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Mon but n’a jamais été de m’occuper de
ces matiéres comme physicien, mais seulement
comme logicien. ...

F. REecH [1856, pp. 65-66, footnote].

The historical development of thermodynamics
has been . .. particularly susceptible to

logical insecurity, . .. and there has been

no adequate reexamination of the fundamentals

since.
BRIDGMAN [1953, p. 226 of the edition of 1961].

Buio d’inferno e di notte privata
d’ogne pianeto, sotto pover cielo,
quant’ esser puod di nuvol tenebrata
non fece al viso mio si grosso velo
come quel fummo ch’ivi ci coperse,
né a sentir di cosi aspro pelo,
che ’occhio stare aperto non sofferse. . ..
DANTE, Purgatorio XVI, 1-7.



1. The Producer’s Apology to the Spectators

We are not such optimists as were our teachers and parents. We do not
have to equate ‘“‘progress” with every &f(¢) if 8¢ > 0, ¢ being the time.
In discussing the interplay between mathematics and physics! I feel myself
permitted, therefore, to select instead of fields of brilliant success like hydro-
dynamics, elasticity, and electromagnetism, one accursed by misunderstand-
ing, irrelevance, retreat, and failure. Thus I write of thermodynamics in the
nineteenth century. No-one will be surprised, consequently, by my use of a
delta to define progress, since thermodynamics is the kingdom of deltas.
However, the single & just used will suffice. In return, I bring the time back
into its rightful, central place—a place it occupied at the start but from which
it was wrongly driven by late authors who confused dynamics with statics.

Thermodynamics is the kingdom also of running current history as well
as polemics, not to mention verbosity. In no other discipline have the same
equations been published over and over again so many times by different
authors in different ill-defined notations and therefore claimed as his own by
each; in no other has a single author seen fit to publish essentially the same
ideas over and over again within a period of twenty years; and nowhere else
is the ratio of talk and excuse to reason and result so high. In no other part
of mathematical-physics have so many claims and counterclaims of priority
been issued by the leading creators of the subject, and in no other have these
same men turned aside from research to write historical papers or long his-
torical notes within a decade or two of their first attacks on the theory itself.
Small wonder then that histories and historical papers by secondary authors
and historians abound, yet the field seems ever fresh to the newcomer.

Only now could a real history of thermodynamics be written, since only
in the last twenty years have the expressed aims of the creators of thermo-

1 This essay began as an hour’s lecture for the symposium on *The Interplay between
Mathematics and Physics in the Nineteenth Century’” held at Aarhus in August, 1970.
I am grateful to Professor OLAF PEDERSEN for having invited me to take part in that
symposium and for having released me from my obligation to publish my lecture in
its proceedings. I was unable to do so because my text was not then ready for the press.
The comments upon the lecture had shown me that only an exhaustive, fully documented
treatise might make today’s reader, whether scientist or historian, come to see that
logic and clean mathematics had a place—indeed, a place mainly left vacant—in classical
thermodynamics.
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dynamics been achieved. In blunt terms, only now do we know a decent
theory of the scope the creators sought, so only now can we see just where
the old authors stopped short or even went wrong. While this remark of
mine may shock some by its quaintness, it ought not. However much it is the
vogue nowadays to pretend that always everybody was just as right as every-
body else, or that truth in science is no more than the vote of some time-
dependent minority, even the staunchest proponents of the “new” history
when protesting adherence to ancient innocence adjoin footnotes, expressed
in very modern English, in which they compare old science with that currently
received (for otherwise their subject of study might not be recognized), and
if they do refer to the correct answers, they put “correct” in quotation
marks. In what follows, such quotation marks may be imagined set around
such few ““corrects’ as may be found, despite my intent to banish them along
with the useless 8s. Nevertheless, much of what I write now about the
classical papers on thermodynamics I could not have written twenty years
ago, because I did not then have the grasp of rational thermodynamics that
today we may and do teach our beginning students. This knowledge does not
change the historical record one whit; rather, it teaches us to read it better.

This essay is a conceptual analysis: I aim not only to recount but also to
marshal. I will outline the assumptions and logic, pointing out the abundant
vagueness of the former and the scarcity of the latter, in the major early
works of thermodynamics. The contents of the minor works will be mentioned
where they belong: in interludes and—of course—footnotes, a writer’s most
dull and deadly proofs that he is not an author but a scholar. The text pre-
sents the tragicomedy entire, as produced. The spectators will not see the
footnotes, which a scholiast has provided, as scholiasts will do, for the
edification of other scholiasts.

Among the reasons for which my first and short draught? was criticized
was the unhistorical character it showed in those passages where I applied
my own reason to certain early equations. The blemish of thinking has been
largely removed by my subsequent discovery (no surprise to me) that most
of my logical observations had been made already by one or another early
writer. Thys the very same observations are now become (I trust) respectable
history instead of *‘present-mindedness”.

2 That draught, somewhat revised and extended, was delivered in three lectures at
Udine in June, 1971, and has been published as The Tragicomedy of Classical Thermo-
dynamics (1971), International Centre of Mechanical Sciences, Udine, Courses and
Lectures, No. 70, Wien and New York, Springer-Verlag [1973], 41 pp. I take this
occasion to remark that the text of that pamphlet is no more than a preliminary sketch
toward a part of this essay. I complied with the International Centre’s requirement that
I hand over the manuscript of my lectures to be duplicated and sent gratis to a small
list of interested persons. Its publication two years later as a separate work for sale by
a commercial publisher was without my consent or even knowledge beforehand.
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Meanwhile, moreover, I have found it possible to organize CARNOT’s
general ideas axiomatically and develop them through a mathematical
analysis both rigorous and exhaustive, to the point that CARNOT’s particular
theory and CLAUSIUS’ appear as special, mutually exclusive cases within a
general scheme, and the possibilities and limitations of each and every state-
ment in either theory are laid bare. This analysis, pro-historical in character,
appears in the tractate by Mr. BHARATHA and me, The Concepts and Logic of
Classical Thermodynamics as a Theory of Heat Engines, Rigorously con-
structed upon the Foundation laid by S. Carnot and F. Reech, New York,
Springer-Verlag, 1977. Although in that tractate we scrupulously limit our
mathematics to what was widely available in the 1820s, so our analysis calls
upon nothing but what the pioneers themselves might have used, had they
mastered the mathematics of their own day, in this essay I will not repeat it
but will rest content to direct the reader to appropriate passages of that
tractate, which I shall cite as ““Concepts and Logic”.

I shall refer only to the published sources, and roughly in the order they
appeared. Such callousness not only to the ever-widening alluvium of
secondary literature® on minutiae but also to the infinite subtleties of the
withheld and the rejected, may seem equally quaint in the modern hives of
scholarship. My reason, again, is a blunt one: While chaste and laconic if not
secretive private intercourse was a major channel of creative science in the
seventeenth century, the mass of notebooks and letters of the abundantly
public Victorian era should remain the province of biographers and doc-
torands.

This essay was written for students of science and for the creative and
critical young thermodynamicists of our day. Should any Historian of
Science chance upon it, he would do well to omit all sections labelled “cri-
tique” and all words confined between square brackets, for in that way he
will save himself such pain as my ‘““ahistorical” approach might otherwise
inflict. A reader whose interest lies in applicable analysis of scientific method,
on the other hand, may find my ahistorical moralizing of greater worth than
the often tedious involutions which the strictly narrative parts trace and
abstract. A serious student who makes the effort needed to follow the analysis,
line by line and proof by proof, will need no previous acquaintance with
thermodynamics. The historical method is not the easiest way to learn a
science; neither is it the worst.

3 Secondary literature, whether old or new, raises a difficult question. While making
no attempt to search it, I confess to having consulted some of it. I wish I had not, for
in most cases it led me into sociology and protophysics and historiography and away
from history of science: the analysis of specific concepts in their historical origins and
settings. In order to do justice to the secondary literature, I should have to read more of
it; if I cited it, I should have to do so largely in contest rather than credence; therefore,
in regard to the central theme of this essay I have decided not to cite at all what little
secondary matter I have scanned. For neighboring domains and periods earlier or later
I cite with gratitude a number of studies by others.
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Finally, I confess to a heartfelt hope-—very slender but tough—that even
some thermodynamicists of the old tribe will study this book, master the
contents, and so share in my discovery: Thermodynamics need never have
been the Dismal Swamp of Obscurity that from the first it was and that today
in common instruction it is; in consequence, it need not so remain.

Ben puoi veder che la mala condotta
¢ la cagion che ’1 mondo ha fatto reo,
e non natura che ’n voi sia corrotta. . ..
“Drizza,” disse, “ver’ me ’agute luci
de lo ’ntelletto, e fieti manifesto
Perror de’ ciechi che si fanno duci....”
Ma quello ingrato popolo maligno. ..
ti si fara, per tuo ben far, nimico;
ed & ragion: ché tra li lazzi sorbi
si disconvien fruttare al dolce fico.
Vecchia fama nel mondo 1i chiama orbi,
gent’¢ avara, invidiosa e superba;
dai lor costumi fa che tu ti forbi.
DANTE, Purgatorio XVI, 103-105;
XVIII, 16-18; Inferno XV, 61, 64—69.



Notation

1. Letters for quantities. The letters chosen by the early authors to stand
for temperature, heat, efc. differed from one to the next. So as not to lay a
pointless burden on the reader who would follow the analysis (for I desire
no other), I adopt a single set of letters once and for all. These, although
mainly ones used by some or another early author, are selected so as to
conform pretty nearly with those current in rational thermomechanics today,
which also refers explicitly to the time z.

Even in quoted passages I shall for the most part silently reduce the
original notation to that of this essay.

II. Relations. The symbol = is to be read *“is defined as”’.

III. Functions and derivatives. Classical thermodynamics considers many
different functional relations among triples of variables. The physical inter-
pretations of the values of these functions need to be kept in mind continually.
For this reason the same letter serves well to denote both a function and its
value, or two different functions having the same value at corresponding
arguments, whenever such can be done without danger of confusion. For
example, if ‘

p==,0) ==%p,0) ,

we shall usually write

9p p
'éT/ and a—p' .
respectively, for the functions
i and fut
av dp °’

the advantage being that the letter p recalls “pressure”. Moreover, usually
we shall use p to denote not only the pressure itself but also that function of
time whose value at the time ¢ is the pressure, but when confusion might
otherwise result, we shall write p(¢z) for that value.

Although differentials occur frequently in the early literature, I prefer the
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explicitness gained by employing derivatives. Use of the ordinary notations of
calculus should suffice to set aside the strange superstition that thermo-
dynamics has a mathematics all of its own'—a prime example to show that
physicists are not exempt from the madness of crowds?.

Symbols Frequently Used
Page on which

Symbol Name introduced

c speed of sound 13

C,C*,C~ heat added, absorbed, emitted 15, 25

F function in CARNOT’s Special Axiom 102

G function in CARNOT’s General Axiom 101

J mechanical equivalent of a unit of heat in 128, 150, 157,
various circumstances 159, 189

L work done 24

D pressure 9

P power 192

0 heating 15

R gas constant 9

V volume 9

y ratio of specific heats 24

E internal energy 71,192

H entropy 214, 223

H,, H¢ LapLacg’s and CARNOT’s heat functions 35, 85

0 ideal-gas temperature 9

Ky, K, specific heats at constant volume and 16, 22
constant pressure

Ay, A, latent heats with respect to volume and 16, 22
pressure

© “CARNOT’s function” 111

11' pressure function 12

p mass-density 12

T KELvVIN’s first abolute temperature 171, 308

T KELVIN’s second absolute temperature 309

Citations in square brackets refer to the list of sources printed at the end of
the book.

1 Cf. BRIDGMAN [1941, p. 4 of the 1961 ed.]: “‘ar unfamiliar brand of mathematics”.
For a specimen note the common “Second Law” TdS = 3Q, which would have us
believe not only that one differential can be bigger than another but also that a multiple
of a differential can be bigger than something that is not a differential.

2 Cf. CHARLES MACKAY, Memoirs of Extraordinary Popular Delusions and the Madness
of Crowds, London, 1841, revised 1852, many times reprinted. See especially *“The Witch
Mania’’ and “Relics” in Volume II.
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la fama nostra il tuo animo pieghi

a dirne chi tu se’, che i vivi piedi
cosi sicuro per lo *nferno freghi.

DANTE, Inferno XVI, 31-33.

2A. The Thermal Equation of State

On the basis of data from experiments regarding the compressibility of air
at constant temperature collected by BoYLE and interpreted by TOWNELEY and
POWER, and of data from experiments at constant volume obtained and inter-
preted by AMONTONS and many later experimenters, especially GAY-Lussac
and DALTON, by 1820 it was generally agreed that the pressure p, the volume
V, and the temperature 6 of a body of aeriform fluid at rest obeyed the relation

pV = RO, R = const . (2A.1])

Here the zero of the temperature 6 is suitably selected®.

! In taking advantage of the convenience of what is now called a temperature measured
from ‘‘absolute zero™, I do not violate historical truth. The early authors, selecting 6,
as some particular temperature, usually wrote 6, + 6 or 6,(1 + 6/6,) for what I here
call 6; EULER left 0, arbitrary. I do not mean, of course, that all early authors used the
letter 8 to denote the temperature. That letter was used by PoissoN, by FOURIER in his
last work [1833], and by MAXWELL in his papers on the kinetic theory. I have followed this
usage of theirs in my own research since 1948, and it is nowadays standard in the litera-
ture of rational thermodynamics.

Anyone who looks at (1), no matter what the notation in which it be written, sees
that it implies the existence of an ‘“‘absolute cold”, at which the product p¥ vanishes.
Since AMONTONS (1703) was the first to be able to see a relation equivalent to (1), we
should not be surprised that it was he who first suggested that there was an ““absolute
cold”. Some early authors regarded the existence of such a temperature as thereby
proved, while others regarded the conclusion as ridiculous and hence interpreted the
relation (1) as valid only for sufficiently high temperatures. The story is recounted
by W. E. KNOWLES MIDDLETON in §§6-7 of Chapter IV of his A History of the Thermom-
eter and Its Use in Meteorology, Baltimore, The Johns Hopkins Press, 1966. Converting
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Throughout the period of this history, partly on the basis of more accurate
experiments and partly in consequence of the evolution of theoretical beliefs,
people’s conception of the ““ gas laws’’ will change, and (1) will be interpreted
differently by different authors. In general, all this is of slight moment for the
development of thermodynamics, but some knowledge of it helps us under-
stand what various early authors presume of their readers. A brief history of
the “gas laws”’ in the eighteenth century has been written by Fox2; the tables
on his pp. 324-326 show that experiments long failed in effect to yield a con-
sistent value for the pressure coefficient « = (p; — p;)/100p, (V¥ = const.) or
for the volume coefficient B = (Vy — V)/100V;(p = const.), where the
subscripts s and i denote the steam point and the ice point, respectively.

For the following further facts I am indebted to Mr. C.-S. MaN. The
experiments of DALTON and even more those of Gay-Lussac, some of them?
published in 1802 and others done probably before 1805 but first described in
print by Biot* in 1816, are epoch-making in the sense that they eliminated the
source of inconsistency in the work of their predecessors, namely® “the
presence of water in the apparatus’’, and produced results consistent enough
to let Gay-Lussac conclude®, “All gases, whatever their density or the
quantity of water which they hold in solution, and all vapors expand to the
same extent for the same degree of heat.”” The experiments of DULONG &
PeTIT, Which in part dealt with thermometry, were published in 1816 and
1817. One of their conclusions was taken as confirming GAy-LuUssAC’s rather
than DALTON’s form of the law of dilatation, so GAY-LUssAC’s value for the

the data to the modern centigrade scale, he reports the following values of ‘‘absolute
cold”:

AMoNTONS (1699): —248°
Lameert (1779): —270°
REGNAULT (1847): —272.75°
RANKINE (1853): —274.6°

The equation of state used by CARNOT corresponds to absolute cold at —267°; that
used by CLAUSIUS, to —273°. MIDDLETON reports also other values ranging from —1250°
to —853°, some of them attached to great names in physics and chemistry.

The ““absolute cold” remained a concept for philosophers, chemists, etc., until the
kinetic theory afforded a mechanical model which gave it conceptual concreteness in
a major special case. The early history of ““absolute cold”’ on this basis may be read in
my “Early kinetic theories of gases™, Archive for History of Exact Sciences 15, 1-66
(1975).

For the general theory, I repeat, all this makes no difference.

2 R. Fox, The Caloric Theory of Gases from Lavoisier to Regnault, Oxford, Clarendon
Press, 1971; see especially pp. 61-67. Cf. also Gay-Lussac [1802, §II].

8 GAy-Lussac [1802].

¢ Bror {1816, I].

5 Gay-Lussac [1802, p. 141].

¢ Gay-Lussac [1802, pp. 174-175].
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volume coefficient of expansion at constant pressure became standard for
some time: B = 0.00375. Thus, if we write 8, + 8 or 8,(1 + 6/6,) instead of
6in (1), LAPLACE and PoissoN took 1/6, as 0.00375, CARNOT took 8, as 267°C;
the 6 here in °C was to be measured by an air thermometer. LAPLACE used his
Caloric Theory to justify (1) and the use of the air thermometer for measuring
0.

In experiments published in 1842 both MAaGNUs and REGNAULT found that
o varied from one gas to another. REGNAULT found the same to be true of B
as well; also for a given gas he observed that « varied with the density, 8 with
the pressure. However, the results of his experiments led REGNAULT? to con-
jecture at the end of his paper that the law (1) and ““all those which have been
discovered for gases, such as the law of volumes, etc., are true at the limit,
that is, that they come nearer to conforming with the results of observation in
proportion as we use the gas in a more expanded condition. These laws hold
good for a perfect gaseous state, which the gases that nature places before us
more or less approach according to their chemical characteristics, according
to the temperature at which we study them. . ., finally and above all, according
to their condition of less or greater compression.”

From that time until the end of the period treated in this history, different
authors are to adopt different attitudes towards (1). For those like RANKINE
and Crausius, who will have molecular models in mind, (1) will hold for a
“perfect gas” and 8 in (1) will be some kind of ‘““absolute temperature’’
defined in terms of the molecular motions. For others, (1) will hold only
approximately for most gases in a certain range of pressure and temperature,
and 6 in (1) may be defined differently for different gases. For example, in
the law (1) written in the form pV = R6,(1 + 6/6,) HoLTzMANN will use
MAGNUS’s value of « as 1/6, for air, and for various vapors values such as to
make his theory fit experimental data with 8 counted from the boiling point.
In his early papers KeLvIN will take REGNAULT’s « for his standard air
thermometer as 1/6, and will regard 6 in 8,(1 + 6/6,) as to be measured by
that thermometer; it is in this sense that we shall have to understand KELVIN’s
interpretation of 8 in (5N.7), below.

The several creators of thermodynamics generally will name (1) or its
special cases, variously interpreted as we have just explained, after BOYLE,
MARIOTTE, DALTON, and GAY-LUSSAC.

In theoretical studies EULER had used (1) from 1757 onwards and had
explained it in detail in his treatise on fluid mechanics, the relevant part
of which was published in 1777. This work became more widely known
through an annotated German translation® published in 1806. Much earlier,
EUuLER and DANIEL BERNOULLI had projected kinetic theories which delivered
(1) only as an approximation for high densities; the latter reported experi-
mental deviations from (1); and other geometers of the eighteenth century

7 REGNAULT [1842, p. 831.
8 BRANDES [1806].
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followed in regarding (1) as only roughly valid. EULER preferred to use a more
general functional relation

p==l,0>0, (2A.2)

which he thought appropriate to any condition of motion of any substance
that could be regarded fluid. In this essay I follow the usage of calling (2)
the thermal equation of state of a fluid body, and = the pressure function of
that body. The symbols ép/@V and op/o6 shall stand for the partial derivatives
of =, assumed to exist and to be continuous functions of (¥, §). Sometimes I
will follow the confusing custom of books on physics and write p for the
function w.

The special equation of state (1) is to bulk large in early writings on thermo-
dynamics. Often the pioneers’ appeals to it were unnecessary. To distinguish
general ideas and reasoning from essentially irrelevant uses of (1), in this
essay I will mainly use the general equation of state (2). The particular body
of fluid defined by (1) I shall call the body of ideal gas having the constitutive
constant R. The pressure function = of the body of ideal gas is RO/V.

If the mass of a homogeneous fluid body at rest is M, we can define the
density p as usual, p = M/V, and express p as the value of a function =* of
density and temperature:

p = w*(p, 0) . (2A.3)

Then, since M is constant,

oaplp, 0) _ ., op(V, 6)
P = Vs (2A.4)

While (2) makes no sense in a field theory like hydrodynamics, (3) does, and
the researches on aeriform fluids by EULER, LAGRANGE, LAPLACE, and
PoissoN adopt (3) as an a priori relation between the fields of pressure, density,
and temperature. The function =* is appropriate to a material, while = is
appropriate to a body. For an ideal gas w* = rpf. All the early students knew
AVOGADRO’s hypothesis, published in 1811, which makes r inversely pro-
portional to the combining mass of the substance: » = k/m, and if m is chosen
correctly for each substance, k is a universal constant. However, this fact will
play little or no part in the development of thermodynamics, because
AVOGADRO’s hypothesis was not generally accepted during the period before
1860.

Early studies of heat always presumed, tacitly if not expressly, the following
constitutive inequalities:

op op
7 < 0, 26 0. (2A.5)

The former asserts that the volume of a body must decrease if pressure is
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applied isothermally, and that isothermal increase in volume requires a
decrease of pressure. It is equivalent to

which implies that sound may propagate in a body of fluid, no matter what
be its density and temperature. The latter, taken together with the former,
implies that a fluid contracts as the temperature is decreased at constant
pressure. Such is not always the case for some fluids, the most familiar bein g
water, which at atmospheric pressure expands when cooled below 4°C. Al-
though this ““anomalous behavior’’ of water was well known, it is not men-
tioned in any early work on thermodynamics®. Accordingly, we shall presume
that (5), as well as (5); holds until there is reason to consider the contrary
possibility, namely in our terminal year, 1854, for only in that year, as we shall
see in §9F, will the ““anomalous” behavior of water find a place in thermo-
dynamics.

The two inequalities (5) together imply that (2) may be inverted locally
for V or 6, as was commonly assumed in the early studies.

2B. The Theory of Sound in Aeriform Fluids

NEWTON’s imaginative and semirational theory of sound had presumed the
sonorous vibrations subservient to the TOWNELEY-POWER-*‘BOYLE” law p =
Np and had concluded that the speed of sound ¢ must satisfy the relation
¢2 = N = p/p, a result abundantly contradicted by experiment for the next
100 years. NEwWTON’s successors had considered the more general possibility
p = p(p) and had obtained the famous formula

dp

2

c i (2B.D)
Adopting a general equation of state (2A.3), they had assumed further that in

sonorous motion the temperature was everywhere and always the same.
They had found that

o=, (2B.2)

¢ Although most modern textbooks mention the ‘““anomalous behavior® of water, the
formulae they use to discuss it are derived from considerations based tacitly upon use of
(5)2, which excludes it. To derive classical thermodynamics from classical ideas but
without prejudice of the sign of dp/é@ is no easy matter. It provided a major barrier
to the program of Concepts and Logic.

Further remarks on the ‘‘anomalcus behavior” of water will be found below in
§4D and §9F.
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Thus for an ideal gas they fell back inescapably upon NEWTON’s result. The
painstaking researches of EULER' and others had set aside, one by one,
various suggested causes of the discrepancy: loose mathematics, impurities in
the fluid, the shape of the wave front, the amplitude of the disturbance. While
the analysis does not always convince a modern reader, particularly in the last
regard, the main conclusion is correct, as was to be shown with finality by
HuconioT? a hundred years later: The only way to square theory with experi-
ment is to admit that although the TOWNELEY-POWER-““BOYLE” law p = Np
is confirmed at least roughly for a gas in equilibrium, it cannot be valid in
sonorous oscillation. As LAGRANGE had remarked, we may simply assume that
p = Cp'** and then determine the positive constant k so as to make (1) fit the
measured speed, but, in accord with his strictly algebraic approach to mecha-
nics, he could give no conceptual reason for this cheap if prophetic trick.

Various researches in the eighteenth century made it abundantly plain that
(2A.1) and (2A.2) could not apply to solids. For them, neither is there in
general any natural concept of a single, scalar pressure, nor does change of
volume furnish an adequate description of change of shape. Since all early
work on thermodynamics presumes (2A.1) or (2A.2), it applies mainly to
fluid bodies.

! Most of EuLER’s discoveries in the theory of vibrations are traditionally attributed to
LAGRANGE, LAPLACE, or RAYLEIGH. I have written the history of the matter: *‘ The theory
of aerial sound, 1687-1788,” L. EULERI Opera Omnia (II) 13, Ziirich, Fissli, 1956,
pp. XIX~-LXXII, and *‘ The rational mechanics of flexible or elastic bodies, 1638-1788"’,
L. BULERI Opera Omnia (I1) 11,, Ziirich, Fissli, 1960.

2 For a modern treatment one may refer to p. 712, especially footnote 4, of FLUGGE’s
Encyclopedia of Physics 111/1, Berlin etc., Springer, 1960. In any motion such that, for
whatever reason, the pressure at the typical fluid-point X is given by p = f(p, X),
then p = (df/9p)p, the dot denoting the material time derivative, so according to
Hucon1o1’s theorem

2 =

o

This form, which follows trivially from (1) if f does not depend upon X, will be used
below repeatedly and without further comment.

The ‘““material time derivative™ is the derivative with respect to + when X is held
constant. A celebrated formula of EULER, which was known by every serious student of
mechanics and mathematical physics in the period with which this essay deals, expresses
fin terms of field derivatives:

o .
f—5t-+v-gradf,

v is the spatial velocity field, and the f on the right-hand side stands for that function of
place x and time 7 whose value is (X, t), that f being the one that appears on the left-
hand side. Any reader not familiar with hydrodynamics should consult some standard
treatment of the subject, e.g. §5 of H. Lams’s Hydrodynamics, Cambridge University
Press, 2nd ed., 1895, or any later edition or reprint.
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2C. The Doctrine of Latent and Specific Heats

Toward the end of the eighteenth century calorimetry became a regular
branch of experimental physics. Units of heat were introduced, and the
amounts of heat needed to produce specified increases of temperature,
volume, or pressure under various conditions were measured. Since in all
mathematical calculations, however elementary, the increments were assumed
to be related by the rules of differential calculus, and since all natural changes
occur as time elapses, these increments make sense only if they are referred
to time rates. So as to avoid the needless and trivially obviable obscurity of
the early work, as such I will express them.

A ““process”?! is the assignment of ¥ and 6 as positive functions of time:

V="Vt >0, 0=200)>0. (2C.1)

By (2A.2), p becomes the value of a function of time, namely, p(t) = =(V(¢),
6(t)); thus, when the process is smooth,

. Op . Ops; Op,  Op;
p—BVV+600_5§P+600' (2C.2)
The special case in which 8(¢) = const., which today we call an isothermal
process, in the early literature was again and again mentioned or assumed to
hold.

Let Q denote? the heating, namely, the function of time whose value is the
time-rate at which heat is put into a given body. Then the heat added C
between the times #; and ¢, is given by

c=(" owar . (2C.3)

t

Q is assumed only to be a function integrable in the sense of EULER and
Caucnay. Thus it may fail to exist at a finite number of times in the interval
[tl’ t2]°

Early students used the term ““heat” vaguely. What they meant is not always
clear. Sometimes they referred to ““the total heat” of a body or in a body,
which in some cases may be regarded as something like internal energy or
total energy or even equivalent to one of those. The concepts of “heating”
and ““heat added” as related by (3) suffice to make sense of the way the term
““heat”” was used in early works on thermodynamics proper. Accordingly we

1 CarNoT [1824, pp. 10, 19, et passim], une opération.

2 The notation Q for the heating is used in papers on rational thermodynamics today;
in older works it would have been written as dQ/dt or §Q/dt or AQ/dt, had the authors
chosen to indicate that an increment of heat is always associated with an increment of
time, as of course it must be in nature.
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shall stay with (3) throughout this work except in one or two passages where
it will be necessary to depart from it briefly.

All the pioneers of thermodynamics assumed that in every process the
heating Q would equal a linear function of the rates of increase of volume
and temperature, with coefficients which were functions of ¥ and 8 only and
hence independent of the process. That is, at all times when V and 6 exist?,

0 = Ay(V, OV + Ky(V, )6, (2C.4)

Ay being called the latent heat with respect to volume* and K, the specific
heat® at constant volume. The coefficients A, and K, were assumed to be
positive functions®:

Ay > 0, Ky >0, (2C.5)

3 This basic assumption is implicit in all of the works we shall review in this essay
except FOURIER’s and DUHAMEL’s. Both CARNOT and CLAPEYRON (see Chapter 5 and
§6A below) assumed that there was a heat function Hc(V, 6), so for them

_ %Ho oH,
Ay = v’ a0 -

Craustus [1850, §11, who rejected He, wrote dQ/dV and dQ/[d# for what we here denote
by Ay and Ky; he called [ Qdr “the quantity of heat which must be communicated to a
gas...” and explained that it was not a function of volume and temperature (v and ¢
in his notation). THoMsON [1849, footnote to §26] introduced the symbols M and N
for Ay and Ky, respectively, but he then regarded them as being dH¢/0V and éHg/6.
When, later [1851, 1, §20], he discarded this unnecessary restriction, he continued to use
M and N, thus abstaining from CLaAusIus’ double talk with notations. Coming at last
to an analysis sufficient to compare the proposals of different theorists in terms of a
common framework, TaHoMsoN [1852, 1, §63] described reasoning based on (2A.2) and
(4) alone as being ““‘without any assumption admitting of doubt” and *without
hypothesis”’.

An extensive and valuable secondary source is the book of R. Fox, cited above in
Footnote 2 to §2A. Had I seen this book early enough, it would have saved me a good deal
of tiresome study of vague early writings about heat before the first steps toward thermo-
dynamics were taken. Fox discusses mainly experiment and physical speculation; he
describes also some rather rudimentary efforts at mathematical theory of the physical
kind; and I am not sure that either he or I have seen all the early works on mathematical
theory. Fox nowhere writes the basic equation (4) except subject to the unnecessary and
largely irrelevant assumption that there is a heat function, though of course he includes
many statements that express special cases of it. The following quotation from his p. 31
suggests that he may ascribe to LAvorsiER & LAPLACE [1784, p. 388] the idea that (4)
succinctly embodies:

Kv=

But in one important respect they went beyond Black, for they suggested that
the absorption of heat was necessary in order to effect not only melting and
vaporization but also expansion. Thus, when a body was heated, some heat
would go to raise its temperature and some to increase its volume. The idea,
skilfully developed by Laplace, became a most important one during the first
quarter of the nineteenth century, . . . butit provoked little immediate reaction . . ..

*In lectures deriving from about 1757 BLack [1803, Vol. I, p. 157] wrote, “‘the heat
absorbed does not warm surrounding bodies . . .. [Clonsidered as the cause of warmth,
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and to have continuous partial derivatives. These inequalities assert that heat
must be added to the fluid body in order to effect either isothermal expansion
or isochoric rise of temperature, and conversely, that heat is given off by the
fluid body in isothermal contraction or isochoric fall of temperature. We

we do not perceive its presence: it is concealed, or latent, and I gave it the name of
LATENT HEAT.” The Oxford English Dictionary quotes three earlier instances of
the term in print; the earliest, of 1765, attributes the ‘‘ doctrine of latent heats”” to BLACK.

Most of BLACK’s work concerns changes of phase, and the term ‘‘latent heat” in
common modern use seems to be restricted to ‘“latent heat of fusion” and ‘‘latent
heat of vaporisation®’. Neither of these, obviously, is what we denote by Ay in this
book. The sense that concerns us here was specified by Ivory [1827, I] in the context
of the Caloric Theory: ‘‘the absolute heat which causes a given rise of temperature, or
a given dilatation, is resolvable into two distinct parts; of which one is capable of
producing the given rise of temperature, when the volume of the air remains constant;
and the other enters into the air, and somehow unites with it while it is expanding. ...
The first may be called the heat of temperature; and the second might very properly be
named the heat of expansion; but I shall use the well known term, latent heat, understand-
ing by it the heat that accumulates in a mass of air when the volume increases, and is
again extricated from it when the volume decreases.”

So far as I can learn, Ivory and MEIKLE make an exception among early British
authors, the rest of whom did not use the concept of latent heat except in reference to
changes of phase. Cf. the booklet of KELLAND [1837, 3, §§17-19]. A4 fortiori, there is no
early British contribution to thermodynamics. The first comes in 1848 with KELVIN, who
had trained himself in French mathematical physics and hence accepted the Doctrine of
Latent and Specific Heats as a matter of course. See §7H, below.

RANKINE [1853, 3, §47], writing after Ay had been used fluently by KeLvin and CLAUSIUS,
explained “latent heat” much more clearly: . .. whendivested of ideas connected withthe
hypothesis of a subtle fluid of caloric, and regarded simply as the expression of a fact, this
term denotes heat which has disappeared during the appearance of expansive power in a
mass of matter, and which may be made to reappear by the expenditure of an equal
amount of compressive power.”” RANKINE’s reference to “expansive power” reflects the
assumption, common to all early authors on thermodynamics and usually but by no
means always true of real bodies, that Ay > 0, as is explained in Footnote 6.

In Fox’s Caloric Theory, cited in Footnote 2 to §2A, I have found only three
uses of the term “latent heat” in the sense symbolized by Ay: (p. 131) “latent heat
that was necessary. simply to bring about expansion®; (p. 174) in a quotation from
LAPLACE (see also Footnote 11 to §3C, below); and (p. 174) *‘the presence of
latent as well as sensible heat in gases did have the additional support of Delaroche
and Bérard’s paper of 1812, as Laplace pointed out.” Fox’s extensive discussion of
““expansion by heat” (pp. 60-67, 69-79) indicates effects governed by Ay but does not
name it.

THoMsON [1878, §2] in explaining ‘‘latent heat” to the intelligent layman wrote
as follows: )

It has become of late years somewhat the fashion to decry the designation of
latent heat, because it had been very often stated in language involving the
assumption of the materiality of heat. Now that we know heat to be a mode of
motion, and not a material substance, the old ‘“‘impressive, clear, and wrong”
statements regarding latent heat, evolution and absorption of heat by com-
pression, specific heats of bodies and quantities of heat possessed by them, are
summarily discarded. But they have not yet been generally enough followed by



18 2. THE COMMON INHERITANCE

shall find below in §9F that in 1854, the terminal year of this history, KELVIN
will see that in some cases A, < 0, and we shall discuss the matter further in
§11HA.

equally clear and concise statements of what we now know to be the truth. A
combination of impressions surviving from the old erroneous notions regarding
the nature of heat with imperfectly developed apprehension of the new theory
has somewhat liberally perplexed the modern student of thermodynamics with
questions unanswerable by theory or experiment, and propositions which escape
the merit of being false by having no assignable meaning. There is no occasion
to give up either ““sensible heat™ or ‘‘latent heat”; and there is a positive need
to retain the term latent heat, because if it were given up a term would be needed
to replace it, and it seems impossible to invent a better. Heat given to a substance
and warming it is said to be sensible in the substance. Heat given to a substance
and not warming it is said to become latent. These designations express with
perfect clearness the relation of certain material phenomena to our sensory
perception of them.

A footnote to ““materiality of heat” reads

... We shall not now be in danger of any error if we use latent heat as an expres-
sion meaning neither more nor less than this:—

““ DEFINITION.—Latent heat is the quantity of heat which must be communicated
to a body in a given state in order to convert it into another state without changing
its temperature.”—Maxwell’s Theory of Heat [MaxweLL [1871, p. 73] [1891,
p. 7311

Among the modern authors who understand the matter is J. R. PARTINGTON; he
writes as follows in §2 of Chapter II of his An Advanced Treatise on Physical Chemistry,
Volume 1, London efc., Longmans Green, 1949: *“Heat absorbed by a body at constant
temperature . . .1is called latent heat.” In his §3 he presents (4) and (8) and writes that
those equations ‘‘are definite and their legitimacy follows from the physical justification
of the concept of ‘quantity of heat’, which is based on experimental calorimetry....” He
mentions that *“they rarely appear in the later books on Thermodynamics. ...”

5 LAvorsiER & LAPLACE [1784, p. 289 of (Euvres de Lavoisier 2] introduced the terms
“‘capacité de chaleur” and “‘chaleur spécifique” as interchangeable. They refer both to
bodies of unit mass. They present a table of ratios of specific heats of various substances
to the specific heat of water. They allude also to latent heats (p. 301 of (Euvres de
Lavoisier 2) when they state that it would be interesting to augment the table to include
““the specific weights of bodies, the variations that heat induces in these weights, or,
what amounts to the same thing, both the dilatabilities and the specific heats of the
bodies . ...”

8 Cf., for example, the following remarks of CarNoT [1824, pp. 29-32], after each of
which I bracket an interpretation in terms of the notations of this essay, small increments
being replaced by time rates.

“When a gaseous fluid is rapidly [adiabatically as defined in §3C below] compressed,
its temperature rises; on the contrary, its temperature falls when it is rapidly expanded.
This is one of the facts best confirmed by experiment. We shall take it as the basis of
our proof.” [If O = 0, then AyV + K8 = 0; Ky =0, and Ay/Ky > 0.]

““If, when a gas has been brought to a higher temperature as an effect of compression,
we wish 10 bring it back to its original temperature without causing its volume to change
further, we must withdraw some caloric from it.” [If ¥ = 0, then Q = Ky0, and
Ky > 0.] “This caloric could be drawn off also in proportion as pressure such as to
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The Doctrine of Latent and Specific Heats as laid down by its promulgers
is expressed entirely by (4) and (5). Those who used it appealed freely to
EULER’s axiom as well:

p=={l,0>0, (2A.2),
with the adscititious inequalities

p o

37 < 0, 35 > 0. (2A.5),

We shall regard (2A.2), (2A.5), (4), and (5) as defining the theory of calorimetry,
and the consequences of that theory alone we shall call calorimetric.

Any theory of the passions of bodies rests upon certain generic principles
or laws. These laws express the features common to all bodies the theory
intends to describe. The diversity of these bodies is represented by the con-
stants or functions that are left unspecified by the generic principles. Relations
that restrict or specify these constants or functions are called constitutive.
The generic principles of the theory of calorimetry are (2A.2) and (4), along
with their adscititious inequalities (2A.5) and (5). They assert the existence of
the constitutive functions of the body of fluid: =, Ay, and K, and they specify
the roles of those functions in determining p and Q. The three functions are
assumed to be defined over a common set of pairs (¥, 6); this set is the
constitutive domain of the particular body. The theory allows no more diver-
sity in the behavior of different bodies than can be represented by choice of
that domain and of the three constitutive functions over it. Early authors
never specified the constitutive domain, and all their analysis was local. They
tacitly presumed in the constitutive functions whatever smoothness was neces-
sary in the simple formal manipulations to which they subjected those func-
tions. In reporting their work in this history we shall always presume that the
constitutive domain is non-empty and open, and that the constitutive func-
tions w, Ay, and K; are continuously differentiable. Like the pioneers, we

maintain the temperature of the gas constant were applied.” [If § = 0, then Q = A,p,
and A, < 0, the quantity A, being defined by (8), below.]

“Likewise, if the gas is rarefied, we can prevent its temperature from falling by
giving it a certain amount of caloric.” [If § = 0, then Q = AV, and Ay > 0.] “The
caloric used in the circumstances when its temperature does not change we shall call
caloric due to change of volume. This term does not mean that the caloric belongs to
the volume; it belongs to the volume no more than it does to the pressure, and it could
just as well be called the caloric due to change of pressure.” [If § = 0,then Q = A,V =
A,p.] “We do not know what laws it follows in regard to changes of volume. Possibly
its quantity varies with the nature of the gas, with its density, or with its temperature.
Experiment has taught as nothing on this subject . ..”” [Both A, and A, are functions of
V and @; what functions they are has not been determined; they may be constitutive
functions.] The assumption that K, > 0 DuHeM was to call ““ Helmholtz’s postulate;
see pp. 164-165 of P. DuHeM, §2 of Chapter X of Traité Elémentaire de Mécanique
Chimique, t. 1, Paris, Hermann, 1897,

In the later thermodynamics it is not necessary that Ay > 0 but only that
Avop/e8 = 0. See Footnote 9 to §2A and §9F.
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shall pass over in silence such difficulties as may arise when results proved
only locally are applied in the large.

The early theorists recognized that the effects of heat were proportional to
the mass M of the body in which they occurred. We can express this idea by
writing v = 1/p = VIM, A, = Ay/M, x, = Ky/M and regarding A, and «, as
functions of v and 8; the functions w*, «,, and A, are constitutive functions
of a material, while =, Ay, and K, are constitutive functions of a body. When
only one body at a time is being considered, it is all the same, especially since
the early theorists did not always select bodies of unit mass”.

In (4) the symbols ¥ and 6 denote the derivatives of functions of time.
These functions are known as soon as a particular process (1) is specified.
The same specification makes Ay and K, the values of certain functions of
time, namely, Ay (F(¢), 68(1)), Ky (V(2), 6(¢)). Thus by (4) the specification of
a process also specifies Q uniquely as a function of time, for a given fluid.

We may represent the pairs (¥, 6) as points in a quadrant® (Figure 1).

If we suppose that V(t,) = Vi, V(t2) = Vs, 0(t;) = 04, 6(t;) = 0,, then a
process having these two points as endpoints is represented by a curve &
connecting them, and by putting (4) into (3) we may calculate C as a line
integral along the curve £:

C=CE) = f [Ay(V, O)dV + Ky (V, 0)d6] . (2C.6)
vz

7 CARNOT [1824, p. 74] refers to ““a given quantity of air”; his constitutive constant is
what we call R, not r; what he calls “specific heat’’ in his Equation (5) on p. 77 refers
to a given volume ¥, not a given specific volume v.

Crausrtus [1850, just before his Equation (I.)] also used R but referred to ‘““a certain
quantity, say a unit of weight”. He stated that R was inversely proportional to the
specific gravity. Later, after his Equation (10a), he again referred to ‘‘a unit of weight
of the gas considered”, so his specific heats are taken with respect to weight. In his
Equation (11) he converts them to unit volume.
® Diagrams in the p—¥ quadrant were invented by WATT and regarded by him as a
great and profitable secret. Perhaps their debut in the literature of thermodynamics is
in the paper of CLAPEYRON [1834]. Although some commentators upon the history of
thermodynamics make much of them, they do no more than facilitate the discourse.
As we shall see below, some of the pioneers used diagrams so as to infer this or that,
but only from their own unhandiness or insecurity in the common integral calculus of
their times, not from any need.

It is true that line integrals were not commonly familiar in the early years of the
nineteenth century. The transformation of an integral around a simple closed path into
an integral.over the included region of the plane is traditionally attributed to AMPERE,
Gauss, and GreeN. Nevertheless, line integrals are not to be found in KeLvIN’s first
paper on thermodynamics (THOMSON [1849]), although he was soon to become expert
in use of them. It is tempting to attach the theory of line integrals to CAUCHY’s theory
of integration of functions of a complex variable; although the two theories are in-
timately connected, CAuCHY’s path of discovery was obscure as well as tortuous. As
may be seen from H. FREUDENTHAL’s fine analysis of CaucHy’s work in Volume 3
of the Dictionary of Scientific Biography, Scribners, New York, 1971, Caucny did not
publish a clear account of his theory of integration until 1846.
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0,

8,4

Figure 1

As the notation indicates, C(#) depends in general upon both the fluid body
and the choice of the path & which connects (V3, 8,) to (V,, 8,), but it does
not depend upon the rate at which the path is traversed. That is, for given
functions A, and Ky, all processes that correspond to the same path P from
(Vy, 0y) to (Vs, 0,) give rise to the same value of C(Z). In this sense the time
becomes irrelevant: Any function of ¢ with positive derivative would do as
well to parametrize # and hence make it possible to evaluate C(#). Of
course the differentials imply the use of some parameter to describe the curve,
but that parameter need not be specified, and the notation conceals it. In this
legitimate and apparently innocuous way the differentials—those accursed
differentials famous as vehicles of thermodynamic obscurity—enter the
subject.

If we let — & denote the path & traversed in the opposite sense, or, as we
shall say, the reverse path, then from (6) we see that®

C(—P)= —-C(Z) : 2C.7

If a body receives a certain quantity of heat as it traverses a certain path, it will
lose an equal quantity upon the reverse path.

8 LAVOISIER & LAPLACE [1784, pp. 287-288 of (Euvres de Lavoisier 2]: *““All variations
of heat, be they real or be they apparent, that a system of bodies experiences in changing
its state are reproduced in an inverse order when the system returns to its original
state.”” LAvoIsIER & LAPLACE seem to introduce this statement as a ““principle” com-
patible both with the hypothesis that heat is a substance and also with the hypothesis
that heat is a mere manifestation of the kinetic energy of the tiny parts of the body in
which it appears. Although the paper reports the results of experiments, the *“principle”
does not seem to be derived from them. It is far more general and far more vague than
the specific and demonstrable theorem (7) in the text above. Nevertheless LAVOISIER &
LAPLACE state that their general hypothesis is “confirmed by experience” and even
given ‘‘a sensible proof” by an experiment of their own on the detonation of nitre.

Cf. the statement of CARNoOT [1824, p. 35]. REEcH [1853, p. 359] stated (7) explicitly
in words. The fact it expresses he did not imply to be anything but well known.
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Perhaps because of this fact, time and its effects are rarely mentioned in the
early thermodynamics or in standard textbooks today. So long as Q be given
by (4), the time plays no essential part. Although most of the work we shall
analyse in this essay takes (4) for granted, nevertheless I prefer to keep the
time ever in mind. First of all, it does occur in early studies of the speed of
sound and the conduction of heat; it cannot be eliminated from them, and,
accordingly, we cannot form a unified picture of early work on all aspects of
heat and temperature except in terms of changes in time. In the second place,
when apparently timeless variables like ¥ and 6 change, they do so in the
course of time; time is the basic descriptor of natural changes. Finally, it is
only the special relation (4) that makes it possible to dispense with 7 in (3).
Rational thermodynamics today does not rely upon anything so special as
(4), and the roots of the ideas upon which rational thermodynamics is con-
structed go back to the pioneer studies, to analyse which is the purpose of this
essay. I think that much of the confusion in some early work on thermo-
dynamics and some textbooks today, and in particular the use of various
peculiar ds and 8s, reflects overconfidence in (6), forgetting that it is only a
special case of the primary definition (3). Although heating is a primitive
concept of thermodynamics, heat need not be.

By use of the equation of state (2A.2) we may express (4) alternatively in
terms of p and §:

Q = AV, 0)p + K (V, 6)0 ; (2C.8)
the new coefficients A, and K, are expressed as follows in terms of A, and
Ky:

_ op _w. _ _r %pfop
A, = Av/a—l} » K=Ky =—Ay %/W . (2C.9)

The function A, is the latent heat with respect to pressure®, and K, is the
specific heat at constant pressure'*. These relations'? show that for a fluid
with a given thermal equation of state (2A.2), the specific heats K, and K,

10Tt is CARNOT’s ““caloric due to change of pressure”, cf. Footnote 6, above. RANKINE
[1859, §212] was to call it ““the latent heat of expansion”.

11 The early literature often refers to ““the” specific heat, leaving the reader to infer or
guess which be meant. On pp. 37-38 of his Caloric Theory, cited above in Footnote 2
to §2A, Fox ascribes to CRaAwWFORD (1788) the distinction between K, and Ky ; CRAWFORD
interpreted his experiments on air as showing that K, > K, but K, /K, = 113/110, so
K, and Ky were long thereafter regarded as virtually interchangeable although distinct.
12 The earliest statement of this kind I have found is that of CArRNOT [1824, pp. 5860,
cf. also pp: 43-46]. CarNOT’s argument, purely verbal, refers to ideal gases and is set
within the Caloric Theory of Heat. The result to which it leads if rendered formal
is that which is stated below as (5Q.6). If the Caloric Theory is abandoned, the same
argument leads to (5Q.7), which rests upon CARNOT’s General Axiom. The Doctrine
of Latent and Specific Heats by itself, without use of any of CARNOT’s further assump-
tions, if applied to an ideal gas leads directly to (14), which CarNot did not state. I
take this evidence as sufficient to show that CArnoT did not see the full power of the
theory of calorimetry, at least in this context, and did not arrive at (9) in generality. The
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may be any functions of V and 0 we please, but the two latent heats Ay and A,
are determined uniquely by the difference K, — K;. Thus we may choose to
specify bodies by specifying their two specific heats, which seem to be some-
what more accessible to direct experiment than is either Ay or A,.

By appeal to (2A.5) and (5), we see from (9) that'?

A, <0, K, > Ky . (2C.10)
If (2A.2), is invertible for ¥, as is true in many cases, we can express A, and
K, as functions of p and 6, but for this history we do not need to.
If we use (2) to eliminate 6 from (8), we find that

_ 1 [ oy
-5 [K,,p - Ko V] : (2C.11)
26

In terms of the equation of state (2A.3) appropriate to fields, we can write
(11) in the form

Q= é;, (Kvp - K,,Z—’;p) . (2C.12)

o0

For future reference we note also the alternative form

0=~ —K -K) L5+ K,

Kp - KV . oW

(2C.13)

relation (9); is due to W. Weser [1830, §10] in the context of solids; he wrote it in
the form B’ = B — (3k')(e/r), in which B = K,/M, B’ = Ky/M, ofr = VAy/M and 3k’ is
the fractional increase of volume with respect to temperature at constant pressure, that is,
—~(2p/26)/(3p/0V).

In the literature of thermodynamics the earliest explicit statement and satisfactory
derivation of (9); I have found is that of TuomsoN [1851, Eq. (15)]; he does not state
(9):. PARTINGTON, in §6 of Chapter II of the work cited in Footnote 4, is one of the
few modern authors who presents (9) before he states the laws of thermodynamics and
hence implicitly recognizes that (9); and (9)2 follow from the theory of calorimetry
alone and do not presume any relation between heat and work. However, he does not
emphasize this centrally important fact. Contrary to his custom, for these relations he
does not cite any source.

12 The later thermodynamics does not adopt the constitutive inequalities (2A.5). and
(5)1, although it usually does adopt (2A.5); and (5).. Using the assumption (2A.5),
alone, we need only glance at (9) to see that

9,
K, >K, < A,5%>o,
K=K, < AZ=0
P 3\ 4 v ao .
PoissoN [1833, §634] regarded it as “‘evident a priori” that K, > Ky, presumably in

reference to gases.
The possibility that Ay < 0 was first noticed in 1854, as we shall see below in §9F.
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in the denominator we consider p as being a function of p and 6, obtained
by inverting (2A.3) for p, which of course is not always possible. To derive
(13), we need only substitute (9) into (4).

In the special case of an ideal gas, defined by (2A.1), the relations (9)
reduce to

v _RA, VA,
A= =2 Av, K- K== 2, (2C.14)

while (11), (12), and (13) reduce to
0-0(x2+r,7) —o(K2-K2) — o[- - KL+
(2C.15)

Of frequent reference will be the ratio of specific heats, which we denote
by y:

y = % . (2C.16)
Because of (5); we conclude from (10) that
y>1, (2C.17)
Cf. the remarks in Footnote 13, above.
For an ideal gas (14) shows that
VAy = (y — 1)6K, . (2C.18)

In studies of fluid mechanics in the eighteenth century the concept of the
work L done in [#, ,] by a fluid body subject to the pressure p had been
introduced and studied:

L={"peyv . (C.19)

ty

If (2A.2) holds, then L is determined uniquely by a process (V, 6):

L=L@) =" =), o)V
tx (2C.20)

- L a(V, O)dV .

In the second line 6 stands for an assigned function of ¥ on the path & con-
necting (V(t,), 6(¢,)) to (V(2,), 0(¢;)). Thus L, like C, is determined by the
path & traversed in the V-0 quadrant and is independent of the rate at which
that path is traversed. From (20) we see that

L~P) = —L(&) . (2C.21)
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Adjoining (21) to (7), we conclude that both the heat added and the work
done on the reverse — P of a path P are the negatives of their counterparts on .
These two reversal theorems arise in consequence of the generic principles (4)
and (2A.2), respectively; they hold for all choices of the constitutive functions
w, Ay, and Ky. In this sense, and in this sense only, they express properties
common to many fluids—as thermodynamicists were soon to claim, ““to all
bodies™.

The reversals of sign just noticed have been associated traditionally with
““reversible processes’’. This term has sown confusion from the day it was
born. So long as both (2A.2) and (4) hold, all processes are “‘reversible” in
this sense. To get free of this restriction and consider processes that need not
be reversible, it would be necessary to replace at least one of the generic
assumptions (4) and (2A.2); by something else, preferably something more
general.

Except, perhaps, for FOURIER and DUHAMEL, all the writers whose work we
shall follow in the first four acts of this tragicomical history will assume that
both (4) and (2A.2) hold. Some early obscure claims and verbal inferences
have been thought by historians to refer to irreversible processes and have
been so explained by them, but they are wrong, misled by the most dangerous
because most unconscious form of ‘‘present-mindedness”’, that which im-
poses today’s divisions of science into compartments upon the science of
times when no such compartments existed. In thermodynamics down to 1852,
again with the exception of works on the conduction of heat, all processes
are “‘reversible’. Thus there is no need to use the term ““reversible’” before
it appears literally, as indeed it does in Act V of our drama.

For later use we remark here that (4) enables us to define the Aeat absorbed
and the heat emitted** by a given fluid body in the interval of time [z,, ,].
Denoting the former by C* and the latter by C—, we have

ty
o E’*’ft Q+ghdtzo0,
:2 (2C.22)
c- =3[ aol- oarz 0
1
Thus
C=C*-cC-, (2C.23)

and because of (6) both C* and C-, for a given fluid body, are functions of &
alone and satisfy the following reversal theorems:
CH(—-P)=C(?),

(=2) @) (2C.29)
C (-2 =CHP) .

14 CARNOT [1824, p. 37, footnote; p. 55; et passim]: ‘‘les quantités de chaleur absorbées
ou dégagées”; p. 42, ““la quantité de calorique absorbée ou abandonnée”.
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From (5), we see that in an isothermal process'®

+ e
c C* if Vincreases

=1_C- if V decreas es}monotonically . (2C.25)

The modern student must be reminded that all this follows from nothing
but calorimetry, the thermal equation of state, and the constitutive inequali-
ties (2A.5) and (5). Nothing is presumed regarding the nature of heat, its
conservation or its dissipation, or its power to do work-—nothing. Moreover,
the mathematics used to obtain the various consequences such as (9), (11),
(12), (13), and (15) is merely standard for the eighteenth century.

Such was the inheritance of everyone who approached the basic problems
of heat and temperature in 1800. We, the spectators, who take our seats
before the curtain with old plays already played still fresh in memory, know
all this, but we must not expect that each character who steps onto the stage
shall know it. From some their inheritance, or at least a part of it, is to have
been obscured or withheld. As the examples of Edipus, The Gondoliers, and
Tom Jones show, a man’s ignorance of his ancestry can lead him into the
tragic, the ludicrous, and the tragicomic.

All of us know the fable. That we are here nevertheless, proves the drama
to be a good one, for only a cheap show relies on the unexpected at first
hearing. A good play grows better the oftener seen, and sometimes a new
production, profiting from old failings, can clear the text and heighten the
action. While we know the dénouement, we expect drama in the contrasts
and ironies of the working out, the balance of known against not known,
fate’s final conquest of the avoidable.

Had all the speakers we are soon to hear mastered the whole little budget
of simple equations we have just written down, thermodynamics might have
had a shorter and clearer history; it might have matured, like mechanics and
electromagnetism, into an adult science long before 1963. While there is in
those equations nothing any geometer or physicist of the early 1800s would
have denied, there was no one place then where all could be found clearly
stated'®, Writings on calorimetry abound in tiny increments and differentials

15 This result does not always hold in the later thermodynamics, because in it Ay need
not be positive.

16 The Annales de Chimie et de Physigue in the 1820s published a number of notes which
in proposing this or that relation among total heats, specific heats, and temperatures
bear witness to at best a very limited understanding of the logical connections of these
quantities. The same may be said of most of the researches Fox discusses in his Caloric
Theory, cited above in Footnote 2 to §2A, which faithfully reproduces the general level
of theoretical physics in the periods it describes. The booklet of KELLAND [1837],
which is perhaps the first monograph on heat in English, is particularly bad. It does
not present anything at all about what is called here “latent heat” and is denoted by
Ay. A fortiori, it contains not a word on the motive power of heat, although the memoir
of CLAPEYRON had been published three years earlier. KELLAND rejects also all the
work of LAPLACE and PoissoN but offers no substitute for it. Of the French geometers
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of functions of unspecified variables, leading to the fogginess such usage
always fosters. Thermodynamics inherited from calorimetry the handicap of
lacking the clarity which explicit mathematical statement gives to physical
assumptions, be they right or be they wrong.

only Fourier draws anything but criticism from this insular author, who gives his
readers pages of formal series expansions and physical beliefs.

The earliest systematic and fairly complete exposition of the theory of calorimetry
that I have seen is that of ReecH [1868, §22-44]. It obtains most of the results given
above in the text and a good many more, and it obtains them in essentially the same
way, though not quite so simply. It appeared far too late to be of use to any of the
creators of thermodynamics; it was published obscurely and has never been cited by
anyone before now, so far as I know. In irony typical of thermodynamics, I did not
see it until the summer of 1978, years after I had written the treatment above.
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Dinanzi parea gente;. ..
...a’ due mie’ sensi
faceva dir I'un ““No,” Paltro “Si, canta.”
DANTE, Purgatorio X, 58-60.

3A. Biot, and PoissoN’s First Attempt

Urged by Citizen LAPLACE, Citizen Biot' undertook ‘“‘to examine the
influence that the variations of temperature which accompany the dilatations
and condensations of air might have on the speed of sound.... It is a fact
known to the physicists that atmospheric air, when it is condensed, loses a
part of its latent heat, which goes into the state of sensible heat, and on the
contrary when it is rarefied, it takes back a portion of sensible heat, which it
converts into latent heat.” The sonorous condensations must therefore be
accompanied by changes of temperature. Since both of these are very small,
“we shall regard them as proportional. . ..” Thus BIOoT assumes that?

6= p’—f , GA.1)

B being a coefficient to which he attributes no particular functional depend-
ence. By use of (2C.2), we conclude from (1) that?®

. _Op, p
===+ kp=, 3A.2
P o (BA.2)

1 Bror [1802, I], extract in BioT [1802, 2]. Cf. the critical paraphrase by BRANDES [1804],
who also included an account of Brotr’s work in his annotations to EULER’s treatise on
hydrodynamics [1806, §§429-434].

2 As has been stated in Footnote 2 to §2B, the superimposed dot denotes the “‘substan-
tial”” or ““material” derivative. For infinitesimal changes, which are the only ones al-
lowed in the particular hydrodynamical researches we shall consider, this time
derivative is approximated by the partial derivative at a fixed place, so the distinction
is blurred. I make it partly for the convenience of those accustomed to hydrodynamics
and partly so as to indicate that the reasoning here, to the extent it is valid at all, is
valid also for finite motion of a gas.

8 B1oT considers only an ideal gas, but to clarify his reasoning I apply it a general equation
of state. Also in his definition of k£ he omits the factor 1/p, which is required to render
his later formulae correct. He makes other slips as well.
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where
_Bow _B
k= $26-6° (3A.3)

the latter expression being appropriate to an ideal gas. By (2B.1) we obtain
for the speed of sound the relation

2=2= 1+k_p 617, (BA4)
p p2p/ op
op

which for an ideal gas reduces to
a=a+m§. (3A.5)

Taking up the subject a few years later, in the course of a discursive
memoir on sound in general PorssoN * went through essentially the same steps;
his otherwise thorough historical preface does not mention Bior. While
BioT had not said anything about the nature of k, POISSON states in §3 that
it is a constant, in §21 that it varies with the temperature in an unknown way.

[Like BioT before him,] PoissoN claims to reconcile theory with experiment
but suggests that the experimentally measured value of ¢ should be used to
determine k. Thus he concludes that k = 0.4254 at 6°C. It follows from (1)
that in a sonorous vibration air rises in temperature by 1° when its volume is
reduced by the 116*® part (§22).

3B. Critique of Bror’s Theory

At first sight there is little difference between BioTr’s result (3A.5) and
LAGRANGE’s old comment that to square theory with experiment one need
only suppose that p = Cp*** and then give the number k the right value.
However, the assumption (3A.1) and the references to perceptible oscillations
of temperature suggest that more could be done than was done. If we start
from (3A.5) and regard it as a fact of experiment that the gas is ideal and that
k = const. > 0, we can work backward from (2B.1) and conclude that
(3A.1) does hold and that 8 = k4.

The modern reader who is familiar with the later work of LAPLACE may
think that BroT here assumes the sonorous vibrations to be adiabatic: Q = 0.
Indeed, that assumption put into (2C.15); yield’s BioT’s starting point (3A.1)
at once and shows that 8 = (y — 1)8 and k = y — 1. BioTr’s words about
heat certainly refer to the terms A,V and Ky#6 in (2C.4), but he states only
that in sonorous condensations neither term is null, not that their sum is null.
On the contrary, he chooses to “regard’’ g as proportional to § because both

4 PoissoN [1808, §§3 and 21].
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are small, an assumption quite unnecessary if the motion is adiabatic. The
concept of adiabatic heating and cooling was at this time far from clear®. If
we may trust the published record, the first man to formulate it was LAPLACE,
as we shall see presently.

Biot does not make his debt to LAPLACE clear. Later authors were always
to call the theory LAPLACE’s, and LAPLACE in his own publications on the
theory of sound was never to mention Brot2. If in 1802 LAPLACE had ideas
more definite than B1oT’s, he did not then reveal them.

3C. LAPLACE’s Theory of Sound and Heat

In a short note* published fourteen years after BioT’s, LAPLACE wrote that
modern discoveries on the nature of atmospheric air *‘ offer us a phenomenon
which seemed to me the true cause of the excess of the observed speed of
sound over the calculated one, as most mathematical physicists have since
agreed. This phenomenon is the heat which the air develops by its compres-
sion. .. One may suppose without sensible error that during the time of a
vibration the quantity of heat remains the same between two neighboring
molecules. Thus these molecules in approaching one another repel each other
more; first because, their temperature being supposed constant, their mutual
repulsion increases in reciprocal ratio to their distance, and then because the
latent caloric so developed raises their temperature. Newton took account
only of the first of these causes of repulsion, but it is plain that the second
cause must increase the speed of sound since it increases the spring of air.
By introducing it into the calculation I arrive at the following theorem:

“The real speed of sound equals the product of the speed according to the
Newtonian formula by the square root of the ratio of the specific heat of the
air subject to the constant pressure of the atmosphere at various temperatures,
to its specific heat when its volume remains constant.”

That, according to LAPLACE, if

e KP
‘y = I-{._V ’ (2C.16)r
then
op
2 .
A =vy (3C.1)

! Effects we now recognize to be associated with adiabatic flow of air were known but
not understood. The turbid early physics of the concept is ably traced by Fox, pp. 39-60
and 79-99 of his Caloric Theory, cited above in Footnote 2 to §2A.

2 Cf. LAPLACE [1823, §1]: I was the first to remark,...,” efc., and ““Mr. PoissoN has
developed my remark in a learned memoir....”

1 LAPLACE [1816].
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at least for ideal gases. If (1) holds, comparison with (3A.4) shows that BioT’s
coefficient & is in fact (y — 1) &p/dp + p/p. For an ideal gas (1) reduces to

c®=yplp=yrb, r=R/M, (3C.2)

M being the mass of the body of ideal gas whose constitutive constant is R.

LAPLACE discussed experimental results pertinent to his conclusion but
let another five years pass before even beginning? to explain his ideas on the
nature of heat. He developed them fully the next year® and immediately
thereafter included them in his celebrated and widely read Celestial Mecha-
nics®. As was his custom, he constructed an elaborate semi-quantitative
explanation in terms of attractions and repulsions between the infinitesimally
small parts of a static continuous medium, or, rather, a mixture of such media.
This is the kind of theory hodiernal Historians of Science are wont to call
““Newtonian’’. LAPLACE (p. 101) supposes that the molecules of a gas ““retain
their caloric by their attraction, and that their mutual repulsion is due to the
repulsion of the molecules of caloric, a repulsion plainly indicated by the in-
crease of the spring of gases when their temperature increases. I suppose
finally that this repulsion is sensible only at imperceptible distances.”” Thus,
for him, caloric is corpuscular. He writes also of “caloric rays’’, which are
easily pictured as streams of corpuscles. Finally (p. 104), ‘‘each molecule of a
body is subject to the action of these three forces: 1°, the attraction of the
molecules all around it; 2°, the attraction of the caloric of these same mole-
cules, plus their attraction upon its own caloric; 3°, the repulsion of its caloric
by the caloric of these molecules.”” He assumes a law of central force for
these attractions and repulsions, and he claims to calculate their resultants by
integration.

Amplifying his remarks of 1816, LAPLACE writes that (p. 109) “the time of
a vibration of a molecule of air is less than a sexagesimal tierce [i.e. 1/60
second]. In this short interval the absolute caloric of the molecule can be
supposed constant, for it can be lost only by the radiation of the molecule or
by its communication with neighboring molecules, and to render this loss
sensible, a time much longer than a tierce is needed.”

Finally, LAPLACE concludes from experiments of GAY-LUssAC & WELTER
that the ratio of the specific heats of air is very nearly constant®.

[I find LAPLACE’s calculations based on inverse-square attractions and
repulsions altogether incomprehensible. Since, beyond what he claims to
derive from them, he has to make phenomenological assumptions in order
to get his conclusions on sound and heat, and since his results follow from

2 LAPLACE [1821].

3 LAPLACE [1822, 1-3]. Fourirr [1822, end of preface] refers to these works and to the
one cited in the preceding footnote as having already appeared in print.

* LAPLACE [1823]. The passages translated above are from this final exposition, which
differs only in inessential details from the papers cited in the preceding footnote.

5 All the foregoing quotations and paraphrases are from LAPLACE [1823, §1]. Page num-
bers refer to the reprint in LAPLACE’s Euvres.
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those assumptions alone, without the apparatus of attractions, the pheno-
menological aspects are all we need to consider here®.]
First, LAPLACE assumes outright” that

P_yq1_pt

» 21-p) rE (3C.3)
so that

=1_; 21 - p)P (3C.4)

as in the papers by BioT and PoissoN (above, §3A).

To evaluate the coefficient 2(1 — B), LAPLACE now brings to bear his
assumption, stated above, that there is no gain or loss of heat, or, as we should
say now, the sonic vibrations are adiabatic®:

0=0. (3C.5)

8 Nevertheless I will point out some key passages in the pseudomolecular theory.

P. 119: For gases the entire pressure is due to the repulsion of the molecules of
caloric. ““Let ¢ be the caloric contained in each molecule of the gas; the repulsion of
two molecules will then plainly be proportional to ¢2.”” Main conclusion (pp. 120-121):

p = 2nHKp%c? ;

the law of intermolecular repulsion is Hc?¢(r), and K is a constant determined from ¢
by a triple integration. Pp. 121-122: The extinction of caloric rays on a surface is
qlII(8); here II denotes a function of temperature which is independent of the nature of
the gas, g is a constant depending on the gas, and pc? = ¢'II(6), ¢’ being another such
constant. Hence p = i II(§), and i = 2»KHyq'.

While LAPLACE uses these results again and again, a reader of sufficiently dogged
will to calculate may verify that they cancel out of all his formulae that concern thermo-
dynamics. That is, LAPLACE has not derived his conclusions from a molecular theory
but rather has exhibited a molecular model that is consistent, sufficient license for
mathematical manhandling being granted, with a few plausible phenomenological
statements.

Cf. also Fox’s discussion on pp. 165-174 of his Caloric Theory, cited above in
Footnote 2 to §2A..

7 LAPLACE [1823, §71.

The assumption is well buried. After 21 pages of horrid and useless calculations,
LAPLACE writes on p. 134 in connection with a one-dimensional motion of a fluid in
the direction of the co-ordinate x, ‘“ We suppose that

1 (pc) _ 19p »

e ox = =(1-p-= pox
and this is the first occurrence of B. In view of the equation displayed in the preceding
footnote, the assumption is

1dp _

3% 1-p8)-=

12p
P ox
As p is a function of p for each fluid-point, this last result is equivalent to (3). LAPLACE’s

argument here, as usual, runs through a string of manipulations.
8 The word “adiabatic® was coined by RANKINE [1859, §239].
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For LAPLACE, heat is never created nor destroyed. We shall refer to this
assumption by the traditional term Caloric Theory of heat®. LAPLACE renders
the idea of the Caloric Theory definite by the specializing assumption that the
heat'? in a fluid body is the value of a function of pressure, density, and
ambient temperature %, which later he takes to be constant?!?.

®In this book the term ‘“Caloric Theory” refers to the statement here annotated—
nothing more.

As Fox shows in his Caloric Theory, cited above in Footnote 2 to §2A, the term
““Caloric Theory’ when it was current meant different things to different schools of
thought. Some of these are now strange even to historians of physics; still familiar are
some particular models such as subtle fluids or atoms of caloric. These may be seen as
parallel to the atomic models which WATERSTON, RANKINE, CLAUSIUS, and others
proposed for the later thermodynamics. Models do not fall within the scope of this
book.

THOMSON [1851, §§19, 44] used “permanence of heat” to describe the Caloric
Theory; in annotating his collected papers in 1881 he referred to it as ‘‘the assumption
of the materiality of heat” (Volume 1, p. 127). THoMsON [1851, §§3—4] interpreted ““[t]he
recent discoveries made by MAYER and JOULE” as demonstrating ‘‘ the immateriality of
heat™, in conformity with Davy’s ‘““dynamical theory”, again a sort of speculative
model. Later he came to use the term *‘dynamical theory” for purely phenomenological
thermodynamics, based on the uniform and universal Interconvertibility of Heat and
Work.

The Caloric Theory was already known to have some shortcomings, but these were
not considered fatal to it. RUMFORD’s experiments were considered as having established
three properties of heat:

1. No bound could be determined for the quantity of heat that could be extracted
from a body by doing work upon it. Thus, presumably, the quantity of caloric in a body
was so great as to be practically limitless. [The reader who thinks this objection ought
have been fatal should recall that experimental possibilities are always limited. More
than twelve decades were to pass before anyone could solidify helium, and even today
it is unknown whether the space of physical experience be finite or infinite.]

2. At atmospheric pressure, water at 41°F is denser than water at 32°F. Thus thermal
expansion cannot be explained as the effect of stuffing a body with some ‘caloric”
substance or by any universal law of repulsion between particles of bodies and particles
of a “caloric” substance. [This objection could not destroy LAPLACE’s pseudomolecular
theory, since the law of caloric-corporeal interaction, being constitutive, could be
different and untypical for water, that ‘“anomalous” substance.]

3. After large amounts of heat had been taken from or added to it, the body’s weight
remained the same, to within the limits of measurement then available. Thus the caloric
substance would have to be very light, even *“subtle”.

RuMFORD regarded these and other facts of experiment as supporting the vis viva
theory of heat. Cf. §7A, below.

The book of S. C. BROWN, Benjamin Thompson, Count Rumford, Oxford etc., Pergamon
Press, 1967, reproduces and analyses RUMFORD’s major papers.

RUMFORD’s importance in the history of the theory of heat is greatly exaggerated
in popular accounts. As Fox remarks on p. 99 of his Caloric Theory, cited above in
Footnote 2 to §2A, *“a history of the theory could be written with scarcely any reference
to Rumford™.

10 T APLACE’s notation for the heat is ¢ + #, where c is the ‘‘free heat” and i is the latent
heat”. For the analysis, see pp. 136-137.

11 P. 136: ““ The temperature u of the space or the density of the discrete fluid which repre-
sents it can thus be supposed constant during the time of an aerial vibration”. LAPLACE
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Thus in effect LAPLACE adopts the following axiom (p. 136): the heat in a
[Aluid] body is the value of a heat-function Hy, so the heat C added in a process
from ¢, to ¢, is given by 2

C/M = Hy(ps, p2) — Hu(p1, p1) ; (3C.6)

here M is the mass of the body; subscript 1 and 2 denote evaluations at the
times # and #,; and p, = p(t3), p1 = p(t1), pa = p(t2), pr = p(t;). [If such a
thing as ““total heat™ exists, its value may be identified with H.(p, p). How-
ever, only differences of such values enter the mathematical theory. LAPLACE
seems not to have used (6) directly; an equivalent formula is to play a great
part in the researches of CARNOT and others, as we shall see in §5B and many
later passages.] Thus the heating Q/M per unit mass is the time-rate of change
of Hy,:

_ - _ 3HL . 3HL .
O/M = Hy, = 3 D+ rrs p. 3C.7)
In adiabatic motion, then (p. 136),
_oH, .  oH, .
0——67’-p+-gp. (3C.8)

Therefore the assumption (4) is proved to hold if and only if the coefficient
2(1 — B) has the special value

3C9

““It is easy to ascertain (p. 137) that the specific heat at constant pressure is
—updH, [/0p, while the specific heat at constant volume is updH /dp; the
factor p is ““a coefficient which, according to the experiments of Mr. Gay-
Lussac, is 0.00375 at the temperature of melting ice.” Such is LAPLACE’s
proof of (2), specialized to an ideal gas, and of the fact that in adiabatic
motion of an ideal gas
p
p
Equivalently, for each fluid-point p is a function of p alone, and dp/dp = yp/p.
LAPLACE remarks (p. 142) that since y can be determined by experiment,
no assumption about the heat function H;, need be made. *“Nevertheless it
would be very interesting to know it for the theory of the phenomena of

=y (3C.10)

© .

writes » for ““the temperature of the molecule”, which seems to represent the tempera-
ture field of the gas. Since, in his notation, kpc? = gv, k being a constant, this tempera-
ture is a function of the density and pressure of the gas and so is taken into account
by use of the general function Hy, in (6).

12 LAPLACE’s notation for what we denote by Hy, is V.
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pressure and heat in atmospheric air.”” The experiments of Gay-Lussac &
WELTER show that y for air is constant “from the pressure represented by
144 mm to the pressure 1460 mm and from the temperature —20° to the
temperature 40°.”” If it is rigorously so, (9) may be integrated to yield

pllv
Hy, = ¢ (—P—) , (3C.11)
¢ being an arbitrary function. ““The simplest value of H;, included in this
expression” is (p. 143)

1/
Hy, = F+ K2,
P (3C.12)

= F + Krop'"-1 | F = const., K = const .

“On this supposition the absolute heat of a molecule of air at constant
pressure increases with the temperature, which squares with the phenomena.”’
From (12) we obtain the following expressions for the specific heats:

K, = MKrp'- , K, = ;’-K,, . (3C.13)

[I reserve my critique of LAPLACE’s theory until after we shall have
considered PoISSON’s last treatment of these matters.]

3D. PoissoN’s Second Treatment

Coming back to the subject in 1823, PoissoN? states that at the ‘““already
remote” period of his first memoir on sound (above, §3A), “physicists had
not yet done any experiment’” which could determine ‘“the increase of tem-
perature corresponding to the condensation” in a sonorous vibration. For
that reason he had then ““reversed the question” and so determined the value
of the condensation that would square with the observed speed of sound.
Using the experimental results CLEMENT & DESORMES had published in 1819,
Porsson now derives a value of the adiabatic condensation not much different
from that he had inferred in 1808. He then engages to derive ““the new formula
of Mr. Laplace” from the properties of gases ‘“‘regarded as data of experi-
ment”’, without use of LAPLACE’s *“ hypotheses made so as to explain the laws
of Mariotte and of the dilatation of gases”. In this way the formulae would
be rendered “independent of any particular explanation.”

To this end PorssoN considers a triangular cycle of infinitesimal changes
for a fluid-point: heating so as to increase the temperature and volume at

! PoissoN [1823, 1] = [1823, 3, §1]. We note that Poisson [1823, 1, p. 14] [1823, 3, p. 263]
[1823, 2, p. 339] cites LAarLACE [1823].
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constant pressure, then suddenly compressing the air back to its original
volume [i.e., adiabatically], then at constant volume reducing the temperature
and pressure to their original values. If the changes of volume and tempera-
ture in the first part are dV’ and d0’, then Rd6’ = pdV'; the heat added is
K,d#'. In the second part, let the increase of temperature be d6. Then because
the third part completes the cycle, the temperature falls by the amount d6 +
df’, so the heat subtracted is K,(d0 + df#'). “The volume, pressure, and
temperature being become again. . .the same as they were before the expan-
sion of the mass of air, the quantity of heat communicated to it is necessarily
equal to what it has lost....” That is, Ky(d6 + d0") = K,df', or df =
(y — 1)df'. Hence in the adiabatic part

db do’ do

=YL _ P _
Appealing to (3A.1) and (3A.3),, we see that
Vv do
k = —Fﬁ,:y—l . (3D2)

Substituting this evaluation of k into [B1o1’s] formula (3A.5), PoissoN con-
firms LAPLACE’s formula:

¢ = yplp . (BC.2)1:

In another paper published in 1823 PoissoN? shows in a few lines that
LAPLACE’s results concerning the heat function and adiabatic processes are
likewise independent of the pseudomolecular trappings which LAPLACE laid
upon them. PoissoN assumes (3C.6) and hence writes down (his Equation (3))

oH,, oH,,

P Tp— + 'yp—aF =0. (3D.3)
[He has tacitly assumed that H; = const. in the process considered; hence
that process is adiabatic; but he does not at once say so.] ““It is evident
a priori” that y > 1 because ‘““necessarily more heat is required to raise the
temperature of a gas when it expands than when its density remains constant,
but experiment alone can let us know the value of y for different gases and
how that value depends upon pressure and density. According to the experi-
ments of MM. Gay-Lassac and Welter, cited in the Mécanique Céleste, this
quantity is sensibly constant. . ..” Integration yields LAPLACE’s determination
of his heat function:

H,=14¢ (P—;l—y) . (3C.11),
[If ¢ is invertible,] it follows that
pe " =f(CIM) ,  0p*" = f(CIM)]r . (3D.4)

2 PorssoN [1823, 2, §I1.
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PoissoN now mentions (p. 339) that C/M remains constant, so in an adiabatic
process of a body of ideal gas having constant ratio y of specific heats

pp~?=const. ,  pf1-Y = const. , Op~* = const . (3D.5)

[These relations are traditionally attributed to PoissoN. However, as they
are obvious consequences of LAPLACE’s formula (3C.11), and as the basic
idea behind all of this was LAPLACE’s, we will in this work refer to them as the
LAPLACE-POISSON law of adiabatic change.]

3E. Meikle’s Claim

The work of LAPLACE and PoissoN was accepted quickly but, as usually
happens, bit by bit and with much discussion!. Their assumption that
A = const. was regarded as confirmed by experiment, but only MEIKLE?
subjected it to analysis. Working within the framework of the Caloric Theory
of ideal gases, MEIKLE claimed to prove that if y = const., then® *“neither the
magnitude of a constant volume, nor the infensity of a constant pressure,
have anything to do with the specific heat of a given mass of air.”” His first
proof* starts from PoissoN’s equation (3D.3), but without any stated reason

t Ivory [1825] somehow extracted the LAPLACE-PoI1ssoN law of adiabatic change from
a jumble of heat with temperature and some shady fluxional calculus. Then Ivory
[1827, I] claimed to prove ‘‘a priori from the theory here laid down”’ that y = const.
Thereupon Ivory [1827, 2] by a still more incomprehensible argument derived an
equation different from one published by Poisson [1823, 3, §I] [=[1823, I]] and hence
proclaimed PoissoN’s work erroneous! He generously added that his own treatment of
1825 was ‘‘liable to the same objection”. PoissoN [1827, postscript] in reply asked
IVory to sHow where his error lay. In the abusive kind of polemic then frequent in
Britain MEIKLE [1828, I] attacked IvorY’s work. Ivory [1828] replied in the same style.
The whole eruption is insecure in mathematics, confused in physics, and careless in
expression.
2 MEIKLE [1826, I] and later papers, cited below.
3 MeixLE [1829, p. 67].
* MEIKLE [1826, 2, p. 335] does not state that the quantity he denotes by B is a constant
rather than an arbitrary function, but otherwise a very specific statement of his [1829,
p. 62] is not true: “when the variations in the quantity of heat are uniform, those of
its volume under a constant pressure form a geometrical progression; as do likewise
the variations of pressure under a constant volume.”” Cf. also the similar earlier state-
ments of MEeIkLE [1826, 2, p. 336] [1828, 2, p. 319]. First, if p = const., by (2C.4) and
(2C.8) we conclude that

0=K,0, AVV=(1—)1,)Q. (A)
If y = const., we may use (3) and so conclude from (2C.18) that

I ()]
Av=M=5 [ Ak

Hence (A); becomes
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he chooses for ¢ in its general integral (3C.11) the particular function B log
and so concludes that

Ky=2, Ko=y2, B=const>0. (GE.1)
In a later paper MEIKLE® provides a geometrical proof [which seems to me
to start by assuming both K, and K, to be functions of 6 alone.] He re-
proaches LAPLACE, PoissoN, and Ivory for having failed © to draw ‘“the neces-
sary and unavoidable consequences™ of their assumption that y = const.,
and he reproaches” ‘“‘the eminent French philosophers” because they ‘“built
upon these errors an immense fabric of complex formulae, and have drawn

from them a multitude of conclusions!”

3F. Critique of LAPLACE’s and PoissoN’s Theories.
Correction of MEIKLE’s Claim

LAPLACE is the first author to present any concrete mathematical theory
concerning heat. His work provides the first clear and formal concept of
adiabatic process; the first calculation of the properties of such a process;
the first explicit, assessable Caloric Theory of heat; discovery of a basis which
makes it easy to see that in an adiabatic process of an ideal gas with constant
ratio y of specific heats, p¥* = const.; and unquestionable proof that the
data on the speed of sound then available could be reconciled with gas
dynamics if the sonorous motion of air were supposed to be an adiabatic
process in a gas of that kind, provided only that y when measured by other
experiments should turn out to have a value close to 1.4.

LaPLACE’s work falls into two parts:

1. His theory of adiabatic change in ideal gases.
2. His theory of specific heats, based upon his partial specification of the
heat function Hy, for an ideal gas with constant ratio of specific heats.

y=-1rp” (Eﬂ)] y_ ( _l)

M ¥ [ P v P vV ! Y Q.

Thus MEIKLE’s first assertion about progressions is correct if and only if the quantity
in square brackets is constant in processes at constant pressure. A parallel argument
shows that his second assertion is true if and only if that same quantity is constant
under processes at constant density. The two assertions hold if and only if (3E.1) holds.
5 MEIKLE [1829, p. 67].

¢ MEIKLE [1829, p. 651.

7 MEIKLE [1829, p. 671.
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PoissoN’s last analysis shows, albeit crudely, that in both parts LAPLACE’s
semimolecular trimmings are unnecessary!. While to this end Poisson felt it
necessary to do everything more or less afresh, our presentation in §3C shows
that a careful and critical reader could have seen as much directly from
LAPLACE’s own exposition.

LAPLACE’s work regarding specific heats is pretty clear and efficient,
granted his starting point. Of course it rests essentially upon the Caloric
Theory of heat. LAPLACE omits only the derivation of his formulae for the
specific heats, which we can easily supply. Indeed, beginning from a general
expression for the heating:

1 . ap .
0=z (ke -%2) (c.12),
a0
we see at once that if /M = Hy, then
— _ (% /%) e - o,
K, = M(ﬁé/ap)—ap_ , KV_MaB o (3F.1)
formulae which for ideal gases reduce to
— _pmPHy - mP
K, = Moap, K"‘"Maap’ (3F.2)

so LAPLACE’s factor p is in fact 1/8. Of course LAPLACE’s formula for H;:
Plh’
-4 (20), (e,

follows easily from these results if we assume that y = const. Moreover, if
we have (3C.11), we conclude from (2), that

1 [pt (pllv)]
Ky =M= |— —11. 3F.3
v=u |y (2 (3E3)

By inspecting (3) we see that for K, to be a function of p alone it is
necessary and sufficient that Hy, have the special form (3C.12), which LAPLACE

1 On p. 177 of his Caloric Theory, cited in Footnote 2 to §2A, Fox writes

Poisson’s greatest contribution, then, was rather to free Laplace’s work of its
more suspect elements, merely by picking up the argument at the stage g =
f(P, p). In doing so he was showing in a most effective manner just how irrelevant
much of Laplace’s theory was, so that even to a reader convinced of the physical
reality of caloric Poisson’s must have seemed undeniably the more fruitful
approach.

We shall see below that in the most important parts of LAPLACE’s and PoissoN’s work
the heat-function H;,, which Fox denotes by f, is just as superfluous as LAPLACE’s
particles of caloric.
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recommended as being its ““simplest value’. As early as 1805 LAPLACE2 had
suggested that a constant-pressure air thermometer would measure the “ true”
temperature; in BOWDITCH’s translation,

But, in the theory of heat, it is necessary to estimate the real degrees of
heat indicated by those of a mercurial thermometer; and this will be
given with great accuracy by the experiments just mentioned, if the
increment of heat of a mass of air submitted to a constant pressure, be
proportional to the increase of its volume. Now this hypothesis is at
least very probable; for, if we imagine the volume of the mass of air to
remain the same whilst its temperature increases, it is natural to suppose
that the elastic force, of which heat is the cause, will increase in the
same ratio. By submitting it in this last state to the pressure it suffered in
the former case, its volume will increase as its elastic force, and therefore
as its temperature. Hence it appears, that an air thermometer indicates
accurately the variations of heat; but, its construction being difficult, it
is sufficient to have compared its march with that of a mercurial thermo-
meter by very exact experiments.

For an ideal gas at constant pressure Q = K,6 = (pK,/R)V, so LAPLACE’s
desideratum is K, = f(p). Since y = const., K, is likewise a function of p
alone, so LAPLACE’s ““simplest value’’ conforms with his earlier requirement.

Indeed, (3) serves also to show us at a glance that MEeIKLE’s claim (3E.1), is
generally false® except when we add the assumption that K, shall be a
function of 8 alone. Nevertheless there is a germ of truth in it! The LAPLACE-
PoissoN law (3D.5) shows that in an adiabatic process (3) reduces to MEIKLE’s
(3E.1) with the value of the constant B differing in general from one adiabat
to another. As the adiabats of an ideal gas with constant y are distinct from
the isotherms, (3) show that K, cannot be constant. Hence the Caloric
Theory does not allow both specific heats of an ideal gas to be constant. This
trivial, immediate, and essential consequence of the equations of the Caloric
Theory was first published, so far as I can learn, in 1973. To some, this very
lateness will abscind the fact itself from the history of thermodynamics. To
others, it will serve as the prime example among many which show that
thermodynamics, from its beginnings, has been a sick science, its sores
unprobed by conceptual analysis and uncleansed by logical criticism. To still
others, it will merely reveal ignorance of MEIKLE’s claim (3E.1), even though

2 LAPLACE [1805, p. xx in the reprint in his Euvres]; cf. also Poisson {1833, §639]: “at
constant pressure a gas dilates uniformly for equal increments of heat....” I am
indebted to Mr. C.-S. MaN for pointing out these passages and their importance for the
understanding of LAPLACE’s later work.

3 Fox on p. 193 of his Caloric Theory, cited above in Footnote 2 to §2A, pronounces
MEIKLE’s argument *‘perfectly sound”.

¢ TRUESDELL [1973, I, §2].
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that claim is generally false. There is also a certain prophetic quality in
MEIKLE’s assertion, and for two reasons: In §5T we shall see that (3E.1) is the
only possibility consistent with CARNOT’s thermodynamics, and Property 7
in Chapter 11 of Concepts and Logic asserts that MEIKLE’s less specific
statement in words holds in the entire class of theories compatible with
CARNOT’s General Axiom, which we shall state and analyse in Act II, below.

As we shall see in Acts II and III of this tragicomedy, the fact that the
Caloric Theory forbids an ideal gas to have constant specific heats will prove
fatal to it. Thus it is worthwhile to study the matter in another setting, with-
out use of LAPLACE’s explicit formula (3C.11) for H;,. While the Doctrine of
Latent and Specific Heats allows K, and Ky to be any functions of p and p
we might desire, the existence of a heat function Hy, leads to (1), which re-
stricts them by the severe requirement

o [Ky o [ K,

— -~ + —

d\%]| P\ [%
a0 20/ op

=0; (3F.4)

here K, and K, are regarded locally as functions of p and p, and dp/o0 are
understood to be those functions of p and p that have the same values as do
ow*[06 and 0w*/0p, calculated from the thermal equation of state p =
w*(p, 0). Conversely, if K, and Ky satisfy this condition of integrability, a
heat function H,, such as to deliver them by (1) exists locally. When the fluid
is an ideal gas, (4) assumes the form

K,,—Kv+paa—I;”+p%—§—'=0. (3F.5)
Except for his somewhat imperfect statement of (2), LAPLACE does not give
any of the relations (1)~(5), but from equations he does record they follow
at once by simple mathematics which he himself mastered and used ordinarily.
If we suppose both K, and Ky to be constant, (5) yields K, = K;,, which
contradicts (2C.17): Thus, again, the Caloric Theory forbids an ideal gas to
have constant specific heats.

So much for LAPLACE’s work on specific heats, PoissoN’s purification of it,
and MEIKLE’s incorrect but suggestive claims. LAPLACE’s theory of adiabatic
change and the propagation of sound in ideal gases is another matter. While
Poisson in his crude way could clear away the pseudomolecular claptrap, he
missed the main point: LAPLACE’s theory of adiabatic change and the speed
of sound is independent of the Caloric Theory of heat and all relations between
heat and work. It derives from the theory of calorimetry alone. Although
LAPLACE uses his heat function H;, to derive his main results, namely

p/P = '}’P/P s cz = ‘)'P/P = ‘)”'9 ’ (3010)” (3C'2)1,2r

he need not do so, and his pages of calculations serve only to obscure them.
LAPLACE’s crucial step is his statement that the sonorous motion is adiabatic.
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Once this step has been taken, anyone who has at his disposal the Doctrine
of Latent and Specific Heats as we have presented it in §2C can read off all
of LAPLACE’s conclusions at a glance®. Indeed, if we consider a general
expression for Q for an ideal gas:

Q==0(KV§-Kp§), (2C.15),,

and set 0 = 0, then (3C.10) follows at once, showing that in adiabatic motion
of a body of ideal gas

Z—’; - ,,1;’ , (3F.6)
which is neither more or less than PoissoN’s statement (3D.1). PoissoN in-
voked the Caloric Theory needlessly at this point. As his argument in all its
crudity refers only to infinitesimal changes, his conclusion follows directly
from the calorimetric relation (2C.15). To obtain the corresponding formula
when a general equation of state is assumed, we need only use in the same
way the parent statement whence (2C.15) descended by specialization to an
ideal gas:

1 . op .
Qﬁé@w—&%o. (C.12),
o0
The result is
dap _ _op

so that by use of (2B.1) LAPLACE’s famous correction to the Newtonian
speed of sound, namely

op
2 _
c? = y—ap R (3C.1),

follows in full generality®.

5 The theory of sound is a field theory (cf. Footnote 2 to §2B), while the Doctrine of
Latent and Specific Heats as usually conceived takes A, and Ky as functions of time
associated with a whole body. None of the pioneers seems to have been disturbed by
this fact. In effect, I believe, they considered an infinitely small sonorous particle. The
modern reader does the same thing more precisely by taking (4H.3) as his axiom and
supposing that along the path of each fluid-point in sonorous motion A,o + «,6 = 0.
¢ The result (7) implies as a special case a famous formula of the later thermodynamics.
Namely, if p = B(p, n), where 7 is the specific entropy, then in adiabatic motion p/p =
op/9p so (7) reduces to

% _ .o

% = Yo
This statement is called ““ REECH’s theorem”’ in the French literature. The corresponding
result first obtained by ReecH (1853), which is in fact speciously general, is presented

below in §10D. Later REEcH [1868, §27] obtained (7) essentially as we have done in the
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While modern books usually assume that y = const. in order to obtain the
LAPLACE-PoIssoN law (3D.5) of adiabatic change as a basis upon which to
prove LAPLACE’s correction to the speed of sound, neither the assumption
nor the detour is necessary. Therefore, all of LAPLACE’s results concerning the
speed of sound are immediate consequences of the theory of calorimetry, and
they hold whether or not y be constant”. They are not restricted to infinitesimal
motion, and they do not require the existence of LAPLACE’s heat function®,
let alone his semimolecular concepts of particles of air and caloric which
attract and repel each other®.

For later use we emphasize the fact just proved: the LAPLACE-POISSON
theory of the speed of sound allows the specific heats of gases to be arbitrary
JSunctions of p and 6.

It is a different matter with the LAPLACE-POISSON law as expressed by
(3C.11)~(3C.13) and (3D.4). To obtain those results, LAPLACE and PoIssoN
assumed that y = const. From LAPLACE’s own determination (3C.11) for his
heat function!® we have obtained (3). We know that the adiabats extend from

text above, making it entirely clear that LAPLACE’s correction is independent of
thermodynamics. See the Note Added in Proof on p. 301.

We may notice incidentally that setting Q = 0 in (2C.13), yields B1oT’s assumption

(3A.1) and shows that Biot’s (and PoissoN’s) 8 = (y — 1)p[(8p/2p)/(dp]86)]. Likewise,
putting Q = 0 in (2C.12) yields LAPLACE’s assumption (3C.3) and shows that LAPLACE’s
2(1 — B) = ¥(p/p)(8p/p). Although Biot, PoissoN, and LAPLACE considered only ideal
gases, these conclusions from the theory of calorimetry are valid for any thermal equation
of state.
7 RANKINE [1852, §13] regarded it as a noteworthy achievement, based on his theory
of molecular vortices, to have shown that LAPLACE’s law applied ““not only to a perfect
gas, but to all fluids whatsoever.” Of course, all that he did amounts to illustration of
the consistency of his molecular model with the theory of calorimetry. Cf. §§8G and 9A,
below.

PARTINGTON in Ch. II, §4 of the work cited above in Footnote 4 to §2C, is one of
the few modern authors who prove (7) without any appeal to thermodynamics.

8 LAPLACE’s own argument, the one he claimed to be ‘““easy to verify”, doubtless was
equivalent to that we have indicated by (1) and (2).

® Cf. the sarcastic criticism by WATERSTON in his article “On the theory of sound”,
Philosophical Magazine 16 Supplement, 481-495 (1858) (Collected Papers, p. 354):

. it is a question whether the reciprocal action between heat-atmospheres
and molecules, which he expresses in mathematical symbols, can be realised
by the mind. . .. [I]ndeed there seems to be no limit to this artificial and barren
system of procedure, which is as far removed from the simplicity of nature
as the hideous epicycles of Ptolemy.

¢ LapLACE’s (3C.11) follows from (3D.1) with no assumption beyond y = const. Never-
theless, it is appropriate only to ideal gases. For a general equation of state a correct
differential equation for Hy, is

oy | op ol _

5  Yepop
as we may see at once from (1). This equation reduces to (3D.1) if and only if
9p|dp = plp.
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6 = 0+ to 6 = co. Thus by applying (3) in an adiabatic process we see that
low temperatures give rise to enormous specific heats, high temperatures to
very small ones. Equivalently, a dense gas has a small specific heat, while a
rare gas has a large one. Today we regard such behavior as most implausible.
How can LAPLACE have endorsed it? We have seen that in 1805 he expected
K, to be a function of p alone, and that in 1822 he was able to claim that his
formula (3C.12) squared with the phenomena. How so? In 1812 DELAROCHE
& BERARD had published measurements from which they concluded that K,
for gases was a slowly increasing function of p! This claim of theirs was to
have a disastrous effect upon the development of thermodynamics for thirty-
eight years, as we shall see below in §9G. For LAPLACE, resting securely upon
Gay-Lussac & WELTER’s conclusion that y = const. for most gases,
DELAROCHE & BERARD’s result must have seemed to confirm all that he had
guessed and calculated. As the range of variation of p and 6 in all the experi-
ments was small, he may have felt no need to ask what his formulae (3C.13)
predicted for extreme conditions.

Be that as it may, LAPLACE’s formulae stand, firmly drawn from his
assumptions. The theorist cannot shut his eyes to what they imply for
extreme conditions. The difficulty is not confined to LAPLACE’s special choice
(3C.12) of ¢; MEIXLE’s formulae (3E.1), which we have shown to hold for any
¢ if we choose to follow an adiabat, show that the same objectionable
conclusions hold under all possibilities consistent with LAPLACE’s theory.
The simplest molecular pictures of a gas forbid the specific heats of a gas to
vary greatly with temperature or density. It is not surprising that HERAPATH?,
who had proposed a kinetic theory, noticed this fact; his is the merit of being
the first to criticize the fatal experiments of DELAROCHE & BERARD. That it
should be he whom the tragicomic muse should choose as sole spokesman
for the truth, and at that in a footnote to a translation, is an early example of
her whimsy, for in his own day HERAPATH was dismissed as a crank. Anyway,
he seems not to see where the basic fault of the theory lies.

Something is wrong. The LAPLACE-PoISSON formula is not it. Indeed, to
derive that we need use none of LAPLACE’s apparatus or POISSON’s uncon-
vincing remarks. First, to obtain the basic differential equation

P p
— =y, 3C.10),
77 ( )

we need only specialize (6) to an ideal gas; if we then assume y to be constant

11 P. 337 of his translation of the note of Poisson [1823, 2], in the context of vapors:

I cannot satisfy myself of the degree of confidence to be attached to the experiments of
MM. Laroche and Berard. Calculations from the influence of currents of air do not
impress me with the idea that such methods are susceptible of much accuracy. Besides, it
certainly seems to be adverse to the theory of caloric itself, that so rarefied and expanded a
body as vapour should have a less specific heat than its generating water; which is the
case in the above philosopher’s results.
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on adiabatic processes'?, we may integrate (3C.10) just as Poisson did. That
is all there is to it. The LAPLACE-POISSON law of adiabatic change follows
directly from the theory of calorimetry'®, on the assumption that y = const.
on each adiabat.

Therefore, either the sonorous motion is not adiabatic, or the Caloric
Theory is wrong. Why did no-one in the early 1800s make this easy compari-
son of fact with theory ? I think the reason lies in the dense tangle of LAPLACE’s
writing. Even today, with hindsight, it was no easy matter to penetrate the
thicket and extract and interpret the equations given above in §3C, equations
which make the comparison easy if not even obvious. PoIsSON’s analysis,
while not so mysterious, suggested a man’s working backward to recover a
result already recognized as correct.

In LAPLACE’s (Euvres over 100 pages are filled by his publications on the
theories of sound and heat yet do not reprint all of them. Everything positive
in this work he could have developed in twenty simple equations, clearly
explained and securely derived, along with four or five pages on the experi-
mental data. Had he done so, his work might have set an example worthy
for others to follow. Instead, he cast out his good ideas sporadically in the
course of an orgy of expansions and substitutions and supplementary hypo-
theses and neglect of small terms—the sort of gyrations which Historians of
Science and physicists often call ‘““mathematics”. It would be facile to apply
to his work on sound his own estimate of NEwTON’s: ‘“His theory, although
imperfect, is a monument of his genius.”

LAPLACE is one of those mathematicians who won a great reputation in
his own day and has held it ever since, safe within his forbidding eruption of
formalism. The few who have had the courage and industry to follow through
some of his teetering calculations have adopted a certain reserve toward him.
As a physicist, he preferred contorted structural hypotheses; as a mathe-
matician, he was unusually loose, even for his day; as a teacher, he wrote
so as to dazzle rather than enlighten. The part of his work we have just
analysed is typical of him.

LAPLACE’s study of heat and sound falls within the Caloric Theory and
does not attempt anything in the province of thermodynamics. Nevertheless,
it frames the essential concept of an adiabatic process and provides a major
relation which is obeyed in such processes. Also by its verbiage, mixture of
scarcely compatible ideas, and preference for the complicated where the
simple would have sufficed, it sets the tone of the ensuing tragicomedy.

12 The LAPLACE-POIssoN law does not hold unless y is constant on each adiabat, but
v need not have the same value on all adiabats. Cf. the remarks following Corollary 4.3
in §4 of Concepts and Logic.

13 This conclusion may have been clear to the pioneers of thermodynamics in the
1850s, but the earliest explicit statement and proof I have found are those of REECH
[1868, §371.



4. Act I. Workless Dissipation: FOURIER

Ma tanto piu maligno e piu silvestro
si fa ’l terren con mal seme e non célto,
quant’ elli ha piu di buon vigor terrestro.
DANTE, Purgatorio XXX, 118-120.

4A. FOURIER’s Predecessor: BIOT

LAMBERT in his Pyrometrie® seems to have been the first man to attempt a
precise treatment of the conduction of heat. He considered a long bar open
to the air, resting upon thin wires, and with one end in a fire. ““Thus the bar
is heated at one end only. The heat penetrates by and by into the more
distant parts but finally passes out through each part into the air. If the fire
is maintained long enough and with equal heat, finally every part of the bar
contains a certain degree of heat because it again and again receives just as
much heat from the parts lying nearer to the fire as it communicates to the
more distant ones and to the air.” [As MAcH? remarked, LAMBERT’s analysis
does not exhibit clarity corresponding to this description of the physical
problem.] LAMBERT regards the ““heat” y as a function of position x alone
and writes down the expression for the subtangent J to the corresponding
curve:

dy:y=dx:7 . (4A.1)

Giving no reason at all, he assumes® that 7 is constant. Hence he concludes

1 LaMBERT [1779, §§326-327]. Some isolated passages in the works of NEWTON,
DanieL BErRNoULLI, and EULER may possibly refer to what we now regard as conduction
of heat.
2E. MAcH [1896, beginning of the Historische Uebersicht der Lehre von der
Warmeleitung].
3 In §270 LAMBERT had treated “NEwTON’s law of cooling” by radiation alone and had
discussed the subtangent that appears there. Perhaps he expected his readers to apply
the same sort of ideas to the more complicated case discussed here. It seems strange
that he found for radiation alone an equation with one more term in it than the one
he presents here for radiation and conduction combined. The matter is discussed by
MacH [1896, Historische Uebersicht der Lehre von der Wairmestrahlung].

What NEwTON meant to say in connection with heat and temperature is not clear.
Both his theory and his experiment have been discussed by J. A. RUFFNER, ‘“‘Re-
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that the curve is ““a logarithmic line”. [Indeed,
y(x) = y0)e==7, (4A.2)

with the convention of sign nowadays normal.] LAMBERT analyses the experi-
ments of NEWTON and AMONTONS, finds them not as discrepant as was then
thought, and presents experimental results of his own. These comparisons
show that LAMBERT interpreted the “‘heat’” y as the temperature. From this
time on the ““logarithmic law” (2) was considered good. [No-one seems to
have remarked that LAMBERT’s differential equation had no solution for a bar
of finite length, the ends of which were maintained at arbitrarily fixed tem-
peratures.]

The next to take up the theory of conduction seems to have been BioT*?,
a generation later. In new experiments he verified LAMBERT’s ‘‘logarithmic
law”. Thereupon he stated,

It was not enough to conclude these results by experiment; it was
necessary to find them by theory, for experiment alone shows only
some isolated facts, while it is theory that makes us perceive the rela-
tions between them.

For that, we must start from this law: when two bodies of different
temperatures are put in contact, the quantity of heat that the hotter
gives to the colderin a very short time, other things being equal, is propor-
tional to the difference of their temperatures.. .. This law was assumed
by Newton? in his essays on heat. Richman[n] confirmed it subsequently
by his own experiments and those of Krafft, and afterward Count Rum-
ford himself by new facts has added new weight to those authorized®.

[LaAMBERT had stated clearly that the bar would be subject to conduction
in its interior and to radiation on its surface. Only the latter process may be
governed by ‘““NEwTON’s law”.] BIOT seems to think that ‘“NEwTON’s law”
applies to conduction as well:

To establish the calculation in accord with this law, we must bear in
mind that each point of the bar receives some heat from that which

interpretation of the genesis of Newton’s ‘Law of Cooling’”, Archive for History of
Exact Sciences 2 (1962/6), 138-152 (1964). It seems to me that NEwTON’s ‘“‘degree of
heat’ was a temperature, not a flux of heat, and that NEwTON meant to state

db
7 oc (0 — 8,) , 8, = const.

As we shall see below, this interpretation conforms with BioT’s and FOURIER’s.

4 Brot [1804].

5 Cf. Footnote 3, above.

¢ Both printed texts have “‘ces autorisés”’, perhaps a misprint for “ces autorités”.
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precedes it and communicates some heat to that which follows it. The
difference is what remains in it on account of its distance from the
furnace, and it loses a part of that to the air, be it by immediate contact
with that fluid or be it by radiation.

Thus in the state of equilibrium, when the temperature of the bar is
become steady, the increment of heat that each point of the bar
receives in virtue of its position is equal to that which it loses through
radiation, a loss which is proportional to its temperature.

And in a state of motion, when the temperature of the bar changes
at each instant, the quantity of heat received by each point on account
of its position, less the quantity it loses through radiation and contact
with the air, equals the quantity by which its temperature increases in
the same interval.

The first condition when reduced to calculation gives rise to a
differential equation of second order between two variables: the increase
of temperature of each point and its distance from the constant source
of heat. This equation is linear, with constant coefficients, and it may
be integrated by known methods.

The second condition, in which one more variable enters, namely
the time, leads to a partial differential equation of second order. This
equation, which gives the state of the bar at any instant, includes the
preceding one implicitly.

BioT considers only the case corresponding to LAMBERT’s assumptions.
“The differential equation related thereto contains in its integral two arbitrary
constants multiplying two exponentials, and beyond that another constant
but not arbitrary quantity which depends upon the ratio of the conductibility
to the radiation.”

[These words certainly seem to describe the partial differential equation

06 220
and its steady case,
K d?0
e 0. (4A.4)

C is a constant that will appear below in FOURIER’s work, K is the thermal
conductivity, and 4 is a coefficient of radiative transfer. The integral of (4) is

0(x) = Aexp (~A/%x) + Bexp (A/%x) ; (4A.5)

A and B are the two arbitrary constants BIoT mentions; for an infinitely
long bar the temperature is bounded at oo if and only if B = 0], and the result
confirms LAMBERT’s ‘‘logarithmic law”’. [Moreover, the solution (5) can be
adjusted to correspond with a bar of finite length, the ends of which are kept
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at given temperatures. BIoT seems to have solved the problem he set himself.
Nevertheless, he writes out no equations. Did he obtain (3), (4), and (5)?]

In the course of a treatise published twelve years later BIOT prints the
equations and tells us the story, partly in a footnote”.

[The three equations] were asserted and applied, I think, for the first
time in a little memoir. .. which I read to the Institute in 1804 and
which was printed in the Bibliothéque britannique [i.e., the note we are
presently discussing]. But not being satisfied then about the difficulty
of analysis regarding homogeneity, I indicated the structure of the
formulae without proof.

The ““difficulty of analysis regarding homogeneity* BioT explains as follows®:

But when we come to form this equation, we find that the laws of homo-
geneity which govern differentials cannot be satisfied if we suppose that
each material and infinitesimally small point of the bar receives heat
only by contact with the point which precedes it and transmits heat
only to the point which follows it. This difficulty can be set aside only
by assuming, as Mr. Laplace did, that a particular point is influenced
not only by those that touch it but also by those that are only a small
distance away from it, ahead and behind. Then homogeneity is re-
established, and all the rules of differential calculus are observed.

[What Bior tells us here is that ‘““NewToN’s law of cooling” refers to the sur-
face of contact of two bodies, be they large or be they small. Somehow
Biot in 1804 had obtained the right partial differential equation and had
found and interpreted its steady solutions, but 4e was not able to derive it from
“NEWwWTON’s law of cooling”.

[That is quite right. BIoT’s equation is incompatible with ‘““ NEWTON’s law”’
if that law is applied to interior parts of a homogeneous body. What LAPLACE
disclosed to BioT, if we may accept BIOT’s statement, was a new concept of
heat transfer: The conduction of heat arises not in response to differences of
temperature at an actual dividing surface but to gradients of temperature
within an undivided body. LAPLACE was thoroughly familiar with EULER’s
hydrodynamics, which represents the accelerating force in a fluid not as a
pressure difference effected by a piston but as the result of a pressure gradient
within an undivided, homogeneous mass of fluid. Both distinctions are just
matters of simple physics. Nevertheless we shall encounter in later parts of
this tragicomedy claims that NEWTON’s law is the basis of the theory of heat
conduction; such claims persist sometimes even today.

7 Brot [1816, Chapter VI, pp. 669-670].
8 Biot [1816, Chapter VI, pp. 667-668].
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[How did Biort arrive at the partial differential equation®? I have found
in his works nothing else to suggest him capable of thought at this level in
mathematical physics. For LAPLACE, whose bread and butter for much of his
life’s work was EULER’s way of looking at physical problems, to correct
LaMBERT’s incomplete and unconvincing treatment would have afforded no
great problem. Perhaps LAPLACE gave BIOT the equation and left him to sink
or swim for a few years in trying to derive it. That would have been merely an
instance of the way great mathematicians since the very beginnings of
mathematical research have effortlessly maintained their superiority over
ordinary mortals.]

Biot’s footnote continues:

Later Mr. Fourier reproduced the partial differential equation in a large
work which has received a prize of the Institut de France.

Biot does not tell us the date at which LAPLACE disclosed to him the
nature of heat conduction. [If it was in 1804, then BioT and LAPLACE largely
anticipated FOURIER in the physical aspects of his theory. GRATTAN-GUIN-
NEss!O states that BIoT sent his paper to FOURIER in 1804 and that the earliest
surviving fragments of FOURIER’s work on heat conduction date from 1805.
There and in the draught of 1807 FOURIER’s basic partial differential equation
simply replaces §?/6x? in B1oT’s (3) by 92/0x2 + 02/8y® + 02/0z2 and leaves
intact