  

p -+ 0 is given by 

(15-74) 

which has the form of the equation of state of a two-dimensional ideal gas. 
Note from Eq. (15-73) that it is possible form - mo and Q to be negative. 

Incidentally, if we subtract 

dEQ = TdSO - p d V + p d N o  

from Eq. (15-57), we get the basic thermodynamic equation, in terms of 
surface excesses, 

dE8 = TdS8 - Qda + p d N 8 ,  (15-75) 

where 
E8 = E - E', S. = S - So, N8 = N - NO. 

Thii is the analog of Eq. (7-6). 

15-5 Imperfect gas in an electric field. The discussion here is a con- 
tinuation of that in Sections 12-1 and 12-2, which should be reviewed. 

Section 12-3 was concerned with a dilute gas of independent molecules 
in an electric field. In an imperfect gas or liquid, the molecules are not 
independent and the problem b m e a  very involved. Each molecule is 
not only in the field (D)  of the external charges, but is also in the field of 
the other molecules. These intermolecular interactions are more compli- 
cated than usual because (a) dipole-dipole forces have a relatively long 

t M. P. F'REEMAN and G. D. f i L S E Y ,  Jn., J .  phV8. C h .  59,181 (1955). 
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range, and (b) both the external field and the field due to other molecules 
induce an additional dipole in a given molecule, which in turn contributes 
to the interaction of the molecule with other molecules. Superimposed 
on these electrostatic interactions are the usual van der Waals attractions 
and repulsions (themselves ultimately, of course, of electrostatic origin). 

Although the properties of a dielectric liquid in an electric field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 
extremely difficult to analyze without approximation, use of the grand 
ensemble and lowdensity expansions make it possible to treat an im- 
perfect gas in a straightforward way. We confine ourselves here to slightly 
imperfect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases (up to the second virial coefficient), and even in this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase 
we develop general equations only. Detailed treatment of realistic special 
cases or models involves rather complicated calculations. * 

The grand partition function, (12-15)) can be written 

8 = 1 + Ql(V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, D)X + Qa(V, T, D)X2 + - * * . (15-76) 

Then 

g = l n Z = Q l h + ( Q 2 -  &+?:)X2+--- ( 15-77) 

and, from Eq. (12-17) (note the definition of MN), 

X = MIQ1X + (Q2M2 - Qfnf1)X2 + * * * . (15-78) 

Also, from Eq. (12-9)) 

m = (r) a In Z = QIX + (2Q2 - Qf)X2 + - * *. (15-79) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V.T.D 

For a very dilute gas (p ,  p, or X + 0), only the leading terms in Eqs. 
(15-77) through (15-79) need be retained. For a slightly imperfect gas, 
for which a second virial coefficient is required in the equation of state, 
Eqs. (15-77) through (15-79) indicate that we have to consider the proper- 
ties of only two molecules in the volume V and external field D. Of course, 
in this case, interactions (including dipole-dipole) between the two mole- 
cules, and the influence of D on the interactions, have to be taken into 
account. 

From Eqs. (15-77) and (15-79)) we can obviously derive, just as in Sec- 
tion 15-1, the virial expansion 

* See A. D. BUCKINOHAM, J .  Chem. Phys. 23,2370 (1955); A. D. BUCKINOHAM 
and J. A. POPLE, Trans. Fatadcry SOC. 51, 1029, 1179 (1955). 
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where the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB,, and QN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare related by the same formal expressions as in 
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15-1. Also, we can &ow* (Problem 15-3) that the virial expan- 
sion for the polarization is 

P = - P = M I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp - AT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) 1 ($$)= P". (15-81) 

n22  
V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

PROBLEMS 

15-1. Obtain an expansion forf/kT (f = fugacity) in powers of p/kT up to 

16-2. Deduce the expansions (15-47) for a binary mixture from (15-46). 

15-3. Use Eqs. (15-77) through (15-79) to verify the coefficient of p2 in 

15-4. Estimate values of t and r* for ethane from T, = 305.2OK and 

15-5. The intermolecular potential for monatomic molecules, 

the cubic term. (Page 265.) 

(Page 275.) 

the polarization expansion, (15-81). (Page 283.) 

pe = 48.8atm. 

when! a, 8, and Y are positive constante, is often uscd. (a) If the system (gas) 
obeys the law of corresponding states, what conclusion can be drawn about 
the independence or dependence of a, 8, and Y on each other? (b) If thii poten- 
tial is made to agree with the Lennard-Joncxl potential for large r and in the 
location of the bottom of the well (u = -e = minimum at  r = r*), what an! 
the connections between a, 8, and 7 and r* and r? Calculate a, 8, and Y for 
argon. 

15-6. Sketch a plot of the function e*(r)/w - 1 for hard spheres and for 
the Lennard-Jones potential (at several dderent temperatures). 

15-7. Find B 2  at high temperatures for the potential 

u(r) = +- r < r* 

That is, for t 2 t*, replacc e l l w  by 1 - (u/kT).  
15-8. Show, using an integration by parts, that 

is equivalent to Eq. (15-24). 

* T. L. HILL, J .  C h .  Phya. 28, 01 (1958). A number of other details are 
ale0 given in this paper. 
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15-9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExtend the aeries of Section 15-1 one more term. 
15-10. Show that the expansion of E/NkT in powers of p for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa classical 

monatomic gas starts off as 

and that a more general relation is 

15-11. For a classical monatomic gas, put S/Nk at given p and T in the form 

s r s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a = 

(ideal gas, same p and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  + C(T)p + . 
Find C(T)  in terms of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(r). Show that for a finite temperature, C is always 
negative (as might be expected intuitively). Find the asymptotic form of C 
at high temperatures. Use the u(r) in Problem 15-7 to calculate C at high 
temperatures. 

15-12. Use Problem 15-4, critical constants for methane, and Eqs. (15-53) to 
estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA€11 and r?l for the ethane-methane interaction. 

15-13. Extend Eqe. (15-43) through (15-49) to include the third virid 
coefficient. 

15-14. If Eq. (15-48) for a binary mixture is put in the form 

p+B2p2+. . - ,  P =  P I + P ~ ,  
kT 

show that 

B2(zi, T )  = B20(T)z; + Bii(T)z1(1 - 21) + Bo2(T)(l - 2d2, 
where 21 is the mole fraction of component 1. 

15-15. Consider the isomeric equilibrium @ F? @ in a binary gas mixture. 
Find the analog of Eq. (15-56). If the equation of state is written as in 
Problem 15-14, ahow that 

15-16. Define the surface concentration I' = (R - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARo)/a. Extend Eq. 
(15-74) to read 

2 = I' + B2(T)r2 + * * - , 
kT 

and find an expression for B2 in terms of u* and u. 

to partition functions. 
15-17. &date the thermodynamic functions E,, S,, (p, and N, in Eq. (15-75) 
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FOWLEB and GUOOENHEIY, Chapter 7. 
HIRWEFELDEB, Cmmm, and B m ,  Chapter 3. 
MAYEB and MAYER, Chapter 13. 
S. M., Chapter 5. 



CHAPTER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
APPROXIMATE CELL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHOLE THEORIES 

OF THE LIQUID STATE 

The general series expansion approach of the previous chapter is exact 
but in practice can be applied only to dilute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases. The treatment of dense 
gases requires higher virial coefficients, and it will be recalled that an 
investigation of the virial coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, involves an *body problem. Al- 
though the series method runs into computational difficulties when applied zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to dense zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases, it breaks down altogether when liquid is preaent in the 
system; that is, there is a singularity in the function p(p )  at the condensa- 
tion point, as already explained in connection with Eq. (15-1). 

Therefore we have to turn to new techniques in studying the liquid 
state. Any exact approach to this problem involves, in one form or another, 
the treatment of a system containing of the order of, say, 1020 molecules. 
For example, in the canonical ensemble, the integral (6-22) with N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
0(1O2O) must be evaluated. Because of this possibly insuperable difficulty,* 
approximate theories of the liquid state are of great interest. We discuss 
approximate cell and hole theories in this chapter, and the distribu- 
tion function method in the next chapter. We restrict ourselves to a 
classical monatomic system with pairwise additive potential energy. 
Section 6-2 gives the criteria for the use of classical statistics. As usual, 
our object is to provide an introduction to the subject and not to review the 
latest refinements. 

This 
theory is of interest because of its simplicity, its prediction of a phase 
transition, and its resemblance to the Bra=-Williams lattice gaa approxi- 
mation (Section 14-4). 

We begii by discussing the van der Waals equation of state. 

16-1 The van der Waak equation of state. If no forces act between 
the molecules of the system, 

Q = -  V 
N! (16-1) 

as we found in Eq. (4-12). Here the partition function q pertains to a 

* High-speed computing machmes seem to be the only hope in this connec- 
tion. Model systems with of the order of several hundred particles have been 
examined so far. See, for example, B. J. ALDER and T. E. WAINWRIGHT, J .  Chem. 
Phy8.31,459 (1959), where other references are given. 

286 
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single particle moving in a volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV which is potential-free. In order to 
derive the van der W d s  equation, we assume that in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa fluid of inter- 
acting molecules, each molecule moves, independently, in a uniform po- 
tential field provided by the other molecules, these being distributed in a 
random manner (hence the analogy with the Bragg-Williams theory). 
The potential energy between a pair of molecules is taken to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see 
Problem 15-7) 

u(r) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+00 r < r* 

This interaction potential has a "hard-sphere core" and the usud 
attractive term for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlarge r. The minimum occurs at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu = --e, r = 9. 

Because of the assumed independence of the molecules, we still have 
Q = by/N!  but we make two modifications in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, both arising from inter- 
molecular forces. First, because of the hard-sphere core in each inter- 
molecular interaction, not all of the volume V is available for the motion 
of a given molecule. We therefore replace V by a "free volume" V,. 
Second, we insert a Boltzmann factor e--9'2kT to take care of the inter- 
molecular potential field in which the given molecule is moving. The 
energy (p, a function of N / V ,  is the potential energy of interaction between 
any one molecule and all others in the system. The factor of two is inserted 
in the exponent because each pair interaction has to be shared between 
two molecules in counting up the total potential energy. Thus we write 

Now we turn to the explicit forms to be used for (p and V,. In the 
neighborhood of a particular molecule, the density of other molecules will 
be zero between r = 0 (location of the specified molecule) and r = r*, 
because of the hard core, and will be constant a t  the value N/V from 
r = r* to r = 00, because of the assumed random distribution of mole- 
cules. (Actually, the distribution is not random and the density not 
constant-see Chapter 17.) Between r and r + dr, for r 2 r*, there are 
(N/V).4ur2 dr other molecules. The potential energy of interaction be- 
tween each of these and the central molecule at  r = 0 is given by Eq. 
(16-2). Therefore 

(p=  - 

= -  (1 6-4) 
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As the particular molecule of interest wanders through the volume V, 

a volume (4?r/3)P3 is excluded to it by each other molecule in the system. 
However, we have to divide this quantity by two for the same re88on as 
above: the excluded volume arises from an intermolecular pair interaction, 
(16-2), and only half of the effect can be assigned to a given molecule. 
This argument will be confirmed by a direct calculation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB2 below. 
Therefore we write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= v - Nb, 06-51 

Use of the volume Nb in Eq. (16-5) implies nonoverlapping, i.e., addi- 
tivity, of excluded volumes. This can only be correct in the limit of low 
densities, but we use this expression for Vf  at all densities, as an ap- 
proximation. 

Equations (16-3) through (16-5) now furnish us with a complete canonical 
ensemble partition function from which the various thermodynamic 
properties can be deduced. For example (Problem 16-1), 

-- kT A = In Q = N In ( V  i 3 N b )  + g~ - N In N + N, ( 1 ~ )  

and 

( p  + %) (V - Nb) = NkT. 06-71 

Equation (16-7) is the van der Waals equation of state. Thus the con- 
stants a;, and b, defined in Eqs. (16-4) and (16-5), are the usual van der 
Waals constants, but here they are given expression in terms of the param- 
eters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe and r* of the intermolecular potential function. The subscript is 
included in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAav to avoid confusion with a in Eq. (16-24). 

If we expand Eq. (16-7) in powers of l /u = p = N/V, we obtain the 
virial expansion 

The second virial coefficient is B2 = b - (av/kT). If we multiply Eq. 
(16-8) by b and let 0 = pb (the maximum density corresponds to e = l), 

This is very similar to Eq. (1445) in the Bragg-Williams theory. 
The second virial coefficient, calculated from Eq. (15-24) and the 

potential (16-2), agrees in the limit of high temperatures (see Problem 
15-7) with B2 in Eq. (16-8). This is to be expected, since the random 
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molecular distribution assumed in calculating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 is approached at high 
temperatures, and the excluded volume correction in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVf is correct if the 
density is low enough so that only pair interactions need be considered. 

The fact that the van der Wads equation exhibits critical and phase- 
transition behavior as in F’igs. 14-4 and 14-7(b) is well known. This is, 
of course, the reason for our interest in the equation: it is mathematically 
very simple, but still predicts a first-order gas-liquid transition. The 
critical constants, from Eq. (16-7), are 

uC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 3b, 8 a v  Tc = - 27bk ’ 
at, 

27b2 ’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP c  = - (16-10) 

or, in terms of the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc and r*, 

- 2~ = 6.28, - kTc --- - 0.296, uc 
r*3 c 27-  
-- 

(16-1 1) 

The individual values of the critical constants in (16-1 1) are in very poor 
agreement with experiment (Table 15-1). Hence we cannot take the 
van der Wads model seriously in a quantitative sense, though it is useful 
for qualitative purposes. 

Because of the form of the potential (16-2) [see Eq. (15-33)], we expect 
the van der Wads equation to obey the law of corresponding states. This 
is easily verified if we rewrite Eq. (16-7) as 

(16-12) 

Now b = 2m*’/3 and a,/bkT = c/kT. Therefore, pu/kT is a universal 
function of u/r*8 and kT/c, as in Eq. (15-32). 

The two-dimensional van der Waals equation is of considerable interest 
as an approximate equation of state for an adsorbed monolayer. By the 
eame reasoning as above (Problem 16-2), we find the equation of state 

where 
(P -t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG) (a - Nb’) = NkT, (16-13) 

If the critical properties of the same gas [with u(r) given by Eq. (16-2)] are 
compared in three dimensions and in two dimensions, we find T,(3 dim)/ 
Tc(2 dim) = 2 (Problem 16-3). This reeult has been c o n h e d  approxi- 
mately in several adsorption systems. 
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16-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACell theories of liquids. In a cell theory of liquids, we imagine 
the volume V divided up into a lattice of N cells, with one molecule in 
each cell. The motion of each molecule, within its cell and in the potential 
field of its neighbors, is assumed independent of the motion of the other 
molecules. This resembles the Einstein model for a crystal (the reader 
should review the beginning of Section kl), except that we shall be using 
classical mechanics here and the potential is not necessarily parabolic. 
The conversion of a cell model for a crystal into a cell model for a liquid is 
accomplished rather artificially by the introduction of the so-called 
“communal entropy”--absent in a crystal, present in a gas, and assumed 
also present in a liquid. Let us digress at  this point to explain what is 
meant by the term “communal entropy.” 

In a crystal each molecule is confined in a “cell” or “cage” formed by its 
nearest neighbors, and is only very rarely involved in excursions outaide 
the cell. A t  the other extreme, in a dilute gas, each molecule is quite free 
to wander over the entire volume V of the container. Because of this 
additional freedom, gas molecules are said to have “communal entropy” 
not possessed by molecules in a crystal. The liquid state is intermediate 
in nature, and it is not at all obvious to what extent the liquid state pos- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sesses communal entropy. Originally, Hirschfelder, Stevenson, and 
Eyring* assumed that the liquid state had essentially the complete com- 
munal entropy and that the communal entropy therefore appeared on 
melting as a large part of the entropy of fusion. This view was later 
criticized by 0. K. Rice.t It can safely be said that the situation with 
regard to the communal entropy in the liquid state remains obscure even 
at present, although Kirkwood has given the concept rigorous formal 
definition. 

We now consider the simplest possible illustration of communal entropy. 
Suppose that we have a system of N monatomic molecules, without inter- 
molecular forces, in a volume V. Then, as in Eq. (16-1), 

V N  ve 
Nl3N A3 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -kTlnQ = -kTln- = -NkTln-, (16-16) 

(16-16) S = Nkln- + Nk. 
A3 

On the other hand, suppose, by the use of hypothetical partitions, that the 
volume Y is divided up into N cells, each of volume u = V/N, and that 
each cell is occupied by a molecule which is restricted to move inside the 

* J. HIRSCHFELDER, D. STEVENSON, and H. EYRING, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ .  Chem. Phus. 5. 898 - .  
(1937). 

t 0. K. RICE, J .  Cheni. Phys. 6, 476 (1938). 
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cell. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAgain we assume that there zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare no intermolecular forces. From the 
communalentropy point of view this situation resembles that in a crystal. 
The configuration integral is now zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfl instead of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV N ;  also, the factor 1/N! 
in Eq. (16-15) is omitted, since the molecules are now distinguishable 
(the cells can be labeled). Hence 

(16-17) 

and 

(16-18) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtre81a S = Nkln-- 
A8 

Equations (16-15) and (16-16) may be compared zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith Eqs. (16-17) and 
(16-18). It is clear that if we start with the system divided up into cells 
and then remove the partitions, the system acquires in this process the 
additional "communal" entropy, AS = Nk. 

Now suppose that we take into account, very roughly, the inter- 
molecular forces in the cell model described above (for a crystal) by 
aasuming that each molecule moves in a field of constant potential p 
within its cell, where p arises from the interaction of a given molecule 
with all the other molecules of the system. The only effect this will have 
on thermodynamic properties is to raise the energy of the system by N+3/2. 
Equation (16-17) becomes 

(lG-19) 

As a next step, suppose the interaction potential between a given molecule 
and all other molecules is not assumed constant, but rather is a function of 
position in the cell, p(r), where the origin r = 0 is located at  the minimum 
in p. For example, owing to intermolecular repulsions, we might expect p 
to become very large in a condensed phase when the confined molecule 
approaches its neighbors at  the edge of its cell. The probability of ob- 
serving the central molecule in a given element of volume is no longer 
uniform throughout the cell but must be obtained from a Boltamann 
factor. As a result of this, the "effective" or "free" volume through which 
the central molecule can move is reduced to a value leas than v. In fact, 
the cell configuration integral leading to Eq. (16-17), 

where A represents the cell, must now be replaced by 

(16-20) 
J A  
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuf is the “free” or “effective” volume. Equation (16-19) is then 
modified to read 

(16-21) A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - N k T l n x  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7- NdO) 
A3 

In this picture we would expect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(~(0) to be a function of p or u, and uf to 
be a function of u and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. This equation is very closely related to Eq. (5-3) 
for an Einstein crystal: u,/A3 corresponds to qa in Eq. (5-3). The differ- 
ence is that (a) q/A3 is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcZassiu12 partition function, and (b) the potential 
well inside the cell is not assumed to be parabolic in Eq. (16-20) (i.e., we 
are not limited to small vibrations), as it is in the Einstein model. 

Finally, to make Eq. (16-21) applicable to a liquid, we replace uj by 
u/e, just as u in Eq. (16-17) is replaced by ue in Eq. (16-15). That is, we 
assume the liquid has communal entropy since, in a liquid, a given molecule 
is not confined to a particular cell but can wander over the entire volume 
V. As already mentioned above, this is a strictly intuitive step which is 
found on more careful analysis to be inaccurate. Thus, for a liquid, 

(16-22) 

Before going on to a particular application of Eq. (16-B), we note that 
the van der Waals free energy, Eqs. (16-3) and (16-0), although not based 
on a cell model, can be put in the form of Eq. (16-22) with 

(p(0; u)  = - - * (16-23) 
2ae zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U f ( U )  = - ; - - 0 - b, 
U 

The van der Wads uf is a function of u but not T. 
We now turn to the cell theory of Lennard-Jones and Devonshire* (LJD), 

based on Eq. (16-22) as a starting point. Many rehementa of this theory 
have been worked out, but they have not changed the position of the W D  
theory as the basic prototype for cell theorie8 of liquids. 

In the LJD model, each molecule move8 within its cell in the potential 
field of its nearest neighbors assumed fixed at the centers of their celle. 
To simplify the problem, the c nearest neighbors are treated as uniformly 
“meared” over a spherical surface of radius a, where a ia the distsnce 
between the centera of nearest-neighbor cells. Then 

a* = ‘YU, (16-24) 

where ‘Y ia a numerical constant (not an activity c d c i e n t  here) depend- 

* J. E. LENNABD-JONES and A. F. DEVONSHIRE, Proc. Roy. Soe. (London), 
A163,63 (1937); Al65, 1 (1938). 
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Fro. 16-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACell geometry for the LennardJones and Devonshire theory. 

ing on the geometry of the lattice. 
Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= .\/z and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc = 12. Our task is to calculate (Eq. 16-24)) 

For a face-centered cubic lattice, 

(16-26) 

In Fig. 16-1, the central molecule is at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, a distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt from the center of 
the cell. The area of the ring shown on the surface of the sphere is 

%a2 sin 8 do. 

The number of "smeared" nearest neighbors in this area is 

27ra2 sin 8 de c sin de, 
4ua2 5 C -  

and the potential energy of interaction between the molecule at P and the 
neighbors in the ring is 

u(R) * Sin 0 d8, 

where 
R2 = t2 + a' - 2ar cos 8. 

Hence the total energy of interaction between the molecule at P and all 
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of its zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc neighbors is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= s,'u(R) sin e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAde, (16-27) 

where we urn the Lennard-Jones potential 

u(R) = -2€($+ e ( q 2 -  

We substitute Eq. (16-28) into Eq. (16-27), and obtain, on carrying out 
the integration, 

where 
r* 12 

40) = c e [ - 2 ( 3 +  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(y) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z(%) = (1 + 12% + 25.2%' + 12%' 4- z4)(l - %)-lo - 1, (16-31) 

(16-32) m(.) = (1 + z)(1 - 4 - 4  - 1. 

If we define 

(16-33) 

Eqs. (16-29) and (16-30) become 

(16-35) 

When u/u* is small (< ~ 1 . 6 ) ~  +(r) has a minimum at r = 0 and rises 
rapidly as r increases. For large u/u*, as should be expected from the 
physical model, #(r) has a low maximum at r = 0, a minimum near 
r = a - r*, and rises rapidly when r > a - r*. 

The potential +(r) in Eq. (16-34) is substituted in Q. (16-25), and we 
find (putting g = r2/a2) 

vl = 2ra3g, (16-36) 
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The upper limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 in the integral is determined by the "boundary condi- 
tion" that, when ce/kT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 (ideal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas), 

or 

Actually, the results for the critical and liquid regions are quite insensitive 
to the choice of 8. 

Quations (16-22), (16-35), and (16-36) now determine all the thermo- 
dynamic properties of the system. For example, for the equation of state, 
we find (Problem 16-4) 

where 

The quantities g, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgt, and gm have to be calculated by numerical integration 
for each pair of values of v*/v and ce/kT. Extensive tables of g, gt, gm, 
and several thermodynamic properties have been published by Hirsch- 
felder, Curti, and Bird (Supplementary Reading list). The tables given 
actually include the contribution of second- and third-neighbor shells, but 
this relinemat turns out to have little effect on thermodynamic properties. 
We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan summarize the results 88 follows: 

(1) Since p / k T  above is a universal function of v/v* and kT/e, the law 
of corresponding states is obeyed. 

(2) A plot of pv*/kT against v/v*, for different fixed values of kT/e, 
shows typical critical behavior and loop of the van der Waals type. The 
critical constants (for 7 = fl and c = 12) are 

kTe - 1.30, 1'C +. - 1.25, - a 
-- 

e 
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Comparison with the experimental values in Table 15-1 shows that the 
W D  theory predicts the critical temperature very well, but is not zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso 
successful on the other critical constants [though it is certainly an im- 
provement over the van der Waals results, (16-ll)]. 

(3) The expansion of p/kT in powers of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv*/v has no linear term, so 
that the second virial coefficient is zero. This is a consequence of the fact 
that, in this model, each cell has exactly one molecule in it at all densities; 
a t  low densities, with this restriction, binary molecular interactions 
(responsible for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB,) become of negligible importance. 

We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan conclude that the LJD cell theory is completely unsatisfactory 
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa dilute gas and only fairly good in the critical region. But from the 
nature of the model, we would expect it to be quite successful, and it is, at 
very high pressures where the assumption of exactly one molecule per 
cell is reasonable. 

Incidentally, the two-dimensional theory is included in the W D  refer- 
ences on p. 292. We shall quote just the one m l t  that T, (3 dim)/ 
T,(2 dim) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1.89, compared with the van der Waals value 2.00. 

16-3 Hole theories of liquids. A rather obvious refinement of cell 
theories of the W D  type is to relax the restriction of exactly one molecule 
per cell. The most general approach would be to allow 0,1,2, . . . molecules 
in a cell. (If the intermolecular potential u(r) is assumed to have a hard- 
sphere core for sufficiently small r, there would be a mazirnurn possible 
number of molecules in a cell of fixed volume.) Much work along these 
lines has been done, but we shall not review this area here. Unfortunately, 
these refinements do not improve the LJD theory a great deal. 

A special zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase of generalized cell theories arises when the cells are 
chosen small enough so that the number of molecules per cell can be only 
zero or one. In this case, it is customary to speak of a "hole theory" of 
liquids-an empty cell being a "hole." Strictly speaking, this situation is 
possible only with a hard-sphere core in u(r); but in practice, since the 
Lennard-Jones potential rises so fast as r + 0, this point can be ignored 
(except at very high temperatures). We consider here an approximate hole 
theory of liquids, due to Cernuschi and Eyring, which is in fact identical 
with the quasi-chemical approximation for a three-dimensional lattice gas 
(Section 14-5). In the lattice gas, a "site" is a cell and an "empty site" 
is a hole. 

We make the following specific assignments of parameters in Sec- 
tion 14-5. The lattice is assumed close-packed, so c = 12. The Lennard- 
Jones potential u(r) (with parameters e and r*) is used, and we choose the 
lattice spacing (nearest-neighbor distance between sites) &s t*. This is 
perhaps the most natural choice, but is somewhat arbitrary. (A refine- 
ment would be to select the lattice spacing so as to minimize A for given 
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- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvc - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkTe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApor*8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r*3 € € 
-- -- 

Experimental 2.12 1.29 0.179 
van der Wash 6.28 0.296 0.0177 
W D  1.25 1.30 0.614 
Cernuschi-Eyring 1.41 2.74 0.663 

N, V,  T.) Then, in Section 14-5, w = -t. The partition function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq refers 
to the motion of a single molecule in its cell, and q = v,/A3 in the nota- 
tion of Section 16-2. Clearly v j  should be different for each dfierent 
number and arrangement of nearest-neighbor molecules, but as an ap- 
proximation we assume v j  is evaluated when all (c = 12) neighbors are 
present. Since the nearest-neighbor distance t* is fixed in this model, q is 
a function of T only. Because we shall consider just the equation of state, 
which doea not depend on q(T), we need not pursue this question further 
[but an obvious evaluation of q(T), if needed, would be that offered by 
Eq. (16-36) with u = t*). 

The equation of state is (14-62), if we put c = 12 and 

- PA 
kTe 

0.292 
0.375 
0.590 
0.342 

Then, from Eq. (14-63), the critical constants are (Problem 16-5) 

= 43 = 1.414, -- kTc - 2.74, 
t 

P P C  
kTc 

- 0.342. 

-- pcr*3 - 0.663, 
t 

Table 16-1 brings together the critical constants of Table 15-1 and Eqs. 
(16-11), (16-40), and (16-41). The hole theory of Cernuschi and Eyring 
is, on the whole, not as good as the WD theory in predicting critical 
constants. 

Equation (14-62) can be rewritten as p / k T  = (l/O) In ( 1. Since 
8 = ~ * ~ / / 1 / 2 v  and w = -t, pv/kT is a universal function of v / T * ~  and 
kT/t.  Hence this model also obeys the law of corresponding states. 

TABLE 16-1 

REDUCED CRITICAL CONSTANTS 
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164 Law zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof corresponding states. We have by this time encountered 

several special zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcases of the law of corresponding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstates in gases and liquids. 
We give here a brief argument showing how this law can be deduced in a 
general way. * 

Consider the canonical ensemble partition function for a classical 
monatomic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas, Eq. (6-21). Actually, the argument below applies also, 
approximately, to diatomic and polyatomic gases if the angular dependence 
of the intermolecular force is relatively unimportant so that the transla- 
tional partition function is separable from rotation, etc., or approximately 
so (in other words, if these molecules are effectively spherically symmet- 
rical). This rules out polar molecules, hydrogen bonding molecules, etc. 
From thermodynamics, we know that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--A/NkT, being an intensive 
quantity, must be a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu and T only. Then N-' ~ Q N  is a func- 
tion of u and T only. Therefore, from Eq. (6-21), N-' h ( Z N / N ! )  is a 
function of u and T only, call it #1(u, T). That is, 

or 

where rt2 = e*i. Now we can rewrite Q. (6-22) as 

where 

if we assume a pairwise additive, two-parameter, intermolecular potential 
of the form (15-33)) in which E and r* are energy and distance parameters 
(riot necessarily identical with those in the Lennard-Jones potential) 
characteristic of each species of molecule. The function h is assumed 
the same for all gases under consideration. Then ZN, from Eq. (16-43), 
can be written 

* The original argument of this type is due to K. S. PITZER, J .  Chern. Phys. 7, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
583 (1939). 
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where $3 is the same function for all molecules. 
Eqs. (16-42) and (16-44), we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee that $3 must in fact have the form 

Next, on comparing 

where is also the same function for all molecules. This result gives us 

or 

For the equation of state, we have then 

Therefore zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp / k T  is a universal function of ~ / r * ~  and kT/e, as was to be 
proved. 

In summary, then, we expect the law of corresponding states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto be obeyed 
by those monatomic (or effectively monatomic, as far as translational 
motion goes) classical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases whose intermolecular potentials are pairwise 
additive and of the form (15-33) (all with the same function h). 

In Fijp. 15-1 and 15-2 and in Table 15-1 we have seen experimental 
evidence for the existence of this law of corresponding states. A much 
more extensive summary and analysis of experimental data is given by 
Guggenheim.* 

Quantum fluids (e.g., H2 and He) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArequire an extension of the above law 
of corresponding states. This will be considered in Chapter 22. 

* E. A. GIJGGENEEIM, ThermodyuMnics. 3rd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAed. Amsterdam: North-Holland, 
1957. See pp. 165-172. 
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PROBLEMS 

16-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADerive equations for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE/NkT, and S/Nk as functions of u and T for 
a van der Wads fluid. Compare these with ideal gas equations. (Page 288.) 

16-2. Derive Eqs. (16-13) and (16-14) for a two-dimensional van der Wads 
fluid. (Page 289.) 

16-3. Show that To (3 dm) /To (2 dim) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2 for a van der Wads fluid. 
(Page 289.) 

16-4. Deduce the WD equation of state from Eqs. (16-22), (16-35), and 
(16-36). (Page 295.) 

16-5. Verify the numerical values in (16-41) for the reduced critical con- 
atante of the approximate hole theory of liquids considered in Section 16-3. 
(Page 297.1 

168. Find TB and TB/T, (TB = Boyle temperature) for a van der Wads 

16-7. Find the second virial coefficient for the hole theory of Section 16-3. 
16-8. Show that if pu/kT is a universal function of u/re8 and kT/e, then 

p / k T  is 8180 a universal function of u/uo and T/To. The law of corresponding 
states is often expressed in the latter way. 

16-9. An ideal gas is adsorbed on a surface as a two-dimensional van der Waals 
fluid. Derive the h r p t i o n  isotherm. 

16-10. Two simple equations of state often used are: 

fluid. 

Berthelot: (p 4- $) (u - b) = kT 

and 
Dieterici: p(u - b) = kTs+'". 

Find the second and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthird virial coefficients in each case. If each of these equa- 
tiona is considered to have been derived from Eqs. (16-3), 6nd 9. 

16-11. If the curvature at the bottom of the WD potential well is used to 
determine the frequency I of an Einstein model, find I aa a function of c, e, u, 
r*, and m (mass). Also, 6nd the condition under which the WD potential well 
has a maximum at  r - 0 inatead of a minimum. 

S-mm~ READING 

F o w a  and GUQQENEIEIM, Chapter 8. 
HIBSCHFEIDEE, Co9nss, and B m ,  Chapter 4. 
huaoam, Chapter 7. 
SLATEa, chapter 12. 
S. M., Chapter 8. 
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DISTRIBUTION FIRQCTIOHS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIN 

CLASSICAL MONATOMIC F’LUIDS 

An alternative approach to the theory of liquids that has received much 
attention is the distribution-function method. In this chapter we give 
an introduction to the subject, using arguments that are more intuitive 
and transparent than would be the case in a formal and completely rigor- 
ous treatment. This type of diacussion seems particularly appropriate here 
in view of the fact that a detailed survey of the formal type is already 
available in S. M., Chapter 6. 

For simplicity we restrict the discussion to a classical monatomic fluid 
with a pairwise additive intermolecular potential energy, though the ap- 
plicability of the distribution-function method is by no means limited to 
this special case. In fact, aa will be intuitively obvious, in systems of ef- 
fectively spherically symmetrical polyatomic molecules, the radial dis- 
tribution function plays the same role aa in monatomic systems. The cor- 
responding function in systems of polyatomic molecules that are not 
spherically symmetrical is obtained by integrating a more general, angular 
dependent, distribution function over all rotational orientations. 

17-1 Radial distribution function. Consider a one-component fluid 
with number density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. Imagine that an observer is 
stationed on one particular molecule aa it moves through the fluid, and 
that he makes observations on the number of molecules found at different 
distancee from the (“central”) molecule on which he is sitting. Since the 
system is a fluid, the dietribution of other molecules around the central 
molecule zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill be found, on the average, to be spherically symmetrical. 
The mean number of molecules observed in an infinitesimal element of 
volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdr at  a distance r from the central molecule will not be, in general, 
just p dr, because the presence of the central molecule itself perturbs its 
immediate environment. For example, if the molecules of the fluid are 
hard spheres of diameter a, then no other molecule would be observed at  
distances r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< a. Or, if the intermolecular potential is of the Lennard- 
Jones type, there would be a tendency for other molecules to accumulate 
at a distance of about r = r*. In any case, at large distances, where the 
influence of the central molecule has died out, the mean number of mole- 
culee p dr in dr would be approached. 

In general, we specify the mean number of molecules observed in dr  
by pg(r) dr, where g(r), called the radial distribution function, is the fac- 

301 
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tor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby which the mean 'local density" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApg(r) at r deviates from the bulk 
density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp. Because all real molecules become effectively "hard" for r 
sufficiently small, g zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 0 as r + 0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlso, as indicated above, g + 1 as 
r +  00. 

The radial distribution function g(r) depends on density and tempera- 
ture. Therefore we shall sometimes write it as g(r, p, 0. 

The function g(r) cannot be obtained by direct thermodynamic measure- 
ment, but fortunately it can be deduced by a nonthermodynamic experi- 
mental method: x-ray diffraction. The observed diffraction pattern is a 
sum of interference effects from pairs of molecules. The radii distribution 
function determines the relative weight [proportional to 4m2g(r)] in the 
sum given to different intermolecular distances. From the observed pat- 
tern, one can calculate backward to deduce g(r). Figure 17-1 shows typi- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cal experimental curves in gas and liquid states. The peaks in the liquid 

7- 

(a) Dilute &RS 

7- 

(b) Liquid 

Fra. 17-1. Typical experimental radisl distribution functione for (a) dilute 
gas and (b) liquid. In both cases the high peak occura near r = r* (Lennard- 
Jones 6-12 potential). 
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curve are smeared-out remnants of relatively zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsharp peaks in g(r) in the 
solid state (obtained by averaging over different directions outward from 
the central molecule, since spherical symmetry is lacking). These peaks 
in g(r) for the solid correspond, as r increases, to first neighbors, second 
neighbors, etc. Thus the liquid haa a certain amount of short-range order, 
about each'molecule, which is a residue of the long-range order in the 
corresponding crystal. 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbest single experimental paper available on this subject is an ex- 
tensive one on argon.* 

The radial distribution function is of interest in statistical mechanics 
primarily because the thermodynamic functions of the fluid can be ex- 
pressed in terms of it, as we shall see in Section 17-2. Because of this, it 
becomes part of the task of statistical mechanics to provide the necessary 
framework from which g(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be calculated theoretically, at least in 
principle. This topic is the subject of Section 17-3. Comparison of theoret- 
ical g(r)'s with experiment can be made either directly with experimental 
g(r)'s (from x-ray work) or indirectly with experimental thermodynamic 
properties of the fluid. 

17-2 Relation of thermodynamic functions to g(r). The simplest con- 
nection to establish concerns the internal energy E. It follows immedi- 
ately from Eqs. (1-35) and (6-21) that 

E = #NkT + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf. (17-1) 

The first term is the mean kinetic energy, and the second term is the mean 
potential energy. It is very easy to express U in terms of g(r). Consider 
any molecule as the "central " molecule. The total intermolecular potential 
energy between the central molecule and other molecules in the fluid at  
distances between r and r + dr is 

u(r) pg(r) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4m2 dr. 

Then If is obtained by integrating over all values of r and multiplying by 
N/2, since any of the N molecules might be "central." The factor of two 
is inserted so that each pair interaction is counted only once. Thus 

(17-2) 

If, for a gas, we suppose g(r, p, T )  expanded in powers of p as 

drJ pJ T )  = T )  + T )  + p2g2(rJ T )  + ' * P (17-3) 

* A. EISENSTEIN and N. S. GINCIBICH, Phya. Rw. 62,261 (1942). 
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we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee immediately from Eq. (15-83) that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

go(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= rim g(r, p ,  T )  = e4(r)’LT. 07-41 

This is just what we should expect, for in the limit as p + 0, only one 
molecule at a time need be considered in the neighborhood of the central 
molecule, and its spatial probabdity distribution will be determined by the 
Boltzmann factor (17-4) (see Fig. 17-la). This, incidentally, is equivalent 
to saying that the second virial coefficient involves pair interactions only. 
At higher densities, many molecules are in the vicinity of the central mole- 
cule, and the interactions between them influence the distribution about 
the central molecule. 

The expansion (17-3) is, of course, not valid for a liquid. Equation 
(17-2) must be used as it stands. 

Next, we consider the pressure in a fluid. Although there are several 
ways to do thii, we calculate the pressure aa the force per unit area which 
the molecules on one side of a mathematical surface S in the fluid (Fig. 
17-2) exert on the molecules on the other side. There are two contribu- 
tions to thii force: the first, p ~ ,  is sssociated with momentum transport 
and the second, pu, with intermolecular forces. Since the momentum 
distribution is independent of the existence of intermolecular forces (see 
Section 6-4), the contribution of momentum transport to the pressure is 
just the same as in an ideal gas at the same density and temperature, 
namely, p~ = pkT. So we have to consider only the second contribution, 
Pu- 

P+O 

FIG. 17-2. Construction for calculation of pressure in a fluid. 
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In Fii. 17-2, the surface S is the plane x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. The force which a mole- 

cule at P a distance x from S exerts on a molecule at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP on the other side 
of S is -u'(r) = -du(r)/dr. The force normal to S is -u'(r)h/r. The 
mean number of molecules in the ring (radius R) with values of R between 
R and R + dR and values of h between h and h + dh is pg(r)2?rR dR dh. 
The normal force exerted by the one molecule at P on the molecules in 
the ring is then 

-u'(r) - - pg(r)%R d R  dh. (17-5) h 
r 

Now we change independent variable from R to r. Since r' = h' + R', 
rdr  = RdR.  Hence (17-5) becomes 

-2~pu'(r)g(r) dr h dh. 

Then the normal force exerted by the molecule at P on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall molecules on 
the opposite side of S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c I 0) is -2~pZ~(z ) )  where 

Finally) we will get pu if we add up the contributions -23rpZ1(c) of all 
molecules in a cylinder of unit cn>as9ectional area and with axis perpen- 
dicular to S, extending from x = 0 to c = 00. The number of molecules 
in this cylinder between c and x + dx is p dx. Therefore 

pu = -2rp' r Z1(z) dT. (1 7-7) 
0 

Equation (17-7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be simplified. An integration by parts (Problem 
17-1) reduces Il(z) in (17-6) to 

OD 

110) = - LOD u'(r)g(r) dr + L r2u'(r)g(r) dr. (17-8) 2 

This result is substituted in Eq. (17-7), and two further integrations by 
parts are carried out. We find (Problem 17-2) 

PU = -23rp2(-6 + r r8u'(r)g(r) dr, (17-9) 
0 

where the two fractions result from the respective terms in (17-8). Finally, 
p = p~ -l- pu, and hence 
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I I I 
0 1 2 3 

rho 

FIQ. 17-3. Radial distribution functions for a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas calculated from the 
Lennard-Jones 6-12 potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ro is defined in Appendix IV). 

J3quation (17-10) is valid for a liquid or gas. If, for a gas, we introduce 
the expansion (17-3) and then compare with Eq. (15-82), we c o n h  that 
go = e--'(r)'kT. Comparison of Eq. (17-10) with Eq. (15-31) for Bs gives 
an expression for 61, but a simpler procedure is to use Eq. (17-20) (Prob- 
lem 17-3). Although go has only one peak (at r = r*), as seen in Fig. 
17-1(a), with the inclusion of just one more term (that is, using g = 
go + p g ~ )  a second peak appears in y(r) (Fig. 17-3). 

The last thermodynamic function we consider is the chemical potential. 
This, together with E and p for given N, V and T, determines completely 
all the thermodynamic properties of the system (for example, A and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIs). 
Of course, if g(r, p, T )  is known over the entire temperature range from 
T to T = OD, then A (and hence 8 and p) can be found by integrating 

from T to T = 00, using Eq. (17-2) for E and the limit g + 1 when 
T OD (random distribution). But this is not a very practical suggestion 
since ordinarily g(r) is not available as a function of T. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Instead, we introduce the idea, due to Onsager and Kirkwood, of a 
coupling parameter I which can vary from I =  0 to I =  1. This is 
called 8 ''charging parameter" in electrolyte theory (Chapter 18). We 
imagine that the strength of the interactiori between a particuk central 
molecule and all other molecules in the fluid is reduced from its normal 
value by a factor I. [That is, u(r) for these interactions is replaced by 
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&(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor, with the Lennard-Jones potential, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE is replaced by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@.] This is 
often expressed by the statement that the central molecule is “coupled” 
to the remaining molecules to the degree t. All other molecules interact 
normally with each other. Then the radial distribution function about the 
central molecule will be different than usual, and is denoted by g(r, p, T; 4). 
The ordinary g(r) is g(r; 1). Of coum, there is no way to memre g(r; t )  
directly, but theoretical equations determining g(r ; t )  can be derived 
(Section 17-3). 

We write the Helmholtz free energy of the fluid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas A = A’ + A”, 
where A’ is the hypothetical Helmholtz free energy the system would 
have (same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  if there were no intermolecular forces, and A” is the 
contribution of the intermolecular forces to A. Then 

pt = t$) = kTInAS + kTlnp, 
V.T 

(17-1 1) 

(17-12) 

(17-13) 

Equation (17-12) follows from Eq. (4-23) or (1518). The activity coef- 
ficient 7 is defined, as in Chapter 15, by z = X/A8 = rp. Since N is a 
very large number, we cam write 

ptt = t$)v,T = A”(N, V ,  T )  - An(N - 1, V, T). (17-14) 

Because of the relation between the Helmholtz free energy and work in 
thermodynamics, we may conclude from Eq. (17-14) that p” is the iso- 
thermal, reversible work that has to be done on the system again& inter- 
molecular forces in order to add one more molecule to the system. More 
exactly, we mean by the above language that p” is the work done on the 
system (V and T constant) in passing from an initial state containing 
N - 1 molecules fully “coupled” with each other and 1 molecule not 
coupled with any of the others (that is, 4 = 0) to a final state with all 
molecules fully coupled ( t  = 1). The complete chemical potential (p) 
is then this work (p”) plus a contribution (p’) which depends only on num- 
ber density and temperature and not on the presence or absence of inter- 
molecular forces. 

We choose the one molecule that is orginally uncoupled (t = 0) as 
the central molecule. For an arbitrary intermediate value of I ,  the radial 
distribution function about the central molecule is g(r ,p,  T; t). The 



308 DISTRIBUTION FUNCTIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ c w .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
potential energy of interaction of the central molecule with another mole- 
cule at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr is &(r). Then u(r) dC: is the work that must be done on the sys- 
tem, because of this one interaction, if C: is increased by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdC:. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThus the work 
done on the system when C: is incressed by dt ,  because of interactions be- 
tween the central molecule and all molecules between r and r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ dr, is 

u(r) dC: - pg(r; C:) - 4ma dr. 

The total work p I' is just the integral of this expression over T and over 
C: from C: = 0 to € = 1. Therefore 

(17-15) p = kT In Aa + kT In p + kT In r(p, T), 

kT In = p / l  u(r)g(r, p, T; C:)4ma dr dC:. (17-16) 
0 0  

This is our final expression for the chemical potential. 
From the discussion following Eq. (17-4), we expect that 

l i i  g(r, p, T; C:) = e--eu(")'bT. 
-0 

(17-17) 

If we substitute (17-17) for g in Eq. (17-16), and integrate over C:, we ob- 
tain a result that agrees with Eqs. (15-20) and (15-24). 

17-3 Integral equation for ~ ( r ;  [). In the preceding section we have 
derived equations relating thermodynamic functions of a fluid to the 
radial distribution function. In this section we obtain an integral equation 
that determines g(r; C:) theoretically. The argument we use is intuitive 
in nature, but correct.* A rigorous argument requiree a detailed discussion 
beyond the scope of this book (see 5. M., Chapter 6). 

Consider a central molecule whose position, without loss of generality, 
can be regarded aa fixed at r2 (Fig. 17-4). We define the local chemical 

* T. L. HILL, J .  Chem. Phys. 30, 1521 (1959); J .  Phys. Chem. 61,548 (1957). 
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potential p(r12) at rl, a distance r12 from r2, as the work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAagainst inter- 
molecular forces necessary to "charge up" or "couple" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa new molecule at 
rl plus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkT In Aa plus kT times the logarithm of the local number density 
at rl. This is by analogy with Eqs. (17-12) and (17-13). Clearly, when 
r12 + a, the molecule at r2 has no influence on the coupling process at 
rl, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ( a )  = p. For convenience we rewrite Eq. (17-15) as 

p = p ( a )  = kTlnAa + kTInp 

+ P f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1" u(rl3)drl3; €1 (17-18) 

That is, we use dra to represent an element of volume in the neighborhood 
of rl. 

Because the system is at  equilibrium, we assume that the local chemical 
potential p(r12), defined above, has a constant value everywhere. This is 
an extension to the molecular level of the thermodynamic principle of 
constancy of the chemical potential in phase equilibria. That is, p(r12) = 
p(00) = p. This is the intuitive step in the present argument, which, 
however, as indicated above, can be justified. 

Next, we write down an explicit expression for p(r12). First we note 
that the mean number density at  rl is pg(r12), which we use in place of p 
in the concentration term, (17-12). To calculate the work against inter- 
molecular forces in coupling a new molecule at  rl, we have to introduce a 
new, higher-order, distribution function g181(rl, rl, ra; g). This is defined 
by stating that the mean number demity at ra when a molecule is fixed 
at r2 and when a partially coupled (€) molecule is fixed at rl is pgtsl. 
(The significance of the superscript is that three molecules are involved; 
the radii distribution function is often written with a superscript two.) 
The potential energy of interaction of the molecule at rl with those in 
drs is, then, pgt8' &a. The corresponding work required to in- 
crease € by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAti€ is u(r18) pgt8' drs ti€. Also, the work involved in the inter- 
action with the molecule at r2 is u(r12) d€. On integrating over ra and €, 
we obtain for p(r12), 

p(r12) = kT In A8 + kT In p~(r12) + 4r12) 

We now equate p(00) in Eq. (17-18) with &la), and deduce 
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This result is not quite general enough, for it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApertains to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(r12;  1) but 

not to g ( r l 2 ;  I). To remedy this shortcoming, we use the same type of 
argument as above, but add a molecule at  rl finally coupled only to the 
extent instead of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1. This resembles adding to a fluid of one species 
( 4  = 1) a molecule of a second species (I). Therefore we d i p  to briefly 
consider a binary solution. 

Let the species be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and 8, and let the number densities be pa and Pp. 
Consider two infinitesimal elements of volume, dr, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd r ~ .  The prob- 
ability that an a molecule is in dr. is pa dr, (since dr, + 0, this is also the 
mean number of a molecules in dr.,). If an a molecule is in dra, let the prob- 
ability that a /3 molecule is in d r p  be pMap(r12, pa, pp, T )  drp. Then the 
probability that an a molecule is in dr. and a /3 molecule is in d r p  is the 
product of the two probabilities, p & g a p  dr. dre. This result has to be 
symmetrical with respect to a and 8; so gap is not only, as above, the 
radial distribution function for /3 molecules about a central a molecule, 
but is also the radial distribution function for a molecules about a central 
/3 molecule. 

Suppose we have a solution in which pp is very small, pp + 0, so that 
in effect each /3 has an environment made up entirely of a molecules. 
Kow if we add one more /3 molecule to the solution, by the argument lead- 
ing to Eq. (17-15) [see also Eqs. (18-17) through (IS-19)], 

pp = kT1nA: + kTlnpp 

+ pa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1' jm ua&)gap(r, pa, T; t)4?pr2 d r a t ,  (17-21) 

where t refers to the /3 molecule. The last term is very closely related and 
leads immediately to an expression for the Henry's law constant of the 
solute /3 in the solvent a (Problem 19-14). 

We return to our generalization of Eq. (17-20). Consider a hypothetical 
"binary solution" containing a fluid of number density p ("solvent") and 
a very few ("solute") molecules of the same type but with coupling param- 
eter t. Let the "solute" number density be pt ,  where pt  + 0. A "solvent" 
molecule is fixed at r2, and we add a new "solute" molecule to the system 
at  rl. If rl is far from r2, r12 4 00, then, just as in Eq. (17-21), 

0 0  

pt(00) = kT In A* + kT In pt  + P 1 u(r la)g(r ls ;  I') drs dl'. ( 1 7 4 )  
o v  

But if r12 is finite, 

pt(r12) = kT In A8 + kT In peg(r12; €1 

+ t 4 r 1 2 )  + p [ lV u(rls)+81(t/) drs at'. (17-23) 
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This zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis our final result, a generalization of Eq. (17-20), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfirst derived by 
Kirkwood (but not by this kind of argument). 

Equation (17-24) relates a two-particle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n = 2) distribution function, 
g, to a three-particle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n = 3) function, gI3'. If we choose two fixed mole- 
cules instead of one (as above), an equation analogous to (17-24) can be 
derived relating an n = 3 function to an n = 4 function (Prob!sm 
17-4). This procedure can be carried on indefinitely, giving us a hope- 
lessly complex set of N interlocking integral equations. We should, in 
fact, expect a very involved result of this kind, because the original con- 
figuration integral over 3N coordinates (Eq. 6-22) seems impossible to 
handle analytically and exactly, and there is no reaeon to believe that 
any alternative approach (e.g., the distribution-function method) will 
provide a dut ion which is fundamen tally any simpler. 

In view of this situation, Kirkwood suggested an intuitively attractive 
approximation, called the "superposition approximation, " which me8 
to "close" the set of integral equations. The approximation is to assume 
that the influences of the fixed molecules at  rl (with I )  and r2 on the mean 
density at r3 are independent of each other. Analytically, the approxi- 
mation is 

g%, r2, r3; €1 = g(r13; t)g(r23)* (17-25) 

If we put this in Eq. (17-24), we have 

-kT ln 8 h 2 ;  €1 = Mr12) 

+ p [ jv u(r13)g(rl3; t ~ r 2 8 )  - 11 dr3 dc. (17-26) 

This is an integral equation in g(r; t), called the Kirkwood equation. It 
has been solved numerically for a fluid of hard spheres and for the Lennard- 
Jones potential (see S. M., Chapter 6), and thermodynamic functions 
have been calculated from .the solutions. An alternative but essentially 
equivalent integral equation, due to Born, Green and Yvon, has also been 
solved numerically. The results in both cases zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare qualitatively com- 
pletely satisfactory, but only moderately accurate quantitatively, as 
should be expected since the superposition approximation is used. 

When applied to an imperfect gas, the superposition approximation can 
be shown (Problem 17-5) to be exact for Ba but not B d .  
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174 Formal definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof distribution functions. In this section we 
show how distribution functions are related to the configuration integral. 
In amore exhaustive discussion (e.g., in S. M., Chapter 6), we would use 
these relations m a starting point. 

Let us refer back to the paragraph preceding Eq. (17-21), and apply 
the argument to a one-component fluid. Then we have that 

is the probability that any one molecule of the fluid will be found in drl 
and any second molecule in dr2, where g'2' is the radial distribution func- 
tion (the same m g above). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo be more general, let us define g(-)(r1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . , r,,) 
by the statement that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp"g'"' drl . . . dr, is the probability that any one 
molecule will be in drl, another in dr2, etc. We now relate this probability 
to the configuration integral. 

As in Eq. (6-28), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
QZ dP* e--HlkT d 

is the probability that the system will be found in the claasical state 
dqdp,.  We integrate over the momenta and find that 

e-uikT drl . . . drN 
z 

is the probability that molecule 1 is in drl,  . . . , and that molecule N is 
in d r ~ .  The probability that molecule 1 is in drl, molecule 2 in &a, . . . , 
and molecule n in dr,, irrespective of the configuration of the remaining 
N - n molecules, is then 

. . . &,,/ . ;- /,-'IkT dr,,+l. . . arN 

z 
Now, the probability that any moleeule is in drl, any second molecule 

in dr2, . . . , and any nth molecule in dr,,, irrespective of the positions of 
the other molecules, is just (17-27) multiplied by N! / (N  - n)!, since 
any one of N molecules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be in drl,.any one of N - 1 in dr2, . . . , and 
any one of N - n + 1 in dr,,. This probability is just what we called 
p"g'" drl . . . dr,,, above. So we have 

png(n)(rl, . . . , r,,) = 

(17-27) 

/ - ;- /,-'la' dr,+l . . . drN - (17-28) N! 
(N - n)! z 
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For many purposes, when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is a small number, we can use 

p*(N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- a)! = V[l +.($)I 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

v*/ - ;- /,-'IkT dr,+l . . . drnr 
* (17-29) z gO))(rl, . . . , r,) = 

Note that g(") treats all the molecules in the set of n molecules equiva- 
lently. On the other hand, gl8l and gl4], introduced elsewhere in this chap- 
ter [see Eq. (17-19) and Problems 17-4 and 17-12], single out one molecule 
for special consideration. 

Let us define a quantity w'") by the equation 

(U) 

(1 7-30) g(n) = e-w IkT 

The physical significance of to(") can be seen as follows. We substitute 
(17-30) for g(*) in Eq. (17-28), take the logarithm of both sides of the re- 
sulting equation, and then differentiate with respect to the position of 
one of the n molecules 1, . . . , n, say molecule i. This gives 

/ . ;- J C " ~ ~ ~ ( - V ~ U )  tir,+l . . . drN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 ;- /e-"lkT dr,+l . . . drN 

-v,@(n) = * (17-31) 

Now -ViU is the force, fi, acting on molecule i (for any given configura- 
tion rl, . . . , rr). Therefore the right-hand side of Eq. (17-31) is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
man force ji(*', acting on i, averaged over all configurations of molecules 
n + 1, . . . , N (the set of molecules 1,2, . . . , n being in a fixed configura- 
tion rl, . . . , r ) .  Thus, 

jp = -v*w(n)* (17-32) 

This tells us that w(") is the potential whose negative gradient gives the 
mean force acting on any one of the molecules 1, . . . , n. Therefore w(") 
is called the potential of mean force. 

As a specific example, suppose we start with two molecules far apart 
in a fluid with given N, V,  T, 80 that g'2) = 1 and w") = 0. We then 
move the two molecules together reversibly in the thermodynamic sense 
(i.e., extremely slowly) to within a distance r. The force against which 
work has to be done in this process is j(2), and the work done on the sye 
tem is w(2)(r). In the limit as p + 0, the two molecules are in effect in a 
vacuum, and d 2 ) ( r )  is just u(r). But at a finite density, the work wt2)(r) 
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is influenced by the presence of other molecules via statistical averaging 
(Eq. 17-31). In fact, Eq. (17-20) gives a general expression for ~ (~) ( r12) ,  

To extend the idea of distribution functions to open systems, we start 
since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-kT In g zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw"). 

with the wobability 
drl . . . d r n j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ e - ' N I k T d r  n+l . . . drN 

(17-33) N! 
(N - n)! ' Z N  

for a closed system with N molecules that any molecule is in drl, . . . , 
and any other one in drn. (The subscript N is inserted here and below to 
indicate a closed system with N molecules; we have omitted the sub- 
script N until now in this chapter to simplify the notation.) Thia is the 
probability referred to preceding Eq. (17-28). In the notation of Chapter 
15, the probability that an open system contains N molecules is 

(17-34) 

We therefore multiply (17-33) by (17-34) and sum over N to get the prob- 
ability that molecules are in drl, . . . , drn, irrespective of the locations of 
other molecules, in an open system (i.e., irrespective of N). We define 
g ( l )  in an open system by equating this probability to pngcn) drl . . . dtn, 
where p = m/V. Thus we have that 

Here the physical significance of 9'") is the same aa gg) for a closed system 
with N = 7. The two gG)% differ only by a term of order l/v. Although 
the open system g(l) appears to be more complicated, it has a number of 
advantages in theoretical work. 

We can define a 20~") for an open system by the relation (17-30) and 
again show (Problem 17-6) that 20'') is a potential of mean force. (This 
time the force is averaged not only over all configurations of molecules 
n + 1, . . . , N but also over the number of molecules N.) The physical 
significance of w ( ~ )  is the same as we' for a closed system. In the example 
above [precedmg Eq. (17-33)], wc2r(r) is the reversible work done on an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
open system (p, V, T fixed) in bringing together two molecules from 
r = 00 tor .  

17-5 Surface tension. In this section we illustrate the use of distribu- 
tion functions in an inhomogeneous region. The system we choose ia a 
plane interface between a one-component gas and liquid. Our object is 
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2 -  -1: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fro. 17-5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConstruction for calculation of surface tension. 

to relate the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsurface tension to g"). We use an argument, due to Kirkwood 
and Buff,* which is a generalization of that used for the pressure in Eq. 

Consider a hypothetical macroscopic strip of zero thickness, width zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, 

and height 21, immersed in the fluid and extending from bulk liquid to 
bulk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas through and perpendicular to the interface (Fig. 17-5). "he 
ay-plane is parallel to the interface and located in the transition region 
(the exact location is immaterial). We include in the thermodynamic 
system here only that part of the fluid in the area s X 21 and to the left 
of the strip (z I 0). Now imagine the strip moved parallel to the surface 
through an infinitesimal distance dx. Both the volume and interfacial 
area of the system change, 80 the work done by the system is 

(17-10). 

pdV - T d d  = p*21e& - T-sdx, (17-36) 

where Y is the surface tension (not an activity coefficient) and d the BUT- 

face area. 
The mean number density in this system is a function of z, p(z) (z is 

not to be confused with the activity). We define p'(z) as the force per unit 

* J. G. KIRKWOOD and F. P. Bum, J .  C h .  Phgs. 17,338 (1949). 
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area zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwhich those molecules in the area s X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdz at z and to the left of the 
strip exert on all molecules to the right of the strip. The total force ex- 
erted by the molecules in the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x  I 0) on those to the right of the 
strip is then f-+f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp'(z)s dz. If we multiply this force by the displacement 
dx when the strip is moved, we get another expression for the work in 
(1746). Equating these two expressions, we have 

s d x / + l p f ( z ) d e  = s d x / + l p d Z  - rsdx. 
-1 -1 

Therefore, 
(17-37) 

The limits can be replaced by f o o  because zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp'(z) --$ p in either bulk 
phase, by definition. 

Thermodynamically, since 7 exists only when two phases are in equilib- 
rium, 'Y has to be a function of only one intensive variable, say T. In Eq. 
(17-37), p (the vapor pressure) is a function of T, and p' a function of z 
and T. Also, p is a function of z and T. In the gas phase p(z, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  + pu(T), 
and in the liquid p(z, T )  + ~ L ( T ) ,  where pa and PI; are the bulk phase 
values. 

The remaining part of the problem is to express p'(z) in terms of g'2) 
(which we denote by g hereafter). Consider a molecule at the point P (rl), 
xl, ~1 = 0, 21, and another at P'(r3, z 2 ,  112, 22, 88 in Fig. 17-5, where 
x1 I 0 and x 2  2 0. The normal (i.e., x-component of the) force exerted 
by the molecule at P on the molecule at P' is - (x2  - xl)uf(r)/r, where 
r = Ir2 - rll. The mean number density at  r2 when a molecule is fixed 
at rl is p ( z 2 ) g ( z l t z 2 ,  r), which defines the distribution function g .  Since 
g depends on z1 and 22 as well 88 on r, this pair distribution function is not 
a "radial" distribution function. At large separations r, g -+ 1; that is, 
g ( z l , z 2 ,  00) = 1. The mean number of molecules in dr2 ,  when a molecule 
is fixed at  rl, is p ( z ~ ) g ( z l , z 2 ,  r )  dr2; and the normal force exerted on these 
molecules by the molecule at  rl is 

The normal force exerted on aU molecules with $2 2 0 is then 

which we denote by -G(xl, 21). Finally, the normal force exerted on all 
molecules with 2 2  2 0 by all molecules in the area s dzl at z1 and to the 
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left of the strip is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 1: G ~ I ,  ZI)P(Q) &I. 

To obtain the contribution of intermolecular forces to p'(zl) (a t o m  per 
unit area), we divide zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis la& result by the area 8 &I. In addition, just as 
in Eq. (17-lo), there is a contribution p(z1)kT owing to momentum 
transport. Therefore 

~'(21) = p(zi)kT - ~ ( 2 1 )  1' G@i, 21) hi, (1 7-39) 
4 

where -G is given by (17-38). 
We change variables from r2 to r12, that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis, from 22, y2, 42 to 

zl2 = 2 2  - z1, 112 = y2, 212 = 22 - 21. of course, r2 = s:2 + 
2/:2 + &. Then 

4 4 -21 

Next, we perform an integration by parts on the integral in Eq. (17-39). 
The integrand in the resulting integral over z1 is an even function of 21. 

For symmetry, then, we extend the integration from -00 to +00, multi- 
ply by 1/2, and also replace 21 by z12 as the dummy variable of integration. 
This gives the final result 

?m) = P(Zl)kT 

which can be put into Eq. (17-37) for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. 
It is not difficult to see (Problem 17-7) that Eq. (17-40) reduces to 

Eq. (17-lo), as it should, in either bulk phase. 
In applying Eq. (17-40), we encounter essentially the same difficulty 

as in the theory of homogeneous fluids (Section 17-3). That is, the "singlet 
distribution function p(z) can be related to the pair function g'l' (or g) by 
an integral equation (Problem 17-8), the pair function to a triplet function 
by another integral equation, etc. Exsct solution of this aet of equation8 
to obtain p(z1) and g(zl,212, r) for use, for example, in Fq. (17-40) is 
impossible. 

Numerical calculations have been made, however, on two approxima- 
tions: (1) Fowler's approximation,* in which an obviously unreslietic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
eharp discontinuity is assumed in the density at the interface (Problem - 

* I(nUtw00~ and Brm, loc. cif. 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 0.6 

0.4 

0.2 

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 

-x/P - 

f 0.8 1.01 

T/Tc = 0.50 

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 0.6 > 
% 0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
I 
a 0.2 
Y 

-4 -3 -2 -1 0 +1 +2 +3 +4 +5 

-z/P - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(b) 

FIQ. 17-6. Nature of gas-liquid interface based on approximate model and 
the intermolecular potential (16-2). (a) Density as a function of z, at 
dflerent temperatures, passing through the transition region. The maximum 
density is 8 = 1. (b) The quantity p - p’, as a function of z. The surface 
tension (a function of temperature) is proportional to the area under the p - p’ 
curves (Eq. 17-37). In both (a) and (b), the location of z = 0 is arbitrary for 
each curve. 

17-9); and (2) Hill’s approximation,* which presumably gives a correct 
qualitative picture of the transition region (Fig. 17-6) but which is based, 
nevertheless, on a very crude model. Approximation (1) , together with an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e x p e r i d  radial distribution function for bulk liquid argon, leads to a 
value of Y at WOK for argon that differs from the experimental value 
(11.9ergpcm’*) by 25%; while approximation (2) gives a value of Y 
that is off by a factor of two. 

* T. L. HILL, J .  C h .  Phys. 20, 141 (1952). 
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PBOBLEMS 

17-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAChoose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= sr and du = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh dh, integrate (17-6) by parts, and verify 
(17-8). (Page 305.) 

17-2. Deduce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprr in Eq. (17-9) from Eqs. (17-7) and (17-8), using two 
integrations by parts: (a) choose du = t2 dz with the first integral in (17-8), 
and (b) choose du = dx with the second integral in (17-8). (Page 305.) 

17-3. At low densities, p -.) 0, we can put, in Eq. (17-20), 

g(() + e-tu(r18)lLT. 

Show, then, that g1 in the expansion (17-3) is given by 

O l ( f l 2 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  = e - ~ ( ~ ~ ~ ) ~ ~ ~ / ~ ~ - u ( ~ ~ ; ) ~ ~ ~  - I I [ ~ - w ~ ~  - 11 k3. (17-41) 

(Page 306.) 
17-4. Extend the argument leading to Eq. (17-24) to derive an integral 

equation for gt31 in terms of 91'1, where pgt41(n, . . . , r4; t )  is the mean number 
density at r4 when molecules are &xed at r2 and r3 and a partially coupled (t) 
molecule is fixed at rl. (Page 311.) 

17-5. Prove that the superposition approximation gives the correct t h i  
virial coefficient. (Page 311.) 

175. Show that to(") is a potential of mean force in an open system. (Page 314.) 
17-7. Show that $(a) in Eq. (17-40) reduces to p in Eq. (17-10) in a bulk 

phase. (Page317.) 
17-8. Use the method of Eq. (17-15) to derive the following integral equation 

for the eurface-tension problem (assume the local chemical potential has the 
mme value at every point): 

kT In p(21) = kT In pa 

4- /d /v U(r)[PaOa(r; €1 - ~ ( 2 1 2  4- zi)g(zi, 212, r; €11 k 1 2  d€, 07-42] 

where u refers to either bulk phase. (Page 317.) 
17-9. Imagine that a sample of bulk liquid is divided into two parts by a 

plane of area a, and that the two parts are separated reversibly by gradually 

FIGURE 17-7 
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increasing d (Fig. 17-7) from d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 to d = a. Assume that the (vapor) 
space between the two liquid parts has essentially zero density, and that each 
liquid part remains homogeneous right up to the vapor region, where there is 
a sharp discontinuity in density (from the liquid density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp to p = 0). If a 
molecule is fixed at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP (Fig. 17-7), the number density at P‘ is assumed to be 
pg(r), where g(r) is the bulk liquid radii1 distribution function. We can now 
calculate the normal force between the molecule at  P and the other half of the 
liquid [compare Eq. (17-7)], and then we can calculate the total work necessary 
to pull the two liquid parts away from each other. This work is set equal to 
W@., since the amount of new surface area formed is 2(2. Derive, in this 
way, the equation 

y = -  ?rp2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1- r4 g(r, p, T )  dr, 8 
(1 7-43) 

originally due to Fowler. This can also be shown to be a special case of 
Eqs. (17-37) and (17-40). (Page 318.) 

17-10. Show schematically what you would expect the functions 4m2g(r) and 
g(r) to look like for a monatomic solid with cubic close packing [g(r) here is aver- 
aged over all directions outward from the central atom]. The successive num- 
bers of neighbors are 12, 6, 24, . . , at distances a, a a ,  &a, . . . . From these 
curves guess the qualitative form of g(r) for the liquid state of the same 
substance. 

17-11. Apply Eq. (17-21) to the case where the Uaolvcnt” is a dilute gas a. 
Show that this equation is consistent with Eq. (15-47), 

Z;e/P;e = 1 - bllPa + * * - . 
17-12. Devise a formal definition of g[31 analogous to Eq. (17-28) and fmd 

17-13. Investigate the possible application of the law of corresponding states 
the relation between gl31 and g(3). 

to surface tension. 
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CHAPTER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA18 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
DILUTE ELECTROLYTE SOLUTIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND PLASMAS 

Since a great many accounts of the Debye-Huckel theory of electro- 
lytes (based on the linearized Poiason-Boltzmann equation) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare available, 
in Section 18-1 we shall give only a rather short discussion of this topic. 
The reader who desires a more detailed treatment should consult Fowler 
and Guggenheim, Chapter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. The rest of the chapter is devoted to a 
leas conventional approach to the problem, based on Kirkwood’s theory 
of solutions.* The distribution-function methods of Section 17-3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare ex- 
tended in Section 18-2 to solutions in general and, in Section 18-3, to 
electrolyte solutions in particular. It is shown in Section 18-3 that the 
Debye-Huckel limiting law can be deduced from the Kirkwoad solution 
theory a8 well as by the usual (Debye-Hiickel) method of Section 18-1. 

18-1 Debye-Huckel theory. The model we consider here and in Sec- 
tion 18-3 is the following. The volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV is completely filled with a dielec- 
tric Continuum of dielectric constant c which, for simplicity, is not con- 
sidered a molecular species of the system. Immersed in the continuum 
(see Fig. 18-1) are “hard” monatomic ions of diameter a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANi of species i. 
Thus the system is in effect a “gas” mixture of ions in a continuous dielec- 
tric medium. If the continuum is a vacuum, E = 1 and the system is a 
real gas mixture (i.e., a plasma). The charge on an ion of species i is 
I,@, where e is the charge on a proton. In view of our continuum assumption 
(see Fig. 18-1), the interionic potential cnergy for an i j  pair is 

ti&) = +ca r < a 

Of c o w ,  real ions are not hard spheres, 
and a real solvent does not behave like 
a continuum when r is small (say, 
r < scr>. Therefore Eq. (18-1) is only 
an approximation. However, this equa- 

Fro. 18-1. Model for “hard” ions 
immcmd in a dielectric continuum. 

* J. G. KIUKWOOD, J.  Chem. Phya. 3, 300 (1935). 
321 
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tion becomes exact, in effect, in the limit of very dilute solutions, for 
then only large values of r are significant. 

We denote the concentration (number density) of species zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi by pi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N i / V .  In order for the solution to be electrically neutral, we must have 
xipiti = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 (which we call the neutrality condition). If the solution 
is not neutral, the excess charge will collect on the surface, and the prop 
erties of the system will depend on the shape of container. 

If one is interested in temperature and pressure effects on an electrolyte 
solution, the solvent must be treated explicitly as a molecular species 
(as in Fowler and Guggenheim, Chapter 9). In this case, however, not 
much real progress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be made without giving up Eq. (18-1) for small 
values of r (say t < 5a) in favor of a detailed study of the behavior of 
solvent molecules around a pair of ions. We avoid all such complications 
in our brief treatment by adopting the continuum model already described. 

The basic thermodynamic equation for our system is 

dE = TdS - p d V  + C p i d N r .  
i 

The pressure p is the pressure of the “gas” mixture of ions. In reality, 
of course, if the continuum is a solvent and not a vacuum, p is the 
osmotic pressure of the electrolyte (this will be confirmed in Sections 19-1 
and 19-2). In a plasma (e = I), p is the total pressure. 

Our object in this section is to give the Debye-Hiickel derivation of 
the ionic activity coefficient Ti for an arbitrary species i in a very dilute 
solution. In the limit as p j  + 0 (all JJ,  we would have for the chemical 
potential (Eq. 4-23) of species i, 

pi = kT In A: + kT In p i  (all pj + 0). (1f3-3) 

Of course, if the molecular nature of the solvent were King taken into 
account, A: would be multiplied by a quantity (a function of pressure 
and temperature) closely related to the Henry’s law constant and deter- 
mined by the nature of the interaction between one ion and pure solvent 
[see Eq. (17-21) and Chapter 191. We are interested in the firstcorder 
correction to Eq. (18-3), when the solution is not quite dilute enough 
for that equation to hold: 

pi = kTlnA1 + kTlnpi+ kT1nTi. ( 1 f w  

Perhaps the first thought to come to mind is that we have here, in effect, 
a dilute gaseous mixture of ions and hence that the methods of Chapter 15 
on imperfect gases are applicable. Thus, all we would need for the first- 
order correction mentioned above would be to calculate second virial 
coefficients as in Section 15-3. However, if we substitute the coulombic 
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potential energy, (18-l), in Eq. (15-52), we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee [on writing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe-"lkT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
1 - (u/kT)] that the integral diverges because of the upper limit. In fact, 
the integral will diverge not only for the coulombic potential r-l but 
also for r-2 and Fa. Convergence begins with r-' (in the van der Waals 
interaction, we have r-'). The same is true for the higher virial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoeffi- 
cients. The physical reason for the divergence is that with forces of 
sufficiently long range, it is not possible to treat a dilute system in terms 
of, successively, binary interactions, ternary interactions, etc., aa the 
concentration increases. Instead, many-body or %ollective" interactions 
appear even at the first departure from the dilute solution behavior of 
Eq. (18-3). 

Thus, a virial expansion does not exist for systems made up of particles 
interacting by long-range forces (pair potential energy at-, n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 3); 
other methods must be used. 

We now turn to the Debye-Hiickel argument, which leads to exact zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
limiting expressions (at very low concentrations) but which is otherwise 
approximate. We consider the spherically symmetrical (on the average) 
neighborhood around one particular ("central") ion of type j (as it moves 
through the system; or we can regard it as fixed). Let the mean electro- 
static potential a t  a distance r from the j ion be #j(r). The zero for #j(r) 
is chosen at  r = 00. Also, let the mean charge density a t  r be nj(t). 
Then Poisson's equation in electrostatics states that 

Because of the presence of the central j ion, #j(r) will be nonzero for 
finite r [#j(r) will have the Same sign as ~ j ] ,  and also nj(r) will be nonzero 
for finite r [nj(r) will have a sign opposite to that of zj because of a net 
accumulation of ions of opposite charge]. The region over which #j(r) 
and nj(r) differ significantly from zero is called the ion atmosphere of the 
central j ion. As r --f 00, nj(r) --f 0 because of the neutrality condition. 

The general plan is to convert Eq. (18-5) into a tractable differential 
equation in #j(r), to solve the differential equation, and finally to use 
#j(r) thus found to calculate the activity coefficient Y j  by a charging process 
(as in Chapter 17). 

From Section 17-3, we have that the mean concentration of ions of 
type i a distance r from a central j ion is 

where w&) is the potential of mean force. Since, with our model, no 
ion can be closer to another than r = a, d(r) = 0 and w&) = +00 for 
r < a. At r = 00, wij = 0, gij = 1, and the concentration of i ions is 
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the bulk concentration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi. The first approximation we make in the Debye- 
Htickel theory is to assume that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd(r) is determined by a simple Boltzmann 
factor, 

p$(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= pre-x&(r)lkT (r 2 4. (18-7) 

This is andogous to assuming that in an electrochemical equilibrium 
between two bulk phases zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and 0, with a potential ditrerence $ = V - $8, 

p; = p8 -Z&lkT re 8 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAneglect of activity m m .  This analogy will be pursued more 
explicitly in Section 18-3. Comparison with Eq. (18-6) shows that the 
assumption (18-7) also amounts to setting Wij(r) = z,qbj(r) for r 2 a. 
Exact expressions for w;j(r) and z,qbj(r) will be compared in Section 18-3. 
Although Eq. (18-7) is in general not exact, it proves to be correct in 
the limit of very dilute solutions. 

Equation (18-7) makes it possible to write Eq. (18-5) as a dilTerential 
equation in $j(r) only. The charge density at  r is 

(r 2 a). (18-9) 

Then substitution of Eq. (18-9) for nj(r) in Eq. (18-5) leads to the so- 
called Poisson-Boltsmann differential equation in $j(r). This equation is 
nonlinear and very difficult to solve in general (except by numerical or 
series methods). But much effort to solve the equation is probably not 
justified in any case, since Eq. (18-7) and therefore Eq. (18-9) are approxi- 
mations in the first place. 

in which 
z&j(r)/kT << 1 for the important values of r. This is the second Debye- 
Hiickel approximation; it allows us to linearize the Poisson-Boltzmann 
equation. After solving the linearized equation, we can come back to see 
what is meant by "important values of r" and for what electrolyte con- 
centrations linearization is a good approximation. It will turn out that 
this approximation, like the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfirst one, is justified if the solution is 
sufficiently dilute. 

Therefore we expand the exponential in Eq. (18-9) up to the linear 
term. The Poisson-Boltsmann equation becomes 

To make further progress, we l i t  the discussion to 
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where 

(18-10) 

(18-11) 

The leading zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAterm in the expansion does not contribute to Eq. (18-10) 
because of the neutrality condition. The summation in Eq. (18-11) is 
twice the "ionic strength," often used in thermodynamics (and expremed 
in moles.liter-'). Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa (ionic strength)'I2 and K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 0 as the solution 
approaches infinite dilution. When we rewrite Eq. (18-10) in the familiar 
form 

the solution is obviously 

Since we know that +j + 0 aa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr + ao, we have to choose C2 = 0. 
Therefore 

(18-12) 

To evaluate C1 we must consider the situation inside the sphere r = a 
(Fig. 18-1)) where no charges can be present except the charge zje at  
r = 0. Laplace's equation is therefore satisfied inside the sphere. Let 
q j  be the inside electrostatic potential. Then 

Successive integrations give 

and 

When r + 0, cpi must approach the coulombic potential zp/er. Therefore 
C4 = I,*/€. To evaluate the remaining two constants, C1 and c8, we use 
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the two boundary conditions at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa: 

Equations (18-12) through (18-14) give 

Therefore 

(18-14) 

(18-15) 

We also note that, in Eq. (18-13), Cr/r is the contribution to the potential 
inside the sphere owing to the central j ion itself, and hence CS must be 
the contribution of all the ions outside the sphere (i.e., the contribution 
of the ion atmosphere). We denote the latter potential by q,*(r). This 
quantity is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa constant. Hence, at r = 0, where the central charge z3e 
is located, we have 

z3w . (18-16) 

We can now use Eq. (18-16) to calculate the electrostatic contribution 
to rj. The connection is established by extending the argument of 
Eqs. (17-11) through (17-14) to solutions [in fact, we have already applied 
it to a binary solution in Eq. (17-21)]. We have 

(18-17) 

4 1  + K a )  
&yo) = c3 = - 

Pj = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP$ + PY, 

(18-19) 

where kT In rj is the isothermal reversible work, against intermolecular 
forces, required to add one more molecule of species j to the system. 
For simplicity, we calculate the electrostatic contribution to kT lnr j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
using the work of a charging process, and then add on separately the 
hard-sphere interaction contribution, since the latter is already available 
from Chapter 15. To compute the electrostatic work of adding one more 
j ion, we introduce the charging (coupling) parameter tj on the j ion. 
For an arbitrary value of tj, t h e j  ion has a charge tjz#*, and hence 
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If we bring in an increment of charge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzje d t j  to the j ion, the work done 
against the ion atmosphere (i.e., against the electrostatic contribution to 
the intermolecular forces) is qj*(O; t j ) ~ 3 *  dtj. Therefore, 

is the electrostatic contribution to kT In Yj. 
For the haxd-sphere contribution to kT In rj (which would remain even 

if we put each z j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) in a dilute solution, we merely have to extend 
Eq. (15-47) for a binary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas mixture to an arbitrary number of compo- 
nents. In the binary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase [and in the notation of Eq. (15-47)] we have 
from Eqs. (15-24), (15-25), and (15-52), 

In 7 2  = BIIPI + 2B0zp2 + - - * 

For any number of components, then, we obviously have 

(18-21) 

Finally, then, for the electrolyte solution, 

(18-22) 
4raS 2 2  Zje K 

29T( 1 + Ka) 4- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc Pi* 
h r j =  - 

.i 

This is a statistical-mechanical equation for the activity coefficient of a 
single ionic species. Of course, in thermodynamics we can measure activity 
coe5cients only for neutral salts, so only “neutral” combinations of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArj’s 
from Ek+ (18-22) (e.g., ‘Y+Y-, Y++’Y%, etc.) can be checked experimentally. 
It is well known that excellent agreement is achieved between experi- 
mental activity coefficients and the limiting form of Eq. (18-22) crt high 
d d t h m ,  but not always with Eq. (18-22) itself. At high dilutions, we 
have the so-called Debye-Hiickel limiting law, 

(K 4 0). Z;e2K In ‘ ~ j  .--) - - 2tkT 
(18-23) 

We note that In rj is proportional to the square of the charge on a j ion 
and to the square root of ionic strength. 

Equation (18-22) has the disadvantage of decting the approximate 
nature of our choice of u&) in (18-1). It is therefore not surprising that 
Eq. (18-22) is not always in satisfactory agreement with experiment. 
On the other hand, Eq. (18-23) does not involve a. In fact, it is rather 
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obvious on physical grounds that Eq. (18-23) must depend on the validity 
of Coulomb's law, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuij(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zgp'/er, only for r >> a, because in a very 
dilute solution the ions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare in general far apart. But we may have con- 
fidence that Coulomb's law (with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe) will become exact for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlarge r ;  there- 
fore we expect Eq. (18-23) to be an exact limiting law provided that 
our approximations, (a) wu(r) + z&(r), and (b) t , . j ( r ) / kT  << zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, become 
valid in a very dilute solution. The fact that the Debye-Hiickel limiting 
law is verified experimentally indicates that this is indeed the cam. On 
the theoretical side, we shall confirm (b) below and (a) in Section 18-3. 

We can examine more carefully the point above about the importance 
of r >> a for dilute solutions by investigating the (net) charge density 
distribution (the "ion atmosphere") about the central j ion. From 
Eqs. (18-10) and (18-15), 

(18-24) 

That is, nj(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcc e+"'/r. Note that nj(r) has a sign opposite to zj, as 
expected. The net amount of charge between r and r + dr is proportional 
to r2nj(r), or re-" = f ( r ) .  The function Kf(r) is plotted in Fig. 18-2. 
This figure shows the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAform and extent of the ion atmosphere. In par- 

1 r = a if NU = 1/10 1 

0 1 2 3 4 5 

Kr 

ha .  18-2. Relative net amount of charge between r and r + dr in ion at- 
mosphere around a particular ion in a dilute electrolyte solution. 
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ticular, the maximum in f(r) occurs at  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 / ~ ,  as is easy to verify 
(Problem 18-1). Thus the most important region of the ion atmosphere 
is in the neighborhood of t = 1 / ~ .  This region moves to larger values of 
r as the solution becomes more dilute (K --t 0). This confirms the fact 
that the behavior of zc i j  near t = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is unimportant for the limiting law. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

To obtain some feeling for the orders of magnitude involved, we can 
calculate (Problem 18-2) that in an aqueous 1-1 electrolyte solution at  
25OC (C = 78.5), 

-= -  3.04 (in A), 
K C1/2 

(18-25) 

where c is the concentration of salt in moles-liter-'. Thus, if c = 
0.01 moles-1-', 1 / ~  = 30.4 A. By comparison, u is of order 3 or 4 A, 
so that 1 / ~  = O(1Oa) or KO = O(10-') at c = 0.01 mole9.l-'. At about 
this dilution, then, we should expect the limiting law, (18-23), to begin 
to be rather accurate [again assuming approximations (a) and (b) above 
to be valid], and this is found to be the case. If c = lO-'moles-l-', 
1 / ~  = 304A, etc. 

At this point, we are in a position to go back to the question of the 
conditions under which the h e a r  approximation, (b), made in writing 
Eq. (18-10), is legitimate. We require that 

As we have seen, the important values of r are those in the neighborhood 
of t = 1 / ~ .  Therefore we put t = 1 / ~  in Eq. (1&15), and obtain (drop- 
ping factors of order unity) 

as the necessary condition for the validity of the approximation. Thii 
is the same as 

1 *2 ->>--. 
K ekT (18-26) 

For water a t  25OC, this gives the condition 1 / ~  >> 7.1 A (Problem 18-3) 
(that is, 1 / ~  >> 24. Hence we come to the conclusion that for c < 
0.01 moles-1-' (1-1 electrolyte), where 1 / ~  > 30 A, the linear approxi- 
mation should begin to be a good approximation. For c < or lo-' 
mo1es.l-', it should be an excellent approximation. 

The Debye-Huckel argument itself cannot provide any theoretical 
justification for approximation (a) in a dilute solution [ W i j ( t )  + Zi&j(t) 



330 DILUTE ELECTROLYTE SOLUTIONS AND zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPLASMAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[CHAP. 18 

as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01, as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAit does for approximation (b) [see (18-a)]. However, as 
already mentioned, there is indirect experimental evidence supporting both 
(a) and (b). We shall return to (a) in Section 18-3. But let us note here 
what the Debye-Huckel theory has to say about Wij(r). From Eq. (18-15) 
we have 

w&) = +a (r < a) 

In very dilute solutions, K(L + 0 and 

(18-28) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As implied by earlier remarks, Eq. (18-28) proves to be exact, as a 
limiting law, but Eq. (18-27) is an approximation. 

Incidentally, since by definition (see gab in Section 17-3) wij(r) = wji(r), 
we can deduce the symmetry condition Z&j(r) = zJ+i(r) from approxi- 
mation (a), W i j  = z&j, which was used in arriving at  the Poisson- 
Boltzmann equation, (18-5) and (18-9). This symmetry condition is 
seen to be satisfied by Eq. (1&15), which is a solution of the linearized 
Poisson-Boltzmann equation. But when the complete (nonlinear) Poisson- 
Boltzmann equation is used, it turns out that the solution of this equation 
does not satisfy the symmetry condition in general. Thus we can be sure 
that approximation (a) is incorrect except when the electrolyte solution 
is dilute enough (Eq. 18-26) to justify linearizing the exponential in 

Finally, we turn to a consideration of thermodynamic functions (Prob- 
lem 18-4) derivable from the Debye-Huckel limiting law, (18-23). From 
Eqs. (18-2), (18-4), and (18-23), we have 

Eq. (18-7). 

where 
_- - -  Fel e2K = - 2 V  -. 
kT - 2ekT 8u 

(18-29) 

(18-30) 

We use Fel to represent the electrostatic contribution to F. To find the 
(osmotic) pressure, we employ Eq. (18-29) and the thermodynamic 
relationship, 
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We multiply this equation by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdV/V, integrate from V to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-n, and obtain 

(18-3 1) 

The Helmholtz free energy is then 

where 

(18-33) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As a check on Eq. (18-33), we can make use of a different charging 

process, one in which we start with all ions discharged and then clmrgc 
all ions at  the same rate up to the final charge. Thus there is a single 
charging parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. In this process, if carried out reversibly with 7’, V ,  
and the Ni held constant, 

AA = Ael ( t  = 1) - Ae1(t = 0) = Ael(t = 1) = Wel, 

where Wel is the work done on the system in the charging process. Whcn 
all ions are charged to the degree €, we have from Eq. (18-10) that 

€icK(€) (pyyo; t )  = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 

=- -  t21ieK, 
t 

since K ( [ )  = IK according to Eq. (18-11). Then the work necesary to 
bring up an additional charge z3e d t  to one j ion is #“‘(O; €)zle d& Hence 
the total work necessary to charge up all the ions is 

S2K 
= - - C Npf, 3c 

in agreement with Eq. (18-33). 

18-2 Kirkwood theory of solutions. In this section we extend the 
methods of Section 17-3 to solutions of monatomic molecules. As in that 
section, we use [in Eq. (1&37)] an intuitive argument (not employed by 
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Kirkwood*) to avoid involvement in the detailed formal properties of 
distribution functions. The results we find here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill then be applied in 
the next section to electrolyte solutions in particular. 

We begin with Eqs. (18-17) through (18-19), which apply to any solu- 
tion of monatomic molecules : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

pi = kTlnAf + kTInpi+ kTInri, (18-34) 

where kT ln r i  is the work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWi, against intermolecular forces, required 
to add one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi molecule l o  the system. We now derive an equation for Wi. 
The average number of molecules of species zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs in the element of volume 
dr, in the neighborhood of a partially coupled molecule of species i is 

p,e-wi.(+ir2i)lkT & 8 )  (18-35) 

where wi, is the potential of mean force. The contribution to Wi, arising 
from interactions with these molecules, when ti is increased by dt i )  is 
(18-35) multiplied by Ui l ( t i8)  d&. Therefore, if we integrate over r, 
and ti, and sum over s, we have 

(18-36) 

This is the generalization of Q. (17-16) for solutions. 
Consider an element of volume dri near a fixed molecule of species j 

and the equilibrium between i molecules in dri and i molecules at a very 
large distance from the fixed j molecule. We can write 

pi(00) = kTlnAt + kT lnp i+  kT ln r i  

= p i ( t i j )  = kT In Af + kT In p { ( r i j )  + W{(r i j ) i>,  (18-37) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 is the mean concentration of i molecules in dr;, and repre- 
sents the work that has to be done against intermolecular forces in order 
to add an i molecule to the system at r;. 

The average number of s molecules in dr,, when a j molecule is fixed 
at r j  and a partially coupled i molecule is at ri, is 

dr6, pd-W:j(ri j .r. j .€i)lkT 

where is a potential of mean force defined by 

(18-38) 

* J. C. KIRKWOOD, J .  Chem. Phys. 3,300 (1935). 
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in the notation of Section 17-3. The physics1 significance of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwfj is the 
following: it is the reversible work which must be done to move an s mole- 
cule from infinity through the solution up to the position rr, when a par- 
tially coupled (&) i molecule is fixed at r i  and a j molecule is fixed at  rj 
during the process. In the superposition approximation, (17-25), we 
have 

&j(€i) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= wir(€i) + w j r ,  (18-39) 

but this is not true in general, becsuse the effects of the molecular en- 
vironments of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and j molecules on the s molecule are not simply addi- 
tive but perturb each other. In the limit as pi + 0 (all 23, that is, a 
very dilute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas, 

w:j(ti) + €&in + u j r ,  

and (18-39) is correct (if the intermolecular potential energy is itself 

On combining Eqs. (18-36), (18-37), (18-40), and (1&41), we obtain 

This is the generalization of Eq. (17-20) to solutions. 
We can deduce a more general equation than (18-42), for wi j ( l i ) ,  in 

exactly the same way as we obtained Eq. (17-24) from Eq. (17-20), 
but we omit this derivation. The final result can easily be written down 
on inspection of Eqs. (17-20), (17-24), and (18-42). 

Also, we can extend the above argument without difficulty to succes- 
sively larger groups of fixed molecules. For example, if we couple a new 
molecule of species i near fixed j and k molecules, we find (Problem 18-5) 

Finally, we note that Eq. (17-10) for the pressure of a monatomic fluid 
can easily be extended to fluid mixtures (Problem 18-6): 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg i j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe-wiilkT is a function of all the p's and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. 

18-3 Electrolyte solutions. In this section we apply the equations of 
Section 18-2 to the idealized electrolyte model described in the first 
paragraph of Section 18-1. Here again the solvent, if any, is considered 
a nonmolecular continuum. We first write down general equations and 
then observe that the Debye-Huckel limiting relations furnish a solution 
of these general equations in the high dilution limit. Thii provides a 
more firm statistical-mechanical foundation for the Debye-Huckel limit- 
ing law than the Debye-Hiickel argument (Section 18-1) itself. 

We begin with Eqs. (1637). It is now convenient for us to write W{ 
in the form 

(rij > u), (18-45) W{(rij) = kT In Y{( r i j )  4- z&j(tij) 

where #j(r;j) is the mean electrostatic potential a distance rij from a 
fixed j ion [with # j (  00) = 01, and where is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"local activity coe5cient," 
defined by Eq. (18-45) in terms of W{ and #j. The point of separating 
W{ in this way is that now Eqs. (18-37) give 

which (a) is analogow to an electrochemical phase equilibrium ~ 6 %  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
adivily coe$&nts induded [see the discussion following Eq. (18-7)1, and 
(b) furnishm the explicit correction factor by which the approximation 
(18-7) haa to be multiplied to make it exact. Of course, the introduction 
of T< does not provide anything new and can be avoided, if desired, in 
view of Eq. (18-41): 

Qualitatively, we would expect T<(rij) # Ti for finite rij since (a) the 
mean local ionic strength at rij is different than in the bulk solution 
(rij =: a), and (b) the atmosphere around an i ion at rij is not spherically 
symmetrical as it is at rij,= 00. The exact Poiason-Boltzmann equation is 
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An zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexplicit expression for $j(rij), the mean electrostatic potential at ri 

a distance rij from a fixed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ion, may be written as follows. The contribu- 
tion to $j owing to an 8 ion at  r, is z,e/erd. The contribution of all 8 ions 
in dr. is then 

Hence the total potential at ri, arising from the fixed j ion and its ion 
atmosphere, is 

(18-50) 

This has to be the solution of the exact Poiason-Boltzmann equation, 
(18-48), but it is expressed in terms of the (in general) unknown func- 

The electrostatic potential at rij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, when the central j ion is charged 
to the degree tj and owing to all ions other than j itself, is, from 

$!b(o; tj) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc p,/ e-w*i(ei)lkr& 1) (18-51) 

tions w, j. 

Eq. 08-50), 

V' "of 

where V' means that the region r,j < a is excluded from the integration 
since no ions (other than j9 are present there (w,j = +a0 for t;r < a). 
If, in Eq. (18-361, we introduce Eq. (18-51) and use (18-1) for u, 
we have 

kT In Y i  = X i  + ~ & ~ ( 0 ;  ti) dti, (18-52) 

where X i  is a small term arising from the region ri, < a [see, for example, 
Eq. (18-22)) Thii is a generalized version of Eq. (18-20), used in the 
Debye-Hiickel theory. 

Equation (18-42) for W i j  is converted into an equation applicable to 
electrolytes by substitution of Eq. (18-1) for uij and w. An explicit 
equation for In rvri in Eq. (18-47) can then be written down, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAusing 
Eq. (18-42) for W i j  and Eq. (18-50) for $j (Problem 18-7). 

We now verify that the Debye-Hiickel limiting expressions for a very 
dilute solution are consequences of the equations of the present d o n  
and Section 18-2. We seek a (limiting) solution of the series of equations 
of which Eqs. (18-42) and (18-43) are the first two members, using 
Eq. (18-1) for uij. We try a solution of the form 

(18-53) 

w-54 

1 

4j(€i) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw+(€i) + wej, 

&(ti) = widt i )  + woj + wok, 
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etc. (i.e., superposition), where 

(18-55) 

Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is a parameter whose value is to be determined. For arbitrary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAti, 
we replace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy by ziti. Further, we expand all exponentials, e-wij'kT, and 
retain only linear zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAterms, pending establishment of the conditions that 
render this step legitimate (i.e., wij/kT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< 1). We ignore small terms 
associated with the region r < a, because these prove to be negligible 
(aa in the Dehye-Huckel limiting law) under conditions such that the 
solution we find is valid. Substitution of Eqs. (18-53), (ISM), and 
e-dkT = 1 - (wij/kT) in Eq. (18-43) and in all higher members of 
the series, reduces these equations to Eq. (18-42), which, therefore, is 
the only one we need consider. 

Equation (18-42) reads (after integrating over ti) 

Next, we substitute Eq. (18-55) in Eq. (18-56), factor out zizp2/e, and 
write rij = r, r;. = u and ria = v :  

(18-57) 

In Fig. 18-3, rotation of the element of area dy about the x-axis sweeps 
out dr,, so that dr, = 2uy da: dy. We transform coordinates x and y to 
u and v, where 

v2 = y2 + (r - X I * .  u2 = z2 + y2, 

The Jacobian of this transformation gives 

i i 
Tij = T 

FIGURE 18-3 

w ax dy = - du dv, 
W 

2mW ar, = - -dUav. 
t 

or 

The limits of integration we use are 

0 5 v I 0 0 ,  

Ir - 01 5 u 5 r + v. 
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Equation (18-57) becomes, then, 

where 

Thus Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(18-58) is an identity [that is, Eqs. (18-53) through (18-55) 
are a solution of Eqs. (1842)) (18-43), etc.] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif 

that is, if u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK (Eq. 18-11). Equat.ion (18-55) turns out to be, then, 
just the Debye-Huckcl limiting potential of mean force, (18-28). 

From Eq. (18-55) with u = K, we find, as in the Debye-Huckel theory, 
that the ion atmosphere has an extent of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt = I / K  and hence that 
the liiearization of e-4jikT is legitimate if the solution is dilute enough 
to satisfy (18-26). 

Let us c o n h  that the remaining Debye-Huckcl results are also ob- 
tained. (a) When we put Eq. (18-55) (with u = K )  in Eq. (18-50) for 
$j ,  we fhd, using Eq. (18-58), that 

Therefore, wij = z,+j. However, on comparing Eqs. (18-42) and (IS-W), 
we see that this is a limiting or asymptotic relationship. In general, 
w;j # z,+j (see also Problem 18-7). (b) Equation (18-51) gives 

and hence, from Eq. (18-52)) 
2 2  

Z r e  K kT lnr i  = - -- 2t 

(c) F i l l y ,  if we put Eqs. (18-1) and (18-55) (with a = K )  in Eq. (1844) 
for p/kT, we obtain (Problem 18-8) Eq. (18-31) again. Note that the 
integral in Eq. (18-44) converges because the potential of mean force, 
(18-55)) is a short-range potential if K > 0 (the ions i and j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtare both 
screened by ion atmospheres). But if we try to calculate second virial 
coefficients from Eq. (18-44) by taking the limit K + 0 in gij [see the 
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paragraph following Eq. (17-lo)], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW i j  in (18-55) approaches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuij and 
the integral diverges (the ions i and j are no longer screened by ion atmos- 
pheres). In summary: Eq. (18-44) can be used in electrolyte theory, but 
we cannot expand gij in this equation as a power series in the concentra- 
tions for this would lead to a virial expansion that diverges. 

Important, but advanced, recent papers on electrolyte theory have 
been publiihed by Mayer,* Kirkwood and Poirier,t and Meeron.# 

PROBLEMS 

1S-1. Show that the most probable value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt in the Debye-Hackel ion 
atmosphere, (18-24), is l/u. Find also the mean value of r, P, in terms of K. 

(Page 329.) 
18-2. Verify Eq. (18-25) for l /u  in water at 25°C. (Page 329.) 
18-3. Show that the condition (18-26) amounts to l/u>> 7.1 A for water 

18-4. Verify the details in the derivation of thc thermodynamic functions 

18-5. Derive Eq. (18-43) for wjw (Page 333.) 
18-6. Extend the derivation of Eq. (17-10) to the pressure of a monatomic 

18-7. Show that 

at 25°C. (Page 329.) 

(18-29) through (18-33). (Page 330.) 

fluid mixture. (Page 333.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x [ e - ~ : j U i V k T  - e-wDIj/kT - e-wi&i)/kT 1 dr, a;. (18-59) 

Verify that TvTi = 1 in the Debyc-Hackel limiting law concentration region. 
(Page 335.) 

18-8. Deduce the Debye-Hiickel limiting expression for p/kT, (18-31), from 
Eqs. (18-44) and (18-55). (Page 337.) 

18-9. Consider a charge zje at the center of a sphere of radius u and with 
dielectric constant ei,,. Outside the sphere is a dilute electrolyte of point ions 
in a medium of dielectric constant 6. Use the linear Poisson-Boltsmann equa- 
tion outaide the sphere. Show that the work done in charging up the sphere 
(keeping the clectrolyte fully charged) against the ion atmosphere and dielec- 
trics. is 

* J. E. MAYER, J .  Chem. Phys. 18, 1426 (1960). 
t J. G. KIRKWOOD and J. C. POIRIER, J .  Phys. Chem. 58,591 (1954). 
$ E. MEEEON, J .  C b .  Phys. 28,630 (1958). 
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18-10. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the samc a8 Problem 18-9 except that the charge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzp is smcarcd 

uniformly over the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsutfce of the sphere. Show that the work here is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 1 z%2 
2 a(l + rm) * 

18-1 1. This is the same as Problem 18-9 except that the charge zje is smeared 
uniformly throughout the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvolume of the sphere. Show that the work here is 

18-12. Show from Eq. (18-24) that the integral of the charge density nj(r) 
in the Debye-Hackel theory, over all space, gives -zp, as expected. 

18-13. Show that in the Debye-Hiickel ion atmosphere, (18-24), the fraction 
of net charge between a and 2a, in the limit as KU + 0, is 3(r~)~/2. 

18-14. Use Eq. (18-23) to calculate Y++ in a 2-2 aqueous electrolyte at 
25OC and at a concentration lo4 moles.l-l. 

18-15. Find the expression for I /K ,  equivalent to (18-25), which is applicable 
for (a) a 2-2 electrolyte, (b) a 3-3 electrolyte, and (c) a 1-1 electrolyte in 
solvents with ( i ) c  = 10 and ( i i ) c  = 1 (solvent = vacuum; i.e., a plasma). 
In each case find the value of c giving I/% = 30A. 

18-16. Calculate and compare the magnitude of terms in Eqs. (18-22) and 
(18-31) for a 1-1 aqueous electrolyte at 25°C and a concentration moles4-1. 
Takea - 3A. 

18-17. Verify the evaluation of the integral in Eq. (18-58). 
18-18. Show that Eq. (18-38) leads to 

In 7 2  = BllPl + 2B02P2 + * - * 

for a dilute binary gas mixture, a result used in Eq. (18-21) (obtained from 
Chapter 15). 

SUPPLEMENTARY READING 

FOWLER and GUWENHEIM, .Chapter 9. 
HABNED, H. S., and OWEN, B. B., Physical C h -  of Ek&dgtic Sdulions, 

3rd ed., New York: Reinhold, 1958. 
-WOOD, J. G., J .  C h .  Phv8.3, 300 (1935); c h .  -8. 19, !275 (1936). 
LANDAU and LIFSHITZ, Sections 74 and 91. 
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DILXTTE LIQUID SOLUTIONS 

The main thesis of the present chapter is that the expansion methods 
of imperfect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgaa theory (Chapter 15) can be applied to a liquid solution 
which is dilute with respect to at least one (“solute”) component, pro- 
vided that the interaction between solute molecules is a short-range one 
(energy a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr-”, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 3, for large r). The technique is to reduce the many- 
body problem to, successively, (a) the interaction of one solute molecule 
with pure solvent (this determines the Henry’s law constant, for example), 
(b) the interaction between two solute molecules immersed in pure solvent, 
etc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis procedure is mt possible, as we saw in Chapter 18, with the 
long-range forces in an electrolyte solution. 

The same expansion methods can be applied to gaseous and solid 
solutions, but these cases are leas important than liquid solutions. 

The expansions encountered in a particular solution theory depend 
on the choice of independent variables and ensemble. The expansions of 
the different theories may be interconverted by suitable thermodynamic 
manipulations, so any formally exact theory is in principle equivalent to 
any other one. But, generally speaking, if one is interested in the expan- 
sion of a given dependent variable as a function of a certain set of inde- 
pendent variables, the simplest result will be obtained if the ensemble is 
suitably chosen to yield the expansion directly-instead of indirectly by 
thermodynamic operations on series obtained from another ensemble. 
Hence there is some point in discussing more than one dilute solution 
theory. 

We shall emphasize in this chapter, rather arbitrarily, the McMillan- 
Mayer theory, which is particularly suitable for an investigation of 
osmotic systems and the osmotic pressure. Section 19-1 contains a gen- 
eral discussion of this theory, while Section 19-2 is devoted to particu- 
lar applications. For contrast, we consider in Section 19-3 a solution 
theory which is especially appropriate for solutions at  fixed pressure 
and temperature with molality as composition variable. This is a very 
common choice of independent variables in practical solution thermo- 
dynamics. 

An important alternative approach to solution theory, which we shall 
not include, is that due to Kirkwood and Buff.* 

* J. G. KIRKWOOD and F. P. BUFF, J .  Chem. Phys. 19, 774 (1951). 
340 
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“Outside” “Inside” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 c o m z t l  1 ““tsr;,1p2 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P + K V  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e=o P2 

Semipermwble 
membrane 

FIQ. 19-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOsmotic equilibrium system. The membrane passca component 1 
(solvent) but not component 2 (solute). 

19-1 McMillan-Mayet solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtheory. We begin by considering a 
two-component solution which may contain monatomic or polyatomic 
molecules, and which may obey classical or quantum statistics. Com- 
ponent 1 is the solvent and component 2 the solute, the dilute component. 
We assume short-range forces between solute molecules, as already ex- 
plained above. Our object is to choose partition functions in such a way 
that we can develop a treatment here for “solute in solvent” which exactly 
parallels the treatment of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“gas in vacuum” in Section 15-1. For this 
reason, the reader should review Section 15-1. The derivation we give* 
is chosen for its relative simplicity, rather than for its generality.t 

The two-component solution referred to above (the “inside” solution 
of Fig. 19-1) is in osmotic equilibrium with pure solvent (“outside” in 
Fig. 19-1). That is, a semipermeable membrane, permeable to solvent 
only, separatea solvent from solution. The outside system has specified 
values of the chemical potential pl and temperature T. The values 
of pl and T fix the pressure p. The “inside” solution is also at  tem- 
perature T and contains solvent a t  p~ and solute at p ~ .  The values of 
T, pl, and p2 then determine, for example, the inside pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp + II and 
solute number density pz. II is the osmotic pressure--the extra pressure 
needed on the inside (in the presence of solute which tends to lower PI) 
to give pl the same value inside as outside. 

The grand partition function for the “inside” solution is 

= C *N~(E(I, V,  T)XP, (19-1) 
Na10 

* T. L. HILL, J .  C h .  phy8. 30, 93 (1959). 
t More general and complicated derivations will be found in S.M., Chapter 0, 

and in McMillan and Mayer (Supplementary Reading list). 
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where 

*N2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC QN~.NJ$. (19-2) 
Nil0 

Here q ~ ~ ( p ~ ,  V, T) is a "semigrand" partition function for a system at 
V and T, open with respect to 1 but not with respect to 2 (Problem 19-1). 
We note that in the special case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 2  = 0, 

which is the grand partition function for the outside system. We shall be 
interested in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmall values of N 2 ,  that is, 91, 9 2 ,  q 3 ,  etc., for solvent systems 
(pl, V, T) with only one, two, three, etc., solute molecules immersed in 
the solvent. We now have to digress to introduce activities, the Henry's 
law constant, etc. 

If, as in Section 15-3, we define activities 21 and 22 by Eqs. (15-41), 
then 21 + p1 and 22 + p a  in the limit p l ,  p a  + 0 (ideal gas mixture). 
In this limit 

pi = pW') + kTln PI, 

~2 = P%T) + kT In p2, 
where 

pY(T) = k T l n ( x ) )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp i (T )  = kTln 
kTQio 

Examples will be found in Eqs. (426)) (8-40)) and Problem 9-3. 
It is more convenient for the present problem, however, to define a 

solute activity 82, proportional to 22, but with the property that 82 + pa 
when p 2  + 0 in the inside solution (i.e., with p1 and T fixed). In this limit 
we have pure solvent at p1 and T, and not an ideal gas mixture, so 22 does 
not approach pa but approaches instead, say, ~ $ 2 ,  which defines Y$(E(I, T). 
This is a limiting value of the activity coe5cient 7 2  defined by 22 = Y2p2  

(Eq. 15-47). Hence the connection between 82 and 22 is 22 = ebl, T)&. 
We shall encounter explicit expressions for 7: below. 

The inside solution in the limit p 2  + 0 is often referred to as the 
"infinitely dilute solution. " When p 2  = 0, the inside solution is the same 
as the solvent (outside). 

The fugacity of the solute in the solution (at any composition) is defined 
as usual by j 2  = z2kT. (That is, if the solute here is in equilibrium with 
an ideal gas phase in which the partial pressure of component 2 is p 2 ,  then 
j 2  in solution is equal to p 2  in the ideal gas, since z2 is the same in the two 
phases at  equilibrium.) Now we defme the Henry's law constant k&l, T) 
for the solute in the solvent at P I ,  T by the statement that j 2  + k2x2 as 
x 2  + 0, where 2 2  is the mole fraction of the solute. In this limit, 
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z 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ paul(p1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwhere v1 is the volume per molecule of pure solvent 
at p1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. Therefore, in the limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas p a  + 0, we have 

22 = 7b2 = -, 
kT 

or 

Which gives k2 in tern of 7:. 
Returning to the activity $2, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshall verify below that the definition 

gives, as required, $2 + p2 as p2  + 0 in the solution. Accepting this 
definition tentatively, we find that 

or 

Since 7: ia a function of pl and T only and Qol is proportional to V, 
81/80 must also be proportional to V. We see that 7: depends on the 
properties of one solute molecule in a vacuum (i.e., on Q01) and on the 
nature of the interaction between one solute molecule and pure solvent 
(i.e., on 81/80). We shall examine a special case of Eq. (19-7) in Problem 
19-2. Equation (19-7) gives for k2, 

- Qoi*okT k2 - - a  

8101 
horn the relations 

Qd = 22 + p 2  (component 2 in vacuum), V 

QoiX2 
7: V - 8 ,  + p2 (component 2 in solvent), 

we see that Qol/7:  plays the role of an “effective” partition function for 
one solute molecule in a volume V filled by solvent at pl and T (analogous 
to Qol for one molecule of component 2 in a volume V otherwise unoc- 
cupied). The factor l/7: thus takes care of the “contact” of the solute 
molecule with solvent. This gives some indication of the physical sig- 
nificance of 78 (see also Problem 19-2). 
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Another interpretation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7: is the following: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a2 pa (solute in inIinitely dilute solution) Qol/r! V 
22 p2 (solute in infinitely dilute gas) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQo I/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV 
-- - =- 

Comparison with Eq. (10-6) shows that l/Yg = K(p1, T) is the "equi- 
librium constant" for the process 

solute in gas F? solute in solution. 

The numerical value of r! depends on how a single solute molecule 'likes" 
(including both energy and entropy effects) being in a vacuum relative 
to pure solvent. 

We now return to the expansion (19-1). To simplify the notation we 
use N for N2 (number of solute molecules), replace X2 by $2 (Eq. 19-6) 
and !PN by PN, where PN(pl, V, T) is defined by 

Note that 2: = V. The definition (19-9) is constructed so that 2; plays 
the same formal role here for N solute molecules immersed in the solvent 
88 ZN does in Section 15-1 for N molecules in a vacuum (one-component 
gas). This will become more apparent as we proceed. Then Eq. (19-1) 
becomes 

Using Eq. (19-3), we have 

(19-10) 

This equation is seen to be formally identical with Eq. (15-6) for a one- 
component gas: II r e p b s p ,  2; replaces ZN, and $2 replaces 2. (We still 
have to check later that $2 + p2 as p2 + 0 in the solution, just as 
z + p as p -+ 0 in the gas.) The solute is thus treated as a quasi-one- 
component system, with the solvent playing an implicit background role 
through its influence on 2%. We shall be able to put this in more physical 
terms below for a special case. Incidentally, this point of view is obviously 
the same as that adopted for the solvent, without formal justification, in 
Chapter 18 (on electrolyte theory). 
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Equation (15-6) is a special zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase of Eq. (19-10): if the "solvent" is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 

vacuum, then the outside pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp in Fig. 19-1 is zero and II is the total 
pressure of the gas (solute) on the inside. 

We can now manipulate Eq. (19-10) just aa we did Eq. (15-6). On 
taking the logarithm of Eq. (19-10) and expanding [see also the discussion 
of Eqs. (15-14) through (15-16)], we find 

(19-11) 

where the b; are related to the 2% by Eqs. (158). From the thermo- 
dynamic equation [see (1-65)l 

we have (p ia determined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApl and T only and hence is constant) 

just as in Eq. (1540). We finally confirm here the property already used 
above that 82 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ p2 as pa --t 0, since br = 1. Then, as in Eq. (15-12), 
we have the osmotic pmssure virial expansion 

(19-13) 

where the B: are related to the b,' by Eqs. (15-13). In the limit p2 -+ 0, 
II/kT -+ pa. 

From the general thermodynamic equation, for a binary solution, 

N1 dpl + N2 dp2 = -S dT + V dp, 

we have in our special case and notation, 

msdp2 = V d ( p  + II) = VdII (p1, T constant). 

Therefore 

(19-14) 

We substitute Eq. (19-13) here for II/kT, carry out the dflerentiation, 
multiply by dp2, and finally integrate. The result is 
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which is the analog of Eq. (1549). To evaluate the integration constant, 
we recall that in the limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA---i 0, 

From thie relation we fmd that 

Therefore Eq. (19-15) can be written zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Pa- v*o kT - In - + In pa + In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'Pa, 

91 
(19-16) 

Bt = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T) k + l  Bt+1. (19-18) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The activity coefficient 7 2  (the bar does not mean an average value) is 
obviously defined by the equation b2 = p2T2 and has the property, 
desirable for a practical activity coefficient, that $2 + 1 as p2 + 0 (pl 
and T held constant). The relation between 7 2  and 7 2  is 

22 = ' 9 2  = 'PI2 = ' 3 9 2 ,  

or 
'2 7 2  = -. 
' t  

(19-19) 

The treatment above parallels completely that in Section 15-1 for a 
onecomponent imperfect gas. Here, when pa + 0, interaction between 
one molecule and pure solvent is responsible for the term In (V*O/*I) 
in Eq. (19-16) for pa but does not influence the "equation of state," 
II = p2kT; at higher concentrations, B:, which depends on the properties 
of 8 pair of solute molecules in pure solvent, contributes to pa and II/kT; 
etc. The quantities Z;, bf+, B:, 6: have a significance for solute molecules 
in solvent which is identical with that of ZN, bj, B,,, and Bb for gaa mole- 
cules in vacuum. 

The above equations are necessarily quite formal because of their 
generality. To give a better physical understanding of their significance, 
we now turn to the simplest special case, a classical binsry solution of 
monatomic molecules, and introduce the potential of mean force. 
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Class id zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbinary solzction o monalomie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmo~e&8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWe first have to extend 

Eq. (17-35) for g'") zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= e--u')/kT to a binary system. We let (n l )  repment 
the spatial positions rl, . . . , r,,, of a set of n1 molecules of component 1, 
and let d ( n l )  represent drl . . . drn,. Then, 118 in Eq. (17-33), the proba- 
bility that, in a closed binary system with numbers of molecules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN1 and 
N2, any nl molecules of component 1 will be found in d(nl) and any n2 
of component 2 in d(n2l is 

d{nl> d{n2>jv e-uNINa'kT d { ~ 1  - nl} d { ~ 2  - n2> 

ZN,N¶ 
X * (19-20) 

The probability that an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAopen system characterized by z1,22, V ,  T contains 
the numbers of molecules N1, N2 is 

(19-21) 

If we take the product of (19-20) and (19-21) and sum over N1 and N2, 
we have the probability that any n1 molecules of 1 are in d(n1) and any 
n2 of 2 are in d(n2) ,  in an open system. We denote this probability by 
p;lp;gg@) d ( n l )  d(n2),  which defines the distribution function g(n) (n 
refers to the set of numbers nl, n2-a general notational system we have 
been using throughout most of this book), a function of z1,22, and T as 
well as of ( n l )  and (n2). Thus we have 

which is the generalization of Eq. (17-35). Since N1 and N1 are merely 
dummy summation indices, we can change notation by putting N1 for 
N1 - n1, N1 + nl for N1, etc. This gives 

where z refers to the activity set 21, 22. 

Now we define w@) by 

go = exp [-w"/kT], (19-24 

substitute this expression in Eq. (19-23), and integrate over (n). The 
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result is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Aa in Section 17-4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20“) is the potential of the mean force acting between 
the eet of molecules n located at (n) in the solution characterized by z, 
V ,  T. We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare particularly interested in the special zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase. of a set of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 
solute molecules only, n = 0, N ,  in the limit as z + zl, 0 (i.e., N solute 
molecules immersed in pure solvent a t  21, T-the outside system in Fig. 
19-1). In this limit, only terms with N2 = 0 contribute in the s u m  of 
Eq. (19-25), so we find 

We shall make use of this result presently. 
If we substitute Eq. (19-7) in Eq. (19-9), we obtain 

Also, from Eq. (19-2), we have 

(19-28) 

Using Eq. (19-a), we eliminate \ k ~  and 90 from Eq. (19-27) and observe 
that z*, is the same as the right side of Eq. (19-26). Therefore, 

(19-29) 

Equation (19-29) should be compared with Z N  for a classical one- 
component monatomic gas (Section 15-2) : 

ZN = lv e--UNikT d { N } .  (19-30) 

We see that, for clrrascal monatomic systemst at least, the analogy be- 
tween the formal significance of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz*,, t$, etc., for a dilute solution and 
Z N ,  bj, etc., for a dilute gas, already emphasized above, extends even 
further: UN in Eq. (19-30) is the potential of the force between N gas 

t Actually the analogy between w ( ~ )  and UN is much more general. It extends 
to systems of plyatomic molecules of any complexity in which vibration ia 
separable and in which rotation (internal and external) and tramlation are 
classical. See S. M., Section 40. 
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molecules in a vacuum, while zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ( ~ )  in Eq. (19-29) is the potential of the 
(mean) force between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN solute molecules in the pure solvent. Thus the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
physicul significance, in terms of force or work, of w ( ~ )  and UN in the 
respective cases is identical. 

This analogy makes it possible to write down immediately, by inspec- 
tion, a number of equations for dilute solutions. For example, from 
Eq. (15-24) for a onmomponent gas, we have 

Similarly, from Eq. (15-30)) we have an equation for B:(zl, T). It should 
be emphasized here, though, that the aasumption 

U8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= u12 + U18 + u231 (19-32) 

used in &. (15-30)) is in a different class than 

w(a) = wl2 + w18 + w28, (19-33) 

needed for B:. Equation (19-32) is a quantum-mechanical approximation, 
and a good one in general, but Eq. (19-33) is statistical mechanical (the 
w's zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare functions of z1 and T) in origin and not necessarily a very good 
approximation. Equation (19-33) is in fact the superposition approximn- 
tion of Chapters 17 and 18. Another example is Eq. (17-10): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(19-34) 

where w = wc2) and here the solution is not necessarily dilute. The 
superposition approximation (pairwise additivity) has been made use of 
in w(zl, 0) but not in w(zl, 22). The extension of Eq. (19-34) to a multi- 
component solute is obvious from Eq. (18-44). It is this extension which 
is in reality involved in Problem 18-8 for the Debye-Huckel p (actually, 
II), if the dielectric is not a vacuum. 

In view of the fact that the solvent does not play an explicit role in 
Eq. (19-29) and in view of the interpwtation of w ( ~ )  as the potential of 
mean force between solute molecules immersed in the outside solution 
(solvent) of Fig. 19-1, it is physically obvious (and can easily be con- 
firmedt) that whether the solvent is made up of one component or many 
components, formal relations such as Eq. (19-29) and those between 
z*,, b;, B:, etc., are unchanged. A multicomponent solvent influences 
the system indirectly or implicitly through its influence on ww), which is 
now a function of T and one z for each solvent species (we denote this 

t See S. M., Section 40. 
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“Outaide” “Inside” 

FIQ. 19-2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOsmotic cquilibrium system. The membrane passes all solvent 
species (subscript zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  but not the solute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(no subscript). 

set of solvent z’s by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2,). For example, Eqs. (19-13) and (19-17) become 

(19-35) 

(19-36) 

where p is the number density of the single solute (“nondiffusible“) species 
on the “inside” in Fig. 19-2 and 7 is its activity coefficient. All of the 
solvent species can pass through the semipermeable membrane in Fig. 
19-2. The second virial coefficient is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Bf(z,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  = -4Lm {exp [-w(r, z,, T)/kT]  - 1 } 4 d  dr, (19-37) 

where w(r) is the reversible work necessary to bring two solute molecules 
together from r = 00 to r in the solvent at z,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT (i.e., in the outside 
solution). 

19-2 Applications of the McMillan-Mayer theory. We consider here a 
few examples of the calculation of B: for a solute in a solvent (which may 
be multicomponent). then determines the first departures from 
limiting behavior in n/kT and In ‘P [Eqs. (19-35) and (19-36)], for example. 

Hard spbes.  Suppose the nondiffusible species (i.e., the solute) in an 
asmotic equilibrium can be represented approximately by hard spheres 
of diameter a. Spherical protein molecules, under some conditions, might 
be an examp1e.t That is, 

w(r) = +00 r < a 

= o  r 2 a, 
(1 9-38) 

t The many “internal” degrees of freedom-vibration and rotation-of such 
a molecule can be ignored in calculating virial coefficiente. 
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as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin Eq. (15-25). Then we find, as in Eqs. (15-26) and (15-30), that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Bg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA#Bf. (19-39) 

If we let urn be the volume occupied by the molecule (sphere), q = 40,. 
Considerable work has been donet on the calculation of % for “hard” 

molecules which are not spheres. Of course, in this case a generalization 
of Eq. (19-37) has to be used (Problem 19-3) which involves integration 
over rotational orientations &s well &s over r. It is found that B:/U, is 
always greater zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthan 4 for nonspherical particles and that, for highly 
anisometric particles (e.g., “needles” or “pancakes”), B:/v, is approxi- 
mately equal to the ratio of the long to the short dimension. Solutions 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsuch particles will therefore be “nonideal” at much lower molar con- 
centrations than spheres of the same volume. 

The calculation of B: for polymer and polyelectrolyte molecules will 
be deferred to Chapter 21. 

Donnan &am equilibrium. A Donnan equilibrium is an osmotic 
equilibrium in which the nondiffusible species (solute) is charged and all 
other species, including at  least two which are charged and of opposite 
sign, can pass through the membrane. 

Necessarily, if there is a charged nondiffusible species, then for electrical 
neutrality at least one other charged species must be present on the 
“inside.” If there is only one other charged species (of sign opposite to 
the solute) on the inside, it too will be confined to the inside, even though 
it could under other conditions pass through the membrane, for otherwise 
the outside solution would not be electrically neutral. (Even extremely 
small departures from neutrality would be resisted by the creation of 
very large electrostatic potentials.) The uncharged solvent can, of course, 
be on both sides. In this case, then, we have an electrolyte solution on the 
inside and solvent (usually water) on the outside. This is not a Donnan 
equilibrium. The osmotic pressure ll here is just that (called p) of Chap- 
ter 18. We cannot use a virial expansion of n because w(r) (=to(*)) for 
a pair of ions immersed in the outside system (solvent) has the coulombic 
form, l/r (Eq. 18-1), and hence the virial coefficients diverge. Incidentally, 
the reason why the coulombic potential energy (18-1) is denoted by u(r) 
in Chapter 18 and by w(r) here is that we are now treating the solvent as 
a molecular component of the system: Eq. (18-1) is an approximation for 
the work neceswrry to bring two ions together, calculated from a mean 
force, that is, a force averaged over all configurations of the solvent 
molecules. 

t See B. H. ZIMM, J .  C h .  Phgs. 14, 164 (1946); L. ONSAQER, Ann. N. Y. 
A d .  Sci. 51,627 (1949); Hirschfelder, Curtiss, and Bird, pp. 183-187. 
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To achieve a Donnan equilibrium, we must have, besides the charged 

solute on the inside, at least two other charged (opposite to each other) 
species on the inside. Then both of these latter species can also be on the 
outside, with electrical neutrality achieved on both sides. An example 
would be P+ (protein, say), Ka+, CI-, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH 2 0  on the inside, and Na+, 
CI-, and H 2 0  on the outside. The "solvent" here (i.e., the outside system) 
is itself an electrolyte zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsolution. Equations (19-35) and (19-36) are ap- 
plicable. We can use a virial expansion approach because w(~)(z,, 2') for 
a set of N charged solute molecules refers to the set immersed in the out- 
side (electrolyte) solution. That is: the solute molecules in the solvent 
are screened by ion atmospheres; w(r) has the form e+'/r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( K  refers to the 
outside solution), at least approximately; hence, the virial coefficients 
do not diverge. 

The traditional approach to this problem is the method of Donnan in 
which a membrane potential is introduced. One of the more satisfying 
aspects of the present statistical-mechanical method is that this opera- 
tionally qucstionablc! conceptt does not enter the discussion. 

As a first example of a Donnan equilibrium, let all ions (including the 
solute) be treated as point charges (a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= O), let the charge on a sol- 
ute ion be$ te,  and let us use the Debye-IIuckel limiting w(r) (Eq. 18-28) 
for ~1 pair of solute ions imnicrsed in thc outsidc solution: 

z2e2e-~r  
w(r) = __- > t r  (1940) 

where K depends on the ou.tside ionic strength. We note that intensive 
properties of the system are completely determined by the concentration 
p of solute on the inside, by T ,  and by the dielectric constant and ionic 
strength on the outsidc. Examples of such intensive properties are n, 
I n  T, and p',/pg for a diffusible ion of type k (Problem 19-4), where p i  is 
the inside concentration and p! is the outside concentration. 

To calculate B:, we put Eq. (1940) for w(r) in Eq. (19-37), after 
expanding the exponential in the latter equation up to the term in (w/kT)2. 
This suffices to give us BX up to the linear term in a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI e2ic/tkT, which is 
as far as we are justified in going [see Eq. (18-26)]. Elementary integra- 
tions then give 

t See E. A. GUQQENHEIM, Thernmdynamics. Amsterdam: North-Holland, 
1957; pp. 374-381. 

set). The distinction will also bc clear from the context. 
$ Note the diffcrcnce between the symbols z (charge number) and z (activity 
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where 

The first term on the right can be shown to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe a consequence only of the 
fact that the Debye-Hilckel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw(r) is consistent with electrical neutrality 
in the outside solution (Problem 19-5). The second term is probablyt not 
the exact linear term in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, because higher terms in w(r) [i.e., Eq. (194) 
gives the leading term in an expansion] may also contribute linear terms 
in u to B:. 

As a second example of a Donnan equilibrium, let us calculate for 
the potential of mean force between solute molecules (in the solvent), 

w(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= +oo r < a  

r 2 a, 
Z2e2e--.(r-o) (19-42) 

- - 
€r(l + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK a )  

where K again refers to the outside solution. This w(r) would be appropriate 
as an approximate potential in two cases. (1) All ions, including solute 
ions of charge ze, have a diameter a (Eq. 18-27). (2) The solute ions are 
relatively large spheres of dismeter a, each with total charge ze smeared 
uniformly over the surface; the relatively small diffusible ions are treated 
as point charges (Problem 18-10). One finds in either case, 

The first term on the right is the hard sphere term (Eq. 19-30), the second 
is the “neutrality” term, and the third is definitely not the exact linear 
term in u because Eq. (19-42) is not even an exact leading term for w(r). 
However, Eq. (19-43) should be 8 useful approximation for u not too large. 

Solute with binding equilibrium. A relatively complicated but instruc- 
tive and important (especially in physical biochemistry) application of 
the McMillan-Maycr theoiy is to an osmotic system in which the solute 
molecules can bind (adsorb) one of the diffusible (solvent) species. The 
most important example is the binding of hydrogen ions by solutes such 
m proteins, nucleic acids, polyelectrolytes, etc. But in other system, 
other ions or molecules, in the solvent, may also be bound to solute mole- 
cules. Some of the questions that arise for this kind of system are the 
following: How is the binding equilibrium (e.g., the titration curve, if H+ 
is being bound) influenced by solute concentration? How does the osmotic 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8eo T. L. HILL, I?WadaU sot. ~ C .  21, 31 (1956); J .  PhYS. Chem. 61, 518 
(1957). 
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pressure second virial coefficient depend on the concentration of the species 
being bound? How does the potential of mean force between a pair of 
solute molecules (at infinite dilution, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) depend on the concentration 
of the species being bound? 

The present problem is LL generalization of Section 7-3, which should 
be reviewed. In Section 7-3 we were concerned with binding of one species 
on another in an ideal gas mixture. Here we have intersolute interactions 
and the presence of solvent to complicate matters. 

To keep the notation from getting too complex, we consider the follow- 
ing special zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase: (1) there is only one solute species; (2) only molecules 
of one solvent species can be bound on solute molecules; and (3) the 
potential of average force dN) between a set of solute molecules depends 
on the number of bound molecules on each of the solute molecules in the 
set and on the location of the center of maas of each of the solute molecules, 
but not on the manner of distribution of bound molecules among the 
binding sites of each solute molecule nor on the rotational orientation of 
the solute molecules. All of these restrictions can, however, he removed.* 

For convenience we refer to the solvent species that can be bound as A 
(adsorbate). Each solute molecule can bind up to m A molecules, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 = 0, 
1, . . . , m. There are thus a total of m + 1 solute "subspecies, " depending 
on the value of 8. The partition function of a single solute molecule with 
8 A molecules bound to it (an s-solute), in a box of volume Y at T, is 
denoted by q(s). We let X, be the absolute activity of s-solute molecules 
and X be the absolute activity of A molecules. The activity z, for an 
s-solute is defined as usual (Eq. 15-41) by 

Then z, + p, if all species become infinitely dilute (ideal gas mixture). 
The activities of all solvent species other than A are represented by the 
set z,. The outside solution (solvent) in the osmotic equilibrium is there- 
fore characterized by &, A, and T;  and the inside solution is characterized 
by z,, X, T, and the total (all subspecies) solute concentration p(=C, p,). 

The general method we use is: (a) write an expresion for IIY/kT that 
is a generalization of Eq. (19-lo), regarding the solute as multicomponent 
(m + 1 "different" solutes); (b) introduce in this expression the fact that 
actually the solute subspecies are not independent of each other but are 
interrelated by binding equilibria; and finally (c) develop series expan- 
sions, etc., treating the solute as a single (composite) component. 

* J. G. KIRKWOOD and J. B. SHUYAKER, Proc. Nat. Acad. Sci. 38, 855, 863 
(1952); T. L. HILL, J .  Cheni. Phys. 23, 623, 2270 (1955). 
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The rather obvious generalization, which we shall not prove,* of 

Eqs. (19-10) and (19-29) to a multicomponent solute in an osmotic 
equilibrium zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

enVIkT = [g (z6$:N.]/v exp [-w'"/kT] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd{N}, (19-45) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N>O 

where the sum is over all solute sets N = No, NI, . . . , Nm, and where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7: and w ' ~ )  are functions of zr, A, and T.  As explained in Section 19-1, 
7: depends on the interaction of one s-solute molecule with solvent (outside 
solution), and wm) depends on the interaction between a set of N solute 
molecules immersed in the solvent (outside solution). 

Let Ni be the mean number of i-solute molecules in the inside solution. 
Then, as in the equation preceding (19-12), 

To conform with the notation in Section 7-3, we let n be the total number 
of solute molecules of all subspecies and let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm be the total number of A 
molecules bound to these solute molecules. Then 

(19-47) 

Hence we get expressions for 
Ni, behind the summation sign, by xi Ni and 

are interconnected by binding equilibria : 

and 7 from Eq. (19-46) by replacing 

At this point we recognize explicitly the fact that the solute subspecies 

s-solute Ft 0-solute + sA , 
Pa = Po + SP, 

iNi, respectively. 

(19-48) 

Thie means that only one of XO, XI, . . . , A, is independent, and we choose 
Xo (O-solute; solute with no A bound). We substitute Eq. (19-48) for z, 

* See: Eqs. (15-43) and (15-51); 5. M., Section 40; and Problem 19-15. 
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in Eq. (19-45) and obtain 

where 

The physical significance of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHa (a function of T,  A, 2,) for an sgolute 
molecule is evident from the paragraph following Eq. (19-8): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(s)/Y,O is 
the effective partition function of an emlute molecule immersed in the 
outside solution; q(s) itself is discuased following Eq. (7-46). 

Kote that if we perform the operation Aoa(nV/kT)/aXo on Eq. (19-49), 
we get just E u r u  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[see Eqs. (1946) and (19-47)]. Therefore 

(19-51) 

This shows that if we regard all solute molecules (of whatever subspecies) 
as a single component, then po should be considered the chemical poten- 
tial of the solute (thus po has the same significance as p' in Section 7-3). 
Next, we observe that the purely formal operation Aa(IIV/kT)/aA on 
Eq. (19-49), ignoring the actual dependence of the r,O and wm) on A, 
gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, d,. Hence, 

(19-52) 

If we regard Eq. (19-49) as a power series in Ao, the solute absolute 
activity, we will have equations analogous to those in Section 19-1 for 
an osmotic equilibrium with a single solute. Here, however, the various 
coefficients will be more complicated because they involve averaging over 
the different solute subspecies. For simplicity, let us go only as far as the 
second virial coefficient.* If we consider only those zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsets IJ containing a 
total of 0, 1, or 2 solute molecules, Eq. (19-49) becomes 

*For higher terms, sce T. L. HILL, J .  C h .  Php .  23, 623, 2270 (1955). 
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where the double sum includes terms with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= s', and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,,, is the 
potential of mean force between one s-solute molecule and one $-solute 
molecule, immersed in the outside solution. We define a solute activity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

b = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXo C H,X' (19-54) 
by 

8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
so that 3 + p ( = n / Y )  as p + 0. Then, just as in Eq. (lelo), 

(19-55) 

where 
z'l = v, 

It is necessary to digress briefly to introduce the radii1 distribution 
function g(r) for solute molecules at infinite dilution, p + 0 (i.e., in the 
outside solution). As in the paragraph preceding Eq. (17-21)) 

dr, d r . 1  
pdp,, e-~ r r ' l kT  

is the probability that an s-solute molecule is in dr, and mi s'-solute 
molecule is in dr,,, in the limit p + 0. In this limit, Eq. (1946) gives 

or 
pi = X&iXi, 

Therefore the probability above becomes 

(19-57) 

If we sum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis expression over 8 and s', we have the total probability that 
any solute molecule (any subspecies) is in dr, and any other is in &.,. 
If we regard the solute as a single component, this same probability is 
p2g(r) dr. dr8,, where g(r) is the solute radial distribution function. On 
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comparing the two expressions, we have 

ｾ＠ (H "S)(H .. s') -"' .. '(f')'''T 
( ) 

-"'(1'), "T ｾ＠ ••• ' .1\ .'1\ e 
g r = e = (E. H.X-) 2 ' (19-58) 

where w(r) is the potential of mean force for a pair of solute molecules 
in the outside solution, properly averaged over the different solute sub-
species (Problem 19-6). Since X is proportional to the activity and ap-
proximately proportional to the concentration of the A molecules, Eq. 
(19-58) contains the dependence of w(r) or g(r) on this activity or con-
centration. Incidentally, in Eq. (19-58), w." is also a function of X since 
A is a component of the solvent (W." depends on r, z,., X, T), but this 
will generally be a relatively unimportant effect. 

We note that e-"'(1')'''T in Eq. (19-58) has the formal appearance of a 
one-component (A) grand partition function (Eq. 7-27) for A molecules 
bound on a pair of solute molecules a distance r apart divided by the 
grand partition function with r = 00. This result might have been antici-
pated by analogy with the following thermodynamic relations for such 
a system: 

dE = TdS + DWon + p.dN, 

d(A - p. N) = DWon 

:E(r) 
-11(p. N - A) = -kT In :E( (0) = w(r) 

(T, p. constant), 

(T, p. constant), 

where DWOD and w(r) are reversible work done on the system, the latter 
being the work (potential of mean force) necessary to bring the two solute 
molecules together from r = 00. 

We return now to Eq. (19-56), which, with the aid of Eq. (19-58), 
becomes 

ｺｾ＠ = Iv e-",'''T d{2}. (19-59) 

This has the same form as Eq. (19-29); furthermore, w has the same 
physical significance (potential of mean force) in the two equations, 
despite the complication here of subspecies averaging. This analogy proves 
in fact to be general; that is, for Z$. 

From Eqs. (19-10) and (19-55), it is clear then that we can define a 
group of quantities Z$, bj, ｉｬｾＬ＠ ｂｾ＠ (all of which depend on the properties 
of small groups of solute molecules in the outside solution) in complete 
analogy with ｾＬ｢ｩＬ＠ etc. For example, Eqs. (19-35) through (19-37) 
hold here for II/kT and In '? provided we replace B! by ｂｾＨｺＬＮＬ＠ X, T) and 
w by w(r, z,., X, T) in these equations. 
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Next, let us derive an equation for N /11, the mean number of A mole-
cules bound per solute molecule. Specifically, we want to express N /11 
as a power series in p. From Eq. (19-52), 

N _ (an/kT) _ _ a_ L b'.1i 
V - a In x 1o.T • .,o .... - a In x ｩｾｬ＠ 1 

Then 

Using the series &(p) (Eq. 15-11) and Eqs. (15-13) relating the ｂｾ＠ and ｢ｾＬ＠
we find 

'N = E. BII.X· _ p ( ｡ｂｾ＠ ) _ ip2 ( aB1l ) _ ... 
JI E. H.X· a In x T.TO.... a In x T.TO.... • 

(19-60) 

In the limit p -+ 0, we get, as expected, the same result as Eqs. (7-29) 
and (7-51) [except that, because of the presence of the solvent, q(8)l'r: 
replaces q(8»). The terms in p take care of the effect of solute concentration 
on the amount of binding. We can understand the linear term in p, quali-
tatively, as follows. If, for example, adsorbing A molecules on a pair of 
solute molecules increases the repulsion between the solute molecules 
(i.e., aBva In X > 0), then, when two solute molecules are brought to-
gether from r = 00, they will desorb some A molecules. But this is 
essentially what happens when the concentration of solute is increased: 
pairs of solute molecules spend more time near each other, so 'N /JI decreases. 

An explicit expression for aBva In X in Eq. (19-60) is easily shown to 
be (Problem 19-7) 

E. BII.X· 
V(E.H.X·)2 

[
E •.•. (H.X·)(H.'x·'>l E •.• · (8 + a')(H.x·)(H.'x·'>l ] .,' .. ' ( ) 

X ＭＭＭＺｅ］ＭＮＭＺＺＺｈ］ＢＧＮｘＬＮＮＮＮＮＭＭＧＭＢｾ＠ - 2 E. BII.X. ' 19-61 

where f ••. is the integral in Eq. (19-56) . 
.As a final topic, we consider an important special case. Suppose that 

the solute and A molecules are charged and that the potential of mean 
force between a pair of solute subspecies a distance r apart is proportional 
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to the product of the charges on the two molecules: 

w •• ·(r) f( ) 
ｾ］ｺＮｺＮＬ＠ r. 

For example, we might have (Eq. 19-42) 

.2e-·(r_) 

f(r) = ET(1 + Ka)kT 

[CHAP. 19 

(19-62) 

(19-63) 

Let the charge number of a O-solute be Zo and that of an A molecule be z. 
Then z. = Zo + 8Z for an 8-80Iute. A typical case would be a protein mole-
cule with z = +1 (A = H+), Zo negative, and Zm positive. We expand 
exp (-w ••. jkT) in Eq. (19-58) up to the quadratic term: 

e-w/kT _ 1 _ (w ... ) + ! /,(w ... Ｉｾ＠ _ ... 
- kT 2'\ kT / ' 

(19-64) 

where 

«(W ... )R) = L •.•. (H.}..·)(H •• }..·')(w ... jkTt . 
kT (L. H.}..·)2 

(19-65) 

These arc averages, it will be noted, in which the probabilities of 8 and 8' 
are "unperturbed" or independent of each other [compare Eq. (13-19) 
and Problem 14-17]. We put Eq. (19-62) into Eq. (19-64) and obtain 

e-tD
/
kT = 1 - (z)2J(r) + i(z2)2J(r)2- ... , (19-66) 

where 

(19-67) 

Then from Eq. (19-66), 

ｾｾＩ＠ = (z)2f(r) - i[z2 - (z)2][z2 + (z)2lf(r)2 + . . . . (19-68) 

The leading term in Eq. (19-68) gives the potential of mean force between 
a pair of solute molecules a distance r apart which would obtain if the 
binding of A molecules on one solute molecule were uninfluenced by the 
binding on the other (i.e., z is the average charge number of an isolated 
solute molecule in the solvent). Actually, the binding on the two solute 
molecules is not independent (Problem 19-8), and we expect that the 
perturbation of one by the other will always be such as to lower the poten-
tial of mean force. This is confirmed by the second term in Eq. (19-68), 
which is always negative. 

The coefficients in Eq. (19-68) can also be expressed in terms of I 
and 8 2, where the averaging here is the same as in Eq. (19-67) [thus I 
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is e q d  to iV/Z in Eq. (19-60) in the limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--* &that is, isolated 
solute molecules] : 

(19-69) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf = 20 + 82, 

Also, it is easy to show that (Problem 19-9) 

3 - z2 = Z*[P - @121. 

(19-70) 

Consider the special case in which A (or the concentration of A) is 
chosen so that Z = 0; that is, two solute molecules far from each other 
(r = 00) in the outside solution would have zero charge on the average. 
An equivalent statement is that A is chosen so that the average charge 
on a solute molecule is zero (“isoionic point ”) in the l i t  as p 4 0. Then, 
from Eq. (19-68), 

-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) ‘f (4 . (19-71) 

This equation tells us that if the two solute molecules are brought to- 
gether to finite r, then w will be negative. The reason for this is the follow- 
ing: when the (fluctuating) charge number z, on one of the two solute mole- 
cules happens to be, say, negative, this will increase the probability of the 
other charge number z8, being positive [war, will be negative and hence 
this ss‘ combination gets extra weight in Eq. (19-58)]. Thus there is a 
correlation between the fluctuating charges on the two solute molecules 
tending to favor charges on them of opposite sign. This is closely analogous 
to (a) the net attraction between rotating dipolar molecules in a gas 
which arises from a correlation between molecular orientations favoring 
those mutual arrangements with negative potential energy, and to (b) 
the origin of London dispersion forces (Appendix IV). 

Incidentally, for simplicity we have assumed from the outset that wSa, 
depends only on the total numbers of A molecules bound, s and s’, and 
not on how these molecules are distributed among solute sites. It is clear, 
however, that if the A molecules are charged, the interaction was. will 
involve not only the total charges we have been concerned with but a h  
electric moments depending on particular A distributions. In this more 
general situation, then, there will be a contribution to a negative w(r) in 
Eq. (19-71) not only from total charge correlation but also from a cor- 
relation between electric moments associated with the distribution of A 
molecules among available sites on the two solute molecules. 

The simplest model to which we can apply Eq. (19-71) is the following: 
each solute molecule hns m independent and equivalent sites for binding 
A molecules; q is the partition function for one A molecule bound on 
one site; and YO is the same for all 8 (we neglect the dependence of 7’ 

kT - - 2 
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on X). Then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see Problem 7-9) 

(19-73) 

The form (19-73) is eseentially the same as Eq. (11) of Kirkwood and 
Shumaker. 

Finally, we calculate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABk, for use in n/kT or ln7, from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwE1, of 
Eqs. (19-62) and (19-63). Comparison of Eq. (19-66) with the expansion 
of eelkT from Eq. (19-42) shows that B’, is given here by Eq. (19-43) 
but with z2 replaced by (E)2 and z4 replaced by (2)2. In the special 
c88e i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 (“isoionic” at p = 0)) B’, can be written 

(19-74) 

where K refers to the outside solution. The first term is positive and 
the second is negative. At sufficiently low ionic strengths, the second 
term predominates (Problem 19-10). Equation (19-74) is the same as 
Eq. (17) of Kirkwood and Shumaker.* 

193 constant pressure solution the0ry.t The solution theories of 
McMillan and Mayer and Kirkwood and Buff are based on the grand 
canonical ensemble and open system distribution functions. The natural 
composition variable is the concentration, since the system is at conatant 
volume. These theories are formally exact and necessarily equivalent 
through suitable thermodynamic manipulations. In the present section 
we discuss an alternative, rigorous solution theory designed to yield di- 
rectly thermodynamic functions expressed in a particularly practical 
form. For example, for a binary solution, the chemical potentials and 
partial mold volumes, entropies, and heat contents can be developed as 
power series in the molality of the solute, with coefficients which depend 
on properties of the solvent (and small sets of solute molecules) a t  the 

* 8. N. TIMASHEFF, el d., J .  Am. chem. Sm. 79,782 (1957) for an experi- 
mental confirmation. 

t See T. L. HILL, J .  Am. Chem. Soe. 79, 4885 (1957); J .  Chem. Phys. 30, 93 
(1959). 
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same pressure and temperature as the solution. The pressure (instead of 
the volume) is held fixed at  the outset, and hence molality is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa natural 
coinposhion variable. One can substitute mole fraction for molality as 
composition variable, but we shall not discuas this possibility here. 

We rcstrict the treatment to binary solutions (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= solvent, 2 = solute) 
and usc a method which is closely analogous to that in the first part of 
Section 19-1. In Section 19-1, to prepare the solution we start with 
pure solvent at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp l  and T and add solute, holding p l  and T constant (thii 
is accomplished by use of a semipermeable membrane). The pressure 
changes as we add solute (the increase in pressure is 11, the osmotic pres- 
sure). Here, on the other hand, we start with the same pure solvent but 
choose p and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT as independent variables (instead of p l  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT). We 
then add solute holding p and T constant. In this latter case, the solvent 
chemical potential changes. Hence the change in solvent chemical poten- 
tial plays a role analogous to that of II in Section 19-1. 

To obtain the desired independent variables, we use an ensemble 
apparently first introduced by Stockmayer (in a study of the relation 
between light scattering and composition fluctuations) : 

r(N1, p ,  T, p2) = e-Nlrl'kT = A N ~ ( N I ,  P, T)eNapaIkT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ (19-75) 
Na>O 

where 

 AN^ = z Q ( N 1 ,  N2, V, T)e-"IkT. (19-76) 
V 

The partition function  AN^ is the p, T, R partition function already 
encountered several times [e.g., Eqs. (1-87) and (1-91)]. The partition 
function r is a "semigrand" partition function for a system, at  p and T, 
open with respect to 2 but not with respect to 1. The right side of 
Eq. (19-75) is seen to be a power series in the absolute activity of the 
solute, X2 = eraikT, with coefficients which depend on properties of the 
solvent (N1, p ,  T )  containing small numbers (N2) of solute molecules. 

For convenience, we replace the absolute activity A2 by a more practical 
activity a2, proportional to X2, but defined in such a way that (as will 
be seen below) a2 + m2 as m2 + 0, where m2 = R2/N1. We shall 
refer to m2 as the "molality" of the solute, though this differs from the 
conventional molality, 1000m2/W1, by a constant (Wl is the molecular 
weight of the solvent). 

The substitution of a2 for X2 in Eq. (19-75) gives, after dividing by 
the leading term, do, 

(19-77) 
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where 

We note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= N1. The logarithm of the quotient 

(19-79) 

in Eq. (19-78) has the physical significance of a Gibbs free energy change, 
as indicated, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF = -kTlnA in general. In Eq. (19-80)) AFN is 
the free energy change (non-pV work done on the system by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmu- 
roundings) for the process 

N system with N1, N2 = 1, p ,  T + 

1 system with N1, N2 = N ,  p ,  T 
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG - 1 (solvent) systems with N1, N, = 0, p ,  T. 

We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan manipulate Eq. (19-77) just aa we did Eqs. (15-6) (imperfect 
gas) and (19-10) (osmotic system). We first note that 

N I P I ~ ,  T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) = --kTh Ao, 

where p l (p ,  T, 0) is the chemical potential of the pure solvent. Then 
if we define 

Pib, T, ma) = Pl (P ,  T, m2) - Plb, T, 01, 

we have (Eq. 15-7) 
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we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m2(pl T,  02) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC jej(p, q a i .  

In Y)2(p, T, m2) = - C &(p, T)m!i, 

(19-84) 
j> 1 

The inverse of Eq. (19-84)) in logarithmic form (Eq. 15-20), is 

(19-85) 
kL  1 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY), (the solute activity coefficient) = a2/m2, and where 

etc. Finally, if we replace a2 by m2 as independent variable in Eq. (19-81), 
by use of Eq. (19-85) we find 

(19-87) 

where 

(19-88) 

Equation (19-87) is the fonnal equivalent of the virial expansion of an 
imperfect gas. Equations (19-85) and (19-87) give essentially the expan- 
sions of the two chemical potentials in powers of the molality. 

Dilute solution. In a dilute solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7; + 1 and a2 + m2, according 
to Eq. (19-85). Hence, from Eq. (19-79)) 

n - 1  c --- n -  12 an-1. 

p2 = kT In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(y) + kT In m2 (ma + 0). (19-89) 

In the notation of Section 19-1, we also have 

~2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&T) + kT lnf2 (19-90) 

(19-91) 

wheref2 = fugacity of solute, z2 = mole fraction of solute, k2 = Henry’s 
law constant, and p! = chemical potential of solute gas :.t unit fugacity. 
Since 2 2  + m2 as m2 + 0, comparison of Eqs. (19-89) and (19-91) 
yields, for the Henry’s law constant, 

= r!CT) + kT In M p ,  TI22 (22 + 01, 

(19-92) 

(19-93) 
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then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAF is the Gibbs free energy change for the process 

System with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN1, N2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, p ,  T 

sptem (solvent) with N1, N 2  = 0, p ,  T 

1 molecule of solute in gas at  f2 = 1. 
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Of course, when the solution is not dilute, fa = k2m2Y; in Eq. (19-90), 
and m2 is replaced by m2Y', in Eq. (19-89). 

For the solvent, we have in general 

f l  - A =  - In - ,  
kT R 

wherefl is the fugacity of the pure solvent. For a dilute solution (Raoult's 
law) 

- A -  - In (1 - z2) -, 2 2  -, m2, (19-95) kT - 

in agreement with Eq. (19-87). 
O m t i c  pressure. We omit series expansions (Problem 19-11) for the 

partial molal volumes, heat contents, and entropies,t and the correspond- 
ing extensive properties, but we consider the osmotic pressure briefly. 
Suppoee we have osmotic equilibrium between the solution at p, T,  mz 
and the pure solvent at p - II, T :  

Therefore, from Eqs. (19-87), (19-96), and (19-97), 

This equation determines II as a function of p, T,  and ma. If the pure 
solvent is incompressible, the left side becomes IIul/kT. 

Exumpk. Consider the following simple model. The solvent is an 
inert incompressible fluid of volume VO = N ~ I ,  whose only role is to 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASee T. L. HILL, J .  dm.  Chem. SOC. 79, 4885 (1957). 
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provide a suspension medium for solute molecules. The solute molecules 
are monatomic and interact with each other. These interactions are 
characterized by imperfect-gas type virial coe5cients Bi(T), Bg(T), etc. 
The configuration integral for solute molecules, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPN, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be written in 
terms of the viriil coefficients as follows [Eqs. (15-13) and (15-M)]: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2: = v,  

2; = -2VBg + V2, 09-99) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2: = -3VBg + 12Va2 - 6V2Bf + V8. 

The solution is also assumed incomprnible, with volume 

V = Vo + N.9~2. 

For the pure solvent we write 

where 6(V - Vo) is the Dirac &function (introduced because of incom- 
pressibility). In general 

mhereZ$/N!A#N is the canonical ensemble partition function of the solute 
molecules, with the PN given by Eqs. (19-99). Then, from Eq. (19-76), 

e-P(Yo+N"a)lkTQ&~( Vo + Nu2) 
AN = 

N ! A ~ ~  

and 

For example, to terms in Nla, 
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The osmotic pressure is given by 

Pi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA---- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
kT - kT' 

which can be shown without difficulty (Problem 19-12) to be equivalent to 

(19-102) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as expected [see Eq. (19-13)]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Relation to McAfihn-Maver theory. The coefficients B: of Section 19-1 
and the Cn in this section are properties of the pure solvent under the 
same conditions: pl, T, and p b l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  or p, T, and p l ( p ,  T). We expect 
therefore that general relations exist between the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB*, and the C;, [Eqs. 
(19-101) refer to a special cam only]. From thermodynamics we findt 

(19-103) 

and a similar but more complicated relation between C3 and B:, where 
V!j is the value of V2 (partial molal volume) in the limit aa m2 + 0; u1 
(Problem 19-4) is the value of (ap l /ap2)~ , , , ,  for the inside solution in 
the limit aa p2 + 0; and 01 is the volume per molecule in the pure solvent. 
In the example immediately above, a1 = -v2/01, V: = US, and therefore 

26'201 = 2Bg - V B  + 

Caul = B f  - 02, 

in agreement with Q. (1SlOl). 
-- 

t T. L. HILL, J .  C h .  Phys. 30, 93 (1959). 
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I'BOBLEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

19-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFind the characteristic thcrrnodynamic function associated with the 
partition function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUN, in Eq. (19-2) and its relation to othcr thermodynamic 
functions [as in Eq. (1-73), for example]. (Page 342.) 

19-2. Replace the sum in 90 and U1 by a single term with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= r1 and show 
that, for monatomic molecules, 

(19-104) 

[wc Eq. (19-20) for notation]. Givc a physical intcrprctntion of this equation. 

19-3. Use Eqs. (8-28), (15-5), and (15-8) to show that for, say, a pair of 
(Page 343.) 

"hard" right circular cylinders, 

where w is a function of 212~81~02,  9 1  , and 9 2  (w = +.o for cylinders ovcrlapping 
and w = 0 otherwise). (Page 351.) 

19-4. It can be shownt that the inside/outsidc conccntration mtio of n 
diffusiblc species k in an osmotic equilibrium is givcn by 

1 + bll(k)p + ' * ' J (19-105) 

wherc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbl l (k)  is a cluster integral of the form (15-52) involving the potential of 
mean force wll(k) ,  in the outside solution, between one solute molecule and one 
molecule of species k. (a) If the solute ions are spheres of diameter a and total 
surface chargeze, if all other ions are treated as point charges (see Problem 18-10) , 
and if an ion of species k has a charge zke, then wii(k)  is given by Eq. (19-42) 
with a replaced by a/2 and z2 by n k .  Show that 

P i  2=  

(b) If the solute binds A ions, show that 

whcrc the averagea aw defined by Eq. (19-67). (c) Show that in a two-com- 
ponent osmotic system, Eq. (19-105) leads to a1 = bil/v1, where a1 is the quan- 
tity appearing in Eq. (19-103). (Pages 352 and 368.) 

t T. L. HIU, J .  Am. Chem. Soc. 80,2923 (1958). 
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19-5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAShow that the term in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAra in Eq. (19-41) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa consequence of (a) the 
condition of electrical neutrality in the outside solution, and (b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= z@J(r) 
for an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAij pair of ions in this solution, where f(r) is arbitrary. (Page 353.) 

19-6. Show that the w(r) defined by Eq. (19-58) is the potential of the mean 
force between two solute molecules if w,,,(r) is the potential of mean force 
between an s-solute and an s’9olute. (Page 358.) 

19-7. Show that (19-61) is equal to aB’,/a In X. (Page 359.) 
1W. In the special case (19-62) through (19-70), 8 is the mean value of (I 

for a pair of solute molecules separated by r = QO in the outaide solution. 
(a) Let 3 be the mean value of s for a h i t e  separation r. Show that 

3 = 8 - *[3 - (S)Tf(r) + - 
and give a physical interpretation of the result. (b) Let 8 be the mean value of 
(I on one solute molecule of a pair if the other solute molecule is at r and has B 
fixed charge number zar. Show that 

8 = 8 - zq@ - (a)Tf(r) + * 
and interpret the result. (Page 360.) 

19-9. Derive Eq. (19-70) for 3 - if from 7 = &PH,AaE,€I,A*. 

19-10. In Eq. (19-74), put a = 60A, ZZ = 16, T = 298.l0K, c = 78.5, 
and determine the approximate concentration in moles.liter-l of a 1-1 elec- 
trolyte (outside solution) at which the two terms making up B!! have the same 
magnitude. (Page 362.) 

19-11. Obtain expansions in powers of ma for 61, iil and d in a binary 
solution at p, T, ma. (Page 366.) 

19-12. Verify Eq. (19-102) for II/kT. (Page 368.) 
19-13. Diacuw the problem of an ieomeric chemical equilibrium between two 

solutes in a very dilute solution at p and T (solutes = A, B; solvent = 1; use 
mA = W A / N ~  and mB = W B / N ~  as composition variables). 

19-14. Find an expression for b, the Henry’s law constant, in a dilute binary 
solution (B = solute, a = solvent), from Eq. (17-21). 

19-1s. Translate Eqs. (15-40) through (15-49) into corresponding equations 
for a b i i  solute in the McMh-Mayer theory. 

19-16. Show, from the general B!! referred to just preceding Eq. (19-74), that 

(Page 361.) 

- -  - 
a s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz&P - (a)’] - - 8%) + 2t0(P - (a>S1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

alnx’ c 4 0  4- KaI2C 

8-m~ RFADXNQ 

MCMILUN, W. G., and MAYEE, J. E., J .  Chem. Php.  13,276 (1946). 
S. M., Chapter 6. 
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THEORY OF CONCENTRATED SOLUTIONS 

The methods employed in the previous chapter made possible a rigorous 
formulation of the theory of dilute solutions. But these methods cannot 
be extended in a practical way to concentrated solutions. If a phase sep 
aration occurs in the solution at  higher concentrations, the methods of 
Chapter 19 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare not applicable even in principle beyond the concentration 
of phase separation (because of divergence of the series expansions). In 
view of the fact that we are interested in the entire concentration range 
here, approximate theories must be introduced. 

This situation is completely analogous to that in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases and liquids: 
the imperfect-gas theory of Chapter 15 had to be discarded in treating the 
theory of liquids (Chapter 16). 

It is particularly appropriate to give only a brief introductory treatment 
in this chapter because of the existence of the two recent and excellent 
monographs on this subject by Guggenheim and by Prigogine (see Sup- 
plementary Reading list). In particular, these books should be consulted 
for detailed comparisons between theory and experiment. Section 20-1 on 
the lattice (or "strictly regular") theory of solutions may serve as an in- 
troduction to Guggenheim's book, and Sections 20-2 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20-4 are related 
in the same way to Prigogine's book. 

We study only binary solutions in Sections 20-1 to 20-3. But the meth- 
ods discussed can all be extended to any number of components. 

2+1 Lattice theory of solutions. In this section we consider a model 
of a binary solution which is d c i e n t l y  idealized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that we can take over 
the results of Chapter 14 on lattice statistics with only notational changes. 
The model is more nearly appropriate for a solid eolution, but it is usually 
applied to liquid solutions. 

The system is a condensed, incompressible solution containing N A  and 
N g  molecules of the two components at  temperature T. The molecules 
occupy sites of a regular lattice; there are no vacant sites. Each site has 
c nearest-neighbor sites. The lattice is rigid, that is, it has a fixed volume 
per site. The volume V is then not an independent thermodynamic vari- 
able, since it is simply proportional to N A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ Ng = M (total number of 
sites). Hence, this model omits all pY effects. The molecules are spherical 
or effectively spherical and the two s p i e s  are of approximately the same 
size (otherwise they would not be interchangeable on the same lattice). 

871 
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Each molecule vibrates about a lattice site with a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(threedm * ensional) 
partition function qA(T) or q B ( T ) ,  independent of the state of occupation 
of neighboring sites. If the molecules are plyatomic, QA and qB include 
the rotational and internal vibrational degrees of freedom. We take into 
account nearest-neighbor interactions: the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApair interaction energies are 
denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWAA,  WAB, and WBB. That isj W A A  = UAA(a) ,  etc., where a 
is the nearest-neighbor distance. We treat the w’s as constants, though 
we could consider them functions of temperature. Usually all the w’8 have 
negative values. 

The thermodynamic equations for the Helmholtz free energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 

If we rewrite Eq. (20-1) as 

d A  = -S dT + p~ d(Nn + N B )  4- (PA - p ~ )  dNn, (20-3) 

we have the analog, term by term, of the equation 

d A  = - S d T  - @dM + p d N  (20-4) 

for a lattice gas, where we have made the arbitrary association: occupied 
site c* species A .  

The canonical ensemble partition function for the solution is 

The notation is essentially the same as that in Eq. (14-20); the function 
g is that of Chapter 14. We introduce [see Eqs. (14-19)) (14-27)) and 
(14-2@1 

W = WA.4 + W B B  - 2WABj (20-6) 

(20-7) 

(20-8) 

CNA = ~ N A A  + NAB, 

CNB = ~ N B B  + NAB, 

into Eq. (20-5) and obtain 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= eWIaT. The sum is now exactly the sum which occurs in lat- 
tice-gas theory [see, for example, Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(14-29)]; we denote it by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC (a func- 
tion of NA,  M, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT), below. 

Incidentally, we note that in this model pure A [put N B  = 0 in Eq. 
(20-9)l has the partition function 

Q(NA, T )  = (qAe-CwAA/2kT 1 ,  NA 

as in an Einstein crystal. If the solution is supposed to be a liquid, then 
QA should include a communal entropy factor e [see Eq. (16-22) and Sec- 
tion 20-21. The interaction potential energy in pure A, relative to infinite 
separation as zero, is seen to be CWAANA/~ ,  as expected. The chemical 
potential C(A and vapor pressure p i  of pure A are 

assuming the vapor is an ideal gas. There is, of course, a similar equation 
for component B. 

Ideal solulion. The first special case of Eq. (20-9) that we consider is 
w = 0; that is, W A A  -k WBB = 2WAB. This means that, energetically, 
A and B molecules "like" the opposite species aa well aa their own species; 
or, that there is no energy change when an A molecule which is completely 
surrounded (nearest neighbors) by A molecules and a B which is sur- 
rounded by B's exchange places with each other. In Eq. (20-9)) x = 1 
and, as in Eq. (14-4), 

This corresponds to the ideal lattice statistics of Chapter 7. We can now 
put Eq. (20-11)  for C in Eq. (20-9) and find the thermodynamic func- 
tions of interest. For example, 

where XA (not to be confused with x )  is the mole fraction NA/ (NA + N B )  
of A in the solution, and where P A  is the partial pressure of A above the 
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FIG. 20-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVapor pmsun: curves for I3ragg-WiUiams binary solution. 

solution. Using Eq. (%lo), 

Thus with this model, Raoult’s law is obeyed over the whole composition 
range (Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20-1) when w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. It should be recalled that, besides w = 0, 
we are also imposing the implicit condition that A and B molecules be 
near enough in size to’fit into the =me lattice. In thermodynamiq a 
solution exhibiting the behavior (20-12) is called “ideal.” 

Component B also follows Raoult’s law, of course. This is, in fact, a 
purely thermodynamic consequence of Eq. (20-12) for A (Problem S l ) .  

From the standard canonical ensemble equations (Section 1-4), we 
find for the entropy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN A  ( kT- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘tf;;.“ + k lnqA)+ N B  (kT + klnqa) 

The last zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAterm arises from the configurational degeneracy. If we define 
AS,,, (“entropy of mixing”) as the entropy change in the process 

N A  molecules of pure A at T 

N g  molecules + of pure B at T )+ NA,  NB,  T, 
solution 
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FIQ. S 2 .  Entropy of mixing in an ideal solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA88 a function of mole 
fraction of component B. 

then 

In ordinary solution thermodynamics, "mixing" is defined at constant 
p and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, but we need not specify p above because of the abaence of pV 
effects in this model. The function (20-14) is plotted in Fig. 20-2. We 
find a h  

AE,=o. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' (20-16) 

Bragg-Williams zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAapproxinuata'm. We recall that in this approximation 
(Section 14-4) the molecules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare assumed to be distributed among sites 
in a random fashion, despite molecular interactions. Equation (20-9) 
becomes in this cam 
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0 0.2 0.4 0.6 0.S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X B  

FIG. 20-3. Critical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvapor prrssurc curves for Uragg-Williams binary solution. 

and therefore 

(20-18) 

with an analogous equation for p ~ / &  (Problem 20-1). We plot Eq. 
(20-18) in Figs. 20-1, 20-3, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20-4 for various choices of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm/kT.  

In Fig. 20-1, the value m/kT = 0 leads to ideal behavior, as already 
mentioned. If we take w negative, say m/kT = -2, this means, accord- 
ing to Eq. ( 2 0 - G ) ,  that W A A  + W B B  is more negative than 2wAB ( A A  
and BB pairs are more stable, energetically, than A B  pairs). This gives 
so-called “positive” deviations from Raoult’s law, as shown in the figure: 
the presence of B molecules increases the “escaping tendency” of A mole- 
cules, and vice versa, compared to ideal behavior, because of the “dislike” 
of A and B for each other relative to A for A and B for B. When w is 
positive, we have, on the other hand, “negative” deviations from ideality 
(Fig. 20-1, m/kT = 4). 

We found that m/kT = -4 leads to critical behavior in a lattice gas 
(Section 14-4). The same is true here, as should be expected, and as can 
be seen in Fig. 20-3. When m/kT < -4, the tiqo components are no 
longer miscible in all proportions; over part of the composition range we 
get a separation of the solution into two phases of different composition 
(Fig. 20-4). In one phase the majority of molecules are of type A and in 
the other, of type B. We can understand this as follows: if A A  and BB 
interactions are sufficiently favored over AB interactions (or if the tem- 
perature is low enough), the system splits into two solutions with excess A 
in one and excess B in the other in order to have the advantage of a larger 
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FIQ. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20-4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVapor preaaure curves for Bragg-Williams binary mlution showing 
phase separation. 

number of AA and BB interactions. The location of the horizontal line 
(stable equilibrium curve) is fixed in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20-4 by the thermodynamic 
requirement that the chemical potential (or vapor pmure)  of each com- 
ponent be the same, at equilibrium, in the two solutions of different 
composition. 

It will already be apparent to the reader that this very simple (lattice, 
Bragg-Williams) theory of solutions predicts correctly some of the most 
important qualitative features observed experimentally with binsry solu- 
tions. Of course, the theory cannot be expected to be satisfactory in a 
quantitative way. 

We can also easily derive from the Bras-Williams Q (Fq. 20-17) the 
following "mixing" properties (F'roblem 20-2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

The entropy of mixing is the same as for an i dh l  solution. This is a con- 
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FIG. 20-6. Free zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAenergy of mixing for Bragg-Williams b u r y  solution at 
temperatures above and below the critical temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(no/kT, = -4). 

sequence of the "random distribution" assumption in the Bragg-Williams 
theory. If w is negative (AA,  BB more stable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthan AB), the energy of 
mixing is psitive, as expected. The free energy of mixing is plotted in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 20-5 for m/kT = -3 and m / k T  = -4.5 (phase separation). The 
horizontal line (mixture of two solutions of Merent composition) is the 
stable equilibrium curve. This curve has 8 lower free energy than the 
dashed metsstable curve. 

It is useful for many purposes in the study of solutions to define "excess" 
quantities relative to the values the quantities would have if the pure 
components at a given pressure and temperature formed an ideal solution 
(at the same pressure and temperature). For example, for the entropy, 

hs, = s - 8 (ideal) = A& - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhs;, (ideal). (20-22) 

Thus, in the Bragg-Williams approximation, 

In experimental work it is in general found that AE, and T AS, are of 
the same order of magnitude. The fact that the present approximation 
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predicts AS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 is therefore a serious fault. In the next subsection we 
find that higher approximations (lattice model) do not improve this 
situation appreciably. 

Other criticisms of the lattice model, which, incidentally, are also in- 
dependent of the order of approximation uaed in treating the model, are 
the omission of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApV effects and the predicted symmetry in various proper- 
ties about XA = 3, which is not always observed experimentally. 

It is somewhat more troublesome to 
rederive binary solution equations in this approximation, so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinstead we 
take over results from Section 14-5 (lattice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas in the same approximation). 
To do this we take advantage of the fact that QBas in Eq. (14-29) and 
&solution in Eq. (20-9) contain the same sum C. From Eqs. (20-3, (20-4)) 
and (14-62) we have 

@m&chemiual approximation. 

where 

Then 

Equations for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP A  and P A  may now be written down by symmetry consid- 
erations. The qualitative behavior of the vapor pressure equations is 
the same as in Figs. 20-1, 20-3, and 20-4. The critical temperature is 
given by Eq. (14-63). 

The free energy is 

From Eq. (20-26) and its counterpart for component A, we have then 

The total nesrest-neighbor (“configurational ”) interaction energy, 
Econtig) is, from Eqs. (20-6) through (20-8), 

Econtii = N ~ A W A A  + N ~ B W A B  + N~BWBB 
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where 

Then 

The expression for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ASe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= AE, - AA, then follows from as. (20-28) 
and (20-29). 

The significance of the results for the excess functions can best be seen 
by converting them into (high-temperature) power series in cw/kT. We 
find (Problem 20-3) 

Actually them series are exact, for a lattice model, as far as they go (in 
fact the quasi-chemical equations also give the exact cubic termst). The 
linear terms are just the BraggWdliams results (see Problem 1417); they 
are associated with random mixing (T + 00). The quadratic terms are 
the first corrections for nonrandom mixing. Note that AS, is always 
negative, as should be expected in this model from any reduction in ran- 
domness. But experimentally, AS, is sometima positiue. 

To get an idea of the orders of magnitudes involved in the above equa- 
tions, let us take a numerical example: X A  = X B  = 0.5, c = 10 (a good 
average for a liquid), and m / k T  = -4 (a rather low temperature). Then 

We see that the correction for nonrandomness is very small. Incidentally, 
the ideal mixing terms that have been subtracted out here [Eqs. (20-14) 
and (20-15)] are In 2 = 0.69 for the entropy and -0.09 for the free 
energy. The main conclusion we reach is that improvement of the Bragg- 
Williams approximation does not provide an excess entropy term T AS, 
of the same magnitude as AE,, as found experimentally. This difficulty, 

t See Guggenhcim, pp. 62-70. 
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as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwell as the fact that AS, is always negative, is therefore a property of 
the lattice model itself and not of approximations introduced in deriving 
thermodynamic functions from the model. 

However, it should not be concluded from the above discussion that 
nonrandom mixing corrections are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnever important. For example, the 
location of the critical point is quite sensitive to such corrections zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[see 
Eq. (14-63)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet seq.]. 

Because of the small correction found for ASe in Eq. (20-32), the ap- 
proximation of random mixing can appropriately be introduced, for mole- 
cules of like size, in lattice or cell solution theories that are otherwise 
fairly sophisticated (e.g., Section 20-2). Random mixing should not be 
assumed in such theories, however, if the molecules are very different in 
size (say have more than a 25% difference in diameters). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Solid sdutim and alloys. The lattice theory of solutions has been ap- 
plied recently by Halsey et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal., in considerable detail, to solid binary solu- 
tions of the rare gases.* One would expect that this kind of system would 
put the lattice theory in the best poasible light. But, at least for argon- 
krypton solutions, the conclusion is reached that the experimental results 
cannot be explained by the present lattice model. We shall not attempt a 
comparison between experiment and the above equations because w was 
treated in Halsey’s work as temperature-dependent. Negative values of 
w and critical solution phenomena are observed. 

Another example of the application of lattice theory to binary solid 
solutions is found in the so-called orderdisorder transitiont in alloys 
(e.g., /3 brass, an alloy of copper and zinc). In this cme w is positive and 
phase separation does not occur. However, a higher-order transition 
(“order-disorder”) is observed, for example, in the heat capacity as a 
function of temperature at  constant composition (say 24 = 0.5). The 
experimental heat capacity curves resemble thc square lattice curve in 
Fig. 14-3. Qualitatively, the nature of the transition is the following. 
Suppose the lattice is simple cubic and ZA = 0.5, for ease of discussion. 
At low temperaturea, because of the greater energetic stability of AB 
pairs relative to A A  and BB, the molecules will tend to arrange them- 
selves alternately in the lattice (.. . ABAB.  - .), as for example in a 
crystal of NaCl. There is also a second and equivalent way to do this 
(. BABA . .). In either case there is long-range configurational order of 
the type found in crystals but not in liquids (or in a solid solution when w 

* J. F. WBLLINQ and G. D. HALSEY, JR., J .  Chem. Phys. 30, 1514 (1959); 
J .  Phys. Chem. 62, 752 (1958); J. H. SINQLETON and G. D. HALSEY, JR., J .  
Phys. Chem. 58, 1011 (1954); M. FREEMAN and G. D. HALSEY, JR., J.  Phys. 
clrem. 60,1119 (1956). 

t See Guggenheim, Chapter 7, for dctails. 
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is negative). The extent of long-range order varies with temperature and 
completely disappears above a critical temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,. Hence the term 
“orderdisorder transition.” It can be shown rigorously, by a symmetry 
argument,* that the heat capacity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a function of temperature, of a lat- 
tice model with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.5, is the same for a given magnitude of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, whether 
w is negative (phase separation below Tc: AAA - . . B B B . . - )  or 
positive (long-range order below T,: - - ABAB - - a). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASee, for example, 
Fig. 14-3. It follows from this that the temperature Tc of the transition 
is the same for the two systems (w positive or negative). For a square 
lattice, e--lwl’2kTe = fi - 1 exactly (Section 14-3)) but the exact 
theoretical critical temperature is not known for any three-dimensional 
lattice. 

Experimental heat capacity curves for binary solutions with negative 
w, at fixed (critical) composition, have been obtained recent1y.t They 
resemble Fig. 14-3, as expected. 

20-2 Cell theories of binary solutions. We saw in the preceding section 
that our earlier study (Chapter 14) of lattice problems could eaaily be ap- 
plied to binary solutions. Our object here is very similar: to show how the 
LJD cell theory of liquids (Section 16-2) can be extended to include binary 
solutions. 

Our starting point is a modification of Eq. (20-5). We assume that the 
molecules are similar in size and that we have a lattice with every site 
(cell) occupied by an A or a B. The nearest-neighbor number is c and the 
nearesbneighbor distance is a. In view of our findings in Section 20-1, 
we amme further that we have a random distribution of molecules among 
sites. Then we write 

where W is the average configurational potential energy, calculated on a 
random-distribution basis, with each molecule at  the center of its cell. 
That is, 

W = W ~ A W A A  + RABWAB + RBBWBB 

(20-34) -- - (&wAA + 2zAxBwAB + &wBB).  

So far we seem to have just Eq. (20-17) for the Bragg-Williams lattice 

* See 8. M., Chapter 7. 
tG. Jmm, D. FRAQA, G. MAKI, and J. H. HILDEBRAND, Proc. Nd. Acad. 

Sci. 39, 19 (1953). 
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theory. But now we introduce a refinement, which brings in the LJD 
theory. We evaluate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQA and QB explicitly by a cell calculation of the LJD 
type, sssuming that the c neighbors of a given molecule, smeared uni- 
formly over the surface of a sphere of radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, consist of CZA A molecules 
and CZB B molecules (again using the random distribution assumption). 
Thus qA and qB are now not only functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT but also of 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= V / M  
and X A  (or ZB) .  Unlike the lattice theory, the present treatment does not 
make the solution incompressible, and Y is an independent thermodynamic 
variable as it is in real solutions. V is related to a by Eq. (16-24): as = 
YU, where ordinarily we take Y = 4 (and c = 12). The thermodynamic 
equation for the Helmholtz free energy is 

d A  = -8 dT - p dV + P A  dNA + PB dNB, (20-35) 
A = --kTlnQ. 

Let us now begin to change notation to conform with Section 16-2. 
For each type of pair interaction, we uee the Lennard-Jones potential 
(16-28) with parameters BAA,  r$A,  C A B ,  r$B, etc. Incidentally, in numerical 
calculations, in the absence of other information, one usually takes (Q. 

BAB = ( E A A C B B ) ” ~ ,  

15-53) 

We assume A and B are both monatomic, so that 

as in Eq. (16-22). Polyatomic molecules with effective spherical sym- 
metry can be treated simply by changing the definition of A(T)  (Problem 
20-4). The factor e is included, rather arbitrarily, for a liquid (see Section 
16-2). Actually, this factor or any other constant factor will have no ef- 
fect on the equation of state, on excess or mixing properties, or on p ~ / p % ,  
etc. The free volume for an A molecule is (Eq. 16-25) 

#‘A = (PA(r) - PA@), 

where is the potential energy of interaction of an A molecule in its 
cell a t  r with ita C X , ~  A neighbors and CXB B neighbors. Instead of 
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Eq. (16-27), we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(PA(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ZAuAA(R) + x B u A B ( R ) ]  sin @do. (20-38) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
On writing out XAUAA + XBUAB in detail, using the LennardJones zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo- 
tential, we see that this quantity is equivalent to a single potential UA(R) 
with average parameters C A  and r:, which are functions of composition, 
determined by 

e A r t s  = 2 A e A A r t I  + XB‘fABrt%, 

(20-39) 

These equations can easily be solved for C A  and r y .  Thus +A, (PA(O), and 
uf depend in exactly the same way on CA and uf = r?/r as do +, (p(O), 
and vf on a and u* in Eqs. (16-34) through (16-36). For example, if 
g(v * /u ,  e/kT) is the function in Eq. (16-36)) then 

V/” = %a8g(u*A/u, C A / k T ) ,  

where u*n and c-4 are functions of ZA. Completely analogous results are 
of course found for v f ,  etc. This means that numerical tables computed 
for the one-component liquid W D  theory can be employed here without 
alteration. 

e A r t I 2  = tAe.4Arz\2 + XBcABr*Ag. 

For the interaction potential energy in the LJD notation, we have 

where, from Eq. (20-38)) 

Q A ( 0 )  = d n A u A A ( a )  + z B u A B ( a > l ,  

Q d O )  = C [ n A u A B ( a )  + zBuBB(a ) l -  

It is easy to see that Eqs. (20-34) and (20.40) are the same, since W A A  = 
UAA(U) ,  etc. 

The randomdistribution assumption can be pushed one step further 
in thii theory, to simplify matters a little more. Here we consider all cells 
as equivalent (as they are, on the average) and use a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsinsle. free volume uf 
based on a potential energy that is averaged (random distribution) not 
only over the two kinds of nearest neighbors but also over the two kinds of 
occupation of the cell itself (A or B). Thus, in Eqs. (20-33) and (20-36), 
instead of ( u , ” ) ~ ~ ( u ~ ) ~ B ,  we have u y ,  where 
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If we replace the expression in square bracketa by a single Lennard-Jones 
potential u(R) with average parameters e and r* (functions of composi- 
tion), we find that c and r* are determined by the equations 

which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAagain easy to solve. In this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase, then, we get the LJD functions 
(only one set this time) #, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(O), and LY in the same notation as in Section 
16-2, but we have to keep in mind the fact that e and r* (or u*) are func- 
tions of composition. 

The interaction potential energy is 

where, from Eq. (20-42), 

This is the same w as in Eq. (20-40). 

tion function in the single free-volume approximation is 
From Eqs. (20-33), (20-36), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(M), the canonical ensemble parti- 

or 

A 903 = X A  In A f  + X B  In A% - Inuje + x A  InxA + X B  III X B  + - 2kT ' 
(20-46) 

where vf is a function of v, T, and XA,  and ~ ( 0 )  is a function of u and 
X A .  The equation of state is found from 

Since uf and yb(0) are the same functions as in the WD theory [except for 
the dependence of c and v* on X A ,  which, however is constant in the dif- 
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ferentiation (20-47)], we get the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsum equation of state (but with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u* functions of ZA), (16-37). We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare usually interested in solution be- 
havior at low and constant pressure. In computational work, p = 0 
ie often chosen, since for a condensed phase. most properties are relatively 
insensitive to p. If we choose T and take p = 0 (or p = any constant), 
Eq. (16-37) then provides u = V/M as a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXA. 

Now A/MkT in Eq. (20-46) is a function of u, T, and ZA. If we want 
p, T, and ZA as independent variables, u can be determined as a function 
of these variables from the equation of state, (16-37). Therefore we may 
consider u in Eq. (20-46) to be replaced by u(p, T,  ZA), so that A/MkT 
becomes a function of p, T,  and ZA. 

We know from thermodynamics that for an ideal solution (defined by 
stating that the fugacities f~ and f~ obey Raoult's law), the quantities 
AV,, AEm, and AH,  are all zero, for mixing at constant p and T, while 
AS),, is given by Eq. (20-14). These properties require, in the present 
theory, #at for an ideal solution 

MkT 
-- Aide'~ - %A ~n at + 58 In A: - 24 In u j ( zA  = 1)e - 58 ~n o j ( z B  = 1)e 

The quantities labeled ZA = 1 and ZB = 1 refer to pure liquid A and B, 
and the independent variables are p, T, and ZA, as explained above. Hence 
u is in general different in the terms labeled ZA = 1 and ZB = 1 (i.e., 
pure A and B will usually have different molar volumes at  the same 
pressure). Equation (20-48) necessarily gives 

as required. Prom Eqs. (20-46) and (20-48)) we have for the excess Helm- 
holtz free energy, 

AAe -- MkT - ZA In U ~ ( Z A  = 1) + 58 In U ~ ( Z B  = I) - In U~(ZA) 

(20-49) 
+ do, 5.4) - ZAlb(Ot %A = 1) - z B V ( 0 ,  28 = 1) , 

2kT 

where p, T,  and ZA are independent variables and u is in general dif- 
ferent in the terms labeled ZA = 1, X B  = 1, and ZA. All terms in 
Eq. (20-49) contribute to AEe, but only the u j  terms contribute to ASe 
(Problem 20-5). The (p terms arc essentially equivalent to Eq. (2G23) 
in the Bragg-Williams lattice theory (Problem 20-6)) but are not exactly 
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the same because the nearest-neighbor distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is different in pure A ,  
pure B, and in the solution at  the same pressure. It is clear from the form 
of the uj terms that AS6 might be positive or negative. 

We shall not pursue this subject further in any detail. It is sufficient to 
say that Salsburg and Kirkwood* have made detailed calculations based 
on Eq. (20-45)) but with the added refinement of including three shells of 
neighbors in the calculations instead of only one. These authors have 
compared their results with a number of experimental systems. A very 
considerable improvement over the lattice theory is found, and complete 
qualitative agreement with experiment is achieved. In particular, AS6 
is calculated to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe of the correct order of magnitude, though always some- 
what too small. The theory gives the correct sign for AS6 (usually positive), 
unlike the lattice theory which always has AS6 < 0. Both AVe and AH, 
are in general too large (but the lattice theory does not even consider 
the volume: AVe = 0 always). Usually experimental values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAHe and 
AV6 have the same sign. We shall see that first-order conformal solution 
theory (Section 20-4) predicts that AHe and AV6 always have the same 
sign. Recent experimental cases in which these two quantities have op- 
posite signs have been observed (e.g., neopentane and carbon tetrachloride). 
The cell theory under discussion here correctly predicts this sign reversal 
in such cases. 

20-3 Random-mixing, corresponding-states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtheory. The treatment in 
the preceding section has one serious source of error, which is easy to rem- 
edy: it is based on WD theoretical functions for a pure liquid. If we set 
for ourselves the less ambitious goal of predicting properties of the solution 
from those of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApure liquid8 rather than from first principles, then instead 
of using W D  functions for the pure liquid state, we may use experimental 
(corresponding-states) functions. In this section we show briefly how this 
can be done. Otherwise we employ the methods (random mixing, average 
e and r*) of Section 20-2. As we should expect, since experimental in- 
formation is built into the "theory," agreement with experimental data 
on solutions is better, quantitatively, than with use of the LJD theory.? 

The method of this section was suggested independently by Brown,$ 
Prigogine et d.,# and Scott.# 

* Z. W. SALSBTJRQ and J. G. KIRKWOOD, J. Chem. Phys. 20, 1538 (1952); 21, 
2169 (1953). See also I. PF~IQOQINE and G. GARIKIAN, Phyica 16, 239 (1950); 
I. PRIQOQINE and V. MATHOT, J. Chem. Phys. 20,49 (1952); J. A. POPLE, Trans. 
Farahy Soc. 49, 591 (1953). 

I W .  B. BROWN, Phil. Trans. Roy. Soc. (London) 250, 175, 221 (1957); I. 
PRIQOQINE, A. BELLEMANS, and A. ENQLERT-CHWOLES, J. Chem. Phys. 24,518 
(1956); R. L. SCOTT, J .  Chem. Phys. 25, 193 (1956). 

See Prigogine, Chapter 11, for a detailed summary. 
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We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArecall [Eqs. (20-33) through (20-40)] that in extending the LJD 

theory to mixtures we passed from the one-component equation 

to the twwomponent equation 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuf and cp~(0) depend on the average parameters €1 and r t  deter- 
mined by Eqs. (20-39). Here the procedure is identical except that the 
starting point is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexperimental corresponding-states equation (16-45). 
That is, the one-component equation is) instead of (20-50)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

& - - [r.%(€/kT, ,,*,,IN 
AS J 

and the two-component equation is assumed to be 

where BA, r11, e ~ ,  and r*B are average values still determined by Eqs. 
(20-39). These equations refer specifically to monatomic molecules) but zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
if we change the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAusual definition of A(T) (see Problem 20-4), they also 
apply to polyatomic molecules (with effective spherical symmetry) that 
obey the law of corresponding states. 

Just as we used a single uj and (~(0) in Eq. (20-45), we can simplify 
(20-52) by writing 

where e and r* are averages found from Eqs. (20-43). 
We shall not extend this discussion any further. Prigoginet (Supple- 

mentary Reading list) goes into the subject in great detail. It will be ob- 
vious (Problem 20-7) from the LJD equations (20-46) through (20-49) 
how to compute the equation of state, AAa, etc. In fact, the LJD equa- 
tions may be considered a special case of the present discussion in which 
an approximute heretical function is used for instead of an empirical 
one. 

t Chapters 9 and 10. 
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20-4 Conformal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsolution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtheory. Equation (20-53) is an approximate 
equation applicable to a binary mixture of liquids, each of which obeys 
the law of corresponding states. In writing Eq. (20-53) we have assumed 
a random distribution of the two components in: (a) the configurational 
factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM!/NA!NB! ;  (b) the occupation of any given element of volume 
[this is implied in the use of a single zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*-see the discussion preceding Eq. 
(20-41)]; and (c) the occupation of an element of volume in the neighbor- 
hood of a fixed molecule of either component [this is implied in the use of 
average parameters r* and e from Eq. (20-43), based on a random dis- 
tribution]. Now there would r e d y  be random mixing and these assump- 
tions would be exact if both components had the same interaction param- 
eters (e.g., an isotopic mixture), say zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA€00 and r&. Similarly, in the lattice 
model, the random mixing assumed in the Bragg-Williams approximation 
is exact if w = 0. Actually, the sasumption of random mixing in the lab 
tice model leads to the exact jirst-urder or linear zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAterms if we use expansions 
in powers of w/kT as in Eqs. (20-30) through (20-32). This is not a special 
situation, but is in fact a property of perturbation methods generally 
(e.g., in quantum mechanics) : exact first-order terms are obtained by 
averaging with unperlurbed (in our case, random mixing) weights. Whereas 
the expansions were in powers of w/kT in the lattice model, here we 
should use expansions in powers of C A A  - €00, CAB - €00, etc., or the 
equivalent, since the unperturbed state (with random mixing) corresponds 
to these quantities having the value zero. We therefore reach the follow- 
ing conclusion: use of the random-distribution assumptions listed above 
and Eq, (20-53) will lead to an exact first-order (in CAA - roo, etc., or 
equivalent) solution theory for molecules obeying the law of corresponding 
states. This means that the components must have very nearly the same 
interaction parameters 6 and r*. An equivalent statement is that it must 
be possible to choose parameters eoo and rzo of a reference component 
(hypothetical, or, more often, one of the components in the solution) such 
that ~ A A  - coo, etc., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare all small. 

This general approach is referred to as conformal solution theory and is 
due to Longuet-Higgins.t The argument we use here (for continuity and 
simplicity) is somewhat different from that of Longuet-Higgins. It is 
based on Eq. (20-53) as the starting point and is therefore restricted to 
first-order effects. Second-order conformal solution theory has been dis- 
cussed in detail by Brown.# 

Without complication we can easily generalize Eq. (20-53) in two ways: 
(a) we consider any number of components; and (b) instead of restrict- 

t H. C. LONQWET-HIQGINS, Proc. Roy. Soc. 2054 247 (1951). For a review, 

# W .  B. BROWN, Proc. Roy. Soc. 2404 561 (1957). 
see F’rigogine, Chapter 4. 

1 
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ing ourselves to the Lennard-Jones potential, we use (Eq. 15-33) u(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
&(r/r*) for each pair interaction. 

For the refbrence component, 

and for the interaction between a molecule of component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and one of 
component j ,  

uij = 66jfk) - ( S W  

Following Longuet-Higgins, we detine fij [not to be confused with fij in 
Eq. (15-38)] and gti by 

( S W  cij = fijeoo, r** $3 - - - rto 9 

B i j  

and we shall use expansions in powera of fij - 1 and gij - 1 (the ref- 
erence component hsafoo = goo = 1). 

Let UB rewrite Eq. (20-53) for a multicomponent system and at the 
same time omit the factors eNi, calling the remaining partition function 
the configurational partition function Qc: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM = Ni, o = V / M ,  r* and Q are (random) average parameters, 
and Y is an empirical corresponding-atates function applicable to each 
pure component. For example, for pure 3 

For a hypothetical (isotopic) reference solution with all parameters the 
m e  as too and rgo, 

[rtogWtoo/kT, u/rtog)I"M! . 
I I r  Nr! 

Q:(N, v, T )  = 

At this point, let us calculate the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfirst-order random average param- 
eters r* and c for use in Eq. (20-56). We have (x = mole fraction) 
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or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto first-order terms in gij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1, 

and 

We notice, from l3q. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(20-58), that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[rt:s(e/kT, v/r*')]"M! &!(IT, V', T') = I I i  Nil 

where V' = Vr:i/r*3 and T' = Teoo/e. Comparison with Eq. (20-56) 
then gives 

Next, we want to expand ln@(N, V', T') in powers of the gij - 1 
andfij - 1. This, together with Eq. (20-59), will give us lnQc(19, V,  T )  
(that is, the logarithm of the configurational partition function of the 
actual solution of interest), expanded in powers of the gij - 1 and fij - 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
To linear terms, 

In Q!(N, V', T') = In Q!(N, V,  T) 

where 
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and we have used Eq. (20-59) in differentiating V'. The pressure 
~~(111, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,  T) is the pressure of the reference solution (or of the pure 
reference component at  the same M, V, and T, since the intermolecular 
forces are the same in either zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase). Similarly, from Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(20-60), 

where @(M, V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  is the configurational energy (intermolecular potential 
energy) of the reference solution (or of the pure reference component at 
111, V,  and T). Then Eq. (20-62) becomes 

lnQ!(N, V', T') = lnQ!(N, V,  T) 

Finally, we put this result and Eq. (20-59) in Eq. (20-61) to obtain 

AAN, V ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  - A%N, V ,  T )  

= C Z g j E ( f i j  - 1) + 3(MkT - P O V b i j  - 111 + a * * (2083) 
ij 

where A, = -kTlnQ, is the configurational Helmholtz free energy. 
This exact and elegant result expreases A, for the solution in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAterms of the 
intermolecular interaction parameters fij and gij and of the properties 
of the pure reference component E:, po, and 

AOc,i-comp(M, V ,  T )  = A;,.ol(N, V,  T) - MkT C x i l n z i .  (2084) 

The A: in Eq. (20-63) refers, of course, to the solution; the last term in 
Eq. (20-64) is the ideal entropy of mixing term. These properties of the 
pure reference component are determined by €00, r&, and the empirical 
law of corresponding states. 

The independent variables N, p, T and the function Fc are more con- 
venient than N, V ,  T and the function A,, so we proceed now to make this 
change. Let p be the p m u r e  on the actual solution when its volume is 
V and let Vo be the volume of the actual solution when its pressure 
is po. Now let us abbreviate Eq. (20-63) by the notation 

i 

What we want (since we keep the same reference solution at  po, V )  is the 
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corresponding equation for 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFe(PO, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV") zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- F!(PO, V), 

Fc(po, V") = A&', V") + poYo, 

F'e(po, V )  = Ac(p0, V)  + POY- 

(2o-w 

(20-67) 

If we integrate aA,/aV = - p  from po, V" to p ,  V, we obtain, to the 
linear term in V - V", 

A&, V) - A&', V") = -po(V - V"). (=) 

where the right side is the same as in Eqs. (20-63) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(20-65). In Eq. 
(2069), however, we regard V and E! as functions of itf, po, and T. 

Our next task is to derive an equation for AF,, which, incidentally, is 
the same aa AFe(exoess,, since nonconfigurational contributions are the 
same in F and and therefore cancel. For Ni molecules of a single 
component i at po and T, Eq. (2(Mo) reads 

F e i W c  PO, T) - F!i(Nt, PO, T) 

= E!i(fii - 1) + 3(NikT - poVi)(gii - 1) + . * * , (20-70) 

where F$i, E$i, and Vi all refer to Ni molecules of the reference component 
at po and T. If the pure components mixed to form an ideal solution, we 
would have 
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Finally, then, from Eqs. (20-69) through (20-72), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AFe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= AFccexccss, = FAIS, PO, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  - FAIS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPO, T )  (ideal) 

= C zpj[E!(fij - 1) + 3(JfkT - poV)(s i j  - l)] 
i j  

- C [E!i(fii - 1) + 3(NikT - poVi)(s i i  - l)] + * * * . 
i 

But Efi = XiE: and Vi = x ~ V  (the reference solution is ideal), so that 
this last equation reduces to (put xi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxicj sj) 

AF, = Et C ~ i ~ j ( 2 j i j  - f i r  - fjj) 
i<j 

+ 3(JfkT - p 0 V )  C ~izj(2gij - gii  - gjj) + * * . (20-73) 
i<i 

This is the central mull of (firsborder) conformal solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtheory. If 
we make the presumably excellent approximation that 

or (to first order) 

Other excess quantities follow immediately from Eq. (20-74) : 
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Note that for binary solutions the sum C in the above equations reduces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to a single term, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2122d12 ,  symmetrical about 21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= +, as in the Bragg- 
W i l l i s  theory (Eq. 20-23). 

At ordinary pressures, E," is negative (E," is practically equal to the 
negative of the energy of vaporization of the reference component a t  T), 
as are also all the other coefficients of C in Eqs. (20-75) through (20-77) : 
an increase in T expands the liquid, increases the distance between neigh- 
bors, and hence makes E," less negative; an increase in po contracts the 
liquid and makes E," more negative; both terms in the coefficient of in 
Eq. (20-76) are negative. The sum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC can be positive or negative, but is 
of course the same in all these equations. In a binary solution, d12 and C 
are positive if 12 pairs are energetically more stable than 11 and 22 pairs 
[this corresponds to a positive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw in Eq. (M)]. In this case (binary, 
d lz  > 0), all the excess quantities are negative. In general (multicom- 
ponent), the excess quantities are all of the same sign, positive or negative, 
and in the ratio of the coefficients of C for any composition. 

The above predictions (and others) of the first-order conformal theory 
of solutions were extensively compared with experiment by Longuet- 
Higgins in 1951. The theory proved to be quite successful when applied 
to data on suitable binary systems available at that time. In particular, 
all the excess functions were found to have the same sign. However, more 
recently other "suitable" solutions, such aa neopentane + carbon tetra- 
chloride and methane + carbon monoxide, have been found experimentally 
to have positive AHe and negative AV,. We have already mentioned 
that this feature can be explained by the approximate "random" theories 
of Sections 20-2 and 20-3. 

The conclusion we reach is that although first-order conformal solution 
theory is formally exact for almost ideal solutions of "corresponding- 
states" molecules, its range of applicability to real systems is quite limited. 
To extend the range of applicability, one must turn to the exact (and rela- 
tively complicated) second-order conformal solution theory or to the ap- 
proximate theories of Sections 20-2 and 20-3. 

As a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfinal remark, we remind the reader that the "theories" discussed in 
Section 20-3 and in the present section are semiempirical in a sense, for 
they are based on experimental "corresponding-states" information about 
the pure components. This is justified in the absence of an exact theory of 
the liquid state. On the other hand, Section 20-2 is completely theoretical, 
but in it we must use an approximate (WD) theory of liquids. 



396 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATHEORY OF CONCENTRATED SOLUTIONS [CHAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 

PROBLEMS 

20-1. Use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtho Gibbs-Duhem equation to deduce an expression for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp B / p i  
from (a) Eq. (20-12) (ideal), and (b) Eq. (20-18) (Bragg-Williims). (Pages 374 
and 376.) 

20-2. Derive the Bragg-Willims "mking"equations (20-19) through (20-21). 

20-3. Expand the quasi-chemical equations (20-28) and (20-29) in powers of 
w/kT to obtain the secondorder reaulta zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2040) through (20-32). (Page 380.) 

20-4. Show how to redefine A in equations such as (20-36) 80 that it may 
refer to diatomic or polyatomic molecules instead of to monatomic molecules. 
(Page 383.) 

20-5. Break up Eq. (20-49) for AA,  into separate e x p d o n s  for AE, and 
AS,. (Page386.) 

20-6. Show that the (p terms in Eq. (20-49) (WD theory) are essentially 
equivalent to Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(20-23) (Bragg-Williams). (Page 386.) 

20-7. Discuss the equation of state and AA,  from Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(20-53). (Page 388.) 
20-8. Develop a Bragg-Williams lattice theory of binary solutions, allowing 

each site to be occupied either by A ,  by B, or be empty. Take the lattice dietance 
a = constant. 

20-9. Derive expreesions for PA from Eqs. (20-52) and (20-53). Will pA/p;  
and pB/p: have the usual symmetry about ZA = i? 

20-10. Show from Eq. (20-74) that, for a binary conformal solution, 

(Page 377.) 

( g d 1 2  ) 22. 2 = (function of po, T )  + kT l n z l +  - 
Ni + N2 

Compare this with the Bragg-Williams equation preceding (20-18). 
20-11. Discuss the equation of state and critical behavior (gas-liquid and 

solution-eolution) of a conformal solution. 
20-12. In the application of Eq. (20-74) to a binary solution, AF. shouId 

be the same irrespective of the arbitrary choice of component 1 or component 2 
as reference component. Investigate this point. 

20-13. What c ~ n  be deduced a b u t  d i i  if €12 = (c11c22)"~? 
20-14. In a one-component "correaponding+tatea" system, Q is given by the 

equation preceding Q. (20-62). If we regard A as a function of T,  V, N ,  c, 
and P8, find the eoefficienta a1 and rn in the equation 

dA = -SdT - pdV +.rdIV 4- a1 dc+ a2dP8. 

Derive an snalogoue equation for a conformal solution regarding A as a function 
of T, V, N, f, g. Use this reault to provide an alternative (and mom elegant) 
derivation of Eq. (!20-69) for Fo from Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(zo-s3) for A,. 
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CHAPTER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 

POLYMER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND POLYELECTROLYTE SOLUTIONS 
AND GELS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In Chapter 13 we considered the configuration of polymer molecules and 
rubber elasticity. Our object in the present chapter is to extend this dis- 
cussion to polymer and polyelectrolyte solutions and gels. Since this is a 
relatively specialized topic in statistical mechanics, we shall confine our- 
selves in each section to the simplest possible analysis that brings out the 
easential features. 

To present a unified discussion, we devote the first section to the Wall 
theory of rubber elasticity. This leads to the same length-force equation 
(13-57) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the (simplified) James-Guth argument of Section 13-3, but the 
method of Wall has the advantage that it has been exploited in the theory 
of polymer and polyelectrolyte gels (Sections 21-3 and 21-4). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs far  as 
the theory of rubber elasticity itself is concerned, the Jameffiuth theory 
(which we have not fully presented) is more detailed and fundamental. 

21-1 Wall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtheory of rubber elasticity.* The reader should review 
Section 13-3 through Eq. (13-54) for general background and point of 
view. 

We start with an isotropic cube of rubber with edge Lo, under no forces. 
On a molecular level, we assume that the sample is made up of a c- 
linked network of N chains, all of the same length. But our zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAresults will turn 
out to be independent of chain length, so the assumption of uniformity of 
chain length is not really necessary. We assume further that the distribu- 
tion of end-toend lengths r of the N chains in the undeformed (Li) net- 
work is gaussian and is in fact the same distribution that Nfree molecules 
would have (Chapter 13). Equation (13-40) is therefore applicable, and 
we rewrite it in terms of the components of r as 

PO(%, y, z) dx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdy dz = -& e--Pl(zs+~+r’) dx dy dz , (21-1) 

* F. T. WALL, J .  Chem. Phye. 10, 132, 485 (1942); 11, 527 (1943). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASee also 
Flory, Chapter 11. 
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The subscript zero refers to the undeformed state. Our final assumption is 
that if the cube is deformed from edges of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALO to edges of length 
L,, L,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL,, then the end-toend distribution becomes 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= L,/Lo, etc. This is obviously true if each of the N chains is 
deformed in the same way (azl a,, a,) as the bulk sample itself (Prob- 
lem 21-1), but this detailed an assumption is not needed [only the over-all 
distribution (21-2)]. 

In the undeformed state the chains are free to assume the unbiased 
"random walk" distribution (21-1). We may therefore anticipate that this 
distribution corresponds to the maximum possible entropy of the system, 
So. Any deformation of the sample will lead to a decrease in entropy 
because the chains are forced to assume a distribution [e.g., (21-2)] which 
is not "random" or "unbiased." Our next step is to compute the entropy 
difference S(a,, a,, a,) - So. 

Let us divide the "end-to-end space" x ,  y, z [one end of the chain is 
chosen as origin, the other end is at  5, y, z (Fig. 13-l)] into small elements 
of volume dri = aki dyi dzi. Then p i  = Po(ri) dri is the probability of a 
free chain having an end-toend vector in dri. The undeformed state of 
the network corresponds to the chains having their most probable end-to- 
end distribution, with ni = Npi chains in dri for each i. The deformed 
state a,, a,, a., on the other hand, corresponds to a distribution which is 
not the most probable: there are, according to our assumption (21-2), 
si = NP(ri) dri chains in dri, with si # ni unless a, = a, = a, = 1. 
We want to calculate the ratio of the probabilities of observing these two 
distributions, Q(a,, a,, a,)/Qo, because S - SO = k In (Q&). 

The probability that any specific chain is in d r d  is pi, and the probability 
that ni = Npi specific chains are in dri is p?. Therefore, for the unde- 
formed state (most probable distribution), 

(21-3) 

where the comhiatorial factor is inserted because it is immaterial which 
particular chains are in dri, etc. Now if we place in each of the drip not the 
most probable number of chains nil but some other number si, then the 
corresponding D is 

N!  
n i s i !  

n = - p;', 

where we expect Q < no (Problem 21-2). Equation (21-4) is a quite 
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general expression for any set of numbers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA83, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . , but we are interested 
in the particular set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8i = N P  dri from Eq. (21-2). On using 

we find from Eqs. (21-3) and (21-4), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
so that 

and therefore 
n 

AS = S(a., a,, az) - SO = k In - 
QO 

= Nk [In a.a+xr - #(a: + at + at - 3)]. (2 1-5) 

It is easy to verify (Problem 21-3) that AS has its maximum value at 
a. = a, = as = 1, as we have anticipated. We note that AS is inde- 
pendent of chain length; it depends only on the number of chains in the 
network and on the macroscopic deformation parameters a., a,, az. 
Therefore, if the network has a distribution in chain lengths, we obtain a 
contribution to AS of the form (21-5) for each group of chains of the same 
length and a tow AS still given by (21-5), where N is the total number of 
chains of all lengths. 

We next introduce a correction into Eq. (21-5), suggested by Flory.* 
Actually, this correction does not affect the length-force equation for 

* See Flory, p. 468. 
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rubber, derived below, but zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill influence our results beginning with 
Section 21-3. In deriving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEq. (21-5) we have assumed that the entropy 
of a network is the same as the entropy of the same number of polymer 
chains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot involved in a network, but with the same end-toend distri- 
bution. This neglecta the fact that when a network is formed from 
chains, there is an entropy change which is volume-dependent, and 
therefore this network-formation entropy will in general be different at  
a,, ay, a, than at a, = a,, = a, = 1. A network of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN chains has N/2 
cross-liiks. Each crose-link is formed by chemical bond formation between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a monomer on one chain and a monomer on another. If the second mon- 
omer must be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwithin a small volume 6V (a constant) around the first 
monomer in order for reaction to occur, the probability for cross-link 
formation is proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASV/V. Hence the Probability of forming 
N/2 cmss-liinks is proportional to (6V/V)N12, and the ratio of this prob- 
ability at V to the probability at Lg is (apya,)-N/2. This contributes an 
additional term to AS, -(Nk/2)ln(a~@,). The corrected form of 
Eq. (21-5) is thus 

2 2  AS = s(a,, a,,, a,) - SO = a&@, - a, - a,, - at + 3). 

(21-6) 
We now consider the rubber elasticity problem specifically. Here, for 

stretching in the xdirection, 

v = L; = constant, 

L, = L, a, = a, 

apya, = 1, 

1 
L,, = L,, a,, = a, = -. 

a l l 2  

Therefore, Eq. (21-6) becomes 

S(a) - S(1) = - 2 a 

Then from Eq. (13-52), 

(21-7) 

This is just the same equation aa (13-57), obtained from the James-Guth 
theory, with C = LC2 (see also Fig. 13-4). 

21-2 Flory-Huggins polymer solution theory.* We leave, temporarily, 
the discussion of polymer networks begun in the previous section and 
turn here to solutions of free polymer molecules (component 2) in a solvent 

* See Flory, Chapters 12 and 13. 
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0000000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(component 1). In the next section we will then combine the results of the 
present and preceding sections to study the swelling of polymer networks 
(gels) in a solvent. 

The theory to be presented here, due independently to Flory and 
Huggins, is a direct generalization of the Bragg-Williams approximation 
in the lattice model of binary solutions (Section 20-1). The thermodynamic 
equations of Section 20-1 are applicable without change. The Bragg- 
Williams theory is appropriate for solutions of molecules of approximately 
equal size-each site in the lattice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be occupied by either an A molecule 
or a B molecule. The essential difference in the present problem is that the 
polymer molecules are much larger (a factor of usually los or 10') than 
the solvent molecules. This leads to striking departures from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA-B 
symmetry we became accustomed to in Chapter 20. We.stil1 use a lattice 
model and assume random mixing, but whereas a solvent molecule occupies 
only one site in the lattice, the polymer molecule occupies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM sites along 
a "random walk" (Fig. 21-1), where M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= O(lOa or lo'). We assume that 
all the chains have the same length. Since M should be regarded aa the 
ratio of the two molar volumes, it will be of the order of the number of 
monomers or of the number of statistical units in a polymer chain, but 
not usually exactly equal to either of these numbers. 

lololololololo 

FIO. 21-1. Lattice model (schematic, in two dimensions here) for polymer 
molecule in a solution. Sites not occupied by polymer segments are occupied by 
solvent molecules (one per site). 
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Because of the great difference in size of the two molecules, the mole 

fractions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 2  are no longer very useful. Instead, we use volume or 
site fractions: 

We shall sometimes denote the total number of sites by MO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN1 + MN2. 
We investigate fist the entropy of (random) mixing solvent and polymer 

molecules. Let Q(N1, N2) be the number of possible configurations or 
arrangements of N1, N2 molecules on Mo sites, and let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(0, N2) be the 
number of possible configurations of N2 polymer molecules on MN2 sites 
(this refers to the pure polymer before mixing). Then, since Q = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 for 
N1 solvent molecules on N1 sites (pure solvent), the desired entropy of 
mixing is 

(21-8) 

We now find Q(N1, N2). 
The number Q(N1, N2) is just equal to the number of ways of arranging 

N 2  polymer molecules on Mo sites, for after we place the polymer molecules 
in the originally empty lattice, there is only one way to place the solvent 
molecules (i.e., we simply fdl up all the remaining unoccupied sites). 
Imagine that we label the polymer molecules from 1 to N2 and introduce 
them one at a time, in order, into the lattice. Let wi be the number of ways 
of putting the i-th polymer molecule into the lattice with i - 1 molecules 
already there (assumed to be arranged in an average, random distribu- 
tion). Then the approximation to Q(N1, N2) which we use is 

The factor (N2!)-' is inserted because we have treated the molecules as 
distinguishable in the product, whereas they are actually indistinguishable. 

Next, we derive an expression for ~ i + ~ .  With i polymer molecules 
already in the lattice, the fraction of sites filled is fi = Mi/Mo. The first 
unit of the i + 1-th molecule zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be placed in any one of the Mo - M i  
vacant sites. The first unit has c nearest-neighbor sites, of which c(l - fi) 
are empty (random distribution assumed). Therefore the number of 
possible locations for the second unit is c(l - fi). Similarly, the third 
unit can go in (c - 1)(1 - fi) different places. At this point we make the 
approximation that units 4, 5, . . . , M also each have (C - 1)(1 - fi) 
possibilities, though this is not quite correct (Huggins' treatment is more 
detailed here, but in view of the rather crude model, we omit this rehe- 
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ment). Multiplying all of these factora together, we have for w+l, 

ws+1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Mo - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM ~ ~ c ( c  - 1)"-'(1 - fi)y-l 

where we have replaced c by c - 1 as a further approximation. 
Now we will need 

We approximate the sum by an integral: 

rNz 

1 = (Mo In Mo - Mo - N1 In Nl + N1). (21-11) 

We put Eqs. (21-10) and (21-11) in (21-9) and find 

In Q(N1, N2) = -N2 In N2 + N2 - NI In N1 + N1 

+MolnMo-  M o + N 2 ( M -  l)ln(%)- 

From this result, we also have 

lnQ(0, N2) = -N2 lnN2 + N2 + MN2 In MN2 - MN2 

+ N2(M - 1) ln ( Z Z )  - 

-- 7 - - ~ 1  ~n 91 - ~2 In 9 2 .  

Therefore, from Eq. (21-8), 

(21-12) 

This very simple relation is the generalization of Eq. (20-20) to solutions of 
molecules of unequal size. Note that if we put M = 1 (91 = 21, PO = 4, 
we recover Eq. (20-20). Figure 21-2 shows M,/Mok plotted against v2 
with M > 500 (Problem 21-4). This should be compared with Fig. 20-2 
for molecules of equal size. 

Next, we calculate AE, on the same random mixing (Bragg-Williams) 
basis. We let w11 be the interaction energy between nearest-neighbor 
solvent molecules, wz2 between nearest-neighbor polymer units (not 
chemically bonded), and w12 between one solvent molecule and one poly- 
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v2 

FIQ. 21-2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEntropy of mixing as a function of volume fraction of polymer for 
M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA500 (the curve is independent of M for sufficiently large M). 

mer unit. In the solution N1, N2, the probability that any site is oc- 
cupied by a solvent molecule is (pl and by a polymer unit is cp2. The 
average number of solvent molecules nearest neighbor to a polymer unit 
is (c - 2)(p1, neglecting end-of-chain effects. Therefore the number 
r12 of 12 interactions is m12 = (c - 2)(plMN2. S i l y ,  7 1 1  = 
c(plN1/2 and 7 2 2  = (c - 2)up2MN2/2. In the pure polymer, (pa = 1 
and R22 = (c - 2)MN2/2, while in the pure solvent, m11 = cN1/2. 
As a further simplification and approximation, we replace c - 2 by c in 
the above expressions, so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

urn = ( W I M N ~ ~ I ~  + 3 ~ l N l w l l  + 3cdfN2~22)  

-(&MN2w22 + 3cNiwii) 

where, as usual, 
w = toll + 2022 - 2w12. 

Equation (21-13) is the generaliiation of Eq. (2&21); the two equations 
are the same when M = 1. We define the "mixing parameter" X by 
x = -m/2kT. Then 

-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 - XMO(Pl(P2. (21-14) 

Thia is often called the "van Laar heat of mixing" expression. When w 
is negative and x positive, 11 and 22 neighbore are more stable than 12 
neighbors. In thii caae (x > 0) the solvent is said to be a "poor solvent' 
(solvent and polymer molecules "dislike" each other). A "good" solvent 
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has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx I 0. We shall find below, just zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas in Section 20-1, that if x is positive 
and large enough (e.g., if w is negative and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT is low enough), the solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
will split into two phases with different compositions. 

We have mentioned in Section 20-1 that w may be regarded as a func- 
tion of temperature. Thii proves to be a particularly useful generalization 
in polymer solution work, though we shall avoid it by discussing isothermal 
processes only. If w is a function of T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAE,,, is a free energy rather than 
an energy. Even if w is a constant, x is a function of T, of course. 

Our derivations of AS,,, and AE, have assumed a random distribution 
of polymer units over the whole lattice. We should emphasize that although 
this assumption is in general a reasonable first approximation, it is not 
realiiic when 9 2  is so low that only isolated molecules or pair, triplet, etc., 
interactions between otherwise isolated polymer molecules are involved. 
For in this caw the concentration of polymer units will have a finite 
value within the space more or leas occupied by polymer molecules but 
will be zero in the space between polymer molecules. Thus, for example, 
we cannot expect to get a reasonable osmotic pressure second virial 
coefficient from the present theory (see Section 21-6). 

Finally, the free energy of mixing follows from Eqs. (21-12) and (21-14) : 

-- '2 - - 9 = NI In (PI + N2 In 9 2  + x M o ( P ~ ( P ~ .  (f21-15) 

The form of this result, which should be compared with Eq. (2&19), 
suggests that it ought to be possible to derive it without using a lattice 
model, and indeed this has been done.* 

With the free energy of mixing available, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan now easily find the 
chemical potentials p1 and p2 from the thermodynamic equation (20-1). 
Thus 

where pl (0) is the chemical potential of the pure solvent and p! is the vapor 
premre over the pure solvent. Equation (21-16) reduces to Eq. (20-18) 
when M = 1, but otherwise there is a term in 9 2  that destroys the sym- 
metry of Figs. 20-1, 20-3, and 20-4. When w = 0 in Eq. (20-18) (mole- 
cules of approximately equal size), Raoult's law is obeyed. But if we put 

* J. H. HILDEBRAND, J .  Chem. Phys. 15,225 (1947); H. C. LONGUET-HIGIGINS, 
Fotadcry SOC. Disc. 15, 73 (1953). 
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FIG. 21-3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEffect of molecular size of solute on vapor pressure of solvent 
whenx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 

x = 0 in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEq. (21-16), there remain considerable deviations from Raoult's 
law (Fig. 21-3) that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan only be associated with the great difference in 
molecular size of the two components. 

For we have 

Actually, Eq. (21-17) contains no new information. It follows from 
(21-16) and the Gibbs-Duhem equation or from Eqs. ( S 2 )  and (21-16) 
(Problem 21-5). 

quat ion (21-16) is also essentially an equation for the osmotic pressure 
(2 = nondiffusible solute, 1 = difiueible solvent). For, with an incom- 
pressible solvent as in the present model, we have from thermodynamics 

(21-18) 

where ul is the volume per molecule (i.e., volume per site) of pure solvent, 
a constant. 
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WQ. 21-4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACritical behavior and phase separation for polymer solution with 
M = 1OOo. 

Figure 21-4 shows a plot of -ti1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApl(O)] /kT or IIul/kT against 92  

for M = loo0 and different positive values of x (i.e., different temperatures 
for constant w). Critical behavior and phase separation are evident, as in 
Section Wl, but here the curves are very unsymmetrical. The horizontal 
line can be located by use of the criteria that 

Pl (cp2 = Pl(9i!9, b42(9i.) = ccz(Cp’a), 

where cpi and q;(qi < cp;) give the composition of the two phases in 
equilibrium. The finst of these criteria is of course satisfied by any hori- 
zontal line; but the horizontal line has to be adjusted to satisfy the second 
one, using Eq. (21-17) for pa. Alternatively, if the plot in Fig. 21-4 is 
made against 1/92 instead of cp2 (n vs. 1/cp2 is analogous to p vs. u for 
a gas), the equal-area theorem can be used to locate the horizontal line 
(Problem 2 1-6). 

To locate the critical point we put 

Using Eq. (21-16), and find 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 + (1 - +) + 2 x 9 2  = 0, 
1 - cp2 
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FIG. 21-5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATemperature-composition curve for polymer solution with 
df  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1m. 

Eliminating 2x, we get the critical value 

1 
1 + A m 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( P Z C  = 

Then 
(1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM”2)* 

2 M  x c  = 

(21-19) 

(21-20) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As A1 CA), these relations become 

1 
(P2c + ’ 

For M = 1O00, ( ~ 2 ~  = 0.0307 and Xc = 0.532. When M = 1, we get 
the same results as in Section 20-1 (Bragg-Williams). 

If x is positive and less than X,(S0.5) or if x is negative, the polymer and 
solvent are miscible in all proportions. But if x > xC, phase separation 
occurs for some compositions. Since necessarily cp; < q7aC, one phase is 
extremely dilute in polymer. If we vary x by varying T, we obtain a 
temperatmomposition curve, aa in Fig. 21-5 for M = 1O00. Note 
especially the marked asymmetry. In the shaded area of this figure, 
two solution phases are present (immiscible region); the miscible (one 
solution) region is outside the shaded area. 

As an illustration, we give in Table 21-1 a few experimental values 
of x for the polymer molecules of natural rubber. 

A great deal of work has been done on checking the predictions of the 
Flory-Huggins theory against experimental results. The reader should 
consult the Supplementary Reading list for summwhiig discuseions. We 
shall merely state here that the theory proves to be completely satisfactory 
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TABLE 21-1 

MIXING PARAMETER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx FOR NATURAL RUBBER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Solvent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 4°C 

cc14 
13ensene 
cs2 
Ethyl acetate 
Methyl ethyl ketonc 
Acetone 

15-20 
25 
27 
25 
25 
25 

X 

0.28 
0.44 
0.49 
0.78 
0.94 
1.37 

in a qualitative or, indeed, semiquantitative way, but a number of detailed 
discrepancies have been uncovered which require refinement in the theory. 
There is no doubt, though, that this relatively simple theory contains the 
essential features which distinguish high polymer solutions from ordinary 
solutions of small molecules. 

21-3 Swelling of polymer gels.* If a sample of free (uncross-linked) 
polymer molecules is put in contact with pure solvent at the same pressure, 
the polymer will take up solvent to form a solution. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn fact, if a large 
amount of solvent is available, it will continue to enter the solution in- 
definitely ( 9 2  + 0) because the chemical potential of the solvent in the 
solution is always lower than in the pure solvent a t  the same pressure. 
However, we can stop the process after a finite amount of solvent has 
mixed with polymer by making the pressure on the solution higher than 
on the pure solvent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ap = osmotic pressure = XI). If, on the other hand, 
a nelwork of polymer molecules is put in contact with free solvent a t  the 
same pressure, solvent will be absorbed by the network forming a gel, 
but the process will stop after a finite amount of solvent absorption 
(without establishing a pressure difference) because the tendency of solvent 
molecules to mix with the polymer chains is resisted as a result of the 
fact that mixing entails stretching of the network in this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase. 

In this section we employ the concepts of Sections 21-1 and 21-2 to 
construct an approximate theory of polymer network swelling. Actually, 
it is easy to give a treatment that includes stretching as well aa swelling: 
we shall therefore investigate, below, the equilibrium swelling of a net- 
work, under a pulling force 7 in the x-direction, when in contact with solvent 
a t  the same pressure (Fig. 21-6). 

In view of the semiquantitative success of the Wall and Flory-Huggins 
theories (the latter is more accurate than the former), we can anticipate 

* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASee Flory, Chapter 13, for further details. 
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FIQURE 21-6 

the same order of agreement with experiment here, for no new ingredients 
need to be added to the theory. 

Consider the following mixing process. The initial state, with Helm- 
holtz free energy Ao, is: ( 1 )  an undeformed polymer network (free of 
solvent) made up of N2 chains, each with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM units (of solvent size), with 
volume V O  = L: = MN2u1; and (2)  N1 molecules of pure solvent with 
volume Nlul .  The final state, with Helmholtz free energy A ,  is the above 
network, swollen with N1 molecules of solvent, with volume (assumed 
additive) V = (N1 + MN2)ul and shape Lz = L = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd o ,  Lv = L, = 
(V/L)’l2. We also have the relations V/Vo = 1 / 9 2  (called the smelling 
ratio) and a, = a, = l / ( a ~ 2 ) ” ~ .  

The basic thermodynamic equation for the gel (swollen network) is 

d A  = - S d T + T d L + p i d N i  +p2dN2.  

In practice, of course, one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan vary TI L ,  and N1 but not N2. 
The free energy change, A A  = A - Ao, in the above process is 

A A  AAm + AAa = AAm - TA& (21-21) 

where AA,  is the free energy of miXing network with solvent, and d s d  is 
the entropy of deforming the network. The implicit approximation is 
made here that the free energies of deformation and mixing are independent 
of each other. We obtain AAm from Eq. (21-15), but we have to make an 
appropriate alteration to take care of the fact that here, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinstead of N2 
free polymer molecules, we have a single giant polymer molecule (the 
entire network). Thus the coe5cient of In 9 2  in Eq. (21-15) is essentially 
zero. The volume fractions retain the same physical meaning, however, 
so we have 

(2 1-22) 



412 POLYMER AND POLYELECI'ROLYTE SOLUTIONS [CHAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where, in the relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= AIN2/Mo, N2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnow refers to the number of 
chains in the network. Equation (21-6) gives Therefore, 

(21-23) 

We are particularly interested in the chemical potential of the solvent, 
for it determines the swelling equilibrium. When equilibrium has been 
reached (Fig. 2149, pl in the gel must equal p1 in the pure solvent in 
contact with the gel: pl(92) = pl(0). Therefore, we have for this equi- 
librium condition, from Eq. (2149,  

= l n ( 1  - c2) +p2+x9:+p(-& 1 1  - F) = 0. 

(21-24) 

Equation (21-24 determines the equilibrium swelling ratio 1/92 for a 
given extension a. One can give the following physical interpretation of this 
equation. The first three terms are equal to -IInotvl/kT [see Eq. (21-18)], 
where IInCt is the osmotic pressure of the network. These terms lead to an 
expansion of the gel. (By themselves, they would equal zero and hence 
lead to equilibrium only when 9 2  0.) The last two terms are equal to 
-pdvl/kT, where pd is the pressure associated with deformation of the 
network. This follows from 

Actually, pd is negative and -pd is a force per unit area tending to con- 
tract the gel. When equilibrium is reached, these two opposing pressures 
just balance each Other: IInet = -pd. 

The special case of Eq. (21-24) which is of most interest is free (and 
isotropic) swelling of the gel in the solvent; that is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 = 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV/Vo = 
as = l/v2. Therefore we replace 1/a in Eq. (21-24) by (pi's and solve 
the resulting equation for 92.  In a good (or not too poor) solvent and with 
ordinary values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAill, the swelling ratio 1/92 will exceed 10, and 9 2  < 0.1. 
(Of course, if the swelling is too great, say 1/92 > 30, the gaussian dis- 
tribution used in deriving the deformation terms begins to become zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinac- 
curate.) Therefore we expand the logarithm in Eq. (21-24) to obtain 
the approximate equation 

(21-25) 



21-31 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASWELLING OF POLYMER GELS 413 
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1 2 3 4 

log Arc; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx )  

FIQ. 21-7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThcorctical behavior of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstretched, swollen gel. 

If we also neglect 3 compared to (pF2I3, we have 

(2 1-26) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As a numerical esample of this last equation, a swelling of a = 3 and 
1/p2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas = 27 is obtained if we take x = 0.25 and M = 972, or if we 
talie x = 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAilI = 486. Figure 21-7 (t = 0 curve) shows a plot of a 
against log If(# - x ) ,  calculated from Eq. (21-25). 

Equation (21-26) gives reasonable agreement with experiment for 
solvents leading to large swelling. The exponent 5/3 has been verified 
experimentally, and the values of x calculated from swelling experiments 
and Eq. (21-26) agree fairly well with those found from vapor pressure 
measurements 011 the uncross-linked material using the Flory-Huggins 
theory. 

Returning now to the more general situation in which the gel may be 
stretched, we calculate the length-force relation from 

with the result 
'LO 1 

(y - -. 
a292 

(21-27) 

For a given a, we find cp2 from Eq. (21-24) and then t from Eq. (21-27). 
When 1/v2 is large, we expand the logarithm and find (Problem 21-7) 
the generalization of Eq. (21-25), 

a2(a - t)[a(a - t )  - 31 = M(+ - x) .  (21-28) 

If we also drop 3 compared to a2, we have 

[ilI(+ - x p  
a312 ' t = a -  (21-29) 
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which reduces to Eq. (21-26) if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. Curves for t = 1 and t = 2, cal- 
culated from Eq. (21-28), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare included in Fig. 21-7. 

Comparison of Eqs. (21-27) and (21-29) shows that, when 1/92 is large, 

(21-30) 

This equation predicts that a highly swollen gel, in equilibrium with 
solvent, will absorb more solvent when it is stretched. This is confirmed 
experimentally. 

2 1 4  Swelling of polyelectrolJrte gels.* Suppose that along the molecu- 
lar chains of the network studied in the preceding section there is a fixed 
charge ze on every xtht unit (on the average) formed by the dissociation 
of an ion (e.g., -XNa 4 -X- + Na+). In  this case the "solvent" is 
an electrolyte solution (usually aqueous), though we still treat it for 
simplicity as a one-component solvent in nonelectrostatic expressions. 
The gel now resembles the "inside" solution in a Donnan membrane 
equilibrium (Section 19-2), and the "solvent" in which the gel is immemed 
(Fig. 21-6) is the "outside" solution. The fixed ("solute") charges zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 
nondiffusible (confined to the gel), but the electrolyte ions are diffusible. 
N o  membrane is necosesry because the fixed charges are attached to the 
polymer chains. 

The repulsion between the fixed charges furnishes an additional tend- 
ency for the gel to swell (beyond what one would calculate from Section 
21-3). We give in this wetion the first-order theory of this effect. Later 
in the section, we indicate how the treatment can be generalized to 
take care of the case. in which the charge on the polymer chains can 
vary in amount because of a diasociative or binding equilibrium (e.g., 
-COOH --f COO- + H+). 

Aside from intrinsic interest, important applications of this work are 
to the electrostatic theory of muscle contraction and to ion exchange 
resins. Muscle contraction will be referred to again at the end of the 
section. 

For simplicity we assume that although the fixed charges are attached 
to polymer chains, they are spatially distributed in the volume V occupied 
by the gel just as if they were free to move throughout V. Because of the 
Brownian motion of the polymer chains, this is not an unrealistic assump- 
tion. However, these charges are not and do not count as additional 

* The simple theory in the present section is included in the following papers, 
where a more detailed treatment will be found: T. L. HILL, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ .  Chm.  Phy8. ZO, 
1259 (1952); Fw&y Soc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADiseussionS 13* 132 (1953). 

t This x has no relation to x or ii in Chapter 20. 
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molecules in contributing, for example, to the osmotic pressure. We 
assume further that electrostatic effects zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare independent of mixing and 
deformation e5ects-we have merely to add appropriate electrostatic 
terms. 

The simplest procedure for us is to work directly with a. (21-24) 
rather than with the free energy, because of information already available 
in Chapter 19. (The freeenergy approach is the subject of Problem 21-8.) 
We have seen that the fmt three terms in this equation may be associated 
with the osmotic p m u r e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAllnet of the chains of the network. Similarly, the 
additional tendency of the repulsion between fixed charges on the polymer 
chains to expand the gel may be attributed to the osmotic pressure &I of 
these "nondillusible" or "solute" charges. We proceed next to evaluate ne l .  

We saw in Section 19-2 that the leading terms in the osmotic pressure 
for a system of charged (ze) solute molecules with number density p is 

(21-31) 

where pp in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC refers aa usual to the Izth diffusible ionic species in the 
outside solution. The second term in Eq. (21-31) is a consequence of the 
electrical neutrality in the outside solution (see Problem 19-5). (The 
second term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan also be interpreted aa due to the excess total concentrs- 
tion of diffusible ions, inside over outside; or as due to the repulsion be- 
tween solute molecules.) In the present zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase, the fixed charges do not 
count aa additional molecules contributing to lI, but they do produce a 
"neutrality" term. That is, in J3q. (21-31), since we are dealing with a 
single giant molecule (network), we let p + 0, keeping the "solute" charge 
density pze constant [this resembles the argument leading to Eq. (21-22)]: 

-- lT.1 (charge density)2 
kl' - 2e2c 

(21-32) 

The fixed charge density in the gel is 

The term to be added to Eq. (21-24) is -llelvl/kT. Thus we have 

2 2  1 1  
In (1 - (p2) + 9 2  + X& + %(; - 7) - = 0. (21-33) 
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The length-force relation, (21-27), is unaltered because II,l depends only 
on the volume of the gel and not its shape. 

It is clear from Eq. (21-33) that the effect of adding charges to the net- 
work, when an electrolyte solution is "solvent," is simply to lower the 
effective value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx to 

(21-34) 

This increases the degree of swelling, as expected. Figure 21-7 is applicable 
with the effective X in (21-34) replacing X itself. The electrostatic term in 
(21-34) is seen to be proportional to the square of the amount of charge 
placed on the gel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa z2/x2) and inversely proportional to the ionic strength 
of the electrolyte solution in which the gel is immersed. As a numerical 
example, take 1.1 = 1 and let the electrolyte be of type 1-1 with 
number density po. In an aqueous solution, pool = c0/55.5, where co is 
the molar concentration of electrolyte. Thus (21-34) becomes, in this 
special zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase, 

55.5 
4X2Co 

x - -. (2 1-35) 

Fiow x is of order unity, often less than 0.5. If we take c0 = 0.1 mole. 
liter-', and x = 10, the electrostatic term in (21-35) is 1.39; if x = 
(1000)1/2 = 31.6, it is 0.139. 

When 7 = 0 (free swelling) and the degree of swelling is large, Eqs. 
(21-26) and (21-35) give us 

(2 1-36) 
V(z = 1) - - [+ - x + (13.9/~~~')r ' '  
V(z = 0) 4 - x  

for the ratio of gel volumes with and without fixed charges on the gel. For 
example, if x = 0.25 and co = 0.15 moleliter-', 

-- '('I - 9.4 when n = 3, 
n o )  

-- '(l) - 2.5 when 2 = 10. n o )  
Because of the enhanced swelling in polyelectrolyte gels, the gaussian 

distribution is often inadequate if an accurnte theory is desired, and must 
be replaced by the hngevin function (Eq. 13-20). 

Next, we consider n polyelectrolyte gel with an ionic dissociation (or 
binding) equilibrium. Let N be the number of ions bound to the network 
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(each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsuch ion has a charge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAme)  and let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp be the chemical potential of the 
bound ions. The total number of sitea for binding is B. These are die- 
tributed uniformly over the chains of the network, and are all equivalent. 
The partition function of a bound ion is q. A term p dN haa to be added 
to the thermodynamic expression for dA.  When no ions are bound, the 
network is aasumed to have a total fixed charge of MN2ze/x. This becomes 
me when N ions are bound, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n=- N2Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ Nm. 
2 

We have to extend Eq. (21-21) for AA. The initial state, with Helm- 
holta free energy Ao, has N = 0. The h a 1  state, with free energy A ,  
has N bound ions. Thus, assuming additivity of all contributions to AA, 

AA = A - A0 = AA, - T A& + AAel+  AAds) (2137) 

where AAe1 is the electrostatic free energy (the work necessary to charge 
up the network in the presence of electrolyte), which we have to deduce 
from &,I, and where A&ds is (Eq. 7-5) 

A A d  = -kT[BIn B - Nln N - ( B  - N )  In ( B  - N) + Nlnq(T) ] .  

(21-w 

Now we consider AA,I. First we note that n can be written as 

n = =[I X + e m ( > 3  

The quantity xB/NJI ,  a constant, is the number of ion binding sites on 
the polymer chains (B)  divided by the number of fixed charges on the 
chains (N2M/x). As usual, 8 = N/B ,  the fraction of binding sitea oc- 
cupied. Thus the last term in Eq. (21-33) hm to be modified to read 

(21-39) l&IVl - - z2qf[l + e m ( ~ B / i V ~ i l f ) ] ~  --- 
kT 2X2VlC 

Now, as in Eq. (21-24), we have 

80 we can obtain AAe1 from Eqs. (21-39) and (2140) by integrating with 
respect to N1, which enters only in 9 2  = N2ilf /(NI + N2i11). We choose 
as limits N1 and N1 = 00. When N1 = 00, V = 00 and AACl = 0 (the 
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work of charging is obviously zero). We find easily zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see also Problem 21-8) 

(21-41) 

It has already been mentioned that the swelling equilibrium equation, 
(2149,  is modified by use of (21-39) aa the electrostatic term. The 
length-force relation is still (21-27). We must, finally, derive the binding 
equilibrium equation from 

- - 
We can rewrite this as 

The quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAq is equal to the outside concentration of the ions in the 
binding equilibrium, multiplied by a constant (Eq. 7-9). 

The three basic equations referred to in the above paragraph determine 
the properties of the system. For example, consider the free swelling 
(z = 0)  of a polyelectrolyte gel with a binding equilibrium. The param- 
eters x ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2cI, I, m, 2, B/N21CI, el, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC all have to be assigned. From 
Eq. (21-27), CY-' = (pila, which is put in Eq. (21-33) [modified by (21-39)] 
to eliminate a-'. Then, if we aasign a value to 9 2 ,  e can be calculated from 
this equation. Finally, the pair of values 9 2 ,  8 is put in Eq. (21-42) and 
X q  is calculated (Problem 21-9). 

A theory of polyelectrolyte gels, in a eomemhat more sophisticated 
form than above, has been developed and tested experimentally by A. 
Katchalsky and his collaborators. * Again the theory proves to be adequate 
for semiquantitative purposes. 

Important early work in this field was done by Hermans and 0verbeek.t 
Perhaps the most elaborate unified theory of polyelectrolyte solutions and 
gels at present available is that due to Harris and Rice.$ 

* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASee, for example, A. KATCHALSKY, J .  Pdyner Sci. 7,393 (1951); A. KATCHAL- 
SKY, 5. LIPSON, and €I. EISENBERO, ibid, 7, 571 (1951; A. KATCHALSKY and 
I. MICHAELI, ibid. 15, 69 (1955); A. KATCHALSKY and M. ZWICK, ibid. 16, 

J. J. HERMANS and J. TH. G. OVERBEEK, Ree. trw. dim. 67, 761 (1948). i F. E. HARRIS and S. A. RICE, J .  Phys. Chem. 58, 725, 733 (1954); J .  C h .  
Phys. 25, 955 (1956); 5. A. RICE and F. E. HARRIS, J .  C h .  Phys. 24, 326, 
336 (1956); 2. physik. Chem. (Frankfort) 8, 207 (1956). 

221 (1955). 
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Finally, we mention briefly an interesting possibility in the application 

of the above theory to muscle action. It can be shown* that a polymer 
or polyelectrolyte gel, constrained to a constant radius and with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx suf- 
ficiently larger than 0.5, will exhibit a first-order phase transition in its 
length-force curve. This means, for example, that the gel may undergo 
a very large change in length (“contraction”) a t  constant force as a con- 
sequence of a very small change in some parameter, such as ionic strength 
or the concentration of an ion or molecule being bound on the polymer 
chains. This type of precipitous or “razoredge” behavior, observed in 
all first-order transitions, seems characteristic of muscle action. Other 
first-order phase transitions which have also been mentioned as posyi- 
bilities in this connection are the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwodi- a-/3 transition* (Sec- 
tion 14-2) and the crystalline-amorphous transition in polymers. t 

21-5 Isolated polymer or polyelectrolyte molecules in solution.$ We 
emphasized in Section 21-2 that the Plory-Huggins solution theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn-as 
not suitable for extremely dilute polymer solutions because the theory 
assumed a uniform distribution of polymer units or segments throughout 
the volume of the solution. In this section we give an approximate treat- 
ment designed to take care of the limit of injnik dilution. In this limit 
we need consider only a single polymer (z = 0) or polyelectrolyte molecule 
immersed in the solvent. The polymer segments are confined to the region 
occupied by the molecule (Fig. 21-8). Between molecules are large spaces 
of pure solvent. In the next section me treat pair interactions between 
polymer molecules (which determine, for example, the osmotic pressure 
second virial coefficient). 

The point of view we adopt here resembles that of Chapter 13 in that 
we consider a single polymer molecule and the solvent it encloses as a 
thermodynamic system. Specifically, we treat the single molecule as if it 
were a spherical gel with uniform polymer density. This allows us to take 
over, with little change, the equations of the preceding two sections on 
macroscopic gels. 

In a good, or not too poor, solvent, or if charged, the polymer molecule 
will expand over a considerable volume of solvent (in which the polymer 
volume fraction might be, say, 0.01 or less). The mixing and electrostatic 
free energies are responsible for this, just as in Section 21-4. However, 

* T. L. HILL, J .  Chem. Phys. 20, 1259 (1952); Faraday Soc. Disc. 13,132 

I See Flory, Chapter 14, for the polymer problcrn and T. L. HILL, J .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC h .  

(1953). 
P. J. FLOBY, Science, 124, 53 (1956). 

Phy8.20, 1173 (1952) for the polyelectrolyte problem. 
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FIG. 21-8. Isolated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApolymer moleculea in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa very dilute solution. 

the tendency to expand is resisted by the low probability of highly extended 
molecular configurations (Chapter 13). Thia is a deformation free energy 
effect, just as in previous sections. 

When we treat a single polymer molecule in the solvent as a uniform 
“gel,” we introduce two new approximations. First, the polymer units 
have approximately a gaussian distribution rather than a uniform dis- 
tribution about the center of the sphere. We shall replace this gaussian 
distribution by a uniform equivalent sphere. Second, especially in con- 
nection with AA.1, there are surface effects which may become significant 
for a relatively zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmall sphere but which are negligible for macroscopic gels. 
The criterion, as far as electrostatic effects are concerned, is whether or 
not the radius of the sphere is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlarge compared to the Debye-HUckel 1/~ .  
If the electrostatic forces are large enough, these surface effects zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill, 
in fact, lead to nonspherical (e.g., ellipsoidal) shapes for the molecule.* 
In an extreme case, the molecule will become an extended rod in 
order to reduce AA.1. We shall not pursue these shape changes here, 
however. 

Floryt has shown that, in the present problem, the actual approximately 
gaussian dhribution of polymer units about the center of the polymer 
molecule in a “free” (or random walk) polymer chain can be replaced by 
an effective uniform distribution of polymer units over a sphere of diameter 
equal to the root mean-square end-toend distance (?)’/* = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMt1/3at 
(Eq. 13-45), where a’ is the length of a statistical unit and M’ is the number 
of statistical units in the chain. This is an intuitively reasonable result. 
When the chain is expanded. (or contracted) in each dimension by a factor 

* T. L. Em, J. C h .  phg8.20,1173 (1952). 
t P. J. &RY, J .  c h .  PhyS. 17, 303 (1949). 
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a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArelative to the random walk state, the radius of the effective sphere 
becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - = - aF)lI2 a ' 
2 2 

T a a M ~ ~ / 2 a l ~  

and the volume 

V(a) = $ r R a  = = cas, (21-43) 

which defines C (the volume of the sphere when a = 1). 
We use the basic equation 

where A is the free energy of the single polymer or polyelectrolyte chain 
of M units and of the solvent in the volume V(a) = ul(N1 + M). Here 
A0 is the free energy of the initial (before mixing) pure solvent and of the 
(discharged) polymer chain in the random walk state, a = 1 (i.e., in a 
sample of undeformed and uncross-linked polymer chams). We retain 
the.notation VO = Mu1 and $02 = Vo/V = M / ( N ,  + M ) ,  where now 
9 2  refers to the interior of a single polymer molecule and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot to the whole 
solution (for which 9 2  + 0). The free energy of mixing is given by Eq. 
(21-22), which we rewrite as 

We get A#.% from Eq. (21-5) [the correction in Eq. (21-6) is omitted since 
there are no cross-links here], with N = 1: 

-- "d - In as - 3 (a' - 1) = l n c - z  3[(V)21a 3 - 11- (21-46) 
k 

Finally, if we are concerned with a polyelectrolyta molecule, we have 
from Eq. (2141), 

(21-47) 

Substitution of Eqs. (21-45) through (21-47) in Eq. (21-44) gives AA. 
We find the equilibrium degree. of swelling by setting 01 a AA/aV = 0, 
which is obviously equivalent to Eq. (21-24). We obtain in this way 

just as in Eq. (21-33), except for the deformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAterms. 
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The volume fraction of polymer, (p2, will be smaller here than in the 

corresponding swollen network; for in a network, when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 (random 
walk state), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA472 = 1, but here, when a = 1, 9 2  is already small, say, 
0.01 (I’roblem 21-10). The reamn for this is that a random walk con- 
figuration is a rather open one, and in the present problem the open space 
is filled with solvent rather than other chains of a network. The relation 
between va and a is cp2 = i l r u l / C a 3 .  

Therefore it will almost always be legitimate to expand the logarithm 
in Eq. (21-48), with the result 

v2 2 
a5 - a3 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A+- z 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ) & .  2 2x+1c (21-49) 

If we put dla = Wa’ (a is the length of a polymer unit with volume u l )  
and r1 2 a’, the coefficient in Eq. (21-49) becomes 

In a typical case, a‘ E 3a, so that 

If the polymer is not charged (t = 0) and x = 0 (good solvent), and 

if 111’ = !MO, then a = 1.7, 

if ill’ = 10,0o0, then a = 2.1. 

If x = #, a = 1. For this value of x, the tendency of the molecule to 
swell because of the entropy of mixing with solvent is just balanced by 
the tendency of the molecule to compress itself because of the poor solvent. 
The result is a molecule in the random walk state ( a  = 1). 

With a polyelectrolyte, the coefficient of M”I2/3 can easily be 3 [see 
Eq. (21-35)]. In this particular case, 

i fM‘= 900, then a = 2.1, 

if M‘ = lO,0o0, then a = 2.6. 

Quation (21-49) has been subjected to extensive experimental checking 
(see F’lory, Chapter 14) using, especially, frictional properties of the 
polymer molecules. The general conclusion is, again, that the theory is 
fairly successful but has some shortcomings, as should be expected. The 
electrostatic term, in particular, seems to predict too large an effect. 



2 1-01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASECOSD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVIRIAL COEFFICIENT 423 

It zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeasy to extend the above theory to a polyelectrolyte molecule with 
an ionic binding equilibrium zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see Section 21-4), but we leave this aa an 
exercise for the reader (Problem 21-11). 

2 1 4  Second virial coefacient in polymer and polyelectmlyte so1utiom.t 
We have so far combined the basic ideas of the Wall and Flory-Huggins 
theories to treat macroscopic polymer (and polyelectrolyte) gels and also 
infinitely dilute solutions in which a single polymer molecule in a solvent 
is treated essentially as a very small gel. In this section we make a straight- 
forward extension of the considerations of the preceding section to a 
slightly more concentrated polymer solution. Specifically, we deduce the 
second virial coefficient Bf (Eq. 19-37) from a potential of mean force zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw(r) 
calculated as the work necegsary to bring two isolated polymer molecules 
together from r = 00 to r. 

The argument we use is based on the uniform effective sphere model of 
the preceding section. This model is quite sufficient to bring out the 
essential points. Refinements will be found in the references a l d y  given. 

Consider first two isolated uncharged (z = 0) polymer molecules in a 
solvent, each with radius R (Section 21-5). If the distance r between 
centers is greater than 2R, there is no overlapping of the spheres and no 
interaction between the molecules. Thus w(r) = 0 for r > 2R. If r < 2R, 
the spheres overlap. We mume, as a first approximation, that the over- 
lapping does not distort the molecular configuration or tho distribution of 
polymer segments. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV’ is the volume of overlap of the two molecules, we 
find from elementary geometrical considerations (overlnp of two spheres), 

2 (2 1-5 1) 

Also, if the polymer volume fraction in each of the isolatcd sphcres is ( ~ 2 ,  

it is 292 in V’. 
The above discussion also applies to polyelectrolyte molecules, but this 

statement requires some special comment. In general, we would expect 
that two spherical polyelectrolyte molecules of radius R and fixed charge 
zeM/z would have w(r) > 0 for r > 2R, even though electrolyte solution 
can penetrate inside the spheres. This will be true for small polyclectrolyte 
molecules.$ But implicit in the model adopted in the preceding and present 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASee FLOBY, Chapter 12; also B. €I. ZIMY, J .  Chem. Plbps. 14, 104 (1940) and 
T. A. OROPINO and P. J .  FLORY, J .  C k m .  Phys. 26, 1007 (1957); J .  Phys. Chem. 
63, 283 (1959). 

# See, for example, F. T. WALL, el d., J .  Chcm. Phys. 26, 114 (1957); 31, 
1640 (1959); T. L. HILL, J .  rlm. Ckm.  Soc. 78, 1577 (195G); 80,3241 (1958). 
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sections is the assumption that a polyelectrolyte molecule is large enough 
to be considered to have the properties of a very small macroscopic gel. 
As far as electrostatic effects zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgo, this condition is equivalent to R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA>> 1 / ~ .  
In this case, the fixed charges will be virtually neutralized by the diffusible 
ions of the electrolyte. The electrostatic potential will be constant and 
the net charge density will be eero both inside and outside the sphere (the 
potential has a different value inside and out), except for a relatively un- 
important boundary region at the edge of the sphere with thickness of 
order 1 / ~ .  Thus, if R >> 1 / ~ ,  two polyelectrolyte molecules with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr > 2R 
“see” each other as essentially electrically neutral bodies, and hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w(r) = 0. Consequently, we can use the same kind of argument for both 
polymer and polyelectrolyte molecules. 

In a typical numerical example, 1 / ~  might be 20 A (Eq. 18-25) and 

In this connection we might recall Eq. (19-43) for the second virial 
coefficient of large spheres with a surface charge and in the presence of 
nonpenetrating electrolyte. The “neutrality” term in that equation is pro- 
portional to the square of the net charge (ze) in the region t < u (all of 
the charge happens to be on the surface). In the present problem, the 
corresponding term in vanishes because the net charge in t 5 2R is 
essentially zero. 

We return now to the overlap volume V’ when t < 2R. When we bring 
two molecules together from infmity to t, the only change occurs in the 
two volumes V’ destined to overlap. Thus we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan represent the process by: 

2 [volume V’ with cpa] 4 

(1) 

[volume V’ with 2cp4 + 
(2) 

[volume V’ with cp2 = 01. 
(0) 

(2 1-52) 

The free energy change in this process is 

AAOver1** = ,w(r) = AAt2) + AA‘O’ - 2 AA(l), (21-53) 

where AA‘”’ is to be calculated as in Eq. (21-44). A helpful simplification 
is that A S L O ’  = 0, ASL2’ = 2A$L1”, and hence there is no deformation 
contribution to AAov. This is a consequence of our assumption that over- 
lapping is “additive, ” i.e., without distortion of polymer configuration. 
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Let us put Eq. (2144) in the form 

(21-54) 

Substitution of Eq. (21-54) into Eq. (21-53), with expansion of the 
logarithm, leads to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

!!@ = d(1 - 2X + --f) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV'(r) (r 2R), (21-55) 
kT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV I  Z2VlC 

where V'(r) is given by Eq. (21-51) (Problem 21-12). The same elec- 
trostatic term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas in Eqs. (21-33) (polyelectrolyte gel) and (21-49) (single 
polyelectrolyte molecule) enters here and lowers the effective value of x .  
When z = 0, w(r) has the sign of 1 - 2x. Thus, in a good solvent (e.g., 
x = 0), w(r) > 0 and work has to be done to force the molecules to over- 
lap. This is because the overlapping process, (21-52), involves a partial 
Unrnixing of polymer and solvent. In a poor solvent with x > 0.5, w(r) is 
negative: the molecules "want" to overlap to increase the number of 
polymer-polymer and solvent-solvent interactions relative to polymer- 
solvent interactions. When X = +, these mixing and interaction effects 
just balance, and w(r) = 0 for all r. That is, polymer molecules inter- 
penetrate without effective interaction. This of course leads to a vanishing 
second virial coefficient, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 = 0. 

Next, we use the w(r)/kT of Eq. (21-55) to calculate BX from Eq. 
(19-37). Because the integration cannot be carried out analytically, we 
resort to an expansion of e-wlkT: 

The contribution from r > 2R is zero because w = 0 in #is range. We 
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find from Eqs. (21-51), (21-55), and (21-56), after elementary integrations, 

This is the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaa Flory's result [Eq. (75') of his Chapter 121, derived 
from a gauesian instead of uniform segment distribution, except that 0.324 
is replaced by 0.354. Using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ca8 and Eq. (21-49), Eq. (21-57) 
becomes 

* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B3 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACa8(a2 - 1)[1 - 0.324(a3 - 1) + - * -1, (21-58) 

where, it will be recalled, C is the volume of the effective isolated polymer 
sphere (Eq. 21-43) when a = 1. Equation (21-58) expresses BZ in terms 
of the swelling parameter a of an isolated polymer molecule, which in turn 
is determined by Eq. (21-49). When the quantity in large parentheses 
in Eqs. (21-49) and (21-57) is zero, the isolated molecule is in the 
"random walk state," a = 1, and = 0. When B: # 0, has the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sign of the quantity in large parentheses in Eq. (21-57), as expected from 
our discussion of Eq. (21-55). Convergence of Eq. (21-58) is rapid only 
when a is near unity, that is, when the quantity in large parentheses in 

Incidentally, the leading term in Eq. (21-57) is the same aa the second 
virial coefficient obtained (a) from the Flory-Huggins theory (Prob- 
lem 21-13), and (b) aa a first approximation by Zimm, using the McMillan- 
Mayer theory. 

Orofino and Flory have tested a somewhat refined version of this theory 
against extensive experimental results on both polymers and polyelec- 
trolytes. The agreement between theory and experiment is very satis- 
factory for polymers but leas so for polyelectrolytes. Again the predicted 
electrostatic effects are too large. 

Eq. (21-57) is small. 
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PROBLEMS 

21-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf Eq. (21-1) gives the end-to-cnd distribution in an undeformcd sample 
of rubber, show that Eq. (21-2) gives the distribution in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa d6formed sample, 
assuming each chain is deformed in the same way zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(as, a", as) as the bulk sample. 
(Page 399.) 

21-2. Use the method of undetermincd multipliers to prove that the maxi- 
mum f2 in Eq. (21-4) for given N and p is obtained when si zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANpi .  (Page 399.) 

21-3. Shorn that AS in Eq. (21-5) has its masimum value when a, = a,, = 
as = 1. (Pagem.)  

21-4. Make a rough plot of 92 vs. 22 and AS,/ilf& vs. 22 for Jf = IOOO. 
(Psgo 404.1 

21-5. Use Eqs. (21-16) and (21-17) for PI and ~ 2 ,  and d = N W I  + N2p2, 
to check Eq. (21-15) for A&,. (Page 407.) 

21-6. Show that use of the equal-area thcorem on a plot of 11 vs. I / q 2  to 
locate the two-phasc equilibrium point in a polymer solution is equivalent to 
using the equality of the two chemical potentials in the two phases. (Page 408.) 

21-7. Derive Eq. (21-28), for the relation between a and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt in a polymcr gcl, 
from Eqs. (21-24) and (21-27) by espanding In (1 - pa). (Page 413.) 

21-8. In a macroscopic polyclectrolyte gel the total charge density can be 
written (compare the Poisson-Boltzmann equation of Chapter 18) 

nze 
V 
- + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,c i 

when! + is the electrostatic potential in the gel (relative to the outside as zero). 
Linearize the exponential, solve for #, and deduce AAel in Eq. (21-41) by a 
charging process. (Page 418.) 

21-9. Consider the free swelling of a gcl with, say, -COOH groups which 
dissociate into -COO- and H+. That is, the gel has fixed negative charges on 
the -COO- groups and can bind H+, one for every -COO-. Calculate and 
plot the swelling ratio 1 / 9 2  88 a function of 1 - 8, the fraction of dissociated 
-COOH groups (as, for example, in a titration of the gel with base). This 
particular caw implies z = -1, m = -1, and zB/N2ilf = 1. Assume the 
elcctrolyte is of type 1 - 1, with concentration co = 0.15 moleliter-l. Also, 
take z = 10, X = 0.25, ilf = 400, and u1 = 18 cma.mole-l. In Eq. (21-33), 
expand the logarithm and drop the term 92/2 compared with I/a = 9;'". 
Also, calculate and plot the titration curve, 1 - 8 against Xq. Repeat the calcu- 
lation with co 

21-10. Show from Eq. (21-43) that 9 2  is of order when a =I 1, in r 
typical case. (Page 422.) 

21-11. Make the necessary modifications in Section 21-5 when the poly- 
electrolyte molecule is involved in an ionic dmciation or binding equilibrium. 
(Page 423.1 

21-12. Make a rough plot of the function V'(r) bctween r = 0 and r = 2R. 

0.05 mole.liter-l. (Page 418.) 

(Page 425.) 
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21-13. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAShow that the osmotic pressure second zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvirial coefficient obtained from 
the Flory-Huggins theory agrees with the leadihg term in Eq. (21-57). (Page 
426.) 

21-14. Modiiy the Flory-Huggins theory for a heterogeneous polymer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(mix- 
ture of polymer molecular weights). 

21-15. Investigate whether the Flory-Huggins type of argument can be 
applied to long rigid rods ( i d  of random coils). 

21-16. Extend the Flory-Huggins theory to polyelectrolyte moleculea. If 
the polyelectrolyte molecules are involved in an ionic biding equilibrium, what 
happens to the titration curve (adsorption isotherm) when a phase separation 
occurs? 

21-17. Diacuea qualitatively some of the errors made in assuming additivity 
of the free energy terms in Eq. (21-37). 

21-18. Beginning with Section 21-4, the solvent (electrolyte solution) has 
several components, but we treat it as a single component in nonelectmtatic 
expreesions. Investigate the legitimacy of this procedure as far as the entropy 
of mkiig solvent with polymer is concerned. 

21-19. According zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto Section 21-5, how does the radius R of the eftective 
sphere vary with the molecular weight of the polymer? 

21-20. Deduce one more term in the expansion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABZ in Eq. (21-57). Com- 
pare with Flory [Eq. (759, Chapter 121. 
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CHAPTER 22 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
QUANTUM STA’MS’MCS 

Although the argument in the first few chapters of the book is baaed 
on quantum mechanics, up to now we have bypassed all topics which in- 
volve any but the most elementary and familiar quantum-mechanical 
ideas (energy levels, degeneracy, etc.). This has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbeen done for the benefit 
of those readers with practically zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno background in quantum mechanics. 
In this chapter we consider a few of the more fundamental and simple 
problems in quantum statistics. Even here the demands on the reader‘s 
knowledge of quantum mechanics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare very modest-in keeping with the 
introductory nature of the present work. 

Sections zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA22-1 to 22-4 are concerned with the quantum statistics of one- 
component systems of indistinguishable particles without interparticle 
interactions. (We use the term “particle” here and below to refer to funda- 
mental particles, atoms, or molecules.) In Sections 22-5 to 22-7 molecular 
interactions are allowed. This makes the problem very involved, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA80 our 
treatment is strictly introductory. Section 22-8 is concerned with the 
special topic of dilute symmetrical diatomic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgases at low temperatures 
(e.g., ortho- and parahydrogen). 

22-1 Introduction to Fed-Dirac and Bose-Einstein statistics. The 
problem we consider here is the same as that of Section 3-2 but now me 
give a general treatment. We are concerned with a macroscopic system 
of identical and indistinguishable particles, which do not exert forces on 
each other, in a volume V (or area a, etc.) and at temperature T. The 
possible energy eigenvalues for a single particle in Y are denoted by 
el, €2, € 8 , .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . (functions of V), and the associated energy eigenfunctions 
are $1, $2, $8, . . . . For simplicity of notation, an energy level with de- 
generacy w is listed here w times (i.e., these are energy states, not levels). 
In Section 3-2 we limited ourselves to special conditions such that the 
number of energy states of the above type (available to any one particle) 
is very much larger than the number (N) of particles in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem. When 
thii is the case, we found (Eq. 3-10) that the canonical ensemble partition 
function of the system is simply 

(22-2) 
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When we remove the above restriction, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas we do here, the situation is 

more complicated. In particular, because of symmetry restrictions on the 
wave functions of the system, the particles are not independent of each 
other (even though interparticle interactions are absent): Q is no longer 
essentially given by a product of (independent) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq)s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfl; indeed, the single 
particle partition function q no longer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarisea as a significant quantity. 
But the general results we shd find will reduce to Eqs. (22-1) and (22-2) 
aa a limiting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase, as expected. 

There is no way of detecting experimentally an exchange, one for the 
other, of two identical particles in a system. Let # be the wave function 
representing the state of a system of N identical and indistinguishable 
particles. Then we can easily deduce* from the above-mentioned experi- 
mental fact that # may behave in one of two ways: when the coordinates 
of two particles are exchanged in the function #, # may remain unchanged 
or # may change sign. We say that # is symmetrical in the coordinates of 
identical particles in the former case and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAant&ymmeh*d in the latter case. 
One of the fundamental postulates or principles of quantum mechanics 
is that (a) the only states available (or “accessible”) to real systems of 
indistinguishable particles are those represented by wave functions which 
are either symmetrical or antisymmetrical, and (b) particles with half- 
integral spin (e.g., electrons, protons, neutrons) have antisymmetrical 
wave functions, while those with integral spin (e.g., photons) have sym- 
metrical wave functions. Nuclei, atoms, ions, and molecules made up of 
an odd number of electrons, protons, and neutrons (e.g., D, He*) are in 
the antisymmetrical class, and those with an even number (e.g., H, H2, 
Da, He4) are in the symmetrical class. The above restrictions on acce89i- 
bility are applicable whether or not there are interparticle forces. They 
are also applicable to multicomponent systems in an obvious way (hb- 
lem 22-1). 

The canonical ensemble partition function is in any c w  (interparticle 
forces, multicomponent systems) 

Q = C e--BjlkT (22-3) 
i 

where the Ej zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare eigenvalues of the Hamiltonian operator X for the system. 
But we now understand explicitly that we are to include in the sum only 
those energy eigenstates associated with energy eigenfunctions with the 
correct symmetry properties. This was implicit in our discussion in 
Chapter 1, but the point was not emphasized. In other words, the sum 
is over all aeeessz’ble energy states; those states which are inaccessible 
because of symmetry (or other) restrictions are omitted from the sum. 

* See, for example, L. D. LANDAU and E. M. LIFSHITZ, Quantum iIff~h&~. 
Reading, Mans.: Addison-Wesley, 1958; p. 204. 
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In a one-component system, we include in the sum either all the sym- 
metrical or all the antisymmetrical states, depending on the kind of 
particle. It is customary to say that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABose-Einstein statistics is involved 
in the former case and Fermi-Dirac in the latter. 

We now return to the special case of a one-component system of non- 
interacting particles. It will no doubt be helpful to the reader if we illus- 
trate the above considerations on symmetry restrictions by an explicit 
simple example. Consider a system with only three particles, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 3; 
call them zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, b, and c. For simplicity, suppose that the (nondegenerate) 
single-particle energy eigenvalues e1,82, €3, . . . , are proportional to the 
quantum number: e j  = j6, where 6 is a constant (as for a harmonic 
oscillator with proper choice of energy zero). Let us use the canonical 
ensemble partition function in the form (Eq. 1-37) of a sum over energy 

Consider, say, the system energy level E = 96. That is, 9 units 
(1 unit = 6) of energy are to be divided up among the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree particles. 
The possibilities are listed in Table 22-1 (Problem 22-2). The numbers 
under a, b, and c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare particle quantum numbers j for the respective particles; 
the sum of the j values is 9 in every case (E = 96). The first row cor- 
responds to the system energy eigenfunction # = #7(a) #,(a) #,(c), where 
(a) refers to the coordinates of particle a, etc. This function satisfies the 
Sduijdiier equation for the system, X# = 9a#. The  number 3 under 
upemutations" refers to the fact that the first row might have read 1,7,1 
or 1,1,7 aa well as 7,1,1 [the first of these corresponds to the system 
energy eigenfunction #l(a) #7(b) #l(c), etc.]. In the second row, there 
are six different functions possible for the set of quantum numbers (it 2, 1; 

TABLE 22-1 

SYSTEM OF THREE PARTICLES 
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# = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

etc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASo far we have ignored symmetry. If we continue to do so, and this 
would be correct i f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe particles are distinguishable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(as in an Einstein 
crystal, for example), we deduce, by adding up the column of numbers 
under "permutations," that there are 28 different wave functions which 
satisfy the equation 3C# = 96#. That is, the system energy level E = 96 
has a degeneracy QD = 28 (D = "distinguishable"). Thus one term in 
Eq. (22-4), for this simple example, is 28e-%lkT. 

Suppose the three particles obey Fermi-Dirac statistics (e.g., they 
might be electrons). If we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArun through the list of 28 energy eigenfunctions 
referred to above, we find that none of them is antisymmetrical. For 
example, 

#da) #2(b) #l(c) # -#6(b) $2(0 )  #l(c), 

#dU) #db)  # d C )  
# 2 ( 4  #2(b) # 2 ( 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 (22-5) 

# l ( 4  #l(b) # 1 ( 4  

where C is a normalization constant, meets our requirements. This function 
satisfies the equation 3C# = 96# because it is a linear combinstion of the 
6 functions corresponding to row 2 in Table a-1 (as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be seen on 
expanding the determinant). Also, it is an antisymmetrical wave function, 
for to exchange, say, (a) and (b), amounts to exchanging two columns in 
the determinant. But it is well known that the exchange of two columns 
changes the sign of a determinant. In this way, (22-5), we can construct 
one antisymmetrical energy eigenfunction for the system from each of 
rows 2, 3, and 6 in Table 22-1 (the quantum numbers are all Werent 
in each case). No such function can be formed from any of the other 
rows, however. For example, the determinant constructed from the set 
of quantum numbers 7,1,1 has two rows exactly alike and therefore is 
identically equal to zero. This will be the case whenever two or w e  purticks 
ure in  the same Qwrnlum skate. Further inspection reveals no other anti- 
symmetrical linear combinations of the 28 functions (except liiear com- 
binations of the three determinants already found). Therefore, in thie 
example, there are 3 antisymmetrical system energy states belonging to 
the eigenvalue E = 96; that is, f l ~ ~  = 3. Thus one term in Eq. (22-4), 
for a Fermi-Dm system, is 3e-g"/kT. 
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The above argument can obviously be generalized to a system contain- 

ing any number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN of noninteracting particles. We reach the general con- 
clusion that a quantum state of a Fermi-Dirac system in which two or 
more particles are in the same particle quantum state is inaccessible. An 
alternative statement is that, in Fermi-Dim statistics, each particle 
quantum state can be "occupied" by either zero or one particle at  a time. 
This is just the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPauli zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexd& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprimph (which forms the basis of the 
periodic table when applied to electrons in atoms). For example, when 
the above system of 3 particles is in the state (22-5), particle states 1, 2, 
and 6 are occupied (we cannot say by which particle), while states 3, 4, 5, 
7, 8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . are unoccupied. 

Next, we consider the Bose-Einstein case (e.g., the three particles 
might be He' atoms). We examine the 28 wave functions above and find 
that only the last one, 

(I = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# 3 ( 4  +3(N #3(c), 

is symmetrical. But, if we allow linear combinations, we find that in fact 
one symmetrical wave function can be formed from each of the rows in 
Table 221. All these functions can be represented in the form of a modi- 
fied determinant; for example, from row 1 (Problem 22-3), 

# = C' 

where the prime on the determinant means that in expanding the de- 
terminant aU Signs are to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtaken p d i z e .  This scheme gives, for row 7, 

etc. Thus, in this example, QBE = 7, and one term in Eq. (22-4) is 

From the above simple example we can make the following general state- 
ment: in Bose-Einstein statistics (symmetrical wave functions), the number 
of particles in a particle quantum state is unrestricted; the number can 
be 0, 1,2,3, .  . . , N (whereas in Fermi-Dim etatistics only 0, 1 are 
p i  ble) . 

There is another important general deduction we can make by inspection 
of Table 22-1. We note that, in this example, 

QD 
QBE 2 jiq 2 QFD. 

7e-8"ikT. 

(22-7) 



436 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQUANTUM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASTATISTICS [CHAP. 22 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
It is easy to see that this will always be true. Each Fermi-Dirac state 
(rows 2, 3, and 0 in Table 22-1) corresponds to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN! "disthguWable" 
states. But there may be some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsets of particle quantum numbers (rows 
1, 4, 5, and 7 in Table 22-1) which give "distinguishable" states but not 
a Fermi-Dirac state. Therefore QD 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN!QFD. Also, each set of particle 
quantum numbers gives one BowEinstein state. The maximum number 
of "distinguishable" states for one set of quantum numbers is N! (all 
quantum numbers different). Therefore QD 2 N!QBE. 

It is also clear that if E is sufficiently large (high temperature), the 
number of available particle quantum states can be very large compared 
with the number of particles N (see Sections 3-2 and 4-1). In  this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase the 
vast majority of sets of particle quantum numbers will have all quantum 
numbers different (i.e., because of the large excess of particle quantum 
states, only infrequently will two particles be in the aame quantum state, 
even if allowed). Thus, for large values of E, the equalities in (22-7) 
are approached : 

QD 
QBE + + QFD (E  + GO). (22-8) 

Hence, the two kinds of statistics give the same limiting result. This 
limiting type of statistics (treating the particles aa distinguishable to get 
QD, and correcting with N!) is referred to as "classical" or "Boltamann." 
We have been using Boltzmann statistics in most of the book, since the 
limiting condition is achieved in the usual problems of interest. 

The canonical ensemble expression corresponding to Eq. (22-8) is 

Actually, this relation and (22-8) are not restricted to systems of non- 
interacting particles (see Sections 6-2 and 22-6). 

We turn now to the explicit problem of calculating thermodynamic 
functions for a one-componen t system of noninteracting indistinguishable 
particles. The customary treatment* is based on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ and the microcanonical 
ensemble. Table 22-1 makes it clear how one is to proceed in principle. 
For given N and E, QBE is the total number of different ways of dividing 
E up among the N particles, treating the particles as indistinguishable 
and without restricting the number of particles in any one particle 
quantum (energy) state. For QFD, however, we have the limitation that 
not more than one particle can be in a particle quantum state (hence 
QFD 5 QBE). In practical cases, N and E are of course very large (macro- 

* See, for esample, Mrryer and Mayer, Chapter 5. 
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empic). The restriction of fixed values for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN and E requires uae of unde- 
termined multipliers (Problem 22-4), or the method of steepest descents. 
A simpler procedure is to employ the grand partition function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV ,  T 
specified). This avoids the restraints of constant N and E. 

In Chapter 7 [see, especially, Eqs. (7-26), (7-31), and (7-34), and the 
discussion following Eq. (7-27)], we found that a grand partition function 

for a single subsystem was useful. Specifically, we considered a system 
in which the adsorption sites were distiiguishable and the particles in- 
distiiguishable. In Eq. (7-31) (Langmuir adsorption), the number of 
molecules per site was restricted to zero or one, while in Eq. (7-34) (B.E.T. 
adsorption) the number of molecules per site was not restricted. The 
situation here is very similar. A particle quantum state with the particles 
occupying it is a subsystem in the present problem. The particle quantum 
states are distinguishable, but the particles are indistinguishable. In 
Fermi-Dirac statistics, the subsystem has s = 0 or 1, and in Boee-Einstein 
statistics s = 0, 1,2, . . . . 

In Fermi-Dirac zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstdkties, then, 

=(PI V, T )  = t j ( ~ ,  T) ,  tj = 1 + e-4j'Y"k"~, x = erlkT- 

(22-10) 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6rst term in (j is anso~iated with Sj  = 0, and the secondwith sj = 1, 
where e-ei/kT [corresponding to q in Eq. (7-31)] is the partition function 
of one particle in the energy state 6. The mean number of particles in 

i 

A 

-a -2 -1 0 +1 +2 - 3 

(e - r)/kT 

FIG. 22-1. Boee-Einetein, Fed-Direc, and classical (Boltsmann) distribu- 
tions: mean number (8) of particlee in a quantum state aa a function of the 
energy (e) of the state. 
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FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA22-2. Fcrmi-Dirac distribution at different temperatures. 

the svstem is 

where 

Thw is the Fermi-Dim distribution law (see Fig. 22-1). 
Equation (22-12) gives the mean number of molecules in the state ej. 

For any finite e j  and constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT: if p + - m,9j + 0 (therefore the system 
approaches zero density, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg / V  + 0) ; and if p + +m, 9 j  + 1 (the system 
approaches infinite density unless there are only a finite number of particle 
energy states). For finite ej, constant p, and T + 0 (see Fig. 22-2): 
gj + 0 if ej > p and Sj + 1 if ej < p. Thus, at the absolute zero of 
temperature, the particles fill up (one per state) all energy states below 
c = p and leave all states above e = p completely unoccupied. Because 
the particles cannot all go into the ground state at  T = 0, a Fermi-Dirac 
system necessarily has a large zero-point energy. (If p is chosen less than 
€1, the ground state, all Sj = 0 and 7 = 0 at T = 0.) For T slightly 
above absolute zero, the distribution is no longer a step function, and 
there is partial occupation (0 < 9j < 1) of states in the neighborhood 
of c = p (Fig. 22-2). 

We noted in connection with Eqs. (22-8) and (22-9) that both kinds 
of quantum statistics are expected to go over into classical statistics if 
the number of available quantum states greatly exceeds the number of 
particles, N. In the present context and notation, this means 9j + 0 
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for all energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstates (i.e., 8j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 almost always, but occasionally 8j = 1). 
We see from Eq. (22-12) that this condition is achieved if A + 0 (e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r / V  + 0 with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT constant or T + +oo with m/V constant). Equation 
(22-12) becomes, for small A, 

(22-13) 

where A has been eliminated (X = m/q) by summing (22-13) over j. The 
quantity gj/m is the fraction of molecules in state j, or the probability 
of any one particular molecule being in state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj .  Equation (22-14) is the 
Bdtzmann distribution, the same as Eq. (3-35), as should be expected. 
We observe that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq and the Boltzmann probability e-41kT/q arise on& in 
the limit X + 0. Figure 22-1 includes the classicrrl or Boltzmann case, 
(22-13). 

In Bose-Einstein 8i'&'.stitx: 

Z(P,  v, TI = II tAvi ~ ) i  (22-15) 
i 

(22-16) 
The successive terms in the above Series are for sj = 0, 1, 2, . . . , the 
number of molecules in state j ,  with energies 0, ej, 2ej, . . . , and partition 
functions 1, e-*tlkT, e-2+kT, etc. The series converges only if e-*,IkTX < 1. 
Since this condition must hold for all states j ,  we have that p must be 
leea zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthan the ground state energy el (usually taken as zero for conven- 
ience). There is no corresponding restriction on values of p in Fermi- 
Dirac statistics. Equation (22-11) for still applies but here we find 

(22-17) 

This is the Bcm-Einstein distribution law, which differs from the Fermi- 
Dim law only by the sign in front of the unity in the denominator. 
Figure 22-1 shows that for a given p < el, each energy state ej has a 
mean population which decreases in the order BE, Class, FD. The d t  
BE > FD is to be expected simply because of the restriction 8j = 0 or 1 
for FD. Relative to the classical awe, the larger (smaller) number of 
particles in the system for given p in the Bose-Jhstein (Fermi-Dirac) 
case corresponds to an dective attraction (repulsion) between the parti- 
cles. We shall see this also in Eqs. (22-38) and (22-76). 
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In o Bow-Einstein system, for any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< ell when T + 0 all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8j --f 0 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm -, 0. However, if p is only infinitesimally less than el and T + 0, 
then we still have 8j + 0 for all j > 1, but g1 can be made as large as 
one pleases. Thus if'we put €1 - p = kT/m, 

(T --f 0). (22-18) 

In other words, in the limit T + 0, the only thermodynamically significant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(7 > 0) value of p is p = el; also, in this limit, all particles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare in the 
ground state (el) and all excited states ( j  > 1) are unoccupied. This is 
in distinct contraat to the behavior of a Fermi-Dirac system at  T = 0. 

The low-temperature behavior for either kind of statistics also follows 
from Fig. 22-1 if we keep in mind that as T --f 0 the horizontal energy 
scale in the figure shrinks proportionally. 

If we let X + 0 in Eq. (2%17), we have 

(A + 0). (22-19) 

This is again the classical or Boltzmann distribution, (22-13), as it should 
be. Each 8j << 1 : usually 8j = 0, occasionally 8j = 1, and only very rarely 

Finally, let us indicate in a formal way how the various thermodynamic 
functions are obtained in either kind of quantum statistics. The variables 
p ,  V, and T are independent and specified in advance. Then, from Eq. 
(22-ll), the mean number of particles in the system is (upper sign FD; 

(22-20) 
lower sign BE) 

is sj > 1. 

1 
= e('j-NlkT 1 ' 

The average energy is obviously 

(22-21) 

Also, for the equation of state, we have 

pV = kT In Z = f k T  In [I f e(r-'j)'kT 1. (22-22) 
f 

In these equations the e j  are functions of V (or of the external variables 
of the problem). All other thermodynamic functions can now be found 
from p ,  V, T,  R, E, and p (Problem 22-5). 

We consider the three most important special cases in the following 
sections. 
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22-2 Ideal Fed-Dime gas; electrons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin metals. The particular model 

we consider here is a noninteracting gas of Fermi-Dim particles in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 box 
of volume V (ideal Fermi-Dirac zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas). The energy levels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc j  are then those 
of a particle in a box, Eq. (4-2). Because the energy levels are extremely 
close together, for macroscopic V, we can treat them aa continuous. 
Equation (4-9) gives the number of translational states between c and 
6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ dc. 

For concreteness, we discuss one particular example-the electrons in 
a metal. In this case there is an electron spin of one-half (in units of 
h/24 and degeneracy of two. We therefore multiply Eq. (4-9) by two and 
have 

312 
W ( B )  de = k(g) Vc”’ dc. (22-23) 

If an electron at  rest in the gaa phase is used to locate the zero of energy, 
then each electron in the metal is assumed to move in a constant potential 
field Q (compare Q in Chapter 16). This potential is negative (of the order 
of several electron volts), owing to the attraction between an electron and 
the lattice of positive ions, and goes to zero at  the surface of the metal. 

It is at  first glance quite surprising that a noninteracting gas of electrons 
is of any use at  all as a model for the electrons in a metal. The fact is 
that the deductions from this model are in good qualitative (not quanti- 
tative) agreement with experiment (heat capacity, electrical and thermal 
conductivity, thermionic emission, etc.). The essential reasons for this 
agreement are: (1) each electron interacts with the other electrons and 
the lattice of positike ions by long range coulomb interactions which 
change only relatively slowly with the position of the electron (hence the 
use of Q = constant); and (2) aa we shall see below, quantum effects are 
extreme in this case, and these (rather than interaction) dominate in the 
behavior of the electrons. 

For simplicity, from here on we take (but see Problem 22-6) the zero 
of energy as the ground state in the metal, €1 = 0 (instead of €1 = 9). 
Then Eq. (22-20) becomes 

(22-24) 

Let us check immediately to see if the classical limit (omit the +1) can 
be used. This requires X << 1. We can use the classical (ideal gas) X for 
thie test, Eq. (623) (the electron spin introduces a factor of two, which 
is unimportant for the moment). That is, if Xolam << 1 then X = Adws. 

Now the condition &am << 1 from Eq. (4-23) is just the condition 
A3N/V << 1 in Eq. (4-0). Let us take m = electron mass, T = 30O0K, 
and N/V corresponding to lOcm*.mole” for the metal and one free 



442 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQU.4NTUM STATISTICS [CHAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA22 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
electron per metal atom. We find 

which is large, rather than small, compared with unity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalso Table 41) .  
Thus quantum effects are large here; this is because of the high free-electron 
density and, especially, low mass. (The term "strong degeneracy" is often zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
used in both kinds of statistics to refer to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase &lass >> 1; "weak 
degeneracy" means almost classical, Xclarr < 1.) One can use the classical 
limit of Eq. (22-24) only above about T = 10soK (Problem 22-7)) at 
which temperature, however, the metal would be vaporized. 

Thus, from the point of view of the electrons in a metal, room tempera- 
ture is itself a relatively low hpmature (see Fig. 22-2). In fact, equations 
valid in the limit T 4 0 give numerical results that are quite accurate 
(as we shall confirm below) at  room temperature. Therefore we begin by 
investigating the low-temperature limit. 

W h e n T = 0 , 8 =  l fo re  <pandS=Ofore>p,asalreadypointed 
out. Equation (22-24) becomes, then, 

The number of electrons that can be accommodated by the system is 
clearly just equal to the number of quantum states with energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp or legs 
[compare Eq. (4-5)]. Or, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif we regard m/V as given, all energy states up 
to the so-called Fermi energy, 

(22-26) 

are filled, and all above p are empty. The Fermi energy is of the order of 
several electron volts (Problem 22-8). 

The (kinetic) energy at T = 0 is 

(22-27) 

That is, the average energy (ground state as zero) per particle is 3p/5. 
This is the zero-point energy of the system. It is large because of the Pauli 
exclusion principle. If we use Eq. (22-26) to eliminate p from Eq. (22-27), 
we have I? aa a function of m and V. We see, then, that CV = 0 (T -+ 0). 
An early problem in the (claesical) theory of metals was to try to reconcile 
the fact that although "free" electrons exist as far as thermal and electrical 
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conductivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare concerned, they still do not contribute significantly to 
the heat capacity (the expected value was 3k/2 per electron). We have 
here the quantum-mechanical explanation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: at  ordinary temperatures the 
vast majority of electrons are in the filled states, e < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp; the only electrons 
that have higher energy levels available (i.e., unoccupied) to which they 
can jump (and absorb heat) are those near e = p. The first nonzero 
term in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACV, expanded in powers of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ,  is given below in Eq. (22-31). 

We can find the pressure from Eq. (22-22). When p > e (and T + 0), 
it is permissible to drop the unity. When p < e, we drop the exponential. 
Thus .. 

pV = k T i  (F) o(e) de = ivp - B 

= @?p = #E. (22-28) 

The electrons in a metal exert a very high pressure (even at  T = 0, 
because of the large zero-point kinetic energy), of the order of 105atm. 
This pressure is balanced, however, by a potential energy contribution 
from acp/aV, which we have not included explicitly. 

We digress here to note that the result pV = 2E/3 is rather general: it 
holds for any noninteracting (ideal) gas of particles in a three-dimensional 
box, irrespective of statistics or temperature. To see this in a formal way, 
put ~ ( e )  de = Ce112 k (Eq. 49) in Eqs. (22-21) and (22-22): 

m 

pV = f k T C 1  e’”ln [ l  f e(”-‘)lkT ] de. 

An explicit expression for C is not needed here. An integration of the pV 
equation by parts leads immediately to pV = 2E/3. The physical 
explanation of this general result has nlready been given in connection 
with Eq. (419). 

0 

For the entropy of a Fermi-Dim gas at  T = 0, we have 

s = 0, (22-W 

since there is only one way (Q = 1) to put m indistinguishable particles 
in the lowest 2p energy states, one per state. For T > 0, S is proportional 
to T [see Eq. (2231)). 

The above equations for the low-temperature limit are the most im- 
portant for this simple model of a metal. To find the next term in expan- 
sions in power of T requires straightfonvard but quite lengthy mathe- 
matical manipulations, which we omit because the results obtained are 
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not sufficiently important for our purposes. (We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee below that the 
corrections found are rather negligible.) Let us simply state, as a typical 
example, the result for the energy: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E = ;NPo[l +A(->'+. 5r kT . .], 
12 Po 

(22-30) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPO is the Fermi energy: 

This gives E as a function of the independent variables N, V, T (closed, 
isothermal system). Since po is of the order of electron volta and 1 ev 
corresponds to kT with T = 1.16 X lo4%, we see that the correction in 
Eq. (22-30) at, say, T = 30O0K, is of the order of only 0.1%. 

Other thermodynamic functions follow easily from Eq. (22-30) (Problem 
B-9). For example, 

(22-31) 

This predicts that CV is proportiod to T,  a conclusion which has been 
verified at low temperatures (where the Debye T8 heat capacity of the 
metal-arising from vibration of positive ions-goes rapidly to zero). 
Also, integration of CV/T leads to S a( T.  At mom temperature, Q. 
(22-31) gives, in agreement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith experiment, a heat capacity which is of 
the order of only one percent of (a) the classical value for free electrons, 
or (b) the vibrational heat capacity of the positive ions (Chapter 5). 
Figure 22-3 shows the heat capacity of an ideal Fermi-Dirac gas over 
the whole temperature range. 

A much more detailed account of this subject is available in a number 
of places. See especially Mayer and Mayer, Chapter 16. 

T/TO 

FIG. 22-3. Heat capacity of ideal Bow-Einstein and Fermi-Dim gases. TO 
is defined in both cases by Eq. (22-45). 
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224 Ideal Bose-Einstein gas; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhelium. We saw in the preceding section 
that very strong quantum effects occur in an electron zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas even at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAordinary 
temperatures. In this section we shall be concerned with a gas of non- 
interacting Bose-Einatein molecules (ideal Bose-Einstein gas). The  mass 
of a particle (molecule) here is several thousand times the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111888 of an 
electron. Hence quantum effects are much zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmaller: they are absent at 
room temperature and become very strong only at very low temperatures 
(a few degrees absolute). We found, for example, in Table 4-1 that = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AsN/V = 1.5 for helium at  the liquid density and 4.2'K. The condition 
for classical behavior, it will be recalled, is &,la.. << 1. We conclude from 
the above remarks that in the present problem (and of course also for a 
Fermi-Dirac zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas of molecules) we have to consider both weak and strong 
quantum effects. Low-temperature expressions (strong degeneracy) are 
not valid over the whole range of practical interest, as is the case with 
electrons in a metal. 

The specific example we choose is helium. Helium is almost the lightest 
gas available and it has the weakest known intermolecular forces. Hence, 
with helium, quantum effects have the best possible chance to make them- 
selves evident in the gas at low temperatures without intermolecular forces 
confusing the issue. Unfortunately, it turns out that the extremely in- 
teresting condensation properties of helium, observed experimentally, are 
due to an inextricable mixture of quantum and intermolecular force 
effects. But there is little doubt that the "condensation" in an tileal Bose- 
Einstein gas, which we shall study below, is intimately related to the actual 
behavior of helium at low temperatures, though it furnishes only part 
of the story. 

Let us begin by investigating the region of slight degeneracy (low 
density or high temperature). This is most simply done using eaaentially 
the grand-partition-function, virial-expansion method of imperfect gas 
theory (Chapter 15). The question of the range of convergence of the series 
will be examined later. We shall write explicit expreasions only through 
the second virial coefficient and related terms, but it is easy to extend the 
various series further [see, for example, Problem 22-10 and Eq. (22-89)l. 
Up to the second virial coefficient there is no inconvenience in including 
both Fed-Dirac (upper sign) and Base-Einstein (lower sign) cases in 
the same equations, so we may as well do this. 

We begin with 

pV = kTInZ 
00 

= f 21~kT  ($!)"' V i  el'' In (1 f e-''ITX) de. (23-32) 
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For small X we can expand the logarithm and integrate term by term: 

or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(22-33) 

In the limit of zero density (X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp / k T  = X/A3 = p (classical ideal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
gas; Chapter 4). As usual, we define the activity z 80 that z --$ p when 
p + 0. That is, z I X/A8. If we replace X by z in Eq. (22-33), we have 

(22-34) 

where 

Equation (22-34) is in the same form as Eq. (15-7) of imperfect gas theory. 
While those departures from the ideal gas law (p / kT  = z = p )  that were 
discussed in Section 15-2 were due to intermolecular forces in a claseical 
gas, here they are due to quantum effects. Because Eq. (22-34) is a special 
cam of Eq. (15-7), we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan use the general methods of Chapter 15 without 
modification: Eqs. (15-7) through (15-21) are d l  applicable if we take 
Eq. (22-35) for the bj. Also, we have ' p = -[1 3 + J3k+1(T)pk] (22-36) 

K T =  5 pkT 2 

and (see also Problem 22-11) 

= - 5 - h A 3 p  + (g - F)&+iP. ' (22-37) 
k 2  1 

2 

Next, we list a few explicit equations (weak degeneracy) through the 
aecond virial coefficient, using B2 = -b2 = =tA3/2512 (upper sign, 
Fermi-Dirac) : 

(22-38) 
A3 p =  1 f W P + . . . ,  

- kT = In A3p f w p  + - - - 
PkT 

(22-39) 
P Aa 
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n = ; ( l r Z i i ? P + . . . ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcv A8 (22-42) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The following comments on these equations may be of interest. (a) The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sign of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABa corresponds to a "repulsion" between Fermi-Dirac molecules 
and an "attraction" between Bose-Einstein molecules. (b) The magnitude 
of the purely quantum second virial coefficient above is BZQ = O(A8). 
The magnitude of a classical B2 arising from intermolecular forces is 
B[ = o(l/&nd), where Pmnd is the number density of a condensed phase. 
The ratio of the two magnitudes is then Bf/Bc = O(A8p,,d). But thk 
is just the order of the quantity calculated in Table 4-1; hence, we have 
a verification of the fact that in helium, at about 4°K) quantum and inter- 
molecular effects both contribute significantly to B2. (c) If intermolecular 
forces are suddenly "switched on" in a classical monatomic ideal gaa 
(p and T constant), the entropy decreases whether the forces are repulsive 
or attractive (Problem 15-11). But note in Eq. (22-41) that although a 
BoeoEinstein gas has a lower entropy than a classical gaa, a Fermi-Dirac 
gas has a higher entropy. This shows that the analogy between quantum 
effects and intermolecular forces refe-d to in (a) cannot be pushed too far. 
(d) These series may be regarded not only as in powers of p (coefficients 
are functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT)  but also as in powers of Asp (coefficients are constants), 
powers of Teal2 (coefficients are functions of p), or powers of ha (coefficients 
are functions of p and T). (e) Equation (22-42) informs us that the CV 
curve8 in Fig. B-3 deviate from the classical value at high temperature 
by a quantity proportional to T-'I2. 

The above keries are valid for small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX. Now let us examine what happens, 
in Bose-Einstein statistics (the complications we find below do not arise 
in Fermi-Dirac statistics) when we take larger values of X. First, we note, 
from Eq. (22-17)) that the number of molecules in the ground state 
(el = 0) is S1 = X/(1 - X) and hence that X can never be greater than 
unity ( p  cannot be positive). We are interested, then, in the range 
0 5 X 5 1. Next, let us look at  the integral form of the equation for 7: 

We multiply numerator and denominator of the integmnd by e-*lkTX, 
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expand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe-r/kTX)-l, integrate term by term, and find 

and the function F,(a) is defined by 

F.(O) = 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{(u) is the Riemann {-function. Since p cannot be positive, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 
cannot be negative. As increases from 0 to 1, a decreases from +oo to 0. 
In order to study increasing degeneracy, then, we can start zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith large a 
and let a decrease toward zero. In this process the function Fal2(a) 
increases monotonically (something like e-, but more rapidly for small 
u) from a value zero at  a = +a to a value {(3/2) = 2.612 at a = 0. 
Thus, for given V and T, increases from zero at  a = +GO to a mazintum 
value 2.612V/Aa at  a = 0. But this result is inconsistent with the rela- 
tion 81 = X/(1 - X), which implies that 81 and hence 7 (since 7 2 S1) 
can be made arbitrarily large by taking X arbitrarily close to unity. The 
reason for the discrepancy is that in converting the sum (22-20) to an 
integral, we have incorrectly omitted a contribution from the ground 
state, because the weight w(e) a e l l2  is zero at  e = 0. 

Let us now change our point of view a little and suppose that N/V = p 
is fixed, and that Eq. (22-43) determines u as a function of T. This equa- 
tion is valid so long as a is significantly greater than zero or X is sig- 
nificantly less than unity, for in this case the number of molecules in the 
ground state, X/(1 - A), is of negligible order compared with N. For 
example, if a = lo”, X = 1 - and 81 = lo6, which is negligible 
in relation to N. At high temperatures, a is large and Eq. (22-43) is equiv- 
alent to the series (22-39) (lower sign). As T decreases, a decreases 
until the limiting value a = O+ (or p = 0-) is reached at  a special 
temperature T&) defined by the equation 

812 {(3/2) 2.012 
P 

(22-45) 

At this temperature there is apparently some kind of singularity. Hence, 
for given p, Eq. (22-43) and the series (22-38) through (2242) are valid 
for T > To, but not for T < To. Alternatively, we can say that, for 
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given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, theae series are valid for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< po(T) but not for p > PO, where 
po is defined by 

(224) 
(A) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8/2 =-. 2.612 

The numerical value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATO turns out to be 3.13OK at the density of 
liquid helium (27.6 cm8.mole-'). This is of the m e  order of magnitude 
aa the temperature of the (higher-order) phase transition in helium (re- 
ferred to & below), 2.19OK. Closer agreement is not to be expected, 
since intermolecular forces are b e i i  neglected in the present d d o n .  

For T < TO, and N and V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfixed, the right side of Eq. (22-43) givea 
the number of molecules in excited stah. Then N is equal to this number 
plus the number 81 in the ground state: 

Po 

This equation has a solution for a if a is only slightly greater than zero: 

where we have eliminated V by use of Q. (22-45). Then 

This verifies that a and p are essentially zero in the whole range 0 5 T I 
TO: a = O(N-') and -p = O(kT/N). At T G 0, -p = kT/N,  in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAagree- 

T = constant 

1 / p  = I' 

FIQ. 22-4. Number of molecules in the ground state as a function of (a) tem- 
perature (density constant) and (b) volume per molecule (temperature mnstsnt), 
for an ideal Bow-Einstein gas. 
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ment with Eq. (a-18). Figure 22-4(a) shows how the number of molecules 
g1 in the ground state varies with T. Above TO, 81 is a thermodynamically 
negligible number, but zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstarting suddenly at TO (as T is decreased), there 
is a “condensation, called the %ose-Einstein condensation, of a macro- 
scopic number of molecules into the ground state. At T = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, all molecules 
are in the ground state: 81 = N. 

Alternatively, for p > po(T) with T constant, we have from Eqs. 
(22-45) and (22-46), 

81 = N(1 - $) b > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPo), (22-48) 

as shown in Fig. 224(b). 
We shall return to the Bose-Einstein condensation following investiga- 

tion of other thermodynamic properties. The equation for the energy of 
a Bose-Einstein zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas is 

For T > To (p constant) or p < po (T constant), Eq. (22-50) is equiva- 
lent to Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(22-40) [where u has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbeen eliminated as an independent 
variable in favor of p, using essentially Eq. (22-39)]. For T < To, the 
macroscopically significant number of molecules in the ground state [not 
taken zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcare of by the integral in Eq. (22-49)] do not contribute to the 
energy anyhow, since €1 = 0. Therefore Eq. (22-49) also holds for 
T < Toifweputu = O+: 

The numeihl value of 5(5/2) is 1.342, and f(5/2)/5(3/2) = 0.5134. We 
note that E oc T512, for T < TO. The heat capacity is 

or CV oc TS12. The complete CV from Eqs. (22-42) and (22-52) is shown 
in Fig. 22-3. There is no discontinuity in CV at To, but there is a dis- 
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T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOK 

F I ~ .  %ti. Experimental zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAheat capacity of liquid helium under its own vapor 
presSum. 

continuity in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX v / a T .  The experimental heat capacity of liquid helium 
under its zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAown vapor preeeure (neither CV nor Cp) is shown in Fig. 22-5, 
with a singularity at 2.19OK. Becauee of the shape of this curve, the 
singularity is often referred to aa a A-transition. Experimental curves of 
this kind are also found in the order-disorder transition in alloys (Sec- 
tion 20-1). 

The equations for pV follow immediately from pV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (2/3)E. We 
already have the case T > To or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp < po in Eq. (22-38). This can be 
deduced from Eqs. (22-50) for E and (22-39) for u (or p ) .  For T < To 
or p > po, we have from Eq. (22-51), 

or 

Quation (22-54) is particularly important, for it states that if T is held 
constant, p remains constant in value for p > po. The pu isotherms are 
shown in Fig. 22-6. 

It should now be clear that, themwdynamimlly, the *Einstein con- 
densation is a first-order phase transition (but the experimental transition 
in helium is not zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfir& order). The two phases in equilibrium are the con- 
densed phase with T, l/p = u = 0 and the diluk ,phase with T ,  
u = l/po(T). The two phases have the same pressure (the vapor pressure), 
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FIG. n-6. Preeeure-volume isotherms for an ideal Bose-Einstein gas. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p = 0.514kTpo(T), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand the exme chemical potential, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0. How- 
ever, this firshrder phase transition is very unusual on the mobxlur 
level. When 0 < u < l /pO(T), that is, in the flat portion of a p-u isotherm 
(Fig. 22-6), the system has a uniform m w m p i c  density l /u (instead 
of the customary two Merent densities). As it is usually stated, the 
condensation occurs in momentum space rather than in coordinate space: 
the condensed phase consists of molecules with zero energy and momen- 
tum, and macroscopic de Broglie wavelength. (Actually a -point 
energy and momentum exist for a molecule in a box, but they zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare com- 
pletely negligible in magnitude since V is macroscopic.) 

If T < TO or p > PO, the entropy is given by 

- -%Nk- 5(5'2) [ J i 2  (T < To). (22-55) 
t(3/2) To@) 

Hence S a T5I2 and S = 0 at T = 0 (all molecules are in the ground 
state). For the heat of the phase transition, per molecule, we then find 
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For further details the reader is advised to consult the treatment by 

F. London (Supplementary Reading list). 

2 2 4  Blackbody radiation (photon gas). Here we give a brief derivation 
of the thermodynamic properties of electromagnetic radiation in thermal 
equilibrium, which we regard as a gas of photons. We consider the photons 
to be in a container of volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV with heat insulating and perfectly re- 
flecting inside walls. Thus the system is isolated and has a definite energy 
E. Because photons do not interact with each other, a very small black- 
body is assumed to be present in the container to absorb and emit photons, 
thus making thermal equilibrium possible. Becalm photons absorbed at 
one frequency might be emitted at  another, and in different numbers to 
conserve energy, the total number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN of photons in the system is not fixed, 
even though the system is isolated. 

There are two essential respects, then, in which a photon gas differs 
from a gas of particles with nonzero rest mass (e.g., electrons or helium 
atoms): (1) the photons do not interact with each other, so that in the 
photon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas m approximutiun is made by neglecting interparticle inter- 
actions; and (2) the number of particles in an isolated system is not 
conserved. 

Thermodynamically, the system is characterized by E and V only 
(not E, V,  and N, as usual for an isolated system). 

Photons have spin one (units of h / 2 4  and hence obey Boae-Einstein 
statistics. The spin degeneracy is two (corresponding to two independent 
directions of polarization) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; it is not three, as would be the case for particlea 
with spin one and nonzero zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArest mass. 

Electrons also have a spin degeneracy of two, so we might expect to be 
able to take over Eq. (22-23) for ~ ( e )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAde, the number of energy eigenstates 
between e and e + de, for a single particle in V. However, because of their 
zero rest maas, Eq. (22-23) is not applicable to photons. Instead, we write 
this equation in terms of the absolute value of the momentum (e = p2/2m, 
p 2 0, since the energy is all kinetic) : 

87rvpa dp 
ha 

is the number of quantum states with p between p and p + dp. (Note 
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that we use p for both momentum and pressure in this section.) This 
expression does not involve the maas. In applying it to photons, we use 
the de Broglie relation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h hv 
p = r ; = c ,  

to again change variables, this time from p to v. 

8rVv' dv 
CS 

G(v) dv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

(22-57) 

This gives 

(22-58) 

as the number of quantum states with frequencies between v and v + dv. 
Note that Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(22-58) agrees with the "transverse part" of Eq. (VI-30) 
for g(v) dv in Debye's continuum model for a crystal. In fact a w e  
argument of the type presented in Appendix VI is ordinarily used to derive 
Eq. (22-58). We have, instead, taken the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApartide point of view. This 
illustrates the fact that pbotons may be viewed either as particles or waves. 

We now wish to apply the relations (22-20) through (22-22) for N, E, 
and pV to the special case of a photon gas. We use the lower sign for 
Bose-Einstein statistics, take Eq. (22-58) as the weighting function in 
converting the sums to integrals, and put e = hv for the energy of a 
photon. Also, because of the fact that this (isolated) system is defined 
thermodynamically by E and V only, we can make a special assignment 
of p at the outset. We first consider this point. 

We have already encountered other isolated systems in which the 
numbers of molecules are not fixed: systems with chemical equilibria. Let 
us review this topic briefly (see Chapter 10, especially Section 10-2). 
Suppose we have a twocomponent system characterized by E, V, NA, 
and Ng. Then a catalyst is added making possible a chemical reaction 
between A and B, say A # B. Thermodynamically, this reduces the 
number of independent components by one, from two to one. The equi- 
librium point can be located by, for example, maximizing S with respect 
to NA holding E, V, and Nn + Ng constant, minimizing F (or A) with 
respect to NA holding p (or V), T, and NA + N B  constant, etc. In any 
case, the equilibrium condition Ap = PB - PA = 0 is found. The situa- 
tion in a photon gas is rather similar. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmall blackbody catalyzes the 
"reaction" nA # mA (n and m arbitrary integers, A = photon), which 
leads to a number of independent components one leas than would other- 
wise be the case (i.e., the number of independent components here is zero zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
instead of one). The equilibrium point is located by maximizing S with 
respect to N holding E and V constant, minimizing F (or A) with respect 
to N holding p (or V) and T constant, etc. In any case, all the relations 

; - 0, (@,= = = c = 0, etc., 
= - - - 
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give zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0. We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalso get p = 0 from 

Ap = mp - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnp = (m - n)p = 0. 

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsummary: because the number N of photons is not conserved in an 
isolated system, N must be regarded as a parameter and not as an inde- 
pendent thermodynamic variable; location of the equilibrium point with 
respect to the value of the parameter leads to the condition p = 0. 

Whereas a molecular Bose-Einstein gas has p = 0 for T < TO, a photon 
gas hasp = 0 for all temperatures. 

The remainder of the analysis is very straightforward. Equations 
(22-20) through (22-22) become zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p V = - -  *y L O D  v2 In (1 - eAVIkT) dv. 

(22-59) 

(22-61) 

The integrsnd in Eq. (22-60) is essentially the blackbody energy distribu- 
tion function, discovered at  fir& empirically by Planck in 190, which 
provided the starting point for the whole development of quantum theory. 
If we write this integrand as 

v8e-bvlkT 
V8 - - - - v8 c (e--hrlkT)n, 

ehvIkT - 1 1 - , - W k T  n l 1  

we find 

Since {(A) = r4/90, we have 

8r6V(kT)'. 
15(hc)s 

E =  

Note that E is a function of Y and T only; or T is a function of E/V only. 
The fact that the total energy of the radiation is proportional to T' is 
the well-known Stefan-Boltemann law. The heat capacity is 
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The temperature dependence of E and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACV is the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas that of a crystal 
at low temperatures, as we should expect from Sections 5-3 and 5-4 and 
the discussion following Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(22-58). The resemblance between Eqs. 
(5-33) and (22-60) for E should also be noted. Because of the relation 
between these two problems, the acoustical quanta in a crystal are often 
regarded as forming a phonon gas in analogy to a photon gas. 

Integration of Eq. (22-60) by psrts leads to 

E 
3 

p v =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-. 

The reason why we get pV = E/3  here and not pV = 2E/3, as in earlier 
sections, is that this is an extreme relativistic system (e = cp instead of 
p2/2m, p = momentum). Since E/V is a function of T only, the piearmre 
is a function of T only, as in a first-order phase transition. This result 
might have been expected since p = constant (=O). Equation (22-54) 
for the pressure in the BeEinstein condensation is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsimilar. 

The radiation pressure p = E/3V is completely negligible in magni- 
tude except at  extreme temperatures. For example (Problem 22-12), 
p = 1/5 atm at 105"K (atomic bomb explosion). 

We handle Eq. (22-59) for N just as we did Eq. (22-60) for E and find 
for the equilibrium number of photons 

3 
N = lkC(3)V (g) 9 - (2245) 

where f ( 3 )  = 1.202. Thus N is determined by V and T (or E and V, 
etc.). We can combine Eqs. (22-62)) (22-64)) and (22-65) to obtain 

The entropy follows from 

Np = 0 = E - TS + pV, 

s=-=-- E + pV 4E 32r6Vk(kT)' 
T 3 T -  45(hc)8 * 

Thus8 o( T 3 a n d S  = Oat T = 0. 

22-5 Quantum statistics with intermolecular interactions. This is a 
very involved subject, so we must confine ourselves to a brief introduction 
to it. Further details will be found in 5. M., Sections 8-11 and 16, and, 
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especially, in Hirschfelder, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd., Chapters 1, 2, and 6. Many of the 
contributions in this field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare due to J. de Boer and his collaborators. 
Because of their complexity, we omit entirely any dmussion of the many 
current attempta beiig made to attack the liquid helium and other quan- 
tum fluid problems exactly. 

The method of Sections 22-1 to 22-4 breaks down when intermolecular 
interactions are present, for the energy eigenvalues (eigenfunctions) of 
the whole system can no longer be written simply as a sum (product) of 
the energy eigenvalues (eigenfunctions) of the individual molecules in 
the system. We have to return instead to the completely general equa- 
tion (22-3), 

(22-69) Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= e-EdkT 

i 

where the sum is over all energy states accessible to the particular system 
under consideration. 

There are alternative but equivalent forms of Eq. (22-69) that are 
often useful. Let +j be the normalized energy eigenfunction belonging 
to the eigenvalue Ej. That is, X+j(q) = E,+j(q), where X is the Hamil- 
tonian operator for the system, X = X (kinetic energy operator) + U(q) 
(poteatiul energy), and Q represents all the coordinates. Then we can write 

Q = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc , - W k T / + t (  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq)+i(d dq 
j 

Let us defhe thc operator e*lLT by 

(22-70) 

(22-71) 

(22-72) 
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where the pn me any complete set of orthononnal functions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo prove 
this, we expand pn in the set of functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ j :  

pn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC Ant+jJ 
i 

A n j  = /+$~s dq- 

Substitution of this expansion for in Eq. (22-72) gives 

= Ce--BjlkT 

i 

The last step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be justified by expanding the function +j in the set pn 
and then forming the integral l# ;# j  dq = 1. Thus both Eqs. (22-71) and 
(22-72) are equivalent to Eq. ( 2 2 4 )  and hence are equivalent to each 
other. Equation (22-71) is the special case of (22-72) obtained when we 
choose the energy eiginfunctions for the set 9s. 

One quite general application of Eq. (22-72) is the following: it allows 
us to write the quantum-mechanical analog of the classical ststistical- 
mechanical quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe--U1kT (recall that e--U1kT is proportional to the 
configurational probability density). Consider, for example, a one- 
component system of monatomic molecules. In classical mechanics 
(Eq. 6-21) 

(22-73) 

Equation (22-72) also involves an integral over dq. Comparison of (22-72) 
and (22-73) shows that the analog of e--U/kT is 

--EjlkT = C +f(q)+,(q)e . 
i 

(22-74) 

We call [a the “Slater sum.” We can easily verify that [s] hrrs the same 
physical significance as e--U/kT by noting that 

e--BjlkT 

+7(d+j(d & -. 
Q 

is the probability of observing the system in the energy state Ej and also 
in a configuration between q and q + dq. If we sum this quantity over j, 
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we have the probability of observing a configuration between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq and 
q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa!q, irrespective of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj .  This sum over j is essentially that in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(22-75). 

As a very simple example of Eq. (22-75) we can calculate [q for two 
noninteracting particles in a onedimensional box of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. We find 
(Problem 22-13) 

[q = 1 Fe-2Wa-zs)*/Az (upper sign FD), (22-76) 

where 2 1  and 52 are the coordinates of the two particles. A negligible 
term in ( q  + 52)' has been dropped here. Clearly, there is an effective 
interaction between the particles when their distance apart is of order A 
(thermal de Broglie wavelength) or less, an attraction in the Boa?-Einstein 
case and a repulsion in the Fermi-Dirac case. The leading term (unity) 
is the classical value (h, A -+ 0) for noninteracting molecules. 

For two particles in three dimensions (see Himhfelder, et d., p. 402), 

[q = 1 Fe-2+Az (upper sign FD). (22-77) 

In view of Eqs. (22-72) and (22-74) this gives 

V 2  V =- W e  =F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2a/2B8' (22-78) 

T h e  equations of Section 15-1 then lead to the second virial coefficient 

(22-79) 

in agreement with Eq. (22-38). 
In general, w e  can write for monatomic molecules [compare Eq. (621)l 

where 
ZN = [a drr. . . dmr. (22-w 1 

This is the quantum-mechanical configuration integral. Even if UN is 
pairwise additive, in general the quantity -kTln [q (the quantum 
analog of UN in ZN) will not be. Hence quantum d o g s  of equations 
such as (L5-30) for Bg, B4, etc., do not exist (but we recall that the equa- 
tions of Section 15-1 are general and apply to the quantum case). 

It may be instructive if we also evaluate &2 (Eq. 22-78) for two non- 
interacting molecules in V using Eq. (22-69) directly. We are seeking just 
first-order quantum effects; for this purpose, we can replace sums by 
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integrals. First, we have from the energy-level expression (4-2) that Q1 
is given by (this is Problem 4-2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Qt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc c exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[-(l+" + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1; + lf)h2/8mV2/ak!l'l 
1.. I , .  1 2 1  

Kow, to start on Q2 we take the corresponding sixfold sum over all 
pwihle values of l z l ,  lull 1.1, Iz2, lu2, and 1.2: 

The d u e  of this sum (from integration) is obviously (V/A3)2. In this 
sum we have counted, for example, the states 

1x1, . . . , lZ2 = 4,9,8, 13,3,3 
and 

ZZl, . . . , 182 = 13,3,3,4,9,8 

as separate states (with the same energy). Because of indistinguishability, 
this is wrong, and we divide the above sum by two, giving V2/2A6. But 
this correction is not proper for those states in which 

1x1, 41, L i  = L 2 ,  ba, 1.2; 

for example, 
lz1, . . . 1 122 = 4,9,8,4,9,8. 

Such states should not be included at all in Fermi-Dirac statistics, and 
their contribution should not have been divided by two in Bose-Ehtein 
statistics (because each occurs only once in the sixfold sum). We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan 
compensate for these errors by adding an appropriate term. Thus for Q2 
we have (upper sign Fermi-Dirac) 

On replacing the sums by integrals, we again get Eq. (22-78). 
The calculation of the quantum-mechanical second virial coefficient 

for interacting molecules (e.g., a Lennard-Jones 6-12 interaction potential) 
has been carried out for several monatomic gases, but the procedure is 



2251 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIXTERMOLECULAR ISTEHACTIOSS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA46 1 

too zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcomplicated to discuss here (see Hirschfelder, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd., Chapter 6). At 
low temperatures, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ2 in the form x je-Ej /kT was the starting point. At 
higher temperatures, Q2 in the form of an integral of the $later sum (Eq. 
22-80), using momentum eigenfunctions for the qn, was the starting point. 
Figure 15-1 contains curves for the theoretical (high-temperature method) 
and experimental second virial coefficients of H2 and He, using the 
LennardJones potential with values of the parameters e and r* chosen 
to give best fit (these are the values in Table IV-1). Agreement is excellent. 
The curves for H2 and He depart significantly from the classical curve. 

At high temperatures (slight quantum effects) the explicit equation for 
B2 is found to be (upper sign FD) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+ 0 ( h 4 / ~ 2 ) .  (22-82) 

The first term is the classical B2 (Eq. 15-24), and the second term (of 
order h3/mal2) is the quantum B2 for noninteracting molecules (Eq. 22-70). 

It is appropriate at this point to discuss the modification in the law of 
corresponding states (Sections 15-2 and 16-4) that must be made for 
quantum fluids. We consider, as usual, monatomic gases with a pair 
interaction potential of the form u(r) = di(r/r*) (this h is an arbitrary 
function and not Planck's constant). The Lennard-Jones 6-12 potential 
is an example. The virial expansion can be written 

In the classical case, we have already seen that B 2 p 3 ,  B3/r*a, etc., are 
universal functions of kT/e only, and hence p / k T  is a universal function 
of kT/e and u/r*' (law of corresponding states). In quantum statistics 
the thermodynamic expansion (22-83) of course still holds, but we observe 
on inspection of Eq. (22-82) that B 2 p 3  is now a function (different in 
Fermi-Dim and Bose-Einstein statistics) of kT/e and also of the quantum 
parameter h/(me)'12r*, where h/(m)'I2 is essentially the de Broglie 
wavelength for a molecule with energy e. This is true as well for the higher 
virial coefficients B S / ~ * ~ ,  etc. (as can be verified hy dimensional analysis). 
Therefore p / k T  is a function, different in the two statistics, of the reduced 
thermodynamic variables kT/e and ~ / r * ~ ,  and also of the reduced quantum 
parameter h/(m)'12r*. These two functions approach each other and 
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become the universal classical function (Section 16-4) in the limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h/(me) 1/2r* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA---f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. The B2/r*3 curves for HZ and He (both Bow-Einstein) 
in Fig. 15-1 do not coincide because they have different values of the 
quantum parameter (Problem 22-14). In fact, the three curves in 
Fig. 15-1 may be regarded as a Bose-Einstein family of curves correspond- 
ing to three different choices of the quantum parameter. 

Hirschfelder et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd. give many more details about the quantum-mechanical 
lam of corresponding states and its applications. 

The next section contains another application of the quantum equation 
for &, Eq. (22-72). 

22-6 The factors h" and Nl in classical statistics. In Chapters 3,4, and 
G we found it necessary to introduce the factors h" (n degrees of freedom) 
and N! (N molecules) into the classical canonical ensemble partition func- 
tion [see, for example, Eq. (G-25)3. In Chapter 6, by appealing to special 
cases, we justified the use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof h" as the volume in classical phase space cor- 
responding to a single quantum state. Here we give an argument, due to 
Kirkmood, which provides a general justification for this. The appro- 
priateness of the factor N! has already been demonstrated adequately 
in Sections 3-2,6-2, and 22-1. In the case of N! there can be no doubt 
about the correct quantitative expression [mhereaa with h" we might 
have expected, say, (h/4r)",  etc.]. In fact, we can deduce the factor N! 
simply by combining the quantum-mechanical idea of indistinguishability 
of identical particles with the classical phase integral (Eq. 6-18). But 
Kirkwood's method can be extended (we omit this here) to provide a 
j d  verification of the N! correction. 

We consider a system of N point particles with a potential energy V(r), 
where r stands for rl, . . . , fN. We use Cartesian coordinates, even though 
for some systems other coordinates would be more natural. For example, 
the system might consist of two atoms, N = 2, forming a diatomic 
molecule, in which case the rotational (8, q), vibrational (r12), and trans- 
lational (z, y, z of center of mass) coordinates would be the conventional 
choice; but instead we employ r1 = z1,11, 21 and rz = Z Z , ~ Z ,  ZZ. Our 
procedure is to obtain the desired result concerning h" with cartegian 
coordinates and then use the classical mechanical theorem, (VII-ll), 
that an element of volume in phase space is invariant under a canonical 
transformation (q, p + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq', p'), to embrace any choice of coordinates. 

We start with Eq. (22-72), and use for the (pn(r) the normalized momen- 
tum eigenfunctions 

(22-84) 

The normalization is such that if we expand the arbitrary function S(r) 

1 ,pripr/h d r ;  PI = 



in momentum eigenfunctions, 

then by the inversion formula for the Fourier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtransform, 

Whereas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+y is the probability density for r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA*A is the probability 
density for p. Temporarily we ignore restrictions on the symmetry of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
wave functions. Substitution of Eq. (B-84) in Eq. (22-72) gives 

dr dp. Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 e-2rfpr lhe-X/kT 2r ip r lh  e 
hSN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv 

It should be apparent that momentum eigenfunctions were chosen for 
the % in Eq. (22-72) because we now have, in (B-SS), Q expressed as an 
integral over t and p-just as for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAelcrsaiecrl Q. Next, me define a func- 
tion w(r, p, T )  by the equation 

e e w(r1 Pl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT). (22-86) 
-X /kTe2+fpr lh  = e-H/ET 2r fp r Ih  

If we put thii in Eq. (M), we obtain 

Q = h8N / p / r e-H1kTw(rl p, T )  dr dp. (22-87) 

Now all we have to show is that in the classical limit (h + 0), w + 1. 
To do this, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe go back to Eq. (22-86) defining to. For simplicity of 

notation, let us consider a ondimensional (4 system here. Becam we 
am using Cartesian coordinates, the extension to any number of variables 
is very straightforward. The reader should verify thii using two variables 
(z and or 31 and 52) .  With the aid of the relations 
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thc lvft xitlc of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEq. (22-80) becomes 

f! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-3CIkT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 2 r i p t l h  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C 2 r i p t / h  [I - &+ u) 

+ terms of order ha, h', , . . . 
111 the cl~wical limit (h 4 0), the terms of order h2, h', etc., drop out, 
and there remains 

(h 4 0). e- -X lkTc2r ip r /h  ~ e2ripr/he--H/kT 

Therefore, from Eq. (22-86), 

w + l  as h + 0 .  

I<irkwood used a nore elegant argument based on the so-called Rloch 
differential equation, but the result is the same. 

On referring back to Eq. (22-87), we me, then, that the factor h-anr in 
front of the classical phase integral is indeed correct, at  least with Cartesian 
coordinates. But in view of Eq. (VII-11), we can change variables from 
r, p to any set q', p' and still have 

Q = L/ haN P' / 9' e--HIkTd q'dp' (h + 0). (n-88) 

This is what we set out to prove. 
We observe that Eq. ( 2 2 4 )  does not have the desired factor (N!)-I 

in front of the integral signs. The reason is that we have ignored zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsym- 
metry restrictions on the wave functions [Eq. (22-88) is correct as it 
stands for a system of distinguishable particles-an Einstein crystal, for 
example]. Actually, the same kind of argument aa above can be carried 
through, including symmetry effects (indistinguishable particles). But 
the argument is too sophisticated for the present text and we omit it 
(see S. M., pp. 85-89). The result is that hSN in Eq. (22-88) is replaced 
by h3"!. 

22-7 Free-volume theories of quantum liquids. In Chapter 16 we 
discussed several approximate theories of classical liquids. Similar a p  
proximations have been applied to quantum liquids. h u s e  the theo- 
retical foundation is especially unsatisfactory when quantum effects are 
included in these theories, we shall merely sketch here what is perhaps 
the simplest procedure in converting a classical free-volume theory into 
a quantum theory. For further discussion of this general subject, see 
I'rigogine (Chapter 18) and Band (Chapter 8). 
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To be specific, we consider a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Einstein system. The same kind of 
argument zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill obviously apply to a Fermi-Dirac zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem. In Sections 
16-1 and 16-2, the transition from an ideal classical gas (no intermolecular 
interactione) to a real classical fluid was made by passing from the ideal 
gas equation (16-15), 

to the "real fluid" equation (16-22), 

That is, we replace u by the free volume 01, and we add a potential energy 
term --(p(v)/2kT. We now follow exactly the same formal procedure for 
a Bme-Ehstein fluid,* and for the same physical reamns. Thus, we first 
write the expression for the Helmholtz free energy of an ideal (no inter- 
actione) Bose-Einstein gas, from Eqs. (22-40), (22-41), (22-51), and 
(22-55) : 

--- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ins+ ve 0 . 4 6 1 8 7  vO(T) + 0.0112 [I' 
NkT - 

where we have included additional t e rn  (see Problem 22-10) in the 
u > uo series and (Eq. 22-46) 

Next, we r e p h  u by u / ( u , T )  and add the potential energy term 
-(p(~)/2kT: 

Equations (22-91) and (22-92) now determine all the properties of the 
fluid once we adopt some definite model which provides uf and (p. 

* T. L. HILL, J .  PhyS. c h .  51, 1219 (1947). 
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The simplest example is the van der Wads model [Eqs. (16-4), (16-5), 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(16-23)l: 

*€Pa (2293) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2a. %*a u f = v - b J ( p = - - - - '  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb = -  
u '  

3 l a o = - *  3 

If we substitute theae expressions for ul and (p in Eqs. (22-91) and (22-92), 
and then use p = - ( & ~ / ~ V ) N , T ,  we 6nd for the equation of state 

2 1 2 - - [ 1 - 0.4618 A - 0.0225 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A) - * -1 kT - (U - b) ~ - b  

= +oo (u < b). (=) 

It ie eaey to verify (Problem 22-15) that p / k T  is a universal function of 
kT/eJ u/r*a, and h/(m)'"r*, and hence that the quantum-mechanical 
law of corresponding atate is obeyed (Section 22-5). It is also apparent 
that the above very simple theory gives for the second virial d c i e n t  
(upper sign Fermi-Dirac) 

which should be compared with Eq. (22-82). 

further properties of the van der Waals-Bose-Einstein fluid. 
We leave it as an exercise for the reader (Problem 22-16) to deduce 

22-8 Gas of symmetrical diatomic m o l d e s  at low  temperature^^. In 
this section we consider a rather diiTerent type of application of quantum 
symmetry restrictions. A symmetrical (or homonuclear, which is a lese 
confusing term in the preaent context) diatomic molecule is made up of 
two identical nuclei and one or more electrons. It is impossible, experi- 
mentally, to d i s t i i  one of theae nuclei from the other (when the 
molecule rotate) just as two identical atom in a box are i n d i s t i i -  
able. A wave function representing the state of a system containing 
homonuclear diatomic moleculea must therefore be symmetrical or anti- 
symmetrical (depending on the nucleus) in the exchange of the two nuclei 
of any homonuclear diatomic molecule. The wave function must also be 
antie.ymmetrical in the exchange of any two electrons. A similar restric- 
tion obviously appliea to more complicated molecules with equivalent 
and identical atom, such as CHI, CDHa, etc., but we limit ourselvea to 
the diatomic problem. 
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Clearly, there is no analogous symmetry restriction for the nuclei of 

heteronuclear diatomic molecules. Nothing essential needs to be added 
to the discussion of this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase already given in Chapter 8. 

Let us investigate a one-component homonuclear diatomic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas at suf- 
ficiently low density (Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4-0) so that classical statistics can be used for 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI r u m M W  motion. Then, as in Eq. (221), Q = by/N! ,  where q 
is the partition function &-%IkT for a single molecule in a box of volume 
V. In this special case we need consider only the energy eigenvalues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAej 

and eigenfunctions #j of a single molecule. We are to include in the q-sum 
only those molecular energy eigenstates with proper symmetry (e.g., states 
which are antisymmetrical in the exchange of the two nuclei for H2 and 
symmetrical for Da, since a hydrogen nucleus contains an odd number of 
nucleons and a deuterium nucleus an even number). 

We have already seen in Section 8-3 that the above symmetry restric- 
tions can be ignored and a classical treatment of rotation can be used if 
T >> 8,. Our problem here is to provide a formulation which is suitable 
at low temperatures, that is, when T > > 8, and the classical approach 
breaks down. In order to reach the range of temperatures at which quan- 
tum dects would show up, very low temperatures are needed (see Table 
8-1) except for H2 (43, = 85.4OK) and D2 (43, = 42.7OK). 

As in Eqs. ( 4 4 1 )  and (8-1) through (8-3) we write, for a homonuclear 
diatomic molecule, 

H = H t  + Hr + Hv + He + Hn, 

6 = el + 6 + e. + c + 6 8 ,  

* = StS&&&n. 

We consider only the ground electronic and nuclear states, for reasons 
already discussed in Chapters 4 and 8. We now examine the symmetry 
of (t to see which energy eigenstates are to be included in the q-sum. The 
ground state electronic function (Ie is necessarily antisymmetrical in the 
electrons. Usually (for example, Hz), the ground state t j e  is also sym- 
metical in the nuclei: this is the only case we consider. The function #t 

(which depends only on the coordinates of the center of mass) is not 
affected by exchanging nuclei, nor is t j V  (which depends only on the inter- 
nuclear distance). Hence both of these functions are symmetrical in the 
nuclei. Therefore (I has the nuclear symmetry of the product $&,,. If 
the nuclei have an odd (even) number of nucleons ("mass number"), 
(I and (Idn must be antisymmetrical (symmetrical) in exchange of the 
nuclei. 

for H, s, = 1 for D, s,, = 0 for He4, etc. Then the nuclear ground state 
Let a,, be the nuclear spin (in units of h/2r). For example, s, = 
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degeneracy of each nucleus is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 28,, + 1. Let the nuclear ground 
state energy eigenfunctions be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ 2 , .  . . , If we denote the two 
(identical) nuclei by A and B, a function of the form +1(A)$2(B) - 
$1(B)$2(A) is a possible antisymmetrical nuclear function $,, for the 
diatomic molecule (i A and B are interchanged, the function changes 
sign). Such a function exists for each pair of different numbers 12, 13, 
. . . , lwm1, etc. Altogether there are ~ , , l ( w , ~  - 1)/2 such pairs and 
therefore this number of antisymmetrical nuclear states for the molecule. 

The function $I(A)$2(B) + $1(B)$2(A), obtained simply by changing 
the sign in an antisymmetrical function, is symmetrical in the exchange 
of the two nuclei A and B. Other symmetrical functions are $1(A)f1(B), 
$2(A)$2(B), etc. Thus there are a total of 

symmetrical nuclear states. 
The total number of nuclear states for the molecule is 

as one should expect. 
Now we turn to k. h ide  from normalization, we have* 

sr(e, cp) = e'"PJ'"''(cos e), 

in rather standard notation. The associated Legendre functions can be 
defined by 

If we interchange nuclei, 8 becomes r - 8 and cp becomes cp + r. Thus 
x = cae 8 becomes -x. Then we note that 

= (-1)jPj(Z) 

and 
Pli"'( - x )  = (- p m I P p ' ( Z ) .  

* See any text on quantum mechanics. 
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We conclude that $r is antisymmetrical in exchange of the nuclei if j is 
odd and symmetrical if j is even. 

Putting these zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAresults together, we have the following situation. If the 
nuclei of the homonuclear diatomic molecule contain an odd (even) num- 
ber of nucleons, rl and #&,, must be antisymmetrical (symmetrical) in 
exchange of the nuclei. For rotational states with j even, #r is symmetrical, 
and hence only antisymmetrical (symmetrical) nuclear states are acceasi- 
ble-in order to make the product #&,, antisymmetrical (symmetrical). 
On the other hand, for j  odd, #r is antisymmetrical, and only symmetrical 
(antisymmetrical) nuclear states are accessible in order to make 
antisymmetrical (symmetrical). We therefore have 

(even mass no.), (22-100) 

where qm is the combined rotational and nuclear partition function which 
cannot here be factored into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqr and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq,,. 

I: 0 (which occurs only with even mass number), as for example 
in Oi6, 6 1  = 1 and 

If 

q m =  C - 
f 1 0 . 2 . .  . . 

In this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase odd rotational states do not appear at all. This has been 
verified spectroscopically. 
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For a heteronuclear diatomic molecule zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASection &3), the equrr- 

tion corresponding to Eqs. (22-99) and (22-100) is 

(22-101) X Y  
qn = wnlwnl, qr = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 

j-0.1.2,. . . 
At high temperatures (Eq. 8-25), Eqs. (22-99) and (22-100) both 

=- 'lT (homonuclear), (22-102) 
28, 

in agreement with Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8-29) with u = 2. In the same limit, Eq. (22-101) 
becomes 

Qrn = - beteronuclear) . (22-103) 
8, 

When the classical forms for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqrn, (22-102) and (22-103), can be used 
(which is almost always the awe), qn is separable and constant (the product 
of the two nuclear spin weights) and is ordinarily omitted, as already 
explained in Sections 2-4 and e4. 

We confine ourselves in the remainder of this section to the special 
case of hydrogen gaa (see also Problem 22-17 concerning deuterium 
gas, D2). A hydrogen nucleus has odd mass number (one proton) and 
sn = 3, wnl = 2 (spin "up" or "down"). Therefore Eq. (22-99) becomes 

TABLE 22-2 
EQUILIBRIUM PERCENT p-H2 IN H2 GAS 

T, OK 

0 
15 
30 
50 

100 
200 
298.1 

% PH2 

100 
99.989 
96.95 
76.8 
38.5 
25 .,953 
25.074 

(22-104) 
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Hydrogen molecules in even rotational zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( j  = 0, 2,. . .) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcon- 
ventionally referred to as parahydrogen, or pH2, and those in odd rota- 
tional states are called orthohydrogen, 0-H2 (Problem 22-18). 

The thermodynamic properties of hydrogen ga~,  at equilibrium, are 
determined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = C/N! and q = qtQ&&m, with qm given by &. 
(22-104). At the temperaturea of interest here (10"K-300°K), translation 
is classical, while the vibrational and electronic degrees of freedom are 
completely unexcited. 

The ratio of the number of ortho- to parahydrogen moleculm, at equi- 
librium, is obviously 

-= No 3ci1i,a.. . . . 
Np lZj=0,2,. . . 

The high-temperature limit is N,,/Np + 3, and the low-temperature limit is 

That is, the equilibrium mixture approaches 100% para (j = 0)  as 
T + 0 (Table 22-2; Problem 22-19). 

The rotational-nuclear contribution to the heat capacity, Cvmj can be 
calculated from Eq. (22-104) after two differentiations with respect to 
temperature [see, for example, Ekp. (8-31) and (8-33)]. The curve ob- 
tained is labeled eH2 (e for equilibrium) in Fig. 22-7. Ale0 included in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 
200 
I 

300 

T, "K 

FIG. 22-7. Rotational-nuclear contribution to the heat capacity for eH2, 
pH2, eH2 (equilibrium mixture at each temperature) and 4 o-Ha @belea 
"experimental"). 
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the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6gure are curves for pure pH2 and pure o-H~, calculated from 

para: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq,.,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= l C  
f-0.2,. . . 

ortho: q m = 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc . 
f-1.8.. . . 

The experimental curve for Ha, shown in the figure, does not agree with 
any of these! This interesting puzzle waa resolved by Dennison, who 
resliaed tha%, in the abmnce of a catalyst, the half-life for the interconver- 
sion between ortho and para states is very long compared with the time 
of an experiment. Therefore when ordinary hydrogen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas is cooled down 
from mom temperature for low-temperature heatcapacity measurements, 
the high-temperature composition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0 0 4 3 2 )  obtains even at low tempera- 
tures, instead of the equilibrium composition (Table 22-2). The gas is 
nd in a state of complete equilibrium (as assumed in Table 22-2), but is 
in a state of ''frozen" metastable equilibrium with 9o-H~.  (See Sections 
2-3 and 2-4 in this connection.) If we calculate a heat-capacity curve 
based on 0 O - H ~  at all temperatures, using 

Cvm = Wvm (ortho) + tcv, (para) 

and the ortho and para curves already included in Fig. B-7, we find a 
theoretical curve that is in excellent agreement with the experimental 
curve shown in the figure. 

The above analysis is elegantly confirmed by an experiment due to 
Bonhoeffer and Harteck: active charcoal is found to be a catalyst (the 
mechanism involves adsorbed free H atom) for the orthepara conversion; 
in the presence of a catalyst, points on the equdibrium cum (labeled 
e-H2) in Fig. 22-7 are obtained experimentally. 
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PROBLEMS 

22-1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExplain how symmetry restrictions on accessible quantum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs t a b  apply 
to multicomponent systems. (Page 432.) 

22-2. Construct a table analogous to Table 22-1 for a system of four particles 
with a total of 12 energy "units." (Page 433.) 

22-3. Expand the determinant in Eq. (22-6), and show that the wave func- 
tion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# is symmetrical. (Page 435.) 

224. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUse the microcanonical ensemble and thc method of undetermined 
multipliers to derive the Fermi-Dirac distribution law, (22-12). To avoid 
applying the Stirling approximation to small numbers, the quantum states 
should be treated in large group with essentially the same energy. (Page 437.) 

a-5. Show that the entropy of an ideal quantum gas can be written in tho 
form (upper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsign Fermi-Dirae) 

S = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc [S i  In S j  f (I 'F S i )  In (1 'F Sj)]. 
i 

(Page 440.1 
22-6. Derive an equation for the equilibrium vapor preasure of elcctrons in 

a metal assuming the gas phase is very diluto (classical statistics; ignore space 
charge) and using the low temperature limit for p in the metal. Note that it is 
necessary to introduce the potential (p in this problem. (Page 441.) 

22-7. Show that &I,,,<< 1 for the electrons in a typical metal only abovc 
about 105OK. (Page 442.) 

22-8. Calculate a numerical value (in ev) for the Fermi energy po of a typical 
mctal. Show in an energy-level diagram the relation between po and (p (electron 
at rest in gas phase = sero of energy). (Page 442.) 

22-9. Use Eqs. (22-30) and (22-31) for an electron gas to derive equations 
for the thermodynamic functions S, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApV,  and Np. (Page 444.) 

22-10. Extend the series (22-38) through (2242) one more term for the Base- 

22-11. Derive the equation 
Einstein case. (Page 445.) 

for a monatomic gas from the virial expansion and show its equivalence with 
Eq. (22-37) for an ideal quantum gas. (Page 446.) 

22-12. Show that the radiation pressure p = E/3V is about 1/5atm at 
I O ~ ~ K .  (Page 456.) 

22-13. Use Eq. (22-75) to derive Eq. (22-76) for the Slater sum of two non- 
interacting particles in a one-dimenaional box. Note that NMaN in Eq. (22-75) 
becomes 2M2 in this case. (Page 459.) 

22-14. Use the values of e and r* in Table IV-1 to calculate the quantum 
parameter h/(m#I2r* for H2, He8, He4, A, and Xe. (Page 462.) 

22-15. Show that the van der Waals-Bose-Emtein equation of state, (22-94) 
through (22-96), obeys the quantum-mechanical law of corresponding states. 
(Page 466.) 
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22-16. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInvrstigate the nature of the phase transition and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACv(T) for the 
ran der Waals-Bow-Einstein fluid. (Page 466.) 
'22-17. Give zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa discussion of the Dz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase analogous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto that in the text for Hz. 

(Page 470.) 
22-18. Write out the four ground state nuclear wave functions for Hz. Classify 

them as ortho and para and as symmetrical or antisymmetrical in exchange 
of the nuclei. (Page 471.) 

22-19. Calculate the equilibrium percent of p H 2  in HZ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgas at 30'K. (Page 471.) 
22-20. Investigate the propcrties of one- and two-dimensional ideal Bose- 

Einstein gases. 
22-21. Investigate the properties of the following ideal two component 

systems: BE-BE, BE-FD, FD-FD. 
22-22. Derive an expression for the radial distribution function in an ideal 

quantum gas in the limit p + 0. 
22-23. (a) Investigate the fluctuation in N in an isolated photon gas (E and 

V given). Compare Section 10-3. (b) Consider the same question for an iso- 
thermal system (T and V given). 

22-24. Derive equations for the fluctuation in sj in systems of noninteracting 
130s~-Einstein and Fermi-Dirac particles. Compare Section 7-2. 

22-25. Verify that the Clausius-Clapeyron equation, dp/dT - AS/AV for a 
first-order phase transition, where p is the vapor pmure,  is satisfied in the ideal 
Bose-Einstein condensation. 

22-26. Consider the following hypothe6icd system with hybrid Uquantum" 
statistics. The particles do not interact in the usual sense, and any number of 
particles can be in a eingle quantum state. But when s particles are in the same 
state c, there is a new kind of Tnteraction" energy, ((I - l)w, which favors or 
disfavors more than one particle occupying the same state. The s particles 
contribute a total of se + (8 - 1)w to the energy. In Base-Einstein statistics, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w = 0; in Fermi-Dmc statistics, w = +a. Consider the general case, for a 
gas, where w is finite (positive or negative) and investigate the thermodynamic 
properties of the system. Use the grand partition function method of Eqs. 
(22-10) and (22-15). Note the formal resemblance to B.E.T. adsorption theory 

4-27. Derive equations for the asymptotic low-temperature heat capacity 
(Eq. 7-36). 

CVm for 0-Hz and pHz. Calculate Cvm at 60°K in the two cases. 
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APPENDIX I 

N A W  CONSTANTS 

Quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI Symbol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI Valuc 

Avogadro's number 
Velocity of light 
Electronic charge 
Electron reat m888 

Planck's constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Mass of hydrogen atom 
Mass of unit atomic weight 
Mass of proton 
Boltsmann's constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Gas constant 
Temperature scales zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

No 

e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h 

C 

k 
R - Nok 

6.02486 X mole-' 
2.997930 X 1O'O cm*8ec'1 
4.80286 X esu 
9.1083 x 10-28 gm 

6.62517 X erg-eec 
1.67330 X lo-" gm 
1.65979 X gm 
1.67239 X lo-= gm 
1.38044 X erg0deg-l 
8.31696 X lo7 erg.deg-'.rnole-' 
O°C = 273.16"K 

1 cal = 4.184 joules = 4.184 X lo7 ergs 
1 ev = 1.60206 X erg = 23.0693 kcal.mole-' 

1 atm = 1.0133 X 106dynee.cm-2 = 760mmHg 
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