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Mon but n'a jamais ete de m'occuper de 
ces matieres comme physicien, mais seulement 
comme logicien .... 

F. REEeH [1856, pp. 65-66, footnote]. 

The historical development of thermodynamics 
has been ... particularly susceptible to 
logical insecurity, ... and there has been 
no adequate reexamination of the fundamentals 
since. 

BRIDGMAN [1953, p. 226 of the edition of 1961]. 

Buio d'inferno e di notte privata 
d'ogne pianeto, sotto pover cielo, 
quant' esser pub di nuvol tenebrata 

non fece al viso mio s1 grosso velo 
come quel fummo ch'ivi ci coperse, 
ne a sentir di cosl aspro pelo, 

che I'occhio stare aperto non sofferse .... 
DANTE, Purgatorio XVI, 1-7. 



1. The Producer's Apology to the Spectators 

We are not such optimists as were our teachers and parents. We do not 
have to equate "progress" with every Sf(t) if St > 0, t being the time. 
In discussing the interplay between mathematics and physics l I feel myself 
permitted, therefore, to select instead of fields of brilliant success like hydro­
dynamics, elasticity, and electromagnetism, one accursed by misunderstand­
ing, irrelevance, retreat, and failure. Thus I write of thermodynamics in the 
nineteenth century. No-one will be surprised, consequently, by my use of a 
delta to define progress, since thermodynamics is the kingdom of deltas. 
However, the single S just used will suffice. In return, I bring the time back 
into its rightful, central place-a place it occupied at the start but from which 
it was wrongly driven by late authors who confused dynamics with statics. 

Thermodynamics is the kingdom also of running current history as well 
as polemics, not to mention verbosity. In no other discipline hav~ the same 
equations been published over and over again so many times by different 
authors in different ill-defined notations and therefore claimed as his own by 
each; in no other has a single author seen fit to publish essentially the same 
ideas over and over again within a period of twenty years; and nowhere else 
is the ratio of talk and excuse to reason and result so high. In no other part 
of mathematical physics have so many claims and counterclaims of priority 
been issued by the leading creators of the subject, and in no other have these 
same men turned aside from research to write historical papers or long his­
torical notes within a decade or two of their first attacks on the theory itself. 
Small wonder then that histories and historical papers by secondary authors 
and historians abound, yet the field seems ever fresh to the newcomer. 

Only now could a real history of thermodynamics be written, since only 
in the last twenty years have the expressed aims of the creators of thermo-

1 This essay began as an hour's lecture for the symposium on "The Interplay between 
Mathematics and Physics in the Nineteenth Century" held at Aarhus in August, 1970. 
I am grateful to Professor OLAF PEDERSEN for having invited me to take part in that 
symposium and for having released me from my obligation to publish my lecture in 
its proceedings. I was unable to do so because my text was not then ready for the press. 
The comments upon. the lecture had shown me that only an exhaustive, fully documented 
treatise might make today's reader, whether scientist or historian, come to see that 
logic and clean mathematics had a place-indeed, a place mainly left vacant-in classical 
thermodynamics. 
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dynamics been achieved. In blunt terms, only now do we know a decent 
theory of the scope the creators sought, so only now can we see just where 
the old authors stopped short or even went wrong. While this remark of 
mine may shock some by its quaintness, it ought not. However much it is the 
vogue nowadays to pretend that always everybody was just as right as every­
body else, or that truth in science is no more than the vote of some time­
dependent minority, even the staunchest proponents of the "new" history 
when protesting adherence to ancient innocence adjoin footnotes, expressed 
in very modern English, in which they compare old science with that currently 
received (for otherwise their subject of study might not be recognized), and 
if they do refer to the correct answers, they put "correct" in quotation 
marks. In what follows, such quotation marks may be imagined set around 
such few" corrects" as may be found, despite my intent to banish them along 
with the useless os. Nevertheless, much of what I write now about the 
classical papers on thermodynamics I could not have written twenty years 
ago, because I did not then have the grasp of rational thermodynamics that 
today we may and do teach our beginning students. This knowledge does not 
change the historical record one whit; rather, it teaches us to read it better. 

This essay is a conceptual analysis: I aim not only to recount but also to 
marshal. I will outline the assumptions and logic, pointing out the abundant 
vagueness of the former and the scarcity of the latter, in the major early 
works of thermodynamics. The contents of the minor works will be mentioned 
where they belong: in interludes and-of course-footnotes, a writer's most 
dull and deadly proofs that he is not an author but a scholar. The text pre­
sents the tragicomedy entire, as produced. The spectators will not see the 
footnotes, which a scholiast has provided, as scholiasts will do, for the 
edification of other scholiasts. 

Among the reasons for which my first and short draught2 was criticized 
was the unhistorical character it showed in those passages where I applied 
my own reason to certain early equations. The blemish of thinking has been 
largely removed by my subsequent discovery (no surprise to me) that most 
of my logical observations had been made already by one or another early 
writer. Thus the very same observations are now become (I trust) respectable 
history instead of" present-mindedness". 

2 That draught, somewhat revised and extended, was delivered in three lectures at 
Udine in June, 1971, and has been published as The Tragicomedy of Classical Thermo­
dynamics (1971), International Centre of Mechanical Sciences, Udine, Courses and 
Lectures, No. 70, Wien and New York, Springer-Verlag [1973], 41 pp. I take this 
occasion to remark that the text of that pamphlet is no more than a preliminary sketch 
toward a part of this essay. I complied with the International Centre's requirement that 
I hand over the manuscript of my lectures to be duplicated and sent gratis to a small 
list of interested persons. Its publication two years later as a separate work for sale by 
a commercial publisher was without my consent or even knowledge beforehand. 
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Meanwhile, moreover, I have found it possible to organize CARNOT'S 

general ideas axiomatically and develop them through a mathematical 
analysis both rigorous and exhaustive, to the point that CARNOT'S particular 
theory and CLAUSIUS' appear as special, mutually exclusive cases within a 
general scheme, and the possibilities and limitations of each and every state­
ment in either theory are laid bare. This analysis, pro-historical in character, 
appears in the tractate by Mr. BHARATHA and me, The Concepts and Logic of 
Classical Thermodynamics as a Theory of Heat Engines, Rigorously con­
structed upon the Foundation laid by S. Carnot and F. Reech, New York, 
Springer-Verlag, 1977. Although in that tractate we scrupulously limit our 
mathematics to what was widely available in the 1820s, so our analysis calls 
upon nothing but what the pioneers themselves might have used, had they 
mastered the mathematics of their own day, in this essay I will not repeat it 
but will rest content to direct the reader to appropriate passages of that 
tractate, which I shall cite as "Concepts and Logic". 

I shall refer only to the published sources, and roughly in the order they 
appeared. Such callousness not only to the ever-widening alluvium of 
secondary literature3 on minutiae but also to the infinite subtleties of the 
withheld and the rejected, may seem equally quaint in the modern hives of 
scholarship. My reason, again, is a blunt one: While chaste and laconic if not 
secretive private intercourse was a major channel of creative science in the 
seventeenth century, the mass of notebooks and letters of the abundantly 
public Victorian era should remain the province of biographers and doc­
torands. 

This essay was written for students of science and for the creative and 
critical young thermodynamicists of our day. Should any Historian of 
Science chance upon it, he would do well to omit all sections labelled "cri­
tique" and all words confined between square brackets, for in that way he 
will save himself such pain as my "ahistorical" approach might otherwise 
inflict. A reader whose interest lies in applicable analysis of scientific method, 
on the other hand, may find my ahistorical moralizing of greater worth than 
the often tedious involutions which the strictly narrative parts trace and 
abstract. A seriol.!s student who makes the effort needed to follow the analysis, 
line by line and proof by proof, will need no previous acquaintance with 
thermodynamics. The historical method is not the easiest way to learn a 
science; neither is it the worst. 

3 Secondary literature, whether old or new, raises a difficult question. While making 
no attempt to search it, I confess to having consulted some of it. I wish I had not, for 
in most cases it led me into sociology and protophysics and historiography and away 
from history of science: the analysis of specific concepts in their historical origins and 
settings. In order to do justice to the secondary literature, I should have to read more of 
it; if I cited it, I should have to do so largely in contest rather than credence; therefore, 
in regard to the central theme of this essay I have decided not to cite at all what little 
secondary matter I have scanned. For neighboring domains and periods earlier or later 
I cite with gratitude a number of studies by others. 
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Finally, I confess to a heartfelt hope--very slender but tough-that even 
some thermodynamicists of the old tribe will study this book, master the 
contents, and so share in my discovery: Thermodynamics need never have 
been the Dismal Swamp of Obscurity that from the first it was and that today 
in common instruction it is; in consequence, it need not so remain. 

Ben puoi veder che la mala condotta 
e la cagion che 'I mondo ha fatto reo, 
e non natura che 'n voi sia corrotta .... 

"Drizza," disse, "ver' me I'agute luci 
de 10 'ntelletto, e fieti manifesto 
I'error de' ciechi che si fanno duci .... " 

Ma quello ingrato popolo maligno .. . 
ti si fara, per tuo ben far, nimico; 

ed e ragion: cM tra Ii lazzi sorbi 
si disconvien fruttare al dolce fico. 

Vecchia fama nel mondo Ii chiama orbi, 
gent'e avara, invidiosa e superba; 
dai lor costumi fa che tu ti forbi. 

DANTE, Purgatorio XVI, 103-105; 
XVIII, 16-18; Inferno XV, 61, 64-69. 



Notation 

I. Lettersfor quantities. The letters chosen by the early authors to stand 
for temperature, heat, etc. differed from one to the next. So as not to lay a 
pointless burden on the reader who would follow the analysis (for I desire 
no other), I adopt a single set of letters once and for all. These, although 
mainly ones used by some or another early author, are selected so as to 
conform pretty nearly with those current in rational thermomechanics today, 
which also refers explicitly to the time t. 

Even in quoted passages I shall for the most part silently reduce the 
original notation to that of this essay. 

II. Relations. The symbol == is to be read" is defined as". 

III. Functions and derivatives. Classical thermodynamics considers many 
different functional relations among triples of variables. The physical inter­
pretations of the values of these functions need to be kept in mind continually. 
For this reason the same letter serves well to denote both a function and its 
value, or two different functions having the same value at corresponding 
arguments, whenever such can be done without danger of confusion. For 
example, if 

p = w(V, fJ) = w*(p, fJ) , 

we shall usually write 

respectively, for the functions 

op op 
"V and -U op , 

ow ow* 
oV and 8p' 

the advantage being that the letter p recalls "pressure". Moreover, usually 
we shall use p to denote not only the pressure itself but also that function of 
time whose value at the time t is the pressure, but when confusion might 
otherwise result, we shall write pet) for that value. 

Although differentials occur frequently in the early literature, I prefer the 
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explicitness gained by employing derivatives. Use of the ordinary notations of 
calculus should suffice to set aside the strange superstition that thermo­
dynamics has a mathematics all of its own1-a prime example to show that 
physicists are not exempt from the madness of crowds2 • 

Symbols Frequently Used 

Page on which 
Symbol Name introduced 

c speed of sound 13 
C, C+, c- heat added, absorbed, emitted 15,25 
F function in CARNOT'S Special Axiom 102 
G function in CARNOT'S General Axiom 101 
J mechanical equivalent of a unit of heat in 128, 150, 157, 

various circumstances 159, 189 
L work done 24 
p pressure 9 
P power 192 
Q heating 15 
R gas constant 9 
V volume 9 
y ratio of specific heats 24 
E internal energy 71, 192 
H entropy 214,223 
HL,Hc LAPLACE'S and CARNOT'S heat functions 35,85 
8 ideal-gas temperature 9 
Kv,Kp specific heats at constant volume and 16,22 

constant pressure 
A v, Ap latent heats with respect to volume and 16,22 

pressure 

/L "CARNOT'S function" 111 
7T pressure function 12 
p mass-density 12 
'T KELVIN'S first abolute temperature 171,308 
T KELVIN'S second absolute temperature 309 

Citations in square brackets refer to the list of sources printed at the end of 
the book. 

1 Cf BRIDGMAN [1941, p.4 of the 1961 ed.J: "an unfamiliar brand of mathematics". 
For a specimen note the common "Second Law" TdS E?; IlQ, which would have us 
believe not only that one differential can be bigger than another but also that a multiple 
of a differential can be bigger than something that is not a differential. 
2 Cf CHARLES MACKAY, Memoirs of Extraordinary Popular Delusions and the Madness 
of Crowds, London, 1841, revised 1852, many times reprinted. See especially "The Witch 
Mania" and "Relics" in Volume II. 
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la fama nostra il tuo animo pieghi 
a dirne chi tu se', che i vivi piedi 

cosi sicuro per 10 'nferno freghi. 
DANTE, Inferno XVI, 31-33. 

2A. The Thermal Equation of State 

On the basis of data from experiments regarding the compressibility of air 
at constant temperature collected by BOYLE and interpreted by TOWNELEY and 
POWER, and of data from experiments at constant volume obtained and inter­
preted by AMONTONS and many later experimenters, especially GAy-LUSSAC 

and DALTON, by 1820 it was generally agreed that the pressure p, the volume 
V, and the temperature B of a body of aeriform fluid at rest obeyed the relation 

pV= RB, R = const . (2A.I) 

Here the zero of the temperature B is suitably selected1 . 

1 In taking advantage of the convenience of what is now called a temperature measured 
from "absolute zero", I do not violate historical truth. The early authors, selecting 80 

as some particular temperature, usually wrote 80 + 8 or 80(1 + 8/(0) for what I here 
call 8; EULER left 80 arbitrary. I do not mean, of course, that all early authors used the 
letter 8 to denote the temperature. That letter was used by POISSON, by FOURIER in his 
last work [1833], and by MAXWELL in his papers on the kinetic theory. I have followed this 
usage of theirs in my own research since 1948, and it is nowadays standard in the litera­
ture of rational thermodynamics. 

Anyone who looks at (1), no matter what the notation in which it be written, sees 
that it implies the existence of an "absolute cold", at which the product p V vanishes. 
Since AMONTONS (1703) was the first to be able to see a relation equivalent to (1), we 
should not be surprised that it was he who first suggested that there was an "absolute 
cold". Some early authors regarded the existence of such a temperature as thereby 
proved, while others regarded the conclusion as ridiculous and hence interpreted the 
relation (1) as valid only for sufficiently high temperatures. The story is recounted 
by W. E. KNOWLES MIDDLETON in §§6-7 of Chapter IV of his A History o/the Thermom­
eter and Its Use in Meteorology, Baltimore, The Johns Hopkins Press, 1966. Converting 
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Throughout the period of this history, partly on the basis of more accurate 
experiments and partly in consequence of the evolution of theoretical beliefs, 
people's conception ofthe "gas laws" will change, and (I) will be interpreted 
differently by different authors. In general, all this is of slight moment for the 
development of thermodynamics, but some knowledge of it helps us under­
stand what various early authors presume of their readers. A brief history of 
the" gas laws" in the eighteenth century has been written by Fox 2; the tables 
on his pp. 324-326 show that experiments long failed in effect to yield a con­
sistent value for the pressure coefficient IX = (Ps - p;)llOOpl (V = const.) or 
for the volume coefficient p = (Vs - V;)llOOVl (p = const.), where the 
subscripts sand i denote the steam point and the ice point, respectively. 

For the following further facts I am indebted to Mr. C.-S. MAN. The 
experiments of DALTON and even more those ofGAy-LuSSAc, some of them 3 

published in 1802 and others done probably before 1805 but first described in 
print by BlOT 4 in 1816, are epoch-making in the sense that they eliminated the 
source of inconsistency in the work of their predecessors, namely5 "the 
presence of water in the apparatus", and produced results consistent enough 
to let GAy-LUSSAC conclude 6 , "All gases, whatever their density or the 
quantity of water which they hold in solution, and all vapors expand to the 
same extent for the same degree of heat." The experiments of DULONG & 
PETIT, which in part dealt with thermometry, were published in 1816 and 
1817. One of their conclusions was taken as confirming GAy-LuSSAC'S rather 
than DALTON'S form of the law of dilatation, so GAy-LuSSAC'S value for the 

the data to the modem centigrade scale, he reports the following values of "absolute 
cold": 

AMONTONS (1699): -248° 
LAMBERT (1779): - 270° 
REGNAULT (1847): -272.75° 
RANKINE (1853): -274.6° 

The equatiqn of state used by CARNOT corresponds to absolute cold at - 267°; that 
used by CLAUSIUS, to - 273°. MIDDLETON reports also other values ranging from -1250° 
to -853°, some of them attached to great names in physics and chemistry. 

The "absolute cold" remained a concept for philosophers, chemists, etc., until the 
kinetic theory afforded a mechanical model which gave it conceptual concreteness in 
a major special case. The early history of "absolute cold" on this basis may be read in 
my "Early kinetic theories of gases", Archive for History of Exact Sciences 15, 1-66 
(1975). 

For the general theory, I repeat, all this makes no difference. 
2 R. Fox, The Caloric Theory of Gases from Lavoisier to Regnault, Oxford, Clarendon 
Press, 1971; see especially pp. 61-67. Cf also GAy-LuSSAC [1802, §II]. 
3 GAy-LUSSAC [1802]. 
4 BlOT [1816, 1]. 
s GAy-LuSSAC [1802, p. 141]. 
6 GAy-LUSSAC [1802, pp. 174-175]. 
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volume coefficient of expansion at constant pressure became standard for 
some time: P = 0.00375. Thus, if we write 80 + 8 or 80(1 + 8/80) instead of 
8 in (1), LAPLACE and POISSON took 1/80 as 0.00375, CARNOT took 80 as 267°C; 
the 8 here in °C was to be measured by an air thermometer. LAPLACE used his 
Caloric Theory to justify (1) and the use of the air thermometer for measuring 
8. 

In experiments published in 1842 both MAGNUS and REGNAULT found that 
a varied from one gas to another. REGNAULT found the same to be true of P 
as well; also for a given gas he observed that a varied with the density, P with 
the pressure. However, the results of his experiments led REGNAULT 7 to con­
jecture at the end of his paper that the law (1) and "all those which have been 
discovered for gases, such as the law of volumes, etc., are true at the limit, 
that is, that they come nearer to conforming with the results of observation in 
proportion as we use the gas in a more expanded condition. These laws hold 
good for a perfect gaseous state, which the gases that nature places before us 
more or less approach according to their chemical characteristics, according 
to the temperature at which we study them ... , finally and above all, according 
to their condition of less or greater compression." 

From that time until the end of the period treated in this history, different 
authors are to adopt different attitudes towards (1). For those like RANKINE 
and CLAUSIUS, who will have molecular models in mind, (1) will hold for a 
"perfect gas" and 8 in (I) will be some kind of "absolute temperature" 
defined in terms of the molecular motions. For others, (1) will hold only 
approximately for most gases in a certain range of pressure and temperature, 
and 8 in (I) may be defined differently for different gases. For example, in 
the law (1) written in the form pV = R80(1 + 8/80) HOLTZMANN will use 
MAGNUS'S value of a as 1/80 for air, and for various vapors values such as to 
make his theory fit experimental data with 8 counted from the boiling point. 
In his early papers KELVIN will take REGNAULT'S a forhis standard air 
thermometer as 1/80 and will regard 8 in 80(1 + 8/80) as to be measured by 
that thermometer; it is in this sense that we shall have to understand KELVIN'S 
interpretation of 8 in (5N.7), below. 

The several -creators of thermodynamics generally will name (1) or its 
special cases, variously interpreted as we have just explained, after BOYLE, 
MARIOTTE, DALTON, and GAy-LusSAC. 

In theoretical studies EULER had used (1) from 1757 onwards and hact 
explained it in detail in his treatise on fluid mechanics, the relevant part 
of which was published in 1777. This work became more widely known 
through an annotated German translation 8 published in 1806. Much earlier, 
EULER and DANIEL BERNOULLI had projected kinetic theories which delivered 
(1) only as an approximation for high densities; the latter reported experi­
mental deviations from (1); and other geometers of the eighteenth century 

7 REGNAULT [1842, p. 83]. 
8 BRANDES [1806]. 
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followed in regarding (1) as only roughly valid. EULER preferred to use a more 
general functional relation 

p = 'lIT(V, 0) > 0 , (2A.2) 

which he thought appropriate to any condition of motion of any substance 
that could be regarded fluid. In this essay I follow the usage of calling (2) 
the thermal equation of state of a fluid body, and 'lIT the pressure function of 
that body. The symbols op/oVand op/oO shall stand for the partial derivatives 
of 'lIT, assumed to exist and to be continuous functions of (V, 0); Sometimes I 
will follow the confusing custom of books on physics and write p for the 
function 'lIT. 

The special equation of state (1) is to bulk large in early writings on thermo­
dynamics. Often the pioneers' appeals to it were unnecessary. To distinguish 
general ideas and reasoning from essentially irrelevant uses of (1), in this 
essay I will mainly use the general equation of state (2). The particular body 
of fluid defined by (1) I shall call the body of ideal gas having the constitutive 
constant R. The pressure function 'lIT of the body of ideal gas is ROIV. 

If the mass of a homogeneous fluid body at rest is M, we can define the 
density p as usual, p == M / V, and express p as the value of a function 'lIT* of 
density and temperature: 

p = 'lIT*(p, 0) . (2A.3) 

Then, since M is constant, 

op(p, 0) __ V op(V, 0) 
p op - oV· (2A.4) 

While (2) makes no sense in a field theory like hydrodynamics, (3) does, and 
the researches on aeriform fluids by EULER, LAGRANGE, LAPLACE, and 
POISSON adopt (3) as an a priori relation between the fields of pressure, density, 
and temperature. The function 'lIT* is appropriate to a material, while 'lIT is 
appropriate to a body. For an ideal gas w* = rpO. All the early students knew 
AVOGADRO'S hypothesis, published in 1811, which makes r inversely pro­
portional to the combining mass of the substance: r = kIm, and ifm is chosen 
correctly for each substance, k is a universal constant. However, this fact will 
play little or no part in the development of thermodynamics, because 
AVOGADRO'S hypothesis was not generally accepted during the period before 
1860. 

Early studies of heat always presumed, tacitly if not expressly, the following 
constitutive inequalities: 

op 
oV< 0, (2A.5) 

The former asserts that the volume of a body must decrease if pressure is 
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applied isothermally, and that isothermal increase in volume requires a 
decrease of pressure. It is equivalent to 

op 
Op> 0, (2A.6) 

which implies that sound may propagate in a body of fluid, no matter what 
be its density and temperature. The latter, taken together with the former, 
implies that a fluid contracts as the temperature is decreased at constant 
pressure. Such is not always the case for some fluids, the most familiar being 
water, which at atmospheric pressure expands when cooled below 4°C. Al­
though this" anomalous behavior" of water was well known, it is not men­
tioned in any early work on thermodynamics9 • Accordingly, we shall presume 
that (5h as well as (5)1 holds until there is reason to consider the contrary 
possibility, namely in our terminal year, 1854, for only in that year, as we shall 
see in §9F, will the "anomalous" behavior of water find a place in thermo­
dynamics. 

The two inequalities (5) together imply that (2) may be inverted locally 
for Vor e, as was commonly assumed in the early studies. 

2B. The Theory of Sound in Aeriform Fluids 

NEWTON'S imaginative and semirational theory of sound had presumed the 
sonorous vibrations subservient to the TOWNELEY-POWER-"BoYLE" law p = 
N p and had concluded that the speed of sound c must satisfy the relation 
c2 = N = pip, a result abundantly contradicted by experiment for the next 
100 years. NEWTON'S successors had considered the more general possibility 
p = pep) and had obtained the famous formula 

2 dp c=-
dp 

(2B.l) 

Adopting a general equation of state (2A.3), they had assumed further that in 
sonorous motion the temperature was everywhere and always the same. 
They had found that 

(2B.2) 

9 Although most modern textbooks mention the "anomalous behavior" of water, the 
formulae they use to discuss it are derived from considerations based tacitly upon use of 
(5h, which excludes it. To derive classical thermodynamics from classical ideas but 
without prejudice of the sign of op/o8 is no easy matter. It provided a major barrier 
to the program of Concepts and Logic. 

Further remarks on the "anomalous behavior" of water will be found below in 
§4D and §9F. 
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Thus for an ideal gas they fell back inescapably upon NEWTON'S result. The 
painstaking researches of EULER 1 and others had set aside, one by one, 
various suggested causes of the discrepancy: loose mathematics, impurities in 
the fluid, the shape of the wave front, the amplitude of the disturbance. While 
the analysis does not always convince a modern reader, particularly in the last 
regard, the main conclusion is correct, as was to be shown with finality by 
HUGONlOT2 a hundred years later: The only way to square theory with experi­
ment is to admit that although the TOWNELEy-POWER-"BoYLE" law p = Np 
is confirmed at least roughly for a gas in equilibrium, it cannot be valid in 
sonorous oscillation. As LAGRANGE had remarked, we may simply assume that 
p = Cpl +1c and then determine the positive constant k so as to make (1) fit the 
measured speed, but, in accord with his strictly algebraic approach to mecha­
nics, he could give no conceptual reason for this cheap if prophetic trick. 

Various researches in the eighteenth century made it abundantly plain that 
(2A.I) and (2A.2) could not apply to solids. For them, neither is there in 
general any natural concept of a single, scalar pressure, nor does change of 
volume furnish an adequate description of change of shape. Since all early 
work on thermodynamics presumes (2A.I) or (2A.2), it applies mainly to 
fluid bodies. 

1 Most of EULER'S discoveries in the theory of vibrations are traditionally attributed to 
LAGRANGE, LAPLACE, or RAYLEIGH. I have written the history of the matter: .. The theory 
of aerial sound, 1687-1788," L. EULER I Opera Omnia (II) 13, Zurich, Fussli, 1956, 
pp. XIX-LXXII, and" The rational mechanics of flexible or elastic bodies, 1638-1788", 
L. EULERI Opera Omnia (II) 112 , Zurich, Fussli, 1960. 
2 For a modem treatment one may refer to p. 712, especially footnote 4, of FLUGGE'S 
Encyclopedia o[ Physics III/I, Berlin etc., Springer, 1960. In any motion such that, for 
whatever reason, the pressure at the typical fluid-point X is given by p = [(p, X), 
then Ii = (fJ[/op)p, the dot denoting the material time derivative, so according to 
HUGONIOT'S theorem 

This form, which follows trivially from (1) if [does not depend upon X, will be used 
below repeatedly and without further comment. 

The "material time derivative" is the derivative with respect to t when X is held 
constant. A celebrated formula of EULER, which was known by every serious student of 
mechanics and mathematical physics in the period with which this essay deals, expresses 
j in terms of field derivatives: 

. o[ 
[= 8t + v·grad[ ; 

v is the spatial velocity field, and the [on the right-hand side stands for that function of 
place x and time t whose value is [(X, t), that [being the one that appears on the left­
hand side. Any reader not familiar with hydrodynamics should consult some standard 
treatment of the subject, e.g. §5 of H. LAMB'S Hydrodynamics, Cambridge University 
Press, 2nd ed., 1895, or any later edition or reprint. 



2C. THE DOCTRINE OF LATENT AND SPECIFIC HEATS 15 

2C. The Doctrine of Latent and Specific Heats 

Toward the end of the eighteenth century calorimetry became a regular 
branch of experimental physics. Units of heat were introduced, and the 
amounts of heat needed to produce specified increases of temperature, 
volume, or pressure under various conditions were measured. Since in all 
mathematical calculations, however elementary, the increments were assumed 
to be related by the rules of differential calculus, and since all natural changes 
occur as time elapses, these increments make sense only if they are referred 
to time rates. So as to avoid the needless and trivially obviable obscurity of 
the early work, as such I will express them. 

A "process"l is the assignment of V and 0 as positive functions of time: 

V = Vet) > 0, 0= O(t) > 0 . (2C.1) 

By (2A.2), p becomes the value of a function oftime, namely, pet) = w(V(t), 
O(t»; thus, when the process is smooth, 

(2C.2) 

The special case in which O(t) = const., which today we call an isothermal 
process, in the early literature was again and again mentioned or assumed to 
hold. 

Let Q denote2 the heating, namely, the function of time whose value is the 
time-rate at which heat is put into a given body. Then the heat added C 
between the times t1 and t2 is given by 

it2 

C == Q(t)dt 
t1 

(2C.3) 

Q is assumed only to be a function integrable in the sense of EULER and 
CAUCHY. Thus it may fail to exist at a finite number of times in the interval 
[t1' t2]. 

Early students used the term" heat" vaguely. What they meant is not always 
clear. Sometimes they referred to "the total heat" of a body or in a body, 
which in some cases may be regarded as something like internal energy or 
total energy or even equivalent to one of those. The concepts of "heating" 
and "heat added" as related by (3) suffice to make sense of the way the term 
"heat" was used in early works on thermodynamics proper. Accordingly we 

1 CARNOT [1824, pp. 10, 19, et passim], une operation. 
2 The notation Q for the heating is used in papers on rational thermodynamics today; 
in older works it would have been written as dQ/dt or 8Q/dt or ilQ/dt, had the authors 
chosen to indicate that an increment of heat is always associated with an increment of 
time, as of course it must be in nature. 
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shall stay with (3) throughout this work except in one or two passages where 
it will be necessary to depart from it briefly. 

All the pioneers of thermodynamics assumed that in every process the 
heating Q would equal a linear function of the rates of increase of volume 
and temperature, with coefficients which were functions of Vand 8 only and 
hence independent of the process. That is, at all times when V and 6 exist3 , 

Q = Ay(V, 8)V + Ky(V, 8)6 , (2CA) 

Ay being called the latent heat with respect to volume4 and Ky the specific 
heat5 at constant volume. The coefficients Ay and Ky were assumed to be 
positive functions6 : 

Ay > 0, Ky> 0, (2C.S) 

3 This basic assumption is implicit in all of the works we shall review in this essay 
except FOURma's and DUHAMEL'S. Both CARNOT and CLAPEYRON (see Chapter 5 and 
§6A below) assumed that there was a heat function Ho(V, fI), so for them 

A BHo 
v=W' 

BHo 
Kv = 88 . 

CLAUSIUS [1850, §1], who rejected H o, wrote dQ/dVand dQ/d8 for what we here denote 
by Av and Kv; he called I Qdt "the quantity of heat which must be communicated to a 
gas ... " and explained that it was not a function of volume and temperature (v and t 
in his notation). THOMSON [1849, footnote to §26] introduced the symbols M and N 
for Av and Kv, respectively, but he then regarded them as being BHo/BVand BHo/B8. 
When, later [1851, I, §20], he discarded this unnecessary restriction, he continued to use 
M and N, thus abstaining from CLAUSIUS' double talk: with notations. Coming at last 
to an analysis sufficient to compare the proposals of different theorists in terms of a 
common framework, THOMSON [1852, I, §63] described reasoning based on (2A.2) and 
(4) alone as being "without any assumption admitting of doubt" and "without 
hypothesis" . 

An extensive and valuable secondary source is the book of R. Fox, cited above in 
Footnote 2 to §2A. Had I seen this book early enough, it would have saved me a good deal 
of tiresome study of vague early writings about heat before the first steps toward thermo­
dynamics were taken. Fox discusses mainly experiment and physical speculation; he 
describes also some rather rudimentary efforts at mathematical theory of the physical 
kind; and I am not sure that either he or I have seen all the early works on mathematical 
theory. Fox nowhere writes the basic equation (4) except subject to the unnecessary and 
largely irrelevant assumption that there is a heat function, though of course he includes 
many statements that express special cases of it. The following quotation from his p. 31 
suggests that he may ascribe to LAVOISmR & LAPLACE [1784, p. 388] the idea that (4) 
succinctly embodies: 

But in one important respect they went beyond Black, for they suggested that 
the absorption of heat was necessary in order to effect not only melting and 
vaporization but also expansion. Thus, when a body was heated, some heat 
would go to raise its temperature and some to increase its volume. The idea, 
skilfully developed by Laplace, became a most important one during the first 
quarter of the nineteenth century, ... but it provoked little immediate reaction .... 

4 In lectures deriving from about 1757 BLACK [1803, Vol. I, p. 157] wrote, "the heat 
absorbed does not warm surrounding bodies .... [C]onsidered as the cause of warmth, 
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and to have continuous partial derivatives. These inequalities assert that heat 
must be added to the fluid body in order to effect either isothermal expansion 
or isochoric rise of temperature, and conversely, that heat is given off by the 
fluid body in isothermal contraction or isochoric fall of temperature. We 

we do not perceive its presence: it is concealed, or latent, and I gave it the name of 
LATENT HEAT." The Oxford English Dictionary quotes three earlier instances of 
the term in print; the earliest, of 1765, attributes the "doctrine oflatent heats" to BLACK. 

Most of BLACK'S work concerns changes of phase, and the term "latent heat" in 
common modem use seems to be restricted to "latent heat of fusion" and "latent 
heat of vaporisation". Neither of these, obviously, is what we denote by Av in this 
book. The sense that concerns us here was specified by IVORY [1827, I] in the context 
of the Caloric Theory: "the absolute heat which causes a given rise of temperature, or 
a given dilatation, is resolvable into two distinct parts; of which one is capable of 
producing the given rise of temperature, when the volume of the air remains constant; 
and the other enters into the air, and somehow unites with it while it is expanding .... 
The first may be called the heat of temperature; and the second might very properly be 
named the heat of expansion; but I shall use the well known term, latent heat, understand­
ing by it the heat that accumulates in a mass of air when the volume increases, and is 
again extricated from it when the volume decreases." 

So far as I can learn, IVORY and MEIKLE make an exception among early British 
authors, the rest of whom did not use the concept of latent heat except in reference to 
changes of phase. Cf the booklet of KELLAND [1837,3, §§17-19]. A fortiori, there is no 
early British contribution to thermodynamics. The first comes in 1848 with KELVIN, who 
had trained himself in French mathematical physics and hence accepted the Doctrine of 
Latent and Specific Heats as a matter of course. See §7H, below. 

RANKINE [1853,3, §47), writing after Av had been used fluently by KELVIN and CLAUSIUS, 
explained" latent heat" much more clearly: " ... when divested of ideas connected with the 
hypothesis of a subtle fluid of caloric, and regarded simply as the expression of a fact, this 
term denotes heat which has disappeared during the appearance of expansive power in a 
mass of matter, and which may be made to reappear by the expenditure of an equal 
amount of compre~sive power." RANKINE'S reference to "expansive power" reflects the 
assumption, common to all early authors on thermodynamics and usually but by no 
means always true of real bodies, that Av > 0, as is explained in Footnote 6. 

In Fox's Caloric Theory, cited in Footnote 2 to §2A, I have found only three 
uses of the term "latent heat" in the sense symbolized by Av: (p. 131) "latent heat 
that was necessary; simply to bring about expansion"; (p. 174) in a quotation from 
LAPLACE (see also Footnote 11 to §3C, below); and (p. 174) "the presence of 
latent as well as sensible heat in gases did have the additional support of Delaroche 
and Berard's paper of 1812, as Laplace pointed out." Fox's extensive discussion of 
"expansion by heat" (pp. 60-67,69-79) indicates effects governed by Av but does not 
name it. 

THOMSON [1878, §2) in explaining "latent heat" to the intelligent layman wrote 
as follows: 

It has become of late years somewhat the fashion to decry the designation of 
latent heat, because it had been very often stated in language involving the 
assumption of the materiality of heat. Now that we know heat to be a mode of 
motion, and not a material substance, the old "impressive, clear, and wrong" 
statements regarding latent heat, evolution and absorption of heat by com­
pression, specific heats of bodies and quantities of heat possessed by them, are 
summarily discarded. But they have not yet been generally enough followed by 
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shall find below in §9F that in 1854, the terminal year of this history, KELVIN 

will see that in some cases Av < 0, and we shall discuss the matter further in 
§llH,8. 

equally clear and concise statements of what we now know to be the truth. A 
combination of impressions surviving from the old erroneous notions regarding 
the nature of heat with imperfectly developed apprehension of the new theory 
has somewhat liberally perplexed the modem student of thermodynamics with 
questions unanswerable by theory or experiment, and propositions which escape 
the merit of being false by having no assignable meaning. There is no occasion 
to give up either "sensible heat" or "latent heat"; and there is a positive need 
to retain the term latent heat, because if it were given up a term would be needed 
to replace it, and it seems impossible to invent a better. Heat given to a substance 
and warming it is said to be sensible in the substance. Heat given to a substance 
and not warming it is said to become latent. These designations express with 
perfect clearness the relation of certain material phenomena to our sensory 
perception of them. 

A footnote to "materiality of heat" reads 

..• We shall not now be in danger of any error if we use latent heat as an expres­
sion meaning neither more nor less than this:-

"DEFINITION.-Latent heat is the quantity of heat which must be communicated 
to a body in a given state in order to convert it into another state without changing 
its temperature."-Maxwell's Theory of Heat [MAXWELL [1871, p.73] [1891, 
p.7311. 

Among the modem authors who understand the matter is J. R. PARTINGTON; he 
writes as follows in §2 of Chapter II of his An Advanced Treatise on Physical Chemistry, 
Volume 1, London etc., Longmans Green, 1949: "Heat absorbed by a body at constant 
temperature . .. is called latent heat." In his §3 he presents (4) and (8) and writes that 
those equations" are definite and their legitimacy follows from the physical justification 
of the concept of ' quantity of heat', which is based on experimental calorimetry .... " He 
mentions tliat "they rarely appear in the later books on Thermodynamics .... " 
5 LAVOISIER & LAPLACE [1784, p.289 of (Euvres de Lavoisier 2] introduced the terms 
"capacite de chaleur" and "chaleur specifique" as interchangeable. They refer both to 
bodies of unit mass. They present a table of ratios of specific heats of various substances 
to the specjfic heat of water. They allude also to latent heats (p. 301 of (Euvres de 
Lavoisier 2) when they state that it would be interesting to augment the table to include 
"the specific weights of bodies, the variations that heat induces in these weights, or, 
what amounts to the same thing, both the dilatabilities and the specific heats of the 
bodies .... " 
6 C/., for example, the following remarks of CARNOT [1824, pp. 29-32], after each of 
which I bracket an interpretation in terms of the notations of this essay, small increments 
being replaeed by time rates. 

"When a gaseous fluid is rapidly [adiabatically as defined in §3C below] compressed, 
its temperature rises; on the contrary, its temperature falls when it is rapidly expanded. 
This is one of the facts best confirmed by experiment. We shall take it as the basis of 
our proof." [If Q = 0, then AvV + Kvli == 0; Kv =F 0, and Av/Kv > 0.] 

"If, when a gas has been brought to a higher temperature as an effect of compression, 
we wish to bring it back to its original temperature without causing its volume to change 
further, we must withdraw some caloric from it." [If V = 0, then Q = Kvli, and 
Kv > 0.] "This caloric could be drawn off also in proportion as pressure such as to 



2C. THE DOCTRINE OF LATENT AND SPECIFIC HEATS 19 

The Doctrine of Latent and Specific Heats as laid down by its promulgers 
is expressed entirely by (4) and (S). Those who used it appealed freely to 
EULER'S axiom as well: 

p = w(V, 8) > 0 , 

with the adscititious inequalities 

op 
oV< 0, 

op 
08> 0 . 

(2A.2)r 

(2A,S)r 

We shall regard (2A.2), (2A.S), (4), and (S) as defining the theory of calorimetry, 
and the consequences of that theory alone we shall call calorimetric. 

Any theory of the passions of bodies rests upon certain generic principles 
or laws. These laws express the features common to all bodies the theory 
intends to describe. The diversity of these bodies is represented by the con­
stants or functions that are left unspecified by the generic principles. Relations 
that restrict or specify these constants or functions are called constitutive. 
The generic principles of the theory of calorimetry are (2A.2) and (4), along 
with their adscititious inequalities (2A.S) and (S), They assert the existence of 
the constitutive functions of the body of fluid: 'lIT, Av, and Kv, and they specify 
the roles of those functions in determining p and Q. The three functions are 
assumed to be defined over a common set of pairs (V, 8); this set is the 
constitutive domain of the particular body. The theory allows no more diver­
sity in the behavior of different bodies than can be represented by choice of 
that domain and of the three constitutive functions over it. Early authors 
never specified the constitutive domain, and all their analysis was local. They 
tacitly presumed in the constitutive functions whatever smoothness was neces­
sary in the simple formal manipulations to which they subjected those func­
tions. In reporting their work in this history we shall always presume that the 
constitutive domain is non-empty and open, and that the constitutive func­
tions 'lIT, Av, and Kv are continuously differentiable. Like the pioneers, we 

maintain the temperature of the gas constant were applied." [If fJ = 0, then Q = A"p, 
and A" < 0, the quantity A" being defined by (8), below.] 

"Likewise, if the gas is rarefied, we can prevent its temperature from falling by 
giving it a certain amount of caloric." [If fJ = 0, then Q = AvV, and Av > 0.] "The 
caloric used in the circumstances when its temperature does not change we shall call 
caloric due to change of volume. This term does not mean that the caloric belongs to 
the volume; it belongs to the volume no more than it does to the pressure, and it could 
just as well be called the caloric due to change of pressure." [If {J = 0, then Q = Av V = 
A"p.] "We do not Rnow what laws it follows in regard to changes of volume. Possibly 
its quantity varies with the nature of the gas, with its density, or with its temperature. 
Experiment has taught as nothing on this subject ... " [Both Av and Ap are functions of 
V and 8; what functions they are has not been determined; they may be constitutive 
functions.] The assumption that Kv > 0 DUHEM was to call "Helmholtz's postulate"; 
see pp. 164-165 of P. DUHEM, §2 of Chapter X of Traite Etementaire de Mecanique 
Chimique,t. 1, Paris, Hermann, 1897. 

In the later thermodynamics it is not necessary that Av > 0 but only that 
A v8p/88 ~ O. See Footnote 9 to §2A and §9F. 
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shall pass over in silence such difficulties as may arise when results proved 
only locally are applied in the large. 

The early theorists recognized that the effects of heat were proportional to 
the mass M of the body in which they occurred. We can express this idea by 
writing v == lip = VIM, AD == AyIM, Ko == KylM and regarding AD and Ko as 
functions of v and 8; the functions 'IIT*, K o, and AD are constitutive functions 
of a material, while 'lIT, A y, and Ky are constitutive functions of a body. When 
only one body at a time is being considered, it is all the same, especially since 
the early theorists did not always select bodies of unit mass 7 • 

In (4) the symbols V and 8 denote the derivatives of functions of time. 
These functions are known as soon as a particular process (1) is specified. 
The same specification makes Ay and Ky the values of certain functions of 
time, namely, Ay(V(t), 8(t)), Ky (V(t), 8(t)). Thus by (4) the specification of 
a process also specifies Q uniquely as a function of time, for a given fluid. 

We may represent the pairs (V, 8) as points in a quadrantB (Figure 1). 
If we suppose that V(tl ) = Vb V(t2) = V2, 8(tl ) = 81 , 8(t2) = 82 , then a 

process having these two points as endpoints is represented by a curve g> 
connecting them, and by putting (4) into (3) we may calculate C as a line 
integral along the curve g>: 

C = CCg» = J~ [Ay(V, 8)dV + Ky(V, 8)d8] • (2C.6) 

7 CARNOT [1824, p. 74] refers to "a given quantity of air"; his constitutive constant is 
what we call R, not r; what he calls "specific heat" in his Equation (5) on p. 77 refers 
to a given volume V, not a given specific volume v. 

CLAUSIUS [1850, just before his Equation (I.)] also used R but referred to "a certain 
quantity, say a unit of weight". He stated that R was inversely proportional to the 
specific gravity. Later, after his Equation (lOa), he again referred to "a unit of weight 
of the gas considered", so his specific heats are taken with respect to weight. In his 
Equation (11) he converts them to unit volume. 
S Diagrams in the p-V quadrant were invented by WATT and regarded by him as a 
great and profitable secret. Perhaps their debut in the literature of thermodynamics is 
in the paper of CLAPEYRON [1834]. Although some commentators upon the history of 
thermodynamics make much of them, they do no more than facilitate the discourse. 
As we shall see below, some of the pioneers used diagrams so as to infer this or that, 
but only from their own unhandiness or insecurity in the common integral calculus of 
their times, not from any need. 

It is true that line integrals were not commonly familiar in the early years of the 
nineteenth century. The transformation of an integral around a simple closed path into 
an integraLover the included region of the plane is traditionally attributed to AMPERE, 
GAUSS, and GREEN. Nevertheless, line integrals are not to be found in KELVIN'S first 
paper on thermodynamics (THOMSON [1849]), although he was soon to become expert 
in use of them. It is tempting to attach the theory of line integrals to CAUCHY'S theory 
of integration of functions of a complex variable; although the two theories are in­
timately connected, CAUCHY'S path of discovery was obscure as well as tortuous. As 
may be seen from H. FREUDENTHAL'S fine analysis of CAUCHY'S work in Volume 3 
of the Dictionary of Scientific Biography, Scribners, New York, 1971, CAUCHY did not 
publish a clear account of his theory of integration until 1846. 
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8 

~------~----------------~--------v 

Figure 1 

As the notation indicates, C(f1J) depends in general upon both the fluid body 
and the choice of the path f1J which connects (VI' 81) to (V2' 82), but it does 
not depend upon the rate at which the path is traversed. That is, for given 
functions Ay and Ky, all processes that correspond to the same path f1J from 
(Vb 81) to (V2' 82) give rise to the same value of C(f1J). In this sense the time 
becomes irrelevant: Any function of t with positive derivative would do as 
well to parametrize f1J and hence make it possible to evaluate C(f1J). Of 
course the differentials imply the use of some parameter to describe the curve, 
but that parameter need not be specified, and the notation conceals it. In this 
legitimate and apparently innocuous way the differentials-those accursed 
differentials famous as vehicles of thermodynamic obscurity-enter the 
subject. 

If we let -f1J denote the path f1J traversed in the opposite sense, or, as we 
shall say, the ret{erse path, then from (6) we see that 9 

C( -f1J) = - C(f1J) : (2e.7) 

If a body receives a certain quantity of heat as it traverses a certain path, it will 
lose an equal quantity upon the reverse path. 

9 LAVOISIER & LAPLACE [1784, pp. 287-288 of (Euvres de Lavoisier 2]: "All variations 
of heat, be they real or be they apparent, that a system of bodies experiences in changing 
its state are reproduced in an inverse order when the system returns to its original 
state." LAVOISIER & LAPLACE seem to introduce this statement as a "principle" com­
patible both with the hypothesis that heat is a substance and also with the hypothesis 
that heat is a mere manifestation of the kinetic energy of the tiny parts of the body in 
which it appears. Although the paper reports the results of experiments, the "principle" 
does not seem to be derived from them. It is far more general and far more vague than 
the specific and demonstrable theorem (7) in the text above. Nevertheless LAVOISIER & 
LAPLACE state that their general hypothesis is "confirmed by experience" and even 
given "a sensible proof" by an experiment of their own on the detonation of nitre. 

Cf the statement of CARNOT [1824, p. 35]. REECH [1853, p. 359] stated (7) explicitly 
in words. The fact it expresses he did not imply to be anything but well known. 
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Perhaps because of this fact, time and its effects are rarely mentioned in the 
early thermodynamics or in standard textbooks today. So long as Q be given 
by (4), the time plays no essential part. Although most of the work we shall 
analyse in this essay takes (4) for granted, nevertheless I prefer to keep the 
time ever in mind. First of all, it does occur in early studies of the speed of 
sound and the conduction of heat; it cannot be eliminated from them, and, 
accordingly, we cannot form a unified picture of early work on all aspects of 
heat and temperature except in terms of changes in time. In the second place, 
when apparently timeless variables like V and (J change, they do so in the 
course of time; time is the basic descriptor of natural changes. Finally, it is 
only the special relation (4) that makes it possible to dispense with tin (3). 
Rational thermodynamics today does not rely upon anything so special as 
(4), and the roots of the ideas upon which rational thermodynamics is con­
structed go back to the pioneer studies, to analyse which is the purpose of this 
essay. I think that much of the confusion in some early work on thermo­
dynamics and some textbooks today, and in particular the use of various 
peculiar ds and 8s, reflects overconfidence in (6), forgetting that it is only a 
special case of the primary definition (3). Although heating is a primitive 
concept of thermodynamics, heat need not be. 

By use of the equation of state (2A.2) we may express (4) alternatively in 
terms of p and 8: 

(2C.8) 

the new coefficients Ap and Kp are expressed as follows in terms of Av and 
Ky: 

f)p/f)p Kp - Kv = -Ay f)(J f)V· (2C.9) 

The function Ap is the latent heat with respect to pressure10, and Kp is the 
specific heat at constant pressurell . These relations12 show that for a fluid 
with a given thermal equation of state (2A.2), the specific heats Kp and Kv 

10 It is CARNOT'S "caloric due to change of pressure", cf Footnote 6, above. RANKINE 
[1859, §212] was to call it "the latent heat of expansion". 
11 The early literature often refers to "the" specific heat, leaving the reader to infer or 
guess which be meant. On pp. 37-38 of his Caloric Theory, cited above in Footnote 2 
to §2A, Fox ascribes to CRAWFORD (1788) the distinction between Kp and Kv; CRAWFORD 
interpreted his experiments on air as showing that Kp > Kv but Kp/Kv = 113/110, so 
Kp and Kv were long thereafter regarded as virtually interchangeable although distinct. 
12 The earliest statement of this kind I have found is that of CARNOT [1824, pp. 58-60, 
cf also pp, 43-46]. CARNOT'S argument, purely verbal, refers to ideal gases and is set 
within the Caloric Theory of Heat. The result to which it leads if rendered formal 
is that which is stated below as (5Q.6). If the Caloric Theory is abandoned, the same 
argument leads to (5Q.7), which rests upon CARNOT'S General Axiom. The Doctrine 
of Latent and Specific Heats by itself, without use of any of CARNOT'S further assump­
tions, if applied to an ideal gas leads directly to (14), which CARNOT did not state. I 
take this evidence as sufficient to show that CARNOT did not see the full power of the 
theory of calorimetry, at least in this context, and did not arrive at (9) in generality. The 
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may be any functions of V and e we please, but the two latent heats Ay and Ap 
are determined uniquely by the difference Kp - Ky. Thus we may choose to 
specify bodies by specifying their two specific heats, which seem to be some­
what more accessible to direct experiment than is either Ay or Ap. 

By appeal to (2A.5) and (5h we see from (9) that13 

Ap < 0, Kp > Ky . (2C.1O) 

If (2A.2)1 is invertible for V, as is true in many cases, we can express Ap and 
Kp as functions of p and e, but for this history we do not need to. 

If we use (2) to eliminate (j from (8), we find that 

Q = ip [KyP - Kp :~ v] . (2C.11) 

oe 
In terms of the equation of state (2A.3) appropriate to fields, we can write 
(11) in the form 

Q = k (KYP - Kp ~~ p) . (2C.12) 

oe 
For future reference we note also the alternative form 

op/op . . 
Q = -(Kp - Ky) op/oe p + Ky8 , 

(2C.13) 
Kp - Ky . . 

op/oe p + Ky 8 

relation (9h is due to W. WEBER [1830, §10] in the context of solids; he wrote it in 
the form,8' = ,8 - (3k')(a/r), in which ,8 = Kp/M,,8' = Kv/M, air = VAv/M and 3k' is 
the fractional increase of volume with respect to temperature at constant pressure, that is, 
-(op/o()/(op/oV) .. 

In the literature of thermodynamics the earliest explicit statement and satisfactory 
derivation of (9)2 I have found is that of THOMSON [1851, Eq. (15)]; he does not state 
(9h. PARTINGTON, in §6 of Chapter II of the work cited in Footnote 4, is one of the 
few modem authors who presents (9) before he states the laws of thermodynamics and 
hence implicitly recognizes that (9), and (9)2 follow from the theory of calorimetry 
alone and do not presume any relation between heat and work. However, he does not 
emphasize this centrally important fact. Contrary to his custom, for these relations he 
does not cite any source. 
13 The later thermodynamics does not adopt the constitutive inequalities (2A.5)2 and 
(5h, although it usually does adopt (2A.5h and (5)2, Using the assumption (2A.5), 
alone, we need only glance at (9) to see that 

op 
Av o() > 0, 

op 
<0> Av o() = 0 . 

POISSON [1833, §634] regarded it as "evident a priori" that Kp > K v, presumably in 
reference to gases. 

The possibility that Av ~ 0 was first noticed in 1854, as we shall see below in §9F. 
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in the denominator we consider p as being a function of p and 0, obtained 
by inverting (2A.3) for p, which of course is not always possible. To derive 
(13), we need only substitute (9) into (4). 

In the special case of an ideal gas, defined by (2A.I), the relations (9) 
reduce to 

K _ Kv = RAv = VAv 
P p 0 (2C.14) 

while (11), (12), and (13) reduce to 

Q = 0 (Kv E + K !) = 0 (Kv E - u e) = O[-(K - Kv) e + Kv~] p P v p'<'P P P P 0 

(2C.15) 

Of frequent reference will be the ratio of specific heats, which we denote 
byy: 

Because of (5)2 we conclude from (10) that 

y> 1 , 

Cf the remarks in Footnote 13, above. 
For an ideal gas (14) shows that 

VAv = (y - l)OKv . 

(2C.16) 

(2C.l?) 

(2C.18) 

In studies of fluid mechanics in the eighteenth century the concept of the 
work L done in [tlo t2 ] by a fluid body subject to the pressure p had been 
introduced and studied: 

i'2 
L == pet) V(t)dt . 

'1 
(2C.19) 

If (2A.2) holds, then L is determined uniquely by a process (V, 8): 

J'2 
L = L(gJ) = w(V(t), O(t»V(t)dt , 

tl 

= fa. w(V, O)dV . 

(2C.20) 

In the second line 0 stands for an assigned function of Von the path (I; con­
necting (V(t1), 0(t1» to (V(t2), 0(t2»' Thus L, like C, is determined by the 
path (I; traversed in the V-O quadrant and is independent of the rate at which 
that path is traversed. From (20) we see that 

L( -(I;) = -L«(I;) . (2C.21) 
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Adjoining (21) to (7), we conclude that both the heat added and the work 
done on the reverse -E!!' of a path E!!' are the negatives of their counterparts on (!IJ. 

These two reversal theorems arise in consequence of the generic principles (4) 
and (2A.2), respectively; they hold for all choices of the constitutive functions 
17F, A y , and Ky. In this sense, and in this sense only, they express properties 
common to many fluids-as thermodynamicists were soon to claim, "to all 
bodies". 

The reversals of sign just noticed have been associated traditionally with 
"reversible processes". This term has sown confusion from the day it was 
born. So long as both (2A.2) and (4) hold, all processes are "reversible" in 
this sense. To get free of this restriction and consider processes that need not 
be reversible, it would be necessary to replace at least one of the generic 
assumptions (4) and (2A.2)1 by something else, preferably something more 
general. 

Except, perhaps, for FOURIER and DUHAMEL, all the writers whose work we 
shall follow in the first four acts of this tragicomical history will assume that 
both (4) and (2A.2) hold. Some early obscure claims and verbal inferences 
have been thought by historians to refer to irreversible processes and have 
been so explained by them, but they are wrong, misled by the most dangerous 
because most unconscious form of "present-mindedness", that which im­
poses today's divisions of science into compartments upon the science of 
times when no such compartments existed. In thermodynamics down to 1852, 
again with the exception of works on the conduction of heat, all processes 
are "reversible". Thus there is no need to use the term "reversible" before 
it appears literally, as indeed it does in Act V of our drama. 

For later use we remark here that (4) enables us to define the heat absorbed 
and the heat emitted14 by a given fluid body in the interval of time [tl' t2 ]. 

Denoting the former by C+ and the latter by C-, we have 

Jt2 

C+ == 1- (Q + I Ql)dt ~ 0 , 
Ii 

t2 
C- == 1-), (101 - Q)dt ~ 0 . 

t1 

(2C.22) 

Thus 

C = C+ - C- , (2C.23) 

and because of (6) both c+ and C-, for a given fluid body, are functions of (!IJ 

alone and satisfy the following reversal theorems: 

C+( -(!IJ) = C-(E!!') , 

C-( -E!!') = C+({!IJ) 
(2C.24) 

14 CARNOT [1824, p. 37, footnote; p. 55; et passim]: "les quantites de chaleur absorbees 
ou degagees"; p. 42, "la quantite de calorique absorbee ou abandonnee". 
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From (5)1 we see that in an isothermal process15 

{ c+ 
c= -c- if V increases} . II 

if V decreases monotomca y . (2C.25) 

The modem student must be reminded that all this follows from nothing 
but calorimetry, the thermal equation of state, and the constitutive inequali­
ties (2A.5) and (5). Nothing is presumed regarding the nature of heat, its 
conservation or its dissipation, or its power to do work-nothing. Moreover, 
the mathematics used to obtain the various consequences such as (9), (11), 
(12), (13), and (15) is merely standard for the eighteenth century. 

Such was the inheritance of everyone who approached the basic problems 
of heat and temperature in 1800. We, the spectators, who take our seats 
before the curtain with old plays already played still fresh in memory, know 
all this, but we must not expect that each character who steps onto the stage 
shall know it. From some their inheritance, or at least a part of it, is to have 
been obscured or withheld. As the examples of (Edipus, The Gondoliers, and 
Tom Jones show, a man's ignorance of his ancestry can lead him into the 
tragic, the ludicrous, and the tragicomic. 

All of us know the fable. That we are here nevertheless, proves the drama 
to be a good one, for only a cheap show relies on the unexpected at first 
hearing. A good play grows better the oftener seen, and sometimes a new 
production, profiting from old failings, can clear the text and heighten the 
action. While we know the denouement, we expect drama in the contrasts 
and ironies of the working out, the balance of known against not known, 
fate's final conquest of the avoidable. 

Had all the speakers we are soon to hear mastered the whole little budget 
of simple equations we have just written down, thermodynamics might have 
had a shorter and clearer history; it might have matured, like mechanics and 
electromagnetism, into an adult science long before 1963. While there is in 
those equations nothing any geometer or physicist of the early 1800s would 
have denied, there was no one place then where all could be found clearly 
stated16• Writings on calorimetry abound in tiny increments and differentials 

15 This result does not always hold in the later thermodynamics, because in it Av need 
not be positive. 
16 The Annales de Chimie et de Physique in the 1820s published a number of notes which 
in proposing this or that relation among total heats, specific heats, and temperatures 
bear witness to at best a very limited understanding of the logical connections of these 
quantities. The same may be said of most of the researches Fox discusses in his Caloric 
Theory, cited above in Footnote 2 to §2A, which faithfully reproduces the general level 
of theoretical physics in the periods it describes. The booklet of KELLAND [1837], 
which is perhaps the first monograph on heat in English, is particularly bad. It docs 
not present anything at all about what is called here "latent heat" and is denoted by 
Av. A fortiori, it contains not a word on the motive power of heat, although the memoir 
of CLAPEYRON had been published three years earlier. KELLAND rejects also all the 
work of LAPLACE and POISSON but offers no substitute for it. Of the French geometers 
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of functions of unspecified variables, leading to the fogginess such usage 
always fosters. Thermodynamics inherited from calorimetry the handicap of 
lacking the clarity which explicit mathematical statement gives to physical 
assumptions, be they right or be they wrong. 

only FOURIER draws anything but criticism from this insular author, who gives his 
readers pages of formal series expansions and physical beliefs. 

The earliest systematic and fairly complete exposition of the theory of calorimetry 
that I have seen is that of REECH [1868, §22-44]. It obtains most of the results given 
above in the text and a good many more, and it obtains them in essentially the same 
way, though not quite so simply. It appeared far too late to be of use to any of the 
creators of thermodynamics; it was published obscurely and has never been cited by 
anyone before now, so far as I know. In irony typical of thermodynamics, I did not 
see it until the summer of 1978, years after I had written the treatment above. 
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Dinanzi parea gente; ..• 
. . . a' due mie' sensi 
faceva dir l'un "No," l'altro "Si, canta." 

DANTE, Purgatorio X, 58-60. 

3A. BlOT, and POISSON'S First Attempt 

Urged by Citizen LAPLACE, Citizen BIOTl undertook "to examine the 
influence that the variations of temperature which accompany the dilatations 
and condensations of air might have on the speed of sound .... It is a fact 
known to the physicists that atmospheric air, when it is condensed, loses a 
part of its latent heat, which goes into the state of sensible heat, and on the 
contrary when it is rarefied, it takes back a portion of sensible heat, which it 
converts into latent heat." The sonorous condensations must therefore be 
accompanied by changes of temperature. Since both of these are very small, 
"we shall regard them as proportional. ... " Thus BlOT assumes that2 

(3A.l) 

fJ being a coefficient to which he attributes no particular functional depend­
ence. By use of (2C.2)2 we conclude from (1) that 3 

ft = 8p P + kpe (3A.2) 
8p p 

1 BlOT [1802, 1], extract in BlOT [1802,2]. Cf. the critical paraphrase by BRANDES [1804], 
who also included an account of BlOT'S work in his annotations to EULER'S treatise on 
hydrodynamics [1806, §§429-434]. 
2 As has been stated in Footnote 2 to §2B, the superimposed dot denotes the "substan­
tial" or "material" 'derivative. For infinitesimal changes, which are the only ones al­
lowed in the particular hydrodynamical researches we shall consider, this time 
derivative is approximated by the partial derivative at a fixed place, so the distinction 
is blurred. I make it partly for the convenience of those accustomed to hydrodynamics 
and partly so as to indicate that the reasoning here, to the extent it is valid at all, is 
valid also for finite motion of a gas. 
a BlOT considers only an ideal gas, but to clarify his reasoning I apply it a general equation 
of state. Also in his definition of k he omits the factor IIp, which is required to render 
his later formulae correct. He makes other slips as well. 
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where 
{Hlp f3 

k == P 00 ="8 ' (3A.3) 

the latter expression being appropriate to an ideal gas. By (2B.l) we obtain 
for the speed of sound the relation 

c2 = E. = (1 + kP ) op (3AA) 
P p op op' 

op 

which for an ideal gas reduces to 

c2 = (1 + k)1!. . 
p 

(3A.5) 

Taking up the subject a few years later, in the course of a discursive 
memoir on sound in general POISSON 4 went through essentially the same steps; 
his otherwise thorough historical preface does not mention BlOT. While 
BlOT had not said anything about the nature of k, POISSON states in §3 that 
it is a constant, in §21 that it varies with the temperature in an unknown way. 

[Like BlOT before him,] POISSON claims to reconcile theory with experiment 
but suggests that the experimentally measured value of c should be used to 
determine k. Thus he concludes that k = 004254 at 6°C. It follows from (1) 
that in a sonorous vibration air rises in temperature by 1 ° when its volume is 
reduced by the 116th part (§22). 

3B. Critique of BlOT'S Theory 

At first sight there is little difference between BlOT'S result (3A.5) and 
LAGRANGE'S old comment that to square theory with experiment one need 
only suppose that p = Cpl +1< and then give the number k the right value. 
However, the assumption (3A.1) and the references to perceptible oscillations 
of temperature suggest that more could be done than was done. If we start 
from (3A.5) and regard it as a fact of experiment that the gas is ideal and that 
k = const. > 0, we can work backward from (2B.l) and conclude that 
(3A.l) does hold and that f3 = kO. 

The modem reader who is familiar with the later work of LAPLACE may 
think that BlOT here assumes the sonorous vibrations to be adiabatic: Q = O. 
Indeed, that assumption put into (2C.15)s yield's BlOT'S starting point (3A.l) 
at once and shows that f3 = (y - 1)0 and k = y - 1. BlOT'S words about 
heat certainly refer to the terms Av V and KvO in (2CA), but he states only 
that in sonorous condensations neither term is null, not that their sum is null. 
On the contrary, he chooses to "regard" p as proportional to 0 because both 

4 POISSON [1808, §§3 and 21]. 
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are small, an assumption quite unnecessary if the motion is adiabatic. The 
concept of adiabatic heating and cooling was at this time far from clearl. If 
we may trust the published record, the first man to formulate it was LAPLACE, 
as we shall see presently. 

BlOT does not make his debt to LAPLACE clear. Later authors were always 
to call the theory LAPLACE'S, and LAPLACE in his own publications on the 
theory of sound was never to mention BIOT 2• If in 1802 LAPLACE had ideas 
more definite than BlOT'S, he did not then reveal them. 

3C. LAPLACE'S Theory of Sound and Heat 

In a short note1 published fourteen years after BlOT'S, LAPLACE wrote that 
modem discoveries on the nature of atmospheric air" offer us a phenomenon 
which seemed to me the true cause of the excess of the observed speed of 
sound over the calculated one, as most mathematical physicists have since 
agreed. This phenomenon is the heat which the air develops by its compres­
sion. .. One may suppose without sensible error that during the time of a 
vibration the quantity of heat remains the same between two neighboring 
molecules. Thus these molecules in approaching one another repel each other 
more; first because, their temperature being supposed constant, their mutual 
repulsion increases in reciprocal ratio to their distance, and then because the 
latent caloric so developed raises their temperature. Newton took account 
only of the first of these causes of repulsion, but it is plain that the second 
cause must increase the speed of sound since it increases the spring of air. 
By introducing it into the calculation I arrive at the following theorem: 

"The real speed of sound equals the product of the speed according to the 
Newtonian formula by the square root of the ratio of the specific heat of the 
air subject to the constant pressure of the atmosphere at various temperatures, 
to its specific heat when its volume remains constant." 

That, according to LAPLACE, if 

then 

'Y == ~ , (2C.16)r 

C2 - 'Y op 
- op' (3C.l) 

1 Effects we now recognize to be associated with adiabatic flow of air were known but 
not understood. The turbid early physics of the concept is ably traced by Fox, pp. 39-60 
and 79-99 of his Caloric Theory, cited above in Footnote 2 to §2A. 
2 Cf. LAPLACE [1823, §1]: "I was the first to remark, ... ," etc., and "Mr. POISSON has 
developed my remark in a learned memoir .... " 
1 LAPLACE [1816]. 
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at least for ideal gases. If (1) holds, comparison with (3A.4) shows that BlOT'S 

coefficient k is in fact (y - 1) 8pI8p -;- pip. For an ideal gas (1) reduces to 

c2 = yplp = yre, r == RIM, (3C.2) 

M being the mass of the body of ideal gas whose constitutive constant is R. 
LAPLACE discussed experimental results pertinent to his conclusion but 

let another five years pass before even beginning2 to explain his ideas on the 
nature of heat. He developed them fully the next year 3 and immediately 
thereafter included them in his celebrated and widely read Celestial Mecha­
nics 4. As was his custom, he constructed an elaborate semi-quantitative 
explanation in terms of attractions and repulsions between the infinitesimally 
small parts of a static continuous medium, or, rather, a mixture of such media. 
This is the kind of theory hodiemal Historians of Science are wont to call 
"Newtonian". LAPLACE (p. 101) supposes that the molecules ofa gas "retain 
their caloric by their attraction, and that their mutual repulsion is due to the 
repulsion of the molecules of caloric, a repulsion plainly indicated by the in­
crease of the spring of gases when their temperature increases. I suppose 
finally that this repulsion is sensible only at imperceptible distances." Thus, 
for him, caloric is corpuscular. He writes also of "caloric rays", which are 
easily pictured as streams of corpuscles. Finally (p. 104), "each molecule of a 
body is subject to the action of these three forces: 1 0, the attraction of the 
molecules all around it; 2°, the attraction of the caloric of these same mole­
cules, plus their attraction upon its own caloric; 3°, the repulsion of its caloric 
by the caloric of these molecules." He assumes a law of central force for 
these attractions and repulsions, and he claims to calculate their resultants by 
integration. 

Amplifying his remarks of 1816, LAPLACE writes that (p. 109) "the time of 
a vibration of a molecule of air is less than a sexagesimal tierce [i.e. 1/60 
second]. In this short interval the absolute caloric of the molecule can be 
supposed constant, for it can be lost only by the radiation of the molecule or 
by its communication with neighboring molecules, and to render this loss 
sensible, a time much longer than a tierce is needed." 

Finally, LAPLACE concludes from experiments of GAy-LUSSAC & WELTER 

that the ratio of the specific heats of air is very nearly constant 5. 

[I find LAPLACE'S calculations based on inverse-square attractions and 
repulsions altogether incomprehensible. Since, beyond what he claims to 
derive from them, he has to make phenomenological assumptions in order 
to get his conclusions on sound and heat, and since his results follow from 

2 LAPLACE [1821]. 
3 LAPLACE [1822, 1-3]. FOURIER [1822, end of preface] refers to these works and to the 
one cited in the preceding footnote as having already appeared in print. 
4 LAPLACE [1823]. The passages translated above are from this final exposition, which 
differs only in inessential details from the papers cited in the preceding footnote. 
5 All the foregoing quotations and paraphrases are from LAPLACE [1823, §1]. Page num­
bers refer to the reprint in LAPLACE'S (Euvres. 
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those assumptions alone, without the apparatus of attractions, the pheno­
menological aspects are all we need to consider heres.] 

First, LAPLACE assumes outright 7 that 

~=2(1-,8)~, (3C.3) 

so that 

c12 =~ = 2(1 - ,8)!!. , 
p p 

(3C.4) 

as in the papers by BlOT and POISSON (above, §3A). 

To evaluate the coefficient 2(1 - ,8), LAPLACE now brings to bear his 
assumption, stated above, that there is no gain or loss of heat, or, as we should 
say now, the sonic vibrations are adiabatic 8 : 

Q=O. (3C.S) 

6 Nevertheless I will point out some key passages in the pseudomolecular theory. 
P. 119: For gases the entire pressure is due to the repulsion of the molecules of 

caloric. "Let c be the caloric contained in each molecule of the gas; the repulsion of 
two molecules will then plainly be proportional to c2." Main conclusion (pp. 120-121): 

p = 2fTHKpaC2 ; 

the law of intermolecular repulsion is Hc2t/>(r), and K is a constant determined from t/> 
by a triple integration. pp. 121-122: The extinction of caloric rays on a surface is 
qll(8); here II denotes a function of temperature which is independent of the nature of 
the gas, q is a constant depending on the gas, and pc2 = q'II(8), q' being another such 
constant. Hencep = i 11(8), and i = 2fTKHq'. 

While LAPLACE uses these results again and again, a reader of sufficiently dogged 
will to calculate may verify that they cancel out of all his formulae that concern thermo­
dynamics. That is"LAPLACE has not derived his conclusions from a molecular theory 
but rather has exhibited a molecular model that is consistent, sufficient license for 
mathematical manhandling being granted, with a few plausible phenomenological 
statements. 

Cf, also Fox's discussion on pp.165-174 of his Caloric Theory, cited above in 
Footnote 2 to §2A" 
7 LAPLACE [1823, §7]. 

The assumption is well buried. After 21 pages of horrid and useless calculations, 
LAPLACE writes on p. 134 in connection with a one-dimensional motion of a fluid in 
the direction of the co-ordinate x, "We suppose that 

.! 8(pc) = (1 _ fI)! op ••• " 
pc ox pox' 

and this is the first occurrence of p. In view of the equation displayed in the preceding 
footnote, the assumption is 

.!. op = (1 _ fI)! op 
2pox pox' 

As p is a function of p for each fluid-point, this last result is equivalent to (3). LAPLACE'S 
argument here, as usual, runs through a string of manipulations. 
8 The word "adiabatic" was coined by RANKINE [1859, §239]. 
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For LAPLACE, heat is never created nor destroyed. We shall refer to this 
assumption by the traditional term Caloric Theory of heat 9. LAPLACE renders 
the idea of the Caloric Theory definite by the specializing assumption that the 
heat10 in a fluid body is the value of a function of pressure, density, and 
ambient temperature u, which later he takes to be constantll• 

9 In this book the term "Caloric Theory" refers to the statement here annotated­
nothing more. 

As Fox shows in his Caloric Theory, cited above in Footnote 2 to §2A, the term 
"Caloric Theory" when it was current meant different things to different schools of 
thought. Some of these are now strange even to historians of physics; still familiar are 
some particular models such as subtle fluids or atoms of caloric. These may be seen as 
parallel to the atomic models which WATERSTON, RANKINE, CLAUSIUS, and others 
proposed for the later thermodynamics. Models do not fall within the scope of this 
book. 

THOMSON [1851, §§19, 44] used "permanence of heat" to describe the Caloric 
Theory; in annotating his collected papers in 1881 he referred to it as "the assumption 
of the materiality of heat " (Volume 1, p. 127). THOMSON [1851, §§3-4] interpreted" [t]he 
recent discoveries made by MAYER and JOULE" as demonstrating "the immateriality of 
heat", in conformity with DAVY'S "dynamical theory", again a sort of speculative 
model. Later he came to use the term "dynamical theory" for purely phenomenological 
thermodynamics, based on the uniform and universal Interconvertibility of Heat and 
Work. 

The Caloric Theory was already known to have some shortcomings, but these were 
not considered fatal to it. RUMFORD'S experiments were considered as having established 
three properties of heat: 

1. No bound could be determined for the quantity of heat that could be extracted 
from a body by doing work upon it. Thus, presumably, the quantity of caloric in a body 
was so great as to be practically limitless. [The reader who thinks this objection ought 
have been fatal should recall that experimental possibilities are always limited. More 
than twelve decades were to pass before anyone could solidify helium, and even today 
it is unknown whether the space of physical experience be finite or infinite.] 

2. At atmospheric pressure, water at 41°F is denser than water at 32°F. Thus thermal 
expansion cannot be explained as the effect of stuffing a body with some "caloric" 
substance or by any universal law of repulsion between particles of bodies and particles 
of a "caloric" substance. [This objection could not destroy LAPLACE'S pseudomolecular 
theory, since the law of caloric-corporeal interaction, being constitutive, could be 
different and untypical for water, that "anomalous" substance.] 

3. After large amounts of heat had been taken from or added to it, the body's weight 
remained the same, to within the limits of measurement then available. Thus the caloric 
substance would have to be very light, even "subtle". 

RUMFORD regarded these and other facts of experiment as supporting the vis viva 
theory of heat. Cf §7A, below. 

The book ofS. C. BROWN, Benjamin Thompson, Count Rumford, Oxford etc., Pergamon 
Press, 1967~ reproduces and analyses RUMFORD'S major papers. 

RUMFORD'S importance in the history of the theory of heat is greatly exaggerated 
in popular accounts. As Fox remarks on p. 99 of his Caloric Theory, cited above in 
Footnote 2 to §2A, "a history of the theory could be written with scarcely any reference 
to Rumford". 
10 LAPLACE's notation for the heat is c + i, where c is the "free heat" and i is the latent 
heat". For the analysis, see pp. 136-137. 
11 P. 136:" The temperature u of the space or the density of the discrete fluid which repre­
sents it can thus be supposed constant during the time of an aerial vibration". LAPLACE 
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Thus in effect LAPLACE adopts the following axiom (p. 136): the heat in a 
[jluid] body is the value of a heat-function HL , so the heat C added in a process 
from t1 to t2 is given by 12 

(3C.6) 

here M is the mass of the body; sUbscript 1 and 2 denote evaluations at the 
times t1 and t2; and P2 = p(t2), PI = P(t1), P2 = P(t2), P1 = P(t1)' [If such a 
thing as "total heat" exists, its value may be identified with HL(p, p). How­
ever, only differences of such values enter the mathematical theory. LAPLACE 
seems not to have used (6) directly; an equivalent formula is to playa great 
part in the researches of CARNOT and others, as we shall see in §5B and many 
later passages.] Thus the heating Q/M per unit mass is the time-rate of change 
ofHL : 

. 8HL • 8HL • 
Q/M = HL = -P + -p. 8p 8p 

(3C.7) 

In adiabatic motion, then (p. 136), 

o 8HL • 8HL • 

= 8p P + 8p P (3C.8) 

Therefore the assumption (4) is proved to hold if and only if the coefficient 
2(1 - (3) has the special value 

8HL 

Pap 
2(1 - (3) = 

(3C.9) 

"It is easy to ascertain (p. 137) that the specific heat at constant pressure is 
-JLP8Hd8p, while the specific heat at constant volume is JLP8Hd8p; the 
factor JL is "a coefficient which, according to the experiments of Mr. Gay­
Lussac, is 0.00375 at the temperature of melting ice." Such is LAPLACE'S 
proof of (2), specialized to an ideal gas, and of the fact that in adiabatic 
motion of an ideal gas 

t= "E.. 
P P 

(3C.1O) 

Equivalently, for each fluid-point P is a function of p alone, and dp/dp = "p/ p. 
LAPLACE remarks (p. 142) that since" can be determined by experiment, 

no assumption about the heat function HL need be made. "Nevertheless it 
would be very interesting to know it for the theory of the phenomena of 

writes v for "the temperature of the molecule", which seems to represent the tempera­
ture field of the gas. Since, in his notation, kpc2 = qv, k being a constant, this tempera­
ture is a function of the density and pressure of the gas and so is taken into account 
by use of the general function HL in (6). 
12 LAPLACE'S notation for what we denote by HL is V. 
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pressure and heat in atmospheric air." The experiments of GAy-LuSSAC & 
WELTER show that y for air is constant" from the pressure represented by 
144 mm to the pressure 1460 mm and from the temperature - 20° to the 
temperature 40°." If it is rigorously so, (9) may be integrated to yield 

(pl/Y) 
HL = if; p , (3C.11) 

if; being an arbitrary function. "The simplest value of HL included in this 
expression" is (p. 143) 

(3C.12) 

= F + KrBpl/Y-l , F = const., K = const . 

"On this supposition the absolute heat of a molecule of air at constant 
pressure increases with the temperature, which squares with the phenomena." 
From (12) we obtain the following expressions for the specific heats: 

1 Kp = MKrpl/Y-l, Kv = - Kp . (3C.13) 
Y 

[I reserve my critique of LAPLACE'S theory until after we shall have 
considered POISSON'S last treatment of these matters.] 

3D. POISSON'S Second Treatment 

Coming back to the subject in 1823, POISSON1 states that at the" already 
remote" period of his first memoir on sound (above, §3A), "physicists had 
not yet done any experiment" which could determine "the increase of tem­
perature corresponding to the condensation" in a sonorous vibration. For 
that reason he had then "reversed the question" and so determined the value 
of the condensation that would square with the observed speed of sound. 
Using the experimental results CLEMENT & DESORMES had published in 1819, 
POISSON now derives a value ofthe adiabatic condensation not much different 
from that he had inferred in 1808. He then engages to derive "the new formula 
of Mr. Laplace" from the properties of gases "regarded as data of experi­
ment", without use of LAPLACE'S "hypotheses made so as to explain the laws 
of Mariotfe and of the dilatation of gases". In this way the formulae would 
be rendered "independent of any particular explanation." 

To this end POISSON considers a triangular cycle of infinitesimal changes 
for a fluid-point: heating so as to increase the temperature and volume at 

1 POISSON [1823, 1] = [1823,3, §I]. We note that POISSON [1823, 1, p. 14] [1823,3, p. 263] 
[1823, 2, p. 339] cites LAPLACE [1823]. 
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constant pressure, then suddenly compressing the air back to its original 
volume [i.e., adiabatically], then at constant volume reducing the temperature 
and pressure to their original values. If the changes of volume and tempera­
ture in the first part are dV' and d8', then Rd8' = pdV'; the heat added is 
Kpd8'. In the second part, let the increase of temperature be d8. Then because 
the third part completes the cycle, the temperature falls by the amount d8 + 
d8', so the heat subtracted is Ky(d8 + d8'). "The volume, pressure, and 
temperature being become again ... the same as they were before the expan­
sion of the mass of air, the quantity of heat communicated to it is necessarily 
equal to what it has lost. ... " That is, Ky(d8 + d8') = Kpd8', or d8 = 
(')I - l)d8'. Hence in the adiabatic part 

d8 d8' d8 p 
dV - - dV' d8' = -Ii (')I - I) (30.1) 

Appealing to (3A.I) and (3A.3)2, we see that 

Vd8 
k = -0 dV= ')I - 1 (30.2) 

Substituting this evaluation of k into [BlOT'S] formula (3A.5), POISSON con­
firms LAPLACE'S formula: 

c2 = ')Ip/p • (3C.2)lr 

In another paper published in 1823 POISSON2 shows in a few lines that 
LAPLACE'S results concerning the heat function and adiabatic processes are 
likewise independent of the pseudomolecular trappings which LAPLACE laid 
upon them. POISSON assumes (3C.6) and hence writes down (his Equation (3)) 

oHL oHL 0 ( ) 
p op + ')IP op = . 30.3 

[He has tacitly assumed that HL = const. in the process considered; hence 
that process is adiabatic; but he does not at once say so.] "It is evident 
a priori" that ')I > 1 because "necessarily more heat is required to raise the 
temperature of a gas when it expands than when its density remains constant, 
but experiment alone can let us know the value of ')I for different gases and 
how that value depends upon pressure and density. According to the experi­
ments of MM. Gay-Lassac and Welter, cited in the Mecanique Celeste, this 
quantity is sensibly constant .... " Integration yields LAPLACE'S determination 
of his heat function: 

( pl/Y) 
HL=ifs p (3C.II)r 

[If ifs is invertible,] it follows that 

pp-Y = f(CfM) , 8pl-Y = f(CfM)/r . (30.4) 

2 POISSON [1823,2, §I]. 
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POISSON now mentions (p. 339) that Cf M remains constant, so in an adiabatic 
process of a body of ideal gas having constant ratio 'Y of specific heats 

pp-Y = const. , p8r /(l-r) = const. , 8pl-r = const. (3D.5) 

[These relations are traditionally attributed to POISSON. However, as they 
are obvious consequences of LAPLACE'S formula (3C.11), and as the basic 
idea behind all of this was LAPLACE'S, we will in this work refer to them as the 
LAPLACE-POISSON law of adiabatic change.] 

3E. Meikle's Claim 

The work of LAPLACE and POISSON was accepted quickly but, as usually 
happens, bit by bit and with much discussion l • Their assumption that 
,\ = const. was regarded as confirmed by experiment, but only MEIKLE2 

subjected it to analysis. Working within the framework of the Caloric Theory 
of ideal gases, MEIKLE claimed to prove that if y = const., then3 "neither the 
magnitude of a constant volume, nor the intensity of a constant pressure, 
have anything to do with the specific heat of a given mass of air." His first 
proof4 starts from POISSON'S equation (3D.3), but without any stated reason 

1 IVORY [1825] somehow extracted the LAPLACE-POISSON law of adiabatic change from 
a jumble of heat with temperature and some shady fluxional calculus. Then IVORY 
[1827, 1] claimed to prove .. a priori from the theory here laid down" that " = const. 
Thereupon IVORY [1827,2] by a still more incomprehensible argument derived an 
equation different from one published by POISSON [1823, 3, §I] [= [1823, 1]] and hence 
proclaimed POISSON'S work erroneous! He generously added that his own treatment of 
1825 was "liable to the same objection". POISSON [1827, postscript] in reply asked 
IVORY to snow where his error lay. In the abusive kind of polemic then frequent in 
Britain MEIKLE [1828, 1] attacked IVORY'S work. IVORY [1828] replied in the same style. 
The whole eruption is insecure in mathematics, confused in physics, and careless in 
expression. 
2 MEIKLE [1826, 1] and later papers, cited below. 
3 MEIKLE [1829, p. 67]. 
4 MEIKLE [1826, 2, p. 335] does not state that the quantity he denotes by B is a constant 
rather than an arbitrary function, but otherwise a very specific statement of his [1829, 
p. 62] is not true: "when the variations in the quantity of heat are uniform, those of 
its volume under a constant pressure form a geometrical progression; as do likewise 
the variations of pressure under a constant volume." Cf. also the similar earlier state­
ments of MllIKLE [1826, 2, p. 336] [1828, 2, p. 319]. First, if p = const., by (2C.4) and 
(2C.8) we conclude that 

(A) 

If" = const., we may use (3) and so conclude from (2C.18) that 

" _ 1 [PIIf ,(pl/1)] Av = M-- --.p - . 
yV p p 

Hence (A)2 becomes 
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he chooses for'" in its general integral (3C.ll) the particular function B log 
and so concludes that 

B 
Ky = 8' B = const. > 0 . (3E.l) 

In a later paper MEIKLE 5 provides a geometrical proof [which seems to me 
to start by assuming both Kp and Ky to be functions of 8 alone.] He re­
proaches LAPLACE, POISSON, and IVORY for having failed 6 to draw "the neces­
sary and unavoidable consequences" of their assumption that 'Y = const., 
and he reproaches 7 "the eminent French philosophers" because they "built 
upon these errors an immense fabric of complex formulae, and have drawn 
from them a multitude of conclusions!" 

3F. Critique of LAPLACE'S and POISSON'S Theories. 
Correction of MEIKLE'S Claim 

LAPLACE is the first author to present any concrete mathematical theory 
concerning heat. His work provides the first clear and formal concept of 
adiabatic process; the first calculation of the properties of such a process; 
the first explicit, assessable Caloric Theory of heat; discovery of a basis which 
makes it easy to see that in an adiabatic process of an ideal gas with constant 
ratio 'Y of specific heats, p V' = const.; and unquestionable proof that the 
data on the speed of sound then available could be reconciled with gas 
dynamics if the sonorous motion of air were supposed to be an adiabatic 
process in a gas of that kind, provided only that 'Y when measured by other 
experiments should turn out to have a value close to 1.4. 

LAPLACE'S work falls into two parts: 

1. His theory of adiabatic change in ideal gases. 
2. His theory of specific heats, based upon his partial specification of the 

heat function HL for an ideal gas with constant ratio of specific heats. 

M y ; 1 [P;/7 ~,( P;/7)] ~ = (1 _ ~) Q . 

Thus MEIKLE'S first assertion about progressions is correct if and only if the quantity 
in square brackets is constant in processes at constant pressure. A parallel argument 
shows that his second assertion is true if and only if that same quantity is constant 
under processes at constant density. The two assertions hold if and only if (3E.l) holds. 
5 MEIKLE [1829, p. 67]. 
8 MEIKLE [1829, p. 65]. 
7 MEIKLE [1829, p. 67]. 
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POISSON'S last analysis shows, albeit crudely, that in both parts LAPLACE'S 

semimolecular trimmings are unnecessaryl. While to this end POISSON felt it 
necessary to do everything more or less afresh, our presentation in §3C shows 
that a careful and critical reader could have seen as much directly from 
LAPLACE'S own exposition. 

LAPLACE'S work regarding specific heats is pretty clear and efficient, 
granted his starting point. Of course it rests essentially upon the Caloric 
Theory of heat. LAPLACE omits only the derivation of his formulae for the 
specific heats, which we can easily supply. Indeed, beginning from a general 
expression for the heating: 

Q = 1.. (KYP _ K op p) op I' op , 
o£J 

we see at once that if Q! M = HL then 

K = _ M (OPjop) oHL 
.1' o£J op op , 

formulae which for ideal gases reduce to 

K = _Mf!.°HL 
I' £J op , 

K = MopoHL 
Y O£J op , 

(2C.12)r 

(3F.l) 

(3F.2) 

so LAPLACE'S factor ft is in fact 1/£J. Of course LAPLACE'S formula for HL : 

HL = ~ (p:/Y) , (3C.ll)r 

follows easily from these results if we assume that y = const. Moreover, if 
we have (3C.ll), we conclude from (2h that 

Ky-M- -~ - . _ 1 [pl/Y I (pl/f)] 
y£J p p (3F.3) 

By inspecting (3) we see that for Ky to be a function of p alone it is 
necessary and sufficient that HL have the special form (3C.12), which LAPLACE 

1 On p. 177 of his Caloric Theory, cited in Footnote 2 to §2A, Fox writes 

Poisson's greatest contribution, then, was rather to free Laplace's work of its 
more suspect elements, merely by picking up the argument at the stage q = 
f(P, p). In' doing so he was showing in a most effective manner just how irrelevant 
much of Laplace's theory was, so that even to a reader convinced of the physical 
reality of caloric Poisson's must have seemed undeniably the more fruitful 
approach. 

We shall see below that in the most important parts of LAPLACE'S and POISSON'S work 
the heat-function H L , which Fox denotes by J, is just as superfluous as LAPLACE'S 
particles of caloric. 
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recommended as being its "simplest value". As early as 1805 LAPLACE 2 had 
suggested that a constant-pressure air thermometer would measure the" true" 
temperature; in BOWDITCH'S translation, 

But, in the theory of heat, it is necessary to estimate the real degrees of 
heat indicated by those of a mercurial thermometer; and this will be 
given with great accuracy by the experiments just mentioned, if the 
increment of heat of a mass of air submitted to a constant pressure, be 
proportional to the increase of its volume. Now this hypothesis is at 
least very probable; for, if we imagine the volume of the mass of air to 
remain the same whilst its temperature increases, it is natural to suppose 
that the elastic force, of which heat is the cause, will increase in the 
same ratio. By sUbmitting it in this last state to the pressure it suffered in 
the former case, its volume will increase as its elastic force, and therefore 
as its temperature. Hence it appears, that an air thermometer indicates 
accurately the variations of heat; but, its construction being difficult, it 
is sufficient to have compared its march with that of a mercurial thermo­
meter by very exact experiments. 

For an ideal gas at constant pressure Q = Kpd = (pKp/R)V, so LAPLACE'S 
desideratum is Kp = f(p). Since" = const., Kv is likewise a function of p 
alone, so LAPLACE'S "simplest value" conforms with his earlier requirement. 

Indeed, (3) serves also to show us at a glance that MEIKLE'S claim (3E.l)1 is 
generally false 3 except when we add the assumption that Kv shall be a 
function of 8 alone. Nevertheless there is a germ of truth in it! The LAPLACE­
POISSON law (3D.5) shows that in an adiabatic process (3) reduces to MEIKLE'S 
(3E.l) with the value of the constant B differing in general from one adiabat 
to another. As the adiabats of an ideal gas with constant" are distinct from 
the isotherms, (3) show that Kv cannot be constant. Hence the Caloric 
Theory does not allow both specific heats of an ideal gas to be constant. This 
trivial, immediate, and essential consequence of the equations of the Caloric 
Theory was first published4, so far as I can learn, in 1973. To some, this very 
lateness will absCind the fact itself from the history of thermodynamics. To 
others, it will serve as the prime example among many which show that 
thermodynamics, from its beginnings, has been a sick science, its sores 
unprobed by conceptual analysis and uncleansed by logical criticism. To still 
others, it will merely reveal ignorance of MEIKLE'S claim (3E.l), even though 

2 LAPLACE [1805, p. xx in the reprint in his CEuvres]; cf. also POISSON [1833, §639]: "at 
constant pressure a gas dilates uniformly for equal increments of heat .... " I am 
indebted to Mr. C.-S. MAN for pointing out these passages and their importance for the 
understanding of LAPLACE'S later work. 
a Fox on p. 193 of his Caloric Theory, cited above in Footnote 2 to §2A, pronounces 
MEIKLE'S argument "perfectly sound". 
4 TRUESDELL [1973, 1, §2J. 
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that claim is generally false. There is also a certain prophetic quality in 
MEIKLE'S assertion, and for two reasons: In §5T we shall see that (3E.l) is the 
only possibility consistent with CARNOT'S thermodynamics, and Property 7 
in Chapter 11 of Concepts and Logic asserts that MEIKLE'S less specific 
statement in words holds in the entire class of theories compatible with 
CARNOT'S General Axiom, which we shall state and analyse in Act II, below. 

As we shall see in Acts II and III of this tragicomedy, the fact that the 
Caloric Theory forbids an ideal gas to have constant specific heats will prove 
fatal to it. Thus it is worthwhile to study the matter in another setting, with­
out use of LAPLACE'S explicit formula (3C.II) for HL. While the Doctrine of 
Latent and Specific Heats allows Kp and Ky to be any functions of p and p 

we might desire, the existence of a heat function HL leads to (1), which re­
stricts them by the severe requirement 

o (KV) 0 ( Kp) o. op op + op OPjOP = , 
08 08 op 

(3F.4) 

here Ky and Kp are regarded locally as functions of p and p, and op/08 are 
understood to be those functions of p and p that have the same values as do 
011T*/08 and 011T*/Op, calculated from the thermal equation of state p = 
11T*(p,8). Conversely, if Kp and Ky satisfy this condition of integrability, a 
heat function HL such as to deliver them by (1) exists locally. When the fluid 
is an ideal gas, (4) assumes the form 

Kp _ Ky + P oKp + p oKy = 0 . 
op op 

(3F.5) 

Except for his somewhat imperfect statement of (2), LAPLACE does not give 
any of the relations (1)-(5), but from equations he does record they follow 
at once by simple mathematics which he himself mastered and used ordinarily. 
If we suppose both Kp and Ky to be constant, (5) yields Kp = Ky, which 
contradicts (2C.I7): Thus, again, the Caloric Theory forbids an ideal gas to 
have constant specific heats. 

So much for LAPLACE'S work on specific heats, POISSON'S purification of it, 
and MEIKLE'S incorrect but suggestive claims. LAPLACE'S theory of adiabatic 
change and the propagation of sound in ideal gases is another matter. While 
POISSON in his crude way could clear away the pseudomolecular claptrap, he 
missed the main point: LAPLACE'S theory of adiabatic change and the speed 
of sound is independent of the Caloric Theory of heat and all relations between 
heat and work. It derives from the theory of calorimetry alone. Although 
LAPLACE uses his heat function HL to derive his main results, namely 

PIp = "p/p , c2 = "p/p = "rO, (3C.1O)r, (3C.2)1.2r 

he need not do so, and his pages of calculations serve only to obscure them. 
LAPLACE'S crucial step is his statement that the sonorous motion is adiabatic. 
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Once this step has been taken, anyone who has at his disposal the Doctrine 
of Latent and Specific Heats as we have presented it in §2C can read off all 
of LAPLACE'S conclusions at a glance 5. Indeed, if we consider a general 
expression for Q for an ideal gas: 

Q = (J (Kv E - Kp e) 
p p' 

(2C.15hr 

and set Q = 0, then (3C.1O) follows at once, showing that in adiabatic motion 
of a body of ideal gas 

dp p 
dp = Y-p (3F.6) 

which is neither more or less than POISSON'S statement (3D. 1). POISSON in­
voked the Caloric Theory needlessly at this point. As his argument in all its 
crudity refers only to infinitesimal changes, his conclusion follows directly 
from the calorimetric relation (2C.15). To obtain the corresponding formula 
when a general equation of state is assumed, we need only use in the same 
way the parent statement whence (2C.15) descended by specialization to an 
ideal gas: 

Q = 1. (KvP _ K op p) 
op p op (2C.12)r 

o(J 

The result is 
dp op 
dp = Y op , (3F.7) 

so that by use of (2B.l) LAPLACE'S famous correction to the Newtonian 
speed of sound, namely 

follows in full generality 6. 

5 The theory of sound is a field theory (ef Footnote 2 to §2B), while the Doctrine of 
Latent and Specific Heats as usually conceived takes Av and Kv as functions of time 
associated with a whole body. None of the pioneers seems to have been disturbed by 
this fact. In effect, I believe, they considered an infinitely small sonorous particle. The 
modem reader does the same thing more precisely by taking (4H.3) as his axiom and 
supposing that alQng the path of each fluid-point in sonorous motion A.v + K/J = O. 
6 The result (7) implies as a special case a famous formula of the later thermodynamics. 
Namely, if p = pep, '1), where '1 is the specific entropy, then in adiabatic motion PII> = 
0plop so (7) reduces to 

op op 
op = y op . 

This statement is called" REECH's theorem" in the French literature. The corresponding 
result first obtained by REECH (1853), which is in fact speciously general, is presented 
below in §10D. Later REEcH [1868, §27] obtained (7) essentially as we have done in the 
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While modern books usually assume that y = const. in order to obtain the 
LAPLACE-POISSON law (3D.5) of adiabatic change as a basis upon which to 
prove LAPLACE'S correction to the speed of sound, neither the assumption 
nor the detour is necessary. Therefore, all of LAPLACE's results concerning the 
speed of sound are immediate consequences of the theory of calorimetry, and 
they hold whether or not y be constant 7. They are not restricted to infinitesimal 
motion, and they do not require the existence of LAPLACE'S heat function 8, 

let alone his semimolecular concepts of particles of air and caloric which 
attract and repel each other 9. 

For later use we emphasize the fact just proved: the LAPLACE-POISSON 
theory of the speed of sound allows the specific heats of gases to be arbitrary 
functions of p and B. 

It is a different matter with the LAPLACE-POISSON law as expressed by 
(3C.1I)-(3C.13) and (3DA). To obtain those results, LAPLACE and POISSON 

assumed that y = con st. From LAPLACE'S own determination (3C.1I) for his 
heat function10 we have obtained (3). We know that the adiabats extend from 

text above, making it entirely clear that LAPLACE'S correction is independent of 
thermodynamics. See the Note Added in Proof on p. 301. 

We may notice incidentally that setting Q = 0 in (2C.13h yields BlOT'S assumption 
(3A.I) and shows that BlOT'S (and POISSON'S) f3 = (y - I)p[(op/op)/(op/o8)]. Likewise, 
putting Q = 0 in (2C.12) yields LAPLACE'S assumption (3C.3) and shows that LAPLACE'S 
2(1 - (3) = y(p/p)(op/op). Although BlOT, POISSON, and LAPLACE considered only ideal 
gases, these conclusions from the theory of calorimetry are valid for any thermal equation 
of state. 
7 RANKINE [1852, §13] regarded it as a noteworthy achievement, based on his theory 
of molecular vortices, to have shown that LAPLACE'S law applied "not only to a perfect 
gas, but to all fluids whatsoever." Of course, all that he did amounts to illustration of 
the consistency of his molecular model with the theory of calorimetry. Cf §§8G and 9A, 
below. 

PARTINGTON in Ch. II, §4 of the work cited above in Footnote 4 to §2C, is one of 
the few modern authors who prove (7) without any appeal to thermodynamics. 
8 LAPLACE's own argument, the one he claimed to be "easy to verify", doubtless was 
equivalent to that we have indicated by (1) and (2). 
9 Cf the sarcastic criticism by WATERSTON in his article "On the theory of sound", 
Philosophical Magazine 16 Supplement, 481-495 (1858) (Collected Papers, p. 354): 

. .. it is a question whether the reciprocal action between heat-atmospheres 
and molecules, which he expresses in mathematical symbols, can be realised 
by the mind .... [Ilndeed there seems to be no limit to this artificial and barren 
system of procedure, which is as far removed from the simplicity of nature 
as the hideous epicycles of Ptolemy. 

10 LAPLACE's (3C.ll) follows from (30.1) with no assumption beyond y = const. Never­
theless, it is appropriate only to ideal gases. For a general equation of state a correct 
differential equation for HL is 

oHL + op oHL = 0 
op y op op , 

as we may see at once from (1). This equation reduces to (30.1) if and only if 
op/op = pIp. 
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e = 0+ to e = 00. Thus by applying (3) in an adiabatic process we see that 
low temperatures give rise to enormous specific heats, high temperatures to 
very small ones. Equivalently, a dense gas has a small specific heat, while a 
rare gas has a large one. Today we regard such behavior as most implausible. 
How can LAPLACE have endorsed it? We have seen that in 1805 he expected 
Kp to be a function of p alone, and that in 1822 he was able to claim that his 
formula (3C.12) squared with the phenomena. How so? In 1812 DELAROCHE 
& BERARD had published measurements from which they concluded that Kp 
for gases was a slowly increasing function of p! This claim of theirs was to 
have a disastrous effect upon the development of thermodynamics for thirty­
eight years, as we shall see below in §9G. For LAPLACE, resting securely upon 
GAy-LuSSAC & WELTER'S conclusion that y = const. for most gases, 
DELAROCHE & BERARD'S result must have seemed to confirm all that he had 
guessed and calculated. As the range of variation of p and e in all the experi­
ments was small, he may have felt no need to ask what his formulae (3C.13) 
predicted for extreme conditions. 

Be that as it may, LAPLACE'S formulae stand, firmly drawn from his 
assumptions. The theorist cannot shut his eyes to what they imply for 
extreme conditions. The difficulty is not confined to LAPLACE'S special choice 
(3C.12) of",; MEIKLE'S formulae (3E.l), which we have shown to hold for any 
'" if we choose to follow an adiabat, show that the same objectionable 
conclusions hold under all possibilities consistent with LAPLACE'S theory. 
The simplest molecular pictures of a gas forbid the specific heats of a gas to 
vary greatly with temperature or density. It is not surprising that HERAPATHll , 

who had proposed a kinetic theory, noticed this fact; his is the merit of being 
the first to criticize the fatal experiments of DELAROCHE & BERARD. That it 
should be he whom the tragicomic muse should choose as sole spokesman 
for the truth, and at that in a footnote to a translation, is an early example of 
her whimsy, for in his own day HERAPATH was dismissed as a crank. Anyway, 
he seems not to see where the basic fault of the theory lies. 

Something is wrong. The LAPLACE-POISSON formula is not it. Indeed, to 
derive that we need use none of LAPLACE'S apparatus or POISSON'S uncon­
vincing remarks. First, to obtain the basic differential equation 

p p 
p = Y-p , (3C.10)r 

we need only specialize (6) to an ideal gas; if we then assume y to be constant 

11 P. 337 of his translation of the note of POISSON [1823, 2], in the context of vapors: 

I cannot satisfy myself of the degree of confidence to be attached to the experiments of 
MM. Laroche and Berard. Calculations from the influence of currents of air do not 
impress me with the idea that such methods are susceptible of much accuracy. Besides, it 
certainly seems to be adverse to the theory of caloric itself, that so rarefied and expanded a 
body as vapour should have a less specific heat than its generating water; which is the 
case in the above philosopher's results. 
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on adiabatic processes12, we may integrate (3C.IO) just as POISSON did. That 
is all there is to it. The LAPLACE-POISSON law of adiabatic change follows 
directly from the theory of calorimetry13, on the assumption that 'Y = const. 
on each adiabat. 

Therefore, either the sonorous motion is not adiabatic, or the Caloric 
Theory is wrong. Why did no-one in the early 1800s make this easy compari­
son offact with theory? I think the reason lies in the dense tangle of LAPLACE'S 
writing. Even today, with hindsight, it was no easy matter to penetrate the 
thicket and extract and interpret the equations given above in §3C, equations 
which make the comparison easy if not even obvious. POISSON'S analysis, 
while not so mysterious, suggested a man's working backward to recover a 
result already recognized as correct. 

In LAPLACE'S (Euvres over 100 pages are filled by his publications on the 
theories of sound and heat yet do not reprint all of them. Everything positive 
in this work he could have developed in twenty simple equations, clearly 
explained and securely derived, along with four or five pages on the experi­
mental data. Had he done so, his work might have set an example worthy 
for others to follow. Instead, he cast out his good ideas sporadically in the 
course of an orgy of expansions and substitutions and supplementary hypo­
theses and neglect of small terms-the sort of gyrations which Historians of 
Science and physicists often call" mathematics". It would be facile to apply 
to his work on sound his own estimate of NEWTON'S: "His theory, although 
imperfect, is a monument of his genius." 

LAPLACE is one of those mathematicians who won a great reputation in 
his own day and has held it ever since, safe within his forbidding eruption of 
formalism. The few who have had the courage and industry to follow through 
some of his teetering calculations have adopted a certain reserve toward him. 
As a physicist, he preferred contorted structural hypotheses; as a mathe­
matician, be was unusually loose, even for his day; as a teacher, he wrote 
so as to dazzle rather than enlighten. The part of his work we have just 
analysed is typical of him. 

LAPLACE'S study of heat and sound falls within the Caloric Theory and 
does not attempt anything in the province of thermodynamics. Nevertheless, 
it frames the essential concept of an adiabatic process and provides a major 
relation which is obeyed in such processes. Also by its verbiage, mixture of 
scarcely compatible ideas, and preference for the complicated where the 
simple would have sufficed, it sets the tone of the ensuing tragicomedy. 

12 The LAPLACE-POISSON law does not hold unless " is constant on each adiabat, but 
" need not have the same value on all adiabats. Cf the remarks following Corollary 4.3 
in §4 of Concepts and Logic. 
13 This conclusion may have been clear to the pioneers of thermodynamics in the 
1850s, but the earliest explicit statement and proof I have found are those of REECH 

[1868, §37]. 



4. Act I. Workless Dissipation: FOURIER 

Ma tanto pill maligno e pill silvestro 
si fa 'I terren con mal seme e non c6lto, 
quant' elli ha pill di buon vigor terrestro. 

DANTE, Purgatorio XXX, 118-120. 

4A. FOURIER'S Predecessor: BlOT 

LAMBERT in his Pyrometrie1 seems to have been the first man to attempt a 
precise treatment of the conduction of heat. He considered a long bar open 
to the air, resting upon thin wires, and with one end in a fire. "Thus the bar 
is heated at one end only. The heat penetrates by and by into the more 
distant parts but finally passes out through each part into the air. If the fire 
is maintained long enough and with equal heat, finally every part of the bar 
contains a certain degree of heat because it again and again receives just as 
much heat from the parts lying nearer to the fire as it communicates to the 
more distant ones and to the air." [As MACH 2 remarked, LAMBERT'S analysis 
does not exhibit clarity corresponding to this description of the physical 
problem.] LAMBERT regards the "heat" y as a function of position x alone 
and writes down the expression for the subtangent !T to the corresponding 
curve: 

dy:y = dx:!T . (4A.l) 

Giving no reason at all, he assumes 3 that!T is constant. Hence he concludes 

1 LAMBERT [1779, §§326-327]. Some isolated passages in the works of NEWTON, 
DANIEL BERNOULLI, and EULER may possibly refer to what we now regard as conduction 
of heat. 
01 E. MACH [1896, beginning of the Historische Uebersicht der Lehre von der 
Wiirmeleitung]. 
3 In §270 LAMBERT had treated "NEWTON'S law of cooling" by radiation alone and had 
discussed the subtangent that appears there. Perhaps he expected his readers to apply 
the same sort of ideas to the more complicated case discussed here. It seems strange 
that he found for radiation alone an equation with one more term in it than the one 
he presents here for radiation and conduction combined. The matter is discussed by 
MACH [1896, Historische Uebersicht der Lehre von der Wiirmestrahlung]. 

What NEWTON meant to say in connection with heat and temperature is not clear. 
Both his theory and his experiment have been discussed by J. A. RUFFNER, "Re-
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that the curve is "a logarithmic line". [Indeed, 

y(x) = yeO) e- x /9' , (4A.2) 

with the convention of sign nowadays normaL] LAMBERT analyses the experi­
ments of NEWTON and AMONTONS, finds them not as discrepant as was then 
thought, and presents experimental results of his own. These comparisons 
show that LAMBERT interpreted the "heat" y as the temperature. From this 
time on the "logarithmic law" (2) was considered good. [No-one seems to 
have remarked that LAMBERT'S differential equation had no solution for a bar 
of finite length, the ends of which were maintained at arbitrarily fixed tem­
peratures.] 

The next to take up the theory of conduction seems to have been BIOT4, 
a generation later. In new experiments he verified LAMBERT'S "logarithmic 
law". Thereupon he stated, 

It was not enough to conclude these results by experiment; it was 
necessary to find them by theory, for experiment alone shows only 
some isolated facts, while it is theory that makes us perceive the rela­
tions between them. 

For that, we must start from this law: when two bodies of different 
temperatures are put in contact, the quantity of heat that the hotter 
gives to the colder in a very short time, other things being equal, is propor­
tional to the difference of their temperatures .... This law was assumed 
by Newton 5 in his essays on heat. Richman[n] confirmed it subsequently 
by his own experiments and those of Krafft, and afterward Count Rum­
ford himself by new facts has added new weight to those authorized 6. 

[LAMBERT had stated clearly that the bar would be subject to conduction 
in its interior and to radiation on its .surface. Only the latter process may be 
governed by "NEWTON'S law".] BlOT seems to think that "NEWTON'S law" 
applies to conduction as well: 

To ,establish the calculation in accord with this law, we must bear in 
mind that each point of the bar receives some heat from that which 

interpretation of the genesis of Newton's 'Law of Cooling"', Archive for History of 
Exact Sciences 2 (1962/6), 138-152 (1964). It seems to me that NEWTON'S "degree of 
heat" was a temperature, not a flux of heat, and that NEWTON meant to state 

(Ja = const. 

As we shall see below, this interpretation conforms with BlOT'S and FOURIER'S. 
4 BlOT [1804]. 
5 Cf. Footnote 3, above. 
6 Both printed texts have "ces autorises", perhaps a misprint for "ces autorites". 
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precedes it and communicates some heat to that which follows it. The 
difference is what remains in it on account of its distance from the 
furnace, and it loses a part of that to the air, be it by immediate contact 
with that fluid or be it by radiation. 

Thus in the state of equilibrium, when the temperature of the bar is 
become steady, the increment of heat that each point of the bar 
receives in virtue of its position is equal to that which it loses through 
radiation, a loss which is proportional to its temperature. 

And in a state of motion, when the temperature of the bar changes 
at each instant, the quantity of heat received by each point on account 
of its position, less the quantity it loses through radiation and contact 
with the air, equals the quantity by which its temperature increases in 
the same interval. 

The first condition when reduced to calculation gives rise to a 
differential equation of second order between two variables: the increase 
of temperature of each point and its distance from the constant source 
of heat. This equation is linear, with constant coefficients, and it may 
be integrated by known methods. 

The second condition, in which one more variable enters, namely 
the time, leads to a partial differential equation of second order. This 
equation, which gives the state of the bar at any instant, includes the 
preceding one implicitly. 

49 

BlOT considers only the case corresponding to LAMBERT'S assumptions. 
"The differential equation related thereto contains in its integral two arbitrary 
constants multiplying two exponentials, and beyond that another constant 
but not arbitrary quantity which depends upon the ratio of the conductibility 
to the radiation." 

[These words certainly seem to describe the partial differential equation 

o() 02() 
pC ot = K ox2 - h() (4A.3) 

and its steady case, 

(4AA) 

C is a constant that will appear below in FOURIER'S work, K is the thermal 
conductivity, and h is a coefficient of radiative transfer. The integral of (4) is 

(4A.5) 

A and B are the two arbitrary constants BlOT mentions; for an infinitely 
long bar the temperature is bounded at 00 if and only if B = 0], and the result 
confirms LAMBERT'S "logarithmic law". [Moreover, the solution (5) can be 
adjusted to correspond with a bar of finite length, the ends of which are kept 
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at given temperatures. BlOT seems to have solved the problem he set himself. 
Nevertheless, he writes out no equations. Did he obtain (3), (4), and (5)?] 

In the course of a treatise published twelve years later BlOT prints the 
equations and tells us the story, partly in a footnote 7• 

[The three equations] were asserted and applied, I think, for the first 
time in a little memoir ... which I read to the Institute in 1804 and 
which was printed in the Bibliotheque britannique [i.e., the note we are 
presently discussing]. But not being satisfied then about the difficulty 
of analysis regarding homogeneity, I indicated the structure of the 
formulae without proof. 

The "difficulty of analysis regarding homogeneity" BlOT explains as follows 8: 

But when we come to form this equation, we find that the laws of homo­
geneity which govern differentials cannot be satisfied if we suppose that 
each material and infinitesimally small point of the bar receives heat 
only by contact with the point which precedes it and transmits heat 
only to the point which follows it. This difficulty can be set aside only 
by assuming, as Mr. Laplace did, that a particular point is influenced 
not only by those that touch it but also by those that are only a small 
distance away from it, ahead and behind. Then homogeneity is re­
established, and all the rules of differential calculus are observed. 

[What BlOT tells us here is that "NEWTON'S law of cooling" refers to the sur­
face of contact of two bodies, be they large or be they small. Somehow 
BlOT in 1804 had obtained the right partial differential equation and had 
found and interpreted its steady solutions, but he was not able to derive itfrom 
"NEWTON'S law of cooling". 

[That is quite right. BlOT'S equation is incompatible with" NEWTON'S law" 
if that law is applied to interior parts of a homogeneous body. What LAPLACE 
disclosed to BlOT, if we may accept BlOT'S statement, was a new concept of 
heat transfer: The conduction of heat arises not in response to differences of 
temperature at an actual dividing surface but to gradients of temperature 
within an undivided body. LAPLACE was thoroughly familiar with EULER'S 
hydrodynamics, which represents the accelerating force in a fluid not as a 
pressure difference effected by a piston but as the result of a pressure gradient 
within an undivided, homogeneous mass of fluid. Both distinctions are just 
matters of simple physics. Nevertheless we shall encounter in later parts of 
this tragicomedy claims that NEWTON'S law is the basis of the theory of heat 
conduction; such claims persist sometimes even today. 

7 BlOT [1816, Chapter VI, pp. 669-6701. 
8 BlOT [1816, Chapter VI, pp. 667-668]. 
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[How did BlOT arrive at the partial differential equation 9? I have found 
in his works nothing else to suggest him capable of thought at this level in 
mathematical physics. For LAPLACE, whose bread and butter for much of his 
life's work was EULER'S way of looking at physical problems, to correct 
LAMBERT'S incomplete and unconvincing treatment would have afforded no 
great problem. Perhaps LAPLACE gave BlOT the equation and left him to sink 
or swim for a few years in trying to derive it. That would have been merely an 
instance of the way great mathematicians since the very beginnings of 
mathematical research have effortlessly maintained their superiority over 
ordinary mortals.] 

BlOT'S footnote continues: 

Later Mr. Fourier reproduced the partial differential equation in a large 
work which has received a prize of the Institut de France. 

BlOT does not tell us the date at which LAPLACE disclosed to him the 
nature of heat conduction. [If it was in 1804, then BlOT and LAPLACE largely 
anticipated FOURIER in the physical aspects of his theory. GRATTAN-GUIN­
NESS10 states that BlOT sent his paper to FOURIER in 1804 and that the earliest 
surviving fragments of FOURIER'S work on heat conduction date from 1805. 
There and in the draught of 1807 FOURIER'S basic partial differential equation 
simply replaces 82/8x2 in BlOT'S (3) by 82/8x2 + 82/8y 2 + 82/8z 2 and leaves 
intact the term representing radiation through the surface of the bar. Cf, the 
footnotes to §§4B and 4E, below. The blunder, which FOURIER corrected in 
1808 and which does not appear in any abstract or text published during his 
lifetime, certainly suggests that FOURIER had seen and appropriated BlOT'S 
equation without fully understanding the physical concepts on which it was 
based. The gigantic figure of LAPLACE stands in the background, too. Never­
theless, neither LAPLACE nor BlOT did anything further regarding the conduc­
tion of heat; while their voices offstage will be heard, neither will again tread 
the boards of this tragicomedy.] 

4B. FOURIER'S Program 

Thermodynamics is the science of the power of heat to do work and of the 
dissipation of that power. The second aspect, although in a case so special as 

9 The matter is discussed by I. GRATTAN-GUINNESS in coIlaboration with J. R. RAvETz, 
pp.83-85 of Joseph Fourier 1768-1830, Cambridge and London, MIT Press, 1972. 
Apparently determined to defend FOURIER'S originality at all costs, GRATTAN-GUINNESS 
explains why BIOT could not have gotten the right equations: because his "philosophical 
views on physics" forbade him to take a "genuinely 'continuous' view of heat 
diffusion", etc. etc. 
10 P. 84 of the work cited in the preceding footnote. 
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to be degenerate, was the first to be treated successfully. FOURIER'S Analytical 
Theory of Heat I was published in 1822; its contents derive largely from pre­
vious years 2, many of the results having been announced 3 in print as early as 
1808. 

1 FOURIER [1822]. Two difficulties, at the very least, attend the reader of this work. 
If he thinks to consult the original text when he opens Volume 1 of FOURIER'S (Euvres, 
published in 1888, he will be grievously deceived. DARBOUX, the editor, after the standard 
words of mellifluous eulogy we expect in the published judgments of French savants 
upon each other, goes on to remark that FOURIER'S book 

contains, we must admit, many careless slips, errors in calculation and detail .... 
Guided by the advice of our eminent publisher, M. Gauthier-Villars, we have 
worked hard to wipe out the inaccuracies in the printed text. We have repeated 
the calculations, corrected with greatest care the incorrect references, the errors 
in notation, and the misprints .... 

The preface to the translation into English by A. FREEMAN, first published in 1878, 
assures us that" the translator has followed faithfully the French original", but here 
too, the reader must be on his guard against silent improvements apparently intended 
to whiten the monument left by the popular hero of nineteenth-century utilitarian science. 

All quotations in the text are in my translation from the first edition. The sign § 
denotes " Article". 
2 FOURIER's memoir of 1807, along with the surviving fragments of a draught written 
in 1805, are included in the volume by I. GRATfAN-GUINNESS which we have cited in 
Footnote 9 to §4A. 

Some persons expert in rational thermodynamics have expressed astonishment that 
so simple a theory as FOURIER'S was not proposed until a hundred years after the theory 
of elastica and fifty years after hydrodynamics, both of which are subtler in nature, 
in concept, and in product, especially since, as FOURIER himself makes plain, EULER'S 
hydrodynamics was his model in establishing his basic equations. The reason seems to 
be that the conduction of heat was not recognized until it had been distinguished from 
radiation of heat in the experimental researches of INGEN-Housz, LESLIE [?], and 
RUMFORD, toward the end of the eighteenth century. Cf pp.200-201 of E. HOPPE, 
Geschichte der Physik, Braunschweig, Vieweg, 1926. The first quantitative experiments, 
those of DESPRETZ, did not appear until after FOURIER'S treatise; indeed, it seems that 
before FOURIER'S ideas became known, experimentists did not have a clear basis for 
interpreting and reporting their results. Cf the theory and experiments of LAMBERT 
described above in §4A. 

The work of LESLIE is particularly confusing. The mischievous muse of thermo­
dynamics made him inweave his simple statements about heat in a horrid mess of 
difficult, irrelevant, and unexplained calculations. His and other early theories of 
heat make much of entities as imperceptible as voids and vortices or, for that matter, 
angels. They belong not to physics but to what would now be regarded as speculative 
philosophy. 

LAMBERT, LAPLACE, and FOURIER were the first men to publish even any rudimentary 
mathematical treatment; hence they were the first to offer the world anything about 
calorimetry or the conduction of heat sufficiently specific to be refutable by experiment. 
3 P[OISSON] [1808]. This abstract made the partial differential equation (4E.l) widely 
known. 

Both in the Discours Preliminaire and in §429 FOURIER describes his manuscript 
deposited with the Academy in 1807 and his revised manuscript of 1811, to which a 
prize was awarded. The latter manuscript he caused to be published by the Paris 
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FoURIER prefixes to his book a long, [eloquent, boastful, and discursive] 
preliminary discourse. 

Primordial causes are totally unknown to us, but they are subject to 
simple and constant laws which may be discovered by observation, and 
the study of which is the object of natural philosopy. 

Heat penetrates, like gravity, all the substances of the universe; its 
rays occupy all the parts of space. The object of our work is to lay bare 
the mathematical laws which this element follows. This theory will form 
henceforth one of the most important branches of general physics. 

Regarding heat, there are "three fundamental observations. Indeed, 
different bodies do not possess to the same degree the faculty of containing 
heat, of receiving it or of transmitting it across their surfaces, and of conducting 
it in the interior of their masses. These are the three specific qualities our 
theory clearly distinguishes, and which it teaches how to measure." 

Pages of physics and rhetoric regarding the importance of certain special 
applications follow. 

The principles of this theory are deduced, like those of rational 
mechanics, from a very small number of primordial facts, the cause of 
which the geometers do not consider at all, but which they assume as 
resulting from common observations, confirmed by all the experiments. 

The differential equations of the propagation of heat express the 
most general conditions and reduce the physical questions to problems 
of pure analysis, which is justly the aim of theory. They are no less 
rigorously proved than are the general equations of equilibrium and 

Academy many ye~rs later, in 1824, after he had become its secretary. The former was 
published in 1972 (cf Footnote 2). Examination of the text does not confirm FOURIER'S 
statement that therein "the general equation of the motion of heat in the interior of 
solids of any dimension and at the surface of the body" had been "rigorously derived": 
The differential equation at which FOURIER arrives in the manuscript of 1807 contradicts 
(4E.1) in general (cf our discussion below in Footnote 5 to §4E), and the only boundary 
condition FOURIER considers there is that of prescribed temperature. P[OISSON] [1808] 
generously passes over in silence FOURIER'S central, damning error, for in his summary 
published in March 1808 he reports only the correct general equation (4E.1) and gives 
the reader every reason to believe that that equation stood in the manuscript read before 
the Academy on 21 December, 1807. In the interim FOURIER must have seen and by 
some communication with the Academy corrected the potentially disastrous error. 
Both (4E.1) and the boundary condition (4E.2) appear in FOURIER'S manuscript of 1811. 
Thus FOURIER obtained his basic theory in the form in which it has been preserved to 
this day some time between 21 December, 1807, and 28 September, 1811, these being 
the dates on which the memoirs of 1807 and 1811 reached the Academy. 
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motion. It is so as to render this comparison more perceptible that we 
have always preferred demonstrations analogous to those of the theo­
rems which provide the foundation of statics and dynamics. 

FOURIER goes on to emphasize the importance of solving the general 
equations in special cases corresponding to "all the given conditions". 
For this, "a special analysis" is needed, and indeed most of his treatise 
concerns aspects and details of this special analysis. FOURIER vaunts his 
originality here and the value of his results also for "the solution, long 
desired" of certain problems of "general analysis and dynamics". He includes 
a paean for the virtues of what has since come to be called applied mathe­
matics, devoid of "vague questions and calculations to no effect"; he claims 
that his solutions, marred by "nothing vague or indeterminate", lead" all the 
way to numerical applications, a condition necessary in every research, and 
without which only some useless transformations emerge .... " 

FOURIER complains of the long delay in publishing his work and calls 
attention to various notes and abstracts which establish his priority in aspects 
of the theory. 

According to FOURIER, "The new theories expounded in our work are 
joined forever to the mathematical sciences and like them rest upon in­
variable foundations; they will retain all the elements they have today, and 
they will continually gain in extent." He predicts that great terrestrial and 
cosmic discoveries will be made on the basis of them; for example, the 
constant temperature of interplanetary space will be determined. "The 
theory itself will direct all these measurements and will delimit their preci­
sion. From now on any considerable progress it can make must be founded 
upon these experiments, for mathematical analysis can deduce from general 
and simple phenomena the expression of the laws of nature, but the particular 
application of these laws to very compound effects requires a long sequence of 
exact observations." 

So concludes FOURIER'S preface. However, in the very first paragraph of 
the text of the book FOURIER repeats his boast that he has reduced" all physi­
cal researches on the propagation of heat to questions of integral calculus, the 
ingredients of which are given by experiment." [These claims are not so 
contradictory as their wording might make them seem. FOURIER believes that 
his basic principles are not only final and exact but complete; in order to 
apply them to cases, we must specify appropriate initial conditions and boun­
dary conditions as well as the conductivities and heat capacities of bodies, 
and it is for these, not for the general laws, that we must tum to experiment 
so as to set up the particular problem of integral calculus we are to solve. 

[After this verbiage, we expect a long and slow-moving book, and such it is. 
Most of it concerns analysis. Only the parts that bear upon thermodynamics 
call for our attention in the present essay. 

[FOURIER'S mathematical terminology is notoriously vague, his mathe­
matical analysis notoriously loose, but in this essay I shall silently clear and 
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straighten his presentation where it is easy to do so without violence to the 
physical principles toward which he seems to grope 4.] 

4C. FOURIER'S Premisses Regarding Specific Heat and 
Temperature 

At §22 FOURIER begins to present his physical concepts and assumptions: 

About the nature of heat, nothing more than uncertain hypotheses 
could be formed, but knowledge of the mathematical laws to which its 

4 This being an essay on the history of physical theory, there is no point in making 
much of weak points of mathematical analysis except in cases when they led the physics 
astray. In the parts of FOURIER'S work that concern us, the needed sanitary operations 
are more or less obvious to anyone competent in vector algebra and analysis, and often 
purely verbal or notational changes do the job. No reader should infer therefrom that 
FOURIER'S own level of mathematical reasoning met the standards of the two centuries 
that preceded his. Two estimates, both by distinguished Frenchmen, should suffice: 

1. In awarding FOURIER the prize in 1811 the judges, among whom were LAGRANGE, 
LAPLACE, and LEGENDRE, observed "that the way the author arrives at his equations 
is not exempt from difficulties, and his analysis still leaves something to be desired, be 
it in generality, be it even in rigor." (It is amusing to note that not one of the three famous 
judges was a stickler for tight proofs: Each of them had at least once been reproached 
in print by some great contemporary mathematician for failing to maintain the rigor 
even then considered sufficient.) 

2. N. BOURBAKI writes in the chapter on integration in his Elements d'histoire des 
mathernatiques, Paris, Hermann, 1960, " ... the proofs of Fourier are altogether devoid 
of rigor, and their range of validity is not clear .... " (While a mathematician today 
who examines proofs by HUYGENS, NEWTON, LEmNIz, the BERNOULLIS, and EULER 
may find some gaps and errors as well as frequent imprecision, no competent judge 
has ever suggested that they were" altogether devoid of rigor". Among mathematicians 
commonly reputed· great, FOURIER sets a record.) 

Only the first of these quoted criticisms and of it only the first part concerns our 
tragicomedy. We need to mention here, once and for all, two particular points of 
weakness and possible ambiguity. 

1. "Molecules". Almost always "molecule" and "une portion infiniment petite" 
are interchangeable terms, meaning what would today be called an "element of volume"; 
such "molecules" have volume, shape, etc. (e.g., in the essential arguments in §127 
and §§lSl-lS4). These are the only "molecules" to which mathematical analysis is 
applied anywhere in the book, and this fact, along with FOURIER'S descriptions in 
words, justifies my stating his assumptions, e.g. (4D.6), in terms of integrals over 
volumes. On the other hand, in some places FOURIER speaks of a "material point". In 
others, an infernal confusion of points and small elements rules unchallenged, for 
example in §S9. 

2. Differences of temperature. FOURIER, well aware that units may be selected 
arbitrarily, nearly always takes increments of temperature as being from 00 to lOin 
intentionally arbitrary units. Sometimes he regards this difference as being just what it 
is; more often he treats it as an infinitesimal quantity. This ambiguity, although it may 
confuse the reader, does not mirror any defect inherent in the mathematical arguments, 
which are cleared (insofar as this one matter is concerned) by expression in general 
units, and so cleared they are presented in the text of this essay. 
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effects are subject is independent of any hypothesis: It requires only 
attentive examination of the principal facts that common observations 
have indicated, facts which have been confirmed by precise experi­
ments .... 

The action of heat tends to dilatate all bodies,-solid, liquid, or 
aeriform; it is this property that renders its presence visible. 

The first basic assumption is stated in §26: 

To raise a mass ... of a certain weight. .. from the temperature ° to 
the temperature 1, it is necessary to add a new quantity of heat to that 
which was already contained in this mass. The number C, which denotes 
this quantity of heat added, is the specific capacity of heatl ... ; ... C 
has very different values for different substances. 

That is, C is a material parameter, what today would be called a constitutive 
coefficient. Except for a single comment to the contrary in §433, FOURIER 

seems to regard C as constant for anyone material. 
Next (§27): 

If a body of specified kind and specified weight ... occupies the 
volume V when the temperature is 0, it will occupy a greater volume 
V + 11 when it takes on the temperature 1, that is, when the heat that it 
contains at the temperature ° has been increased by a new amount C, 
equal to its specific capacity of heat. But if instead of adding this quan­
tity we add zC ... , the new volume will be V + 8 instead of V + 11. 
But experiments show that if z = t, the increase of volume 8 is only t 
the total increase 11, and that in general the value of 8 is zl1 when the 
quantity of heat added is zC. 

Next (§28): 

This ratio z of the two quantities of heat added, zC and C, which is 
also that of the two increases of volume 8 and 11, is what is called the 
temperature . ... 

FOURIER remarks (§29) that the linear rule of expansion he has just stated 

is exact only in the cases in which the bodies in question are subjected 
to temperatures far from those which determine their change of state. 

1 FOURIER seems not to distinguish specific heats for different circumstances. Here and 
in §27 he calls two different quantities "la capacite specifique de chaleur". Cf also the 
distinction between "specific" quantities per unit mass ("weight") and per unit volume 
made in §l59. 
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It would be unjustified to apply these results to all liquids; in regard to 
water especially, the dilatations do not always follow the increments 
of heat. 

In general, temperatures are numbers proportional to the quantities 
of heat added; in the cases we shall consider, these numbers are pro­
portional also to the increments of volume. 
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At only two places in all the rest of the book does FOURIER refer again to 
the changes of volume resulting from flow of heat. In §53: 

Heat is the principle of all elasticity; it is its repulsive force that con­
serves the shapes of solid masses and the volumes of liquids. In solid 
substances the neighboring molecules would yield to their mutual 
attraction if its effect were not destroyed by the heat that keeps them 
apart. 

This elastic force is greater in proportion as the temperature is higher; 
it is for this reason that bodies expand or contract when their tempera­
tures are raised or lowered. 

In the fourth from last paragraph of §433, the very last section in the book: 
"the faculty of solids for expansion ... is not at all the same at different 
temperatures", but "for the great natural phenomena ... it is justified to 
regard the values of the coefficients as constant." 

4D. Critique of FOURIER'S Premisses 

It is strange that FOURIER, with his vaunted knowledge of experiment, 
could have claimed that addition of heat to a body would never make it con­
tract. Ice floats upon water, and the Accademia del Cimento had reported in 
1670 that the density of water at atmospheric pressure reached a maximum at 
a temperature above the freezing point. In 1804, a few years before FOURIER'S 
first published announcements of his work on the conduction of heat, HOPE 
had read a description of a beautiful and precise experiment, from which he 
concluded that the dividing temperature was about 4°C. HOPE'S results were 
published in 1805, not only in Scotland and England but also in France1• 

During the next year RUMFORD 2 read to the Institut an account of his experi­
ments to show that water at 41°F sinks in water at 32°F. This paper was 

1 For a brief account of HOPE'S work and references to twelve publications on the subject, 
by various authors, before the appearance of FOURIER'S treatise, see §VIIlC2 of Volume 2 
of 1. R. PARTINGTON'S An Advanced Treatise on Physical Chemistry, London etc., 
Longmans, 1951. 
2 See Chapter 5 of S. C. BROWN, Benjamin Thompson-Count Rumford, Oxford etc., 
Pergamon Press, 1967. 
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published in five different journals. It was not only FOURIER who ignored 3 

this work. He was joined by every early theorist in thermodynamics 4, for 
every one of them, either explicitly or tacitly, at one point or another used 
the constitutive inequality 

Ay > 0 . (2C.5)lr 

KELVIN's observation in 1854 that sometimes Av < 0 will be discussed below 
in §9F. 

FOURIER'S assertion in §26 amounts to 

Q=CM8 (4D.l) 

M is the mass of the body in question, and C, the" specific capacity of heat", 
is characteristic of the substance of which the body is composed. [Here the 
body is rigid.] In §27 FOURIER considers an expansible body and asserts that 

Q = kV. (4D.2) 

FOURIER regards C and k as being constant, or nearly so, for a given body. 
[What we here denote by k is not what FOURIER in §27 denotes by C, which 
DARBOUX silently emends to Co.] 

If C and k are both constants, and if both (1) and (2) hold, then obviously 

k 
8 = MC (V + const.) . (4D.3) 

Using subscripts 1 and 2 to denote quantities associated with the first and 
second additions of heat as described in §27, we see that 

Jt2 Qdt 8 8 to V2 - Vo 2 - 0 

Jtl Qdt = V1 - Vo 81 - 80 ' 
to 

(4D.4) 

as FOURIER claims there. 
Although FOURIER uses frequently several terms involving the words 

"specific" and "heat", he never describes the circumstances to which they 
refer. Neither does he use the term "latent heat" except in reference to 
fusion. Nevertheless his claims, though absurdly special and unjustified by 
the experimental facts available to him, are perfectly consonant with the 
Doctrine of Latent and Specific Heats: 

Q = Ay(V, 8) V + Ky(V, 8)8 . 

3 We cannot justly regard FOURIER'S vague statement about water, quoted in the preced­
ing section, as acknowledgment of anything but failure of linear response. LAVOISIER & 
LAPLACE refer to the isobaric maximum density of water at the very beginning of an 
experimental paper of 1781/2, reprinted in (Euvres de Lavoisier 2,739-764. 
4 In Concepts and Logic BHARATHA & I construct a thermodynamics along classical lines 
without assuming that 'lIT be invertible for 0 when V is held constant, but in order to do so 
we have to take far greater care in the mathematics than any classical author seems to 
have been able to afford. 
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Either Av or Kv may be chosen at will, and then the other is determined by 
the relations 

Av = k (1 - !c) , 
Kv = MC (1 _ ~v) , 

as the reader will easily verify. 

(4D.S) 

FOURIER cannot have intended his slipshod remarks about temperature 
to serve as a definition or a searching inquiry into the concept. We may only 
conjecture that he thought any book on heat ought to explain temperature. In 
the mathematical theory which it is his book's purpose to present, FOURIER 
never makes use of these preliminaries. 

Although FOURIER writes much about heat and its flow from place to 
place, he never tells what he means by it 5. In accord with the opening sentence 
of his book, he has no need to do so. He is concerned only with its effects 
upon the temperature, not with its nature. 

In effect FOURIER treats both temperature and heat as primitive concepts, 
in need of no definition. Except in his preliminary remarks about thermo­
meters, he never makes use of any relation between volume, heat, and tem­
perature; a fortiori, he never calculates any change of volume. He treats 
bodies as if they were rigid. His first operative axiom, which he never states 
openly, is that for a body occupying the region "Y 

(4D.6) 

The field C is a function of 6, generally taken as constant. We may call it the 
specific heat per unit mass if we wish to. 

Since 6, too, is a field, various sorts of time derivatives might appear where 
we have written 6. In the case of a rigid body, to which FOURIER devotes 
nearly all of his work, there is no possible ambiguity, and (6) must mean 

Q = [ pC ~6 dV . 
."f" t 

(4D.7) 

Further axioms, of course, are necessary if a theory of conduction is to be 
constructed. 

It is difficult not to conclude that FOURIER adopted the Caloric Theory of 

5 In §33 FOURIER mentions "rays of heat", and he develops this idea in §§40-47 in his 
analogy between heat and light; in §52 he says heat is not at all like a fluid; in §54 he 
asserts that the equilibrium of molecular attraction and heat (repulsion) "is stable; 
that is, when it is disturbed by any accidental cause, it re-establishes itself." All this is 
merely physics in the eighteenth-century sense of the word: speculation about the 
nature of things, with no quantitative interrelation of phenomena. 
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heat in the sense we have explained in §3C; on the other hand, FOURIER him­
self never says so, and many of his results and applications do not require it. 
Nevertheless, in §4H we shall see that his ideas are compatible with general 
notions if and only if the Caloric Theory is adopted. 

I have not studied the memoirs of POISSON on conduction of heat. In his 
textbook 6 he is neater and perhaps somewhat clearer in regard to fundamentals 
than was FOURIER. He clearly adopts the Caloric Theory of heat, which he models 
in terms of a concept of "molecular radiation". Then old, he takes no note of 
the works of CARNOT and CLAPEYRON, which had been published in 1824 and 
1834, respectively. 

4E. FoURIER's Concept of the Flux of Heat, and his 
General Differential Equation and Boundary Condition 

In §128 (and again in §142) FOURIER finally states his general partial 
differential equation for the temperature field 1 : 

BO 
pC Bt = KilO (4E.l) 

the positive coefficient K, which (§161) bears the physical dimensions of heat 
per unit time, length, and temperature, is the specific conductivity 2 of the 
body. In §146-147 he at last obtains his general condition to be satisfied at a 
boundary having outer unit normal n: 

Kn·grad 0 + h(O - Oa) = 0 , (4E.2) 

in which Oa denotes the temperature of a steady stream of circumambient air, 
while h is the superficial conductivity 3 of the body in this specified environ­
ment. 

6 POISSON [1835, Chapters I-V]. 
1 Here 8 stands for a function of x and t, while earlier it stood for a function of t alone 
or an independent variable. 
II §68: "the constant flux of heat that in a unit of time ... traverses a unit of surface in 
the ... solid, if it were [formed of a given substance." §69: Ula conducibilite speci­
fique", ... , "la conducibilite ou conductibilite dans les differentes substances" repre­
sents "the quantity of heat ... that flows in one minute across a surface one meter 
square ... " in certain specified, homogeneous conditions corresponding to a prescribed 
difference of temperature. §73: "la conducibilite specifique interieure". §430: "cette 
propriete que les physiciens ont appelee conductibilite ou conducibilite". §433: "mesure 
de la permeabilite". BlOT'S term (§4A) was "la conductibilite". 

From its introduction until §146 FOURIER denotes this coefficient by K; from §146 
onward it is frequently misprinted as k, which FREEMAN once and DARBOUX always 
silently restored to K. 
3 §§30, 36: the quantity of heat that flows out through unit area of the surface in unit 
time, the difference 8 - 8a being supposed unity. §60: "la mesure de la conducibilite 
exterieure". §146: Ula conductibilite relative a rair atmospherique". §161: "la con­
ducibilite de la surface". §433: "qui mesure la penetrabilite de la surface". 



4E. FOURIER'S CONCEPT OF THE FLUX OF HEAT 61 

[By the time the reader has progressed this far, he may find it difficult to 
remember where, in the endless preceding parade of special cases, experiments 
real or fancied, and boasts of vast importance for his work through which 
FOURIER creeps toward these few specific statements, are to be found the 
physical principles he claims to have established and upon which he bases 
these general equations.] At the very end of his book (§429) he adds some 
remarks about the nature and origin of his ideas. [Justly] he regards himself 
as the first to introduce the essential concept offlux afheat. "This notion of 
flux is fundamental. Insofar as a person has not acquired it, he cannot form 
an exact idea of the phenomenon and of the equation that expresses it." 
FOURIER never denotes the flux of heat by a symbol. [If we represent it by qeD), 
we may say that the fundamental relation he uses again and again though 
never fully states is 

qeD) = q'D , q = -Kgrad8, (4E.3) 

at points interior to conducting bodies. Here D is the outer unit normal to a 
closed surface. If q(D) > 0 at a point on the surface, heat is flowing outward 
there. The surface is a boundary, either an actual boundary where some given 
body is in contact with its surroundings, or the conceived boundary of some 
part inside such a body and hence adjacent only to other parts of that same 
body.] FOURIER does not write (3)2 as such, but he does convince himself that 
the values q(D) for three orthogonal vectors D form what we should now call 
the rectangular Cartesian components of a vector field (§§149-150). 

According to FOURIER (§58, also §429, 1°), experiment shows us that "all 
other things being equal, the quantity of heat received by one molecule from 
another [infinitesimally near one] is proportional to the difference of the 
temperatures of these two molecules .... " [By "molecules" FOURIER means 
here elements of volume, as he usually does.] He goes on to make it clear 
that the "quantity" is in fact a time rate (§59); If m and n are "two equal 
molecules" an "extremely small distance p apart", then "the quantity of 
heat m receives from n" in the" infinitesimal duration dt of the instant" will 
be given by (8' - 8)t/>(p)dt, in which "t/>(p) is a certain function of the distance 
p. a function which in solid and liquid bodies becomes 0 when p has a sensible 
magnitude. This function is the same for all points of some one given sub­
stance; it varies with the nature ofthe substance." [Just as FOURIER'S preced­
ing statement of this, his fundamental principle, is misleading in that it fails 
to mention t/>(p), so also is his final statement of it in §429, 1°. 

[From this statement FOURIER comes nearer to the general law (3)] by 
appeal to special cases (§§65-72, 81-97), [and the reader must trudge through 
pages and pages of remarks about linear functions, dignified into] theorems 
on steady fields of temperature. In §§65-68 FOURIER convinces himself that 
for a steady distribution of temperature in a solid confined between planes a 
distance L apart and having the temperatures 81 and 82 , the flux of heat 
across the planes is the constant K(81 - 82)/L [in conformity with (3)]. By 
the time he reaches §96 he can affirm that "one of the principal elements of 
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the theory of heat" remains to be revealed: "to define and measure exactly 
the quantity of heat that flows at each point of a solid mass across a plane of 
given direction." In §127 he states (3), partly in words, for the faces of a cube. 
Again he resorts to special cases (§§132-138). He claims to prove as a theorem 
(§§140-141) that if q(n) is the outward flux of heat across an interior surface 
whose outer unit normal is n, then 

00 
q(n) = -K on . (4E.4) 

By reduction to co-ordinates FOURIER then (§149) arrives at (3)1' [We know 
that (4) is equivalent to (3)2' but I find no such statement in FOURIER'S book.] 

The same sort of progress leads FOURIER to conclude (§§30-32, 60, 432) 
that on the bounding surface f/ of a body exposed to a steady current of air 
which is maintained at the temperature Oa, the flux of heat qf/ from the body 
is given by 

(4E.5) 

provided 0 - Oa be sufficiently small. It is intended to express the losses 
effected "either by radiation or by contact" (§433, also §36). The former can 
be made much smaller by polishing the surface; a piece of metal cools much 
faster if its surface is covered by a black coating (§32). Thus the coefficient 
depends upon "the various states of the surface" as well as the substance 
making up the body (§32); it depends also on the speed of the current of 
air (§30). 

FOURIER regards (4) as his own discovery, without any precursor. As for 
(5), he states (§429, 3°), "Newton was the first to consider the law of cooling 
of bodies in air. That which he assumed for the case when the air is swept 
away with constant velocity squares the better with experiment, the less is the 
difference" of temperatures; it would hold exactly if this difference were in­
finitely small." The extent of FOURIER'S indebtedness to NEWTON, like his 
indebtedness to BlOT, will remain a matter of doubt, especially since NEWTON'S 
statements are obscure and BlOT'S final work is not precisely dated. Cj. §4A, 
above. FOURIER was thrifty in acknowledging the work of his predecessors 4. 

4 In §429, 30: 

Amon tons made a remarkable experiment on the establishment of heat in a 
prism, one end of which is subject to a specified temperature. Lambert ... was 
the first to give the logarithmic law of decrease of the temperatures in this prism. 
Messrs. Biot and de Rumford have confirmed this law by experiments. 

The "logarithmic law" is (4A.2). 
In a sloppy summary of FOURIER'S manuscript of 1807 P[OISSON] [1808] stated that 

"the known principle of Newton" implied the "logarithmic law"; that the latter had 
been verified in a direct experiment by BlOT [1804] (cj. §4A, above); and that that 
experiment "can thus serve as demonstration of this principle, the only one that Mr. 
Fourier borrows from physics, and on which he rests all his analysis." Whether to prove 
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In some parts of his work FOURIER sees the essential difference between 
(4) and (5). The conductivities h and K have different physical dimensions 
(§161). FOURIER considers (4), which refers to infinitesimal differences of 
temperature, to be an exact and general law of nature. He is hesitant to 
recommend (5) except for small differences of temperature; he regards it as 
"observed" rather than "exactly known". In "several important cases" it 
is "replaced by a given condition which expresses the state of the surface, be 
it constant or variable or periodic" (§432, also §§31, 60). However, in the 
mathematical work FOURIER does not consider any such case. Elsewhere 
(§429, 2°, also §154) he seems to regard (5), too, as a natural law he himself 
has had the genius to formulate: 

It was not deduced from particular cases, as has been groundlessly 
supposed, and it could not have been; the proposition it expresses is not 
of the kind to be discovered by induction; it cannot be known for some 
bodies yet remain unknown for others; it is necessary for all, in order 
that the state of the surface not undergo an infinite change in a determined 
time. 

[We may see5 that (4) and (5) are special cases of the fundamental principle 

so much by analysis after having "borrowed" so little from physics is a virtue, or 
whether it is a failing to let so much physics go unrepresented by the analysis, must 
remain a secret locked in POISSON'S tomb. BlOT had let his readers think he had derived 
from "NEWTON'S law of cooling" whatever it was he did derive, so POISSON'S remarks 
may be meant to imply only that FOURIER'S principles are at bottom those already 
sketched by BlOT. As we have seen above in §4A, it was only in 1816 that BlOT printed 
the lesson he had learned from LAPLACE some time before: "NEWTON'S law of cooling" 
does not apply to the conduction of heat. 

Be all that as it may, the widespread misconception that FOURIER'S law of heat 
conduction expresses the same idea as "NEWTON'S law of cooling" may derive from 
POISSON'S summary. 
5 As the above quotations show, FOURIER was neither clear nor consistent in regard to 
his fundamental principle. In his first surviving draught, written about 1805 but not 
published until 1972 (cf. Footnote 2 to §4B), FOURIER obtained instead of (1) the equation 

88 
pC 8t = K1l.8 - h8 . 

He seems to have been misled by the accepted "logarithmic law" (4A.2) and its 
generalization (4A.5), which BlOT had obtained in 1804. As BlOT'S paper clearly 
states, in a bar exposed to the air the radiation from the sides contributes to the balance 
of heat at each point if the bar is idealized as a line. Effects represented by boundary 
conditions in a three-dimensional theory must be absorbed into the conditions that 
hold at interior points of a corresponding thin body. Classic examples occur in the works 
of the BERNOULLIS and EULER: In the hydraulics of flow in tubes there is a term repre­
senting change of cross-section, in the theory of the elastica the effects of tension in the 
fibres of the cross-section are represented by a couple at each point, etc. FOURIER'S 
blunder suggests that in the physics of heat he was more indebted to BlOT than he 
cared to acknowledge. 

By 1808 FOURffiR had seen and corrected his mistake. 
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FOURIER laid down in §59: tfo{P) = 0 when p has "a sensible magnitude", 
while for infinitely small p 

tfo(p) = {-ff for solids and liquids , (4E.6) 

h for air . 

The temperature of the air is supposed to be uniform in the interior of the 
current but to jump discontinuously on the boundary to the value 8 of the 
solid or liquid body with which the air is in contact. This interpretation is 
consistent with the then accepted belief that air did not conduct heat.] 

The fundamental principle to which FOURIER appeals to derive his funda­
mental equations (I) and (2) expresses the conservation of heat. He does not 
state this principle clearly, but he uses it again and again. It yields at once the 
general boundary condition (2), provided (5) be admitted. As FoURIER writes 
(§148), "the quantity of heat which tends to leave in virtue ofthe action of the 
molecules is always equivalent to that which the body must leak into the 
medium". In other words, the quantity q(n) as calculated from (4), inter­
preted as a limit taken from inside the body, must equal qv as given by (5). 
FOURIER applies this reasoning in special cases (§§115, 129) and finally in 
general (§§146-148). The same principle yields the partial differential equation 
(I) at interior points. FOURIER writes (§150), "if in the interior of the solid 
an element of any shape is conceived, the quantities of heat that penetrate 
this polyhedron through its different faces compensate each other reciprocally. 
More exactly, the sum of the terms offirst order that enter into the expression 
of these quantities of heat received by the molecule is zero, so the heat that 
accumulates there in fact and causes its temperature to vary can be expressed 
only by terms infinitely smaller than those of first order." It is "the heat that 
accumulates there" that has already been determined in one way by 
FOURIER'S' basic assumption 

f 08 
Q = 'f" pC at dV • (4D.7)r 

To obtain another expression for it, FoURIER calculates the net flow of heat 
into a molecule. He does so thrice, once in §127 in the context of a cubical 
body, once in §142 for a body of any form, and again in §§151-154; the 
molecule is an infinitesimal cube or truncated prism with rectangular base, 
and the proofs are the same in concept 6 , the first two being almost identical, 

6 The third proof is presented in the context of a boundary point. As DARBOUX remarks 
in a footnote, it does not generally apply at such a point, since FOURIER assumes that 
the point in question lies upon one of the faces of a convex polyhedron interior to the 
conducting body, which is always true of interior points but not generally of boundary 
points. DARBOUX'S explanation of how to proceed at a boundary point rests on properties 
of the gradient and is therefore restricted to use of FOURIER'S constitutive relation (3). 
In failing to see the difference between a constitutive relation and a generic principle, 
DARBOUX follows the tradition of nineteenth-century thermodynamics. 
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word for word. The result FOURIER obtains is the differential equivalent of 

Q = Iv div (K grad 8)dV . (4E.7) 

Comparison with (4D.7) yields 

pC :: = div (K grad 8) , (4E.8) 

which reduces to (1) when K is constant 7• 

FOURIER'S final formulation of his theory provides three material coeffi­
cients to represent the variety of materials, bounding surfaces, and environ­
ments: pC, K, and h. They are (§433) "variable magnitudes which depend 
upon the temperature or the state of the bodies. However, in applications to 
the natural questions of greatest interest to us, these coefficients may be 
given values which are sensibly constant." The specific conductivity K prob­
ably varies considerably with temperature; experiments indicate it to be 
"more variable" than pc. The difficulties attendant upon the superficial 
conductivity h have been mentioned above. 

Most of the rest of FOURIER'S book concerns in effect questions of pure 
analysis which do not lie within the scope of our drama. An exception is 
furnished by §§160-161, which discuss physical dimensions and may well 
provide the earliest explicit reference to a dimension independent of mass, 
length, and time. 

It must now be remarked that each undetermined magnitude or con­
stant has a dimension proper to itself and that the terms of anyone 
equation couId not be compared if they did not have the same dimen­
sional exponent. We have introduced this consideration in the theory 
of heat so as to render our definitions firmer and to serve as a check 
upon the calculation. It derives from primordial notions about the 
quantities. For this reason, in geometry and mechanics, it is equivalent 
to the fundamental lemmas that the Greeks have left us without 
demonstration .... 

If its own exponent of dimension is attributed to each quantity, 
[every] equation will be homogeneous, because each term will have the 
same total exponent. 

Numbers representing areas and volumes have the exponents of length 
2 and 3, respectively. Angles, sines, logarithms, and other abstract numbers 
do not change with choice of the unit of length and hence ought to have the 

7 In the body of the book FOURIER gives only (1) and special cases of it, but in §429, 2°, 
he states (8) in words. 
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dimension O. FOURIER then provides a dimensional matrix, probably the 
earliest example: 

x 
t 
(J 

K (specific conductivity) 
h (superficial conductivity) 
pC (heat capacity per unit volume) 

Length 
1 
o 
o 

-1 
-2 
-3 

Duration 
o 
1 
o 

-1 
-1 

o 

Temperature 
o 
o 
1 

-I 
-I 
-I 

[FOURIER leaves the units of heat unmentioned, because they cancel out of all 
his general equations.] He remarks (§§69, 159) that the dimensions of mass, 
while they are used to express p and C, cancel out in the product pC, which 
is all they contribute .to the theory of heat, and from time to time he writes 
c for pC. 

4F. Critique of FOURIER'S Concepts and Methods 

Although FOURIER perceives that the fluxes of heat in three orthogonal 
directions form components of a vector field, his proof of this fact (§§149-
ISO) is circular. It rests upon use of the constitutive assertion 

o(J 
q(D) = -K­on 

and thus 31llounts to no more than verification of the then already known 
fact that the gradient of a scalar field is a vector field 1. The physical concepts 
are thereby obscured. Logically, it is necessary first to show that q is a vector 
before one can justly set it equal to K grad (J. FOURIER did not see any such 
need. 

FOURIER'S basic but never clearly stated assumption about the flux of heat 
amounts to the following: /fj/" is a part of the body, on its bounding sUrface 
OJ/" there is a scalar field q(x, D, t), D being the outer unit normal to OJ/", such 
that 

Q = -ia.f'" q(D)dA . (4F.I) 

f ... dA denotes integration with respect to surface area, and the arguments 

1 FOURIER'S mathematics is clumsy as well as loose even in this regard. DARBOUX 
remarks in a footnote to the derivation of (4E.4), .. In deducing the consequences of this 
rule, Fourier could have simplified the exposition and avoided some uncertainties 
which we shall note below." 
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x and t are understood unwritten. The scalar field qeD) upon 8"1'" is the flux of 
heat through 8"1'". Comparison with FOURIER'S basic assumption 

Q =f peo8 dV 
or ot 

or with the more general idea that Q vanishes along with the volume of-r, 
makes it possible to prove that there is a vector field q(x, t) over -r such that 

qeD) = q·D . (4E.3)1r 

The field q over -r is the heat-flux vector field. This fundamental theorem on 
the flux of heat, which is in no way contingent upon FOURIER'S assumption 

q = -Kgrad 8 , (4E.3)2r 

was first stated and proved by STOKES 2 in 1851. STOKES merely adapted to 
the case of a scalar field defined on 8"1'" the argument invented by CAUCHY in 
1823 so as to prove his great theorem of the existence of the stress tensor. In 
FOURIER'S book there is not even a hint toward proof of (4E.3)1, which 
is simpler than CAUCHY'S theorem because it relates a scalar to a vector 
rather than a vector to a tensor. We cannot attribute to FOURIER the funda­
mental theorem, which is a cornerstone of rational thermodynamics today. 
We can only say that he introduced and developed two important special 
instances of the flux of heat. 

The fundamental theorem (4E.3)1 follows from the generic principles, 
common to all kinds of conducting bodies. In contrast, Fourier's law of heat 
conduction (4E.3h, which defines a particular kind of conductor, is a constitu­
tive relation. Constitutive relations, which define particular materials within 
a general theory, serve to model the diversity of natural bodies 3• FOURIER 
shows no sign o( seeing this distinction. 

2 STOKES [1851]. The theorem has two parts: (1) the scalar function q(x, D, t) is a 
linear function of D, and (2) every linear scalar function of vectors has a unique repre­
sentation as an inner product. While the second is now a standard result in linear algebra, 
it was not known in the days of CAUCHY and STOKES, so their arguments had to include 
a proof of it as well, in the appropriate special cases. 
3 In his note on p. 120 of Volume 1 of the (Euvres de Fourier DARBOUX writes .. Fourier 
... presumes tacitly that the solid body enjoys the properties we express today by 
saying that the body is isotropic." This remark is true but fails to reveal how enormous 
is the shortcoming. As we know from MAXWELL'S second kinetic theory of gases, even 
in the case of an isotropic fluid the flux of heat need not be determined by grad (J or 
even by the temperature field alone. 

When the linear theory is not restricted to isotropic materials, the constitutive 
relation is 

q = -Kgrad (J , 

K being a tensor called the thermal conductivity. This more general relation was first 
obtained by DUHAMEL [1832], who employed a molecular model which STOKES [1851] 
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Once we have (4E.3)1 and (1), by use of (4D.7) we obtain 

f PC a8 dV = -f q.ndA. 
r at or 

(4F.2) 

We recognize this statement as providing the formal basis upon which 
FOURIER'S theory rests. It expresses two ideas: Heat is neither created nor 
destroyed, and the density of heat in a body is proportional to its tempera­
ture. The former reflects one aspect of the Caloric Theory of heat, another 
aspect of which we have specified and developed in §3C in connection with 
the work of LAPLACE. 

As we know today, from (2) we may easily prove that at a given element 
of surface, the flux of heat into one side must equal that out of the other. 
If we denote limits from the two sides of a surface by + and -, then 

(4F.3) 

That is, the component of q normal to af is continuous at the surface, while 
the component tangential to af need not be. Because FOURIER asserts and 
uses (3) in §148 in connection with his boundary condition (4E.2), we might 
easily be misled 4 to attribute proof of it to him, but proof he never attempted. 
He seems to have regarded the statement as obvious, denied by no-one. Such 
it is if heat is neither created nor destroyed, but not more generally. The 
ritualistic prestidigitation in which FOURIER habitually took refuge was iII 
suited to a conceptual problem such as the proof of (3) as a theorem. It 

was to call "the hypothesis of molecular radiation" and to reject emphatically. This 
hypothesis led DUHAMEL to conclude that K was symmetric: KT = K. STOKES gave a 
phenomenological reason in favor of this conclusion; controversy regarding it continues 
to the present day; the position has not changed since the summary of it by TRUESDELL 
[1969, Chapter 7]. 
4 TRUESDEcL & TOUPIN [1960, Footnote 3 on p. 610] succumbed to the temptation. 
Retrospective generosity is a sin easy for the creating scientist, if he is honest, to fall 
into. Certainly he shrinks from letting his readers infer that he regards as his own some 
idea that may have been familiar to IMHOTEP or Labor-loving JOHN. As Historians of 
Science run no such risk (the subsets of the null set being the null set), for them the 
Devil has other shifts. 

Another instance which may seem one of retrospective over-generosity but is not is 
the modern name "Fourier inequality" for the condition 

q·grad8~0, 

namely, the flow of heat is always from a hotter to a colder place, never from a colder 
to a hotter,. Because FOURIER never treated q except when it was subject to the con­
stitutive relation (4E.4), he could not have stated this inequality except in the form 

K~O . 

Although I cannot find any place where he does affirm this constitutive inequality 
outright, certainly throughout his work he takes K as positive and never entertains any 
other possibility. In this sense we may justly associate the general inequality q. grad 8 ~ 0 
with FOURIER'S name, though we should stop short of attributing it to him. 
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was left to CAUCHY to face the concepts as such, and in the more difficult 
context of tensor fields. I refer to the condition asserted by POISSON in 1829 
and proved by CAUCHY in 1841: At a weak singular surface the balance of 
linear momentum requires that the traction vector be continuous. 

If q(n) is a continuous function of x-something that at a point on the 
boundary of a conducting solid and the circumambient air it certainly is not, 
at least in FOURIER'S view-we may prove from (2) that 

q( -n) = -q(n) . (4FA) 

The modem student regards this condition, a counterpart of CAUCHY'S 
fundamental lemma in continuum mechanics, as an overriding requirement, 
which every constitutive relation must satisfy. Since FOURIER'S constitutive 
equation (4EA) does satisfy it, we may presume that he saw no need to 
isolate it from his several specializing assumptions. The one critical point 
where we might expect him to have used (4) is in §§146-148, but it is not 
needed there 5 : FOURIER assumes that the flux of heat out of the boundary 
into the air is given by 

(4E.5)r 

while the flux into that boundary is q( -n) on the understanding that q(n) is 
given by FOURIER'S usual formula 

08 
q(n) = -K on . 

FOURIER uses his constitutive relation (4EA) in every instance where q 
appears. In not all, however, does it play an essential part. In his three deriva­
tions (§§127-128, 142, 151-154) of his partial differential equation 

08 
pC at = K~8 (4E.l)r 

it serves only to lengthen the formulae. What he actually proves, crudely 
and in terms of infinitesimal elements, is the result we should now write in 
the form 

1f'" q.ndA = t. (div q)dV , (4F.5) 

that is to say, the divergence theorem. The argument is step by step parallel 
to the one given in the 1750s by EULER to calculate the resultant force of a 
field of pressures: 

f/W pndA = L (grad p)dV , (4F.6) 

6 So far as I can see, the only way to obviate DARBOUX'S objection to FOURIER'S treat­
ment of boundary points (Footnote 6 of §4E) is to begin from a proof of (4) as a 
consequence of generic principles, independent of constitutive relations. 
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of course stated by EULER likewise in terms of differential elements; to derive 
(5) when (6) is known is no more than a student's exercise. Elsewhere6 FOURIER 
refers to EULER'S hydrodynamical equations: "It would be useless to recall 
here the well known demonstrations of these equations. We presume the reader 
bears in mind the elements of this question as they are presented in the works 
of EULER (Berlin M emoires for 1755)." Possibly FOURIER, always pitiably eager 
to claim something new even when there is naught, refers obliquely to this 
debt when he writes (§429, 1°) that his proofs are "no less exact than those 
of the elementary propositions of mechanics", though he does not specify 
which propositions he has in mind. 

The foregoing remarks suggest that while FOURIER could handle well the 
rather simple special cases he introduced, he fell short of the foresight, the 
depth of the greatest mathematicians, for whom a key special case solved 
served to set a new problem. Unlike the giants of mathematical science from 
HUYGENS to MAXWELL, FOURIER is not indefatigable in the search for logical 
threads and essential hypotheses. In general, he silently adapts to his ends the 
mathematics created by EULER and his predecessors for continuum mecha­
nics. Not only does FOURIER fail to create any new arguments or concepts, 
but also he is vague and sometimes awkward in his use of known methods. 

To complete this critique, we must return to FOURIER'S physical principles, 
already discussed in part in §§4C-4E. FOURIER'S basic concept is the flux of 
heat. No absolute amount of heat appears anywhere in his book. Thus, it 
seems, his theory implies not only no limit to the amount of heat a body may 
receive, but also none to the amount that may be extracted from a body. 

As we saw in §§4B and 4C, FOURIER regarded an increase of volume as the 
inevitable companion of an increase of temperature. Nevertheless the theory 
that he constructs allows the temperature field to be calculated without taking 
account of the expansion or deformation to which heating gives rise. If the 
temperature changes in the course of time, as it generally will according to 
FOURIER'S theory, the body's size and perhaps also shape will change. The 
boundary of the body, therefore, will move. It cannot then be correct to apply 
the boundary condition at the points where the boundaries were initially, 
for generally those points now lie outside of the body or in its interior, no 
longer on its present boundary. Because we do not know where the present 
boundary is, we do not know where to apply FOURIER'S boundary condition. 
Thus, except when the body is rigid, FOURIER'S theory provides only an 
approximation of unspecified and inassessable nature, or a plain hoax. 

Though FOURIER nowhere says a word about the matter, in using his 
theory we are pretty well forced to forget all his preliminary statements about 
heat and temperature and to assume that the bodies he deals with do not 
expand when heated. We may charitably presume that at the beginning of 
his book he was describing thermometers, and that it is these thermometers 

6 FOURIER [1833] (posthumously published work of 1820). 
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he expects us to use when confirming his predictions about the differences of 
temperature in a rigid body. 

If we agree to regard FOURIER'S theory as appropriate to rigid bodies only, 
we can easily find its place on the framework of later concepts of heat. We 
write the axiom expressing balance of energy for a particular body in the 
form 

E + K=P+JQ. (4F.7) 

The four quantities Q, P, K, and E are functions of time alone, and J is the 
mechanical equivalent of a unit of heat (see §8A, below). Q we have en­
countered before; in a major special case it is given by (1). P is the power of 
the forces applied to the body, K is the kinetic energy of the body, and E, the 
internal energy of the body, is the value of an absolutely continuous function 
of mass: 

E = t.P€dV, (4F.8) 

€ being the field of specific internal energy at points within the body. Then 
for a stationary body 

. f o€ E = -r p ot dV . (4F.9) 

If € is the value of a function of f} and possibly also of variables which do not 
change when the body is at rest, then 

o€ = C of} 

ot ot ' (4F.1O) 

and (7) reduces to FOURIER'S effective starting point 

f of} 
Q = -r pC ot dV . (4D.7)r 

Of course FOURIER'S second effective basic principle (1) remains valid today 
for the special case in which all transfer of heat is by conduction. If, as we 
may do, we adopt FOURIER'S constitutive relation 

q = -Kgrad f) (4.E3hr 

at points inside an isotropic linear conductor, we recover FOURIER'S theory 
in full. Boundary conditions, of course, are adjoined, and FOURIER'S (4E.2) 
remains acceptable, in fact a major example. That is, for us FOURIER'S 

theory furnishes a description of workless dissipation, and all his solutions in 
special cases illustrate this fact. 

As we shall see in the following section, FOURIER did not have anything 
specific to offer in regard to deformable bodies, not only in general but even 
as described by the already well known Doctrine of Latent and Specific Heats. 
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His theory simply sets aside the phenomenon by which, certainly, we are 
able to measure temperatures. 

For a century before FOURIER'S time it had been customary in one theory 
after another to calculate the speed of propagation of small disturbances and 
to attempt to compare the calculated values with experimental data. Accord­
ing to FOURIER'S theory, differences of temperature are diffused instantly 
through infinite distances. Although this fact may be iIIustrated by several 
of FOURIER'S solutions for special problems, he does not remark upon it7. 
A fortiori, he does not attempt to explain or justify this physically implausible 
consequence of his theory. In later times it was to be seen as a major flaw, 
even a "paradox" repugnant to physics. 

4G. FOURIER'S Theory of the Conduction of Heat in Fluids 

At the end of his book (§429, 5°) FOURIER refers to the "various and diffi­
cult questions" concerned with the effects of changes of shape. He states that 
in 1820 he found the differential equations "which express the distribution 
of heat in liquids in motion ... , combined with changes of temperature." 
The memoir concerned incompressible fluids. An extract from it, followed 
by a draught, was published thirteen years later!. For FOURIER an "incompres­
sible" fluid is one whose density P is determined by the temperature alone 
and is unaffected by changes of pressure: 

P = Po[1 + h(O - b)] (4G.l) 

Po is the density when 0 = b, and h is a constant which "expresses ... the 
dilatability of the fluid mass. It is regarded as known from experiments." In 
his calculations and in most of his statements FOURIER chooses a scale of 
temperature such that b = O. FOURIER regards (1) as being approximate for 
small changes of temperature. [Indeed, it is a linear approximation to the 
relation p ;= f(O), which EULER in his paper of 1764 on the convection of 
heat in fluids had proposed and used as being appropriate to water but not 
to air]. Since generally P decreases when 0 increases, we expect that h < 0 
for most choices of b. 

7 Reading and rereading the mysterious §278, I have tried to find in it something about 
the matter, but I conclude that FOURIER'S refusal there to let the diffusion of heat be 
infinitely slow is no more than an excuse for passing from the discrete ring to a con­
tinuous one in LAGRANGE'S formal way. For me this kind of argument, while possibly 
suggestive toward conjecture, is neither physics nor mathematics. The earliest statement 
I can find in print that FOURIER'S theory gives disturbances of temperature infinite 
velocity of propagation is by J. STEFAN [1863]. 
1 FOURIER [1833]. 



4G. FOURIER'S THEORY OF HEAT IN FLUIDS 73 

FOURIER adopts without change the differential equations for the density 
and the pressure that EULER had published in 1757: 

:~ + div (pv) = 0 , (4G.2) 

p [: + (grad v)v] = -gradp + pb (4G.3) 

v is the velocity field, p is the pressure field, and b is the field of body force 
per unit mass. Although FOURIER refers his reader to EULER'S memoir of 
1755, in which "he gives these equations in a simple, clear form which in­
cludes every possible case, and he demonstrates them with that admirable 
clarity which is the principal trait of all his writings," FOURIER [manages to 
confuse matters] by using the word "molecule" in two senses 2 [which contra­
dict one another]. FOURIER'S final field equation is 

08 + div (Ov) = ! tl.8 at c' 
(4G.4) 

[This differential equation reduces to (4E.l) when v = 0; however, it does 
not do so when v = const.] 

To derive (4), FOURIER 3 gives an argument [which is copied step by step 
from one of EULER'S derivations of (3)]. What the argument shows is that 
for a material region 

:r (1.. f dV) = L (/ + fdivv)dV . (4G.5) 

FOURIER assumes that 

(4G.6) 

apparently he regards this statement as an obvious extension of (4D.6) to a 
deformable body. It expresses the idea that the quantity of heat associated 
with an element of volume dV is c8dV. FOURIER writes that he "regards as 
constant the quantity of heat that the mass contains when it is at the tem­
perature zero of melting ice ... " and that his theory merely balances the 
differences from "this common constant". [Thus he has the Caloric Theory 
of heat in mind.] His calculation shows that he regards c as constant. There­
fore, application of (5) to (6) yields 

Q = L. c(8 + 8divv)dV . (4G.7) 

2 The components ofv(x, t) are the "partial velocities of the molecule", so the molecule 
is a material point, yet p is "the pressure which is exerted against the molecule", so the 
molecule occupies a small region. In EULER'S work on fluids there is no such confusion; 
EULER refers consistently to "un element". 
3 FOURIER [1833, p. 603 of the (Euvres]. In this paper FOURIER uses the letter C for what 
he had denoted by pC or c in his book. For clarity we replace it by c. 
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With (7) in hand, FOURIER can copy his old derivation of (4E.l), and the 
result is (4). 

FOURIER suggests that usually h( 8 - b), which of course is a dimensionless 
increment of temperature from the constant value b, will be negligibly small, 
so the density will be uniform. In this case, which corresponds to what in 
hydrodynamics has always been called an incompressible fluid, FOURIER'S 

[somewhat uncertain] ideas about the relations between temperature and 
mechanical phenomena drop out of the picture. Since div v = 0, FOURIER'S 

field equation (4) reduces to 
cO = Kb.8 , (4G.8) 

[an equation nowadays still used to describe the conduction of heat in fluids 
of uniform specific heat and thermal conductivity, but of course not subject 
to FOURIER'S assumption that p = f(8)]. 

At the end of the note FOURIER writes a few words about gases. Although 
the relation betweenp, p, and 8 is "known exactly" from experiment, experi­
mental physics is not yet perfected sufficiently to determine "the relations 
between the densities and specific capacities of aeriform substances, and the 
property of receiving radiant heat." On the basis of remarks about the 
penetrability of gases by rays of heat, FOURIER claims that for aeriform 
bodies the governing equation "has a form very different from that we have 
found for solid substances. It is of an indefinite order, or, rather, it relates to 
that class of equations which include both finite differences and differentials." 

4H. Critique of FOURIER'S Theory of the Conduction 
of Heat in Fluids 

FOURIER'S theory rests on the assumption that p = f(8),fbeing a constitu­
tive function; while FOURIER adopts the special form (4G.1) for this function, 
we do not need to use it here. FOURIER'S assumption allows us to reduce 
(4G.2) to the statement 

f'(8) . . 
f(8) 8 = -dlV v 

Therefore we may write (4GA) in the form 

. K 
8 = OJ< b.8 , 

c 
* = (1 _ 8f'(8)) 

c c f(8) 

(4H.l) 

(4H.2) 

If the velocity field is known, we thus obtain two scalar equations to deter­
mine 8. We may suspect that two equations for determining one scalar field 
are one too many. Certainly some strange conclusions result. One is that if 
v vanishes, 8 must be a steady harmonic field: 88/8t = 0, b.8 = 0. The sort 
of decay of temperature through conduction that is the dominant feature of 
FOURIER'S theory for solids is thus excluded. The temperature of FOURIER'S 

fluid cannot change at a given point unless the fluid is in motion. If the flow 
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is isochoric, div v = 0, so the temperature is both convected: 8 = 0, and 
harmonic: flB = 0. 

FOURIER'S concept of heating as expressed by (4G.6) is strange. Perhaps 
it is motivated in byways of the Caloric Theory which I have not explored. 
Certainly it makes no use of the conceptual apparatus provided by the then 
widely accepted Doctrine of Latent and Specific Heats. Of course we do 
not expect anyone in FOURIER'S day to have used the structure based on the 
balance of energy, which we have sketched at the end of §4F; neither do we 
expect that the results for compressible substances obtained by anyone at 
that time will turn out to be compatible with that theory. On the other hand, 
the ideas represented by the Doctrine of Latent and Specific Heats suggest 
at once the proper generalization of (4D.6) to compressible fluids: 

Q = L. p(>"ov + K 08)dV , (4H.3) 

in which v == 1/ p and the coefficients K. and >"0 are given functions of v and B. 
In the Caloric Theory, to which FOURIER seems to adhere, there would be a 
heat density k(v, B) such that (el LAPLACE'S formula (3C.7» 

Q = ~ f-r pkdV = f-r pkdV , 

8k 8k 
>"0 = Ov' Ko = 8B • 

Be that as it may, directly from (3) and (4G.2) we conclude that 

Q = f-r (pK08 + >"0 div v)dV , 

(4H.4) 

(4H.5) 

which is similar to FOURIER'S formula (4G.7). We cannot compare the two 
expressions term by term, for FOURIER always assumes that p = f(B). Putting 
(1) into (5) and (4G.7), we see that to make the two agree for all .y it is 
necessary and sufficient that 

f' e* = pKo - f >"0 , (4H.6) 

e* being defined by (2)2' Thus FOURIER'S proposal is not in contradiction with 
the then widely received ideas about heat, although it is far from being a 
consequence of them. 

If we return to (3) and cast aside FOURIER'S assumption that p = f( B), we 
may otherwise follow his reasoning and obtain instead of his (4G.4) the field 
equation 

p(K08 + >...v) = div(K grad B) . (4H.7) 

This is the differential equation for conduction of heat in fluids to which the 
ideas current in FOURIER'S day would have led. With Ko and >"0 suitably ob­
tained from the specific entropy function, it remains today correct for inviscid 
fluids. We cannot fairly attribute it, even in a major special case, to FOURIER. 
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41. FOURIER'S Bequest 

Not only what FOURIER did to promote the theory of heat must be noted 
here, but also what he did that was irrelevant to it, and what he failed to do. 

FOURIER'S "definition" of temperature rests on a supposed fact of ex­
periment which he himself admits to be inexact; what it asserts is not only 
"inexact" but sometimes diametrically opposed to the results of experiment. 
Indeed, in another passage he recognizes that units of temperature are 
independent of those of mechanical quantities (and hence, obviously, 
temperature cannot be "defined" mechanically in a fashion independent of 
the properties of some particular body such as an ideal gas). To his own work 
this" definition" does no harm, for he never uses it, and it seems to serve 
only so as to give an impression of contact with what might be called real 
physics. In confusion of this kind FOURIER was to be followed by the whole 
tribe of thermodynamicists, but not until after the end of the period that this 
history describes. 

As, again and again, FOURIER lauds physics, experiments, and "useful" 
mathematics in preference to abstraction, it is become a tradition to regard 
him as having been a great physicist. Certainly he avows the right party line, 
but I doubt if any critical reader today would find in his book much evidence 
of insight into nature beyond that common in works of his predecessors and 
contemporaries. 

FOURIER did not face the difficulties afforded by conduction of heat in a 
deforming body of gas, in which the pressure, and hence the work done, 
depends upon both the temperature and the density. While neglecting the 
very parts of the theory of heat that others were soon to cultivate, he boasted 1 

that he had "demonstrated all the principles of the theory and solved all the 
fundamental questions." FOURIER began the tradition of the theory of heat, 
a tradition we recognize as being still alive today in the claims of those many 
physicists who regard thermodynamics as a subject inherently limited yet 
arrogate to it a vast generality, in fact illusory. 

FOURIER'S great contribution is the concept of flux of heat. It has come 
into its own in researches of the last quarter century, but before then it had 
no effect upon the development of thermodynamics. One reason for neglect 
of it may be the confusing, special way FOURIER introduced it. It never 
appears anywhere in his book except in indissoluble union with the constitu­
tive equation (4E.3)2 of an isotropic linear conductor. Throughout FOURIER'S 
work the general ideas governing the transfer of heat are jumbled with 
that particular constitutive relation. Failure to separate the generic principles 
of the theory of heat from constitutive relations of particularly simple bodies, 
which can serve as key examples but no more, was to become common in 

1 FOURmR [1822, p. xxiv in the (Euvres]. 
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thermodynamics as in no other part of physics, and indeed characteristic of 
it until recently. 

The distinction was not new: It had been made and used again and again 
in the rational continuum mechanics of the preceding century. The tradition 
of rational mechanics still flourished, and especially in France. CAUCHY, 
NA VIER, and POISSON knew full well the difference between a constitutive 
relation and a generic principle. When, a decade later than FOURIER'S works 
of discovery and in the year after FOURIER'S book appeared, CAUCHY came 
upon the counterpart of the flux principle for mechanics, where it is more 
difficult to perceive and develop, he recognized it at once as the pillar that it 
was and is. He stated his fundamental theorem clearly and proudly; he gave 
a splendid proof of it, which has been reproduced in every book on continuum 
mechanics from that day to ours. Of creative, conceptual mathematics like 
this, there is no example in FOURIER'S book, nor anywhere in thermo­
dynamics. 

Although from the beginnings of mathematical science mathematicians 
have weighed assumptions and have discarded the unnecessary ones, such 
being the very essence of logical thought, in thermodynamics the unnecessary 
assumptions have been treasured, repeated, and inflated to the point that 
they are come to conceal the whole conceptual structure of the science. This 
unhappy quality is the tough and tortuous thread of the plot of the tragi­
comedy. It began with LAPLACE and was spun out by FOURIER. 

Most of FOURIER'S book concerns solutions of his linear partial differential 
equation (4E.l). In this part, too, the tragicomic muse ruled the scene. The 
fundamental" theorem", that" every" function can be expanded in a trigono­
metric series, is untrue, and FOURIER "proved" it through a mass of divergent 
gobbledegook which every competent mathematician of his own day re­
jected 2. Up to this point the analysis, both in formulation of a theory and in 
mathematical proof, does not meet the standards of the preceding century. 
Then the magic of linearity takes hold. FOURIER is not the first to hit upon a 
theory governed by a linear partial differential equation with constant co-

2 The reactions of LAGRANGE, LAPLACE, and MONGE to FOURIER'S work show that they 
recognized its promise and fertility but found nothing basically new ("revolutionary") 
in it and could not accept the alleged proofs. Perhaps still fresh in LAGRANGE'S mind 
was his own youthful defeat in the attempt to pass from a discrete system to a corre­
sponding continuous one, a defeat he never admitted but chose to ignore by blandly 
republishing in 1788, after D' ALEMBERT'S death, his old argument, which D' ALEMBERT 
and others immediately upon its first publication in 1759 had shown to be fallacious. 
That work came about as close to "FOURIER'S theorem" as did FOURIER'S own; 
LAGRANGE'S argument rested at bottom upon an "approximation" at 00 which is not 
only unproved but also incorrect, but in contrast with FOURIER'S mountain of divergent 
formalism it is simple. (Cf. §10 of H. BURKHARDT'S "Entwicklungen nach oscillirenden 
Funktionen und Integration der Differentialgleichungen der mathematischen Physik", 
Jahresbericht der Deutschen Mathematiker- Vereinigung 102 , 1908.) Certainly LAGRANGE 
could find nothing new in "FOURIER'S theorem" except the sweeping generality of its 
statement and the preposterous legerdemain advanced as a proof. 
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efficients, but he is the first to see how easy such a theory can be. Using mainly 
facts already known but up to then scattered and insufficiently appreciated, 
he weaves them into an elegant general method that pours forth solutions of 
boundary-value and initial-value problems in abundance never before seen. 
At the time, it was algebraic neatness and generality that struck home, the 
Eulerian brilliance in manipulation, especially the almost effortless methods 
for converting a formal explicit representation of boundary data or initial 
data into a corresponding representation of the solution. Of deeper and more 
lasting importance is the basic concept of the problems a linear theory can 
solve, leading in later years, in the hands of mathematicians superior to 
FOURIER, to searching studies of existence, uniqueness, smoothness, stability, 
and numerical calculation. 

But all this had no influence on thermodynamics. Until about 1965 there 
was no definite field theory of the interaction of heat and work in general. 
Except for the very special cases of linear thermo-elasticity and linearly 
viscous fluids, thermodynamics had no field equations and hence no prob­
lems of boundary values or initial" values to solve. The influence of FOURIER, 
and it was vast, was upon mechanics, acoustics, electromagnetism, the theory 
of approximation, probability, and functions of a real or complex variable­
in two words, upon the linear field theories and upon pure mathematics­
but not upon thermodynamics. FOURIER'S title is belied by the contents: A 
theory of temperature differences he did give, but not a theory of heat. 

Alas, FOURIER'S brilliance in his own bailiwick had, indirectly, a negative 
effect upon thermodynamics. Glorying in his strictly linear theory, he taught 
a century of physicists and ancillary mathematicians that to ascend Parnassus 
they needed only by use of no more than sines, cosines, and a few other special 
functions, linked by the symbols + - x -;- Lof, spew out explicit and detailed 
solutions for special cases. From FOURIER'S work grew that meaningless and 
popular Germanic shibboleth, "solution in closed form", which in the 
relatively blessed period before teams of apes twiddling costly machines re­
duced mathematics to the Cinderella of the sciences was sometimes used to 
depict the social difference between "applied" and "pure" mathematics. 
Indeed, the simpler the constitutive relation, the vaster the class of easy 
problems amenable to essentially routine mathematics! By paring the physical 
model to the bone, the theorist may extract from it incredibly precise predic­
tions about the most intimate detail in bodies of the most complicated shapes. 
In FOURIER'S theory the student must pay as the price for such detail and such 
precision a willingness to admit that differences of temperature propagate at 
infinite speed through material bodies and that the temperature within a 
body can be determined without taking account of the changes which the 
flow of heat into it may effect upon its size and shape. 

Fortunately or unfortunately, according to taste, the constitutive relations 
natural and useful in thermodynamics are not linear. The kind of problem 
FOURIER deftly codified does not exist the moment his theory is enlarged so 
as to take just account of work done. 



5. Act II. Dissipationless Work: CARNOT 

o voi, ch'avete Ii 'ntelletti sani, 
mirate Ia dottrina che s'asconde 
sotto 'I velame de Ii versi strani. 

DANTE, Inferno IX, 61-63. 

SA. The General Quality of CARNOT'S Treatise 

In 1824, two years after the long delayed printing of FOURIER'S theory of 
heat in its final form, appeared CARNOT'S booklet called Reflections on the 
Motive Power of Fire, and on Machines Fitted to Develop that Power!. [Little 
of any consequence regarding this subject was then known. Anyone skeptical 
here need not resort to the writings of engineers, inventors, and constructors. 
Just eight years before CARNOT'S work was published, a leading physicist 2 of 
the day could give his readers in a whole chapter on steam engines no more 
than an illustrated description of the machines, embellished by a few scientific 
terms and some numerical data regarding them, followed by a sketch of their 
evolution during the preceding 111 years, and finish with a discussion of how 
much work a horse of mean strength can do in a day. 

[CARNOT'S approach is entirely new.] After some opening remarks on the 
usefulness of steam engines he states (pp. 7-9) that "the phenomenon of the 
production of mption by heat has not been studied from a sufficiently general 
point of view." It is necessary, he writes, to "establish arguments applicable 
not only to steam engines but also to every imaginable heat engine .... " Purely 
mechanical machines, CARNOT recalls, can be "studied down to their smallest 
details" by means of "the mechanical theory." 

All cases are foreseen, all imaginable motions obey certain general 
principles, firmly established and applicable under all circumstances. 
Such is the character of a complete theory. A comparable theory plainly 

1 CARNOT [1824]. Citations of pages refer to the first edition, and the translations into 
English are mine. 
o BlOT [1816, Chapter VI]. 
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wants for heat engines. We shall have it only after the laws of physics 
are extended enough, generalized enough, to make known beforehand 
all the effects of heat acting in a determined manner on any body. 

[Despite his schooling at the Ecole Poly technique and despite his early 
training by his father, who was a thoughtful mathematician, CARNOT does 
not follow the tradition of eighteenth-century rational mechanics he has just 
praised for its generality and extent. Instead, the sardonic muse directs him 
to write in a medium that anybody can understand. An obvious necessary 
condition is that no mathematics be used in the main text. This condition did 
not tum out to be sufficient. Among all writers on natural philosophy only 
CARNOT equals the pre-Socratics in ability to provoke an infinite sequence of 
cyclic quandary, acute and painful ponderation, conjecture, gloss, contro­
versy, and quandary again, which bears witness that the outcome is compre­
hensible by nobody. It is easy to say, and it has often been said, that CARNOT 
wrote for engineers, but I can find no evidence that any engineer ever read 
and applied his results, which remained altogether neglected for twelve years, 
until CLAPEYRON put them into a semi-mathematical and hence at least 
semi-concrete form (see below, §6A), whereupon they soon began to attract 
notice. CARNOT'S physical principles and such logic as he chose to bring to 
bear upon them he blurred through a veil of popular science. He is reported 
to have insisted that his brother, untrained in the subject, read and criticize 
the work; according to the legend, his brother understood it perfectly. Later 
students, unable to seek help from that brother, have puzzled, are puzzling, 
and forever will puzzle over it. In CARNOT'S treatise we encounter that fuzzi­
ness which was to become and remain a distinguishing feature of thermo­
dynamics for bewildered outsiders. He rivals HERAKLEITOS the obscure. 

[That does not mean that CARNOT wrote nonsense. Far from it. In the 
following pages I seek to interpret CARNOT'S claims as reflecting some mathe­
matical statement, capable of dissection and proof or disproof by mathe­
matical reasoning. This may not be just to CARNOT. Certainly, as we shall 
see, he comes off very well by this test. 

[CARNOT'S preference for reasoning in words rather than by mathematics 
is not the only obstacle to our understanding what he wrote.] When he comes 
to evaluate the motive power of an engine, he uses only specific numbers, and 
these numbers rest in part on properties of coal and steam. His main con­
clusions of this kind are (pp. 82, 84, 114-115): 

1. 1000 units of heat 3 passing from a body maintained at the temperature 
of 10 to another maintained at 00 would produce, in acting upon air, 1.395 
units of motive power (i.e. work 4). 

3 A .. unit of heat" is the quantity of heat required to raise by 1°C the temperature of 
1 kg of water (p. 81). 
4 A "unit of motive power" is the work required to carry one cubic meter of water 
upward one meter (footnote, pp. 6-7). 
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2. 1000 units of heat passing from a body maintained at the temperature 
100° to another maintained at 99° would produce, in acting upon steam, 
1.112 units of motive power. 

3. On the basis of the second figure, the motive power of I kg of carbon 
is 3920 units. 

To justify his first and second figures, he presents strings of additions and 
multiplications of particular numbers. He regards the third figure as pre­
carious. To obtain it, he starts from the second figure, written as 1.12, states 
that "if the motive power were proportional to the fall of caloric, ... , 
nothing would be easier than to estimate it for 1000° to 0°." It would then be 
1120. "But as this law is only approximate and perhaps deviates very much 
from the truth at high degrees, we can do no more than make an entirely crude 
evaluation. We shall suppose the number 1120 reduced by a half, that is 560. 
Since a kilogram of carbon produces 7000 units of heat and since the number 
560 is relative to 1000 units, we must multiply it by 7, which gives 7.560 = 
3920. There is the motive power of a kilogram of coal." 

CARNOT'S thermodynamics is purely and frankly phenomenological. He 
states his position clearly (p.15, footnote): 

I regard it useless to explain here what is quantity of caloric or 
quantity of heat (for I employ these two expressions indifferently 5), 
or to describe how to measure these quantities by the calorimeter. 
Neither will I explain what is meant by latent heat, degree of tempera­
ture, specific heat, etc. The reader should be grown familiar with these 
terms through study of the elementary treatises of physics or chemistry. 

While CARNOT regularly speaks of" all bodies", he regards the volume V 
and the temperature () and certain functions thereof as sufficient to describe 
the condition of such bodies. For example (p. 37, footnote), he speaks of the 
"state considered relatively to the density, the temperature, and the kind of 
aggregation [i.e., phase] .... " [The "thermodynamic state", that king cobra 
in the pit of thermodynamic vipers, here first with innocuous semblance darts 
his forked tongue. Of course the word "state" as a general, vague term of 
ordinary speech had existed for a long time. The passage from a paper by 

5 Some persons have claimed that CARNOT intended a difference between "calorique" 
and "chaleur", using the former to denote what came later to be called "entropy". 
For references see Footnote 1 to §27 in the corrected reprint of my Mechanical Founda­
tions of Elasticity ,and Fluid Dynamics (1952/3), N.Y., Gordon and Breach, 1966. I 
regret to have to confess that I once shared this superficial opinion, which MENDOZA 
in his edition of CARNOT [1824] has demolished. Indeed, as we shall see in §10A, the 
heat functions of CARNOT and LAPLACE on the one hand, and CLAUSIUS' entropy on the 
other, are different special cases of a general function introduced by REECH, and although 
this fact accounts for their having certain formal properties in common, if one exists 
the other does not. 

Some specific comments in this regard may be found below in Footnote 3 to §5S. 
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LAVOISffiR & LAPLACE quoted above in Footnote 9 to §2C uses it in this 
popular, conversational sense. What is new here and is destined to be deadly 
later is the illusion that the "state" may be identified with a finite number of 
variables such as p, 0, and "the kind of aggregation ", an illusion that was to 
keep the theory of heat and temperature mainly in the kindergarten until 
recentlys. In my comments I will not use the term again, since it represents 
no rational concept, beyond, of course, the trivial remark that sometimes a 
small number of independent variables suffices for an adequate description 
of a deformable body.] 

For all of his calculations, CARNOT presumes the ideal gas law 7 pV = RO. 
[Like FOURffiR, CARNOT cannot separate a general idea from its application 

to a special constitutive relation. He limits the working substance to that most 
special of materials, an ideal gas, in the most special of circumstances, uni­
form fields oftemperature and density. While LAPLACE'S picture ofthe action 
of heat had been dismayingly complex, so much so that for him p and p did 
not suffice to describe the condition of anything but a dilute gas, CARNOT goes 
to the opposite extreme of oversimplification. CARNOT considers the effects 
of change of volume in circumstances such as to render the field of tempera­
ture uniform. FOURIER effectively neglects changes of volume and considers 
only the effects of conduction and radiation of heat upon the temperature 
field of a rigid body. The constitutive relations selected by the two principal 
founders of thermomechanics have as their common domain only the trivial 
case in which nothing at all happens B• From the dates of the two founders' 

6 For a specimen of the infinite confusion to which this simple word may give rise 
when someone tries to make it a scientific term, I quote BRIDGMAN [1941, pp. 58-59 of 
the reprint of 1961]: 

What is to be understood by "state" of the body? There is danger that it 
may degenerate into a tautology, because we might say that by definition the 
body has returned to its initial state when the total work and heat of the sequence 
of processes is zero. There must be more physical content to the concept of state 
than this. Actually, as already suggested in the discussion of temperature, .. state" 
has an independent significance, and connects with the "properties" of the 
body-a body has resumed its initial state when all its properties have resumed 
their initial values. The first law states that there is some function of the param­
eters that determine the state (or the properties) of the body such that the dif­
ference of the function for two different states is the sum of the net heat and the 
work entering the body during the change from one state to the other, no matter 
what the details by which heat and work are imparted to bring about the change 
of state. 

7 Cj. Footnote 1 to §5G, below. 
8 The processes considered by CARNOT are functions of time alone. According to 
FOURIER'S equation (4E.l), if the temperature field is uniform in space, it is also constant 
in time. CARNOT'S General Axiom (51.1) refers only to processes in which there are 
differences in temperature. Thus it cannot contradict what we have just concluded from 
FOURIER'S theory. If we interpret FOURIER'S work strictly as applying only to bodies 
whose volumes do not change, it is trivially consistent with CARNOT'S, for then V, 8, 
and p are all constant, no work is done, and no heat is absorbed or emitted. 
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books, 1822 and 1824, the two main phenomena associated with heat were 
divorced. Two separate plots, with two different casts, took their turns upon 
the stage thenceforth.] 

5B. Standard Concepts and Assumptions Used by 
CARNOT 

CARNOT makes it plain, though he does not explicitly say so, that he accepts 
the Doctrine of Latent and Specific Heats l [which in this history we have 
expressed as follows: 

Q = Av(V, 8) V + Kv(V, 8)8 , 

Av> 0, Kv> 0 . 

(2C.4)r 

(2C.5)r 

CARNOT does not write out these relations.] He is perhaps the first to intro­
duce explicitly the concepts of process 2 , heat absorbed, and heat emitted3• 

[We have defined these formally above: 

(2C.22)r 

Jt2 

c- == t (I QI - Q)dt ~ 0 . 
t1 

Like LAPLACE, whom he cites in this regard, he conceives an adiabatic 

1 Cf the passage on p. 15 which we have quoted in the preceding section. On pp.31-
32 he writes, "The caloric used [when] no change of temperature occurs we shall call 
'caloric due to change of volume'." In our notation that is 

fV2 
j,. Av(x, 8)dx 

V1 

when 8 = const. Cf also Footnotes 6 and 12 to §2C, above. 
2 "Les operations", p. 10 et passim. 

Dissent might be justified here. CARNOT in some passages may mean by "une 
operation" that which happens not only to the body but also to its surroundings. Such 
passages are quoted and cited in §§5D-5J. My critique there reflects my own preference 
for explicit mathematical treatment upon a specific conceptual framework of ideas with 
specific, explicit interpretation. That critique and the later parts of this chapter show 
that such an interpretation of CARNOT's ideas is tenable in nearly all cases. I do not 
mean to imply that no other interpretation is tenable. Perhaps a muddy author deserves 
muddy critics. If so, CARNOT has received his just deserts already and in abundance. 
3 "Les quantites de chaleur absorbees ou degagees", p. 37, footnote; p. 52; p. 55. On 
p. 76, footnote, CARNOT denotes by e the heat absorbed in a Carnot cycle. 
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process 4 as describing very rapid changes. He takes for granted the reversi­

bility 5 of work done and heat added, [which we have expressed above by 
formal reversal theorems: 

C( -flJ) = - C(flJ) , 

L( -flJ) = -L(flJ) .J 
(2C.7)r 

(2C.21)r 

Essential to most of CARNOT'S arguments, [whether obviously so or through 
implications which to him lay hidden,] is the Caloric Theory of heat [which 
we have specified in §3C. Like LAPLACE before him,] CARNOT assumes that 
the quantity of heat in a body is determined, to within an additive constant, 
by the volume and temperature of that body. He says so again and again: 
"Thus the production of motive power is due ... not to any real consumption 
of caloric, but to its transport from a warm body to a cold body . .. " (pp. 10-
11). Als0 6, in regard to the famous argument alleged to prove that all bodies 

4 On p. 29 CARNOT remarks that the effects of a rapid change of volume are different 
from those of a slow one: 

When a gaseous fluid is rapidly compressed, its temperature rises; on the 
contrary, [the temperature] falls when the fluid is rapidly expanded. There we 
have one of the facts best of all established by experiment. I shall take it for the 
basis of my proof. 

A footnote (pp. 29-30) adduces four facts of this kind; one of these is 

The results of experiment on the speed of sound. Mr. de Laplace has shown 
that to subject these results exactly to the theory and the calculation, heating of 
the air by a sudden compression must be assumed. 

5 He asserts this reversibility only for Carnot cycles. P. 19 (repeated almost verbatim on 
p. 35): "The operations I have just described could have been effected in an inverse 
sense and inverse order." Also, p. 36: 

The result of the first operations was to produce a certain quantity of 
motive power and to transport some of the caloric of body A to body B; the 
result of the inverse operations is to consume the motive power produced, and 
to return some caloric from body B to body A, in such a way that the two sequences 
of operations annul each other, in some way neutralize each other. 

6 P. 37, footnote. The quotation continues, "On the other hand, just to mention the 
matter in passing, the main foundations upon which the theory of heat rests ought to 
be subjected to the most careful examination. Several facts of experiment seem almost 
inexplicable in the present state of that theory." 

From notes published after CARNOT'S death we know that he came to reject this basis 
of "the whole theory of heat". Indeed, MENDOZA in his edition of CARNOT [1824] 
calls attention to the differences between the manuscript and the text as printed. For 
example, on p. 89 of the book (p.46 of MENDOZA'S edition), we read "Nevertheless, 
the fundamental law I desired to confirm seems to me to require new tests if it is to be 
set beyond doubt; it rests upon the theory of heat as that theory is conceived today; 
and I must admit that to me this foundation does not seem to be unshakeable. Only 
new experiments could decide the question .... " At this point in his manuscript CARNOT 
had expressed the very opposite opinion: "The fundamental law that we proposed to 
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have the same motive power when they undergo Carnot cycles corresponding 
to the same temperatures: 

I suppose implicitly in my proof that if a body has suffered any 
changes whatever and that if after a certain number of transformations 
it is brought back to its original state, ... [it wiIl be] found to contain the 
same quantity of heat as it contained at first, or, in other words, that 
the quantities of heat absorbed or emitted in its various transformations 
are exactly compensated. This fact has never been subjected to doubt; it 
has been assumed straight off without a thought and has been verified 
thereafter in many cases by experiments with the calorimeter. To deny 
it would be to overturn the whole theory of heat, which is based upon it. 

[Not only that, we shall see in §5J that his calculations which refer to finite 
differences of temperature, while some of them seem to be in part independent 
of that assumption, are not so, but in fact require it.] Formally, CARNOT 
introduces a heat/unction Hc(V, 0) (p. 63 and p. 77, footnote, denoted by s), 
the value of which is the quantity of heat in a fluid body, to within an additive 
constant. Thus in a process along any path & leading from (V1' ( 1) to 
(V2' ( 2) the heat added is given by 7 

(5B.1) 

Henceforth in this tragicomedy the term Caloric Theory will refer to the exist­
ence of a heat function, not to the broader idea stated in §3C and iIlustrated 
in §4F. 

CARNOT is thoroughly familiar with the concept of work, positive or nega­
tive or null, done by a body of gas in a process Vet), OCt) whose path is &: 

L(&) = (2 'liT(V(t), O(t» V(t)dt, 

= t 'liTe V, O)dV. (2C.20h,3r 

confirm seems to us to have been placed beyond doubt, both by the reasoning which 
served to establish it, and by the calculations which have just been made." 

I relegate this matter to a footnote because I write here, not the history of ideas about 
heat, but the history of thermodynamics, which is a mathematical theory, and all of 
CARNOT'S reasoning about finite differences of temperature, whether in his notes .written 
after the Rejlexions or in the book as published, is inextricably entwined with the 
Caloric Theory of heat, as my text below makes clear. For infinitesimal differences of 
temperature the whole matter is blurred, as we see below in §5J. 
7 CARNOT'S heat function is related as follows to LAPLACE'S H L , which we have discussed 
in §3C: 

MHd'llT(V, (J), Mlv) = He(V, (J) + const. 
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5C. The Carnot Cycle 

To represent the action of a heat engine CARNOT introduces a cycle!, in 
which a gaseous body is brought back at the time t2 to the volume and tem­
perature it had at the earlier time tl' 

[We may picture a cycle as an oriented closed curve C{f in the V-O quadrant 
(Figure 2, cf. Figure 1); no such diagram was used by CARNOT. A cycle des-

II 

o~--------------------------v 

Figure 2. Cycle 

cribed several times is again a cycle. To avoid confusion, we sometimes call 
simple a cycle described exactly once. 

[The existence of a heat function He such as to satisfy (5B.I) is equivalent 
to the following statement: In every cycle C{f, 

(5C.I) 

This relation, which CARNOT uses frequently, characterizes the Caloric 
Theory of heat as we shall use that term henceforth.] 

The only cycle CARNOT considers explicitly is the one since named after 
him 2 • A body capable of expansion and contraction, and hence capable of 

1 P. 36, "cercle d'operations"; p. 56, "un cercle complet d'operations". 
2 Pp. 32-34, after an incomplete description on pp. 17-18. CARNOT'S terms are "foyer" 
and "refrigerant". His specification does not presume that heat be indestructible. In 
the reformulation by THOMSON [1849] one of the steps was stated in terms of a heat 
function, giving rise to some misunderstanding of what CARNOT himself had done. 
The note by KELVIN'S brother J. THOMSON [1849] in reality corrects KELVIN, not CARNOT. 

We have seen above that CARNOT thinks it is the rapidity of some natural processes 
that makes them virtually adiabatic. He does not mention that idea when he describes 
his cycle. At one point (p. 33), and at that point only, he states that the isothermal 
parts of his cycle should be "gradual", presumably to avoid "useless re-establishment 
of equilibrium in the caloric" (p. 35). 



SC. THE CARNOT CYCLE 87 

doing work, is caused to expand by absorbing heat from a furnace at the 
temperature (}+; then insulated, so that it continues to expand while its 
temperature falls adiabatically to the temperature (}- of a refrigerator; then 
put in contact with the refrigerator so as to give up heat and thereby contract; 
finally insulated again and allowed to contract to its initial volume while its 
temperature rises adiabatically to the temperature (}+. The contact between 
the working body and the furnace (p. 33) is through a "wall which we shall 
suppose transmits caloric easily." 

[It seems to me that CARNOT always envisions an ideal body which he 
conceives as having at anyone time the same temperature at all of its points, 
no matter how it be heated or cooled. When two such bodies are put in 
contact, CARNOT expects that heat will flow from the one to the other through 
their common boundary, which "transmits caloric easily", in such a way as 
to make the cooler body become uniformly hotter all at once, and the hotter 
body likewise uniformly cooler. Except, possibly, for a vague remark here 
and there, CARNOT seems to suppose his ideal bodies incapable of conducting 
heat in the sense that the theories of LAMBERT, BIOT, and FOURIER represent.] 

Formally, a Carnot cycle 3 consists in two distinct isotherms alternating 
with two distinct adiabats, [as represented in Figure 3, in which the form of the 

3 The historical literature has concerned itself with such things as whether CARNOT 
really described the whole cycle, and where he chose to begin it. 

Do Camot cycles exist? Surely the answer is yes if through every point of the V-O 
quadrant passes one and only one adiabat, which is nowhere tangent to an isotherm, 
and if every pair of isotherms is connected by some adiabat. A modem textbook 
bludgeons the student into acquiescence by exhibiting the adiabats OVY-l = const. 
of an ideal gas (cf (3D.S)), but invariably the paedagogic author forgets to warn the 
innocent reader that unless y = const. upon these curves, they are not adiabats, for 
otherwise they do not satisfy (3C.IO). Since CARNOT is to reject the possibility that 
l' = const. (§§S8-ST, below), the issue is not one of "pure mathematics". 

A differential equation for determining the adiabats follows from (2C.4) and (2C.S): 

dO Av 
dV = -Kv • 

The nature of the adiabats is thus a constitutive property of the gaseous body. If Av/Kv 
is Lipschitz-continuous, one and only one adiabat passes through each point of every 
sufficiently small region, but we cannot generally conclude that adiabats exist in the 
large. For many purposes, sufficiently small Camot cycles suffice. 

By appeal to (2C.5) we see that when an adiabat exists, 0 is a strictly decreasing 
function of V along it. 

Like this last conclusion, Figure 3 fails to be correct if (2C.S) is violated. In a region 
where Av may change sign (as in modem thermodynamics it certainly may and in 
some cases must), Camot cycles looking entirely different from Figure 3 are possible. 
One such is sketched below in Footnote 4 to §5M. Cf Concepts and Logic, §7. 

If Av = 0 in a region, the adiabats and isotherms coincide there, so no Camot 
cycles exist; CARNOT'S General Axiom is left impotent then for want of the objects 
to which it refers. CARNOT'S own statements to the effect that Av > 0 we have quoted 
in Footnote 6 to §2C. We have noted there that consequently Kp > Kv. 

Finally, it is worth mentioning that if Kp = Kv, LAPLACE'S celebrated explanation 
of the speed of sound (§3F) is voided. 
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adiabats and the sense of description reflect the standing constitutive in­
equalities 

Av> 0 , Kv> 0 . (2C.5)r 

[The temperatures e+ and e- are the operating temperatures of the cycle. 
Since the adiabats of a given body are known curves, obtained from constitu-
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Figure 3. Carnot Cycle 

tive properties of that body by integrating the differential equation given in 
Footnote 3, a Carnot cycle for that body is determined uniquely by the 
operating temperatures e+ and e- along with the volumes Va and Vb which 
determine its upper isothermal segment. For definiteness in what follows we 
shall make it a part of the definition of a Carnot cycle that 

e+ > e- , (5C.2) 

thus excluding trivial exceptions to general assertions. 
[If a simple Carnot cycle is described repeatedly, the result is again a 

Carnot cycle, but the reverse of a Carnot cycle is not a Carnot cycle. 
[The definition of a Carnot cycle uses only the concepts of the Doctrine of 

Latent and Specific Heats. It does not presume any relation between heat and 
work. In the context of the Caloric Theory of heat, which CARNOT invariably 
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uses, we can calculate e+('if) and e-('if) as differences of values of the heat 
function He: 

e+('if) = He(VII' 0+) - He(Va, 0+) , 

e-('if) = He(Ve, 0-) - He(Va, 0-) , 

and these two differences are equal.] 

SD. CARNOT'S Claim that Camot Cycles Attain 
Maximum Efficiency 

CARNOT writes (pp. 28-29) 

(5C.3) 

According to the ideas established so far we can with sufficient 
accuracy compare the motive power of heat to that of a fall of water: 
Both have a maximum that cannot be exceeded, whatever be ... the 
machine used to receive the action of the water, and whatever be ... the 
substance utilized to receive the action of the heat. The motive power of 
a fall of water depends upon its height and the quantity of liquid; the 
motive power of heat likewise depends upon the quantity of caloric 
employed and what we can and shall indeed call the height of its fall, 
that is to say, the difference of temperatures of the bodies between 
which is effected the exchange of caloric. In the fall of water the 
[maximum] motive power is rigorously proportional to the difference 
of the levels of the upper and lower reservoirs. In the fall of caloric 
the motive power no doubt increases with the difference of the tempera­
tures of the hot body and the cold body, but we do not know whether 
it be proportional to this difference. We do not know, for example, if 
the fall of caloric from 100° to 50° produces more or less motive power 
than the fall of this same caloric from 50° to 0°. That is a question I 
plan to examine later on. 

e! also p. 96. As KELVlN l was to put it, by "letting down" heat to a lower 
temperature, we can cause work to be done. For CARNOT the difference of 
temperatures is ,essential (p. 16, c! also p. 12): "Wherever a difference of 
temperature exists, there motive power can be produced." CARNOT accepts the 
Caloric Theory of heat, e + ('if) = e -('if) for every cycle 'if. This assumption 
is reflected on pp. 10-11: 

Thus the production of motive power is due ... not to any real con­
sumption of caloric, but to its transport from a warm body to a cold 
body .... 

According to this principle, in order to produce motive power it is 
not enough to produce heat: Cold, too, must be procured; without it, 
heat would be useless. 

1 THOMSON [1848], W. THOMSON [1849, §§ 10,16,29]. 
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[This statement has been misinterpreted 2 • It does not refer to C+ or to C-; 
it means only that a furnace alone will not suffice, we must provide also a 
refrigerator. 

[Without first explaining what he means by "maximum",] CARNOT refers 
to "the maximum motive power of steam" and "the maximum motive 
power that can be effected by any means whatever" (pp. 21-22). He con­
tinues (pp. 22-23), 

It would be just to ask ... , What is the sense of the word maxi­
mum? .. 

Since any re-establishment of equilibrium in the caloric can be the 
cause of motive power, any re-establishment of equilibrium that occurs 
without producing this power should be considered a true loss. Now, 
very little reflection suffices to show that every change of temperature 
which is not due to a change of volume ... can be nothing but a useless 
re-establishment of equilibrium in the caloric. Thus the necessary condi­
tion for the maximum is that in the bodies employed to effect the motive 
power of heat there be no change of temperature not due to a change of 
volume. Conversely, whenever this condition is fulfilled, the maximum 
will be attained. 

2 The misinterpretation: In any cyclic process that does positive work by absorbing 
heat, some heat must be emitted. These words, indeed, assert one of the many" Second 
Laws", but CARNOT had no need of that one, since the Caloric Theory makes it 
trivial. He refers here to another one, one which GIBBS [1873, I, p. 10 of the reprint 
in his Collected Works] expressed with his usual insight: 

... heat received at one temperature is by no means the equivalent of the same 
amount of heat received at another temperature. . .. But no such distinction 
exists in regard to work. This is a result of the general law, that heat can only 
pass from a hotter to a colder body, while work can be transferred by mechanical 
means from one fluid to any other, whatever may be the pressure. 

CARNOT had written something of this kind (pp. 34-35) in regard to his cycle: 

... but we must notice that at equal volumes ... the temperature is higher during 
motions of dilatation than in motions of compression. During the former the 
elastic force of air is higher and consequently the quantity of motive power 
produced by the motions of dilatation is more considerable than that which is 
consumed to produce motions of compression. Thus an excess of motive power 
results .... 

CARNOT'S statements presume that Av > O. If Av < 0, the roles of compression 
and dilatation are exchanged. 

MAXWELL [1871, p. 148] was to misinterpret CARNOT'S "elastic force" as referring 
to "energy": 

Carnot, therefore, was wrong in supposing that the mechanical energy of a 
given quantity of heat is greater when it exists in a hot body than when it exists 
in a cold body. We now know that its mechanical energy is exactly the same in 
both cases, although when in the hot body it is more available for the purpose of 
driving an engine. 
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Thus, CARNOT concludes, the maximum work a given quantity of heat 
can do in a cycle is achieved when all that heat is absorbed at the higher 
temperature and then emitted at the lower temperature. This condition des­
cribes a Camot cycle (§5C). Also later (p. 35), again in regard to a Camot 
cycle, 

Thus the air has served as a heat engine; we have even employed it in 
the most advantageous way possible, for there has been no useless re­
establishment of equilibrium in the caloric. 

A "true loss" occurs (p. 24) "in the direct passage of the caloric from a 
more or less heated body to a colder body. This passage takes place mainly 
upon contact of bodies of different temperatures .... " It is avoided in the 
Camot cycle, because there only bodies at the same temperature come into 
contact with each otherS. CARNOT explains (p. 25) how he conceives the trans­
fer of heat in a Camot cycle to occur: 

In truth, rigorously, things cannot happen as we have assumed. To cause 
caloric to pass from one body to another, the former must exceed in 
temperature, but by as little as we please. We may take the excess as 
null in theory without diminishing the exactness of the reasoning. 

SE. Formal Statement and Critique of CARNOT'S 
Claim of Maximum Efficiency 

CARNOT himself does not make clear just what it is he claims his cycle 
renders a maximum. In the terms introduced by later physicists, two classes 
of competitors are implied: 

1. Reversible cycles. 
2. Both irreversible and reversible ones. 

3 CARNOT refers (Jr. 16) to percussion and friction as mechanical agents for effecting a 
change of temperature. He nowhere mentions the possibility that a body may change 
its shape without changing its volume, and he nowhere refers to a non-uniform field of 
temperature within the body. Two passages have been adduced by those who maintain 
the contrary, namely pp. 34-35 in regard to "useless re-establishment of equilibrium 
in the caloric" and pp. 89-90 in regard to motions of a metal bar heated at one end. 
I have studied these passages many times, and I cannot find in them anything more 
definite than the id~ that when two bodies at different temperature come into contact, 
heat flows from the hotter to the colder and in so doing is partly wasted. The second 
passage with its repeated explicit reference to contact is the clearer. It is we who when 
we think of two such bodies in contact expect to find in each of them a field of tempera­
ture varying with position. We are not justified in attributing our ideas to CARNOT 

unless he himself has left at least some sign that he, too, employed them. In §5C I have 
explained how I think CARNOT conceived the flow of heat incident upon contact. 
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Only the former are compatible with the Doctrine of Latent and Specific 
Heats, and that axiom describes only such processes. The following claim 
may be stated upon the conceptual armature provided thereby. Not knowing 
what CARNOT really meant, I offer it as a possible interpretation, one that 
lends itself to precise statement and mathematical treatment. 

Claim I (Maximum Efficiency for a Given Body). Let a cycle ri' and a 
Carnot cycle ri' c have the same extreme temperatures and absorb the same 
amount of heat. Ifri' is not a Carnot cycle, then 

(5E.I) 

It is not claimed here that all Carnot cycles which absorb the same amount 
of heat and have the same operating temperatures do the same amount of 
work. Rather, each does more work than any corresponding cycle of any 
other kind. 

The modern reader sees an important corollary of (1). Let ri'~ be any 
Carnot cycle that has the same operating temperatures as ri' c and absorbs the 
same amount of heat. Then we can construct a sequence of cycles ri'n that 
are not Carnot cycles but have the same extreme temperatures as ri'~, absorb 
the same amount of heat as it does, and as n -+ 00 become arbitrarily near 
to ri'~. For example, we may cut an arbitrarily small Carnot cycle out of 
the lower right-hand corner of ri'~. To each of these new cycles ri' n we apply 
(1): 

(5E.2) 

Letting n tend to 00, from the continuity of the integral defining L we con­
clude that 

(5E.3) 

Interchanging the roles of ri' ~ and ri' c, we conclude that L(ri' c) ~ L(ri' ~). 
Therefore 

(5E.4) 

We have established! the following corollary of Claim I: 

For a given body, all Carnot cycles that have the same operating temperatures 
and absorb the same amount of heat have also the same motive power. 

While CARNOT does not present this argument, it easily falls within the scope 
of his mathematical apparatus. Perhaps, since he stated the fact, he thought 
it so obvious a consequence of (1) as to need no proof. We may phrase the 
corollary as follows: 

1 This argument uses suggestions made by Dr. RICHARD JAMES. 
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For each body B there is a function GB such that for each Carnot cycle ~ 
that B may undergo 

(SE.S) 

The foregoing statement is not so astonishing as it might at first glance 
seem. As we have remarked in §SC, a Carnot cycle "6' is determined uniquely 
by its operating temperatures 0+ and 0- along with the extremities, say Va 
and Vb, of its upper isotherm (Figure 3 in §SC). Anything determined by 
a CARNOT cycle for a given body B is therefore determined by 0+, 0-, Va, 
and Vb' In particular, there is a function HB such that 

L("6') = HB(O+, 0-, Va, Vb) 

The Doctrine of Latent and Specific Heats: 

Q = Av(V, O)V + Kv(V, 0)& , 

Av > 0 , Kv> 0 , 

shows us that 

(SE.6) 

(2C.4)r 

(2C,S)r 

(SE.7) 

Appealing to (2C,S)1 again, we see that C+("6') is an increasing function of 
Vb when Va is fixed. Thus (7) may be inverted to yield 

Vb = gB(Va, 0+, C+ ("6'» 

Now we may eliminate Vb from (6) and so obtain 

L("6') = HB(O+, 0-, Va,gB(Va, 0+, C+("6'») 

(SE.8) 

(SE.9) 

This much follows from the Doctrine of Latent and Specific Heats alone. 
The corollary expressed by (4) asserts that the argument Va drops out: 
The work done by a Carnot cycle absorbing a given amount of heat is 
independent of the position of the cycle on the two isotherms it employs. 

CARNOT'S argument to support Claim I is difficult to render precise. I refer 
to his remarks about a "true loss" and "useless re-establishment of equilib­
rium in the caloric", quoted in the preceding section. If "6' is described by the 
Doctrine of Latent and Specific Heats, all points of the body which undergoes 
it have at each time t a common temperature O(t). If "6' is not a Carnot cycle, 
some heat is absorbed when O(t) < 0+, or some is emitted when OCt) > 0-. 
To avoid a difference of temperature between the working body and its sur­
roundings (give them whatever names we desire), we must regulate those 
surroundings so that their temperature at each time is exactly OCt). But then 
we are not using the same furnace and the same refrigerator as the Carnot 
cycle. There is now no basis for comparison, and the whole argument 
collapses. 

Very well, then, let us stay with the given furnace and given refrigerator 
at constant temperatures. How do they affect a body that undergoes a cycle 
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other than a Carnot cycle? Suppose that during part of the interval of time 
during which the working body is absorbing heat from the furnace its tem­
perature is less than the furnace's: 8(t} < 8+. If the interpretation of CAR­
NOT'S ideal bodies I have presented in §5C is just, heat from the furnace at the 
temperature 8+ will flow instantly across the wall that "transmits caloric 
easily" (p. 33) and so will instantaneously become heat at the temperature 
8(t}. As CARNOT'S many statements about "the fall of caloric" make plain, 
he well knows that a given amount of heat is capable of doing more work at a 
higher temperature than at a lower temperature. Thus when a body undergoes 
a cycle that is not a Carnot cycle, some of the heat it receives no longer has as 
much capacity to do work as it had while still in the furnace. "A true loss" 
results. The cycle cannot do as much work as a corresponding Carnot cycle. 
The same thing happens if the working body discharges to the refrigerator a 
part of its heat that is at a higher temperature than 8-, for that heat has not 
done all the work it could have, had it remained in the working body until it 
had fallen to the temperature 8-. 

The Doctrine of Latent and Specific Heats makes all processes reversible. 
The cycle rc we have just considered is one which does work. The reverse 
cycle - rc consumes work. CARNOT knows full well that heat flows spon­
taneously only from the hotter body to the colder. That leaves us two ways 
to try to interpret what CARNOT means by his claim, which here we provi­
sionally accept, that Carnot cycles are the most efficient for given extremes 
of temperature. 

First, holding to the qualification spontaneously, we can conclude that the 
furnace and the refrigerator will not allow the reversed cycle - rc to occur. On 
the part of -rc that corresponds to the part of rc where Q > 0 the working 
body at the temperature 8(t} would be in contact with the furnace at the higher 
temperature 8+, so heat would not flow out of the working body into the 
furnace. Bodies subsumed by the Doctrine of Latent and Specific Heats, as 
we know; are susceptible of reversible processes only. Here the reversed pro­
cess, while possible indeed for the body, is incompatible with the surroundings. 
The experiences of the whole assembly-working body, furnace, and re­
frigerator-are not reversible. In this sense, then, the Carnot cycle, which is 
reversible not only by itself but also with its surroundings adjoined provides 
a reversible system, is compared by CARNOT with the experiences of an irre­
versible system. Irreversibility reduces efficiency, this argument seems to mean. 

Second, we may say that while" spontaneous" flow of heat can do work, 
we can by using up work induce phenomena that are not spontaneous. In -rc 
the heat ~s driven into the furnace and extracted from the refrigerator. There 
is then no conflict with the idea of reversibility, not only in the working body 
but also in the surroundings. In -rc the body acts as a mechanically driven 
cooler. We may r~sort here to CARNOT'S own mechanical analogy, the water­
fall. The water descends spontaneously and does work. The water will not 
reascend spontaneously to the height from which it fell, but we by doing work 
upon it may force it back up the hill. 
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Both choices are matters of interpretation, not mathematics. In both cases 
the assertion about work done is one which can be phrased entirely in terms 
of the working body alone, with no reference to its effects upon the surround­
ings: Does a Carnot cycle do more work per unit heat absorbed than any 
other cycle with the same extremes of temperature? Within CARNOT'S theory 
as it stands this mathematical question has an answer: yes or no. CARNOT 
does not attack this question at all. In §5M we shall provide a mathematical 
proof that the answer is yes. The proof will employ CARNOT'S basic idea: The 
motive power of a quantity of heat is greater at higher temperatures, which 
idea we shall quantify also in §5M. 

5F. CARNOT'S Claim that the Efficiency of Camot 
Cycles is Universal 

Having convinced himself that a Carnot cycle for a given body is the most 
efficient, CARNOT is ready to compare the motive powers of Carnot cycles in 
different bodies. To this end he invents the famous argument about driving 
one engine backward to negate the work of another (pp. 20--22): 

But, if there were means of employing heat preferable to those we 
have used, that is, if it were possible by any method whatever to make 
caloric produce a quantity of motive power larger than we have made 
by our first series of operations, it would suffice to draw off a portion 
of this power in order to cause the caloric, by the method just indicated, 
to go up again ... from the refrigerator to the furnace and re-establish 
things in their original state, thereby making it possible to recommence 
an operation altogether like the first, and so on. That would be not 
only perpetual motion but also the creation of boundless motive force 
with no consumption of caloric or of any other agent whatever. Creation 
of this kind is entirely contrary to the ideas received up to now, to the 
laws of mechanics and sound physics; it is inadmissible. Thus we 
ought to conclude that the maximum motive power obtained from use 
of steam is also the maximum motive power realizable by any means 
whatever. 

A footnote explains that CARNOT does not really object to perpetual motion 
in the ordinary synse, exemplified by the ideal pendulum, but to a construction 
"capable of creating motive power in unlimited quantity". 

The "second, more rigorous proof" on pp. 29-36 is just the same. CARNOT 
then infers (p. 38), "The motive power of heat is independent of the agents used 
to realize it; its value is determined solely by the temperatures of the bodies 
between which is effected, finally, the transport of the caloric." The bodies to 
which he here refers are the furnace and the refrigerator. The "agents" are 
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the possible working bodies: masses of steam, air, liquid, or even solid 
materialsl. 

5G. Formal Statement and Elucidation of CARNOT'S 
Claim of Universal Efficiency 

Although CARNOT'S expressions are vague, it is clear that by" the means ... 
we have used" he refers to Camot cycles. Thus he makes 

Claim II (Universal Efficiency)l. All Carnot cycles that absorb the same 
amount of heat and have the same operating temperatures have also the same 
motive power. 

1 Cf pp. 37-38: "any other body susceptible of changing its temperature by successive 
contractions and expansions, which includes all bodies in nature, or at least all those 
fit to realise the motive power of heat." On pp. 89-93 CARNOT explains why solids and 
liquids are not good working bodies. First, "they are susceptible of little change of 
temperature through change of volume". That is, the adiabats are too nearly coincident 
with the isotherms, so a Carnot cycle would not be possible except for small differences 
of temperature. In addition there are practical reasons: enormous forces would have to 
be applied, etc. 

1 The reader of CARNOT'S book may be confused by a different and altogether indepen­
dent claim of universality: The pressure function 'lIT is (to within choice of R) "the same 
for all gases" (p. 46), namely, that given by the ideal gas law (2A.l), the main cases of 
which CARNOT calls (p. 46) "the law of Messrs. Gay-Lussac and Dalton" and (p. 
51) "the law of Mariotte". CARNOT writes the equation on p. 74, footnote. CARNOT'S 
successors will echo this claim of his for some decades. For example, no less a physicist 
than H. C. OERSTED, writing two years after CARNOT'S treatise was published, claimed 
that his experiments on air, sulphurous acid gas, cyanogen, and "liquid bodies reducible 
to drops" in an apparatus capable of effecting pressures as great as 1l0.5 atm. justified 
the title of his paper: "Experiments proving that Mariotte's Law is applicable to all 
kinds of gases; and to all degrees of pressure under which the gases retain their aeriform 
state", Philosophical Magazine 68 (1826), 102-11l. OERSTED mentions that JACOB 
[DANIEL?] BERNOULLI and EULER had held a contrary opinion, but nevertheless he 
regarded his experiments as serving merely to confirm what everyone already believed. 

CARN01"S reasoning, for the most part, is essentially independent of this fancied 
particular universality. Because of CARNOT'S leaning to arithmetic, a simple rule for 
recognizing use of this special assumption is to look for the number 267. The rule is 
not without exceptions, for by comic chance p. 267 of a book is cited on p. 59. Also, 
alas (pp. 81 and 82), the specific heat of 1 kg of air is 0.267. The other occurrences of 
267 are on pp. 44-45, 60, 74-75, 79, 80, 8l. 

On p. 51, footnote, without using the number 267, CARNOT remarks deviations from 
the equation of state for ideal gases and asserts, "The theorems we shall derive here 
perhaps would not be exact if they were to be applied beyond certain limits of density 
or temperature; they ought not be regarded as true except within the limits of the laws 
of Mariotte and of Messrs. Gay-Lussac and Dalton themselves are confirmed." 

The reader of this essay will have no trouble in recognizing the particular results 
that depend upon use of (2A.l), the equation of state of an ideal gas. Among these are 
(5K.lh, (5K.5b (5L.6), (50.5), and all the contents of §§5Q and 5R. 
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We have seen in §5E that his Claim I implies Claim II in the special case when 
only one body is considered. CARNOT'S argument to extend that statement to 
two different bodies seems to apply, if it applies to anything, to every cycle. 
However, by bringing the assumptions out into the open we can reduce the 
passage to sense in terms of the concepts provided by the Doctrine of Latent 
and Specific Heats. We write C1('C) and Cii('C) for the heat absorbed and 
the heat emitted by a body B in undergoing a cycle 'C, and we write Ls('C) 
for the work done by B in that cycle. 

0:. Construction. Let the body B1 undergo some cycle 'C1 , and let the body 
B2 undergo the reverse -'C2 of a cycle 'C2 so adjusted that 

(5G.l) 

Because 

(2C.24)r 

we conclude that 

(5G.2) 

because 

L( -9) = -L(9) , (2C.21)r 

we conclude that 

(5G.3) 

This much, indeed, rests upon nothing more than reversibility and the assump­
tion that B2 in undergoing 'C 2 can absorb exactly as much heat as does B1 in 
undergoing 'C l' 

{3. Application. Although CARNOT speaks of "any method whatever", his 
discussion refers only to Carnot cycles 'C 1 and 'C 2 that both absorb the same 
amount of heat and have the same operating temperatures. I cannot see that 
any definite conclusion results unless we restrict attention to these as being 
the competing "means of employing heat". Then we may conceive B1 and 
B2 as absorbing and emitting heat to exactly two other bodies: the furnace, 
whose temperature is e+, and the refrigerator, whose temperature is e-. In 
undergoing 'C1 , the body B1 absorbs heat from the furnace; in undergoing 
- 'C 2 the body B2 emits heat to the furnace. From (2) we see that after the 
two cycles have been completed the furnace has neither lost nor gained heat. 
If Ls/'C1) > Lsi'C2 ), it follows from (3) that the overall result of making B1 
traverse 'C 1 and B2 traverse - 'C 2 is to do positive work while the net gain of 
heat by the furnace is null. 

y. "Sound physics". Because C~('C) = CB('C) for every cycle 'C that B 
may undergo, the cycles 'C 1 and 'C 2 together result in null net gain of heat not 
only for the furnace but also for the refrigerator. Thus 'C1 and -'C2 together 
serve to do positive work yet "re-establish things in their original state". 
This CARNOT considers "contrary to the laws of mechanics and sound 
physics". 
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8. Conclusion. It is contrary to "sound physics" that in the cycles as 
above constructed we should obtain La,('?f1) 9= La/'?f2 ). As the possibility 
that Bl and B2 are one and the same body is not excluded, we obtain the 
following conclusion: 

Any two Carnot cycles, if they have the same operating temperatures and 
absorb the same amount of heat, have also the same motive power. 

An equivalent statement in terms of the function GB in the earlier conclusion 

is as follows: 

Let Bl and B2 be any two .fluid bodies, and let GBI and GB2 be the corresponding 
functions GB • Then on the intersection of the domains of GBI and GB2 

5R. Critique of CARNOT'S Argument to Support 
Universal Efficiency 

(5G.4) 

CARNOT'S argument in support of his Claim II refers to a system of four 
bodies: two working bodies, the furnace, and the refrigerator. The work 
done, however, is defined by (2C.20), which refers to the working bodies 
alone. CARNOT calls upon properties of the environment of bodies in order to 
infer properties of bodies exposed to that environment. Work cannot be done 
by two bodies of certain kinds, because if it were, their environment' would be 
unchanged. This kind of argument does not provide a proof unless properties 
of the environment are specified along with the properties of the bodies on 
which it acts. Here the environment is not described by the Doctrine of 
Latent and Specific Heats, so there is no place in the formal structure where 
a proof using CARNOT'S ideas could start. 

Arguments of this kind are common in presentations of classical thermo­
dynamics even today. Here is where they began. Mathematicians instinctively 
reject such arguments, because they stand above logic. Earlier theories of 
physics, having been created principally by mathematicians, made no appeal 
to properties of systems larger than the one being treated. In classical mecha­
nics, for example, nobody ever suggested that something could not happen 
to a body because otherwise the environment of that body might suffer! This 
is the point in history where mathematics and physics, which had come 
together in the sixteenth century, began to part company. 

Then thereis the appeal to "sound physics". First of all, how can CARNOT 
object to "the creation of boundless motive force with no consumption of 
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caloric or any other agent whatever"? Earlier (pp. 10--11) he has written that 
motive power is produced without "any real consumption of caloric .... " 
That consequence of the Caloric Theory of heat is not acceptable today, but 
certainly it is no more incompatible with the laws of mechanics than is the 
theory of the ideal pendulum. Mter having long perpended this matter, I 
incline to think that the apparent contradiction merely reflects CARNOT'S 
vagueness in expressing his ideas. In both cases, by "consumption" he means 
heat added. In the earlier instance it is heat added to the working body, which 
he takes as being null; in the latter instance it is heat added to the furnace. 
That all the heat taken from the furnace to effect positive work should have 
been restored to it, he regards as contrary to sound physics. Because he 
adopts the Caloric Theory, the heat added to the refrigerator is also null, so 
"things" are re-established "in their original state", not only the two work­
ing bodies but also the furnace and the refrigerator. 

CARNOT'S Claim I leads to the statement 

(5E.5)r 

which refers to Carnot cycles alone. It would seem to be weaker than Claim I. 
Is it? As CARNOT himself showed in part (see §§5K-5R, below), (5E.5) gives 
rise to a mathematical structure, on the basis of which we may face a definite 
mathematical problem: Is Claim I itself true or false? This problem has two 
parts: 

1. In the framework of the Caloric Theory. 
2. In the more general framework of the Doctrine of Latent and Specific 

Heats. 

While there is nothing in the early literature to suggest anyone ever sought a 
mathematical analysis of this question, the question itself is purely mathe­
matical and should be so approached. The answers are as follows: 

1. Caloric Theory. In §5M and again in §7H we shall prove that (5E.5) 
when specialized to the Caloric Theory implies Claim I. Therefore, the 
Caloric Theory makes the statement (5E.5) equivalent to Claim l. 

2. General Theory, based on the Doctrine of Latent and Specific Heats. 
In Chapter 13 of Concepts and Logic the reader may see proof that 
Claim I does not generally follow from (5E.5). Thus CARNOT'S argu­
ments, which seem to invoke no specific theory of heat, do not ensure 
that (5E.5) shall be anything more than a necessary condition for the 
truth of Claim I. 

In both cases the demonstrations rest upon the mathematical structure 
provided by (5E.5) and the theory of calorimetry, nothing more. 

Nevertheless, by invoking" sound physics" we can still find a place for 
Claim I: Any thermodynamic theory that does not make Carnot cycles the 
most efficient should be rejected. It would not be "sound". 
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Claim II is another matter. To justify it, CARNOT can only appeal to the 
effect of the working body upon its surroundings, or, conversely, the "per­
petual motion" the surroundings would be able to make it effect. Denial of 
one or another perpetual motion is to become a standard foot of clay for the 
colossus of thermodynamics as author after author tries to re-erect it. As 
BRIDGMANl wrote, 

The guiding motif is strange to most of physics: namely, a capitalizing 
of the universal failure of human beings to construct perpetual motion 
machines of either the first or the second kind. Why should we expect 
nature to be interested either positively or negatively in the purposes of 
human beings, particularly purposes of such an unblushingly economic 
tinge? Or why should we expect that a formulation of regularities 
which we observe when we try to achieve these purposes should have a 
significance wider than the reach of the purposes themselves? The 
whole thing strikes one rather as a verbal tour de force, as an attempt 
to take the citadel by surprise. 

We usually do not proceed like this in other fields. 

No, say the thermodynamicists. When reason and experiment fail, appeal to 
perpetual motion, or scoff at the credulity of those who would have it that 
"something" can arise from "nothing"2. 

Rather, CARNOT in effect lays down an assumption: 

It is impossible for a heat engine to have done positive work yet have restored 
to the furnace all the heat it previously absorbed from it and have withdrawn 
from the refrigerator all the heat it previously emitted to it. 

This is the earliest of the many different statements physicists call the Second 
Law of Thermodynamics. We shall encounter other misty "Second Laws" 
below. As BRlDGMAN 3 put it 

1 BRIDGMAN [1941, p. 4 of the 1961 edition]. 
2 Claims that it is "absurd" to think "something" can be created from "nothing" 
are commoh in the history of physics and even more common in the physics classroom. 
For example, to some Aristotelians it was absurd that a body could go on moving with 
"nothing to push it", and to some paedagogues now it is absurd that man ever could 
have believed that a vacuum (nothing) could have pulled up the cylinder of a pump 
(something). It is equally absurd that electromagnetic waves (something) can exist in a 
vacuum (nothing). 

Even more, physicists today are prone to consider absurd the underlying idea about 
heat and work in CARNOT'S theory, namely that a compressible body by merely trans­
ferring heat from a furnace to a refrigerator, without consumption of any, can thereby 
do positive work. As CARNOT'S theory shows, there is nothing absurd about such an 
idea. That which is untrue is by no means always absurd. Alas, nowadays it is the 
proclaimed truths of science and society that are more likely to be absurd than the 
false superstitions of our ancestors. 
3 BRIDGMAN [1941, p.116 of the reprint of 1961]. 



51. CARNOT'S GENERAL AND SPECIAL AXIOMS 101 

There have been nearly as many formulations of the second law as 
there have been discussions of it. Although many of these formulations 
are doubtless roughly equivalent, and the proofthat they are equivalent 
has been considered to be one of the tasks of a thermodynamic analysis, 
I question whether any really rigorous examination has been attempted 
from the postulational point of view and I question whether such an 
examination would be of great physical interest. It does seem obvious, 
however, that not all these formulations can be exactly equivalent, but 
it is possible to distinguish stronger and weaker forms. 

The list of concepts extraneous to the formal structure that all these" Second 
Laws" employ would fill a page. 

The vagueness and vacillation of CARNOT'S concepts and assumptions­
sufficiently witnessed by the numerous quotations we have presented and 
analysed-are typical of a theory not subjected to the discipline of mathe­
matical statement, and perhaps unavoidable in such a theory. 

The rest of this chapter concerns the mathematical theory that CARNOT 
began to build upon the basis of (5E.5) and his Claim II. It can be completed 
with perfect logic. Therefore what CARNOT did and did not do in regard to it 
can be SUbjected to the ordinary criteria of mathematical analysis. 

51. CARNOT'S General and Special Axioms 

According to CARNOT (see §5D), any difference of temperature suffices to 
provide motive power. Recalling the consequences of CARNOT'S Claims I and 
II, respectively 

(5E.5)r 

and 

we arrive at the, basic principle upon which all the specific calculations of 
CARNOT'S treatise are based. I shall call this principle 

CARNOT'S General Axiom 
I. Let the operating temperatures of a Carnot cycle be 8+ and 8-, and let 

the heat absorbed be C+(~). Then 

L(~) = G(8+, 8-, C+(~)) , (51.1) 

and 

G(x, y, z) > 0 if x > y > 0 and z > 0 , (51.2) 

II. The function G is universal, the same for all bodies. 
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[Statement II is traditional in its vagueness; in the sentence surrounding 
(5G.4) we have given it a precise meaning. We do not need to assume that 
every body is capable of undergoing a Camot cycle having arbitrary operating 
temperatures and absorbing an arbitrary amount of heat. So simple an ex­
ample as the Van der Waals fluid in the liquid region shows that such is not 
generally the case. Rather, we assume that the function G(x, y, z) is defined 
for all positive z and all pairs x, y such that x > y > o. The restriction of 
that G to arguments compatible with the constitutive domain and constitutive 
functions of some particular body determines through (1) the value L(C(/) for 
every Camot cycle rc that that particular body may undergo. One function G 
does for all bodies. 

[The arguments x, y, 0 and x, x, z do not correspond to Camot cycles as 
we have defined them, but it is convenient to extend G to those arguments in 
such a way as to make it continuous at them: 

G(x,y,O) = 0 , G(x, x, z) = 0 .J (51.3) 

CARNOT does not specify the function G. In his first enunciation of his 
General Axiom (p. 28-29) he states, 

... the motive power of heat likewise depends upon the quantity of 
caloric employed and on what we can and shall indeed call the height of 
its fall, that is to say, the difference of temperatures of the bodies be­
tween which is effected the exchange of caloric. In the fall of water, 
the motive power is rigorously proportional to the difference of level 
between t~e upper and lower reservoirs. In the fall of caloric, the 
motive power doubtless increases with the difference of temperature 
between the hot body and the cold one, but we do not know whether 
it be proportional to this difference. 

[These two statements together would seem to mean 

G(x, y, z) = E(x - y, z) , 

f>E 
f>x (x, z) > 0 ,J 

(51.4) 

but when CARNOT comes to calculate anything connected with finite differ­
ences of temperature, he always supposes that1 

G(x, y, z) = [F(x) - F(y)]z , 

F(x) > F(y) if x> y > 0 • 
(51.5) 

1 It is difficult to locate in his treatise any explicit statement of (5). To see that CARNOT 

does in fact use it, we need only verify that a number of his specific conclusions are true 
if (5) holds but false otherwise: (5K.5) (as CARNOT himself stated it, namely with F' 
for ,,), (5Q.1) and its consequences, and the considerations of §5S. If we were to deny 
that CARNOT used (5), we should thus have to maintain that he derived the afore­
mentioned results by incorrect mathematics. 
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What little mathematical theory CARNOT presents, both that in the long 
footnote on pp. 73-79 and that given here and there in words, rests upon 
(5) rather than (1). [I shall call (5) CARNOT'S Special Axiom. Usually we shall 
write (5)1 in the form 

(51.6) 

which follows by substituting (5)1 into (1). rhe quantity G(8+, 8-, C+)jC+, 
which has the dimensions of work -:- heat, may be called the efficiency of the 
cycle. According to CARNOT'S Special Axiom, the efficiency is F(8+) - F(8-). 
If we select any constant Jo bearing the dimensions of work -:- heat, we may 
obtain a dimensionless efficiency [F(8+) - F(8-)]jJo, but in CARNOT'S theory 
there is nothing in favor of doing so, because one such constant is no better 
than any other.] 

From (5)2' which merely expresses a condition that F must satisfy in order 
that "whenever a difference of temperature exists, motive power can be 
produced" (p. 16), CARNOT much later (p. 94) draws the following con­
clusions: 

(1) The temperature of the fluid should be raised at once to the 
highest degree possible, so as to obtain a great fall of caloric, and con­
sequently a large production of motive power. 

(2) For the same reason the cooling should be carried as far as 
possible. 

In all his numerical calculations as well as in part of his mathematical 
theory, CARNOT is too cautious to use even his Special Axiom except when 
8+ and 8- are taken as being nearly equal to each other. [In §5P, below, his 
caution will be proved justified.] 

5J. Critique of CARNOT'S General and Special 
Axioms. Scholia I-III. "Carnot's Function". 

CARNOT makes three major assumptions: 

1. The Caloric Theory of heat holds 1. 

2. The motive power of a Carnot cycle "t' is determined by the heat 
C+("t') that it absorbs and by its operating temperatures 8+ and 8-. 

1 As (5C.3) shows, only a change of the amount of caloric in a body, not the absolute 
amount, plays a part in CARNOT'S General and Special Axioms. Thus RUMFORD'S 
observation that heat could be developed indefinitely by doing continual work in 
deforming a body did not bear in any way on CARNOT'S theory or, later, on thermo­
dynamics in general. In this context the reader may consult pp. 95-97 of S. C. BROWN'S 
Count Rumford, Physicist Extraordinary, Garden City, Anchor Books, 1962. 
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3. Any two bodies which undergo Carnot cycles corresponding to the 
same data 8+, 8-, C+(CC) have the same motive power. 

These three assumptions are logically independent. In particular, the con­
sequences of the second one can be developed with no reference to the other 
two. 

CARNOT'S General Axiom is not to be questioned during the period 
covered by this history. Even CLAUSIUS is to adopt it and use it (§8B8, below). 
On the contrary, REECH is to show later that CARNOT'S Special Axiom (51.5)­
the only case of his General Axiom that CARNOT himself chooses to use­
cannot be separated from the Caloric Theory of heat. We shall follow 
REECH'S obscure analysis below in §9C, but here I give a simple proof that 
CARNOT'S Special Axiom requires every Carnot cycle to emit all the heat it 
absorbs. 

We consider a given Carnot cycle ~ as shown in Figure 4, and we extend 
its adiabats downward 2 until they intersect the isotherm at a temperature 80 
slightly less than 8-. In this way we obtain two new Carnot cycles: one with 
operating temperatures 8- and 80' which we shall label ~', and one with 
temperatures 8+ and 80, which we shall label ~". By use of the reversal 
theorems (2C.21) we see that 

L(~'') = L(~) + L(~') 
The reversal theorem (2C.24) shows that 

8 

8-

r------------------------------v 

(5J.l) 

(5J.2) 

Figure 4. Construction to prove that Carnot's Special Axiom requires heat to be 
conserved in Carnot cycles 

2 The modern student knows that a construction of this kind is not possible without 
some assumptions regarding the constitutive domain. As analytical precision was very 
uncommon in works on physics in the nineteenth century, I think it would be out of 
place to attempt it in a history, so I pass over details of this kind in silence. 
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If we now apply to each term in (1) the equation in CARNOT'S Special Axiom, 
namely 

L(~) = [F(O+) - F(O-)]C+(~) , 

and thereafter use (2), we find that 

[F(O+) - F(Oo)]C+(~) = [F(O+) - F(O-)]C+(~) 

+ [F(O-) - F(Oo)]C-(~) , (5J.3) 
so 

Because of the inequality in CARNOT'S Special Axiom, namely 

F(x) > F(y) if x > y > 0 , (51.5)2r 

we conclude that C+(~) = C-(~) for every Carnot cycle ~. We have 
established 

SCHOLION I: Carnot's Special Axiom is compatible with the reversal 
theorems only if heat is neither lost nor gained in any Carnot cycle. 

CAUTION. Scholion I refers to finite differences of temperature. Of course, 
if 0+ - 0- is very small, so is C+(~) - C-(~), irrespective of any assump­
tion about heat and work. 

Physicists are wont to say that CARNOT "knew the Second Law of Thermo­
dynamics without knowing the First." The Second Law in this context is 
regarded as a statement about the motive power of Carnot cycles. We have 
just proved that such a claim is false. The assumption about motive power 
CARNOT actually used, his Special Axiom, by itself implies that Carnot cycles 
conserve heat. CLAUSIUS' "First Law", as we shall see in §8A, implies that a 
cycle ~ in which C+(~) = C-(~) does no work at all. Thus CARNOT'S 
"Second Law", whatever may be meant by the term, is incompatible with 
CLAUSIUS' "First Law". Since CLAUSIUS' "Second Law" is compatible with 
his "First Law", it cannot be equivalent to CARNOT'S "Second Law". So 
much we get by pure logic, not having to commit ourselves to statement of 
what all these "Laws" mean. Of course we retain compatibility for infini­
tesimal differences of temperature, in view of the caution stated just after 
Scholion I. 

We shall see in Act III that no such thing can be said of CARNOT'S General 
Axiom. On the other hand, that axiom is not the "Second Law" but a far 
less restrictive statement, as may be learned from the program and results in 
Concepts and Logic. In §5H we have analysed the statement (§5F) CARNOT 
used in order to infer his General Axiom (§5I). That statement is weaker than 
anything today called the "Second Law". In §8A we shall see that CLAUSIUS 
will impose a stricter prohibition in order to support CARNOT'S claims after 
deleting their one apparent reference to the Caloric Theory, namely that the 
quantities of heat in both refrigerator and furnace are left unchanged. 
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Had CARNOT put in mathematical form his often repeated assertions of 
reversibility, he could easily have seen the simple argument based on Figure 
4. His failure to do so is typical of the theorist who tries to get along without 
mathematics. That CARNOT, whenever he treated finite differences of tem­
perature, did employ the one and only case of his loosely stated General 
Axiom compatible both with the theory of calorimetry and with his own 
further assumption (5C.I), is one more example of his astonishing ability to 
guess right. 

CARNOT was wise in not elevating to a general principle his suggestion 
that the motive power be a function of the difference 8+ - 8-. Of course 
such a relation is possible if E in (51.4) is a linear function of 8+ - 8-, but 
from the reversal theorem it can be shown that the linear dependence is the 
only admissible one within the Caloric Theory of heat. I leave the proof to 
the reader. For a linear function, the theorem we have just proved above 
shows that the Caloric Theory is implied. 

The distinction we have just taken pains to express disappears if we limit 
attention, as CARNOT nearly always did, to infinitesimal differences of tem­
perature. REECH (§9C, below) was to prove that the function G that figures 
in the first statement in CARNOT'S General Axiom, 

L(rc) = G(8+, 8-, C+(rc)) , 

must be linear in its third argument: 

L(rc) = K(8+, 8-)C+(rc) , K(x, y) > 0 if x > y > 0, K(x, x) = 0 . 
(5J.5) 

Other than REECH, no early author considered any other possibility; perhaps 
it is "obvious" that for any given operating temperatures a Carnot cycle 
which absorbs twice as much heat effects twice as much work. Except in 
regard to REECH'S researches, whenever in this tragicomedy we shall refer 
in any quantitative way to CARNOT'S General Axiom we shall employ (5). 

Doing so, we replace K by its linear approximation and thereby reduce 
the very statements of CARNOT'S General and Special Axioms to a common 
form when 8+ and 8- are both infinitesimally near to 8 and differ by the 
amount /),8: 

L(rc) ~ fL(8)/)'8C+(rc) 

The only difference is that 

oK I ox (x, 8) 

F'(8) 

x=8 
according to CARNOT'S 
General Axiom, 

according to CARNOT'S 
Special Axiom. 

(5J.6) 

(5J.7) 
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We summarize this fact as 3 

SCHOLION II: When applied to Carnot cycles corresponding to infinitesimal 
differences of temperature, CARNOT'S General and Special Axioms are indis­
tinguishable. For finite differences of temperature, they are not. 

The distinction made in Scholion II is delicate. We shall see in §8C that a 
passage in CLAUSIUS' paper of 1850 comes near to it. It was certainly grasped 
by KELVIN, whose expression of it We shall present in §9B. Perhaps because 
he did not state it so broadly, it seems not to be widely understood 4. Here, 
perhaps, lies a reason for some of the confusion and obscurity which still, 
after a century of debate, surround CARNOT'S legacy. 

For purposes of interpretation and criticism we may combine Scholia I 
and II to yield 

SCHOLION III: Insofar as CARNOT treats only infinitesimal differences of 
temperature, his results derive from his General Axiom and do not require that 
heat be conserved in Carnot cycles. Insofar as CARNOT brings to bear his 
Special Axiom for finite differences of temperature, his results generally are 
false if heat is not conserved in Carnot cycles. 

Nevertheless, the qualification "generally" before "false" in Scholion III 
cannot be omitted, for some of CARNOT'S statements about finite differences 
of temperature remain true even if the Caloric Theory is abandoned. Indeed, 
if two statements are incompatible in general, it is nevertheless possible to 
draw from both together conclusions that do not require the truth of either. 

In this section we have stated our conclusions in terms of Carnot cycles 
alone. They can be strengthened to refer to all simple cycles. Indeed, the 
mathematically competent reader will show easily that if each point in the 
common domain of Av, Kv, and 'lIT may be inclosed by an arbitrarily small 
Carnot cycle, then the statement that C+('tf) = C-('tf) for all simple Carnot 
cycles'tf suffices that C+('tf) = C-('tf) for all simple cycles, or for all cycles 

3 Some historians have made much of the extent to which CARNOT'S theory and CLAUSIUS' 

agree in higher approximations, but such agreement merely obscures the conceptual 
issues of the theory. 
4 In a review written just after CLAUSIUS' paper appeared HELMHOLTZ [1855, p. 576] 
showed in his way that "all consequences CLAPEYRON drew from this equation [(5J.6)1 
without integrating it remain valid." Also "It is another matter when laws for finite 
differences of temperature are derived by integrating this equation .... " This review 
like others, has been regarded as ephemeral. It is considerably clearer than the works 
of discovery. 

HELMHOLTZ [1859, 21, perhaps implying that CLAUSIUS was skimpy in acknowledging 
his debt to his predecessors, in his review of CLAUSIUS [1856, 11 repeated the observation 
quoted just above. 
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in a simply connected domain 5. Thus Scholia I and II may be extended: 
Within the framework of the Doctrine of Latent and Specific Heats, we may 
say that (6) is a local equivalent to CARNOT'S General Axiom if the Caloric 
Theory of heat is assumed; otherwise, it is only a very particular consequence 
of that axiom. 

We shall reiterate this conclusion in a different way in §5L. 
The function IL appearing in (6) is to playa central role in the development 

of thermodynamics. KELVIN 6 is to call it "Carnot's function". Because of 
the inequality asserted in CARNOT'S General Axiom, namely 

G(x, y, z) > 0 if x > y > 0 and z > 0 , (5I.2)r 

early authors seem to have concluded that 

IL > 0 . (5J.8) 

In fact, however, the limit process used to derive (6) leads only to the weaker 
condition 

IL ~ 0 . (5J.9) 

Careful examination of the matter shows that (9) cannot be replaced by (8). 
Theorem 7 in Chapter 9 of Concept and Logic shows that there are an in­
creasing function g and a positive function h such that IL = g'jh. Thus (9) 
follows, but as g' may vanish on a set with empty interior, so may IL. An 
example is provided in Remark 6 after Corollary 11.2 in Chapter 10 of 
Concepts and Logic. 

The distinction has bearing upon the theory of absolute temperature, 
which we shall discuss below in §11H. 

SK. CARNOT'S Treatment of his Cycle 

[To clarify the course of thought 1, we shall first use a general equation of 
state (2A.2), although CARNOT himself always uses the ideal gas law p V = 

6 If dis the region inclosed by the simple cycle «/, AMPERE'S transformation yields 

C+(<(J) - C-(<(J) = i (AvdV + Kvd8) , 
~ 

= f (8Av - 8Kv)dVd8 
.III 88 8V • 

(A) 

If «/ is a Carnot cycle which can be shrunk down to a point, (5C.l) implies that (5M.3) 
holds at that point. Then the right-hand side of (A) vanishes, no matter what be d. 
Hence (5C.l) holds for all simple cycles «/. Likewise, (5M.3) implies the existence of 
Ho in a simply connected domain. 
8 THOMSON [1851, §2]. Earlier THOMSON [1849, §30] had called it "Carnot's coefficient". 
1 I am indebted to Dr. KEITH HUTCHISON for pointing out an error in my first estimate 
of this part of CARNOT'S work, written in 1970, and for explaining to me some of 
CARNOT'S arithmetic. 
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Rf). For the most part in this section, I rely upon the long footnote (pp. 73-
79) which CARNOT himself assures the reader is no more than "the analytical 
translation" of "some of the propositions above" into" algebraiclanguage". 

[As is shown by his crude numerical calculations of the motive power of 
1 kg of carbon (above, §5A), CARNOT is unable to analyse a cycle correspond­
ing to a finite difference of temperature.] To find the motive power of heat, 
he begins from an expression for the work L done by the fluid body in tra­
versing an isothermal path f!Ju at temperature f) from Va to Vb: 

IVa v. 
L(f!lJo) = w(V, f))dV = Rf) log Vb , 

Vb a 
(5K.I) 

the second form being valid only for an ideal gas. For this elementary result 
he cites a paper of 1818 by PETIT2. [Perhaps so as to evade the problem of 
calculating the work done on an adiabat,] CARNOT considers a Carnot cycle 
with infinitesimal difference of temperature, for then the adiabats, being 
infinitesimally short, contribute nothing to the work done. Although' he 
employs 0)2, valid only for an ideal gas, his reasoning, [which is general, is 
only obscured by this useless specialization; if applied to 0)1> it] yields 3 

L(CC) ~ L(f!lJ8+M) + L( -f!lJo) ~ [:0 f ~b w(V, f))dV] Af), 

[fVb f)p ] 
= Va f)0 (V, f))dV Af). 

CARNOT'S General Axiom leads to the statement 

so 

L(CC) ~ fL(f))C(f!lJo)Af) 

Comparison of (2) and (3) yields 

1 [Vb f)p 
C(f!lJo) = (0) f)f) (V, f))dV . 

fL . Va 

(5K.2) 

(5J.6)r 

(5K.3) 

(5KA) 

2 PETIT [1818, p. 292]. CARNOT is generous, for PETIT, who had not even mentioned the 
fact that 0 must be constant for this result to hold, had claimed to calculate the effect 
of an engine by equating the power of the working body to the rate of increase of the 
kinetic energy of the piston. Cf CARNOT'S later remark on p. 86 of Rejiexions. From 
PETIT'S paper we may judge how scantly the physicists of the day understood the science 
of mechanics as it was practised at that very time by geometers such as LAPLACE, 

POISSON, and CAUCHY. 

3 CARNOT in effecntates that on the isothermal paths -9. and 9.+ A8 

(b 
LWJ8+A8) =), m-(V, 0 + fl8)dV , 

Va 

(va (b 
L( -9.) =), 'IU(V, O)dV ~ - J. 'IU(V, O)dV 

Vc Va 

when flO is small. 



110 5. ACT ll. DISSIPATIONLESS WORK: CARNOT 

For a body of ideal gas the quadrature on the right-hand side may be effected 
(p.76): 

(SK.S) 

This is CARNOT'S nuzin theorem, which he has already expressed in words 
(p. 52-53): "When a gas changes in volume without change of temperature, 
the quantities of heat absorbed or emitted by that gas are in arithmetic pro­
gression if the increments or decrements of volume are found to be in geometric 
progression. " 

5L. Critique of CARNOT'S Treatment of his Cycle. 
Scholion IV. 

Anyone familiar with the theory of line integrals sees that the general 
relation 

L = f 'aT( V, 8)dV 
lI' 

(2C.20)ar 

when applied to a simple cycle ~ yields l 

L(~) = If ~ dpdV = t,~ dVd8 ; (SL.I) 

as is shown in Figure 2 in §SC, d denotes the region of the V-8 quadrant 
inclosed by ~, while .s7 denotes the region inclosed by the corresponding 
curve in the p-V quadrant. The convention of sign here is that the region 
d must lie on the right-hand side as rc progresses. CARNOT'S result 

L(~) ~ u:: :~ (V, 8)dV] !18 (SK.2}ar 

is a special case of (I). Restriction to this special case merely obscures the 
reasoning., Also, to calculate the heat absorbed on a simple isothermal path 
(JJ e, we appeal directly to the Doctrine of Latent and Specific Heats: 

Q = Av(V, 8)V + Kv(V, 8)8 , 

Av> 0, Kv> O. 

A glance $,hows that 
rV& 

C«(JJe) = J, Av(V, 8)dV , 
Va 

(2C.4)r 

(2C.S)r 

1 CLAPEYRON [1834, §I1] stated the differential form of (1) in words so casual as to give 
the impression that it was common knowledge. 
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From CARNOT'S General Axiom in its reduced form 

L(~) = K(()+, ()-)C+(~), K(x, y) > 0 if x > y > 0 , 

by use of (1) and (2) we see that 

f oP Jva 
o() dVd() = K(()+, ()-) Av(V, ()+)dV . 

d Vb 

K(x, x) = 0 , 
(SJ,S)r 

(SL.3) 

Dividing this equation by (Vb - Va)(()+ - ()-) and then passing to the limit 
as Vb ~ Va and ()+ ~ ()-, we show that 

op 
fLAv = o() , 

"Camot's function" fL being given as follows: 

oK I ox (x, () 
x=() 

F'(() 

according to CARNOT'S 
General Axiom, 

according to CARNOT'S 
Special Axiom. 

(SLA) 

(SJ.7)r 

CARNOT'S argument, which was to be extended to a general equation of state 
by CLAPEYRON (§6A, below), is a loose version of just this. In fact, if we 
substitute (2) into the relation 

1 fVb op 
C(&o) = (() fJ() (V, ()dV 

fL Va 

and then differentiate with respect to Vb, we obtain (4). Thus (4) deserves to 
be called the General CARNOT-CLAPEYRON Theorem. 

The spectators, recalling the distinctions made in §5J, will see that the 
protagonist while seeming to smelt lead has cast a gold ingot. The reasoning 
rests upon CARNOT'S General Axiom alone, and fL is given in terms of that 
axiom by (5J.7)1' However, CARNOT and his popularizer CLAPEYRON appealed 
only to CARNOT's Special Axiom. For them, fL necessarily has the form 
(5J.7h, and (4) is neither more nor less than 

F 'A fJp 
V = fJ() • (5L.5) 

This is the Special CARNOT-CLAPEYRON Theorem 2 • 

2 The notation Fis CARNOT'S; CLAPEYRON wrote C for 1/F'. CARNOT wrote T for R/F', 
that is, RC, R being the constitutive constant of the gas. F and C are universal functions, 
but CARNOT'S Tis not. The notation JL is KELVIN'S (§7H, below). 

As is stated in §§2A and 2C, we follow the custom of all early writers on thermo­
dynamics in assuming that Av > 0 and iJp/iJ8 > O. Not only is (4) consistent with 



112 5. ACT II. DISSIPATIONLESS WORK: CARNOT 

For an ideal gas the General and Special CARNOT-CLAPEYRON Theorems 
reduce, respectively, to 

(5L.6) 

CARNOT'S theorem (5K.5) is neither more nor less than an integrated form 
of the last of these formulae. Only the awkwardness of CARNOT'S mathe­
matics made this theorem seem anything but an immediate consequence of 
his assumptions. 

Here begins another spiral of misunderstanding and confusion. The dis­
tinction between (4) and its special case (5) is formally plain enough, once 
stated; both CLAUSIUS (below, §8C) and KELVIN (below, §9B) were to grasp 
it, the latter very firmly; the first author to make it clear, and the last until 
1975, will be REECH in 1853 (below, §9C), but nobody was to pay attention 
to him. The General CARNOT-CLAPEYRON Theorem (4) expresses f'through 
quantities at least in principle accessible to experiment: f' = op/o8 +- Av. If 
CARNOT'S Special Axiom is adopted (and hence, Scholion I tells us, so is the 
Caloric Theory), then (5J.7)2 applies, f' = F ' , and S03 

(5L.7) 

The latter of these formulae expresses neither more nor less than CARNOT'S 
Special Axiom. If, on the contrary, we do not specialize CARNOT'S General 
Axiom but leave it as it is, the function f' as given by (5J.7)1 is only the 
restriction of one partial derivative of the function K to one line in the plane 
of its two arguments. Thus f' does not determine G. In summary we have 

SCHOLION IV: Let CARNOT'S General Axiom be accepted, and let f' have 
been determined. If the General Axiom is specialized to the Special Axiom 
(thereby, as Scholion I states, implicitly requiring that heat be conserved in 
Carnot cycles), then the motive power of heat associated with finite differences 
of temperature is determined. Without that specialization or some other, f' does 
not determine that motive power. 

CARNOT'S Special Axiom, which requires that F be an increasing function, but also (5) 
requires that F' shall not vanish, not even at isolated points. This limitation is satisfied 
by all examples of F that CARNOT gave. 

However, a priori restriction of the signs of Av and op/ofJ is not necessary to the 
mathematicaJ development of CARNOT'S ideas, and no such restriction is laid down in 
Concepts and Logic. The reader interested in the complications that are encountered 
when there may be curves on which op/ofJ = 0 may look at Figures 9 and 10 in §7, 
Lemma 1 in §8, and Definition 17 and Theorem 7 in §9 of that work. That theorem 
delivers (4) with no a priori restriction on the signs of Av and op/ofJ, and it allows p­
to vanish on a set of temperatures with empty interior. 
S W. THOMSON [1849, Equation 7]. 
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The importance of the CARNOT-CLAPEYRON Theorem is central. Until a 
theory relating heat to work is laid down, the constitutive functions Av and 
"lIT remain independent. The relation (4) shows that neither is arbitrary, once 
the other be known. That is, the caloric and thermal properties of the fluid 
body impose a condition upon each other, a condition determined by a 
function of temperature which relates the work done by the body in an 
infinitesimal Camot cycle to the heat absorbed in that cycle. CARNOT was the 
first to see that a theory connecting heat and work imposes restrictions upon 
the constitutive function of bodies. The discovery of such restrictions has been 
the essence of thermodynamics from his day to ours. 

CARNOT'S expressions in words are often less specific than the conse­
quences that do follow from his theory. An example is his famous theorem 
about arithmetic and geometric progressions quoted at the end of the pre­
ceding section. The law really derived by CARNOT is 

R IVbdV R Vb 
C({/J(J) = 1£(8) v" V = 1£(8) log Va (5K.5)r 

with 1£ specialized to F'. His statement in words makes no reference to the 
origin of 1£. His reasoning, as we have shown, suffices to obtain from his 
General Axiom the result (5K.5) with general 1£. Thus again CARNOT'S 

theorem on progressions follows although the Special Axiom, which he in­
voked so as to derive it, need not hold. 

This much should suffice to foreshadow the influence CARNOT'S reasoning 
will exert, long after his Special Axiom has been rejected. 

SM. Critique: Interconvertibility of Heat and Work as Implied 
by CARNOT'S Theory. Proof that CARNOT'S Cycles are Indeed 

the Most Efficient. 

The Special CARNOT-CLAPEYRON Theorem, namely 

F'A op 
v = 08 ' (5L.5)r 

implies the whole panoply of thermodynamic relations, both local and 
integral, of CARNOT'S theory. Few of these were noticed by the pioneers who 
came after CARNOT; even fewer by CARNOT himself. To obtain some of them, 
we first recall that CARNOT assumed the existence of the heat function He, so 

Then 

. oHe · oHe II 
Q = He = oV V + 08 rJ • (5M.!) 
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Comparison with the Doctrine of Latent and Specific Heats, expressed in 
part by the relation 

Q = Av(V, 8) V + Kv(V, 8)8 , 

yields precise determination of Av and Kv: 

8Hc 
Av = 8V ' 

8Hc 
KV=f5l} , 

and the corresponding condition of integrability 

8Av 8Kv 
81}= 8V' 

(5M.2) 

(5M.3) 

Of course, the formulae (1), (2), and (3) are together equivalent to the 
formulae 

K = _ M (8P/8P) 8HL 
P 88 8p 8p , 

K = M8p8HL 
v 88 8p , (3F.l)r 

8 (Kv) 8 ( Kp) 0 8p 8p + 8p 8P /8P = , 
88 88 8p 

formulae implied by LAPLACE'S theory but not written out by him. The 
tragicomic muse showed LAPLACE and CARNOT, each in his own way, how 
to make these trivial relations seem profound: LAPLACE, the mathematician, 
by choosing the awkward variables p and p and at the same time plunging 
into intricate molecular calculations, and CARNOT, the engineer, who chose 
the natural variables V and 8, by stringing out the argument in vague words 
and arithmetic. We have already noticed CARNOT'S reluctance to introduce 
Av in the few equations he gives, although he has declared at the outset that 
he expects his readers to be thoroughly familiar with the concept of latent 
heat. He certainly uses (2)2 frequently, but I cannot find in his book anything 
equivalent to its companion, (2)1' It is not clear whether he knows about 
conditions of integrability, though they were already old in his day1. KELVIN, 

1 I see no reason to follow the custom of those writers on thermodynamics who by 
calling every statement of some part of a condition of integrability a "Maxwell relation" 
seem to imply that EULER'S theorem 

(PI (PI 
oxoy = oyox ' 

under appropriate (and by thermodynamicists never stated) hypotheses on I, becomes 
a great discovery of physics as soon as thermodynamic interpretations are attached 
to x, y, and! The term derives from a footnote by MAXWELL [1871, p. 167]. MAXWELL'S 
third "thermodynamic relation" is neither more nor less than the General CARNOT­
CLAPEYRON Theorem in its final form (71.3)a but with Av expressed in terms of the entropy 
H through the relation Av = BoH/oV, which is an immediate consequence of (llE.6), 
below. 



SM. INTERCONVERTIBILITY AS IMPLIED BY CARNOT 115 

at the very sunset of the Caloric Theory, will be the first to publish (3) and 
to recognize it as being the essence of that theory: From it, "other remark­
able conclusions ... might have been drawn," so that "experimental tests 
might have been suggested" (see §9B, below). 

Indeed, we can use (3) to find right away the full connection between heat 
and work that CARNOT'S theory implies. We know that 

L(flf) = II..sf dpdV = If..sf :~ dVdO (SL.l)r 

we have the Special CARNOT-CLAPEYRON Theorem: 

F'A ap 
v = ao . 

Hence 

L(flf) = If..sf F' AvdV dO , 

= II..sf [FIAv + F (a~v - a:;)] dVdO , (SM.4) 

= If..sf [;0 (FAv) - aav(FKv)] dVdO ; 

the second line is a consequence of (3). By applying AMPERE'S transformation 
of a line integral around a simple circuit into an integral over the region that 
it bounds, we conclude from (4) that for any simple cycle2 

L(flf) = I'iI' F(AvdV + KvdO) , 

l t2 

= F(O)Qdt, 
tl 

(SM.S) 

retaining the convention of sign laid down in §SL. We see at a glance that this 
formula allows us to recover the equation in CARNOT'S Special Axiom: 

(SI.6)r 

We may regard (5) as the extension of that equation to an arbitrary simple 
cycle. More important than that is the general interpretation of (S): 

In a cyclic process, according to CARNOT'S theory a unit of heat absorbed at 
the temperature 0 is equivalent to F(O) units of positive work, while a unit of 
heat emitted at the temperature 0 is equivalent to F(O) units of negative work. 

2 This formula seems not to be generally known even today. It is an immediate con­
sequence of specializing REBeH's formula (9C.1)2 to the Caloric Theory. However, as 
the proof in the text shows, it need not be obtained in that way. Use of AMPERE'S trans­
formation is elegant but not necessary. CARNOT could have obtained (5) by hacking 
differential elements in the common style of physicists in his period. 
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We note that F may not be a constant function, for that would contradict 
(5I.5h, which expresses CARNOT'S often-repeated statement that any differ­
ence of temperature suffices to effect work if a suitable engine is employed. 
We may express this result as follows: 

CARNOT'S theory requires that heat and work be interconvertible, but it forbids 
them from being uniformly so 3. 

While today we reject (5) with any F except a constant one, there would 
have been no reason for CARNOT to be alarmed by that relation with an F 
that increases with 8. It expresses one possible interpretation of his grand 
idea: In its power to do work, heat at high temperature is different from heat 
at low temperature. Today we still accept that grand idea, though we give it 
a different specific interpretation, for we do not allow a body that does cyclic 
work through "thermal agency" to emit all the heat it absorbs in a cycle. 
We apply the grand idea to the heat absorbed alone, not to all the heat ex­
changed in a cycle. 

The formula (5) provides a way to calculate the motive power of any cycle. 
Thus it puts in our hands a tool for calculating the greatest motive power 
that a unit of heat can provide in a cycle "6' whose maximum and minimum 
temperatures are 8max and 8m1n• We may write (5) in the form 

L("6') = f F(8)Qdt - f F(8)( - Q)dt , 
J9'"+ 9'"-

(5M.6) 

f7+ and f7- being the parts of the interval ]t1' t2[ on which Q > 0 and 
Q < 0, respectively. Since Q > 0 in the first integrand, while - Q > 0 in 

3 Since CARNOT'S considerations refer mainly to cycles, (5) suffices for the purpose here, 
but it is easy to extend the idea to arbitrary processes, as is shown by Theorem 8 in §9 
of Concepts and Logic. CARNOT'S theory implies the existence of an internal pro-energy 
Eo( V, 0) such that in any process 

Eo = F(O)Q - pY . 

In fact the special CARNOT-CLAPEYRON Theorem (5L.5) may be interpreted as a condition 
of integrability sufficient that Eo exist locally, and 

Eo = FHo - f 'I1TdV + f , 

fbeing a suitably chosen function of 0 alone; for an ideal gas 

Eo = R(: - 0) log V + f . 

The reader who desires to check these formulae must remember to use not only (5L.5) 
but also (2). With the choice aO for F (cl (5S.6» the internal pro-energy of an ideal gas 
thus reduces to a function of 0 alone, just as in the later thermodynamics. With the 
prophetic choice (5N.7), on the contrary, Eo depends on Vas well as O. 
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the second, the fact that Fis an increasing function allows us to conclude that 

L(re) ~ F(8ma,JC+(re) - F(8nmJC-(re) , 
(5M.7) 

= [F(8ma,J - F(8m1n)]C+(re) , 

the second step being a consequence of the fact that c+(re) = C-(re) in 
every cycle re. Equality holds in (7)1 if c+ (re) = o. Once this trivial possibility 
be set aside, the reasoning that delivered (7h shows that equality holds if and 
only if 8 = 8max on ~+ and 8 = 8mln on ~-. This is precisely CARNOT'S 
Claim I, as stated and criticised in §5E. Among all cycles that absorb any heat, 
Carnot cycles 4 and they alone are the most efficient for given extremes of 
temperature. In §5H we have remarked that the specific conclusion 

(5E.5)r 

which we have drawn from CARNOT'S Claim I makes that claim either false 
or else demonstrable and hence superfluous as an axiom. Here, by a few lines 
of calculus, we have shown that Claim I when specialized to the Caloric 
Theory is true, a consequence of (5E.5). In the literature of thermodynamics 
from the beginnings until the 1970s I have found no trace of the elementary 
analysis just given. In fact, I have not found (5) or any verbal statement 
equivalent to it. 

Hindsight!, the Historians of Science will say. It is no credit to CARNOT 
that he expressed himself so obscurely that a path for bringing to bear the 
hindsight provided by seventeenth-century calculus was not cleared through 
his book until the late twentieth century. 

4 Because of the constitutive inequality (2C.S)1 all Carnot cycles look like Figure 3 
in §SC. If, as is necessary in the later thermodynamics, we drop (2C.S)h other kinds of 
Carnot cycles become possible. The following sketch shows one for water near 4°C at 
nearly atmospheric pressure: 

0+ = max 0 
0-

min 0 

o 

curve on which Av = 0 
Bp 

and BO· = 0 

~----------------------------v 

The assertion and proof given in the text above are still valid, provided Omax be made 
to mean the supremum of 0 on /T+, while 0- is made to mean the infimum of 0 on /T-. 
In the case drawn 0- =1= min 0, but 0- = 0mlu as redefined. 
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SN. Critique: Dimensional Invariance of CARNOT'S 
Theory 

Hindsight agafu.! It is strange that no one has ever subjected CARNOT'S 
assumptions to a dimensional analysis. First of all, CARNOT'S General Axiom 
(51.1) tells us that if we choose some particular Carnot cycle ~o, on which the 
heat absorbed is C+(~o), we shall obtain a definite amount of work L(~o). 
Thus L(~ 0) and C + (~o) are certain constants, so L(~ 0)/ C + (~o) is a constant 
bearing the dimensions of work -:- heat. Every Carnot cycle furnishes us such 
a constant. We choose one of these and call it Jo• Then the equation in 
CARNOT'S Special Axiom, namely 

(51.6)r 

may be written in the form 

(5N.I) 

the function within the brackets being dimensionless. A unit of heat produces 
a certain number of units of work; the factor of proportionality is the product 
of a constant 10 , which merely converts units from one arbitrary scale to 
another, and a dimensionless function of two temperatures. 

We now tum to the function f. Since the units of temperature are inde­
pendent of the units of heat and work, f must satisfy the relation 

(5N.2) 

at least for all A in a small interval about 1. Solving this functional equation, 
we see thatfis proportional to log 8. Thus CARNOT'S Special Axiom is dimen­
sionally invariant if and only if CARNOT'S function is of the form 

F(8) = Jlog 8 + const. (5N.3) 

and the motive power of a Carnot cycle ~ is then given by 

(5N.4) 

J is an arbitrary constant having the dimensions of work -:- heat. Because of 
(51.5)2, J > O. As we shall see in §5S, this particular choice of F is one to 
which CARNOT inclined, but he did not exclude others. 

Of course it does not follow that other choices of F are inadmissible, 
provided we allow Fto vary from one body to another. If Fis to differ from 
(3), it must have as a further argument some particular constant temperature 
80 , Written in full, (51.6) must then be 

(5N.5) 

g being a dimensionless function of its dimensionless arguments, and indeed 
all of CARNOT'S own hypothetical examples are of this form (cf. §5S, below). 
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If in (5) g(x) = A log x + B, (4) results; otherwise the ratio Lj(JC+) cannot 
be determined by (J+ and (J- alone. The third temperature (Jo in (5) could 
have one of two meanings. First, it could be a univeJ:sal constant bearing the 
dimensions of temperature. There is neither evidence in nature of any such 
particular universal temperature nor any indication that CARNOT believed 
there was such, so this possibility must be set aside. The second and only 
remaining possibility is that the particular temperature (Jo is proper to the 
body in question, for example, a boiling point or a melting point. If so, the 
right-hand side of (5) is not a universal function, common to all bodies. On 
the contrary, CARNOT always claimed the motive power of heat to be inde­
pendent of the agents used to realize it. Therefore, CARNOT'S SpecialAxiom 
is inconsistent with his claim of universality unless his function F has the 
form (3). 

No such objection can be raised against CARNOT'S General Axiom 

L(~) = G«(J+, (J-, C+(~)) , 

G(x, y, z) > 0 if x > y > 0 and z > 0 . 

Dimensional considerations, though they appear in primitive form in 
FOURIER'S work (above, §4E), were not familiar in the early nineteenth cen­
tury. They would have sufficed to determine at once CARNOT'S function F. 
In §5T we shall show that the result, namely (3), leads to conclusions so 
objectionable as to have caused CARNOT'S theory to be rejected, had they 
been perceived. 

We see that (3) is equivalent to 

F'«(J) = Jj(J . 

Because of (5J.7)2, we can write this result in the prophetic form 

ft = Jj(J . 

(5N.6) 

(5N.7) 

It will be important to recall that this determination of ft is compatible with 
CARNOT'S theory. 

50. CARNOT'S Numerical Evaluation of the Motive 
Power of Heat 

As we have ~tated in §5A, CARNOT concluded from his theory that 1000 
units of heat passing from a body maintained at the temperature of 10 to 
another body maintained at 00 would produce, in acting upon air, 1.395 units 
of motive power. To obtain this number, [which is one of his most striking 
conclusions,] CARNOT presented only strings of [opaque, ugly, and] approxi­
mate arithmetic (pp. 79-82). 

[Nevertheless, his idea is a simple one. To grasp it, the student's easiest 
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course is to tum to CLAPEYRON'S calculation1 of the same quantity. Although 
CLAPEYRON'S analysis is just as loose, it is presented in "the usual dialect of 
mathematicians" rather than arithmetic and hence can be understood easily. 
Once we have traced the argument, we can recognize it as being just what 
CARNOT had expressed in his own way. Moreover, we can see that there is 
nothing that need be loose in it, and we can make it still easier to understand 
by referring it to a general equation of state rather than to the example of 
the ideal gas, to which both CARNOT and CLAPEYRON confined their presenta­
tions. In addition, we can see that the reasoning itself makes no direct use of 
the existence of a heat function, which CLAPEYRON brought in only so as to 
cancel it out again.] 

To begin with, 

Q = Ap(V, ()jJ + Kp(V, ()8 . (2C.8)r 

Hence 

(50.1) 

In an adiabatic process V = f«(); writing dV/d() for the derivative of J, we 
obtain from (1) 

Bp Bp dV 
1 NJ + WOO 

Ap = Kp 

Now we invoke the General CARNOT-CLAPEYRON Theorem: 

Because 

we conclude that 

Bp 
fLAy = B() • 

Bp 
1 B() 

fL = -0-Ap Bp 
BV 

Substitution of (2) into (3) yields 

Bp [BP 1 fL = _ B() B() + dV 
Kp Bp d() 

BV 

1 CLAPEYRON [1834, §VI]. 

(50.2) 

(2C.9)lr 

(50.3) 

(50.4) 
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For an ideal gas this statement becomes 

1 _.! dV 
-R Vd8 

I-' - 8K" (50.5) 

which is what CLAPEYRON obtained, following in CARNOT'S footsteps. 
CARNOT (p. 43) attributed to POISSON the experimental datum 2 that in an 

adiabatic compression of air at O°C 

8dV 267 
Vd8 = -116 = -2.30 . (50.6) 

He accepted also (p. 81) the value of Kp for 1 kg of air at O°C obtained by 
DELAROCHE & BERARD: 

Kp = 0.267 KcaWC . (50.7) 

Putting these numbers into (5) yields 

I-'(O°C) for air = 1.395 . (50.8) 

This is the first of CARNOT'S two celebrated determinations of the motive 
power of heat. We shall not consider the second, for it employs statements 
relating steam to water. 

SP. Critique of CARNOT'S Numerical Evaluation of 
the Motive Power of Heat 

CARNOT'S analysis rests upon the General CARNOT-CLAPEYRON Theorem 
alone; it makes no use o/the Caloric Theory. Indeed, it derives from CARNOT'S 

General Axiom; in Act IV we shall see that CLAUSIUS will make an assumption 
essentially equivalent to that axiom while rejecting the Caloric Theory. Thus 
the traditional amazement over CARNOT'S having got a good numerical 
answer from a false theory is groundless, for the simple reason that the theory 
he really used at this point was not false. True, CARNOT wrote F' where we 
have written 1-', but the reasoning by which he concluded that 

1 _.! dV 
_ R Vd8 

I-' - 8K" (50.5)r 

made no use of his Special Axiom except for infinitesimal differences of 
temperature, and there it is indistinguishable from his General Axiom. 

II We have explained this datum above in §3A. 
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CARNOT'S evaluation of /L at ODC would have led to its modern value! there, 
had he used modern datafor lip andfor (O/V)dV/dO in an adiabatic process. 

CARNOT'S method has a capital advantage over later ones. Namely, beyond 
the Doctrine of Latent and Specific Heats it rests upon CARNOT'S General 
Axiom alone. It does not assume any relation whatever between the specific 
heats of ideal gases 2. The function /L as determined by it need not be assumed 
the same for all bodies. It requires neither the Caloric Theory nor any other 
specializing assumption regarding the work done by absorption of heat. 
Within the broad limits imposed by CARNOT'S General Axiom, it is purely 
experimental and thus allows an experimental check on the Caloric Theory, 
the First Law, and the specific heats of gases. 

For all this it pays a price. It is not a general determination of the motive 
power of heat. To know /L is not enough for that. As we have shown in §5L, 
the motive power of infinitesimal Carnot cycles does not generally determine 
the motive power of finite ones. 

5Q. CARNOT'S Theory of Specific Heats 

[Unlike his analysis of the Carnot cycle, CARNoT'stheory of specific heats 
really refers only to ideal gases.] It rests upon CARNOT'S main theorem: 

R jVbdV R Vb 
C(gJo) = /L(O) v" V = /L(O) log Va . (5K.5)r 

1 I read the remark made by THOMSON [1853, 1, §86] about CARNOT'S determination of 
/L as showing that he finally reached this conclusion. 

As will be seen in §8B, the" modem value" must agree with the value of J/8 at O°C, 
J being the mechanical equivalent of a unit of heat. The statement in the text does not 
refer at all to that agreement. Rather, /L is defined by (5J.7)1 for any theory compatible 
with CARNOT'S General Axiom. Therefore, both CARNOT'S theory and CLAUSIUS' are 
included. Through (5J.6) the function I-' for both theories determines the work done in 
Carnot cycles with infinitesimal difference of operating temperatures. CARNOT'S calcula­
tion of /L through (50.5), resting, as it does, directly on quantities accessible to ex­
periment, is "modern" because it holds in common for CLAUSIUS' theory and CARNOT'S. 
2 If y = const., we may invoke the LAPLACE-POISSON Law (3D.5) and so conclude that 
in an adiabatic process (V/8)d8/dV = -(y - 1). Then (50.5) reduces to 

R 
/L = (1 - y 1)K,,8 . 

If both specific heats are constant, this formula implies (5N.7) and evaluates the constant 
J therein just as MAYER is to do; cf (7B.3), below. If /L is the same for all fluid bodies, 
then so is J, so to evaluate J once and for all it suffices to assume that one ideal gas has 
constant specific heats. CfAxiom V of Concepts and Logic. 

This appeal to modernity blunts the edge of CARNOT'S method, which is independent 
of such specializing assumptions. Besides, as we shall see below in §5T, CARNOT does not 
accept the LAPLACE-POISSON law. 
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Because CARNOT assumes that 

(5B.l)r 

C({!Je) may be expressed also in terms of the heat function He. Equating the 
two expressions yields 

R V 
He(V, £J) - He(Va, £J) = F'(£J) log Va (5Q.l) 

Defining U as follows: 

U(£J) == He{l, £J), (5Q.2) 

by comparison with (1) CARNOT obtains his heat function for an ideal gas 
(p.77): 

R 
He(V, £J) = F'(£J) log V + U(£J) (5Q.3) 

[With the aid of (3) the relation between temperature and volume along 
the adiabat connecting (Vo, £Jo) to (V, £J) becomes obvious: 

R R 
F'(£J) log V + U(£J) = F'(£Jo) log Vo + U(£Jo) (SQA) 

However, CARNOT apparently does not see it;] instead, he gives a somewhat 
more complicated method1 (pp. 62-64) which would lead to the same result, 
but he works it out only in a special case, which we shall consider in §SS. 

CARNOT knows that 

Thus (3) yields 2 

Kv = oHe 
o£J 

Kv = R (.z!.,)' log V + U' . 

(SM.2)2r 

(5Q.S) 

By a difficult verbal argument 3 , CARNOT concludes also (p. 59) that "The 

1 First he uses (5K.5) to find the heat emitted in an isothermal compression from 
(Vo, 80) to (V, 80). Then he uses (2C.4) to calculate the heat absorbed in an isochoric 
process connecting (V, 80) to (V, 8), on the supposition that Kv is a function of V only 
and hence is constant in this particular process. In the Caloric Theory these two quan­
tities of heat are equal. To obtain (4) by this reasoning of CARNOT'S, we need only 
use his general formula (5), below, rather than take Kv as being a function of Valone. 
2 The long verbal argument on pp. 56-58 regards the temperature as constant and leads 
to a corresponding statement of (5) in words about progressions; a complicated and 
obscure way of taking account of variation of temperature appears on pp. 53-64; 
(5) itself is obtained in the footnote on p. 77, where it is numbered (5). 
3 On pp.43-46 a very obscure argument, full of incomprehensible arithmetic, leads 
to the conclusion that "The difference between the specific heat at constant pressure 
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difference between the specific heat at constant pressure and the specific heat 
at constant volume is always the same, whatever be the density of the gas, 
provided the weight remain the same." The reader is expected to remember 
that the whole argument, starting some pages earlier (p. 55), presumes that 
the gases" be taken and maintained at a certain invariable temperature. But 
these theorems furnish no means of comparing the quantities of heat emitted 
or absorbed by elastic fluids which change in volume at different tempera­
tures." To determine those quantities we should require (p. 56) "some other 
data that physics today will not supply us." [This is one way of stating that 
F is an unknown function of temperature. The formula that expresses 
CARNOT'S conclusions succinctly is 

R 
Kp - Kv = OF' 

it is an immediate consequence of the relations 

Kp - Kv = V ~v and F' Av = ~ . 

(5Q.6) 

(2C.14)3r, (5L.6)4r 

More generally, we may use the General CARNOT-CLAPEYRON Theorem for 
an ideal gas 

R 
fLAv = V' 

and so show that for an ideal gas 

R 
Kp - Kv = OfL 

(5L.6hr 

(5Q.7) 

CARNOT'S General Axiom implies that the difference of specific heats of an 
ideal gas is a function of 0 alone.] 

5R. Critique of CARNOT'S Theory of Specific Heats 

Here CARNOT'S mathematics is clear and sound. 
One of the "other remarkable conclusions" from (5M.3), conclusions 

and the specific heat at constant volume is the same for all gases." CARNOT explains 
that the pressure [and the temperature] are held constant and "the specific heats are 
measured with respect to the volumes." The argument leading to the statement quoted 
above appears on pp. 58-59. Of course I do not imply that those arguments are wrong. 
The explicit relation 

was stated by CLAPEYRON [1834, end of §3] and THOMSON [1849, Eq. (12)]; it is an 
immediate consequence of (6). 
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from which, as KELVIN is to write in 1851, "experimental tests might have 
been suggested", we have seen already in the form 

oK" oKv K - Ky + p - + p - = 0 " op op , (3F.5)r 

which LAPLACE could easily have derived from his formulation of the Caloric 
Theory. With CARNOT'S choice of variables an equivalent statement follows 
by solving (2C.14)s for Ay, calculating oAy/oO, and putting the result into 
(5M.3): 

(5R.l) 

The possibility that K" = Ky is excluded by (2C.I7) (cf. also Footnote 3 to 
§5C). Therefore (1), like (3F.5), shows that the Caloric Theory of heat does 
not allow both specific heats of an ideal gas to be constant. 

For CARNOT'S purpose this fact, some consequences of which we have 
foreseen in §3F, is especially harsh. 

It is CARNOT'S misfortune that he weaves his original and sound views on 
the motive power of fire into a theory of heat that while logically sound is 
untenable in physics. As we shall see in the two following sections, this very 
matter of the specific heats defeats CARNOT'S theory as an explanation of 
facts of nature. 

5S. CARNOT'S Attempts to Determine his Function F 

[CARNOT perceives the double purpose of a theory of specific heats: first, 
to support the general results of thermodynamics by exhibiting some rules of 
proportion or of dependence or independence which accord with known 
experimental facts, and second, to calculate the motive power of heat in 
numerical examples. 

[In CARNOT'S. theory the key formula is 

Ky = R (;,)' log V + U' (5Q.5)r 

First of all, he must show that its general form squares with what is known 
about the dependence of Ky upon V and O. Having done so, he may use a 
few specific values of Ky and so determine F, more or less, to within two 
arbitrary constants. The motive power of heat then follows by use of the 
equation in his Special Axiom: For a Carnot cycle ce, 

Above all, CARNOT desires to find some numbers that can be used in the 
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design of steam engines. To this end, he must find the particular F that con­
forms best with the phenomena of nature.] 

In the first place (pp. 55, 60), DELAROCHE & BERARD concluded from their 
experiments that the specific heat of a gas [at constant pressure] was a 
[slowly] increasing function of its volume [when the temperature was held 
constant]. In CARNOT'S theory, likewise, (5Q.5) and its companion 

R 
K" - Ky = OF' (5Q.6)r 

show that (p. 59) " ... both specific heats increase as the density of the gas 
diminishes [provided F' =1= const.], but their difference does not change" 
[if the temperature is kept constant]. A footnote mentions that Messrs. GAY­
LUSSAC & WELTER have found by direct experiments, cited by LAPLACE, that 
the ratio of specific heats, y, "varies very little with the density of the gas. 
From what we have just seen, it is the difference that should remain constant, 
not the ratio. Because, however, the specific heat[s] of gases for a given weight 
vary very little with the density, it is obvious that the ratio itself experiences 
only small changes." Thus CARNOT'S theory seems to fit the data at hand, 
provided F' =1= const. [Doubtless CARNOT has perceived that in his theory it is 
impossible for both KlI and Ky to be constants, as we have seen in the pre­
ceding section.] 

When we try to determine F (p. 69), "To start with, it would seem natural 
enough to suppose that for equal differences of temperature, the quantities 
of motive power produced are equal .... Doubtless, such a law would be very 
remarkable, but there are no reasons sufficient to assume it a priori. We shall 
discuss its reality by rigorous reasoning." [CARNOT proceeds to explore some 
possible embodiments of his central conviction: A quantity of heat can do 
more work at higher temperature than at lower. He gives a simple [and indeed 
rigorous] ~gumentl (pp. 71-72) by which, again after appeal to the results of 

1 The argument is made clear by a diagram: 

8 

'------------v 

on which a, h, a', and h' stand for the amounts of heat gained on the respective paths 
"~. ~Y. By, and "3. According to the Caloric Theory, a + h = a' + h'. For any given 
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DELAROCHE & BERARD, he concludes that (p. 72) 

The quantity of heat due to the change of volume of a gas is the more 
considerable, the higher is the temperature . ... 

These unequal quantities of heat would produce ... equal quantities 
of motive power for equal falls of caloric, taken at different heights on 
the thermometric scale, whence the following conclusion may be drawn: 
The fall of caloric produces more motive power in the lower ranges [of 
temperature] than in the higher ones. 

But (p. 73) this difference 

should be very small; it would be zero if the air's capacity for heat 
remained constant, despite changes of density. According to the 
experiments of Messrs. Delaroche and Berard, this capacity varies 
little, so little indeed that the differences noted could strictly be attri­
buted to some errors of observation or to some circumstances not taken 
into account. 

Earlier (pp. 28-29), we recall (§5I), he had written, "the motive power doubt­
less increases with the difference of temperature between the hot body and 

8,theexperiments of DE LAROCHE & BERARD show that Kp(V', 8) > Kp(V", 8) if V' > V". 
By (5Q.7) it follows that Kv(V', 8) > Kv(V", 8). Thus the quantities of heat gained 
on the isochoric paths a{3 and 8y satisfy the relation a' > a. Hence b > b'. 

CARNOT'S statement amounts to 

BAv -ae> o. 

Indeed, by use of (5M.3) and (5Q.7) we see that according to CARNOT'S theory 

BAv BKv BKp 
-ae = BV = BV ' 

so Av is an increasing function of 8 if and only if Kp is an increasing function of V. 
This conclusion fails if we relinquish the Caloric Theory. Falling back then upon the 
General CARNOT-CLAPEYRON Theorem (5L.6)2, we see that for an ideal gas 

BAv Rp.' 
-ae = - Vp.2 

on the assumption that p. > 0, and so 

BAv 0 -ae> -¢> p.'<0. 

The thermodynamics of CLAUSIUS incorporates the determination p. = J18, so the 
right-hand statement holds. It is a tribute to the insight of CARNOT that his expecta­
tion here is confirmed, although both the theory and the experimental evidence he 
used to support it were to be rejected later. 
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the cold one .... " In terms of CARNOT'S Special Axiom his two statements 
about motive power are, respectively2: 

1. F increases 
}as 0 increases. 

2. F'decreases 

In a long footnote (pp. 73-79) CARNOT goes over the same ground in a 
somewhat more precise fashion, using some algebraic notation. He considers 
two special cases, both of them hypothetical, or largely so. 

Special Case 1. In order that Kv "be constant at all temperatures" [but 
not independent of V] (p. 77), inspection of (5Q.5) yields the necessary and 
sufficient conditions 

IjF'(O) = OjJ + d , J = const. =l= 0 , [and UjR = eO + const.] ; 
(5S.I) 

thus 

F(O) = JIog (0 + Jd) + const. , (5S.2) 

[If J > 0 and d ~ 0, this example satisfies both of CARNOT'S conditions 
listed above. We note that if d = 0 and if we replace F' by the more general p., 
(1)1 reduces to the prophetic relation 

p. = JjO!] (5N.7)r 

The variation of temperature and volume along an adiabat is given by 

V. 
(00 + Jd) log r: 

o - 00 = --:;--=:---:--­
log V + Je 

(5S.3) 

[as CARNOT had shown earlier (p. 66), and as we easily conclude from (5QA)]. 
According to CARNOT, this formula approximates very well the results of 

2 CARNOT'S ,requirements may be stated also in terms of the function K that occurs 
in (5J.5), which expresses CARNOT'S General Axiom as reduced by REECH. In that 
way they become free of the Caloric Theory: 

1. K(8 + h, 8) is an increasing function of the positive variable h for each fixed 8. 
2. K(8 + h, 8) is a decreasing function of 8 for each fixed, positive h. 

It is a further tribute to CARNOT'S insight that both these statements of his are 
verified by the thermodynamics of CLAUSIUS. Indeed, from (9A.15), below, we see 
that 

o 8 
oh K(8 + h, 8) = (8 + h)2 > 0 , 

o h 
08 K(8 + h, 8) = - (8 + h)2 < 0 . 
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experiment. In virtue of CARNOT'S 8pecial Axiom (51.5), the corresponding 
motive power of a Carnot cycle is (p. 78) 

( 8+ + Jd) + L(~) = JIog 8 + Jd C (~) . (58.4) 

CARNOT reminds us that the hypothesis Kv = f(V) has not yet been suffi­
ciently verified by experiment, so (4) should for the time being be accepted 
only for a moderate range of temperatures. 

[Also, if 8+ - 8- = h, 

f!7J) = JIog (1 + 8- ! Jd) , (58.5) 

which indeed diminishes slowly if h is fixed and 8- -+ 00.] 
Special Case 2. If we suppose that Kv is a function of 8 alone (p. 78), then 

(5Q.5) requires that F' = const., so 

F = a8 + const. , a = const. > 0 , (58.6) 

and the motive power of a Carnot cycle ~ is 

(58.7) 

that is, "the motive power produced would be found exactly proportional 
to the fall of caloric." 

The first special case, expressed by (2), is that which results if CARNOT'g 
statement about "more considerable" quantities of heat absorbed in iso­
thermal expansion is interpreted as a strict proportion. The second special 
case is the one CARNOT considered first but rejected later because it failed to 
agree with the results of DELAROCHE & BERARD. It satisfies the first condition 
listed above but does not satisfy the second. 

Although CA,RNOT inclines toward the first special case, in the end he 
adopts neither and takes no final position regarding the motive power asso­
ciated with a finite fall of caloric3 • [CARNOT'S numerical calculation has been 

3 Here, it seems, is the place to return to the mistaken idea, dismissed in Footnote 5 
to §5A, that CARNOT really meant to distinguish "chaleur" from "calorique". Its origin 
has been traced to LIPPMANN and CALLENDAR, in both cases unjustly. 

G. LIPPMANN on p. 79 of his Cours de Thermodynamique, Paris, Carre, 1889, after his 
analysis ofa Carnot cycle by use ofthe relation L('G')/J = (8+ - 8-) AH remarked, "One 
can express this result by saying that the production of work is due to the fall of an 
invariable quantity, of entropy H, which passes from 8+ to 8-." There is nothing wrong 
with this statement, but it is parallel to CARNOT'S results only in the special case when 
(5S.6) holds, and CARNOT drew back from endorsing this special case. CARNOT himself, as 
we have seen above in §5K, did not analyse a Carnot cycle in this way. ZEUNER [1860, 
§1O] attributed this approach to REECH [1856], but below in §9A we shall see that in fact 
it is due to RANKINE (1851). 

H. L. CALLENDAR in §17 of the article "Heat", Encyclopaedia Brittanica, 11th to 14th 
editions, made CLAPEYRON responsible for all sins then commonly laid upon CARNOT: 
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analysed in §50. As has been explained in §5A, his final numerical estimates 
are little more than guesses.] 

5T. Critique: CARNOT'S Dilemma 

We have seen in §5R that the Caloric Theory forbade the specific heats of 
an ideal gas to be both constant. In CARNOT'S special case, governed by the 
relations 

and 

this dilemma is acute. 

R 
Kp - Kv = OF' , 

(5Q.5)r, (5Q.6)r 

By use of those formulae we easily verify that in CARNOT'S theory each of 
the following conditions is equivalent to the rest: 

1. y is a function of 0 alone. 
2. Kp is a function of 0 alone. 
3. Kv is a function of 0 alone. 
4. F = aO + const., a = const. > O. 
5. L(<'C) = a(O+ - O-)C+(<'C). 

"Unfortunately, in describing Carnot's cycle, he assumed the caloric theory of heat, and 
made some unnecessary mistakes, which Carnot (who, we now know, was a believer in 
the mechanical theory) had been very careful to avoid." In manufacturing his estimate of 
CARNOT'S degree of care CALLENDAR would have us believe that CARNOT when he was 
writing the Rejlexions was already a secret "believer in the mechanical theory", despite 
CARNOT'S own explicit statement to the contrary, which we have quoted above in the text 
of§SA. 

Misconceptions aside, it is astonishing how many of CARNOT'S conclusions remain 
acceptable in the later thermodynamics if we choose to regard his "chaleur" as "heat" 
and his "calorique" as "entropy". Among them are everything CARNOT writes about 
isothermal processes and many things he writes about cycles. A counterexample is 
provided by the statement we have numbered (SQ.S); that statement does not remain 
correct if He is regarded as entropy, for Kv is then 88He/88, not 8He/88. The later final 
choice (SN.7) for F' does not make (SQ.S) reduce to the final form of Kv for an ideal gas, 
namely Kv = U'. 

I have relegated these remarks to a footnote because I think that fortuities of this 
kind mislead rather than enlighten. A theory of physics grows neither from augury nor 
from haruspication, much less from hunches or stabs in the dark. The spectator of this 
tragicomedy, ifhe has the capacity to learn from what he has seen, will recognize CARNOT 
as the man who established and illustrated the program of thermodynamics, the great 
creator of concepts and principles. 
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Anyone of them implies also that 

so 

and 

Also 

R 
Y - 1 = a8Ky , 

Ky = const. 
1 

Y -Iex:-
8 ' 

Y = const. 

Kp = const. 

1 
~ Kyex: 8 ' 

R 
~ Ky = - a8 + const. 

131 

(ST. 1) 

(ST.2) 

(ST.3) 

(ST.4) 

We recognize these results as being special cases of the theorem we have 
noticed in §3F; as we remarked there, they stand in glaring conflict with 
common expectation of the behavior of gases and are most implausible; they 
show that if either Ky or y is constant, Kp must decrease as the temperature 
increases. In the limit as {} --* 00, (2) implies that y --* 1, while (3) implies that 
Ky --* O. Worst of all, (4) implies that Ky --* -00 as {} --* O. But a basic 
assumption of the Doctrine of Latent and Specific Heats is 

Ky> O. (2C,S)2r 

Therefore, we must either reject altogether the possibility that Kp = const. or 
else interpret it as admissible only in a limited range of temperatures. 

These facts may explain why CARNOT refuses to consider the case in 
which y = const. 

Yet in his call for new experiments so as to determine Kyas a function of 
V and {}, CARNOT turns his back on one of the most reliable and complete 
bodies of experimental data at his time, namely, those regarding the speed of 
sound in air. These data, going back more than a century, fully supported 
two qualitative relations satisfied by the speed c: 

(ST.S) 

Now if we accept, as CARNOT does, LAPLACE'S contention that sound is an 
adiabatic motion of an ideal gas, we are led inescapably to LAPLACE'S results: 
In general 

and for an ideal gas 

c2 = yp/p = yr8 . (3C.2)1.2r 
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As we have shown in §3F, these results do not require 'l' to be constant. How­
ever, the theory as expressed by (3C.2) is consistent with experiment as sum­
marized by (S) if and only if 

'l' = const. > 1 , (ST.6) 

the gas, as always, being supposed ideal. Therefore, in order to square his 
theory with these two facts, one theoretical and the other experimental, 
CARNOT would have been forced to reject his first special case: 

1/F'(8) = 8/J + d , J=I=O, (SS.1)l.2r 

adopt his second special case: 

F = a8 + const. , a = const. > 0 , (SS.6)r 

and stomach the disagreeable conclusion (3). This is not a matter that called 
for new experiments. CARNOT'S theory, because it was inextricably entwined 
with the Caloric Theory, was doomedfrom the start by a basic flaw, a flaw we 
have demonstrated in §3F. 

CARNOT was not one to reject good experimental data. I think his failure 
here-and failure is the only word for it-reflects his clumsiness in mathe­
matics. Since LAPLACE'S work was snarled in long calculations, we may not 
exclude the possibility that CARNOT could not follow it, or if he could, that 
he was unable to disentwine the solid parts of it from LAPLACE'S fantasies 
about molecules of caloric, atmospheres, and attractions. Perhaps he thoughtl 
that LAPLACE had needed to assume 'l' constant in order to get (6) at all, so 
that no test of the hypothesis was provided by the result, and some other 
theory of adiabatic motion in an ideal gas might have squared equally well 
with (S). The distinction here is rather fine for a person not accustomed to 
mathematical criticism. 

CARNOT nowhere mentions the LAPLACE-POISSON law (3D.S) of adiabatic 
change: 

pp-Y = const. , (3D,S)lr 

which follows from assuming that 'l' = const. It is possible that he did not 
know of it2. We have seen above in §SQ that CARNOT was able to treat 

1 CARNOT cites LAPLACB twice. While his note on p. 30 might refer only to LAPLACE 
[1816], on p. 59 he cites the Mecanique Celeste for the experiments of GAy-LUSSAC 
& WBLTER, which are mentioned only in Book 12 of Volume 5 (LAPLACB [1823]), 
in the course of LAPLACE'S exposition of his own theory of specific heats and adiabatic 
change. 
2 I have reached this conclusion after having long regarded it as untenable. I justify 
it as follows. 

The work of LAPLACB, published in 1822 and 1823, we have described and analysed 
above in §§3C and 3P. While anyone who followed it in detail would have been able to read 
off the LAPLACE-POISSON law from a glance at (3C.1l), LAPLACB himself did not record it, 
and only a person adept in long formal calculations, patient and determined beyond the 
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adiabatic changes in a special case. He could easily have done so also on the 
assumption that y = const. As we have seen, he would then have been forced 
to adopt his second special choice of F, namely (SS.6), using which in his own 
formulae (SQ.3) and (SM.2)2 would have shown him that 

R 
U = (y _ 1 )a log 8 + const. , (ST.7) 

Putting (4) and (SS.6) into (SQ.4)-the formula for the adiabats which follows 
by inspection from CARNOT'S own determination of his heat function-we 
obtain the LAPLACE-POISSON law. 

Certainly CARNOT'S theory is compatible with the LAPLACE-POISSON law, 
but had CARNOT preferred that appropriate special case rather than the one 
he regarded as conformable with the experiments of DELAROCHE & BERARD, 
it would not have saved his theory. In the two special cases in question the 
motive power of a Camot cycle is, respectively, 

_ (8+ + Jd) + L(CC) - JIog 8 + Jd C (CC) , 

and 

(SS.7)r 

If we hold C+(CC) and 8- fixed, then according to either ofthese formulae 

L(CC)jC+(CC) ~ 00 as 8+ ~ 00 • (ST.8) 

Both formulae imply that a given quantity of heat can produce arbitrarily great 
motive power in a Carnot cycle with the furnace at sufficiently high temperature. 

ordinary, and of strong stomach could have penetrated (or can now penetrate) the dense 
thicket, found (3C.11), and interpreted it in adiabatic processes. 

On p. 43 CARNOT attributes to POISSON the statement that air rises in temperature by 
one degree when its volume is reduced by the 116'b part. CARNOT uses this number as 
if it were a datum of experiment; he does not cite the publication where he found it. It 
occurs in the first memoir of POISSON [1808, p. 363] (POISSON himself [1823, 1, p. 7] was 
to cite the passagejncorrectly as being on p. 334). There POISSON obtained it as a con­
sequence of the theoretical assumption (3A.l), forced into agreement with the measured 
speed of sound by giving k in (3A.5) its measured value, namely 0.4254 at 6°C. As we 
have seen in §3B, POISSON'S treatment of 1808, tentative as it is, does not require the 
motion to be adiabatic or y to be constant. CARNOT, following LAPLACE, assumes the 
motion adiabatic and thus can accept POISSON'S figure 1/116 as being appropriate to 
adiabatic changes; as we have seen above in §50, this is just what CARNOT does. 

POISSON'S final 'treatment [1823, 1 and 2], in which he assumes that y = const., 
obtains and publishes the LAPLACE-POISSON law, and makes its status fairly clear, is 
simple enough for any good graduate of the Ecole Poly technique to read, but it appeared 
in 1823, and CARNOT'S treatise was published on June 12, 1824. Any claim that CARNOT 
could have seen POISSON'S papers of 1823 in time to use their contents in his manuscript 
would have to be substantiated by precise specification of their dates of publication 
and of CARNOT'S return of proofsheets. 
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In modem terms, the efficiency of Carnot cycles is not bounded above. The 
abundant "Second Laws" of modem thermodynamics are interpreted, 
according to the divinations of our contemporary experts, as denying truth 
to such a conclusion. Of course it contradicts also the "First Law". 

In refraining from trying to apply his results to specific cases except when 
the difference 0+ - 0- is small, CARNOT shows his practical good sense. For 
finite differences of temperature, both choices of F he considers-the one he 
regards as supported by the experiments of DELAROCHE & BERARD and the 
one that he should have to accept, were he to take seriously the results of 
experiment on the speed of sound-both, I say, lead to ridiculous conclusions, 
refuted by the simplest experience with heat engines. To both cases 3 we may 
apply his own words (p. 21): "Creation of this kind is entirely contrary to the 
ideas presently received, to the laws of ... sound physics. It is inadmissible." 

In CARNOT'S work there is no sign of the scrupulous analysis of concepts, 
the inexorable rejection of every postulate or axiom not necessary to the end 
desired, that is the essence of mathematics 4 in general, of the rational mecha­
nics of the seventeenth and eighteenth centuries in particular. 

It was not experiment that was wanting; it was mathematics. 

SU. CARNOT'S Bequest 

It is now obvious to the spectator that CARNOT founded thermodynamics, 
founded it not only in physical concept but also in program and in schema. 
Of more lasting importance than any specific calculation is his having per­
ceived that a theory of the work effected by heat necessarily restricts the class 
of constitutive relations allowed, and it was he himself who obtained in prin­
ciple the central restriction, the General CARNOT-CLAPEYRON Theorem: 

op 
/LAv = 00 • 

3 CARNOT'S theory does not imply (8) for all choices of F. For example, if F(O) = 
J(l - e- k9), thenL(~/C+(~ < Jfor all values of 0+ and 0-. Of course we know today 
~hat no choice of CARNOT'S F can square even roughly with experimental fact except 
when (0+ - 0-)/0+ is small. 
4 Some historians and physicists have suggested that CARNOT may have worked out all 
his theory by the aid of mathematics and then expressed it in everyday language for the 
presumed benefit such treatment would confer upon engineers. Although there is no 
evidence whatever on which to base this charitable imagination, it may be true never­
theless, but it has nothing to do with the mathematical standard of CARNOT'S work. 
Such reasoning as he does present, whether in words or in symbols, is almost always 
right as fat' as it goes. Both kinds are equally disorderly and equally uncritical, equally 
inferior to the standard that had been set by the rational mechanics of the preceding 
century and was being maintained in CARNOT'S day by CAUCHY and others. 
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CARNOT treated the principles of thermodynamics as restrictions upon 
materials, not upon processes in a body of given material. His own result 
(5L.6)2 we may interpret as the requirement that/or all ideal gases, 

V~v = one and the same function of fJ, namely F'~fJ) . (5U.1) 

CARNOT'S mastery of the concept expressed by (1) is reflected in his line of 
thought which we have quoted above in §5S, although he does not mention 
(1) itself there. His first claim regards isothermal expansion; it is equivalent 
to (JAv/(JfJ > o. Upon its heels comes his second claim, which refers to motive 
power; it is equivalent to (F')' < O. He writes as if he took for granted that 
the former implied the latter. Certainly no such thing is true without a theory 
of the motive power of heat. CARNOT'S theory delivers the constitutive 
restriction (1), which makes his first and second claims equivalent. 

A less obvious but equally important debt we owe CARNOT was pointed 
out by LIPPMANN1 • He observed that while the physicists and chemists of the 
early nineteenth century might now seem to have stood but a short step from 
the creation of thermodynamics, 

In fact they were far away from it; they lacked one idea. They would 
have had to introduce into physics in place of the conception of 
molecular motion mechanical work, which is a quantity measurable by 
experiment. Only the geometers 2 used the notion of work: Sadi Carnot 
devised how to introduce it into physics; that was the start of modem 
physics. 

Few men have done so much to found any science as has CARNOT for 
thermodynamics. Our analysis of his work has revealed magnificent success 
in part, though failure in the end. CARNOT was by no means alone in failing 
much while doing much. The curse of thermodynamics has been, not that, 
as happened in every other branch of physics, the great creators occasionally 
erred or failed, but that their successors have treasured the errors and the 
deficiencies while neglecting to seize, purify, and exploit the successes. 
CARNOT'S splendid general conception, embodied in his great General 
Axiom: 

L(CC) = G(fJ+, fJ-, C+(CC» , 

G(x, y, z) > 0 if x > y > 0 and z > 0 , 

1 G. LIPPMANNN, Cours de Thermodynamique, Paris, Carre, 1889. See pp. 3-4. While 
PETIT [1818] may have been the first to apply the concept of work in the theory of heat, 
CARNOT was certainly the first to do so effectively. 
2 The geometers to whom LIPPMANN referred must have been DANffiL BERNOULLI and 
EULER, perhaps also CAUCHY and LAZARE CARNOT. I have found nothing about work 
in the writings of LAPLACE and FOURIER. FOURffiR applied to the theory of heat the 
kind of mathematics the geometers had invented for use in mechanics, but he did not 
broaden the domain of mechanics itself. 
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and the function G is universal, the same for all bodies; his specific reasoning 
leading to the General CARNOT-CLAPEYRON Theorem: 

op 
fLAy = o(} ; 

and his perception that the nature of the specific heats provides the key to 
thermodynamics, were to be little understood. Instead, his preference for un­
disciplined, unmathematical arguments; his primitive use of the infinitesimal 
calculus; his tendency to sweeping claims about maxima without specifying 
what is held fixed and what is allowed to vary, or even the variables upon 
which the thing maximized depends; his predilection for steam and coal; his 
appeal to irrelevant or at best merely ancillary experimental details; his 
reluctance to face the test of comparing his own results with the successful 
theories of others; and, finally and above all, his confusion of the constitutive 
properties of special substances with the general relations between heat, work, 
and change of temperature-all these were cherished, enshrined, and magni­
fied by his successors. Such became the tradition of the subject. An eruption 
of paper covered with symbols and the data of experiments could have spared, 
had CARNOT stated his assumptions clearly in mathematical terms and given 
explicit mathematical proofs of his deductions from them. 

In no way rejecting or disregarding LIPPMANN'S penetrating estimate, in 
full admiration for CARNOT'S amazing grasp of the physics of heat and un­
canny sense of what was right despite his being hobbled by a basically un­
sound concept of heat itself, I must adjoin a counterbalanced judgment. 
Among physicists of the first rank, CARNOT is the first who was not in at least 
equal measure a mathematician. Thermodynamics is the first mathematical 
science to have been invented without the control afforded by patient, merci­
less, mathematical criticism. It has suffered from this congenital defect from 
1824 until now. 

On the physical side, most unfortunate is CARNOT'S failure to give any 
position to irreversible processes, despite their everyday familiarity and de­
spite FOURIER'S work, already famous though only recently published. Here, 
too, CARNOT'S limitation is to become characteristic of thermodynamics: 
Rather than extend the existing successful theories so as to embrace new ranges 
of phenomena, thermodynamics will rule them out from the start. Having put 
on the stage as protagonist a pygmy, the ideal gas, CARNOT appoints as 
director a Mephistopheles who tells him it makes no difference which way 
he goes. The "reversible" process, a prototype of Liberal Philosophy, is to 
keep thermodynamics turning in ineluctable circles for over a century. For 
such processes the time makes no difference. Thus the letter t is free, and 
CARNOT, unlike FOURIER and LAPLACE, uses it for temperature. As all thermo­
dynamicists were to follow CARNOT, it came to seem impossible that thermo­
dynamics could ever mention the time. The very letter for it was already used 
up! Even KELVIN, a virtuoso in heat conduction and mechanics, in his papers 
on thermodynamics refrained from using t for anything but temperature and 
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from introducing any letter at all to denote the time. Thus begins that 
quality of classical thermodynamics that to the modem student is most 
striking: its timelessness. 

CARNOT set one great stone in the foundation of a general thermodyna­
mics. FOURIER had set another, at an opposite comer. Cornerstones these 
were, not a framework or even a substructure. The successors of FOURIER 
and CARNOT, blindly eager to perpetuate their failures rather than promote 
their successes, until the very last three lustra built outward and away from 
each other in clusters of little chapels, with no thought to finish the founda­
tion on which the cathedral was to rise. 



6. Distracting Interlude: CLAPEYRON and 
DUHAMEL 

eM a tutti un fil di ferro i cigli f6ra 
e eusce .... 

DANTE, Purgatorio XIII, 70-71. 

6A. Confusion by Awkward Variables: CLAPEYRON 

The theory of CARNOT was taken up by CLAPEYRON in a memoirl published 
in 1834. While CLAPEYRON (§n hails "the idea which serves as a basis of 
[CARNOT'S] researches" as being "both fertile and beyond question", he 
deplores CARNOT'S preference for" avoiding the use of mathematical analysis" 
in favor of "a chain of difficult and elusive arguments" so as to arrive at 
"results which can be deduced easily from a more general law." 

[It has become customary to claim that CLAPEYRON'S translation of 
CARNOT'S ideas into mathematics was unfaithful. On the contrary, my 
analysis of CARNOT'S work with great pains and pain has led me to opine 
that CLAPEYRO~ did indeed present CARNOT'S theory faithfully-faithfully, 
I say, though not well.] 

In §II CLAPEYRON states that " ... a quantity of mechanical action and 
a quantity of heat which can pass from a hot body to a cold body are quan­
tities of the same kind, and ... it is possible to replace the one by the 
other .... " [To those who do not distinguish verbal science from rational 
science, this statement might be confused 2 with what is now called "The 
First Law of Thermodynamics". It is nothing of the kind. As his subsequent 
mathematical analysis shows, CLAPEYRON is merely paraphrasing what 
CARNOT had written to the same effect. In the theory of CARNOT and 
CLAPEYRON heat and work are indeed interconvertible, but not uniformly: 
The factor of conversion depends upon the temperature. Cf. §SM, above. 

1 CLAPEYRON [1834]. 
2 In annotating this passage in his edition of CARNOT'S treatise, MENDOZA calls it "an 
unambiguous statement of the First Law of Thermodynamics". 
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[CLAPEYRON'S work lies at a lower level of concept than CARNOT'S3, the 
product of an expounder, not a creator. In one respect, however, CLAPEYRON 
is more careful than CARNOT, for] in referring to the Carnot cycle he always 
writes "maximum effect", "maximum quantity of action", etc., [while 
CARNOT'S expression often leaves the reader in doubt whether he refers to 
all engines, to engines whose working substance is ideal gas, or only to those 
alleged to be the best possible ones.] 

Although the scope of CLAPEYRON'S concrete analysis is the same as 
CARNOT'S, there are two differences. 

[First, CLAPEYRON'S mathematics, although loose, is clear and easy4] 
besides referring to a general gas rather than an ideal one 5 • Second, while 
CLAPEYRON introduces the diagrams which have since become standard and 
which we have used already in our discussion of CARNOT'S treatise, [the 
tragicomic genius of thermodynamics tells him to obscure the results, as 
LAPLACE had done before him, by using the V-p quadrant instead of the 
V-B quadrant. 'To estimate the resulting complexity we need only compare 
(3F.2) with (5M.2), or (3FA) with (5M.3).] On the other hand, CLAPEYRON 
brings into the open that essential quantity, the latent heat Av, which CARNOT 
had avoided treating directly. [Despite] CLAPEYRON'S claim to discover 
"some new relations" (§III), [he does not present a single new idea of his 
own and merely says in his own way what CARNOT had said, if somewhat 
more specially and obscurely, before him; thus our analysis of his work can 

3 E.g., CLAPEYRON'S explanation (§III) of CARNOT'S result (SK.S) is, "equal volumes of 
all elastic fluids, taken at the same temperature and subject to the same pressure, when 
compressed or expanded by the same fraction of their volumes, emit or absorb the same 
absolute quantity of heat." The phrase "and subject to the same pressure" is taken to 
refer to initial pressure. 

CLAPEYRON'S wording of CARNOT'S argument about the two cycles that cancel each 
other's transfer of heat from the furnace to the refrigerator (end of §II) is so sloppy that 
I cannot say whether his failure to mention the refrigerator is by intention or by over­
sight. He refers to "a quantity of action ... created out of nothing and without con­
sumption of heat, an absurd result which would lead to the possibility of creating force 
or heat at no cost and without limit." It seems to him that denial of any such possibility 
"can be accepted as a fundamental axiom of mechanics; no one has ever dreamt of 
objecting to Lagrange's demonstration of the principle of virtual velocities using pulleys, 
and this seems to me to depend on something similar." What CLAPEYRON means by 
"consumption" is not clear, and I doubt that any serious student of the foundations of 
mechanics has ever taken LAGRANGE'S pulleys (!) as being anything more than rhetoric, 
so for thermodynamics they provide a sorry precedent. Earlier (§I) CLAPEYRON has 
written that CARNOT'S "demonstrations are founded on the absurdity of supposing the 
possibility of creating motive power or heat out of nothing." 
4 CLAPEYRON, like CARNOT before him, uses differentials along paths. I present his 
arguments in terms of derivatives with respect to time, since these are easier for modem 
students to follow securely. 
5 It is only in this regard that the theory of CLAPEYRON could be claimed to rest on .. a 
more general law". CLAPEYRON carries out all the analysis first for a perfect gas and 
then does it over again for a general equation of state. 



6A. CONFUSION BY AWKWARD VARIABLES: CLAPEYRON 141 

be brief and can confine itself to the effects of his unfortunate choice of 
independent variables.] 

We have seen how CARNOT obtained his main result (5K.5) by considering 
Camot cycles with infinitesimal difference of temperature. CLAPEYRON takes 
advantage of this fact from the outset by using a Camot cycle with all four 
of its parts infinitesimal. Since for CLAPEYRON Q = HoI(V, p), say, he finds 
(§V) that 

Q _ H' - oHOI V· oHOI • 
- 01- -- + --p 

OV 8p 
(6A.1) 

in any process (ef. (3C.7». Since 0 = O(V,p), in an isothermal process 

. 80. 80 . 
o = 0 = 8V V + 8p P (6A.2) 

so 

A V = = 8Hol _ oV 8Hol . ( (0) 
V Q!o=const. 8V :; 8p V . (6A.3) 

In this notation the Special CARNOT-CLAPEYRON Theorem, namely 

F'A 8p 
v = 80 ' 

takes the form (§V) 

8(HOI' 0) = c . 
8(V,p) , (6A.4) 

in terms of the function Fin CARNOT'S Special Axiom (51.5), CLAPEYRON'S 
function C = I IF' = lllL, so C is "a function of temperature which is the 
same for all [bodies]." CLAPEYRON considers the result as a differential 
equation for HOI, integrates it in the special case of an ideal gas, and discusses 
its solution for a general equation of state. After some manipulations he 
obtains the formula (end of §V) 

dV 
Ap = -C dO ' (6A.5) 

in which the ordinary derivative refers to an isobaric process. While 
CLAPEYRON regards this formula as "the most general consequence we 
can get from this axiom: It is absurd to suppose that force or heat can 
be created from nothing and at no cost", [in fact it is a trivial consequence 
of (2C.9)1 and (5L.5), interpreted by referring (2e.l) to a process in which 
jJ = 0]. 

CLAPEYRON remarks (§I) that LAPLACE and POISSON had based their work 
on the hypothesis that y = const., but he refrains from committing himself 
to that hypothesis and from remarking that it would require, according to 
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the theory he presents, that C = const., while all the data he adduces show 
that C is not a constant. As we have remarked in §5Q, CARNOT himself seemed 
not to notice the general equation for adiabatic change his theory implied, 
namely, 

R R 
F'(8) log V + U(8) = F'(8o) log Vo + U(8o) 

[Surely we should expect that CLAPEYRON in his mathematical presentation 
would find and discuss this relation,] but he does not. He goes so far as to 
state (§ll) that the adiabatic changes in a Carnot cycle follow" an unknown 
law". [Although CARNOT'S failure in 1824 to compare his new theory with 
the then recent LAPLACE-POISSON theory of adiabatic change can be explained 
or at least condoned, in CLAPEYRON'S hands ten years later the same failure 
is a case of plain negligence.] 

As has been described in §50, CLAPEYRON presented CARNOT'S numerical 
evaluation of the motive power of heat in more comprehensible form. The 
slight difference in his result, 1.41 instead of CARNOT'S 1.395, results only 
from his use of DULONG'S value for the adiabatic compressibility, namely 
(-0.421)-1, instead of POISSON'S value -2.30. 

[Slight as was CLAPEYRON'S originality, his influence upon classical 
thermodynamics has been heavy and lasting. Even the notations in an 
ordinary thermodynamics book today are essentially those he introduced. 
In matters of physical principle his style of argument also became standard. 
Lacking altogether CARNOT'S grasp, insight, and genius, there CLAPEYRON 
merely copied and magnified CARNOT'S weaknesses. His exposition is a haze 
of words about maxima and all possible processes in every conceivable 
material, followed by some simple mathematics dealing only with the most 
special of substances, namely, a gas, under the most degenerate conditions, 
namely, uniform fields of density and temperature. The confusion of the 
general principles of thermodynamics with constitutive properties of a 
material whose response to deformation is a hydrostatic pressure determined 
by the volume, temperature, and perhaps a few further scalar parameters 
became and has remained inherent to thermodynamic ritual. Indeed, 
nowadays some fakirs of thermodynamics claim that the first problem of 
thermodynamics is to decide what the "state" is, while in truth the illusion 
that there is such a thing as a "state" has been abundantly refuted by the 
kinetic theory of gases for over a century and has not the least to do with the 
fundamental theory of heat, temperature, and work. 

[How] CLAPEYRON could claim (§V), [of course echoing CARNOT,] that 
his results hold "for all bodies in nature-solids, liquids, or gases," [it is 
hard to see.] The year before, he and LAME had published a joint paper on 
the theory of elastic solids, in which the very concept of scalar pressure does 
not generally exist. The scientific paths of these two men, like the two 
aspects of a true thermodynamics, seem not to have crossed again. LAME 
became an expert on the field theories of elasticity and the conduction of 
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heat. His Lectures on the Analytical Theory of Heat, published a quarter 
of a century later, follow straight out of the work of FOURIER and DUHAMEL 

and do not so much as mention the thermodynamics of CARNOT and CLAUSIUS. 

[Between the "mechanical theory of heat" and the "analytical theory of 
heat", created separately at about the same time, had been erected an 
adiabatic wall. One was a mathematical field theory, clearly stated, con­
ceptually meager, and abounding in initial-value problems and boundary­
value problems. The other was a physical theory of lumped parameters, 
given to extravagant and altogether unjustified claims of generality, pregnant 
but abortive 6.] 

6B. Confusion by Linearizing Everything: DUHAMEL 

DUHAMEL it was to whom fell the next entry upon the stage. In the second 
of his two attempts he succeeded in formulating the theory of thermo­
elasticity for isotropic materials subject to infinitesimal strains and in­
finitesimal differences of temperature. [Anyone approaching this subject 
today lays down as one of his axioms some expression of the principle of 
conservation of energy. DUHAMEL, on the contrary, gives no evidence of 
grasping any such idea, and his work does not in the least foreshadow that 
principle, which was not to be formulated until the 1850s.] Rather, adopting 
the attachment to linearity of "the illustrious author of the mathematical 
theory of heat", he blindly superimposes one effect upon another. 

In his first memoir! DUHAMEL follows "the same course as Mr. Poisson" 
so as to calculate the overall forces exerted upon parts of a body composed 
of stationary molecules, except that he allows the intermolecular repulsive 
forces to depend upon the temperature. [The details of the approximate 
calculation based upon this speculative model need not concern us.] 
DUHAMEL'S main result is the following constitutive relation for an isotropic 
material (his Equation (5))2: 

-58'T = (trE)1 + 2E - 58(0 - 00)1 ; (6B.l) 

6 The wall could even separate two parts of one and the same man's mind. The great 
universal mathematician and physicist POINCARE lectured on thermodynamics in 
1888/9 and on the propagation of heat in 1893/4. If we may trust the published texts 
of the two courses, neither alluded even once to the subject of the other, and the modes 
of thought and levels of mathematical precision in the two would seem, were it not 
for the common name on the two title pages, to belong to two different persons. 
1 DUHAMEL [1838, pp.445-464]. In reporting the results I use the notations for co­
efficients DUHAMEL introduced on p. 462 and adopted in his second memoir. 
S In the notation now current, the constitutive relation for the stress in an isotropic 
thermo-elastic material in infinitesimal strain is 

T = "(tr E)l + 2JLE + m(8 - 80)1 . 

DUHAMEL'S theory, like POISSON'S and all other early static-molecular theories, required 
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T is the stress tensor, E is the infinitesimal strain tensor, 00 is the temperature 
at which the stress vanishes if the strain does, and a and 0' are constitutive 
coefficients: the linear dilatation produced by unit increase of temperature 
[when the stress vanishes], and the linear dilatation corresponding to unit 
normal tension on the entire boundary [when 0 = 00 ]. Thus, whatever the 
molecular properties used, DUHAMEL'S result asserts that the stress in a 
thermo-elastic material is obtained by superimposing upon the elastic stress a 
hydrostatic pressure proportional to the increase of temperature. In this first 
attempt DUHAMEL avoids commitment to any particular differential equation 
for the temperature, but the reader is left with the presumption that FOURIER'S 

equation, namely 

80 
pC ot = KilO , 

remains valid 3. 

Such a presumption would be false, as DUHAMEL was soon made to see. 
In a second memoir\ which was published before the first one, he writes: 

It is generally assumed that all bodies release heat when they are com­
pressed, and absorb it when they are expanded, whence it follows that 
there is a noticeable difference between the specific heats at constant 
volume and at constant pressure. This is the principle which serves as the 
base of my theory, and I assume that the quantity of heat released is 
proportional to the increase suffered by the density, provided that 
increase be very small. 

Thus 

the eq)lations of Mr. Navier require a modification, which that learned 
geometer has indeed foreseen and of which he has spoken in his 
report on the theory I have given. . .. This modification refers to the 
heat developed or absorbed in the changes of density which can 
accom,pany the vibrations; it can be calculated only by the theory I 
have just recalled. 

that ,\ = p.. Then DUHAMEL'S coefficients are related as follows to the now current ones: 

Il' =_J.. 5p. , 
Il=_m 

5p. . 

The coefficient Il is nowadays called the coefficient of thermal expansion, while m is the 
stress-temperature modulus. 
3 F. E. NEUMANN [1843, §10, Equation (B)] arrives at "general equations" which may 
be abbreviated as (J' grad 8 = -div T. In his long memoir I find no counterpart or 
generalization of FOURIER'S (4E.l). 
~ DUHAMEL [1837, pp. 2,4-5]. 
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That theory is the LAPLACE-POISSON theory of adiabatic change: 

I assume that each infinitely small particle takes instantly all the 
heat that the compression it experiences can give it. This is the hy­
pothesis assumed by the physicists who have treated this question in 
the case of gases, and one should recognize that it is much better 
founded in the case of solids. For if we were to suppose a molecule to 
take an appreciable time to receive the increase of temperature that a 
compression should confer upon it, the slowness of the operation of 
diffusion of heat in solids would allow us to neglect its effect during 
this interval of time, which cannot be anything else than extremely 
small. 

By use of the sort of cycle imagined by POISSON (above, §3D), DUHAMEL 
now concludes 5 that, in effect, the increase in temperature "which would 
result in general from a small increase ... ofthe density" would be given by 

" ,,-1 T:o 
11 = -~tr J!, • (6B.2) 

"This general relation between the corresponding variations of the density 
and the temperature [in an adiabatic process] has been known for a long 
time .... " DUHAMEL then simply adds the right-hand side of (2) to that of 
FOURIER'S equation (4E.8), so obtaining the following field equation for the 
temperature: 

f)8 1 . " - 1 T:o - = - dlV(K grad 8) - -- tr J!, 
f)t pC 38· (6B.3) 

[Indeed, (2) does hold for infinitesimal adiabatic dilatational motion of 
a body for which DUHAMEL'S constitutive relation (1) is valid. To see this, 
we need only suppose that E = el; of course e = t(1 - p/Po), and so from 
(1) we obtain T = -pi, and 

8'p = e - 8(8 - 80) , 

(6B.4) 

Although this "thermal equation of state" holds only in dilatations, use 
of those special deformations suffices to deliver connections among co­
efficients which are, by hypothesis, independent of the deformation. We 
begin from the calorimetric relation 

(2C.13)lr 

6 DUHAMEL [1837, p. 9]. 
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assume that the infinitesimal dilatation is adiabatic, and then use the fact 
that p + Po tr:at = 0 to obtain (2). 

[While DUHAMEL does not explain his steps further, they are clear. He 
does not assume that the motion of the thermo-elastic body is adiabatic. 
Rather, his tacit axiom is one of superposition: For small deformations and 
changes of temperature, the rate of increase of temperature is the sum of two: 

1. That which would arise from the conduction of heat if the body were rigid. 
2. That which would arise from adiabatic dilatational motion with the same 

condensation PiP as in the actual motion, if the body did not conduct heat. 

[Thus the magic of linearity enabled DUHAMEL to formulate the theory of 
infinitesimal thermo-elasticity for isotropic bodies without facing any of the 
basic physical problems of such a theory. It is hard not to consider his method 
of deriving (3) a stroke of luck-if luck it can be called to rest content with 
picking up a gold piece which lies upon the doorsill of a cache of diamonds. 

[The passion to linearize before thinking, displayed again and again in 
nineteenth-century physics, brought its gains and its losses. Its gains, most 
brilliant in the work of FOURIER himself, reflect its easy freedom from having 
to face difficult conceptual problems. The losses reflect the same cause: There 
are many ways to get an approximate linear theory, and these need not sug­
gest the true physical principles that underlie it. DUHAMEL'S thermo-elasticity 
is a case in point. There are no grounds at all to support DUHAMEL'S super­
position of effects and in particular his choice of an adiabatic process in the 
solid under circumstances when it behaves like a fluid, and his expression for 
the coefficient of thermal expansion in (3) means nothing 6 • Moreover, 
DUHAMEL'S equation (3), while anyone today who looks at it will see that it 
must somehow reflect the principle of conservation of energy, did not fore­
shadow or suggest that principle 7 to him or to anyone else, so far as the 
printed record witnesses 8.] 

6 What DUHAMEL writes as -t(y - 1)/8 is just a further empirical coefficient like 8'. 
Indeed, by substituting into (2C.9)2 the values of op/op and op/o8 calculated from (4) 
we easily show that 

y - 1 MpoAy 
-38 = - p2Ky , 

so DUHAMEL'S coefficient is, as it ought to be, proportional to the latent heat with 
respect to volume. Glancing at (3), we might think that the term representing the effect 
of dilatation upon temperature vanished if y = 1, but this is not so, since p is a function 
of p only, so by (4) we see that 8 = 0 also. (More generally, in Footnote 13 to §2C we have 
seen that ify = 1, then Ay op/o8 = 0.) All one can say is that DUHAMEL'S expression for the 
coefficient of thermal expansion becomes meaningless if y = 1. 
7 Indeed, its relation to that principle is somewhat subtle, as may be seen from the 
derivation presented by D. E. CARLSON in §7 of "Linear thermoelasticity", Handbuch 
der Physik VIa/2, ed. C. TRUESDELL, Berlin etc., Springer-Verlag, 1972. 
8 In the beautiful paper on elasticity he wrote as a boy of 19, not yet matriculated at 
Cambridge, MAXWELL [1850, Eq. (13) and Cases IX and Xl considered thermo-elasticity 
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DUHAMEL, following the example of FoURIER, turned to the solution of 
important special problems and the proof of general theorems in his linear 
theory. [On that theory he has left his mark as the founder and a major 
discoverer9 • For thermodynamics, however, DUHAMEL'S action was a lasting 
defeat. Not only was there to be a lapse of 126 years until thermo-elasticity 
should be incorporated into a general scheme of thermodynamics, but also 
thermo-elasticity was to serve as the pilot case for the creation of that scheme.] 

briefly. He rediscovered only a part of DUHAMEL'S theory, not reaching even any special 
case of DUHAMEL'S basic equation (3). 

Apparently THOMSON [1855] was the first to attempt a treatment of thermo-elasticity 
on the basis of general ideas concerning heat and work. Following the lead of GREEN 

for ordinary elasticity, he assumed the existence of an elastic potential, which he allowed 
to depend upon 8. He did not reach a set of complete and general equations. 

F. NEUMANN [1885, §59] in his lectures of 1857/1858, some years after the principle 
of equivalence of Ileat and work had been established, did not refer to it in connection 
with thermo-elasticity. Although he had been himself one of the pioneers of thermo­
dynamics, he derived (3) by much the same obscure process as DUHAMEL had used to 
discover it, with no remark that it might be related to general thermodynamic concepts 
and principles. 
9 More than that, DUHAMEL [1837, p. 3] was the first to learn, and this despite his 
superposition of terms to get his differential equations, that deformation and change 
of temperature could not be determined separately: "The theory of the propagation 
of heat thus becomes dependent upon the mechanical theory that determines the changes 
of position required by the interior equilibrium of a body unequally heated, and the 
second theory depends in tum on the first, so that neither can be treated separately .... 
Thus the two great physical theories that for some years past have most occupied the 
attention of geometers are found to be intimately connected." The "two great physical 
theories" both leave CARNOT'S ideas in oblivion. Unfortunately, those ideas, probably 
because of their obscure presentation, did not attract the geometers. 



7. Act III. Equivalence, Conservation, 
Interconvertibility: When and of What? 

... noi ci mettemmo per un bosco 
che da neun sentiero era segnato. 

Non fronda verde, ma di color fosco; 
non rami schietti, ma nodosi e 'nvolti .... 

DANTE, Inferno XIII, 2-5. 

7A. Critique: What Did Janus See in 1842? 

That heat could sometimes cause mechanical effect, and much of it, had 
been known since the disaster that befel STREPSIADES while he was cooking 
the haggis for the feast of Zeus, but apparently it was the sooty proliferation 
of the steam engine in the early nineteenth century that first roused physicists 
to pay much attention to the phenomenon. As CARNOT had seen, and as 
CLAPEYRON had made widely known, by absorbing and emitting heat a given 
body undergoing a cyclic process may do a definite amount of work, and by 
doing work cyclically a body may absorb and emit definite amounts of heat. 
Certain ideal bodies, described by the theory of calorimetry, give out in under­
going the reverse of a given process the heat they would gain and the work 
they would do in the given process. In this sense, then, it was known that 

1. Heat and work are interconvertible in cyclic processes. 

CARNOT'S theory provides an instance: As we have seen in §5M, for a 
cycle ct' CARNOT'S theory implies that 

Jtll 

L(ct') = F( 8) Qdt . 
tl 

(SM.5)2r 

A unit of heat absorbed at the temperature 0 in a cyclic process effects F(8) 
units of work overall. A unit of heat emitted at the temperature 0 in a cyclic 
process uses up F( 8) units of work overall. The term "overall" reminds us 
that we may add to the integrand F(O)Q any function of t whose integral over 
cyclic processes is null. That addend may give rise to additional work done 
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or used up in portions of the process, but such additional work is cancelled 
by an equal amount used up or done, respectively, in the remaining portions 
of the process. 

In (SM.S) the function F might vary from one body to another: It might 
be a constitutive function, just as 'lIT, A v, and Kv are constitutive. For CARNOT 
such would be "contrary to sound physics". In CARNOT'S theory F is a 
universal function, the same for all bodies: 

2. Heat and work are universally interconvertible in cyclic processes. 

In §§SN and SS we have seen examples of universal interconvertibility in 
CARNOT'S sense. In his theory we may take the ratio L(f'{f)jC+(f'{f) for some 
given Carnot cycle f'{f and so obtain a constant J having the dimensions of 
work + heat. The J in the relation 

L(f'{f) = J (log :=) C+(f'{f) 

provides an example: Jis the ratio of work done to heat absorbed in a Camot 
cycle whose operating temperatures are eO and 0 for any 0, provided CARNOT'S 
F has the special form 

F(O) = JIog 0 + const. (SN.3)r 

A somewhat more general possibility is provided by 

L(f'{f) = JIog (:+ : ~~) C+(f'{f) 

But such a J is not a universal equivalent. For example, according to (SN.3) 
the ratio of work done to heat absorbed in a Camot cycle whose operating 
temperatures are e20 and 0 is 2J. 

The later thermodynamics, some form of which we are taught in school 
today, assumes something more: Conversion of units of heat into units of 
work in cyclic processes is independent of the temperature at which the con­
version is effected. That is, the relation 

(SM,S)2r 

holds with F replaced by a universal constant J: 

3. Heat and work are uniformly interconvertible in cyclic processes. 

In mathematical statement, 

L(f'{f) = JC(f'{f) = J[C+(f'{f) - C-(f'{f)] (7A.l) 

As far as this assumption goes, the constant J might be constitutive, but 
Assumption 2 forbids that and makes J a universal constant, which allows us 
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to express a unit of heat as being for all bodies and all temperatures equivalent 1 , 

in the sense just specified, to J units of work. 
To CARNOT Assumption 3 was excluded. The Caloric Theory, which he 

adopted and employed, made C+(~} and C-(~} equal in all cycles, so (1) 
would then imply that L(~} = 0 in all cycles ~. No heat engine would then 
be possible, and the inequality 

F(x} > F(y} if x > y > 0 , (SI'S)2r 

which is a part of CARNOT'S Special Axiom, would be contradicted. Thus the 
constant J cannot be regarded 2 as a special choice of CARNOT'S F. Uniform 
interconvertibility as expressed by (1) requires that the Caloric Theory be 
rejected. Of course the Caloric Theory and uniform interconvertibility while 
incompatible with each other are compatible, each by itself, with CARNOT'S 
General Axiom: 

L(~) = G(O+, 0-, C+(~}} , 

G(x, y, z) > 0 if x > y > 0 and z > 0 , 

and the function G is universal. 

(SI.l}r 

(SI.2}r 

Everyone has read that CARNOT at some time between 1824 and 1831, the 
year in which he died, abandoned the Caloric Theory, and that in his notes, 
not published until 1878, he entered a numerical value for the universal and 
uniform mechanical equivalent of a unit of heat 3 • The example provided by 

1 CLAUSWS [1850, §I): "the principle of the equivalence of Heat and Work", clearly in 
reference to cyclic processes only. 
2 The reader confused by this statement should recall the position of CARNOT'S Special 
Axiom, established in Scholion I of §5J. The matter is made fully clear by Theorem 7 
in §9 of Concepts ami Logic. That theorem evaluates CARNOT'S function f.£ in the General 
CARNOT-CLAPEYRON Theorem (5L.4): 

f.£ = g'jh , h > 0, g' > ° for almost all 8 . 

CARNOT'S theory corresponds to the special case in which h = const. Uniform inter­
convertibility as expressed by (1) corresponds to the special case in which 

g'jh = J . 

These statements were first published in 1975. 
3 Anyone who has studied §50 of this tragicomedy will recall that CARNOT'S method 
of determining the numerical value of f.£ was independent of his special assumptions 
beyond his General' Axiom. Thus the merely numerical side was already taken care of. 
The calculation neither required that f.£ so obtained should equal Jj8 for some constant 
J nor implied that if such were the case J would turn out to satisfy (1). We know today 
that with correct experimental data CARNOT'S method of calculation, if applied to a 
sufficiently broad range of temperatures, would have shown that f.£ = Jj8 very nearly, 
8 being measured by an air thermometer, but the calculation itself and the physical 
ideas on which it rests would never have suggested that. 
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CLAPEYRON, which we have disposed of in §6A, should teach us to distrust the 
early attributions assiduously seined from the unmathematical literature. 
Certainly the claims of uniform interconvertibility were rejected at first by 
leading physicists and chemists. We who have been brought up to take it for 
granted may have trouble seeing just what was the difficulty of first grasping 
it. There should be no difficulty at all. We must not forget that every scientist 
is, like ourselves, brought up with a set of beliefs he has not been encouraged 
to question. Only the exceptional man knows how to ask an important 
question. Still more exceptional is the man who can answer one. 

This tragicomical history, since it concerns mathematical theory and its 
experimental basis or confirmation or contradiction, is not the place to re­
count or contrast beliefs on scientific questions. Indeed, that is become the 
special province of Historians of Science. Here I will barely mention some 
particular beliefs about heat, just in case some spectator is not already 
familiar with them at least roughly. 

A. Heat is merely a manifestation of intestine motion. 

That is, what our senses perceive as hot and cold could by finer scrutiny be 
expressed in terms of mass and the change of place as time goes on. Struc­
tural or epistemological, according to taste, this belief is irrelevant to thermo­
dynamics, though it was and still is important for motivation. It is a very old 
idea, which had been favored by many philosophers and physicists 4 of earlier 
periods, and toward the end of the eighteenth century it came to be known as 
"the vis viva theory of heat". While the concepts "heating" and "heat 
added", which, following the pioneers of thermodynamics, we have used and 
shall continue to use in this history, refer to the result of a process undergone 
by the body, the vis viva theory reflects a concept of the "total heat" residing 
in a body. It is not a single model or theory but an approach to theories and 
models. Some effective calculations on the basis of particular models of this 
kind had been made by EULER and DANIEL BERNOULU 5 , using different 
hypotheses about the intestine motion whose energy was to be identified with 
total heat, but by the 1800s physics was become a profession, so the work of 

• Cf the remarks of BRIDGMAN [1941, pp. 9-10 of the edition of 1961]: 

An understanding of the attitude of physicists toward thermodynamics and 
kinetic theory is, I think, to be sought only in the realm of psychology. Ever since 
the days of the Greek philosophers or of Lucretius human speculation has run 
straight to the atomic. At first there was absolutely no experimental justification 
for this, ur logical justification either, for that matter. From our present point 
of vantage we must not draw the conclusion that because atoms have now been 
found in the laboratory our primitive urge to analyze into atoms was therefore 
justified. It just seems to be a fact about our thinking machinery that we must 
have our atoms .... 

5 I have written the history of quantitative aspects of the subject through 1865: "Early 
kinetic theories of gases", Archive for History of Exact Sciences 15, 1-66 (1975). 
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long dead thinkers was not regarded. The historical record 6 shows that some 7 

physicists and chemists of the first quarter of the nineteenth century saw no 
conflict between using one or another vis viva theory for physics and chemistry 
(i.e. popular explanation of how things really are) and some aspect of the 
Caloric Theory for mathematics (i.e. calculation of the phenomena, for 
comparison with experimental data). If addition of caloric was the agent by 
which the parts were made to move, then for the mathematical theory it was 
defter to discuss the transfer of that agent rather than the fine structure of the 
intestine motion which it reflected. Thus, so long as nothing specific was 
required as the outcome, it was not hard to believe in theories of both kinds 
at once. 

In the early 1800s the vis viva theories were thought ill adapted to calculate 
anything, as WATERSTON was made aware, to his scathe, even as late as 1845, 
on the very eve of the new departures in thermodynamics that the spectators 
of this tragicomedy are just about to see. Indeed, had the vis viva theories 
been developed to the level of quantitative science, they might have served as 
structural models for the Caloric Theory. To the modem student it may 
seem strange that the vis viva theories, while attempting to reduce heat to 
invisible motion, seem to have been unable to include any effect of visible 
motion. In some way all the vis viva was assumed to be heat, leaving none 
over for the body as a whole, so ordinary or gross kinetic energy was always 
tacitly assumed absent in early calculations. Classical thermodynamics never 
outgrew this curious limitation, which it later, much later, came to include 
within the mystic idea "quasistatic". 

B. Heat is only a kind o/',!orce" or "energy"; hence heat and work are 
universally and uniformly interconvertible in all circumstances. 

This idea, one of the many sometimes called the" First Law of Thermo­
dynamics", would seem to include as a special case the universal and uniform 
Interconvertibility of Heat and Work in cyclic reversible processes (State­
ments 2 and 3, above). Like the vis viva theories it refers to the "total heat" 
resident in a body. As Janus could have seen, Claim B is unsound. Only with 
the discovery of internal energy in 1850 was it to be reduced to something 
admissible. 

The spectator may envision now a steady progress toward the principle 
that heat and work are uniformly and universally interconvertible in cyclic 

6 The fullest account is given by Fox in his Caloric Theory, cited above in Footnote 2 
to §2C. Cf. also MENDOZA'S introduction to his edition of CARNOT [1824] and Chapter 2 
of S. C. BROWN, Benjamin Thompson, Count Rumford, Oxford, etc., Pergamon Press, 
1967. 
7 There were also some who refused to adopt the vis viva theory in any of its many 
forms. FOURmR [1822, p. xvi of the edition in his CEuvres] wrote, "Whatever may be 
the generality of mechanical theories, they do not apply at all to the effects of heat." 
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processes. If so, he will be disappointed. He will not encounter the basic 
statement (1) until after five years of wrangling about other ideas. One of 
these is the vague, almost philosophical Claim B: Heat and work or "force" 
are "equivalent". The other is a claim that has often been confused with (1) 
but is in fact different: 

C. Heat and work are universally and uniformly interconvertible in iso­
thermal processes. 

This statement is trivially true for a cyclic isothermal process, since for such 
a process both work and net gain of heat are null. Unlike Assertions 1, 2, 
and 3, and like Assertions A and B, it bears upon processes that are not 
cyclic; unlike Assertions A and B, it refers only to heating and heat added, 
not to total heat. 

In the literature of physics and its history some works that deal only or 
mainly with this peculiar, questionable, and in fact untypical and misleading 
sort of interconvertibility are often by error regarded as having achieved 
something called "the First Law of Thermodynamics". We tum now to 
analysis of those works. As Janus could have seen, both this generally un­
sound idea about isothermal processes and also the vague belief in some 
overriding "equivalence" were to play their parts, for weal and woe, in pre­
paring the ground for the resolution we shall witness in Act IV. 

Now for Act III. Nobody will expect the actors in it to enjoy Janus' power 
to look into the future, but some may be astonished to see them unable to 
look backward, either! It is a new cast. The tragicomic muse will deny to all 
but one of them the power to understand CARNOT'S ideas and achievement. 

7B. MAYER'S Assertion 

[As the first to attempt any specific use of the idea that heat and work 
are interconvertible1, the tragicomic muse of thermodynamics chose the 
muzziest of all her muzzy retinue: ROBERT MAYER, a gifted and thoughtful 
physician who knew no mathematics and whose mode of reasoning was 
emasculated by the school of Naturphilosophie 2 , from which he was just then 
beginning to free himself. That in 1842 he did assert force, by which he may 
have meant something like what is now called" energy", to be indestructible, 
is certain, and many physicists sooner or later acknowledged that he had 

1 The name "interconvertibility of heat and work" derives from RANKINE'S "con­
vertibilityof heat and mechanical power" [1850, ,-r2] and "dynamical convertibility of 
heat" [1851, 3, ,-r40]. There is no doubt that RANKINE meant universal interconver­
tibility by his term and that he included internal energy as a kind of work. 
2 MAYER [1845, Introduction]. 
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been the first to do S03, but he supported his claim neither by experiment 
nor by mathematics but instead by a discourse 4 that recalls the lessons in 
natural philosophy which SOCRATES delivered from his aerial basket to 
STREPSIADES:] 

Forces are causes: Accordingly, we may in relation to them make full 
application of the principle: Causa aequat effectum .... In a chain of 
causes and effects, a term or a part of a term can never ... become equal 
to nothing. This first property of all causes we call their indestructibility . 

. . . Forces are therefore indestructible, convertible, imponderable 
objects .... 

Without recognizing the causal connection between motion and 
heat, it is just as difficult to explain the production of heat by friction 
as it is to give any account of the motion that disappears. 

[This is the sort of paper no scientist would look at twice unless he were 
in search of a reason to deny priority to someone else.] 

Though MAYER'S next paper begins in much the same tone, [it displays far 
better grasp of physics. Unfortunately,] this thoughtful paper was rejected by 
a professional organ of science. MAYER published it as a monograph, [which 
nobody read]. In itS MAYER states clearly, "Heat is a force; it may be trans­
formed into mechanical effect," and in reference to a steam engine, "the work 
done [Leistung] by the machine is inseparably bound to a consumption 
[Konsumo] of heat." Though MAYER does not mention CARNOT and 
CLAPEYRON, [this sentence shows that he rejected outright their view, accord­
ing to which work could be gained by merely letting down heat from a higher 
temperature to a lower one. 

[In our analysis of the mathematical theory, MAYER'S papers are treated 
only because o(] the contents of the last paragraph of the first one: 

By applying the principles that have been set forth to the relations 
subsisting between the heat and the volume of gases, we find that the 
sinking of a mercury column by which a gas is compressed is equiva­
lent to the quantity of heat set free by the compression, and hence it 
follows, if the ratio between the capacity for heat of air under constant 
pressure and its capacity under constant volume be taken as 1.421, 
that the warming of a given weight of water from 0° to 1°C corresponds 
to the fall of an equal weight from the height of about 365 metres. 

3 Cj. THOMSON [1851, §4] and the nobly expressed Note 5 HELMHOLTZ adjoined to the 
reprint of his paper [1847] in Volume 1 of his Abhandlungen, 1882. 
4 MAYER [1842]. 
6 MAYER [1845, §3]. 
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[While this passage is totally incomprehensible6 , anyone can see that] it 
provides a numerical value 7 for some interconversion of heat and work. 
Cf the possibilities we have listed in §7 A. 

The second paper of MAYER 8 explains the calculation. When a gas expands 
under a piston which exerts a constant pressure p, it gives out work at the 
rate p V, where V(t) is the volume of the gas. At the same time, heat is im­
parted to the gas at the rate Kp8. In effect, MAYER regards the heating that 
does work as being (Kp - Kv)8. MAYER'S general idea of "equivalence" 

8 Although physicists of the misty sort, like MACH, have proclaimed MAYER clear, my 
statement is borne out by two contemporaries of MAYER who were great pioneers of 
thermodynamics. 

First, although the relation (2) is nowadays often, and justly, attributed to MAYER, 
such was MAYER'S obscurity that CLAUSIUS [1850, Eq. (1Oa)] had to arriveatthatrelation 
by himself. His statements regarding it make it clear that he regarded it as his own 
discovery. He cited MAYER'S first paper, but, as he himself was to write to MAYER on 
15 June, 1862, he had not looked at the second paper when it first came out because its 
title gave him no idea that it might concern the mechanical theory of heat. This letter 
opens a short correspondence which is printed in MAYER'S Kleinere Schriften und 
Briefe, Stuttgart, Cotta'sche Buchhandlung, 1893. CLAUSIUS' oversight is easy for me 
to understand. When, some thirty years ago, I began to study the origins of thermo­
dynamics, the references I then found directed me only to MAYER'S first paper. Those 
references attributed (2) to MAYER, but after puzzling and puzzling over his words I 
finally decided that it was not there. Now that the whole matter is clear, I reassert my 
old conclusion. The only difference is that MAYER'S second paper makes it certain he 
had perceived and used (2) in the numerical calculation, the result of which· he had 
published in his first paper. 

Second, THOMSON [1851, §4], misunderstanding the same passage, spoke of MAYER'S 
"false analogy between the approach of a weight to the earth and a diminution of the 
volume of a continuous substance, on which an attempt is founded to find numerically 
the mechanical equivalent of a given quantity of heat." 
7 A carelessly worded phrase in a paper by JOULE led some of the older general his­
torians of s~ience to give credit for the first calculation of this equivalent to RUMFORD. 
In fact, RUMFORD'S writings reflect no idea of the interconvertibility of heat and work, 
and the calculation in question was by JOULE himself, so as to show that the new idea 
he was promulging squared roughly with the old and famous data of RUMFORD. Cj. 
S. C. BROWN, Benjamin Thompson, Count Rumford, Oxford etc., Pergamon Press, 1967; 
see p. 15. 

I remark also that an isolated calculation such as MAYER'S or the one erroneously 
attributed to RUMFORD could not have carried conviction at the time, since, as we shall 
see in §7D, the existence of J, universal in the sense that,.. = JIB with one and the same 
J for all bodies, is not inconsistent with the Caloric Theory. Also we have seen in §5M 
that CARNOT'S theory presumed the existence of a universal factor for converting units 
of heat to units of work, but that factor had to depend upon B. 

WATERStON in a paper submitted in 1845 to the Royal Society but not published 
until 1892 calculated the mechanical equivalent of a unit of heat on the basis of his 
kinetic-molecular theory of gases. The number he obtained is close to MAYER'S. 
U. HOYER, "Ober Waterstons mechanisches Warmeiiquivalent", Archive for History 
of Exact Sciences 19 (1978), 371-381, has analysed the calculation and has shown that 
the apparent agreement is due to three compensating errors. 
8 MAYER [1845, §3]. 
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makes him expect that the mechanical power produced by this heating will be 
proportional to it. If the factor of proportionality is J, then the power 
corresponding to this heating is J(Kp - Kv)8, so 

p = const. (7B.I) 

The equation of state of a body of ideal gas is pJi' = RfJ; hence pV = R8 
when p = const., so (1) becomes 

J(:Kz, - Kv) = R , (7B.2) 

[a celebrated formula which we shall call MAYER'S Assertion regarding ideal 
gases. Because of the constitutive inequality 

(2C.1O)2r 

we may solve (2) for J] : 

R 
J = (I - 'Y l)Kp 

(7B.3) 

All three quantities on the right-hand side are accessible to measurement, 
and substitution of three particular values available to MAYER yields the 
number he obtained for J. 

"The same result is obtained if instead of atmospheric air another simple 
or compound kind of gas is used for the calculation. 'Heat = mechanical 
effect' is independent of the nature of an elastic fluid, which serves only as a 
tool for effecting the transformation of the one force into the other." As an 
illustration MAYER carries out the numerical calculation for carbon dioxide 
and for olefiant gas, obtaining exactly the same numerical value for J. 

7C. Preliminary Critique of MAYER'S Assertion 

MAYER is vague, and what he really means is difficult to discern in general. 
His specific calculation, however, rests upon a specific idea: In a process at 
constant pressure, the heat used to produce expansion is universally and uni­
formly interconvertible with work. That is the meaning of his basic assertion: 

p = const. 

Apparently MAYER presumes that Kp and Kv are constants, but that is not 
necessary for his calculations. If Kp and Kv are functions of fJ, we could test 
the uniformity of J further, should we evaluate the right-hand side of (7B.3) 
by use of data gathered at different temperatures, but MAYER says nothing 
of that. 

No-one understood MAYER'S paper when it appeared. It can be under­
stood only by hindsight. 
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Even so, logical analysis is difficult, for we cannot tell how much MAYER 
knew of what was the common property of trained theorists of his day, or of 
that, how much he accepted. Indeed, MAYER seems to have been virginally 
innocent of all earlier thermodynamic theoryl. While his ignorance may have 
helped him feel free in his originality, it prevented him from seeing the far­
reaching consequences his ideas would have produced, had he framed them 
in terms of the mathematical structure that embodies the basic Doctrine of 
Latent and Specific Heats, the theory which all early theorists accepted tacitly 
if not always with full understanding, and with CARNOT'S General Axiom. 
In those terms logical analysis becomes easy, but I defer it until §7E, after 
we shall have encountered another assertion, which the theory of calorimetry 
makes equivalent to MAYER'S. 

7D. HOLTZMANN'S Assertion 

In 1845, the year of MAYER'S second paper, appeared an essay by HOLTZ­
MANN, likewise published as a separate work. HOLTZMANN regards POISSON'S 
assumption that the ratio of specific heats is constant as being" certainly in­
correct, as is evident from CLAPEYRON'S treatise .... " He states!, "The effect 
of the heat added to the gas is ... either increase of temperature combined 
with increase of elasticity [pressure], or a mechanical action, or a combination 
of the two; and a mechanical action is the equivalent of the increase oftem­
perature." Also, "I term unit of heat the heat which on its addition to any gas 
is capable of producing the mechanical action a, i.e., to use a definite measure, 
that which can raise a kilogrammes 1 metre." HOLTZMANN'S main application 
of these claims is to state in effect 2 that an ideal gas undergoing an isothermal 
process interconverts heat and work uniformly; the factor of interconversion is 
universal for ideal gases. 

1 Anyone who expects MAYER to have had some concrete ideas about the theory of heat 
and work can easily disabuse himself by reading MAYER'S account, composed late in 
1850 and hence after CLAUSIUS' first memoir on thermodynamics had appeared, of 
how he had observed and reasoned so as to arrive at his earlier ideas: Bemerkungen 
fiber das mechanische Aequivalent der Wurme, Heilbronn, Johann Ulrich Landherr, 
1851 = pp. 235 if. of MAYER'S Die Mechanik der Wurme, Stuttgart, 1867 = pp. 243-302 
of ibid., 2nd ed., 1874 = pp. 235-276 of ibid., 3rd ed., 1893. Trans!. J. C. FOSTER, 
"The mechanical equivalent of heat", pp. 316-355 of The Correlation and Conservation 
of Forces, ed. E. L. YOUMANS, New York, Appleton, 1865. Trans!. R. B. LINDSAY, 
"Comments' on the mechanical equivalent of heat", pp. 198-231 of R. B. LINDSAY, 
Julius Robert Mayer, Prophet of Energy, Oxford etc., Pergamon, 1973. 

1 HOLTZMANN [1845, Preface and '\1'\11-2]. I have seen this work only in the translation 
published in TAYLOR'S Scientific Memoirs, from which, consequently, my quotations 
derive. 
2 HOLTZMANN [1845, '\13]: p·dv/dq = a. HOLTZMANN'S explanation of this formula is 
pretty vague. Indeed, it is often hard to match what HOLTZMANN says with what he does. 
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According to the Doctrine of Latent and Specific Heats 

Q = Av(V, 8)V + Kv(V, 8)8 . 

The definition of work done by a fluid body is 

it2 

L == p(t)V(t)dt. 
t1 

IS9 

(2C.19)r 

HOLTZMANN'S claim thus assumes the form pV = JAv(V, 8)V. Hence 

JAv =p , (7D.l) 

in which J is a universal constant bearing the dimensions of work per unit 
heat. The assumed relation (1) between the constitutive functions Av and 'lIT, 

the latter being denoted here by the more usual symbol p, will playa great 
role in the development of thermodynamics. [We shall call it BOLTZMANN's 

Assertion. Henceforth we shall take it as referring only to an ideal gas, for so 
it is to be interpreted by CLAUSIUS and KELVIN.] HOLTZMANN himself (§5) 
promulged it more generally. [The limitations CARNOT'S General Axiom 
imposes upon its possible validity we shall disclose below through Theorem 
3 in §71.] 

In his calculations (,4) HOLTZMANN assumes the existence of a heat 
function, essentially LAPLACE'S, which we have denoted by HL in §6A. [It 
is easier to use CARNOT'S heat function He and the corresponding deter­
mination of Av and Kv: 

A BHe 
v = BV ' (5M.2)r 

Putting (1) into (5M.2)1 yields a differential equation, the integral of which 
for an ideal gas can be written as 

R8 
He = 7" log V + U(8) (7D.2) 

By (5M.2)2 it follows that 

R 
Kv = J log V + U'(8) ,] (7D.3) 

results which HOLTZMANN obtains [by more complicated means] using HL• 
and by further calculation he proves [MAYER'S Assertion]: 

(7B.2)r 

on the basis of which he calculates (,8) a numerical value for J [as had MAYER 
before him]. He regards experiment as showing that y ought not depend upon 
8, and so from (3) and (7B.2) he concludes (,6) that U' = const. 

An equation for the adiabats (,40) follows from (2) and HOLTZMANN's 
conclusion that U' = const. From it he calculates the work done on an 
adiabat and hence after various approximations and guesses obtains a definite 
formula for the efficiency of an engine. 
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[HOLTZMANN'S basic assumption really is that for an ideal gas traversing 
an isothermal path ~ 

L(~) = JC(~) , (7DA) 

in which J is a constant universal for ideal gases. The restatements 3 by later 
authors say the same thing in words.] 

7E. Preliminary Critique of HOLTZMANN'S Assertion 

We might think that HOLTZMANN'S two assumptions, namely 

JAv =P 

and the Caloric Theory of heat, were inconsistent. In fact, there is no logical 
contradiction: As HELMHOLTZl is soon to remark, HOLTZMANN'S heat 
function is only a special case of CARNOT'S. Had HOLTZMANN chosen to use 
CARNOT'S model of an engine, he could have used CARNOT'S theory to 
evaluate its motive power. 

CLAUSIUS 2 was just in dismissing HOLTZMANN'S work for its adherence 
to the Caloric Theory. Nevertheless, as we shall see in §8B, CLAUSIUS will 
soon appropriate HOLTZMANN'S Assertion. 

While MAYER may have known little of the Doctrine of Latent and 
Specific Heats, HOLTZMANN by using CLAPEYRON'S presentation of CARNOT'S 
theory certainly gives us the right to criticize his work in terms of the con­
cepts used by his forebeers. We look again at the formula for the difference 
between the specific heats of an ideal gas which follows from the theory of 
calorimetry, indifferently to hypothesis about the nature of heat or its con­
nection with work: 

(2C.14)2r 

It shows at a glance that 

J(Kp - Kv) = R <=> JAv = P (7E.l) 

Thus the theory of calorimetry makes MAYER'S Assertion equivalent to 

3 CLAUSIUS [1850, §I]: "A permanent gas, when expanded at constant temperature, 
takes up [verschluckt] only so much heat as is consumed [verbraucht] in doing external 
work during the expansion." 

HELMHOLTZ [1855, p. 567]: "[A]ll the heat taken on by a gas in expansion without 
change of temperature is transformed into mechanical work; let this idea be called 
the principle of Heat-Work in gases." 

THOMSON [1852, 1, §65]: "[T]he work spent in the [isothermal] compression of 
a[n ideal] gas is ... exactly the mechanical equivalent of the [heat evolved]." 
1 HELMHOLTZ [1847, §IV]. 
2 CLAUSIUS [1850]. Cf also HELMHOLTZ [1855, p. 589]. 
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BOLTZMANN'Sa, and J is the same constant in each. Indeed, KELVIN' was 
to call (70.1) "MAYER'S Hypothesis" and never to mention HOLTZMANN'S 
name in connection with it. The analysis given in §§5R and 5T shows that 
if we graft HOLTZMANN'S Assertion upon the Caloric Theory, " cannot be 
a constant other than I; MAYER'S Assertion (7B.2), equivalent to HOLTZ­
MANN'S, shows that" =F 1. We may draw these same conclusions from 
HOLTZMANN'S own formulae 5 • Thus HOLTZMANN'S theory makes a constant 
value for" altogether impossible. 

7F. HELMHOLTZ'S Weakest Work 

In 1847 HELMHOLTZ published his paper, On the conservation of force1• 

For HELMHOLTZ the total energy was the sum of the kinetic and potential 
energies of a system of mass-points subject to pairwise equilibrated central 
mutual forces. The theorem he proved was no more than a special case of 
the energy theorem of analytical dynamics, [by no means new in 1847. 

[The tragicomic daemon of thermodynamics exacted his toll again. 
First, the repetition or rediscovery of known] properties of dynamical sys­
tems gives rise to all sorts of [unsupported] claims about heat and electricity. 
[Second, in this early paper the great physicist and able mathematician 
HELMHOLTZ was later to become is led into several crude errors. As these 
have no bearing on thermodynamics, there is no point in recounting them 
here 2.] HELMHOLTZ argues against the Caloric Theory and in favor of a 
mechanical interpretation of heat as equivalent to "force". 

3 HOLTZMANN [1845, ~20] noticed that J(K" - Kv) = R in consequence of (7D.1), 
but to do so he unnecessarily made use of his heat function. 
4 THOMSON [1852, I, §65]. 
5 HOLTZMANN [1845, Equation (IV) in ~7]. 
1 HELMHOLTZ [1847]. 
~ The published discussion begins with a criticism by CLAUSWS [1853] and the reply to 
it by HELMHOLTZ [1854]. 

In annotating the reprint of the paper for his collected works in 1881, HELMHOLTZ 
remarked that LIPSCHITZ had pointed out an error, but he did not say what it was. He 
tacitly admitted it, however, by proceeding to derive an energy theorem for motions 
subject to fields of force that do not have a potential, accordingly cannot enter the 
equations of motion as he writes them in his paper, and hence furnish counterexamples 
to his assertion of 1847. 

Concerning this paper F. KLEIN writes on p. 227 of his Vorlesungen aber die Ent­
wicklung der Mat1rematik im 19. Jahrhundert, Teill (ed. R. COURANT & O. NEUGEBAUER), 
Berlin, Springer, 1926, "Finally the details are often fumbling and incomplete, corre­
sponding to such fragmentary study of the literature as Helmholtz was able to effect in 
his seclusion in Potsdam." The American reader can scarcely help wondering if Potsdam 
in 1847 could have been any more secluded than New Haven in 1876. 

In fact HELMHOLTZ does not state his assumptions clearly, but in each interpretation 
I can conjecture the theorem he asserts is at least partly false. He seems not yet to have 
mastered the concepts and structure of analytical dynamics. 
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The paper concludes with applications of HELMHOLTZ'S general idea to 
various branches of physics and chemistry. As for thermodynamics 3 , "we 
have yet to investigate what relation may hold between the attempts of 
Clapeyron and Holtzmann and ours to derive the force-equivalent of heat." 
HELMHOLTZ criticizes the early experiments of JOULE; he remarks that 
HOLTZMANN'S results, "for which speak the numerous consequences con­
sonant with experience," are a special case of CLAPEYRON'S. 

HELMHOLTZ 4 remarks further that by comparing one of HOLTZMANN'S 
results with one of CLAPEYRON'S we may infer that 

I-' = J/8 . (5N.7)r 

[In §5S we have seen that CARNOT himself had inclined to an equivalent 
statement. Later CLAUSIUS 5 will attribute (5N.7) itself to HOLTZMANN. 

I do not find the formula stated in HOLTZMANN'S paper, but in his preface he 
writes that CLAPEYRON'S formulae "contain an undetermined function, which 
in the more direct way I have taken is determined .... " The displayed equation 
in his §11 reflects his determination of 1-', which HELMHOLTZ recognized. Of 
course it is (5N.7). 

In a small table HELMHOLTZ shows that (5N.7) agrees pretty well with 
CLAPEYRON'S numerical values of I-' at several temperatures. [Because both 
CLAPEYRON and HOLTZMANN had used the Caloric Theory of heat, this 
passage in HELMHOLTZ'S work was to be set aside later. In fact it is perfectly 
sound. First, CLAPEYRON'S method of calculating I-' was CARNOT'S, and we 
have seen in §50 that CARNOT'S method rested upon the General CARNOT­
CLAPEYRON Theorem alone, making no use of the Caloric Theory. Likewise, 
if we compare HOLTZMANN'S Assertion with the General CARNOT-CLAPEYRON 
Theorem specialized to an ideal gas: 

(5L.6hr 

[we derive (5N.7) by inspection! Thus if we accept CARNOT'S General Axiom, 
we may regard HELMHOLTZ'S table as giving experimental support to 
HOLTZMANN'S Assertion, the gas being supposed ideal. Of course, it would 
be too mu.ch to attribute to HELMHOLTZ at this time such intimate mastery 
of the logic of thermodynamics.] 

3 HELMHOLTZ [1847, §IV]. 
4 HELMHOLTZ [1847, §IV] selects one of HOLTZMANN'S intermediate steps, which we 
may write as 

V oHm oHm _ pV 
oV -p op - J' 

CLAPEYRON'S (6A.4), specialized to an ideal gas, is 

Comparison yields (5N.7). 
5 CLAUSIUS [1856, 1]. 

V oHm _ p oHm = !!: 
oV op p.' 
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While HELMHOLTZ presents nothing whatever that would connect thermo­
dynamics with the specific theorem of mechanics he has claimed to prove 
at the beginning of his paper, [his placing an energy theorem alongside his 
claim that "force" is equivalent to heat may have served thermodynamics 
indirectly. Mechanical energy may be stored as "potential" energy. If a 
body is capable of receiving heat as well as motion, its capacity to store 
energy should not be lost. The sweeping claims of MAYER and of HELMHOLTZ 
himself that heat and work are "equivalent" must be modified to allow 
storage as well as interconversion. We shall not encounter that idea explicitly 
until the next act. 

[There is no doubt that HELMHOLTZ'S paper was widely read. Though it 
effected no positive advance, it was right for the moment,] and it seems to 
have made converts to the new view of heat. Certainly it was admired by 
many of the leading savants. For example, MAXWELL 6, writing thirty years 
later, while he passed lightly over HELMHOLTZ'S alleged theorem, went on 
to say that 

the scientific importance of the principle of conservation of energy 
does not depend merely on its accuracy as a statement of fact, nor 
even on the remarkable conclusions which may be deduced from it, 
but on the fertility of the methods founded on this principle .... 

To appreciate the full scientific value of Helmholtz's little essay 
on this subject, we should have to ask those to whom we owe the 
greatest discoveries in thermodynamics and other branches of modern 
physics, how many times they have read it over and over, and how 
often during their researches they felt the weighty statements of 
Helmholtz acting on their minds like an irresistible driving-power. 

[The main value, then, of this otherwise slight work lies in its program.] 

While HELMHOLTZ'S [careful and clear] reviews 7 show that he kept up 
with the developments of thermodynamics we are about to follow in detail, 
he did not contribute to them. Here and there he called attention to his 
priority for some of the statements made. 

7G. JOULE'S Summary of his Early Experiments 

[Declarations such as MAYER'S and HELMHOLTZ'S could not convert 
scientists or laymen to belief in the uniform and universal Interconvertibility 
of Heat and Work. The truth of such an idea, counter as it is to daily 

6 J. C. MAXWELL, "Hermann Ludwig Ferdinand Helmholtz", Nature 15 (1877), 
389-391 = Papers 2, 592-598. 
7 Fortschritte der Physik 6 and 7 (1850/1), 1855; 9 (1853), 1856; 12 (1856), 1859. Some 
of these are cited here and there in this history. 
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experience and as it was to much of the theory of heat then received, might 
have been established by apt, widely ranging experiments and by clear in­
terpretation of them. Both of these were attempted by one of those brilliant 
sports of science which it is Britain's glory to produce at unlikely times in 
unlikely places: JAMES PRESCOTT JOULE. While his name will be heard 
frequently in the rest of this tragicomedy, we will not follow his work in 
detail, for ours is not a history of experiment. Nevertheless we should sin 
by omission, should we fail to remark that at this point in the development 
of thermodynamic theory, experiment might have been decisive. 

[We shall see in §7Ia why JOULE'S experiments did not take command. 
In §lOE we shall see that for thermodynamics further experiment was not 
really necessary anyway: From CARNOT'S own axioms, modified only so as 
to make it possible for one ideal gas to have constant specific heats, an 
adroit mathematician could have proved that the theory of reversible engines 
required not only MAYER'S Assertion but also the uniform and universal 
InterconvertibiIity of Heat and Work in cyclic processes. So much could 
have been established on the basis of experimental facts known in the 
year JOULE was born and of theoretical concepts made familiar shortly 
thereafter. 

[That would not have made JOULE'S experiments superfluous. Far from 
it! JOULE'S stage was grander than ours. The thermodynamics of "reversible" 
processes in fluids cannot be regarded as more than a small part, and the 
simplest, of a general science of heat, a science which concerns mainly 
irreversible processes and which embraces the effects of electric and magnetic 
fields. It is that greater science, not classical thermodynamics, that gave 
man a grasp, even if often at first uncertain and sometimes partly incorrect, 
of a new concept that has reshaped his whole view of the phenomena of 
nature: energy and its conversions. That greater science JOULE'S experiments, 
conceived with brilliant insight and presented to the reader in the easy clarity 
of colloquial English, helped to found, but mainly after the terminal date 
of our tragicomedy.] 

JOULE began to disclose his researches on heat in 1840. Only in 1847 
did he cast a general sum. He presented it as a lecture in the reading room of 
a church in Manchester and allowed it to be published only in a local 
newspaperl. 

You will at once perceive that the living force of which we have 
been speaking is one of the most important qualities with which 
matter can be endowed, and, as such, that it would be absurd to 
suppose that it can be destroyed, or even lessened, without producing 
the equivalent of attraction through a given distance of which we 
have been speaking. You will therefore be surprised to hear that 

1 JOULE [1847]. JOULE [1845,2] had already announced his results concerning the 
heating of water by friction. 
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until very recently the universal opinion has been that living force 
could be absolutely and irrevocably destroyed at anyone's option. 
Thus, when a weight falls to the ground, it has been generally sup­
posed that its living force is absolutely annihilated, and that the 
labour which may have been expended in raising it to the elevation 
from which it fell has been entirely thrown away and wasted, without 
the production of any permanent effect whatever. We might reason, 
a priori, that such absolute destruction of living force cannot possibly 
take place, because it is manifestly absurd to suppose that the powers 
with which God has endowed matter can be destroyed any more than 
that they can be created by man's agency; but we are not left with this 
argument alone, decisive as it must be to every unprejudiced mind. 
The common experience of every one teaches him that living force is 
not destroyed by the friction or collision of bodies. We have reason 
to believe that the manifestations of living force on our globe are, at 
the present time, as extensive as those which have existed at any time 
since its creation, or, at any rate, since the deluge-that the winds blow 
as strongly, and the torrents flow with equal impetuosity now, as at 
the remote period of 4000 or even 6000 years ago; and yet we are 
certain that, through that vast interval of time, the motions of the 
air and of the water have been incessantly obstructed and hindered 
by friction. We may conclude, then, with certainty, that these motions 
of air and water, constituting living force, are not annihilated by 
friction. We lose sight of them, indeed, for a time; but we find them 
again reproduced. Were it not so, it is perfectly obvious that long ere 
this all nature would have come to a dead standstill. What, then, may we 
inquire, is the cause of this apparent anomaly? How comes it to pass 
that, though in almost all natural phenomena we witness the arrest of 
motion and the apparent destruction of living force, we find that no 
waste or loss of living force has actually occurred? Experiment has 
enabled us to answer these questions in a satisfactory manner; for it 
has shown that, wherever living force is apparently destroyed, an 
equivalent is produced which in process of time may be reconverted 
into living force. This equivalent is heat. Experiment has shown that 
wherever living force is apparently destroyed or absorbed, heat is 
produced. The most frequent way in which living force is thus con­
verted into heat is by means of friction. Wood rubbed against wood or 
against any hard body, metal rubbed against metal or against any 
other body-in short, all bodies, solid or even liquid, rubbed against 
each other are invariably heated, sometimes even so far as to become 
red-hot. In all these instances the quantity of heat produced is in­
variably in proportion to the exertion employed in rubbing the bodies 
together-that is, to the living force absorbed. By fifteen or twenty 
smart and quick strokes of a hammer on the end of an iron rod of 
about a quarter of an inch in diameter placed upon an anvil an expert 
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blacksmith will render that end of the iron visibly red-hot. Here 
heat is produced by the absorption of the living force of the descending 
hammer in the soft iron; which is proved to be the case from the fact 
that the iron cannot be heated if it be rendered hard and elastic, so 
as to transfer the living force of the hammer to the anvil. 

The general rule, then, is, that wherever living force is apparently 
destroyed, whether by percussion, friction, or any similar means, an 
exact equivalent of heat is restored. The converse of this proposition 
is also true, namely, that heat cannot be lessened or absorbed without 
the production of living force, or its equivalent attraction through 
space. Thus, for instance, in the steam-engine it will be found that 
the power gained is at the expense of the heat of the fire,-that is, 
that the heat occasioned by the combustion of the coal would have 
been greater had a part of it not been absorbed in producing and 
maintaining the living force of the machinery. It is right, however, 
to observe that this has not as yet been demonstrated by experiment. 
But there is no room to doubt that experiment would prove the 
correctness of what I have said; for I have myself proved that a con­
version of heat into living force takes place in the expansion of air, 
which is analogous to the expansion of steam in the cylinder of the 
steam-engine. But the most convincing proof of the conversion of heat 
into living force has been derived from my experiments with the 
electro-magnetic engine, a machine composed of magnets and bars 
of iron set in motion by an electrical battery. I have proved by actual 
experiment that, in exact proportion to the force with which this 
machine works, heat is abstracted from the electrical battery. You 
see, therefore, that living force may be converted into heat, and that 
heat may be converted into living force, or its equivalent attraction 
through space. All three, therefore-namely, heat, living force, and 
attraction through space (to which I might also add light, were it consis­
tent with the scope of the present lecture)-are mutually convertible 
into one another. In these conversions nothing is ever lost. The same 
quantity of heat will always be converted into the same quantity of 
living force. We can therefore express the equivalency in definite 
language applicable at all times and under all circumstances. Thus 
the attraction of 817 lb. through the space of one foot is equivalent to, 
and convertible into, the living force possessed by a body of the same 
weight of 817lb. when moving with the velocity of eight feet per 
second, and this living force is again convertible into the quantity of 
heat which can increase the temperature of one pound of water by 
one degree Fahrenheit. 

[JOULE'S statement is clear: Heat is the equivalent of living force apparently 
destroyed. All transformations in nature are included. 

[All but one of JOULE'S experiments refer to what today would be regarded 
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as irreversible processes and thus would have at best indirect bearing on the 
early developments of thermodynamics.] The one exception 2 concerns the 
isothermal compression of air. For the following analysis of it I am indebted 
to Mr. C.-S. MAN. 

In two series of experiments, dried air at barometric pressure Pa and at 
temperatures between 53.7°F and 58.8°F, 54.0°F and 62.6°F respectively, was 
compressed into a receiver of volume Vb through a pump working "at a 
moderate degree of speed". JOULE measured directly the "quantity of air 
compressed" Va and the heat evolved C; thence he calculated numerical 
values of J by using the formula 

(7G.l) 

[To obtain it, let Pa be the density of atmospheric air at pressure Pa and 
temperature 8, Mk the mass of air admitted into the receiver in the kth 

stroke, Pk the density of compressed air in the receiver after the kth stroke, 
and Mo the original mass of air in the receiver when Po = Pa; then the work 
done in the kth stroke 

f Pk - 1p 

Lk = - Mk "2 dp - (Mo + M1 + 
Pa P 

Thus for n strokes the total work done 

L = L1 + ... + Ln , 

= -(Mo + M1 + 

= iV
• PdV , 

va 
Vb 

= PaVa log V 
a 

fPk P ... + M k ) 2 dp. (7G.2) 
Pk-l P 

(7G.3) 

the last step follows by appeal to the ideal gas law (2A.l). JOULE obtained (3)4 
simply by applying PETIT'S formula (5K.lh without analysis. 

[Applying to each isothermal subprocess the basic assumption of 
HOLTZMANN, namely 

L(~) = JC(~) , 

which we may regard as a special instance of JOULE'S far broader and less 
clear ideas, we obtain (1). JOULE simply assumes the interconvertibility that 
(7D.4) asserts. His results afford no test of it.] 

2 JOULE [1845, 1, First experiment]. 
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7H. The Bittersweet Indian Summer of the 
Caloric Theory: KELVIN's First Paper 

In 1849 KELVIN published an [enthusiastic, rambling, and sometimes 
vague] Account of Carnot's theoryl. [From the beginning the nemesis of 
thermodynamics took hold.] While CARNOT had written 2, "Heat can 
evidently be a cause of motion only by virtue of the changes of volume or 
of form which it produces in bodies," and DUHAMEL had incorporated 
"changes ... of form" in a special case, KELVIN narrowed the subject by 
omitting changes of form. He wrote, "There are two, and only two, distinct 
ways in which mechanical effect can be obtained from heat. One of these 
is by means of the alterations of volume which bodies may experience 
through the action of heat; the other is through the medium of electric 
agency." [While CARNOT'S mathematics had been obviously insufficient to 
treat the effects of change of form, had he wished to, KELVIN was an expert 
and creative mathematician of high order and might well have attacked 
the general problem. Instead, he ignored DUHAMEL'S attempt and chose to 
follow in CARNOT'S track. Again it was a turning point: CARNOT'S limitations 
were made to seem essential to the whole doctrine.] 

This paper is famous as the first to introduce the word" thermodynamic" : 

12. A perfect thermo-dynamic engine ... is a machine by means 
of which the greatest possible amount of mechanical effect can be 
obtained from a given thermal agency.... CARNOT .•• proves the 
following proposition:-

13. A perfect thermo-dynamic engine is such that, whatever amount 
of mechanical effect it can derive from a certain thermal agency; if an 
equal amount be spent in working it backwards, an equal reverse thermal 
effect will be produced. 

[KELVIN here seems to attribute to CARNOT proof that a cycle achieving 
maximum efficiency is necessarily reversible. I do not find that statement in 
CARNOT'S treatise. Sound proof of it would be out of the question there, 
since such a proof would have to rest upon a structure embracing bodies 
susceptible of irreversible as well as reversible processes, while all of CARNOT'S 

specific analysis appeals to the theory of calorimetry, which refers only to 
bodies such that all processes obey the reversal theorems (2C.7) and (2C.21). 

[Like CARNOT and CLAPEYRON,] KELVIN was fascinated by the properties 
of saturated steam. Although the complications inherent in the use of steam 
were of great practical importance, [upon the general theory they cast 

1 W. THOMSON [1849]. 
2 CARNOT [1824, p. 14]. 
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obscurity, and in this account, which concerns only fundamentals, I con­
sistently omit them.] 

KELVIN, [like CARNOT and unlike CLAPEYRON], treats only of an ideal 
gas 3. Through three pages (§§26-27) of manipulations of differentials KELVIN 

derives in differential form an expression for the work done by a simple 
cycle rc; his result is formally equivalent to 

L(CC) = II :~ dVdO , 
~ 

specialized to an ideal gas. He then writes, in effect, 

dH 
dV= dH/dV' 

dH being the increment of heat. [Hence we see that 

If 1 op 
L(CC) = _ Av 00 dHdO , 

~ 

(5L.l)2r 

(7H.1) 

(7H.2) 

in which d stands for the image of d in the plane of the variables 0 and 
H, and the integrand (defined as a function of V and 0) is regarded as a 
function of 0 and H.] KELVIN gives this relation only in the special form 
appropriate to an ideal gas undergoing a simple Carnot cycle. Namely, [if 
the value of He is set arbitrarily at 0 at the beginning of the cycle,] then 
(his Equation (4)) 

fC+ f.8+ 1 op 
L(CC) = 0 dH 8 _ dO Av 00 . (7H.3) 

[To the modem reader these steps seem no more than blind juggling with 
differentials. That, indeed, they may have been. Nevertheless, they can be 

3 It is curious to follow KELVIN'S reasoning. Sometimes he calculates a quantity first 
for a general equation of state but then specializes the formula at once to the case of 
an ideal gas. In this early paper KELVIN is strapped to air and steam and the experiments 
of REGNAULT. In §28 we read, "The preceding investigations, being founded upon 
[(2A.I)], would require some slight modifications, to adapt them to cases in which the 
gaseous medium employed is such as to present sensible deviations from [it]. REoNAULT'S 
very accurate investigations shew that the deviations are insensible, or very nearly so, 
for the ordinary gases at ordinary pressures; although they may be considerable for ... 
carbonic acid under high pressure .... In cases when it may be necessary, there is no 
difficulty in making the modifications, when the requisite data are supplied by ex­
periment." These words suggest that KELVIN here was thinking, not of the ideas in 
general terms, but of more complicated empirical equations of state. Because the modern 
reader is deterred just as much by details of equations too special as he is by considera­
tions too vague to grasp, in the text above I present the forms KELVIN's results assume 
when his reasoning is applied to a general equation of state. 
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justified according to the Caloric Theory. Because of the constitutive 
inequality 

Ay > 0 (2C.S)lr 

CARNOT'S heat function He is invertible locally for V when 8 is fixed: V = 
Ve(8, H). Thus the Caloric Theory allows us to use 8 and H, the latter being 
the quantity of heat in a body, as local co-ordinates and so to describe 
sufficiently small cycles in the plane of 8 and H. Therefore 

II .. ·dVd8 = II- ... ~~dHd8 . 
old old 

(7H.4) 

But 

A oHe 
y = oV ' (SM.2)lr 

so 

oVe = IjoHe = IjA 
oH oV y , 

(7H.S) 

and (2) follows.] 
In the opening pages of the paper KELVIN somehow convinces himself 

of most of CARNOT'S main assertions 4. [However, he does not mention 
CARNOT'S General Axiom.] Instead, he bases all his reasoning upon (3), 
or, rather, upon the statement from which he derived that: In an infinitesimal 
Carnot cycle (KELVIN'S Equations (3) and (6)) 

_ oPj 
f.L = 08 Ay. (7H.6) 

The notation f.L is KELVIN'S; he calls f.L "CARNOT'S coefficient" and" CARNOT'S 
multiplier". The argument so far, [since it does not rest on CARNOT'S General 
Axiom,] does not show that f.L is a function of 8 alone. 

At this point KELVIN reproduces (§29) CARNOT'S argument about the 
opposing Carnot cycles (above, §§SF-SH). He concludes that 

any two engines, constructed on the principles laid down above, ... 
must derive the same amount of mechanical effect from the same 
thermal agency. 

Otherwise ,there would be "a residual amount of mechanical effect without 
any thermal agency, or alteration of materials, which is an impossibility 
in nature." [Clearly "thermal agency" may depend upon 8; KELVIN seems 

4 Most of the remarks of W. THOMSON [1849, §§5-24] merely describe Carnot cycles, 
the Caloric Theory, and reversibility. 
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to assume it may not depend upon V.] He concludes that p. in (6)2 is a 
function of B alone, the same for all bodies. Substitution of (6)2 into (3) 
yields the work done in a Carnot cycle: 

[Hence p. is related as follows to CARNOT'S F: 

p.(B) = F'(O) ; 

(5L.7)2r 

(5J.7hr 

we recognize (6) and (5L.7)2 as being neither more nor less than the Special 
CARNOT-CLAPEYRON Theorem and the equation in CARNOT'S Special Axiom, 
respectively: 

F' Av = :~ and L(~) = [F(B+) - F(B-)]C+(~. (5L.5)r, (5I.6)r 

Thus KELVIN's argument includes a nearly obvious converse to CARNOT'S: 
The Special CARNOT-CLAPEYRON Theorem suffices for the truth of CARNOT'S 
Special Axiom. We have incorporated this statement into a more general 
one which we have labelled Scholion IV in §5L, above.] 

In claiming (§ 14) that a Carnot cycle achieves a "degree of perfectibility 
which cannot be surpassed" and "gives all the mechanical effect that can 
possibly be obtained from the thermal agency employed" KELVIN seems to 
think that that statement follows from CARNOT'S argument about the two 
engines. [As we have seen above in §§5F-5H, CARNOT used that argument 
only to infer that all Carnot cycles with the same operating temperatures 
have the same efficiency. To show that a Carnot cycle achieved maximum 
efficiency, CARNOT himself relied upon remarking that a Carnot cycle avoided 
"useless re-establishment of equilibrium in the caloric" (above, §§5D-5E),] 
which KELVIN does not mention. [Of course the claim is true, and we can 
prove it 5 by use of the very formulae KELVIN has provided here, namely 
(3) and the obvious extension (2) we have provided. We substitute (5L.5) 
into (2) and so obtain 

L(~ = It F'dBdH 
N 

(7H.7) 

We may define T as being the value of F: 

T == F(B) (7H.8) 

Since F is an increasing function, B is a function of T. Denoting by d the 
image of d in the plane of T and H, we let the greatest and least values of 

5 TRUESDELL [1973, 1J. 
lt should be unnecessary to remark that the later and now generally accepted theory 

of CLAUSIUS forbids such a choice of co-ordinates, and nothing resembling the argument 
presented above could be used to prove the corresponding theorem in that theory. 
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H in d be Hmax and H mim and we let the greatest and least values of B in 
the cycle be Bmax and Bmin• Then Tmax = F(Bmax) and Tmln = F(Brom). The 
values H max, H mlm Bmax, Bmln determine a unique simple Carnot cycle, which 
is the rectangle circumscribed upon ;; (Figure 5, in which ~ is the curve 
bounding .si). The area of that rectangle is greater than the area of d 
unless d is itself that rectangle. The area of the rectangle is (T max - T min) 

(Hmax - HmIJ. Therefore (7) yields 

L(Cf!) ;;;; (Tmax - TmtJ(H max - H mtn) , (7H.9) 

and equality is achieved if and only if ~ is the boundary of the rectangle. 
Moreover, since H is an increasing function of V when B is fixed, 

(7H.1O) 

and equality is achieved if and only if the part of ~ on which H increases 
is a single simple arc. Therefore 

(7H.ll) 

and equality holds if and only if ~ is a Carnot cycle. 
[Thus we have established CARNOT'S Claim I as stated in §5E. The attentive 

reader will recall that we have already proved that claim in §5M. The proof 
there is easier than that just above, but it uses a kind of reasoning which 
while entirely trivial is somewhat uncommon in the calculus as physicists 
used it 150 years ago. The proof we have just given employs the very ap­
paratus KELVIN provides in the paper we are discussing. The price paid is 

H 

O~-------'-------------------'------T 
Tmin Tmax 

Figure 5. Cycle in the H-T plane, with the corresponding Carnot cycle shown as the 
circumscribed rectangle. (Note that Tmln and Tmax correspond to Dm1n and Dmax.) 
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essential use of the constitutive inequality (2C.5)l> which the proof in §5M 
did not use. That is, the proof here is not so good as the one in §5M, but 
it shows less "hindsight" in that it is virtually read off from the formulae 
in one of the sources. It is strange that KELVIN did not notice this proof, 
since] T as defined by (7) is exactly what he had the year before 6 called 
"the absolute temperature". 

KELVIN concludes: 

32. The complete theoretical investigation of the motive power of 
heat is thus reduced to the experimental determination of the· co­
efficient I-' ...• 

33. The object of REGNAULT'S great work ... is the experimental 
determination of the various physical elements of the steam-engine; 
and when it is complete, it will furnish all the data necessary for the 
calculation of 1-" 

The main product of KELVIN's paper is two tables based insofar as pos­
sible upon data REGNAULT had gathered up to then in his "great work" 
upon saturated steam. The first gives values of I-' for successive degrees of 
the air thermometer from 0° to 230° at intervals of 1°. The second does the 

6 
same for J I-'(x)dx, or, what is the same thing, for CARNOT'S F. Thus KELVIN 

o 
steps boldly in [where CARNOT dared not tread]: He uses CARNOT'S theory 
to calculate the motive power of an engine with afinite difference of operating 
temperatures. [These tables of his are destined to work dire effects on the 
progress of thermodynamics. We shall encounter them again further on in 
this section and several times later in the course of our tragicomedy. 

[As KELVIN was to write four years later 7 : " ••• by means of observations of 
any kind, whether on a single fluid or on different fluids," we may determine 
CARNOT'S function "for any substance whatever .... " If Freally is a universal 
function, we need not face the complexities of experiment on different 
materials so as to determine it but for that end may use any conceivable, 
admissible theoretical model. If, on the other hand, we doubt that F be 
universal, we need tests, not with great detail and accuracy for the most 
useful substance in practice, but a table of measurements on many different 
substances in the same ranges oftemperature. We must recall that steam is the 
only fluid for which abundant data was available then, so KELVIN had either 
to use steam as his only basis or to institute a series of experiments of his own. 
For air, for example, he could have measured Kl' and then used CLAPEYRON'S 
formula (50.5), but we must recall that by 1849 no-one had projected a good 
method for measuring Kl' accurately. 

6 THOMSON [1848]. For analysis of this work and of KELVIN'S redefinition of "absolute 
temperature" in 1854 see §§llB and llH, below. 
7 THOMSON [1853, 1, §89]. 
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[KELVIN's insistence on appeal to experiment will cost him priority in the 
second major discovery of the early thermodynamics, a discovery which lay 
ready to hand for him: the internal energy. 

[Here there is a double irony. Only in this year, 1849, at last, does a 
mathematician capable of exploiting CARNOT'S ideas take them up. While 
he does so in part, he limits his analysis to the sometimes misleading if 
important case of an ideal gas, then bends over backward to accommodate 
the latest data on steam, that most confusing of thermodynamic substances, 
and finally comes to doubt the Caloric Theory of heat. KELVIN has not yet 
seen the work of MAYER. At the very beginning (§8) he states that JOULE'S 
experiments" seem to overturn the opinion commonly held that heat cannot 
be generated .... " A page later he adds a footnote full of doubts: "When 
'thermal agency' is thus spent in conducting heat through a solid, what 
becomes of the mechanical effect which it might produce?" [Far from 
finding unexpected from an expert on the conduction of heat this long over­
due remark, we wonder why KELVIN was not the mathematician who could 
put FOURIER'S theory and CARNOT'S together. Blinded by the failures of his 
predecessors in theory,] KELVIN turns to experiment but cannot accept the 
results: " ... the foundation of a solution of the difficulty has been actually 
found, in Mr JOULE'S discovery of the generation of heat, by the internal 
friction of a fluid in motion. Encouraged by this example, we may hope 
that the very perplexing question in the theory of heat, by which we are at 
present arrested, will, before long, be cleared up." Moreover, "It might 
appear, that the difficulty would be entirely avoided, by abandoning CARNOT'S 
fundamental axiom; a view which is strongly urged by Mr JOULE .... "8 

Nobody needs to be told after reading this that here lies KELVIN'S near miss. 
He writes, "It is in reality to experiment that we must look-either for a 
verification of CARNOT'S axiom, and an explanation of the difficulty we have 
been considering; or for an entirely new basis of the Theory of Heat." 
He had put another footnote a page earlier: 

"So generally is CARNOT'S principle tacitly admitted as an axiom, that 
its application in this case has never, so far as I am aware, been questioned 
by practical engineers." [A fatal mistake, this, for" practical engineers" are 
the last persons in the world from whom to expect searching questions!] 

In the appendix, read nearly four months after the main text, just after 
the famous dictum "Nothing in the whole range of Natural Philosophy is 
more remarkable than the establishment of general laws by such a process 
of reasoning", KEL YIN expresses "doubt ... with reference to the truth of the 
axiom on which the entire theory is founded". KELVIN vacillates 9 • 

8 Cf also the doubts about JOULE'S ideas KELVIN had expressed in a footnote to his 
earlier paper [1848]. 
9 He who has read so far in this history will not be surprised to find lapses in KELVIN'S 

faculty of criticism. In §45 he writes, "The fact of the gradual decrease of J1- through a 
very extensive range of temperature ... must be considered as a striking verification of the 
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[Despite his failure to get to the essence of the theory he is attempting to 
develop, KELVIN does succeed, almost in spite of himself, in opening a new 
avenue of thought. As we have seen in §SL, the relation (6)2 is compatible 
with the Caloric Theory if and only if fL as determined by (6)2 is the same 
function of temperature as is F', the derivative of the Fin CARNOT'S Special 
Axiom. 

[However, we may regard (6)2 in its own right. We may abandon the 
Caloric Theory but yet ask the following questions: 

1. Is (8P/80)/Av afunction of temperature alone for some fluid body? 
2. If so, is it a function of temperature alone for all fluid bodies? 
3. If so, is the function fL so determined a universal function, the same 

for all bodies? 

CARNOT'S General Axiom makes the answers yes, yes, and yes; KELVIN, 

though he does not appeal to that axiom, expresses no doubt here. He could 
have attempted to determine fL by experiments on air, but then he would 
have had to conceive and perform those experiments. Instead], he chooses 
to check some of JOULE'S views on the relation between heat and work, 
using as a basis the values of fL he had already determined by "REGNAULT'S 

great work" on [that nemesis of thermodynamics], saturated steam [I] 
To do so, KELVIN considers two known formulae regarding a body of 

ideal gas traversing an isothermal path ~: PETIT'S evaluation of the work 
done and CARNOT'S evaluation of the heat added, respectively 

L(~) = ROlog ~ and C(~) = fL~) log ~. (5K.1)2, (SK.S)2 

Dividing the former by the latter, he obtains10 (his Equation (11) in §49) 

L(~) 0 
C(~) = fL(O). (7H.12) 

theory." CARNOT, indeed, had suggested that P' should decrease with 8 (above, §5S), 
but neither he, CLAPEYRON, nor KELVIN had proved anything to that effect, so we wonder 
what "theory" KELVIN thinks he is verifying. Of CARNOT'S main theorem (5K.5) on 
the heat gained in isothermal changes, he writes in §47, "This extremely remarkable 
theorem of CARNOT'S was independently laid down as a probable experimental law by 
DULONG ••• , and it therefore affords a most powerful confirmation of the theory." 
As we shall see in §8B, this "powerful confirmation" is independent of "the materiality 
of heat". 
10 THOMSON [1852,1, §63] was to notice later the form (12) takes for a fluid obeying 
an arbitrary equation of state: 

1 iV20p 1 d 
C(9'9) = p.(8) VI 08 (V, 8)dV = ,.,.(8) d8 L(9'9) , 

the volumes VI and V2 being held constant. "This formula, established without any 
assumption admitting of doubt, expresses the relation between the heat developed by 
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§50 Hence we infer that 
(1) The amount of work necessary to produce a unit of heat by 

the compression of a[n ideal] gas, is the same for all [ideal] 
gases at the same temperature. 

(2) And that the quantity of heat evolved in all circumstances, 
when the temperature of the gas is given [i.e. constant], is 
proportional to the amount of work spent in the compression. 

Substituting from Table 1 the values of,." at various temperatures, KELVIN 

calculates 0,.,,(0) and hence the value of the left-hand side of (12). The results 
are far from being independent of 8. KELVIN compares them with three 
values obtained by JOULE: 

The largest of these numbers is most nearly conformable with Mr 
JOULE'S views ofthe relation between such experimental "equivalents," 
and others which he obtained in his electro-magnetic researches; but 
the smallest agrees almost perfectly with the indications of CARNOT'S 

theory .... 

[Here is one of our daemon's tricks.] As KELVIN is to tell us two years 
laterll, "It was suggested to me by Mr JOULE, in a letter dated December 9, 
1848, that the true value of,." might be 'inversely as the temperatures from 
zero' .... " That is, according to "Mr JOULE'S opinion" 

,." =J/8. 

The year thereafter, KELVIN12 will tell us also how JOULE arrived at his 
conjecture: 

[It is] required to reconcile the expression derived from CARNOT'S 

theory (which I had communicated to him) for the heat evolved in 
terms of the work spent in the compression of a gas, with the hy­
pothesis that the latter of these is exactly the mechanical equivalent 
of the former, which he had adopted in consequence of its being, at 
least approximately, verified by his own experiments. 

[Of course, that is the immediate conclusion we draw from (12) if we apply 
JOULE'S claim that heat and work are universally and uniformly inter-

the compression of any substance whatever, and the mechanical work which is required 
to effect the compression, as far as it can be determined without hypothesis by purely 
theoretical considerations." To prove this formula we need only equate the right-hand 
sides of (5K.4) and (5L.2). 
11 THOMSON [1851, §42). 
12 THOMSON [1852,1, §65). 
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convertible in all circumstances. KELVlN seems not to have noticed that 
HELMHOLTZ had shown (5N.7), which we shall henceforth call the 
HELMHOLTZ-JOULE Determination, to be a consequence of HOLTZMANN'S 
Assertion applied to CARNOT'S treatment of the Caloric Theory and had 
found it to be fairly consonant with data published by CLAPEYRON (above, 
§7F).] As KELVIN tells us politely, JOULE'S own data spread too much to 
allow a reliable check on (5N.7). That is why KELVIN turned to REGNAULT'S 
data and by use of it refuted JOULE'S conjecture. 

[Today the HELMHOLTz-JOULE Determination is regarded as an established 
truth of classical thermodynamics. Why did KELVIN'S appeal to experiment 
fail to confirm it? I am indebted to Mr. C.-S. MAN for analysis of KELVIN'S 
calculation, which concerns special properties of vapors and thus does not 
of itself seem to form part of our tragicomedy. REGNAULT'S influence, not 
REGNAULT'S data, was the source of the error!] To carry through KELVIN's 
calculation, "the density of saturated vapour must be known" for" all 
temperatures between 0° and 230° cent. of the air-thermometer." 

In his paper on an absolute thermometric scale13, published the year 
before, KELVIN explained the difficulty here: 

M. RegnauIt announces his intention of instituting researches for this 
object; but till the results are made known, we have no way of com­
pleting the data necessary for the present problem, except by estimat­
ing the density of saturated vapour at any temperature (the 
corresponding pressure being known by Regnault's researches already 
published) according to the approximate laws of compressibility 
and expansion (the laws of Mariotte and Gay-Lussac, or Boyle and 
Dalton). Within the limits of natural temperature in ordinary climates, 
the density of saturated vapour is actuaIly found by Regnault (Etudes 
Hygromhriques in the Annales de Chimie) to verify very closely these 
laws; and we have reason to believe from experiments which have 
been made by Gay-Lussac and others, that as high as the temperature 
100° there can be no considerable deviation; but our estimate of the 
density of saturated vapour, founded on these laws, may be very 
erroneous a( such high temperatures as 230°. Hence a completely 
satisfactory calculation of the proposed scale cannot be made till 
after the additional experimental data shall have been obtained; 
but with the data which we actually possess, we may make an ap­
proximate comparison of the new scale with that of the air-ther­
mometer, which at least between 0° and 100° will be tolerably 
satisfactory. 

[It is this erroneous belief that makes KELVIN'S allegedly experimental 

13 THOMSON [1848]. 
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determination of II- incorrect.] KELVIN is to admit as much, though only 
indirectly and not until 185414. 

[This is irony indeed. KELVIN was reluctant to accept a hypothesis 
unsupported by experiment. He appealed to the best data he could get. 
It was insufficient. Then, as physicists will do, to supply wanting data he 
appealed to authority to make what could be little better than another con­
jecture, one that seemed to him secondary and innocuous: that saturated 
steam obeyed the laws of ideal gases, even at high temperatures. In itself 
such a guess merely reflects the belief, current in earlier periods and lingering 
on even in 1849, that nearly all gases are nearly ideal. Nevertheless, conjecture 
it was-if anything, still less supported by experiment than was the one 
KELVIN was trying to test-and it was fatal. Not only did it break the chain 
of his Calculation allegedly based upon the results of experiment, not only 
did it vacate his claim to determine II- by appeal to nature itself, but also it 
tied his hands. In possession of all the elements out of which classical 
thermodynamics was just about to be formed, KELVIN was not the man 
destined to form it. His failure should serve as a classic warning to theorists 
of two kinds: those who bind themselves too tightly to the results of ex­
periment, and those who make plausible conjectures about the results of 
unperformed experiments. In 1849 KELVIN was of both these kinds.] 

71. General Critique: Interconvertibility in 1849 

Everything we have seen in this act that went in any essential way beyond 
CARNOT'S work has concerned one or both of two of the claims set forth 
in §7A: 

B. Heat is only a kind of "force" or "energy",· hence heat and work are 
universally and uniformly interconvertible in all circumstances. 

C. Heat and work are universally and uniformly interconvertible in 
isothermal -processes. 

The former claim, which refers to total heat, is unsound. It forgets 
CARNOT'S great lesson: In its power to do work, heat at high temperature 
is different from heat at low temperature. As CARNOT put it, "Wherever a 
difference of temperature exists, there motive power can be produced [by 

14 In §9D we shall read KELVIN'S criticism of CLAUSIUS and spirited defense of his own 
calculation. Cf. THOMSON [1852, 1, §§67-68) and also THOMSON [1851, §34). Finally 
JOULE & THOMSON [1854, Theoretical Deductions, §2) accepted the deviation of steam 
from the laws of ideal gases and by use of their own new data concluded that p.8 was 
in fact nearly constant when 8 was measured by the air thermometer. 
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heat]." "the production of motive power is due .. . to [the] transport [of 
heat] from a warm body to a cold body .. .. " Cf above, §5D. GIBBS in the 
passage we have quoted more fully in Footnote 2 to §5D expresses CARNOT'S 
general idea in specific terms that are acceptable in the later thermodynamics: 
"heat received at one temperature is by no means the equivalent of the same 
amount of heat received at another temperature .... But no such distinction 
exists in regard to work." Work, therefore, cannot be "equivalent" to 
anything that depends upon temperature. In particular, it cannot be "equi­
valent" to heat. Work is not dependent upon temperature, and it cannot be 
"equivalent" to something that is. 

The latter claim, while indeed a special instance of the former, refers 
only to heat added at one temperature and does not suffer from the same 
obvious fault. It is tenable. 

We now search the position in 1849 with regard to these two claims, in 
experiment first and then in theory. 

u. Experiment. While REGNAULT was the leading experimentist of this 
period, he contributed nothing to any important issue. That leaves us with 
JOULE. For analysis of JOULE'S experiments through 1850 and for locating 
previous criticisms of them I am greatly indebted to Mr. C.-S. MAN. 

In §7G we have seen that JOULE at this time, at least if his own words 
can be taken at face value, espoused Claim B. Since Claim B is untenable, 
how can JOULE have thought he confirmed it? POINCARE! remarks that the 
early experiments of JOULE and others were conceived as "verifying an 
established principle "-established, that is, on the basis of preconceptions 
molecular and otherwise-while later students, abandoning the historical 
order of things, preferred to regard those same experiments as themselves 
"establishing experimentally the principle of equivalence". However, the 
experiments in question do not suffice to discharge the responsibility the 
tradition of physics has laid upon them. The unacceptable spread of JOULE'S 
early results is summarized thus by MEYERSON 2 : 

The numbers of the English physicist vary within extraordinarily 
large limits; the average at which he arrives is 838 foot-pounds (for the 
quantity of heat capable of increasing the temperature of a pound of 
water by i of, which is about equivalent to 460 kilogrammeters to 
1°C.); but the different experiments from which this average is drawn 
furnish results varying from 742 to 1,040 foot-pounds (or from 407 to 
561 kilogrammeters)-that is, by more than a third of the lowest 
value-and he even notes an experiment which gives 587 lb. (322 

1 See §60 of H. POINCARE'S Thermodynamique (1888/9), Paris, Georges Carre, 1892. 
2 See pp. 194-195 of E. MEYERSON'S Identity and Reality, 3rd edition, 1926, translated 
by K. LoEWENBERG, London, George Allen and Unwin, 1930. The passage occurs 
also in the 2nd edition, 1912. 
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kilogrammeters) without seeing in it any source of particularly grave 
experimental errors. It is only in the postscript of this work that 
Joule tells of a series of experiments yielding as a result 770 foot-pounds 
(423 kilogrammeters), which approximates our present estimations. 
Moreover, if one considers that at this same moment Sadi Carnot and 
J. R. Mayer had already, each one for himself, calculated the equivalent 
of heat and had arrived at the figures of 370 and of 365 kilogrammeters 
(which is more than an eighth lower than Joule's value), it becomes 
really difficult to suppose that a conscientious scientist, relying solely 
on experimental data, could have been able to arrive at the conclusion 
that the equivalent must constitute, under all conditions, an invariable 
datum. 

ROWLAND 3, writing earlier but still long after the fact, levels weightier 
charges: 

One very serious defect in Joule's experiments is the small range 
of temperature used, this being only about half a degree Fahrenheit, 
or about six divisions on his thermometer. It would seem almost im­
possible to calibrate a thermometer so accurately that six divisions 
should be accurate to one per cent, and it would certainly need a very 
skilful observer to read to that degree of accuracy. Further, the 
same thermometer "A" was used throughout the whole experiment 
with water, and so the error of calibration was hardly eliminated, the 
temperature of the water being nearly the same. 

Indeed, JOULE obtained his final numbers in each experiment by simple 
averaging over many trials, carried out at various room temperatures, 
which anyone who has lived in Britain will expect to lie in a small, chilly 
interval, pretty close to freezing. 

It is no' wonder that JOULE'S contemporaries, even his friend KELVIN, 
were reluctant to accept his early results. As we have seen in §7F, HELMHOLTZ 
rejected them at the very moment when accurate measurements over a 
broad range of temperatures could have exerted a decisive influence upon 
the course of thermodynamics. So late as February, 1850, RANKINE\ who 
accepted a priori a vis-viva theory of heat such as to make heat only a form 
of mechanical energy (see below, §8G) and hence shared JOULE'S views, 
rejected as being too large all the numerical values of J that JOULE had 
published up to then. 

As KELVIN implies (cf. Footnote 14 to §7H above), JOULE could not have 
induced his conjecture, namely 

3 ROWLAND [1880, p. 150]. 
4 RANKINE [1850, §2]. 

f1, = JI8 , (5N.7)r 
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from his experiments, as they did not allow the temperature to vary much. 
It was KELVIN, as KELVIN himself tells us, who communicated to JOULE the 
relation 

L(&1o) 
c(&1o) = 8fL(8) . (7H.12)r 

Thence JOULE inferred (5N.7) by applying his own beliefin Claim B. JOULE'S 
conjecture was theoretical. By his good luck, only Claim C was needed to 
get (5N.7), and Claim C, unlike Claim B, is tenable. 

It is only hindsight, sharpened by the far greater definition of JOULE'S 
later work, that makes the modern student expect JOULE to have been the 
bero of the new science, under whose banner all physicists ought have rallied. 

{3. Theory. Here only Claim C is worth further comment. We have 
seen that HOLTZMANN asserted it for ideal gases and that the earlier assertion 
of MAYER is equivalent to it, likewise for ideal gases, on the basis of the 
Doctrine of Latent and Specific Heats alone. KELVIN made a start at deter­
mining the position of HOLTZMANN'S Assertion when CARNOT'S General 
Axiom is assumed. Thus there is no chance of falling back onto the Caloric 
Theory. We now complete KELVIN'S analysis, using only formulae already 
in the literature in 1849 and at KELVIN'S easy disposal, had he chosen to 
regard them. 

We shall establish connections among three central statements, none of 
which presume the Caloric Theory of heat: 

1. The General CARNOT-CLAPEYRON Theorem: 

2. HOLTZMANN's Assertion: 

op 
fLAy = 88 . 

JAv = p . 

3. The HELMHOLTZ-JOULE Determination: 

fL = JI8 . (5N.7)r 

We recall that fL in Assertions 1 and 3 derives from CARNOT'S General Axiom, 
while Assertion 2 stands by itself, a separate and independent statement 
regarding IntercQnvertibility of Heat and Work in isothermal processes. 

First we restate tbe General CARNOT-CLAPEYRON Theorem as applied to 
an ideal gas: 

fLAy = pl8 . (5L.6)lr 

Theorem 1: Let the General CARNOT-CLAPEYRON Theorem be assumed. Then 
for ideal gases 

JAv = p ~ fL = JI8 . (71.l) 
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We have seen that CARNOT calculated fl-O numerically for one particular 
value of 0 by using the relation 

1 _.!!. dV 
V dO 

fI- = R --=,.---­BKp 
(50.5)r 

which rests upon the General CARNOT-CLAPEYRON Theorem alone, an 
ideal gas being presumed. MAYER used his relation 

R 
J = (l _ Y l)Kp . 

to calculate J. But Theorem 1 shows us that if we accept the General CARNOT­
CLAPEYRON Theorem, MAYER could have obtained nothing else than fl-B 
in this way. In this sense the numerical calculations of CARNOT and MAYER 

(hence also those of CLAPEYRON and HOLTZMANN 5) would have agreed 
exactly, had all of them used the same experimental data. 

However, the quantity J so calculated did not necessarily have the meaning 
we attach to it today. Its precise status may be determined as follows. Theorem 
1 refers only to ideal gases, but CARNOT'S General Axiom makes fI- a universal 
function, the same for all fluids. The two together make HOLTZMANN'S 
Assertion for ideal gases imply the HELMHOLTZ-JOULE Determination for 
fI- in general, irrespective of particular fluids, so the General CARNOT­
CLAPEYRON Theorem reduces to 

(71.2) 

a relation which is to become so familiar in the later thermodynamics that 
modern authors will regard Ay as a superfluous quantity and hence will 
not introduce it at all. Conversely, if (2) holds, we may compare it with 
(5L.4) and so recover (5N.7) and with it HOLTZMANN'S Assertion (7D.l) 
for ideal gases. Thus we have established 6 

Theorem 1: Let CARNOT'S General Axiom be assumed. Then 

JAy = p for one ideal gas <0> 

fI- = JIB for all fluids <0> 

Bp 
JAy = B BIJ for all fluids. 

(71.3) 

The status of HOLTZMANN'S Assertion with respect to CARNOT'S theory 
is easy to establish. Comparing (71.3)2 with (5N.6), using the statement in 

5 CLAUSIUS [1850, Introduction] was to remark that HOLTZMANN'S calculation was 
equivalent to MAYER'S. 

6 Theorems 1 and 2 are due essentially to CLAUSIUS [1850, §II, paragraph after his 
Equation (II.c)], but by no means clearly or completely. 
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the text just preceding the latter, and recaIIing also the statement in italics 
just before (5N.3), we obtain the foIlowing 

Corollary: Let CARNOT'S Special Axiom be assumed. Then 

JAy = p for one ideal gas -¢> 

G(O+, 0-, C+) = Jlog (::)c+ -¢> 

CARNOT'S Special Axiom is dimensionaIly invariant. 

(71.4) 

FinaIly we determine the status of HOLTZMANN'S Assertion with respect 
to CARNOT'S general ideas. If it is assumed true for ideal gases, are they the 
only fluids for which it can hold? To answer this question, we need only put 
(3)1 into (3)3 and so obtain the partial differential equation 

the general solution of which is 

p =f(V)O . 

Thus we have established 

Theorem 3: Let CARNOT'S General Axiom be assumed. Then 

JAy = p for one ideal gas -¢> 

JAy = p for all fluids such that plO = f(V). 

(71.5) 

(71.6) 

(71.7) 

This last statement may be expressed in terms of the classic experiments 
from which the concepts of "ideal gas" was distilled: the experiments of 
BOYLE as interpreted by TOWNELEY and POWER, and the results of AMoNToNs, 
to which the opening sentences of this book refer. Namely, against the back­
ground of CARNOT'S General Axiom, HOLTZMANN'S Assertion is appropriate 
to fluids that satisfy the Law of AMONTONS, whether or not they satisfy also 
the Law of TOWNELEY and POWER. 

Theorems 1, 2, and 3 establish the precise position of HOLTZMANN'S 
Assertion (7D.1); equivalently, of MAYER'S Assertion (7B.2). 

Theorems 1 and 2 show that MAYER'S Assertion determines CARNOT'S 

function ft. Referring to Scholion IV in §5L, we know that without some 
further assumpfion, ft does not determine the motive power of heat. Such is 
the case also, then, for the assumptions of MAYER and HOLTZMANN. In 
particular, neither implies that heat and work be uniformly interconvertible 
in cyclic processes, whatever MAYER and HOLTZMANN may have meant by 
their accompanying statements. Both are compatible with any theory that 
respects CARNOT'S General Axiom. From his equations we know that 
HOLTZMANN incorporated his assertion (7D.1) into the Caloric Theory and 
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so obtained for the motive power expressions which CARNOT had already 
published and discussed. MAYER for lack of mathematics did not attempt 
to determine the motive power of heat. Had he done so, perhaps he, too, 
would have used the Caloric Theory. The work of CLAPEYRON and HOLTZ­
MANN is sufficiently detailed to demonstrate abundantly that they accepted 
the Caloric Theory and thus could not have believed heat and work to be 
universally and uniformly interconvertible in cyclic processes. MAYER'S work 
is so primitive as to leave us in doubt what he really did mean. His verbal 
claims are so broad as to be untenable. 

Here we see a dichotomy, probably perpetual, between a history of 
scientific beliefs and a history of rational and experimental science. For the 
former, MAYER is the author of something called "the First Law of Thermo­
dynamics", while HOLTZMANN is not. For the latter, MAYER and HOLTZMANN 
did no more than assert, each in his own way, that ideal gases interconvert 
heat and work uniformly and universally in isothermal processes. This claim 
of theirs neither implies the" First Law" nor excludes the Caloric Theory. 

Theorems 1 and 2 express the meaning of the universal and uniform 
Interconvertibility of Heat and Work in an ideal gas undergoing an iso­
thermal process. Theorem 3 shows that CARNOT'S General Axiom wiII not 
allow such interconvertibiIity to all fluids. As KELVIN was to write 7, the 
quantity of work is not 

the simple mechanical equivalent of the heat, as it was unwarrantably 
assumed by MAYER to be, ... [i]n violation of CARNOT'S important 
principle, that thermal agency and mechanical effect, or mechanical 
agency and thermal effect, cannot be regarded in the simple relation of 
cause and effect, when any other effect, such as the alteration of the 
density of a body, is finally concerned. 

We can put this in another way: The idea of a universal "simple mechanical 
equivalent of the heat" is wrong; it was wrong in 1845, too, as CARNOT'S 
work made clear to those who, like KELVIN, could understand it; MAYER 
and JOULE'S applications of it led nevertheless to tenable results. Falsehood 
may imply truth. 

The particular simple mechanical equivalence in isothermal processes 
that MAYER, HOLTZMANN, and JOULE studied was referred by them, ex­
pressly or by implication, to particular fluids: the ideal gases. Theorem 3 
delimits the class of fluids which CARNOT'S General Axiom allows to enjoy 
this uniform interconvertibility. It is a special class. The simple and uniform 
equivalence in isothermal processes is not even universal. 

The spectator innocent of thermodynamics, if such there be, may object: 
You have produced all this from CARNOT'S General Axiom. What good is 

7 THOMSON [1852, 1, §65]. 
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that? Was not CARNOT'S theory to be rejected? Here the answer is No! The 
mathematical developments which the spectator is to witness in Act IV and 
in much of Act V will be confined to theories consistent with CARNOT'S 

General Axiom. That axiom in itself carries no prejudice for or against 
the Caloric Theory, no prejudice for or against the universal and uniform 
Interconvertibility of Heat and Work in cyclic processes. HOLTZMANN'S 
Assertion, as HOLTZMANN'S own use of it shows, is compatible with the 
Caloric Theory; it is compatible also, as we shall see in Act IV, with the 
universal and uniform Interconvertibility of Heat and Work in cyclic pro­
cesses. The status of the constant J that figures in Theorems I, 2, and 3 is 
that which those theorems give it. As yet, J is not the universal and uniform 
equivalent of a unit of heat in cyclic processes. So far, no general equivalence 
has been introduced, except in the vague and partly untenable assertions of 
MAYER and JOULE. 

Who, then, is the discoverer of the "First Law of Thermodynamics"? 
I am not certain there was one, but I am certain that before 1850 no "First 
Law" had been published by anyone. If discoverer there were, certainly it 
was not MAYER, not HELMHOLTZ, not JOULE. 

We are ready for the next act of our tragicomedy. Just after gifted thinkers 
have proposed a capital idea which they lacked the critical faculty to delimit 
and the mathematical skill to exploit, a great mathematician has buried his 
head in steam tables. KELVIN, failing to see that any acceptable theory of 
thermodynamics, in order to square with the simplest rough summary of 
experiments on gases, should allow the equation of state of an ideal gas to 
be compatible with constant specific heats, calls for still more experiment! 
A grievous error! As GIBBS B, critical and level as always, was to remark 
long afterward, to create (in MAXWELL'S words) "a science with secure 
foundations, clear definitions, and distinct boundaries" it was conceptual 
analysis that wanted: "The materials indeed existed for such a science ... , 
such materials as had for years been the common property of physicists." 
To winnow, refine, and reorder these materials, the tragicomic muse of 
thermodynamics casts her aura and her curse upon a man who, like CARNOT, 
is a penetrating student of nature but a feeble mathematician: RUDOLF 
CLAUSIUS. 

8 "Rudolf Julius Emanuel Clausius", Proceedings of the American Academy (n.s.) 16 
(1889), 458-465 = Collected Works 2, 261-267 (1906). 



8. Act IV. Internal Energy: the First Paper of 
CLAUSIUS. Entropy: the First Paper of RANKINE 

Prima che piu entre, 
sappi che se' nel secondo girone, 
... e sarai mentre 

che tu verrai ne l'orribil sabbione. 
Pero riguarda ben .... 

DANTE, Inferno XIII, 16-20. 

SA. CLAUSIUS' Physical Concepts and Assumptions 

After quoting CARNOT'S claim that to deny the existence of the heat 
function "would overthrow the whole theory of heat", CLAUSIUS wrote1 : 

I am not aware, however, that it has been sufficiently proved by 
experiment that no loss of heat occurs when work is done; it may, 
perhaps, on the contrary, be asserted with more correctness that 
even if such a loss has not been proved directly, it has yet been shown 
by other facts to be not only admissible, but even highly probable. 
If it be assumed that heat, like a substance, cannot diminish in 
quantity, it must also be assumed that it cannot increase. It is, how­
ever, almost impossible to explain the heat produced by friction 
except as an increase in the quantity of heat. The careful investi­
gations of Joule, in which heat is produced in several different ways 
by the application of mechanical work, have almost certainly proved 
not only the possibility of increasing the quantity of heat in any 
circumstances but also the law that the quantity of heat developed 
is proportional to the work expended in the operation. To this it 
must be added that other facts have lately become known which sup-

1 CLAUSIUS [1850]. As MAGIE'S translation is mainly adequate, I quote from it here and 
below, silently correcting it once in a while. 

CLAUSIUS stated that he had not been able to see CARNOT'S book and was acquainted 
with its contents only through the accounts published by CLAPEYRON and THOMSON. 
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port the view, that heat is not a substance, but consists in a motion 
of the least parts of bodies. If this view is correct, it is admissible 
to apply to heat the general mechanical principle that a motion may 
be transformed into work, and in such a manner that the loss of 
vis viva is proportional to the work accomplished. 

These facts, with which Camot also was well acquainted, and 
the importance of which he has expressly recognized, almost com­
pel us to accept the equivalence between heat and work, on the 
modified hypothesis that the accomplishment of work requires not 
merely a change in the distribution of heat, but also an actual con­
sumption of heat, and that, conversely, heat can be developed again 
by the expenditure of work. 

CLAUSIUS cites with approval MAYER'S evaluation of the mechanical 
equivalent of a unit of heat; he notices that HOLTZMANN'S evaluation of 
it is the same, and he [justly] criticizes HOLTZMANN'S further development 
for proceeding" exactly as CLAPEYRON did, so that in this part of his work 
he tacitly assumes that the quantity of heat is constant." CLAUSIUS describes 
THOMSON'S doubts and refers to JOULE'S experiments. After quoting 
THOMSON'S refusal to abandon the heat function because of "innumerable 
other difficulties, insuperable without further experimental investigation, 
and an entire reconstruction of the theory of heat from its foundation," 
CLAUSIUS concludes, 

I believe that we should not be daunted by these difficulties, but 
rather should familiarize ourselves as much as possible with the 
consequences of the idea that heat is a motion, since it is only in 
this way that we can obtain the means wherewith to confirm or to 
disprove it. Then, too, I do not think the difficulties are so serious 
as Thomson does, since even though we must make some changes in 
the usual form of presentation, yet I can find no contradiction with 
any proved facts. It is not at all necessary to discard Camot's theory 
entirely, a step which we certainly would find it hard to take, since 
it has to some extent been conspicuously verified by experience. 
A careful examination shows that the new method does not stand 
in contradiction to the essential principle of Camot, but only to 
the subsidiary statement that no heat is lost, since in the production 
of work it may very well be the case that at the same time a certain 
quantity of heat is consumed and another quantity transferred from a 
hotter to a colder body, and both quantities of heat stand in a definite 
relation to the work that is done. 

CLAUSIUS lays down the following "first principle": 

In all cases in which work is produced by the agency of heat, a quantity 
of heat is consumed which is proportional to the work done; and 
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conversely, by the expenditure of an equal quantity of work an equal 
quantity of heat is produced. 

CLAUSIUS does not mean us to accept this statement as broadly as it may 
sound. [By this time everyone knew that work could be done or consumed 
in an adiabatic process, at no expense of heat.] That is not all. 

If any body changes its volume, mechanical work will in general 
be either produced or expended. It is, however, in most cases im­
possible to determine this exactly, since besides the external work 
there is generally an unknown amount of internal work done. To 
avoid this difficulty, Carnot employed the ingenious method already 
referred to of allowing the body to undergo its various changes in 
succession, which are so arranged that it returns at last exactly to 
its original condition. In this case, if internal work is done in some 
of the changes, it is exactly compensated for in the others, and we 
may be sure that the external work, which remains over after the 
changes are completed, is all the work that has been done. 

Thus we may express CLAUSIUS' principle as follows: For every cycle rc 

L(rc) = JC(rc) . (7A.l)lr 

The constant J, which CLAUSIUS denotes by A-I, is the mechanical eqUivalent 
of a unit of heat in cyclic processes. [CLAUSIUS has seen the defect in the 
unrestricted affirmations of MAYER, HELMHOLTZ, and JOULE. He sees that 
storage must be accounted for, and he sees that CARNOT'S approach does 
allow for it by considering cycles alone, in which the overall effect of storage 
is null. Like CARNOT and CLAPEYRON], CLAUSIUS applies his basic assumption 
only to infinitesimal Carnot cycles. 

Of course CLAUSIUS, like all his predecessors, accepts the theory of 
calorimetry [though he gives no evidence of seeing it in the simple and 
explicit completeness with which we have presented it in §2C, starting from 
the formal assumption 

Q = Av(V, fJ)V + Kv(V, fJ)8 

Certainly all of his work fits easily into the framework as we have presented 
it 2 .] 

2 CLAUSIUS' explanation of free and latent heat and of internal and external work 
is cloudy. On the other hand, anyone who reads with understanding CLAUSIUS' proof 
of his Equation (3) will see that there he does use (2C.4) and nothing else. His notations 
for Av and Kv are 

(~;) and (~~), 
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CLAUSIUS employs also "an obvious subsidiary hypothesis" regarding 
ideal gases. After some motivating remarks which, though they include 
the phrase "there is no reason to think that ... ", he seems to regard as a 
proof, he arrives at "the law: a permanent gas, when expanded at constant 
temperature, takes up as much heat as is consumed in doing external work 
during the expansion. This law is probably true for any gas with the same 
degree of exactness as that attained by the laws of Mariotte and Gay-Lussac 
applied to it." The "law" (his Equation (9» is 

JAv = p , 

[namely, as the reference number indicates, HOLTZMANN'S Assertion, which 
we have explained in §7E, and the logical status of which we have established 
in §71]. 

These principles are contained in CLAUSIUS' introduction and §I. In §II 
he takes up CARNOT'S ideas again. He gives [essentially CARNOT'S] argument 
to indicate that a Carnot cycle delivers maximum motive power for given 
extremes oftemperature. As transfer of heat by conduction need not produce 
mechanical effect, "the way in which the transfer of a certain quantity of 
heat between two bodies at the temperatures 8 and T can be made to do the 
maximum of work is so to carry out the process, as was done in the above 
cases, that two bodies of different temperatures never come in contact." 
[CI CARNOT'S statement quoted above in §5D.] 

"It is this maximum of work which must be compared with the heat 
transferred." [Again employing an argument which is essentially CARNOT'S,] 
CLAUSIUS considers the state of affairs that results after completion of both 
a Carnot cycle and the reverse of a less efficient one, so adjusted as to annul 
in part the effect of the former. [As we have seen in §5G, CARNOT'S con­
struction was able to "re-establish things in their original state" because 
C+(~ = C-(~ according to the Caloric Theory. For CLAUSIUS, on the 
other hand, C+(~ =F C-(~, and until a definite theory is constructed, 
we cannot know whether or not CARNOT'S construction will re-establish 
everything in its original state. The requirements of "sound physics" have 
to be narrowed if they are to yield CARNOT'S conclusion even in CLAUSIUS' 
theory.] 

CLAUSIUS proceeds to do just this, but in terms of a somewhat different 
construction. He adjusts ~2 so that Lsa( -~2) = -Lsl(~l). After ~l and 
-~2 have been completed, no work has been done, yet if Bl does more 

respectively; his equation for an adiabatic process is 

which in our notion would be AvdV + Kvd8 = 0; etc. This interpretation is confirmed 
by the footnote CLAUSWS put on p. 29 of the reprint of this paper in his Mechanische 
Wtirmetheorie, 1864. 
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work per unit heat than B2 does in a Carnot cycle with the same operating 
temperatures, then after ~1 and -~2 have been completed some heat will 
have passedfrom the refrigerator to the furnace. 

By repeating these two alternating processes, it would be possible, 
without any expenditure of force or other change, to get any amount 
of heat out of a cold body and into a hot one, and this contradicts 
the other behavior of heat, since heat everywhere strives to smoothe 
out such differences of temperature as occur and therefore to pass out 
of hotter bodies into colder ones. 

It seems, therefore, to be theoretically justified to retain the first and 
the really essential part of Carnot's assumptions ... 

On this assumption we may express the maximum of work that 
can be produced by the transfer of a unit of heat from the body A 
at the temperature 8 into the body B at the temperature T, as a function 
of 8 and T. 

[rhus CLAUSIUS claims to motivate CARNOT'S General Axiom. In 
CARNOT'S applications of it C+(~ = C-(~, so the roles of C+ and c­
are interchangeable. In Act II I have chosen C + as the variable in terms of 
which to state the axiom. CLAUSIUS chooses (in effect) C -. With either choice 
it will tum out that C-(~ for a Carnot cycle ~ is determined by 8+, 8-, 
and C + (~; for the former choice, this statement is the burden of Theorem 9 
in §1O of Concepts and Logic, and for the latter choice the same proof works 
with only trivial changes. Thus CLAUSIUS' statement is equivalent to Part I 
of CARNOT'S General Axiom: 

L(~ = G(8+, 8-, C+(~) , 

G(x, y, z) > 0 if x > y > 0 and z > 0 . 

(SI.l)r 

(SI.2)r 

[ro me CLAUSIUS' argument suggests something a little different, namely, 
that if two Carnot cycles with the same operating temperatures do the same 
amount of work, they emit the same amount of heat. While thermodynamics 
can indeed be constructed on this basis, there is neither need for nor ad­
vantage in changing CARNOT'S construction. If we are to narrow the require­
ments of "sound physics", we can do so directly from the construction 
CARNOT himself provided. With no appeal to any relation between heat and 
work, that construction leaves the quantity of heat in the furnace un­
changed after positive work has been done. To obtain the desired prohibition, 
we may simply forget about the refrigerator and make "sound physics" 
require that if work is to be done by heat, some heat must pass from a hot 
body to a cold one. Then we draw CARNOT'S conclusions just as well without 
use of the Caloric Theory. 

[Such is the slipperiness of arguments based upon denial of "perpetual 
motion of the second kind".] 
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SB. Logical Content of CLAUSIUS' First Paper 

Although CLAUSIUS restricts his mathematical theory to ideal gases and 
to vapors at their maximum density, "since these cases, in consequence of 
the extensive knowledge we have of them, are most easily submitted to 
calculation, and besides that are the most interesting," [most of his logical 
steps are valid for an arbitrary equation of state (2A.2), and we shall so 
present them1 • As usual in this account, we shall omit all special considera­
don of vapors, and for two reasons. First, the properties of vapors by them­
selves serve only to illustrate the general formulae valid for an arbitrary 
equation of state. Second, much of the early work on steam takes account 
of the latent heat of vaporization and considers a mixture of steam and 
water. Those two features, one of which simplifies and the other complicates 
the theory, do not contribute to the conceptual structure of thermodynamics, 
so I simply leave this part of the story untold.] 

CLAUSIUS' argument falls into five parts, largely independent. 

ct. First line of reasoning. CLAUSIUS first exploits the old, basic Doctrine 
of Latent and Specific Heats. Considering an infinitesimal Carnot cycle, 
he calculates the work done and the "heat consumed". His results, stated 
as his Equations (1) and (3), he substitutes into the statement of "our 
principle" of "the equivalence between heat and work" and so obtains his 
Equation (II.) [the general form 2 of which is 

~~ = J(8~v _ 8:~) .J (8B.I) 

This is the general local statement of CLAUSIUS' principle of uniform and 
universal Interconvertibility of Heat and Work in cyclic processes undergone 
by fluid bodies. 

CLAUSIUS states at once that his special case of (1) "may be brought 
into the form of a complete differential equation," by which a function 
E(V, 8)/J may be defined. This function, which CLAUSIUS denotes by U, 
satisfies the relation (his Equation (II.a)) 

E =JQ +P, P == -pV. (8B.2) 

Thus "the total amount of heat received by the gas during a change of 
volume and temperature can be separated into two parts, one of which, 
E, which ~omprises the free heat that has entered and the heat consumed in 
doing internal work, if any such work has been done, has the properties 
which are commonly assigned to the total heat", namely, that it is the 

1 CLAUSIUS [18541 himself so presented them in his second paper. 
2 Appaemtly THOMSON [1851, Equation (2)] was the first to publish (1). For KELVIN'S 

sanitary operations see also Footnotes 3 and 12 to §2C, above. 
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value of a function of Vand (); "while the other part, which comprises the heat 
consumed in doing external work, is dependent not only on the terminal 
conditions, but on the whole course of the changes between those con­
ditions." [CLAUSIUS' interpretation of E as the free heat and the heat con­
sumed "in doing internal work" really refers to the change of E in a process, 
not to the actual value of E. Today we call E the internal energy of the body 
whose constitutive functions are 'tIT, Av, and Kv.] 

{3. Second line of reasoning. Next CLAUSIUS takes up his "obvious 
subsidiary hypothesis", namely, [HOLTZMANN'S] Assertion: 

JAv =p . (7D.l)r 

CLAUSIUS remarks, [as HOLTZMANN, who did not have CLAUSIUS' basic 
axiom of interconvertibility for cycles could not have done,] that this 
"subsidiary hypothesis" makes E and Kv functions of () alone. "It is even 
probable that ... Kv . .. is a constant." 

y. Third line of reasoning. The third course of deduction CLAUSIUS 
pursues refers to ideal gases [and rests upon the Doctrine of Latent and 
Specific Heats alone, making no use of his own basic axiom 

L(rc) = JC(rc) .] (7A.l)lr 

By a [clumsy] proof, [in which R()/V is carried through as an expression for 
p, only so as to cancel out after all,] he obtains from [HOLTZMANN'S] 
Assertion (7D.l) the consequence 

J(Kp - Kv) = R , (7B.2)r 

[which is MAYER'S Assertion. We remember that HOLTZMANN had obtained 
the same result by unnecessary use of the Caloric Theory (§7E).] CLAUSIUS 
cites the experimental fact that R is "in so far different for the different gases 
that it is inversely proportional to their specific gravities." Thus" the dif­
ference of the specific heats referred to the unit of volume is therefore the 
same for all gases." Dividing (7B.2) by Kv, CLAUSIUS concludes that y - 1 
is "for the different gases inversely proportional to the specific heats of the 
same at constant volume, if these are referred to the unit of volume." He 
states that this law 

has been found by DULONG from experiment .... 

If it is now assumed that the specific heat of gases at constant 
volume Kv is constant, which has been stated above to be very prob­
able, the same follows for the specific heat at constant pressure, 
and consequently the quotient of the two specific heats K.,,/Kv = y must 
be constant. This law, which Poisson assumed correct on the strength 
of the experiments of Gay-Lussac and Welter ... is therefore in 
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good agreement with our present theory, while it would not be possible 
in Camot's theory as heretofore developed. 

Continuing with special properties of ideal gases, CLAUSIUS shows that 
if')' = const., then the law of adiabatic change is (his Equations (16) and (15» 

p = (Vo)Y 
Po V' 

(8B.3) 

"These equations agree precisely with those which have been developed by 
Poisson for the same case .... " [Indeed, these formulae are equivalent to 
(3D.5).] 

Next CLAUSIUS recalls that in an isothermal process 

iVb C(~) = Av(V, 8)dV . 
v .. 

(5L.2)lr 

For a body of ideal gas, if [HOLTZMANN'S Assertion] (7D.l) holds, then 
(CLAUSIUS' Equations (18) and (19» 

JC(~) = fVb p(V, 8)dV = R8 fVb d; , 
v" v" 

81 Vb 1 Vb 
= R og Va = Pa Va og Va . 

(8B.4) 

Thus CARNOT'S theorem on progressions (5K.5) is recovered, but in a more 
specific form. From (4), follows 

The well known law which Dulong proposed, ... that all gases, if 
equal volumes of them are taken at the same temperature and under 
the same pressure, and if they are then compressed or expanded by an 
equalfraction of their volumes, either evolve or absorb an equal quantity 
of heat. 

However, (4), is "much more general". It shows that" if the original pressure 
is different in the different cases, the quantities of heat are proportional to it." 

8. Fourth line of reasoning. The fourth part of CLAUSIUS' argument, 
which is presented in a single short paragraph of his §II, starts from his 
reassertion' of CARNOT'S General Axiom, with C + replaced by C -. [In a 
rather slipshod way] CLAUSIUS concludes that "the maximum of work which 
can be produced by the transfer of a unit of heat [in an infinitesimal Camot 
cycle] ... may be expressed in the form (1/C)d8, where C is a function of 
8 only." [We recognize this result as being CARNOT'S evaluation, namely 

(5J.6)r 
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except that C+ is replaced by C- and CLAUSIUS' IIC is what we denote by 
ft. The final outcome, obtained with CLAUSIUS' characteristic clumsiness, 
can be nothing but the General CARNOT-CLAPEYRON Theorem: 

op 
ftAv = 08 .] 

This, indeed, CLAUSIUS obtains for the special case of an ideal gas; it is his 
Equation (IV.). All of CLAUSIUS' remarks make it clear that he, like CARNOT, 
regards ft as a universal function of temperature, the same for all bodies, 
just as J is a universal constant. 

E. Fifth line of reasoning. The last part of CLAUSIUS' argument reverts 
to use of his "subsidiary hypothesis" (70.1) [HOLTZMANN'S Assertion] for 
ideal gases. CLAUSIUS states that then (SL.4) is "not necessary" for "further 
determination" of Av and Kv, but "we gain ... an opportunity to subject 
the results of the two principles to a comparative test." Indeed [cf. Theorems 
I and II in §71], we have only to compare (SL.4) with (70.1) to conclude 
that the two agree for an ideal gas if and only if [the HELMHOLTZ-JOULE 
Determination] holds: 

p. = JI8 • 

CLAUSIUS writes, "we see that they both express the same result, only the 
one in a more special ("bestimmter") way than the other," since tbe function 
ft was "only implied" ("nur angedeutete") by (SL.4). 

8C. Critique: The Achievement of CLAUSIUS' First Paper 

From the formulae CLAUSIUS obtains in this paper, once expressed in 
the generality his reasoning sufficed to obtain rather than the special forms 
suitable only for ideal gases or for vapors, all of the thermodynamics of 
reversible processes in fluids may be constructed. CLAUSIUS himself did not 
derive all the formulae of the subject, but those that he did not work out 
are easy consequences of those he did. Certainly he saw what to collect and 
retain from his predecessors' work: 

1. The theory' of calorimetry, freed of the Caloric Theory, with which 
it may have seemed connected though logically it never was. 

2. CARNOT'S General Axiom. 
3. The universal and uniform Interconvertibility of Heat and Work in 

cyclic processes, of course contradicting the Caloric Theory. 
4. HOLTZMANN'S Assertion about ideal gases, leading to the HELMHOLTZ-
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JOULE Determination of p.. 

These ideas suffice to construct classical thermodynamics; cf the Historical 
Scholion at the end of Chapter II of Concepts and Logic. 

As had CARNOT before him, CLAUSIUS perceived the key role to be played 
by ideal gases. CLAUSIUS fully overcame the difficulties regarding them that 
had puzzled CARNOT. CLAUSIUS was the first to see that the LAPLACE-POISSON 
law of adiabatic change had to be reconciled with thermodynamics. He saw 
also that HOLTZMANN'S Assertion ought to be compatible with thermo­
dynamics and that MAYER'S Assertion followed from it. Consequently he 
was the first to see that thermodynamics should allow both specific heats of 
an ideal gas to be constant l • He may have seen also that the Caloric Theory 
did not allow this possibility, although his statements in this regard are 
not accurate. 

Not the least of CLAUSIUS' achievements is his remark, "It is even prob­
able that ... Kv . .. is a constant." No other student had suggested such a 
thing; it is further evidence of CLAUSIUS' physical insight and critical assess­
ment of what was believed. Kv had never been measured directly 2. From the 
day CARN'OT'S booklet appeared, it should have been obvious that for 
determining the relations between heat and work, the nature of the specific 
heats of an ideal gas was of the essence, yet REGNAULT with his ponderous, 

1 The early authors did not discuss the effect of a change from one empirical scale of 
temperature to another. They laid down one particular scale and stayed with it. For 
the general theory of change of scale see §l1H, below. We note here a few aspects of 
present interest. First, the definition of Kv through (2C.4) makes it plain that the nature 
of Kv depends upon the choice of temperature scale. In particular, if Kv = const. with 
one choice of scale, Kv =1= const. with most others. The statement that " = const. is 
invariant under change from one scale to another. On the contrary, the definition of an 
ideal gas, MAYER'S Assertion, and HOLTZMANN'S Assertion are not. Furthermore, 
Kv = const: for one scale if and only if I\v is a function of temperature alone for all 
scales. The TOWNELBy-POWER-"BoYLE" law is invariant; the law of AMONTONS is not. 

CLAUSIUS' conjecture that Kv = const. for all ideal gases nevertheless makes sense. 
Although he nowhere explains what he means by temperature, his calculations make 
it plain that he expects Kv to be defined in terms of the scale that makes an ideal gas 
have the equation of state (2A.1) (which is his Eq. (I.», not the more general functional 
dependence pV = feU), which expresses the TOWNELBY-POWER-"BoYLE" law alone. 
We should say today that for CLAUSIUS 8 is the "ideal-gas temperature". RBGNAULT, 
whose experiments we shall cite in the next two footnotes, necessarily used an actual 
thermometer. His early work had established the air thermometer as superior to all 
others he tried, and thenceforth he used it alone. Thus his ex;perimental conclusion is 
not quite tIu: same as CLAUSIUS' conjecture. However, as we shall see in §11B, JOULB 
& KELVIN were to show that the deviations of temperatures according to the air ther­
mometer from corresponding "absolute" ideal-gas temperatures were small in the 
ranges of temperatures then available in laboratories. 
2 So RBGNAULT [1853] was to write. PARTINGTON in §1 of Chapter VII of the work cited 
above in Footnote 4 to §2C cites several measurements made between 1779 and 1840; 
he states that all gave values much too large. The oldest work he cites as having obtained 
an acceptable value is one published in 1880. 
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subsidized program of precise experiment did not publish anything about the 
specific heats until 18S3! Even S03, he measured only Kp. To CLAUSIUS, ex­
periment seems to confirm 4 LAPLACE'S calculation of the speed of sound; 
while that calculation does not require 'Y to be constant, CLAUSIUS may have 
thought it did. Alternatively, CLAUSIUS may have regarded the relation e2 ex: 8 
as having been confirmed by experiment, and LAPLACE'S theory delivers that 
relation only if'Y == const. (ef above, §§3F and ST). 

If 'Y is constant, CLAUSIUS' "subsidiary hypothesis" makes both specific 
heats of an ideal gas constant. Hence, no doubt, grew CLAUSIUS' remark 
that a constant Kv would be "probable". It turned out to be prophetic. 
REGNAULT was to find that for air, oxygen, carbon monoxide, and some 
other gases over a wide range of temperature and pressure Kp was indeed 
"sensibly" independent of both 5 • Since CLAUSIUS already regarded ex­
periment as showing'Y to be constant for nearly ideal gases, REGNAULT'S 
conclusion, when it came, must have served to bear out his remark. So did 
the direct determinations of Kv, many years later. 

Of course, CLAUSIUS' theory obviates all the objectionable features of 
CARNOT'S yet retains its basic conceptual frame and such of CARNOT'S 
results as seemed good, these being the theorem on progressions in iso­
thermal processes (a consequence of (8B.4» and the General CARNOT­
CLAPEYRON Theorem (SL.4). From CLAUSIUS' standpoint CARNOT seems to 
have gotten some right results from partially wrong assumptions. This view 
has been disputed. Our analysis shows that if properly made specific, it is 
just. 

Some of these achievements lay close to the surface, ready for the net of 
any fisherman who could see them. While CLAUSIUS' acknowledgments of 
his debt to his predecessors may seem sufficient, in fact they are scanty and 
in some cases misleading. 

First, while dismissing HOLTZMANN'S work, CLAUSIUS sets up as his 
"obvious subsidiary hypothesis" what is neither more nor less than HOLTZ­
MANN'S Assertion (7D.1). Although he could not have failed to notice it 
in the paper by HOLTZMANN that he criticized, CLAUSIUS lets his readers 
presume it is his own alone. Moreover, while his argument to show that it 

3 REGNAULT [1862, p. 4] himself was to write in 1853 that direct determination of Kv 
was "an important element for the physical theory of bodies". On 15 May, 1854, he 
deposited with the French Academy a paper on the measurement of Kv, but I cannot 
find any record of its having been published. 
4 REGNAULT [1862, p. 40], writing in 1853, was to disagree: 

I will show in the following memoir that the experimental procedure by which 
the ratio of specific heats has been found cannot inspire any confidence. Hence 
the explanation of Laplace is today only a hypothesis, very ingenious no doubt, 
but one which needs to be confirmed by experiment. 

5 REGNAULT [1853] [1862, pp. 109,213,301]. In the passage on p. 301 he goes so far as to 
conjecture that if a gas ceases to respect the ideal gas law, Kp will fail to be constant for it. 

Of course REGNAULT found the behavior of carbon dioxide quite other than ideal. 
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implies MAYER'S Assertion (7B.2) is better than HOLTZMANN'S, CLAUSIUS 
lets his readers attribute to him not only the argument but even the fact it 
proves. CLAUSIUS' claims of confirmation by experiment, especially in 
footnote 2 and p. 44 of the reprint in his Mechanische Wiirmetheorie, 1864, 
certainly lead the unwary to believe that (7B.2) was new when he published 
it and somehow special to his theory. Many pages later, just before his 
Equation (34), CLAUSIUS does state that both MAYER and HELMHOLTZ 
had used (7B.2) in their calculations. He fails to mention anywhere that 
(7B.2) is fully consistent with the Caloric Theory, as indeed HOLTZMANN'S 
work abundantly shows. Here, no doubt, lies one reason why the tradition 
always elevates MAYER and ignores HOLTZMANN. 

In his statements regarding the LAPLACE-POISSON law of adiabatic change 
CLAUSIUS is neither clear nor fully correct. He does not cite LAPLACE at all 6 , 

and he does not represent the results of POISSON fairly, because he himself 
makes unnecessary assumptions not made by POISSON. The main difficulty 
here lies only partly in the obscurity of LAPLACE'S writing and the shaky 
basis used by POISSON; mainly it is faulty logic, as we shall see in the 
succeeding section. 

CLAUSIUS' treatment of what amounts to CARNOT'S General Axiom is 
so brief that it has not attracted much notice. Its very brevity may indicate 
that CLAUSIUS claimed little for himself in it. While it is heavily influenced 
by the paper of CLAPEYRON, CLAUSIUS' argument is easier to follow because 
he uses the natural variables V, 8 rather than V, p. This CARNOT had done 
before him, and indeed CLAUSIUS' presentation is close to CARNOT'S but 
unlike it in being restricted to an infinitesimal difference of volume. CLAUSIUS 
had not seen CARNOT'S treatise, and it is a sign of his physical sense that he 
turned away from the poor choice of variables he had found in the literature 
and unknowingly reverted to the usage of his great predecessor. 

8D. Critique of CLAUSIUS' Reasoning 

Althougl). CLAUSIUS' derivations of his formulae for the work done and 
the heat consumed in an infinitesimal Carnot cycle are awkward, they lead 
to correct results. Indeed, with the aid of AMPERE'S transformation of a 

6 We recall that while CARNOT had cited the appropriate book of the Mecanique Celeste, 
he had avoided any reference to the fact that LAPLACE had published therein a theory 
of heat which 'overlapped his own. In view of the scribal tradition of thermodynamicists, 
the total sileJlce historical studies of the theory of heat until very recently have bestowed 
upon LAPLACE'S work may well be explained as coming straight from the founders. 
The only exceptions I have seen are pp. 184-187 of W. WHEWELL'S History of the Inductive 
Sciences, from the earliest to the present time, 3rd edition, Volume II, New York, D. 
Appleton, 1873, and Chapter 5 of Fox's Caloric Theory, cited above in Footnote 2 to 
§2A. The latter gives LAPLACE'S work full and fair treatment. 
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line integral about an arbitrary simple closed circuit C(? into an integral over 
the region d that circuit incloses, we need only inspect the basic relations 

L(&) = L 'll7(V, 8)dV and C(&) = L [Av(V, 8)dV + Kv(V, 8)d8] 

(2C.20)3r, (2C.6)2r 
to see at once that 

L(C(?) = II :~ dVd8 , (5L.I)2r 

C(C(?) = J'r (8Av - 8Kv)dVd8 
~ 88 8V ' 

(SD.I) 

with the convention that C(? is described clockwise. It is the differential 
approximations to these formulae that CLAUSIUS painfully carves out with 
his ds and 8s, explained by pages of physical description. A glance at 
CLAUSIUS' basic assumption 

L(c(?) = JC(C(?) 

now shows that its local equivalent is 

8p = J(8Av _ 8Kv) 
88 88 8V 

(7A.I)lr 

The simple and elegant statement (SB.I) is of supreme importance for 
thermodynamics. 

Why does CLAUSIUS use infinitesimal Carnot cycles here? He is simply 
following in CLAPEYRON'S tracks. If CLAPEYRON, who in tum was following 
CARNOT, had had to restrict himself to an infinitesimal difference of tem­
peratures in order to get a definite answer, CLAUSIUS has no such need. 
Although the Carnot cycle was essential in CLAPEYRON'S assumptions and 
for CLAPEYRON'S reasoning, as it had been for CARNOT'S, CLAUSIUS' assump­
tions refer to all.. cycles, and his calculation neither has to be restricted to 
Carnot cycles nor gains any advantage from being so. Nay rather, as the 
principle that heat and work are universally and uniformly interconvertible 
by cyclic processes is general, its local expression ought not be restricted 
to such bodies as admit Carnot cycles arbitrarily near to every point in the 
part of the quadrant over which their functions 'll7, Av, and Kv are defined, 
so no proof of that expression that stops short after an argument based on 
use of Carnot cycles can be sufficient. 

CLAUSIUS' derivation of his basic theorem on the internal energy, 

E =JQ +P, P == -pV, (8B.2)r 

is equally obscure and even less convincing. We can obtain (SB.2) by merely 
writing CLAUSIUS' major result (SB.I) in the form1 

8 8 
88 (JAv - p) = 8V (JKv) (SD.2) 

1 Apparently THOMSON [IS51, Equation (1)] was the first to see that CLAUSIUS' reasoning 
did in fact imply (SB.l) and to write it in the form (2). 



200 8. Acr IV. THE FIRST PAPERS OF CLAUSIUS AND RANKINE 

and then applying CLAIRAUT'S theorem on differential forms 2 to obtain a 
function E(V, 8) such that 

oE 
JAv - p = oV' 

oE 
JKv = 08 . (80.3) 

This result 3 , which is to become central in thermodynamics, leads at once 
to (8B.2). 

So much for CLAUSIUS' first line of reasoning. The second line takes up 
the "obvious subsidiary hypothesis", namely, HOLTZMANN'S Assertion: 

JAv =p. (70.1)r 

By looking at differential forms CLAUSIUS concludes that if that assertion 
as well as his basic principle holds, then E and Kv are functions of 8 alone. 
A glance at (3), which CLAUSIUS does not write out, shows that HOLTZMANN'S 

Assertion J Av = P is not only sufficient but also necessary for E to be a 
function of 8 alone. This statement complements Theorem 3 in §7I. 

As CLAUSIUS' third line of argument concerns only the Doctrine of 
Latent and Specific Heats when specialized by use of HOLTZMANN'S Asser­
tion, we might expect smooth sailing, but even here there are major flaws. 
These are not matters of mathematical proof but of physical concept and 
principle. Certainly it is a virtue in CLAUSIUS to suggest that both specific 
heats of an ideal gas may be constant and to explore the consequences of 
that possibility. When, on the other hand, he states that a constant ratio of 
specific heats "would not be possible in Carnot's theory", he is simply 
wrong. As we have seen in §SR, CARNOT'S theory, if the specific heats of 
an ideal gas differ from each other, allows either their ratio or their difference 
to be constant, but not both. The important point is that "our present 
theory" does allow both specific heats to be constant. Indeed, had CLAUSIUS 
worked out the theory of calorimetry fully, he would have arrived at the 
relation 

(2C.14)3 

2 By this argument the function E is not proved to be single-valued unless the part of 
the V-8 quadrant over which it is defined is assumed to be simply connected. To prove 
that E is single-valued, we may appeal again to (7A.l); cf. the comment after Axiom 
VC in Chapter 15 of Concepts and Logic. Although commonplace in hydrodynamics, 
a point of this kind seems to be too subtle for works on classical thermodynamics and 
is never mentioned. Modem treatments avoid the difficulty by postulating from the 
start an energy principle in which a much more general E is single-valued by assumption. 
Results like (3) emerge then as special cases. 
a Apparently THOMSON [1853, 1, Equations (4) and (5)] was the first to write it out in 
print. He had described it in words in the passage cited in Footnote 1. 
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and by eliminating Av between it and his Equation (II.) (our (8B.1), special­
ized to an ideal gas) would have obtained 

R 8 8Kv J - (Kp - Kv) = 8 88(Kp - Kv) - V 8V . (8DA) 

This condition is necessary and locally sufficient that the specific heats 
Kp and Kv of an ideal gas be compatible with "our fundamental principle". 
It shows that constant specific heats are admissible if and only if they obey 
MAYER'S Assertion. In contrast, CAR.~OT'S theory does not allow both specific 
heats to be constant. It is this distinction that CLAUSIUS may have striven to 
find, but surely he does not demonstrate it in his paper. 

Again, it is CLAUSIUS' virtue to have seen that the LAPLACE-POISSON 
law of adiabatic change had to find its place within thermodynamics, but 
his treatment of that law suffers from a major conceptual blemish. His 
starting point to obtain it, namely, his Equation (13), incorporates 
HOLTZMANN'S Assertion (7D.l), which is irrelevant as well as unnecessary. 
CLAUSIUS gives the reader the idea that he has added something here; on 
the contrary, he has blurred the facts. As we have seen in §3F, the LAPLACE­
POISSON law follows from the theory of calorimetry alone, provided y = 

const. Any theory that allows to an ideal gas a constant ratio of specific 
heats delivers the LAPLACE-POISSON law for such a gas. CARNOT'S theory is 
by no means excluded. 

CLAUSIUS' proof of CARNOT'S theorem on progressions associated with 
isothermal processes rests upon HOLTZMANN'S Assertion alone, making no 
appeal to CARNOT'S ideas. CARNOT'S own proof, we recall from §5L, is 
general within the framework of his General Axiom. As CLAUSIUS in his 
fourth line of reasoning infers and adopts that axiom, our Theorem 1 in 
§7I makes CLAUSIUS' result a special case of CARNOT'S. 

The fourth line of argument is short and efficient. It is CARNOT'S. 
CLAUSIUS presents his fifth line of argument very compactly and with 

ill chosen, vague words. By saying that fL was "nur angedeutet" by the 
General CARNOT-CLAPEYRON Theorem (5L.4), and that HOLTZMANN'S As­
sertion (7D.l) asserted the same thing "in bestimmterer Weise", he may 
mean only that {7D.l) is an obvious special case of the General CARNOT­
CLAPEYRON Theorem 

8p 
fLAv = 88 ' (5L.4)r 

yet none of CARNOT'S reasoning is needed to get it. As, however, he knows 
that fL is a universal function, and as he adopts for it the HELMHOLTZ-JOULE 
Determination 

fL = JI8 , (5N.7)r 

I think he must have seen that to obtain a universal function it suffices to 
determine that function for one special substance. For that reason I attribute 
to him in essence the statement asserted in Theorem 2 in §7I. 
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There is also a major gap that CLAUSIUS seems not to have noticed. He 
gives no reason why the constant J in his fundamental assumption 

L(~) = JC(~) 

should be the same constant as the J in his subsidiary hypothesis, 

JAv = p . 

(7A.l)lr 

(7D.l)r 

They are logically independent statements; according to KELVIN'S repeated 
objection, there was "no experimental evidence whatever" for the "pure 
hypothesis" (7D.l). The truth is, as KELVIN is to show in effect (see §9B, 
below), the two constants need not be the same if no assumption beyond 
CARNOT'S General Axiom is brought in. HOPPE'S theorem, given below in 
§9D, provides one sufficient assumption to this end. Namely, if thermo­
dynamics based on CARNOT'S General Axiom is to allow an ideal gas to 
have constant specific heats, as indeed CLAUSIUS stated it should, then for 
that gas both (7A.l) and (7D.l) must hold, with J for both given by MAYER'S 
formula 

R 
J = (1 _ y l)Kp . 

Since both Js are universal constants, they must be the same for all fluids 
for which the latter J plays a role; the former, of course, pertains to all 
fluids without exception. CLAUSIUS may have thought that his" fundamental 
principle" applied to isothermal as well as to cyclic processes: "In all cases 
in which work is produced by the agency of heat, a quantity of heat is 
consumed which is proportional to the work done .... " If so, he was in 
error, for, as his own theoretical work implies and as we have stated in 
Theorem 3 of §7I, the isothermal work done is not proportional to the work 
consumed except for fluids obeying the law of AMoNToNs, or, equivalently, 
fluids such as to make E a function of 0 alone. 

Although CLAUSIUS' paper is not long, it would have been less confusing 
if still shorter. Because of its heavy use of results already known, its essential 
contents could more easily have been grasped if they had been presented 
in two parts so separated as to make the logical thread clear: 

Part I. A succinct mathematical treatment of the theory of calorimetry, 
leading to the formula 

C(~) = J. r (BAv - BKv)dVdO 
JJIii' BO BV 

(8D.l)r 

and to the results we have given in §2C, HOLTZMANN'S and MAYER'S Asser­
tions and their relation, and the LAPLACE-POISSON theory of adiabatic 
change. These would have served as prolegomena to any thermodynamics; 
they would have provided an unequivocal, indisputable basis for all future 
discussion. 
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Part II. The affirmation of CARNOT'S General Axiom and its consequence, 
the General CARNOT-CLAPEYRON Theorem, followed by rejection of the 
Caloric Theory and proposal of the principle of universal and uniform 
Interconvertibility of Heat and Work in cyclic processes: 

L(CC) = JC(CC) . (7A.l)lr 

This part, very short and very telling, would have delivered first the constitu­
tive restriction 

op = J(OAv _ OKv) 
08 08 OV (8B.1)r 

and the existence of an internal energy such as to satisfy the relations 

E =JQ +P, 
oE 

JAv - p = oV' 

P == -pV, 
oE 

JKv = 08 . 

(8B.2)r 

(8D.3)r 

Then by invoking HOLTZMANN'S Assertion as an axiom it would have 
evaluated /L once and for all. 

A clean, concise, and logical presentation of this kind, including CLAUSIUS' 
physical motivation just as he did present it, could have been given in two 
notes in the Comptes Rendus. 

8E. CLAUSIUS' Comparisons with Experimental Data 

About one third of CLAUSIUS' paper is devoted to details regarding ex­
perimental data, mainly on saturated steam. [While this part is tedious today, 
we easily see why CLAUSIUS must compose it. He had made the HELMHOLTZ­
JOULE Determination, namely 

/L = JI8 , 

an essential part of his theory, yet KELVIN had already claimed that 
REGNAULT'S data refuted it (§7H).] 

First, as we have seen, CLAUSIUS takes CLAPEYRON'S and KELVIN's 
calculations of /L at four temperatures, calculates the two sequences of ratios 
of /L -1 to the respective value for the lowest of the four temperatures, com­
pares them with the corresponding ratios of the values 8, and concludes 
that this third sequence of three numbers 

diverges from the two others only as far as can be accounted for by 
the uncertainty of the data which underlie them .... 

Such an agreement between results which are obtained from 
entirely different principles cannot be accidental; it rather serves as 



204 8. ACf IV. THE FIRST PAPERS OF CLAUSIUS AND RANKINE 

a powerful confirmation of the two principles and the first subsidiary 
hypothesis annexed to them. 

[Just why these ratios are the right thing to compare, CLAUSIUS does 
not tell us, nor does he seem to expect any reader to be convinced of this 
"powerful confirmation", for] he goes on to criticize KELVIN's calculation, 
the weak point of which KELVIN himself had pointed out (§7H, above): 
the density of saturated steam as a function of temperature. CLAUSIUS, 
convinced that the HELMHOLTz-JOULE Determination is correct, uses it 
conversely to calculate empirical formulae for the behavior of saturated 
steam which would suffice to make the results of KELVIN's calculation 
conform with it. [It is a bold step.] 

CLAUSIUS after pages of numerical work concludes that "the work 
equivalent of the unit of heat is the lifting of something over 400 kilograms 
to the height of 1m." He compares this with the values 460, 438, and 425 
that JOULE has found for J, the last being a rough mean indeed. He concludes: 

The agreement of these three numbers, in spite of the difficulty of 
the experiments, leaves really no further doubt of the correctness of 
the fundamental principle of the equivalence of heat and work, and 
their agreement with the number 421 confirms in a similar way the 
correctness of Carnot's principle, in the form which it takes when 
combined with the first principle. 

[This is irony indeed. KELVIN has in effect rejected JOULE'S conclusion as 
being based on insufficiently accurate experiments. CLAUSIUS adjusts the 
density of saturated steam by pure fudging so as to make it conform with 
the HELMHOLTz-JOULE Determination and with otherwise the same data and 
so reaches a value of J not far from those JOULE has inferred from his 
measurements of three phenomena, two of which were altogether different 
from those classical thermodynamics considers.] 

8F. Critique: CLAUSIUS' Bequest 

There is no doubt that CLAUSIUS with this paper created classical thermo­
dynamics. Compared with his work here, all preceding except CARNOT'S is 
of small moment. CLAUSIUS exhibits here the quality of a great discoverer: 
to retain from his predecessors major and minor-in this case, from LAPLACE, 
POISSON, OARNOT, MAYER, HOLTZMANN, HELMHOLTZ, and KELvIN-what is 
sound while frankly discarding the rest, to unite previously disparate theories, 
and by one simple if drastic change to construct a complete theory that is 
new yet firmly based upon previous partial successes. That change, of 
course, is to replace the basic assumption C + (~) = C -(~ by 

(7A.lhr 
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By no means disregarding the results of experiment, CLAUSIUS was the 
first theorist of thermodynamics who was not enslaved to them. Accepting 
every datum he felt justly established, he showed that if those which to him 
seemed dubious were to be rejected, experiments not yet performed would 
not necessarily contradict a theory so constructed as to reconcile what 
seemed fatal differences and remove what seemed fatal objections to all 
previous proposals. 

Certainly KELVIN's position, holding doggedly to every datum of ex­
periment until further experiment should correct it, was proper for the 
ordinary physicist, but KELVIN was not one of those. KELVIN knew where 
the weak link in his numerical calculation lay, the weak link that· could 
(and in fact did) break the whole chain. Not only did he know it, he frankly 
pointed it out to all the world. Finally CLAUSIUS showed that a different 
hypothesis about saturated steam (for KELVIN's formula for its density was 
scarcely more than that) would reconcile with the new theory such ex­
perimental data as seemed reliable. It was superior insight and superior 
imagination, taking full advantage of what KELVIN had done to clear the 
way. 

CLAUSIUS, like RANKINE, whose work we shall analyse presently, had 
another handle on the theory of heat. That was his kinetic theory of gases, 
to which, with still less basis in actual experiment, he adhered as an article 
of faith. Unlike RANKINE, CLAUSIUS kept his faith private until the time 
should be ripe for an evangelist. Both RANKINE's model and CLAUSIUS' 
model, contradictory with each other as they are in detail, led inevitably 
to a theory in principle "dynamical", as KELVIN was soon to call it. I think 
it was this purely ideal faith that gave both RANKINE and CLAUSIUS the con­
fidence to go ahead, while KELVIN, not yet an atomist, wavered. As the 
event was to show, in molecular theory CLAUSIUS was not only the wiser 
man but also the better physicist. 

We cannot say that CLAUSIUS completed the foundation of thermo­
dynamics, even for substances compatible with the Doctrine of Latent and 
Specific Heats. CLAUSIUS made essential use o/the concept o/ideal gas, which 
carries with it the conceptual problem of what temperature really is. We know 
that he was already working on his kinetic theory, a molecular model which 
makes it easy to conceive and define an ideal-gas temperature. In §IIH, below, 
we shall take up KELVIN'S definition of a phenomenological absolute tempera­
ture. 

Had CLAUSIUS been able to organize and clarify his work in some such 
way as our analysis in the preceding section has shown possible, he could 
have pulled thermodynamics out of the slough of obscurity in which CARNOT 
left it; he could have made of it a beacon of enlightenment. He did not do so. 

CLAUSIUS confused two centuries of readers by writing (dC/dV) for the 
latent heat with respect to volume and (dC/dO) for the specific heat at con­
stant volume. In annotating the paper for republication in 1864 he ascribed 
the parentheses to EULER but remarked that the precaution of using them 
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was really unnecessary, since even without them "usually no misunder­
standing would be possible". This reassurance notwithstanding, he felt 
compelled to preface the reprint with a "mathematical introduction" of 
fifteen pages, all about inexact differentials, most of which, he states, he had 
published in a journal in IS5S. In the footnote already mentioned CLAUSIUS 
wrote (letters conformed with ours) 

dC = (~;)dO + (~~)dV ; (SF.t) 

this expression, which did not appear in the original paper, is neither more 
nor less than the basic statement of the Doctrine of Latent and Specific 
Heats: 

Q = Av(V, 0) V + Kv(V, 0)8 . 

CLAUSIUS explains that (dC/dO) and (dCfdV) are "to be regarded as com­
pletely determined functions of 0 and V" and goes on to point out that 
"C itself" is a quantity of this kind if and only if 

d (dC) d (dC) 
dV dO = dO dV . (SF.2) 

By "C itself" CLAUSIUS must mean the integral of the differential form (1) 
along some path, but he does not say so. 

When CLAUSIUS integrates around an infinitesimal Carnot cycle, he does 
so by adding up terms involving four different differentials: dV, 8' V, 8 V, 
and d'V. Here enters the horrid idea that thermodynamics involves a special 
calculus with all sbrts of ds and 8s and that something different can come out 
of a line integral if the line is approximated by a sequence of infinitesimal 
adiabats and isotherms, in defiance of the fundamental theorem of integral 
calculus. While CLAPEYRON, the engineer trained at the Ecole Polytechnique, 
had used his routine calculus efficiently, CLAUSIUS tries to adapt CLAPEYRON'S 
steps to a case when he is not differentiating but integrating. Of course 
nobody ought to blame CLAUSIUS for not knowing the transformation of a 
line integral into a surface integral which AMPERE had published twenty-four 
years earlier in a research on electricity. Nevertheless, the tragicomic muse 
must laugh when modem specialists in thermodynamics state that CLAUSIUS 
had "very strict standards of mathematical rigor". Few mathematical 
physicists have shown so little sense of the right mathematics for the job. 

CLAusius' results are of supreme importance for thermodynamics. His 
way to them was like crawling through a thorn hedge. Mumbo-jumbo with 
mysterious differentials l became and is still the hallmark of thermodynamics. 

1 CARNOT himself had used two: d and 8. 

It should be unnecessary to remark-though, alas, probably it is not-that those 
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The tradition 2, handed down in thousands of books, piously follows the 
traces left by CLAUSIUS' bloodstained palms and pasterns. For example, 
his miserable proof of the differential form of the relation 

e(CC) = f i (8~v - 88~)dVde (8D.l)r 

has been reproduced again and again. Obscure logic, the painfully awkward 
calculus that dogs standard thermodynamics to this day, and vague expres­
sion have joined CLAUSIUS' splendid achievements to form his legacy. The 
tragicomic muse of thermodynamics chose to tell her votaries the truth in 
riddles they could only half decipher. 

8G. RANKINE'S First Paper 

Before he could have seen the paper of CLAUSIUS we have just analysed, 
RANKINE had read to the Royal Society of Edinburgh his own first memoir 
on the sUbjectl. In the introduction he adopts without reserve the vis viva 
theory of heat and bases his analysis on the "hypothesis of molecular 
vortices", namely, 

That the elasticity due to heat arises from the centrifugal force of 

atrocious differentials have no special appropriateness to the science of thermodynamics. 
(Of course, were this a social rather than a conceptual history, the differentials would 
be of the essence.) 

Infinitesimals are always unnecessary but need be neither vague nor unrigorous 
so long as they are true differentials or well defined differential forms. For example, 
in the familiar relation dy = f'(x)dx the symbol dx stands for an arbitrary increment of 
the independent variable x, and dy is the corresponding increment in the best linear 
approximation to the differentiable function f at x. The differential form Adx + Bdy 
also makes sense in terms of integration along a curve if A and B are specified as func­
tions of x and y. When, however, an author writes dy = Adx and tells us no more than 
that about A, obscurity is certain to follow and error is likely in inexpert hands. Un­
fortunately this latter type of infinitesimal abounds in papers on thermodynamics and 
in the sanctimonious chants of today's experts in it. 

Here I whisper sotto voce a tragicomic aside. In the year of CLAUSIUS' paper, 1850, 
KELVIN discovered the generalization of AMPERE'S transformation which now is com­
monly called" STOKES' theorem" because KELVIN wrote it in a letter to STOKES and 
STOKES a few years later set it as an examination question. In his own work on thermo­
dynamics, even that which was published in the very same year he discovered" STOKES' 
theorem", KELVIN never used this transformation. In §9B, below, we shall see how he 
obtained (8D.2) by,dealing directly with line integrals. His proof is clean and efficient, 
but it lacks the clarity that (8D.l) provides. 
2 On the other hand, HELMHOLTZ [1855, pp. 568ff], in one of the first surveys of thermo­
dynamics, stated politely that he hoped "to make it easier for the reader to follow" 
by deriving the main results in another way, which is very close to that of KELVIN 
(below, §9B). 

1 RANKINE [1850]. 
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revolutions or oscillations among the particles of the atomic atmo­
spheres; so that quantity of heat is the vis viva of those revolutions or 
oscillations. 

[The terms reflect the unique combination of daring hypothesis with studious 
respect for tradition which RANKINE, a practising civil engineer, always 
displayed when he faced fundamental questions in natural philosophy.] The 
"elasticity" of an aeriform fluid is the eighteenth-century term for what we 
now call pressure. [To regard that pressure as the manifestation of both 
molecular spin and molecular vibration was to combine EULER'S model 2 

of a gas with the opinions current among chemists and physicists of RANKINE'S 

own day.] In addition, RANKINE is ready to refashion his views in the light 
of recent experimental discoveries. [Here he exemplifies the ideal rather than 
the real or common engineer.] He is already altogether converted by JOULE'S 

"valuable experiments to establish the convertibility of heat and mechanical 
power". However, it is to "the appearance of the experiments of M. 
REGNAULT on gases and vapours" that he attributes his having resumed 
studies he had "laid aside for nearly seven years, from the want of ex­
perimental data .... " 

The molecular vortices need not concern us here 3 • From his considera­
tions regarding them RANKINE arrives at the basic relation 4 expressing the 

2 Cf §1 of my paper cited in Footnote 1 to §2A. While he does not mention EULER, 
RANKINE [1851, 1, '1/13] adopts EULER'S critical assumption that the linear speed of 
rotation is the same for every atom: "the uniform velocity of motion of its parts". It 
is hard to see what physical idea could suggest this assumption. 
3 In a paper summarized in the introduction and read to the Royal Society of Edinburgh 
on the same day as the one we are analysing, RANKINE [1851, 1] presented his investiga­
tion ('1/1) "in detail in its original form," except for some "intermediate steps ... 
modified inc order to meet the objections of Professor WILLIAM THOMSON ... , to whom 
the paper was submitted after it had been read ... ". Insofar as this paper concerns 
thermodynamics, it does not go beyond the one we are analysing. 
4 RANKINE [1850, Equations (3), (6), and (16)]. RANKINE, since he uses a mechanical 
model, is able to express all caloric quantities such as Ky and Ay in mechanical units. 
For easy comparison of his results with others' I have inserted the factor J where it 
must be if caloric units are used. For comparison with RANKINE'S notations we must 
always put J = 1. On this understanding we compile the following comparison of 
notations, remarking that while our M stands for the mass of a fluid body, RANKINE'S 
M denotes the mass of one atom. 

Our RANKINE'S 
(J T 

(Jo I( 

RIM (CnM)-l 
f«(J - (Jo) Q 
fO 8Qldt 
Q - fO -8Q'ldt 
p P 

Note that RANKINE'S "absolute temperature" T agrees exactly with the ideal-gas tem-
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Doctrine of Latent and Specific Heats: 

Q = Av(V, 8) V + Kv(V, 8)8 

The coefficients Av and Kv are given as follows in terms of a constitutive 
function U of V and 8 which RANKINE defines from his molecular model 
(his Equation (5)): 

( 1 au) 
JAv = R(O - ( 0) V - av ' 

(8G.I) 

JKv = R[~ - (8 - ( 0) ~~J = Mf[l - N(8 - ( 0) ~~J 
Here 80 is a positive universal constant which RANKINE (just after his 
Equation (IX)) calls "the absolute zero of heat" 5; f is "the real specific 
heat" (his Equation (14)), a positive quantity depending on the nature of 
the substance, and independent of the temperature; also Rand N are positive 
constitutive constants. 

RANKINE lays down the principle of universal and uniform Intercon­
vertibility of Heat and Work in cycles as a phenomenological axiom (his 
Equation (8)): In any cycle, "if, on the whole, any mechanical power has 
appeared, and been given out from the body, in the form of expansion, 
an equal amount must have been communicated to the body, and must have 
disappeared in the form of heat," and conversely. [This statement suggests 
that RANKINE'S views may be as vague as those of MAYER, HELMHOLTZ, 
and JOULE, but the formal developments 6 he bases upon them are precise; 
as we shall see, they take proper account of storage of energy.] 

perature 0, and for a body of ideal gas the R here turns out to be that which appears in 
the thermal equation of state p V = RO. RANKINE'S "apparent" specific heats are 
reckoned per unit mass; in our notation they are Kv/M and K./M. Some more of 
RANKINE'S notations will be needed by the reader who tries to follow his analysis. 
His b, presumably constant, which first appears in his Equation (I), is "the coefficient 
of atmospheric elasticity" of a particular substance; his f' is "the mass of the atmo­
sphere of one atom"; and he introduces the following abbreviations: 

K == Cnf'b , 

5 RANKINE [1853, 3, ~53]: "the temperature corresponding to absolute privation of 
heat". 
6 The following passage from a later paper of RANKINE [1852, ~9] makes clearer the 
ideas about heat he employs here: 

Let 13. Q represent, when positive, the indefinitely small quantity of heat which 
must be communicated to unity of weight of a substance, and when negative, 
that which must be abstracted from it, in order to produce the indefinitely 
small variation of temperature 13.,. simultaneously with the indefinitely small 
variation of volume 13 V. Let 13. Q be divided into two parts 

I3Q + I3Q' = I3.Q , 

of which I3Q, being directly employed in varying the velocity of the particles, is 
the variation of the actual or sensible heat possessed by the body; while IlQ', 
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To calculate the heat supplied, RANKINE considers an infinitesimal cycle 
of alternating isochoric and isothermal changes. [Thus, unlike CLAUSIUS, 
RANKINE does not simply transpose CLAPEYRON'S presentation of CARNOT'S 
theory,] though he notes that (~8) "the process followed ... is analogous 
to that employed by M. CARNOT in his theory of the motive power of heat, 
although founded on contrary principles, and leading to different results." 
He goes on to criticize CARNOT'S basic idea that "a body, having received 
a certain quantity of heat, is capable of giving out not only all the heat it has 
received, but also a quantity of mechanical power which did not before exist." 
His own view that heat is used up in giving out motion, he regards as justified 
by the vis viva theory of heat. 

[Of course, as we know from AMPERE'S transformation, the nature and 
size of the cycle makes no difference at all, and by correct mathematics 
nothing different from 

Op = J (OAv _ OKv) 
00 00 oV 

can come out.] By adding up strings of differentials spreading over a page 
RANKINE obtains exactly that result, in the special case when Av and Kv 
have the forms (1). "The body being now restored in all respects to its 
primitive state, the sum of the two portions of power connected with change 
of volume, must, in virtue of the principle of vis viva, be equal to the sum of 
the four quantities of heat with their signs reversed." Hence [by use of (1) 
we show that] (RANKINE'S Equation (9)) 

op (IOU) 
00 = R V - oV ' (8G.2) 

and consequently 

U = cfo(O) + - - - - dV f( l lOP) 
V RoO . (8G.3) 

[Here we first encounter a favorite of RANKINE, the partial integral. The 
presence of the arbitrary function cfo reminds us that f (op/oO)dV is under­
stood to mean an indefinite integral carried out when 0 is fixed 7.] According 

employed in varying their orbits, represents the amount of the mutual trans­
formation of heat with expansive power and molecular action, or the variation 
of what is called the latent heat; that is to say, of a molecular condition con­
stituting. a source of power, out of which heat may be developed. (8Q' in this 
paper corresponds to - 8Q' in my former papers.) 

The table of notations in Footnote 4, above, explains RANKINE's meanings for his 
8Q and 8Q' in terms of our Q and conforms with the equation just given. 
7 In his later presentation of these statements RANKINE [1859, §246] takes <Xl as the 
lower limit of integration, "so as to correspond to the state of infinite rarefaction". 
CLAusws [1862, just after Equation (11)] objected: "Why he chooses as initial volume 
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to RANKINE'S molecular theory (~7), "[t]the function U is one depending 
on molecular forces. The only case in which it can be calculated is that of a 
perfect gas .... Without giving the details of the integration" RANKINE states 
that for such a gas 

U = BolB . (SGA) 

"Now cp(B) being the same for all densities, is the value of Ufor the perfectly 
gaseous state, or BoIB; for in that state, the integral = 0." RANKINE seems to 
regard this statement as determining cp once and for all: 

(SG.S) 

Then (3) becomes 

(SG.6) 

so (RANKINE'S Equations (11» 

8U 1 1 8p 
8V = V - R 8B ' 

8U Bo 1 f 82p 
8iJ = - B2 - R 8B2 dV , 

(8G.7) 

[and so (1) reduces to 

[ 1 (Bo 1 f 82p )] JKv = R N + (B - Bo) B2 + R 8B2 dV , 

(SG.S) 

formulae that RANKINE will use in his next paper with no comment.] 
Earlier in this paper RANKINE had written down a thermal equation of 

state of an imperfect gas (his Equation (VI»: 

RB 
p = V (1 - <1» + f , (SG.9) 

in which <1> is a function of BolB and V, while f is a function of Valone. 
RANKINE substitutes (9) into (7) and by integration expresses U in terms of 

just the infinitely large volume, he does not say, although this choice is obviously not 
indifferent." Apparently none of the nineteenth-century thermodynamicists realized 
that the indefinite integral of a function of two variables with respect to one of them 
makes no sense unless the domain of the function is convex with respect to the variable 
integrated. For example, for a Van der Waals fluid RANKINE'S integral with respect to 
V from CXl does not exist at subcritical temperatures and volumes. 
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cPo For an ideal gas cP andfboth vanish, (8) reduces to (RANKINE'S Equation 
(18)3) 

J Av = p (1 _ ~o) , 
and (RANKINE's Equation (19)2) 

(8G.ll) 

"The value of 80 is unknown; and, as yet, no experimental data exist from 
which it can be determined. I have found, however, that practically, results 
of sufficient accuracy are obtained by regarding 80 as so small in comparison 
with 8, that 80/8 ... may be neglected in calculation." [Then from (10) 
and (11) follow both MAYER'S Assertion 

J(K" - Kv) = R 

and HOLTZMANN'S Assertion 

JAv =p ; 

both specific heats are constant, and N = 'Y - 1. 

(7B.2)r 

(7D.l)r 

The remainder of RANKINE'S first paper concerns experimental data and 
calculation of the efficiency of a steam engine, taking account of the latent 
heat of evaporation. 

SH. Critique of RANKINE's First Paper 

RANKINE'S results, like LAPLACE'S in the Caloric Theory, are concealed 
by many preceding pages of elaborate, imperfectly presented, and totally 
speculative molecular theory. 

A complete molecular theory should deliver the Interconvertibility of 
Heat and Work as a proved theorem. Perhaps RANKINE'S theory could have 
done so, but he himself, like most early proponents of molecular models, 
mixes in phenomenological arguments when he needs them, and inter­
convertibility is a case in point. He simply assumes it outright, under the 
name "the principle of conservation of vis viva", so as to obtain the relation 

ap (1 au) 
f)8 = R V - av . (8G.2)r 

We shall now analyse RANKINE'S theory at three levels of generality. We 
consider the effect of his constant 80 , the phenomenological structure of his 
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theory, and the restrictions that are implied by the details of his molecular 
model. 

0:. The constant 00 , How important is the constant Oo? It is hard to say. 
RANKINE certainly took that universal minimum temperature seriously, and 
his molecular theory does not allow it to vanish. As he could not determine 
it, in all applications he supposed 0 to be much larger than it. In effect, for 
those circumstances 0010 ~ O. 

In our following analysis we shall leave 00 arbitrary and in most instances 
leave the reader to see for himself the effect of taking it as O. 

p. Phenomenology. Without prejudice of the function U, we reconsider 
RANKINE's determinations of Av and Kv from it: 

( I au) 
JAv = R(O - 00) v - av ' [ I au] JKv = R N - (0 - 00) au . 

(SG.I)1.2r 

As RANKINE himself showed in his rough way, they make the condition 

ap = R(.! _ au) 
ao v av (SG.2)r 

necessary and sufficient that L(rc) = JC(rc) in every cycle~. Adopting this 
condition, we see at once that 

JAv = (0 - 00) :~ ; (SG,S)lr 

this is the form assumed by the General CARNOT-CLAPEYRON Theorem in 
RANKINE's theory. It yields p. = JI(O - 00); if 00 = 0, this last result reduces 
to the HELMHOLTZ-JOULE Determination. Moreover, (SG.I) and (SG.2) 
together imply that 

a a ao (JAv - p) = av (JKv) , 

whence follow the relations 

and 

aE 
JAv - p = av ' 

E =JQ +P, 

aE 
JKv = 00 . 

P == -pV. 

(SD.2)r 

(SD.3)r 

(SB.2)r 

If we regard U and p as related through (SG.2) but otherwise arbitrary func­
tions of V and 0, RANKINE'S phenomenological structure extends CLAUSIUS' 

to fluids obeying an arbitrary equation of state, to within choice of the con­
stant 00 , Furthermore, as we have seen, for ideal gases RANKINE'S theory 
proves as a theorem HOLTZMANN'S Assertion 

JAv =p, (7D.I)r 
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again on the supposition that 00 = O. RANKINE's argument to derive (8G.I) 
and (8G.2) had recourse to the principle of Interconvertibility of Heat and 
Work. The argument itself was phenomenological, making no use of his 
definition of his function U in terms of his molecular model. The argument 
we have just given proves the converse: The universal and uniform Inter­
convertibility of Heat and Work as expressed by CLAUSWS' "First Law" 
(8B.2) is a consequence of RANKINE's formal structure. 

That is not all. We can interpret RANKINE's U in general. By use of (8G.I) 
we calculate its rate of change -0 in an arbitrary process and obtain 

. au· au A 
U = av v + ao U , 

( JAy I). (JKy I) . 
= - R(O - 00 ) + v v + - R(O - 00) + N(O _ 00) 0 , 

R(:~ 00) + {log[V(O - OO)l/N]}". 

That is, if H is defined as follows: 

JH/R == 10g[V(0 - Oo)l/N] - U + const. 

then H is a function of V and 0, and 

(0 - Oo)H = Q . 

(8H.I) 

(8H.2) 

(8H.3) 

To within questions concerning the troublesome constant 00 , today a func­
tion H ofthis kind is caIied an entropy of the fluid body, and the function 
from which U is subtracted on the right-hand side of (2) is the entropy of 
an ideal gas whose ratio of specific heats is the constant N + 1. RANKINE'S 

function RU/J is the excess of the entropy of some ideal gas over the entropy 
of the fluid body in question. For general considerations RANKINE'S U will 
serve the 'same purposes as the entropy, with simple adjustments. Thus we 
may say that RANKINE'S phenomenological apparatus implies the basic con­
stitutive restrictions of classical thermodynamics, to within choice of 00 • If 
00 = 0, the two sets of constitutive restrictions agree precisely. As he who 
has read Concepts and Logic will know, they imply the whole formal structure 
of the Classical theory. 

RANKINE's passage from (8G.2) to (8G.3) makes the function t/> a con­
stitutive function, restricted only by (8G.I)2. On the contrary, RANKINE's 
sentence quoted above, just after (8G.4), seems to mean that he regards t/> 
as a univ~rsal function, the same for all substances, so to determine it for 
"the perfectly gaseous state" determines it once and for all: 

(8G.5)r 

That is the only way, it seems, to make (8G.7)2 and (8G.8)2 follow from 
what went before. 

Abandoning this unjustified step of RANKINE'S, let us now consider t/> 
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in (SG.3) as a constitutive function, restricted only by RANKINE's general 
apparatus, which is summarized by his determinations of Ay and Ky , namely 

( 1 8U) 
JAy == R(O - Oo} V - 8V ' JKy == R[~ - (0 - Oo) ~~] , 

(SG.l)1.2r 

and by his partial determination of U without restriction to ideal gases: 

f(118P) U = <p(0} + - - -- dV V R80 • (SG.3)r 

Doing so, we evaluate Ay and Ky in terms of the thermal equation of state 
and the single constitutive function <p, a function of 0 alone. The result is 

8p 
JAy = (0 - Oo) 80 ' 

(SH.4) 

JKy 0 }.J..'(O) 0 - Oof 82p d 
R/N = I - N(O - O'f' + R/N 802 V. 

The former statement is RANKINE'S (8G,S)1; the latter frees RANKINE'S 

relation 

(8G,S)2r 

from the special choice of <p RANKINE obtains from his molecular theory 
<p = 00/0, a choice he seems to regard as universal. If 00 = 0, (4)1 reduces 
to 

8p 
JAy = 0 80 ' 

destined to become celebrated as the final form of the CARNOT-CLAPEYRON 

Theorem. As we have seen in §7I, it is a consequence of HOLTZMANN'S 

Assertion and CARNOT'S General Axiom. 
If we look only upon the positive aspects of the papers of CLAUSIUS 

and RANKINE published in 1850, we may summarize their achievements as 
follows: 

1. CLAUSIUS constructed the thermodynamics of ideal gases,' for those 
gases he discovered the internal energy. Be took BOLTZMANN'S Assertion 
as one of his assumptions regarding ideal gases. 

2. RANKINE ,obtained the basic constitutive restrictions of the thermo­
dynamics offluids; he expressed them in terms of a function that differs 
only inessentially from the entropy. Be proved BOLTZMANN'S Assertion 
as a theorem about ideal gases. 

CLAUSIUS was to come upon the entropy in his own way many years later, 
and years after that he was to coin the name. 



216 8. ACT IV. THE FIRST PAPERS OF CLAUSIUS AND RANKINE 

The above summary, strictly correct as it is, does not represent RANKINE'S 
work fairly. He himself seems not to have seen which parts of it were free 
of the special restrictions his molecular model implied, and only after some 
years was he to draw the conclusion (4h or derive something really close 
to (3). 

y. Restrictions imposed by the "hypothesis of molecular vortices". 
RANKINE used his molecular model to determine U for ideal gases: 

With this choice of U we obtain from (8G.l)2 the following expression for 
Ky: 

JK = R[l 00(0 - 00)] 
y N + 02 • (8H.5) 

With RANKINE'S usual approximation 00/0 ~ 0 we conclude that Ky = 
const. In this sense RANKINE'S model makes the specific heats of ideal gases 
constant. In itself this limitation, which MAXWELL'S later kinetic theory 
shares, is not objectionable. RANKINE, however, carries its effects over to 
all fluids through his general formula 

[ 1 (00 1 f fj2p )] JKy = R N + (0 - 00) 02 + R 002 dV . (8G.8)2r 

If in this formula we substitute pV = RO, we again obtain (5): RANKINE'S 
general theory does not permit an ideal gas to have specific heats that are not 
constant. While a molecular model with constant specific heats may be 
adequate for some fluids, so general a restriction is dubious. Certainly it 
does not follow from CLAUSIUS' theory, which allows Ky for an ideal gas to 
be an arbitrary positive function of o. CLAUSIUS1 was to claim later that 
RANKINE'S (8G.8)2 was valid only for ideal gases. Perhaps he based this 
statement on nothing but a firm belief that his own results constituted the 
touchstone against which others' ought be tested. While I am not sure 
what CLAUSIUS meant, one thing is certain: The expression (4)2, which follows 
from RANKINE'S formal structure with no use of his molecular model, is 
general in the sense of CLAUSIUS' theory, and it reduces to RANKINE'S result 
(8G.8)2 if and only if 

(8G.5)r 

Time haS' judged in favor of CLAUSIUS' theory and against RANKINE'S 
restriction (8G.5). I am not sure that the objection to (8G.5) bears upon 
RANKINE's molecular vortices, for as far as I can see his passage from 
(8G.3) and (8G.4) to (8G.5) is just an error in his mathematical development 

1 CLAUSIUS [1862, §6]. 
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of his phenomenological equations. I must leave to others the task of deciding 
whether or not RANKINE's molecular model forces his function <p to be 
universal rather than constitutive. 

We must not believe that all consequences RANKINE is to draw from his 
special choice of <p will depend upon that choice. From (4)1 we see that it 
has no effect on Av and hence does not play any part in determining the heat 
added in an isothermal process. In §9A we shall see that RANKINE will use 
his formula (SG,S)2 in another context where choice of <p makes no difference 
in the outcome. The results he will obtain will be just the same as if he had 
used his general structure alone, with no reference to his molecular 'Vortices. 

These facts must have been far from easy to see in IS50. In his criticism, 
already cited, CLAUSIUS is to dismiss all of RANKINE's work outright except 
insofar as it was specialized to ideal gases. Certainly CLAUSIUS was not one 
to seek out the best aspects of a competitor's work; his judgment here is 
superficial at best; but after all it is an author's duty to make his work clear 
to the reader, not the reader's duty to straighten out an author's mess. 
Perhaps RANKINE himself never SUbjected his ideas to criticism of the logical 
kind; certainly there is nothing in his printed works to suggest that he did. 
The early thermodynamicists were fertile in physical intuition and grandiose 
claims; in return, as regards the standards of mathematical hygiene estab­
lished by HUYGENS, NEWTON, and the BERNOULLI-EULER school and main­
tained by CAUCHY and KIRCHHOFF at the very time when thermodynamics 
was being created, they seem to have been like the habitually unbathed, 
who notoriously cannot smell their own effluvia. 

All of RANKINE's constants are of molecular origin, and RANKINE fre­
quently refers to the model. There is nothing like a molecular theory to 
complicate simple phenomenological statements. To diminish the recognition 
history will afford to pheno]Il.enological discoveries, there is nothing like 
entwining them in a molecular theory that is later to be rejected 2 • CLAUSIUS, 
too, had a molecular theory, but wisely he withheld it until his phenomenal 
theory, which was independent of it, could become somewhat familiar and 
widely accepted. As he well knew, to rest gross concepts upon a molecular 
hypothesis risks loss of a truth because it turns out to have been derived 
from something wrong. The best function of a molecular theory is to refine 
the details of an accepted gross picture. 

Had RANKINE separated his phenomenology from his vortices, his work 
would have been short, clear, and final. His basic phenomenological formulae 
(SG.l) and (SG.2) suffice to deliver the entire formal structure of classical 
thermodynamics, freed of CLAUSIUS' restriction to ideal gases and "sub­
sidiary hypotheses" regarding them. Had RANKINE been content to analyse 

:I CLAUSIUS [1863, §5] justly defends his own presentation as superior to RANKINE's: 
"I laid very particular weight upon basing ... my development ... not upon special 
aspects of the molecular nature of matter but only upon general fundamental 
principles .... " 
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and develop those formulae, he would have earned the rank of first, best, 
and entire discoverer of classical thermodynamics, leaving to CLAUSIUS the 
honor of codiscovery of the thermodynamics of ideal gases. History was to 
be otherwise. RANKINE has gained respect but not factual recognition; his 
discoveries have never until now been disentangled from his illusions. To 
read one of RANKINE's papers today requires much patience and much 
training. CLAUSIUS' first paper, despite its poor organization, vague ex­
position, and insecure mathematics, is deservedly regarded as a classic 
second only to CARNOT'S treatise. 



9. Distracting Interlude: Explosion of Print 

Qui vid' i' gente piil ch'altrove troppa, 
e d'una parte e d'altra, con grand' urli, 
voltando pesi per forza di poppa. 

Percoteansi 'ncontro; e poscia pur Ii 
si rivolgea ciascun, voltando a retro, 
gridando: "Perche tieni?" e "Perche burli?" 

DANTE, Inferno VII, 25-30. 

9A. RANKINE'S Second Paper 

RANKINE'S response1 to CLAUSIUS' first paper was a [characteristically 
forthright and generous] "Fifth section" adjoined to his own first paper: 

(40.) CARNC)T was the first to assert the law, that the ratio of the 
maximum mechanical effect, to the whole heat expended in an expansive 
machine, is a function solely of the two temperatures at which the heat 
is respectively received and emitted, and is independent of the nature 
of the working substance. But his investigations not being based on 
the principle. of the dynamical convertibility of heat, involve the 
fallacy that power can be produced out of nothing. 

(41.) The merit of combining CARNlh's Law, as it is termed, with 
that of the convertibility of heat and power, belongs to Mr CLAUSIUS 
and Professor WILLIAM THOMSON; and in the shape into which they 
have brought it, it may be stated thus:-

The maximum proportion of heat converted into expansive power 
by any machine, is a function solely of the temperatures at which heat 
is received and emitted by the working substance; which function, for 
each pair of temperatures, is the same for all substances in nature. 

This law is, laid down by Mr CLAUSIUS, as it originally had been by 
CARNC>T, as an independent axiom; and I had at first doubts as to the 
soundness of the reasoning by which he maintained it. Having stated 

1 RANKINE [1851,3]. I regard his two preceding publications [1850] and [1851, 1] as 
being what RANKINE himself states them to be: complementary parts of one and the 
same paper. 
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those doubts to Professor THOMSON, I am indebted to him for having 
induced me to investigate the subject thoroughly; for although I 
have not yet seen his paper, nor become acquainted with the method 
by which he proves CARNCJT'S law, I have received from him a state­
ment of some of his more important results. 

(42.) I have now come to the conclusions,-First: That CARNCJT'S 
Law is not an independent principle in the theory of heat; but is deducible, 
as a consequence, from the equations of the mutual conversion of heat 
and expansive power, as given in the First Section of this paper. 

Secondly: That the function of the temperatures of reception and 
emission, which expresses the maximum ratio of the heat converted 
into power to the total heat received by the working body, is the ratio 
of the difference of those temperatures, to the absolute temperature of 
reception diminished by the constant, which I have called K = Cnp.b, 
and which must, as I have shewn in the Introduction, be the same 
for all substances, in order that molecular equilibrium may be 
possible. 

To establish these conclusions, RANKINE considers a Camot cycle. Again 
using a partial integral, he defines as follows a function F: 

-fOP F(V,8) = 08dV. (9A.l) 

[Later2 he is to call a purely formal generalization of this function the 
heat-potential.] Using F and the relation 

op 
JAv = (8 - 80) 08 (SG.S)lr 

from his earlier paper, RANKINE evaluates as follows the heat absorbed 
and heat emitted in a Camot cycle (his Equations (a) and (c), conformed 
with the notation of Figure 3 in §5C, above): 

JC+ = (8+ - 80)[F(V", 8+) - F(Va, 8+)] , 

JC- = (8- - 80)[F(Ve, 8-) - F(Va, 8-)] . 
(9A.2) 

[Having hi effect shown his molecular model to be consistent with the 
Doctrine of Latent and Specific Heats, namely 

Q = Av(V, 8) V + Kv(V, 8)8,] (2C.4)r 

he substitutes therein the relations 

op 
JAv = (8 - 80) 08 ' 

(SG.S)r 

[1 (80 1 f 02p )] JKv = R N + (8 - 80) 82 + R 082 dV , 

2 RANKINE [1853, 3, 'Il501. 
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which his preceding paper had implied, and so he obtains a differential 
equation for F as a function of 0 along an adiabat. Writing dVjdO for the 
derivative of the function f such as to make V = f(O) be an equation for 
the adiabat, we may state RANKINE'S result (just preceding his Equation (b» 
as follows: 

[ 1 00 ] ( 8 dV 8 ) ° = R N + (0 - 00) 02 + (0 - 00) 80 + dO 8V F , 

[ 1 00] dF = R N + (0 - 00 ) 02 + (0 - 00 ) dO . 
(9A.3) 

Integration yields the changes in F along the adiabats of a Carnot cycle 
(RANKINE's Equations «b) and (d»: 

F(Ve, 0-) - F(Vb' 0+) = ifs(O+, 0-) , 
(9A.4) 

F(Va, 0-) - F(Va, 0+) = ifs(O+, 0-) , 

[the function ifs being easy to evaluate explicitly but not needed]. Hence 
(his Equation (64» 

F(Vb, 0+) - F(Va, 0+) = F(Ve, 0-) - F(Va, 0-) . (9A.5) 

From (5) and (2) it follows that (his Equation (65» in a Carnot cycle CC 

C-(CC) 0- - 00 
C+(CC) = 0+ - 00 • (9A.6) 

Because heat and work are uniformly and universally interconvertible in 
any cycle, 

L(CC) = J[C+(CC) - C-(CC)] • 

[If C+(CC) > 0, (7A.l)2 implies that 

L(CC) C - (CC) 
JC+(CC) = 1 - C+(CC) . 

(7A.l)2r 

(9A.7) 

The dimensionless ratio on the left-hand side is the efficiency of the cycle, 
regarded as an engine.] By (6), then (his Equation (66», 

L(CC) 0+ - 0-
JC+(CC) 0+ - 00 • 

(9A.S) 

RANKINE again (~44) takes 00 /0 as being 0, to "the nearest approximation 
we can at present make". [Then (6) becomes 

(9A.9) 

and (S) becomes 

L(CC) 0- J 
JC+(CC) = 1 - 0+ • (9A.1O) 
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RANKINE expects that (8) so approximated will be found to give nearly the 
same numerical results as the formula, "very different in appearance", 
arrived at by Professor THOMSON. He has not seen KELVIN'S manuscript, 
but a numerical example KELVIN disclosed to him does indeed agree closely. 
Footnote: "From information which I have received from Professor 
THOMSON subsequently to the completion of this paper, it appears that his 
formula becomes identical" with (10), "on making the function called by 
him 

II- = JI8 , (SN.7)r 

J being JOULE'S equivalent. Mr JOULE also, some time since, arrived at this 
approximate formula in the particular case of a perfect gas." [In §§7H and 
71, above, we have discussed the origin of the HELMHOLTZ-JOULE Deter­
mination (SN.7).] 

RANKINE interprets (10) for an actual steam engine and explains why 
a lesser efficiency will follow in practice. He then gives some examples, 
"ideal" and actual. 

[This paper is famous for (9) and (10): the classical emission-absorption 
ratio and the classical evaluation of efficiency, respectively, for Carnot cycles. 
The proof may seem too special because RANKINE in using (3) has appealed 
to the relations 

8p 
JAy = (8 - 80) 88 ' 

[1 (80 1 I 82p )] JKy = R N + (8 - 80) 82 + R 882 dV , 

(8G.8)r 

his much criticized inference from his theory of molecular vortices. In fact, 
however, he could just as well have used the statements 

8p 
JAy = (8 - 80) 88 ' 

JKy (8 8 ).1.'(8) 8 - 80 I 82p d RI N = 1 - N - 0 'I' + RI N 882 V, 

which we have seen to follow from his general relations 

(1 8U) 
JAy = R(8 - 80) V - 8V ' 

(8G.l)l,2r 

[1 8U] JKy = R N - (8 - 80) 88 ' 

and 

I (1 1 8P) U = 1>(8) + - - -- dV V R88 . 
(8G.3)r 
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Had he done so, he would have reached (4) in just the same way, but with 
a more general function .p, which would have cancelled out in just the same 
way. 

[As we shall see in §9E, two years later RANKINE is to perceive this greater 
generality but in terms of a more complicated concept. 

[RANKINE's heat-potential F is easy to interpret. Comparing (1) with 
(8G.3) and then using the function H that we introduced in our discussion 
of RANKINE'S first paper: 

we see that 

JH/R == 10g[V(O - OO)l/N] - U + const. , 

F = RQog V - U) + '\(0) , 

= JH + v(8) , 

(8H.2)r 

(9A.11) 

the functions ,\ and v being constitutive. We have shown in §8H that H 
satisfies the relation 

(8H.3)r 

and have concluded that to within choice of 00 the function H is what 
CLAUSIUS later, much later, was to rediscover and call the entropy. Therefore 
(11) shows that to within a constitutive function of temperature, the heat­
potential is the entropy. Moreover, RANKINE knows how to use it! From 
(11) we see that for an isothermal process 

M=J~H . (9A.12) 

Thus RANKINE's relations (2) reflect the fact that in an isothermal process 
at temperature 0* the net gain of heat 

C = (0* - Oo)~H . (9A.13) 

RANKINE's relations (5) make the increments of H on the isothermal parts 
of a Camot cycle have equal magnitude and opposite sign. If you like, 
the working body gives to the refrigerator exactly the amount of entropy it 
has received from the jUrnace--equivalently, exactly the same difference of 
heat-potential: 

JC+(~ = (0+ - Oo)M = (0+ - Oo)J~H , 

JC-(~ = (0- - Oo)M = (0- - Oo)J~H , 
(9A.14) 

and the key relation (6) follows. Consequently RANKINE'S arguments in 
deriving his efficiency formula (8) are general. 

[RANKINE always defines his quantities such as U and F in such a way 
as to make it obvious that they are the values of functions of V and O. 
While U is defined in terms of his molecular model, it is effectively deter­
mined through (8G.3) by partial integration; partial integration defines F. 
RANKINE seems not to know about conditions of integrability. The price 
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he pays is one no thermodynamicist of the period would have cared to 
recognize: His functions may exist only locally. Moreover, use of his U 
and F involve us with undetermined constitutive functions of 8. In the 
case of F that function cancels out in the particular passage we have just 
considered, but they will not do so in general. The entropy does not labor 
under this defect. It is a pity that RANKINE did not stay with the function 
U he had introduced in his first paper, because it differs from the entropy 
by a specific function, not an undetermined one. 

[By the standards of his day we can only admire this passage in RANKINE's 
work and acclaim his achievement: Once and for all, he calcitlates the effi­
ciency of an arbitrary fluid body in a Carnot cycle. From (10) we see at once 
that the function K in the equation of CARNOT'S General Axiom in the reduced 
form 

(5J.5)lr 

is determined: 

(9A.15) 

9B. A Late Re-entrance, Stumbling: 
KELVIN's Second Paper 

Acknowledging "the recent discoveries" made by MAYER and JOULE 

and citing the papers of CLAUSIUS and RANKINE published in the preceding 
year, KELVIN! in 1851 published another [verbose and rambling] essay on 
the theory of heat. At long last disabused of the Caloric Theory, he sets 
himself a threefold object (§6): 

(1) To show what modifications of the conclusions arrived at by 
CARNOT, and by others who have followed his peculiar mode of reason­
ing regarding the motive power of heat, must be made when the 
hypotliesis of the dynamical theory, contrary as it is to CARNOT'S 

fundamental hypothesis, is adopted. 
(2) To point out the significance in the dynamical theory, of the 

numerical results deduced from REGNAULT'S observations on steam 
... and to show that by taking these numbers ... in connexion with 
JOULE'~ mechanical equivalent of a thermal unit, a complete theory 
of the motive power of heat, within the temperature limits of the 
experimental data, is obtained. 

(3) To point out some remarkable relations connecting the physical 
properties of all substances, established by reasoning analogous to that 

1 THOMSON [1851]. 
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of CARNOT, but founded in part on the contrary principle of the 
dynamical theory. 

22S 

After explaining (§8) that the" source of heat will always be supposed to 
be a hot body at a given constant temperature," etc., KELVIN writes (§9) 

The whole theory of the motive power of heat is founded on the 
two following propositions, due respectively to JOULE, and to CARNOT 
and CLAUSIUS. 

PROP. I. (JoULE).-When equal quantities of mechanical effect 
are produced by any means whatever from purely thermal sources, or 
lost in purely thermal effects, equal quantities of heat are put out of 
existence or are generated. 

PROP. II. (CARNOT and CLAUSIUs).-If an engine be such that, 
when it is worked backwards, the physical and mechanical agencies 
in every part of its motions are all reversed, it produces as much 
mechanical effect as can be produced by any thermodynamic engine, 
with the same temperatures of source and refrigerator, from a given 
quantity of heat. 

KELVIN gives a "proof" (§§10-11) of Proposition I based upon "thermal 
motions" within the body and "molecular change or alteration of tem­
perature" as well as reversibility. [While KELVIN's Proposition II would 
seem to assert that any reversible process achieves maximum efficiency, 
that is clearly not what it means to him. It imputes to the ideal engine much 
more than the modem sense of "reversible"; the characteristically vague 
phrase "physical and mechanical agencies in every part of its motions" 
engulfs also CARNOT'S idea that bodies of unequal temperature should never 
be put in contact. Within the context of the theory of calorimetry, KELVIN's 
Proposition II seems to be nothing more than the equality in CARNOT'S 
General Axiom, stated like a riddle. This guess of mine is supported by the 
use to which KELVIN puts Proposition II when he comes to §21, as we shall 
see. It is supported also by the argument KELVIN uses when he claims (§13) 
to "demonstrate" Proposition II, namely CARNOT'S construction of the 
two engines (§SP, above). When both ~1 and -~2 have been completed, 
the furnace contains just as much heat as it did before. In connection with 
the work of CLAUSIUS (above, §8A) we have seen that because the Caloric 
Theory is now rejected, the construction no longer serves to "re-establish 
things in their original state", for there is no reason to expect that the 
quantity of heat in the refrigerator should remain unchanged. In order to 
draw again CARNOT'S conclusion (§§SD-SG) that for ~1 and -~2 together 
to do positive work would be contrary to "sound physics", KELVIN, like 
CLAUSIUS before him, must narrow the meaning of that all too vague 
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standard.] He sets forth as an axiom a new statement of what does not 
happen (§12): 

It is impossible, by means of inanimate material agency, to derive 
mechanical effect from any portion of matter by cooling it below the 
temperature of the coldest of the surrounding objects. 

This stronger prohibition allows CARNOT'S conclusion to be drawn again. 
The "surrounding objects" are now mentioned [but not provided with any 
properties specific enough to make them able to figure in a mathematical 
theory. The entry of "inanimate material agency" adds mystery to an 
already vague principle; BRIDGMAN2 called it "a restriction so surprising 
as to be almost an admission of defeat"; but it may have been a wedge 
interpellated only to save miracles. Be that as it may, we see here another 
candidate for the title of "Second Law of Thermodynamics".] 

It must then be admitted that CARNOT'S original demonstration utterly 
fails, but we cannot infer that the proposition concluded is false. The 
truth of the conclusion appeared to me, indeed, so probable, that I 
took it in connexion with JOULE'S principle ... as the foundation of 
an investigation of the motive power of heat in air-engines or steam­
engines through finite ranges of temperature, and obtained about a year 
ago results, of which the substance is given in the second part of the 
paper at present communicated to the Royal Society .... [T]he merit 
of first establishing the proposition upon correct principles is entirely 
due to CLAUSIUS .... The following is the axiom on which CLAUSIUS' 
demonstration is founded:-

It i$ impossible for a self-acting machine, unaided by any external 
agency, to convey heatfrom one body to another at a higher temperature. 

It is easily shown, that, although this and the axiom I have used 
are different in form, either is a consequence of the other. The reasoning 
in each demonstration is strictly analogous to that which CARNOT 
originally gave. 

After remarking (§19) that CLAUSIUS had used "simply CARNOT'S un­
modified investigation of the relation between the mechanical effect produced 
and the thermal circumstances from which it originates, in the case of an 
expansive engine working within an infinitely small range of temperatures", 
KELVIN turns [at last] (§§20-21) to the mathematical theory, he effortlessly 
writes down as a line integral "[t]he total external effect, after any finite 

1I BRIDGMAN [1941, p. S of the 1961 ed.]. 
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amount of expansion, accompanied by any continuous change of tem­
perature" : 

L - JC = J [pdV - J(AvdV + Kyd8)] , (9B.l) 

J being "the mechanical equivalent of a unit of heat". KELVIN interprets 
JOULE'S proposition as meaning that the left-hand side of (1) is null in every 
cyclic process. Hence the integrand in (1) "must be the differential of a 
function of two independent variables", and KELVIN writes out both 

and 

BE 
JAv - p = BV ' 

BE 
JKv = B8 ' 

Bp = J(BAv _ OKv) 
B8 B8 BV' 

(8D.3)r 

[This passage is the first and very nearly the last piece of clean mathematics 
in all of classical thermodynamics. The "function" to which KELVIN refers 
is E/J, which CLAUSIUS had produced in the special case of an ideal gas and 
had proved to satisfy (8B.2). KELVIN, like RANKINE before him, has extended 
CLAUSIUS' results to a general equation of state, but he makes little of that 
and does not mention it again.] 

KELVIN goes on to say that "[t]he corresponding application of the second 
fundamental proposition is completely expressed" by (his Equation (3)) 

Bp 
p.Av = B8 ' (5L.4)r 

that is, the General CARNOT-CLAPEYRON Theorem. [We have seen above that 
CARNOT'S argument to prove it does not make any use of the Caloric Theory. 
Rather than rep«at that proof in CLAPEYRON'S form, however,] KELVIN (§21) 
remarks that for an infinitesimal Carnot cycle rc 

Bp fl8flV Bp 

L(rc) B8 = AB8
v fl8 . (9B.2) 

C+(rc) AvflV 

The infinitesimal cycle 

may be considered as constituting a thermo-dynamic engine which 
fulfils CARNOT'S condition of complete reversibility. Hence, by Prop. II., 
it must produ~e the same amount of work for the same quantity of heat 
absorbed in the first operation, as any other substance similarly operated 
upon through the same range of temperatures. 

Hence the right-hand side of (2) 

must be the same for all substances, with the same values of 8 and 
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110; or, since 110 is not involved except as a factor, we must have 
[KELVIN's Equation (4)] 

where {-t depends only on 0 .... 

8p 

80 = {-t 

Av 
(9B.3) 

[As Mr. BHARATHA has kindly pointed out to me, this argument is superior 
to CLAPEYRON'S in that it appeals directly to CARNOT'S General Axiom, 
without use of (5J.5) and without imputing any smoothness to G. It provides 
{-t but does not relate it to G through (5J.7). It uses the universality of G to 
infer in effect that on the isotherm 0 = 00 the ratio (8pj80)jAv has the same 
value at all points where Av(V, 00) =!= 0, and that that value is the same for 
every body whose constitutive domain intersects the isotherm 0 = 00 at 
one point where Av =!= 0.] At this time KELVIN was fluently dividing by 
Av, [so he must have been tacitly adopting the traditional constitutive 
restriction 

Av> ° .] (2C.5)lr 

Thus, for him, (3) holds without exception. In annotating this passage in 
1881 for the reprint in his collected works he remarked that eliminating 
8pj80 between (8B.l) and (3) yields 

J(8Av _ 8Kv) 
80 8V 

~--~----~ = {-t , 
Av 

(9B.4) 

"a very convenient and important formula". [That is, the ratio on the left­
hand side of (4) has the properties we have just asserted for the ratio on the 
left-hand side of (3).] KELVIN'S proof of 1881 involves use of CLAUSIUS' 
basic assumption L(r/) = JC(r/); [according to the Third Principal Lemma 
in Chapter 9 of Concepts and Logic, that assumption is unnecessary, but a 
more searching analysis of CARNOT'S ideas is needed to prove that]. 

[Does the General CARNOT-CLAPEYRON Theorem express "the second fun­
damental proposition" completely? KELVIN does not quite say so. Theorem 11 
or Corollary 11.2ext of Concepts and Logic shows that in general the answer 
is no. Mr. BHARATHA has pointed out to me that the answer becomes yes 3 

3 Proof Set h == exp f (,../J)d8, g = Jh. Then appeal to (8B.l) and (5L.4) to show that 
Equations (9.1) and (9.2) of Concepts and Logic are satisfied. Then use Corollary 11.2 
in Chapter 10 to conclude that for a Camot cycle 

Because,.. is a universal function for KELVIN, so are hand g as defined here. Thus 
CARNOT'S General Axiom holds. 
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on KELVIN's further assumption that his "first fundamental proposition" 
holds.] 

KELVIN continues (§22) 

The very remarkable theorem that (op/oO)/Av must be the same 
for all substances at the same temperature, was first given (although 
not in precisely the same terms) by CARNOT, and demonstrated by 
him, according to the principles he adopted. We have now seen that 
its truth may be satisfactorily established without adopting the false 
part of his principles. Hence all CARNOT'S conclusions, and all con­
clusions derived by others from his theory, which depend merely 
on [the General CARNOT-CLAPEYRON Theorem (5L.4)] require no 
modification when the dynamical theory is adopted. 

This statement applies in particular to the conclusions in §§43-53 of KELVIN's 
first paper (§7H, above). 

Also, we see that CARNOT'S expression for the mechanical effect 
derivable from a given quantity of heat by means of a perfect engine 
in which the range of temperatures is infinitely small, expresses truly 
the greatest effect which can possibly be obtained in the circum­
stances; although it is in reality only an infinitely small fraction 
of the whole mechanical equivalent of the heat supplied; the re­
mainder being irrecoverably lost to man, and therefore "wasted," 
although not annihilated. 

On the contrary (§23), "when the range down to the temperature of the 
'refrigerator' is finite," the expression for the work done "will differ most 
materially from that of CARNOT .... " 

Next (§25) comes the revised evaluation of the efficiency of an ideal 
engine. 

We may s~ppose the engine to consist of an infinite number of perfect 
engines, each working within an infinitely small range of temperature, 
and arranged in a series of which the source of the first is the given 
source, the refrigerator of the last the given refrigerator, and the 
refrigerator of each intermediate engine is the source of that which 
follows it in the series. 

[Figure 6 makes the argument clear. The given Camot cycle <"C is subdivided 
by isotherms into a sequence of small Camot cycles, of which the typical 
one <"Ce has the isothermal paths ~u.e and -~. Then CARNOT'S calculation 
(5J.6) applies. We write it here as follows: 

(9B.5) 
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8 

8 + ~8 

8 

8-

~----------------------------------v 

Figure 6. Construction to prove KELVIN's general evaluation of the motive power of 
a Camot cycle 

Appeal to the uniform and universal Interconvertibility of Heat and Work 
in Camot cycles, 

L(CC) = JC('l/) = J[C+(CC) - C-('l/)] , 

yields 

L('l/8) = J[C+(81fl+t.8) - C+(&fJ)] ~ JdC;~'l/8) tlfJ . 

Comparing (5) with (6), we see that] 

J dC + - C+ d8- fL 

Integration of this ordinary differential equation shows that 

JlOgC+('l/8) = f8fL(X)dX . 

Using (7A.l) again, we obtain KELVIN'S result: 

L('l/) ( 1 J8+ ) 
JC+(CC) = 1 - exp -] 8- ,."dfJ 

[We should compare this formula with the counterpart, namely 

(7A.l)r 

(9B.6) 

(9B.7) 

(9B.8) 

(9B.9) 

(5L.7)2r 

which KELVIN had derived earlier from the Caloric Theory.] Later 4 he is 
to state that (9) "involves no hypothesis" [by which he means CLAUSIUS' 

"subsidiary hypothesis". It shows that in CLAUSIUS' theory as in CARNOT'S 

• THOMSON [1852, 3]. 
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theory, CARNoT'sfunction IL determines the motive power of heat, but of course 
differently in the two. Cj. Scholion IV in §5L.] 

8+ 

From (6) KELVIN infers (§27) that" ... as f J.Ui8 is increased without 
8-

limit", L(~ -->;-JC+(~. 

Thus we see that, although the full equivalent of mechanical effect 
cannot be obtained even by means of a perfect engine, yet when the 
actual source of heat is at a high enough temperature above the 
surrounding objects, we may get more and more nearly the whole 
of the admitted heat converted into mechanical effect, by simply 
increasing the effective range of temperature in the engine. 

[The conclusion silently presupposes that as 8+ - 8- -->;- 00, also 
8+ 

f J.Ui8 -->;- 00. We know today that this is true, because JIlL must be a linear 
8-

function of 8, but KELVIN writes as if his conclusions held for all choices of 
1-', which obviously they do not. It is one more example of his hasty 
mathematics.] 

KELVIN asserts (§30), 

As yet no experiments have been made upon air which afford the 
required data for calculating the value of I-' through any extensive range 
of temperature; but for temperatures between 50° and 60° Fahr., 
JOULE'S experiments ... afford the most direct data ... which have 
yet been obtained ... . 

KELVIN proceeds (§§31-41) to explain and tabulate quantities associated 
8+ 

with the problem. One of them, as his formula (9) suggests, is f I-'d8. He 
8-

reminds us (§34) "that accurate experimental determinations of the densities 
of saturated steam at different temperatures may indicate considerable 
errors in the densities which have been assumed according to the 'gaseous 
laws,' and may consequently render considerable alterations in my results 
necessary .... " As no pertinent experiments have been done in the interim, 
he sees no reason for supposing that the values of IL in his tables of 1848 
and 1849 are "not the most probable that can be obtained in the present 
state of science" . 

[A ray of liglit enters] at §42 with the reference to JOULE'S letter 5 of 1848 

5 CLAUSIUS [1856, 1] is to reply with a characteristic claim of priority: 

Against this I must beg to urge,-First, that, as far as I am aware, it is usual, 
in determining questions of priority in scientific matters, only to admit such 
statements as have been published. And I believe that this custom ought to be 
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which we have quoted above, toward the end of §7H, as suggesting what 
we have called the HELMHOLTZ-JoULE Determination: 

I" = JI(} . (5N.7)r 

Then also 6 (Equation (13)) 

L(rc) (}-
JC+(rc) = 1 - (}+ (9A.1O)r 

Here we see RANKINE'S major result (9A.1O) recovered without reference 
to the molecular vortices. [Of course CLAUSIUS could have found this result, 
had he stopped to work it out from his assumptions; as we have shown in 

conscientiously adhered to, especially in theoretical investigations; for it usually 
requires continued and laborious research in order to give to a thought, after 
it has been first entertained, and perhaps casually communicated to a friend, 
that degree of certainty which is necessary before venturing upon its publication. 
Secondly, that since Thomson does not say that Mr. Joule had proved the 
theorem, but only that he had offered it as an opinion, I do not see why this 
opinion should have the priority over that which Holtzmann had arrived at 
three years before. 

This ugly passage presents only a part of the facts. First, it was CARNOT himself who 
first suggested (5N.7) (cf §5S, above). Second, it was not HOLTZMANN but HELMHOLTZ, 
not in 1845 but in 1847, who first published (5N.7) as a consequence of relations 
HOLTZMANN had obtained. Third, (5N.7) may be read off from (8G.8)lo which is clearly 
implied by results in RANKINE'S paper published in 1850, and RANKINE was not tainted 
by ever having espoused the Caloric Theory. In reply THOMSON [1856] merely quoted 
in full the passage from his own work that CLAUSIUS had quoted in part. 
e (KELVIN'S footnote). "If we take f£ = klB where k may be any constant, we find 

L("C) = (B+ - B-)kIJ • 
JC +("C) B+ , (A) 

which is the formula I gave when this paper was communicated. I have since remarked, 
that Mr JOULE'S hypothesis implies essentially" that k = J. "Mr RANKINE, in a letter 
dated March 27, 1851, informs me that he has deduced ... an approximate formula 
... which ... I find agrees exactly" with the corresponding special case of (A). [Cf 
§9A. especially (9A.I0). Correct integration would have yielded 

L("C) = _ (B-)"'J 
JC+("C) 1 B+ 

instead of (A). 
[This formula shows that CLAUSIUS did indeed make an assumption when he tacitly 

took k as b~ing the same as J (above, §8D). In terms of the functions g and h used in 
Concepts and Logic, from Equation (9.2) and corollary 10.3 of that work we see that 

g'lh = klB, g' = Jh + const. , 
so 

h = (const.)8"'J . 

As we have seen in §8D, to conclude that k = J it is sufficient to assume that one ideal 
gas has constant specific heats.] 
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§9A, RANKINE'S argument is really not so special as it must have seemed 
when it was first published.] KELVIN still regards (SN.7) and its consequence 
(9A.1O) as dubious, because (§4S) the investigations of RANKINE and CLAUSIUS 
"involve fundamentally various hypotheses which mayor may not be found 
by experiment to be approximately true; and which render it difficult to 
gather from their writings what part of their conclusions ... depend merely 
on the necessary principles of the dynamical theory." 

Finally KELVIN decides to derive the consequences of the relations 

op 
f'Ay = 08 ' (SL.4)r 

and 

o 0 
08 (JAy - p) = OV (JKy) , 

oE 
JAy - p = oV' 

oE 
JKy = 08 . 

(8D.2)r 

(8D.3)r 

For example, first he notes the immediate consequence (Equation (14» 

oKy = ~ (! op _ !!.) (9B.I0) 
oV 08 p. 08 J . 

Then he derives the relation 

Kp - Ky = -Ay :~/i'v 
and by using (SL.4) obtains (Equation (16» 

K _ Ky = _! (Op)2jOP 
p f' 08 oV' 

which for ideal gases becomes (Equation (26» 

Kp - Ky = RI(p,8) . 

[Had CARNOT obtained the relation 

R 
Kp - Ky = 8F' 

(2C.9)2r 

(9B.ll) 

(9B.12) 

clearly rather than in special cases presented verbally, KELVIN could have 
remarked that here, too, was a conclusion that carried over from the old, 
uncorrected theory.] Then (§S2), "All the conclusions obtained by CLAUSIUS, 
with reference to air or gases, are obtained immediately from these equations" 
by adopting [the HELMHOLTz-JOULE Determination] 

f' = JI8 , (SN.7)r 

which will make Ky independent of V, "and by assuming, as he does, that 
Ky . .. is also independent of [the] temperature." 

[KELVIN'S criticism, which is not quite fair, shows how obscure CLAUSIUS' 
exposition was, even to one of the other three principal architects of the 
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"dynamical" theory. CLAUSIUS' "subsidiary hypothesis" was HOLTZMANN'S 
Assertion: 

JAv = p ; (7D.l)r 

equivalently, MAYER'S Assertion: 

J(Kp - Kv) = R . (7B.2)r 

Indeed, KELVIN's statement (11) makes this tantamount to assuming that p. 

is given by (SN.7). CLAUSIUS did not assume that either specific heat was 
constant for all ideal gases; he merely considered as an example the case 
when both were constant and thus tacitly assumed that possibility to be 
consistent with the theory he was constructing. Today we know that such 
an assumption is by no means innocent, for the Caloric Theory forbids it 
(above, §3F). CLAUSIUS and KELVIN may have known as much, but certainly 
they did not tell their readers so. 

[This paper, like KELVIN'S first one, disappoints a critical student. In its 
vacillation and obscurity the author of KELVIN'S masterful and brilliant 
researches on electrostatics, hydrodynamics, and elasticity can scarcely be 
recognized. Sensing the weakness of CLAUSIUS' "subsidiary hypothesis" 
about ideal gases, KELVIN sees that the General CARNOT-CLAPEYRON Theorem 

op 
p.Av = o(} (SL.4)r 

and his own new evaluation (3) are free of it, but he lets them sit. The genius 
of thermodynamics always deflected its devotees from the essential logical 
structure and the key facts of experiment into a labyrinth of complicated 
and unenlightening details about steam. 

[KELVIN has in his hands a brilliant chance to bring known and accepted 
general theory and already accepted experiment together, without a single 
glance at a steam table. Theory first. We apply the basic assumption of the 
"dynamical theory", namely 

L(W) = JC(CC) = J[C+(CC) - C-(CC)] . (7A.l)r 

To calculate C+(W) and C-(W), we tum to CARNOT'S evaluation of the heat 
added on~an isothermal path ~ undergone by a body of ideal gas: 

C(~) = p.~) log ~: ' (SK,S)2r 

an evaluation KELVIN had confirmed in §46 of his first paper; as he has just 
remarked, §46 is one of the sections that remain valid. We thus show that 

1 I Vc 
L(W) = 1 _ ;(F) og Va 

JC+(CC) 1 Vb ' 
p.«(}+) log Va 

(9B.13) 

the notation being as in Figure 3 in §SC. The left-hand side is asserted to 
have the same value for all Camot cycles whose operating temperatures are 
()+ and ()-, and p. is asserted to be a universal function, the same for all 
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bodies. As we have mentioned above in §7H, and as KELVIN himself was to 
see in 1853, we may evaluate it by considering any particular material we 
deem compatible with the theory or acceptable as a good representation of 
the facts of experiment. Now experiment. LAPLACE'S theory of the speed of 
sound in ideal gases was generally accepted for air and some other fluids. 
As we have seen in §5T in our discussion of the work of CARNOT, the results 
of that theory do not fit experimental data unless y = const. > 1. 

CLAUSIUS (§8B) had already shown that such a gas was compatible with 
his results, but then he had used his "subsidiary hypothesis", which KELVIN 
refuses to adopt. No need. Ifwe suppose that there is one ideal gas for which 
y = const. > 1, by use of the LAPLACE-POISSON law of adiabatic change in 
the form 

:0 = (~r (8B.3)1r 

we see that in a Carnot cycle undergone by a body of that gas 

Va Va 
Vb = Vo ' 

(9B.14) 

a fact KELVIN was to notice a year later (ef §9D, below); of course he could 
have read it off from RANKINE'S (9A.5). Use of (14) reduces (13) to 

L(rc) p.(0+) 
JC+(rc) = 1 - p.(0-) . (9B.15) 

This result is compatible with KELVIN'S own general formula (9) if and only 
if p. = J/(8 + const.). Since p. is universal, it is now evaluated once and for 
all, to within a constant. While this analysis does not quite establish the 
HELMHOLTZ-JOULE Determination (5N.7), it comes very close. 

[It is strange that KELVIN did not think it worthwhile to write down the 
result of using the HELMHOLTZ-JOULE Determination to render the General 
CARNOT-CLAPEYRON Theorem specific. Of course it becomes 

op 
JAv = 0 00 ; (7I.2)r 

we have seen that this statement was implied by RANKINE'S paper of 1850 
(above, §8G, especially (8G.8)1), but there it was obscured by its apparent 
origin in the deportment of molecular vortices, and also RANKINE himself 
failed to notice it then. Later 7 KELVIN was to use (5N.7) to reduce (10) and 
(11) immediately to the forms we now find in textbooks: 

o 02p 
oV (JKv) = 0 002 , (9B.16) 

(op) 2 

J(Kp - Kv) = 0 o~p , (9B.17) 

-oV 

7 JOULE & THOMSON [1854, Theoretical Deductions, Equations (8) and (7) in §VJ. 
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but even then he did not record the centrally important relation (71.2), 
which was reserved for CLAUSIUS, as we shall see below in §l1E. Had 
KELVIN noticed (71.2) then, he could have combined it with (16) to see at a 
glance that 

(9B.18) 

and so gone on to discover the entropy and its properties. Cf RANKINE'S 

near approach, described above in §§8H and 9A. In the next act (§lOA) 
we shall encounter REECH'S pro-entropy and witness his failure to reduce it. 

[Two years later KELVIN is to have another chance and miss again. We 
shall discuss his work then in §9D.] 

9C. A Voice Crying in the Wilderness: REECH'S 

Return to First Principles 

[The whimsy of the tragicomic muse next fell upon] REECH, a naval 
engineer who had already written a tract on the performance of marine 
steam engines in practice l and who was then in charge of test and analysis 
of such engines at the port of Lorient. [The opposite pole from the un­
mathematical and unpractised and ill-read MAYER,] REECH chose to express 
the results of his abundant experience and his study of previous work on 
the subject in terms of the formal calculus he had learnt at the Ecole Poly­
technique. He did so in a [deadly] memoir 211 pages long, dense with 
equations, and published in a mathematical journal! 

On November 17, 1851, REECH submitted to the Paris Academy "a very 
considerable work" entitled Theory of the motive force of caloric 2 • On 
December 1 of the same year he submitted an addendum, Note on the theory 
of the dynamical effects of heat 3, in which he referred to the recent theories 
of KELVI~ and CLAUSIUS on the subject of his earlier communications. 
Between those two dates he published a short notice 4 of the memoir. [Perhaps 
one of the commissioners appointed to examine his work, among whom was 
CLAPEYRON, had directed his attention to the theories lately proposed by 
foreigners. That notwithstanding, we shall find in the enormous memoir 

1 Memoire sur les machines Ii vapeur et leur application Ii la navigation, Paris, Bertrand, 
1844. There is a copy in the British Museum. REECH states that the contents were sub­
mitted to the French Academy in 1838. I can find in this work no theory of heat engines 
and no reference to CARNOT or CLAPEYRON. 

2 Acknowledged on p. 540 of Volume 33 of the Comptes Rendus. 
3 Acknowledged on p. 602 of the same volume. 
4 REECH [1851]. 
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he published two years later little influence of their work,] except that in 
its title, as in the title of his addendum, he used" heat" rather than" caloric". 
Deferring most of our analysis of the published memoir until §lOA, we shall 
remark only upon what the preliminary notice reveals. 

"Long ago I had grafted upon Mr. Clapeyron's memoir a very curious 
work regarding the production itself of caloric in the phenomenon of the 
combustion of a kilogram of carbon in a closed vessel with injection of air 
into this vessel, and I was prepared to publish my work when I learned that 
Mr. Regnault disputed" the equation C+(~) = C-(~ ... ; "encouraged 
by Mr. Regnault himself to sift the matter, I applied my~elf to reconsider 
minutely the reasoning of Messrs. Carnot and Clapeyron, and I was not 
slow to prove" that CARNOT'S proposal should be replaced by 

L(~) = r(8+)C+(~) - r(8-)C-(~) , 
(9C.l) 

= [r(8+) - r(8-)]C+(~ + r(8-)[C+(~ - C-(~)] 

Of course ~ is a Carnot cycle. The long memoir published two years later 
reveals how REECH had arrived at this conclusion 5. 

REECH begins from first principles: 

p = w(V, 8) , 

Q = Av(V, 8)V + Kv(V, 8)8 , 

and the equation in CARNOT'S General Axiom: 

L(~) = G(8+, 8-, C+(~» 

(2A.2)lr 

(2C.4)r 

(51.1)r 

[In this sense he is just when] he claims that he has deduced his result (1) 
"without making any hypothesis about the intimate nature of heat", and 
that (1) is "a superior relation which will dominate both Mr. Carnot's 
theory and the more recent theories of some other physicists." [REECH is 
the first and also the last of the early authors on thermodynamics to probe 
the logical structure of the subject. Alas, here too the tragicomic fury casts 
her spell by m~king him attempt to prove everything by running engines 
backward and forward against each other. Upon examination, many of his 
proofs may be seen to consist of nothing more than repeated applications of 
the reversal theorems: 

C( -PJ5) = - C(PJ5) , L( -PJ5) = -L(g;). (2C.7)r, (2C.21)r 

and to be as loose as the verbiage of CLAUSIUS. Despite his fluency in dif­
ferential calculus, REECH seems not to know how to handle the integrals. 
Furthermore, he reasons obscurely in terms of a net of adiabats and isotherms 
rather than the latent and specific heats directly. We might think he was 

5 REECH [1853, Chapter II, especially pp. 368-371]. 
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attempting to appeal to principles more general than those of the Doctrine 
of Latent and Specific Heats,] but this is not S06. 

First, REECH shows that the equation in CARNOT'S General Axiom, 
namely (51.1), is equivalent to the equation in the following statement: 

L(f(!) = K«()+, ()-)C +(f(!), K(x, y) > 0 if x > y > 0, K(x, x) = 0 ; 

(5J.5)r 

so as to make the statement complete, we add the inequality into which the 
inequality in CARNOT'S General Axiom, namely (51.2), translates. For proof 
(p. 364) REECH considers n repetitions of the cycle rc and asserts that the 
work done should be nL(f(!). [Indeed, such is the case, and a proof of (51.5) 
can be founded upon this fact 7, but the theorem follows at once by a simple 
and rigorous argument in terms of line integrals 6. We consider a given 
Camot cycle rc (Figure 7), and we subdivide it into two others, say rc 1 and 
rc 2, corresponding to the same extremes of temperature. The construction 
is clear from Figure 7, in which ef is the adiabat descending at e from the 
isotherm () = ()+ to the isotherm () = ()-. We recall that Q > 0 all along 

e In later parts of his memoir he uses latent heats and specific heats freely; in a later 
defense of his work RESCH [1863, 2] makes (2C.4) his explicit starting point; and finally 
in his textbook RSSCH [1868] develops the theory of calorimetry in detail before taking 
up thermodynamics at all. 
7 Dropping 8+ and 8- from the notation, we may write RESCH'S condition as G(nC +) = 
nG(C+) for every positive number C+ and every positive integer n. Taking C+ = lIn 
shows that G(lln) = G(l)ln. Repeated application of RSSCH'S condition shows that if 
m and n are positive integers, then 

G(~) = ~ G(l) . 

Thus G(x) coincides with G(l)x whenever x is a positive rational number. Since the 
rationals are dense in the reals, the only continuous function G which has this property 
is G(l)x itself. 

Arguments of this kind go back at least to CAUCHY'S lectures of 1823 at the Ecole 
Polytechnique and should have been familiar to RESCH, though doubtless not to CARNOT 
or CLAPSYRON. 
8 In this day of dazzling enlightenment powered neither by learning nor by intelligence, 
an author who does what I have done here runs a double danger: to be reproached by 
the Historians of Science for having stopped copying and thus become present-minded, 
and to be reproached by thermodynamicists for merely unearthing old proofs without 
doing anything original. I claim that RSSCH'S argument here was crude and awkward 
but substantially correct. I acknowledge the fact that without having read through 
RESCH'S sloppy proof, I should not have thought of the simple proof I present here, 
but I defy anyone to find that proof in RSSCH'S text. On the other hand, mathematics 
being mathematics, I claim that RSSCH'S result was implied all along, strictly and in­
escapably, by the premisses of CARNOT'S theory without any further assumptions about 
heat and work and that my proof uses only mathematics widely available in the early 
nineteenth century. I see not only nothing inconsistent but also nothing either unhistorical 
or superannuated in maintaining all these views together. I treat REsCH as a dead 
scientist whose works sti11live. 
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Figure 7 

the line aeb, and hence the heats absorbed on the Camot cycles re, relo and 
re2 , respectively, are related thus: 

C+ = Ci + Ct . (9C.2) 

This relation follows from the definition 

(2C.22)lr 

applied to each cycle in tum. Since the adiabat ef is traversed in opposite 
senses on reI and ~ 2, by using the relations 

L(&1) = L w(V, 8)dV , 

we conclude that 

L( -&1) = -L(&1) , (2C.20)ar, (2C.21)r 

(9C.3) 

Now we appealto the equation in CARNOT'S General Axiom, namely (51.1); 
we substitute it into both sides of (3) a~d by use of (2) conclude that 

G«(J+, (J-, w + u) = G«(J+, (J-, w) + G«(J+, (J-, u) . (9C.4) 

In virtue of CAUCHY'S theorem on additive functions, all solutions of this 
functional equation that are continuous 9 in their third argument are linear 
in it. We have proved] 

REEcH'sjirst theorem: CARNOT'S General Axiom is compatible with the theory 
of calorimetry only if it reduces to 

L(rc) = K«(J+, (J-)C+(rc) , K(x, y) > 0 if x> y > 0, K(x, x) = 0 . 

(5J.5)r 

9 This theorem appears as Theorem 6 in Chapter 8 of Concepts and Logic; the proof 
there does not require G to be assumed continuous in its third argument and does 
take account of the fact that only positive arguments should be considered. 
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REBeR's own proof that (5J.5) reduces to (1) [is complicated and incom­
plete]; also, as he notes, it fails in one case. [His theorem is easy to prove 
directly and without exception. To do so, we start from a given Camot 
cycle <'C and form another corresponding to the same heat absorbed but a 
lower minimum temperature, say 00 • We simply extend the adiabats be and 
ad downward (Figure 8) until they intersect the isotherm 0 = 00 at, say, g 
and h. Then abeghda is a Camot cycle, say <'C 4, and so also is deghd, say <'C 3. 

The heats absorbed on these three cycles satisfy the relations 

(9C.5) 

The latter relation follows from the reversal theorem 

C( -PJf) = - C(PJf) . (2C.7)r 

and the fact that both <'C 4 and <'C 3 are Camot cycles. Of course 

(9C.6) 

In view of (5), by applying (5J.5) in tum to the three cycles <'C4 , <'C, and <'C3 , 

we obtain 

L(<'C4) = K(O+, Oo)C+(rc) , 

L(rc) = K(O+, O-)C+(rc) , 

L(<'C3) = K(O-, Oo)C-(rc) . 

Substitution into (6) yields a functional equation for K: 

K(O+, O-)C + = K(O+, Oo)C + - K(O-, Oo)C-

Thus if we fix 00 at some value less than 0-, we define r as follows: 

reO) == K(O, 00) provided 0 > 00 

8 

b 

8- d C 

~3 

80 
h 

'ti. 
g 

V 
Figure 8 

(9C.7) 

(9C.8) 

(9C.9) 



9D. JOULE-THOMPSON EFFECT AND SUBSIDIARY DETAILS 241 

and write (8) as10 

L(~) = K(8+, 8-)C+(~) = r(8+)C+(~ - r(8-)C-(~ , 

thus proving] 

(9C.IO) 

REECH'S second theorem: CARNOT'S General Axiom is compatible with the 
theory of calorimetry only if it reduces to (1). 

REEeR infers from (1) the following corollary: The Doctrine of Latent 
and Specific Heats being presumed, CARNOT'S Special Axiom, namely 

L(~) = [F(8+) - F(8-)]C+(~ , 

F(x) > F(y) if x > y > 0 , 

(5I.6)r 

(5I.5hr 

is a necessary and sufficient condition that CARNOT'S General Axiom be 
compatible with the Caloric Theory. Indeed, necessity is immediate from 
(10). [I do not find REEeR's proof of sufficiency convincing, but the state­
ment is correct, for it is a consequence of Scholion I in §5J. The fact asserted 
is essential if we are to understand CARNOT'S theory.] 

REEeR's note is cryptic. Not only does CARNOT'S assumption that 
C + = C - correspond to one special case of REEeR's result (1) but also the 
reader is expected to read off from (1)1 the equivalence of the condition 
r( 8) = J, a constant, to the assumption of CLAUSIUS: Heat is universally 
and uniformly interconvertible with work in cyclic processes. REEeR does 
not mention these names, but he does mention the possibility that "by 
chance, experiment might make it come out" that r(8) = const., though 
he regards this possibility as "truly very doubtful". This is the year 185l. 

In Chapter 10 we shall consider the results REEeR is to publish in the 
revised long memoir. 

9D. KELVIN'S Analysis of the Joule-Thomson 
Effect and Subsidiary Details 

Some retrospective parts of KELVIN's next paper1 have been mentioned 
above in §§7H and 7I. It is here (§65) that KELVIN writes of the statement 

JAv = p , 

which we have called HOLTZMANN'S Assertion, 

(7D.l)r 

10 We must be careful not to think that C+ and C- can be varied independently. They 
cannot, since 

IVC 

C- = Av(V, 8-)dV , 
Vd 

and the points a, b, c, and d are the vertices of a Carnot cycle. For example, if 8- -+ 8+, 
it follows that C - -+ C + , so both sides of (8) reduce to O. 
1 THOMSON [1852, 1]. 
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This, which will be called MAYER'S hypothesis, from its having been 
first assumed by MAYER, is also assumed by CLAUSIUS without any 
reason from experiment; and an expression for p- the same as the 
preceding, is consequently adopted by him as the foundation of 
his mathematical deductions .... 

"The preceding", of course, is the HELMHOLTZ-JOULE Determination 

p- = JI8 . 

KELVIN obtains (§63) the integrated form of the General CARNOT-CLAPEYRON 
Theorem (5LA) which we have recorded above in Footnote 10 to §7H. 

Having refused for four years to accept JOULE'S suggestion (5N.7), KELVIN 
faults CLAUSIUS for having assumed it "without any reason from experiment" 
(§65). He reminds the reader (§66) that "a complete test" of "MAYER'S 
hypothesis" would be "the determination of the values of p- through a wide 
range of temperatures ... with a single accurate determination of J . .. , Thus an 
experimental determination of the density of saturated steam for tem­
peratures from 0° to 230° Cent. would complete the data ... and would 
contribute more, perhaps, than any set of experimental researches that could 
at present be proposed, to advance the mechanical theory of heat." KELVIN 
tells us (§67) 

Mr. JOULE, when I pointed out these discrepancies to him in the 
year 1848, suggested that even between 0° and 100° the inaccuracy of 
the data regarding steam might be sufficient to account for them. I 
think it will be generally admitted that there can be no such inaccuracy 
in REGNAULT'S part of the data .... 

As for CLAUSIUS' determination of an empirical formula for the density of 
steam sufficient to make p- conform with the HELMHOLTZ-JOULE Determina­
tion, KELVIN writes (§68) 

In this direction theory can go no further, for want of experimental 
data; although ... it may be doubted whether such excessive deviations, 
in the case of steam, from the laws of a "perfect gas" are rendered 
probable by a hypothesis resting on no experimental evidence 
whatever. 

Next (§72) KELVIN suggests the famous experiment that was to be interpreted 
as confirming the HELMHOLTz-JOULE Determination p- = JI8 while showing 
that HOLTZMANN'S Assertion JAv = p may fail to be borne out by the 
behavior of real gases. 

Mr JOULE'S second experiment on the same apparatus, in which 
he examined separately the external thermal effects round each of the 
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two vessels, and round a portion of the tube containing the small orifice 
(a stop-cock), has suggested to me a method which appears stilI simpler, 
and more suitable for obtaining an excessively delicate test of MAYER'S 

hypothesis for any temperature. It consists merely in dispensing with 
the two vessels in JOULE'S apparatus, and substituting for them two long 
spirals of tube (instead of doing this for only one of the vessels, as 
JOULE does in his third experiment with the same apparatus); and in 
forcing air continuously through the whole. The first spiral portion of 
the tube, up to a short distance from the orifice, ought to be kept as 
nearly as possible at the temperature of the atmosphere surrounding 
the portion containing the orifice, and serves merely to fix the tem­
perature of the entering air. The following investigation shows what 
conclusions might be drawn by experimenting on the thermal 
phenomena of any fluid whatever treated in this manner. 

73. Letpl be the uniform pressure of the fluid in the first spiral, up to 
a short distance from the orifice, and let P2 be the pressure a short dis­
tance from the orifice on the other side, which will be uniform through 
the second spiral. Let 8 be the constant external temperature, and let the 
air in both spirals be kept as closely as possible at the same temperature. 
If there be any elevation or depression of temperature of the fluid in 
passing through the orifice, it may only be after passing through a 
considerable length of the second spiral that it will again arrive sensibly 
at the temperature 8; and the spiral must be made at least so long, that 
the fluid issuing from the open end of it, when accurately tested, may be 
found not to differ appreciably from the primitive temperature 8. 

74. Let - C be the total quantity of heat emitted from the portion 
of the tube containing the orifice, and the second spiral, during the 
passage of a volume V1 through the first spiral, or of an equivalent 
volume V2 through the parts of the second where the temperature 
is sensibly 8. This will consist of two parts; one (positive) the heat 
produced by the fluid friction, and the other (negative) the heat emitted 
by that portion of the fluid which passes from one side to the other of 
the orifice, in virtue of its expansion. 

The amount ofworkL, which "will be lost as external mechanical effect, and 
will go to generate thermal vis viva", is given by 

iV2 L = pdV + Pl V1 - P2 V2 . 
VI 

(9D.l) 

The" quantity Of heat thus produced" is LjJ. Subtracting from this quantity 
"the amount previously found to be absorbed when the mechanical effect 
is all external" yields "the total quantity of heat emitted by that portion 
of tube which contains the orifice and the whole of the second spiral": 

1 [iV2 
] 1 fV

2 8p - C = - pdV + Pl V1 - P2 V2 - - - dV . 
J VI JL VI 88 

(9D.2) 
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For an ideal gas (§7S) Pl Vl = P2 V2 , and (2) yields 

-c = (~ - :O)L . (9D.3) 

Thus (§76) "MAYER'S hypothesis", which leads to the HELMHOLTz-JOULE 
Determination 

I" = JIO , (SN.7)r 

implies that C = O. KELVIN (§§77-S0) regards this formula as lending itself 
to a good experimental test of "MAYER'S hypothesis". 

[Here we encounter both the first attempt to treat by thermodynamic 
theory a process that is neither isothermal nor adiabatic nor cyclic and also 
the first attempt to take account of an "irreversible" effect along with a 
reversible change. It is small wonder that on both counts the analysis is 
faulty. KELVIN seems to take over unchanged the ideas in CLAUSIUS' first 
paper yet allow the possibility that the fluid be something other than an 
ideal gas. From CLAUSIUS' results 

E = JQ + P , P == -pV , 

we see that if E is not a function of 0 alone, the heat subtracted in an iso­
thermal process is not just the mechanical equivalent of the work done on 
the body: KELVIN ought have added to the first integral on the right-hand 
side of (2) the quantity E(V2'0) - E(Vl' 0). In §SD we have seen that 
CLAUSIUS' ideas if applied to a fluid having any equation of state would 
have led to the relation 

8E 
JAv -p =-

8V' 

which shows that HOLTZMANN'S Assertion 

JAv =p 

(SD.3)lr 

(7D.l)r 

holds if and only ifE is a function of 0 alone. As KELVIN'S formula (2) can 
hold only if HOLTZMANN'S Assertion does, he cannot use one to test the 
truth of the other. Furthermore, to take account of the effects of fluid 
friction KELVIN should add further terms to his expression for the work 
done in pushing the gas through the spirals.] KELVIN seems to have grasped 
both these objections while this paper was passing through the press, for in 
a footnote to (2) he directs us to "a more comprehensive investigation, ... 
including a proof of this result", to which we turn now 2. 

KELVIN first (§§S4-SS), after laying down the Doctrine of Latent and 
Specific Heats, assumes the truth of (SB.2) as an expression of the equivalence 
of heat and work. He assumes also that E, which he calls "the mechanical 

2 THOMSON [1853, 1]. 
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energy", is a function of V and 8. Thus he quickly derives the central 
formulae 

and 

op = J (OAv _ OKv) 
08 08 oV 

oE 
JAv - p = oV ' 

oE 
JKv = 08 (8D.3)r 

[While for CLAUSIUS a major aim had been to demonstrate the existence 
of the internal-energy function, now the "First Law" is stated in terms of 
that function. Energy is become obvious. Subsequent work in thermo­
dynamics has usually followed KELVIN in this regard. The idea of internal 
energy is easily adapted to thermodynarp.ic systems far more general than 
any the pioneers considered.] 

To explore the consequences of CLAUSIUS' thermodynamics without 
CLAUSIUS' "subsidiary hypothesis", KELVIN eliminates Av between the 
General CARNOT-CLAPEYRON Theorem 

and (8D.3)1' The result is 

oE J op 
- = ---p 
oV p, 08 

(9DA) 

(KELVIN's Equation (4')). J/p, is one and the same function of 8 for all fluids. 
Once it be known, we can use (4) and (8D.3)2 to determine E from p and Kv 
or p and Kv from E. "For example, let the fluid be atmospheric air, or any 
other subject to the' gaseous' laws." Then for a body of ideal gas (his Equation 
(9)) 

E = R(:! - 8) log;' + JiB Kv(Vo, x)dx + E(Vo, 80) . 
p, ° Bo 

(9D.5) 

[Since KELVIN is rejecting the HELMHOLTZ-JOULE Determination, E need 
not reduce to a function of 8 alone.] Moreover, E and p together allow us 
to determine both Kp and Kv by using (8D.3h and the calorimetric relation 

oPjop Kp - Kv = - Av 08 0 V . (2C.9hr 

KELVIN gives simple examples (§§90-92), leaving p,/J an arbitrary function 
of 8. 

In the last three sections of the paper KELVIN corrects his former analysis 
of the Joule-Thomson effect. He considers the passage of a unit mass of air 
through the apparatus. He denotes by S "the mechanical value of the 
sound emitted from the' rapids''', [that is, the amount of work that the body 
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does so as to effect whatever dissipative processes necessarily accompany 
its transit]; if C is the heat added to the body, then (his Equation (16)) 

(9D.6) 

If the circumstances be arranged (as is always possible) so as to 
prevent the air from experiencing either gain or loss of heat by con­
duction through the pipe and stopcock, ... C = 0; and if (as is perhaps 
also possible) only a mechanically inappreciable amount of sound be 
allowed to escape, we may take S = O. 

Then (6) reduces to (his Equation (17)) 

E(V2, ( 2) = E(Vl' ( 1) - (P2V2 - P1V1) (9D.7) 

If the air is an ideal gas and 82 = 81> then E(V2' 8) = E(Vl' 8), "which is, 
in fact, the expression of MAYER'S hypothesis, in terms of ... mechanical 
energy .... " [Thus KELVIN has noticed, at last, this obvious and celebrated 
corollary of (8D.3)1'] If, on the other hand, 82 =F 81> we may calculate V2 

and V1 from "the known laws of density of air," so from (7) we can calculate 
E(V2' ( 2) - E(Vl' ( 1), 

If, instead (§96), "the air on leaving the narrow passage be ... brought back 
exactly to the primitive temperature ... ," and if S can be neglected, then use 
of (5) in (6) yields KELVIN'S former result (2) as specialized to an ideal gas. 

[In the explosion of tedious print we are here enduring, these few pages 
out of all KELVIN'S effusions on thermodynamics seem doubly wonderful. 
Up to now every thermodynamic analysis has rested upon the Doctrine of 
Latent and Specific Heats and has shared its inherent limitations. Here, for 
the first time, we see heating and working regarded as primitive concepts. 
Indeed, in (6) we cannot expect to calculate C from the calorimetric relation 

C = C(gJ) = fa. [Av(V, 8)dV + Kv(V, 8)d8] (2C.6)r 

nor to regard S as an amount of work calculable from the definition 

it2 

L == pet) V(t)dt . 
t1 

(2C.19)r 

[KELVIN'S result (6) is the earliest example of a true balance of energy, 
heat, and work, not bound to any particular class of constitutive relations. 
KELVIN's first derivation of (2) had rested upon use of a class of constitutive 
relations which in fact do not apply to irreversible processes. His analysis 
here shows that it need not have done so. 

[In KELVIN's treatment we find also the first occurrence of the enthalpy: 
XCV, 8) == E + p V. It is the enthalpy that here is expended by the production 
of heat and loss of work through processes which need not be described in 
detail. The literature of thermodynamics has followed this way of looking 
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at the matter. We shall see below in §lOC that in this very same year, 1853, 
REECH will introduce the enthalpy formally in a more general thermo­
dynamics and will show that the enthalpy when taken as a function of 
entropy and pressure is a thermodynamic potential. 

[KELVIN still adheres to "the gaseous laws" expressed by the thermal 
equation of state pV = RO. The now accepted interpretation of the 10ule­
Thomson effect regards the experiment as demonstrating departure of a 
real gas from the behavior of an ideal one. To trace the development leading 
to this interpretation would carry us beyond the period of this tragicomedy, 
so I merely state the outcome. The enthalpy is calculated as a function of 
o and p. Then 8 becomes proportional to p with a coefficient that is a known 
function of p and O. The coefficient may be positive or negative or null. The 
ratio 81P is interpreted as approximating (01 - 02)/(PI - P2)'] 

Another note by KELVIN 3 presents for the first time [and astonishingly 
late in the day] the explicit calculation of the work done by an ideal gas in 
adiabatic expansion from the volume VI to the volume V2 , on the assumption 
that i' = const.: 

L = ~ [(V2)Y-l - I] . 
i' - 1 VI 

(9D.S) 

KELVIN obtains this result straight off from the LAPLACE-POISSON Law 
p vY = const., which shows him also that for a Camot cycle labelled as in 
Figure 3 in §5C 

Va Va 
Vb=Vc' (9B.14)r 

Application of (9B.I0) to (S) shows that the work done on the expanding 
adiabat is just annulled by the work lost on the contracting adiabat, so two 
uses of PETIT'S formula 

L(&1o) = RO log ~: 
deliver the work done by the cycle: 

v; V 
L(CC) = RO+ log V: - RO- log V: . 

Another use of (9B.14) reduces (9) to the form 

L(CC) = R(O+ - 0-) log ~b , 

a 

= (RO+ log ~:) (1 - ::) , 

=L(&1o+)(I-::) , 

3 THOMSON [1852,3]. 

(5K.1hr 

(9D.9) 

(9D.IO) 
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L(f!1 +) being the work done in the expansion from Va to Vb at the tempera­
ture 8+. Thus much follows from nothing but the LAPLACE-POISSON law 
[and hence rests only upon the Doctrine of Latent and Specific Heats applied 
to an ideal gas having constant y]. HOLTZMANN'S Assertion in the form 

L(f!1) = JC(f!1) , 

converts (10) into 
L(CC) 8-

JC+(CC) = 1 - 8+ . (9A.1O)r 

KELVIN remarks that his earlier derivation of this result from" MAYER'S 
hypothesis" did not require y to be constant, and that RANKINE also had 
arrived at it. 

[KELVIN misses the point of what he has done. He has proved that (9A.10) 
follows from assuming that y = const. and JAv = p. But he already knew 
thatJAv = p was equivalent to Kp - Kv = const. (cl §7E). Thus he assumes 
that both Kv and Kp are constant. What he has proved is that an ideal 
gas with constant specific heats achieves the classical efficiency in Carnot 
cycles. He could easily have gone on to prove] a theorem soon to be discovered 
by HOPPE 4 : An ideal gas with constant specific heats interconverts heat and 
work uniformly and universally in cyclic processes-this without applying 
any relation between heat and work, not even CARNOT'S General Axiom! 
[Indeed, HOLTZMAN'N'S Assertion JAv = p allows us to replace Av by 
R8/(JV) in the general formula for the heat absorbed on an isothermal 
path: 

iVb C(f!1) = Av(V, 8)dV , 
Va 

J,Vb dV v, 
JC(f!1) = R8 V = R8 log Vb . 

Va a 

(9D.11) 

Hence for a Camot cycle 

JC(CC) = R8+ log Vb - R8- log Vc 
Va Va 

(9D.12) 

If also the ratio of specific heats is constant, we may use KELVIN's result 
(9) and so conclude that L(CC) = JC(CC). Moreover, the J that appears here 

4 HOPPE [1856] established this fact somewhat awkwardly, using the unfortunate inde­
pendent variables p and V. CLAUSIUS [1856,3], while pronouncing HOPPE'S analysis 
elegant, explained why in his work of 1850 he had not assumed Kp and Kv constant: 
Even to assume that they were functions of (J alone was "counter to the then received 
views", and only later did REGNAULT'S experiments lend credence to assuming them 
constant. CLAUSIUS misses the point here. It is neither necessary nor desirable to assume 
that Kp and Kv are constant for ail ideal gases. If one ideal gas with constant specific 
heats is allowed as a mathematical model, that assumption contradicts the Caloric Theory 
and provides an example of a substance that automatically satisfies CLAUSIUS' basic 
assumption of 1850: L(rc) = JC(rc). 
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is the mechanical equivalent of a unit of heat in isothermal expansion of 
an ideal gas. The result established shows that this same J is the mechanical 
equivalent of a unit of heat in Camot cycles; that is, the J that appears in 
CLAUSIUS' basic axiom (7A.l). HOPPE'S theorem thus fills a gap in CLAUSIUS' 
analysis which we noted in §8D: If one ideal gas has constant specific heats, 
the MAYER-HOLTZMANN equivalent and the CLAUSIUS equivalent are equal. 
Both, of course, are the J obtained by use of MAYER'S formula: 

R 
J = (l _ ,,-l)Kp (7B.3)r 

[These observations provided one key to the program of Concepts and 
Logic. The other key was the idea that one example serves to determine a 
universal function. This applies to theory a statement KELVIN made in 
reference to experiment, a statement quoted above in §7H. To use this key, 
we now-and only now-invoke CARNOT'S General Axiom. Then we at 
once determine the universal function p. by Theorem 2 in §7I, namely 
p. = J/B. It is then an easy matter to demonstrate the "First Law" aJ;ld the 
"Second Law" in their classical forms for reversible processes. To confirm 
this statement, the reader may consult Concepts and Logic.] 

Appendix by C.-S. MAN: The JOULE-THOMSON Experiment 

In the first of their communications to the Royal Society with the title "On 
the Thermal Effects of Fluids in Motion", KELVIN & JOULE l undertook to 
determine "the value of p., CARNOT'S function" as "[a] principal object of 
the researches.'.' For that purpose they proposed to use the formula 

J JK8 + fv:pdV + PlVl - P2V2 

P, = 5:: op/oB dV ' 
(1) 

which is (9D.2); with C in (9D.2) written as K8. Here" 8 is the observed cooling 
effect; ... K the thermal capacity of a pound of the gas under constant 
pressure equal to that on the low-pressure side of the gas", and "K8 is the 
heat that would have to be added to each pound of the exit stream of [gas] 
to bring it to the temperature of the bath". For convenience of exposition, 
in this appendiJS: we follow KELVIN and adopt as empirical-temperature scale 
the centigrade temperature B according to REGNAULT'S standard air-thermo­
meter. 

A glance immediately reveals the fact that the experimental data delivered 

1 THOMSON & JOULE [1853, pp. 357-358]. 
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by a porous-plug experiment with bath temperature 8b, namely 8, PI, and P2, 
are insufficient to determine p.( 8b) from (1). To that end also J, K, Vlo V2 , and 
the functions p(V, 8b), op/o8 (V, 8b) "between the limits of pressure in the 
experiment" must be ascertained. 

[By this time, a good value of J is available2. In April of this very year, 
1853, REGNAULT 3 publishes the results of his long overdue experiments on 
specific heats of gases. Thus all requisite numbers and functions will be 
available, once the equation of state of the gas be known. However,] the 
equation of state as delivered by the" gaseous laws" is unacceptable here not 
only because" REGNAULT has shown that the [gaseous laws are] not rigorously 
true", but [more importantly] because JOULE & KELVIN's experiments "show 
that 8/log{PI/P2) increases with PI/P2'" Indeed, for KELVIN throughout the 
period of this tragicomical history the equation of state that follows from the 
gaseous laws is, for a pound of gas, 

pV = PoVo{1 + ao8) ; (2) 

PoVo is "the product of the pressure .. .into the volume ... of the gas at 0° 
Cent."; ao = 0.003665 is "the standard coefficient of expansion of atmos­
pheric air" for the standard air-thermometer. Substitution of (2) into (1) 
yields 

(3) 

Data which show 8/log{PI/P2) increasing with PI/P2 will not provide a con­
sistent estimate for p.. "Hence in reducing the experiments," KELVIN & 
JOULE observe, "a correction must be first applied to take into account the 
deviations, as far as they are known, of the fluid used, from the gaseous laws, 
and then the value of p. may be determined [through (1)]." 

As JOULE & KELVIN remark in §III of their second communication 4 on the 
same subject, their preliminary experiments 5, for which the cooling effect 8 is 
"very slight", are sufficient to show that J/f£ ~ (1/ao) + 8 approximately, 
[say to within one or two percent,] at least for the range of temperature of 
their experiments (from about 0° to 77°C). [Hence the result which they 
expect to get is quantitative, say accurate to "within less than two or three 
tenths of a degree"; appeal to (1) shows that the scatter of their data of 1854 
would exclude anything sharper. If on the one hand REGNAULT'S "great 
work" of 1847 does show definitively that no real gas obeys the "gaseous 
laws", it seems not to provide data sufficient to deliver for any real gas an 
empirical equation of state good enough to calculate J/ p. from (1) with an 
error less than two or three tenths of a degree.] 

2 JOULE [1850]. 
a REONAULT [1853]. 
4 JOULE & THOMSON [1854]. 
8 JOULE & THOMSON [1852]. 
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In proposing the use of (1) to evaluate p. (with air as the gas in the experi­
ment), KELVIN & JOULE also remark: 

An expression for [f~: pdV] for any temperature may be derived from 

an empirical formula for the compressibility of air at that temperature, 
and between the limits of pressure in the experiment. 

[Thus they are not yet aware of the difficulty.] 
In their second communication 6 to the Royal Society JOULE & KELVIN 

point out the difficulty inherent to their previous proposal (p. 348): 

The direct use of this equation [Le., (1)] for determining Jlp. requires, 
besides our own results, information as to compressibility and expansion, 
which is as yet but very insufficiently afforded by direct experiments, and 
is consequently very unsatisfactory .... 

Moreover, although they report data of experiments on air, carbon dioxide 
and hydrogen, only those for air are" of sufficient accuracy" to warrant 
using them in the evaluation of p.. For air, JOULE & KELVIN's main experi­
mental result is (their Equation (20)): 

S = 0.26 P1 ~ P2 at 17°e ; (4) 

PI - P2 is the difference of the pressures (in lblsq in.) of air before and after 
passing through the porous plug, and II is a conversion factor, changing 
units of pressure from Iblsq in. to atm. It follows immediately that with (4) 
alone, only the value of Jlp. at 17°e can be obtained directly through (1). 

Nevertheless JOULE & KELVIN go on to outline two plans for estimating 
the value of p. at 16°e according to their previous proposal (§III). Instead of 
using (4), which is obtained through various averagings-in fact the bath 
temperature used to get (4) ranges from about l20e to about 200e for 
an individual experiment-they select and use the data from eight of their 
experiments at 16°e. 

[Because the authors themselves seem not to take either of their plans 
seriously, and because I find numerous errors in their numerical calculation, 
I will not describe these plans in detail here, nor even quote the results. It 
suffices to say that] one plan makes use of RANKINE'S equation of state for air, 
which is "a formula obtained with such insufficient experimental data as Mr. 
RANKINE had for investigating the empirical forms which his theory left 
undetermined." In the other plan, to calculate the integrals in (1) JOULE & 
KELVIN use, for one pound of air, an equation of state of the form 

pV= H(1 + fiB) ; (5) 

6 JOULE & THOMSON [1854]. 
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H is "the product of the pressure into the volume of a pound of air, at 0° 
Cent.", and ii denotes "a certain mean coefficient of expansion suitable to 
the circumstances of each individual experiment". Thus (I) becomes 

(6) 

really the coefficient of the denominator of the last fraction should be ii, but 
JOULE & KELVIN substitute (xo for it, "since the numerator ... is so small, that 
the approximate value may be used for the denominator." To estimate the 
values of ii and Pl V1 - P2 V2 for the several experiments, a further problem 
arises for want of data. To evade the problem, JOULE & KELVIN estimate 
Pl V1 - P2 V2 "by using REGNAULT'S experimental results on compressibility 
of air as ifthey had been made, not at 4~75, but at 16° Cent."; as for ii, which 
should represent some "mean coefficient of expansion" for the range of 
pressure Pl to P2 "at the particular temperature of the experiment", they use 
REGNAULT'S observations regarding the effect of variations of density on "the 
mean [pressure coefficient of] expansion from 0° to 100°". [In following this 
plan, JOULE & KELVIN have to resort to various arbitrary assumptions, 
which make it virtually impossible to estimate the error thus introduced.] 

In consequence of the difficulty inherent to their original program, in §V of 
their second communication JOULE & KELVIN adopt another approach, one 
result of which is the table" Comparison of Air-thermometer with Absolute 
Scale" at the end of §IV. 

If the" absolute scale" (their Equation (6), see §llB, below) 

is used instead of the empirical-temperature scale 8, rearrangement of (I) 
yields (their Equation (IS)) 

0= J~ {f:'2 (T :f -P)dV + (P2 V2 - P1V1)} . (7) 

JOULE & KELVIN's idea is to use their experimental data on 0 and results of 
other experiments to determine an equation of state for a pound of air: 

P = 'lU(V, T) . 

Then substitution of (8) into the formula (their Equation (9)) 

o = 100 P - Pi, 
Ps - Pi 

v = const. , 

(8) 

(9) 

which defines the centigrade temperature according to a constant-volume 
air-thermometer (ps and Pi denote the pressure of the thermometer at the 
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steam point and the ice point, respectively), will give e as a function of T, 
with the volume V of a pound as parameter. Obviously this includes the result 
expressing 8, the centigrade temperature according to the standard air­
thermometer, as a function of T, the inverse of which gives the evaluation of 
CARNOT'S function "for any temperature". 

[Experimental data alone cannot determine a posteriori an equation of 
state. As a matter of fact, a class of equations of state with undetermined 
coefficients has to be proposed to start with. Experimental data are then used 
to determine these coefficients. Thus the proposed class of approximate 
constitutive functions is crucial.] 

JOULE & KELVIN thus explain how they choose the class of equations of 
state they adopt (p. 357): . 

[w]e adopt the form to which Mr. RANKINE was led by his theory ofmo­
lecular vortices, and which he has used with so much success for the 
expression of the pressure of saturated steam and the mechanical 
properties of gases; with this difference, that the series we assume pro­
ceeds in descending powers of the absolute thermo-dynamic tempera­
ture, while Mr. RANKINE'S involves similarly the temperature according 
to what he calls" the scale of the perfect gas-thermometer." 

In fact, they adopt a simplified version of RANKINE'S formula, assuming for 
a pound of air (their equation (17)) that 

pV = AT + B + (C + D/T + G/T2)cJ>/V , (10) 

where A, B, C, D and G are all constants to be determined by the com­
parison with ~xperimental results, and cJ> denotes a particular volume 
corresponding to a standard state of density, which it will be convenient 
to take as 12.387 cubic feet, the volume of a pound when under the 
atmospheric pressure II ... [at the ice point]. The series is stopped at 
the fifth term, because we have not at present experimental data for 
determining the coefficients for more. 

From the start, "all the terms following [B] in the series" are presumed to be 
"very small fractions of pV". 

The experimental data which we have, and find available, are (1) the 
results of REGNAULT'S observations on the coefficients of expansion at 
different constant densities, (2) the results of his observations on the 
compressibility, at a temperature of 4?75 Cent., and (3) our own experi­
mental results now communicated to the Royal Society. These are 
expressed within their limits of accuracy (at least for pressures of from 
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one to five or six atmospheres, such as our experiments have as yet been 

confined to), by the following equations [their Equations (18) and (19)]: 

a = 0.003665 + 0.0~~8~441 (~- 1) , (11) 

or 
a = 0.00365343 + 0.000011575 <P/V (12) 

PI VI - P2 V2 = 0.008163 PI ~ P2 PI VI, at temperature 4?75 Cent., (13) 

and by (4) above. [I do not find (11), (12), or (13) in REGNAULT'S" great work" 
of 1847. Probably JOULE & KELVIN devise for each of the above two formulae 
a format which serves their purpose in the calculation, and then determine the 
coefficients that best fit REGNAULT'S data. Checking (12) against REGNAULT'S 

data (with <P/Vranging from 0.1444 to 4.8100)7,1 find it fits those data fairly 
well (error within ± 0.1 %) except for the two with the smallest values of <P/V, 
namely 0.1444 (error ~ ±0.2%) and 0.2294 (error ~ +0.13%). An error of 
0.2% would certainly be intolerable if accuracy to "within less than two or 
three tenths of a degree" were sought for the absolute temperature of the 
ice point.] 

From (4), (7), (10), (12), (13) and the definition (their Equation (13» 

a == (Ps - pt)/100pt , V = const. , (14) 

JOULE & KELVIN (i) putting T4.75 = To + 4.75, T17 = To + 17, where To, 
T 4.75, and T 17 denote the absolute temperature corresponding to the ice 
point, the hotness represented by (J = 4.75°C, and the hotness represented by 
(J = 17°C, respectively, then (ii) "neglecting squares and products of the small 
quantities C, D, G,"* and then (iii) putting 

<P p(ATo + B) 
V = II(AT + B) 

(15) 

whenever it is necessary to convert <P/Vinto p/II, obtain (their Equations (26) 
and (30» 

B = 0 , 

l/To = 0.00365343 , (16) 
or 

To = 273?72 , 

(16)2 being the value of a when V = +00. Three linear equations (their 
Equations (27), (29), and (31» involving the four unknowns A, C, D, G 
remain. A further linear equation (p. 359) 

7 REGNAULT [1847, p. 110]. 
*[By "the small quantities C, D, G" JOULE & KELVIN really mean terms with coefficients 
C, D, G, namely C(J) I V, D(J) IT V, G(J) IT V2. Moreover what they really mean to assume is that 
these terms are" small quantities" as compared withp V, for a range of temperature which 
includes 0° to 17° C and for a range of pressure say from one-half to a few atmospheres.] 
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is afforded by a determination of the density of air, which has been most 
accurately given by REGNAULT, ... , a result which is expressed by the 
equation 

ll<l> = 26224 

... Hence we have the equation 

ATo + B + C + DjTo + GjT02 = 26224 . (17) 

Calling 26224, H, ... we may simplify the treatment of the four 
equations by taking the approximate value H for AT 0., in three of them, 
[their Equations (27), (29), (31)] without losing accuracy, and we may 
afterwards use (17) to determine the exact value of [ATol. 

Using the value 1390 for J and 0.238 for K, JOULE & KELVIN thus finally 
obtain (their Equation (39)) 

pV = H{T - (0.0012811 - 1.3il8 + 3~~2)cI>/V} (18) 

by substituting (18) into (9), they calculate the second column in the table of 
§IV. 

[By checking the numerical calculations I find that the numerical co­
efficients in (18) are erroneous. So are the entries in the second column oftheir 
table, with still more computational errors added.] 

JOULE & KELVIN claim that they also obtain the third column of their 
table from (18) but do not indicate how they do so. [Judging from what they 
have done earlier and also later in the same section in the calculation of 
specific heats, I think it likely that by using (15) and (16) they convert the 
right-hand side of (18) from a function of <l>IV and T into a function of pill 
and T. By substituting the subsequent equation into (their Equation (10)) 

V- VI 
{} = 100 Vs _ VI ' P = const. , (19) 

where Vs and VI denote the volume of a pound at the steam point and the ice 
point respectively, they would have expressed {} as a function of T and pill ; 
here, as is apparent from the defining equation (19), {} denotes the centigrade 
temperature according to a constant-pressure air-thermometer. In view of the 
numerous errors in numerical calculation I have found so far, I do not think 
it worthwhile to check my conjecture by comparing explicit results that follow 
from it with the entries in the third column of the table.] 

That portion of §V of their paper of 1854 which we have just described in 
the text and another portion of the section that deals with the calculation of 
specific heats are excised in the volumes of collected papers of JOULE and 
KELVIN. A note of KELVIN'S of 1882 gives the reason: At the conclusion of 
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Part IV of the series of papers bearing the same title, they have derived "a 
better and simpler empirical formula ... from more comprehensive experi­
mental data." 

Some years after it appeared, JOCHMANN 8 criticized the work of JOULE & 
KELVIN we have described above. He based his objections on the following 
grounds: 

(i) "When they set up [(18)], they make no use at all of Mr. Thomson's 
own definition of absolute temperature, which never enters the calculation." 

(ii) "In the calculation, the purpose of which should be neither more nor 
less than to determine the difference between the two scales, the absolute 
temperatures that correspond to the temperatures 4.75°C and 17°C are set 
equal to To + 4.75 and To + 17." 

(iii) In the calculation, the value of To turns out to be the reciprocal of IX 

in (12) for V = +00. The formula (I2) is used in the determination of the 
coefficients of (I 8). "However, [(12)] agrees with experiment with tolerable 
accuracy only for pressures greater than one atmosphere; at lower pressures 
it fails to agree so significantly that for example, even when f1>/V = 0.1444, 
Regnault's observed value of IX = 0.0036482 is smaller than the limiting value 
assumed by Joule and Thomson." 

[JOULE & KELVIN's calculation is first and foremost based on the a priori 
form (IO) of the equation of state. The most important implicit assumption 
underlying this choice is that KELVIN'S absolute temperature T coincides with 
the ideal-gas temperature. This fact will make JOCHMANN'S first objection at 
best nominal. KELVIN'S definition T = J/f' does enter the calculation through 
(7). Hence JOCHMANN'S first objection is entirely groundless. However, 
JOCHMANN'S second and third objection are basically sound. 

[The value of JOULE & KELVIN'S work described above does not lie in the 
results that it in fact obtains. As we have remarked above, as far as qualitative 
conclusion is concerned, the JOULE-THOMSON experiments of 1854 cannot add 
anything new to the result of their preliminary experiments of 1852. On the 
other hand, if we wish to compare the scale of the air-thermometer with the 
absolute scale, neither the experiments of JOULE & KELVIN nor those of 
REGNAULT are sufficiently accurate to provide results of some permanence. 

[Correction of the gas-thermometer naturally divides into two parts: (i) 
to determine the absolute temperature of some fixed point, say To for the ice 
point; (ii) for other hotnesses to determine the corrections which convert the 
gas scale to the thermodynamic scale. If RANKINE 9 anticipates JOULE & 
KELVIN in being the first to attempt to estimate the value of To, it is JOULE & 
KELVIN'S paper of 1854 which formulates this very problem in its entirety and 
provides a framework of ideas which later workers will use and modify.] 

8 JOCHMANN [1860, pp. 98-100]. 
9 RANKINE [1853,3]. Of course, the determination of the "absolute zero" has a long 
history, but it was RANKINE who first attempted to determine "the absolute zero of the 
perfect gas thermometer". 
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9E. RANKINE'S Further Effusions 

RANKINE, feeling that the assumptions in his first work had left it "doubt­
ful whether the conclusions deduced from the hypothesis were applicable to 
any substances except those nearly in the state of perfect gas", next! examines 
his theory of molecular vortices in greater generality and concludes that its 
results are" applicable to all substances in all conditions .... " His thermal 
equation of state is now (his Equation (1)) 

p = F(V, f(O - 00)) + fey) . (9E.l) 

In Footnote 6 to §8G, above, we have described his views on the nature of 
heating at this time. [We have seen above in §8H that RANKINE'S phenomeno­
logical structure of 1850 was already both complete and general, so little 
more can be expected for our tragicomical history from refinement of the 
molecular model.] RANKINE introduces the internal energy explicitly (his 
Equation (27)): 

E == Mf(O - 00) + ROo (log 0 + ~o) + f [(0 - 00) :~ - p JdV. (9E.2) 

He concludes that L\E is "the total amount of power which must be exercised" 
upon a body to make it pass from one value of (V, 0) to another (~l 0): 

This quantity consists partly of expansive or compressive power, 
and partly of heat, in proportions depending on the mode in which 
the intermediate changes of temperature and volume take place; but 
the total amount is independent of these changes. 

Hence, if a body be made to pass through a variety of changes of 
temperature and volume, and at length be brought back to its primitive 
volume and temperature, the algebraical sum of the portions of power 
applied to and evolved from the body, whether in the form of expansion 
and compression, or in that of heat, is equal to zero. 

This is one form of the law, proved experimentally by Mr. JOULE, 
of the equivatence of heat and mechanical power. In my original paper 
on the Mechanical Action of Heat, I used this law as an axiom, to 
assist in the investigation of the equation of latent heat. I have now 
deduced it from the hypothesis on which my researches are based­
not in order to prove the law, but to verify the correctness of the 
mode of investigation which I have followed .... 

The train of reasoning in this article is the converse of that followed 
by Professor WILLIAM THOMSON of Glasgow, in article 20 of his paper 
on the Dynamical Theory of Heat, where he proves from JOULE'S 
law that the quantity corresponding to dE is an exact differential. 

1 RANKINE [1852]. 
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[While we must respect these words as expressing an early statement of the 
meaning of internal energy, RANKINE'S definition (2) is not a happy one. 
Indeed, from it we see that 8Ej88 is the function JKv as given by RANKINE'S 
insufficient formula (8G.8)2. In §8H, above, we have shown that RANKINE's 
phenomenological apparatus of 1850 was not subject to this limitation. 
RANKINE has not yet seen what is the matter here.] 

On January 5, 1853, RANKINE read before the Philosophical Society of 
Glasgow a short and ambitious paper2 called On the general law of the 
transformation of energy. The aim of this work is stated after his summary 
of it in a second paper3, which he read twelve days later before the Royal 
Society of Edinburgh: 

(52.) We have now obtained a system of formulae, expressing all 
the relations between heat and expansive power, analogous to those 
deduced from a consideration of the properties of temperature, by 
Messrs CLAUSIUS and THOMSON, and from the Hypothesis of Molecular 
Vortices in the previous sections of this paper; but, in the present 
section, both the theorems and the investigations are distinguished 
from former researches by this circumstance;-that they are inde­
pendent, not only of any hypothesis respecting the constitution of 
matter, but of the properties, and even of the existence, of such a 
function as Temperature; being, in fact, simply the necessary con­
sequences of the following 

DEFINITION OF EXPANSIVE HEAT 

Let the term EXPANSIVE HEAT be used to denote a kind of Physical 
Energy convertible with, and measurable by, eqUivalent quantities of 
Mechanical Power, and augmenting the Expansive Elasticity of matter, 
in which it is present. 

By this time the Interconvertibility of Heat and Work is beginning to seem 
self-evident because (~47) "physical power cannot be annihilated, nor pro­
duced out of nothing," and RANKINE contends even that the law was "vir­
tually, though not expressly, admitted by those who introduced the term 
Latent Heat into scientific language .... " [At this point thermodynamics 
begins to create a fictitious history for itself.] 

The short paper begins as follows: 

ACTUAL, or SENSIBLE ENERGY, is a measurable, transmissible, and 
transformable condition, whose presence causes a substance to tend to 

2 RANKINE [1853, 1]. 
3 RANKINE [1853, 3]. 
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change its state in one or more respects. By the occurrence of such 
changes, actual energy disappears, and is replaced by 
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POTENTIAL or LATENT ENERGY; which is measured by the product of 
a change of state into the resistance against which that change is made. 

(The vis viva of matter in motion, thermometric heat, radiant heat, 
light, chemical action, and electric currents, are forms of actual energy; 
amongst those of potential energy are the mechanical powers of gravita­
tion, elasticity, chemical affinity, statical electricity, and magnetism.) 

The law of the Conservation of Energy is already known, viz.:­
that the sum of all the energies of the universe, actual and potential, 
is unchangeable. 

The object of the present paper is to investigate the law according 
to which all transformations of energy, between the actual and potential 
forms, take place. 

Let V be the magnitude of a measurable state of a substance; 
U, the species of potential energy which is developed when the 

state V increases; 
P, the common magnitude of the tendency of the state V to increase, 

and of the equal and opposite resistance against which it increases; so 
that-

dU 
dU = PdV; and P = dV (A.) 

Let Q be the quantity which the substance possesses, of a species of 
actual energy whose presence produces a tendency of the state V to 
increase. 

It is required to find how much energy is transformed from the 
actual form Q to the potential form U, during the increment dV; that 
is to say, the magnitude of the portion of dU, the potential energy 
developed, wliich is due to the disappearance of an equivalent portion 
of actual energy of the species Q. 

[In this passage the spectator sees the first appearance of the term "potential 
energy". RANKINE, heretofore the scrupulous engineer and natural philoso­
pher, now utters pronouncements about "all the energies of the universe"; 
he has been poisoned by thermodynamics; he suddenly begins to wallow in 
orgies of vagueness wilder than any up to now encountered, a vagueness 
which MAXWELL 4, a generation later, is to ridicule; unfortunately this 
phantasmagoric obscurity is destined to become standard in textbooks.] 
RANKINE'S avowed axiom is 

GENERAL LAW OF THE TRANSFORMATION OF ENERGY:-
The effect of the whole Actual Energy present in a substance, in 

4 MAXWELL [1878]. 
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causing Transformation of Energy, is the sum of the effects of all its 
parts. 

[The following physical assumptions and mathematical manipulations are 
cloudy enough in themselves but made more so by RANKINE'S failure to 
state what is a function of what, and what a derivative such as dU/dV is 
to mean if the "state" V is anything other than a single real variable.] The 
body of the paper evaluates the efficiency of what seems to be a Carnot 
cycle and asserts, "This principle is applicable to all possible engines, known 
and unknown." 

To understand the part of RANKINE'S ideas that bear upon our tragi­
comedy, we tum now to the long paper, for it concerns mainly those modest 
quantities to which the early thermodynamic's really refers: a fluid body of 
volume V, subject to pressure p. In giving an account of this work we use 
the letter Eo/M to replace 5 RANKINE'S letter Q, which stands (~48) for the 
mechanical equivalent of "the absolute quantity of thermometric heat" 
or the" Sensible heat (which retains its condition)" in unity of mass. Then 
RANKINE'S operative assumption is 

JQ = Eo + S + P V , (9E.3) 

in which Sis" Latent heat, or heat which disappears in overcoming molecular 
action" or "the potential of molecular action", and the working p V is the 
rate of change of "Latent heat equivalent to the visible mechanical effect". 
[Of course this is not the latent heat we have denoted all along by Av;] 
RANKINE in ~ 49 calls Av" [t]he coefficient oflatent heat of expansion at con­
stant heat". 

[In §8H we have shown that RANKINE'S first work, if we simply leave 
aside the molecular vortices and interpret his basic formal statements 
phenomenologically, implies for a body obeying an arbitrary equation of 
state the full structure of classical thermodynamics-energy, entropy, and 
all. We might expect that after having seen CLAUSIUS' work RANKINE himself 
would have reached this same conclusion. Perhaps he did, but at the same 
time he chose to abandon the traditional ideas of heat and temperature. 
His explanation of what he does 6 is so regal as to make the reader wonder 

5 RANKINE'S notations and those in terms of which I describe his work may be inter­
converted as follows: 

Here 
EolM 
ElM 
(E - Eo)/M 

6 RANKINE [1853, 3, ~48]: 

RANKINE 

Q 
'F' 
s 

To determine the portion of the mechanical power PdV which is the effect of 
heat, let the total heat of the body, Q, be now supposed to vary by an indefinitely 
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if he be adjusting his assumptions so as to get an answer of desired form.] 
He concludes that p is the value of a function of Eo and V and that "the 
whole mechanical power for the expansion ... due to the whole heat pos­
sessed by the body" is Eo(opjoEo)"V, so [Eo(opjoEo) - p]V is the power 
"expended in overcoming molecular attraction." RANKINE defines a 
"potential of molecular action" S such as to make this power equal to 
oSjoV: 

S == f (Eo ::0 -P)dV + cfo(Eo) . (9E.4) 

Substitution into (3) yields (his Equation (72)) 

[ f 02p ,] ... op . 
JQ = 1 + Eo oEg dV + cfo (Eo) .co + Eo oEo V . (9E.5) 

RANKINE asserts (~48) "This formula expresses completely the relations 
between heat, molecular action, and expansion .... " Hence, concludes 
RANKINE (his Equations (73) and (74)), 

JKv 1 f 02p d ,J.'() Mf = + Eo oEg V + 'f' Eo . (9E.6) 

RANKINE next [translates into his new language his work of 1851]. Re­
placing 8 by Eo in (9A.l), he gives the resulting F the name heat-potential. 
[Thus (9A.ll) holds, except that the new F is (NjR) times the old one.] 
RANKINE obtains a slightly weaker result (his Equation (77)): In an adiabatic 
process 

-F = 1 + cfo'(Eo) Eo 
Eo ' 

(9E.7) 

which he interprets as follows: 

small quantity dQ. Then the mechanical power of expansion PdV will vary by 
the indefinitely small quantity 

dP 
dQ x dQdV. 

This is the development of power for the expansion dV, caused by each in­
definitely small portion dQ of the total heat possessed by the body; and con­
sequently, the whole mechanical power for the expansion dV due to the whole 
heat possessed by the body Q, is expressed as follows:-

(67.) 

and this is the equivalent of the heat transformed into mechanical power, or the 
latent heat of expansion of unity of weight, for the small increment of volume 
dV, at the volume V and total heat Q. 
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When the quantity of heat in a body is varied by variation of volume 
only, the variation of the heat-potential depends on the heat only, and 
is independent of the volume. 

RANKINE now gives his analysis of the Carnot cycle in the general form 
[which we have shown already to be the essence of his treatment of 1851], 
leading to (9A.14). Of course (9A.14) follows, and from it (9A.1O), both of 
them with 8 replaced by Eo. Thus (RANKINE'S Equation (79» 

L(CC) E"O 
JC(CC) = 1 - E 6 . (9E.8) 

[As everyone knows now, this approach to the Camot cycle, appealing 
directly to properties of entropy, is the neatest of all.] 

Finally, by comparing (5) with (3) RANKINE calculates Eo + $ and con­
cludes that (his Equation (80» 

E = Eo + S = Eo + 4>(Eo) + (Eo a~o - 1) I pdV . (9E.9) 

[Thus, at last, RANKINE has freed himself from the limitations which, as 
we have seen, may have been implied by his theory of molecular vortices or, 
more likely, the result of his misinterpreting what his mathematics had 
delivered. His new formula (6) is just (8H.4) in strange dress, employing the 
mysterious new quantity Eo, "the absolute quantity of thermometric heat", 
and (8H.4), we know, he could have read off from his formal apparatus in 
1850. Likewise, (9) frees the too special result (2) he had published in 1852, 
again with Eo replacing 1(8 - 80). 

[But what is Eo 1] RANKINE continues: 

(53.) Still abstaining from the assumption of any mechanical 
hypothesis, let us proceed a step beyond the investigation of the 
foregoing articles, and introduce the consideration of temperature;. 
that is to say, of an arbitrary function increasing with heat, and having 
the following properties. 

Definition of Equal Temperatures. 
Two portions of matter are said to have equal temperatures, when 

neither tends to communicate heat to the other. 
Corollary. 

All bodies absolutely destitute of heat have equal temperatures. 
The ratio of the real specific heats of two substances, is that of the 

quantities of heat which equal weights of them possess at the same 
temperature. 

Theorem. 
The ratio of the real specific heats of any pair of substances, is the 

same at all temperatures. 
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After giving what he regards as a proof of this theorem, RANKINE concludes 
that if 0 is the temperature" according to the scale adopted", then 

Eo = 1[ifs(0) - ifs(Oo)] , (9E.I0) 

the function ifs being" the same for all substances". 
"Now, in the notation of Professor THOMSON, we have [~55] 

ifs(O) - ifs(Oo) J" 
ifs'(O) = P. , (9E.11) 

and RANKINE'S value of the efficiency of a Carnot cycle falls into agreement 
with KELVIN'S evaluation (9B.9). 

RANKINE turns now to the question of how temperature and heat should 
be connected (~56): 

The results of the investigations in the preceding part of this section 
are consistent alike with all conceivable hypotheses which ascribe the 
phenomena of heat to invisible motions amongst the particles of 
bodies. 

Those investigations, however, leave undetermined the relation 
between temperature and quantity of heat, except in so far as they 
show that it must follow the same law of variation in all substances. 

By adopting a definite hypothesis, we are conducted to a definite 
relation between temperature and quantity of heat; which, being 
introduced into the formula:, leads to specific results respecting the 
phenomena of the mutual transformation of heat and visible mechan­
ical power; and those results, being compared with experiment, furnish 
a test of the soundness of the hypothesis. 

Thus, the hypothesis of molecular vortices, which forms the basis 
of the investigations in the first five sections of this paper, and in a 
paper on the centrifugal theory of elasticity, leads to the conclusion, 
that, if temperature be measured by the expansion of a perfect gas, 
the total quantity of heat in a body is simply proportional to the 
elevation of its temperature above the temperature of absolute 
privation of~heat; .... 

That is, 

ifs(O) = 0, (9E.12) 

[RANKINE'S results, for example (6) and (8), tempt us to take (9) as a definition 
and so interpret his ifs as being the absolute-temperature scale KELVIN is 
soon to introduce (ef below, §§lIB and lIH), but RANKINE is too obscure 
for us to be certain where Eo comes from in the first place.] 

The remainder of the paper conerns the louIe-Thomson effect. Com­
parison with the results of the experiment convince RANKINE that his 00 

is about 2 centigrade degrees above his "absolute zero of temperature". 
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He proposes a form of the pressure function to represent the deviations 
found from the ideal gas law. In an appendix he mentions that REGNAULT 

had "found the specific heat of air to be sensibly constant" over a wide 
range of temperatures and pressures. Cf §SC, above. 

RANKINE'S next paper7 is a long miscellany. -,rl describes the already 
well known "indicator diagram" of WATT, and most of -,r-,r1-31 concern 
geometrical calculation of various quantities in the p-V quadrant. [The 
diagrams are both unnecessary and confusing, and RANKINE'S arguments 
based on them often are unsound or presume unnecessary properties of 
substances, such as that various congruences of curves may be prolonged to 
infinity.] Again Eo is "the total sensible or actual heat present iIi the body"; 
a curve on which Eo constant is an "isothermal curve of Eo"; "a Curve of 
No Transmission" is what RANKINE is soon 8 to rename" an adiabatic curve"; 
the curve of points at which "the substance is absolutely destitute of heat" 
is "the Curve of Absolute Cold ... , at once an isothermal curve and a curve 
of no transmission". [To within the question of the difference between Eo 
and 8, discussed above, Figure 6 in RANKINE'S -,r9 shows a pattern of adiabats 
and isotherms now familiar as being appropriate to an ideal gas with constant 
ratio of specific heats.] Also "the efficiency of the engine is expressed by the 
ratio of the heat converted into notive power to the whole heat expended ... "; 
cf also -,r21. [For a cycle this definition would seem to be 

ffi . - L(~ .J e clency = JC+(~ , (9E.13) 

but RANKINE goes on to calculate efficiencies in terms of "the actual heat[s]" 
at which "heat is being received" or "is carried off by conduction." 

Since for RANKINE E = Eo + S (cf (9)), he now (-,rS) interprets E as being 
"the sum of the actual energy of heat, and the potential energy of molecular 
action ... .'.' In -,rIO he introduces 9 as follows "a thermodynamic function" 
(his Equations (11)1 and (12)1): 

-f Qdt . 
HE = Eo' (9E.14) 

[If we take Eo as being proportional to 8, then HE is what CLAUSIUS was 
later to call the "entropy", as the lynx-eyed GIBBS was to remark10.] 

7 RANKINE [1854]. 
8 RANKINE [1859, §239]. 
9 RANKINE'S notation here is P, not to be confused with the .. heat potential", which 
has appeared above in (9A.l) and (7). 
10 GIBBS [1873, I, first footnote on p. 2 of the reprint] [1873, 2, footnote on p. 52 of 
the reprint]. 

According to Professor M. J. KLEIN, it was from the former paper of GIBBS that 
MAXWELL and, following him, the later British authors came to understand what 
CLAUSIUS the Heraclitean had meant by entropy. See §2 and especially Footnote 28 of 
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From (14h it is clear that HR is constant along the adiabats. RANKINE 
uses his earlier result (5) to show that (his Equation (12h) 

f 82p 

f 1 + Eo 8E2 dV + q,'(Eo) f 8p 
JH R = 0 dEo + 8E dV . 

Eo 0 
(9E.15) 

[RANKINE'S cavalier calculus is confusing. The second integral is a partial 
one; the undetermined constitutive function q, reflects the fact that the 
thermal equation of state does not determine Kv uniquely. We understand 
(15) better if we write it in terms of the integral of an exact differential: 

H = f (Kv/(fM) dE + Av dV) (9E.16) 
R Eo 0 Eo . 

That this differential is exact, follows at once from the relation 

~ (Kv/(fM)) = ~ (Av) 
8V Eo 8Eo Eo ' 

(9E.17) 

which we can read off from (6). Hence in a simply connected region of the 
V-Eo plane there is a function HR of V and Eo such that 

Kv 8HR 8HR 
fM = Eo 8Eo' Av = Eo 8V . (9E.18) 

RANKINE never stops to ask if the integral in the definition (15) makes 
sense; although he occasionally states that some expression is "obviously 
an exact differential", he gives no evidence of knowing how to handle such 
a thing, and he never appeals to a condition of integrability; nevertheless, 
in exhibiting (15) he in his own way effectively shows that the function 
HR does exist locally. Moreover, if we take the lower limit of integration in 
the second integral of (15) as ,p(B), by substituting (15) into (18) we recover 
(6) with the same lower limit of integration. Thus we cannot deny that 
RANKINE did in fact calculate a function HR that extends to an arbitrary 
equation of state his results regarding his function U in his first paper 
(§§8G-8H), and that HR reduces when Eo = fB to what is today called 
the entropy.] 

KLEIN'S paper, "Gibbs on Clausius", Historical Studies in the Physical Sciences 1 
(1969), 127-129. That MAXWELL [1871, pp. 186-188] had missed this point, is further 
evidence of RANKINE'S "inscrutable" presentation; it is evidence also that MAXWELL 
had not studied CLAUSWS' papers carefully: Indeed, he stated that CLAUSWS had in­
troduced the term "entropy" in his paper of 1854, while in fact neither the name nor 
the quantity appears there. Cf. §§l1C-llH, below. 

In later editions of the book of MAXWELL [1891, especially the footnote on p. 189] 
I cannot find any indication that MAXWELL accepted GmBS's attribution of the entropy 
to RANKINE. That may be because GmBs, perhaps from a desire to avoid offense to the 
jealous old CLAUSWS, omitted to specify the date of RANKINE's work, although any 
careful reader by checking GIBBS'S citation of RANKINE would find that it refers to the 
year 1853, while his citations of CLAUSIUS both refer to 1865! 
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In ,,14-15 RANKINE defines and discusses "Curves of Free Expansion". 
[From his Equation (17 A) we see that these are curves of constant enthalpy; 
cf. KELVIN's work of 1853, described in the preceding section; for REECH'S 

introduction of a generalized enthalpy, also in 1853, see below, §lOC.] The 
remainder of the paper concerns specific properties of engines and vapors, 
the numerical calculation of efficiencies, and the hypothesis of molecular 
vortices. 

[RANKINE's brilliant and original beginnings, which we have analysed in 
§§8G-8H, have now matured into a torrent of words and. symbols so obscure 
that even other thermodynamicistsll considered them so. This is obscurity 
indeed! To close our study of the work of this most appealing of Scottish 
engineers], I first quote MAXWELL 12 " ••• though the construction and dis­
tribution of his vortices may seem to us as complicated and arbitrary as the 
Cartesian system, his final deductions are simple, necessary, and consistent 
with the facts." [With regret I must add that this judgment applies only to 
RANKINE's earliest work. His middle work, that which we have just described, 
fully deserves] MAXWELL'S judgment of his "Second Law": "inscrutable". 
[RANKINE was closer to clarity when he depended upon his molecular 
vortices. Hypothetical as those vortices were, and intricate as were the 
calculations into which they led him, they kept him specific. When he 
attempted to present phenomenological concepts directly, he took refuge 
in fancy words to describe assumptions that seem to have served only to 
let him work backward toward the results that in his first work he had some­
how extracted from his model.] 

[RANKINE presented the first complete and general formal structure for 
classical thermodynamics, introduced the entropy of a body susceptible only 
of reversible processes, showed how to use the entropy to analyse a Carnot 
cycle, and obtained the final formula for the efficiency of such a cycle. 
Neverthe~ess the tradition of thermodynamics, while it mentions RANKINE'S 
name with respect, attributes at most one of these discoveries to him. Perhaps 
readers of his papers have asked, Are those things really there, or have I 

11 CLAUSIUS [1865, §5], MAXWELL [1878]. The editor of RANKINE's collected papers 
seems to have made no attempt even to correct obvious misprints in equations, let 
alone to render the notations consistent within a single paper or to help the reader 
connect the notations in one paper with those in another. 
12 MAXWELL [1878]. In reviewing a particular paper of RANKINE [1853, 1] when it 
appeared, HELMHOLTZ [1856,2] after objecting to one proof added "it is very hard to 
work through Mr. RANKINE's papers sufficiently to reach an opinion about them. 
Mr. RANKINE has found in his way many results which are recognized as correct from 
entirely different starting points by other investigators. But it is usually impossible to 
follow him step by step in his efforts to prove his theorems, so the reader gets the 
impression that he found his results more through a kind of correct mechanical instinct 
than through rigorous mathematical analysis. Either that, or he has left out so many 
intermediate steps in his logical train that the reader almost has to rediscover that 
train afresh." 
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located them because I knew what to look for? There are 80 and Eo to puzzle 
over: "the temperature corresponding to absolute privation of heat" and 
"the absolute quantity of thermometric heat". Is it only retrospective 
generosity that makes us forget 80 and replace Eo by f8?] 

9F. KELVIN's Analysis of the "Anomalous" 
Behavior of Water 

In 1854 JOULE & KELVIN published a major paper on "the Joule-Thomson 
effect" and related matters. [It is safe to assume that the part called 
"Theoretical Deductions" was written by KELVIN alone.] KELVIN beginsl 
with [what might seem to be one more defense for his not having accepted 
the HELMHOLTZ-JoULE Determination] 

p. = JI8 . 

"Mayer's hypothesis" cannot be general: 

SECTION I. On the Relation between the Heat evolved and the Work spent 
in Compressing a Gas kept at constant temperature. 

This relation is not a relation of simple mechanical equivalence, as 
was supposed by MAYER in his 'Bemerkungen uebier die Krafte der 
Unbelebten Natur, in which he founded on it an attempt to evaluate 
numerically the mechanical equivalent of the thermal unit. The heat 
evolved may be less than, equal to, or greater than the equivalent of 
the work spent, according as the work produces other effects in the 
fluid than heat, produces only heat, or is assisted by molecular forces 
in generating heat, and according to the quantity of heat, greater than, 
equal to, or less than that held by the fluid in its primitive condition, 
which it must hold to keep itself at the same temperature when com­
pressed. The a priori assumption of equivalence, for the case of air, 
without some special reason from theory or experiment, is not less 
unwarrantab~e than for the case of any fluid whatever subjected to 
compression. Yet it may be demonstrated 2 that water below its 
temperature of maximum density (39°· 1 F AHR.), instead of evolving 
any heat at all when compressed, actually absorbs heat, and at higher 
temperatures evolves heat in greater or less, but probably always very 
small, proportion to the equivalent of the work spent; while air, as will 
be shown presently, evolves always, at least when kept at any tempera­
ture between 0° and 100° Cent., somewhat more heat than the work 
spent in compressing it could alone create. 

1 JOULE & THOMSON [1854, Theoretical Deductions, §Il. 
2 KELVIN's footnote here is misleading; He lets the reader think he discussed the behavior 
of water in the paper which our text above analyses. That is not so. 
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[Certainly there could be no more decisive proof that HOLTZMANN'S Asser­
tion cannot hold for all fluids: For water in the range of its anomalous 
behavior, Av andp are of opposite sign!] KELVIN leaves us to guess how this 
"may be demonstrated". [I conjecture that he looked at the calorimetric 
relation 

(2C.9hr 

which he had derived two years earlier in the generality required. Of course 
he assumed the constitutive inequality 

(2A.5)lr 

but obviously he is here relinquishing the second heretofore standard con­
stitutive inequality; 

Bp 
BO > 0 (2A.5)2r 

From (2C.9)2 it is clear that 

Bp 
Av BO = 0 . (9F.l) 

When a fluid undergoes an isobaric process, 

(9F.2) 

Thus if V passes through a minimum, BpjBO = 0 there. For water being 
cooled isobarically near 4° C at atmospheric pressure the point V, 0 there­
fore passes from a region where BpjBO > 0 into one where BpjBO < o. At 
the dividing point, then, Bpj88 = 0, and consequently Kp = Kv there. 
Experiments had not been done to determine Kp and Kv in such circum­
stances: All experimental data and experience then available referred to 
other conditions, and in them 

(2C.I0)2r 

If we dare extend this conclusion to water at points where BpjBO =1= 0, we 
conclude that at those points 

(9F.3) 

Then in water being cooled isobarically near 4°C at atmospheric pressure 
the point V, 0 passes from a region where Av > 0 into one where Av < 0.] 
That is what KELVIN wrote in the passage we have just quoted: 
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" ... water below its temperature of maximum density (39°·1 FAHR.), 
instead of evolving any heat at all when compressed [isothermally], 
actually absorbs heat .... " 

[The foregoing "demonstration" involves the same sin as KELVIN had 
committed in his disastrous evaluation of /L (above, §7H): It extends into a 
presently inaccessible range the results of experiment elsewhere. KELVIN 
may have reasoned instead in a purely theoretical way. Because KELVIN 
rejects HOLTZMANN'S Assertion for ideal gases as having no foundation in 
experiment, he certainly cannot begin from the central formula 

op 
J Av = 8 08 • (7I.2)r 

It is more like him to have used as the basis of his argument his favorite 
starting point, the General CARNOT-CLAPEYRON Theorem: 

op 
/LAv = 08 . (5L.4)r 

He may have thought that CARNOT'S argument to derive this theorem showed 
also that /L > O. As we have remarked in §5J, in fact that argument proves 
only the weaker inequality /L ;;; O. We cannot exclude the possibility that 
/L = 0 on a set of temperatures with empty interior. KELVIN knows very 
well that /L is a universal function, the same for all bodies. Therefore, to 
prove that /L(80) > 0 it is sufficient to find one body in whose constitutive 
domain there is a point on the isotherm (J = (Jo at which Av 9= 0 and 
op/o(J 9= O. For example, if HOLTZMANN'S Assertion JAv = p holds for one 
ideal gas, then /L«(J) > 0 for all (J corresponding to points in the constitutive 
domain of that gas. Alternatively, we may assume that one ideal gas has 
distinct specific heats. Once we know that /L > 0, it follows from (5L.4) 
that Av and op/o(J change sign together, which is just what KELVIN asserted 
in regard to water. 

[While KELVIN may have used an argument ofthis kind, the early develop­
ments in thermodynamics do not suffice to render it tight, since the whole 
analysis of Carnot cycles from CARNOT'S time on has assumed that Av > O! 
Even the existerice of /L has been demonstrated only under this assumption! 
Fallacy of this kind is only standard in works on thermodynamics. However, 
this particular vicious circle can be set aside through a more careful 
treatment 3.] 

3 Two points are at issue: 
1. Proof that" MAYER'S hypothesis" is special. In §7I we have given a rigorous proof 

that such is the case even in the class of "all fluids" considered in thermodynamics 
before 1854, that is, fluids for which Av > O. KELVIN'S treatment of 1854 by its un­
necessary appeal to the" anomalous" behavior of water misses the point at issue. 

2. The thermodynamics of the "anomalous behavior" of water. First considering 
a particular body having constitutive domain !!), we set aside some preliminaries. 

A. It is easy to state CARNOT'S General Axiom in the same words but leave aside 
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Whatever his reasoning may have been, KELVIN is the first to see that 
Ay < 0 if 8pJ8(J < o. This passage, published in 1854, contains the first and 
last reference to the "anomalous" behavior of water we shall encounter in 
this tragicomical history. 

[From this point onward thermodynamics must abandon altogether the 
heretofore standard adscititious inequalities 

8p 
8(J > 0 , Ay > 0, 

while the other heretofore standard inequalities, namely 

y> 1 , 

are weakened to 

'Y ;;;; 1 . 

Appealing to the calorimetric relation 

8P/8P Kp - Ky = -Ay 8(J 8V 

(2A.5)2r, (2C.5)lr 

(2C.I0hr, (2C.17)r 

(9F.4) 

(2C.9)2r 

and to the remaining adscititious inequality 8pJ8V < 0, we conclude that 

A 8p > 0 
y 80 = (9F.5) 

This same statement may be proved directly from the general expression 
for the work done by a simple cycle: 

L(rc) = Ii :~ dVdO , (5L.l)2r 

and CARNOT'S assertion that L(rc) > 0 if rc is a Carnot cycle. See Lemma 1 
in Chapter 8 of Concepts and Logic. Then the inequalities (4) follow as 
proved theorems, not assumptions. 

[On the other hand, I have not found any textbook or other exposition 
of thermodynamics published before 1977 that makes these matters clear 

the old requirement that Av > o. Camot cycles in regions of 5J2 where Av < 0 
or even where Av is not of one sign are possible. Their forms, however, are not 
at all like the one sketched in Figure 3 in §5C. One is shown in the figure in 
Footnote 4 to §5M. Others are shown in Figure 9 in Chapter 7 of Concepts and 
Logic. 

B. In a'region of 5J2 where Av < 0 we can still follow CARNOT'S analysis of his cycle 
if we make some minor modifications. We conclude that the General CARNOT­
CLAPEYRON Theorem still holds. 

This much is all that is needed if we are to conclude that if fL > 0, then Av and op/olJ 
have the same sign. It does not suffice to exclude the possibility that fL = 0 at isolated 
points. To do so, we have given some possible arguments in the text. There is no indication 
that KELVIN perceives how subtle this point is. Cf the discussion of absolute temperature 
in §l1H, below, and the more explicit treatment of TRUESDELL [1979]. 
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and explicit; a fortiori, none that derives them mathematically within the 
framework of the founders' ideas. That was one of the reasons why I under­
took the work presented in Concepts and Logic. The reader of that book will 
see that the formal structure of classical thermodynamics, including the 
inequalities stated just above, does follow precisely if we limit attention to 
points in what Mr. BHARATHA & I define as the normal set of a body's con­
stitutive domain.] 

9G. General Critique: The Disastrous Effects of Experiment 
upon the Development of Thermodynamics, 1812-1853 

Nobody needs to be told that theories of nature must grow from ex­
perience, that experiment can sharpen, refine, and extend experience and 
correct our conception of it, that a scientific theory of an aspect of nature 
cannot be accepted until it has been somehow" confirmed" by experiment. 
It does not follow that theory and experiment climb hand in hand up Jacob's 
ladder. It does not follow that experiments as an end in themselves are 
necessarily beneficial to anyone except, it may be hoped, those who perform 
them. It does not even follow that the theorist should scrupulously respect 
all such experimental data as may bear upon the branch of natural science 
he is trying to develop. 

I offer these remarks not as lemmas of a philosophy of science, not in 
regard to ideal programs, but as inductions from the history of science as 
I have read it in the old way, searching and probing the sources in detail, 
case by case, problem by problem, line by line, equation by equation. Some 
of the data that our tragicomical history affords for these inductions I draw 
up here. 

CG. Early experiments. Here there is no disaster. It is plain enough that 
without the experiments of the seventeenth and eighteenth centuries on 
thermometers and calorimetry, the basis on which it is possible to think 
about relations between heat and work had wanted altogether. Experience 
with steam engines was central to the creation of thermodynamics, though 
the value of the numerous experiments performed upon them, often with 
scant comprehension of the physical processes that went on within them, 
is debatable. 

{3. DELAROCHE & BERARD (1812). Few experiments have had so great 
an influence on the history of physics as DELAROCHE & BERARD'S regarding 
the specific heats of gases. Fox1 tells the story: 

1 Pp. 139-140 of his Caloric Theory, cited above in Footnote 2 to §2A. 



272 9. DISTRACTING INTERLUDE: EXPLOSION OF PRINT 

In order to investigate [the dependence of the specific heat of a gas 
upon its density], Delaroche and Berard modified their first experiment 
so as to allow air to pass through the apparatus at a pressure of 
100· 58 cm of mercury, as well as at atmospheric pressure, the initial 
temperature being very nearly the same in both cases. The result, 
that the volume specific heat at this higher pressure was to that at 
the ordinary pressure of 74·05 cm as 1·2396 to 1, was decisively, 
though not seriously, in error. Since the ratio of the pressures was 
1·3583: 1·0000, it followed that the specific heat by weight had de­
creased in the ratio 0·9126:1·000 as a result of the pressure increase. 
We know now, of course, that no variation at all should have been 
observed in the specific heat by weight, but in 1812 a decrease in 
specific heat with increasing pressure was expected and the quite 
unfounded confidence which Delaroche and Berard placed in their 
result almost certainly owed a great deal to this fact. They based their 
conclusion on only two experiments conducted on air at the single 
higher pressure of 100·58 cm, the steady variation of pressure being 
impossible with their apparatus. The discrepancy between the volume 
specific heats deduced from the two experiments (1·2127 and 1·2665, 
of which 1·2396 was the mean) should in itself have made them 
suspicious, but without further examination they proceeded to 
extrapolate the results to other pressures and confidently assumed 
that they applied equally well to all gases. Their error, although of 
less than 10 per cent, was to prove one of the most influential in 
the whole history of the study of heat. Backed by the prestige asso­
ciated with victory in the Institute's competition, the result quickly 
became standard and ... was to mislead many calorists. 

The greatest of the calorists so misled was CARNOT, as we have seen in 
§§5S-5T.He was misled to the point that he not only set aside the lead 
offered by LAPLACE'S theory of the speed of sound but also turned his back 
upon the whole corpus of experiment related to it. In §3F we have seen that 
LAPLACE himself was equally misled. While he stood fast by his theory and 
the experiments on the speed of sound, he let DELAROCHE & BERARD'S result 
lull him into accepting the preposterous theory of specific heats that the Caloric 
Theory of heat delivers for an ideal gas when their ratio is assumed constant. 

y. Steam tables. The practical importance of steam caused experimenters 
to concentrate upon it. It is not a typical fluid, and its special properties offer 
no helpful guidance. We have seen in §§7H and 9B that since the most abun­
dant data were for steam, KELVIN naturally had recourse to them; that in 
all their exuberance the data were insufficient; that as a result, KELVIN 
replaced wanting data by extrapolation; and that in consequence he failed 
to confirm the HELMHOLTZ-JOULE Determination. Had good data been 
available for air instead of steam, KELVIN's extrapolation would have been 
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accurate enough, and by just the same method he would have confirmed the 
HELMHOLTz-JOULE Determination. As it was, KELVIN's conclusions from 
steam tables helped make physicists reluctant to accept JOULE'S work. 

a. REGNAULT. REGNAULT'S experiments excited the admiration of all 
who studied them in their day, especially KELVIN. Comparison with data 
accepted now indicates that his results were very accurate. His ponderous, 
subsidized program of "determining the principal laws and the numerical 
data that enter the calculation of steam engines" began in 1842; just about 
then appeared the first experiments of JOULE and MAYER'S Assertion; 
HOLTZMANN'S Assertion, which was to playa key role in the thermodynamics 
of CLAUSIUS, lay three years in the future. The time was perfect for experi­
ment to take the lead. CARNOT'S and CLAPEYRON'S publications had shown the 
nature of the specific heat of gases to be of the essence to the motive power of 
heat engines. REGNAULT, not mentioning anything shown by CARNOT or 
CLAPEYRON, set about making the most accurate thermometers and deter­
mining deviations from the,ideal gas laws! 

Fox 2 tells the story: 

In a history of the caloric theory of gases ... it must surely be the 
sterile experimenting of Victor Regnault that has pride of place as 
evidence of the decline; indeed, by any standards Regnault's failure to 
playa significant part in the development of thermodynamics deserves 
more than the passing comment it has received in earlier studies of 
our problem. 

Regnault, we should recall, was a man of outstanding ability, 
and by the early 1840s he had the familiarity with steam-engine 
operation that seems to have been so important to most of the pioneers 
of energy conservation. Moreover, thanks to the French Government, 
he had been provided with assistants, equipment, and a laboratory 
that would have been the envy of his contemporaries both in France 
and elsewhere. With all this, how could he have failed? 

REGNAULT did finally get to the specific heats of gases, but only in 1853, 
three years after CLAUSIUS had conjectured, on the basis of theory alone, 
that they would be found constant. REGNAULT did find, indeed, that Kp 
for several gases was very nearly constant. Those who accepted LAPLACE'S 
explanation of the speed of sound had to agree that Kp/Kv was sensibly 
constant. Thus REGNAULT'S work and the data on the speed of sound could 
be taken as confirming CLAUSIUS' conjecture. CLAUSIUS, unlike KELVIN, had 
not waited for new data. He had dared to go ahead with the theory, so by the 

2 P. 315 of his Caloric Theory, cited above in Footnote 2 to §2A. 



274 9. DISTRACTING INTERLUDE: EXPLOSION OF PRINT 

time experiment got going, thermodynamics had been standing in print for 
nearly three years. Not only that, also a good value of Kp at ordinary con­
ditions had been obtained. MAXWELL 3 tells the story, not without a tinge of 
gentle sarcasm: 

Hence the determinations of the specific heat of gases were generally 
very inaccurate, till M. Regnault brought all the resources of his 
experimental skill to bear on the investigation, and, by making the 
gas pass in a continuous current and in large quantities through the 
tube of his calorimeter, deduced results which cannot be far from 
the truth. 

These results, however, were not published till 1853, but in the 
meantime Rankine, by the application of the principles of thermo­
dynamics to facts already known, determined theoretically a value 
of the specific heat of air, which he published in 1850. The value which 
he obtained differed from that which was then received as the best result 
of direct experiment, but when Regnault's result was published it 
agreed exactly with Rankine's calculation. 

E. JOULE. The hero of experimentation on the Interconvertibility of 
Heat and Work is surely JOULE. Surely he had the idea that heat could always 
be specified in units of work, and he claimed that his experiments supported 
it. His results published before 1850, however, were so inaccurate as to cast 
doubt upon what he claimed for them, not only among foreign critics like 
HELMHOLTZ but even in his friend KELVIN. Cf above, §§7H and 7Ia. 

True, by the end of 1850 two great theorists accepted JOULE'S results: 
CLAUSIUS and RANKINE. Both of these theorists, however, were predisposed 
to them; each was guided by a molecular picture, in which he seems to have 

3 MAXWELL [1871, pp.I77-178] [1891, pp. 179-180]. Indeed, RANKINE [1851, 2] ac­
cepted one of JOULE'S values of J and used MAYER'S Assertion (7B.2) to calculate Kp. 
He read the paper on December 2, 1850. In his earlier paper, read on February 4 of 
the same year, RANKINE [1850, "if"if2 and 14] had refused to accept any of JOULE'S values 
of J. For want of anything better he had then used DELAROCHE & BERARD'S value 
of Kp to calculate J from (7B.3), as had MAYER (cf §7B, above). In both of RANKINE'S 
calculations, as in MAYER'S, ?' is given the value 1.4 on the basis of experiments on the 
speed of sound. 

In fact RANKINE was incautious in being won over by a "multitude of experiments" 
on "substances so different as water, mercury, and air". The range of temperatures 
reported by, JOULE [1850] was too small. KELVIN'S relation (7H.12), published a year 
earlier, should have shown everyone that CARNOT'S theory too, required heat and 
work to be universally interconvertible in isothermal processes, providing the factors 
of interconversion were different at different temperatures. The crucial question was 
whether or not 8p. were independent of 8, and JOULE'S experiments offered no test of 
that. The work of JOULE through 1850 could not even be interpreted as providing 
decisive experimental support for the principle of uniform and universal Intercon­
vertibility of Heat and Work in cyclic processes. 
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believed firmly\ and each sought from JOULE'S work not direction toward a 
theory but experimental evaluation of a constant, the existence of which 
he had already assumed. The decisive position that both RANKINE and 
CLAUSIUS took was to reject, at last, the experimental data provided by 
DELAROCHE & BERARD. 

,. Fantasy. We may imagine how different the history of thermo­
dynamics would have been, had DELAROCHE & BERARD concluded that 
Kp was nearly constant for most gases, air being one. Rough confirmation 
of LAPLACE'S formula for the speed of sound would have suggested that 
Kp/Kv = const. for air. Thus any competent theorist would have taken the 
ideal gas with constant specific heats, not as the embodiment of nature but 
as the most natural special case to consider. Attempting to apply the Caloric 
Theory, he would have derived one or both of the relations 

lip _ Kv + P olip + p oKv = 0 op op , (3F,S)r 

_ M [pl/7 ,(pl/7)] 
Kv - yO p.p p , (3F.3)r 

for both were latent in LAPLACE'S work, and our imaginary theorist would 
have had to reject the Caloric Theory! The date is any time from 1812 onward. 
The theorist in question could easily have been CARNOT, who had all the 
necessary apparatus. In his special case of the Caloric Theory the same thing 
follows from (SR.l). 

That is not all. The same theorist could have calculated the motive power 
of a Camot cycle without use of any theory relating heat and work. For an 
ideal gas with constant specific heats CARNOT'S General Axiom is un­
necessary. There is no reason why this hypothetical theorist-again, he 
could well have been CARNOT-would have failed then to get the entirely 
elementary theorem HOPPE was to publish in 18S6 (above, Footnote 4 to 
§9D): An ideal gas with constant specific heats interconverts heat and work 
uniformly in Carnot cycles. This special case points the way to the general 
idea. If, as CriNOT claimed, "the motive power of heat is independent of 
the agents used to realize it," then all bodies must interconvert heat and work 
uniformly in Camot cycles because the ideal gas with constant specific heats 
does so! CLAUSIUS' Axiom would have lain in CARNOT'S hands, had 
DELAROCHE & BERARD'S work been done well, or had CARNOT simply rejected 

4 RANKINE'S position is made clear by our analysis of his papers (above, §§80 and 9A). 
CLAUSWS withheld publication of his kinetic theory for some years, but in his paper of 
1850 he alluded to it immediately after his reference to "the careful investigations of 
Joule" at the beginning: "To this it must be added that other facts have lately become 
known which support the view, that heat is not a substance, but consists in a motion of 
the least parts of bodies." 
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it. Again the fact was too much or too little experiment, for DELAROCHE & 
BERARD's data forbade those who accepted them from making the most 
natural first guess about the specific heats of gases. 

Well then, suppose we forget DELAROCHE & BERARD, accept (as in his­
torical fact we must) CARNOT'S dilemma as inevitable in 1824. What about 
REGNAULT? Had he chosen to determine Kp in 1840, he would certainly 
have done so correctly, and, had he published his result, KELVIN could scarcely 
have failed then to accept JOULE'S conclusions, inaccurate as was the ex­
perimentation from which JOULE had drawn them. 

The tragicomedy of classical thermodynamics has an experimental 
counterpart: the tragicomedy of early experiment on the specific heats of 
gases. 

In following the involutions of this long interlude we have reached the 
terminal year of our tragicomedy, 1854. We must now step backward one 
year. Doing so, we shall see that in 1853 the concepts of internal energy, 
entropy, enthalpy, and thermodynamic potential had all appeared in print 
-all clearly understood-all demonstrated and interrelated through explicit 
concepts and mathematics which while crude and long-winded are compelling 
in comparison with RANKINE's-and all published in such a way as to invite 
the oblivion which posterity has bestowed upon their author until today. 



10. Schismatic Act V. Antiplot in a Dark and 
Empty Theatre: REEeR's Discovery and Burial 

of a Too General Theory, and His Failure 
to Reduce It. 

Surge ai mortali per diverse foci 
la lucerna del mondo .... 

. . . Le cose tutte quante 
hanno ordine tra loro .... 

DANTE, Paradiso I, 
37-38, 103-104. 

lOA. REEeR Discovers the Pro-entropy 

[In §9C the spectators have been warned of the impending deluge l from 
the pen of REECH. They have been told also that REECH was setting about 
to determine the consequences of the first principles of the SUbject.] REECH, 
mentioning the works of CARNOT, CLAPEYRON, JOULE, THOMSON, RANKINE, 
MAYER, and CLAUSIUS, expresses the opinion (p.357) that "too much 
importance has been given to pure hypotheses, losIng sight of the logical 
train of reasoning of Mr. Carnot, which has not been broken, I think, by 
Mr. Regnault's 6bjection, and which needs only to be completed from a new 
point of view." REECH himself adopts "the mother idea or fundamental 
axiom of the reasonings of Messrs. Carnot and Clapeyron" (p. 364) but 
refuses to accept either their assumption that the heat in a body is a function 
of Vand e or the new assumptions connecting heat with work which MAYER, 
JOULE, CLAUSIU~, RANKINE, and KELVIN had espoused. For REECH, the 
first principles are these: 

1 REECH [1853]. In reading this remarkable memoir I could not avoid the suspicion that 
I was the first to do so. Apart from the exposition by TRUESDELL & TOUPIN [1960, 
Chapter Ell] the literature of thermodynamics has ignored it and its author except for 
a few references by French writers to the theorem expressed by (10D.4), below. 
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1. For a given gas, through each point of the V-p quadrant passes 
one and only one isotherm and one and only one adiabat. [He assumes 
tacitly that they decussate.] 

2. CARNOT'S General Axiom: The work L(t'(!) done by a fluid body 
in undergoing a Carnot cycle rc is determined by its operating tem­
peratures 0+ and 0- and by the heat absorbed C +(t'(!) on the isotherm 
at the higher temperature 0+. That work is the same in all Carnot cycles 
that can correspond to the three quantities 0+, 0-, and C +(t'(!). 

REECH is the first thermodynamic author, [and also probably the last,] to 
state openly that the theory is limited to gases and vapors. He takes for 
granted the thermal equation of state p = 1U(V, 0) and the definition of 
work: 

J. t2 

L == p(t) V(t)dt . 
tl 

(2C.19)r 

We have shown in §9C that his reasoning suffices to prove with modest 
conviction the existence of a function r(O) such that for any Carnot cycle rc 

(9C.I0)r 

and we have given a tight proof of this result on the basis of the reversal 
theorem 

C( -&') = - C(&,) . (2C.7)r 

[REECH'S first assumption is clearly insufficient by itself to calculate 
anything about the heat added, because it refers only to curves on which 
Q = 0, telling us nothing about non-zero values of Q. It does not even 
suffice to prove the truth of the reversal theorem (2C.7), which REECH 
applies tacitly again and again (pp. 361, 364, 368, et passim). In effect REECH 
uses the :poctrine of Latent and Specific Heats, as had CARNOT, CLAPEYRON, 
KELVIN, CLAUSIUS, and all the rest. His reluctance to say so openly and in 
consequence avail himself of the calorimetric relations 

and 

Q = A,,(V, O)jJ + K,,(V, 0)8 

l ap 
A" = Ay av ' ap/ap 

K" - Ky = -Ay ao av ' 

(2C.8)r 

(2C.9)r 

and various consequences of them we have set forth in §2C, complicates 
and lengthens his arguments. His memoir is so diffuse that for fear of putting 
the spectators altogether to sleep I report only the essence of it.] 

Chapter I (pp. 358-367) recapitulates the general arguments of CARNOT, 
expressing them in terms of the isotherms and adiabats. REECH supposes 
the latter to be the curves u = const. for some constitutive function if1 of 
the gas (pp. 358-360): 

u = if1(V,p) • (lOA. 1) 
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The function ifJ, [which of course is not defined uniquely by the property 
REECH assigns to it,] is to playa central part in the whole memoir. Because 
changes of kinetic energy are neglected, the speeds of the processes considered 
must be negligible (p. 359). 

Chapter II (pp. 368-378) begins with the proof of "the absolute generality 
and total exactness" (p. 374) of his" fundamental pivot of the theory of the 
dynamical effects of heat" (p. 371): 

(9C.1)lr 

To close the chapter (pp. 377-378) REECH takes up "what can be said for or 
against the relation r(8) = const." [He does not remind the reader that 
this case corresponds to the basic assumption of CLAUSIUS.] He gives in 
favor of it the following physical argument (p.377). Regarding Cr(8) as 
the mechanical equivalent of C units of heat [in all circumstances, not just 
in Carnot cycles], "I suppose that between two sources A and A' at different 
temperatures 8- and 8+ we renounce use of an elastic fluid as vehicle of heat 
from A'to A, Then the transmission will proceed freely, by radiation or by 
contact, from the hotter source to the colder source, and we must suppose 
naturally that all the heat which leaves the one will pass into the other. 
If we write in this case C' = C then the source A' would lose a quantity of 
vis viva equal to Cr(8+), while the source A would gain a quantity of vis 
viva equal to Cr(8-). There would then be a loss of work or vis viva equal 
to the difference: 

(lOA.2) 

which would singularly shock our common sense, since we have supposed 
that no impediment hinders the free transmission of heat from A'to A. 
To avoid such a difficulty" we ought to suppose both sides of (2) equal to O. 
"From this point of view, the discussion would be closed," and 

r = const. = J . (lOA.3) 

But then in a Carnot cycle 

L(~ = JC(q}) , (7A.1)lr 

and "there would seem to be no difference between having heat at a high 
temperature or a low temperature, while there is every evidence that a high 
temperature is a valuable thing which cannot be gotten back for nothing, 
once lost, withc,mt the necessary precautions.... [F]or lack of absolute 
evidence, I will retain the function r(8) in all that follows ... ," such being 
"the very natural continuation of the researches of Messrs. Carnot and 
Clapeyron, now that Mr. Regnault has called in doubt the equation C' = c." 
[Spectator, let the logical blunder which REECH here commits serve as a 
paradigm of the confusion physico-philosophical reasoning can produce 
when applied to a mathematical question!] 
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Chapter III (pp. 378-410) presents the statement and proof of BEECH's 

Third Theorem: There is a constitutive function f such that 

Q =/(0, u)u , (10AA) 

[The modem reader sees at once that in u REECH has introduced a function 
that generalizes what CLAUSIUS was later to call the entropy 2. In §8G we 
have seen that in 1850 RANKINE, basing his work largely upon a molecular 
model, had already published results from which a conclusion of this kind 
can be drawn, and that in RANKINE'S theory f = ° - °0 • REECH gives his 
more general function u no name. To shorten our descriptions of it, we 
shall call it a pro-entropy. 

[perhaps sensing that his first proof (pp. 378-380) of the major result 
(4) is no more than reaffirmation], REECH gives another (p.380, notation 
conformed with ours): "So that there may rest no doubt in this regard, I 
remark that in every state of affairs the quantity of heat necessary to go 
from a point 0, u to another point infinitely nearby ° + dO, u + du ought 
to be an infinitely small quantity, and that consequently it ought to be 
possible to represent such a quantity by an expression of the form 

Qdt = a(O, u)dO + b(O, u)du . (lOA. 5) 

But when we put du = 0 in such an expression, we ought to find that 
Qdt = 0, and hence it will be necessary that a{O, u) = o ... " [That is, REECH 

assumes that 

Q = a(O, u)8 + b{O, u)u . {lOA. 6) 

Writing fJulfJVand fJulfJp for the partial derivatives of if1 in REECH'S assump­
tion (1), we see that 

II [fJu. fJu .J Q = au + b fJ V V + fJp P , 

= a8 + b{ :~ V + :; [:~ V + :~ 8]} . 
(lOA.7) 

Defining Av and Kv as follows: 

_ ( fJu fJu fJp) 
Av = b fJV + fJp fJV ' 

(lOA.8) 
_ fJu fJp 

Kv = a + b fJp fJO ' 

2 In lectures believed to be of 1854/5 F. NEUMANN [1950] attempted to base thermo­
dynamics upon the existence of adiabats (" kalorische Kurven "). REECH'S (4) is 
NEUMANN'S Theorem 1 in his §1; even the notations are almost the same. NEUMANN 

claims that many of CARNOT'S considerations may be "in die neue Theorie hiniiber­
gerettet". His basic assumption is (7A.1); he arrives at (8B.2). Theorem 2 in his §5 
asserts that/is the product of a universal function of 8 by a possibly constitutive function 
of u. Thus NEUMANN, like REECH, fails to reach the central conclusion that / must be 
a function of 8 alone (Concepts and Logic, Theorem 7). 
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we convert REECH'S (6) into the statement 

Q = Av(V, 0) V + Kv(V, 0)8 . 

Consequently REECH'S starting assumptions are subsumed by the theory of 
calorimetry. It is possible to prove, conversely, that that theory suffices more 
or less for REECH'S assumption (4) to hold 3 • Likewise, his assumption that 
through each point of the V -p quadrant runs exactly one isotherm and one 
adiabat, is also a consequence of (2C.4) and the constitutive inequalities 

Ay > 0 , Ky > 0 . (2C.5)r 

In §5C we have seen that such is the case for the V-O quadrant, and of course 
we assume that the equation of state p = 'IlT(V, 0) maps the one quadrant 
smoothly onto the other. Thus we may say justly that REECH'S "first prin­
ciples" are neither more nor less than 

1. The theory of calorimetry. 
2. CARNOT'S General Axiom. 

To obtain (4), REECH has not used the second of these.] 

lOB. REECH Generalizes the Internal Energy 

Because 

C(&') = t. [Av(V, O)dV + Kv(V, O)dO] , 

from (IOA.4) it follows at once that (p. 380) 

C(&,) = L. f(O(u), u)du , (lOB. I) 

in which 0 is a given function of u on the path &J. In particular (pp. 380-383), 
for a Camot cycle labelled as in Figure 3 of §5C 

c+ = ff(O+,U)dU, c- =-ftf(O-,U)dU; (IOB.2) 

a By EULER'S theorem on the integrating factor, there are functions g and h such that 

Q = Ay V + KyO = gh , (I) 

the argument of A y , K y , g, and h being V, B. 
REECH assumes in effect that the mapping (V,p) ~ (B, u) can be inverted so as to 

yield, say, V = V(B, u). Then we can set 

/(B, u) == g(V(B, u), B(V(B, u), p(V(B, u), 9))) , 

and (I) becomes 
Q =/(B, u)u, 

as REECH asserts. 
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here a stands for u evaluated at a, etc. Now applying REECR'S second theorem, 
namely 

we see that 

But 

Thus 

L(CC) = ( r(e+)j(e+, u)du + f! r(e-)j(e-, u)du , 

= L r(e(u»)j(e(u), u)du . 

L(~ = L w(V, e)dV . 

L [r(e(u»j(e(u), u)du - wdV] = 0 

(9C.I)lr 

(lOB.3) 

(2C.20)ar 

(1OB.4) 

for every Carnot cycle ce. Now by differentiating (lOA.I) we can convert 
(4) into an integral over a cycle in the V-p quadrant. The fact that through 
every point of that quadrant passes one and only one adiabat and one and 
only one isotherm shows that Carnot cycles are dense in that quadrant. 
Therefore, (4) holds for all cycles ce, not merely for Carnot cycles l . Hence 
the integrand in (4) is the differential of some function E of V and u (p. 384): 

E = rju - pV . (lOB.5) 

This result is REECR'S fundamental relation (his Equation (10), his notation 
for E being Q). [The reader will recognize this equation as being a generalized 
form of what was later to be called" the Gibbs relation". It is equivalent to 

r'f= BE 
Bu ' 

BE 
P = -BV ' (lOB. 6) 

p being written for the function of u and V whose value equals w(V, e), but 
REECR does not remark this fact. E generalizes the internal energy of 
CLAUSIUS,'which we have discussed above in §8B. In Concepts and Logic E 
is called the internal pro-energy. We shall discuss it further below, at the 
end of the following section. 

[We have stated above that if r = const. andj ex: e, then u is the entropy; 
in that case REECR'S relations (6) reduce to equations having the same form 

1 The textbooks often appeal to the fact that Carnot cycles are dense in one or another 
quadrant or plane. In all cases I know but this one, the appeal is superfluous and is 
made only so as to avoid use of AMPERE'S transformation (a result of "pure" mathe­
matics which authors of thermodynamics texts seem to regard as being so modern as to 
destroy "physical intuition "). In the case of REECH'S analysis, however, the appeal 
cannot be avoided, because his second and all-important fundamental principle refers 
to Carnot cycles alone. 
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as those that were to be the starting point of GmBs' thermostatics. More 
precisely, RllECH'S equation (5) is the formal analogue for processes of 
GIBBS' variational statement regarding equilibrium. We shall come back to 
this analogy in the discussion leading to (IOE.11), below. 

RIlECH easily converts these results into counterparts when 8 rather than V 
is taken as an independent variable alongside u. We continue to write p 
now for '!IT and other functions whose value is the pressure. Thus 

so 

E· r'fi' (av. av II) = U - p au u + a8 11 , 

av aE r/-p-=­au au' 

whence it follows that 

!... (r/ _ p av) = _!... (p av) a8 au au a8 

(10B.7) 

(lOB.8) 

(IOB.9) 

this being REECH'S Equation (II). [Like (3F.4) and (5M.3), (9) is what the 
tradition calls a "Maxwell relation". So is 

a(rf) ap 
""1fjT = - au ' 

which is an obvious consequence of (6).] 

10C. REECH Introduces and Analyses the 
Thermodynamic Potentials 

(lOB. 10) 

According to REECH (p.392) "it is one and the same thing, from the 
abstract standpoint, to make into an exact differential the second member 
of whichever ... of the equations you please," and (p.390) "we can take 
as independent variables (p,8), (V, u), (p, u) . ... " RIlECH carries out the 
details in many cases. He assumes tacitly that every implicit functional 
relation /(x, y, z) = 0 is soluble for each of its arguments. He is the first 
author to invoke this principle, which might be called "thoughtless in­
vertibility"; its 'use is to become a generic trait of thermodynamicists. The 
results follow by routine differential calculus. We shall list some but not all 
of these. 

First, for the variables V, p (p. 387, misprinted) we need only calculate 
u from the relation 

u = ifs(V,p) , (lOA.I)r 
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put the result into REECH'S fundamental relation 

E = rfu - pV , 
and interpret the terms. The result is 

OU oE 
rf ov - p = oV ' 

rfou = oE . 
op op 

(1OB.5)r 

(1OC.I) 

Here the internal pro-energy is taken as a function of V and p. Now the 
reciprocal of (10B.9) is (p. 387)1 

o(rf) .o«(), u) _ 1 
o() o(p, V) - , (1OC.2) 

this being REECH'S Equation (12). Writing out the determinant and substitut­
ing for ou/oV and ou/op from (1) yields (p. 387) 

rf = p o() + o(E, () (1OC.3) 
~ (rf) op o(V,p) ' 
o() 

this being REECH'S Equation (12bis). 
To use the variables V, (), we need only substitute (1OA.4) into REECH'S 

fundamental relation (10B.5) and so obtain (p. 389) 

Hence 

and so 

E = rQ - pV. 

oE 
rAy - p = oV ' 

oE 
rKv = o() , 

op = r(OAv _ OKv) r' A 
o() o() oV + v . 

(1OC.4) 

(IOC.5) 

(1OC.6) 

[We should expect REECH to remark here that these results reduce when 
r( () = J to CLAUSIUS' theorems: 

op = J (OAv _ OKv) 
o() o() 0 V ' 

oE 
JAv - p = oV ' oE ] JKv = o() , 

(8B.l)r 

(8D.3)r 

1 Of course REECH does not use the notations or formal calculus of Jacobian deter­
minants, but such determinants had occurred frequently in the literature of hydro­
dynamics for 100 years. REECH'S long but straightforward analysis is correct. 



lOCo THE THERMODYNAMIC POTENTIALS 285 

but he does not, though he mentions KELVIN's works and translates (4) 
(5), and (6) into KELVIN'S notation. [possibly he finds KELVIN'S treatment 
clearer than CLAUSIUS'. 

[A thermodynamic potential is a single function which determines all 
three constitutive functions 'lIT, A y, and Ky uniquely. REECH seems to sense 
this concept, though he does not make it explicit. He provides us with 
differential formulae from which we may perceive at a glance thermodynamic 
potentials corresponding to the pairs of independent variables (V, 8), (8, p), 
(p, u), (u, V). One of these formulae is 

E = rfu - p V , (lOB,S)r 

which, as we have remarked, is equivalent to the relations 

ry= oE 
OU ' 

oE 
p = -oV· (lOB.6)r 

On the presumption that r andfare known and invertible functions, (1OB.6) 
delivers 8 and p as functions of V and u; elimination of u between the two 
yields 'lIT. Since 8 is a function of V and u, we may eliminate u as an argument 
of E and so obtain E as a function of V and 8. Then (1OB.S) and (lOA.4) 
deliver Q as a linear function of V and 0, whence Ay and Ky are delivered 
by comparison with the old formula 

Q = Ay(V, 8)V + Ky(V, 8)0 . (2C.4)r 

Thus the function of u and V whose value is E is a thermodynamic potential.] 
For other choices of variables REECH does not write out all details. [We 

shall state his results in notations more compact than his.] First we set 
(p. 379, Equation (5), and p. 407, Equation (22» 

F(O, u) == i U 
f(8, w)dw , 

Uo 

R == rF , (1OC.7) 

so that (lOA.4) and (lOB.S) may be written in the forms (his Equations 
(22)2 and (23)1), 

respectively. Then we set 2 

. oR . 
E = -u -pV au ' 

x == E + pV, 

-A == E - R , 

Z == E - R + pV, 

(lOC.S) 

(IOC.9) 

2 The notations are REECH'S except that he does not introduce single letters for what we 
denote by X and Z, and he uses as always the inevitable differentials. 
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so 

E+Z=X-A. (lOC.lO) 

Then the basic equations REECH numbers (10 his), (10 ter), and (10 quater) 
are, respectively (pp. 391-392) 

These results, joined with 

x = rfu + Vp 

. oR II • 
A = 00 u + pV , 

. oR II 
-Z = 00 u - Vp . 

(1OC.H) 

(10B.5)r 

we may call REECH'S Fourth Theorem. [REECH does not write out the formulae 
in partial derivatives that follow at once from (11): 1fX is taken as a function 
of u and p, then 

r,/= oX 
ou ' 

V= oX 
op 

if A is taken as a function of 0 and V, then 

oA 
p=­oV 

if Z is taken as a function of 0 and p; then 

oR OZ 
00 = -00 ' 

V= oZ. 
op 

The corresponding conditions of integrability are 

o (rf) _ oV 
op -ou' 

02R op 
oVoO = 00 ' 

02R OV 
opoO = - 08 . 

(1OC.12) 

(IOC.13) 

(10C.14) 

(10C.15) 

[Presuming rand f known, and hence also R known, we invoke the 
principle of thoughtless invertibility and so from (12) see easily that X as 
a function of u and p is a thermodynamic potential; from (13), so is A as 
a function of 0 and V; from (14) so is Z as a function of 8 and p. 

[From these results the reader sees that REECH, in his general theory, 
has introduced all four of the classical thermodynamic potentials and has found 
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all the differential relations among them 3. Common names now for X, 
-A, and Z are enthalpy, free energy, and free enthalpy. For reflections of 
REECH'S Fourth Theorem upon the work of MASSIEU and GIBBS see the 
discussion surrounding (10E.ll), below.] 

Most of the rest of the chapter (pp. 392-407) is spent in interpretation 
of the four potentials. REECH appeals to various areas under curves in the 
V-p quadrant, and most of his interpretations, [while of course they are 
correct, do not seem enlightening. One, however, is important, namely,] that 
for E itself. In an adiabatic process (4) reduces to E = - p V. Thus (pp. 
392-393) 

the quantity E will increase by exactly the quantity of work put out so 
as to produce a physical effect of this kind; this quantity of work will 
remain stored in the gas as long as the variables V, p, and 8 do not 
change .... 

On the other hand (p. 393), in an isochoric process (4) reduces to E = rQ, 
so "a purely caloriferous change will make the quantity E increase .... " 
Thus in general (p. 394) 

the function E will represent the quantity of work or live force sus­
ceptible of being produced by the totality of the heat presently con­
tained in a gas or elastic fluid ... , 

that is (p. 395), 

the perfect mechanical equivalent of the heat contained in an elastic 
fluid. 

For REECH, as for CARNOT before him, the conversion of heating into 
mechanical energy is proportional to a function of the temperature alone. 
REECH allows the possibility that that function may reduce to a constant, 
as in CLAUSIUS' Jheory, but he does not require it. His term "totality of the 
heat" describes well what now is called internal energy. 

[REECH has every reason to be proud of his result.] He does not apply 
it to cases, [but he easily could]. He has proved that the constitutive function 
E exists locally. [As soon as it and the universal function r are specified, 
the work done by a fluid body on any path in a simply connected domain 
can be calculated: 

L(rJf) = L [r(AvdV + Kvd8) - dE] . (lOC.16) 

3 To verify this fact, put r(o) = J = 1, /(0, u) = 0, and denote the resulting pro­
entropy, namely, what CLAUSIUS was later to call "entropy", by H. Then R = OH. 
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REECH does not write the result so simply,] but his geometrical analysis 
yields equivalent statements. [Never before had anyone shown how to cal­
culate the motive power of heat in a general cycle within CARNOT'S con­
ceptual frame without assuming the existence of a heat function, as in 
KELVIN'S analysis (above, §7H; cf also (SM.S)). REECH'S fundamental 
relation (16) enables us to calculate the motive power of heat for any fluid 
body on any path, according to any theory consistent with the Doctrine of 
Latent and Specific Heats.] 

At the end of the chapter (pp. 407-408) REECH obtains the brief expres­
sions (7), (8), and (9)2, which we, so as to shorten the arguments, have 
introduced earlier. These expressions, he says, are (p. 408) "the necessary 
and sufficient equations of the theory of the dynamical effects of heat." [Here 
he is wrong, fatally wrong! We refrain from enodating this matter until 
§lOE.] 

IOD. REECH'S General Theory of Specific Heats 

[Any spectator of this tragicomedy will know what to expect next, and 
he will not be disappointed.] In Chapter IV (pp. 410-427) REECH proceeds 
to construct the theory of specific heats. [He does so in generality never 
before achieved and rarely thereafter equalled.] 

The principle of thoughtless invertibility allows us to regard V and p as 
functions of 0 and u: 

. op O' op. 
p = 08 + ou u . 

REECH'S Third Theorem, 

Q =f(8, u)u, 

in terms of these variables takes the forms 

V· . oV O' • op O' -- p--
_ -=0-::-0_ = f 00 Q =fu =f 

oV op 
ou ou 

(lOO.l) 

(lOA.4)r 

(lOO.2) 

which are REECH'S Equations (F), p.414. Comparison with the formal 
statements of the Doctrine of Liltent and Specific Heats, namely 

Q = Av(V, O)V + Kv(V, 0)8 = Ap(V, O)P + Kp(V, 0)8, (2C.4)r, (2C.8)r 
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yields expressions for the latent and specific heats when u and e are taken 
as the independent variables: 

A - I 
v - BV' 

Bu 

IOV 
Be 

Kv = - BV ' 

au 

these being RllECH'S Equations (E), (F/), and (F"), p. 414. 

(100.3) 

[If we divide (3)4 by (3)2 and apply a standard theorem of calculus to the 
result, we obtain 

BPjBV Bp(V, u) 
K" Be Be BV ,,=-----

- Kv - BPjBV - op(V, e) 
Bu Bu oV 

(100.4) 

Although the well-known specialization of this formula to an ideal gas is 
sometimes called" Reech's theorem", REECH did not record it here; certainly 
it lay in his hands. The fact that I cancels out shows the concept of entropy 
to be unnecessary for the result; the pro-entropy does just as well, since in 
order to calculate op(V, u)/BV, which is a derivative along an adiabat 
(u = const.), we need not know how the value of the entropy varies from 
one adiabat to another. Indeed, from calorimetric theory alone we have 
shown that in an adiabatic process 

dp op 
dp = " op , 

which expresses the real content of (4). In my opinion REECH missed the point 
here; he was to see it clearly laterl .] 

REECH next (pp. 414-415) introduces the concept of specific heat along a 
curve 2 (JJ in the V, p quadrant. If an equation of (JJ is t/>(V, p) = const., 
upon (JJ 

A(V,p)ft + B(V,p)V = 0 , (100.5) 

1 REECH [1868, §27). 
II This is one of the few aspects of the work of REECH that have entered the general 
literature. TRUESDELL & TOUPIN [1960, §249), duly attributing to REECH the concept of 
specific heat along a path for the case in which there are but two independent variables, 
based upon it their exposition of the theory of specific heats when V is replaced by an 
arbitrary finite number of variables. 
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the functions A and B being proportional to ocP/op and ocP/oV, respectively. 
Then Ke-, the specific heat on r!l', is defined and calculated as follows: 

OU V· OU. 

I - +-p 
Ke- == ~ = fue- = fOV op 

8 Be- 08 V 08. 
e- oV + opp r!l' 

Aou_B oU 
oV op 

=f 08 08 . 
A "'V - B<;" u up 

(IOD.6) 

[REECH'S manipulations are more elaborate, and he does not record his 
results in just this form, but the idea of the proof is the same, and (6) is 
equivalent to the last of his Equations (G) on p. 416. Putting first B = 0 and 
then A = 0 yields 

ou 
oV(V,p) 

Kp =f 08 ' 
oV(V,p) 

equivalent to (3)3 and (3)4.] 

OU 
op (V,p) 

Kv =f 08 ' 
op (V,p) 

(100.7) 

Most of the rest of the chapter concerns geometric interpretations of the 
properties of differential forms in two variables. REECH also sets about to 
express various thermodynamic quantities in terms more easily accessible 
to experiment, with the idea of applying the results so as to determine from 
experimental data the crucial functions rand f In particular, he seeks to 
eliminate the pro-entropy u, and in some cases he succeeds in doing so. 

For example, if we take V and p as independent variables, recall that 
U = ifs(V,p), and substitute (lOC.l) into (7), we obtain 

oE (OE) 08 
_ oV + p _ oV + P op 

rKp - 08 - 08 08 ' 

oV oV op 

oE oE 08 
(100.8) 

op op oV 
rKv = 08 = 08 08 . 

op op oV 

Subtraction followed by use of (IOC.3) yields 

o(E, 8) 08 
o(V,p) + p op (V,p) 

r(Kp - Kv) = 08 08 
op (V,p) oV (V,p) 

rf 
08 08 0 . (100.9) 
op (V,p) oV (V,p) 08 (rf) 
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(included in REECH'S Equations (0), p. 424). If r(K" - Kv) and the thermal 
equation of state are known, as from experiment they may be, this relation 
determines 8[log (rf)]/80. 

REECH obtains also equations which deliver rKp and rKv in terms of the 
functions A, E, and R alone (Equations (0'), p. 426). "These different 
formulae will acquire great importance in what follows, when it will be our 
concern to find the algebraic expressions of the functions A, E, R, . .. on 
the basis of certain experimental results." 

To conclude the chapter (p. 427), REECH recalls that CARNOT'S theory in 
effect supposed / to be a function of u alone, in which case / cancels out of 
many of the relations, yielding "a crowd of very remarkable theorems .... 
But as soon as/CO, u) depends upon the variable 0 and can differ from one 
elastic fluid to another, all these theorems disappear, and the main thing 
will be to find a system of experimentation by means of which, some day, 
we shall know the universal function reO) and the special function /(0, u) 
for each kind of elastic fluids." 

[We note that REECH regards r as universal and / as constitutive. This 
passage may be the earliest in which the generic principles of the subject are 
explicitly separated from constitutive relations. However, we shall soon see 
that the next step, indeed the only remaining step required to complete the 
classical theory, was to proclaim/a universal function of 0 alone. 

[We have outlined only the first four of REECH'S nine chapters, only the 
first seventy of his nearly 200 pages. The rest consider the effects of different 
possible choices of J, applications to perfect gases, and the theory of vapors. 
The following section makes it plain why we give rio account of all that.] 

tOE. Critique: the Fatal Failure of REECH'S Analysis 

In §IOC we have seen that REECH claimed his basic differential relations 
to be necessary and sufficient. Necessary they are, but sufficient they are not! 
Had REECH undCfrstood CARNOT'S analysis fully, he might have discerned 
and corrected his own error. 

To see this, let us write his relations (10D.3)1.2 in the forms 

Av 8u 
7=8V' 

Kv 8u 
7= 80' (lOE.l) 

It follows that 

8 (Av) 8 (Kv) 
80 7 = 8V 7 . (IOE.2) 

Hence 

(IOE.3) 
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Comparison with RllECH'S formula 

op = r (OAv _ OKv) + r' Av 
08 08 oV (lOC.6)r 

yields 

(IOE.4) 

What a strangely complicated result! CARNOT'S own reasoning, checked and 
endorsed meanwhile by CLAPEYRON, KELVIN, and CLAUSIUS, from just the 
same assumptions had led to the General CARNOT-CLAPEYRON Theorem: 

Op p.Av = 08 . 

The mathematics being correct in both cases, the two different evaluations 
of Av must agree! A glance shows that they do agree if 

of 
oV = 0 , (IOE.5) 

Moreover, if f and r are both universal functions, these conditions are 
necessary as well as sufficient. This agreement does not prove but does 
strongly suggest that it is possible for any material to takefas a function of 
8 alone, and that since both p. and r are universal functions, so also is J. 

Such, indeed, is the case. Over a hundred years were to pass before anyone 
again took up the logical implications of CARNOT'S axioms and developed 
them to the point of sufficient as well as necessary local relations. My dis­
covery in 1971 that REECH had failed in his program impelled me to under­
take to complete it; the product is Concepts and Logic, to which the reader 
must refe.r if he would learn the details. Here I report only the contents of 
Theorem 11 in §10: 

Let the theory of calorimetry be assumed. Then either of the following two 
sets of local restrictions is equivalent to CARNOT'S General Axiom: 

1. There are continuously differentiable functions f and g of 8 alone, f being 
positive and g increasing, such that 

o (Av) 0 (Kv) 
08 7 = oV 7 ' 

g' op 
7 Av = 08 

(IOE.6) 

That is, REEcH'sfmust be a function of 8 alone, and REEcH'sfr, here denoted 
by g, is a monotonically increasing function. The function f is unique. to 
within a constant multiplicative factor; whenfhas been specified, g is unique 
to within an additive constant. 
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2. In addition to g and f as previously specified there are functions u( V, 0) 
and E(V, 0) such that 

au 
Av =f oV ' 

g oE 
J Av = 'fIT + oV ' 

au 
Kv =f 00 ' 

g oE 
JKv = 00 . 

(lOE.7) 

The reader will recognize u as being REECH'S pro-entropy and E as being 
REECH'S generalization of CLAUSIUS' internal energy. Also he will easily 
obtain the following formula for the work done in a Carnot cycle: 

L(W. = g(O+) - g(O-) C +(W. 
."" J f(O+) ... J , 

(IOE.8) 

g(O+) + g(O-)_ 
= f(O+) C (<c) - f(O-) C (<c) , 

so [g - g(Oo)]!.f replaces REECH'S r in (9C.l), his "fundamental pivot of 
the theory of the dynamical effects of heat". That is, r must be the quotient 
of an increasing function by a positive function. Thus REECH'S results are 
merely necessary, not sufficient for the truth of CARNOT'S General Axiom 
when the theory of calorimetry is assumed. Moreover, the defect of REECH'S 
function r from uniqueness is not trivial. REECH seems not to have noticed 
this fact, perhaps because his proof of (9C.l) is so obscure. The simple proof 
we have given above in §9C rests upon the definition (9C.9) and so makes 
this failure of uniqueness obvious because 00 is arbitrary. The choice of 00 
does not affect the left-hand side of (8) because 

(lOE.9) 

The developments in Concepts and Logic provide a common framework 
upon which CARNOT'S theory, CLAUSIUS' theory, and other possibilities may 
be discussed. The mathematics used is no more than was available in 
CARNOT'S day. The program is REECH'S, and REECH had the tools with which 
to effect it as well as the will to do so. Had he succeeded, classical thermo­
dynamics would have been set upon a sound base of experience and reason 
conjoined. History was not to be that way. The tragicomic muse of thermo­
dynamics would not allow something so simple. REECH failed. Even his 
attempt was forgotten. 



Appendix: The Later Work of REEeR 

The terminal date set for this tragicomedy is 1854, and I leave to others 
the task of tracing the later history of the field. For REECH, however, I make 
an exception, because it is little likely that anyone else will take the neces­
sary trouble. While Historians of Science are ready enough to dismiss the 
standard folklore about the methods and ideas of the giants, and even more 
ready to reject outright any absolute standard of truth in science, they 
usually accept uncritically the party line of today's profession of physics 
as to what the various disciplines are and what must come out triumphant 
in the end. Since I regard this latter folklore as more dangerous, because 
less obviously hieratic, than the former, and because I regard criticism 
just as important as discovery, I append here an outline of the work of the 
only substantial and constructive critic classical thermodynamics excited in 
its formative period. 

REECH'S work was set aside, unread. HELMHOLTZl in the course of a 
general and in most instances fair and precise summary of researches on 
the theory of heat through 1851 devotes a paragraph to the first note of 
REECH 2 but, mentioning only a subsidiary numerical detail, bestows oblivion 
upon its program and the beautiful theorem it announces. 

When REECH'S great memoir appeared, HELMHOLTZ 3 dismissed it as 
being too general to deserve study: 

Mr. REECH'S basic equation [i.e. (9C.l)d reflects only an incomplete 
acceptance of the principle of conservation of force. He assumes that 
force cannot be generated from nothing, but he leaves open the 
possibility that it can disappear with no effect. 

HELMHOLTZ refrains from further summary of REECH'S results because "they 
contain more undetermined functions than do those of Clausius and W. 
Thomson." HELMHOLTZ is fair and accurate as far as he goes, but he gives 
no idea either of REECH'S aims or of the abundance of new results in REECH'S 

1 HELMHOLTZ [1855, p. 590]. 
2 REECH [1851]. 
3 HELMHOLTZ [1856, 1]. 
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memoir. He judges REECH'S work strictly on the basis of what he regards 
as physically correct at the moment, disregarding not only the past but also 
the future of the subject. Perhaps HELMHOLTZ'S review is responsible for the 
tradition's failure to notice REECH'S pro-entropy and four thermodynamic 
potentials. 

Next REECH 4 published a "very succinct recapitulation" of recent re­
searches in thermodynamics. He points out that his result (lOB.5) shows 
"by simple inspection" that E [in his notation, Q] "represents the quantity 
of work that can be produced by all the heat that is in an elastic fluid" and 
is thus "the mechanical equivalent of that quantity of heat." With extra­
ordinary self-control, REECH does not remind the reader that he had published 
all this in 1853 (above, §1OC). While "it is generally accepted today" that 
r = const., so (8A.I) holds, "My aim was to prepare in advance formulae 
for the greatest number if not for all experiments to be done by the physicists, 
and to do so in the greatest generality possible .... " Below in §IlI we shall 
discuss the improvement of CLAUSIUS' work of 1854 that REECH supplies 
in this same note. He accepts there CLAUSIUS' conclusion that the integrating 
factor is a function of e alone. In addition he develops in detail the special 
forms his numerous results assume when CLAUSIUS' "first principle", which 
in his notation amounts to the statement r = const., is adopted. Of course 
he is right; CLAUSIUS' results are all there, special cases. 

In reviewing this paper HELMHOLTZ 5 justly remarks that it is neither very 
succinct nor very understandable. He now has even less patience with 
REECH and rejects the work out of hand: " ... Mr. REECH by use of a lot of 
undetermined functions attempts to retain in his formulae a generality that 
here has no purpose at all but makes the essay extraordinarily difficult to 
study." He seems to be giving excuses for not studying it. In fact it is dis­
cursive and vague, harder to read than REECH'S long memoir, and is not 
at all a recapitulation. On the other hand, HELMHOLTZ is most unfair in 
speaking of "a lot" (" eine Menge") of undetermined functions. The theory 
of CLAUSIUS and KELVIN has in principle the one undetermined function 
/-" which those authors determined by subsidiary hypotheses or appeal to 
experiment. REECH'S theory has precisely two undetermined functions,land 
r, no more; he expressly eschews further hypotheses, and he regards the 
experimental data, with which he was thoroughly familiar, as being not 
accurate enough to be accepted. HELMHOLTZ in superficially rejecting REECH'S 
ideas misses the essential flaw of REECH'S analysis: insufficiency. As the 
reader of Concepts and Logic will know, REECH'S mathematical assumptions 
require that I be a non-vanishing function of e alone and that r be reduced 
as follows in terms of I and a monotone function g of e alone: 

r = glf . (1) 

4 REECH [1856]. 
5 HELMHOLTZ [1859, 1]. 
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Hence 

p.=g'lf· (2) 

Theorem 1 in §71, above, asserts that CLAUSIUS' "obvious subsidiary hy­
pothesis" regarding an ideal gas, namely HOLTZMANN'S Assertion 

JAv = p , 

is equivalent to the HELMHOLTZ-JOULE Determination 

p. = JI8 • 

As REECH'S starting point is more general than CLAUSIUS', his develop­
ment, had he only seen how to push through the mathematical analysis, 
would have led to all of CLAUSIUS' results from assumptions weaker than 
CLAUSIUS'. It would have delivered among other things the implication 

CARNOT'S General Axiom } 
and => CLAUSIUS' "first principle". 

CLAUSIUS' "subsidiary hypothesis" 

In symbols which will be thoroughly familiar to such spectators as remain 
in the theater, 

L(~ = G(8+, 8-, C+(~) for all Camot cycles r-c 
and => L(~ = JC(~ for all cycles r-c • 
JAv = p for ideal gases 

Such was not to be the course of history. 
In 1858 REECH 8 announced and summarized a new memoir, in which 

he cites "facts of experiment that tend to make us assume that the function 
r(8) should be q. constant. ... " Also "I cite and prove, in my own way, the 
theorem of Mr. Clausius", according to which (lOA.4) is "too general" and 
should be replaced by Q = y( 8)u, "the function y(8) being supposed the same 
for all kinds of elastic fluids, be they gases or be they vapors. " 

Then REECH's relation (lOB.5) reduces to E = ryu - pt, "simple in­
spection" of which shows that "the thing denoted by E will have to be 
considered as being the quantity of heat proper to an elastic fluid." More­
over, the experiments of REGNAULT show that for air Kp = const., "which 
obliges me to make y(8) = 8 + const." This memoir seems not to have 
been published. As is mentioned in the text above, some years ago I found a 
strict local proof that REECH'S f must reduce to a function of 8 alone, and a 
proof in the large may be found in Concepts and Logic, §1O. Judging from 
REECH'S attempts to demonstrate other things, I think it unlikely he found any 
mathematical proof; probably he appealed to some sort of" absurdity". 

8 REIlCH [1858]. 
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With this powerful theorem in hand, REECH held fast to the remainder 
of his original position: CARNOT'S point of view was correct and needed 
only mathematical development. His opinion was sound; it is substantiated 
in detail by Concepts and Logic. Logic is logic. Its consequences can be 
obtained without the logician's having to know whether they were obtained 
by someone else, hundreds or thousands of years ago. In illustration of that 
fact I mention that in outlining Concepts and Logic I had only REECH'S 
first two papers before me and did not know his assertion of 1858. 

The first textbook of thermodynamics, written by ZEUNER, appeared in 
1860. ZEUNER 7 attributed to REECH 8 an argument leading to CLAUSIUS' 
"Second Principal Theorem" of 1854. We present this argument below, at 
the end of §IIH; as we remark there, it is really due to RANKINE. 

In 1863 CLAUSIUS 9 with his usual generosity mentioned REEcH's paper of 
1856 as having "rendered" or "reproduced" (wiedergegeben) his proof of 
the Second Law. As was his wont, he repeated this statement again and 
again in subsequent pUblications and repUblications: "Reech's version of 
my proof". I find no evidence that CLAUSIUS ever took the trouble to read 
REECH'S work carefully enough to understand any part of it that did not 
"reproduce" something of his own. 

Aroused by a controversy between DUPRE and CLAUSIUS regarding vapors, 
in 1863 REECH10 showed that "the equations found by Messrs. Dupre and 
Clausius can be established without our having to know whether there is 
or is not a mechanical equivalent of heat". Replying to new objections by 
DUPRE and CLAUSIUS, REECHll stated, "My aim was to show what equations 
could have been used at any period without knowing that a given amount 
of heat was equivalent to a given amount of work." Seeming to relinquish 
his position of 1858, he called for more data: 

For a long time I have been waiting for Mr. Regnault to publish his 
last experiments, from which to exhibit [the integrating factors] in 
different cases. . .. In order for there to be a mechanical equivalent 
of heat that does not depend upon the nature of the elastic fluid ... , 
it suffices rigorously that [the ratio of integrating factors] be a function 
of 8, tne same for all kinds of fluids. 

Again it is the mortifying influence of REGNAULT'S fancy apparatus 
and subsidized precision. REECH fails to take advantage of the experimental 
facts already known. He seems not to trust any datum that does not come 
from REG~AULT'S laboratory. 

'1 ZEUNER [1860, §10]. 
8 REEcH [1856]. 
9 CLAUSIUS [1863, §3]. 
10 REECH [1863, n 
11 REECH [1863, 2]. 
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Attacked next by MOIGNO, REECH12 once more showed CLAUSIUS' results 
to be special cases of his own. "In summary: He who can do more can do 
less. That is why my theory contains as a special case that which is called 
the mechanical theory of heat." REECH concludes in disgust, "If these 
explanations are not considered sufficient, I must give up using the French 
language. " 

In these late notes REECH makes no claim of priority. He does not refer 
to his earlier papers but derives afresh everything he wishes to assert. 

Finally REECH wrote a textbookl3• In it he developed the Doctrine of 
Latent and Specific Heats as a basis and then adopted CLAUSIUS; axiom 
(7A.l) as the foundation of thermodynamics. The treatment suffers from 
REECH'S preference for differential arguments drawn from appeal to graphs. 
It would have been helped by greater fluency in integral calculus, especially 
by use of AMPERE'S transformation. Otherwise it is the clearest presentation 
of the subject I have ever seen. It was published obscurely, and it has never 
been noticed. 

When MASSIEU'S note on characteristic functions14 appeared, REECH 
replied15 by calling attention to similar considerations in the book he had 
published in the preceding year. He remarked with full justice that what 
CLAUSIUS called the entropy stood already, unnamed, in his book, and that 
all of MASSIEU'S results were either in that book or easy consequences of 
equations there. For example, he had emphasized (lOC.4), suitably special­
ized. REECH says not a word about the priority in the whole subject of 
thermodynamic potentials which his memoir of 1853 in fact establishes. 
He merely remarks that he regards his theory" as simple and not less general 
than that of most of the savants who have written about thermodynamics." 

In 1873 GmBS' magnificent researches on the theory of heat began to 
appear. Despite the titles of his papers, his work concerns thermostatics, 
not thermodynl:\mics: It does not treat of processes but rather compares 
putative equilibria. However, GIBBS' most immediate results are just the 
same in form as certain relations in the thermodynamics of fluids governed 
by the Doctrine of Latent and Specific Heats. In this sense we may compare 
GIBBS' equation~ with counterparts in thermodynamics. Among the most 
famous is the" GmBS relation "16 

dE = 8dH - pdV, (3) 

which connects the internal energy E, taken as being a function of H and V, 
with the elementary heat added and the elementary work done. As we have 
stated in §lOB, the "GmBs relation" is nothing more nor less than REECH'S 

12 REBCH [1863, 3]. 
13 REBeH [1868]. See especially §9Off. 
14 MASSIEU [1869, I and 2]. 
15 REBCH [1869]. 
18 GmBS [1873, 2]. 
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(lOB.5) and (lOB.6), specialized as they must be if they are to respect the 
uniform and universal Interconvertibility of Heat and Work. Cf also 
REECH'S (lOC.4). 

That is not all. Not only does (lOB.6) show that E taken as a function of 
u and Vis a thermodynamic potential, we have seen in §lOC that REECH had 
introduced GIBBS' three further thermodynamic potentials. This work of 
REECH had been published in 1853. By GIBBS' day, 1873, REECH'S too general 
relations would not have looked interesting, had GIBBS seen them. But again 
the tragicomic muse played one of her pretty tricks. When, two years later, 
GIBBS 17 remarked that MASSIEU had found "fundamental equations" different 
from those that he was then introducing, he cited and described MASSIEU'S 
notes appearing in the same volume as REECH'S note of 1869. In that note, 
which was prompted by MASSIEU'S first, REECH had merely indicated how 
easy it was to obtain a "fundamental equation" using any pair of independent 
variables we might please. He then cited only his textbook of 1868; he did 
not mention his paper of 1853 or its contents regarding thermodynamic 
potentials. Of course, MASSIEU'S functions do not appear there, and that 
GIBBS in 1875 would introduce for the thermostatics based on the Inter­
convertibility of Heat and Work the very same "fundamental equations" as 
those REECH had derived for any theory compatible with CARNOT'S General 
Axiom, REECH could not have known in l868! The muse was malicious 
indeed! 

By 1873 REECH, still alive, had fallen silent. Perhaps he knew that it was 
futile for him to write. Nobody had ever paid attention to him when his 
works were new and original; why should anyone pay attention now, when 
they were largely superseded? 

There is a parallel between REECH'S fate and WATERSTON'S. Both were a 
generation too early in what they sought to do; the works of both were 
defective in one way or another; the defects were all that their contem­
poraries noticed; and both were thereafter dismissed, ignored, and then 
forgotten. There is a difference, too. WATERSTON wrote excellently well, but 
he could not get his papers published. REECH, a mediocre writer, published 
easily and too much. For different reasons, the works of both went unread. 

REECH!S publications are patient and dispassionate; the later ones are 
clearer and more explicit than any other works on thermodynamics at the 
time. REECH shows none of CLAUSIUS' greed for priority and recognition, 
and he never attacks any person or his work. It is hard to account for the 
oblivion in which the tradition has buried him. I hesitantly conjecture three 
reasons: 

1. His great memoir of 1853 was far too long; it was awkward, and it 
claimed a generality in part illusory. Readers tend to dismiss unread 

17 GIBBS [1875, pp. 86-87 of the reprint in Collected Papers]. 
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any subsequent publication by such an author: "more of the same". 
2. Critical logic in physics was going out of fashion. 
3. REECH was neither a famous physicist nor a member of any group of 

physicists. 

I incline toward the third as the strongest reason. Otherwise his work would 
have influenced the textbooks, one of the principal aims of which is to make 
things simple and clear for beginners. 

NOTE ADDED IN PROOF. The statement on p. 299 to the effect that REECH'S 
textbook has never been noticed is not correct. JULES MOUTIER in Chapter III, 
§3 of his book, La thermodynamique et ses principales applications, Paris, 
Gauthier-Villars, 1885, cited it for the proof of (3F.7) as a theorem of 
calorimetry and proposed and justified naming it "Tbeoreme de Reech". 



Postscript on Maximum Efficiency 

The formal structure of the classical thermodynamics of reversible pro­
cesses in fluids is now complete, though only if we include the results of 
REECH appropriately specialized. One point is left dangling. Are Camot 
cycles truly the most efficient for given operating temperatures? In all these 
years, through the thousands of pages of print we have analysed, nothing 
better than the negations of CARNOT (§§5D-5E) was produced. CARNOT'S 
argument or some substitute even worse is all that is found in textbooks 
today. The proposition is mathematical; it can be regarded as true only if 
mathematically proved. 

The special features of the Caloric Theory makes such a proof easy, and 
in this tragicomedy I have provided two proofs, one in §5M and another in 
§7H; the former has not been published before, and the latter is one I found 
in 1973. 

What of CLAUSIUS' theory? The proposition is still true, but the proof is 
not so immediate. So far as I know, the first proof is by corollary from a 
more general result1 I published in 1973. Later2 I found a better proof. 
The matter is discussed from a pro-historical standpoint in Chapter 13 
of Concepts and Logic. A counterexample is adduced there to show that 
CARNOT'S claim is not a consequence of his General Axiom alone. Therefore 
CARNOT'S argument, since it makes no reference to any particular theory of 
heat, cannot be correct. 

1 TRUESDELL [1973, 2]. 
2 TRUESDELL [1976]. 



11. Orthodox Act V. KELVIN'S Absolute 
Temperatures. CLAUSIUS' Second Paper: 

Irreversibility and Orading 

Lo nostro scender conviene esser tardo, 
sl che s'ausi un poco in prima iI senso 

al tristo fiato; e poi no i fia riguardo. 
DANTE, Inferno XI, 10--12. 

llA. KELVIN'S Remarks on Dissipation 

In 1852 KELVINl had presented his ideas on irreversible processes, which 
he claimed to be "necessary consequences" of his "axiom" about "in­
animate material agency" (above, §9B). 

I. When heat is created by a reversible process (so that the 
mechanical epergy thus spent may be restored to its primitive con­
dition), there is also a transference from a cold body to a hot body of 
a quantity of heat bearing to the quantity created a definite proportion 
depending on the temperatures of the two bodies. 

II. When peat is created by any unreversible process (such as 
friction), there is a dissipation of mechanical energy, and a full 
restoration of it to its primitive condition is impossible. 

III. When heat is diffused by conduction, there is a dissipation 
of mechanical energy, and perfect restoration is impossible. 

1 THOMSON [1852, 2]. 
THoMSON [1853,2] later tried to calculate the total amount of mechanical energy 

dissipated when a body whose temperature varies from point to point in an arbitrary 
way is confined in a vessel with adiabatic walls and allowed to come to thermal equili­
brium. He does so by supposing each element of the body to act like a Camot engine. 
This is the earliest paper on thermodynamics in which a non-constant temperature 
field appears. 
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IV. When radiant heat or light is absorbed, otherwise than in 
vegetation, or in chemical action, there is a dissipation of mechanical 
energy, and perfect restoration is impossible. 

KELVIN does not disclose how he has derived these statements from his axiom. 
The remainder of his note concerns the question, "How far is the loss of 
power experienced by steam in rushing through narrow steam-pipes com­
pensated, as regards the economy of the engine, by the heat (containing an 
exact equivalent of mechanical energy) created by the friction?" His tool is 
his formula for the motive power of a Carnot cycle: 

L(~ ( 1 f8+ ) Je +(~) = 1 - exp -J 8- p.d8 . (9B.9)r 

He concludes from an experimental datum that in the best steam engines 
"at least three-fourths of the work spent in any kind of friction is utterly 
wasted." He draws some" general conclusions ... from the propositions stated 
above, and known facts with reference to the mechanics of animal and 
vegetable bodies":-

1. There is at present in the material world a universal tendency 
to the dissipation of mechanical energy. 

2. Any restoration of mechanical energy, without more than an 
equivalent of dissipation, is impossible in inanimate material pro­
cesses, and is probably never effected by means of organized matter, 
either endowed with vegetable life or subjected to the will of an 
animated creature. 

3. Within a finite period of time past, the earth must have been, 
and within a finite period of time to come the earth must again be, 
unfit for the habitation of man as at present constituted, unless 
operations have been, or are to be performed, which are impossible 
under the aws which the known operations going on at present in 
the material worl0 are subject. 

lIB. KELVIN'S Absolute Temperatures 

In Footnote 6 to §7H we have mentioned the "absolute temperature" 
KELVIN introduced in 1848, using the framework of the Caloric Theory. 
[That temperature was not the result of any new development in thermo­
dynamics then, nor was it used in any of the later works of the pioneers.] 
In 1854 KELVIN turned back to his early work, "wholly founded", as he 
wrote, "on CARNOT'S uncorrected theory", and replaced it by a new and 
slightly different development. 



lIB. KELVIN'S ABSOLUTE TEMPERATURES 

The paperl of 1848 opens as follows: 

TIm determination of temperature has long been recognized as 
a problem of the greatest importance in physical science. It has 
accordingly been made a subject of most careful attention, and, 
especially in late years, of very elaborate and refined experimental 
researches; and we are thus at present in possession of as complete 
a practical solution of the problem as can be desired, even for the 
most accurate investigations. The theory of thermometry is how­
ever as yet far from being in so satisfactory a state. The principle 
to be followed in constructing a thermometric scale might at first 
sight seem to be obvious, as it might appear that a perfect thermo­
meter would indicate equal additions of heat, as corresponding to 
equal elevations of temperature, estimated by the numbered divisions 
of its scale. It is however now recognized (from the variations in 
the specific heat of bodies) as an experimentally demonstrated fact 
that thermometry under this condition is impossible, and we are left 
without any principle on which to found an absolute thermometric 
scale. 
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Next in importance to the primary establishment of an absolute 
scale, independently of the properties of any particular kind of 
matter, is the fixing upon an arbitrary system of thermometry, 
according to which results of observations made by different ex­
perimenters, in various positions and circumstances, may be exactly 
compared. 

For this purpose the air thermometer does very well, as KELVIN goes on to 
explain in detail. 

Now it is found by Regnault that various thermometers, constructed 
with air under different pressures, or with different gases, give in­
dications which coincide so closely, that, unless when certain gases, 
such as sulphurous acid, which approach the physical condition of 
vapours at saturation, are made use of, the variations are inappreciable. 
This remarkable circumstance enhances very much the practical value 
of the air-thermometer; but still a rigorous standard can only be 
defined by fixing upon a certain gas at a determinate pressure, as the 
thermometric substance. Although we have thus a strict principle for 
constructing a definite system for the estimation of temperature, yet as 
reference is essentially made to a specific body as the standard thermo­
metric substance, we cannot consider that we have arrived at an absolute 
scale, and we can only regard, in strictness, the scale actually adopted 

1 THOMSON [1848]. 



308 11. ACT V. TEMPERATURES, IRREVERSIBILITY, ORACLING 

as an arbitrary series of numbered points of reference sufficiently close 
for the requirements of practical thermometry. 

In the present state of physical science, therefore, a question of 
extreme interest arises: Is there any principle on which an absolute 
thermometric scale can be founded: It appears to me that Carnot's 
theory of the motive power of heat enables us to give an affirmative 
answer. 

That theory allows us to estimate" the value of a degree . .. by the [maximum] 
mechanical effect to be obtained from the descent of a unit of heat through 
it. .. ": 

The characteristic property of the scale which I now propose 
is, that all degrees have the same value; that is, that a unit of heat 
descending from a body A at the temperature TO of this scale, to 
a body B at the temperature (T - 1)0, would give out the same 
mechanical effect, whatever be the number T. This may justly be termed 
an absolute scale, since its characteristic is quite independent of the 
physical properties of any specific substance. 

KELVIN then turns to REGNAULT'S data on the latent heat of steam; he states 
that because the densities of saturated vapor at different temperatures are 
not yet determined accurately, he has no choice but to use the laws of ideal 
gases. He appends a table for interconverting degrees of air thermometer 
with these new degrees. 

[This paper, which contains no equations and no mathematical reasoning, 
can be understood only by a person thoroughly familiar with the Caloric 
Theory as CARNOT and CLAPEYRON presented it. KELVIN bases his scale upon 
the CARNOT-CLAPEYRON Theorem (5L.4), which we may write in the form 

op/ 
p. = 00 Ay , (lIB. I) 

provided we know that Ay =l= O. His definition of "absolute temperature" T 

is 

T = F(O) , F == f p.(O)dO . (l1B.2) 

According to CARNOT'S Special Axiom, the work done by a Carnot cycle C(? 

is given by 

(5L.7)2r 

Using the definition (2), we write this statement in terms of the" absolute" 
operating temperatures T+ and T- : 

(l1B.3) 



llB. KELVIN'S ABSOLUTE TEMPERATURES 309 

Just as KELVIN claims, a unit difference of this "absolute temperature" 
equals precisely the maximum work that can be done by a unit of heat let 
down through lOin a cyclic process, no matter what be the temperature of 
the furnace. 

[KELvIN's second development 2 , appropriate to the "dynamical theory", 
rejects (5L. 7) and (3) as being peculiar to the Caloric Theory. On the contrary, 
(1) remains valid, and the definition (2) still makes sense, though what the 
numbers 7' so obtained are good for remains to be discovered.] 

In his earlier paper, KELVIN now states, he showed 

that CARNOT'S function (derivable from the properties of any sub­
stance whatever, but the same for all bodies at the same temperature), 
or any arbitrary function of CARNOT'S function, may be defined as 
temperature, and is therefore the foundation of an absolute system 
of thermometry. We may now adopt this suggestion with great 
advantage, since we have found that CARNOT'S function varies very 
nearly in the inverse ratio of what has been called "temperature 
from the zero of the air-thermometer," that is, Centigrade temperature 
by the air-thermometer increased by the reciprocal of the coefficient 
of expansion; and we may define temperature simply as the reciprocal 
of CARNOT'S function. When we take into account what has been 
proved regarding the mechanical action of heat *, and consider what 
is meant by CARNOT'S function, we see that the following explicit 
definition may be substituted:-

If any substance whatever, subjected to a perfectly reversible cycle 
of operations, takes in heat only in a locality kept at a uniform tem­
perature, and emits heat only in another locality kept at a uniform 
temperature, the temperatures of these localities are proportional to 
the quantities of heat taken in or emitted at them in a complete cycle 
of the operations. 

Again there are no equations, [but an informed reader might have grasped 
KELVIN's intentions]. First, the new "absolute temperature" T is defined as 
follows: 

J 
T == -. p, 

(IlBA) 

KELVIN had made the same proposal a year earlier 3 except that then he 
subtracted a constant "which might have any value, but ought to have for its 
value the reciprocal of the coefficient of expansion of air in order that the 

2 JOULE & THOMSON [1854, Theoretical Deductions, Section IV]. 
* [KELVIN'S Footnote:] Dynamical Theory of Heat [i.e. THOMSON [1851)], §§42, 43. 
3 THOMSON [1853, 2, Equation (6)]. 
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system of measuring temperature here adopted may agree approximately 
with that of the air thermometer." Then he did not explain why he chose this 
particular new absolute temperature. [The statement about Camot cycles 
KELVIN now has set in italics can only mean that T is to be so defined that for 
a Camot cycle ~ 

c;~~ = c;~~ .J (l1B.5) 

KELVIN provides no proof that (5) does follow from (4). [He may well have 
inferred it from the argument given above at the beginning of §9B. If we are 
justified in replacing () by T in (2), we conclude that KELVIN's old and new 
absolute temperatures are related as follows:] 

'T = JIog T + const. (IIB.6) 

KELVIN was later' to publish a formula of this kind with specific numerical 
constants appropriate to particular choices of a degree and a zero. 

The section concludes with a table comparing () as determined by an air 
thermometer with T. In most circumstances the differences are small. For 
details, see the end of the appendix to §9D, above. [That is, while KELVIN's 
old absolute temperature was entirely different from any empirical tempera­
ture in common use, the degrees according to the air thermometer are very 
nearly proportional to absolute degrees according to his new definition.] 

11 C. CLAUSIUS' Two "Laws" of Thermodynamics 

In 1854 CLAUSIUS1 took up thermodynamics at the point he had left it 
in 1850. He mentions that" other authors" had treated the subject, but he 
takes no account of their work. 

CLAUSIUS here remarks that thermodynamics may be based on a "First 
Law" and a "Second Law". In the title of the paper he uses the vague 
German word "Hauptsatz", and in the text the still vaguer word "Satz"; 
his first ttanslator renders the former "Fundamental Theorem", the latter, 
"theorem". The "Second Law", then, is "Camot's theorem", which 
CLAUSIUS says he had used in 1850 in "its original form", although at that 

4 Annotation to the reprint of THOMSON [1848] in KELVIN'S Papers, 1882. 
1 CLAUSIUs,[1854]. As I cannot understand parts of the argument in this paper, I depart 
from my usual practice of translating afresh everything I quote, adopting instead the 
safer course of quoting from an accepted English translation, first published in 1856. 
If that is nonsense, at least it is not my fault. Also the typically British fused participles 
and misplaced adverbs are not mine. 

In 1851 CLAUSIUS had published a paper, the first of several, on that fetish of thermo­
dynamics, the steam engine, and a note about vapors. I find in them nothing that 
contributes to the general theory. 
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time he admitted that he knew CARNOT'S work only through CLAPEYRON'S 
and KELVIN's versions of it. [The English terms "First Law" and "Second 
Law" are soon to be introduced by RANKINE2. 

[In this paper CLAUSIUS abandons CLAPEYRON'S lead and strikes out on 
his own. His mathematics becomes more primitive, his expression vaguer.] 

For "the first theorem" CLAUSIUS presents a new "demonstration ... , 
because it is at once more general and more concise" than his former one. 
This" demonstration" is a statement: 

Mechanical work may be transformed into heat, and conversely 
heat into work, the magnitude of the one being always proportional to 
that of the other. 

He adds, "I have divided the work done by heat into internal and external 
work, which are SUbjected to essentially different laws." The "internal" 
work is that which contributes to the change of the internal energy E. Thus 
the statement of the" first theorem", which CLAUSIUS numbers (I), is 

E = JQ + P . (8B.2)lr 

In order to give special forms to equation (I), in which it shall 
express definite properties of bodies, we must make special assump­
tions with respect to the foreign influences to which the body is 
exposed. For instance, we will assume that the only active external 
force, or at least the only one requiring consideration in the deter­
mination of work, is an external pressure everywhere normal to 
the surface, and equally intense at every point of the same, which 
is always the case with liquid and gaseous bodies when other foreign 
forces are absent, and might at least be the case with solid bodies. It 
will be seen that under this condition it is not necessary, in determining 
the external work, to consider the variations in form experienced by the 
body, and its expansion or contraction in different directions, but only 
the total change in its volume. We will further assume that the pressure 
always changes very gradually, so that at any moment it shall differ 
so little from the opposite expansive force of the body, that both may 
be counted as equal. Thus the pressure constitutes a property of the 
body itself, which can be determined from its other contemporaneous 
properties. 

That is, 

P == -pV. (8B.2hr 

2 RANKINE [1859, §§236, 241, 243]; of course RANKINE'S "Laws" themselves differ from 
CLAUSIUS'. 
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Next, CLAUSIUS considers both p and E to be functions of V and O. He 
concludes from (8B.2) that 

oE 
JAv -p =­oV' 

oE 
JKv = 00 ' (8D.3}r 

and hence [as KELVIN had shown in 1851 (cf. §§9B and 9D, above)] follows 
the local form of CLAUSIUS' "first principle" of 1850, freed of the restriction 
to ideal gases: 

op = J(OAv _ OKv) 
00 00 oV (8B.l}r 

Next comes the "second theorem". 

Camot's theorem, when brought into agreement with the first 
fundamental theorem, expresses a relation between two kinds of 
transformations, the transformation of heat into work, and the 
passage of heat from a warmer to a colder body, which may be re­
garded as the transformation of heat at a higher into heat at a lower 
temperature. In its original form it may be enunciated in some such 
manner as the following:-In all cases where a quantity of heat is 
converted into work, and where the body effecting this transformation 
ultimately returns to its original condition, another quantity of heat 
must necessarily be transferred from a warmer to a colder body; and 
the magnitude of the last quantity of heat, in relation to the first, depends 
only upon the temperatures of the bodies between which heat passes, 
and not upon the nature of the body effecting the transformation. 

CLAUSIUS regards this "theorem" as "incomplete" because its "demon­
stration ... is based upon too simple a process, in which only two bodies 
losing or receiving heat are employed .... " He replaces CARNOT'S "theorem" 
by a new "principle": 

Heat can never pass from a colder to a warmer body without some other 
change, connected therewith, occurring at the same time. 

As he writes, "Everything we know ... confirms this. . .. Without further 
explanation, therefore, the truth of the principle will be granted." 

liD. CLAUSIUS' Equivalence-Value of a Transformation 

To exploit his new principle, CLAUSIUS regards a Camot cycle as too 
simple, so he introduces a more complicated cyclic process and applies it 
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to an ideal gas placed successively in communication with three different 
bodies. He applies the "first theorem" in the form 

L(CC) = JC(CC) (7A.l)1r 

for all cycles ~. 

These several processes can be either reversible ... or not, and the 
law which governs the transformations will vary accordingly. Neverthe­
less, the modification which the law for non-reversible processes suffers 
may be easily applied afterwards, so that at present we will confine 
ourselves to the consideration of reversible circular processes. 

CLAUSIUS convinces himself that a transformation of heat from work 
has a "mathematical value", which "may be called its equivalence-value": 

With respect to the magnitude of the equivalence-value, it is ... 
clear that the value of a transformation from work into heat must be 
proportional to the quantity of heat produced, and besides this it can 
only depend upon the temperature. 

Thus, he claims, "the equivalence-value of the transformation of the quantity 
of heat C, of the temperature 8, from work, may be represented generally by 

Cf(8) , (IlD.l) 

wherein f(8) is a [positive] function of the temperature, which is the same 
for all cases." [To avoid confusion, I replace CLAUSIUS' Q here by C.] 

In a similar manner the value of the transmission of the quantity of 
heat C from the temperature 81 to the temperature 82 , must be pro­
portional to the quantity transmitted, and besides this, can only 
depend upon the two temperatures. In general, therefore, it may be 
expressed by 

(11D.2) 

wherein F(8h 82) is a function of both temperatures, which is the 
same for all cases, and of which we at present only know that, without 
changing its numerical value, it must change its sign when the two 
temperatures are interchanged; so that 

(11D.3) 

In order to institute a relation between these two expressions, 
we have the condition, that in every reversible circular process of 
the above kind, the two transformations which are involved must 
be equal in magnitude, but opposite in sign; so that their algebraical 
sum must be zero. For instance, in the process for a gas, so fully 
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described above, the quantity of heat C, at the temperature 0, was 
converted into work; that gives - CI(O) as its equivalence-value, and 
that of the quantity of heat Ch transferred from the temperature 
fJ1 to O2 , will be C1F(Oh O2), so that we have the equation 

(lID.4) 

Let us now conceive a similar process executed in an opposite 
manner, so that the bodies Kl and K 2 , and the quantity of heat Cl> 
passing between them, remain the same as before; but that instead 
of the body K of the temperature 0, another body K' of the tem­
perature 0' be employed; and let us call the quantity of heat produced 
by the work in this case C',-then, analogous to the last, we shall 
have the equation 

C'j(O') + C1F(02, 01) = 0 . 

Adding these two equations, and applying (3), we have 

- CI(O) + C'j(O') = 0 . 

(lID.S) 

(IlD.6) 

If now we regard these two circular processes together as one 
circular process, which is of course allowable, then in the latter the 
transmissions of heat between Kl and K2 will no longer enter into 
consideration, for they precisely cancel one another, and there remain 
only the quantity of heat C taken from K and transformed into work, 
and the quantity C' generated by work and given to K'. These two 
transformations of the same kind, however, may be so divided and 
combined as again to appear as· transformations of different kinds. 
If we hold simply to the fact that a body K has lost the quantity of 
heat C, and another body K' has received the quantity C', we may 
without hesitation consider the part common to both as transferred 
from K to K', and regard only the other part, the excess of one quantity 
over the other, as a transformation from work into heat, or vice versa. 
For example, let the temperature 0' be greater than 0, so that the 
above, being a transmission from the colder to the warmer body, will 
be negative. Then the other transformation must be positive, that is, 
a transformation from work into heat, whence it follows that the 
quantity of heat C' imparted to K' must be greater than the quantity 
C lost by K. If we divide C' into the two parts 

C and C' - C , 

the first will be the quantity of heat transferred from K to Kl> and 
the second the quantity generated from work. 

According to this view the double process appears as a process 
of the same kind as the two simple ones of which it consists, for the 
circumstances that the generated heat is not imparted to a third 
body, but to one of the two between which the transmission of heat 
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takes place, makes no essential difference, because the temperature of 
the generated heat is arbitrary, and may therefore have the same 
value as the temperature of one of the two bodies, in which case a 
third body would be superfluous. Consequently, for the two quantities 
of heat C and C' - C, an equation of the same form as (5) must 
hold, i.e. 

(C' - C)f(8') + CF(8, 8') = 0 . 

Eliminating C' by (6) yields 

F(8,8') = f(8') - f(8) 

CLAUSIUS introduces a function T as follows: 

1 
f(8) = T ' 

(lID.7) 

(lID.8) 

(lID.9) 

and T1 denotes Ilf(81), etc. In this notation CLAUSIUS enunciates thus 

the second fundamental theorem ... , which in this form might appro­
priately be called the theorem of the equivalence of transformations . .. : 

If two transformations which, without necessitating any other 
permanent change, can mutually replace one another, be called equivalent, 
then the generation of the quantity of heat C at the temperature 8 from 
work, has the equivalence-value 

C 
T' (lID. 10) 

and the passage of the quantity of heat C from the temperature 81 to 
the temperature 82 , has the value 

C(1- _1-) 
T2 T1 ' 

(lID.lI) 

wherein T is a function of the temperature, independent of the nature 
of the process by which the transformation is effected. 

CLAUSIUS supposes that 

the several bodies Kb K 2 , K 3 , &c., serving as reservoirs of heat at 
the temperatures 81 , 82 , 83 , &c., have received during the process the 
quantities of heat Cb C2 , C3 , &c., whereby the loss of a quantity of 
heat will be counted as the gain of a negative quantity of heat; then 
the total value N of all the transformations will be 

(lID.12) 
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It is here assumed that the temperatures of the bodies Kh K2 , Ka, 
&c. are constant, or at least so nearly constant, that their variations 
may be neglected. When one of the bodies, however, either by the 
reception of the quantity of heat C itself, or through some other cause, 
changes its temperature during the process so considerably, that the 
variation demands consideration, then for each element of heat dC 
we must employ that temperature which the body possessed at the time 
it received it, whereby an integration will be necessary. For the sake of 
generality, let us assume that this is the case with all the bodies; then 
the foregoing equation will assume the form 

N -fdC 
- T' (l1D.13) 

wherein the integral extends over all the quantities of heat received 
by the several bodies. 

If the process is reversible, then, however complicated it may be, 
we can prove, as in the simple process before considered, that the 
transformations which occur must exactly cancel each other, so that 
their algebraical sum is zero. 

For were this not the case, then we might conceive all the trans­
formations divided into two parts, of which the first gives the algebraical 
sum zero, and the second consists entirely of transformations having 
the same sign. By means of a finite or infinite number of simple circular 
processes, the transformations of the first part must admit of being 
made in an opposite manner, so that the transformations of the second 
part would alone remain without any other change. Were these 
transformations negative, i.e. from heat into work, and the trans­
mission of heat from a lower to a higher temperature, then of the 
two the first could be replaced by transformations of the latter kind, 
and ultimately transmissions of heat from a lower to a higher tem­
perature would alone remain, which would be compensated by 
nothing, and therefore contrary to the above principle. Further, were 
those transformations positive, it would only be necessary to execute 
the operations in an inverse manner to render them negative, and 
thus obtain the foregoing impossible case again. Hence we conclude 
that the second part of the transformations can have no existence. 

Consequently the equation 

f dC - 0 
T - (1ID.14) 

is the analytical expression of the second fundamental theorem in the 
mechanical theory of heat. 

This" analytical expression" is his Equation (II). 



l1E. CLAUSIUS' APPLICATION 

lIE. CLAUSIUS' Application to the Doctrine of 
Latent and Specific Heats 

CLAUSIUS applies these assertions to 
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a circular process consisting of a series of changes of condition made 
by a body which ultimately returns to its original state, and for sim­
plicity, let us assume that all parts of the body have the same tem­
perature; then in order that the process may be reversible, the changing 
body when imparting or receiving heat can only be placed in com­
munication with such bodies as have the same temperature as itself, 
for only in this case can the heat pass in an opposite direction. Strictly 
speaking, this condition can never be fulfilled if a motion of heat at all 
occurs; but we may assume it to be so nearly fulfilled, that the small 
differences of temperature stilI existing may be neglected in the 
calculation. In this case it is of course of no importance whether (), 
in the equation (II), represents the temperature of the reservoir of 
heat just employed, or the momentary temperature of the changing 
body, inasmuch as both are equal. The latter signification being once 
adopted, however, it is easy to see that any other temperatures may 
be attributed to the reservoirs of heat without producing thereby any 
change in the expression f dCfT which shall be prejudicial to the 
validity of the foregoing equation. As with this signification of () the 
several reservoirs of heat need no longer enter into consideration, it 
is customary to refer the quantities of heat, not to them, but to the 
changing body itself, by stating what quantities of heat this body 
successively receives or imparts during its modifications. . .. [I]t fol­
lows, therefo.re, that when for every quantity of heat dC which the 
body receives or, if negative, imparts during its modifications the tem­
perature of the body at the moment be taken into calculation, the 
equation (II) may be applied without further considering whence 
the heat com~s or whither it goes, provided always that the process is 
reversible. 

CLAUSIUS now specializes these ideas and assertions to fluid bodies such 
as had been considered heretofore. He asserts as "the condition of the 
body being defined by its temperature () and volume V" the Doctrine of 
Latent and Specific Heats: 

and he then interprets dC in (110.14) as being AvdV + Kvd(). Then 
(AydV + Kvd()/T is an exact differential; therefore 

o (Av) 0 (Kv) 
o() T = oV T . (11E.1) 
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That is, 

T' A 8Av 8Kv 
T v = 80 - 8V ' 

whence by use of the relation 

it follows that 

and so 

8p = J(8Av _ 8Kv) 
80 80 8V 

8p 
JAv = T aT . 

(llE.2) 

(8B.I)r 

(IIE.3) 

(IIE.4) 

The former of these results CLAUSIUS recognizes as being "the before­
mentioned equation established by Clapeyron"; [that is, to within the 
qualifications explained in §§SJ and SL, it is the General CARNOT-CLAPEYRON 
Theorem 

8p 
/LAv = 80 ' 

specialized in such a way as to make it compatible with the Interconvertibility 
of Heat and Work,] and 

(llE.S) 

[The result (4) shows that CLAUSIUS in his formalistic way notices that the 
value of his function T might be taken as an independent variable in place 
of O. The Av delivered by (4) is a function of V and T.] In annotating this 
passage for the reprint of 1864 he remarked that "in the same way" one 
could derive from (1) the relation 

:r (~) = 8~ (~) , (llE.6) 

[in which both Av and Kv are regarded as functions of V and T.] 

IIF. CLAUSIUS' Remarks on Irreversible Processes 

We proceed now to the consideration of non-reversible circular 
process~s. 

In the proof of the previous theorem, that in any compound 
reversible process the algebraical sum of all the transformations 
must be zero, it was first shown that the sum could not be negative, 
and afterwards that it could not be positive, for if so it would only 
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be necessary to reverse the process in order to obtain a negative 
sum. The first part of this proof remains unchanged even when the 
process is not reversible; the second part, however, cannot be applied 
in such a case. Hence we obtain the following theorem, which applies 
generally to all circular processes, those that are reversible forming 
the limit:-

The algebraical sum of all transformations occurring in a circular 
process can only be positive. 

A transformation which thus remains at the conclusion of a circular 
process without another opposite one, and which according to this 
theorem can only be positive, we shall, for brevity, call an un­
compensated transformation. 

The different kinds of operations giving rise to uncompensated 
transformations are, as far as external appearances are concerned, 
rather numerous, even though they may not differ very essentially. 
One of the most frequently occurring examples is that of the trans­
mission of heat by mere conduction, when two bodies of different 
temperatures are brought into immediate contact; other cases are the 
production of heat by friction, and by an electric current when over­
coming the resistance due to imperfect conductibility, together with 
all cases where a force, in doing mechanical work, has not to over­
come an equal resistance, and therefore produces a perceptible external 
motion, with more or less velocity, the vis viva of which afterwards 
passes into heat. An instance of the last kind may be seen when a 
vessel filled with air is suddenly connected with an empty one; a portion 
of air is then propelled with great velocity into the empty vessel and 
again comes to rest there. It is well known that in this case just as 
much heat is present in the whole mass of air after expansion as 
before, even tf differences have arisen in the several parts, and there­
fore there is no heat permanently converted into work. On the other 
hand, however, the air cannot again be compressed into its former 
volume without a simultaneous conversion of work into heat. 

The princ!ple according to which the equivalence-values of the 
uncompensated transformations thus produced are to be determined, 
is evident from what has gone before, and I will not here enter further 
into the treatment of particular cases. 

Later CLAUSIUS1 was to use the "analytical expression" (11 D .13) to 
express the "Sec;ond Law" for "every cyclic process possible at all" in the 
form 

fa;~o. (11FJ) 

1 CLAUSWS [1862, Eq. (1a)]. Our de here is what CLAUSWS denoted by -dQ in this 
paper, by dQ in his later work. 
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llG. Clausius' Determination of Ris Universal Function T 

CLAUSIUS cannot determine T "entirely without hypothesis", so he 
returns to the "accessory assumption" made in his former paper, that is, 
to [HOLTZMANN'S Assertion] 

JAv = p , 

(cf §8B, above). CLAUSIUS states that it "has been verified by the later 
experiments of REGNAULT, and in all probability is accurate for all gases 
to the same degree" as is the thermal equation of state p V = RO. Of course, 
putting (7D.l) into the relation 

shows that at once 
T = KO. (llG.I) 

For K "the simplest value ... is unity". Thus "T is nothing more than the 
temperature counted from ... about - 273°C below the freezing-point, and, 
considering the point thus determined as the absolute zero of temperature, 
T is simply the absolute temperature." 

IIR. Critique: Empirical and Absolute Temperatures 

In this same year, 1854, KELVIN and CLAUSIUS introduced independently 
what might seem to be the same concept of absolute temperature. In fact 
their ideas, while consistent with each other, were somewhat different. 
KELVIN, though his treatment is so lacunary, indeed careless, as to leave the 
reader in doubt as to what he meant and did, operated fully within the 
Doctrine of Latent and Specific Heats. CLAUSIUS, considering circumstances 
not necessarily inquadrable by that Doctrine, used a sort of physical divina­
tion to hale up his function T as a daemon of an incipient general thermo­
dynamics. For him the formal manipulations show only what T can do when 
Q is determined by the Doctrine of Latent and Specific Heats. He does not 
exhibit anything definite for more general circumstances, and I cannot 
supply any logical structure to replace his bare claims. 

I can, however, fill all the gaps in KELVIN'S and CLAUSIUS' specific argu­
ments regarding the quantities of classical thermodynamics. These gaps are 

I. CLAUSIUS does not demonstrate that there is such a function as he 
claims T to be. 

2. While KELVIN gives an explicit definition of his function T, it does 
not make sense unless f.t > 0; furthermore, KELVIN does not demon­
strate that his T has the properties he claims for it. 
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This is not all. The critical reader will have noticed that KELVIN's second 
definition shifts ground, as the vague phrase "any arbitrary function of 
CARNOT'S function" suggests. KELVIN's requirement of 1848 was that the 
ratio of the work done to heat absorbed in a Camot cycle should depend 
only upon the difference of its "absolute" operating temperatures. If T 
as defined by KELVIN, namely 

J T==-, 
I' 

is in fact an empirical-temperature scale, we can use it in place of 0 in KELVIN's 
determination of the motive power of a Camot cycle: 

L(~ ( 1 f.9+ ) 
JC+(~ = 1 - exp -J 9- p.d0 

The result is 

(ltH.l) 

Because T-/T+ is not a function ofT+ - T-, KELVIN's second "absolute 
temperature" T does not satisfy the requirement he had laid down in 1848. 
Moreover, if we apply KELVIN's first definition, namely 

T = F(O) ,F == f p.(O)dO , 

(9B.9) assumes the form 

(1IH.2) 

Thus KELVIN'S first "absolute temperature" T continues even in the new, 
corrected theory to satisfy both of the requirements he laid down originally. 
Of course the linear dependence 

which made the definition of T particularly attractive in the Caloric Theory, 
is irretrievably lost in the "dynamical theory". 

Why KELVIN should have abandoned his original idea and chosen sub­
sequently to base his absolute temperature upon heat exchange rather than 
work done, I cannot explain in terms of the aspects of the theory he himself 
published. Of course for other reasons, especially those drawn from the 
kinetic theory Qf gases, it is easy enough to see why the second definition 
is preferable. 

There are deeper failings in KELVIN's hasty work on this subject. He tells 
us that his two "absolute temperatures" T and T are independent of the 
thermometer used to specify the temperature 0 that enters the determination 
of 1'(0) through the General CARNOT-CLAPEYRON Theorem (ltB.l). True, 
for a given scale of empirical temperature CARNOT'S General Axiom makes 
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the function p, universal in the sense that we shall get the same quotient 
(op/o() + Av for all bodies, and it will be a function of () only. That Axiom 
does not tell us that for all scales we shall get the same function p, this way. 
Indeed, we shall not, nor should we. 

To clarify this matter, we first observe that KELVIN has used the term 
" absolute" in three distinct senses: 

1. Temperature independent of the choice of thermometric fluid. 
2. Temperature whose "value of a degree" is a function of the ratio of 

maximum work done to heat absorbed in a cyclic process whose 
greatest and least temperatures differ by one degree, no matter in what 
part of the scale those temperatures lie. 

3. Temperature the ratio of whose values at the furnace and the re­
frigerator of a Carnot engine equals the ratio of heat absorbed to heat 
emitted in a cycle of that engine. 

Meanings 2 and 3 are incompatible and so must define different absolute 
temperatures. Hence in what follows I shall use the unqualified term 
"absolute" in theftrst sense only. 

0:. Empirical temperature. To investigate KELVIN's ideas in terms of the 
first sense and so to correct his reference to "any arbitrary function of 
CARNOT'S function", we must first explain "empirical temperature". Here 
I endeavor to do so in terms of the concepts available in 1854. Necessarily 
the treatment cannot be explicit1• 

As we have seen, early students of heat appealed often to an in effect 
primitive concept of an ideal gas, to the behavior of which nearly all real 
gases approximated very closely in most circumstances then available to 
experiment. By reference to such a gas the letter () as it has been used in 
this tragicomical history could have been deftned by the thermal equation 
ofstatepV = R(), augmented by AVOGADRO'S hypothesis: 

RocMi, (llH.3) 

1 An explicit treatment starts from the abstract concept of hotness, which was introduced 
by MACH [1896, Historische Uebersicht der Entwicklung der Thermometrie, §1, and 
Kritik des Temperaturbegriffes, §5]. MACH assumes explicitly that the set of all hotnesses 
is a l-dinlensional continuous manifold in the sense RmMANN had introduced in his 
Habilitationsvortrag of 1854, published in 1868. Most of the few modem authors who 
treat the m!ltter explicitly assume or prove that the set of hotnesses is a I-dimensional 
differentiable manifold diffeomorphic to the real line, totally ordered under an intrinsic 
ordering to be interpreted as "not cooler than". The work of SERRIN, at this writing 
largely unpublished, is the clearest and best. An empirical-temperature scale is a local 
co-ordinate system or "chart" upon the hotness manifold which is order-preserving, 
say, with the convention that a hotter hotness is mapped onto a larger real number. 

Elsewhere I have tried to explain the matter in terms of MACH'S concepts and others 
available to theorists working in the 1870s (TRUESDELL [1979D. 
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M being the molecular weight or some mass characteristic of the substance. 
That is, if subscripts 1 and 2 indicate measured values for two such gases in 
thermal equilibrium with each other, then 

Pllp2 = M2 • 
P21p2 Ml 

(1IH.4) 

If we choose some arbitrary positive scale-factor k and set 

() == k-IMplp , (llH.5) 

the resulting () will be an ideal-gas temperature on some scale such as 
"Fahrenheit" or "Reaumur" or "Celsius", determined by k. "Absolute 
cold" corresponds to pIp = 0 for all ideal-gas scales. Over large ranges of 
hotness many real gases were found to agree excellently well among them­
selves in the sense made specific by (3). Hence the volumes of a body of such 
a gas maintained at constant pressure would be nearly constant multiples 
of () as defined by (5). In other words, such a gas would be used as a thermo­
metric fluid to provide a thermometer which would read empirical tempera­
tures very close to the ideal-gas temperature. This fact made and makes the 
concept "ideal gas" a natural one, much as the nearly rigid deportment of 
many real bodies in many circumstances abundantly justifies the imaginary 
"rigid body". 

As the reader of this tragicomical history will have seen, an "ideal-gas 
temperature", which up to this point we have denoted by (), did perfectly 
well for the early thermodynamics. 

On the other hand, there was in principle no objection to using as a 
thermometer any body susceptible of appreciable changes of volume when 
heated at constant pressure. The volumes so obtained are also empirical tem­
peratures. While other methods of determining empirical temperature are 
not excluded, the scales obtained by measured volumes suffice to make the 
concept concrete as well as clear. 

KELVIN seems to have perceived that the basic ideas of the theory of heat 
should be independent of the choice of thermometer. He seems also to have 
wished to excise the concept of "ideal-gas temperature", which in fact he had 
never used. Writing a quarter of a century later than the closing year of our 
tragicomedy, he fulminated against the ideal gas 2 : 

... intelligence in thermodynamics has been hitherto much retarded, 
and the student unnecessarily perplexed, and a mere quicksand has 
been given as a foundation for thermometry, by building from the 
beginning on an ideal substance called perfect gas, with none of its 
properties realized rigorously by any real substance, and with some 
of them ... unknown, and utterly unassignable, even by guess. 

2 THOMSON [1878, §46]. 
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MACH, writing in 1896, certainly had no better word for ideal-gas 
temperature 3 : 

Until very recently those who worked in this field seem to have looked 
more or less unconsciously for a natural measure of temperature, for 
a real temperature, for a sort of Platonic idea of temperature, of which 
the temperature read on a thermometer would be only an incomplete, 
inexact expression. 

Among the proponents of this to him reprehensible idea MACH could cite 
even CLAUSIUS. Neither KELVIN nor MACH provided any rules of transform a­
tion for quantities under change of empirical-temperature scale. 

If we are to banish the concept of ideal-gas temperature, we must go back 
over all developments in thermodynamics up to 1854 and discard every 
reference to ideal gases. In particular, all axioms must be phrased in terms 
of an arbitrary empirical-temperature scale. For that we may continue to use 
the letter 8, but we may not attribute to anyone scale any property that 
distinguishes it from others. On the contrary, we must show that all axioms 
are invariant under change of empirical-temperature scale. 

(3. Change of scale. Let the empirical temperatures of one and the 
same body be measured by two thermometers. The two empirical tempera­
tures so found, say 8 and 8*, must be invertible functions of one another: 

8* = f(8) , (llH.6) 

The example of water just above its freezing point shows that such is not 
always the case. If we subject a body of water at atmospheric pressure to 
conditions which make its temperature according to the air thermometer 
decrease from 6°C to 2°C, we shall find that its volume decreases to a 
minimum at about 4°C and then increases again. Therefore, in those con­
ditions air and water cannot both provide empirical-temperature scales. 
One or the other must be rejected as a thermometer in the range including 4°C. 

That is not all. Even in the range below 4°C, should we try to use as a 
thermometer a body of water at atmospheric pressure, we should find that 
if a Body 1 was hotter than Body 2 according to the air thermometer, it 
would be colder than Body 2 according to the water thermometer. This 
fact has important bearing on CARNOT'S General Axiom (5I.1) when that is 
regarded as referring to an empirical temperature. A Camot cycle absorbs 
heat at the higher of the two operating temperatures. CARNOT'S General 
Axiom is invariant under change of empirical-temperature scale if and only 
if the functionf in the transformations (6) is an increasing function. Thus in 
the circumstances just mentioned, air and water cannot both be thermo­
metric fluids: One must be rejected. Experience teaches us that the engine 

3 MACH [1896, Kritik des Temperaturbegriffes, §14]. 
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which absorbs heat at the higher temperature according to the air ther­
mometer does positive work and so conforms with CARNOT'S General Axiom. 
Thus it is the water thermometer that we reject in the range including 4°C 
and air temperatures lower than that. 

Turning back now to the fundamental axioms of the theory of calorimetry, 
namely 

op 
p = 1lT(V, 0) , oV < 0 , (2A.2)r' (2A.5hr 

Q = Av(V, 0) V + Kv(V, 0)8 , Kv > 0, (2C.4)r, (2C.5)2r 

we see that they involve differentiation. They cannot be invariant under 
change of empirical-temperature scale unless that change carries differentiable 
functions into differentiable functions. Therefore we require bothf and f- 1 

in (6) to be differentiable. Taking account of the fact that f is an increasing 
function, we see that a change of scale f must satisfy the additional condition 

j' > 0 . (11 H.?) 

For convenience we shall write 

dO* = j'(O)dO . (1IH.8) 

Of course we require that p and Q, the meanings of which as functions 
of time in a process have nothing to do with the way we might choose to 
measure temperature, shall be independent of the choice of empirical­
temperature scale. Then the inequality (2A.5)1 is likewise independent. By 
use of the chain rule of differential calculus we see that 

op * op 
00* dO = 00 dO . (lIH.9) 

Here, as usual in works of physics, 

(llH.lO) 

To consider the invariance of the quantities appearing in (2C.4) , we let 
subscript 0 and 0* indicate the scale used and so obtain as the condition 
that Q be independent of scale 

Av.8.(V, O*)V + KV •8.(V, 0*)8* = Av.8(V, O)V + KV •8(K, 0)8. (11 H. 1'1) 

Hence Av and Kv transform as follows under change of scale: 

Av.8• = AV •8 , 

Kv.8.dO* = Kv.8dO , 
(l1H.12) 

the left-hand sides being evaluated at V, 0* when the right-hand sides are 
evaluated at V, O. 

With these rules not only are all axioms invariant under change of em­
pirical-temperature scales, but so also are the signs of op/oV, op/oO, Av, 
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and Kv. Thus the various conditions and classifications dependent upon those 
signs are invariant. For example, since a differential equation for determining 
the adiabats is d8/dV = - Av/Kv, the qualitative behavior of the adiabats 
near a point is the same for all scales. Consequently Camot cycles exist 
according to one scale if and only if they exist according to all scales. 

'Y. Invariance of CARNOT'S function. The proof of the General CARNOT­
CLAPEYRON Theorem: 

op 
p-Av = 08 ' 

is valid for an arbitrary empirical-temperature scale. Hence 

Comparison with (12)1 and (9) shows that 

p-sd8 = P-8.d8* 

(llH.13) 

(llH.14) 

KELVIN's first "absolute temperature" '1' is defined by (llB.2), which we 
may write as follows: 

'1' == r p-ix)dx • (llH.l5) 

From (14) we conclude that 

'1'8.(8*) = '1'8(8) if 8* = f(8) : (llH.l6) 

The value of '1' is independent of the choice of empirical-temperature scale 
used to calculate it. 

But is '1' an empirical-temperature scale? Certainly '1' is a differentiable 
function Qf 8, but it satisfies the essential requirement (7) if and only if 

p- > 0 . (5J.8)r 

CARNOT'S own argument shows that 

p- ~ 0 , (5J.9)r 

and the pioneer thermodynamicists seem to have assumed the stronger 
inequality (5J.8). In CARNOT'S own work (5J.8) holds for an entirely different 
reason, namely, CARNOT treated only of an ideal gas, so for him (5L.6) 
held, and he assumed explicitly that Av > 0, so for him p- = R/(VAv) > O. 
In later work we encounter frequently HOLTZMANN'S Assertion JAv = p, 
whence again Av > 0, so it follows again that p- > 0 for ideal gases. Since 
p- is a universal function, the same for all fluid bodies, to determine its sign 
for ideal gases determines its sign for all fluid bodies. Well and good. But 
if we are to construct a thermodynamics without mention of ideal gases, 
t~ese arguments collapse! Can p- vanish? From (14) we see that if 8* = f(80), 
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then 1-'9(00) = 0 if and only if 1-'8.(0*) = 0, so a zero of I-' is an intrinsic 
property, independent of scale, but that is all. As we have mentioned in 
§5J, CARNOT'S General Axiom does not suffice to ensure that (5J.8) shall 
hold; it allows I-' to vanish on a set with empty interior. 

8. The missing Thermometric Axiom. KELVIN seems to have taken it for 
granted that I-' > O. Indeed, by 1854 he knew that for 0 on the air-temperature 
scale the HELMHOLTZ-JOULE Determination I-' = J/O conformed closely with 
measurements, whence of course I-' > O. Possibly, therefore, KELVIN re­
garded (5J.8) as established by experiment, but as he did not mention the 
matter, perhaps he simply overlooked the problem here. Perhaps,on the 
contrary, he recalled a calorimetric formula he had published in 1851, 
namely 

oPjop Kp - Ky = - Ay 00 oV . (2C.9)2r 

If for each 00 there is some body such that on the isotherm 0 = 00 there is 
one point where 

KJI> Ky , 

then (2C.9)2 shows that at that point 

op 
Ay 00> 0 . 

(2C.10)2r 

(9F.3)r 

At that point, then, neither Ay nor op/oO vanishes, and both have the same 
sign. From the General CARNOT-CLAPEYRON Theorem, 

op 
I-'Ay = 00 ' 

we now determine 1-'(00) uniquely, and 1-'(00) > O. By assumption, for each 
00 there is an appropriate body by means of which the foregoing determina­
tion may be effected 3 • 

While KELVIN may have regarded (2C.IO)2 or its consequence (5J.8) as 
being established directly by experiment, a careful theorist cannot do so. 
Thermodynamics is designed not only to correlate experimental data already 

3 CARNOT'S argument to derive (SL.4) fails at a point where Av = 0, because the adiabat, 
jf it exists, is tangent to the isotherm there. An argument based on continuity may be 
used to circumvent this difficulty on isotherms where the body in question has one 
point at which Av =1= 0 (Concepts and Logic, Theorem 7 ""t in Chapter 9), but there is 
no way to prove the existence of p.( 80) for a body such that Av = 0 on all points on the 
isotherm 8 = 80 , 

The difficulty is greatly diminished as soon as we invoke the fact that p. is a universal 
function, the same for all bodies, so for each value of 8 one body sUffices. The Thermo­
metric Axiom provides one way to exploit this fact. 
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at hand but also, and even more, to predict the results of experiments yet 
unperformed. To this end the theorist must lay down explicit axioms. Only 
on such a basis may he draw specific conclusions which, in time, some 
experiment may contradict. He who stays on the safe side by assuming only 
what is already known saves himself trivially from risk but at the same time 
adds nothing to theoretical science, for he can predict nothing-false or true. 

The foregoing makes it clear that in order to ensure the truth of (5J.8) 
the theorist must lay down a Thermometric Axiom, need for which seems 
to have escaped the pioneers 4. The discussion above has revealed two 
formulations of such an axiom. Henceforth we shall assume that the conclusion 
(5J.8) holds. We shall interpret the term "thermometric fluid ", which we 
have used several times in the preceding pages, as referring only to fluids 
from which p, may be determined by use of the General CARNOT-CLAPEYRON 
Theorem. For example, a fluid such that p = w(V) is not a thermometric 
fluid. 

It follows immediately that 7 as defined by (15) is an empirical-temperature 
scale which is absolute in that its value depends neither on the empirical­
temperature scale used to specify p, nor on the choice of body used to 
determine p,. 

But any function of 7 with positive derivative has the properties just 
stated. KELVIN should have written, not "any function of p,", but "any 
function of 7 which has a positive derivative". Thus there are infinitely many 
empirical-temperature scales that are absolute in KELVIN'S first sense. (It is 
possible to show that all of these are functions of 7, but only on the basis of 
a more explicit approach to the whole problem.) An example is provided 
by KELVIN'S second absolute temperature T, which may be defined as 
follows in terms of some constant J having the dimensions of work -:- heat: 

in place of KELVIN's 

J 
T =- . 

p, 

(llH.17) 

This much follows from CARNOT'S General Axiom and the Thermometric 
Axiom alone. It may be applied to any particular theory of the relations 
between heat and work. Inherent in CARNOT'S general frame of ideas if those 
are supplemented by a Thermometric Axiom is the existence of infinitely 
many absolute scales of empirical temperature, scales independent of the 
choice of empirical-temperature scale used to state the axioms, independent 
of the fluitl used to determine p,. 

Use of any absolute scale enables us to dispense with the ideal gas. 

4 That such an axiom is necessary, has been emphasized by Mr. SERRIN in his recent 
writings and lectures. References and discussion in historical contexts have been provided 
by TRUESDELL [1979]. 
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E. Constitutive restrictions expressed in terms of T and T. As T and T 
are particular empirical-temperature scales, we may use either of them in 
place of B in all relations derived so far. From (14), (15), and (17) we see at 
once that 

dB 
IL. = ILB dT = ILB/ILB = 1 , 

(11H.18) 
dT 

ILT = IL. dT = JfT . 

The last of these is equivalent KELVIN'S definition (11B.4). 
Because of (11 H.I7) we may write the General CARNOT-CLAPEYRON 

Theorem (5L.4) in the following forms: 

8p 
Av •• = BT ' Bp 

JAV•T = T aT . (11H.19) 

The second is familiar in the now accepted thermodynamics, but it is in no 
way restricted thereto. We recall that for each choice of the positive constant 
J a different scale T results. All the remaining constitutive restrictions and 
auxiliary formulae may be expressed in terms of T and T if we please 5, but 
we already have enough to clarify the second and third senses in which 
KELVIN used the term "absolute". 

,. The integrating factor: proof of Clausius' statements. Using T as an 
empirical-temperature scale, we can rewrite (19)2 as follows: 

J[B~ (AT·T) - BBV (Ki:T)] = ~ [-:~ + Je~T·T - B~~T)]. (11H.20) 

So far, J is any positive constant having the dimensions of work + heat. 
Now let us adopt CLAUSIUS' principle of the uniform and universal Inter­
convertibility of Heat and Work in cycles, and for the J in (20) take the same 
J as appears in CLAUSIUS' basic relation 

Bp = J(BAv _ BKv) (8B 1) 
BB BB BV' . r 

a relation which is invariant under change of scale and hence must hold in 
particular when T is used. Then (20) reduces to 

B~ (AT·T ) - BBV (Ki:T) = 0 . (11H.21) 

Integrating the left-hand side of this relation over the area included by a 
simple cycle Cff,' by use of AMPERE's transformation and (2C.4) we conclude 
that 

(11H.22) 

5 TRUESDELL [1979]. 
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For a simple Carnot cycle ~ this statement reduces to 

(11H.23) 

so 
L(~ T-

JC+(~ = 1 - T+ . 

The spectators will recognize (19)2, (21), and (22) as having exactly the 
same forms as CLAUSIUS' (1lE.4), (11E.6), and (11D.14). The difference is 
that while CLAUSIUS' function T is divined, here T is KELVIN's second absolute 
temperature, a specific function of () which exists because of the General 
CARNOT-CLAPEYRON Theorem and the Thermometric Axiom, on which the 
definition (17) is based. While CLAUSIUS has to resort to a metaphysical 
"equivalence-value" in order to conclude that T "can only depend upon the 
temperature", the definition (17) makes T outright an empirical-temperature 
function, provided, of course, that I-' > O. If there is such a thing as CLAUSIUS' 
T, the properties he asserts for it show that it must be a constant multiple 
of the T we have exhibited. That KELVIN's T-l is an integrating factor for 
Qdt, we have proved by the straightforward argument leading to (21) 
and (22). 

While the foregoing proof is supremely easy and calls upon only mathe­
matics which was in common use in the 1850s, I have found no trace of it 
in the sources. The reason may be that the authors of textbooks have not 
perceived that KELVIN'S second absolute scale exists whether or not the 
"First Law" holds, and that the relation (19)2' familiar as it is in the context 
of the "First Law", in no way requires that law. 

The constitutive restrictions (19)2 and (21) provide the basis of the classical 
thermodynamics of reversible processes in fluids as that doctrine is under­
stood tocijly. The former subsists in consequence of the existence of T, 
the constant J being arbitrary. The latter subsists only when heat and work 
are uniformly and universally interconvertible in Carnot cycles and when 
J is chosen as the corresponding mechanical equivalent of a unit of heat. 

TJ. Proof of KELVIN'S statements. The formal aspects of KELVIN's work 
on absolute temperatures have been handled at the beginning of this section. 
In regard to them all that remains is to note the neat proof of KELVIN'S 
elegant formula 

L(~ ( I f9+ ) 
JC+(~ = I - exp -y 9- ~() (9B.g)r 

we get if we use the definitions (17) and (11 B.2) to conclude that 

T = exp (j f I-'«()d()) , (1IH.25) 
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then substitute the result into (21). This reverses KELVIN's path: He started 
from (9B.9), which he had proved by the argument we have reproduced 
above in §9B. That proof did not cast much light upon the result. Failure to 
uncover its conceptual basis may have cost KELVIN the independent discovery 
of CLAUSIUS' assertions, proof of whose concrete aspects we have given just 
above. 

The relation (23) shows that for CLAUSIUS' theory T is "absolute" in 
KELVIN'S third sense. 

The essential gap in KELVIN'S presentation was not formal but conceptual: 
He did not prove that T was in fact an empirical-temperature scale. We have 
filled that gap in Part 8 of this section. 

8. Summary. In regard to absolute temperature all of CLAUSIUS' state­
ments and all but one of KELVIN'S are correct within the framework of 
classical thermodynamics. By assembling and interlocking them through 
mathematical proof we have provided and justified the formal structure of 
classical thermodynamics of fluid bodies described by two variables: a 
geometric quantity, such as volume V, and the particul~r absolute 
temperature T. 

Whatever may have been KELVIN's reason for abandoning T and moving 
to T, the advantage in doing so is plain: Without ever mentioning the existence 
of such a thing as an ideal gas, we find in T a temperature which is absolute 
in the sense that it is independent of the choice of thermometer, yet it gives 
to all thermodynamic equations the same simple form that the existence of an 
ideal gas with constant specific heats would imply. All this follows from just 
three assumptions restricting the Doctrine of Latent and Specific Heats: 

1. The General CARNOT-CLAPEYRON Theorem (itself a consequence of 
CARNOT'S General Axiom). 

2. A Thermometric Axiom sufficient to conclude that ,." never vanishes. 
3. CLAUSIUS' First Law in its earliest form: The work done by a Camot 

cycle is the uniform and universal equivalent of the net gain of heat. 

The loss in using T is that it does not satisfy the requirement KELVIN laid 
down first: Degrees of heat do not have "the same value" in terms of tbe 
maximum work their differences can produce in operating a reversible heat 
engine. On the other hand, degrees according to T are entirely different 
from the degrees read upon any common thermometer, while the difference 
between T and centigrade temperature according to the air thermometer with 
its zero set at absolute cold is negligible in most circumstances. 

Although CLAUSIUS obtained the formal relations of thermodynamics in 
terms of his absolute temperature as an independent variable, he shows no 
evidence of having grasped its intrinsic meaning, the meaning that KELVIN'S 
definition, namely 

J 
T == -, 

,." 
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gives it right away. CLAUSIUS' argument for the existence of his T is so vague 
and mysterious that we cannot subject it to scrutiny. KELVIN'S definition is 
clear: If JL exists and is positive, KELVIN'S T exists. By using data from their 
experiment on the porous plug JOULE & KELVIN were able to determine T as a 
function of 8. In this way they calculated the deviations of 8 according to the 
air-thermometer from the absolute temperature T. All CLAUSIUS could do in 
this regard was fall back on the old expedient he had used in 1850: Appealing 
to the properties of ideal gases, he reaffirmed HOLTZMANN'S Assertion. I do not 
think that thermodynamics has ever been developed correctly without some 
appeal to a particular material. The thermometric axiom discussed above in 
Part 8 ofthis section calls upon such a material in order to ensure that JL > o. 
With this addition, KELVIN'S development becomes sound. CLAUSIUS, on 
the contrary, never could free himself of an a priori concept of an ideal gas. 
Neither KELVIN nor CLAUSIUS felt the need to prove that what he called 
T was in fact an empirical-temperature scale. We have seen that a Thermo­
metric Axiom is necessary if we are to prove that the temperature measured 
on a common thermometer is a differentiable function of KELVIN'S T. Then 
T is an empirical-temperature scale which is absolute in KELVIN'S first and 
third senses. 

It would be far too much to say that either KELVIN or CLAUSIUS established 
all this. Their physical principles were abundantly sufficient and had been so 
for at least three years before they undertook the work we have been dis­
cussing. Their treatments of absolute temperature-KELvIN's having the 
great merit of concreteness but hasty and fragmentary, CLAUSIUS' riddling 
and magical-add up to another near miss, obscure from failure to apply 
mathematical criticism to a mathematical question. 

111. Critique: CLAUSIUS' "Laws" of Thermodynamics 

The message of CLAUSIUS' paper is not in the simple, concrete statements 
we have been at some pains to justify in the preceding section but rather in 
ideas inchoate. 

In his paper of 1850 CLAUSIUS had given reasoning to prove that an 
internal energy exists. Now, like KELVIN before him (§9D, above), he regards 
internal energy as something directly motivated in physics. He states the 
"First Law" as an axiom for all processes, not just cyclic ones: 

E =JQ +P. (8B.2)lr 

The main properties of internal energy follow almost by inspection if E 
is assumed to be a function of Vand 8 and if P has the classical form (8B.2)2. 
However, these specializing as,sumptions are not inherent to the idea. 

Ever since the appearance of this paper it has been customary to introduce 
E as a primitive concept in the mathematical structure. 
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CLAUSIUS' verbal statement of the" Second Law" makes no sense, for 
"some other change, connected therewith" introduces two new and un­
explained concepts: "other change" and" connection" of changes. Neither 
of these finds any place in CLAUSIUS' formal structure. All that remains is a 
Mosaic prohibition. A century of philosophers and journalists have ac­
claimed this commandment; a century of mathematicians have shuddered 
and averted their eyes from the unclean. 

The brief remarks on irreversible processes make no sense either, since a 
"process" has not been defined or illustrated except within a structure that 
provides only bodies susceptible of no processes but reversible ones. CLAUSIUS 
tells us that he could easily calculate "the equivalence-values of the un­
compensated transformations" but gives no illustration and no idea what 
we could do with such a quantity if we had it. 

Even the definition of" circular process" is vague: "the series of changes 
are such that through them the body returns to its original condition", but 
what is that? CLAUSIUS states at once that ilE = 0 in a circular process, 
but in fact for bodies susceptible of irreversible processes there is no reason 
to think that a cycle in such variables as V and (J will leave E unchanged. 

Like KELVIN, CLAUSIUS seems to see that direct postulation of the two 
basic "Laws" makes it unnecessary to use the Doctrine of Latent and 
Specific Heats, which had been the common starting point of all attempts to 
construct a thermodynamics. Here is a tiny glimmer of light toward a 
theory of bodies described by more than two variables; far more, toward 
a theory that allows processes to be irreversible. 

CLAUSIUS does nothing with his potentially greater generality. All his 
specific calculations fall back on the Doctrine of Latent and Specific Heats 
as an added assumption. 

While KELVIN's operative statement of the" Second Law" (§9B, above) 
is the General CARNOT-CLAPEYRON Theorem, CLAUSIUS' is 

fa;=o. (llD.14)r 

Within the framework of the theory of calorimetry this statement is obviously 
synonymous with the global existence of entropy. CLAUSIUS was to wait 
fourteen years to see that! Here is another of our muse's little jokes. While 
she had put conditions of integrability into CLAUSIUS' tool box, she seems 
not to have taught him what to do with them. Four years after the appearance 
of the work we are discussing, he is to publish a mathematical paper 
explaining (to himself?) how to use them, and in annotating the reprint of 
his papers in 1864 he is to say a good deal about them. Then there was the 
entropy already standing in print in the papers of RANKINE, as we have seen 
in §§8G and 9A, but in them it was entwined in the obscurity of RANKINE'S 
molecular model. Finally there was REEcH's pro-entropy, speciously general 
but nevertheless enjoying the full panoply of formal relations we today 
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associate with the entropy. But our muse gave REECH the gift of Cassandra: 
Nobody paid any attention to him. 

Indeed, REECH1 was quick to remark in effect that if his integrating factor 
fwere assumed to be a function of 0 alone, say')', then his formula (lOA.4) 
applied to a Camot cycle ~ would yield 

Thus 

and 

C+(~ = ')'(O+).6.u , 

C-(~ = ,),(O-).6.u • 
(111.1) 

(111.2) 

(111.3) 

This is CLAUSIUS' Second Principal Theorem; as ')' is universal, CLAUSIUS' 
conclusions about an absolute temperature T follow, and T = ')'(0). 

That is not all.lff(O, u) = ')'(0), REEcH'sfunction u is afunction of what 
CLAUSIUS, twelve years later, was to introduce afresh and call the entropy! 
RBECH'S analysis of the Camot cycle by use of it is elegant and complete. 
Many modem textbooks present the Camot cycle in just this way. But that 
argument is not REECH'S discovery either, for it already stood in RANKINE'S 
paper of 1851, which we have analysed in §9A; cf (9A.ll)-(9A.14). 

For this, none of the inspired assertions about "equivalence-values" 
and no compositions and resolutions of processes are necessary. 

111. Critique: Irreversible Processes 

The now familiar term "dissipation" seems to derive from KELVIN's note 
of 1852, the contents of which we have presented in §IIA. Everyone today 
accepts KELVIN's statements there. They express something that is become 
part of the way we look at nature. 

1 REECH [1856, pp. 61-66] was impeded by the insufficiency and incompleteness of his 
own earlier mathematical analysis (above, §10E). He did not know that his integrating 
factor f could always be taken as a function of 6 alone, but "certain properties of 
vapors" had led him in 1853 to suppose so for those substances. Then he regarded f 
as constitutive. Now he uses CARNOT'S construction (§5F) to conclude that it would 
be "absurd" for" to vary from one substance to another. His pro-entropy u remains 
for him a function of p and 6. 

In a later note REEcH [1858] makes his position clear: "I cite and prove in my own 
way the theorem of Mr. CLAUSIUS, according to which my expressions for C+ and C­
are too general, and should be replaced by [(111.1)], the function ,,(6) being supposed 
the same for all kinds of elastic fluids .... " 
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It would be difficult to find any clear connection between KELVIN's 
pronouncements in this note and the extremely limited body of concrete 
thermodynamics by then constructed. The overtones of belief in an omni­
potent divine will capable of altering divine laws are apparent: "inanimate 
material agency", "material world", "inanimate material processes", "the 
will of an animated creature", "man as at present constituted", "at present 
in the material world". Just what there was about the modest if respectable 
little budget of specific statements which thermodynamics in its early years 
delivered that made its creators bold to apply them to "the earth" and 
"the universe", is not clear. I suppose the tragicomic muse was schadenfroh. 

KELVIN's note reads as if it were a program for future research toward a 
general theory of thermomechanics in deformable bodies that can accept 
conduction and radiation of heat. Unfortunately such was not to be the 
course of history. 

KELVIN himself was to study dissipation explicitly and efficiently only in 
the context of linear conductors of electricity-a branch, that is, of the theory 
of circuits, in which purely mechanical dissipation had long been understood 
and could serve as a model. In the thermodynamics of dissipation in general 
nothing concrete was to be achieved during the period of this tragicomedy, 
and very little thereafter until the 1960s. 

More attention was to be paid to the oracles of CLAUSIUS, which have 
been repeated, embroidered, and glossed in all the textbooks. What they are 
to mean is another matter. 

Seven times in the past thirty years have I tried to follow the argument 
CLAUSIUS offers to conclude that the integrating factor T exists in general; 
is a function of () alone, and is the same for all bodies, and seven times has 
it blanked and gravelled me. For that reason I have reproduced the central 
passages in §§llD and 11F. Let the reader judge of this. I cannot explain 
what I cannot understand. 

I cannot even see what CLAUSIUS' "analytical expression" 

I dC - 0 T - (llD.14)r 

means. I should like to think that dC here stands in general for Qdt, and that 
the integral is a double one, Q itself being the value of some kind of integral 
that "extends over all the quantities of heat received by the several bodies". 

CLAUSIUS does not give the reader any further explanation or example that 
would clarify any case except the one already abundantly treated in earlier 
papers. He has shown himself able to correct CARNOT'S work, but he cannot 
produce anything concrete in a domain of thermodynamics through which 
CARNOT had not cut a trail. 



Epilogue: Gotterdammerung 

. .. Cosclenza fusca 
ode la propria 0 de l'aItrui vergogna 
pur sentira la tua parola brusca. 

Ma nondimen, rim ossa ogne menzogna, 
tutta tua visIon fa manifest a ; 
e lascia pur grattar dov' e la rogna. 

Che se la voce tua sara molesta 
nel primo gusto, vital nodrimento 
lascera poi, quando sara digesta. 

Questo tuo grido fara come vento, 
che Ie pill aIte cime pill percuote; 
e cio non fa d'onor poco argomento. 

DANTE, Paradiso XVII, 124-135 

CLAUSIUS' first paper, while entangled and slack, was in aim and result 
constructive. From his second paper, on the contrary, through the murk and 
gloom emerges a growing aura of retreat and impending failure. While in 
all work analysed up to now there was no hint that conditions were any 
more specific than the equations themselves suggested, in this paper CLAUSIUS 

assumes that "the pressure always changes very graduaIly," though he 
specifies no time scale sufficient to give meaning to the term "gradual". 
Here the tergiverse "quasistatic process", hinted at by REECH, first slithers 
onto the scene. It joins the "state" as a principal engine of the mystic 
double-talk that makes thermodynamics different in kind from all the rest 
of classical physics. 

But that is far from the worst. Hitherto thermodynamics had been, like 
any other theory in mathematical physics, pretty largely a model for the 
way things are. In CLAUSIUS' hands it now begins to change into a model 
for the way things are not. The old theory, based on the Doctrine of Latent 
and Specific Heats, makes all processes "reversible". CLAUSIUS seems 
suddenly to see that in nature we cannot run engines backward. To the great 
geometers of the previous century this idea (which, if I may be permitted 
an unhistorical conjecture, would not have seemed the least bit startling or 
new) would have been a chaIlenge to construct a general and inclusive 
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theory. To CLAUSIUS it was sufficient reason to confine the circumstances 
so as to fit the existing theory. 

And if the new principles are to hold outside the constitutive class specified 
by the Doctrine of Latent and Specific Heats-indeed, that Doctrine cannot 
apply to irreversible processes-what is the more general class that CLAUSIUS 
considers? As BRIDGMAN wrotel , 

... why is thermodynamics restricted to the formulation of necessary 
conditions, and why is it so impotent in its endeavor to frame sufficient 
conditions? Other branches of physics are not thus restricted. Or why 
is it that it is so impotent to deal with irreversible processes? There are 
certain irreversible processes that are of a patent simplicity, and that 
can be completely measured by the instruments which give us our 
thermodynamic information, such as thermal conductivity. Why 
should not the physicist be able to deal with the thermodynamic 
implications of thermal conduction? 

Indeed. The thread of the plot that began to spin out in Act I hangs. It 
will continue to hang for nearly 150 years, despite brilliant particular excep­
tions: MAXWELL'S derivation of the field equation for balance of energy 
according to his kinetic theory of gases, 1866; KIRCHHOFF'S consequent 
analysis of the absorption and dispersion of sound in a viscous, heat-conduct­
ing gas, 1868; MAXWELL'S prophetic study of thermo-elastic, dissipative 
interaction in rarefied gases, 1876; the work of DUHEM, HADAMARD, and 
others on thermo-elasticity in general, including thermal effects on shock 
waves and acceleration waves. But these did not unite thermodynamics and 
mechanics. 

At similar stages in mechanics and electromagnetism, recognition of a 
major gap of this kind led to a clear concept and exploitation of the role of 
constitutive relations. In those subjects a key problem well solved was father 
to a new key problem posed; growth in concept matched the growth of 
special cases mastered; when physics called for new tools, it was the creating 
geometer himself who set about to forge them. Not so in thermodynamics. 
CLAUSIUS, instead of enlarging his theory enough to include the processes 
he chose to call "uncompensated " (irreversible) contented himself with 
describing them in physical terms. We have quoted his remarks in full in 
§llD. The "particular cases" into which CLAUSIUS chose not to enter include 
not only FOURIER'S theory of heat conduction but also most phenomena 
described·by mechanics and many described by electromagnetism. With this 
decree, thermodynamics turned its back on the real world. Henceforth, 
relinquishing steam engines, it would treat mainly a " universe "-an infinite 
space filled with some gas, the constitutive relation of which was specified 

1 BRIDGMAN [1941, p. 5 of the 1961 edition]. 
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only for the case when it was at rest with uniform density and temperature. 
Hence grew the thermodynamicists' notorious disregard for constitutive 
relations altogether, their illusion that thermodynamics can do without them 
and deal only in extremely general principles. The defeat of CARNOT'S 

program had been formally acknowledged by a treaty of neutrality supervised 
by mutual blindness. 

The thermodynamics of the nineteenth century began a new style, in 
which the physicist applied what mathematics he happened to know. If 
that mathematics did not suffice, he cut down the probJem to its size. Such 
a physicist did not think it necessary for his students to learn any mathe­
matics beyond what he himself had been taught when he was a stildent. 
Mathematical research meanwhile advanced swiftly, but little of it was 
learnt by physicists. It became purer and purer. Physicists finally began to 
think that all this new mathematics was useless; that mathematicians neglected 
their duty to teach the good old mathematics already used in physics and 
hence (obviously!) destined to suffice it forever; and that they themselves 
should teach "physical" mathematics to their students: mathematical tools 
for the physicist! 

Se Dio ti lasci, lettor, prender frutto 
di tua lezione .... 

DANTE, Inferno XX, 19-20. 
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Absolute temperatures, see "Tempera­
tures, absolute" 

Absurdities 100, 140, 141, 297, 334 
Adiabatic process 

definition 33 
LAPLACE-POISSON law for ideal 

gases 
derivations 38, 39, 42-46 
disregarded by CARNOT 132, 

133 
incorporated by CLAUSIUS 194, 

198 
in CARNOT'S theory 123 

adiabats 41, 87,.264, 278, 280--282 
air thermometer, see "temperature, 

air-thermometer" 
anomalous behavior of water 13, 57, 

58,267-270 

Caloric, see "caloric theory of heat", 
"heat functions", and 
"entropy" 

caloric equation of state, see 
"potentials, thermodynamic" 
and "heat functions" 

caloric theory of heat (see also "heat 
functions ") 

broad sense 34, 153 
as adopted by LAPLACE 34, 35 

inessential to his theory of sound 
44 

inessential to his theory of 
adiabatic change 46 

forbids ideal gas to have constant 
specific heats 41, 132 

as adopted by FOURIER 59, 60, 68 
as adopted by CARNOT 84,85, 103 

inessential to the general 
CARNOT-CLAPEYRON Theorem 
111, 121, 181 

inessential to his conclusions 
regarding infinitesimal 
differences of temperature 107 

inessential to many of his other 
conclusions 107, 113, 130 

essential to his conclusions 
regarding finite. differences of 
temperature 107, 112 

required by CARNOT'S special axiom 
104,105 

inessential to some of HOLTzMANN's 
conclusions 181-184 

inessential to the HELMHOLTZ­
JOULE determination 181 

inessential to CARNOT'S general 
axiom 185 

calorimetric 19 
calorimetry, theory of 19 
CARNOT-CLAPEYRON theorem 

general 111 
special 111,112 

CARNOT'S 
approach and assumptions 78-85 
heat function He 85 
cycle 86-88 
general axiom 101 
special axiom 102, 103 
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CARNOT's-continued 
function F 102, 103, 112 
function JL (see also "HELMHOLTZ­

JOULE determination") 106, 
108, 170, 249 

main theorem 110 
compression, sudden, see "adiabatic 

process" 
conduction of heat (see also 

" conductivity") 
refers essentially to time 22 
LAMBERT'S theory 47-49 
BIOT's theory 48-51 
FOURIER's theory 51-53, 60-75 
excluded by CARNOT 82,87,91 
DUHAMEL'S theory 143-147 
mentioned by KELVIN 305 
excluded by CLAUSIUS 319 
excluded by classical 

thermodynamics 338 
conductivity, thermal (see also 

"NEWTON'S law of cooling") 
specific 60, 67 
superficial 60 

conservation of energy, see "Energy, 
conservation of" 

constitutive 
constant of an ideal gas 12 
inequalities 12, 16, 18, 19,23,24, 

173, 267-270 
functions 19 
relations 19, 67, 71, 76-78, 82,338, 

339 
restrictions imposed by 

thermodynamics 
of caloric theory 42, 114 
CARNOT-CLAPEYRON theorems 

111-113 
CARNOT'S great discovery 134, 

135 
CLAUSIUS' 192,199,203,317, 

318,329 
RANKINE'S 213, 215, 216 
REECH'S 282, 284-286 

continuum mechanics 67,69,70,73, 
77 

convection 72 
cycle (see also" CARNOT'S cycle") 86 

Deltas of thermodynamics 3, 4, 22, 
199,206 

Devil, the 68 
diagrams 20, 86, 140, 264 
differentials 3, 7, 8, 21, 22, 26, 27, 

140, 206, 207, 210 
dimensions 

FOURIER'S theory of 65, 66 
applied to CARNOT'S theory 118, 

119 
dissipation, see" irreversible 

processes" 
doctrine of latent and specific heats 

(see also "calorimetry, theory 
of") 16, 19 

dynamical theory of heat, see 
"interconvertibility of heat 
and work, uniform and 
universal" 

Efficiency (see also "CARNOT'S 
general axiom") 

maximum achieved by CARNOT 
cycles 90-95, 116, 117, 171, 
172,302 

universal 95-99 
preliminary definition 103 
RANKINE'S evaluation for a 

CARNOT cycle 221-224 
KELVIN's evaluation for a CARNOT 

cycle 230-232 
formal definition by RANKINE 264 

empirical temperatures, see 
"temperatures, empirical" 

engine (see also" CARNOT'S cycle") 
79, 150, 151, 164, 168, 310 

energy (see also "pro-energy", "first 
law of thermodynamics", 
"interconvertibility of heat and 
work") 

total 15, 152, 161 
kinetic (see also" heat, a 

manifestation of intestine 
motion") 71, 109 

balance of 71,246 
internal 

possibly total heat 
in thermomechanics 
in CLAUSIUS'S theory 

192,199,200 

15 
71 
153, 189, 

in RANKINE'S theory 213 
in KELVIN'S theory 227, 233 

science of 164 
conservation of 143, 163,259 
potential 259 

enthalpy 246,247,266, 287 
entropy (see also" heat function" 

and "pro-entropy") 
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in RANKINE's theory 210, 211, 214, 
215,220-223,264,265 

in CLAUSIUS' theory 333, 334 
in REECH'S theory 334 

equivalence, see "interconvertibility 
of heat and work" 

equivalent, see "mechanical 
equivalent of a unit of heat" 

expansion, latent heat of, see "latent 
heat with respect to volume" 

experiment, see in the index of 
persons "BOYLB", 
" AMONTONS", "LAvoISmR", 
"RUMFORD", "DALTON", 
"GAY-LUSSAC", 
"DBLAROCHB", "DULONG ", 
"WBLTER", "JOULE", 
"REoNAULT", "MAGNUS" 

First law of thermodynamics (see also 
"interconvertibility of heat and 
work", "energy", 
•• mechanical equivalent of a 
unit of heat", and "pro­
energy") 

CLAUSIUS' 105, 192, 193, 199, 200, 
249, 311, 312, 332 

not known to CLAPBYRON 139 
not known to RUMFORD 156 
not known to MAYER, HELMHOLTZ, 

JoULE or anyone else before 
1850 184,.185 

RANKINE'S 213, 257, 259 
KELVIN'S 227, 245 
REECH'S generalization 287 

Fluid 12 
Force, see "heat, a kind of force" 

and "work" 
free energy 287 
free enthalpy 287 
furnace 87 

Gas (see also "ideal gas", "vapors' ') 
10, 11, 14, 278 

generosity, retrospective 68; 267 
.. Gibbs relation" 282, 299 

Beat (see also "heating", "latent 
heat", "specific heat", 
"caloric theory of heat", 
"heat functions", "conduction 

of heat", "interconvertibility 
of heat and work", "energy", 
"pro-energy", "first law of 
thermodynamics ") 

total 15, 152, 153, 178, 192 
added to a body 15,20 
absorbed by a body 25, 83 
emitted by a body 25, 83 
flux of 61, 62, 66, 67, 69, 76 
a manifestation of intestine 

motion, 152, 153 188,207, 
208,210 

a kind of force 153-155, 162, 178 
heat functions (see also .. caloric 

theory of heat") 
LAPLACE'S BL 35, 159 
CARNOT'S Bo 85, 123, 159 
CLAPEYRON'S BOI 141 

heating Q 15,246 
HELMHOLTZ-JoULE determination 

of I' 
from dimensional invariance of 

CARNOT'S Theory 119 
considered by CARNOT 128 
inferred from BOLTZMANN'S 

theory by HELMHOLTZ 162 
inferred from BOLTZMANN'S 

Assertion by JOULE 176, 180, 
181 

rejected by KELVIN 174,176-178, 
231-233 

equivalent to HOLTZMANN'S 
assertion 181, 297 

accepted by CLAUSIUS 195-198, 
201 

derived by RANKINE 213 
priority of JOULE contested by 

CLAUSIUS 231, 232 
history of science 4, 5, 32, 46, 117 

152,295 
HOLTZMANN'S assertion (see also 

"MAYER'S assertion") 
statement 158-160 
equivalent to MAYER'S 159-161 
called "MAYER'S hypothesis" by 

KELVIN 161 
support for it implied by 

HELMHOLTZ'S table 162 
adopted by JOULE 167 
logical status and generalization 

181-183 
derived by RANKINE 212, 215 

HOPPE'S theorem on ideal gases 202, 
248,275 
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Ideal gas (see also "temperature, 
ideal-gas") 9-12, 96 

inequalities, see" constitutive 
inequalities" 

interconvertibility of heat and work 
(see also" energy", "pro­
energy", and "heat") 

in cyclic processes 
universal but not uniform 115, 

116, 150 
conceptual analysis of 149-151 

universal and uniform 
in all circumstances 153, 178, 

184 
in isothermal processes 154, 

158-160,176, 178 
according to MAYER 154-157, 

184, 185,267 
according to JOULE 163-167, 185 
in cyclic processes 189, 190, 209 
in general processes, see "energy, 

internal" and "pro-energy" 
unknown to RUMFORD 156 

intestine motion, see "heat" 
invertibility, thoughtless, principle of, 

283 
irreversible processes 47-78,91,94, 

164, 167,244, 246, 305, 306, 
318, 319, 334, 335, 338 

isothermal 15 

JOULE-THOMSON effect 242-244, 
249-256 

JOULE'S equivalent, see" mechanical 
equivalent of a unit of heat" 

LAPLACE-POISSON law, see 
"adiabatic process, 
LAPLACE-POISSON law for 
ideal gases" 

latent heat (see also "calorimetry, 
theory of") 

with respect to volume Av 16-19 
of fusion or vaporisation 17 
with res~ect to pressure Ap 22-24 

laws of thermodynamics, see" first 
law" and "second laws" 

line integrals 20, 24 
linearity, confusion it leads to 77, 

78, 143-147 

Mathematics (see also "differentials") 
special, for thermodynamics 8, 

26,27,206,217 

LAPLACE'S 46 
FOURIER'S 55, 66, 77 
CARNOT'S 80,101, 117, 124, 134, 

136, 168 
CLAPEYRON'S 140 
CLAUSIUS' 205-207, 218, 311 
KELVIN'S 168, 227, 231 
RANKINE'S 210,211,216,217,265 
REECH'S 297,299 
applied 339 

material 20 
materiality of heat, see" caloric 

theory of heat" 
"Maxwell relations" 42, 114, 283, 

286 
" MAYER'S assertion" (see also 

"HOLTZMANN'S assertion") 
157, 160 

" MAYER'S hypothesis", see 
"HOLTZMANN'S assertion" 

mechanical equivalent of a unit of 
heat 

CARNOT'S calculation 80, 81, 
119-122 

in cyclic processes 150, 151, 189 
in isothermal processes 154, 158, 

160, 167 
WATERSTON'S calculation 156 
erroneous attribution to RUMFORD 

156 
MAYER'S calculation 157, 182 
HOLTZMANN'S calculation 159, 182 
JOULE'S determination 167 
CLAUSIUS' calculation 204 

mechanical theory of heat, see 
"interconvertibility of heat 
and work, uniform and 
universal" 

molecular models 
in general 10, 34 
LAPLACE'S 32, 33 
DUHAMEL'S 67,68 
RANKINE'S 207-209, 216, 217, 274, 

275 
CLAUSIUS' 205, 217, 274, 275, 321 

motive power, see" work" and 
" efficiency" 

NEWTON'S law of cooling 47, 48, 50, 
62 

notations 7, 8 

Operating temperatures of a CARNOT 
cycle 88 



Path 20,21 
perpetual motion 95, 100, 191 
physicists, psychology of 152 
physics and chemistry 59, 76, 81, 

135, 136, 153,295 
potential energy 259 
potentials, thermodynamic 285-287, 

299,300 
power, see "working", "work", and 

" efficiency" 
pro-energy 

in CARNOT'S special theory 116 
REECH'S 282, 287, 296 

pro-entropy 
REECH'S 278-280, 333 
implied by CARNOT'S general theory 

293 
process (see also" path", "line 

integrals", "adiabatic 
process", "isothermal", 
"reversibility", "irreversible 
processes") 15,21,83 

Quasistatic 153, 279, 311, 337 

Rate-independence of calorimetry 
and classical thermodynamics 
21,22,24 

rational mechanics 53, 77, 80, 134 
rational thermomechanics 3, 4, 9, 22, 

26, 52, 53, 67 
REECH'S 

first theorem 106, 239 
second theorem 241 
third theorem 280 
fourth theorem 285, 286 

"REECH'S theorem" on the ratio of 
specific heats 43, 289 

refrigerator 87 
reversibility (see also" irreversible 

processes ") 
of heat 21,25 
of work 24, 25 
in classical thermodynamics 25, 

164,337 
in CARNOT'S theory 94, 168 
of perfect engines 168 
for KELVIN 305 
for CLAUSIUS 313, 316 

Second laws of thermodynamics, 
various 8, 101, 134,249 
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CARNOT'S, alleged 90, 100, 105 
CLAUSIUS' 105, 190, 191, 226, 312, 

316, 319, 333 
RANKINE'S 213,214,262,264-266 
KELVIN'S 226 

secondary literature 5, 341 
sound, speed of 

results established in 18th century 
13, 14 

results of BlOT, POISSON, LAPLACE 
29-37 

independent of caloric theory 
42-44 

LAPLACE-POISSON theory disregarded 
by CARNOT 131-133 

specific heat 
at constant volume Kv 16-19 
at constant pressure K" 22-24 

specific heats 
Ratio y 
LAPLACE'S theory 36, 40-42 
MEIKLE'S theory 38, 39 
constant, excluded by caloric theory 

42, 125, 132 
FOURIER'S ideas 58, 59 
CARNOT'S theory 122-125 
constant ratio rejected by CARNOT 

131 
constant difference assumed by 

MAYER 157 
constant, suggested by CLAUSIUS 

196 
constant, required by RANKINE'S 

theory 216 
REECH'S general theory 288-291 

state, thermodynamic (see also 
"thermal equation of state ") 
81, 82, 142, 337 

steam 79, 81, 90, 121, 136, 150, 168, 
169, 173-175,177,178,185, 
203-205, 231, 234, 247, 272, 
273, 308 

surroundings 83, 98, 99 

Temperatures 
ideal-gas 9, 323 
air-thermometer 11, 249, 307 
FOURIER's explanation 56, 57 
field 60 
difference 

makes work possible 
CARNOT'S statements 84, 89, 
90,95, 178 
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temperatures-continued 
GmBS' statement 90 

finite 85, lOS, 109, 173 
infinitesimal 105-107, 109-111, 

141 
absolute 108, 307-310, 320-322, 

328-332 
empirical 307, 321-328 

thermal equation of state (see also 
"ideal gas" and "calorimetry, 
theory of") 12, 19 

thermodynamic potentials, see 
"potentials, thermodynamic", 
"energy, internal", "enthalpy", 
"free energy", "pro-energy", 
"pro-entropy", "free 
enthalpy" 

thermo-elasticity 143-147 
thermomechanics, see "rational 

thermomechanics" 
thermometric axiom 327, 328 
thermostatics 299 
time 

essential to thermodynamics 15, 22 

rarely mentioned 22 
obscured by CARNOT 136, 137 

traditional presentations of 
thermodynamics 3, 6 

Universe 338 
unpublished sources 5 

Van der WAALS fluid 211 
vapors (see also "steam") 11, 192, 

195,278 
variables, unfortunate choice of 140 
vis viva, see "heat, a manifestation of 

intestine motion" 

Water, see" anomalous behavior of 
water" 

work (see also" reversibility of work" 
and" energy, internal") 

definition 24 
CARNOT'S great contribution 135 

working (see also" work ") 246 
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